
Graduate Texts in Physics

Timm Krüger
Halim Kusumaatmaja
Alexandr Kuzmin
Orest Shardt
Goncalo Silva
Erlend Magnus Viggen

The Lattice
Boltzmann
Method
Principles and Practice

Graduate Texts in Physics

Series editors

Kurt H. Becker, Polytechnic School of Engineering, Brooklyn, USA
Jean-Marc Di Meglio, Université Paris Diderot, Paris, France
Sadri Hassani, Illinois State University, Normal, USA
Bill Munro, NTT Basic Research Laboratories, Atsugi, Japan
Richard Needs, University of Cambridge, Cambridge, UK
William T. Rhodes, Florida Atlantic University, Boca Raton, USA
Susan Scott, Australian National University, Acton, Australia
H. Eugene Stanley, Boston University, Boston, USA
Martin Stutzmann, TU München, Garching, Germany
Andreas Wipf, Friedrich-Schiller-Univ Jena, Jena, Germany

Graduate Texts in Physics

Graduate Texts in Physics publishes core learning/teaching material for graduate-
and advanced-level undergraduate courses on topics of current and emerging fields
within physics, both pure and applied. These textbooks serve students at the
MS- or PhD-level and their instructors as comprehensive sources of principles,
definitions, derivations, experiments and applications (as relevant) for their mastery
and teaching, respectively. International in scope and relevance, the textbooks
correspond to course syllabi sufficiently to serve as required reading. Their didactic
style, comprehensiveness and coverage of fundamental material also make them
suitable as introductions or references for scientists entering, or requiring timely
knowledge of, a research field.

More information about this series at http://www.springer.com/series/8431

http://www.springer.com/series/8431

Timm KrRuger • Halim Kusumaatmaja •
Alexandr Kuzmin • Orest Shardt • Goncalo Silva •
Erlend Magnus Viggen

The Lattice Boltzmann
Method
Principles and Practice

123

Timm KrRuger
School of Engineering
University of Edinburgh
Edinburgh, United Kingdom

Halim Kusumaatmaja
Department of Physics
Durham University
Durham, United Kingdom

Alexandr Kuzmin
Maya Heat Transfer Technologies
Westmount, Québec, Canada

Orest Shardt
Department of Mechanical and Aerospace

Engineering
Princeton University
Princeton, NJ, USA

Goncalo Silva
IDMEC/IST
University of Lisbon
Lisbon, Portugal

Erlend Magnus Viggen
Acoustics Research Centre
SINTEF ICT
Trondheim, Norway

ISSN 1868-4513 ISSN 1868-4521 (electronic)
Graduate Texts in Physics
ISBN 978-3-319-44647-9 ISBN 978-3-319-44649-3 (eBook)
DOI 10.1007/978-3-319-44649-3

Library of Congress Control Number: 2016956708

© Springer International Publishing Switzerland 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Interest in the lattice Boltzmann method has been steadily increasing since it
grew out of lattice gas models in the late 1980s. While both of these methods
simulate the flow of liquids and gases by imitating the basic behaviour of a gas—
molecules move forwards and are scattered as they collide with each other—the
lattice Boltzmann method shed the major disadvantages of its predecessor while
retaining its strengths. Furthermore, it gained a stronger theoretical grounding in the
physical theory of gases. These days, researchers throughout the world are attracted
to the lattice Boltzmann method for reasons such as its simplicity, its scalability on
parallel computers, its extensibility, and the ease with which it can handle complex
geometries.

We, the authors, are all young researchers who did our doctoral studies on the
lattice Boltzmann method recently enough that we remember well how it was to
learn about the method. We remember particularly well the aspects that were a
little difficult to learn; some were not explained in the literature in as clear and
straightforward a manner as they could have been, and some were not explained
in sufficient detail. Some topics were not possible to find in a single place: as the
lattice Boltzmann method is a young but rapidly growing field of research, most of
the information on the method is spread across many, many articles that may follow
different approaches and different conventions. Therefore, we have sought to write
the book that the younger versions of ourselves would have loved to have had during
our doctoral studies: an easily readable, practically oriented, theoretically solid, and
thorough introduction to the lattice Boltzmann method.

As the title of this book says, we have attempted here to cover both the lattice
Boltzmann method’s principles, namely, its fundamental theory, and its practice,
namely, how to apply it in practical simulations. We have made an effort to make
the book as readable to beginners as possible: it does not expect much previous
knowledge except university calculus, linear algebra, and basic physics, ensuring
that it can be used by graduate students, PhD students, and researchers from a wide
variety of scientific backgrounds. Of course, one textbook cannot cover everything,
and for the lattice Boltzmann topics beyond the scope of this book, we refer to the
literature.

v

vi Preface

The lattice Boltzmann method has become a vast research field in the past 25
years. We cannot possibly cover all important applications in this book. Examples
of systems that are often simulated with the method but are not covered here
in detail are turbulent flows, phase separation, flows in porous media, transonic
and supersonic flows, non-Newtonian rheology, rarefied gas flows, micro- and
nanofluidics, relativistic flows, magnetohydrodynamics, and electromagnetic wave
propagation.

We believe that our book can teach you, the reader, the basics necessary to read
and understand scientific articles on the lattice Boltzmann method, the ability to run
practical and efficient lattice Boltzmann simulations, and the insights necessary to
start contributing to research on the method.

How to Read This Book

Every textbook has its own style and idiosyncrasies, and we would like to make you
aware of ours ahead of time.

The main text of this book is divided into four parts. First, Chaps. 1 and 2 provide
background for the rest of the book. Second, Chaps. 3–7 cover the fundamentals of
the lattice Boltzmann method for fluid flow simulations. Third, Chaps. 8–12 cover
lattice Boltzmann extensions, improvements, and details. Fourth, Chap. 13 focuses
on how the lattice Boltzmann method can be optimised and implemented efficiently
on a variety of hardware platforms. Complete code examples accompany this book
and can be found at https://github.com/lbm-principles-practice.

For those chapters where it is possible, we have concentrated the basic practical
results of the chapter into an “in a nutshell” summary early in the chapter instead
of giving a summary at the end. Together, the “in a nutshell” sections can be
used as a crash course in the lattice Boltzmann method, allowing you to learn the
basics necessary to get up and running with a basic LB code in very little time.
Additionally, a special section before the first chapter answers questions frequently
asked by beginners learning the lattice Boltzmann method.

Our book extensively uses index notation for vectors (e.g. u˛) and tensors (e.g.
�˛ˇ), where a Greek index represents any Cartesian coordinate (x, y, or z) and
repetition of a Greek index in a term implies summation of that term for all possible
values of that index. For readers with little background in fluid or solid mechanics,
this notation is fully explained, with examples, in Appendix A.1.

The most important paragraphs in each chapter are highlighted, with a few
keywords in bold. The purpose of this is twofold. First, it makes it easier to know
which results are the most important. Second, it allows readers to quickly and easily
pick out the most central concepts and results when skimming through a chapter by
reading the highlighted paragraphs in more detail.

Instead of gathering exercises at the end of each chapter, we have integrated them
throughout the text. This allows you to occasionally test your understanding as you

https://github.com/lbm-principles-practice

Preface vii

read through the book and allows us to quite literally leave certain proofs as “an
exercise to the reader”.

Acknowledgements

We are grateful to a number of people for their help, big and small, throughout the
process of writing this book.

We are indebted to a number of colleagues who have helped us to improve this
book by reading and commenting on early versions of some of our chapters. These
are Emmanouil Falagkaris, Jonas Latt, Eric Lorenz, Daniel Lycett-Brown, Arunn
Sathasivam, Ulf Schiller, Andrey Ricardo da Silva, and Charles Zhou.

For various forms of help, including advice, support, discussions, and encour-
agement, we are grateful to Santosh Ansumali, Miguel Bernabeu, Matthew Blow,
Paul Dellar, Alex Dupuis, Alejandro Garcia, Irina Ginzburg, Jens Harting, Oliver
Henrich, Ilya Karlin, Ulf Kristiansen, Tony Ladd, Taehun Lee, Li-Shi Luo, Miller
Mendoza, Rupert Nash, Chris Pooley, Tim Reis, Mauro Sbragaglia, Ciro Sempre-
bon, Sauro Succi, Muhammad Subkhi Sadullah, and Alexander Wagner.

On a personal level, Alex wants to thank his family which allowed him to spend
some family time on writing this book. Erlend wants to thank Joris Verschaeve
for helping him get started with the LBM and his friends and family who worried
about how much time he was spending on this book; it all worked out in the end.
Halim wants to thank his family for the continuous and unwavering support and
Julia Yeomans for introducing him to the wonder of the LBM. Goncalo thanks his
family for their unlimited support, Alberto Gambaruto for introducing him to the
LBM, and Viriato Semiao for the chance to start working in the field; special thanks
to Irina Ginzburg for the opportunity to work with her and the countless discussions
and teachings. Orest thanks his family, friends, and colleagues for their valuable
support during his doctoral and postdoctoral studies. Timm thanks Aline for her
understanding and support and Fathollah Varnik for introducing him to the LBM.

Finally, we would like to thank our editor Angela Lahee for her support and
patience.

Edinburgh, UK Timm Krüger
Durham, UK Halim Kusumaatmaja
Brossard, QC, Canada Alexandr Kuzmin
Princeton, NJ, USA Orest Shardt
Lisbon, Portugal Goncalo Silva
Trondheim, Norway Erlend Magnus Viggen

The authors can be contacted at authors@lbmbook.com.

Contents

Part I Background

1 Basics of Hydrodynamics and Kinetic Theory . 3
1.1 Navier-Stokes and Continuum Theory . 3

1.1.1 Continuity Equation . 4
1.1.2 Navier-Stokes Equation .. 5
1.1.3 Equations of State . 8

1.2 Relevant Scales . 11
1.3 Kinetic Theory.. 15

1.3.1 Introduction . 15
1.3.2 The Distribution Function and Its Moments 16
1.3.3 The Equilibrium Distribution Function 19
1.3.4 The Boltzmann Equation and the Collision Operator 21
1.3.5 Macroscopic Conservation Equations.. 23
1.3.6 Boltzmann’s H-Theorem .. 27

References .. 29

2 Numerical Methods for Fluids . 31
2.1 Conventional Navier-Stokes Solvers . 32

2.1.1 Finite Difference Method . 34
2.1.2 Finite Volume Method . 38
2.1.3 Finite Element Methods . 41

2.2 Particle-Based Solvers . 42
2.2.1 Molecular Dynamics . 42
2.2.2 Lattice Gas Models . 43
2.2.3 Dissipative Particle Dynamics . 47
2.2.4 Multi-particle Collision Dynamics . 48
2.2.5 Direct Simulation Monte Carlo. 51
2.2.6 Smoothed-Particle Hydrodynamics . 52

2.3 Summary.. 53
2.4 Outlook: Why Lattice Boltzmann? . 54
References .. 56

ix

x Contents

Part II Lattice Boltzmann Fundamentals

3 The Lattice Boltzmann Equation . 61
3.1 Introduction .. 61
3.2 The Lattice Boltzmann Equation in a Nutshell . 62

3.2.1 Overview . 63
3.2.2 The Time Step: Collision and Streaming 65

3.3 Implementation of the Lattice Boltzmann Method
in a Nutshell . 66
3.3.1 Initialisation . 67
3.3.2 Time Step Algorithm . 67
3.3.3 Notes on Memory Layout and Coding Hints 68

3.4 Discretisation in Velocity Space . 70
3.4.1 Non-dimensionalisation . 71
3.4.2 Conservation Laws . 73
3.4.3 Hermite Polynomials . 74
3.4.4 Hermite Series Expansion of the Equilibrium

Distribution . 77
3.4.5 Discretisation of the Equilibrium

Distribution Function . 80
3.4.6 Discretisation of the Particle Distribution Function 82
3.4.7 Velocity Sets. 84

3.5 Discretisation in Space and Time . 94
3.5.1 Method of Characteristics . 94
3.5.2 First- and Second-Order Discretisation 96
3.5.3 BGK Collision Operator . 98
3.5.4 Streaming and Collision . 101

References .. 103

4 Analysis of the Lattice Boltzmann Equation . 105
4.1 The Chapman-Enskog Analysis . 106

4.1.1 The Perturbation Expansion . 106
4.1.2 Taylor Expansion, Perturbation, and Separation 108
4.1.3 Moments and Recombination . 109
4.1.4 Macroscopic Equations . 111

4.2 Discussion of the Chapman-Enskog Analysis . 113
4.2.1 Dependence of Velocity Moments . 113
4.2.2 The Time Scale Interpretation .. 114
4.2.3 Chapman-Enskog Analysis for Steady Flow 116
4.2.4 The Explicit Distribution Perturbation 118
4.2.5 Alternative Multi-scale Methods . 119

4.3 Alternative Equilibrium Models . 120
4.3.1 Linear Fluid Flow .. 121
4.3.2 Incompressible Flow . 123
4.3.3 Alternative Equations of State . 124
4.3.4 Other Models . 126

Contents xi

4.4 Stability . 127
4.4.1 Stability Analysis . 128
4.4.2 BGK Stability . 130
4.4.3 Stability for Advanced Collision Operators 133
4.4.4 Stability Guidelines . 134

4.5 Accuracy .. 136
4.5.1 Formal Order of Accuracy .. 136
4.5.2 Accuracy Measure . 138
4.5.3 Numerical Errors . 139
4.5.4 Modelling Errors . 143
4.5.5 Lattice Boltzmann Accuracy . 145
4.5.6 Accuracy Guidelines . 146

4.6 Summary.. 149
References .. 150

5 Boundary and Initial Conditions . 153
5.1 Boundary and Initial Conditions in LBM in a Nutshell 154

5.1.1 Boundary Conditions . 155
5.1.2 Initial Conditions. 156

5.2 Fundamentals . 157
5.2.1 Concepts in Continuum Fluid Dynamics 157
5.2.2 Initial Conditions in Discrete Numerical Methods 159
5.2.3 Boundary Conditions in Discrete Numerical Methods .. . 159
5.2.4 Boundary Conditions for LBM: Introductory

Concepts . 164
5.3 Boundary Condition Methods . 170

5.3.1 Periodic Boundary Conditions . 170
5.3.2 Periodic Boundary Conditions with Pressure

Variations . 173
5.3.3 Solid Boundaries: Bounce-Back Approach 175
5.3.4 Solid Boundaries: Wet-Node Approach 189
5.3.5 Open Boundaries . 199
5.3.6 Corners . 201
5.3.7 Symmetry and Free-Slip Boundaries. 206

5.4 Further Topics on Boundary Conditions . 208
5.4.1 The Chapman-Enskog Analysis for Boundary

Conditions . 208
5.4.2 Mass Conservation at Solid Boundaries 212
5.4.3 Momentum Exchange at Solid Boundaries 214
5.4.4 Boundary Conditions in 3D . 218

5.5 Initial Conditions . 220
5.5.1 Steady and Unsteady Situations . 221
5.5.2 Initial Conditions in LB Simulations. 221
5.5.3 Example: Decaying Taylor-Green Vortex Flow 226

References .. 228

xii Contents

6 Forces . 231
6.1 Motivation and Background . 232
6.2 LBM with Forces in a Nutshell . 233
6.3 Discretisation . 234

6.3.1 Discretisation in Velocity Space. 234
6.3.2 Discretisation in Space and Time . 237

6.4 Alternative Forcing Schemes . 240
6.4.1 General Observations . 240
6.4.2 Forcing Schemes . 241

6.5 Chapman-Enskog and Error Analysis in the Presence
of Forces . 244
6.5.1 Chapman-Enskog Analysis with Forces 244
6.5.2 Errors Caused by an Incorrect Force Model 247

6.6 Boundary and Initial Conditions with Forces . 249
6.6.1 Initial Conditions. 249
6.6.2 Boundary Conditions . 249

6.7 Benchmark Problems . 254
6.7.1 Problem Description . 254
6.7.2 Numerical Procedure . 255
6.7.3 Constant Force . 255
6.7.4 Constant Force and Pressure Gradient . 256
6.7.5 Linear Force and Pressure Gradient . 257
6.7.6 Role of Compressibility . 259

References .. 262

7 Non-dimensionalisation and Choice of Simulation Parameters 265
7.1 Non-dimensionalisation .. 265

7.1.1 Unit Scales and Conversion Factors. 266
7.1.2 Law of Similarity and Derived Conversion Factors 268

7.2 Parameter Selection . 271
7.2.1 Parameters in the Lattice Boltzmann Method 271
7.2.2 Accuracy, Stability and Efficiency . 275
7.2.3 Strategies for Parameter Selection . 278

7.3 Examples . 282
7.3.1 Poiseuille Flow I . 283
7.3.2 Poiseuille Flow II . 285
7.3.3 Poiseuille Flow III . 285
7.3.4 Womersley Flow . 287
7.3.5 Surface Tension and Gravity . 290

7.4 Summary.. 293
References .. 294

Contents xiii

Part III Lattice Boltzmann Extensions, Improvements,
and Details

8 Lattice Boltzmann for Advection-Diffusion Problems 297
8.1 Lattice Boltzmann Advection-Diffusion in a Nutshell 297
8.2 Advection-Diffusion Problems . 299
8.3 Lattice Boltzmann for Advection-Diffusion . 302

8.3.1 Similarities of Advection-Diffusion
and Navier-Stokes. 302

8.3.2 Equilibrium Distribution . 303
8.3.3 Lattice Vectors . 306
8.3.4 Chapman-Enskog Analysis . 306
8.3.5 Model Extensions . 309

8.4 Thermal Flows. 311
8.4.1 Boussinesq Approximation and

Rayleigh-Bénard Convection .. 311
8.4.2 Non-dimensionalisation of the Temperature Field 313
8.4.3 LBM for Thermal Flows with Energy Conservation 314
8.4.4 LBM for Thermal Flows Without Energy

Conservation . 316
8.5 Boundary Conditions. 317

8.5.1 Normal and Tangential Conditions . 317
8.5.2 Dirichlet Boundary Conditions . 318
8.5.3 Neumann Boundary Conditions . 320

8.6 Benchmark Problems . 321
8.6.1 Advection-Diffusion of a Gaussian Hill 322
8.6.2 Diffusion from Cylinder Without Flow 324
8.6.3 Diffusion from Plate in Uniform Flow 324
8.6.4 Diffusion in Poiseuille Flow . 326

References .. 328

9 Multiphase and Multicomponent Flows . 331
9.1 Introduction .. 332

9.1.1 Liquid-Gas Coexistence and Maxwell Area
Construction Rule . 334

9.1.2 Surface Tension and Contact Angle . 336
9.1.3 Sharp and Diffuse Interface Models . 339
9.1.4 Surface Tension and Young-Laplace Test 341

9.2 Free-Energy Lattice Boltzmann Model . 343
9.2.1 Liquid-Gas Model. 344
9.2.2 Binary Fluid Model . 359

9.3 Shan-Chen Pseudopotential Method . 367
9.3.1 General Considerations . 368
9.3.2 Multiphase Model for Single Component 371
9.3.3 Multicomponent Method Without Phase Change 380

xiv Contents

9.4 Limitations and Extensions . 386
9.4.1 Spurious Currents and Multirange Forces 387
9.4.2 Equation of State and Liquid-Gas Density Ratio 390
9.4.3 Restrictions on the Surface Tension . 392
9.4.4 Viscosity Ratio and Collision Operator 393
9.4.5 What Else Can Be Done with These Models? 393

9.5 Showcases . 394
9.5.1 Droplet Collisions . 394
9.5.2 Wetting on Structured Surfaces . 398

References .. 401

10 MRT and TRT Collision Operators . 407
10.1 Introduction .. 407
10.2 Moment Space and Transformations . 410
10.3 General MRT Algorithm .. 413
10.4 MRT for the D2Q9 Velocity Set . 416

10.4.1 Hermite Polynomials . 416
10.4.2 Gram-Schmidt Procedure .. 419
10.4.3 Discussion of MRT Approaches . 422

10.5 Inclusion of Forces . 423
10.6 TRT Collision Operator . 424

10.6.1 Introduction . 425
10.6.2 Implementation.. 426

10.7 Overview: Choice of Collision Models and Relaxation Rates 428
10.7.1 BGK Model . 428
10.7.2 TRT Model . 428
10.7.3 MRT Model . 429

References .. 430

11 Boundary Conditions for Fluid-Structure Interaction 433
11.1 Motivation . 433
11.2 Bounce-Back Methods .. 435

11.2.1 Simple Bounce-Back and Staircase Approximation 436
11.2.2 Interpolated Bounce-Back .. 443
11.2.3 Partially Saturated Bounce-Back . 447
11.2.4 Destruction and Creation of Fluid Nodes 451
11.2.5 Wall Shear Stress. 453

11.3 Ghost Methods . 455
11.3.1 Definitions . 455
11.3.2 Filippova-Hänel (FH) and Mei-Luo-Shyy

(MLS) Methods . 456
11.3.3 Guo-Zheng-Shi (GZS) Method. 459
11.3.4 Image-Based Ghost Methods . 461

11.4 Immersed Boundary Methods . 463
11.4.1 Introduction . 464
11.4.2 Mathematical Basis . 465

Contents xv

11.4.3 Explicit Feedback IBM for Rigid Boundaries 474
11.4.4 Direct-Forcing IB-LBM for Rigid Boundaries 478
11.4.5 Explicit IBM for Deformable Boundaries 483
11.4.6 Additional Variants and Similar Boundary

Treatments . 485
11.5 Concluding Remarks . 487
References .. 489

12 Sound Waves . 493
12.1 Background: Sound in Viscous Fluids . 494

12.1.1 The Viscous Wave Equation .. 495
12.1.2 The Complex-Valued Representation of Waves 497
12.1.3 Simple One-Dimensional Solutions: Free and

Forced Waves . 499
12.1.4 Time-Harmonic Waves: The Helmholtz Equation.. 501
12.1.5 Other Attenuation and Absorption Mechanisms 502
12.1.6 Simple Multidimensional Waves: The Green’s

Function . 503
12.2 Sound Propagation in LB Simulations . 505

12.2.1 Linearisation Method . 507
12.2.2 Linearisation Results. 509

12.3 Sources of Sound .. 512
12.3.1 Example: The Pulsating Sphere . 513
12.3.2 The Inhomogeneous Wave Equation .. 514
12.3.3 Point Source Monopoles in LB Simulations 515

12.4 Non-reflecting Boundary Conditions . 519
12.4.1 Reflecting Boundary Conditions . 519
12.4.2 Characteristic Boundary Conditions . 522
12.4.3 Absorbing Layers . 526

12.5 Summary.. 527
References .. 528

Part IV Numerical Implementation of the Lattice Boltzmann
Method

13 Implementation of LB Simulations . 533
13.1 Introduction .. 533

13.1.1 Programming Languages and Development Tools 535
13.1.2 Floating Point Arithmetic. 538
13.1.3 Taylor-Green Vortex Decay . 539

13.2 Optimisation . 539
13.2.1 Basic Optimisation . 541
13.2.2 Automatic Optimisation During Compilation 545
13.2.3 Memory Caches . 551
13.2.4 Measuring Performance . 556

xvi Contents

13.3 Sequential Code . 557
13.3.1 Introductory Code . 557
13.3.2 Optimising the Introductory Code . 565
13.3.3 Data Output and Post-Processing . 574
13.3.4 LBM Algorithm Optimisations. 578

13.4 Parallel Computing .. 578
13.4.1 Multithreading and OpenMP . 580
13.4.2 Computing Clusters and MPI . 593
13.4.3 General Purpose Graphics Processing Units. 620

13.5 Convergence Study . 649
13.6 Summary.. 649
References .. 651

Appendix . 653
A.1 Index Notation .. 653
A.2 Details in the Chapman-Enskog Analysis . 655

A.2.1 Higher-Order Terms in the Taylor-Expanded LBE 655
A.2.2 The Moment Perturbation . 656
A.2.3 Chapman-Enskog Analysis for the MRT

Collision Operator . 658
A.3 Taylor-Green Vortex Flow . 660
A.4 Gauss-Hermite Quadrature . 662
A.5 Integration Along Characteristics for the BGK Operator 665
A.6 MRT for D3Q15, D3Q19, and D3Q27 Velocity Sets 669

A.6.1 D3Q15 .. 669
A.6.2 D3Q19 .. 671
A.6.3 D3Q27 .. 673

A.7 Planar Interface for the Free Energy Gas-Liquid Model 673
A.8 Planar Interface for the Shan-Chen Liquid-Vapour Model 675
A.9 Programming Reference . 676

A.9.1 Comments . 677
A.9.2 Expressions and Operators . 677
A.9.3 Data Types. 678
A.9.4 Composite Data Types . 678
A.9.5 Variable Scope . 679
A.9.6 Pointers . 679
A.9.7 Dynamic Memory Allocation . 680
A.9.8 Arrays. 681
A.9.9 If Statement . 682
A.9.10 While Loop .. 682
A.9.11 For Loop .. 683
A.9.12 Functions . 684

Contents xvii

A.9.13 Screen and File Output . 684
A.9.14 Header Files . 685
A.9.15 Compilation and Linking . 685

References .. 686

Index . 689

Acronyms

ADE Advection-diffusion equation
BB Bounce-back
BC Boundary condition
BGK Bhatnagar-Gross-Krook (see also SRT)
CBC Characteristic boundary condition
CFD Computational fluid dynamics
CPU Central processing unit
DdQq d-dimensional set of q velocities
DPD Dissipative particle dynamics
DSMC Direct simulation Monte Carlo
ECC Error-correcting code
FD(M) Finite difference (method)
FE(M) Finite element (method)
FV(M) Finite volume (method)
GPU Graphics processing unit
HP Hermite polynomial
HPC High-performance computing
IBB Interpolated bounce-back
IBM Immersed boundary method
LB(M/E) Lattice Boltzmann (method/equation)
LBGK Lattice BGK (i.e. LBM with BGK collisions)
LG(M/A) Lattice gas (model/automaton)
MD Molecular dynamics
MEA Momentum exchange algorithm
Mlups Million lattice updates per second
MPC Multiparticle collision
MPI Message-passing interface
MRT Multiple relaxation time
NEBB Non-equilibrium bounce-back (also called Zou-He)
NRBC Nonreflecting boundary condition
NS(E) Navier-Stokes (equations)

xix

xx Acronyms

ODE Ordinary differential equation
PDE Partial differential equation
PML Perfectly matched layer
PSM Partially saturated method
RAM Random access memory
SBB Simple bounce-back
SPH Smoothed-particle hydrodynamics
SRD Stochastic rotation dynamics
SRT Single relaxation time (see also BGK)
TRT Two relaxation time
WSS Wall shear stress

Frequently Asked Questions

Certain questions come up particularly frequently from people who are learning the
lattice Boltzmann method. We have listed and answered many of these questions
here, with references to the relevant book sections.

Getting Started

Q: How do I learn the basics of the LBM as quickly as possible?
A: We suggest referring to our summary sections, namely Sects. 3.2 and 3.3 for a

general intro, Sect. 5.1 for an intro to boundary conditions, and Sect. 6.1 for an
intro to forces.

Q: Why write vector quantities as, e.g. u˛ instead of u?
A: This index notation style is common in fluid mechanics due to its expressive-

ness; see Appendix A.1.

Q: How do I implement the LBM?
A: We cover this briefly and simply in Sect. 3.3 and cover it in more depth in

Chap. 13.

Q: What is a “lattice”, and how do I choose a good one?
A: Lattices, or velocity sets, are discussed in Sect. 3.4.7.

Q: Do you have some simple example code to help me get started?
A: We do, in Chap. 13 and at https://github.com/lbm-principles-practice.

Q: How do we convert between physical units and simulation “lattice” units?
A: This is explained in Sect. 7.1.

Q: How do I choose the simulation parameters?
A: Section 7.2 deals with this question.

xxi

https://github.com/lbm-principles-practice

xxii Frequently Asked Questions

Q: How do I implement a body force (density)?
A: We cover this in Chap. 6.

Q: How can I use the LBM to simulate steady incompressible flow?
A: You need to ensure that Ma2 is small, or you can use the incompressible

equilibrium covered in Sect. 4.3.2.

Q: How do I simulate heat diffusion and thermal flows?
A: LBM for heat flow is covered in Sect. 8.4.

Q: How can I model multiphase or multicomponent flows?
A: Chapter 9 covers multiphase and multicomponent flows.

Capabilities of the LBM

Q: When is LBM a good choice to solve the Navier-Stokes equation?
A: See Sect. 2.4 for a discussion.

Q: Is mass conserved in the LBM?
A: Mass is exactly conserved in the bulk fluid, but various types of boundary

conditions may still not conserve mass (cf. Sect. 5.4.2).

Q: Since the Boltzmann equation describes gas dynamics, why can the LBM also
be used to simulate liquids?

A: As shown in Sect. 4.1.4, the LBM behaves macroscopically like the Navier-
Stokes equations, which describe the motion of both gases and liquids.

Q: What is Galilean invariance, and is it obeyed by the LBM?
A: Galilean invariance states that physical laws are the same in any inertial

reference frame. An O.u3/ error term (cf. Sect. 4.1) in the standard LBM, due to
the minimal discretisation of velocity space (cf. Sect. 3.4), means that it is not
obeyed in the LBM. However, with a good choice of the simulation’s inertial
frame, this is seldom an issue except for simulations with large flow velocity
variations.

Boundary Conditions

Q: Where in the LBM algorithm are boundary conditions applied?
A: See Sect. 5.1.

Q: What is the difference between “fullway” and “halfway” bounce-back?
A: This is explained in Sect. 5.3.3. In this book, we almost exclusively consider

halfway bounce-back due to its additional benefits.

Frequently Asked Questions xxiii

Q: When using a no-slip boundary condition, where exactly in the system is no-slip
enforced?

A: The location depends on the type of no-slip boundary condition employed: see
Fig. 5.7 and Sect. 5.2.4.

Q: How can an open inflow or outflow boundary be simulated?
A: This is explained in Sect. 5.3.5.

Q: How are boundary conditions handled at 2D or 3D corners?
A: See Sects. 5.3.6 and 5.4.4.

Q: How can I implement curved boundaries instead of “staircase” boundaries?
A: This is covered in Chap. 11.

Q: What kind of boundary conditions is used for advection-diffusion LBM?
A: See Sect. 8.5.

Q: How do I compute the momentum exchange between fluid and walls?
A: See Sect. 5.4.3 for straight boundaries and Sect. 11.2.1 for more complex cases.

Pressure and Compressibility

Q: Why do I have sound waves in my simulations?
A: The LBM solves the compressible Navier-Stokes equations, which allow sound

waves; see Sects. 12.1 and 12.3.

Q: Why is my pressure field not as accurate as the velocity field?
A: Sound waves generated in your system (cf. Sect. 12.3) may be reflected back

into the system by its velocity or density boundary conditions. See Sect. 12.4
for more on this.

Q: Why is the speed of sound not exactly 1=
p
3 in my simulation?

A: 1=
p
3 is the “ideal” speed of sound in LB simulations. The actual sound speed

in simulations is affected by viscosity and discretisation error. See Sect. 12.2.

Q: Assuming the simulated fluid is an ideal gas, what is its heat capacity ratio �?
A: We explain in Sect. 1.1.3 that � D 1 in the simulated isothermal fluid and that

� is rarely relevant in nonthermal simulations.

Advanced Questions

Q: How is the lattice Boltzmann equation derived?
A: We show the derivation in Sects. 3.4 and 3.5.

xxiv Frequently Asked Questions

Q: What is the basis of the Boltzmann equation?
A: We explain this in Sect. 1.3.

Q: How can we prove that the lattice Boltzmann equation can be used to simulate
the Navier-Stokes equations?

A: This can be shown through the Chapman-Enskog analysis covered in Sect. 4.1,
and can furthermore be validated by simulations of concrete cases.

Q: How can I evaluate the stress tensor locally?
A: You can compute it from f neq

i as shown in (3.6).

Q: What is the Hermite expansion?
A: We answer this in Sect. 3.4.

Q: What is the advantage of advanced collision operators?
A: We explain their benefits in Chap. 10.

Q: What other collision operators are available?
A: Other than the BGK operator covered in Chap. 3 and the MRT and TRT

operators covered in Chap. 10, we have a short overview with references at
the end of Sect. 10.1.

Q: My code seems to be slow. How can I accelerate it?
A: See Chap. 13 for advice on implementation and efficiency.

Q: How do I implement a parallelised code?
A: See Chap. 13 for implementation advice.

Q: There are many forcing schemes around. Which one should I take?
A: We compare different forcing schemes in Sect. 6.4.

Q: How can I increase the accuracy or stability of my simulations without
significantly increasing the simulation time?

A: We have guidelines for increasing stability in Sect. 4.4.4 and for accuracy in
Sect. 4.5.6. You can also use TRT or MRT collision operators instead of BGK;
see Chap. 10.

Q: Why is the LBM equilibrium truncated to O.u2/?
A: This is explained in Sect. 3.4.

Q: How can I get in touch with the book authors, e.g. to ask a question or to point
out a mistake I found?

A: You can send an email to authors@lbmbook.com.

mailto:authors@lbmbook.com

Part I
Background

Chapter 1
Basics of Hydrodynamics and Kinetic Theory

Abstract After reading this chapter, you will have a working understanding of
the equations of fluid mechanics, which describe a fluid’s behaviour through its
conservation of mass and momentum. You will understand the basics of the kinetic
theory on which the lattice Boltzmann method is founded. Additionally, you will
have learned about how different descriptions of a fluid, such as the continuum fluid
description and the mesoscopic kinetic description, are related.

While the lattice Boltzmann method (LBM) has found applications in fields as
diverse as quantum mechanics and image processing, it has historically been and
predominantly remains a computational fluid dynamics method. This is also the
spirit of this book in which we largely develop and apply the LBM for solving fluid
mechanics phenomena.

To facilitate discussions in subsequent chapters, we summarise in Sect. 1.1 the
most basic theory of fluid dynamics. In particular, we will review the continuity,
Navier-Stokes and energy equations which are direct consequences of conserva-
tion of mass, momentum and energy. However, fluid dynamics is a continuum
description of fluids which treats them as continuous blobs of matter, ignoring the
fact that matter is made up of individual molecules. Section 1.2 discusses various
representations of a fluid, from the continuum level to the atomic level. Section 1.3
gives a basic introduction to kinetic theory, a finer description of a fluid where
we track the evolution of its constituent molecules’ distributions in coordinate
and velocity space. The LBM springs from kinetic theory, making this description
fundamental to this book.

1.1 Navier-Stokes and Continuum Theory

We give an overview of fluid dynamics, in particular the continuity equation
(cf. Sect. 1.1.1), the Navier-Stokes equation (NSE, cf. Sect. 1.1.2) and the equation
of state (cf. Sect. 1.1.3). This section is necessarily somewhat brief and cannot
replace a proper fluid dynamics textbook, such as [1–4].

Throughout this book we utilise the index notation, using Greek indices to denote
an arbitrary component of a vector or a tensor, e.g. f˛ 2 f fx; fy; fzg. Repeated indices

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_1

3

4 1 Basics of Hydrodynamics and Kinetic Theory

imply a summation, e.g. aˇbˇ DPˇ aˇbˇ D a�b. This style of notation is explained
in more depth in Appendix A.1.

1.1.1 Continuity Equation

The field of fluid dynamics concerns itself with macroscopic phenomena of fluid
motion. This implies that the fluid concept is a continuum one. Even when we speak
about a fluid element, such a volume contains many molecules. This fluid element
is small with respect to the system size, but is large in comparison to the size of
each individual molecule and the typical distance between them. We will discuss
the breakdown of this assumption in Sect. 1.2, but for most applications in fluid
dynamics this is a very robust approximation.

Let us now consider a small fluid element with density � which occupies some
stationary volume V0. The mass of this fluid element is simply

R
V0
� dV . If we

consider the change of this mass per unit time, it must be due to fluid flow into
or out of the volume element because fluid mass cannot be created or destroyed.
Mathematically, this may be written as

@

@t

Z

V0

� dV D �
I

@V0

�u � dA (1.1)

where the closed area integral is taken over the boundary @V0 of the volume element
V0, u is the fluid velocity, and we take the outward normal as the direction of dA.
The surface integral on the right-hand side of (1.1) can be transformed into a volume
integral using the divergence theorem to give

Z

V0

@�

@t
dV D �

Z

V0

r � .�u/ dV: (1.2)

This leads to

@�

@t
C r � .�u/ D 0 (1.3)

since the volume V0 is stationary and arbitrary. Equation (1.3) is the conti-
nuity equation in fluid dynamics. It is a partial differential equation (PDE)
reflecting the conservation of mass. The vector

�u D j (1.4)

is called the momentum density or mass flux density.

1.1 Navier-Stokes and Continuum Theory 5

In the literature, the continuity equation is also sometimes written in the forms

@�

@t
C u � r�C �r � u D 0 or

D�

Dt
C �r � u D 0: (1.5)

Here we have introduced the material derivative

D

Dt
D @

@t
C u � r (1.6)

which denotes the rate of change as the fluid element moves about in space, rather
than the rate of change @=@t at a fixed point in space.

Exercise 1.1 Fluid conservation equations can be given in two main forms: conser-
vation form, as in (1.3), or material derivative form, as in (1.5). Using the continuity
equation, (1.3), show that for a general conserved quantity � the two forms can be
related as

@.��/

@t
C r � .�u�/ D �D�

Dt
: (1.7)

1.1.2 Navier-Stokes Equation

Similar to our analysis above, we can consider the change of momentum of a fluid
element with density � and velocity u, occupying a small volume V0. For a simple
ideal fluid, the change of net momentum can be due to (i) flow of momentum into or
out of the fluid element, (ii) differences in pressure p and (iii) external body forces
F. Each of these contributions is written respectively on the right-hand side of the
following momentum balance equation:

d

dt

Z

V0

�u dV D �
I

@V0

�uu � dA �
I

@V0

p dAC
Z

V0

F dV: (1.8)

Here, uu denotes the outer product with components u˛uˇ. Transforming the surface
integrals into volume integrals using the divergence theorem, the above equation can
be rewritten as

Z

V0

@.�u/
@t

dV D �
Z

V0

r � .�uu/ dV �
Z

V0

rp dV C
Z

V0

F dV: (1.9)

6 1 Basics of Hydrodynamics and Kinetic Theory

This leads to the Euler equation:

@.�u/
@t
C r � .�uu/ D �rpC F; (1.10)

a PDE describing the conservation of momentum for an ideal fluid.
This momentum equation can be written in a more general form, called the

Cauchy momentum equation:

@.�u/
@t
C r �˘ D F: (1.11)

Here we have used the momentum flux density tensor, defined as

˘˛ˇ D �u˛uˇ � �˛ˇ: (1.12)

The term �˛ˇ is called the stress tensor and corresponds to the non-direct
momentum transfer of the moving fluid. For simple fluids described by the
Euler equation we find an isotropic stress �˛ˇ D �pı˛ˇ; the stress tensor
contains diagonal elements which are the same in all directions.

The momentum flux transfer in the Euler equation only includes momentum
transfer which is reversible, either through the flow of mass or due to pressure forces
which are conservative. For real fluids, we need to include a viscosity or internal
friction term which causes dissipative and irreversible transfer of momentum from
one fluid element to another, neighbouring element.

To establish the form of this viscous stress tensor � 0, we first argue that
such contribution must be zero when the flow is uniform, including rigid body
translation and rotation. We may further argue that if the velocity gradients are
small, then momentum transfer due to viscosity is well captured by terms which
are proportional to the first derivatives of the velocity only [3]. A general tensor of
rank two satisfying these two arguments is

� 0̨
ˇ D �

@u˛
@xˇ
C @uˇ
@x˛

!

C �ı˛ˇ @u�
@x�

(1.13)

where � and � are coefficients of viscosity. They are usually assumed to be isotropic
and uniform, though this assumption will break down for more complex fluids.

The viscous stress tensor is often separated into a traceless shear stress and a
normal stress:

� 0̨
ˇ D �

@u˛
@xˇ
C @uˇ
@x˛
� 2
3
ı˛ˇ

@u�
@x�

!

C �Bı˛ˇ
@u�
@x�

: (1.14)

1.1 Navier-Stokes and Continuum Theory 7

The first viscosity coefficient � is usually called the shear viscosity while the
combination �B D 2�=3C � is normally called the bulk viscosity.

With the total stress tensor given as the sum of the pressure and viscosity
contributions,

�˛ˇ D � 0̨
ˇ � pı˛ˇ; (1.15)

we are now ready to write down the full momentum equation for a viscous
fluid. Inserting (1.14) and (1.15) into (1.11), we obtain the Navier-Stokes
equation

@.�u˛/

@t
C @.�u˛uˇ/

@xˇ

D � @p
@x˛
C @

@xˇ

2

4�

@u˛
@xˇ
C @uˇ
@x˛

!

C
�

�B � 2�
3

�
@u�
@x�

ı˛ˇ

3

5C F˛:

(1.16)

Assuming the viscosities are constant, this can be simplified to give

�
Du˛
Dt
D � @p

@x˛
C � @2u˛

@xˇ@xˇ
C
�

�B C �

3

�
@2uˇ
@x˛@xˇ

C F˛: (1.17)

The NSE can be simplified considerably if the flow may be regarded as
incompressible with � D const, so that the continuity equation, (1.3), reduces
to r �u D 0. In this case, we can write the NSE in its most common form, the
incompressible Navier-Stokes equation

�
Du
Dt
D �rpC ��uC F: (1.18)

Here, � D r � r D @2=.@xˇ@xˇ/ is the Laplace operator.

Exercise 1.2 Let us consider the steady shear flow known as Couette flow where
an incompressible fluid is sandwiched between two parallel plates as shown in
Fig. 1.1(a). The separation between the two plates is d in the y-direction. The bottom
plate is held fixed such that u D .0; 0; 0/> while the top plate moves with velocity
u D .U; 0; 0/>. There is no external force applied to the system. Starting from the

8 1 Basics of Hydrodynamics and Kinetic Theory

Fig. 1.1 Two fundamental steady-state flows between two plates. (a) Couette flow. (b) Poiseuille
flow

incompressible NSE in (1.18), show that the velocity profile of the fluid is given by

ux.y/ D U

d
y: (1.19)

You should assume that there is no slip between the fluid and the parallel plates. In
other words, the velocity of the fluid near the wall is equal to that of the wall.

Exercise 1.3 Let us now consider a steady, incompressible fluid flow commonly
known as Poiseuille flow. The fluid is enclosed between two parallel plates and is
moving in the x-direction, as shown in Fig. 1.1(b). The separation between the two
plates is d along the y-axis. Poiseuille flow can in fact be driven by either (i) a
constant pressure gradient or (ii) an external body force (such as gravity) in the x-
direction. Assume the no-slip boundary condition between the fluid and the plates.

(a) For a pressure gradient driven flow, show that the fluid velocity profile is
given by

ux.y/ D � 1
2�

dp

dx
y.y � d/: (1.20)

(b) Derive the corresponding velocity profile when the flow is driven by an external
body force.

1.1.3 Equations of State

At this point we have four equations that describe the behaviour of a fluid. The
continuity equation, (1.3), describes the conservation of mass. The conservation of

1.1 Navier-Stokes and Continuum Theory 9

momentum is described by the Euler equation or the Navier-Stokes equation (one
equation for each of the three spatial components) in (1.10) and (1.16), respectively.1

However, this system of equations is not closed. While we have five unknowns
(density �, pressure p and the three velocity components ux, uy, uz), we have only
four equations to describe their evolution. Consequently, the system of equations is
unsolvable, unless we can fix variables, e.g. by assuming the density to be constant.

We can add another equation to the system thanks to the state principle of
equilibrium thermodynamics [2]. It relates the state variables that describe the
local thermodynamic state of the fluid, such as the density �, the pressure p, the
temperature T, the internal energy e, and the entropy s. We will defer a more detailed
description of the temperature, the internal energy, and the entropy to Sect. 1.3. The
state principle declares that any of these state variables can be related to any other
two state variables through an equation of state [2].

The most famous such equation of state is the ideal gas law,

p D �RT: (1.21)

It relates the pressure to the density and the temperature through the
specific gas constant R, with units ŒR	 D J=.kg K/.2

Another equation of state for ideal gases expresses the pressure as a function of
the density and the entropy, [2]

p

p0
D
�
�

�0

��
e.s�s0/=cV : (1.22)

The constants p0, �0 and s0 refer to values at some constant reference state. This
equation makes use of the heat capacities at constant volume cV and constant
pressure cp and their ratio � , also known as the adiabatic index. These are defined
generally as [2]

cV D
�
@e

@T

�

V

; cp D
�
@.eC p=�/

@T

�

p

; � D cp
cV
: (1.23)

In an ideal gas, the two heat capacities are related as cp D cV C R.

1A fifth conservation equation for energy can also be derived, though we will only briefly address
it later in Sect. 1.3.5 since it is less important both in fluid mechanics and in the LBM.
2The ideal gas law is expressed in many forms throughout science, often with quantities given in
moles. Equation (1.21) is expressed using the state variables employed in fluid mechanics, the cost
being that the specific gas constant R varies between different gases. Here, R D kB=m, where kB is
Boltzmann’s constant and m is the mass of the a gas molecule.

10 1 Basics of Hydrodynamics and Kinetic Theory

The attentive reader may have realised that any equation of state must introduce
a third variable into the system of equations: for instance, (1.21) introduces the
temperature T and (1.22) introduces the entropy s. Consequently, introducing the
equation of state does not itself directly close the system of equations. The system
can only be fully closed if an equation that describes the evolution of the third state
variable is also derived from the aforementioned energy equation. However, the
resulting system of equations is very cumbersome.

Instead, introducing the equation of state gives us more options to close
the system of equations through suitable approximations. For example, most of
acoustics is based on the assumption that s is approximately constant [2, 5]. This
simplifies (1.22) to the isentropic equation of state

p D p0

�
�

�0

��
(1.24)

and closes the system of equations.

In some cases we can also approximate the fluid as having a constant
temperature T � T0, which simplifies (1.21) to the isothermal equation of
state

p D �RT0 (1.25)

that has a linear relationship between the pressure p and the density �.

Exercise 1.4 The isothermal equation of state is central to the LBM. Show that it
is merely a special case of the isentropic equation of state, (1.24), with � D 1.

Another approximation mentioned previously in Sect. 1.1.2 is the incompressible
fluid of constant density � D �0. In this case, an equation of state is not used since
the incompressible continuity equation r � u D 0 and the incompressible NSE in
(1.18) are by themselves sufficient. Together, these form a closed system of four
equations for the four remaining variables p, ux, uy and uz.

For small deviations from a reference state, nonlinear equations of state such
as (1.22) may also be approximated by linearisation. For instance, using the total
differential we may linearise any equation of state p.�; s/ as also illustrated in
Fig. 1.2:

p D p0 C p0 � p0 C
�
@p

@�

�

s

�0 C
�
@p

@s

�

�

s0: (1.26)

Here, the derivatives are evaluated about p D p0, and the primed variables represent
deviations from the reference state defined by p0, �0, and s0.

1.2 Relevant Scales 11

Fig. 1.2 Comparison of the isentropic equation of state in (1.24) and its linearised version in (1.27)
for � D 5=3

For the isentropic equation of state in (1.24), (1.26) is further simplified to

p � p0 C c2s�
0 (1.27)

since the speed of sound cs is in general given by the relation [2, 5]

c2s D
�
@p

@�

�

s

: (1.28)

In the case of the isentropic and isothermal equations of state in (1.24) and (1.25),
we find that cs D p�RT0 and cs D

p
RT0, respectively.

Note that the constant reference pressure p0 is completely insignificant to the
NSE as only the pressure gradient rp D r.p0 C p0/ D rp0 is present in the
equation.3 Therefore, the isothermal equation of state, which can be expressed as

p D c2s� H) p D c2s�0 C c2s�
0; (1.29)

can be used to model other equations of state in the linear regime if the entropy is
nearly constant: as long as the speed of sound is matched, it does not matter if the
reference pressure p0 is different.

1.2 Relevant Scales

As discussed in the previous section, the mathematical descriptions of fluid dynam-
ics rely on the continuum assumption where we operate at length and time scales
sufficiently large that the atomistic picture can be averaged out. To formalise this
discussion, let us start by considering the hierarchy of length scales associated with

3While p0 is relevant to the energy equation that we will see later in Sect. 1.3.5, this equation is
usually not taken into account in LB simulations.

12 1 Basics of Hydrodynamics and Kinetic Theory

Fig. 1.3 The hierarchy of length and time scales in typical fluid dynamics problems. Depending
on the level of details required, different simulation techniques are suitable

a typical fluid flow problem. If we stay within the classical mechanics picture, from
small to large, we have (i) the size of the fluid atom or molecule `a, (ii) the mean
free path (distance travelled between two successive collisions) `mfp, (iii) the typical
scale for gradients in some macroscopic properties ` and (iv) the system size `S.
The typical ordering of these length scales is `a � `mfp � ` � `S, as illustrated in
Fig. 1.3.

In the context of fluids, one often refers to microscopic, mesoscopic and
macroscopic descriptions as depicted in Fig. 1.3. In this book, “microscopic”
denotes a molecular description and “macroscopic” a fully continuum picture
with tangible quantities such as fluid velocity and density. Microscopic
systems are therefore governed by Newton’s dynamics, while the NSE is
the governing equation for a fluid continuum. In between the microscopic
and macroscopic description, however, is the “mesoscopic” description which
does not track individual molecules. Rather, it tracks distributions or represen-
tative collections of molecules. Kinetic theory, which we will come back to in
Sect. 1.3, is the mesoscopic fluid description on which the LBM is based.

1.2 Relevant Scales 13

Coupled to this hierarchy of length scales is the hierarchy of time scales. At
very short times, we can define the collision time tc � `a=vT, i.e. the duration of
a collision event where vT D .kBT=m/1=2 is the average thermal velocity of the
molecules. Within Boltzmann’s standard kinetic theory, we usually assume tc ! 0,
i.e. collisions happen instantaneously. Note that the thermal velocity vT is different
from the macroscopic fluid velocity, u � vT.4 Next we can define the mean flight
time between two successive collisions, tmfp D `mfp=vT. This is the time scale at
which kinetic theory operates and where the system relaxes to local equilibrium
through collision events. Local equilibrium, however, does not mean that the system
is in global equilibrium. In fact, the opposite is often the case, and we are interested
in studying these situations.

At longer time and larger length scales, there can exist hydrodynamic flow from
one region of the fluid to another. Depending on whether we have advective (inertial
regime) or diffusive (viscous regime) dynamics, the shortest (most relevant) time
scale is either tconv � `=u or tdiff � `2=
 where
 is the kinematic viscosity. The
kinetic viscosity is related to the dynamic shear viscosity by � D �
. The ratio
between these two hydrodynamic time scales is the well-known Reynolds number:

Re D tdiff

tconv
D u`

: (1.30)

Both high and low Reynolds number flows are of interest. High Reynolds number
flows, on the one hand, are usually dominated by turbulence and are relevant
for vehicle aerodynamics, building designs, and many other applications. On the
other hand, there is a surge of interest in low Reynolds number flows due to their
importance in microfluidics and biophysics.

Another important macroscopic time scale is the acoustic time scale, tsound �
`=cs, where cs is the speed of sound in the fluid. This time scale determines how
fast compression waves propagate in the fluid. When the acoustic time scale is
fast in comparison to the advective time scale, the fluid behaves similarly to an
incompressible fluid. Otherwise, the fluid compressibility is an important factor,
which provides a number of additional physics such as shock waves. The Mach
number

Ma D tsound

tconv
D u

cs
(1.31)

defines the ratio between the acoustic and advective time scales. In practice, we can
usually assume steady fluid flow with Ma � 0:1 to be incompressible.

We emphasise that there are a number of situations where the above-mentioned
ordering of length and time scales is not satisfied. Examples include flows of rarified
gases and nanofluidics. For the former, the mean free path becomes large enough
so that it is comparable to the macroscopic length scale: `mfp � `. On the other

4However, the thermal velocity vT is of the order of the speed of sound cs [2].

14 1 Basics of Hydrodynamics and Kinetic Theory

hand, the miniaturisation of fluidic devices makes the system size in nanofluidics
comparable to the mean free path: `S � `mfp. A particularly useful parameter is
therefore the Knudsen number

Kn D `mfp

`
(1.32)

that defines the ratio between the mean free path and the representative physical
length scale. For Kn � 1, the hydrodynamic picture (Navier-Stokes) is valid,
whereas for Kn & 1, one has to go back to the kinetic theory description.
As we shall see later in Sect. 1.3.5, the Knudsen number is in fact the (small)
expansion parameter used in the Chapman-Enskog theory to derive the NSE from
the Boltzmann equation. The Knudsen number is also closely related to the Mach
and Reynolds numbers. It was first shown by von Kármán that

Kn D ˛Ma

Re
(1.33)

with ˛ being a numerical constant. This relation is thus known as the von Kármán
relation.

Dimensionless numbers such as the Reynolds, Knudsen and Mach numbers
proliferate in the fluid mechanics literature. These numbers are in fact very
useful. Primarily, we must appreciate that fluid flows which share the same
dimensionless numbers provide the same physics upon a simple scaling by the
typical length and velocity scales in the problem. This important statement is
called the law of similarity.

To illustrate this, let us rewrite the incompressible NSE of (1.18) in its dimen-
sionless form. We renormalise any length scale in the system by ` and velocity by
the mean fluid velocity V , such that

u? D u
V
; p? D p

�V2
; F? D F`

�V2
;

@

@t?
D `

V

@

@t
; r? D `r (1.34)

and hence

du?

dt?
D �r?p? C 1

Re
�?u? C F?: (1.35)

As already mentioned before, the Reynolds number measures the relative impor-
tance of inertial to viscous terms in the NSE.

It is important to keep in mind that not all dimensionless numbers can be identical
when comparing flows at smaller and larger length or time scales. Even if the

1.3 Kinetic Theory 15

Reynolds number of two systems is the same, the Mach or Knudsen numbers are
usually not. However, as long as the ordering of length and time scales is the same,
their exact values often do not matter much. The key here is usually the separation of
length and time scales. For example, if the Knudsen or Mach number is sufficiently
small, their actual values are irrelevant for the hydrodynamic flows of interests
where the Reynolds number is the key parameter. Therefore, usually it can be argued
that all flows with the same Reynolds number are comparable to one another. In
Chap. 7 we will get back to the non-dimensionalisation and how to take advantage
of the law of similarity to convert parameters from the physical world to a simulation
and back.

1.3 Kinetic Theory

Here we provide a concise summary of kinetic theory, the cornerstone of the LBM.
Following the introduction in Sect. 1.3.1, we introduce the particle distribution
function in Sect. 1.3.2. As we will see in later chapters, the assumption of a
local equilibrium (cf. Sect. 1.3.3) is a crucial component of the LBM. Kinetic
theory provides a kinetic description of gases; as such, molecular collisions play
a central role. In Sect. 1.3.4 we discuss the collision operator in the Boltzmann
equation. Conservation laws, such as mass and momentum conservation, follow
from kinetic theory (cf. Sect. 1.3.5). Finally, we touch upon Boltzmann’sH-theorem
in Sect. 1.3.6.

1.3.1 Introduction

As mentioned in Sect. 1.2, kinetic theory is a fluid description that lies between
the microscopic scale where we track the motion of individual molecules and the
macroscopic scale where we describe the fluid using more tangible quantities such
as density, fluid velocity, and temperature. In the mesoscopic kinetic theory, we
describe the distribution of particles in a gas, a quantity which evolves on timescales
around the mean collision time tmfp.

While kinetic theory can in principle be used to describe any fluid, it is most
commonly applied to the simplest case of a dilute gas. There we can assume that the
constituent molecules spend very little of their time actually colliding (i.e. tc � tmfp,
using the terminology of Sect. 1.2). This is equivalent to assuming that the molecules
almost always collide one-on-one, with three particles almost never simultaneously
being involved in a collision. This assumption does not hold as well for dense
gases where molecules are closer together and therefore spend more of their time
colliding, and it does not hold at all for liquids where molecules are held close to
each other by intermolecular attracting forces and thus constantly interact. While it

16 1 Basics of Hydrodynamics and Kinetic Theory

is possible to formulate a kinetic theory of liquids [6], this is much more difficult
than for dilute gases.

For simplicity, we will constrain our discussion in this section to the kinetic
theory of dilute monatomic gases. Single atoms collide elastically, so that all
translational energy is conserved in a collision. On the other hand, molecules
consisting of several atoms have inner degrees of freedom; they may contain
rotational and vibrational energy. Therefore, while total energy is always conserved
in collisions, a collision between two such molecules may also be inelastic
(i.e. translational energy becomes rotational or vibrational energy) or superelastic
(i.e. rotational or vibrational energy becomes translational energy). In addition,
molecular rotation and vibration must be treated quantum mechanically. The kinetic
theory of polyatomic gases can be found in the literature [7–10]. However, the
macroscopic behaviour of polyatomic and monatomic gases is largely similar.

Apart from the quantisation of rotational and vibrational energy in polyatomic
gases, the kinetic theory of gases can be considered to be completely classical
physics, as it is a statistical description of a large number of particles. As per Bohr’s
correspondence principle, the quantum behaviour of a system reduces to classical
behaviour when the system becomes large enough.

1.3.2 The Distribution Function and Its Moments

The fundamental variable in kinetic theory is the particle distribution
function f .x; �; t/. It can be seen as a generalisation of density � which also
takes the microscopic particle velocity � into account. While �.x; t/ represents
the density of mass in physical space, f .x; �; t/ simultaneously represents
the density of mass in both three-dimensional physical space and in three-
dimensional velocity space. Therefore, f has the units

Œ f 	 D kg � 1

m3
� 1

.m=s/3
D kg s3

m6
: (1.36)

In other words, the distribution function f .x; �; t/ represents the density of
particles with velocity � D .�x; �y; �z/ at position x and time t.

Example 1.1 To demonstrate how the distribution function extends the concept of
density, let us consider a gas in a box of size V D Lx �Ly �Lz, as shown in Fig. 1.4.
The total mass of the gas inside the box is of course given by the integral of the
density over the box,

R
V � d3x. We can also calculate more specific things using

the density: for instance, the mass in the left half of the box is
R xDLx=2
xD0 � d3x. The

distribution function f would let us find even more specific things: for example, the

1.3 Kinetic Theory 17

Fig. 1.4 Particles in a box. Right-moving particles in the left half of the box are marked as black.
The total mass of such particles can be found from f as in (1.37)

mass of right-moving particles, i.e. particles with �x > 0, in the left half of the box is

Z xDLx=2

xD0

Z

�x>0

f d3� d3x: (1.37)

The distribution function f is also connected to macroscopic variables like
the density � and the fluid velocity u from its moments. These moments are
integrals of f , weighted with some function of �, over the entire velocity
space. For instance, the macroscopic mass density can be found as the
moment

�.x; t/ D
Z

f .x; �; t/ d3�: (1.38a)

By integrating over velocity space in this way, we are considering the
contribution to the density of particles of all possible velocities at position
x and time t.

We can also consider the particles’ contribution �f to the momentum
density. Again considering all possible velocities, we find the macroscopic
momentum density as the moment

�.x; t/u.x; t/ D
Z

�f .x; �; t/ d3�: (1.38b)

Similarly, we can find the macroscopic total energy density as the moment

�.x; t/E.x; t/ D 1

2

Z

j�j2f .x; �; t/ d3�: (1.38c)

(continued)

18 1 Basics of Hydrodynamics and Kinetic Theory

This contains two types of energy; the energy 1
2
�juj2 due to the bulk motion

of the fluid and the internal energy due to the random thermal motion of the
gas particles. It is also possible to find only the latter type, the macroscopic
internal energy density, as the moment

�.x; t/e.x; t/ D 1

2

Z

jvj2f .x; �; t/ d3�: (1.38d)

Here we have introduced the relative velocity v, which is the deviation of the
particle velocity from the local mean velocity:

v.x; t/ D �.x; t/ � u.x; t/: (1.39)

These expressions for the fluid energy only consider the translational energy of
the molecules, i.e. the energy due to the movement with their velocity �. In the
more difficult kinetic theory of polyatomic gases, the internal energy must include
additional degrees of freedom, such as molecular vibrational and rotational energies.

Exercise 1.5 Consider a somewhat unrealistic spatially homogeneous gas where
all particles are moving with the same velocity u so that the distribution function
is f .x; �; t/ D � ı.� � u/. Verify from its moments that its density is � and its
momentum density is �u. Additionally, find its moments of total energy density and
internal energy density.

Exercise 1.6

(a) Show that the relative velocity moment of f is

Z

vf .x; �; t/ d3� D 0: (1.40a)

(b) Using this and the identity jvj2 D j�j2� 2.� � u/C juj2, show that the total and
internal energy densities at a given position and time are related as

�e D �E � 1
2
�juj2: (1.40b)

We can also find the pressure as a moment of the distribution function. There
are several ways to do this. The most direct route, presented, e.g., in [11, 12], is to
consider that particles impart momentum when bouncing off a surface. At higher
particle velocities, more momentum is imparted, and more particles can bounce off
in a given time. A closer analysis results in an expression for pressure as a moment
of f .

1.3 Kinetic Theory 19

Fig. 1.5 Some collisions between hard spheres, with incoming paths shown in grey and outgoing
paths in black. (a) Grazing collision. (b) Angled collision. (c) Head-on collision

A shortcut to the same expression for pressure can be made by using the
equipartition theorem of classical statistical mechanics. This gives a specific internal
energy density of RT=2 for each degree of freedom [2]. These degrees of freedom are
typically molecular translation, vibration, and rotation. For monatomic gases, there
is no inner molecular structure and there can be no vibration or rotation, leaving
only the translational movement in the three spatial dimensions.

Thus, with three degrees of freedom, we can use the ideal gas law in (1.21) and
find for an ideal monatomic gas that

�e D 3

2
�RT D 3

2
p: (1.41)

Consequently, both the pressure and the temperature can be found proportional
through the same moment as internal energy:

p D �RT D 2

3
�e D 1

3

Z

jvj2f .x; �; t/ d3�: (1.42)

Exercise 1.7 Show from (1.41) and the heat capacity definitions in (1.23) that the
specific heat capacities and the heat capacity ratio of an ideal monatomic gas are

cV D 3

2
R; cp D 5

2
R H) � D 5

3
: (1.43)

1.3.3 The Equilibrium Distribution Function

The outgoing directions of two elastically colliding hard spheres is highly sensitive
to small variations in their initial relative positions, as illustrated in Fig. 1.5. This
is not only true for hard spheres like pool balls that only really interact when they
touch, but also for molecules that interact at a distance, e.g. via electromagnetic
forces. Therefore, collisions tend to even out the angular distribution of particle
velocities in a gas around the mean velocity u.

20 1 Basics of Hydrodynamics and Kinetic Theory

Consequently, when a gas has been left alone for sufficiently long, we may
assume that the distribution function f .x; �; t/ will reach an equilibrium distribution
f eq.x; �; t/ which is isotropic in velocity space around � D u: in a reference frame
moving with speed u, the equilibrium distribution can be expressed as f eq.x; jvj; t/.

Let us perform one additional assumption: we limit our search for an equilibrium
distribution to solutions of the separable form

f eq.jvj2/ D f eq.v2x C v2y C v2z / D f eq
1D.v

2
x /f

eq
1D.v

2
y /f

eq
1D.v

2
z /: (1.44a)

In other words, we assume that the 3D equilibrium distribution is the product of
three 1D equilibrium distributions.

If we hold the magnitude of the velocity constant, i.e. with jvj2 D v2xCv2yCv2z D
const, we find that

f eq.jvj2/ D const H) ln f eq.v2x /C ln f eq.v2y /C ln f eq.v2z / D const: (1.44b)

This is fulfilled when each 1D equilibrium has a form like ln f eq
1D.v

2
x / D a C bv2x ,

with a and b being generic constants. Consequently,

ln f eq
1D.vx/C ln f eq

1D.vy/C ln f eq
1D.vz/ D 3aC b

�
v2x C v2y C v2z

�
D const; (1.44c)

and the full 3D equilibrium distribution is of the form

f eq.jvj/ D e3aebjv2j: (1.44d)

Since monatomic collisions conserve mass, momentum, and energy, the constants
a and b can be found explicitly by demanding that f eq has the same moments of
density and energy as f .

Thus, the equilibrium distribution can be found to be

f eq.x; jvj; t/ D �
�
3

4�e

�3=2
e�3jvj2=.4e/ D �

�
�

2�p

�3=2
e�pjvj2=.2�/

D �
�

1

2�RT

�3=2
e�jvj2=.2RT/:

(1.45)

These different forms are related through (1.41).

This brief derivation follows the same lines as Maxwell’s original derivation.
The equilibrium distribution fulfills all the assumptions we have placed upon it,
but we have not proven that it is unique. However, the same distribution can be

1.3 Kinetic Theory 21

found uniquely using more substantiated statistical mechanics [11], as done later by
Boltzmann. In honor of these two, this equilibrium distribution is often called the
Maxwell-Boltzmann distribution.

Exercise 1.8 Show that the moments in (1.38), applied to the equilibrium distribu-
tion in (1.45), result in a density �, a fluid velocity u and internal energy e. Hint:
Consider the symmetries of the integrands. If an integrand is spherically symmetric
about v D 0, the substitution d3� D 4�jvj2 djvj can be performed.

1.3.4 The Boltzmann Equation and the Collision Operator

Now we know what the distribution function f .x; �; t/ represents and what we can
obtain from it. But how does it evolve? We will now find the equation that describes
its evolution in time. For notational clarity, we will drop explicitly writing the
dependence of f on .x; �; t/.

Since f is a function of position x, particle velocity � and time t, its total
derivative with respect to time t must be

df

dt
D
�
@f

@t

�
dt

dt
C

@f

@xˇ

!
dxˇ
dt
C

@f

@�ˇ

!
d�ˇ
dt
: (1.46)

Looking at each term on the right-hand side in order, we have dt=dt D 1, the
particle velocity dxˇ=dt D �ˇ , and from Newton’s second law the specific body
force d�ˇ=dt D Fˇ=� which has the units of ŒF=�	 D N=kg.

Using the common notation ˝. f / D df=dt for the total differential, we get
the Boltzmann equation

@f

@t
C �ˇ @f

@xˇ
C Fˇ

�

@f

@�ˇ
D ˝.f /: (1.47)

This can be seen as a kind of advection equation: the first two terms represent
the distribution function being advected with the velocity � of its particles.
The third term represents forces affecting this velocity. On the right hand side,
we have a source term, which represents the local redistribution of f due to
collisions. Therefore, the source term ˝.f / is called the collision operator.

We know that collisions conserve the quantities of mass, momentum, and in
our monatomic case, translational energy. These conservation constraints can be

22 1 Basics of Hydrodynamics and Kinetic Theory

represented as moments of the collision operator, similarly to those in (1.38):

mass conservation:
Z

˝.f / d3� D 0; (1.48a)

momentum conservation:
Z

�˝.f / d3� D 0; (1.48b)

total energy conservation:
Z

j�j2˝.f / d3� D 0; (1.48c)

internal energy conservation:
Z

jvj2˝.f / d3� D 0: (1.48d)

Exercise 1.9 Show using (1.39) that the total and internal energy conservation
constraints are equivalent.

Boltzmann’s original collision operator is of the form of a complicated and
cumbersome double integral over velocity space. It considers all the possible
outcomes of two-particle collisions for any choice of intermolecular forces.
However, the collision operators used in the LBM are generally based on the
much simpler BGK collision operator [13]:

˝.f / D �1

�
f � f eq

�
: (1.49)

This operator, named after its inventors Bhatnagar, Gross and Krook, directly
captures the relaxation of the distribution function towards the equilibrium
distribution. The time constant , which determines the speed of this equili-
bration, is known as the relaxation time. The value of directly determines
the transport coefficients such as viscosity and heat diffusivity, as we will
show later in Sect. 4.1.

Any useful collision operator must both respect the conserved quantities as
expressed in (1.48) and ensure that the distribution function f locally evolves
towards its equilibrium f eq. The BGK operator is the simplest possible collision
operator given these constraints. However, it is not as exact as Boltzmann’s original
operator: the BGK operator predicts a Prandtl number, which indicates the ratio
of viscosity and thermal conduction, of Pr D 1. Boltzmann’s original operator
correctly predicts Pr ' 2=3, a value also found in lab experiments on monatomic
gases [10].

Exercise 1.10 For a force-free, spatially homogeneous case f .x; �; t/ ! f .�; t/,
show that the BGK operator relaxes an initial distribution function f .�; t D 0/

1.3 Kinetic Theory 23

exponentially to the equilibrium distribution f eq.�/ as

f .�; t/ D f eq.�/C �f .�; 0/� f eq.�/
�

e�t= : (1.50)

1.3.5 Macroscopic Conservation Equations

The macroscopic equations of fluid mechanics can actually be found directly from
the Boltzmann equation, (1.46). We do this by taking the moments of the equation,
i.e. by multiplying it with functions of � and integrating over velocity space.

For convenience, we introduce a general notation for the moments of f ,

˘0 D
Z

f d3� D �; ˘˛ D
Z

�˛f d3� D �u˛;

˘˛ˇ D
Z

�˛�ˇf d3�; ˘˛ˇ� D
Z

�˛�ˇ�� f d3�:

(1.51)

The first two moments are already known as the moments for mass and momentum
density. The second-order moment ˘˛ˇ will soon be shown to be the momentum
flux tensor from (1.12). As we can see from their definitions, these moments are not
altered if their indices are reordered.

To deal with the force terms, we need to know the moments of the force term,
which we can find directly using multidimensional integration by parts as

Z
@f

@�ˇ
d3� D 0;

Z

�˛
@f

@�ˇ
d3� D �

Z
@�˛

@�ˇ
f d3� D ��ı˛ˇ;

Z

�˛�˛
@f

@�ˇ
d3� D �

Z
@.�˛�˛/

@�ˇ
f d3� D �2�uˇ:

(1.52)

1.3.5.1 Mass Conservation Equation

The simplest equation we can find from the Boltzmann equation is the continuity
equation which describes the conservation of mass. Directly integrating the Boltz-
mann equation over velocity space, we find

@

@t

Z

f d3� C @

@xˇ

Z

�ˇf d3� C Fˇ
�

Z
@f

@�ˇ
d3� D

Z

˝.f / d3�: (1.53)

24 1 Basics of Hydrodynamics and Kinetic Theory

The integrals in each term can be resolved according to the moments in (1.38) and
(1.52), in addition to the collision operator’s mass conservation property in (1.48a).
Thus, we find the continuity equation from (1.3) which describes mass conservation:

@�

@t
C @.�uˇ/

@xˇ
D 0: (1.54)

Note that this equation only depends on the conserved moments � and �u˛.
It does not depend on the particular form of f , unlike the following conservation
equations.

1.3.5.2 Momentum Conservation Equation

If we similarly take the first moment of the Boltzmann equation, i.e. we multiply by
�˛ before integrating over velocity space, we find

@.�u˛/

@t
C @˘˛ˇ

@xˇ
D F˛: (1.55)

The moment˘˛ˇ defined in (1.51) is the momentum flux tensor, (1.12).

Exercise 1.11 By splitting the particle velocity as � D u C v, show that the
momentum flux tensor can be decomposed as

˘˛ˇ D �u˛uˇ C
Z

v˛vˇf d3�: (1.56)

Thus, the second moment of the Boltzmann equation becomes the Cauchy
momentum equation previously seen in (1.11):

@.�u˛/

@t
C @.�u˛uˇ/

@xˇ
D @�˛ˇ

@xˇ
C F˛: (1.57)

However, this equation is not closed as we do not know the stress tensor

�˛ˇ D �
Z

v˛vˇf d3� (1.58)

explicitly. To approximate this stress tensor, we must somehow find an explicit
approximation of the distribution function f . In Sect. 1.3.5.4 we will discuss how
this may be done.

1.3 Kinetic Theory 25

1.3.5.3 Energy Conservation Equation

Finally, we can find the energy equation from the trace of the second moment. In
other words, we multiply by �˛�˛ before integrating over velocity space, resulting in

@.�E/

@t
C 1

2

@˘˛˛ˇ

@xˇ
D Fˇuˇ: (1.59)

We can simplify this in two steps. First, we can split the moment in the same way
as for the momentum equation, giving the total energy equation

@.�E/

@t
C @.�uˇE/

@xˇ
D @.u˛�˛ˇ/

@xˇ
C Fˇuˇ � @qˇ

@xˇ
(1.60)

with the heat flux q given as the moment

qˇ D 1

2

Z

v˛v˛vˇf d3�: (1.61)

Secondly, we can eliminate the bulk motion energy component 1
2
�juj2 from the

equation by subtracting (1.57) multiplied with u˛. The end result is the internal
energy equation

@.�e/

@t
C @.�uˇe/

@xˇ
D �˛ˇ @u˛

@xˇ
� @qˇ
@xˇ

: (1.62)

1.3.5.4 Discussion

Finding the macroscopic conservation equations from basic kinetic theory shows
us that the mass equation is exact and invariable, while the momentum and energy
equations depend on the stress tensor and the heat flux vector which themselves
depend on the form of f .

At this point we do not know much about f except its value at equilibrium. It can
be shown that approximating (1.58) and (1.61) by assuming f ' f eq results in the
Euler momentum equation from (1.10) and a simplified energy equation sometimes
known as the Euler energy equation. Both are shown in (1.63).

Exercise 1.12 Assume that f ' f eq for an ideal gas. From (1.58) and (1.61), show
that the general momentum and internal energy conservation equations result in the
Euler momentum and energy equations

@.�u˛/

@t
C @.�u˛uˇ/

@xˇ
D � @p

@x˛
C F˛;

@.�e/

@t
C @.�uˇe/

@xˇ
D �p@uˇ

@xˇ
: (1.63)

26 1 Basics of Hydrodynamics and Kinetic Theory

Both these Euler equations lack the viscous stress tensor � 0 and the heat flux
found in the Navier-Stokes-Fourier momentum and energy equations. We previously
found the viscous stress in (1.14) while the heat flux is [2]

q D ��rT; (1.64)

� being the fluid’s thermal diffusivity.
The fact that the Euler equations are found for a particle distribution f at

equilibrium indicates that the phenomena of viscous dissipation and heat diffusivity
are connected to non-equilibrium, i.e. the deviation f � f eq. How, then, can we find
a more general form of f which takes this deviation into account?

The Chapman-Enskog analysis is an established method of connecting the
kinetic and continuum pictures by finding non-equilibrium contributions to f . Its
main idea is expressing f as a perturbation expansion about f eq:

f D f eq C �f .1/ C �2f .2/ C : : : : (1.65)

The smallness parameter � labels each term’s order in the Knudsen number Kn D
`mfp=`, as defined in (1.32). For Kn! 0, when the fluid is dominated by collisions,
the particle distribution is approximately at equilibrium, and the fluid’s behaviour is
described by the Euler equation.

The perturbation of f combined with a non-dimensionalisation analysis lets us
explicitly find the first-order perturbation f .1/ from the macroscopic derivatives of
the equilibrium distribution f eq [12, 14]. Using this perturbation to approximate the
stress tensor and heat flux moments in (1.58) and (1.61), we find the same stress
tensor and heat flux as in (1.14) and (1.64), respectively. The resulting transport
coefficients are simple functions of :

� D p; �B D 0; � D 5

2
Rp: (1.66)

We will get back to the topic of the Chapman-Enskog analysis in Sect. 4.1.

What have we seen here? On a macroscopic scale, the Boltzmann equation
describes the macroscopic behaviour of a fluid. To a zeroth-order approxi-
mation we have f � f eq, giving the macroscopic equations of the Euler model.
To a first-order approximation, f � f eq C �f .1/, we get the Navier-Stokes-
Fourier model with its viscous stress and heat conduction.

It is also possible to go further; the second-order approximation f � f eqC�f .1/C
�2f .2/ results in the so-called Burnett model which in principle gives even more
detailed and accurate equations for the motion of a fluid. In practice, however,
the Burnett and Navier-Stokes-Fourier models are only distinguishable at high

1.3 Kinetic Theory 27

Knudsen numbers [8], where the Burnett model predicts, e.g., ultrasonic sound
propagation with a better agreement with experiments [15]. However, even higher-
order approximations paradoxically give a poorer prediction of ultrasonic sound
propagation [15]. A proposed reason for this strange result is that the Chapman-
Enskog expansion is actually asymptotic [8], meaning that f diverges as more terms
are added in its expansion. This also casts some doubt on the Burnett model. For the
purpose of this book, we do not need to consider expansions beyond the first-order
approximation f � f eq C �f .1/.

1.3.6 Boltzmann’s H-Theorem

The thermodynamic property of entropy can also be related to the distribution
function f . The entropy density is denoted by �s, with the unit of Œ�s	 D J=kg m3.

Boltzmann himself showed that the quantity

H D
Z

f ln f d3� (1.67)

can only ever decrease and that it reaches its minimum value when the
distribution function f reaches equilibrium.

We can see this directly from the Boltzmann equation in (1.46). By multiplying
it with .1C ln f /, using the chain rule in reverse, and taking the zeroth moment of
the resulting equation, we can find

@

@t

Z

f ln f d3� C @

@x˛

Z

�˛f ln f d3� D
Z

ln f˝.f / d3�: (1.68)

This equation is a balance equation for the quantity H and is found as a moment of
the Boltzmann equation, similarly to the mass, momentum, and energy conservation
equations in Sect. 1.3.5. Thus, the quantity

R
�˛f ln f d3� D H˛ is the flux of

the quantity H that we can split into an advective component u˛
R
f ln f d3� and

a diffusive component
R
v˛f ln f d3�.

28 1 Basics of Hydrodynamics and Kinetic Theory

For the BGK collision operator, the right-hand side of (1.68) can be found to be
non-positive:

Z

ln f˝.f / d3� D
Z

ln

�
f

f eq

�

˝.f / d3� C
Z

ln
�
f eq
�
˝.f / d3�

D 1

Z

ln

�
f

f eq

�
�
f eq � f

�
d3�

D 1

Z

f eq ln

�
f

f eq

��

1 � f

f eq

�

d3� � 0:

(1.69)

The ln.f eq/˝.f / integral can be shown to disappear by inserting f eq and using
the conservation constraints of the collision operator in (1.48). The last inequality
follows from the general inequality ln x.1 � x/ � 0 for all x > 0. For x D 1,
which corresponds to the equilibrium f D f eq, the inequality is exactly zero. This
inequality can also be shown for Boltzmann’s original collision operator and can be
considered a necessary criterion for any collision operator in kinetic theory.

Consequently, (1.68) corresponds to the equation

@H
@t
C @H˛

@x˛
� 0: (1.70)

This shows us that H is not conserved in the system: it never increases, but
instead it decreases, until the particle distribution reaches equilibrium. This is called
the Boltzmann H-theorem. It states that molecular collisions invariably drive the
distribution function towards equilibrium.5

At first sight, this seems analogous to how the thermodynamic quantity
of entropy always increases in a system unless the system has reached an
equilibrium characterised by an entropy maximum. Indeed, for ideal gases H
is actually proportional to the entropy density �s [10, 16]:

�s D �RH : (1.71)

5A more expansive and rigorous explanation of the H-theorem can be found elsewhere [8, 10].

References 29

References

1. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge,
2000)

2. P.A. Thompson, Compressible-Fluid Dynamics (McGraw-Hill, New York, 1972)
3. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987)
4. W.P. Graebel, Advanced Fluid Mechanics (Academic Press, Burlington, 2007)
5. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 4th edn.

(Wiley, New York, 2000)
6. M. Born, H.S. Green, Proc. R. Soc. A 188(1012), 10 (1946)
7. C.S. Wang Chang, G. Uhlenbeck, Transport phenomena in polyatomic gases. Tech. Rep.

M604-6, University of Michigan (1951)
8. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, 2nd edn.

(Cambridge University Press, Cambridge, 1952)
9. T.F. Morse, Phys. Fluids 7(2), 159 (1964)

10. C. Cercignani, The Boltzmann Equation and Its Applications (Springer, New York, 1988)
11. T.I. Gombosi, Gaskinetic Theory (Cambridge University Press, Cambridge, 1994)
12. D. Hänel, Molekulare Gasdynamik (Springer, New York, 2004)
13. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. E 94(3), 511 (1954)
14. E.M. Viggen, The lattice Boltzmann method: Fundamentals and acoustics. Ph.D. thesis,

Norwegian University of Science and Technology (NTNU), Trondheim (2014)
15. M. Greenspan, in Physical Acoustics, vol. IIA, ed. by W.P. Mason (Academic Press, San Diego,

1965), pp. 1–45
16. E.T. Jaynes, Am. J. Phys. 33(5), 391 (1965)

Chapter 2
Numerical Methods for Fluids

Abstract After reading this chapter, you will have insight into a number of other
fluid simulation methods and their advantages and disadvantages. These methods
are divided into two categories. First, conventional numerical methods based on
discretising the equations of fluid mechanics, such as finite difference, finite volume,
and finite element methods. Second, methods that are based on microscopic,
mesoscopic, or macroscopic particles, such as molecular dynamics, lattice gas
models, and multi-particle collision dynamics. You will know where the particle-
based lattice Boltzmann method fits in the landscape of fluid simulation methods,
and you will have an understanding of the advantages and disadvantages of the
lattice Boltzmann method compared to other methods.

While the equations of fluid mechanics described in Sect. 1.1 may look relatively
simple, the behaviour of their solutions is so complex that analytical flow solutions
are only available in certain limits and for a small number of geometries. In
particular, the equations’ non-linearity and the presence of boundary conditions
of complex shape make it extremely difficult or even impossible to find analytical
solutions. In most cases, we have to solve the equations numerically on a computer
to find the flow field. The field of computational fluid dynamics (CFD) started soon
after the advent of electronic computers, although numerical solution of difficult
equations is a much older topic.1

At this point, a wide variety of methods for finding fluid flow solutions have
been invented. Some of these methods are general-purpose methods, usable for any
partial difference equation (PDE), which have been applied to fluids with minor
adaptations. Other methods are more tailored for finding fluid flow solutions.

While the lattice Boltzmann method is the topic of this book, it is simply one
of the many, many methods available today. Each of these methods has its own
advantages and disadvantages, and the LB method is no exception. Therefore, this
chapter briefly covers the most similar methods and relevant alternatives to LB, in
order to give some perspective on where LB fits in the wider landscape of methods,
and to give some idea of the cases for which LB can be better than other methods.

1Before electronic computers, numerical solutions were performed manually by people whose job
title was “computer”!

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_2

31

32 2 Numerical Methods for Fluids

One concept that we will be referring to often in this chapter is order of
accuracy, which will be covered in more depth in Sect. 4.5.1. It is tied to
truncation errors, i.e. the inherent errors when solving a PDE numerically.
A numerical solution is always an approximation of the “true” solution, and
typically deviates from it by truncation error terms proportional to resolution
parameters like the time step �t and spatial step �x. For example, one
particular numerical method could deviate from the “true” solution by terms
O.�t2/C O.�x4/, so that as the resolution is made finer the deviation would
decrease with the second power of �t and the fourth power of �x. This
method is said to have a second order accuracy in time, and a fourth order
accuracy in space. Section 2.1.1 shows where the truncation error comes from
in the case of finite difference approximations.

Section 2.1 covers “conventional” Navier-Stokes solvers, i.e. “top-down” meth-
ods where the macroscopic fluid equations are directly discretised and solved by
the aforementioned general-purpose methods. Section 2.2 covers particle-based
methods, typically “bottom-up” methods based on microscopic or mesoscopic
fluid descriptions. The LB method falls into the latter category. In Sect. 2.3 we
summarise the two main categories of methods, and in Sect. 2.4 we explain where
the lattice Boltzmann method fits in and give a brief overview of its advantages and
disadvantages.

2.1 Conventional Navier-Stokes Solvers

Conventional numerical methods work by taking the equation (or coupled system of
equations) of interest and directly solving them by a particular method of approx-
imation. In the case of CFD, the basic equations to be solved are the continuity
equation and the Navier-Stokes equation (or their incompressible counterparts).
Additional equations, such as an energy equation and an equation of state, may
augment these; the choice of such additional equations depends on the physics to be
simulated and the approximations used.

The derivatives in these equations are always discretised in some form so
that the equations may be solved approximately on a computer. One simple
example is the Euler approximation of a time derivative. By definition, a
variable’s derivative is its slope over an infinitesimal interval�t, and this can

(continued)

2.1 Conventional Navier-Stokes Solvers 33

be approximated using a finite interval�t as

@y.t/

@t
D lim

�t!0

y.tC�t/ � y.t/

�t
� y.tC�t/� y.t/

�t
: (2.1)

Unsurprisingly, the accuracy of this approximation increases as �t is made
smaller and thus closer to its infinitesimal ideal. Additionally, the accuracy
depends on the solution itself; as a rule of thumb, a rapidly varying solution
requires a smaller value of�t to reach a good level of accuracy than a slowly
varying solution does.

Example 2.1 The forward Euler method can be used to find a numerical solution
to simple equations. Consider the equation @y.t/=@t D �y.t/, with y.0/ D 1. If
we did not know already that the answer is y.t/ D e�t we might want to solve it
step-by-step for discrete time steps tn D n�t as

ynC1 D yn C�t
@y

@t

ˇ
ˇ
ˇ
ˇ
yDyn

D .1 ��t/yn: (2.2)

Here, yn is the numerical approximation to y.tn/. In this way, we would find y1 D
.1 ��t/y0 D .1 � �t/, y2 D .1 ��t/y1, and so forth. The resulting solutions for
various values of �t are shown in Fig. 2.1.

Exercise 2.1 Write a script implementing (2.2) from t D 0 to t D 3. Try out
different values of �t and show that the difference between the numerical solution
ykjtkD3 and the analytical solution y.3/ D e�3 varies linearly with �t.

While the forward Euler method is the simplest and fastest method to step
the solution forward in time, other methods such as the implicit backward Euler

Fig. 2.1 Comparison of the analytical solution of @y.t/=@t D �y.t/ to forward Euler solutions
with different values of �t

34 2 Numerical Methods for Fluids

method or Runge-Kutta methods beat it in stability and/or accuracy [1].2 Typically,
conventional methods for unsteady (i.e. time-dependent) CFD can use any of these
methods in order to determine the solution at the next time step from the solution at
the current time step.

However, these conventional CFD methods are distinguished by the approach
they use to discretise the solution, i.e. how they use a finite set of numbers
to represent the solution in continuous physical space. All these methods must
represent the solution variables, such as fluid velocity u and pressure p, in such
a way that their spatial derivatives can be found throughout the entire domain.

For many if not most conventional methods, this process of discretisation leads
to matrix equations Ax D b, where A is a sparse matrix that relates the unknown
discretised solution variables in the vector x, and b represents the influence of
boundary conditions and source terms. Solving such matrix equations by inverting
A to find x is a linear algebra problem that lies at the heart of these methods, and
finding efficient solution methods for such problems has been the topic of much
research. Another common challenge of conventional incompressible Navier-Stokes
solvers is to obtain a solution for the pressure Poisson equation.

In the following sections we will take a brief look at the basics of some of these
methods, namely the finite difference, finite volume, and finite element methods.
We will not cover the boundary-element method (BEM) [2], which is often used for
creeping flows in complex geometries, or spectral methods for fluid dynamics [3].

2.1.1 Finite Difference Method

In the finite difference (FD) method, physical space is divided into a regular grid of
nodes. In one dimension, these nodes are placed at the position xj D j�x. On each
of these nodes, the solution variables are represented by a number; for a general
quantity �.x/, the exact solution �.xj/ is approximated by a discretised counterpart,
denoted as �j.

2.1.1.1 Finite Difference Approximations of Derivatives

At the base of the finite difference method, derivatives of � are approximated
by linear combinations (“finite differences”) of �j. To find these differences, we

2Stability and accuracy, especially in terms of the lattice Boltzmann method, are later covered in
more detail in Sects. 4.4 and 4.5, respectively.

2.1 Conventional Navier-Stokes Solvers 35

Fig. 2.2 Approximations of the derivative of sin.x/ at x D 1, with�x D 0:5

consider the Taylor series of �.x/ about xj:

�.xj C n�x/ D �.xj/C .n�x/
@�.xj/

@x
C .n�x/2

2

@2�.xj/

@x2
C : : :

D
1X

mD0

.n�x/m

mŠ

@m�.xj/

@xm
:

(2.3)

From this we can find three simple approximations for the first-order derivative,

@�

@x

ˇ
ˇ
ˇ
ˇ
xj

� �jC1 � �j
�x

;
@�

@x

ˇ
ˇ
ˇ
ˇ
xj

� �jC1 � �j�1
2�x

;
@�

@x

ˇ
ˇ
ˇ
ˇ
xj

� �j � �j�1
�x

: (2.4)

These three approximations are called the forward difference,3 the central differ-
ence, and the backward difference approximations, respectively.

Exercise 2.2 Prove that the four approximations in (2.4) are valid by letting e.g.
�jC1 ! �.xjC1/ and inserting (2.3), and show that the truncation error of the
forward and backward difference approximations are O.�x/while that of the central
difference approximation is O.�x2/.

The comparison in Fig. 2.2 indicates that central differences approximate the first
derivative better, which is typically true and which can also be seen from its smaller
O.�x2/ truncation error.

We can also find an approximation for the second-order derivative with a O.�x2/
truncation error:

@2�

@x2

ˇ
ˇ
ˇ
ˇ
ˇ
xj

� �jC1 � 2�j C �j�1
�x

: (2.5)

3The forward difference approximation corresponds to the forward Euler approximation for time
discretisation, shown in (2.1).

36 2 Numerical Methods for Fluids

From any such given finite difference scheme, it is possible to insert the Taylor
expansion in order to determine not only what the scheme approximates, but also
the truncation error of the approximation. This is detailed further in Sect. 4.5.1.

Example 2.2 A finite difference approximation of the heat equation @T=@t D
�@2T=@x2, where T.x; t/ is the temperature and � is the thermal diffusivity, is

TnC1
j � Tn

j

�t
D � T

n
jC1 � 2Tn

j C Tn
j�1

�x2
: (2.6)

Here the superscripts indicate the time step and the subscripts the spatial position,
e.g. T.xj; tn/ � Tn

j . We have used the forward Euler approximation from (2.1) to
discretise the time derivative and (2.5) for the spatial second derivative. If we know
the value of the solution at every point xj at time tn, along with the values at the edges
of the system at all times, we can from these values determine the temperature at
tnC1 for every point.

2.1.1.2 Finite Difference Methods for CFD

The finite difference method is simple in principle; just take a set of equations and
replace the derivatives by finite difference approximations. However, this simple
approach is often not sufficient in practice, and special techniques may be required
for the set of equations in question. We will now touch on some problems and
techniques of finding FD solutions of the Navier-Stokes equation, all of which
are covered in more depth in the straightforward finite difference CFD book by
Patankar [4].

We found above that the central difference scheme for first derivatives is typically
more accurate than forward or backward schemes. However, in the advection term
@.�u˛uˇ/=@xˇ, information comes only from the opposite direction of the fluid flow,
i.e. upstream or upwind.4 Since the central difference scheme looks both upwind and
downwind, it is possible to improve on it by using an upwind scheme, where either
a forward or a backward scheme is used depending on the direction of fluid flow.

An issue requiring special treatment is the problem of checkerboard instabilities,
where patterns of alternatingly high and low values emerge, patterns which in 2D
are reminiscent of the black-and-white pattern on a checkerboard. A 1D example is
shown in Fig. 2.3. In short, the reason behind this pattern is that a central difference
scheme would report the first derivative as being zero, so that the rapidly varying
field is felt as being uniform. Thus, there is nothing to stop the pattern from
emerging.

A remedy to this problem is using a staggered grid as shown in Fig. 2.4, where
different grids of nodes are used for different variables. These different grids are

4As a practical example, a deer can smell a hunter who is upwind of it, since the wind blows the
hunter’s scent towards the deer.

2.1 Conventional Navier-Stokes Solvers 37

Fig. 2.3 A one-dimensional “checkerboard” field around xk

Fig. 2.4 A cutout of a staggered grid, where ux and uy are each stored in their own shifted grid of
nodes

shifted relative to each other. Thus, when evaluating e.g. @ux=@x in one of the p
nodes or @p=@x in one of the ux nodes, we can use a central difference scheme
where only adjacent nodes are used, instead of having to skip a central node like the
central difference scheme in (2.4) implies. Thus, a field like that shown in Fig. 2.3
is no longer felt as being uniform, and checkerboard instabilities cannot emerge.

The Navier-Stokes equation is nonlinear because of its advection term. Nonlinear
equations are typically handled by iterating a series of “guesses” for the nonlinear
quantity. This is additionally complicated by having to couple a simultaneous set
of equations. In the classic FD algorithms for incompressible flow called SIMPLE
and SIMPLER, guesses for the pressure field and the velocity field are coupled and
successively iterated using equations tailored for the purpose. More information on
these somewhat complex algorithms can be found elsewhere [4].

2.1.1.3 Advantages and Disadvantages

The crowning advantage of the finite difference method is that it is really
quite simple in principle. For a number of simple equations it is not that much

(continued)

38 2 Numerical Methods for Fluids

more difficult in practice, though some care must be taken in order to maintain
stability and consistency [1].

However, fluids are governed by a complex set of coupled equations that
contain several variables. Therefore, a number of special techniques need to
be applied in order to use the FD method for CFD, which increases the amount
of understanding and effort required to implement a FD CFD solver. Still,
the FD method can be simple and effective compared to other conventional
methods [5].

There are certain numerical weaknesses inherent to FD CFD. Unless
special care is taken, the scheme is not conservative, meaning that the
numerical errors cause the conservation of quantities like mass, momentum,
and energy to not be perfectly respected [5]. Additionally, advective FD
schemes are subject to false diffusion, where numerical errors cause the
advected quantity to be diffused even in pure-advection cases that should have
no diffusion [4]. Finally, since the FD method is based on a regular grid it has
issues with complex geometries that do not conform to the grid itself [5]. (FD
on irregular grids is in principle possible, but in practice it is hardly used [5].)
The latter point is possibly the most important reason why other CFD methods
have become more popular.

2.1.2 Finite Volume Method

In the finite volume (FV) method, space does not need to be divided into a regular
grid. Instead, we subdivide the simulated volume V into many smaller volumes
Vi, which may have different sizes and shapes to each other.5 This allows for a
better representation of complex geometries than e.g. the finite difference method,
as illustrated in Fig. 2.5. In the middle of each finite volumeVi, there is a node where
each solution variable �.x/ is represented by its approximate average value N�i within
that volume.

2.1.2.1 Finite Volume Approximation of Conservation Equations

The FV method is not as general as the FD method which can in principle be used for
any equation. Rather, the FV method is designed to solve conservation equations,

5We here use the term “volume” in a general sense, where a 2D volume is an area and a 1D volume
is a line segment.

2.1 Conventional Navier-Stokes Solvers 39

Fig. 2.5 Simple finite difference and finite volume discretisations of the volume inside a circular
surface. The effective surface in each case is shown as black dashed lines, and interior nodes as
white circles. To the right, the dotted lines show the finite volumes’ interior edges

the type of equations which we typically find in e.g. fluid mechanics.6 The FV
method is conservative by design, which means that e.g. mass and momentum will
always be conserved perfectly, unlike in the FD method.

To show the general principle of how FV approximates a conservation equation,
we start with a steady advection-diffusion equation for a general quantity �.x; t/,

r � ���u
� D r � .Dr�/C Q; (2.7)

where the density � and the flow field u are assumed known, D is a diffusion
coefficient for �, and Q is a source term. By integrating this equation over the entire
volume V and applying the divergence theorem, we get

Z

S
.��u/ � dA D

Z

S
.Dr�/ � dAC

Z

V
Q dV; (2.8)

where S is the surface of the volume V and dA is an infinitesimal surface normal
element. The concept of the divergence theorem is as central to the FV method as
it is for conservation equations in general: Sources and sinks of a quantity within a
volume are balanced by that quantity’s flux across the volume’s boundaries.

6That is not to say that the FV method is limited to conservation equations; it can also be used to
solve more general hyperbolic problems [6].

40 2 Numerical Methods for Fluids

This integral over the entire volume can be split up as a sum of integrals over the
finite volumes Vi and their surfaces Si,7 and each such integral can be written as

X

sj2Si

"Z

sj

.��u/ � dA

#

D
X

sj2Si

"Z

sj

.Dr�/ � dA

#

C Vi NQi: (2.9)

Here, we have additionally split up the integrals over the surface Si as a sum over
its component surface segments sj,8 and the volume integral is replaced with the
integrand’s average value NQi times the volume Vi.

Equation (2.9) is still exact; no approximations have been made as long as the
finite volumes fVig together perfectly fill out the total volume V . However, as � and
r� are not known on the surfaces Sj, the surface integrals must be related to the
volume averages N�i. Using linear interpolation, this can be done in a simple way
that leads to second-order accuracy [5]. Starting with the values of N�i of the two
volumes adjacent to the surface sj, � can be linearly interpolated between the two
volumes’ nodes so that each node point xi has its corresponding volume’s value of
�.xi/ D N�i. At the point where the straight line between the two nodes crosses the
surface sj, we can find the linearly interpolated values of � and .r�/ � dA. These
values can then be applied to the entire surface in the surface integral.

Higher-order accuracy can be achieved by estimating the values of � and r� at
more points on the surface, such as the surface edges which can be determined by
interpolation from all the adjacent volumes [5]. Additionally, the interpolation of
values on the surface may use node values from further-away volumes [5, 7].

2.1.2.2 Finite Volume Methods for CFD

While the basic formulations of finite volume and finite difference methods are
different, CFD using FV methods bear many similarities to finite difference CFD,
which is discussed in Sect. 2.1.1.2. For instance, for higher-order interpolation
schemes, it is still generally a good idea to use more points in the upwind direction
than in the downwind direction [5, 7]. Additionally, the iterative finite difference
SIMPLE and SIMPLER schemes for CFD [4] and their descendants may also be
adapted for finite volume simulations [7].

One difference is that the staggered grids generally used in FD CFD become
too cumbersome to use for the irregular volumes typically used in FV CFD. While
the issue of checkerboard instabilities is also present in the FV method for non-
staggered grids, this is dealt with by the use of schemes that use more than two node
values to approximate the first derivative at a point [7].

7For the internal surfaces between adjacent finite volumes, the surface integrals from the two
volumes will cancel each other.
8In Fig. 2.5, Si is the triangular surface around each volume, and sj represents the straight-line faces
of these triangles.

2.1 Conventional Navier-Stokes Solvers 41

2.1.2.3 Advantages and Disadvantages

While finite volume methods are formulated differently to finite difference
methods, the two methods are comparable in their relative simplicity. The
FV method has some additional advantages, however. The control volume
formulation makes it fundamentally conservative; e.g. mass and momentum
will be conserved throughout the entire domain in a closed system. Addi-
tionally, the FV method is very appropriate for use with irregular grids, which
means that complex geometries can be captured well (the grid is adapted to
the geometry), and it is straightforward to “spend” more resolution on critical
regions in the simulation by making the grid finer in these regions.

The downside of irregular grids is that making appropriate grids for
complex geometries is itself a fairly complex problem; indeed, it is an
entire field of study by itself. Additionally, higher-order FV methods are
not straightforward to deal with, in particular in three dimensions and for
irregular grids [5]. While FV is not as general a method as FD in terms of
what equations it can solve, this is typically not an issue for the equations
encountered in CFD.

2.1.3 Finite Element Methods

In finite element methods (FEM), PDEs are solved using an integral form known
as the weak form, where the PDE itself is multiplied with a weight function w.x/
and integrated over the domain of interest. For example, the Helmholtz equation
r2�C k2� D 0 (a steady-state wave equation for wavenumber k, further explained
in Sect. 12.1.4) in 1D becomes

Z

w.x/
@2�.x/

@x2
dxC k2

Z

w.x/�.x/ dx D 0: (2.10)

Generally, an unstructured grid can be used with FEM, with a discretised solution
variable �i represented at each grid corner node xi. Between the grid corners, the
variable �.x/ is interpolated using basis functions �i.x/ fulfilling certain conditions,
i.e.

�.x/ �
X

i

�i�i.x/; for f�ig such that �.xi/ D �i;
X

i

�i.x/ D 1 (2.11)

in our 1D example. The simplest 1D basis functions are linear functions such that
�i.xi/ D 1, �i.xj¤i/ D 0, and are non-zero only in the interval .xi�1; xiC1/. However,
a large variety of basis functions that are not linear (e.g. quadratic and cubic ones)
are also available, and the order of accuracy is typically tied to the order of the basis
functions.

42 2 Numerical Methods for Fluids

Usually, the basis functions themselves are chosen as weighting functions,
w.x/ D �i.x/. This leads to a system of equations, one for each unknown value
�i. Through the integrals, each value of �i in our 1D example is related with �i�1
and �iC1, assuming linear basis functions.

The main advantage of FEM is that it is mathematically well-equipped for
unstructured grids and for increasing the order of accuracy through higher-
order basis functions (though these also require more unknowns �i). These
grids can be dynamically altered to compensate for moving geometry, as in
the case of simulating a car crash. One disadvantage of FEM is that, like
FD methods, it is not conservative by default like FV methods are. Another
disadvantage is its complexity compared to FD and FV methods. For instance,
the integrals become tricky to solve on general unstructured grids. And as with
FD and FV methods, solving the complex Navier-Stokes system of equations
is not straightforward; see e.g. [8] for more on CFD with the FEM. The
checkerboard instabilities described in Sect. 2.1.1.2 may appear here also
unless special care is taken to deal with these [9].

2.2 Particle-Based Solvers

Particle-based solvers are not based on directly discretising the equations of fluid
mechanics, and they thus take an approach distinctly different to that of the
conventional solvers of the previous section. Instead, these methods represent the
fluid using particles. Depending on the method, a particle may represent e.g. an
atom, a molecule, a collection of molecules, or a portion of the macroscopic fluid.
Thus, while conventional Navier-Stokes solvers take an entirely macroscopic view
of a fluid, particle-based methods usually take a microscopic or mesoscopic view.

In this section we briefly present six different particle-based methods, ordered
roughly from microscopic, via mesoscopic, to macroscopic. Methods that are related
to or viable alternatives to the lattice Boltzmann method are described in more detail.

2.2.1 Molecular Dynamics

Molecular dynamics (MD) is at its heart a fundamentally simple microscopic
method which tracks the position of particles that typically represent atoms or
molecules. These particles interact through intermolecular forces f ij.t/ which are

2.2 Particle-Based Solvers 43

chosen to reproduce the actual physical forces as closely as possible.9 Knowing the
total force f i.t/ on the ith particle from all other particles, we know its acceleration
as per Newton’s second law:

d2xi
dt2
D f i

mi
D 1

mi

X

j¤i

f ij: (2.12)

The particle position xi can then be updated numerically by integrating Newton’s
equation of motion. While there are many such integrator algorithms, a particularly
simple and effective one is the Verlet algorithm [10],

xi.tC�t/ D 2xi.t/ � xi.t ��t/C f i.t/
mi

�t2: (2.13)

This scheme uses the current and previous position of a particle to find its next
position. The Verlet scheme can also be equivalently expressed to use the particle’s
velocity instead of its previous position [10].

Exercise 2.3 Using Taylor expansion as in (2.3), show that the truncation error of
the Verlet algorithm in (2.13) is O.�t4/.

However, while MD is a great method for simulating microscale phenomena
like chemical reactions, protein folding and phase changes, a numerical method
that tracks individual molecules is far too detailed to be used for macroscopic
phenomena—consider that a single gram of water contains over 1022 molecules.
Therefore, MD is highly impractical as a Navier-Stokes solver, and more appropriate
methods should be chosen for this application. More on MD and its applications can
be found elsewhere [10–12].

2.2.2 Lattice Gas Models

Lattice gas models were first introduced in 1973 by Hardy, Pomeau, and de Pazzis
as an extremely simple model of 2D gas dynamics [13]. Their particular model
was subsequently named the HPP model after its inventors. In this model, fictitious
particles exist on a square lattice where they stream forwards and collide in a
manner that respects conservation of mass and momentum, much in the same way
as molecules in a real gas. As the HPP lattice was square, each node had four
neighbours and each particle had one of the four possible velocities ci that would
bring a particle to a neighbouring node in one time step.

9This straightforward force approach scales with the number N of particles as O.N2/, though more
efficient approaches that scale as O.N/ also exist [10].

44 2 Numerical Methods for Fluids

However, it was not until 1986 that Frisch, Hasslacher, and Pomeau published
a lattice gas model that could actually be used to simulate fluids [14]. Their model
was also named after its inventors as the FHP model. The difference to the original
HPP model is small, but significant: Instead of the square lattice and four velocities
of the HPP model, the FHP model had a triangular lattice and six velocities ci.
This change turned out to give the model sufficient lattice isotropy to perform fluid
simulations [15–17].

Lattice gas models are especially interesting in the context of the lattice
Boltzmann method, as the LBM grew out of lattice gas models. Indeed,
early LB articles are difficult to read without knowledge of lattice gases, as
these articles use much of the same formalism and methods.

2.2.2.1 Algorithm

Only up to one particle of a certain velocity can be present in a node at any time.
Whether or not a particle of velocity ci exists at the lattice node at x at time t is
expressed by the occupation number ni.x; t/, where the index i refers to the velocity
ci. This occupation number ni is a Boolean variable with possible values of 0 and 1,
representing the absence and presence of a particle, respectively.

This occupation number can be directly used to determine macroscopic observ-
ables: The mass density and momentum density in a node can be expressed as [16]

�.x; t/ D m

v0

X

i

ni.x; t/; �u.x; t/ D m

v0

X

i

cini.x; t/; (2.14)

respectively, where m is the mass of a particle and v0 is the volume covered by the
node.

There are two rules that determine the time evolution of a lattice gas. The first
rule is collision, where particles that meet in a node may be redistributed in a way
that conserves the mass and momentum in the node. Generally, collisions can be
mathematically expressed as

n?i .x; t/ D ni.x; t/C˝i.x; t/; (2.15)

where n?i is the post-collision occupation number and ˝i 2 f�1; 0; 1g is a collision
operator that may redistribute particles in a node, based on all occupation numbers
fnig in that node [15]. Collisions must conserve mass (

P
i˝i.x; t/ D 0) and

momentum (
P

i ci˝i.x; t/ D 0).
Which collisions may occur (i.e. the dependence of ˝i on fnig) varies between

different formulations of lattice gases, but in any case this is cumbersome to express
mathematically [16, 17]. Rather, we represent graphically the two types of collisions

2.2 Particle-Based Solvers 45

(a) (b)

(c)

Fig. 2.6 Rules of the original FHP lattice gas model: collision and streaming. (a) Two-particle
collision; the resolution is chosen randomly from the two options. (b) Three-particle collision. (c)
Streaming

in the original FHP model [14] in Fig. 2.6. Figure 2.6a shows the two possible
resolutions between head-on collisions of two particles, which are chosen randomly
with equal probability. Figure 2.6b shows the resolution of a three-particle collision:
When three particles meet with equal angles between each other, they are turned
back to where they came from.

Exercise 2.4

(a) Show that the macroscopic quantities of (2.14) are preserved by these collisions.
(b) Show that there is another possible resolution for both the two-particle collision

and the three-particle collision.

The second rule of a lattice gas is streaming: after collisions, particles move from
their current node to a neighbouring node in their direction of velocity, as shown in
Fig. 2.6c. The particle velocities ci are such that particles move exactly from one
node to another from one time step to the next. For the FHP model, which has
six velocities of equal magnitude, we have jcij D �x=�t, �x being the distance
between nodes and �t being the time step. Thus, the streaming can be expressed
mathematically as

ni.xC ci�t/ D n?i .x; t/: (2.16)

Both rules can be combined into a single equation:

ni.xC ci�t; t C�t/ D ni.x; t/C˝i.x; t/: (2.17)

46 2 Numerical Methods for Fluids

In addition to the HPP and FHP models, there is a number of more complex
lattice gas models. Their various features include rest particles with zero velocity,
additional collisions, and additional higher-speed particles [16, 17]. However, all of
these can be expressed mathematically through (2.17); the difference between them
lies in the velocities ci and the rules of the collision operator˝i. All of these models
which fulfil certain requirements on lattice isotropy (e.g., FHP fulfils them while
HPP does not) can be used for fluid simulations [17].

2.2.2.2 Advantages and Disadvantages

One of the touted advantages of lattice gas models was that the occupation numbers
ni are Boolean variables (particles are either there or not there), so that collisions are
in a sense perfect: The roundoff error inherent in the floating-point operations used
in other CFD methods do not affect lattice gas models [15]. Additionally, lattice
gases can be massively parallelised [15].

However, a downside of these collisions is that they get out of hand for larger
number of velocities. For example, for the three-dimensional lattice gas with 24
velocities [15, 17], there are 224 � 16:8 � 106 possible states in a node. The
resolution of any collision in this model was typically determined by lookup in a
huge table made by a dedicated program [15].

The FHP model additionally has problems with isotropy of the Navier-Stokes
equations, which can only disappear in the limit of low Mach numbers, i.e. for a
quasi-incompressible flow [15]. Additionally, lattice gases struggled to reach as high
Reynolds numbers as comparable CFD methods [15].

The major issue with lattice gases, however, was statistical noise. Like real
gases, lattice gases are teeming with activity at the microscopic level. Even for
a gas at equilibrium, when we make a control volume smaller and smaller, the
density (mass per volume) inside it will fluctuate more and more strongly with
time: Molecules continually move in and out, and the law of large numbers
applies less for smaller volumes. This is also the case with lattice gases, where
the macroscopic values from (2.14) will fluctuate even for a lattice gas at
equilibrium.

In one sense, it may be an advantage that lattice gases can qualitatively
capture the thermal fluctuations of a real gas [16]. But if the goal is to
simulate a macroscopic fluid, these fluctuations are a nuisance. For that
reason, lattice gas simulations would typically report density and fluid
velocity found through averaging in space and/or time (i.e. over several
neighbouring nodes and/or several adjacent time steps), and even averaging
over multiple ensembles (i.e. macroscopically similar but microscopically
different realisations of the system) [16], though this could only reduce the
problem and some noise would always remain.

2.2 Particle-Based Solvers 47

The problem of statistical noise was more completely dealt with by the invention
of the lattice Boltzmann method in the late 1980s [18–20]. This method was first
introduced by tracking the occupation number’s expectation value fi D hnii rather
than the occupation number itself, thus eliminating the statistical noise. This was the
original method of deriving the LBM, and it was not fully understood how to derive
it from the kinetic theory of gases presented in Sect. 1.3 until the mid-90s [21]. This
more modern approach of derivation is the one that we will follow in Chap. 3.

2.2.3 Dissipative Particle Dynamics

Dissipative particle dynamics (DPD) is, like the LBM, a relatively new mesoscopic
method for fluid flows. Originally proposed by Hoogerbrugge and Koelman [22]
in 1992, it was later put on a proper statistical mechanical basis [23]. DPD can be
considered a coarse-grained MD method that allows for the simulation of larger
length and time scales than molecular dynamics (cf. Sect. 2.2.1) and avoids the
lattice-related artefacts of lattice gases. Being a fully Lagrangian scheme without an
underlying lattice, DPD is intrinsically Galilean invariant and isotropic.

In the following, we will summarise the essential ideas of DPD, as described in
a recent review article by Liu et al. [24]. We will not cover smoothed dissipative
particle dynamics (SDPD) [25] that is a special case of smoothed-particle hydrody-
namics rather than an extension of DPD.

The basis of DPD are particles of mass m that represent clusters of molecules.
These particles interact via three different forces: conservative (C), dissipative (D)
and random (R). Unlike forces in MD, the conservative forces in DPD are soft,
which allows larger time steps. The dissipative forces mimic viscous friction in the
fluid, while random forces act as thermostat. All these forces describe additive pair
interactions between particles (obeying Newton’s third law), hence DPD conserves
momentum. In fact, DPD is often referred to as a momentum-conserving thermostat
for MD. The total force on particle i can be written as sum of all forces due to the
presence of other particles j and external forces f ext:

f i D f ext C
X

j6Di

f ij D f ext C
X

j6Di

�
f C
ij C f D

ij C f R
ij

�
: (2.18)

All interactions have a finite radial range with a cutoff radius rc. Details of the
radial dependence of the forces are discussed in [24]. Like in MD, a crucial
aspect of the DPD algorithm is the time integration of the particle positions and
velocities. Typical employed methods are a modified velocity-Verlet [26] or a leap-
frog algorithm [27].

DPD obeys a fluctuation-dissipation theorem (if the radial weight functions are
properly chosen) [23] and is particularly suited for hydrodynamics of complex fluids
at the mesoscale with finite Knudsen number. Typical applications are suspended

48 2 Numerical Methods for Fluids

polymers or biological cells, but also multiphase flows in complex geometries. Solid
boundaries are typically modelled as frozen DPD particles, while immersed soft
structures (e.g. polymers) are often described by particles connected with elastic
springs. Similarly to other mesoscopic methods, it is relatively easy to include
additional physics, for instance the equation of state of multiphase fluids.

A disadvantage of DPD is that it contains a large number of parameters that have
to be selected carefully. The choice of the radial weight functions is delicate and
affects the emergent hydrodynamic behaviour. For example, to reach a realistically
large viscosity, it is necessary to increase the cutoff distance rc which in turn leads
to more expensive simulations.

2.2.4 Multi-particle Collision Dynamics

In 1999, Malevanets and Kapral [28, 29] introduced the multi-particle collision
(MPC) dynamics, which has since become a popular method in the soft matter
community. The paradigm of MPC is to coarse-grain the physical system as much
as possible while still resolving the essential features of the underlying problem.

Although MPC is nothing more than a modification of direct simulation Monte
Carlo (DSMC, cf. Sect. 2.2.5) [30], we discuss both methods separately as they
are normally used for completely different applications. In particular, MPC is
commonly employed for systems with a small mean free path, while DSMC allows
the simulation of rarefied gases with a large mean free path.

MPC is a method of choice for complex systems where both hydrodynamic
interactions and thermal fluctuations are relevant. Due to its particle-based nature,
it is relatively easy to implement coupled systems of solvent and solutes. Therefore,
MPC is most suitable and often employed for the modelling of colloids, polymers,
vesicles and biological cells in equilibrium and external flow fields. MPC particu-
larly shows its strengths for systems with Reynolds and Péclet numbers between 0.1
and 10 and for applications where consistent thermodynamics is required and where
the macroscopic transport coefficients (viscosity, thermal diffusivity, self-diffusion
coefficient) have to be accurately known [31].

There exist also MPC extensions for non-ideal [32], multicomponent [33] and
viscoelastic fluids [34]. We refer to [31, 35] for thorough reviews and to [36] for a
recent overview.

2.2.4.1 Algorithm

The essential features of the MPC algorithm are: (i) alternating streaming and
collision steps, (ii) local conservation of mass, momentum and, unlike standard
LBM schemes, energy, (iii) isotropic discretisation. The last two properties ensure
that MPC can be used as a viable Navier-Stokes solver.

2.2 Particle-Based Solvers 49

The basic MPC setup comprises a large number of point-like particles with
mass m. These particles can either be fluid or immersed (e.g. colloidal) particles.
This feature allows a treatment of solvent and solutes on an equal footing. For
example, immersed particles can be directly coupled by letting them participate
in the collision and streaming steps [37]. This approach has been successfully
employed in numerous colloid and polymer simulations (see [31] and references
therein).

During propagation, space and velocity are continuous and the particles move
along straight lines for one time step �t:

xi.tC�t/ D xi.t/C ci.t/�t; (2.19)

where xi and ci are particle position and velocity. After propagation, particles
collide. How the collision step looks like in detail depends on the chosen MPC
algorithm. Generally, each particle-based algorithm with local mass and momentum
conservation and an H-theorem (analogous to that described in Sect. 1.3.6) is called
a multi-particle collision algorithm.

One special case is the so-called stochastic rotation dynamics (SRD) algorithm.
During collision, all particles are sorted into cells of a usually regular cubic lattice
with lattice constant�x. On average, there are Nc particles in each cell. The velocity
vi of each particle i in one cell is decomposed into the average cell velocity Nv (as
given by the average velocity of all particles in that cell) and the relative velocity ıvi.
The relative velocities are then rotated in space to give the post-collision velocities

v?i D NvC Rıvi (2.20)

where R is a suitable rotation matrix. In 2D, velocities are rotated by ˙˛ where ˛
is a fixed angle and the sign is randomly chosen. In 3D, the rotation is defined by a
fixed angle ˛ and a random rotation axis. Rotations are the same for all particles in
a given cell but statistically independent for different cells. Apart from this rotation,
there is no direct interaction between particles. In particular, particles can penetrate
each other, which makes a collision detection unnecessary. It can be shown that the
resulting equilibrium velocity distribution is Maxwellian.

It should be noted that the originally proposed SRD algorithm [28, 29] violated
Galilean invariance. This problem, which was particularly important for small
time steps (i.e. a small mean free path), could be corrected by shifting the lattice
by a random distance d 2 Œ��x=2;C�x=2	 before each collision step [38].
Furthermore, SRD does not generally conserve angular momentum; a problem that
can be avoided as reviewed in [31].

Other collision models than SRD are available. For example, the Anderson
thermostat (MPC-AT) [30, 39] is used to produce new particle velocities according
to the canonical ensemble rather than merely rotating the existing velocity vectors
in space. As noted earlier, DSMC is another MPC-like method that only differs in
terms of the particle collisions.

50 2 Numerical Methods for Fluids

It is also possible to implement a repulsion force between colloids and solvent
particles [29] in order to keep the fluid outside the colloids. This, however, requires
relatively large repulsion forces and therefore small time steps. Additional coupling
approaches are reviewed in [31]. Slip [40] and no-slip boundary conditions [36] are
available as well.

2.2.4.2 Advantages and Disadvantages

All MPC algorithms locally conserve mass and momentum10 and have an H-
theorem which makes them unconditionally stable [28]. Due to its locality the MPC
algorithm is straightforward to implement and to use, computationally efficient and
easy to parallelise. MPC has been successfully ported to GPUs with a performance
gain of up to two orders of magnitude [36]. But due to its strong artificial
compressibility, MPC is not well suited for the simulation of Stokes flow (Re! 0)
or compressible hydrodynamics [31].

Both hydrodynamics and thermal fluctuations are consistently taken into account.
For example, interfacial fluctuations in binary fluids are accurately captured. The
hydrodynamic interactions can be switched off [41], which makes it possible to
study their relevance. However, it is recommended to use other methods like
Langevin or Brownian Dynamics if hydrodynamics is not desired [31]. When
hydrodynamics is included, it allows for larger time steps than in MD-like methods.
Therefore longer time intervals can be simulated with MPC [31].

Compared to LBM, MPC naturally provides thermal fluctuations, which can be
an advantage. Yet, for systems where those fluctuations are not required or even
distracting, MPC is not an ideal numerical method. Conventional Navier-Stokes
solvers or the LBM are more favorable in those situations [31].

As MPC is a particle-based method, immersed objects such as colloids or
polymers can be implemented in a relatively straightforward fashion. This makes
MPC particularly suitable for the simulation of soft matter systems. Additionally,
the transport coefficients (viscosity, thermal diffusivity, self-diffusion coefficient)
can be accurately predicted as function of the simulation parameters [31, 38, 42–
44]. On the other hand, it is not a simple task to impose hydrodynamic boundary
conditions, especially for the pressure. Furthermore, the discussions in [36] show
that no-slip boundary conditions and forcing are not as well under control as for
LBM. Multicomponent fluids and also surfactants can be simulated within the MPC
framework [33]. However, the LBM seems to be more mature due to the larger
number of works published.

10Most of them also conserve energy.

2.2 Particle-Based Solvers 51

2.2.5 Direct Simulation Monte Carlo

The direct simulation Monte Carlo (DSMC) method was pioneered by Bird [45] in
the 1960s. While its initial popularity was slowed down by limitations in computer
technology, DSMC is currently considered a primary method to solve realistic
problems in high Knudsen number flows. Typical applications range from spacecraft
technology to microsystems. More details on DSMC can be found in dedicated
books [46, 47] and review articles [48–50].

DSMC is a particle method based on kinetic theory, where flow solutions are
obtained through the collisions of model particles. MPC (cf. Sect. 2.2.4) can be
considered DSMC with a modified particle collision procedure [30]. Since DSMC
is more than 30 years older than MPC and used for different applications, we provide
a short independent overview of DSMC here.

Rather than seeking solutions of the governing mathematical model, e.g. the
Boltzmann equation, DSMC incorporates the physics of the problem directly
into the simulation procedure. Although this change in paradigm at first raised
doubts on whether DSMC solutions were indeed solutions of the Boltzmann
equation [51], modern studies have shown that the DSMC method is a sound
physical simulation model capable of describing physical effects, even beyond the
Boltzmann formulation [49, 50].

Fundamentally, DSMC simulations track a large number of statistically rep-
resentative particles. While the position and velocity of particles is resolved
deterministically during motion, particle collisions are approximated by proba-
bilistic, phenomenological models. These models enforce conservation of mass,
momentum and energy to machine accuracy.

The DSMC algorithm has four primary steps [49]:

1. Move particles, complying with the prescribed boundary conditions.
2. Index and cross-reference the particles. The particles are labelled inside the

computational domain as a pre-requisite for the next two steps.
3. Simulate collisions. Pairs of particles are randomly selected to collide according

to a given collisional model. (It is this probabilistic process of determining
collisions that sets DSMC apart from deterministic simulation procedures such
as MD.) This separates DSMC from MPC; the latter handling the collision of all
particles in a cell simultaneously.

4. Sample the flow field. Within predefined cells, compute macroscopic quantities
based on the positions and velocities of particles in the cell. This averaged data
is typically not necessary for the rest of the simulation and is only used as output
information.

DSMC is an explicit and time-marching technique. Depending on the sample
size and the averaging procedure, it may produce statistically accurate results. The
statistical error in a DSMC solution is inversely proportional to

p
N, N being the

number of simulation particles [49]. On the other hand, the computational cost is
proportional to N. The main drawback of DSMC is therefore the high computational

52 2 Numerical Methods for Fluids

demand of problems requiring a large N. This explains why DSMC is mostly used
for dilute gases, where its accuracy/efficiency characteristics have no competitor.
Nevertheless, the continuous improvement in computational resources is expected to
expand the range of physical applications for DSMC simulations in the near future.

2.2.6 Smoothed-Particle Hydrodynamics

SPH was invented in the 1970s to deal with the particular challenges of 3D
astrophysics. Since then it has been used in a large number of applications, in recent
years also computer graphics where it can simulate convincing fluid flow relatively
cheaply. Several books have been written on SPH, such as a mathematically rigorous
introduction by Violeau [52] and a more practical introduction by Liu and Liu [53]
on which the rest of our description will be based.

At the base of SPH is an interpolation scheme which uses point particles that
influence their vicinity. For instance, any quantity � at point x can be approximated
as a sum over all particles, with each particle j positioned at xj:

�.x/ D
X

j

mj

�j
�jW.jx � xjj; hj/: (2.21)

Here, mj is the particle’s mass, �j is the density at xj, �j is the particle’s value of �,
and W.jx � xjj; hj/ is a kernel function with characteristic size hj which defines the
region of influence of particle j.11 Thus, SPH particles can be seen as overlapping
blobs, and the sum of these blobs at x determines �.x/. For instance, the density �i
at particle i can be found by setting �.xi/ D �.xi/, so that

�i D
X

j

mj

�j
�jW.jxi � xjj; hj/ D

X

j

mjW.jxi � xjj; hj/: (2.22)

The formulation of SPH and its adaptive resolution gives it a great advantage
when dealing with large unbounded domains with huge density variations, such as
in astrophysics. It can also deal with extreme problems with large deformations,
such as explosions and high-velocity impacts, where more traditional methods may
struggle. The particle formulation of SPH also allows for perfect conservation of
mass and momentum.

On the downside, SPH has problems with accuracy, and it is not quite simple
to deal with boundary conditions. Additionally, the formulation of SPH makes it

11While the kernel function can be e.g. Gaussian, it is advantageous to choose kernels that are zero
for jx�xjj > h, so that only particles in the vicinity of x need be included in the sum. Additionally,
the fact that hj can be particle-specific and varying allows adaptive resolution.

2.3 Summary 53

difficult to mathematically prove that the numerical method is consistent with the
equations of the hydrodynamics that it is meant to simulate.

2.3 Summary

In this chapter, we have looked at various numerical methods for fluids in two main
categories: Conventional methods, and particle-based methods.

Conventional methods are generic numerical methods, applied to solving the
equations of fluid mechanics. These methods represent the fluid variables (such as
velocity and pressure) as values at various points (nodes) throughout the domain.
The interpretation of these node values varies. In the finite difference (FD) method,
the idea of a continuous field is dropped in favour of a field defined only on a square
grid of nodes. In the finite volume (FV) method, a node value represent the average
of the fluid variables in a small volume around the node. In the finite element (FE)
method, the continuous field is approximated by a kind of interpolation of the node
values. These methods have in common that the node values are used to approximate
the derivatives in the partial derivative equations in question.

While these general numerical methods are reasonably simple in principle
(FE being somewhat more complex than FD or FV), they are complicated by
the inherent difficulties of the equations of fluid mechanics. These represent a
nonlinear, simultaneous system of equations where the solutions can behave in
a very intricate way, especially in cases like turbulence or flows in complex
geometries. Additionally, the pressure is implicit in the incompressible Navier-
Stokes simulations. Such difficulties have caused the development of somewhat
complex iterative algorithms such as SIMPLE and SIMPLER [4]. One troublesome
issue that emerges is that of checkerboard instabilities, as described in Sect. 2.1.1.2,
which can be dealt with by staggered grids or asymmetric schemes, both of which
add complexity.

FD, FV, and FE simulations ultimately end up being expressed as matrix
equations. Solving these equations efficiently is a pure linear algebra problem which
is nevertheless important for these methods, and many different solution methods
have been developed. Another complex mathematical problem that emerges when
using irregular grids in FV and FE simulations is building this grid automatically
for a given geometry, and this has also been a topic of extensive studies [54].

All in all, conventional methods have been thoroughly explored in the past
decades, and are currently considered workhorse methods in CFD. Though it is
possible to implement methods of higher order, in practice nearly all production
flow solvers are second-order accurate [55].

Particle-based methods typically do not attempt to solve the equations of fluid
mechanics directly, unlike conventional methods. Instead, they represent the fluid
through particles, which themselves may represent atoms, molecules, collections or
distributions of molecules, or portions of the macroscopic fluid. These methods are

54 2 Numerical Methods for Fluids

quite varied, and are often tailored to a particular problem.12 It is therefore difficult
to give a general summary of these methods as a whole.

However, it can be said that it can be difficult to relate the dynamics of
some particle-based methods, such as smoothed-particle hydrodynamics, to a
macroscopic description of the fluid. This makes it difficult to quantify generally
the accuracy of these methods. Additionally, it must be said that the microscopic
particle-based CFD methods are typically not appropriate for CFD. Even the lattice
gas models described in Sect. 2.2.2, which were originally intended for flow
simulations, had major problems with noise from fluctuations in the microscopic
particle populations. For that reason, lattice gases were largely abandoned in favour
of the very similar lattice Boltzmann method, which instead took a mesoscopic
approach that eliminated this noise.

All in all, different solvers have different advantages and disadvantages, and
different types of fluid simulations pose different demands on a solver. For
that reason, it is generally agreed (e.g. [5, 15, 56, 57]) that there is no one
method which is generally superior to all others.

2.4 Outlook: Why Lattice Boltzmann?

While we will not describe the lattice Boltzmann method in detail until Chap. 3, we
will here compare it in general terms to the other methods of this chapter.

The lattice Boltzmann method (LBM) originally grew out of the lattice gas
models described in Sect. 2.2.2. While lattice gases track the behaviour of concrete
particles, the LBM instead tracks the distribution of such particles. It can be debated
whether the LBM should be called a particle-based method when it only tracks
particle distributions instead of the particles themselves, but it is clear that it has
much in common with many of the methods described in Sect. 2.2.

The LBM has a strong physical basis, namely the Boltzmann equation described
in Sect. 1.3.4. Well-established methods exist to link its dynamics to the macro-
scopic conservation equations of fluids.13 It can thus be found that the “standard”
LBM is a second-order accurate solver for the weakly compressible Navier-Stokes
equation; this is detailed in Sect. 4.5.5. The “weak compressibility” refers to errors
that become relevant as Ma! 1 (cf. Sect. 4.1).

12For instance, molecular dynamics is tailored to simulating phenomena on an atomic and
molecular level, and smoothed-particle hydrodynamics was invented to deal with the largely empty
domains of astrophysical CFD.
13The most common such method is covered in Sect. 4.1, with a number of alternative methods
referenced in Sect. 4.2.5.

2.4 Outlook: Why Lattice Boltzmann? 55

The LBM gains a major advantage from being based on the Boltzmann equation
rather than the equations of fluid mechanics: It becomes much simpler to imple-
ment than conventional methods. However, there is a corresponding disadvantage:
understanding and adapting the LBM typically requires some knowledge about the
Boltzmann equation, in addition to knowledge about fluid mechanics.

In conventional methods, much of the complexity lies in determining derivative
approximations non-locally from adjacent nodes. In particular, it is difficult to
discretise the non-linear advection term u�ru. In contrast, the detail in the LBM lies
in the particle description within the nodes themselves, causing that “non-linearity
is local, non-locality is linear”14: interactions between nodes are entirely linear,
while the method’s non-linearity enters in a local collision process within each node.
This property makes the LBM very amenable to high-performance computing on
parallel architectures, including GPUs. Coupled with the method’s simplicity, this
means that parallelised LB simulations can be tailor-made for a particular case more
quickly than simulations using a conventional method [15].

A number of publications have compared the LBM to other methods (e.g. [15,
56–59]). From these comparisons, some takeaway messages about the LBM’s
advantages (C) and disadvantages (�) can be found for a number of topics:

Simplicity and Efficiency

C For solving the incompressible Navier-Stokes equation, the LBM is similar to
pseudocompressible methods, which gain simplicity and scalability by allowing
artificial compressibility [56].

C Like pseudocompressible methods, the LBM does not involve the Poisson
equation [56] which can be difficult to solve due to its non-locality.

C The heaviest computations in the LBM are local, i.e. restricted to within nodes,
further improving its amenability to parallelisation [15].

� LBM is memory-intensive. Propagating populations requires a large number
of memory access events. As we will see in Sect. 13.3.2, these are a major
bottleneck of LB computations.

� The LBM, being inherently time-dependent, is not particularly efficient for
simulating steady flows [57].

Geometry

C The LBM is well suited to simulating mass-conserving flows in complex
geometries such as porous media [15, 56, 59].

C Moving boundaries that conserve mass can be implemented particularly well in
the LBM [56], making it an attractive method for soft matter simulations [59].

Multiphase and Multicomponent Flows

C There is a wide range of multiphase and multicomponent methods available for
the LBM [56].

14This concise description is attributed to Sauro Succi.

56 2 Numerical Methods for Fluids

C Coupled with the LBM’s advantages in complex geometries, this means that it
is well suited to simulating multiphase and multicomponent flows in complex
geometries [15].

� As in other lattice-based methods, there are spurious currents near fluid-fluid
interfaces (cf. Sect. 9.4.1).

� According to [56], no multiphase or multicomponent methods for the LBM have
capitalised well on its kinetic origins, meaning that these methods are not very
different from those in conventional CFD.

� The range of viscosities and densities are somewhat limited in multiphase and
multicomponent simulations [56].

Thermal Effects

C Thermal fluctuations, which originate on the microscale but are averaged out
on the macroscale, can be incorporated into the LBM mesoscopically. We will
not discuss fluctuations in this book. Instead, the interested reader should refer to
[60–62] for ideal and to [63, 64] for non-ideal systems with thermal fluctuations.

� Energy-conserving (thermal) simulations are not straightforward in the LBM
[15, 56]. We come back to this topic in Sect. 8.4.

Sound and Compressibility

C As the LBM is a (weakly) compressible Navier-Stokes solver, it may be
well-suited for simulating situations where sound and flow interact, such as
aeroacoustic sound generation [65].

� The LBM is not appropriate for directly simulating long-range propagation of
sound at realistic viscosities [56, 65].

� The LBM may not be appropriate for simulating strongly compressible (i.e.
transonic and supersonic) flows [15, 56].

Other Points

C The LBM is appropriate for simulating mesoscopic physics that are hard to
describe macroscopically [15].

While the lattice Boltzmann method has many advantages, it is, like all other
numerical methods for fluids, not well suited for all possible applications. However,
the LBM is a relatively young method, and it is still evolving at a quick pace,
meaning that the range of problems to which it can be applied well is still increasing.

References

1. R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady State and Time Dependent Problems (SIAM, Philadelphia, 2007)

2. C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library
BEMLIB (CRC Press, Boca Raton, 2002)

References 57

3. C. Canuto, M.Y. Hussaini, A.M. Quarteroni, A. Thomas Jr, et al., Spectral Methods in Fluid
Dynamics (Springer Science & Business Media, New York, 2012)

4. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor & Francis, Washington, DC,
1980)

5. J.H. Ferziger, M. Peric, A. Leonard, Computational Methods for Fluid Dynamics, vol. 50, 3rd
edn. (Springer, New York, 2002)

6. R.J. LeVeque, Finite-Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied
Mathematics (Cambridge University Press, Cambridge, 2004)

7. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite
Volume Method, 2nd edn. (Pearson Education, Upper Saddle River, 2007)

8. O.C. Zienkiewicz, R.L. Taylor, P. Nithiarasu, The Finite Element Method for Fluid Dynamics,
7th edn. (Butterworth-Heinemann, Oxford, 2014)

9. C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, vol. 2 (Springer, New York,
1988)

10. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications,
2nd edn. Computational science series (Academic Press, San Diego, 2002)

11. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids. Oxford Science Publications
(Clarendon Press, Oxford, 1989)

12. M. Karplus, J.A. McCammon, Nat. Struct. Biol. 9(9), 646 (2002)
13. J. Hardy, Y. Pomeau, O. de Pazzis, J. Math. Phys. 14(12), 1746 (1973)
14. U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56(14), 1505 (1986)
15. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University

Press, Oxford, 2001)
16. J.P. Rivet, J.P. Boon, Lattice Gas Hydrodynamics (Cambridge University Press, Cambridge,

2001)
17. D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer,

New York, 2005)
18. G.R. McNamara, G. Zanetti, Phys. Rev. Lett. 61(20), 2332 (1988)
19. F.J. Higuera, S. Succi, R. Benzi, Europhys. Lett. 9(4), 345 (1989)
20. F.J. Higuera, J. Jimenez, Europhys. Lett. 9(7), 663 (1989)
21. X. He, L.S. Luo, Phys. Rev. E 56(6), 6811 (1997)
22. P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19(3), 155 (1992)
23. P. Español, P. Warren, Europhys. Lett. 30(4), 191 (1995)
24. M.B. Liu, G.R. Liu, L.W. Zhou, J.Z. Chang, Arch. Computat. Methods Eng. 22(4), 529 (2015)
25. P. Español, M. Revenga, Phys. Rev. E 67(2), 026705 (2003)
26. R.D. Groot, P.B. Warren, J. Chem. Phys. 107(11), 4423 (1997)
27. I. Pagonabarraga, M.H.J. Hagen, D. Frenkel, Europhys. Lett. 42(4), 377 (1998)
28. A. Malevanets, R. Kapral, J. Chem. Phys. 110(17), 8605 (1999)
29. A. Malevanets, R. Kapral, J. Chem. Phys. 112(16), 7260 (2000)
30. H. Noguchi, N. Kikuchi, G. Gompper, Europhys. Lett. 78(1), 10005 (2007)
31. G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, in Advanced Computer Simulation Approaches

for Soft Matter Sciences III, Advances in Polymer Science (Springer, Berlin, Heidelberg, 2008),
pp. 1–87

32. T. Ihle, E. Tüzel, D.M. Kroll, Europhys. Lett. 73(5), 664 (2006)
33. E. Tüzel, G. Pan, T. Ihle, D.M. Kroll, Europhys. Lett. 80(4), 40010 (2007)
34. Y.G. Tao, I.O. Götze, G. Gompper, J. Chem. Phys. 128(14), 144902 (2008)
35. R. Kapral, in Advances in Chemical Physics, ed. by S.A. Rice (Wiley, New York, 2008), p. 89–

146
36. E. Westphal, S.P. Singh, C.C. Huang, G. Gompper, R.G. Winkler, Comput. Phys. Commun.

185(2), 495 (2014)
37. A. Malevanets, J.M. Yeomans, Europhys. Lett. 52(2), 231 (2000)
38. T. Ihle, D.M. Kroll, Phys. Rev. E 67(6), 066706 (2003)
39. E. Allahyarov, G. Gompper, Phys. Rev. E 66(3), 036702 (2002)
40. J.K. Whitmer, E. Luijten, J. Phys. Condens. Matter 22(10), 104106 (2010)

58 2 Numerical Methods for Fluids

41. M. Ripoll, R.G. Winkler, G. Gompper, Eur. Phys. J. E 23(4), 349 (2007)
42. N. Kikuchi, C.M. Pooley, J.F. Ryder, J.M. Yeomans, J. Chem. Phys. 119(12), 6388 (2003)
43. T. Ihle, E. Tözel, D.M. Kroll, Phys. Rev. E 72(4), 046707 (2005)
44. C.M. Pooley, J.M. Yeomans, J. Phys. Chem. B 109(14), 6505 (2005)
45. G.A. Bird, Phys. Fluids 6, 1518 (1963)
46. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Claredon,

Oxford, 1994)
47. C. Shen, Rarefied gas dynamics: Fundamentals, Simulations and Micro Flows (Springer, New

York, 2005)
48. G.A. Bird, Ann. Rev. Fluid Mech. 10, 11 (1978)
49. E.S. Oran, C.K. Oh, B.Z. Cybyk, Ann. Rev. Fluid Mech. 30, 403 (1998)
50. G.A. Bird, Comp. Math. Appl. 35, 1 (1998)
51. W. Wagner, J. Stat. Phys. 66, 1011 (1992)
52. D. Violeau, Fluid Mechanics and the SPH Method: Theory and Applications, 1st edn. (Oxford

University Press, Oxford, 2012)
53. G.R. Liu, M.B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method (World

Scientific Publishing, Singapore, 2003)
54. P.J. Frey, P.L. George, Mesh Generation: Application to Finite Elements (Wiley, Hoboken,

2008)
55. Z. Wang, Prog. Aerosp. Sci. 43(1–3), 1 (2007)
56. R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, D. Joseph, Int. J. Multiphas. Flow 29(1), 117

(2003)
57. S. Geller, M. Krafczyk, J. Tölke, S. Turek, J. Hron, Comput. Fluids 35(8-9), 888 (2006)
58. M. Yoshino, T. Inamuro, Int. J. Num. Meth. Fluids 43(2), 183 (2003)
59. B. Dünweg, A.J.C. Ladd, in Advances in Polymer Science (Springer, Berlin, Heidelberg, 2008),

pp. 1–78
60. A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)
61. R. Adhikari, K. Stratford, M.E. Cates, A.J. Wagner, Europhys. Lett. 71(3), 473 (2005)
62. B. Dünweg, U.D. Schiller, A.J.C. Ladd, Phys. Rev. E 76(3), 036704 (2007)
63. M. Gross, M.E. Cates, F. Varnik, R. Adhikari, J. Stat. Mech. 2011(03), P03030 (2011)
64. D. Belardinelli, M. Sbragaglia, L. Biferale, M. Gross, F. Varnik, Phys. Rev. E 91(2), 023313

(2015)
65. E.M. Viggen, The lattice Boltzmann method: Fundamentals and acoustics. Ph.D. thesis,

Norwegian University of Science and Technology (NTNU), Trondheim (2014)

Part II
Lattice Boltzmann Fundamentals

Chapter 3
The Lattice Boltzmann Equation

Abstract After reading this chapter, you will know the basics of the lattice
Boltzmann method, how it can be used to simulate fluids, and how to implement it
in code. You will have insight into the derivation of the lattice Boltzmann equation,
having seen how the continuous Boltzmann equation is discretised in velocity space
through Hermite series expansion, before being discretised in physical space and
time through the method of characteristics. In particular, you will be familiar with
the various simple sets of velocity vectors that are available, and how the discrete
BGK collision model is applied.

In this chapter we provide a simple overview of the LBM. After presenting a general
introduction in Sect. 3.1, we briefly outline the LBM without derivation in order to
give an initial understanding (cf. Sect. 3.2). Section 3.3 contains general advice on
implementing the algorithm on a computer. Together, these two sections should be
sufficient to write simple LBM codes. Next, we present the derivation of the lattice
Boltzmann equation by discretising the Boltzmann equation in two steps. First, in
Sect. 3.4, we discretise velocity space by limiting the continuous particle velocity �

to a discrete set of velocities f�ig. Secondly, we discretise physical space and time
by integrating along characteristics in Sect. 3.5. The result of these two steps is the
lattice Boltzmann equation (LBE). A thorough discussion of how the LBE is linked
to fluid dynamics will be given in Chap. 4.

3.1 Introduction

The equations of fluid mechanics are notoriously difficult to solve in general.
Analytical solutions can be found only for quite basic cases, such as the Couette
or Poiseuille flows shown in Fig. 1.1. Situations with more complex geometries and
boundary conditions must typically be solved using numerical methods. However,
as we have seen in Chap. 2, the numerical methods used to solve the equations of
fluid mechanics can be difficult both to implement and to parallelise.

The Boltzmann equation in Sect. 1.3 describes the dynamics of a gas on a
mesoscopic scale. From Sect. 1.3.5 we also know that the Boltzmann equation leads

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_3

61

62 3 The Lattice Boltzmann Equation

to the equations of fluid dynamics on the macroscale. Therefore, from a solution of
the Boltzmann equation for a given case we can often find a solution to the NSE for
the same case.1

The problem with this idea is that the Boltzmann equation is even more difficult
to solve analytically than the NSE. Indeed, its fundamental variable, the distribution
function f .x; �; t/, is a function of seven parameters: x, y, z, �x, �y, �z and t. However,
we can try a different approach; if we can solve the Boltzmann equation numerically,
this may also indirectly give us a solution to the NSE.

The numerical scheme for the Boltzmann equation somewhat paradoxi-
cally turns out to be quite simple, both to implement and to parallelise.
The reason is that the force-free Boltzmann equation is a simple hyperbolic
equation which essentially describes the advection of the distribution function
f with the particle velocity �. In addition, the source term˝. f / depends only
on the local value of f and not on its gradients.

Not only is the discretised Boltzmann equation simple to implement, it also has
certain numerical advantages over conventional methods that directly discretise the
equations of fluid mechanics, such as finite difference or finite volume methods.
A major difficulty with these methods is discretising the advection term .u � r/u;
complicated iterative numerical schemes with approximation errors are introduced
to deal with this. Contrarily, the discretised Boltzmann equation takes a very
different approach that results in exact advection.

In this chapter we will first discretise velocity space (cf. Sect. 3.4) and then
space-time (cf. Sect. 3.5). Historically, the LBE was not found along these lines.
It rather evolved out of the lattice gas automata described in Sect. 2.2.2 and many
early articles on the LBM are written from this perspective. The connection between
lattice gases and the LBE is described in detail, e.g., in [1].

Throughout this chapter we use the force-free form of the Boltzmann equation
for the sake of simplicity. The inclusion of external forces in the LB scheme is
covered in Chap. 6.

3.2 The Lattice Boltzmann Equation in a Nutshell

Before diving into the derivation of the LBE, we will first give a short summary. This
serves two purposes: first, it is unnecessary to know all the details of the derivation

1Since the Boltzmann equation is more general, it also has solutions that do not correspond to
Navier-Stokes solutions. The connections between these two equations will be further explored in
Sect. 4.1.

3.2 The Lattice Boltzmann Equation in a Nutshell 63

in order to implement simple codes. Therefore, this section, along with Sect. 3.3,
gives a quick introduction for readers who only wish to know the most relevant
results. Secondly, readers who are interested in understanding the derivations will
benefit from knowing the end results before going through the analysis.

3.2.1 Overview

The basic quantity of the LBM is the discrete-velocity distribution function fi.x; t/,
often called the particle populations. Similar to the distribution function introduced
in Sect. 1.3, it represents the density of particles with velocity ci D .cix; ciy; ciz/ at
position x and time t. Likewise, the mass density � and momentum density �u at
.x; t/ can be found through weighted sums known as moments of fi:

�.x; t/ D
X

i

fi.x; t/; �u.x; t/ D
X

i

ci fi.x; t/: (3.1)

The major difference between fi and the continuous distribution function f is that all
of the argument variables of fi are discrete. ci, to which the subscript i in fi refers,
is one of a small discrete set of velocities fcig. The points x at which fi is defined
are positioned as a square lattice in space, with lattice spacing �x. Additionally, fi
is defined only at certain times t, separated by a time step �t.

The time step �t and lattice spacing �x respectively represent a time resolution
and a space resolution in any set of units. One possible choice is SI units, where
�t is given in seconds and �x in metres, and another possible choice would be
Imperial units. The most common choice in the LB literature, however, is lattice
units, a simple artificial set of units scaled such that �t D 1 and �x D 1. We can
convert quantities between lattice units and physical units as easily as converting
between two sets of physical units, such as SI and Imperial units. Alternatively, we
can ensure that we simulate the same behaviour in two different systems of units
by exploiting the law of similarity explained in Sect. 1.2. That way, we need only
ensure that the relevant dimensionless numbers, such as the Reynolds number, are
the same in both systems. We cover the topics of units and the law of similarity in
more depth in Chap. 7.

The discrete velocities ci require further explanation. Together with a correspond-
ing set of weighting coefficients wi which we will explain shortly, they form velocity
sets fci;wig. Different velocity sets are used for different purposes. These velocity
sets are usually denoted by DdQq, where d is the number of spatial dimensions the
velocity set covers and q is the set’s number of velocities.

The most commonly used velocity sets to solve the Navier-Stokes equation are
D1Q3, D2Q9, D3Q15, D3Q19 and D3Q27. They are shown in Fig. 3.3 and Fig. 3.4
and characterised in Table 3.1. The velocity components fci˛g and weights fwig are
also collected in Tables 3.2, 3.3, 3.4, 3.5 and 3.6.

64 3 The Lattice Boltzmann Equation

Typically, we want to use as few velocities as possible to minimise memory and
computing requirements. However, there is a tradeoff between smaller velocity sets2

(e.g. D3Q15) and higher accuracy (e.g. D3Q27). In 3D, the most commonly used
velocity set is D3Q19.

We can also find a constant cs in each velocity set as in (3.60). In the basic
isothermal LBE, cs determines the relation p D c2s� between pressure p and density
�. Because of this relation, it can be shown that cs represents the isothermal model’s
speed of sound.3 In all the velocity sets mentioned above, this constant is c2s D
.1=3/�x2=�t2.

By discretising the Boltzmann equation in velocity space, physical space, and
time, we find the lattice Boltzmann equation

fi.xC ci�t; t C�t/ D fi.x; t/C˝i.x; t/: (3.2)

This expresses that particles fi.x; t/ move with velocity ci to a neighbouring point
xCci�t at the next time step tC�t as shown in Fig. 3.1.4 At the same time, particles
are affected by a collision operator ˝i. This operator models particle collisions by
redistributing particles among the populations fi at each site.

While there are many different collision operators ˝i available, the simplest
one that can be used for Navier-Stokes simulations is the Bhatnagar-Gross-Krook
(BGK) operator:

˝i. f / D � fi � f eq
i

�t: (3.3)

It relaxes the populations towards an equilibrium f eq
i at a rate determined by the

relaxation time .5

This equilibrium is given by

f eq
i .x; t/ D wi�

1C u � ci
c2s
C .u � ci/2

2c4s
� u � u
2c2s

!

(3.4)

with the weights wi specific to the chosen velocity set. The equilibrium is such that
its moments are the same as those of fi, i.e.

P
i f

eq
i D

P
i fi D � and

P
i ci f

eq
i D

2There is a limit to how small a velocity set can be, though, as it has to obey the requirements
shown in (3.60) to be suitable for Navier-Stokes simulations. The smallest velocity set in 3D is
D3Q13, but it has the disadvantage of being tricky to apply.
3This statement is not proven in this chapter, but rather in Sect. 12.1 on sound waves.
4Usually, the velocity sets fcig are chosen such that any spatial vector ci�t points from one lattice
site to a neighbouring lattice site. This guarantees that the populations fi always reach another
lattice site during a time step �t, rather than being trapped between them.
5Other collision operators are available which use additional relaxation times to achieve increased
accuracy and stability (cf. Chap. 10).

3.2 The Lattice Boltzmann Equation in a Nutshell 65

Streaming

Fig. 3.1 Particles (black) streaming from the central node to its neighbours, from which particles
(grey) are streamed back. To the left we see post-collision distributions f ?i before streaming, and to
the right we see pre-collision distributions fi after streaming

P
i ci fi D �u.6 The equilibrium f eq

i depends on the local quantities density � and
fluid velocity u only. These are calculated from the local values of fi by (3.1), with
the fluid velocity found as u.x; t/ D �u.x; t/=�.x; t/.

The link between the LBE and the NSE can be determined using the Chapman-
Enskog analysis (cf. Sect. 4.1). Through this, we can show that the LBE results in
macroscopic behaviour according to the NSE, with the kinematic shear viscosity
given by the relaxation time as

 D c2s

�

 � �t

2

�

; (3.5)

and the kinematic bulk viscosity given as
B D 2
=3. Additionally, the viscous
stress tensor can be calculated from fi as

�˛ˇ � �
�

1 � �t

2

�X

i

ci˛ciˇf
neq
i ; (3.6)

where the non-equilibrium distribution f neq
i D fi � f eq

i is the deviation of fi from
equilibrium. (However, computing the stress tensor explicitly in this way is usually
not a necessary step when performing simulations.)

3.2.2 The Time Step: Collision and Streaming

In full, the lattice BGK (LBGK) equation (i.e. the fully discretised Boltzmann
equation with the BGK collision operator) reads

fi.xC ci�t; tC�t/ D fi.x; t/ � �t

�
fi.x; t/ � f eq

i .x; t/
�
: (3.7)

6As a consequence of this, mass and momentum are conserved in collisions. This conservation can
be expressed mathematically as

P
i˝i D 0 and

P
i ci˝i D 0.

66 3 The Lattice Boltzmann Equation

We can decompose this equation into two distinct parts that are performed in
succession:

1. The first part is collision (or relaxation),

f ?i .x; t/ D fi.x; t/ � �t

�
fi.x; t/ � f eq

i .x; t/
�
; (3.8)

where f ?i represents the distribution function after collisions and f eq
i is found from

fi through (3.4). Note that it is convenient and efficient to implement collision in
the form

f ?i .x; t/ D fi.x; t/
�

1 � �t

�

C f eq
i .x; t/

�t

: (3.9)

This becomes particularly simple for =�t D 1, where f ?i .x; t/ D f eq
i .x; t/.

2. The second part is streaming (or propagation),

fi.xC ci�t; tC�t/ D f ?i .x; t/; (3.10)

as shown in Fig. 3.1.

Overall, the LBE concept is straightforward. It consists of two parts:
collision and streaming. The collision is simply an algebraic local operation.
First, one calculates the density � and the macroscopic velocity u to find the
equilibrium distributions f eq

i as in (3.4) and the post-collision distribution
f ?i as in (3.9). After collision, we stream the resulting distribution f ?i to
neighbouring nodes as in (3.10). When these two operations are complete,
one time step has elapsed, and the operations are repeated.

3.3 Implementation of the Lattice Boltzmann Method
in a Nutshell

We cover here some details of the implementation of the LBE to achieve an efficient
and working algorithm. After discussing initialisation in Sect. 3.3.1 and the time step
algorithm in Sect. 3.3.2, we provide details about the underlying memory structure
and coding hints in Sect. 3.3.3.

The case covered here is the simplest force-free LB algorithm in the absence
of boundaries. This core LB algorithm can be extended by including boundary
conditions (cf. Chap. 5) and forces (cf. Chap. 6). More in-depth implementation
advice can be found in Chap. 13.

3.3 Implementation of the Lattice Boltzmann Method in a Nutshell 67

Fig. 3.2 An overview of one cycle of the LB algorithm. The dark grey boxes show sub-steps that
are necessary for the evolution of the solution. The light grey box indicates the optional output step.
The pale boxes show steps whose details are given in later chapters (namely, Chap. 5 for boundary
conditions, and Chap. 6 for forces)

3.3.1 Initialisation

The simplest approach to initialising the populations at the start of a simulation is
to set them to f eq

i .x; t D 0/ D f eq
i .�.x; t D 0/;u.x; t D 0// via (3.4). Often, the

values �.x; t D 0/ D 1 and u.x; t D 0/ D 0 are used. More details about different
initialisation schemes are given in Sect. 5.5.

3.3.2 Time Step Algorithm

Overall, the core LBM algorithm consists of a cyclic sequence of substeps, with
each cycle corresponding to one time step. These substeps are also visualised in
Fig. 3.2:

1. Compute the macroscopic moments �.x; t/ and u.x; t/ from fi.x; t/ via (3.1).
2. Obtain the equilibrium distribution f eq

i .x; t/ from (3.4).7

3. If desired, write the macroscopic fields �.x; t/, u.x; t/ and/or � .x; t/ to the hard
disk for visualisation or post-processing. The viscous stress tensor � can be
computed from (3.6).

4. Perform collision (relaxation) as shown in (3.9).
5. Perform streaming (propagation) via (3.10).
6. Increase the time step, setting t to tC�t, and go back to step 1 until the last time

step or convergence has been reached.

7For those who want ready-to-program expressions, the unrolled equilibrium functions for D1Q3
and D2Q9 are shown in (3.64) and (3.65).

68 3 The Lattice Boltzmann Equation

Note that the internal order of these sub-steps is important, as later steps depend
on the results of earlier steps. However, the sub-step that is performed first can be
chosen in different ways. Some people start a simulation with streaming rather than
collision, and this does not make a significant difference in most cases. (Details on
this are provided in Sect. 5.5.)

3.3.3 Notes on Memory Layout and Coding Hints

We provide here some useful coding hints for a successful LBM algorithm
implementation. These considerations are the “common sense” and “common
practice” implementations, and Chap. 13 contains more sophisticated explanations
and advanced coding guidelines.

3.3.3.1 Initialisation

We have to allocate memory for the macroscopic fields � and u and the populations
fi. Usually, taking 2D as an example, the macroscopic fields are allocated in two-
dimensional arrays �ŒNx	ŒNy	, uxŒNx	ŒNy	 and uyŒNx	ŒNy	 and the populations are in
a three-dimensional array f ŒNx	ŒNy	Œq	. Here, Nx and Ny are the number of lattice
nodes in x- and y-directions and q is the number of velocities. Other memory layouts
are discussed in Chap. 13. Depending on the programming language and structure
of the loops that update the simulation domain, it may be necessary to exchange
the order of Nx, Ny, and q in the array dimensions to improve the speed at which
memory is read and written.

3.3.3.2 Streaming

The streaming step has to be implemented in a way that ensures that the streamed
populations do not overwrite memory that still contains unstreamed populations.
In other words, as we sweep through the domain, we cannot overwrite data that
we will need to use later. There are three common ways to efficiently implement
streaming:

• Run through memory in “opposite streaming direction” and use a small tempo-
rary buffer for a single population. For example, for the direction .0; 1/, at each
node we read the population for this direction from below, which is the direction
opposite to the direction that is being streamed, and save it to the current node.
The difficulty with this method is that we need to sweep through memory in a
different direction for each discrete velocity, which is a common source of bugs.
However, some programming languages provide convenient functions to do this,
for example circshift in Matlab and Octave, numpy.roll in Python, and
CSHIFT in Fortran.

3.3 Implementation of the Lattice Boltzmann Method in a Nutshell 69

• Allocate memory for two sets of populations, f old
i and f new

i , in order to store
the populations for two consecutive time steps. During streaming, read data
from f old

i .x/ and write to f new
i .x C ci�t/. Swap f old

i and f new
i after each time

step so that the new populations at the end of each time step become the old
populations for the next step. In this way, one does not have to care about how
to stream populations without incorrectly overwriting data. The resulting code is
significantly easier but requires twice the memory.8

• Avoid streaming altogether, and perform a combined streaming and collision step
in which the necessary populations are read from adjacent nodes when they are
needed to compute macroscopic variables and do the collision calculations at
each node. In this case as in the previous, a second set of populations is used to
store the result of the combined streaming and collision step. This approach is
described in greater detail in Chap. 13.

3.3.3.3 Updating Macroscopic Variables

As seen in (3.1), the local density � and velocity u are (weighted) sums of the
populations fi. It is advisable to unroll these summations, which means writing out
the full expressions rather than using loops. Most velocity components are zero, and
we do not want to waste CPU time by summing zeros. For example, for the D1Q3
velocity set we have:

� D f0 C f1 C f2; ux D f1 � f2
�

: (3.11)

For the D2Q9 velocity set as defined in Table 3.3, we would implement:

� D f0 C f1 C f2 C f3 C f4 C f5 C f6 C f7 C f8;

ux D
�
. f1 C f5 C f8/� . f3 C f6 C f7/

	
=�;

uy D
�
. f2 C f5 C f6/� . f4 C f7 C f8/

	
=�:

(3.12)

3.3.3.4 Equilibrium

As for the macroscopic variable calculations, it is possible to accelerate the
equilibrium computation in (3.4). Instead of computing all q distributions f eq

i within
a single for-loop over i, we should write separate expressions for each of the q
distributions.

8For example, for a moderate simulation domain of 100 � 100 � 100 lattice sites and the D3Q19
velocity set, one copy of the populations fi requires about 145 MiB of memory, where we assume
double precision (8 bytes per variable).

70 3 The Lattice Boltzmann Equation

It is also strongly recommended to replace the inverse powers of the speed of
sound, c�2

s and c�4
s , with new variables. For the standard lattices, the numerical

values happen to be 3 and 9. However, it is better practice to keep distinct variables
for those expressions as this will make it easier to switch to different velocity
sets (with c2s 6D .1=3/�x2=�t2) if necessary. In any case, numerical divisions are
expensive, and we can implement the equilibrium distributions without a single
division.

3.3.3.5 Collision

From (3.9) we see that the terms .1��t=/ and�t= have to be computed for each
time step, lattice site, and velocity direction. By defining two additional constant
variables, e.g. ! D �t= and !0 D 1 � !, which are computed only once, an
expensive numerical division can be removed from the collision operation:

f ?i .x; t/ D !0fi.x; t/C !f eq
i .x; t/: (3.13)

This saves otherwise wasted CPU time. As detailed in Chap. 13, optimisations such
as these can be performed automatically by the compiler if appropriate compilation
options are selected. Running simulation codes compiled with no automatic optimi-
sation is not recommended, and at least a basic level of optimisation should always
be used. When compiled with no optimisation, the code in Chap. 13 took more than
five times longer than when it was compiled with the highest level of optimisation.

3.4 Discretisation in Velocity Space

In Sect. 3.2 we gave an overview of LBM, now it is time to thoroughly derive the
lattice Boltzmann equation from the Boltzmann equation. As a starting point we
will first derive its velocity discretisation. One problem mentioned before is that the
particle distribution function f .x; �; t/ spans the seven-dimensional space defined by
the coordinates x, y, z, �x, �y, �z and t. Solving equations in this high-dimensional
space is usually computationally expensive and requires large-scale computers and
programming efforts.

This apprehension, however, is often not justified. As we found in Sect. 1.3.5, the
moments of the Boltzmann equation give the correct equations for mass, momentum
and energy conservation. Thus, much of the underlying physics is not relevant if we
are only interested in getting the correct macroscopic behaviour.

For example, the moments are nothing else than weighted integrals of f in
velocity space. It is obvious that there is a vast number of different functions whose
integrals are identical to those of f . As we will see shortly, there are approaches
to simplify the continuous Boltzmann equation without sacrificing the macroscopic
(i.e. moment-based) behaviour. The discretisation of velocity space allows us to

3.4 Discretisation in Velocity Space 71

reduce the continuous 3D velocity space to a small number of discrete velocities
without compromising the validity of the macroscopic equations.

The velocity discretisation can be performed using the Mach number expan-
sion [2] or the Hermite series expansion [3]. Both approaches give the same form of
the equilibrium on the Navier-Stokes level. Although the Mach number expansion
approach is simpler, we will follow the Hermite series approach as it provides
a strong mathematical basis. Aside from delivering a variety of suitable discrete
velocity sets, it can also correctly restore equations beyond the Navier-Stokes-
Fourier level, i.e. Burnett-type equations [3].

Despite the rather heavy mathematical background of this section, the main idea
is not difficult:

We will see that a simplified equilibrium f eq and a discrete velocity space
are sufficient to obtain the correct macroscopic conservation laws.

In contrast to the unknown distribution function f , the equilibrium dis-
tribution function f eq is a known function of exponential form. f eq can
consequently be expressed through the exponential weight function (or
generating function) of Hermite polynomials. Additionally, the mass and
momentum moments can be represented as integrals of f eq multiplied with
Hermite polynomials.

These features let us apply two clever techniques in succession. First,
we can express f eq in a reduced form through a truncated sum of Hermite
polynomials, while retaining the correct mass and momentum moment
integrals. Secondly, the moment integrals are then of a form which lets
us evaluate them exactly as a discrete sum over the polynomial integrand
evaluated at specific points �i (abscissae). Thus, f eq becomes discrete rather
than continuous in velocity space. These techniques can also be applied to the
particle distribution f itself.

Here we deal with the discretisation in velocity space. Later, in Sect. 3.5, we will
perform the space-time discretisation.

3.4.1 Non-dimensionalisation

Before we start with the Hermite series expansion, we non-dimensionalise the
governing equations to simplify the subsequent steps. (Non-dimensionalisation is
also useful when implementing computational models and for relating physical laws
in form of mathematical equations to the real world, as discussed in Chap. 7.)

72 3 The Lattice Boltzmann Equation

Let us recall the Boltzmann equation in continuous velocity space:

@f

@t
C �˛ @f

@x˛
C f˛
�

@f

@�˛
D ˝. f / (3.14)

where˝. f / is the collision operator. Its specific form is not important here.9

The Boltzmann equation describes the evolution of the distribution function
f .x; �; t/, i.e. the density of particles with velocity � at position x and time t.
In a force-free, homogeneous and steady situation, the left-hand-side of (3.14)
vanishes, and the solution of the Boltzmann equation becomes the equilibrium
distribution function f eq. As we found in Sect. 1.3.3, f eq can be written in terms
of the macroscopic quantities of density �, fluid velocity u and temperature T as

f eq.�;u;T; �/ D �

.2�RT/d=2
e�.��u/2=.2RT/ (3.15)

where d is the number of spatial dimensions and the gas constant R D kB=m is given
by the Boltzmann constant kB and the particle mass m.

Physical phenomena occur on certain space and time scales. For example, the
wavelengths of tsunamis and electromagnetic waves in the visible spectrum are
of the order of hundreds of kilometers and nanometers, respectively, and their
propagation speeds are a few hundred meters per second and the speed of light. One
can therefore classify these phenomena by identifying their characteristic scales. As
covered in more detail in Sect. 1.2, we can analyse the properties of a fluid in terms
of its characteristic length `, velocity V and density �0. A characteristic time scale
is then given by t0 D `=V .

Using stars to denote non-dimensionalised quantities, we first introduce the non-
dimensional derivatives:

@

@t?
D `

V

@

@t
;

@

@x?
D ` @

@x
;

@

@�?
D V

@

@�
: (3.16)

This leads to the non-dimensional continuous Boltzmann equation:

@f ?

@t?
C �?˛

@f ?

@x?˛
C F?˛
�?
@f ?

@�?˛
D ˝?. f ?/ (3.17)

where f ? D fVd=�0, F? D F`=.�0V2/, �? D �=�0 and ˝? D ˝`V2=�0. The
non-dimensional equilibrium distribution function reads

f eq? D �?

.2��?/d=2
e�.�?�u?/2=.2�?/ (3.18)

with the non-dimensional temperature �? D RT=V2.

9As we will see later in Chap. 10, the collision operator can have different forms all of which locally
conserve the moments (mass, momentum and energy) and, thus, yield the correct macroscopic
behaviour.

3.4 Discretisation in Velocity Space 73

Exercise 3.1 Check that the above expressions are correct by showing that all
quantities with a star are non-dimensional.

We will hereafter omit the symbol ? indicating non-dimensionalisation in order
to keep the notation compact. Note that when the Boltzmann equation is referred to
from now on in this chapter, the non-dimensional version is implied unless otherwise
specified.

We will perform the Hermite series expansion in the force-free case (f D 0) to
reduce the level of complexity. The effect of forces on the Hermite series expansion
will be covered in Sect. 6.3.1.

The non-dimensional, continuous and force-free Boltzmann equation is

@f

@t
C �˛ @f

@x˛
D ˝. f /: (3.19)

The non-dimensional equilibrium distribution reads

f eq.�;u; �; �/ D �

.2��/d=2
e�.��u/2=.2�/: (3.20)

3.4.2 Conservation Laws

We have already discussed conservation laws in Sect. 1.3.4. We saw that the
collision operator conserves certain moments of the distribution function. This
conservation implies that the moments of the equilibrium distribution function f eq

and the particle distribution function f coincide:

Z

f .x; �; t/ d3� D
Z

f eq ��;u; �; �
�

d3� D �.x; t/;
Z

f .x; �; t/� d3� D
Z

f eq
�
�;u; �; �

�
� d3� D �u.x; t/;

Z

f .x; �; t/
j�j2
2

d3� D
Z

f eq
�
�;u; �; �

� j�j2
2

d3� D �E.x; t/;
Z

f .x; �; t/
j� � uj2
2

d3� D
Z

f eq
�
�;u; �; �

� j� � uj2
2

d3� D �e.x; t/:

(3.21)

The dependence on space and time in f eq enters only through �.x; t/, u.x; t/ and
�.x; t/.

74 3 The Lattice Boltzmann Equation

All conserved quantities on the right-hand side of (3.21) can be obtained as
integrals of f or f eq in velocity space. The basic idea of the Hermite series expansion
is to turn the continuous integrals into discrete sums evaluated at certain points in
velocity space (i.e. for specific values of �). We will now discuss the properties of
Hermite polynomials that form the basis of the Hermite series expansion.

3.4.3 Hermite Polynomials

Among the infinite number of different functions and polynomials, one particularly
interesting set of polynomials used for the discretisation of integrals are the
Hermite polynomials (HPs). They naturally appear in the quantum-mechanical
wave functions for harmonic potentials. Before we make use of their integral
discretisation properties, we will first characterise the HPs and give some examples.

The derivation of the LBE (and also working with the NSE) requires some
knowledge of tensor notation. Readers without or with only little experience with
tensors should take some time to learn the basics of tensor calculus [4, 5].

3.4.3.1 Definition and Construction of Hermite Polynomials

1D HPs are polynomials which can be obtained from the weight function (also called
the generating function

!.x/ D 1p
2�

e�x2=2: (3.22)

This weight function !.x/ allows us to construct the 1D HP of n-th order as

H.n/.x/ D .�1/n 1

!.x/

dn

dxn
!.x/ (3.23)

where n 	 0 is an integer. The first six of these polynomials are

H.0/.x/ D 1; H.1/.x/ D x;

H.2/.x/ D x2 � 1; H.3/.x/ D x3 � 3x;
H.4/.x/ D x4 � 6x2 C 3; H.5/.x/ D x5 � 10x3 C 15x:

(3.24)

3.4 Discretisation in Velocity Space 75

Exercise 3.2 Show that (3.22) and (3.23) lead to the HPs in (3.24).

We can extend the HP definition to d spatial dimensions [3, 6]:

H.n/.x/ D .�1/n 1

!.x/
r .n/!.x/; !.x/ D 1

.2�/d=2
e�x2=2: (3.25)

This notation requires several comments. Both H.n/ and r .n/ are tensors of rank
n, i.e. we can represent H.n/ and r .n/ by their dn components H.n/

˛1:::˛n and r.n/˛1:::˛n ,
respectively, where f˛1; : : : ; ˛ng are n indices running from 1 to d each. r.n/˛1:::˛n is a
short notation for n consecutive spatial derivatives:

r.n/˛1:::˛n D
@

@x˛1
� � � @
@x˛n

: (3.26)

Derivatives are symmetric upon permutation of the indices if we assume that
derivatives commute,10 e.g. r.3/xxy D r.3/xyx D r.3/yxx. We are mostly interested in the
cases d D 2 or d D 3 where we write ˛1; : : : ; ˛n 2 fx; yg or fx; y; zg, respectively.

Example 3.1 To make this clearer, we explicitly write down the 2D (d D 2) HPs up
to second order (n D 0; 1; 2). Using

r.2/xx D
@

@x

@

@x
; r.2/xy D

@

@x

@

@y
; r.2/yx D

@

@y

@

@x
; r.2/yy D

@

@y

@

@y
(3.27)

we find

H.0/ D 1 (3.28)

for n D 0,

H.1/
x D �

1

e�.x2Cy2/=2
@xe�.x2Cy2/=2 D x;

H.1/
y D �

1

e�.x2Cy2/=2
@ye�.x2Cy2/=2 D y

(3.29)

for n D 1 and

H.2/
xx D

1

e�.x2Cy2/=2
@x@xe�.x2Cy2/=2 D x2 � 1;

H.2/
xy D H.2/

yx D
1

e�.x2Cy2/=2
@x@ye

�.x2Cy2/=2 D xy;

H.2/
yy D

1

e�.x2Cy2/=2
@y@ye�.x2Cy2/=2 D y2 � 1

(3.30)

for n D 2.

10This is the case for sufficiently smooth functions.

76 3 The Lattice Boltzmann Equation

Exercise 3.3 Construct the eight third-order HPs H.3/
˛1˛2˛3 for d D 2.

3.4.3.2 Orthogonality and Series Expansion

Let us now turn our attention to the mathematical properties of the HPs that we will
require for the Hermite series expansion.

One of the nice features of the Hermite polynomials is their orthogonality. In 1D,
HPs are orthogonal with respect to !.x/:

Z 1

�1
!.x/H.n/.x/H.m/.x/ dx D nŠı.2/nm (3.31)

where ı.2/nm is the usual Kronecker delta.
The orthogonality of the HPs can be generalised to d dimensions:

Z

!.x/H.n/
˛ .x/H.m/

ˇ .x/ ddx D
dY

iD1
niŠ ı

.2/
nmı

.nCm/
˛ˇ : (3.32)

Here, ı.nCm/
˛ˇ is a generalised Kronecker symbol which is 1 only if ˛ D .˛1; : : : ; ˛n/

is a permutation of ˇ D .ˇ1; : : : ; ˇm/ and 0 otherwise. For example, .x; x; z; y/ is
a permutation of .y; x; z; x/ but not of .x; y; x; y/. nx, ny and nz are the numbers of
occurrences of x, y and z in ˛. For instance, for ˛ D .x; x; y/ one gets nx D 2,
ny D 1 and nz D 0. For d D 3 in particular, (3.32) reads

Z

!.x/H.n/
˛ .x/H.m/

ˇ .x/ d3x D nxŠ nyŠ nzŠ ı
.2/
mnı

.nCm/
˛ˇ : (3.33)

Exercise 3.4 Show that (3.32) reduces to (3.31) for d D 1.

Example 3.2 We consider some concrete examples of (3.33). The following inte-
grals vanish because the indices ˛ are no permutations of ˇ, although the order of
both HPs is identical (m D n):

Z

!.x/H.1/
x .x/H.1/

y .x/ d3x D 0;
Z

!.x/H.2/
xy .x/H

.2/
xx .x/ d3x D 0:

(3.34)

The integral

Z

!.x/H.1/
x .x/H

.2/
xy .x/ d3x D 0 (3.35)

3.4 Discretisation in Velocity Space 77

vanishes because the orders are not identical: m ¤ n. The remaining integrals
Z

!.x/H.1/
x .x/H

.1/
x .x/ d3x D 1Š D 1;

Z

!.x/H.3/
xxx.x/H

.3/
xxx.x/ d3x D 3Š D 6;

Z

!.x/H.3/
xxy.x/H

.3/
xyx.x/ d3x D 2Š 1Š D 2

(3.36)

do not vanish since m D n and ˛ is a permutation of ˇ.

The 1D HPs form a complete basis in R, i.e. any sufficiently well-behaved11

continuous function f .x/ 2 R can be represented as a series of HPs:

f .x/ D !.x/
1X

nD0

1

nŠ
a.n/H.n/.x/; a.n/ D

Z

f .x/H.n/.x/ dx: (3.37)

Again, this can be extended to d dimensions:

f .x/ D !.x/
1X

nD0

1

nŠ
a.n/ �H.n/.x/; a.n/ D

Z

f .x/H.n/.x/ ddx: (3.38)

The expansion coefficients a.n/ are also tensors of rank n, and the dot product a.n/ �
H.n/ is defined as the full contraction a.n/˛1:::˛nH

.n/
˛1:::˛n , i.e. the summation over all

possible indices.
We now have the necessary apparatus available to apply the Hermite series

expansion to the equilibrium distribution function. This will eventually lead to the
desired velocity discretisation.

3.4.4 Hermite Series Expansion of the Equilibrium
Distribution

Let us now apply the Hermite series expansion in (3.38) to the equilibrium
distribution function f eq in �-space:

f eq
�
�;u; �; �

� D !.�/
1X

nD0

1

nŠ
a.n/;eq

�
�;u; �

� �H.n/.�/;

a.n/;eq ��;u; �
� D

Z

f eq ��;u; �; �
�

H.n/.�/ dd�:

(3.39)

11The goal of this book is to give practical aspects of the derivation and usage of the LBM rather
than a rigorous mathematical theory for some assumptions used. However, for interested readers
we recommend [7] for a rigorous proof.

78 3 The Lattice Boltzmann Equation

The equilibrium distribution function f eq.�/ has the same form as the
weight function !.�/ of the HPs in (3.25):

f eq.�;u; �; �/ D �

.2��/d=2
e�.��u/2=.2�/ D �

�d=2
!

� � up
�

!

: (3.40)

We can use this crucial relation to calculate the series coefficients:

a.n/;eq D �

�d=2

Z

!

� � up
�

!

H.n/.�/ dd�: (3.41)

The substitution � D .� � u/=
p
� yields

a.n/;eq D �
Z

!.�/H.n/
�p
��C u

�
dd�: (3.42)

These integrals can be directly computed, for example with the help of mathematical
software packages:

a.0/;eq D �;
a.1/;eq
˛ D �u˛;

a.2/;eq
˛ˇ D � �u˛uˇ C .� � 1/ı˛ˇ

�
;

a.3/;eq
˛ˇ� D �

h
u˛uˇu� C .� � 1/

�
ı˛ˇu� C ıˇ�u˛ C ı�˛uˇ

�i
:

(3.43)

A close look at (3.43) reveals that the coefficients in the Hermite series expansion
of the equilibrium distribution function f eq are related to the conserved moments;
the first three coefficients are connected to the density, momentum and energy. At
the same time, it turns out that the conserved quantities can also be represented by
the Hermite series expansion coefficients of the d-dimensional particle distribution
function f :

a.0/;eq D
Z

f eq dd� D � D
Z

f dd� D a.0/;

a.1/;eq
˛ D

Z

f eq�˛ dd� D �u˛ D
Z

f �˛ dd� D a.1/˛ ;

a.2/;eq
˛˛ C �d

2
D
Z

f eq j�j2
2

dd� D �E D
Z

f
j�j2
2

dd� D a.2/˛˛ C �d
2

:

(3.44)

3.4 Discretisation in Velocity Space 79

This is one of the reasons why the Hermite series expansion is so useful for the
Boltzmann equation; the series coefficients are directly connected to the conserved
moments or even coincide with them. Only the first three expansion coefficients
(n D 0; 1; 2) are required to fulfill the conservation laws and represent the macro-
scopic equations, although some authors have indicated that the inclusion of higher
expansion terms can improve the numerical stability and accuracy (cf. Chap. 10)
[8–11].

To reproduce the relevant physics, i.e. to satisfy the conservation laws on the
macroscopic level, one does not need to consider the full mesoscopic equi-
librium and particle distribution functions. Instead, the first three terms
of the Hermite series expansion are sufficient to recover the macroscopic
laws for hydrodynamics. This allows for a significant reduction of numerical
effort.

Limiting the expansion to the N-th order, the equilibrium and particle distribution
functions can be represented as

f eq.�/ � !.�/
NX

nD0

1

nŠ
a.n/;eq �H.n/.�/;

f .�/ � !.�/
NX

nD0

1

nŠ
a.n/ �H.n/.�/

(3.45)

where we have only denoted the �-dependence.
We can now explicitly write down the equilibrium distribution function approxi-

mation up to the third moment, i.e. up to the second order in � (N D 2):

f eq.�;u; �; �/ � !.�/�
h
1C �˛u˛ C

�
u˛uˇ C .� � 1/ı˛ˇ

� �
�˛�ˇ � ı˛ˇ

�i

D !.�/�Q.u; �; �/ (3.46)

where Q.u; �; �/ is a multi-dimensional polynomial in �.

Exercise 3.5 Show the validity of (3.46).

At this point we should mention the Mach number expansion. If one expands the
equilibrium distribution function in (3.20) up to second order in u, then one will also
obtain (3.46). However, at the next order (corresponding to energy conservation), the
Hermite series and the Mach number expansions give different results. Due to the
orthogonality of HPs, the Hermite series expansion does not mix the lower-order
moments related to the NSE with the higher-order moments related to the energy
equation and beyond. This is not the case for the Mach number expansion [12].
Thus, the Hermite series expansion is generally preferable.

80 3 The Lattice Boltzmann Equation

Moreover, we will now see that the Hermite series expansion readily provides
discrete velocity sets. This means we can finally discretise velocity space by
replacing the continuous � by a set of suitable discrete velocities f�ig.

3.4.5 Discretisation of the Equilibrium
Distribution Function

We have seen that the Hermite series expansion is a suitable expansion method
since the equilibrium distribution function f eq.�/ has the same form as the Hermite
weight function !.�/. But there is also another compelling reason to use Hermite
polynomials: as mentioned earlier, it is possible to calculate integrals of certain
functions by taking integral function values at a small number of discrete points, the
so-called abscissae. We will only cover the basics of this technique here, leaving the
details for Appendix A.4.

Let us take a 1D polynomial P.N/.x/ of order N as example. The integralR
!.x/P.N/.x/ dx can be calculated exactly by considering integral function values

in certain points xi. This rule is called the Gauss-Hermite quadrature rule:

Z C1

�1
!.x/P.N/.x/ dx D

nX

iD1
wiP

.N/.xi/: (3.47)

Here, the n values xi are the roots of the HP H.n/.x/, i.e. H.n/.xi/ D 0, and N �
2n � 1. This means, to exactly integrate a polynomial of order N, one requires at
least n D .N C 1/=2 abscissae xi and associated weights wi. An expression for the
wi is given in (A.32). Higher-order polynomials obviously require a larger number
of abscissae and therefore higher-order HPs.

The generalisation to d dimensions reads

Z

!.x/P.N/.x/ ddx D
nX

iD1
wiP

.N/.xi/ (3.48)

where each of the components of the multidimensional point xi (i.e. xi˛ with
˛ D 1; : : : ; d) is a root of the one-dimensional Hermite polynomial: H.n/.xi˛/ D 0

(cf. Appendix A.4 for more details).
We can use the Gauss-Hermite quadrature rule to calculate moments and

coefficients of the Hermite series expansion. Let us take a closer look at the
definition of the coefficients for the equilibrium function in (3.42):

a.n/;eq D �
Z

!.�/H.n/
�p

��C u
�

dd� D �
Z

!.�/P.n/.�/ dd�: (3.49)

Since the tensor-valued HP H.n/.�/ is clearly a polynomial of order n, we can
write it as P.n/.�/. Obviously, we can apply the Gauss-Hermite quadrature rule

3.4 Discretisation in Velocity Space 81

to the integral on the right-hand side. It takes an additional effort to calculate the
polynomial P.n/.�/ from the HP H.n/.

p
��Cu/. Instead, we follow a simpler route

and use the truncated series expansion of the equilibrium distribution function f eq

that yields the same macroscopic moments.
From (3.39) and (3.46) we first obtain

a.n/;eq D
Z

f eq.�/H.n/.�/ dd� D �
Z

!.�/Q.�/H.n/.�/ dd� (3.50)

where we have again only denoted the �-dependence. Now, we take the composed
polynomial R.�/ D Q.�/H.n/.�/ and apply the Gauss-Hermite quadrature rule:

a.n/;eq D �
Z

!.�/R.�/ dd� D �
nX

iD1
wiR.�i/ D �

nX

iD1
wiQ.� i/H

.n/.�i/: (3.51)

This is the discretised Hermite series expansion with n being the required number
of abscissae.

Let us turn our attention to the abscissae � i now. To fulfill all relevant conserva-
tion laws, we have to ensure that the polynomial with the highest occurring degree
can be correctly integrated. This highest order polynomial in (3.44) is related to
the energy and is connected to the second-order HP H.2/.�/. If we further assume
that the polynomial Q.�/ is of second order as in (3.46), the polynomial R.�/ D
Q.�/H.2/.�/ is of fourth order (N D 4). We know that we need n 	 .N C 1/=2
and therefore at least n D 3 to calculate the moments exactly. The abscissae are
therefore given by the roots of H.3/.�i˛/. The actual choice of the abscissae and
details of the velocity set construction are presented in Appendix A.4. We will also
discuss the LB velocity sets in Sect. 3.4.7.

We have now successfully passed the “heavy” mathematical part of this section.
There are only a few minor things left before we have completed the velocity
discretisation.

Let us define the n quantities f eq
i .x; t/ D wi�.x; t/Q.u.x; t/; �.x; t/; � i/ as the

equilibrium distribution function related to the velocity (direction) �i. Instead of
having a continuous function f eq.�/, we only consider a finite set of quantities f eq

i D
f eq.�i/ (cf. (3.46)):

f eq
i D wi�

1C �i˛u˛ C 1

2

�
u˛uˇ C .� � 1/ı˛ˇ

� �
�i˛�iˇ � ı˛ˇ

�
�

: (3.52)

The discrete set ff eq.� i/g satisfies the same conservation laws for the first
three moments (density, momentum, energy) as the continuous equilibrium
function f eq.�/.

We have not yet discretised space and time. This means that f eq
i .x; t/ is still

defined at every point in space and time, with the dependence on x and t entering

82 3 The Lattice Boltzmann Equation

through the continuous moments �.x; t/, u.x; t/ and �.x; t/. In Sect. 3.5 we will
discuss the discretisation in space and time that is necessary to obtain the final form
of the LBE suitable for computer simulations.

We can further simplify (3.52). The first simplification is the isothermal assump-
tion. From the Boltzmann equation we can obtain a whole hierarchy of equations
including the continuity equation, the Navier-Stokes equation and the energy
equation [13, 14]. In this book, the main focus is on hydrodynamic applications with
the explicit use of energy conservation. The energy equation can alternatively be
simulated as a separate equation as discussed in Chap. 8. The isothermal assumption
implies � D 1; it removes the temperature from the equilibrium distribution in
(3.52).

Many abscissae �i reported in Appendix A.4 contain unhandy factors of
p
3. A

natural second simplification is to introduce a new particle velocity:

ci D �ip
3
: (3.53)

This way, we obtain velocity sets with integer abscissae as further discussed in
Sect. 3.4.7.

The final form of the discrete equilibrium distribution reads

f eq
i D wi�

1C ci˛u˛
c2s
C u˛uˇ

�
ci˛ciˇ � c2sı˛ˇ

�

2c4s

!

(3.54)

where cs is the speed of sound. It will later appear in the equation of state as
proportionality factor between pressure and density, cf. Sect. 4.1. Why cs is
called the speed of sound is shown later in Chap. 12.

Equation (3.54) is one of the most important equations in this book. It represents
the discretised equilibrium distribution used in most LB simulations. The specific
velocity sets, characterised by the numerical values of the abscissae fcig, weights
fwig and the speed of sound cs are discussed in Sect. 3.4.7.

3.4.6 Discretisation of the Particle Distribution Function

We have already shown the Hermite series expansion of the distribution function
f .�/ in (3.45):

f .x; �; t/ � !.�/
NX

nD0

1

nŠ
a.n/.x; t/ �H.n/.�/: (3.55)

3.4 Discretisation in Velocity Space 83

The first two coefficients of the expansion are the same as for the equilibrium
distribution which is a consequence of the conservation laws.12 The discrete
velocities fcig are chosen such that those moments are conserved. Therefore, if we
discretise the distribution function f in the same way as f eq, it is guaranteed that the
conservation laws of (3.44) are still satisfied.

Without repeating calculations that we have already performed for the equilib-
rium distribution function, one can discretise f as

fi.x; t/ D wi

!.ci/
f .x; ci; t/ (3.56)

where !.ci/ is added to satisfy the Gauss-Hermite rule:

a.n/.x; t/ D
Z

f .x; c; t/H.n/.c/ ddc D
Z
!.c/
!.c/

f .x; c; t/H.n/.c/ ddc

�
qX

iD1

wi

!.ci/
f .x; ci; t/H.n/.ci/ D

qX

iD1
fi.x; t/H.n/.ci/:

(3.57)

We now have q functions fi.x; t/. Similarly to f eq
i .x; t/, each is related to one discrete

velocity ci, but all are still continuous in space and time.

We can finally write down the discrete-velocity Boltzmann equation:

@tfi C ci˛@˛fi D ˝ . fi/ ; i D 1; : : : ; q: (3.58)

The macroscopic moments (density and momentum) are computed from the
finite sums

� D
X

i

fi D
X

i

f eq
i ;

�u D
X

i

fici D
X

i

f eq
i ci;

(3.59)

rather than from integrals of f .�/ or f eq.�/ in velocity space.

To finalise the velocity discretisation, we still have to discuss the available
velocity sets and their properties.

12In the isothermal case, only density and momentum are considered.

84 3 The Lattice Boltzmann Equation

3.4.7 Velocity Sets

We have seen how velocity space can be discretised. This naturally leads to the
question which discrete velocity set fcig to choose. On the one hand, an appropriate
set has to be sufficiently well-resolved to allow for consistent solutions of the
Navier-Stokes or even Navier-Stokes-Fourier equations. On the other hand, the
numerical cost of the algorithm scales with the number of velocities. It is therefore
an important task to find a set with a minimum number of velocities, yet the ability
to capture the desired physics. For a detailed discussion of the history and properties
of velocity sets we refer to Chaps. 3 and 5 in the book by Wolf-Gladrow [1].

3.4.7.1 General Comments and Definitions

We name each velocity set by its number d of spatial dimensions and the number
q of discrete velocities using the notation DdQq [15]. Two famous examples are
D2Q9 (9 discrete velocities in 2D) and D3Q19 (19 discrete velocities in 3D) which
we will shortly discuss more thoroughly. A velocity set for the LB algorithm is fully
defined by two sets of quantities: the velocities fcig and the corresponding weights
fwig. Another important quantity that can be derived from these two sets is the speed
of sound cs.

The numbering of the velocities in a set is not consistently handled
throughout the literature. For instance, some authors choose the index i to
run from 0 to q� 1, others from 1 to q. Neither are there any fixed rules about
how the different velocities are ordered. This means that one has to be careful
when working from different articles, as they may use different orders. It is
always recommended to sketch the chosen velocity set and clearly indicate
the applied numbering scheme in a coordinate system. For this reason, the
most common LB velocity sets are illustrated and their velocity vectors are
numbered below.

Most velocity sets have one rest velocity with zero magnitude that represents
stationary particles. This velocity is often assigned the index i D 0: c0 D 0. In this
book, we will count from 0 to q � 1 if the set has a rest velocity (with 0 indicating
the rest velocity) and from 1 to q if there is no rest velocity. For example, D3Q19
has one rest velocity (i D 0) and 18 non-rest velocities (i D 1; : : : ; 18).

3.4.7.2 Construction and Requirements of Velocity Sets

There are various approaches to construct LB velocity sets. The first is based on
the Gauss-Hermite quadrature rule described above. This leads to the D1Q3, D2Q7,

3.4 Discretisation in Velocity Space 85

D2Q9, D3Q15, D3Q19 and D3Q27 velocity sets (cf. Appendix A.4 and [2, 3]).
Additionally, D2Q9 and D3Q27 can also be constructed as tensor products of D1Q3.
Another possibility is to construct a .d � 1/-dimensional velocity set via lattice
projection from a known velocity set in d dimensions. We will briefly discuss this
later on.

Yet another possibility is to find general conditions a velocity set has to obey.
Apart from the conservation of mass and momentum, a paramount requirement is
the rotational isotropy of the lattice [16]. It depends on the underlying physics what a
“sufficiently isotropic lattice” means. In most cases, LB is used to solve the NSE for
which one requires all moments of the weight wi up to the fifth order to be isotropic
(recall fifth order integration via Hermite polynomials). This leads to the following
conditions [17–19]:

X

i

wi D 1;
X

i

wici˛ D 0;
X

i

wici˛ciˇ D c2sı˛ˇ;

X

i

wici˛ciˇci� D 0;
X

i

wici˛ciˇci�ci� D c4s .ı˛ˇı�� C ı˛�ıˇ� C ı˛�ıˇ� /;
X

i

wici˛ciˇci�ci�ci
 D 0:

(3.60)

Additionally, all weights wi have to be non-negative. Any velocity set which fails to
satisfy these conditions is not suitable for LB as a Navier-Stokes solver.

As a general simple approach, one may specify a new velocity set fcig and use
(3.60) as conditional equation for the unknown weightswi and the speed of sound cs.
On the one hand, if only few velocities are chosen, not all conditions may be satisfied
at the same time. For example, the D2Q5 lattice can only satisfy the first four
equations in (3.60). On the other hand, the equation system may be overdetermined
if more velocities are introduced. For example, for D3Q27 the weights wi and the
sound speed cs are not uniquely determined and can vary [20]. These free parameters
can be used to optimise certain properties, e.g. stability.13

LB may also be used to simulate advection-diffusion problems for which a lower
level of isotropy is sufficient. In this case, only the first four equations in (3.60)

13Another example of the higher versatility of the D3Q27 velocity set is its ability to reproduce the
Navier-Stokes dynamics with higher-order Galilean invariance, through an off-lattice implementa-
tion [21].

86 3 The Lattice Boltzmann Equation

have to be fulfilled. If one wants to solve the Navier-Stokes-Fourier system of
equations, which includes the energy equation, larger velocity sets are required since
higher moments have to be resolved. This leads to so-called extended lattices. The
discussion of the advection-diffusion equation, energy transfer and their commonly
used lattices is put off until Chap. 8. In the following, we focus on the lattices used
to simulate the NSE.

We will see in Sect. 3.5 that the LBE is spatially and temporary discretised on
a lattice with lattice constant �x and time step �t. It is extremely convenient to
use velocity sets where all velocities (in this context also called lattice vectors) ci
directly connect lattice sites, rather than ending up somewhere between them. We
will therefore only consider velocity sets for which all components of the vectors ci
are integer multiples of �x=�t. Usually, �x and �t are chosen as being 1 in simu-
lations as discussed in Chap. 7. Thus, the velocity vector components ci˛ are usually
integers. Still, it is possible to construct velocity sets without this restriction [3, 21].

3.4.7.3 Common Velocity Sets for Hydrodynamics

Figure 3.3 shows the common D1Q3 and D2Q9 sets for 1D and 2D simulations of
hydrodynamics. The most popular sets for 3D are D3Q15 and D3Q19 as shown in
Fig. 3.4, along with the less frequently used D3Q27 velocity set. The velocities and
weights of those velocity sets are summarised in Table 3.1, and given explicitly in
Tables 3.2–3.6.

Exercise 3.6 Show that all velocity sets in Table 3.1 obey the conditions in (3.60).

It is important to consider which of the three 3D schemes (D3Q15, D3Q19
or D3Q27) is most suitable in a given situation. First of all, D3Q15 is more
computationally efficient than D3Q19 which in turn is more efficient than D3Q27.
All of these lattices allow to recover hydrodynamics to leading order. However, the
functional form of the truncation errors is different. Indeed, numerical errors are
typically less significant and the stability is usually better for larger velocity sets.

12 x

D1Q3

1

2

3

4

56

7 8

y

x

D2Q9

Fig. 3.3 D1Q3 and D2Q9 velocity sets. The square denoted by solid lines has an edge length 2�x.
Velocities with length jcij D 1 and

p
2 are shown in black and grey, respectively. Rest velocity

vectors c0 D 0 are not shown. See Tables 3.1, 3.2 and 3.3 for more details

3.4 Discretisation in Velocity Space 87

12

3

4

5

6 7

8

9

10 11

12

13

14

x

y

z

D3Q15

12

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

x

y

z

D3Q19

12

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

22 23

24

25

26

x

y

z

D3Q27

Fig. 3.4 D3Q15, D3Q19 and D3Q27 velocity sets. The cube denoted by solid lines has edge length
2�x. Velocities with length jcij D 1,

p
2,

p
3 are shown in black, darker grey and lighter grey,

respectively. Rest velocity vectors c0 D 0 are not shown. Note that D3Q15 has no
p
2-velocities

and D3Q19 has no
p
3-velocities. See Tables 3.1, 3.4, 3.5 and 3.6 for more details

D3Q27 was disregarded for a long time as it was not considered superior to D3Q19
and requires 40% more memory and computing power. Recently, it was shown [18]
that some truncation terms, the (non-linear) momentum advection corrections, are
not rotationally invariant in D3Q15 and D3Q19, in contrast to D3Q27. This lack of
isotropy may lead to problems whenever non-linear phenomena play an important
role, e.g. in the simulation of high Reynolds number flows [23–25]. Therefore,
D3Q27 is probably the best choice for turbulence modelling, but D3Q19 is usually
a good compromise for laminar flows.

As a sidenote, there also exists a D3Q13 velocity set which only works within the
framework of multi-relaxation-time LB (cf. Chap. 10) [26]. D3Q13 is an example of
a lattice exhibiting the checkerboard instability [1] previously covered in Sect. 2.1.1.
D3Q13 is the minimal velocity set to simulate the NSE in 3D and can be very
efficiently implemented on GPUs [27].

We now turn our attention to the projection of velocity sets to lower-dimensional
spaces.

88 3 The Lattice Boltzmann Equation

Table 3.1 Properties of the most popular velocity sets suitable for Navier-Stokes simulation
(compiled from [15, 22]). The speed of sound for all of these velocity sets is cs D 1=

p
3. These

velocity sets are also given explicitly in Tables 3.2–3.6

Velocities Length Weight

Notation ci Number jcij wi

D1Q3 .0/ 1 0 2=3

.˙1/ 2 1 1=6

D2Q9 .0; 0/ 1 0 4=9

.˙1; 0/, .0;˙1/ 4 1 1=9

.˙1;˙1/ 4
p
2 1=36

D3Q15 .0; 0; 0/ 1 0 2=9

.˙1; 0; 0/, .0;˙1; 0/, .0; 0;˙1/ 6 1 1=9

.˙1;˙1;˙1/ 8
p
3 1=72

D3Q19 .0; 0; 0/ 1 0 1=3

.˙1; 0; 0/, .0;˙1; 0/, .0; 0;˙1/ 6 1 1=18

.˙1;˙1; 0/, .˙1; 0;˙1/, .0;˙1;˙1/ 12
p
2 1=36

D3Q27 .0; 0; 0/ 1 0 8=27

.˙1; 0; 0/, .0;˙1; 0/, .0; 0;˙1/ 6 1 2=27

.˙1;˙1; 0/, .˙1; 0;˙1/, .0;˙1;˙1/ 12
p
2 1=54

.˙1;˙1;˙1/ 8
p
3 1=216

Table 3.2 The D1Q3
velocity set in explicit form

i 0 1 2

wi
2
3

1
6

1
6

cix 0 C1 �1

Table 3.3 The D2Q9
velocity set in explicit form

i 0 1 2 3 4 5 6 7 8

wi
4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

cix 0 C1 0 �1 0 C1 �1 �1 C1
ciy 0 0 C1 0 �1 C1 C1 �1 �1

Table 3.4 The D3Q15 velocity set in explicit form

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

wi
2
9

1
9

1
9

1
9

1
9

1
9

1
9

1
72

1
72

1
72

1
72

1
72

1
72

1
72

1
72

cix 0 C1 �1 0 0 0 0 C1 �1 C1 �1 C1 �1 �1 C1
ciy 0 0 0 C1 �1 0 0 C1 �1 C1 �1 �1 C1 C1 �1
ciz 0 0 0 0 0 C1 �1 C1 �1 �1 C1 C1 �1 C1 �1

3.4 Discretisation in Velocity Space 89

Table 3.5 The D3Q19 velocity set in explicit form

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

wi
1
3

1
18

1
18

1
18

1
18

1
18

1
18

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

cix 0 C1 �1 0 0 0 0 C1 �1 C1 �1 0 0 C1 �1 C1 �1 0 0

ciy 0 0 0 C1 �1 0 0 C1 �1 0 0 C1 �1 �1 C1 0 0 C1 �1
ciz 0 0 0 0 0 C1 �1 0 0 C1 �1 C1 �1 0 0 �1 C1 �1 C1

3.4.7.4 Velocity Set Relations

Historically, the 2D lattice gas models described in Sect. 2.2.2 used a hexagonal
D2Q6 velocity set [1]. The initial paradigm was that all velocities ci should have the
same magnitude and weight (i.e. single-speed velocity sets with wi D 1=q for all i)
and therefore point at the surface of a single sphere in velocity space. This ruled out
the existence of rest velocities.

While the D1Q2 and D2Q6 single-speed sets were fairly simple to determine,
it was surprisingly difficult to find such a single-speed velocity set in 3D [1]. The
solution to this problem was to construct a D4Q24 single-speed velocity set in four
dimensions, with 24 velocities consisting of all the various spatial permutations of
.˙1;˙1; 0; 0/. This 4D velocity set was then projected down to 3D:

0

B
B
B
@

˙1
0

0

˙1

1

C
C
C
A
!

0

B
@

˙1
0

0

1

C
A ;

0

B
B
B
@

0

˙1
0

˙1

1

C
C
C
A
!

0

B
@

0

˙1
0

1

C
A ;

0

B
B
B
@

0

0

˙1
˙1

1

C
C
C
A
!

0

B
@

0

0

˙1

1

C
A ;

0

B
B
B
@

˙1
˙1
0

0

1

C
C
C
A
!

0

B
@

˙1
˙1
0

1

C
A ;

0

B
B
B
@

˙1
0

˙1
0

1

C
C
C
A
!

0

B
@

˙1
0

˙1

1

C
A ;

0

B
B
B
@

0

˙1
˙1
0

1

C
C
C
A
!

0

B
@

0

˙1
˙1

1

C
A :

(3.61)

Thus, the single-speed D4Q24 velocity set leads to a multi-speed D3Q18 velocity
set, with velocities of length 1 and

p
2.

Note an important difference between the upper and the lower rows of (3.61).
In the lower row, the projections are one-to-one: each resulting 3D velocity vector
corresponds to only one 4D velocity vector. In the upper row, the projections are
degenerate: each 3D vector here corresponds to two different 4D velocity vectors.
This implies that the resulting multi-speed 3D velocity set has nonequal weights wi

such that the shorter velocity vectors in the upper row have twice the weight of the
longer vectors in the lower row. This is in contrast to the single-speed D2Q6 and
D4Q24 velocity sets, where all the velocities are weighted equally.

90 3 The Lattice Boltzmann Equation

T
ab

le
3.
6

T
he

D
3Q

27
ve

lo
ci

ty
se

ti
n

ex
pl

ic
it

fo
rm

i
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

w
i

8 2
7

2 2
7

2 2
7

2 2
7

2 2
7

2 2
7

2 2
7

1 5
4

1 5
4

1 5
4

1 5
4

1 5
4

1 5
4

1 5
4

1 5
4

1 5
4

1 5
4

1 5
4

1 5
4

1
2
1
6

1
2
1
6

1
2
1
6

1
2
1
6

1
2
1
6

1
2
1
6

1
2
1
6

1
2
1
6

c i
x
0

C1
�1

0
0

0
0

C1
�1

C1
�1

0
0

C1
�1

C1
�1

0
0

C1
�1

C1
�1

C1
�1

�1
C1

c i
y
0

0
0

C1
�1

0
0

C1
�1

0
0

C1
�1

�1
C1

0
0

C1
�1

C1
�1

C1
�1

�1
C1

C1
�1

c i
z
0

0
0

0
0

C1
�1

0
0

C1
�1

C1
�1

0
0

�1
C1

�1
C1

C1
�1

�1
C1

C1
�1

C1
�1

3.4 Discretisation in Velocity Space 91

In fact, all the velocity sets listed in Table 3.1 are related through such
projections: D2Q9 is the two-dimensional projection of the D3Q15, D3Q19, and
D3Q27 velocity sets, while D1Q3 is the one-dimensional projection of all of these.

Example 3.3 D2Q9 can be obtained from D3Q19 by projecting the latter onto the
x-y-plane:

0

B
@

0

0

0

1

C
A ;

0

B
@

0

0

˙1

1

C
A!

0

0

!

;

0

B
@

˙1
0

0

1

C
A ;

0

B
@

˙1
0

˙1

1

C
A!

˙1
0

!

;

0

B
@

0

˙1
0

1

C
A ;

0

B
@

0

˙1
˙1

1

C
A!

0

˙1

!

;

0

B
@

˙1
˙1
0

1

C
A!

˙1
˙1

!

:

(3.62)

The D2Q9 weights can also be obtained from this projection. For instance, the above
shows us that the D2Q9 zero-velocity vector c0 is a projection of three different
D3Q19 velocity vectors, whose total weight 1=3C1=18C1=18D 4=9 is the D2Q9
rest velocity weight. It is similarly easy to obtain the other D2Q9 weights from the
D3Q19 weights.

Example 3.4 Similarly, D1Q3 can be obtained by projecting D2Q9 onto the x axis:

0

0

!

;

0

˙1

!

! .0/;

˙1
0

!

;

˙1
˙1

!

! .˙1/: (3.63)

The D1Q3 rest velocity then obtains the weight 4=9C 1=9C 1=9 D 2=3, while the
non-rest velocities each obtain weights of 1=9C 1=36C 1=36 D 1=6.

Exercise 3.7 Show that the D3Q27 velocity set becomes the D2Q9 and the D1Q3
velocity sets when projected down to two and one dimensions, respectively.

We have already mentioned that D3Q27 is a 3D generalisation of D1Q3. In
addition, D3Q15 and D3Q19 can be obtained from D3Q27 via so-called pruning
[3, 28], where some of the particle velocities are discarded in order to create a
smaller velocity set. In turn, D3Q27 can be understood as a superposition of D3Q15
weighted by 1=3 and D3Q19 weighted by 2=3, as can be seen from Table 3.1. The
relations between these velocity sets are shown in Fig. 3.5.

The fact that lower-dimensional velocity sets may be projections of higher-
dimensional ones means that simulations can be simplified in cases where the
simulated problem is invariant along one or more axes. For instance, a plane sound
wave propagating along the x-axis is invariant in the y- and z-directions. The
macroscopic results of such a simulation will be the same whether it is simulated
with the D1Q3 velocity set or with the two- and three-dimensional velocity sets
discussed above combined with periodic y- and z-boundary conditions [19].

92 3 The Lattice Boltzmann Equation

1D 2D 3D

D1Q3 D2Q9 D3Q27

D3Q15

D3Q19

T T

p p

p

p

P

P

S

Fig. 3.5 Mutual relations of common LB velocity sets. Lower-dimensional velocity sets can
be obtained from higher-dimensional ones via projection (p). D2Q9 and D3Q27 are tensor (T)
products of D1Q3. D3Q15 and D3Q19 can be obtained from D3Q27 via pruning (P). D3Q27 can
in turn be considered a superposition (S) of D3Q15 and D3Q19

3.4.7.5 Equilibrium Distributions

The discrete equilibrium distribution function in (3.54) is sufficient to
recover Navier-Stokes behaviour and is valid for any of the above-mentioned
velocity sets (D1Q3, D2Q9, D3Q15, D3Q19 and D3Q27) for which the speed
of sound is cs D 1=

p
3. Different equilibria may be used for other purposes;

we will come back to this in Sect. 4.3 and Chap. 8.

In order to implement (3.54) numerically, we can write a for- or do-loop (which is
less susceptible to bugs, but usually slower). We can also unroll the q discretised
equilibrium distributions (which is normally more computationally efficient but
more cumbersome to implement). For new LB users’ convenience, we present, in
the examples that follow, the explicit equilibrium distribution functions for D1Q3
and D2Q9 lattices that can be directly used in simulations.

Example 3.5 For the D1Q3 velocity set in Table 3.2, the equilibrium distribution
reads (with u D .u/ and c2s D 1=3):

f eq
0 D

�

3

�
2 � 3u2

�
;

f eq
1 D

�

6

1C 3
�
uC u2

��

; f eq
2 D

�

6

1 � 3
�
u � u2

��

:

(3.64)

3.4 Discretisation in Velocity Space 93

Example 3.6 The D2Q9 equilibrium distribution for the chosen velocity vectors in
Table 3.3 is given by (using u D .ux; uy/>, u2 D u2x C u2y and c2s D 1=3):

f eq
0 D

2�

9

�
2 � 3u2

�
;

f eq
1 D

�

18

�
2C 6ux C 9u2x � 3u2

�
; f eq

5 D
�

36

h
1C 3.ux C uy/C 9uxuy C 3u2

i
;

f eq
2 D

�

18

�
2C 6uy C 9u2y � 3u2

�
; f eq

6 D
�

36

h
1 � 3.ux � uy/� 9uxuy C 3u2

i
;

f eq
3 D

�

18

�
2 � 6ux C 9u2x � 3u2

�
; f eq

7 D
�

36

h
1 � 3.ux C uy/C 9uxuy C 3u2

i
;

f eq
4 D

�

18

�
2 � 6uy C 9u2y � 3u2

�
; f eq

8 D
�

36

h
1C 3.ux � uy/� 9uxuy C 3u2

i
:

(3.65)

Exercise 3.8 Write down the equilibria for the 3D lattices.

3.4.7.6 Macroscopic Moments

We have already stated in (3.59) how to compute the moments in discretised velocity
space. Using the general equilibrium distribution in (3.54) together with the isotropy
conditions in (3.60), which hold for all the velocity sets we have discussed here
(i.e. D1Q3, D2Q9, D3Q15, D3Q19 and D3Q27), we can find the equilibrium
moments explicitly:

˘ eq D
X

i

f eq
i D �;

˘ eq
˛ D

X

i

f eq
i ci˛ D �u˛;

˘
eq
˛ˇ D

X

i

f eq
i ci˛ciˇ D �c2sı˛ˇ C �u˛uˇ;

˘
eq
˛ˇ� D

X

i

f eq
i ci˛ciˇci� D �c2s

�
u˛ıˇ� C uˇı˛� C u� ı˛ˇ

�
:

(3.66)

Exercise 3.9 Show the validity of these relations by explicitly calculating these
moments of (3.54) using the conditions in (3.60).

One can already see some similarities with the NSE. For example, the NSE
contains a term @ˇ.pı˛ˇC�u˛uˇ/. Comparing this with the second-order moment of
the discrete-velocity Boltzmann equation, we can guess (and we will prove it later
in Sect. 4.1) that the equation of state for the LBE is p D c2s�.

94 3 The Lattice Boltzmann Equation

3.5 Discretisation in Space and Time

So far we have only performed the discretisation of velocity space. This section is
dedicated to the final step towards the LBE: the discretisation of space and time.

As we discussed in Sect. 2.1, the space discretisation of some conventional CFD
methods, such as finite volume or finite element methods, is arbitrary to some extent.
Each volume or element can have many possible shapes, such as triangles, quads,
tetrahedra, pyramids or hexes. This is not the case for the “classical” LBM. Though
there does exist LBM discretisations on unstructured grids [29, 30], and local grid
refinement of the LBM on structured grids is possible ([31] gives an overview of
this), the most common form of space discretisation is a uniform and structured
grid. As we will see, this also implies a strong coupling of the spatial and temporal
discretisations in the LBM.

Overall, the original LB algorithm assumes that populations fi move with
velocity ci from one lattice site to another. After one time step �t, each population
should exactly reach a neighbouring site. This is guaranteed if (i) the underlying
spatial lattice is uniform and regular with lattice constant �x and (ii) the velocity
components are integer multiples of �x=�t, i.e. ci˛ D n�x=�t.

We have already mentioned in Sect. 3.4.7 that all common velocity sets obey this
condition. Thus, we can expect that the populations starting at a lattice site at x end
up at another lattice site at x C ci�t, i.e. that the populations do not “get stuck”
between lattice sites.14

In the following, we will present how the discrete-velocity Boltzmann equation
can be further discretised in physical space and time.

3.5.1 Method of Characteristics

Let us recall from (3.58) the non-dimensional force-free discrete-velocity Boltz-
mann equation with a general collision operator ˝i that conserves density and
momentum:

@tfi C ci˛@˛fi D ˝i (3.67)

where fi.x; t/ D f .x; ci; t/ is the particle distribution function discretised in velocity
space. We also call fi the population of particles moving in direction ci. Note that the
form of the collision operator is not yet specified. We rather assume that it somehow
depends on the discretised populations f fig and the equilibrium populations f f eq

i g.
Also note that the equilibrium populations depend on the macroscopic quantities
such as density and velocity which can be explicitly found through the moments

14This is not a hard-and-fast rule, though; it is possible to work with cases where x C ci�t falls
between lattice sites [3, 21].

3.5 Discretisation in Space and Time 95

of the populations ffig. Thus, we can assume that the collision operator ˝i can be
determined fully through the discretised populations f fig.

Equation (3.67) can be classified as a first-order hyperbolic partial differential
equation (PDE). Each velocity ci is a known constant. There exist a number
of techniques to solve equations like (3.67). One particularly powerful approach
to tackle such PDEs is the so-called method of characteristics (or method of
trajectories).

This method exploits the existence of trajectories known as characteristics in the
space of a PDE’s independent variables, i.e. x and t for (3.67), which lets us simplify
the PDE. What does this mean physically? Let us consider the hyperbolic equation

@g

@t
C a � rg D 0 (3.68)

with a constant vector a. This equation describes the advection of the quantity g at
a velocity given by the vector a. One can therefore simplify the solution of the PDE
by defining a trajectory x D x0Cat or x�at D x0 where x0 is an arbitrary constant.

Exercise 3.10 Show using the chain rule that any function g D g.x � at/ solves
(3.68).

In the method of characteristics, one can generally parametrise a PDE’s inde-
pendent variables in such a way that the PDE can be re-expressed as an ordinary
differential equation (ODE). We can write the solution of (3.67) in the form fi D
fi.x.�/; t.�//, where � parametrises a trajectory in space. We provide more details of
the mathematical treatment in Appendix A.5.

By converting the left-hand side of (3.67) into a total derivative with respect to
the parameter �, we find that the PDE becomes an ordinary differential equation

dfi
d�
D
�
@fi
@t

�
dt

d�
C
�
@fi
@x˛

�
dx˛
d�
D ˝i

�
x.�/; t.�/

�
: (3.69)

For (3.69) to be equal to (3.67), we must have

dt

d�
D 1; dx˛

d�
D ci˛: (3.70)

Exercise 3.11 Show from (3.70) that the solution fi follows a trajectory given by
x D x0 C cit where x0 is an arbitrary constant.

Now we want to integrate both sides of (3.69) along the trajectory, but we have to
specify initial conditions first. Let us take a look at the trajectory passing the point
.x0; t0/, choosing t.� D 0/ D t0 and x.� D 0/ D x0. The integration from � D 0 to
� D �t of (3.69) then yields

fi.x0 C ci�t; t0 C�t/ � fi.x0; t0/ D
Z �t

0

˝i.x0 C ci�; t0 C �/ d�: (3.71)

96 3 The Lattice Boltzmann Equation

By the fundamental theorem of calculus, the integration of the left-hand side is
exact. Note that the point .x0; t0/ is arbitrary so that we can more generally write

fi.xC ci�t; t C�t/� fi.x; t/ D
Z �t

0

˝i.xC ci�; t C �/ d�: (3.72)

However, the right-hand side is not as simple to determine as the left-hand side.
We will show in the next sections how the integral may be approximated. A more
rigorous treatment is available in Appendix A.5.

In (3.72) we can already see the discretisation pattern introduced above: during
the time step �t, the population fi.x; t/ moves from x to x C ci�t, giving fi.x C
ci�t; t C �t/. This supports our aforementioned “naive” idea of space and time
discretisation, where populations exactly reach neighbouring lattice sites after one
time step, given that the lattice is uniform and regular and the chosen velocity set is
such that ci˛ D n�x=�t.

3.5.2 First- and Second-Order Discretisation

There are several ways to approximate the right-hand side of (3.72). The most
common general space-time integration methods include the Crank-Nicolson [32]
and the Runge-Kutta schemes [33]. Although these methods, among others, in most
cases allow a more accurate integration, the “classical” LBE employs the simple
explicit forward Euler scheme previously seen in Sect. 2.1.

There are good reasons for this. Runge-Kutta-type schemes require tracking
the populations fi at several points in time (and for this reason they are known
as multi-step schemes). This is memory-intensive, especially for D3Q27. The
Crank-Nicolson time-space discretisation of the LBE [11, 32] leads to the original
LBE after introducing new variables as we will see below (and in more detail in
Appendix A.5). Other implicit discretisations of (3.72) lead to a linear system of
equations to be solved. It is needless to say that this is computationally demanding,
especially for D3Q27 with its 27 populations for each node, and is less attractive
than it is for the four variables (i.e. pressure and three velocity components) of the
incompressible Navier-Stokes equation in e.g. a finite volume solver.

One interesting alternative space-time discretisation of the discrete-velocity
Boltzmann equation is the finite volume formulations of the LBE [29, 30, 34].15

The finite-volume formulations are more flexible in terms of generating meshes that
fit complex geometries [34], especially if one wants to use local grid refinement
which is difficult to computationally implement for uniform grids [35]. However,
explicit finite volume formulations [36, 37] (using forward Euler or Runge-Kutta
formulations) are inferior in terms of stability and/or computational efficiency.

15We have described the general principles of such finite volume methods in Sect. 2.1.2.

3.5 Discretisation in Space and Time 97

Implicit formulations lead to a system of equations with high computational
overhead. We will not discuss non-“classical” discretisations of the Boltzmann
equation in more detail and instead refer to the literature indicated above.

The beauty, yet weakness, of the LBE lies in its explicitness and uniform
grid. The explicit discretisation of velocities, space and time allows for a rela-
tively easy setup of complex boundary conditions, e.g. for multiphase flows in
porous media. Also, the uniform grid allows for effective parallelisation [27].
However, this comes with a price: there are some stability restrictions on the
lattice constant �x and the time step �t.

We will now take a closer look at first-order and second-order discretisations of
the right-hand side of (3.72).

3.5.2.1 First-Order Discretisation

The first-order discretisation, also denoted rectangular discretisation, approximates
the collision operator integral by just one point:

fi.xC ci�t; t C�t/� fi.x; t/ D �t˝i.x; t/: (3.73)

The scheme in (3.73) is fully explicit and the most used for LB simulations.
In its form

fi.xC ci�t; tC�t/ D fi.x; t/C�t˝i.x; t/ (3.74)

it is called the lattice Boltzmann equation (LBE).

However, (3.74) alone is still not of much use since the collision operator˝i has
not yet been explicitly specified. We will get back to it in Sect. 3.5.3. Yet, we could
generally expect that the explicit scheme in (3.74) is of first-order accuracy in time
as the right-hand side is determined by a first-order approximation. However, as we
will see below, the second-order discretisation of the integral leads to the same form
of the LBE. Thus, the LBE in (3.74) is actually second-order accurate in time.

98 3 The Lattice Boltzmann Equation

3.5.2.2 Second-Order Discretisation

We obtain a more accurate approximation of the right-hand side of (3.72) via the
trapezoidal rule:16

fi.xC ci�t; tC�t/� fi.x; t/ D �t
˝i.x; t/C˝i.xC ci�t; t C�t/

2
: (3.75)

This is a second-order accurate discretisation.
Equation (3.75) is implicit since ˝i.x C ci�t; t C �t/ depends on fi at t C �t.

However, it is possible to transform this equation into an explicit form as detailed
in Appendix A.5. This transformation introduces a change of variables, fi ! Nfi and
results in [11, 38]

Nfi.xC ci�t; t C�t/ D Nfi.x; t/C�t N̋ i.x; t/ (3.76)

with a slightly redefined collision operator.
Equation (3.76) is of the same form as (3.74), but with fi changed to the

transformed variable Nfi. Ideally, we would like to eliminate the untransformed
variable fi from (3.76) so that we can solve this equation for Nfi without having
to determine fi. In fact, all common collision operators can be re-expressed with
Nfi instead of fi. An important reason for this is that

P
i
Nfi D P

i fi D � andP
i ciNfi DPi ci fi D �u, as shown in Appendix A.5.
Therefore, we have found the somewhat surprising result that the second-order

discretisation in (3.76) is of the same form as the first-order discretisation in (3.74),
which indicates that both discretisations are actually second-order accurate [38, 39].
The second-order accuracy of the LBE in both forms (i.e. (3.74) and (3.76)) can also
be proven by other methods [32].

As already mentioned above, neither method is very useful without a properly
defined collision operator. We will now investigate the so-called BGK collision
operator, the simplest and most widely used collision operator for the LBE. In
Chap. 10 we will introduce and thoroughly discuss other, more elaborate operators.

3.5.3 BGK Collision Operator

We mentioned in Sect. 1.3.4 that the collision operator of the original Boltzmann
equation considers all possible outcomes of binary collisions and has a rather

16Applying the trapezoidal rule when integrating along characteristics is not in general the best
approach. As a simple example, applying the trapezoidal rule to the equation df=d� D �f 3 gives
us f .�0 C��/� f .�0/ D �Œf .�0/3 C f .�0 C��/3	�t=2, which would have to be solved implicitly,
instead of the exact explicit result f .�0 C ��/ D 1=

p
2�t C 1=f .�0/2. A more general second-

order LB discretisation is shown in Appendix A.5, though in this case the end result is the same as
here.

3.5 Discretisation in Space and Time 99

complicated and cumbersome mathematical form. This collision operator is only
suitable for gas simulations, as it only accounts for binary collisions between
molecules. However, due to the significantly larger densities, molecules in liquids
can undergo more complicated interactions involving three and more particles.
So one could naively assume that more complicated integrals accounting for all
these possible interactions are required to characterise the collisions in liquids.
Fortunately, this is not necessary.

As we discussed in Sect. 3.4, one does not need to know all underlying
microscopic information to recover the macroscopic equations. This important
observation can be used to simplify the collision operator significantly. In particular,
one can get rid of any complicated integrals. The first step is to approximate the
collision operator and write it in terms of the known variables, the populations fi
and the equilibrium populations f eq

i . The simplest non-trivial functional form is a
linear relation, so we assume that ˝i should contain both fi and f eq

i only linearly.
Let us take a closer look at the form ˝i / . fi � f eq

i /. Note that this linear form
conserves mass and momentum, as we require for the Navier-Stokes behaviour:

X

i

˝i /
X

i

. fi � f eq
i / D 0;

X

i

˝ici /
X

i

�
fici � f eq

i ci
� D 0:

(3.77)

The most important property of collision operators is mass and momentum
conservation. One can easily construct simple collision operators by writing
down linear functions of ffig and ff eq

i g.

We now adapt from (1.49) the Bhatnagar-Gross-Krook (BGK) collision opera-
tor [40]:

˝i D � fi � f eq
i

: (3.78)

What does (3.78) mean physically? It can be interpreted as the tendency of the
population fi to approach its equilibrium state f eq

i after a time . This process is
also called relaxation towards equilibrium, and is therefore denoted the relaxation
time.

Exercise 3.12 Show that the solution of

dfi
dt
D � fi � f eq

i

(3.79)

leads to an exponential decay, . fi � f eq
i / / exp.�t=/ if we assume that f eq

i is
constant.

100 3 The Lattice Boltzmann Equation

Substituting the BGK collision operator from (3.78) into the first-order
approximation of the collision operator integral in (3.74) gives the lattice
Boltzmann equation with BGK collision operator, also sometimes called
the lattice BGK (LBGK) equation:

fi.xC ci�t; tC�t/ D fi.x; t/ � �t

�
fi.x; t/ � f eq

i .x; t/
�
: (3.80)

In Appendix A.5 we explain that substituting the BGK collision operator into the
second-order accurate LBE leads to

Nfi.xC ci�t; tC�t/ D Nfi.x; t/ � �t

N
�Nfi.x; t/ � f eq

i .x; t/
�

(3.81)

with a redefined relaxation time N D C�t=2. As (3.80) and (3.81) have the same
form and f eq

i can be constructed from Nfi in the exact same way as from fi, there is
no practical difference between using the first- or second-order approximation of
the collision integral. This is an unexpected result and a specific property of the
LBE. The equivalence of the first- and second-order discretisations is one of several
proofs of the second-order time accuracy of the LBE [32].

As we will see in Sect. 4.1, the very crude approximation of the original
Boltzmann collision operator by the BGK operator works astonishingly well in
most cases. In particular, we will show that the LBE with this simple BGK collision
operator is able to reproduce the continuity and the Navier-Stokes equations. This
is one of the main reasons why the LBM has become so popular.

Note that the BGK collision operator is not the only possible collision operator.
For example, there exist two-relaxation-times (TRT) and multi-relaxation-times
(MRT) collision operators that utilise more than just a single relaxation time. (The
BGK operator is also often called a single-relaxation-time (SRT) collision operator.)
These extended collision operators allow avoiding or mitigating some limitations of
the BGK collision operator, such as stability and accuracy issues. We will get back
to this more advanced topic in Chap. 10.

3.5.3.1 Under-, Full and Over-Relaxation

The lattice BGK equation, being discrete in time and space, differs from the
continuous BGK equation in one major respect. While the latter always evolves
fi towards f eq

i (see Exercise 3.12), the lattice BGK equation can also evolve fi
immediately to f eq

i or even past f eq
i . To see why this is so, we briefly look at the

discrete analogue of the spatially homogeneous continuous BGK equation in (3.79).
From (3.80), this is

fi.tC�t/ D
�

1 � �t

�

fi.t/C �t

f eq
i : (3.82)

3.5 Discretisation in Space and Time 101

Fig. 3.6 Simple example of under-, full, and over-relaxation for the spatially homogeneous lattice
BGK equation in (3.82) with an initial condition fi.0/=f

eq
i D 1:1 and constant f eq

i

Depending on the choice of =�t, we find that fi relaxes in one of three
different ways:

• Under-relaxation for =�t > 1, where fi decays exponentially towards
f eq
i like in the continuous-time BGK equation.

• Full relaxation for =�t D 1, where fi decays directly to f eq
i .

• Over-relaxation for 1=2 < =�t < 1, where fi oscillates around f eq
i with

an exponentially decreasing amplitude.

These cases are illustrated in Fig. 3.6. A fourth, unstable, case is =�t < 1=2,
where fi oscillates around f eq

i with an exponentially increasing amplitude.
Consequently, =�t 	 1=2 is a necessary condition for stability. We cover
other stability conditions in Sect. 4.4.

Finally, we have successfully discretised the Boltzmann equation in velocity
space, physical space and time. We have replaced the complicated collision operator
by the simple BGK collision operator. Before starting to write LB simulations on a
computer, it is helpful to understand the concept of separating (3.80) into streaming
(or propagation) and collision (or relaxation) substeps.

3.5.4 Streaming and Collision

By having a close look at (3.80) we can identify two separate parts. One comes
from the integration along characteristics, fi.xC ci�t; t C �t/ � fi.x; t/. The other
comes from the local collision operator,��tŒfi.x; t/� f eq

i .x; t/	= . We can therefore
logically separate the LBGK equation into distinct streaming (or propagation) and
collision steps.

102 3 The Lattice Boltzmann Equation

Overall, each lattice site at point x and time t stores q populations fi. In the
collision step or relaxation step, each population fi.x; t/ receives a collisional
contribution and becomes

f ?i .x; t/ D fi.x; t/ � �t

�
fi.x; t/ � f eq

i .x; t/
	
: (3.83)

Collision is a purely local and algebraic operation. f ?i denotes the state of the
population after collision.17

The other step is the streaming or propagation step. Here, the post-collision
populations f ?i .x; t/ just stream along their associated direction ci to reach a
neighbouring lattice site where they become fi.xC ci�t; tC�t/:

fi.xC ci�t; tC�t/ D f ?i .x; t/: (3.84)

This is a non-local operation. Practically, one has to copy the memory content of
f ?i .x; t/ to the lattice site located at xC ci�t and overwrite its old information. (One
has to be careful not to overwrite populations which are still required.) One common
strategy is to use two sets of populations, one for reading data, the other for writing
data (see Chap. 13).

In summary, the implementation of the LBGK equation consists of two main
substeps, collision and streaming:

f ?i .x; t/ D fi.x; t/ � �t

�
fi.x; t/ � f eq

i .x; t/
	

(collision);

fi.xC ci�t; tC�t/ D f ?i .x; t/ (streaming):
(3.85)

Now we have derived everything required to write a first LB simulation code,
except boundary conditions and forces. The most important results of this chapter

17Note that is more convenient for code implementation to write (3.83) in the form

f ?i .x; t/ D
�

1� �t

�

fi.x; t/C �t

f

eq
i .x; t/:

The specific choice D �t (which is quite common in LB simulations) leads to the extremely
efficient collision rule

f ?i .x; t/ D f
eq
i .x; t/;

i.e. the populations directly go to their equilibrium and forget about their previous state. We provide
more details about efficient implementations of (3.83) in Chap. 13.

References 103

were already collected in Sect. 3.2, and simple implementation hints were covered
in Sect. 3.3. In the next chapter, we will show that the LBGK equation actually
simulates the NSE and consider accuracy and stability.

References

1. D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer,
New York, 2005)

2. X. He, L.S. Luo, Phys. Rev. E 56(6), 6811 (1997)
3. X. Shan, X.F. Yuan, H. Chen, J. Fluid Mech. 550, 413 (2006)
4. K. Dullemond, K. Peeters, Introduction to Tensor Calculus. http://www.ita.uni-heidelberg.de/~

dullemond/lectures/tensor/tensor.pdf (1991–2010)
5. J. Simmonds, A Brief on Tensor Analysis (Springer, New York, 1994)
6. H. Grad, Commun. Pure Appl. Math. 2(4), 325 (1949)
7. N. Wiener, The Fourier Integral and Certain of Its Applications (Cambridge University Press,

Cambridge, 1933)
8. D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Phil. Trans. R. Soc. Lond.

A 360, 437 (2002)
9. A. Kuzmin, A. Mohamad, S. Succi, Int. J. Mod. Phys. C 19(6), 875 (2008)

10. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)
11. P. Dellar, Phys. Rev. E 64(3) (2001)
12. Z. Guo, C. Zheng, B. Shi, T. Zhao, Phys. Rev. E 75(036704), 1 (2007)
13. G. Uhlenbeck, G. Ford, Lectures in Statistical Mechanics. Lectures in applied mathematics

(American Mathematical Society, Providence, 1974)
14. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, 2nd edn.

(Cambridge University Press, Cambridge, 1952)
15. Y.H. Qian, D. d’Humières, P. Lallemand, Europhys. Lett. 17(6), 479 (1992)
16. U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56(14), 1505 (1986)
17. J. Latt, Hydrodynamic limit of lattice Boltzmann equations. Ph.D. thesis, University of Geneva

(2007)
18. G. Silva, V. Semiao, J. Comput. Phys. 269, 259 (2014)
19. E.M. Viggen, The lattice Boltzmann method: Fundamentals and acoustics. Ph.D. thesis,

Norwegian University of Science and Technology (NTNU), Trondheim (2014)
20. I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys. 139, 1090 (2010)
21. W.P. Yudistiawan, S.K. Kwak, D.V. Patil, S. Ansumali, Phys. Rev. E 82(4), 046701 (2010)
22. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University

Press, Oxford, 2001)
23. A.T. White, C.K. Chong, J. Comput. Phys. 230(16), 6367 (2011)
24. S.K. Kang, Y.A. Hassan, J. Comput. Phys. 232(1), 100 (2013)
25. K. Suga, Y. Kuwata, K. Takashima, R. Chikasue, Comput. Math. Appl. 69(6), 518 (2015)
26. D. d’Humières, M. Bouzidi, P. Lallemand, Phys. Rev. E 63(6), 066702 (2001)
27. J. Tölke M. Krafczyk, Int. J. Comp. Fluid Dyn. 22(7), 443 (2008)
28. I. Karlin, P. Asinari, Physica A 389(8), 1530 (2010)
29. S. Ubertini, S. Succi, Prog. Comput. Fluid Dyn. 5(1/2), 85 (2005)
30. M.K. Misztal, A. Hernandez-Garcia, R. Matin, H.O. Sørensen, J. Mathiesen, J. Comput. Phys.

297, 316 (2015)
31. D. Lagrava, Revisiting grid refinement algorithms for the lattice Boltzmann method. Ph.D.

thesis, University of Geneva (2012)
32. S. Ubertini, P. Asinari, S. Succi, Phys. Rev. E 81(1), 016311 (2010)

http://www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf
http://www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf

104 3 The Lattice Boltzmann Equation

33. J. Hoffmann, Numerical Methods for Engineers and Scientists (McGraw-Hill, New York,
1992)

34. H. Xi, G. Peng, S.H. Chou, Phys. Rev. E 59(5), 6202 (1999)
35. O. Filippova, D. Hanel, J. Comput. Phys. 147, 219 (1998)
36. S. Ubertini, S. Succi, Commun. Comput. Phys 3, 342 (2008)
37. S. Ubertini, S. Succi, G. Bella, Phil. Trans. R. Soc. Lond. A 362, 1763 (2004)
38. X. He, S. Chen, G.D. Doolen, J. Comput. Phys. 146(1), 282 (1998)
39. J.D. Sterling, S. Chen, J. Comput. Phys. 123(1), 196 (1996)
40. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)

Chapter 4
Analysis of the Lattice Boltzmann Equation

Abstract After reading this chapter, you will be familiar with many in-depth
aspects of the lattice Boltzmann method. You will have a detailed understanding
of how the Chapman-Enskog analysis can be used to determine how the lattice
Boltzmann equation and its variations behave on the macroscopic Navier-Stokes
level. You will know a number of such variations that result in different macroscopic
behaviour from the standard lattice Boltzmann equation. Necessary and sufficient
conditions that serve as stability guidelines for lattice Boltzmann simulations will
be known to you, along with how to improve the stability of a given simulation.
You will also have insight into the accuracy of both general simulations and lattice
Boltzmann simulations. For the latter, you will understand what the sources of
inaccuracy are, and how they may be reduced or nullified.

This chapter is oriented towards the theory of the LBE. A thorough understanding
is not required for performing LB simulations.

In Chap. 3 we derived the discrete numerical method known as the lattice Boltz-
mann equation (LBE) from the Boltzmann equation, the latter being a fundamental
equation from the field of kinetic theory. The motivation for doing so is that we
wish to use the LBE to simulate the behaviour of fluids. However, the LBM is a
different approach to fluid simulation than standard Navier-Stokes solvers: while
the latter start with a set of fluid conservation equations and discretise them, the
LBM discretises another equation, which means that it is less obvious that it works
as a method for simulating fluids.

We will shed some light on these topics by analysing the LBE in further
depth. In Sect. 4.1, we apply a method known as the Chapman-Enskog analysis
to determine the connection between the LBE and the macroscopic equations
of fluid mechanics. Section 4.2 discusses additional important aspects of this
analysis. Section 4.3 shows how important the choice of the equilibrium f eq

i is
to the resulting macroscopic behaviour, and discusses a few specific alternatives
including the widely-used equilibrium for incompressible flow. Section 4.4 covers
the requirements for stability of the LBE, i.e. the range of simulation parameters
within which the LBE will be safe from errors that grow exponentially. Section 4.5
examines factors, among others time and space discretisation errors, that separate

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_4

105

106 4 Analysis of the Lattice Boltzmann Equation

LB solutions from the “true” physical solution, and discusses how these factors
may be minimised.

4.1 The Chapman-Enskog Analysis

Now that we have found the LBE, we need to show that it actually can be used to
simulate the behaviour of fluids. While we previously looked at the macroscopic
behaviour of the undiscretised Boltzmann equation in Sect. 1.3.5 and found that
it behaves according to the continuity equation and a general Cauchy momentum
equation with an unknown stress tensor, we have not yet seen that the latter
specifically corresponds to the NSE. We will show this correspondence for the LBE
using the most common method: the Chapman-Enskog analysis. Other methods are
also available and will be touched upon in Sect. 4.2.5.

The analysis is named after Sydney Chapman (1888–1970) and David Enskog
(1884–1947), two mathematical physicists from the UK and Sweden, respectively.
In 1917, both independently developed similar methods of finding macroscopic
equations from the Boltzmann equation with Boltzmann’s original collision oper-
ator. In his book on the kinetic theory of gases, Chapman later combined the two
approaches into what is now known as the Chapman-Enskog analysis [1].

4.1.1 The Perturbation Expansion

In Sect. 1.3.5 we saw that the assumption f ' f eq results in the Euler momentum
equation. Therefore, any macroscopic behaviour beyond the Euler equation must
be connected to the non-equilibrium part of f , i.e. f neq D f � f eq. This is also true
for a discretised velocity space: the general momentum equation in Sect. 1.3.5 only
depends on moments of f which are also equal to the corresponding moments of fi.
Throughout the rest of this section we shall assume that velocity space is discretised.

It is not obvious how to determine this non-equilibrium part, however. This
is where the Chapman-Enskog analysis comes in. At its heart is a perturbation
expansion of fi around the equilibrium distribution f eq

i with the Knudsen number
Kn as the expansion parameter. Using the label �n to indicate terms of order Knn,1

the expansion is

fi D f eq
i C �f .1/i C �2f .2/i C : : : : (4.1)

1For instance, the relative order of � shows us immediately in (4.1) that f .2/i =f
eq
i D O.Kn2/.

However, in the literature it is often stated that � D Kn, unlike here where we treat it as a mere
label. This is another possible approach to the expansion, where the Knudsen number is separated
from the higher-order terms so that e.g. f .2/i =f eq

i D O.1/ while �2f .2/i =f eq
i D O.Kn2/. Which

approach to use is simply a matter of taste, and the following equations in this section are the same
in both cases.

4.1 The Chapman-Enskog Analysis 107

(Throughout the literature, the equilibrium distribution f eq
i is often written as f .0/i ,

giving a fully consistent notation in the expansion.)
Introducing the smallness label � lets us more easily group the terms according

to their relative order in the Knudsen number. Central to this perturbation analysis
is the concept that in the perturbed equation, each order in Kn forms a semi-
independent equation by itself. As mentioned, the lowest-order terms in Kn give
us the Euler momentum equation. Consequently, the higher-order terms may be
seen as correction terms, analogously to how the viscous stress tensor in the NSE
may be seen as a correction term to the Euler equation. The perturbation must be
performed in such a way that the equations at different orders in Kn still retain
some tie to each other so that the higher-order correction terms are connected to the
lower-order equations.

In perturbation analyses, the perturbation terms at the two lowest orders
together often result in a sufficiently accurate description of the system.
We therefore make the ansatz that only the two lowest orders in Kn are
required to find the NSE. Under this ansatz, we do not need to look closely
at higher-order components of fi than f eq

i and f .1/i .

The derivation will be based on the LBE with the BGK collision operator,

fi.xC ci�t; tC�t/ � fi.x; t/ D ��t

�
fi.x; t/ � f eq.x; t/

�
: (4.2)

While we could also perform the Chapman-Enskog analysis for a more general colli-
sion operator, we will use this BGK operator for its simplicity. (See Appendix A.2.3
for the analysis of the multi-relaxation-time collision operator).

Like any collision operator, the BGK operator must conserve mass and momen-
tum. As per (3.77), this conservation can be expressed as

X

i

f neq
i D 0;

X

i

cif
neq
i D 0: (4.3)

We can write this for the expanded fi in (4.1). In the literature, these are often called
the solvability conditions. These can be further strengthened by the assumption that
they hold individually at each order [1], i.e.

X

i

f .n/i D 0 and
X

i

ci f
.n/
i D 0 for all n 	 1: (4.4)

While this assumption simplifies the following derivation considerably, it can be
done without and it is not always made in the literature, e.g. [2–4].

108 4 Analysis of the Lattice Boltzmann Equation

4.1.2 Taylor Expansion, Perturbation, and Separation

When we transformed the discrete-velocity Boltzmann equation in (3.58) into the
LBE by discretising time and space, we used a first-order integral approximation and
showed that it is indeed second-order accurate upon a redefinition of the populations
fi. By Taylor expanding the LBE, which results in

�t .@t C ci˛@˛/ fi C �t2

2
.@t C ci˛@˛/

2 fi C O
�
�t3

�
D ��t

f neq
i ; (4.5)

we obtain an equation which is continuous in time and space but which retains the
discretisation error of the LBE. Indeed, apart from the higher-order derivative terms

1X

nD2

�tn

nŠ
.@t C ci˛@˛/

n fi (4.6)

on the left-hand side, the Taylor expanded LBE is identical to the discrete-velocity
Boltzmann equation in (3.58) from which we found the LBE.

In the following, we will neglect the terms with third-order derivatives or higher.
The short explanation for this is that these terms tend to be very small and do not
significantly affect the macroscopic behaviour. The longer justification, detailed in
Appendix A.2.1, is that �tn .@t C ci˛@˛/

n fi scales with O.Knn/, and the terms at
third order and higher can thus be neglected according to our ansatz that we only
need the two lowest orders in the Knudsen number to find the NSE.

This assumes that the changes in fi are slow, occurring only on a macroscopic
scale. If e.g. numerical errors cause rapid changes in fi, this assumption is no longer
valid and the macroscopic equations that result from the Chapman-Enskog analysis
are no longer suitable descriptions of the LBE’s macroscopic behaviour.

We can get rid of the second-order derivative terms in (4.5) by subtracting
.�t=2/.@t C ci˛@˛/ applied to the equation itself. The resulting equation, which
we will be basing the rest of this analysis on, is

�t .@t C ci˛@˛/ fi D ��t

f neq
i C�t .@t C ci˛@˛/

�t

2
f neq
i : (4.7)

Here we have neglected the O.�t3/ terms. The f neq derivative terms on the right-
hand side are the only non-negligible remnants of the discretisation error.2

2Using the second-order time and space discretisation described in Sect. 3.5, these terms would
have been cancelled by terms from the Taylor expansion of the discretised BGK operator. At the
two lowest orders in Kn, the discrete-velocity Boltzmann equation would thus be captured without
error [5].

4.1 The Chapman-Enskog Analysis 109

Before expanding fi in (4.7) we make another ansatz: it is also necessary to
expand the time derivative into terms spanning several orders in Kn.3 Similarly
labelling the spatial derivative without expanding it, the time and space derivatives
become

�t@tfi D �t
�
�@
.1/
t fi C �2@.2/t fi C : : :

�
; �tci˛@˛fi D �t

�
�ci˛@

.1/
˛

�
fi: (4.8)

These different components of @t at various orders in Kn should not themselves be
considered time derivatives [1]. Instead, they are terms at different orders in Kn that,
when summed together, are equal to the time derivative. Such derivative expansions,
often called multiple-scale expansions, are also used in general perturbation theory
to deal with expansions that otherwise result in terms which grow without bound at
one order but is cancelled by similar terms at higher orders [6]. We will get back to
the interpretation of this expansion in Sect. 4.2.2.

If we apply both the expansion of fi from (4.1) and the derivative expansion from
(4.8) to (4.7) and separate the equation into terms of different order in Kn, we find

O.�/ W
�
@
.1/
t C ci˛@

.1/
˛

�
f eq
i D �

1

f .1/i ; (4.9a)

O.�2/ W @
.2/
t f eq

i C
�
@
.1/
t C ci˛@

.1/
˛

��

1 � �t

2

�

f .1/i D �
1

f .2/i (4.9b)

for the two lowest orders in Kn.4

4.1.3 Moments and Recombination

Taking the zeroth to second moments of (4.9a) (i.e. multiplying by 1, ci˛ and ci˛ciˇ ,
respectively, and then summing over i), we can find the O.�/ moment equations:

@
.1/
t �C @.1/� .�u�/ D 0; (4.10a)

@
.1/
t .�u˛/C @.1/ˇ ˘ eq

˛ˇ D 0; (4.10b)

3Given the assumptions made in this derivation, this expansion should be done even in the steady-
state where @t fi D 0. However, it is possible to make fewer assumptions so that the time derivative
expansion is not necessary. This, and the steady-state case in general, is discussed in more detail
in Sect. 4.2.3.
4The parenthesis .1��t=2/ in (4.9b) is the only remnant of the space and time discretisation error
terms on the right-hand side of (4.7). If we had based this analysis directly on the discrete-velocity
Boltzmann equation in (3.58), where there is no such discretisation error, the ��t=2 term would
not have been present here.

110 4 Analysis of the Lattice Boltzmann Equation

@
.1/
t ˘

eq
˛ˇ C @.1/� ˘ eq

˛ˇ� D �
1

˘
.1/

˛ˇ : (4.10c)

They contain the moments

˘
eq
˛ˇ D

X

i

ci˛ciˇf
eq
i D �u˛uˇ C �c2sı˛ˇ; (4.11a)

˘
eq
˛ˇ� D

X

i

ci˛ciˇci� f
eq
i D �c2s

�
u˛ıˇ� C uˇı˛� C u� ı˛ˇ

�
; (4.11b)

˘
.1/

˛ˇ D
X

i

ci˛ciˇf
.1/
i : (4.11c)

The first two of these moments are known from (3.66), while the third is unknown
as of yet. Note that the third moment ˘ eq

˛ˇ� is lacking a term �u˛uˇu� as f eq
i only

contains terms of up to O.u2/. If we take the moment equations in (4.10) and reverse
the expansions from (4.8) under the assumption that @tfi � �@

.1/
t fi (i.e. neglecting

the contributions of higher-order terms in Kn), the first equation is the continuity
equation while the second is the Euler equation. We will return to the third equation
shortly.

Similarly taking the zeroth and first moments of (4.9b), we can find the O.Kn2/
moment equations:

@
.2/
t � D 0; (4.12a)

@
.2/
t .�u˛/C @.1/ˇ

�

1 � �t

2

�

˘
.1/

˛ˇ D 0: (4.12b)

These equations can both be interpreted as O.�2/ corrections to the O.�/ equations
above. The continuity equation is exact already at O.�/, so we might have expected
that the O.�2/ correction is zero. However, the O.�2/ correction to the Euler
momentum equation is non-zero, though given by the as of yet unknown moment
˘
.1/

˛ˇ .

Assembling the mass and momentum equations from their O.�/ and O.�2/
component equations in (4.10) and (4.12), respectively, we find

�
�@
.1/
t C �2@.2/t

�
�C �@.1/� .�u�/ D 0; (4.13a)

�
�@
.1/
t C �2@.2/t

�
.�u˛/C �@.1/ˇ ˘ eq

˛ˇ D ��2@.1/ˇ
�

1 � �t

2

�

˘
.1/

˛ˇ : (4.13b)

Reversing the derivative expansions of (4.8), these equations become the continuity
equation and a momentum conservation equation with an as of yet unknown viscous

4.1 The Chapman-Enskog Analysis 111

stress tensor

� 0̨
ˇ D �

�

1 � �t

2

�

˘
.1/

˛ˇ : (4.14)

Note that the recombination of the two different orders in � is done through
the expanded time derivative. Indeed, without expanding the time derivative across
multiple orders in Kn as in (4.8), (4.12b) would be missing its @.2/t .�u˛/ term and
would consequently be mistakenly predicting @.1/ˇ ˘

.1/

˛ˇ D 0.5

The final piece of the puzzle is finding an explicit expression for the perturbation
moment ˘.1/

˛ˇ . This can be directly found from derivatives of the equilibrium
moments using (4.10c). Doing so requires some amount of algebra which we
have relegated to Appendix A.2.2. For the isothermal equation of state and the
equilibrium distribution f eq

i expanded only to O.u2/, the end result is

˘
.1/

˛ˇ D ��c2s
�
@
.1/

ˇ u˛ C @.1/˛ uˇ
�
C @.1/�

�
�u˛uˇu�

�
: (4.15)

As we do not at any point in the derivation assume that @t D 0 or @˛ D 0, this
holds even if is a function of space and time. Of the two terms on the right-hand
side, the first corresponds to a Navier-Stokes viscous stress tensor, while the second
is an error term stemming from the lack of a correct O.u3/ term in the equilibrium
distribution f eq

i .
This error term is negligible in most cases. From a closer look at the magnitudes

of the two terms, we find that the O.u3/ error term can be neglected if u2 � c2s ,
which is equivalent to the condition Ma2 � 1 for the Mach number Ma D u=cs [7].

For this reason, it is often stated in the literature (e.g. [8, 9]) that the LBM is only
valid for weakly compressible phenomena, as opposed to the strongly compressible
phenomena which occur for transonic and supersonic flow when Ma goes towards
unity and beyond [10].6

4.1.4 Macroscopic Equations

We now have all the pieces to determine the macroscopic equations simulated by
the LBE.

5As we will explain in Sect. 4.2.3, it is possible to work without the time derivative expansion.
However, this invalidates some simplifying assumptions taken in the current derivation.
6Sound propagation can generally be considered a weakly compressible phenomenon; sound waves
cause the pressure p, the density �, and the fluid velocity u to all fluctuate, though these fluctuations
are weak enough that Ma D u=cs � 1 for all sounds within the range of normal human
experience [11].

112 4 Analysis of the Lattice Boltzmann Equation

Inserting (4.15) (neglecting the O.u3/ error term) into (4.13) and reversing
the derivative expansion from (4.8), we finally find that the LBE solves the
continuity equation as in (1.3) and the NSE as in (1.16):

@t�C @�
�
�u�

� D 0; (4.16a)

@t.�u˛/C @ˇ.�u˛uˇ/ D �@˛pC @ˇ
h
�
�
@ˇu˛ C @˛uˇ

�i
(4.16b)

with

p D �c2s ; � D �c2s
�

 � �t

2

�

; �B D 2

3
�: (4.17)

The bulk viscosity �B is not itself directly visible in (4.16b) but follows from
comparison with (1.16).

In monatomic kinetic theory, the bulk viscosity �B is normally found to be zero,
while here we have it to be of the order of the shear viscosity �. This difference is
caused by the use of the isothermal equation of state [12] which is fundamentally
incompatible with the monatomic assumption.7

From (4.17) we can find that =�t 	 1=2 is a necessary condition for stability,
as =�t < 1=2 would lead to the macroscopically unstable situation of negative
viscosity. The same condition was found in Sect. 3.5.3 from the argument that
=�t < 1=2 would lead to a divergent under-relaxation.

We could also have found the same macroscopic equations as above using more
general collision operators than the BGK operator. The only time that comes into
play in the above derivation is as the relaxation time of the moment˘˛ˇ in (4.10c).
In the more general multiple-relaxation-time (MRT) collision operators, which we
will take a closer look at in Chap. 10, each moment can relax to equilibrium at
a different rate. Good choices of these various relaxation times will increase the
stability and accuracy of LB simulations.8

7In fact, by imposing in the analysis the isentropic equation of state p=p0 D .�=�0/
� previously

described in Sect. 1.1.3, we would find a bulk viscosity �B D �.5=3 � �/ [5]. In the monatomic
limit � D 5=3 we find �B D 0, while in the isothermal limit � D 1 we find �B D 2�=3. We
describe how to impose other equations of state in Sect. 4.3.3.
8It is also possible to alter the shear and bulk viscosity separately through a more complex
relaxation of the ˘˛ˇ moment (cf. Chap. 10).

4.2 Discussion of the Chapman-Enskog Analysis 113

4.2 Discussion of the Chapman-Enskog Analysis

Despite its long history, the Chapman-Enskog analysis is still subject to debate
and is generally difficult to digest and understand in its fundamental meaning
[13]. Therefore, we take a brief look at some implications of the Chapman-Enskog
analysis (velocity sets in Sect. 4.2.1, time scales in Sect. 4.2.2, stationary flows
in Sect. 4.2.3 and the explicit distribution perturbation in Sect. 4.2.4) and its
alternatives (cf. Sect. 4.2.5).

As this section discusses the details of Sect. 4.1, it is necessarily somewhat more
complex. However, first-time readers may safely skip this entire section as it is not
necessary for a basic understanding of the Chapman-Enskog analysis.

4.2.1 Dependence of Velocity Moments

The Hermite polynomial approach taken in Sect. 3.4 yields velocity sets ci and
equilibrium functions f eq

i so that the zeroth- to second-order moments ˘ eq, ˘ eq
˛ ,

and˘ eq
˛ˇ of f eq

i equal those of the continuous-velocity distribution f eq.

However, the third-order moment ˘ eq
˛ˇ� is not fully correct, leading to the

�u˛uˇu� error term in (4.15) that further leads to a similar error term in the
macroscopic momentum equation. It is not difficult to see why it cannot be for
any of the velocity sets given in Table 3.1: in all of these velocity sets, we find that
ci˛ 2 f�1; 0;C1g�x

�t so that c3i˛ D ci˛.�x
�t /

2. Consequently,

˘ eq
xxx D

X

i

c3ixf
eq
i D

�
�x
�t

�2X

i

cixf
eq
i D

�
�x
�t

�2
˘ eq

x ; (4.18)

i.e. the third-order xxx-, yyy-, and zzz-moments are proportional to the first-order x-,
y-, and z-moments, respectively.

Exercise 4.1 From the general forms of ˘ eq
˛ and˘ eq

˛ˇ� in (3.66), show (4.18).

Other higher-order moments are also equal to lower-order ones, though the
specific equalities vary between velocity sets. For the D2Q9 velocity set, we can
find from the fact that c3i˛ D ci˛.�x

�t /
2 that there are only nine independent moments,

as shown in Fig. 4.1.9

Exercise 4.2 Show the dependencies given in Fig. 4.1 by equations like (4.18).

Equation (4.18) shows us that at least some of the third-order moments are
equal to first-order moments for all the velocity sets that we have examined
previously. Consequently, it is not possible for these velocity sets to correctly

9In general, for a velocity set with q velocities there are q different independent moments, as we
shall see in Chap. 10.

114 4 Analysis of the Lattice Boltzmann Equation

Fig. 4.1 Dependency map of D2Q9 velocity moments. Higher-order moments (dark on light grey)
depend on nine lower-order independent moments (black on white)

recover the �u˛uˇu� term in ˘ eq
˛ˇ� and thus avoid the O.u3/ error term in (4.15)

which carries over to the macroscopic stress tensor. Additionally, these velocity
sets are insufficient for some of the thermal models which we will touch upon in
Sect. 8.4, as these require independent third-order moments. In cases where these
issues cannot be safely ignored, extended velocity sets with more velocities and
higher-order equilibrium distributions must be used.10 These can be found using the
same Hermite approach as in Sect. 3.4.

Exercise 4.3 Consider a rotated and rescaled D2Q9 velocity set consisting of the
zero-velocity vector .0; 0/, four short velocity vectors .˙1=2;˙1=2/�x

�t and four
long velocity vectors .˙1; 0/�x

�t , .0;˙1/�x
�t . Show that the nine moments ˘ , ˘x,

˘y, ˘xx, ˘xy, ˘yy, ˘xxx, ˘yyy, and ˘xxyy are independent of each other. Show also
that ˘xxy D ˘xyy D 1

2
�x
�t˘xy.

4.2.2 The Time Scale Interpretation

In the Chapman-Enskog analysis presented in Sect. 4.1, the time derivative @t
was expanded into terms �n@.n/t at different orders of smallness in (4.8). This
decomposition is sometimes interpreted as a decomposition into different time
scales, i.e. “clocks ticking at different speeds”. This interpretation may in some

10Alternatively, it has also been proposed to add correction terms to the LBE to counteract these
errors [14].

4.2 Discussion of the Chapman-Enskog Analysis 115

cases lead to false conclusions. Whenever the link between different orders in f .n/i is
broken by the strengthened solvability conditions in (4.4), it is not difficult to show
that the time scale interpretation leads to such a false conclusion.

From this interpretation, one would expect for steady-state that when the time
derivative @tg of a function g vanishes, all “time scale” derivatives @.n/t g can be
removed as well. After all, “steady-state” means that nothing can change on any
time scale.

Let us look at a steady Poiseuille flow. On the one hand, we know macroscopi-
cally that a Poiseuille flow obeys

rp D r � � ; (4.19)

i.e. the flow is driven by a pressure gradient which is exactly balanced by the
divergence of the viscous stress tensor � . On the other hand, (4.10) and (4.12)
describe relations for the momentum on the �- and �2-scales:

@
.1/
t .�u˛/ D �@.1/ˇ ˘ eq

˛ˇ; @
.2/
t .�u˛/ D �@.1/ˇ

�

1 � �t

2

�

˘
.1/

˛ˇ : (4.20)

Obviously, @t.�u˛/ D 0 holds for steady Poiseuille flow. From the time scale
interpretation, @.1/t .�u˛/ and @.2/t .�u˛/must also vanish independently so that (4.20)
becomes

@
.1/

ˇ ˘
eq
˛ˇ D 0; @

.1/

ˇ

�

1 � �t

2

�

˘
.1/

˛ˇ D 0: (4.21)

From (4.11a) and (4.14) we know that

˘
eq
˛ˇ D �u˛uˇ C pı˛ˇ;

�

1 � �t

2

�

˘
.1/

˛ˇ D ��˛ˇ; (4.22)

and thus (4.21) states

@.1/˛ p D 0; @
.1/

ˇ �˛ˇ D 0; (4.23)

i.e. no flow at all!
In other words: given (4.20), Poiseuille flow would be impossible if @.1/t .�u˛/ and

@
.2/
t .�u˛/ vanished independently. It is therefore misleading to say that time itself

is decomposed into different scales. It is rather the term @tg which is decomposed
into contributions from different orders in the perturbation expansion, contributions
which are themselves not time derivatives [1]. Only the sum of these contributions
vanishes, i.e.

@t.�u˛/ D 0 H) @
.1/
t .�u˛/C @.2/t .�u˛/ D 0 H) @.1/˛ p D @.1/ˇ �˛ˇ;

(4.24)

116 4 Analysis of the Lattice Boltzmann Equation

neglecting terms at O.�3/ and higher orders.
In this section we have seen that setting @.n/t fi D 0 leads to false conclusions

in the Chapman-Enskog analysis. It must be pointed out that the reason that this
does not work is the simplifying (but not, strictly speaking, necessary) assumption
that leads from (4.3) to (4.4). Without this assumption we would not get zeros on
the right-hand side of (4.21). We will discuss this assumption further at the end of
Sect. 4.2.3.

4.2.3 Chapman-Enskog Analysis for Steady Flow

The Chapman-Enskog analysis performed in Sect. 4.1 depends on the expansion
of the time derivative into components, each component at a different order in �.
The expanded time derivative gives us a unique way to reconnect the equations at
different orders in � after having performed the perturbation expansion.

For a time-invariant case with @tfi D 0, this approach is still valid; there is nothing
wrong with keeping the time derivative and expanding it even though it is equal to
zero. (Indeed, we saw in Sect. 4.2.2 that setting it to zero before expanding it may
lead to false conclusions.) However, if we take the final time-dependent macroscopic
equations from the Chapman-Enskog analysis in Sect. 4.1 and set the time derivative
to zero, the resulting steady-state macroscopic equations are somewhat misleading.
As we will soon see, the time-invariant stress tensor can be expressed differently to
the time-variant one.

In a time-invariant case, the expanded time derivative is

�t@tfi D �t
�
�@
.1/
t fi C �2@.2/t fi C : : :

�
D 0; H) �@

.1/
t fi D O.�2/: (4.25)

Thus, @.1/t fi increases by one order in smallness in this case. Consequently, the mass
and momentum moment equations in (4.10) become

@.1/� .�u�/ D �@.1/t � D O.�/; (4.26a)

@
.1/

ˇ

�
�c2sı˛ˇ C �u˛uˇ

�
D �@.1/t .�u˛/ D O.�/: (4.26b)

Therefore, the left-hand sides in these equations are one order higher in � than they
would be in a time-variant case. Similarly, the second-order moment equation in
(4.10c), which gives us the viscous stress tensor through (4.14), becomes

˘
.1/

˛ˇ D �
�
@
.1/
t ˘

eq
˛ˇ C @.1/� ˘ eq

˛ˇ�

�
D �@.1/� ˘ eq

˛ˇ� C O.�/: (4.27)

By applying (A.14) and (4.26a), this becomes

˘
.1/

˛ˇ D �c2s
h
@
.1/

ˇ .�u˛/C @.1/˛ .�uˇ/
i
C O.�/: (4.28)

4.2 Discussion of the Chapman-Enskog Analysis 117

Finally, we can insert the above equations into (4.13) to find the steady macroscopic
equations exactly predicted by the Chapman-Enskog analysis:

@� .�u�/ D 0; (4.29a)

@ˇ.�u˛uˇ/ D �@˛pC @ˇ

�
@ˇ.�u˛/C @˛.�uˇ/

	
(4.29b)

with pressure p D �c2s , kinematic shear viscosity
 D c2s . ��t=2/ and kinematic
bulk viscosity
B D 2
=3. This steady momentum equation lacks the O.u3/ error
term of the unsteady momentum equation. Instead, its stress tensor contains the
gradients

@ˇ.�u˛/C @˛.�uˇ/ D �
�
@ˇu˛ C @˛uˇ

�C �u˛@ˇ C uˇ@˛
�
� (4.30)

instead of the gradients �.@ˇu˛ C @˛uˇ/ found in the correct NSE. However, since
@˛� D O.u2/ for steady flow at Ma � 1 [10], the error in this macroscopic
momentum equation remains at O.u3/. (For a particular LBE variant designed for
incompressible flow, this error disappears so that its momentum equation is error-
free at steady-state. We describe this variant in Sect. 4.3.2.)

Exercise 4.4 Show that it is also possible to find the steady perturbation moment
in (4.28) directly from the unsteady perturbation moment in (4.15). Hint: you will
need to use (A.13) along with (4.26).

We must point out that this approach to the steady Chapman-Enskog analysis
is not the only possible one. It is also possible to perform a steady analysis if we
assume time invariance initially by setting @tfi D 0 a priori without expanding
it [4, 15, 16]. However, without the expanded time derivative, we must link the
equations at different order in � in a different way. This can be done through the
solvability conditions in (4.3) which can be expanded as [2–4]

X

i

f neq
i D

X

i

�
�f .1/i C �2f .2/i C : : :

�
D 0;

X

i

cif
neq
i D

X

i

ci
�
�f .1/i C �2f .2/i C : : :

�
D 0:

(4.31)

This approach is incompatible with the additional simplifying assumption made
in (4.4) which breaks the link between orders by assuming that the solvability
conditions hold individually at each order. Regardless, this approach results in the
same steady macroscopic equations as the approach taken above without any loss of
generality [4, 15, 16].

118 4 Analysis of the Lattice Boltzmann Equation

4.2.4 The Explicit Distribution Perturbation

In the Chapman-Enskog analysis in Sect. 4.1, we took the moments of (4.9) to
find macroscopic equations given by moments of fi and their derivatives. The only
unknown in these equations, ˘.1/

˛ˇ D
P

i ci˛ciˇf
.1/
i , was directly found through

(4.10c), using the known moments˘ eq
˛ˇ and ˘ eq

˛ˇ� as detailed in Appendix A.2.2.

However, it is also possible to find the unknown ˘
.1/

˛ˇ by a slightly more

complicated two-step approach. First, we find the distribution perturbation f .1/i
through (4.9a) as

f .1/i D
�
@
.1/
t C ci˛@

.1/
˛

�
f eq
i ; (4.32)

and then we obtain˘.1/

˛ˇ directly through the second moment of f .1/i .

To find f .1/i explicitly, we can apply the time and space derivatives directly to the
equilibrium distribution, (3.54). This distribution can for this purpose be expressed
in the more convenient form

f eq
i D wi�

1C ci˛u˛
c2s
C Qi˛ˇu˛uˇ

2c4s

!

; (4.33)

using the velocity tensor Qi˛ˇ D ci˛ciˇ � c2sı˛ˇ .

Exercise 4.5 Show that the time derivative of f eq
i can be expressed solely through

spatial derivatives as

@
.1/
t f eq

i D �wi

@.1/˛
�
�u˛

�C ci˛
c2s
@
.1/

ˇ

�
�u˛uˇ

�C ci˛@
.1/
˛ �

C Qi˛ˇ

c2s
u˛@

.1/

ˇ �C
Qi˛ˇ

2c4s
@.1/�

�
�u˛uˇu�

�
�

:

(4.34)

Hint: Use (4.10) and (A.13). Since Qi˛ˇ is symmetric in ˛ and ˇ, Qi˛ˇA˛ˇ D
Qi˛ˇAˇ˛ for any tensor A˛ˇ .

After some algebra, we can find the first-order distribution perturbation
explicitly as

f .1/i D �
wi

c2s

Qi˛ˇ�@
.1/

ˇ u˛ � ci˛@
.1/

ˇ

�
�u˛uˇ

�

C Qi˛ˇ

2c2s
ci�@

.1/
�

�
�u˛uˇ

� � Qi˛ˇ

2c2s
@.1/�

�
�u˛uˇu�

�
�

;

(4.35)

(continued)

4.2 Discussion of the Chapman-Enskog Analysis 119

where the last term is the O.u3/ error term discussed in Sect. 4.1.3 and
Sect. 4.2.1. The same result (neglecting the error term) can be found in [9, 17].
This result is also useful for understanding the role of the non-equilibrium
part of fi; we see that it is given largely by gradients of the macroscopic fluid
velocity u.

Exercise 4.6 Derive (4.35) from (4.32), (4.33), and (4.34).

Exercise 4.7

a) Take the second moment of (4.35), and show that this gives the same expression
for˘.1/

˛ˇ D
P

i ci˛ciˇf
.1/
i as in (4.15).Hint: Use the isotropy conditions in (3.60).

b) Show that (4.35) is consistent with the strengthened solvability conditions of
(4.4) by showing that

P
i f
.1/
i D 0 and

P
i ci˛f

.1/
i D 0.

4.2.5 Alternative Multi-scale Methods

While the Chapman-Enskog analysis is the classical multi-scale tool to link the LBE
and its resulting macroscopic equations [1], alternative mathematical techniques
exist. Since their detailed analysis is far outside the scope of this book, this section
only provides a brief list of the most relevant examples, with further references for
interested readers.

Similarly to the Chapman-Enskog expansion, most of these alternative multi-
scale methods have their origins in kinetic theory and were later adapted to the LB
field. Below, we illustrate three approaches that have followed this route.

The asymptotic expansion technique was pioneered by Sone [18] in the study of
solutions of the Boltzmann equation at small Knudsen and finite Reynolds numbers.
Such a technique diverts from the classical Chapman-Enskog analysis in two main
aspects. First, the macroscopic solutions are formally expanded in a series of small
Knudsen number, similarly to the mesoscopic variables. Secondly, it restricts the
analysis of the dynamical processes to the diffusive scaling, i.e. �t / �x2 � �2

(where � is some smallness parameter used in the expansion), based on the argument
that the target solution belongs to the incompressible NSE. The asymptotic analysis
was introduced in the LB field by [19], and later it experienced further developments
in [20, 21]. After the Chapman-Enskog analysis, this technique is possibly the one
with the broadest acceptance in the LB field.

The Hermite expansion series technique was introduced by Grad [22] as a
way to approximate the solution of the Boltzmann equation in terms of a finite
set of Hermite polynomials. Such a representation provides a convenient closure
for describing the fluxes in the macroscopic laws. The idea is that the truncation
order of the Hermite expansion of the mesoscopic variable determines the range of

120 4 Analysis of the Lattice Boltzmann Equation

validity of the resulting macroscopic fluid system. This technique differs from the
Chapman-Enskog analysis as it recovers the governing macroscopic dynamics in a
non-perturbative way. The Hermite expansion series was introduced in the LB field
by [23] and subsequently further developed by [24, 25].

The Maxwellian iteration technique was proposed by Ikenberry and Trues-
dell [26] as a systematic procedure to find a closure for the fluxes in the governing
macroscopic flow equations. The idea is to work with a hierarchy of moments of
the mesoscopic variables, which enables completing the missing information from
the lower-order moments using higher-order ones. In order to assess whether the
higher-order terms in this hierarchy should be neglected or retained, this process is
supplemented by an order of magnitude analysis. Therefore, this technique employs
elements from both the Grad expansion method and the Chapman-Enskog analysis.
In the LB field its use was proposed by [27–29], exploiting the fact that it applies
rather naturally to LB models working with the MRT collision operator.

The inspection of the macroscopic behaviour of LB models is also possible
through more numerically oriented procedures. Even though they may introduce
a higher level of abstraction, they have the advantage of providing access to
the macroscopic information directly by Taylor expanding the discrete numerical
system, without resorting to any results from kinetic theory. There are three main
approaches. First, the equivalent equation method [30] where the Taylor expansion
method is applied directly to the LBE. Secondly, the method proposed by [31]
that, while following the same Taylor expansion procedure, applies it to a recursive
representation of the LBE. Thirdly, the approach proposed by [16] where the LBE
is first written in recurrence form, i.e. in terms of finite-difference stencils, with the
macroscopic information recovered order by order by Taylor expanding the finite-
difference operators.

The number of existing LB multi-scale approaches has led to debates about their
equivalence, e.g. [32, 33]. The work [34] contributed to shed light on this issue
by showing that the Chapman-Enskog analysis is nothing but a particular example
of a general expansion procedure which also encompasses many other multi-
scale methods such as the asymptotic expansion technique. As general conclusion,
this study showed that distinctive multi-scale methods offer identical consistency
information up to the same expansion order.

4.3 Alternative EquilibriumModels

In Chap. 3, we derived the discrete equilibrium distribution f eq
i via an expansion

of the continuous Maxwell-Boltzmann distribution f eq in Hermite polynomials. We
have also mentioned the simpler but less physically illuminating method of Taylor
expanding f eq to find f eq

i .
However, a more heuristic approach can be taken [35–37]: instead of deriv-

ing f eq
i directly from f eq, a more general equilibrium distribution is chosen by

4.3 Alternative Equilibrium Models 121

an ansatz as, e.g.

f eq
i D wi�

�
1C a1ci˛u˛ C a2ci˛ciˇu˛uˇ � a3u˛u˛

�
: (4.36)

Here, a1, a2, and a3 are constants that may be kept throughout the Chapman-
Enskog analysis. The resulting macroscopic equations will then be functions of
these constants which may subsequently be chosen in order to get the desired
macroscopic equations.

These macroscopic equations are not limited to the compressible flow case we
have looked at previously in this chapter; in fact, this approach can be used to
derive LBEs to solve a much more general class of PDEs. Indeed, this goes to
show that a great deal of the physics of the LBE is determined by the choice of
the equilibrium distribution f eq

i . As a simple example for this, the subtle change
of imposing a given flow field u in the basic LB equilibrium of (3.54) instead of
taking u from the populations fi, results in macroscopic behaviour according to the
advection-diffusion equation.11 We will cover this more in depth in Sect. 8.3.2.

However, it is not always necessary to derive alternative equilibria through this
elaborate process. In some cases, the standard equilibrium in (3.54) may be altered
directly in order to derive alternative models.

In this section, we will describe in some depth a few different models where the
equilibrium distribution is changed in order to modify the macroscopic behaviour.
We will then refer to other such models in the literature.

4.3.1 Linear Fluid Flow

The research field of acoustics is based almost entirely on linearised versions of
the conservation equations [11] where we assume that the fluid quantities are small
variations about a constant rest state,

�.x; t/ D �0 C �0.x; t/;

p.x; t/ D p0 C p0.x; t/;

u.x; t/ D 0C u0.x; t/:

(4.37)

The rest state constants are labelled with subscripted zeros while the primed
variables represent deviations from this rest state. Terms which are nonlinear in

11Breaking the link between fi and u in this way also breaks the conservation of momentum
in collisions, as

P
i cifi ¤ P

i cif
eq
i . Thus, this advection-diffusion model is an example of an

alternative LBE where the physical meaning of fi has changed.

122 4 Analysis of the Lattice Boltzmann Equation

these deviations are neglected.12 This approximation corresponds, e.g., to creeping
flows where viscosity dominates over advection, or to cases of linear (i.e. low-Ma)
sound propagation.

By similarly neglecting nonlinear deviations from equilibrium in (3.54), we
find a linearised equilibrium distribution

f eq
i D wi

�C �0 ci˛u˛
c2s

!

: (4.38)

Here, �0 is the rest state density.

From this equilibrium distribution and the isotropy conditions in (3.60), we can
directly find the equilibrium moments

˘ eq D �; ˘ eq
˛ D �0u˛; ˘

eq
˛ˇ D �c2sı˛ˇ;

˘
eq
˛ˇ� D �0c2s

�
u˛ıˇ� C uˇı˛� C u�ı˛ˇ

�
:

(4.39)

Exercise 4.8 Confirm these moments by recalculating them. Hint: Use (3.60).

Performing the Chapman-Enskog analysis as in Sect. 4.1 with this simplified
equilibrium distribution results in the macroscopic mass and momentum conserva-
tion equations

@t�C �0@˛u˛ D 0;
�0@tu˛ D �@˛pC �@ˇ

�
@ˇu˛ C @˛uˇ

� (4.40)

with pressure p D �c2s and dynamic shear viscosity � D �0c2s .��t=2/. By compar-
ison with (4.16), we find that these are perfectly linearised versions of the continuity
and Navier-Stokes equations that we get with the normal nonlinear equilibrium
distribution f eq

i . Interestingly, since this linear model drops any nonlinearity, it is
not affected by the nonlinear O.u3/ error terms in the momentum equation, unlike
the standard model we have looked at previously.

Exercise 4.9 Find these macroscopic equations through a Chapman-Enskog anal-
ysis of the LBE with linearised equilibrium. (The linearised equilibrium makes the
analysis significantly simpler!)

12The advection term in Navier-Stokes is one such nonlinear term. By neglecting it, we break the
Galilean invariance of the fluid model. To avoid this issue, we could instead linearise the velocity
around a non-zero rest state velocity as necessary.

4.3 Alternative Equilibrium Models 123

In the case of steady flow, these linearised equations become the equations of
Stokes flow, i.e. of viscosity-dominated steady flow at Re� 1:

@˛u˛ D 0;
�@ˇ

�
@ˇu˛ C @˛uˇ

� � @˛p D 0:
(4.41)

This linearised equilibrium has been used to ensure full linearity in LB acoustics
simulations. This way, sound waves may be simulated using the complex expo-
nential form in which a plane wave would be represented as varying with, e.g.,
ei.!t�kx/ [5, 38]. We will get back to this technique in Sect. 12.1.2.

With the linearised equilibrium the LBE is fully linear, and it is therefore also
possible to split fi into a rest state Feq

i D �0wi and a fluctuation f 0
i D fi � Feq

i , each
of which is a valid solution to the linear LBE. In fact, it is possible to implement an
LBE that only tracks the fluctuation f 0

i , with a corresponding equilibrium f 0eq
i D

wi.�
0 C �0u˛c˛=c2s /. We can see such an LBE in (12.24) as part of the LBE

linearisation analysis in Sect. 12.2.

4.3.2 Incompressible Flow

In the linearised model described in Sect. 4.3.1, we assumed that the density �, the
pressure p and the fluid velocity u deviated only very little from a constant rest state.
This assumption does not hold for flows at larger Reynolds numbers.

The deviation of density from a rest state may be smaller than that of the
velocity. Indeed, it is known for steady flow at Ma � 1 that �0=�0 D
O.Ma2/ [10].13 In this limit, we may derive an LBE that approximates
incompressibility by neglecting terms in f eq

i that are above O.Ma2/:

f eq
i D wi�C wi�0

ci˛u˛
c2s
C u˛uˇ

�
ci˛ciˇ � c2sı˛ˇ

�

2c4s

!

: (4.42)

13Note that this holds only for steady flow and not for cases where the flow field is time-dependent.
For instance, we have for plane sound waves that j�0=�0j D O.Ma/ [11].

124 4 Analysis of the Lattice Boltzmann Equation

Such equilibria were proposed in the literature early in the history of the
LBM [39, 40]. We can find the moments of this particular equilibrium using (3.60):

˘ eq D �; ˘ eq
˛ D �0u˛; ˘

eq
˛ˇ D �c2sı˛ˇ C �0u˛uˇ;

˘
eq
˛ˇ� D �0c2s

�
u˛ıˇ� C uˇı˛� C u�ı˛ˇ

�
:

(4.43)

We can perform the Chapman-Enskog analysis as in Sect. 4.1 using this
equilibrium in order to find the simulated macroscopic equations. The resulting
stress tensor is

�˛ˇ D
�

 � �t

2

�h
�0c

2
s

�
@ˇu˛ C @˛uˇ

� � �0
�
u˛@�

�
uˇu�

�C uˇ@�
�
u˛u�

��

� c2s
�
u˛@ˇ�C uˇ@˛�

�i
: (4.44)

Of the three terms in the brackets, the latter two are error terms. The first of these
error terms is of a similar nature as the O.u3/ error term in (4.15). The second
error term appears due to the different pressure in the second and third equilibrium
moments: �c2s in ˘ eq

˛ˇ and �0c2s in ˘ eq
˛ˇ� .

Neglecting these error terms, the Chapman-Enskog analysis results in macro-
scopic mass and momentum equations

@tpC �0c2s@�u� D 0; (4.45a)

�0
�
@tu˛ C @ˇu˛uˇ

� D �@˛pC �@ˇ
�
@ˇu˛ C @˛uˇ

�
; (4.45b)

with pressure p D c2s� and dynamic shear viscosity � D �0c2s . ��t=2/.
For a steady flow case, we can use a similar analysis to Sect. 4.2.3 to show

that the error terms in (4.44) disappear. Consequently, the macroscopic equations
in (4.45) (without time derivatives) are exactly recovered at the Navier-Stokes level.
(However, higher-order truncation error terms may still be present.)

Exercise 4.10 Apply the analysis in Sect. 4.2.3 to the incompressible LB model to
show that the steady macroscopic equations (i.e. (4.45) without time derivatives) are
exactly recovered at the Navier-Stokes level.

4.3.3 Alternative Equations of State

Previously in Chap. 3 we found that the simple square velocity sets lead to an
isothermal equation of state, p D c2s�, and that a more realistic thermal model
requires extended velocity sets. However, alternative equilibria may also be applied
in order to perform simulations with different equations of state, although, as we

4.3 Alternative Equilibrium Models 125

soon shall see, this approach has some weaknesses.14 Different equations of state
also allow for speeds of sound c that are different from the isothermal speed of sound
cs. In general, the speed of sound is determined by the equation of state p.�; s/ as
c Dp.@p=@�/s, where s is entropy [10, 11].

From the Chapman-Enskog analysis in Sect. 4.1, the pressure in the macroscopic
momentum equation depends on the equilibrium moments:

˘
eq
˛ˇ D pı˛ˇ C �u˛uˇ; (4.46a)

˘
eq
˛ˇ� D p

�
u˛ıˇ� C uˇı˛� C u� ı˛ˇ

�
: (4.46b)

The first of these moments directly determines the pressure gradient in the momen-
tum equation. In the Chapman-Enskog analysis, terms stemming from the third-
order moment cancel pressure terms in the second-order moment.

However, no equilibrium distribution for the velocity sets given in Sect. 3.4.7
can give a freely chosen pressure p in both these equilibrium moments. From
the discussion in Sect. 4.2, these velocity sets are too small for the third-order
equilibrium moments˘ eq

˛ˇ� to be independent of lower-order equilibrium moments.
Without an extended velocity set, we can only have a third-order moment like
(4.46b) but with p! �c2s .

While we can find an equilibrium with a freely chosen pressure p in the second-
order equilibrium moment, this leads to an inconsistent pressure between the
second- and third-order moments: p in the former and �c2s in the latter. Consequently,
the aforementioned cancellation does not happen for a number of terms in the
Chapman-Enskog analysis of an LBE with such an equilibrium, and we recover
a macroscopic momentum equation containing several additional error terms [46]:

@t.�u˛/C @ˇ.�u˛uˇ/

D �@˛pC @ˇ�c2s
�

 � �t

2

�
2

4@ˇu˛ C @˛uˇ C

1 � c2

c2s

!

ı˛ˇ@�u�

3

5

� @ˇ
�

 � �t

2

�

@�.�u˛uˇu� /

C @ˇ
�

 � �t

2

�
�
c2s � c2

�
ı˛ˇu�@��C

�
u˛@ˇ C uˇ@˛

� �
�c2s � p

��

:

(4.47)

Here, cs is the isothermal speed of sound and c D p.@p=@�/s is the actual speed of
sound for a given pressure p.�; s/.

14Changing the equilibrium is not the only way to achieve different equations of state, however.
Various body force schemes also exist [41–45].

126 4 Analysis of the Lattice Boltzmann Equation

The first two lines of this momentum equation is the same as the momentum
equation (4.16b) found from the Chapman-Enskog analysis in Sect. 4.1, except with
a bulk viscosity of �B D �.5=3� c2=c2s / instead of �B D 2�=3. This bulk viscosity
unphysically depends on the velocity set constant c2s , but it is possible to alter the
bulk viscosity in LB simulations (cf. Chap. 10 and [12, 17, 47]). The third line of
this momentum equation is the same error that also exists in the usual isothermal
LBE, as seen in (4.15). The last line contains new error terms that appear due
to the aforementioned inconsistent pressure between the second- and third-order
equilibrium moments.

However, these new error terms all scale as O.Ma�0/. For steady flow at Ma� 1

it is known that �0=�0 D O.Ma2/ [10], and for plane sound waves we have that
j�0=�0j D O.Ma/ [11]. Consequently, these new error terms are, in the worst case,
of O.Ma2/ and can therefore be safely neglected along with the previous O.Ma3/
error terms, as long as Ma� 1.

Up to this point, we have only described the constraints on the moments of
the equilibrium distribution f eq

i , but we have not looked at what this equilibrium
distribution can look like. In fact, a number of such equilibria have been proposed
in the literature, both for general and specific equations of state [35, 42, 48–50].
However, many of these are specific to a particular velocity set, and those which are
not have not been validated for all the velocity sets described in Sect. 3.4.7. It is not
given that these equilibria are stable or accurate in all of these velocity sets [50].

As an example of an LB equilibrium that allows for a non-isothermal
equation of state for simple velocity sets, we can look at the equilibrium
for D1Q3 which is uniquely given by [5, 46]

f eq
0 D � � p � �uu; f eq

i¤0 D
1

2

�
pC �uci C �uu

�
: (4.48)

The pressure p can be freely chosen, and its relation to � determines the speed
of sound as described above. However, this equilibrium is still subject to
stability conditions as described in Sect. 4.4, and not all equations of state
will therefore be stable.

Exercise 4.11 Show that the equilibrium distribution in (4.48) has zeroth- and first-
order moments˘ eq D � and˘ eq

x and that its second- and third-order moments˘ eq
xx

and˘ eq
xxx are given by (4.46) with p! �c2s in the third-order moment.

4.3.4 Other Models

LBM has originally been used to solve the (weakly compressible) NSE. Therefore,
the standard equilibrium in (3.54) follows from an expansion of the Maxwell-

4.4 Stability 127

Boltzmann distribution. However, researchers have realised that the form of the
macroscopic equations that are solved by the LB scheme can be changed by
choosing different and appropriate equilibrium distributions. We conclude this
section by mentioning a few recent developments where LBM is employed for other
purposes than standard fluid dynamics.

LBM is often applied to shallow water problems. This research goes back to the
late 1990s [50–52] and is still ongoing [53]. As we will also point out in Sect. 5.5,
LBM can be used as Poisson solver for the pressure if a velocity field is defined [54].
This method is often applied to find a consistent initial state for an LB simulation.
The NSE can also be solved via LBM in the vorticity-streamfunction formulation
[55]. A few years ago, Mendoza et al. suggested LBM modifications to solve mildly
relativistic fluid flows [56] and Maxwell’s equations in materials [57]. More recent
applications are LBM for image processing [58], solving elliptic equations [59] and
consistent modelling of compressible flows [60]. In Chap. 9 we will cover multi-
phase and multi-component flows. The so-called free energy approach, covered
in Sect. 9.2, can be implemented by redefining the local equilibrium distribution
function.

4.4 Stability

We have previously discussed how the discrete LBE may be used to solve the
continuous NSE. Like any other numerical scheme, the LBM brings along a
number of issues. Those include the stability and accuracy of simulations. Since
the very beginning of the LBM, the analysis of its numerical stability has attracted
considerable interest.

To simulate physical systems, the relevant dimensionless quantities need to be
matched (cf. Chap. 7). This involves the choice of simulation-specific parameters.
This choice is not arbitrary, and it is an art to map the physics of a real system onto
a simulation. It is relatively easy to fall into the trap of choosing parameters leading
to numerical instability. Instability in an LB simulation refers to situations where
the errors of populations, density and velocity are exponentially growing. One
should distinguish those simulations from ones where solutions grow exponentially.
Both eventually lead to “Not a Number” (NaN) values for the observables. Usually
instabilities are attributed to truncation errors and an ill-posed time evolution.

We will not present an exhaustive mathematical description of stability analysis
as can be found in [61–63]; we will rather show some practical guidelines to improve
numerical stability. After discussing some general concepts in Sect. 4.4.1, we will
cover the BGK collision operator (cf. Sect. 4.4.2), followed by advanced collision
operators (cf. Sect. 4.4.3). We will finish the discussion with simple guidelines for
improving stability in Sect. 4.4.4.

128 4 Analysis of the Lattice Boltzmann Equation

4.4.1 Stability Analysis

A common way to analyse stability is through a linear von Neumann analysis [64].
This analysis allows representing a variable we are solving for in the Fourier form
(wave form), A exp.ik � x � ˝t/, with x and t being discretised spatial coordinates
and time and k being a vector wavenumber. Substituting this expression into the
discretised and linearised equation, one searches for the dispersion relation ˝.k/.
Simulations are stable when jexp.�˝�t/j � 1 for all possible wavenumbers k.

In CFD applications one typically encounters the Courant number C D
juj�t=�x which is linked to stability [65]. The Courant number has a concrete
meaning: it compares the speed �x=�t at which information propagates in
the model with the physical speed juj at which the fluid field is advected. If
�x=�t < juj (i.e. C > 1), the simulation cannot propagate the physical solution
quickly enough, and this tends to make the simulation unstable. Therefore, C � 1
is often necessary for stability.

Unfortunately, the stability analysis is more complicated for the LBM; the
Courant number is not the only determining factor. In addition to the parameters
�x, �t and u, LB has additional degrees of freedom: one or more relaxation times.
Moreover, it involves multiple equations, one for each direction ci. Thus, finding the
dispersion relation˝.k/ requires inversion of a q�q matrix, with q being the number
of populations in a DdQq model. Despite those difficulties, there has been some
progress in applying the linear von Neumann analysis to LBM [13, 66], especially
for advection-diffusion applications [67]. By analysis of the dispersion condition
˝.k/ for all possible wavenumbers k it is possible to yield some restrictions for the
velocity u.

Overall, for the LBM with the BGK collision operator, the stability map
jumaxj./ tells us the maximum achievable velocity magnitude for a given
value of the relaxation time before instability sets in.

For example, if one wants to achieve a high Reynolds number Re D jujN�x=
,
then it is possible to either increase the macroscopic velocity magnitude juj or
grid number N, or decrease the viscosity
. The increase of N is limited by
constraints on the required memory and run time. Thus, the usual approach is to
decrease the viscosity and/or increase the macroscopic velocity. We will soon see
that we cannot decrease the viscosity arbitrarily as this would lead to instability.
Also, we cannot increase the velocity without limit since the LBE recovers the
NSE only in the low-Mach limit (cf. Chap. 3). Large velocities can also lead to
instability as we will shortly discuss. Thus, for high Reynolds number flows, there
is always a compromise between maximum velocity and minimum viscosity for
which simulations remain stable.

4.4 Stability 129

One distinguishes between sufficient and necessary stability conditions.
A necessary condition must be fulfilled in order to achieve stability. For
example, we know from arguments in both Sect. 3.5.3 and Sect. 4.1.4
that =�t 	 1=2 is a necessary stability condition for the BGK operator.
However, if a single necessary condition for stability is met, the simulation
is not automatically stable because other necessary conditions may still not
be met. If a sufficient condition is met, the simulation is always stable.
Sufficient conditions can never be less restrictive than necessary conditions;
if a sufficient condition holds, all necessary conditions also hold. The least
restrictive combination of necessary conditions is called optimal. Optimal
conditions are thus both necessary and sufficient at the same time. Sufficient,
necessary, and optimal conditions are sketched in Fig. 4.2.

How do we use these general concepts to describe the stability of LBGK,
though? When sufficient and/or necessary conditions are mentioned, they are
usually specified for a specific value of . The optimal stability condition represents
the union of necessary conditions (i.e. the largest stable value of juj) for a range of
 values.

Fig. 4.2 Graphical representation of conditions, from most restrictive (inner) to least restrictive
(outer). (Here, a condition is met if we are inside its region.) The region explicitly permitted by
any of the given sufficient conditions is solid grey, and the region disallowed by any of the two
necessary conditions is hatched. In this case, it is enough that these two necessary conditions are
fulfilled, and their combination defines the optimal condition. (The optimal condition is the least
restrictive sufficient condition possible; it is less restrictive than the given sufficient conditions)

130 4 Analysis of the Lattice Boltzmann Equation

For the LBM, necessary and sufficient stability conditions are normally
obtained analytically in the bulk, far away from any boundaries. In most
simulations, however, there are boundaries and round-off errors. Thus, the
analytically derived stability conditions are often not very useful, but they
can act as guidelines. It is always recommended to start with available
analytical conditions and further improve stability for a given problem if that
turns out to be necessary.

4.4.2 BGK Stability

We will now discuss sufficient and necessary stability conditions for the BGK
collision operator. As mentioned, these conditions were obtained analytically for the
bulk LBE without boundaries present, and can therefore only serve as guidelines.

For the BGK collision operator, a sufficient stability condition is the non-
negativity of all equilibrium populations [63, 67, 68]. This condition holds
for any value of where =�t > 1

2
: as long as f eq

i 	 0 for all i, the simulation
is stable. Since the equilibrium populations are functions of the velocity u,
this can be expressed as a sufficient stability condition for the velocity u.

The non-negativity condition for the equilibrium populations in (3.54) is a
complicated function of the velocity components u˛. We illustrate this for D2Q9
in Fig. 4.3.

For practical purposes, however, we will use only the representation with
maximum achievable velocitymagnitude jumaxj that still provides stable simulations
without taking into account individual velocity components. (This condition is
shown as a dark circle in Fig. 4.3). In this way, we find a sufficient stability condition
that is significantly simpler, albeit stricter, than the complex stability condition in
Fig. 4.3. For the BGK collision operator with the usual equilibrium function from
(3.54), we can write it as

jumaxj <

8
<̂

:̂

q
2
3
�x
�t � 0:816�x

�t for D1Q3;
q

1
3
�x
�t � 0:577�x

�t for D2Q9, D3Q15, D3Q19, D3Q27:
(4.49)

In addition to the non-negativity of the equilibrium f eq
i , some authors claim that also

the non-negativity of the populations fi is required to ensure stability [69]. Special

4.4 Stability 131

Fig. 4.3 Complex interplay
of velocity components ux
and uy that provide
non-negative equilibrium
populations in (3.54) for
D2Q9. The light grey area
denotes a sufficient stability
condition that is independent
of . The darker area
represents a simplified but
stricter sufficient condition
that depends only on the
velocity magnitude;
juj < jumaxj

techniques to ensure that the populations remain positive have been proposed
[70, 71].

For the BGK collision operator, an optimal stability condition for the range
=�t 	 1 is the non-negativity of the rest equilibrium population [67]:
stability is guaranteed in the bulk if f eq

0 > 0 and =�t 	 1. From this follows
the velocity magnitude condition

juj <
r
2

3

�x

�t
: (4.50)

For all other relaxation times, i.e. 1
2
< =�t < 1, the attained maximum velocity

magnitude jumaxj is a complicated function of [63]. In any case, the maximum
velocity magnitude jumaxj is bound between the values defined by two stability
conditions: the sufficient condition for all =�t > 1

2
, and the optimal condition

for =�t 	 1. We illustrate this stability behaviour in Fig. 4.4.
Unfortunately, as we indicated earlier, those results were obtained analytically

for the bulk LBE. In simulations with boundaries, it is not possible to have stable
simulations for all values of =�t > 1

2
for all velocity magnitudes juj < jumaxj

from (4.49). The stability condition typically deteriorates (i.e. jumaxj ! 0) with
decreasing viscosity (i.e. =�t ! 1

2
), as shown in a number of publications. Some

132 4 Analysis of the Lattice Boltzmann Equation

Fig. 4.4 Sketch of analytical stability region for 2D and 3D models. This includes the sufficient
stability condition juj < p

1=3�x=�t for =�t ! 1
2

and the optimal stability condition juj <p
2=3�x=�t for =�t � 1

of them show it through the non-negativity of populations fi [69], some through the
von Neumann analysis [62, 66].

It is important to emphasise that the sufficient stability boundaries for =�t >
1
2

are not identical in these works. For example, in contrast to the analytical
results presented above, the von Neumann stability analysis is sometimes per-
formed numerically for certain wavenumbers k. Thus, one should use results from
publications [62, 66, 69] with caution. Overall, for general flows (including, for
example, boundaries and numerical round-off errors), it is a safe assumption that
the maximum achievable velocity magnitude jumaxj approaches zero (rather than a
finite value) for =�t! 1

2
. For example, Niu et al. [62] investigated the dependence

of jumaxj on for D2Q9. They found a yet another linear relation for small ,

jumaxj./ D 8
�

�t
� 1
2

�
�x

�t
for

�t
< 0:55; (4.51)

and a constant maximum velocity, jumaxj./ D 0:4�x=�t, for =�t > 0:55, see
Fig. 4.5. Equation (4.51) is only valid for certain assumptions and may not hold for
more general flow problems. However, we should emphasise that Fig. 4.5 represents
a sketch of the stability picture in real simulations. (Note however that this picture
is strongly dependent on the choice of boundary conditions [9].)

4.4 Stability 133

Fig. 4.5 Stability regions of
jumaxj=.�x

�t / vs. =�t
(simplified version of Fig. 2
in [62])

As a guideline to find stable parameters for small viscosities, one should
start with the sufficient stability condition for all =�t > 1

2
in (4.49). If the

simulations are unstable, then one needs to perform a few simulations with
different values of and u to find an empirical relation jumaxj./ similar to that
in Fig. 4.5 for the case at hand. This curve tends to be different for different
flow problems.

There are other ways to improve the stability. For example, we can choose
another collision operator, as discussed in more detail in Chap. 10. We will now
briefly touch upon this.

4.4.3 Stability for Advanced Collision Operators

As we will explain in more detail in Chap. 10, BGK is only the simplest available
collision operator with a single relaxation time . A possible extension is the two-
relaxation-time (TRT) collision operator with two distinct relaxation times C and
�. An even more advanced model is the multi-relaxation-time (MRT) collision
operator with q relaxation times i for a DdQq velocity set.15 We will show in
Chap. 10 that the BGK model is a special case of the TRT model which in turn
is a special case of the MRT model.

15Not all of these q relaxation times are independent, though.

134 4 Analysis of the Lattice Boltzmann Equation

In the following, we will briefly describe how stability can be improved with an
advanced collision operator. We focus on the TRT model for which analytical results
are available [63]. The MRT model is far more difficult to analyse due to its many
degrees of freedom.

On the Navier-Stokes level, both the BGK and the TRT models are indistinguish-
able if we choose C D . In fact, the kinematic viscosity in the TRT model turns
out to be c2s .

C��t=2/ rather than c2s .��t=2/ as in the BGK case. The additional
TRT parameter � is free to choose, and a good choice can improve the numerical
stability. BGK is recovered from TRT for the special choice C D � D .

The TRT stability analysis becomes more involved because now we have a
stability map with two parameters: jumaxj.C; �/. Luckily, we do not need to
analyse the TRT stability for all possible values of C and �.

In the TRT framework, there is a certain combination of C and �
(historically called the magic parameter �) that governs the stability and
accuracy of simulations [72]:

� D

C

�t
� 1
2

!�
�

�t
� 1
2

�

: (4.52)

A recommended choice is � D 1=4 [67]; this corresponds to =�t D 1

in the BGK case, and allows the same optimal stability from which the
velocity condition in (4.50) follows. For any value of C, one can always
select the free parameter � such that � D 1

4
. The advantage of the TRT

model is therefore that the stability condition and the kinematic viscosity
 D
c2s .

C � �t=2/ are decoupled. We can thus get optimal stability for any
viscosity using TRT; this is clearly not possible with the BGK operator.

While the TRT collision operator with � D 1=4 is not a universal remedy that
is sure to make simulations stable for any velocity magnitude, it can often improve
stability, especially when the BGK relaxation time would be close to �t=2.

4.4.4 Stability Guidelines

Finally, we present simple guidelines to improve the stability of LB simulations as
also depicted in Fig. 4.6.

We assume that a given Reynolds number

Re D jujN�x

c2s
�
 � �t

2

� (4.53)

4.4 Stability 135

Fig. 4.6 Guidelines for improving simulation stability for a given Reynolds number

is to be simulated. Here, N is the number of lattice nodes (also called the grid
number) along a characteristic length scale ` D N�x. We recommend keeping
N fixed initially. This keeps the memory footprint and computational requirements
under control.

As a rule of thumb, we always start with the BGK collision operator. If
simulations are unstable with the current arbitrary , then the next step is to choose
=�t D 1, the lowest value which allows optimal stability for the BGK collision
operator, and adjust juj to match the Reynolds number. After this adjustment, two
cases are possible: juj < cs or juj 	 cs.

If juj < cs (ensuring a sufficiently small Mach number) and the simulation is
stable, then there is no need to further change the parameters. If simulations are
unstable, then it is recommended to apply the TRT or MRT collision operator.
Subsequently, the viscosity and velocity can be reduced while maintaining a
constant Re and � D 1=4, the latter allowing for optimal stability.

If juj 	 cs for =�t D 1 then has to be decreased to reduce the velocity
magnitude, while keeping Re unchanged. If the magnitude of the new scaled
velocity juj is larger than the obtained BGK collision operator stability curve,
i.e. juj > jumaxj./ then one needs to further reduce u and (while keeping the
Reynolds number) until the velocity magnitude is within the stability region. If the
simulations are still unstable under these conditions, then one should use TRT or
MRT models with � D 1=4 to allow optimal stability.

136 4 Analysis of the Lattice Boltzmann Equation

As a last remedy, one could increase the grid number N, though this would
increase the memory and computational requirements.

4.5 Accuracy

Now that we have learnt the basic principles determining the consistency and
stability properties of the LBE, we will discuss how accurate the LBM is as a
Navier-Stokes solver. Other references covering this topic are [4, 31, 73–76]. We
start by introducing a few concepts such as order of accuracy (cf. Sect. 4.5.1) and
how to measure the accuracy (cf. Sect. 4.5.2). In Sect. 4.5.3 and in Sect. 4.5.4 we
will investigate numerical and modelling errors in the LBM. We will provide an
overview of the numerical accuracy of LBM as Navier-Stokes solver in Sect. 4.5.5.
Finally, Sect. 4.5.6 contains some guidelines to set up an LB simulation with optimal
accuracy.

4.5.1 Formal Order of Accuracy

Let us start by explaining what accuracy order means and how can it be formally
determined. While we could discuss this subject in the framework of LBM, its
theoretical analysis is a cumbersome task. As we have seen in Sect. 4.1, accessing
the continuum description of the LBE requires carrying out a lengthy Chapman-
Enskog analysis. In contrast, this kind of study is much more direct for finite
difference schemes. Hence, in order to introduce concepts such as the formal order
of accuracy and to show the relation between the accuracy order and the leading-
order truncation errors, we will first investigate the finite difference method. The
main conclusions of this analysis also hold for the LBE.

Consider the Couette flow depicted in Fig. 1.1(a) and assume it is impulsively
started from rest. We are interested in the velocity field u.y; t/, given proper initial
and boundary conditions (which are not relevant for our discussion here). In the
bulk, the continuum formulation of this problem reads

@u

@t
�
 @

2u

@y2
D 0 (4.54)

with the kinematic viscosity
.
Now, let us assume that we have discretised equation (4.54) using forward

difference in time and centred second-order finite difference in space:

unC1
j � unj
�t

�
 u
n
jC1 � 2unj C unj�1

�y2
D 0: (4.55)

4.5 Accuracy 137

Superscripts denote the time step and subscripts the spatial location.
The formal way to determine the accuracy of (4.55) as an approximation of (4.54)

is to analyse the structure of the truncation errors in the discretised equation. We can
obtain these errors in two steps. We first perform a Taylor expansion of the discrete
solution around time step n and location j16:

unC1
j D unj C

�t

1Š

@u

@t

ˇ
ˇ
ˇ
ˇ
ˇ

n

j

C �t2

2Š

@2u

@t2

ˇ
ˇ
ˇ
ˇ
ˇ

n

j

C �t3

3Š

@3u

@t3

ˇ
ˇ
ˇ
ˇ
ˇ

n

j

C O.�t4/;

unjC1 D unj C
�y

1Š

@u

@y

ˇ
ˇ
ˇ
ˇ
ˇ

n

j

C �y2

2Š

@2u

@y2

ˇ
ˇ
ˇ
ˇ
ˇ

n

j

C �y3

3Š

@3u

@y3

ˇ
ˇ
ˇ
ˇ
ˇ

n

j

C O.�y4/;

unj�1 D unj �
�y

1Š

@u

@y

ˇ
ˇ
ˇ
ˇ
ˇ

n

j

C �y2

2Š

@2u

@y2

ˇ
ˇ
ˇ
ˇ
ˇ

n

j

� �y3

3Š

@3u

@y3

ˇ
ˇ
ˇ
ˇ
ˇ

n

j

C O.�y4/:

We substitute these expressions into (4.55) and obtain, after some simplification,

@u

@t
�
 @

2u

@y2
D ��t

2Š

@2u

@t2
C
�y2

4Š

@4u

@y4
C O.�t2/C O.�y4/: (4.56)

Exercise 4.12 Show that the approximation of @u=@tjnj using the centred difference

formula17 .unC1
j � un�1

j /=.2�t/ leads to a O.�t2/ leading truncation error.

Equation (4.56) reveals the form of the actual PDE solved by the discretisation
scheme, namely (4.54) plus undesired truncation errors. Those errors are the
difference between the discretised equation and the target continuum equation.

A discretisation scheme is consistent if its truncation errors tend to zero
when �t and �y go to zero. The rate at which this happens establishes the
formal order of accuracy of the discretisation scheme. (The scheme in the
above example is first-order in time and second-order in space as the leading
errors in (4.56) scale with �t and �y2, respectively.) If the scheme is stable,
then the order of the discretisation errors also dictates the rate of convergence
of the numerical solution towards the target PDE solution. While consistency
concerns with the form of the governing equations, convergence focuses on
the solution itself.

16Here we assume that the solution is sufficiently smooth.
17This kind of approximation for the time derivative makes the algorithm effectively a three time
level scheme, the so-called leapfrog scheme. Later in this section, we will see that the LBE employs
a similar discrete form in its time evolution approximation.

138 4 Analysis of the Lattice Boltzmann Equation

4.5.2 Accuracy Measure

In simple situations, such as in Sect. 4.5.1, it is possible to evaluate the accuracy of a
numerical scheme theoretically. However, this is often hardly feasible as simulations
involve non-linear terms and/or are affected by other error sources (as discussed
later in this section). Consequently, we need a more pragmatic approach rather than
a theoretical measure.

Knowing the accuracy of a numerical simulation is important. It allows us, for
example, to understand the sensitivity of our solution to the model parameters. We
can also assess the quality of our code implementation, e.g., identify code mistakes
(bugs) or other inconsistencies in the numerical algorithm or even in the model
itself. Generally, code validation and verification are very important topics in CFD
[77, 78].

A simple procedure to quantify the error of a numerical simulation consists in
comparing it with a known analytical solution.18 There are different approaches to
do this [77–79]. In most cases in this book, we will use the so-called L2 error norm.
Given an analytically known quantity qa.x; t/, which is generally a function of space
and time, and its numerical equivalent qn.x; t/, we define the L2 error norm:

�q.t/ WD
v
u
u
t
P

x

�
qn.x; t/ � qa.x; t/

�2

P
x q

2
a.x; t/

: (4.57)

The sum runs over the entire spatial domain where q is defined. An advantage of
this definition is that local errors cannot cancel each other; the L2 error is sensitive
to any deviation from qa.

The L2 error can also be used as a criterion for convergence to steady flows.
To do so, qa and qn are replaced by the numerical values of quantity q at a
previous and the current time (or iteration) step, respectively. For example, we may
define convergence by claiming that the L2 deviation between the velocity field
at subsequent time steps is below a threshold �. For double precision arithmetic,
typical chosen values are around � D 10�7. However, we will revise this criterion
in Sect. 4.5.3 when discussing the iterative error.

Some further remarks are necessary:

1. If q is a vector-valued quantity, e.g. the velocity, we replace qa ! qa and qn !
qn, with e.g. q2a D qa � qa.

2. If qa is zero everywhere, the denominator in (4.57) vanishes and the error is not
defined. In this case we need another suitable normalisation, such as a (non-zero)
characteristic value of q.

18In case an analytical solution is not available, we can use the outcome of a finer mesh simulation
and take it as reference solution.

4.5 Accuracy 139

Exercise 4.13 Show that the L2 error �q is always non-negative, �q 	 0, and that
equality only holds if qn.x/ D qa.x/ everywhere.

4.5.3 Numerical Errors

Approximating any system of continuous equations (with suitable boundary and
initial conditions) by a system of discrete algebraic equations, we inevitably
introduce errors. In the CFD community it is commonly accepted that there are
three error sources: the round-off error, the iterative error and the discretisation error
[77, 78]. We will take a look at all of them in the context of the LBM.

4.5.3.1 Round-Off Error

The round-off error results from computers having finite precision. While inherent
to any digital computation, this error source can be mitigated by using more
significant digits, e.g. by switching from single precision (with 6 to 9 decimal digits)
to double precision (with 15 to 17 decimal digits). The importance of round-off error
tends to increase with grid refinement and/or time step decrease.

The round-off error in the LBM grows as the ratio u=cs / Ma becomes small,
as explained in [73]. Of course we would like to keep Ma as low as possible
to reduce compressibility errors, cf. Sect. 4.5.4. Hence, we are facing a conflict
since loss of precision (due to the round-off error) and solution accuracy (due
to compressibility errors) are difficult to control independently. Fortunately, in
most practical applications with double precision, this problem turns out to be
insignificant. The situation can be different for single precision computations,
though.

Strategies to alleviate the round-off error in LB simulations have been con-
sidered. An early idea [73] consists of reformulating the LBE using alternative
variables which, although mathematically equivalent to the original problem,
reduce the round-off error. An alternative procedure to reduce round-off errors
consists of replacing the standard equilibrium by the incompressible one [80]. This
strategy, however, changes the mathematical form of the problem [40], replacing
the weakly-compressible NSE by the incompressible NSE (represented in artificial
compressibility form), cf. Sect. 4.3.2.

4.5.3.2 Iterative (Steady-State) Error

The iterative error results from the incomplete iterative convergence of the discrete
equation solver. In explicit time-marching solvers, this error determines the accuracy
up to which steady-state solutions are reproduced.

140 4 Analysis of the Lattice Boltzmann Equation

As we know, the LBM reaches steady state solutions through an explicit time-
marching procedure. Hence, we can assume that such a (converged) solution may
actually differ from the true steady state. This difference we call the iterative
error. Even in cases where the LBM adopts other iterative procedures, such as
time-implicit matrix formulations [81–83], we will still face a similar iterative
error. In fact, the main benefit of these time-implicit techniques is an accelerated
convergence, i.e. a shorter simulation time. However, these methods have never
received broad acceptance, in large part due to their cumbersome algorithmic
complexity. Possibly the best compromise to accelerate steady-state convergence
while maintaining the algorithmic simplicity is the preconditioned formulation of
the LBE [84–86].

One way to infer the impact of the iterative error is to quantify how much our
solution changes between time steps (iterations), based on a suitable convergence
criteria. It is common to evaluate the (absolute or relative) difference between
successive iterations. Yet, this approach may lead to misleading conclusions,
particularly when solutions display a slow convergence rate [87].

A more reliable alternative is based on evaluating the solution residual at each
time step [87, 88]. The underlying idea is to measure the remainder (residual)
after plugging the current numerical solution into the discretised equation we are
solving. The residual tells us how far we are from the steady-state convergence. If
the problem is well-posed, we should expect the residual to approach zero (up to the
round-off error) as iterations converge.

In the LB community, the first strategy, based on the difference between
successive iterations, remains the most popular approach. Further studies are
required to understand the performance of both strategies to measure the steady-
state convergence of LB simulations.

4.5.3.3 Discretisation Error

Recalling Sect. 4.5.1, the discretisation error results from approximating the
continuous PDEs by a system of algebraic equations. This is the major error source
separating our numerical solution from the exact solution of the underlying PDE.
The discretisation error decreases with refining the grid and the time step.

For linear problems, the discretisation error can be directly related to the (spatial
and temporal) truncation errors, as we did in Sect. 4.5.1. However, in more complex
non-linear problems or indirect procedures to solve the hydrodynamic problem,
such as LBM, the relationship between truncation and discretisation errors is
not so evident. For this reason, the discretisation error is frequently estimated
(cf. Sect. 4.5.2) rather than computed analytically. Providing certain conditions are
fulfilled (as explained below), the rate of convergence estimates the discretisation
error.

Both spatial and temporal truncation terms affect the discretisation error. Let us
focus on the spatial discretisation error and assume it to be the dominating numerical
error in �� . Here, � is the desired observable (which for this purpose is an arbitrary

4.5 Accuracy 141

scalar field). Also for simplicity, instead of using the L2 error norm, let us quantify ��
by simply taking the difference between the numerical estimate �i (where subscript
i refers to the grid refinement level) and the exact analytical solution �0:

�� D �i � �0 D ˛�xpi C O.�xpC1
i /: (4.58)

�xi is the spatial resolution for the chosen refinement level i, ˛ is a constant to be
determined, and p is the observed order of grid convergence. The key point here
is the assumption that �� follows a power-law relation for sufficiently fine meshes.
In addition, O.�xpC1

i / stands for the higher-order error terms which we consider
negligible here.

By determining the numerical solution �i for three or more mesh sizes, say
�x1 D �x, �x2 D r�x and �x3 D r2�x, we can estimate the convergence
order p19:

p D
log

�
�3��2
�2��1

�

log.r/
: (4.59)

For solutions lying in the asymptotic range of convergence, i.e. for sufficiently
low�x and�t so that the lowest-order terms in the truncation error dominate,
the order of accuracy can be measured by its order of convergence according
to (4.59).

The LBE is an O.�2/ approximation of the NSE as shown in Sect. 4.1, where the
second-order terms in the truncation error can be absorbed in the definition of the
fluid viscosity. This leaves only third-order terms as the leading truncation error so
that the method is effectively second-order accurate with respect to the NSE. As we
have seen in Sect. 3.5, LBM is also second-order accurate in time. A way to identify
this accuracy level is to measure the numerical convergence of LBM. Second-order
convergence in space means that the error decreases quadratically with �x when
fixing the dimensionless ratio
�t=�x2. Second-order convergence in time leads
to a quadratical decrease of the error with �t when fixing the spatial resolution
�x [73].20

While these convergence measures are valid estimators for the accuracy of LB
solutions, we emphasise that the LB discretisation error displays a more complex
structure. The reason is that, unlike in standard CFD procedures, the LBE is not

19Alternatively, if we know the exact solution �0, we need �i for only two mesh sizes. Other
convergence estimators are reviewed in [77–79].
20Here we assume that other error sources are negligibly small. As we will discuss in Sect. 4.5.4,
LBM may no longer support second-order time accuracy if the compressibility error is comparable
to the discretisation error.

142 4 Analysis of the Lattice Boltzmann Equation

a direct discretisation of the NSE. In addition to the conventional dependence of
truncation errors on �x and �t, truncation errors also depend on the LB relaxation
parameter(s) [74, 75]. The specific relationship between the LB truncation errors and
the relaxation parameters has been deduced for BGK [31] and for more advanced
collision operators, such as TRT and MRT (cf. Chap. 10) [16, 76, 87, 89].

An interesting property of the LB discretisation is that, for steady-state
solutions, the spatial truncation errors are solely determined by terms
proportional to . � �t=2/2 for the BGK collision operator (see Chap. 10
for advanced collision operators and their accuracy).

We can take advantage of this known functional form. In particular, we can select
certain relaxation parameter values to tune the accuracy or stability (cf. Sect. 4.4).
This is a distinctive feature of LBM and not available for standard CFD methods.
Here we list possible improvements:

• The third-order spatial truncation error is proportional to Œ.=�t � 1
2
/2 � 1

12
	.

According to the Chapman-Enskog analysis, this error appears at O.�3/. It is the
leading-order truncation of the Euler system of equations [31, 76, 87, 89]. The
relaxation choice that cancels this error is D .1=p12C1=2/�t � 0:789�t for
BGK and is called the optimal advection condition.

• The fourth-order spatial truncation error is proportional to Œ.=�t � 1
2
/2 � 1

6
	.

This truncation error appears at O.�4/. It is the leading-order truncation of the
viscous diffusion terms appearing in the NSE [31, 76, 87]. The relaxation choice
that cancels this error is D .1=p6C1=2/�t � 0:908�t for BGK and is called
the optimal diffusion condition.

• The effect of the non-equilibrium f neq
i on the evolution of fi can be demon-

strated [72, 76] to be proportional to Œ.=�t � 1
2
/2 � 1

4
	. Thus, D �t removes

this error. This choice makes the LBE equivalent to a central finite difference
scheme [90]. According to the linear von Neumann analysis, this choice enables
the optimal stability condition [63, 67] (cf. Sect. 4.4).

This list of discretisation coefficients is far from complete; more special cases can
be found [87, 91]. Still, for most practical purposes, the items above are reasonable
guidelines. The true impact of truncation corrections usually comes from several
sources, possibly coupled in a complex way. As such, the choice of ideal relaxation
value(s) does not have an immediate answer in general; it rather requires an educated
guess.

4.5 Accuracy 143

The dependence of discretisation errors on the relaxation parameter(s) can
have drawbacks. The BGK model can lead to an important violation of
physical behaviour that has no parallel in standard CFD methods. The reason
is that the relaxation time simultaneously controls the fluid viscosity and
the discretisation errors. Solutions obtained with the BGK model gener-
ally exhibit -dependent and therefore viscosity-dependent characteristics.
This contradicts to the fundamental physical requirement that hydrody-
namic solutions are uniquely determined by their non-dimensional physical
parameters.

We can overcome this disadvantage by choosing advanced collision operators,
such as TRT or MRT (cf. Chap. 10). They allow us, at least for steady-state solutions,
to keep the truncation errors independent of the fluid viscosity.

4.5.4 Modelling Errors

Sometimes a numerical scheme may not exactly reproduce the physics of interest,
but rather approximate it in some sense. Still, such a choice can be totally justifiable,
e.g. to keep the numerical procedure simple and/or efficient. In the end, we may have
to deal with an approximation problem, i.e. a modelling error. The physical content
of the LBE is essentially governed by the chosen lattice and the chosen form of
the equilibrium distributions. These two features are the main sources of the LB
modelling errors.

The velocity space discretisation is directly related to the chosen lattice
(cf. Sect. 3.4). It defines which conservation laws (via the velocity moments)
can be captured up to which accuracy level. It turns out that, for standard lattices
(i.e. lattices whose isotropy is respected only up to the fifth order, cf. Sect. 3.4.7),
the LBE cannot accurately capture energy transport [24, 92]. The LBE with standard
lattices is an isothermal model (or, more rigourously, an athermal model [13, 93]).

Also the mass and momentum balance equations show limitations when sim-
ulated with standard lattices. As described in Sect. 4.2.1, these lattices are not
sufficiently isotropic to accurately describe the third-order velocity moment. This
leads to an O.u3/ error term in the viscous stress tensor [7], (4.15). The LBE,
therefore, does not exactly solve the desired NSE. While this cubic defect is
negligible for slow flows, it may become important at high Mach numbers. The
O.u3/ error also affects the LBM by corrupting the Galilean invariance of the
macroscopic equations [7].

144 4 Analysis of the Lattice Boltzmann Equation

Standard lattices introduce an O.u3/ error term that limits the LBM to
simulations of the isothermal NSE in the weakly compressible regime.

Another modelling error comes from the LB equilibrium. The form of the
equilibrium dictates the physics simulated by the LBE (cf. Sect. 4.3). In fluid
flow simulations, this equilibrium is usually given by (3.4) which reproduces the
compressible NSE. But due to the O.u3/ error, only the weakly compressible
regime (small Ma) is accessible. Therefore, LBM is typically adopted as an explicit
compressible scheme for the incompressible NSE [40, 80, 94].21 In this case the
equation reproduced by the LBM differs from the true incompressible NSE by
the so-called compressibility errors. These are associated with gradients of the
divergence of the density and velocity fields, and they typically scale with O.Ma2/
[73, 74].

A distinctive property of the compressibility error is that it is grid-independent.
This means that, if we keep Ma constant while refining the grid, there will be a point
where compressibility effects dominate the error and limit further convergence, even
with arbitrarily fine meshes. In case that compressibility and discretisation errors
are of the same order, convergence towards the incompressible NSE requires us
to simultaneously decrease the Mach number (/ u=cs) and decrease the lattice
constant (/ �x=`) where u and ` are macroscopic velocity and length scales,
respectively.

Decreasing u=cs and �x=` with the same rate, i.e. reducing compressibility and
discretisation errors simultaneously, means that the time step has to scale like �t /
�x2. This means that decreasing the mesh spacing by a factor r > 1 requires a
time step refined by a factor r2 and leads to a reduction of the Mach number by a
factor r. This has a number of consequences. First, increasing the grid resolution
by a factor r leads to a total increase of computational requirements by a factor of
r2 � r2 D r4 in 2D and r3 � r2 D r5 in 3D! The reason is that, in order to simulate
the same physical time interval, the number of required time steps increases by a
factor r2. Secondly, the relation �t / �x2 means that LBM becomes effectively
only first-order accurate in time [20, 21, 31, 73, 74].

Exercise 4.14 Show that the condition u=cs / �x=` leads to �t / �x2.

In an attempt to get rid of the compressibility error altogether, it was sug-
gested [39, 40] to replace the standard equilibrium in (3.4) by an incompressible
variant, (4.42). This way, the incompressible NSE is approximated by an artificial
compressibility system [40, 94, 95]. While for steady flows this system indeed fully
removes the compressibility error, this “trick” is not completely effective in time-
dependent flows [94, 96–98] (cf. Sect. 4.3.2).

21There are exceptions, though, e.g. the simulation of sound waves in Chap. 12.

4.5 Accuracy 145

In general, LB simulations for the incompressible NSE suffer from a O.Ma2/
compressibility error. When keeping this compressibility error equal to
the discretisation error, this makes the LB scheme effectively first-order
accurate in time.

4.5.5 Lattice Boltzmann Accuracy

It is possible to formulate the LBE in terms of finite difference stencils, called
recurrence equations [72, 76]. Without going into details, it can be shown [76] that,
in recurrence form, the momentum law reproduced by the LBE satisfies

T .x; t/
„ƒ‚…
unsteady

CA.x; t/
„ƒ‚…
advection

D �P.x; t/
„ƒ‚…
pressure

CD.x; t/
„ƒ‚…
diffusion

CO.�x2; psŒ 	/
„ ƒ‚ …

spatial truncation

CO.�t2; ptŒ 	/
„ ƒ‚ …
temporal truncation

:

(4.60)

This generic form is nothing but a compact representation of (4.16b) at discrete
level. Each term in (4.60) uses finite difference stencils rather than differential
operators [76]. Let us analyse them individually.

1. The T operator is a three time level difference taken at time steps .t ��t; t; t C
�t/. Its exact form depends on .22

2. The A and P operators are centred difference schemes for the advection and
pressure terms, respectively.

3. The D operator denotes the Du Fort-Frankel approximation for the diffusion
term [76, 99]. As known from [79], the consistency of this scheme requires
�t � �x2, a relation usually called diffusive scaling [20, 100].

4. The remaining two terms embody the truncation contributions coming from
spatial and temporal terms, with an additional -dependent component in
polynomial form. We denote the spatial and temporal contributions as psŒ 	 and
ptŒ 	, respectively. While the spatially varying polynomials psŒ 	 contain in
form of . � �t=2/2, the time dependent ones ptŒ 	 feature a more complex
-structure [16, 31, 76].23

22For those familiar with finite difference techniques, such an operator can be interpreted as a
leapfrog scheme for the temporal derivative, yet not exactly identical due to the degree of
freedom [76].
23This analysis is valid for the BGK model. For the TRT/MRT collision operators, the term
. � �t=2/2 should be interpreted as � for spatial truncations (cf. Chap. 10), while it is a
combination of � and .�˙/2 terms for temporal truncations [76].

146 4 Analysis of the Lattice Boltzmann Equation

The LBM is a numerical scheme approximating the NSE with second-
order accuracy in space and time (when is fixed). Yet, the continuum
equations described by the LBE may not necessarily lead to the NSE. The
difference is due to the modelling errors. The approximation is only successful
at low velocities where O.u3/ becomes negligible. Another modelling error is
the compressibility error O.Ma2/ that further affects the LBE in case one is
interested in the incompressible NSE. If this compressibility error and the
discretisation error are simultaneously reduced, then the time accuracy of
the LBM reduces to first order.

So far we have only addressed the behaviour of the LBE in the bulk. We
have to keep in mind that the accuracy may be affected by other sources, such
as boundary or initial conditions. We will address both topics in Chap. 5. If
initial and boundary conditions are properly included, the LBM is a competitive
Navier-Stokes solver. In fact, the LBM can even show better accuracy and stability
characteristics than standard second-order Navier-Stokes solvers at identical grid
resolutions. This supremacy mainly comes from the control over truncation errors in
a grid-independent fashion, through the tuning of relaxation rates [4, 91, 101, 102].

4.5.6 Accuracy Guidelines

In a typical simulation scenario we want to optimise the accuracy while respecting
the non-dimensional groups of the problem. The matching between the non-
dimensional numbers of the physical problem, say the Reynolds number in hydro-
dynamics or the Péclet number in transport problems, and those in the LB scheme
is the focus of Chap. 7. Here, our motivation is to discuss how to select values for
the velocity u, the relaxation time through the viscosity, and the grid number N
(cf. (4.53)) in order to reach the highest accuracy possible.

Increasing the grid number N obviously enhances accuracy. However, it also
significantly impacts the run time and memory requirements of simulations, and
it should therefore be kept as low as possible. Remember that a system size N
means a memory overhead / N3 in 3D. Hence, a judicious choice for the accuracy
improvement should focus on the other two parameters, u and , while keeping N
fixed. To match the Reynolds number in (4.53), we must adjust u and accordingly
as they are not independent.

The velocity u does not strongly affect the accuracy, proving it is sufficiently
small (cf. Sect. 4.5.4). Hence, the most important parameter for controlling the
accuracy is the relaxation time .

4.5 Accuracy 147

It can be shown that, for steady-state problems [72], we can cancel the O.�3/ or
the O.�4/ truncation errors with the following choice of :

O.�3/:

�t
D 1

2
C 1p

12
� 0:789;

O.�4/:

�t
D 1

2
C 1p

6
� 0:908:

(4.61)

The case =�t � 0:789 is suitable for advection-dominated problems, while
=�t � 0:908 is advantageous for diffusion-dominated problems. Other problems
require the cancellation of other truncation errors. A more complete list of relevant
values of can be found in [87, 91].

It turns out that for accurate and consistent LB simulations it is not rec-
ommendable to use the BGK collision operator. Results from BGK simulations
are viscosity-dependent, which means they are not uniquely determined by the
non-dimensional groups representing the physical problem. While for high grid
refinement levels this defect may be kept within acceptable bounds (based on
some subjective criteria), at coarser grids the effect of truncation terms is generally
significant. A quick fix consists of making an educated guess for the value of
and stick with it at all points of the domain. However, with this procedure we
are not taking full advantage of the distinctive feature of LBM: the possibility to
improve the accuracy of numerical solutions in a grid-independent fashion by tuning
the relaxation parameters. Furthermore, in this way we are also compromising the
computational efficiency of our simulation. The main reason is that a small value for
 is generally required to optimise accuracy, while a rapid steady-state convergence
implies a large value of [72] (cf. Chap. 7).

The TRT/MRT collision operators (cf. Chap. 10) solve these problems. They
enable the local prescription of the relaxation parameters without any change in
viscosity. Taking the TRT collision operator as an example, its steady-state (or
spatial truncation) errors depend on the combination of two relaxation times through
the parameter � D .C=�t � 1=2/.�=�t � 1=2/. The relaxation parameter C
is related to the viscosity in the NSE. The parameter � is free. If one changes
the viscosity (i.e. C), then one should change � accordingly to keep � constant.
This is a very powerful tool as it allows performing accurate simulations even with
C=�t
 1; this would not be possible with BGK. In the TRT framework, (4.61)
becomes

O.�3/: � D 1

12
� 0:083;

O.�4/: � D 1

6
� 0:166:

(4.62)

148 4 Analysis of the Lattice Boltzmann Equation

Fig. 4.7 Workflow for improving the accuracy of simulations that require a constant Reynolds
number

We summarise the workflow to maximise the simulation accuracy for a
given problem, also illustrated in Fig. 4.7.

Our first action should be to determine the relevant non-dimensional
numbers, such as the Reynolds number. Then, based on some educated guess,
we should select the grid number N. Its value should represent a compromise
between the best spatial resolution possible and the available computational
resources. Also, the choice of N should give us the possibility to vary while
keeping u low to satisfy the low Ma requirement. The final parameter we
should deal with is .

We should check whether solutions are too -sensitive. In case they
significantly depend on , we may have to replace the BGK collision operator
by the TRT or MRT operators. The next step is to find a suitable relaxation

(continued)

4.6 Summary 149

parameter, either or �, to optimise accuracy. For this task we can use our
knowledge of the physical problem, e.g. if it is dominated by bulk phenomena,
boundaries, advection or diffusion. Based on this, we can choose a proper
value for or � from (4.61) or (4.62), respectively. A more meticulous
adjustment on a trial and error basis is possible. In the end, if the attained
accuracy is still unsatisfactory, we should take a larger grid number N and
restart the process.

4.6 Summary

In this chapter we found the macroscopic conservation equations that the LBE
reproduces when the grid size �x and time step �t tend to zero. The mass
conservation equation is the continuity equation, while the momentum conservation
equation is a weakly compressible NSE that corresponds to the incompressible NSE
when Ma2 goes to zero. (This “weak compressibility” comes from O.u3/ error terms
that are insignificant if Ma2 � 1.)

The Chapman-Enskog analysis in Sect. 4.1 establishes the connection between
the “mesoscopic” LBE and the macroscopic mass and momentum equations. For
other variants of the LBE, such as the alternative equilibrium models covered in
Sect. 4.3, this analysis may also be used to determine the macroscopic equations
that these variants imply. The Chapman-Enskog analysis is not the only possible
approach here, though; we briefly touched on some alternatives in Sect. 4.2.5.

The picture of the LBE as a Navier-Stokes solver is complicated by the fact that
the LBE is not a direct discretisation of the NSE, unlike many other fluid solvers.
Instead, the LBE is a discretisation of the continuous Boltzmann equation from
which the NSE can be restored.

The kinetic origin of the LBE affects its consistency as a Navier-Stokes solver.
We saw in Sect. 4.1 that the NSE follows from the Boltzmann equation for low
Knudsen numbers, which we can see as a condition on the changes in fi being
sufficiently small in time and space. Additionally, when velocity space is discretised,
velocity-related O.u3/ errors are introduced in the NSE due to the truncation of the
equilibrium distribution. We discussed the necessity of this truncation in Sect. 4.2.1.

The stability of the LBE is not entirely simple, either. Stability analyses are
often performed with the help of a linear von Neumann analysis, but applying
this to the LBE is complicated by the fact that the LBE is a coupled system of
equations; one equation for each velocity ci. Moreover, the equilibrium functions
depend non-linearly on the populations fi, which is an additional complication for
stability analysis. However, we can still provide some stability guidelines for various
relaxation parameters (cf. Sect. 4.4).

150 4 Analysis of the Lattice Boltzmann Equation

The accuracy study of the LBE is a difficult task to perform theoretically. Its
analysis is only feasible in simple academic cases (cf. Sect. 4.5.1). In most practical
situations, it is more convenient to estimate the accuracy through measurements
(cf. Sect. 4.5.2). Still, some theoretical concepts, such as the range of errors which
affect the LBM and their impact on the accuracy, should be understood in order to
make good use of the LBE.

We saw in Sect. 4.5.3 that the numerical errors affecting the LBM come from
three sources: the round-off error, the iterative error and the discretisation error.
Typically, the first two have very limited impact compared to the discretisation
error. The form of this error is controlled by the truncation terms, stemming
from the discretisation of the continuous Boltzmann equation. In the LBM, the
leading order spatial and temporal truncation terms decrease with �x2 and �t2.
Additionally, these terms also depend on the relaxation parameter, e.g. in BGK.
This extra degree of freedom allows controlling the LB discretisation error in a grid-
independent fashion. If used judiciously, this can make LBM superior to standard
second-order NSE solvers.

When used as Navier-Stokes solver, the LBM contains some modelling errors
(cf. Sect. 4.5.4). The most common examples are the compressibility error and the
cubic error. The compressibility error is what differentiates the LB solution from
the true incompressible Navier-Stokes solution. However, as the compressibility
error scales with O.Ma2/, it is negligible for sufficiently small Ma. The slow flow
assumption in turn minimises the O.u3/ error.

Considering its advantages and disadvantages, we can say that the LBM is
a competitive second-order accurate Navier-Stokes solver due to its distinctive
characteristics.

References

1. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, 2nd edn.
(Cambridge University Press, Cambridge, 1952)

2. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)
3. Y.Q. Zu, S. He, Phys. Rev. E 87, 043301 (2013)
4. G. Silva, V. Semiao, J. Comput. Phys. 269, 259 (2014)
5. E.M. Viggen, The lattice Boltzmann method: Fundamentals and acoustics. Ph.D. thesis,

Norwegian University of Science and Technology (NTNU), Trondheim (2014)
6. C.M. Bender, S.A. Orszag, Advanced mathematical methods for scientists and engineers

(McGraw-Hill, New York, 1978)
7. Y.H. Qian, S.A. Orszag, Europhys. Lett. 21(3), 255 (1993)
8. S. Geller, M. Krafczyk, J. Tölke, S. Turek, J. Hron, Comput. Fluids 35(8-9), 888 (2006)
9. J. Latt, B. Chopard, O. Malaspinas, M. Deville, A. Michler, Phys. Rev. E 77(5), 056703 (2008)

10. P.A. Thompson, Compressible-Fluid Dynamics (McGraw-Hill, New York, 1972)
11. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 4th edn.

(Wiley, New York, 2000)
12. P. Dellar, Phys. Rev. E 64(3) (2001)
13. P. Lallemand, L.S. Luo, Phys. Rev. E 61(6), 6546 (2000)
14. N. Prasianakis, I. Karlin, Phys. Rev. E 76(1) (2007)

References 151

15. I. Ginzburg, J. Stat. Phys. 126, 157 (2007)
16. I. Ginzburg, Phys. Rev. E 77, 066704 (2008)
17. J. Latt, Hydrodynamic limit of lattice Boltzmann equations. Ph.D. thesis, University of

Geneva (2007)
18. Y. Sone, Kinetic Theory and Fluid Dynamics (Birkhäuser, Boston, 2002)
19. T. Inamuro, M. Yoshino, F. Ogino, Phys. Fluids 9, 3535 (1997)
20. M. Junk, A. Klar, L.S. Luo, J. Comput. Phys. 210, 676 (2005)
21. M. Junk, Z. Yang, J. Stat. Phys. 121, 3 (2005)
22. H. Grad, Commun. Pure Appl. Maths 2, 331 (1949)
23. X. Shan, H. X., Phys. Rev. Lett. 80, 65 (1998)
24. X. Shan, X.F. Yuan, H. Chen, J. Fluid Mech. 550, 413 (2006)
25. O. Malaspinas, P. Sagaut, J. Fluid Mech. 700, 514 (2012)
26. E. Ikenberry, C. Truesdell, J. Ration. Mech. Anal. 5, 1 (1956)
27. P. Asinari, T. Ohwada, Comp. Math. Appl. 58, 841 (2009)
28. S. Bennett, P. Asinari, P.J. Dellar, Int. J. Num. Meth. Fluids 69, 171 (2012)
29. W.A. Yong, W. Zhao, L.S. Luo, Phys. Rev. E 93, 033310 (2016)
30. F. Dubois, Comp. Math. Appl. 55, 1441 (2008)
31. D.J. Holdych, D.R. Noble, J.G. Georgiadis, R.O. Buckius, J. Comput. Phys. 193(2), 595

(2004)
32. A.J. Wagner, Phys. Rev. E 74, 056703 (2006)
33. D. Lycett-Brown, K.H. Luo, Phys. Rev. E 91, 023305 (2015)
34. A. Caiazzo, M. Junk, M. Rheinländer, Comp. Math. Appl. 58, 883 (2009)
35. B. Chopard, A. Dupuis, A. Masselot, P. Luthi, Adv. Complex Syst. 05(02n03), 103 (2002)
36. D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer,

New York, 2005)
37. B. Dünweg, A.J.C. Ladd, in Advances in Polymer Science (Springer, Berlin, Heidelberg,

2008), pp. 1–78
38. E.M. Viggen, Phys. Rev. E 87(2) (2013)
39. Q. Zou, S. Hou, S. Chen, G.D. Doolen, J. Stat. Phys. 81(1–2), 35 (1995)
40. X. He, L.S. Luo, J. Stat. Phys. 88(3–4), 927 (1997)
41. X. Shan, H. Chen, Phys. Rev. E 47(3), 1815 (1993)
42. X. Shan, H. Chen, Phys. Rev. E 49(4), 2941 (1994)
43. H. Yu, K. Zhao, Phys. Rev. E 61(4), 3867 (2000)
44. J.M. Buick, J.A. Cosgrove, J. Phys. A 39(44), 13807 (2006)
45. A. Kupershtokh, D. Medvedev, D. Karpov, Comput. Math. Appl. 58(5), 965 (2009)
46. E.M. Viggen, Phys. Rev. E 90, 013310 (2014)
47. S. Bennett, A lattice Boltzmann model for diffusion of binary gas mixtures. Ph.D. thesis,

University of Cambridge (2010)
48. F. Alexander, H. Chen, S. Chen, G. Doolen, Phys. Rev. A 46(4), 1967 (1992)
49. B.J. Palmer, D.R. Rector, J. Comput. Phys. 161(1), 1 (2000)
50. P.J. Dellar, Phys. Rev. E 65(3) (2002)
51. R. Salmon, J. Mar. Res. 57(3), 503 (1999)
52. J.G. Zhou, Comput. Method. Appl. M. 191(32), 3527 (2002)
53. S. Li, P. Huang, J. Li, Int. J. Numer. Meth. Fl. 77(8), 441 (2015)
54. R. Mei, L.S. Luo, P. Lallemand, D. d’Humières, Comput. Fluids 35(8-9), 855 (2006)
55. S. Chen, J. Tölke, M. Krafczyk, Comput. Method. Appl. M. 198(3-4), 367 (2008)
56. M. Mendoza, B.M. Boghosian, H.J. Herrmann, S. Succi, Phys. Rev. Lett. 105(1), 014502

(2010)
57. M. Mendoza, J.D. Muñoz, Phys. Rev. E 82(5), 056708 (2010)
58. J. Chen, Z. Chai, B. Shi, W. Zhang, Comput. Math. Appl. 68(3), 257 (2014)
59. D.V. Patil, K.N. Premnath, S. Banerjee, J. Comput. Phys. 265, 172 (2014)
60. K. Li, C. Zhong, Int. J. Numer. Meth. Fl. 77(6), 334 (2015)
61. D.N. Siebert, L.A. Hegele, P.C. Philippi, Phys. Rev. E 77(2), 026707 (2008)
62. X.D. Niu, C. Shu, Y.T. Chew, T.G. Wang, J. Stat. Phys. 117(3–4), 665 (2004)

152 4 Analysis of the Lattice Boltzmann Equation

63. A. Kuzmin, I. Ginzburg, A. Mohamad, Comp. Math. Appl. 61, 1090 (2011)
64. J. Hoffmann, Numerical Methods for Engineers and Scientists (McGraw-Hill, New York,

1992)
65. R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations:

Steady State and Time Dependent Problems (SIAM, Philadelphia, 2007)
66. J.D. Sterling, S. Chen, J. Comput. Phys. 123(1), 196 (1996)
67. I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys. 139, 1090 (2010)
68. S. Suga, Int. J. Mod. Phys. C 20, 633 (2009)
69. X. Aokui, Acta Mech. Sinica 18(6), 603 (2002)
70. R. Brownlee, A. Gorban, J. Levesley, Physica A 387, 385 (2008)
71. F. Tosi, S. Ubertini, S. Succi, H. Chen, I. Karlin, Math. Comp. Simul. 72(2–6), 227 (2006)
72. D. d’Humières, I. Ginzburg, Comput. Math. Appl. 58, 823 (2009)
73. P.A. Skordos, Phys. Rev. E 48(6), 4823 (1993)
74. M. Reider, J. Sterling, Comput. Fluids 118, 459 (1995)
75. R.S. Maier, Int. J. Mod. Phys. C 8, 747 (1997)
76. I. Ginzburg, Commun. Comput. Phys. 11, 1439 (2012)
77. P.J. Roache, Verification and Validation in Computational Science and Engineering, 1998, 1st

edn. (Hermosa Publishers, New Mexico, 1998)
78. C.J. Roy, J. Comp. Phys. 205, 131 (2005)
79. J.H. Ferziger, M. Peric, A. Leonard, Computational Methods for Fluid Dynamics, vol. 50, 3rd

edn. (Springer, New York, 2002)
80. L.S. Luo, W. Lia, X. Chen, Y. Peng, W. Zhang, Phys. Rev. E 83, 056710 (2011)
81. R. Verberg, A.J.C. Ladd, Phys. Rev. E 60, 3366 (1999)
82. M. Bernaschi, S. Succi, H. Chen, J. Stat. Phys. 16, 135 (2001)
83. J. Tölke, M. Krafczyk, E. Rank, J. Stat. Phys. 107, 573 (2002)
84. O. Filippova, D. Hänel, J. Comp. Phys. 165, 407 (2000)
85. Z. Guo, T.S. Zhao, Y. Shi, Phys. Rev. E 70(6), 066706 (2004)
86. S. Izquierdo, N. Fueyo, J. Comput. Phys. 228(17), 6479 (2009)
87. S. Khirevich, I. Ginzburg, U. Tallarek, J. Comp. Phys. 281, 708 (2015)
88. L. Talon, D. Bauer, D. Gland, H. Auradou, I. Ginzburg, Water Resour. Res. 48, W04526

(2012)
89. B. Servan-Camas, F. Tsai, Adv. Water Res. 31, 1113 (2008)
90. R.G.M. van der Sman, Comput. Fluids 35, 849 (2006)
91. I. Ginzburg, G. Silva, L. Talon, Phys. Rev. E 91, 023307 (2015)
92. P.C. Philippi, L.A. Hegele, L.O.E. Santos, R. Surmas, Phys. Rev. E 73, 056702 (2006)
93. P. Lallemand, L.S. Luo, Phys. Rev. E 68, 1 (2003)
94. X. He, G.D. Doolen, T. Clark, J. Comp. Phys. 179, 439 (2002)
95. A.J. Chorin, J. Comput. Phys 2, 12 (1967)
96. P.J. Dellar, J. Comp. Phys. 190, 351 (2003)
97. G. Hazi, C. Jimenez, Comput. Fluids 35, 280–303 (2006)
98. G. Silva, V. Semiao, J. Fluid Mech. 698, 282 (2012)
99. M.G. Ancona, J. Comp. Phys. 115, 107 (1994)

100. S. Ubertini, P. Asinari, S. Succi, Phys. Rev. E 81(1), 016311 (2010)
101. S. Marié, D. Ricot, P. Sagaut, J. Comput. Phys. 228(4), 1056 (2009)
102. Y. Peng, W. Liao, L.S. Luo, L.P. Wang, Comput. Fluids 39, 568 (2010)

Chapter 5
Boundary and Initial Conditions

Abstract After reading this chapter, you will be familiar with the basics of lattice
Boltzmann boundary conditions. After also having read Chap. 3, you will be able
to implement fluid flow problems with various types of grid-aligned boundaries,
representing both no-slip and open surfaces. From the boundary condition theory
explained in this chapter together with the theory given in Chap. 4, you will be
familiar with the basic theoretical tools used to analyse numerical lattice Boltzmann
solutions. Additionally, you will understand how the details of the initial state of
a simulation can be important and you will know how to compute a good initial
simulation state.

Traditional hydrodynamics theory is governed by a set of partial differential
equations (PDEs) [1], describing the conservation of mass, momentum, and in some
cases energy. For brevity, we shall refer to all these equations collectively as the
Navier–Stokes equations (NSEs) in this chapter.

Recalling calculus, solutions of PDEs cannot be uniquely determined unless
proper boundary and initial conditions are specified. Hence, the role of boundary and
initial conditions within continuum fluid dynamics can be understood first of all as a
mathematical necessity. Their purpose is to single out, from all admissible solutions
of the NSEs, the specific solution of the fluid flow problem being considered.

From a physical standpoint, the importance of boundary and initial conditions
can be understood even more intuitively. Given that the general theoretical frame-
work to model fluid flows (from the motion of air in the atmosphere to blood
circulation in the human body) relies on the same set of equations, i.e. the NSEs,
additional information must be given before a solution is possible. Otherwise, the
formulation of the physical problem remains incomplete as the NSEs by themselves
have no information in them about the particular flow one is interested in. The
required information is contained in the boundary and initial conditions. Only after
these conditions have been specified together with the NSEs one can consider the
problem to be complete or, as stated in mathematics, well-posed.1

1Although no mathematical proof exists yet, this book takes for granted that solutions to the NSEs
exist, are unique and vary smoothly with changes to initial conditions.

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_5

153

154 5 Boundary and Initial Conditions

All things considered, it is not an exaggeration to say that the specification of
boundary conditions (and also initial conditions for time-dependent problems) is one
of the most important tasks in the setup of fluid flow problems. For that reason, this
chapter covers this subject in detail in three parts. In the first part (i.e. Sect. 5.1 and
5.2), we review the role of boundary and initial conditions in the frame of continuum
theories and standard numerical methods. This will facilitate the introduction of
boundary conditions in the LBE, whose main concepts are discussed in the end of
this first part. In the second part (i.e. Sect. 5.3), we explain how several LB boundary
conditions work and how can they be implemented.2 In part three (i.e. Sect. 5.4),
we provide supplementary and more advanced material. Finally, we cover initial
conditions and methods of initialising LB simulations in Sect. 5.5.

5.1 Boundary and Initial Conditions in LBM in a Nutshell

Before proceeding with the detailed exposition of boundary and initial conditions
in LBM, let us briefly summarise them. Where do they appear in the LB algorithm?
How do we implement them? What are their most relevant characteristics?

Initial and boundary conditions can be included in a typical LB algorithm as
shown in Fig. 5.1, and as highlighted in bold in the following:

I. LB initialisation

a. If the objective is a steady-state solution, it is sufficient to set initial
populations to equilibrium fi.x; t D 0/ D f eq

i

�
�.x; t D 0/;u.x; t D 0/�. A

typical choice for initial macroscopic fields is �.x; t D 0/ D 1 (simulation
units) and u.x; t D 0/ D 0.

b. If the objective is a time-dependent solution with non-homogeneous initial
conditions, the consistent initialisation of populations requires considering
both equilibrium and non-equilibrium components: fi.x; t D 0/ D f eq

i .x; t D
0/C f neq

i .x; t D 0/. For more details, see Sect. 5.5.

II. Main LB algorithm

1. Compute the fluid density and velocity via (3.59).
2. Compute the equilibrium populations f eq

i .�;u/ from (3.54) to use in the BGK
collision operator in (3.78).3

3. If desired, output the macroscopic fields to the hard disk.
4. Apply collision to find post-collision populations f ?i according to (3.83).
5. Propagate populations following (3.84).

2Chapter 11 extends this subject to the case of boundary conditions in complex geometries. This
topic is further addressed in Sect. 12.4, where we discuss a special kind of boundary conditions
designed to let sound waves exit the system smoothly.
3The extension to more advanced collision operators is discussed in Chap. 10.

5.1 Boundary and Initial Conditions in LBM in a Nutshell 155

Fig. 5.1 An overview of one cycle of the LB algorithm, considering boundary conditions and the
one-off computation of initial conditions (centre), but not considering forces. Optional sub-steps
are shown in light grey boxes

6. Propagate populations at boundaries according to the local boundary
conditions.

7. If wet-node boundary conditions are used, compute their populations as
necessary.

8. Increment the time step and go back to step 1.

5.1.1 Boundary Conditions

The importance of boundary conditions should not be underestimated. Even though
they apply to a small portion of the fluid domain, their influence may be felt
everywhere in the flow solution (cf. the example in Sect. 5.2.3). Therefore, boundary
conditions should be treated with great care. In this chapter we focus on straight
boundaries aligned with the lattice nodes. More complex geometries are covered
in Chap. 11.

In the LBE, the boundary conditions apply at boundary nodes xb which are
sites with at least one link to a solid and a fluid node. The formulation of
LB boundary conditions is typically a non-trivial task. Rather than specifying
the macroscopic variables of interest, such as � and u, LB boundary conditions
apply to the mesoscopic populations fi, giving more degrees of freedom than
the set of macroscopic variables. This gives rise to a non-uniqueness problem,
evidenced by the “zoo” of LB boundary schemes available. The ensemble of LB
boundary schemes can be divided into two big families: link-wise and wet-node. A
distinguishing feature of LB boundary schemes is that, contrary to conventional
numerical methods, their order of accuracy and exactness does not match. For
example, boundary schemes of second-order accuracy do not accommodate exactly
a parabolic solution. This source of confusion is explained in detail in Sect. 5.2.4.

156 5 Boundary and Initial Conditions

The prime example of link-wise schemes is the bounce-back (BB) method,
covered in Sect. 5.3.3. During propagation, if a particle meets a rigid boundary,
it will be reflected back to its original location with its velocity reversed. This
mechanism is implemented quite simply as

fNi.xb; tC�t/ D f ?i .xb; t/; (5.1)

where fNi refers to the f for the direction Ni such that c Ni D �ci. The BB method leads
to a macroscopic no-slip velocity condition for a resting wall4 located midway on
the link between lattice nodes.

The wet-node boundary schemes, covered in Sect. 5.3.4, consider the boundary
to lie on a boundary node. The populations at boundary nodes are reconstructed in
an explicit way, i.e. using the macroscopic information from the actual boundary
condition. The main challenge is that there are typically more unknown boundary
populations than macroscopic conditions, which explains the large number of
wet-node techniques developed to deal with this under-specified problem. Three
examples of wet-node techniques covered in this book are:

• The equilibrium scheme (ES), which sets the boundary populations to an
equilibrium prescribed by the desired density and velocity on the boundary,
i.e. fi D f eq

i .�;u/. It can be shown that this gives insufficient accuracy unless
=�t D 1.

• The non-equilibrium extrapolation method (NEEM), which amends the equilib-
rium scheme by adding non-equilibrium information on the boundary gradients
using values from nearby fluid nodes.

• The non-equilibrium bounce-back method (NEBB), which is an improvement
of the first two. It directly operates on the non-equilibrium populations of the
boundary node and leads to superior accuracy.

In Table 5.1 we summarise the main characteristics of the bounce-back and the
above mentioned wet-node techniques.

The application of LB boundary conditions is not limited to the modelling
of solid walls. They are also used for inflow/outflow conditions. This can be
either through simple periodic flow conditions (cf. Sect. 5.3) or by more elaborate
conditions where velocity or pressure are specified (cf. Sect. 5.3.5).

The prescription of boundary conditions at corners requires special attention, as
explained in Sect. 5.3.6 and further elaborated on in Sect. 5.4.

5.1.2 Initial Conditions

Two popular approaches to prescribe consistent initial conditions for fi.x; t D 0/

are explained in Sect. 5.5: based on (i) an explicit Chapman-Enskog decomposition

4Moving boundaries are also possible and are discussed in Sect. 5.3.3.

5.2 Fundamentals 157

Table 5.1 Comparison of link-wise and wet-node schemes for straight boundaries (abbreviations
defined in main text). BB improves to 3rd-order accuracy and parabolic exactness if and only if
=�t D p

3=16 C 1=2 � 0:933 for BGK. ES and NEEM improve to 3rd-order accuracy and
parabolic exactness if and only if =�t D 1 for BGK

Link-wise Wet-node

BB ES NEEM NEBB

Boundary location Midway On node On node On node

Accuracy 2nd-order 1st-order 2nd-order 3rd-order

Exactness Linear Constant Linear Parabolic

Stability High High Moderate Low

Mass conservation Exact Non-exact Non-exact Non-exact

Algorithm simplicity

and extension to corners and 3D Simple Simple Moderate Complex

of the populations into equilibrium and non-equilibrium [2] and (ii) a modified LB
scheme that is run before the actual simulation [3].

5.2 Fundamentals

The purpose of Sect. 5.2 is to review the basic principles of boundary and initial
conditions. The presentation is divided in three parts. First, in Sect. 5.2.1, we
discuss the role of boundary and initial conditions in the context of continuum
fluid dynamics problems. Second, in Sect. 5.2.2 and Sect. 5.2.3, we extend this
topic to the case of discrete numerical methods, taking as an example the standard
finite difference technique. Third, in Sect. 5.2.4, we examine the notion of boundary
conditions in the LBM. The first two parts may be skipped for users already
familiar with fluid dynamics theory and conventional numerical methods. The third
part, Sect. 5.2.4, is the key to understand the subsequent parts and we recommend
its careful study before proceeding to the rest of this chapter.

5.2.1 Concepts in Continuum Fluid Dynamics

Whenever a flow problem is time-dependent, the specification of initial conditions
in the entire domain is required.5 That is, if u0 specifies the fluid velocity at some
given instant t0 (often conveniently chosen as t0 D 0), then the time-dependent

5Exceptional cases of time-dependent problems where initial conditions have an immaterial role
are discussed in Sect. 5.5.

158 5 Boundary and Initial Conditions

solution of the NSE must respect the initial condition

u.x; t0/ D u0.x/: (5.2)

When a physical process describes a variation of the solution along its spatial
coordinates, the prescription of boundary conditions becomes imperative [4]. By
definition, boundary conditions specify the behaviour of the PDE solution at the
boundaries of the problem domain. If the solution is time-dependent, then the
prescription of boundary conditions also needs to be set for all times.

Depending on which constraint they impose on the boundary, boundary condi-
tions can be classified into three categories. All three are contained in the equation
below, where ' denotes the solution of a generic PDE, xB the boundary location,
and n the (outward) boundary normal:

b1
@'

@n

ˇ
ˇ
ˇ
ˇ
ˇ
.xB;t/

C b2'.xB; t/ D b3: (5.3)

• The Dirichlet condition is set by b1 D 0 and b2 ¤ 0 in (5.3). This condition fixes
the value of ' on the boundary xB to b3=b2.

• The Neumann condition is given by b1 ¤ 0 and b2 D 0. It fixes the flux of ' on
the boundary xB to b3=b1.

• Finally, the Robin condition corresponds to b1 ¤ 0 and b2 ¤ 0. This condition
entails a relation between the value and the flux of ' on the boundary xB.

In hydrodynamics, the solution of the NSEs generally requires the prescription
of boundary conditions for the fluid velocity and/or the stresses. These are normally
Dirichlet and Neumann conditions for the fluid velocity.

The Dirichlet condition for the fluid velocity is

u.xB; t/ D UB.xB; t/ (5.4)

where UB stands for the boundary velocity.
By denoting n and t/ as normal and tangential boundary vectors, the zero relative

normal velocity, Œu � UB	 � n D 0, describes the impermeability of the material
surface while the zero relative tangential velocity, Œu � UB	 � t D 0, is known as the
no-slip velocity condition [5].

The Neumann condition for the fluid velocity reads

n � � .xB; t/ D TB.xB; t/ (5.5)

where � denotes the sum of pressure and viscous contributions as defined in (1.15)
and TB is the traction vector prescribed at boundary.

5.2 Fundamentals 159

The continuity of the normal and tangential stresses is established, respectively,
by n � .� � n/ D TB � n and n � .� � t/ D TB � t. This specifies the mechanical balance
at the boundary [5].

We can also take combinations of boundary conditions. For example, the entire
boundary can be Dirichlet, or a part of it can be Dirichlet and the rest Neumann.
Yet, one must be cautious when specifying the Neumann condition on the entire
boundary. In this case, the problem does not have a unique solution [4] as, for
instance, an arbitrary constant may be added to the solution without modifying
it. Also, the same boundary may simultaneously be subject to different kinds
of boundary conditions. For example, the interfacial boundary condition between
two immiscible liquids involves both velocity and stresses, as will be discussed
in Sect. 9.1.

5.2.2 Initial Conditions in Discrete Numerical Methods

When the NSEs are solved numerically, the initial condition is still specified by
(5.2), but a more general step called initialisation is also necessary. Using these two
terms indiscriminately may lead to confusion!

To differentiate between them, we should keep in mind that the initial conditions
are set by the physics of the problem, i.e. they only apply to time-dependent
problems. The initialisation procedure, on the other hand, is required even when the
problem is steady because computations should not start with the memory filled with
random values. Consequently, the initialisation step is always part of the numerical
procedure, regardless of the time-dependency of the modelled problem.

Since this task involves no special efforts other than initialising appropriate
arrays of data in the algorithm, we skip details on this topic here and instead refer
the interested reader to the literature [6, 7]. However, given that the initialisation
procedure does not extend in such a trivial way to LB implementations, we will
return to this topic in Sect. 5.5 where we will discuss adequate strategies to initialise
LB simulations.

5.2.3 Boundary Conditions in Discrete Numerical Methods

Although boundary conditions in numerical methods share the same fundamental
goals of the continuous analytical case, they develop along conceptually different
lines. In fact, while analytical boundary conditions apply as additional equations
that select the solution of interest from an infinite family of admissible solutions,
boundary conditions in numerical methods operate as part of the solution procedure.
That is, numerical boundary conditions act in a dynamical manner, being part of the
process responsible for the change of the state of the system towards the intended
solution. For that reason, the task of specifying boundary conditions assumes an

160 5 Boundary and Initial Conditions

even greater importance in numerical methods. If they are not properly introduced
in the numerical scheme, severe problems may arise during the evolution process.
As a matter of fact, one of the most common causes for the divergence of numerical
solutions comes from the incorrect implementation of boundary conditions.

Recalling Chap. 2, traditional numerical methods for solving the NSEs are
usually designed to work directly on the equations governing the fluid flow problem.
Taking the finite difference scheme (cf. Sect. 2.1.1) as an example, its discretisation
procedure consists of replacing differential operators by appropriate finite difference
operators. As a result, the original differential equations are converted into a system
of algebraic equations from which fluid flow solutions may be obtained directly.

While constructing numerical boundary conditions as discretisations of their
continuous counterparts, we have to be aware of an important guideline.

The order of accuracy of discretised boundary conditions should never be
inferior to that of the bulk solution. Otherwise, the accuracy of the solution
may degrade everywhere.

A naive argument which is often mistakenly employed by beginners is that the
numerical accuracy of boundary conditions should be an issue of minor concern.
The motivation behind this fallacy is that boundaries will only affect a small fraction
of all grid points in the simulated domain. Unfortunately, this argument is incorrect!
The accuracy of the boundary conditions necessarily interferes with the level of
approximation reached in the bulk as the values at the bulk points depend on values
at the boundary. In order to eradicate all doubts, let us illustrate this through an
example.

Suppose we are interested in the finite difference solution of a 1D problem
as depicted in Fig. 5.2. For example, the problem may be a thin film of an
incompressible Newtonian fluid subject to an external acceleration ax. Based on
the time-independent NSEs, the description of the above problem reduces to

@2ux
@y2
D �ax; (5.6)

Fig. 5.2 Thin film of liquid
flowing due to an external
acceleration ax. We assume
that the ambient air is
quiescent and the surface
tension of the liquid is
negligible

5.2 Fundamentals 161

subject to the boundary conditions

ux.y D 0/ D 0; @ux
@y

ˇ
ˇ
ˇ
ˇ
ˇ
yDH

D 0: (5.7)

Note that different kinds of conditions apply at each end of the fluid domain: a
Dirichlet (no-slip velocity) condition at y D 0 and a Neumann (free-slip velocity)
condition at y D H. The solution is the well-known parabolic Poiseuille profile:

ux.y/ D � ax
2

y .y � 2H/ : (5.8)

The finite difference formulation of this problem replaces the derivatives in (5.6)
by appropriate finite differences. In this way, the continuous target solution ux.y/
is replaced by the values uj (j D 1; : : : ;N) that approximate ux at the discrete grid
points yj. For simplicity, the spatial discretisation adopted here uses a uniform mesh
with spacing �y D H=.N � 1/. The grid points are placed at yj D . j � 1/�y.

Approximating the differential operator in (5.6) by a second-order central
scheme, its finite difference representation reads

ujC1 � 2uj C uj�1

�y2
D �ax: (5.9)

The discrete approximations of the boundary conditions are

u1 D 0; (5.10a)

(F1)
@ux
@y

ˇ
ˇ
ˇ
ˇ
ˇ
yDH

' uN � uN�1
�y

D 0; (5.10b)

(F2)
@ux
@y

ˇ
ˇ
ˇ
ˇ
ˇ
yDH

' uNC1 � uN�1
2�y

D 0: (5.10c)

For comparison purposes, we discretise the spatial derivative in the Neumann
condition in (5.7) with either formulation (F1) or (F2). Although both discretisations
are consistent with the continuous problem, meaning that in either case (5.7) is
recovered in the continuum limit �y ! 0, they provide different approximations
at the discrete level. The first approach (F1) uses a first-order one-sided difference
scheme, while (F2) employs a second-order central difference approximation. As in
the bulk case, the order of accuracy of the difference operators at the boundary is
determined by the truncation error in the approximation of the differential operator
(cf. Sect. 2.1.1 and Sect. 4.5.1).

Before proceeding further, it is instructive to explain (F2) in more detail. The
approximation of the Neumann condition through a centred (second-order) scheme

162 5 Boundary and Initial Conditions

Fig. 5.3 Sketch of the finite difference formulation of the problem depicted in Fig. 5.2. Compar-
ison of two approaches to specify the Neumann boundary condition at y D H using the finite
difference method

uses a “numerical trick” often employed in numerics. It consists in assuming the
presence of an additional node placed beyond the boundary, where the Neumann
condition is assigned.6 In the above example, this boils down to the consideration
of a virtual site at j D N C 1 as shown in Fig. 5.3. Due to the inclusion of such
an additional node, one gets an extra equation describing the dynamics of the fluid
at the boundary j D N. This equation, which is similar in form to that in the bulk,

.uNC1 � 2uN C uN�1/=�y2 D �ax, must however be corrected by the boundary
condition: uNC1 D uN�1. The resulting numerical approximation of the continuous
problem at the boundary, 2
.�uN C uN�1/=�y2 D �ax, thus attains the desired
second-order accuracy.

Depending on whether we use (F1) or (F2) to approximate the Neumann
condition, the finite difference solution of (5.9) takes one of two forms:

(F1) uj D � ax
2

yj
�
yj � 2H C�y

�
; (5.11a)

(F2) uj D � ax
2

yj
�
yj � 2H

�
: (5.11b)

These solutions are illustrated in Fig. 5.4.
From the above solutions we can immediately conclude that (5.11b) reproduces

exactly the analytical parabolic solution in (5.8). On the other hand, although (5.11a)
also predicts a parabolic solution, its profile differs from the correct one due to an
additional �y term. This term originates from the lower accuracy of the boundary

6The understanding of (F2) is also relevant in the context of LB. By exploiting the similarity
between LB and finite difference schemes, a procedure similar to (F2) was proposed as a way to
prescribe boundary conditions in the LBM. The original suggestion from Chen and co-workers [8]
consists of adding virtual lattice sites. More refined versions of this method were later developed
based on an improved understanding of LB theory, e.g. [9–12].

5.2 Fundamentals 163

Fig. 5.4 Velocity solutions of (5.8), (5.11a) and (5.11b). The velocity is made non-dimensional
with the centreline velocity uc D axH2=.2
/. The resolution is N D 8

condition in (F1), and it gives rise to an incorrect velocity slope at the boundary. The
important observation is that, as (5.11a) shows, the mere choice of the discretisation
of the boundary condition affects the solution uj everywhere.

This example demonstrates that even if the discretisation is second-order accurate
at all bulk points, a single point (in this case the Neumann boundary point) with a
lower-order accuracy is sufficient to degrade the overall solution accuracy.

Example 5.1 Using as starting point the previous example, let us compute the
accuracy (via the L2 error norm from Sect. 4.5.2) of both above schemes (F1)
and (F2) and investigate: (i) How does the accuracy of each solution vary with the
mesh resolution? (ii) What is the relation between this result and the accuracy of the
numerical approximation?
Question (i): in case (F1), the numerical approximation becomes more accurate
with finer resolution, displaying a first-order global improvement. In case (2), the
numerical solution remains constant, i.e. it is mesh-independent.

Question (ii): the example involves approximations of both bulk and boundary
descriptions. In the bulk, the viscous term is discretised adopting a second-order
finite difference scheme. This approximation reads @2ux=@y2 D .ujC1 � 2uj C
uj�1/=�y2 C ET where the truncation error is ET D �.�y2=12/@4ux=@y4 �
.�y4=360/@6ux=@y6 � O.�y6/. Since we are searching for a parabolic solution
ux.y/, it follows that all derivatives higher than second-order are identically zero.
This implies ET D 0, rendering the numerical approximation in the bulk exact.
In the description of the Neumann boundary condition we have considered two
cases. (F1): @ux=@y D .uj � uj�1/=�y C ET with ET D �.�y=2/@2ux=@y2 C
.�y2=6/@3ux=@y3 � O.�y3/; (F2): @ux=@y D .ujC1 � uj�1/=.2�y/ C ET with
ET D �.�y2=6/@3ux=@y3�.�y4=120/@5ux=@y5�O.�y6/. It follows that (F1) yields
ET ¤ 0 because the term O.�y/ does not vanish for a parabolic solution. On the
contrary, (F2) keeps ET D 0, proving the exactness of the boundary approximation
to describe the parabolic solution.

164 5 Boundary and Initial Conditions

The above exercise delivers the following message: taking any numerical scheme
that approximates the continuous equation in bulk with accuracy of order n, a simple
test to evaluate whether the boundary condition supports this same order n is to
assess its ability to exactly solve a polynomial flow of order n. While this condition
may seem evident for standard NSE solvers, the LBM does not directly discretise
the continuous NSEs. This makes the relation between these concepts in bulk and
at boundaries not so evident in LBM as will be further discussed at the end of
Sect. 5.2.4.

5.2.4 Boundary Conditions for LBM: Introductory
Concepts

So far, we focussed on analytical and standard numerical procedures for boundary
conditions in fluid flow problems. The rest of the chapter specifically addresses LB
boundary conditions. This introductory section explains the following points:

• Which lattice sites should be subjected to boundary conditions?
• What differentiates boundary conditions in LBM from other more traditional

numerical methods in fluid dynamics?
• How can boundary conditions be formulated for LBM?
• What determines the numerical accuracy of LB boundary conditions?

Throughout this chapter, we will concentrate on local techniques to implement
boundary conditions. Such techniques are particularly suited to describe straight
boundaries, aligned with the lattice directions.7 We will discuss various techniques
for curved boundaries in Chap. 11.

In this chapter we focus on 2D applications. Still, most LB boundary conditions
covered here can be naturally extended to 3D. Section 5.4.4 discusses additional
complexities that may arise in 3D problems.

5.2.4.1 Which Lattice Sites Should Be Subjected to Boundary Conditions?

The concept of nodes, or lattice sites, arises when mapping a continuous to a discrete
domain. In this discrete space, a lattice site has to fit into one of three categories, as

7Although more complex boundary shapes and/or orientations can also be handled with the
techniques discussed here, the resulting geometry will represent a “staircase” approximation
of the true boundary. The implications are discussed in Sect. 11.1. Methods to treat smooth
complex surfaces usually come at the price of increased complexity and/or the need for data from
neighboring nodes, making them non-local schemes. While exceptions of local schemes for curved
boundaries exist [13, 14], they are considerably more difficult to implement than comparable non-
local techniques.

5.2 Fundamentals 165

Fig. 5.5 Fluid, solid and boundary nodes in an inclined channel. The grey-shaded domain denotes
the solid region

Fig. 5.6 Problem behind the prescription of boundary conditions in LBM: populations streaming
from boundary to fluid nodes are unknown and have to be specified

illustrated in Fig. 5.5 [15–17]:

• Fluid nodes refer to sites where the LBE applies.
• Solid nodes are sites completely covered by the solid object where the LBE

should not be solved.
• Boundary nodes link fluid and solid nodes; they require special dynamical rules

to be discussed.

According to the above definitions, fluid nodes can be identified as nodes
connected exclusively to other fluid or boundary nodes. Solid nodes are linked
exclusively to other solid or boundary nodes. Boundary nodes have at least one
link to a solid and a fluid node.

The problem with boundary nodes is illustrated in Fig. 5.6. During the streaming
step, populations belonging to fluid nodes (denoted by solid arrows) will stream to
neighbouring nodes. On the contrary, this behaviour is not possible for populations
on boundary nodes pointing to the inner domain (denoted by dashed arrows): these
incoming populations are not specified by the LBE; they must be determined by a
different set of rules.

166 5 Boundary and Initial Conditions

The role of LB boundary conditions is to prescribe adequate values for
the incoming populations, i.e. those propagating from the solid object into
the fluid region.

5.2.4.2 What Differentiates Boundary Conditions in LBM from Other
more Traditional Numerical Methods in Fluid Dynamics?

It turns out that determining LB boundary conditions is more complicated than it
is for conventional numerical NSE solvers [15, 18, 19]. Rather than specifying the
macroscopic variables of interest at the boundary (e.g. velocity or pressure), here
we must prescribe conditions for the mesoscopic populations.

The fundamental difficulty of this task is that the system of mesoscopic
variables has more degrees of freedom than the corresponding macroscopic
system; there are more populations fi to deal with than macroscopic moments
to satisfy. Although it is straightforward to obtain the moments from the
populations, the inverse operation is not unique.

5.2.4.3 How Can Boundary Conditions Be Formulated for LBM?

Because of the aforementioned non-uniqueness, it is possible to develop distinct
LB boundary conditions that attain “equally consistent” hydrodynamic behaviour
[18–20].8 This explains the “zoo” of approaches existing in this field, which is
evidenced by over 160 works published until November 2015.9

Despite the large number of methods available, all LB boundary conditions
for straight boundaries belong to one of two groups:

• the link-wise family where the boundary lies on lattice links,
• the wet-node family with the boundary located on lattice nodes.

8The same kind of “non-uniqueness” problem affects the specification of hydrodynamically
consistent initial conditions in LBM (cf. Sect. 5.5).
9We obtained this number by performing a Web of Science search for articles with the words
“lattice Boltzmann boundary condition” in the title.

5.2 Fundamentals 167

Fig. 5.7 Two discretisations of the same domain with (a) link-wise and (b) wet-node boundary
conditions. Fluid nodes are illustrated as open circles (ı), boundary nodes as solid circles (�)

Due to the possible two ways of locating the boundary node (i.e. the compu-
tational boundary) with the respect to the actual flow boundary (i.e. the physical
boundary) two perspectives may be considered for the fluid domain discretisation in
the LBM. On the one hand, with link-wise schemes the boundary node is shifted
from the physical boundary, approximately midway between the solid and the
boundary nodes [15, 21–24].10 Hence, it is advantageous to consider the lattice
nodes as locating at the centre of our computational cells. This way the surface
of computational cells will coincide with the boarders of the physical domain,
see Fig. 5.7a. On the other hand, in wet-node schemes the boundary nodes lie
on the physical boundary [2, 18, 20, 25–29]. This time the lattice nodes shall be
set on the vertices of our computational cells, in order to ensure computational
cells coincide with the boarders of the physical domain, see Fig. 5.7b. While this
distinction in the location of lattice nodes inside the computational cells is purely
conceptual, recognising it proves useful in a number of situations. For example, it
helps understanding the working principle behind each group of boundary schemes.
Also, it makes more straightforward the numbering of the lattice nodes in the
domain discretisation. Note that, depending on the approach chosen, a different
number of lattice nodes is used if adopting the same number of computational cells
in the domain discretisation; the two cases are illustrated in Fig. 5.7.

10We say “approximately” because in link-wise schemes the exact boundary location is not fixed.
Rather, standard link-wise boundaries have a “second-order” dependence on the relaxation rates of
the LB collision scheme. For example, with the BGK model this defect leads to a dependency of the
no-slip wall location with the fluid viscosity [15, 21, 23]. We will discuss this issue in Sect. 5.3.3
using numerical examples and in Sect. 5.4.1 with a theoretical analyses. Such a “second-order”
artefact is also disturbed by anisotropic effects, meaning the wall location will change according
to the orientation of the boundary with respect to the lattice.

168 5 Boundary and Initial Conditions

5.2.4.4 What Determines the Numerical Accuracy of LB Boundary
Conditions?

Regardless of the chosen method, it is important to know the accuracy of LB
boundary conditions. This topic is often a source of confusion: the concepts of a
numerical method’s order of accuracy and its level of exactness go hand in hand
in direct NSE discretisation methods (e.g. the finite difference method), but they
diverge for LB boundary conditions.

By a method’s exactness, we mean its ability to exactly resolve a flow of a certain
order. For example, a method with a second-order level of exactness will be able
to exactly resolve flow solutions whose third- and higher-order gradients are zero.
Examples of such flows are the linear Couette flow and the quadratic Poiseuille flow,
both of which are shown in Fig. 1.1. By a solution’s order of accuracy, we mean how
its error scales with the resolution. For example, the error in a second-order accurate
method is O.�x2/.

In the bulk, the LBE is said to be (spatially) second-order accurate (cf. Sect. 4.5).
Moreover, since this �x2 truncation error is associated with the third-order spatial
derivative, the second-order accuracy also means that LBM is exact for parabolic
solutions, i.e. second-order exact. This conclusion is what we should expect from
finite difference theory, and it has been demonstrated in LBM [23].

For LB boundaries, however, the connection between exactness and order of
accuracy becomes more difficult to establish. The reason is that the boundary
conditions must guarantee not only the correct value at the boundary, but also that
the boundary is connected with the bulk solution in such a way that the solution’s
derivatives at the boundary are also correct.

This is naturally fulfilled by finite difference schemes (cf. Sect. 2.1.1). Boundary
nodes with imposed solution values are connected to their neighbouring nodes
through the same finite difference operators that approximate derivatives throughout
the rest of the domain. This means we can exactly accommodate a parabolic solution
on the boundary and throughout the domain if we use a second-order accurate finite
difference scheme.

In LBM, on the other hand, the macroscopic boundary condition arises implicitly
from the mesoscopic populations imposed at the boundaries. In order to inspect the
explicit connection between the mesoscopic and macroscopic levels of description,
we need to use multi-scale methods, such as the Chapman-Enskog analysis.
However, at the boundary we have to perform this analysis in a different way than
the bulk analysis in Sect. 4.1: at the boundary we need to determine the connection
between the mesoscopic populations and the macroscopic picture, while in the
bulk it is mainly the macroscopic conservation equations that we are after. We will
later make use of the steady-state Chapman-Enskog approach already described in
Sect. 4.2.3.

In the Chapman-Enskog expansion, the distribution function is decomposed as
fi D f eq

i C �f .1/i C �2f .2/i C O.�3/. In a steady-state situation with @tfi D 0, we can

5.2 Fundamentals 169

similarly to (4.9) show that the different orders are connected as

f .1/i D �ci˛@.1/˛ f eq
i ; f .2/i D �ci˛@.1/˛

�

1 � �t

2

�

f .1/i : (5.12)

Since the equilibrium f eq
i depends on, for instance, the macroscopic fluid velocity u,

these equations show that f .1/i will depend on ru and f .2/i on r2u.
Furthermore, we know from Sect. 4.1 that each expansion term’s order in the

label � corresponds to its order in the Knudsen number Kn D `mfp=`, with `mfp

being the mean free path and ` being a characteristic macroscopic length. We can
see this also directly from (5.12): as � �t, ci˛ � �x=�t, and @˛ / 1=`, we find
that f .1/i =f eq

i / �x=` and f .2/i =f eq
i / .�x=`/2, i.e. that �x takes the place of `mfp in

the Knudsen number. Thus, for a constant `, f .n/i scales with �xn.

Resolving fi at the boundary with second-order accuracy requires fi D
f eq
i C �f .1/i CO.�x2/. This is the boundary closure condition usually adopted

in the LB literature, e.g. [18, 20, 28]. However, while this boundary accuracy
complies with the accuracy order of the LBE in the bulk, its level of exactness
is only of first order as it neglects f .2/i that depends on r2u. In fact, the
parabolic solution that is exactly captured in the bulk is not accommodated
exactly at the boundary. Only the linear profile can be captured exactly, since
we just account for the solution slope when including f .1/i .ru/ alone.

In order to be second-order exact, so that parabolic solutions can be
captured exactly, the boundary scheme needs to consider also the solution
curvature by including the f .2/i .r2u/ term in its closure condition. This is

possible with third-order accurate boundary schemes fi D f eq
i C �f .1/i C

�2f .2/i C O.�x3/, as noted in a series of works by Ginzburg and co-workers
[13, 15, 21, 30, 31].

The decision to choose a second- or third-order accurate boundary scheme is
dictated by the exactness level we intend to reach versus the grid refinement level
we are willing to invest. Obviously, an answer for this choice is problem-dependent
and research in this field has been limited to a few specific cases. For example,
studies in the context of porous media flows [15, 32, 33] have revealed that to reach
the same level of precision offered by third-order accurate boundary schemes, it
would be necessary to refine the mesh one order of magnitude more with second-
order boundary schemes, and two orders of magnitude with first-order boundary
schemes. (An example of the latter is when a bounce-back wall is not placed exactly
midway on the lattice links, cf. Sect. 5.3.3.) However, more general conclusions still
require a broader range of flow problems to be tested.

170 5 Boundary and Initial Conditions

The above discussion forms the basis for the remainder of this chapter, in
particular Sect. 5.3.3, Sect. 5.3.4 and Sect. 5.4.1.

5.3 Boundary Condition Methods

The second part of this chapter focuses on the boundary condition methods for the
LBE. We will describe their working principles, how to implement them and what
their advantages and disadvantages are, with particular focus on their accuracy.

In Sect. 5.3.1 we address periodic boundary conditions, which are then extended
to including pressure variations in Sect. 5.3.2. Due to their importance, solid
boundary conditions are described in two large subsections: Sect. 5.3.3 follows the
bounce-back link-wise approach and Sect. 5.3.4 the wet-node approach. These two
approaches are also applied to open boundary conditions, such as inlets and outlets,
in Sect. 5.3.5. Finally, in Sect. 5.3.6, we elaborate on corners.

5.3.1 Periodic Boundary Conditions

Periodic boundary conditions arise from specific flow symmetry considerations
and are intended to isolate a repeating flow pattern within a cyclic flow system.
A common mistake performed by beginners is to confuse the periodicity of the
geometry with the periodicity of the flow itself; as illustrated in Fig. 5.8 these two
cases are not necessarily synonymous.

Fig. 5.8 Flow around a periodic array of cylinders. While the geometry is periodic, the periodicity
of the flow solution varies depending on the Reynolds number Re. The grey box denotes the unit
cell in the periodic flow pattern

5.3 Boundary Condition Methods 171

Periodic boundary conditions apply only to situations where the flow
solution is periodic, and they state that the fluid leaving the domain on
one side will, instantaneously, re-enter at the opposite side. Consequently,
periodic boundary conditions conserve mass and momentum at all times.

We note that, if the flow is periodic all over, it can only survive over time if an
external source of momentum exists. Otherwise, and regardless its initial state, the
flow will decay towards a state of homogeneous velocity (which can be non-zero),
due to the action of viscosity.

In a fluid flow simulation, applying periodic boundary conditions is primarily
justified by physical arguments, namely to isolate a unit cell in a repeating flow
pattern. Furthermore, it may be used to enforce the fully-developed condition in a
channel flow or to establish the appropriate conditions for simulating homogeneous
isotropic turbulence.

Obviously, a fully periodic flow solution is unphysical since it would fill the
entire universe. However, using periodic boundary conditions is often justified in
situations where a finite part of the flow field can be approximated by a repeating
pattern. For example, for not too large Reynolds numbers, the flow in a straight
tube segment in a complex network of tubes can be considered invariant along the
flow direction over a certain length. In this case it is appropriate to use periodic
boundaries located in the straight tube. Another example is the simulation of
turbulence that is often performed in periodic systems of size L although turbulent
flow is never periodic. Obviously, this leads to finite size effects and flow structures
larger than L cannot be captured. However, the assumption of periodicity on the
scale L is good enough to capture the relevant physics on scales smaller than L.

Periodic boundaries also find other, less physically oriented, applications. For
example, to solve 2D flow problems with a pre-existing 3D code, the easiest
way is to adopt the periodic flow condition along one of the Cartesian axis.
The system size along this axis should be as small as possible, ideally a single
node. Still, it is more appropriate to use a lower-dimensional code for this
purpose to reduce memory requirements and computational time.

For the NSEs, periodic flow conditions along a single dimension are applied as

�.x; t/ D �.xC L; t/; (5.13a)

�u.x; t/ D �u.xC L; t/ (5.13b)

where the vector L describes the periodicity direction and length of the flow pattern.

172 5 Boundary and Initial Conditions

Fig. 5.9 Realisation of the periodic boundary condition (figure inspired by [37]). Layers of
“virtual” nodes are added before and after the periodic boundaries, i.e. at x0 D x1 � �x and
xNC1 D xN C�x, respectively

The periodic condition is straightforward in the LBM [34–36]. During propaga-
tion, the unknown incoming populations f ?i on one side are given by those leaving
the domain at the opposite side:

f ?i .x; t/ D f ?i .xC L; t/: (5.14)

For the 2D flow problem illustrated in Fig. 5.9, the periodic flow condition along
the x-axis becomes

f ?i .x; t/ D f ?i .xC L; t/ H)

8
<̂

:̂

f ?1 .x0; y2; t/ D f ?1 .xN ; y2; t/
f ?5 .x0; y2; t/ D f ?5 .xN ; y2; t/
f ?8 .x0; y2; t/ D f ?8 .xN ; y2; t/

; (5.15a)

f ?Ni .xC L; t/ D f ?Ni .x; t/ H)

8
<̂

:̂

f ?3 .xNC1; y2; t/ D f ?3 .x1; y2; t/
f ?6 .xNC1; y2; t/ D f ?6 .x1; y2; t/
f ?7 .xNC1; y2; t/ D f ?7 .x1; y2; t/

: (5.15b)

In the algorithm presented in (5.15), we have included an additional layer of
“virtual” nodes11 before and after the periodic boundaries at x0 D x1 � �x and
at xNC1 D xN C�x, respectively. Before the streaming step, the populations f ?i are
copied into these nodes from the opposite periodic edge of the system according
to (5.15). We call these nodes virtual because they are there for computational
convenience rather than being part of the simulated physical system. The edges
of the simulated system are at xin D .x1 C x0/ =2 D x1 � �x=2 and xout D
.xNC1 C xN/ =2 D xNC�x=2, giving a periodicity length of L D xout� xin D N�x.

11The computational convenience of considering these extra layers of nodes in multithreading
implementations of LB algorithms is given in Sect. 13.4.1.

5.3 Boundary Condition Methods 173

But another algorithm can be followed where periodic conditions are imple-
mented without virtual nodes. Here, we consider the opposing periodic edges of
the flow domain as if they were attached together. In this case, periodic boundary
conditions are implemented through a completion step in the streaming process.
Post-streaming populations which enter the domain on one side are replaced by the
post-collision populations, which leave the domain on the opposite side:

fi.x; tC�t/ D f ?i .xC L � ci�t; t/: (5.16)

Applying (5.16) to the 2D flow case in Fig. 5.9 without virtual nodes, we find

fi.x; tC�t/ D f ?i .xC L � ci�t; t/ H)

8
<̂

:̂

f1.x1; y2; tC�t/ D f ?1 .xN ; y2; t/
f5.x1; y2; tC�t/ D f ?5 .xN ; y1; t/
f8.x1; y2; tC�t/ D f ?8 .xN ; y3; t/

;

(5.17a)

fNi.xC L � ci�t; tC�t/ D f ?Ni .x; t/ H)

8
<̂

:̂

f3.xN ; y2; tC�t/ D f ?3 .x1; y2; t/
f6.xN ; y2; tC�t/ D f ?6 .x1; y1; t/
f7.xN ; y2; tC�t/ D f ?7 .x1; y3; t/

:

(5.17b)

Although (5.14) and (5.16) give perfectly identical results after streaming (in
particular the location of the boundary is the same), it is generally easier to use
virtual nodes. Both algorithms extend straightforwardly to 3D domains.

5.3.2 Periodic Boundary Conditions with Pressure
Variations

While the standard periodic boundary conditions (cf. Sect. 5.3.1) are useful, there
are flow problems with a periodic velocity field but a non-periodic pressure (or
density) field. Since the fluid density and pressure are related according to p D c2s�
in an isothermal fluid flow, it follows immediately that (5.13a) is no longer valid.
Strategies exist to cope with this particular case of periodicity, called generalised
periodic boundary conditions. If we now assume that the system is periodic with an

174 5 Boundary and Initial Conditions

additional prescribed density drop�� along L, we can modify (5.13) into

�.x; t/ D �.xC L; t/C��; (5.18a)

�u.x; t/ D �u.xC L; t/ (5.18b)

The momentum condition is kept unchanged.
However, this condition has a drawback: periodicity applies to fluid momentum,

(5.18b). Hence, mass conservation and periodicity of velocity cannot be enforced at
the same time. To overcome this limitation, the incompressible LB may be used [38,
39] (cf. Sect. 5.4.1). For incompressible flows, the generalised periodic boundary
condition reads

p.x; t/ D p.xC L; t/C�p; (5.19a)

u.x; t/ D u.xC L; t/ (5.19b)

where�p is a prescribed variation of the pressure.
While such generalised periodic boundary conditions have long been used in

standard NSE solvers [40], they have only recently been developed for LBM [37,
41, 42]. We will now take a closer look at a simple and robust procedure proposed
by Kim and Pitsch [37].

We start by considering the presence of a layer of virtual nodes at both ends of
periodic boundaries. Following Fig. 5.9, we place these extra nodes at x0 and xNC1.
Then, we decompose the populations on these virtual nodes into equilibrium f eq

i and
non-equilibrium f neq

i parts. For the equilibrium part, we write

f eq
i .x0; y; t/ D f eq

i . pin;uN/; (5.20a)

f eq
i .xNC1; y; t/ D f eq

i . pout;u1/ (5.20b)

where uN and u1 denote the velocity at nodes xN and x1, respectively. The subscripts
“in” and “out” denote the pressure values at the left and right physical boundaries,
respectively. The individual values for pin and pout are assigned by the user to
prescribe the intended pressure drop �p D pin � pout along the periodicity length
L D N�x. For the standard compressible LB equilibrium, the right-hand sides of
(5.20) become f eq

i .�in;uN/ and f eq
i .�out;u1/.

The non-equilibrium part is copied from the corresponding image points inside
the real domain:

f neq
i .x0; y; t/ D f neq

i .xN ; y; t/; (5.21a)

f neq
i .xNC1; y; t/ D f neq

i .x1; y; t/: (5.21b)

Non-equilibrium populations are determined after collision, i.e. f neq
i D f ?i � f eq

i .

5.3 Boundary Condition Methods 175

Finally, we merge (5.20) and (5.21), i.e. f ?i .x0; y; t/ D f eq
i .x0; y; t/C f neq

i .x0; y; t/
and the same at xNC1, and perform the streaming step.

Example 5.2 Taking the geometry depicted in Fig. 5.9, let us show how to imple-
ment the inlet/outlet boundary conditions for a streamwise invariant flow driven by a
pressure difference�p along the x-axis. The first task is to assign individual values
for pin and pout. In incompressible flows, the absolute pressure value is defined
up to an arbitrary constant. Thereby, we can set pout D 1 (simulation units) and
pin D pout C �p. The generalised periodic boundary condition then prescribes the
post-collision populations:

• Inlet boundary condition (i 2 f1; 5; 8g):

f ?i .x0; y; t/ D f eq
i . pin;uN/C

�
f ?i .xN ; y; t/ � f eq

i .xN ; y; t/
�
: (5.22)

• Outlet boundary condition (i 2 f3; 6; 7g):

f ?i .xNC1; y; t/ D f eq
i . pout;u1/C

�
f ?i .x1; y; t/ � f eq

i .x1; y; t/
�
: (5.23)

We could also apply (5.22) and (5.23) to all populations (0 � i � 8) without
changing the final outcome. Obviously only those populations are relevant that
propagate into the physical domain; the others do not play any role.

5.3.3 Solid Boundaries: Bounce-Back Approach

In hydrodynamics, the most common fluid-solid interface condition is the no-
slip velocity boundary condition. Therefore, its correct implementation is crucial
for modelling confined fluid flow phenomena and other problems involving solid
boundaries.

The oldest LB boundary condition to model walls is the bounce-back
method [21–23, 43–45]. Its concept was adopted from earlier lattice gas models
(cf. Sect. 2.2.2 [43, 46–48]). Despite its age, it is still the most popular wall boundary
scheme in the LB community, largely due to its simplicity of implementation.

Given the importance of the bounce-back scheme, this section is entirely devoted
to it. First, we will introduce the basic bounce-back principle from a particle-based
picture. After that, we will discuss different ways to realise the bounce-back rule
in order to model (i) stationary and (ii) moving walls. Subsequently, we will point
out the advantages and disadvantages of the bounce-back scheme. Finally, we will
consolidate all previous theoretical elements by analysing two practical problems.

176 5 Boundary and Initial Conditions

Fig. 5.10 Sketch of a moving particle with mass m and velocity v hitting a rigid wall. During the
collision process both normal and tangential momentum components are reversed. The average
particle momentum, before and after collision, is hmvi D .mv.t/ C mv.t C �t//=2 D 0 since
v.t C�t/ D �v.t/

5.3.3.1 Principle of the Bounce-Back Method

The working principle of bounce-back boundaries is that populations hitting
a rigid wall during propagation are reflected back to where they originally
came from. This is illustrated in Fig. 5.10.

While it may not be immediately obvious why no-slip boundaries follow from this
principle, we may understand this if we imagine populations as embodying fluid
matter portions.12 It follows that the bounce-back of particles hitting a wall implies
no flux across the boundary, i.e. the wall is impermeable to the fluid. Similarly, the
fact that particles are bounced back rather than bounced forward (i.e. specularly
reflected) implies no relative transverse motion between fluid and boundary, i.e. the
fluid does not slip on the wall. These two points illustrate how the bounce-back
method on the population level mirrors the Dirichlet boundary condition for the
macroscopic velocity at the wall.

The above particle-based explanation as shown in Fig. 5.10 should not be taken
too literally. Rigorously explaining the macroscopic behaviour of the bounce-back
rule (as any other mesoscopic model) requires the use of multi-scale expansion
techniques, such as the Chapman-Enskog analysis. We will do this in Sect. 5.4.1.

12In an attempt to make this explanation of the bounce-back method more intuitive, we will often
refer to the parameter fi as “particles” instead of “particle distributions” or “populations”, as it
should be called more rigorously. We have to remember that LBM is not a true particle method,
such as those presented in Chap. 2. Rather, LBM deals with discretised forms of continuous fields
(cf. Chap. 3).

5.3 Boundary Condition Methods 177

5.3.3.2 Fullway Versus Halfway Bounce-Back Method

The bounce-back method can be realised in two different ways:

1. In the first strategy, called fullway bounce-back [36], particles are considered to
travel the complete link path from the boundary to the solid node, where the
particle velocity is inverted in the next collision step; see Fig. 5.11a.

2. In the second strategy, called halfway bounce-back [22], that particles are
considered to travel only half of the link distance so that the inversion of the
particle velocity takes place during the streaming step; see Fig. 5.11b.

Both strategies introduce specific modifications of the LB algorithm. On the one
hand, the fullway bounce-back method requires solid nodes where the populations
are stored and then bounced back during the following collision step. On the other
hand, solid nodes are not necessary for the halfway bounce-back method since the
inversion of populations occurs during the streaming step. Algorithmically, we can
say that the fullway bounce-back changes the collision step at solid nodes but leaves
the usual streaming step unchanged, while the halfway bounce-back changes the
streaming step but does not modify the collision step.

Fig. 5.11 Time evolution for (a) fullway bounce-back and (b) halfway bounce-back. The current
time step is shown at the top of each action taken. In all pictures the arrow represents the particle’s
direction, the rightmost grey shaded domain is the solid region and the dashed line corresponds to
the boundary

178 5 Boundary and Initial Conditions

Despite what their names might suggest, both the fullway and halfway
approaches assume that the boundary is located approximately midway
between solid and boundary nodes, not on the solid nodes themselves.

Note, the midway location of the bounce-back wall is only approximate. Its
exact placement depends on several factors that we will soon discuss. The important
point to keep in mind is that the assumption of having the bounce-back boundary
placed on a lattice node introduces a first-order error, even for straight boundaries.
The setting of the wall location in the middle of a lattice link, i.e. between nodes,
makes the method formally second-order accurate. This explains why the second
interpretation is generally preferred and why the bounce-back rule is the classical
example of a link-wise LB boundary condition.

The question that arises is: which strategy to implement? Fullway or halfway?
There is no definitive answer. If simplicity is our main criterion, then fullway
bounce-back wins. Here, the boundary treatment is independent of the direction
of fi and the execution time is shorter, cf. Chap. 13.13 Yet, halfway bounce-back is
more accurate for unsteady flows as explained below.

In steady state, both schemes provide similar outcomes.14 But they differ
significantly for time-dependent problems as illustrated in Fig. 5.11. The halfway
bounce-back scheme requires �t to return the particle’s information back to the
bulk, whereas the fullway bounce-back scheme requires 2�t. This delay occurs
because particles are kept inside the solid region during an extra time step �t. As a
result, the fullway bounce-back rule degrades the time accuracy of the LB solution
in transient problems. Another advantage of the halfway bounce-back is that it can
be implemented without solid nodes. This enables the modelling of solid bodies as

13For fullway, we only need to check whether we are on a solid node or not. Algorithmically,
this is one if-statement per lattice node. For half-way, we have to check where each population
propagates, i.e. whether it will finish on a solid node (which implies bounce-back), or it will reach
a fluid or boundary node (which implies normal streaming). For example, with the D3Q19 model
this boils down to evaluating 18 if-statements!
14Possible differences in the steady-state performance of fullway and halfway bounce-back
schemes are related to grid-scaled artefacts called “staggered invariants” [13, 22, 30]. Staggered
invariants manifest as a velocity oscillation between two constant values over two successive time
steps [22]. Their magnitude is usually small, yet the precise value depends on several factors,
such as the initial conditions, the mesh size and the parity of the number of grid nodes. Staggered
invariants are conserved by halfway bounce-back. For example, a typical channel flow along the
x-axis, if initialised with uy.t D 0/ D uy;0 and using an odd number of nodes along the y-axis,
will conserve this constant transverse velocity uy;0 throughout the channel width as a staggered
invariant if halfway bounce-back is used [30]. However, with an even number of lattice nodes, this
artefact vanishes. One way to correct this halfway bounce-back defect is by averaging the solution
between two successive time steps as suggested in [22]. The fullway bounceback does not produce
this artefacts since it delays the exchange of information between successive time steps. However,
the conservation and stability properties of this scheme may be worse [30].

5.3 Boundary Condition Methods 179

narrow as zero lattice widths, for example an infinitesimally thin plate. The above
two points justify the general preference for the halfway implementation. For this
reason, we will only consider halfway bounce-back in the remainder of this book,
and we will omit the term “halfway” hereafter.

5.3.3.3 Resting Walls

Let us now discuss the case of a resting wall.

Populations leaving the boundary node xb at time t meet the wall surface at
time tC�t

2
where they are reflected back with a velocity cNi D �ci, arriving at

time tC�t at the node xb from which they came. This is shown in Figs. 5.11b
and 5.12. For these populations, the standard streaming step is replaced by

fNi.xb; tC�t/ D f ?i .xb; t/: (5.24)

For the case depicted in Fig. 5.12, the implementation (5.24) reads

f2.xb; tC�t/ D f ?4 .xb; t/;

f5.xb; tC�t/ D f ?7 .xb; t/;

f6.xb; tC�t/ D f ?8 .xb; t/:

(5.25)

Exercise 5.1 Write down (5.24) in the same form as (5.25) but for the case of a top
wall.

Fig. 5.12 Time evolution of the bounce-back rule equation (5.24) at a bottom wall. The arrows
represent the particle’s direction, the bottom grey shaded domain is the solid region, and the dashed
line corresponds to the location of the no-slip boundary. xb and xs denote boundary and solid nodes,
respectively

180 5 Boundary and Initial Conditions

5.3.3.4 Moving Walls

The extension to moving walls is quite simple. It requires only a small correction to
the standard bounce-back formula [22, 49]. Again, the role of this correction can be
explained by resorting to our particle-based picture of the bounce-back dynamics.
Since now the wall is not at rest, the bounced-back particles have to gain or lose
a given amount of momentum after hitting the wall so that the outcome respects
Galilean invariance [22, 50]. One way to show this is to transform to the rest frame
of the wall, perform bounce-back there, and transform back to the initial frame.

The bounce-back formula for a Dirichlet boundary condition with a
prescribed wall velocity uw reads

fNi.xb; tC�t/ D f ?i .xb; t/ � 2wi�w
ci � uw

c2s
(5.26)

where the subscript w indicates properties defined at the wall location xw D
xb C 1

2
ci�t.

Obviously, for a stationary boundary with uw D 0, the correction vanishes and
the above equation simplifies to (5.24).

When uw ¤ 0 an extra difficulty comes out: the local density value �w at the wall,
which may require some thought. If the incompressible LB model is used, there is no
problem since the density is uniform throughout the flow domain. However, for the
standard LB model, � varies with the pressure, and its value is not generally known
at the wall. One solution is to estimate �w as either the local fluid density �.xb/

or the system’s average density h�i. For steady flow, the difference �.xb/ � h�i is
O.Ma2/ (where Ma is the Mach number) and therefore usually small [16].

In flow configurations where no mass flux crosses the boundaries, such as in
parallel Couette and Poiseuille flows, the total mass in the system is conserved [13].
However, for arbitrary (planar or non-planar) inclined boundaries, none of the
aforementioned procedures are capable of exactly satisfying mass conservation, a
feature of the LBM that is otherwise much appreciated. To overcome this issue,
several strategies have been developed (e.g. [51–53]). These explicitly consider
that in addition to momentum, mass is also exchanged between fluid and moving
solid regions. However, while these strategies correct for the local mass leakage
across solid-fluid boundaries, they can potentially decrease the accuracy of the LB
solution [13, 49, 54, 55]. The overall merits of these mass-conserving strategies
remain an open question. We will cover mass conservation at solid boundaries in
Sect. 5.4.2 and discuss moving boundaries in more detail in Chap. 11.

5.3 Boundary Condition Methods 181

5.3.3.5 Advantages and Disadvantages

Besides its simplicity of implementation, the bounce-back boundary condition has
other advantages:

1. It is a stable numerical scheme [15, 24], even when the bulk LB solution is
brought close to the instability limit ! �t=2. This distinguishes bounce-back
from other LB boundary conditions, particularly wet-node-based ones that are
often a source of numerical instability.15

2. Since bounce-back is based on reflections, mass conservation is strictly guaran-
teed at resting boundaries. This is an important feature, especially in problems
where the absolute mass is important. Exact mass conservation is a property
often violated by wet-node techniques, where specific corrections need to be
introduced [20, 28, 29].

3. It can be implemented straightforwardly for any number of spatial dimensions.

However, bounce-back also has disadvantages. The main points of criticism are:

1. The bounce-back rule can only approximate arbitrary surfaces through “stair-
case” shapes. In fact, the bounce-back condition only guarantees a higher than
first-order accuracy if (i) the surface is aligned with the lattice and (ii) the wall
cuts midway through the lattice links. Both these conditions are violated in
general boundary configurations where the wall cuts the lattice links at varying
distances. In this case, the bounce-back is first-order accurate [13, 15, 56].
We will cover more complex bounce-back methods avoiding the staircase
approximation in Sect. 11.2.

2. The exact location of the no-slip boundary is viscosity-dependent when the
bounce-back scheme is used together with the BGK collision model. This
implies that the hydrodynamic solution will differ for the same grid at different
viscosities, even though the governing physical parameters of the problem
(e.g. Reynolds number) are fixed. This important violation of the physics of the
problem is not found in standard discretisation methods of the NSEs. This defect
may be solved by replacing the BGK model, which has only one free parameter
 , by a more complex collision model such as TRT [30, 57] or MRT [58–60]
(cf. Chap. 10). We will explain the viscosity dependence through a Chapman-
Enskog analysis in Sect. 5.4.1.

5.3.3.6 Numerical Evaluation of the Accuracy of the Bounce-Back
Method

To conclude this section, we will clarify some aspects of the accuracy of the
bounce-back method through the numerical solution of Couette and Poiseuille flows

15According to [20], instability is often triggered by the boundary condition rather than the bulk
algorithm when LBM is running close to D �t=2.

182 5 Boundary and Initial Conditions

(cf. Fig. 1.1). As their solutions display linear and parabolic spatial variations,
respectively, they are ideal cases to investigate the first- and second-order analyses
of the bounce-back rule. With this exercise we want to answer the following
questions:

1. How is accuracy affected by assuming that the bounce-back wall lies on lattice
nodes, rather than midway on the lattice links?

2. Why do we say that the location of the bounce-back no-slip boundary is
approximately, instead of exactly, midway on the lattice links?

First-order analysis

Let us start with the first-order analysis for the linear Couette flow.
Using simulation units,16 let us assume without loss of generality that the fluid

density is � D 1 and the velocity is uw D 0:1c at the top wall and zero at the bottom.
The computational domain is resolved by 3 lattice nodes in length (an arbitrary
choice as the flow is streamwise invariant) and by N D 9 lattice nodes along
the channel height. We take the D2Q9 model. We initialise the system by setting
fi.x; t D 0/ D f eq

i .� D 1;u D 0/, cf. Sect. 5.5. The simulation is stopped when it
reaches the steady-state criterion L2 � 10�10 for the fluid velocity (cf. Sect. 4.5.2).
We use the BGK collision model with relaxation time D 0:9�t, but we will
discuss other values of as well.

Figure 5.13 illustrates the unknown populations at the boundaries. Inlet and outlet
regions are subject to periodic boundary conditions (cf. Sect. 5.3.1). We use the
bounce-back method for the stationary bottom and the moving top wall.

• Bottom wall:

f2.x; y1; tC�t/ D f ?4 .x; y1; t/;

f5.x; y1; tC�t/ D f ?7 .x; y1; t/;

f6.x; y1; tC�t/ D f ?8 .x; y1; t/:

(5.27)

• Top wall17:

f4.x; yN ; tC�t/ D f ?2 .x; yN ; t/;

f7.x; yN ; tC�t/ D f ?5 .x; yN ; t/ � 1
6c uw;

f8.x; yN ; tC�t/ D f ?6 .x; yN ; t/C 1
6c uw:

(5.28)

16Conversion between simulation and physical units will be discussed in Chap. 7.
17The numerical values for the correction terms come from 2wi=c2s D 1=.6c2/, with c2s D .1=3/c2

and using the D2Q9 lattice weights wi given in Table 3.1.

5.3 Boundary Condition Methods 183

Fig. 5.13 Couette flow with unknown boundary populations annotated. The layer of wall nodes
goes from x0 to xNC1, while the layer where inflow/outflow conditions are applied goes from y1 to
yN . Corner nodes, e.g. .x0; y0/, belong to wall layers

Let us now answer the first question and evaluate the effect of the bounce-back
wall location on the accuracy of the LB solution. Let us recall Fig. 5.7 and assume
the two possibilities for the location of grid nodes yj (j D 1; : : : ;N) with respect to
the computational cells:

a) The grid nodes coincide with the cell vertexes, i.e. yj D j�x.
b) The grid nodes are placed at the cell centres, i.e. yj D . j� 0:5/�x.

To facilitate the analysis, we can assume the origin of the grid node system to
coincide with the bottom wall. As such, the location of the bounce-back walls can
be interpreted as follows:

a) In the first case, we assume bounce-back walls to be located on the solid nodes
y0 D ybot D 0 and yNC1 D ytop D .N C 1/�x. This means the height of the
channel is H D ytop � ybot D .N C 1/�x, cf. Fig. 5.14a).

b) In the second case, the bounce-back walls are assumed to be located midway
between boundary and (virtual) solid nodes. The boundary nodes are placed at
y1 D 0:5�x and yN D .N � 0:5/�x. The walls are located one-half lattice width
outside these nodes, i.e. at ybot D 0 and ytop D N�x, respectively. This makes
the channel height H D ytop � ybot D N�x, cf. Fig. 5.14b).

In order to evaluate the accuracy of the numerical solutions produced by each
case, let us compare them with the exact solution:

ux.y/ D uw
y � ybot

ytop � ybot
; ybot � y � ytop (5.29)

where ybot D 0 and ytop D .N C 1/�x for case a) and ybot D 0 and ytop D N�x for
case b).

184 5 Boundary and Initial Conditions

Fig. 5.14 Couette flow geometry assuming: (a) grid nodes on cell vertexes, and (b) grid nodes on
cell centres. Fluid nodes: (open circle symbol), boundary nodes: (solid circle symbol) and solid
node: (filled squares symbol)

Fig. 5.15 Couette flow solution with BGK collision operator (=�t D 0:9) and bounce-back rule
(circles) versus analytical solution (line). Left panel: wall is placed on lattice nodes; right panel:
wall is placed midway between lattice nodes

Figure 5.15 shows the results. We see that case a) leads to a velocity solution
different from the analytical one while in case b) the two solutions match exactly.
This means that, when the boundary is located midway between grid nodes [44], the
bounce-back method is (i) first-order exact and (ii) at least second-order accurate
since both the boundary value and its first-order derivative are reproduced exactly.
This leaves only an O.�x2/ truncation error according to the discussion at the end
of Sect. 5.2.4.

Interestingly, this numerical test also shows that the Couette flow solution is
independent of the choice of . Due to the linear nature of this problem we can
establish that the bounce-back scheme is viscosity-independent at O.�x/.

5.3 Boundary Condition Methods 185

For Couette flow we observed that (i) bounce-back places the no-slip
wall exactly midway between boundary and solid nodes and (ii) solutions
are viscosity-independent. Since these conclusions are based on a linear
solution, they only apply to first-order terms. This means that bounce-back,
with the wall shifted by �x=2 from boundary nodes, correctly prescribes the
boundary value of the velocity and its first-order derivative.

Second-order analysis

The next question is whether the bounce-back method preserves the encouraging
results observed for Couette flow also at the second order. To answer this question
we proceed with an analysis of the pressure-driven parabolic Poiseuille flow.

We run this simulation with the same parameters as for the Couette problem,
except for the boundary conditions. Now, the top and bottom walls are subject to a
zero-velocity bounce-back condition while the inlet and outlet boundaries enforce
a pressure-driven fully-developed flow condition using the generalised periodic
boundary condition method (cf. Sect. 5.3.2).

Figure 5.16 illustrates the problem, including the missing populations at the
boundaries. The bounce-back scheme at walls adopts (5.27) and (5.28) with uw D 0.
The inlet and outlet boundaries use the same formulas as in Example 5.2. Again, we

Fig. 5.16 Poiseuille flow with unknown boundary populations annotated. The layer of wall nodes
goes from x0 to xNC1, while the layer where inflow/outflow conditions are applied goes from y1 to
yN . Corner nodes, e.g. .x0; y0/, belong to wall layers

186 5 Boundary and Initial Conditions

Fig. 5.17 Poiseuille flow geometry assuming: (a) grid nodes on cell vertexes, and (b) grid nodes
on cell centres. Fluid nodes: (open circle symbol), boundary nodes: (solid circle symbol) and solid
nodes: (filled squares symbol)

set pout D 1 (in simulation units) and compute the inlet pressure as pin D poutC�p.18

In order to fulfill the small-Ma requirement, we set the centreline velocity to
uc D 0:1 (simulation units) and relate it to the pressure difference�p as

�p

xout � xin
D 8�uc

.ytop � ybot/2
:

Let us again look at the effect of the bounce-back wall location on the accuracy
of the LB solution. As before, we consider two possibilities for the location of the
grid nodes yj (j D 1; : : : ;N); these two choices are shown in Fig. 5.17. In both cases,
we compare the numerical LB solutions to the exact Poiseuille solution

ux.y/ D � 1
2�

�p

xout � xin
.y � ybot/.y � ytop/; ybot � y � ytop (5.30)

where xin D .x0Cx1/=2 and xout D .xNCxNC1/=2. The assumed boundary locations
are ybot D 0 and ytop D .N C 1/�x in case a) and ybot D 0 and ytop D N�x in case
b). The channel height is defined as H D ytop � ybot.

Figure 5.18 shows the comparison of results. Case a) reveals that assuming the
walls to be located at grid (solid) nodes leads to strongly deviating results, much
less accurate than for the linear Couette profile. On the other hand, in case b), the
assumption of walls located midway between grid nodes makes the LB solution

18Since this Poiseuille flow is driven by the pressure difference �p, the incompressible LB model
of Sect. 4.3.2 is appropriate. Recall that the standard LB equilibrium uses an isothermal equation
of state where pressure and density relate linearly. Therefore, a pressure gradient inevitably leads
to a gradient of density, which is incompatible with incompressible hydrodynamics. With the
incompressible model this compressibility error can be avoided (at least in steady flows).

5.3 Boundary Condition Methods 187

Fig. 5.18 Poiseuille flow solution with BGK collision operator (=�t D 0:9) and bounce-back
rule (circles) versus analytical solution (line). Left panel: wall is placed at lattice nodes; right panel:
wall is placed midway between lattice nodes

Fig. 5.19 Poiseuille flow solutions with bounce-back walls placed �x=2 away from boundary
nodes. Comparison between BGK profiles obtained with different values of and the analytical
solution from (5.30)

almost coincide with the analytical parabolic profile (the deviations are essentially
invisible in the plot).

Unlike the numerical Couette flow solution, the Poiseuille flow simulation is
affected by the choice of . This is illustrated in Fig. 5.19. While the velocity
profiles remain perfectly parabolic, we observe that the boundary velocity is clearly
-dependent. We call this effect “numerical boundary slip”.

Since this boundary slip artefact is not present in linear solutions, we can
conclude that it stems from the O.�x2/ term in the bounce-back closure relation.19

Indeed, Fig. 5.20a confirms that for fixed values of the slip velocity error (which is

19We will cover closure relations for boundary conditions in Sect. 5.4.1.

188 5 Boundary and Initial Conditions

Fig. 5.20 L2 error of Poiseuille flow solutions with BGK model and bounce-back walls (assumed
midway between boundary and solid nodes). Panel (a) shows that numerical solutions are second-
order accurate with respect to the spatial resolution for all values (except =�t D p

3=16 C
1=2 which leads to third-order accuracy). Panel (b) shows the minimum of the error at =�t Dp
3=16C 1=2

the only error source in this problem) decreases with a second-order rate as function
of grid resolution.

Figure 5.20b shows how the slip velocity error varies with for constant grid
resolution. For close to �t=2, the bounce-back error can be kept small, e.g. L2 '
1:68% for =�t D 0:6. Contrarily, for larger relaxation times, the error becomes
unacceptably large, e.g. L2 > 180% for =�t D 5! From the plot we can infer that
the error grows with 2. We will derive this relation in Sect. 5.4.1.

In order to resolve the -dependent slip error, we can adopt several strategies.
The most general approach is to replace the BGK collision model by the TRT or
MRT model (cf. Chap. 10). In some particular cases where analytical solutions are
accessible we can employ a viscosity calibration procedure [22, 31, 49, 61]. The
idea consists in shifting the assumed wall position a certain distance away from the
halfway location so that the no-slip velocity condition is fulfilled at the new wall
location with the specific choice of . From Fig. 5.19 we see that this strategy would
imply a wider channel whenever > �t.

Another approach to fix the numerical slip is to tune in such a way that the
no-slip condition happens at the expected place. For example, if we want the no-slip
condition exactly halfway between boundary and solid nodes, we have to set =�t Dp
3=16C 1=2 � 0:93. This way, the parabolic solution is exactly accommodated at

the boundary and the bounce-back rule is turned into a third-order accurate method
as per the discussion provided in Sect. 5.2.4. We can see the superiority of this
choice of in Fig. 5.20b). We will explain the background of this optimum value
in Sect. 5.4.1, see also more thorough discussions in [13, 15, 21, 23, 31, 33, 62].

5.3 Boundary Condition Methods 189

For Poiseuille flow we observed that the bounce-back rule performs better
with the walls located midway between boundary and solid nodes, just as
for Couette flow. However, the parabolic solution is generally not exact,
due to an error depending on 2 and therefore on viscosity. The slip error
comes from the O.�x2/ term in the bounce-back closure relation. To avoid the
unphysical viscosity-dependent slip, the safest procedure is to replace BGK
by the TRT or MRT collision operators (cf. Sect. 10).

Still, no matter which collision model is adopted, the accuracy of the bounce-
back rule depends on the relaxation parameters, and it can be further improved by
carefully tuning them. That is to say, if with the BGK collision operator the formal
third-order accuracy of the bounce-back rule in a straight midway wall is at =�t Dp
3=16C 1=2 � 0:93; with the TRT collision operator, the same condition holds

for� D 3=16 which is also extensible to the MRT operator, cf. Sect. 10.
On top of the -dependent deficiency, the bounce-back setting of the no-slip

condition is also anisotropic. For example, if the bounce-back wall is aligned
with the diagonal lattice links (45ı channel), the most accurate choice of is
=�t D p

3=8 C 1=2 � 1:11 [15, 21, 33]. (In the TRT/MRT framework, this
boils down to � D 3=8.) For arbitrary wall orientations the relaxation calibration
of the bounce-back rule is no longer handy since the bounce-back rule becomes
first-order accurate at best [13, 33], regardless the collision model employed. We
will discuss alternative boundary conditions that are more suitable for arbitrary wall
configurations in Chap. 11.

5.3.4 Solid Boundaries: Wet-Node Approach

Due to the viscosity dependence of bounce-back boundaries in combination with the
BGK operator, another strategy was proposed for boundary conditions on straight
walls: the so-called wet-node approach. Here, the boundary node is assumed to
lie infinitesimally close to the actual boundary, but still inside the fluid domain.
Thus, the boundary is effectively on the node, and the standard LB steps in the bulk
(i.e. collision and streaming) also apply in the same way on the boundary nodes.

The idea of the wet-node approach is to assign suitable values for the unknown
boundary populations such that the known and constructed populations reproduce
the intended hydrodynamics at the boundary. The main challenge is that there are
typically more unknown boundary populations than macroscopic conditions. This
explains the large number of techniques developed to deal with this under-specified
problem, e.g. [2, 9, 18, 20, 25–29]. Since covering all of them would be impossible in

190 5 Boundary and Initial Conditions

Fig. 5.21 Top wall coinciding with horizontal lattice links. The known boundary populations are
represented by continuous vectors the unknown populations by dashed vectors

the context of this book, our focus is on three of the most popular approaches. These
are the equilibrium scheme [23, 63], the non-equilibrium extrapolation method [9]
and the non-equilibrium bounce-back method [27]. Although these approaches do
not represent all wet-node techniques, they provide a good idea of the underlying
philosophy.

5.3.4.1 Finding the Density on Boundaries

Before proceeding to the analysis of the wet-node approach itself, we will first
introduce a general procedure to find the density (or pressure, for the incompressible
model) on a straight boundary subject to a Dirichlet velocity condition [18, 27]. This
procedure makes use of the flow continuity condition as a constraint to find the fluid
density � from known fluid velocity u or mass flux �u.20

Since the entire flow solution, boundaries included, must satisfy the continuity
condition, it follows that one is also implicitly enforcing the wall density (or
pressure) to a unique value while prescribing the wall velocity. However, the LBE
does not work directly with the macroscopic fields. Consequently, the continuity
condition does not arise naturally; rather it has to be enforced explicitly.

Fortunately, this is a rather simple task. The continuity of the fluid at the boundary
is described by the well-known impermeable wall condition, i.e. zero relative
normal velocity of the fluid. Hence, we just have to translate this condition to the
populations fi. For illustration purposes, let us see how to apply this procedure for a
top wall (cf. Fig. 5.21). The extension to other wall orientations is straightforward,
e.g. [18, 27].

20Although the LBM may reproduce the continuity condition in two different forms, depending on
the equilibrium model adopted, i.e. @t�C r � .�u/ D 0 for the standard compressible equilibrium
or c�2

s @tpC�0r �u D 0 for the incompressible equilibrium, the procedure described here remains
applicable in both cases.

5.3 Boundary Condition Methods 191

The impermeable wall condition is determined from the density and the vertical
velocity component which in terms of populations is expressed as

�w D
X

i

fi D f0 C f1 C f2 C f3 C f5 C f6„ ƒ‚ …
known

C f4 C f7 C f8„ ƒ‚ …
unknown

;

�wuw;y D
X

i

ciyfi D c . f2 C f5 C f6/
„ ƒ‚ …

known

� c . f4 C f7 C f8/
„ ƒ‚ …

unknown

(5.31)

where we have grouped the known and unknown populations (cf. Fig. 5.21) and
introduced c D �x=�t. Combining the two equations above, we can determine �
independently of the unknown populations as

�w D c

cC uw;y

�
f0 C f1 C f3 C 2 . f2 C f5 C f6/

	
: (5.32)

Exercise 5.2 Show that the density on a bottom wall is given by

�w D c

c � uw;y

�
f0 C f1 C f3 C 2 . f4 C f7 C f8/

	
: (5.33)

The major limitation of this procedure is that it only works on straight walls
aligned with one of the coordinate axes. Still, the method is readily applicable to
planar boundaries in either 2D or 3D problems.

5.3.4.2 Equilibrium Scheme

The equilibrium scheme [18, 23, 63] is possibly the simplest way to specify
LB boundary conditions. It enforces the equilibrium distribution f eq

i on the post-
streaming boundary populations. The f eq

i are readily available from the known
macroscopic quantities at the boundary:

fi.xb; t/ D f eq
i

�
�w;uw

�
: (5.34)

The subscript b refers to the boundary node where wall properties (denoted by the
subscript w) are imposed. Note that (5.34) applies to all populations fi, instead of
only the unknown ones.

Despite its attractive simplicity, the equilibrium scheme has a critical deficiency.
While the basic principle of wet boundary nodes is that they have to be treated on an
equal footing with bulk nodes, compatibility between boundary and bulk dynamics
is limited to D �t or f neq

i D 0. The latter condition is, however, of little interest
since it leads to a trivial solution.21 In the former condition of D �t, the LBM

21Recall that f neq
i is related to the spatial derivatives of the flow field. Consequently, f neq

i D 0

corresponds to a spatially uniform solution.

192 5 Boundary and Initial Conditions

becomes equivalent to a (second-order centred) finite difference (FD) scheme, so-
called “finite Boltzmann scheme” [64]. Like in classical FD schemes, it becomes
sufficient to prescribe the intended macroscopic solutions (i.e. .�w;uw/ ! f eq

i)
on the boundary nodes. Only in this case do the LB solutions stay second-order
accurate. Any other choice of breaks this equivalency between LBM and classical
FD schemes [65, 66] and therefore degrades its accuracy to first order.

It is worth pointing out some of the advantages of the equilibrium scheme. One of
them is its excellent stability. This is a remarkable feature considering the less stable
behaviour usually exhibited by wet-node schemes. Another appealing advantage is
that it can be easily applied to 2D and 3D problems.

Accuracy benchmark of the equilibrium scheme

We will now study the accuracy of the equilibrium scheme for a no-slip boundary
condition by repeating the studies of the Couette and pressure-driven Poiseuille
flows presented in Sect. 5.3.3. The description of the two flow problems is depicted
in Fig. 5.22.

We make use of the same simulation parameters as employed in Sect. 5.3.3. The
main difference is the implementation of the wall boundary conditions. We perform
our analysis with the incompressible linear (Stokes) equilibrium as presented
in Sect. 4.3.2 and further discussed in Sect. 5.3.2 and Sect. 5.3.3. Using the
linear equilibrium simplifies the analysis without affecting numerical results since
non-linear terms vanish in the problems studied here. The linear incompressible
equilibrium populations on boundary nodes read

f eq
i .xb; t/ D wi

pw

c2s
C �0 ci � uw

c2s

!

(5.35)

where pw and uw are known at the wall and �0 denotes the constant density value.

Fig. 5.22 Couette and Poiseuille flows showing the unknown boundary populations in the wet-
node framework

5.3 Boundary Condition Methods 193

We employ the following boundary conditions:

• Couette flow: uw;x.ybot/ D 0 and uw;x.ytop/ D 0:1c
• Poiseuille flow: uw;x.ybot/ D uw;x.ytop/ D 0
The transverse velocity uy is always zero in both cases. The boundary pressure in
(5.35) is found through the procedure explained above. However, since the velocity
moments using the incompressible model are sightly different from the standard
equilibrium case, it is worth re-writing them here. For example, for a boundary
node located at the top wall (cf. Fig. 5.21), we have

pw

c2s
D
X

i

fi D f0 C f1 C f2 C f3 C f5 C f6„ ƒ‚ …
known

C f4 C f7 C f8„ ƒ‚ …
unknown

; (5.36)

�0uw;y D
X

i

ciyfi D c . f2 C f5 C f6/
„ ƒ‚ …

known

� c . f4 C f7 C f8/
„ ƒ‚ …

unknown

: (5.37)

Combining them, we obtain

pw

c2s
D ��0uw;y

c
C �f0 C f1 C f3 C 2 . f2 C f5 C f6/

	
: (5.38)

Repeating this calculation for the bottom wall we obtain

pw

c2s
D �0uw;y

c
C �f0 C f1 C f3 C 2 . f4 C f7 C f8/

	
: (5.39)

We now have everything required to implement the equilibrium scheme. The
results are shown in Fig. 5.23. Despite its simplicity, the lack of accuracy may
compromise the usefulness of this boundary scheme. In fact, we can confirm
that neither Couette nor Poiseuille flow solutions are accurately reproduced when
 ¤ �t.22

As Fig. 5.23 illustrates, the equilibrium scheme is unable to capture the simple
linear Couette profile for ¤ �t. Due to the lack of non-equilibrium terms,
the boundary scheme is unaware of the presence of velocity gradients near the
wall. Obviously, this situation becomes worse for even steeper velocity gradients.
Therefore, it is not a surprise that even larger discrepancies are observed for
Poiseuille flow. Only for =�t D 1 the equilibrium scheme complies with the
accuracy of LBM in bulk. In this case, both Couette and Poiseuille flow solutions
are correct up to machine precision.

22Obviously, the use of other equilibrium distributions (e.g. the full standard equilibrium) will not
lead to improvements as the problem identified here comes from neglecting the non-equilibrium
part of the boundary populations.

194 5 Boundary and Initial Conditions

Fig. 5.23 LB solutions using the equilibrium boundary scheme for channel width N D 9. Left
plot: Couette flow; right plot: Poiseuille flow. Results with =�t D 0:7 are inaccurate while
=�t D 1 leads to machine-accurate solutions

5.3.4.3 Non-equilibrium Extrapolation Method

The previous example showed that, in general, the equilibrium scheme fails to be
an accurate boundary method since it neglects the non-equilibrium part f neq

i of the
boundary populations fi. As such, the next logical step of improvement is to include
the non-equilibrium part. The new difficulty is how to find the non-equilibrium term
for the boundary populations. As there is no unique answer to this question, several
procedures have been proposed, resulting in a variety of wet-node techniques.

Perhaps the simplest way to determine the non-equilibrium part (although non-
local) is to extrapolate its value from the fluid region where f neq

i is known. This
non-equilibrium extrapolation approach was originally proposed by Guo et al. [9].
It is applied to the post-streamed boundary populations according to

fi.xb; t/ D f eq
i .�w;uw/C

�
fi.xf; t/ � f eq

i .�f;uf/
�

(5.40)

where the non-equilibrium contribution comes from the fluid node xf next to xb

along the boundary normal vector. Similarly to the equilibrium scheme, the non-
equilibrium extrapolation method replaces all boundary populations, rather than
only the unknown ones.

Equation (5.40) is consistent with the second-order accuracy of the LBE [9, 11].
However, in light of the discussion in Sect. 5.2.4, this is not sufficient to support
the level of exactness of the LB solution in the bulk (parabolical exactness). We
can easily understand this through the Chapman-Enskog analysis to unfold the
content of f neq

i . For this analysis it is sufficient to truncate the Chapman-Enskog

expansion after the first order, i.e. f neq
i ' �f .1/i since failure at the first order already

compromises the overall success.

5.3 Boundary Condition Methods 195

Neglecting the O.u2/ terms in (4.35), we have

f neq
i .x; t/ ' �wi

�

c2s
Qi˛ˇ@ˇu˛ (5.41)

where Qi˛ˇ D ci˛ciˇ � c2sı˛ˇ . From (5.41) it follows that the zeroth order
extrapolation of f neq

i is equivalent to prescribing a constant ru. To capture a
fluid velocity u that varies quadratically, we require at least a linearly correct
approximation of ru or, in the LB context, a first-order accurate extrapolation
of f neq

i . For that reason, the non-equilibrium extrapolation method in the form of
(5.40) is unable to reproduce exact parabolic solutions, although it represents an
improvement over the equilibrium scheme as we will see shortly.

Accuracy benchmark of the non-equilibrium extrapolation method

We now study the accuracy of the non-equilibrium extrapolation method by
repeating the Couette and (pressure-driven) Poiseuille flow examples as carried out
before (cf. Fig. 5.22). The boundary populations obey (5.40).

The non-equilibrium extrapolation method exactly solves the linear Couette flow,
regardless of the value of . We could have expected this result since the first-
order extrapolation of f neq

i can accurately capture the constant velocity gradient
of a linear profile. However, errors appear in the parabolic Poiseuille flow. By
setting f neq

i .x; y1/ D f neq
i .x; y2/ we are implicitly enforcing ruj.x;y1/ D ruj.x;y2/, a

condition that cannot be possibly satisfied in a parabolic solution. The effect of this
inaccuracy is illustrated in Fig. 5.24; the error decreases with resolution at a second-

Fig. 5.24 LB solutions with
the non-equilibrium
extrapolation method for
channel width N D 9. The
result with =�t D 0:7 is
inaccurate while =�t D 1

leads to machine-accurate
solutions. Note the
improvement compared to
Fig. 5.23

196 5 Boundary and Initial Conditions

order rate, as shown in [9]. Once again, this inaccuracy is absent with the relaxation
time =�t D 1 (where the non-equilibrium does not contribute to solutions) and
consequently the parabolic solution is described exactly.

This exercise confirms the necessity of supplying information about f neq
i D �f .1/i

on the boundary node and that this is the necessary condition to achieve second order
accuracy (recall Sect. 5.2.4). There are a number of different ways to reconstruct f .1/i
on boundary nodes [2, 18, 20, 27–29]. Since its hydrodynamic content is the velocity
gradient on the boundary, cf. (5.41), one approach to construct f neq

i is to directly
evaluate ru with finite differences [2, 18]. The downside of this procedure is that
it requires information from neighbouring nodes, thereby losing locality as one of
the main advantages of the LB algorithm. Furthermore, all methods addressing only
f .1/i are plagued by one key limitation: they are not enough accurate to accommodate
the solution curvature on the boundary. This is evidenced by their overall inability
to describe parabolic flow solutions.

5.3.4.4 Non-equilibrium Bounce-Back Method

In order to find f neq
i locally and improve for the boundary scheme accuracy Zou and

He [27] proposed an alternative method. This strategy has become quite popular
and is often referred to by the names of its inventors (Zou-He method) or by its
underlying principle (non-equilibrium bounce-back method or NEBB method).

The reason for the higher accuracy of the NEBB method comes from its ability to
also capture the f .2/i term, thus making it exact for parabolic solutions. This leads to
an accuracy increase by one order, compared to standard second-order LB boundary
schemes.

The NEBB method is formally third-order accurate in the prescription of
the no-slip condition on straight boundaries coincident with the lattice nodes.
This accuracy is independent of the value of the relaxation parameters.

The theoretical justification for this order of accuracy is provided in Sect. 5.4.1,
using the Chapman-Enskog analysis. Here, let us explain the NEBB working
principle. As the name suggests, NEBB provides values for the unknown boundary
populations by enforcing the bounce-back rule for their non-equilibrium part:

f neq
Ni .xb; t/ D f neq

i .xb; t/ .cNi D �ci/: (5.42)

It turns out that, if we apply (5.42), there will be no way to guarantee that the
tangential velocity obtains the intended value. So far we used two macroscopic
conditions: one for the density (or pressure) and another for the normal velocity

5.3 Boundary Condition Methods 197

at the boundary, cf. (5.31). The condition for the tangential velocity at the boundary
has not yet been linked with the prescription of the boundary populations.

To establish this link, we can add an extra term to (5.42) that includes this
information by modifying only the tangential component of boundary populations.
This term is called the transverse momentum correction Nt [67]. Its sign is
determined by t, a tangent unit vector along the wall. (By convention, we choose
t to point along the positive direction of the Cartesian axis. Choosing the opposite
convention would merely change the sign of Nt.) The modified NEBB rule reads

f neq
Ni .xb; t/ D f neq

i .xb; t/ � t � ci
jcij Nt: (5.43)

In Example 5.3 we illustrate how to determine Nt from the tangential velocity.
Unlike the other two wet-node strategies previously described where the bound-

ary scheme replaces all populations at the boundary, the NEBB method modifies
only the missing populations. This has both advantages and disadvantages [18]. On
the upside, NEBB does not touch the known populations, i.e. it makes full use of
all information already available. According to [18, 20], this is believed to lead
to improved accuracy. On the downside, it is difficult to generalise the scheme
to different velocity sets, particularly to those with a large number of velocities.
In fact, the NEBB is cumbersome to employ in 3D [27, 67, 68] (cf. Sect. 5.4.4).
Furthermore, the boundary scheme itself may become a source of instability. It
has been shown that the NEBB scheme introduces undesirable high wave number
perturbations in the bulk solution [20, 69, 70], meaning that it cannot be applied to
high Reynolds number flows [18, 20].

Example 5.3 Let us now apply the NEBB method to a Dirichlet velocity condition
for a top wall as depicted in Fig. 5.21. For generality, assume a tangentially moving
wall with fluid injection, i.e. uw D .uw;x; uw;y/

>. We solve the problem as follows:

1. The first step is to identify the missing populations, for a top wall f4, f7 and f8.
2. We now have to determine the wall density independently of the unknown

populations. For a top wall, the unknown density �w is given by (5.32). As the
wall velocity is also known, the equilibrium part f eq

i of the boundary populations
is now fully determined.

3. The next step is to express the unknown populations through the known
populations and parameters, using (5.43):

f neq
4 D f neq

2

f neq
7 D f neq

5 � Nx

f neq
8 D f neq

6 C Nx

9
>>>=

>>>;

H)

8
ˆ̂
<̂

ˆ̂
:̂

f4 D f2 C
�
f eq
4 � f eq

2

�

f7 D f5 C
�
f eq
7 � f eq

5

�� Nx

f8 D f6 C
�
f eq
8 � f eq

6

�C Nx

: (5.44)

198 5 Boundary and Initial Conditions

Using the known equilibrium distributions from (5.35) we get

f4 D f2 � 2
3c�wuw;y;

f7 D f5 � 1
6c�w.uw;x C uw;y/� Nx;

f8 D f6 � 1
6c�w.�uw;x C uw;y/C Nx:

(5.45)

4. Now we compute Nx by resorting to the first-order velocity moment along the
boundary tangential direction:

�wuw;x D
X

i

cixfi

D c . f1 C f5 C f8/ � c . f3 C f6 C f7/

D c . f1 � f3/ � c . f7 � f5/C c . f8 � f6/

D c . f1 � f3/ � 1
3
�wuw;x C 2Nx:

(5.46)

This gives

Nx D �1
2
. f1 � f3/C 1

3c
�wuw;x: (5.47)

5. Finally, we get closed-form solutions for all unknown populations, which are
exactly those derived in [27]:

f4 D f2 � 2
3c�wuw;y;

f7 D f5 C 1
2
. f1 � f3/ � 1

2c�wuw;x � 1
6c�wuw;y;

f8 D f6 � 1
2
. f1 � f3/C 1

2c�wuw;x � 1
6c�wuw;y:

(5.48)

Exercise 5.3 Show that the NEBB method for a Dirichlet velocity condition at a
left wall results in

�w D c

c � uw;x

�
f0 C f2 C f4 C 2 . f3 C f6 C f7/

	
; (5.49)

f1 D f3 C 2
3c�wuw;x; (5.50)

f5 D f7 � 1
2
. f2 � f4/C 1

2c�wuw;y C 1
6c�wuw;x; (5.51)

f6 D f8 C 1
2
. f2 � f4/� 1

2c�wuw;y C 1
6c�wuw;x: (5.52)

Example 5.4 We check the accuracy of the NEBB method by repeating the
Couette and (pressure-driven) Poiseuille flow examples (cf. Fig. 5.22) as carried
out previously. Here we obtain exact solutions up to machine accuracy in both
cases (data not shown), independently of the choice of . This result confirms that

5.3 Boundary Condition Methods 199

the NEBB method accommodates the bulk solution with third-order accuracy for
straight walls aligned with the lattice nodes.

In conclusion, the NEBB method has superior accuracy compared to the other
wet-node schemes that we looked at. However, it is not the only available choice.
For example, the methods proposed by Inamuro [26] or by Noble et al. [25] offer
the same level of accuracy, for geometries with walls coinciding with lattice nodes.
A more general wet-node technique was suggested by Ginzburg and d’Humières
[13] in the early days of LB research. This wet-node boundary technique prescribes
the wall velocity with third-order accuracy, for any boundary position and/or orien-
tation. However, it has the disadvantage of being quite cumbersome to implement.
Nevertheless, many subsequent schemes, e.g. [20, 28, 29, 71], have relied on ideas
from [13] to develop simpler algorithms, but at the price of reducing the accuracy
to second order.

Finally, we note that all wet-node methods, with the exception of [13], have a
common limitation that is also shared by the simple bounce-back rule. When applied
to walls not coinciding with lattice nodes, their accuracy reduces to first order. In
this case, we have to use more advanced boundary schemes as covered in Chap. 11.

5.3.5 Open Boundaries

Due to computational constraints it is often necessary to truncate the simulation
domain. Unfortunately, by cropping the physical domain, new boundary conditions
have to be prescribed at places where the physical problem had originally no
boundaries at all. We call these open boundaries.

Open boundaries consist of inlets or outlets where the flow either enters or
leaves the computational domain and where we should impose, for example,
velocity or density profiles. This is often non-trivial, and it can cause both
physical and numerical difficulties.

Physically, the difficulty comes from the role of open boundaries: they are sup-
posed to guarantee that what enters/leaves the computational domain is compatible
with the bulk physics of the problem. However, this information is generally not
accessible beforehand. Thus, we must rely on some level of physical approximation,
e.g. by assuming fully developed flow conditions at inlet/outlet boundaries.

Numerically, open boundaries may also be complicated by a feature inherent to
LBM: the presence of pressure waves, cf. Chap. 12. The “simple” enforcement of
either velocity or density at boundaries will generally reflect these waves back into
the computational domain. Since this is undesirable, special non-reflecting open
boundary conditions may be required in some cases. These are covered in Sect. 12.4.

200 5 Boundary and Initial Conditions

Open LB boundary conditions are still matter of active research, e.g. [72, 73].
While more advanced strategies exist (cf. e.g. Sect. 12.4), this section provides an
introduction. We will discuss how to implement a Dirichlet boundary condition
for an imposed velocity or pressure profile using (i) the link-wise bounce-back
method [30, 49, 72] and (ii) the wet-node non-equilibrium bounce-back method [18,
27, 72]. Inlets and outlets are treated on an equal footing in both schemes.

5.3.5.1 Velocity Boundary Conditions: Bounce-Back Approach

The Dirichlet condition for fluid velocity at open boundaries is easily realised by
the bounce-back technique [22, 49]. The formulation is the same as in (5.26), with
uw determining the inlet and/or outlet boundary velocity. (uw may have both normal
and tangential components). The bounce-back algorithm still places the inlet/outlet
boundary, with its imposed velocity uw, midway between the lattice nodes.

5.3.5.2 Pressure Boundary Conditions: Anti-bounce-Back Approach

The prescription of pressure at open boundaries can be performed with a technique
similar to the bounce-back method, called the anti-bounce-backmethod [30, 31, 69].
In this method, the sign of the bounced-back populations is changed:

fNi.xb; tC�t/ D �f ?i .xb; t/C 2wi�w

"

1C .ci � uw/
2

2c4s
� u2w
2c2s

#

: (5.53)

The notation in (5.53) is the same as in (5.26). As for the bounce-back method, the
boundary is located �x=2 outside the boundary node.

Equation (5.53) requires specification of uw which is not generally known. The
problem is similar to finding �w for the velocity Dirichlet correction in the standard
bounce-back rule in (5.26). A possible way to estimate uw is by extrapolation. For
example, following [69], we may estimate uw D u.xb/ C 1

2

�
u.xb/� u.xbC1/

	
,

where xb and xbC1 refer to the boundary node and the next interior node following
the inward normal vector of the boundary.

Since only the square of the boundary velocity appears in (5.53), inaccuracies
in the approximation of uw are O.Ma2/ and therefore usually small. Additionally,
(5.53) can be further augmented with a correction term to eliminate second-order
error terms, making it formally third-order accurate [30, 31, 69, 74].

5.3.5.3 Velocity Boundary Conditions: Wet-Node Approach

The wet-node formulation of velocity boundary conditions applies in the same
manner for open boundaries as for walls. The only difference is that the velocity
describes the mass flux entering or leaving the domain, rather than the motion of a
solid wall. The methods discussed in Sect. 5.3.4 remain equally applicable here.

5.3 Boundary Condition Methods 201

5.3.5.4 Pressure Boundary Conditions: Wet-Node Approach

In the wet-node approach, the algorithm for imposing pressure and velocity
boundary conditions is the same. The only difference lies in the strategy to find
the unknown macroscopic properties at the boundary. For instance, for a prescribed
inlet velocity, the two equations in (5.31) are combined to find the unknown �w

which yields (5.32). Differently, for a prescribed inlet pressure, these two equations
are combined to solve for the unknown wall normal velocity. Considering the top
boundary depicted in Fig. 5.21 as an open boundary traversed by flow along the
y-axis, then (5.31) solves for the boundary velocity:

uw;y D �cC c

�w

�
f0 C f1 C f3 C 2. f2 C f5 C f6/

	
: (5.54)

The sign of uw;y, i.e. inflow or outflow condition, is determined by the solution
of (5.54). Consequently, this algorithm applies equally for inlets and outlets.

5.3.6 Corners

So far we limited the discussion on boundary conditions to straight surfaces. In
both 2D and 3D domains, there are also other geometrical features that we have to
consider.

In 2D domains we have to deal with geometrical features where two straight
surfaces intersect, called corners. In 3D domains, we need to consider
both edges and corners, i.e. places where two and three surfaces cross,
respectively.

The focus of this section is on the treatment of 2D corners. The 3D case can be
deduced from the principles provided here; we will get back to this in Sect. 5.4.4.

Usually the solution of the flow field should be smooth at corners.23 While it
is clear that corners are inherent to rectangular domains, they can sometimes be
avoided by switching from velocity/pressure to periodic boundary conditions as
shown in Fig. 5.25.

It is evident that the treatment of corners cannot be avoided in most practical
flow geometries. The flow over a step, with concave and convex corners, is one
such example, cf. Fig. 5.26a. Another example, shown in Fig. 5.26b, is a staircase
approximation of an inclined wall.

23Here we will exclude cases where this requirement is violated. An example is the lid-driven
cavity flow [62, 75], an often used benchmark problem with a velocity discontinuity at corners.

202 5 Boundary and Initial Conditions

Fig. 5.25 Different implementations of a Poiseuille flow (Fluid nodes: open circles symbol;
Boundary nodes: solid circles symbol; Corner nodes: filled squares symbol). (a) Velocity/pressure
boundary conditions for the inlet and outlet and (b) periodic boundary conditions with a force
density instead of a pressure gradient. While corners are necessary in (a), this is not the case in (b)

Fig. 5.26 Examples of flow geometries with corners: (a) channel with a sudden expansion, (b)
discretisation of a diagonal channel

Even in problems where corners account for only a few points in the solution
domain, like in Fig. 5.26a, the relevance of these points should not be under-
estimated. Recall from the discussion in Sect. 5.2.3 that one single point may
contaminate the numerical solution everywhere [14]. Similarly to the case of planar
boundaries, it turns out that the state of affairs in the modelling of corners is still not
entirely settled.

One of the earliest systematic approaches to treat corners in LBM was proposed
by Maier et al. [34]. Later, Zou and He [27] suggested another approach to specify
corners, based on their NEBB method [27]. Yet, as this approach lacks generality
in 3D implementations, Hecht and Harting [67] extended it to 3D (using D3Q19 as
an example). As of today, numerous contributions have been made for both 2D and
3D problems that are compatible with different realisations of boundary condition.
For example, [13, 14, 30] proposed corner approaches for link-wise methods, while
[17, 20, 71] focused on wet-node boundary schemes.

5.3 Boundary Condition Methods 203

Fig. 5.27 Corner conditions for (a) link-wise (bounce-back) and (b) wet-node (NEBB) methods
(Fluid nodes: open circles symbol; Boundary nodes: solid circles symbol; Corner nodes: filled
squares symbol). Each case illustrates which unknown populations require specification at
boundary and corner nodes

In the following we will limit our discussion to the implementation of corners for
the bounce-back rule as a link-wise approach and for the NEBB method as a wet-
node approach. As shown in Fig. 5.27, both methods have fundamental differences.

5.3.6.1 Corners and the Bounce-Back Rule

The bounce-back rule works in the same way for straight walls and corners, and it
is the same for concave and convex cases: the unknown populations leaving corners
are determined through the full reflection of the known incoming ones.

The first step is to identify the unknown corner populations (cf. Fig. 5.27a):
f1, f2 and f5 in the concave corner and solely f5 in the convex corner. These
populations are found through the standard bounce-back process in (5.24). All
remaining populations passing through the corner are not subject to the bounce-
back rule since they come from neighbouring fluid or boundary nodes.

From the application point of view, the advantages and disadvantages of the
bounce-back rule for corners are similar to those at planar surfaces. The positive
aspects remain the ease of implementation, strict conservation of mass and good
stability characteristics (even close to D �t=2). On the other hand, the (possibly)
lower accuracy, also featuring viscosity-dependent errors (if using the BGK model),
remains the main disadvantages of the method.

5.3.6.2 Corners and the NEBB Method

In the wet-node approach, corners have to be treated in a special way. The big picture
is that we have to ensure that known and unknown populations yield the desired

204 5 Boundary and Initial Conditions

macroscopic properties at corners, just as they do at straight boundaries. Yet, before
going into details, we need to know which macroscopic values to impose.

In case the corner connects a density (pressure) boundary with a velocity
boundary, the macroscopic properties at the corner can be established by the values
from each side of the boundary. However, if both intersecting boundaries require
a velocity, the density (pressure) value at the corner will be missing. Given that
(5.31) only works at straight surfaces, finding the corner density (pressure) generally
requires extrapolation from neighbouring nodes [18].24 This way, all macroscopic
quantities prescribed at corners (�w, uw;x, uw;y) are known, and we can proceed with
the determination of the missing populations.

First, let us address the concave corner depicted in Fig. 5.27b. We find six
unknowns: f0, f1, f2, f5, f6 and f8. Three of them can be determined immediately
by applying the non-equilibrium bounce-back rule:

f neq
1 D f neq

3 ;

f neq
2 D f neq

4 ;

f neq
5 D f neq

7 :

(5.55)

By substituting f neq
i D fi � f eq

i and using the standard LB equilibrium for f eq
i , (5.55)

becomes

f1 D f3 C 2
3c�wuw;x;

f2 D f4 C 2
3c�wuw;y;

f5 D f7 C 1
6c�w.uw;x C uw;y/:

(5.56)

However, the problem is not closed yet. There are still three unknown populations:
f0, f6 and f8. We can work out a solution by taking advantage of the fact that the
number of unknown populations matches that of the conservation laws to satisfy:

�w D f0 C f1 C f2 C f3 C f4 C f5 C f6 C f7 C f8;

�wuw;x D c. f1 C f5 C f8/ � c. f3 C f6 C f7/;

�wuw;y D c. f2 C f5 C f6/ � c. f4 C f7 C f8/

(5.57)

where the underlined terms are unknown. In principle, the two non-rest populations,
f6 and f8, can be determined from solving the second and third equations. Unfor-
tunately, the system is non-invertible. Therefore, in order to make it solvable, we
must introduce an additional constraint. A possible (but non-unique) constraint may

24A possible numerical approximation procedure is using the formula given in Sect. 5.3.5 to find
uw in the anti-bounce-back approach, but now applied to �w.

5.3 Boundary Condition Methods 205

demand that f6 and f8 have equal magnitude. This choice leads to

f6 D 1
12c�w.uw;y � uw;x/;

f8 D 1
12c�w.uw;x � uw;y/:

(5.58)

In the typical scenario of two intersecting walls at rest, (5.58) boils down to f6 D
f8 D 0. Yet, the prescription of other values (even negative ones!) is also admissible.
The reason is that, whatever their content is, the corner populations f6 and f8 do
never propagate inside the fluid domain. As seen in Fig. 5.27b, these populations
belong to links never pointing into the flow domain; these links are called buried
links [34]. Thereby, buried populations never contaminate the bulk solution. The
only demand on f6 and f8 is that they satisfy mass and momentum conservation in
the corner, according to (5.57).

At last, we need to determine the rest population f0. We can enforce the mass
conservation at the corner site by using the first equation in (5.57):

f0 D �w �
8X

iD1
fi: (5.59)

Altogether, the unknown populations in the concave corner are determined by
(5.56), (5.58) and (5.59). It is interesting to note that, if the corner is at rest,
i.e. uw;x D uw;y D 0, the present approach reduces to the (node) bounce-back rule,
supplemented by (5.59).

Concerning the case of a convex corner in Fig. 5.27b, we identify only one
missing population streaming out of the solid region: f5. Consequently, if using the
same procedure as for concave corners, the problem becomes over-specified; the
no-slip condition cannot be satisfied at the convex corner node [34]. An alternative
to overcome this problem is to employ the simple (node) bounce-back rule:

f5 D f7: (5.60)

From this discussion we can conclude that the complexity of the wet-node
approach for corners is its main drawback. This comes with a lack of flexibility in
handling certain geometrical features such as convex corners. These problems are
even worse in 3D where we have to deal with an even larger number of unknown
populations [67], as we will discuss in Sect. 5.4.4. In addition to these problems,
the NEBB method also suffers from other disadvantages, such as the violation
of the exact mass conservation and its weak stability properties for ! �t=2,
cf. Sect. 5.3.4. As advantage, this approach generally offers an accuracy superior
to that of the bounce-back rule. Furthermore, the viscosity dependence that affects
the bounce-back rule with BGK collision operator does not concern the wet-node
approach.

206 5 Boundary and Initial Conditions

5.3.7 Symmetry and Free-Slip Boundaries

Symmetry boundaries, where one half of the domain is the mirror image of the other,
can be implemented in a simple way which is quite similar to the bounce-back
method. Symmetry boundaries can be useful for reducing the time and memory
requirements of simulations where such a symmetry plane exists. For instance
a simulation of Poiseuille flow, which is symmetric, can be halved in size by
simulating only half of the channel with a symmetry boundary at the channel centre
as shown in Fig. 5.28.

First of all, let us consider what mirror symmetry implies. For a symmetry
plane lying exactly midway on the links between two rows of nodes, the
populations on one side of the boundary must exactly mirror those on the
other. Concretely, for a symmetry plane lying at y, the populations on either
side of the boundary are related as fi.x; y��x=2; t/ D fj.x; yC�x=2; t/, with
i and j related so that only the normal velocity is reversed, i.e. cj;n D �ci;n.
This is shown to the left in Fig. 5.29.

Now let us consider what happens after streaming in the main domain, i.e. the
domain we want to simulate, and the mirror domain, i.e. the domain which we
do not want to explicitly simulate. As shown to the right in Fig. 5.29, populations
from a node xb in the main domain stream into the mirror domain, while mirrored
populations from xb’s mirror image stream to the main domain, to xb and its
neighbours parallel to the symmetry plane. Thus, all populations entering the main
domain from the mirror domain are exactly related to those going from the main
domain to the mirror domain.

Fig. 5.28 Poiseuille flow geometry with bounce-back walls, showing fluid nodes (Fluid nodes:
open circles symbol) and boundary nodes (Boundary nodes: solid circles symbol) (a) fully
simulated with a system width of N D 6 nodes; (b) using a symmetry boundary, allowing a system
width of N D 3 nodes

5.3 Boundary Condition Methods 207

Fig. 5.29 Populations in a main and a mirrored domain, streaming across the boundary between
the two domains. The arrows represent populations’ directions, and populations that are identical
to each other have identical arrow styles

We can therefore look at this symmetry boundary from a bounce-back-like
perspective. Populations leaving the boundary node xb at time t meet the
symmetry surface at time tC �t

2
where they are reflected specularly, so that

their resulting velocity cj has its normal velocity component reversed from the
incoming velocity ci, i.e. cj;n D �ci;n. The populations arrive at time tC�t at
the node xb or one of its neighbours along the boundary as shown in Fig. 5.29.
For these populations, the standard streaming step is replaced by

fj.xb C cj;t�t; tC�t/ D f ?i .xb; t/ (5.61)

where cj;t D ci;t is the tangential velocity of the populations, equalling ci and
cj with their normal velocity set to zero.

A free-slip boundary condition, which enforces a zero normal fluid
velocity un D 0 but places no restrictions on the tangential fluid velocity
ut, can be implemented in exactly the same way as this symmetry boundary
condition [35, 76, 77].

Exercise 5.4 For the D2Q9 case shown in Fig. 5.29, write down (5.61) explicitly
for the populations that “bounce off” the boundary.

The free-slip condition gives an interesting insight into bounce-back schemes.
The normal velocity mirroring of the reflected particles only results in a macro-
scopic condition of no normal velocity on the wall. Thus, it is the tangential velocity
mirroring in the no-slip bounce-back scheme that additionally gives the condition
of no tangential velocity on the wall.

Corners in the free-slip scheme are handled in the same way as corners in the
bounce-back no-slip scheme, as described in Sect. 5.3.6.

Exercise 5.5 Consider another type of symmetry boundary condition where the
symmetry plane lies exactly on a line of nodes instead of exactly midway on the
links between two such lines of nodes as in the above method.

208 5 Boundary and Initial Conditions

a) For a symmetry plane lying on a row of nodes at y, how are the populations on
the nodes at yC�x and y ��x related?

b) Show that this boundary condition can be realised on each symmetry boundary
node by setting the populations streamed from the mirror domain equal to
populations streamed from the main domain with mirrored velocity, i.e. as

fj.xb; t C�t/ D fi.xb; tC�t/; (5.62)

with cj;n D �ci;n and cj;t D ci;t as above.
c) Show that (5.62) imposes a free-slip wall condition, i.e. un D 0.

5.4 Further Topics on Boundary Conditions

We present additional material on LB boundary conditions. Here we focus on
theoretical aspects with proofs and details about results provided in the previous
sections. This is of particular interest to those who wish to analyse and formulate
new LB boundary schemes. In Sect. 5.4.1, we explain how to use theoretical
tools, such as the Chapman-Enskog analysis, in order to evaluate the hydrodynamic
characteristics of LB boundary conditions. We apply those results to both bounce-
back and non-equilibrium bounce-back schemes. Then, in Sect. 5.4.2, we discuss
the issue of mass conservation, followed by an analysis of the momentum exchange
between fluid and walls in Sect. 5.4.3. Finally, in Sect. 5.4.4, we outline the main
differences between 2D and 3D problems.

5.4.1 The Chapman-Enskog Analysis for Boundary Conditions

LB boundary conditions rely on specific closure rules. Those are different from
the LB bulk rules of collision and propagation. Consequently, the results extracted
in Sect. 4.1 for the macroscopic bulk behaviour cannot be expected to hold at
boundaries. Still, the techniques introduced there are useful, and the present section
shows how to use the Chapman-Enskog analysis to determine how LB boundary
conditions behave macroscopically. Due to their conceptual differences, we will
treat the bounce-back and the non-equilibrium bounce-back techniques separately.

5.4.1.1 Bounce-Back Method

As explained in Sect. 5.3.3, the macroscopic Dirichlet velocity condition described
by the bounce-back rule in (5.26) applies at lattice links rather than at grid nodes.

5.4 Further Topics on Boundary Conditions 209

However, the LBM, as a typical grid-based method, only provides solutions at the
nodes. Hence, the understanding of what happens at links must be examined in terms
of continuation behaviour. We can study this through a Taylor series expansion.

If we seek third-order boundary accuracy in order to reach the same level of
exactness as the LBE in the bulk (cf. Sect. 5.2.4), then we shall use the second-
order Taylor expansion to approximate the velocity uw;x at a wall point xw that is
displaced by�x=2 from a boundary node at xb. As an example, we investigate a top
wall so that yw D yb C�x=2. For the tangential velocity component, we can write

uxjyw
D uxjyb

C �x

2
@yux

ˇ
ˇ
yb
C 1

2

�
�x

2

�2
@y@yux

ˇ
ˇ
yb
C O

�
�x3

�
: (5.63)

For a link-wise approach, such as the bounce-back rule, to impose a
wall velocity with formal third-order accuracy midway between nodes, its
closure relation must satisfy (5.63) with yw D yb C�x=2.

We can now perform a second-order Chapman-Enskog analysis to unfold the
closure relation of the LB boundary scheme. If the solution is time-independent,
@tfi D 0, the starting point is (5.12). For simplicity, let us focus on the linearised
equilibrium from Sect. 4.3.1. In this case, (5.12) becomes

f eq
i D wi

�C �0 ci�u�
c2s

!

; (5.64a)

f .1/i D �wici˛@
.1/
˛

�C �0 ci�u�
c2s

!

; (5.64b)

f .2/i D
�

 � �t

2

�

wici˛ciˇ@
.1/
˛ @

.1/

ˇ

�C �0 ci�u�
c2s

!

: (5.64c)

The second-order Chapman-Enskog expansion of the bounce-back formula, (5.26),
proceeds with the decomposition of its post-streaming and post-collision popula-
tions as follows:

f eq
Ni C �f

.1/

Ni C �2f
.2/

Ni D f eq
i C

�

1 � �t

��
�f .1/i C �2f .2/i

�
� 2wi�0

ci�uw;�

c2s
(5.65)

with uw;� D u� jw. Then, by introducing (5.64) into (5.65) and performing some

algebraic manipulations (using p D c2s� and @˛ D �@.1/˛), we obtain the steady-state

210 5 Boundary and Initial Conditions

macroscopic content of the bounce-back formula, (5.26), at node yb:

ci�uw;� D ci�u� C �t

2
ci˛@˛.ci�u� /C

�

 � �t

2

�2
ci˛ciˇ@˛@ˇ.ci�u�/

�
�

 � �t

2

�"

ci˛@˛

�
p

�0

�

C �t

2
ci˛ciˇ@˛@ˇ

�
p

�0

�#

:

(5.66)

To simplify the analysis, let us assume that this problem applies for a uni-
directional horizontal flow aligned with the lattice so that ci�u� D cixux and
ci˛@˛ D ciy@y. This way, only diagonal lattice links (i.e. those with cixciy ¤ 0)
play a role. In order to compare the resulting equation with (5.63), the pressure
terms have to be re-expressed in the form of velocity corrections. This is possible
by assuming that we are solving for a unidirectional pressure-driven flow, governed
by @x. p=�0/ D c2s . ��t=2/@2yux and @2x. p=�0/ D 0. Based on these arguments, we
can re-express (5.66) to obtain the steady closure relation for the bounce-back rule
on a top wall:

uw;x D uxjyb
C �x

2
@yux

ˇ
ˇ
yb
C 2c2

3

�

 � �t

2

�2

„ ƒ‚ …
D�x2=8

@2yux
ˇ
ˇ
ˇ
yb

: (5.67)

The equivalence between (5.67) and the target equation, (5.63), requires the
coefficient of the second-order derivative term to be �x2=8. This is possible if
and only if . � �t=2/2 D .3=16/�t2 [15, 21].25 Other values lead to a shift
of the location of the effective boundary condition. This artefact can equivalently
be interpreted as a velocity slip if we assume that the boundary remains halfway
between lattice nodes. In any case, this unphysical dependence of the boundary
condition on (and, therefore, on fluid viscosity) is a serious limitation of the
bounce-back method combined with the BGK collision operator.

A solution for this problem is using an improved collision operator, such as TRT
or MRT. In Chap. 10 we will discuss how those collision operators can be tuned to
achieve a viscosity-independent boundary location.

5.4.1.2 Non-equilibrium Bounce-Back Method

Wet boundary nodes are designed to operate with the same dynamics as bulk nodes,
and they should share the same macroscopic physics. We will explain how the
hydrodynamic content of wet boundary nodes is determined, taking the NEBB
method as an example. In addition, this exercise will helps us establishing its level
of accuracy.

25Remember that c2s D c2=3 D �x2=.3�t2/.

5.4 Further Topics on Boundary Conditions 211

Consider a bottom wall of a pressure-driven Poiseuille channel flow. The flow
is horizontally aligned with the lattice links, and the wall coincides with the
lattice nodes. In the bulk, the LBE solves this problem exactly: @x. p=�0/ D
c2s . ��t=2/@2yux [21, 23]. At boundaries, the NEBB method should reproduce this
equation in the same way. Let us investigate through the second-order Chapman-
Enskog analysis whether this is indeed the case.

For simplicity, let us focus on the diagonal link containing populations f5 and f7.
Recalling Sect. 5.3.4, the NEBB scheme for these populations is

f neq
7 D f neq

5 � Nx: (5.68)

When subjected to the second-order Chapman-Enskog analysis, (5.68) becomes

�f .1/7 C �2f .2/7 D �f .1/5 C �2f .2/5 � Nx: (5.69)

Assuming, as in the previous example, that solutions are time-independent
(cf. Sect. 4.2.3) and taking the linear equilibrium (cf. Sect. 4.3.1), the hydrodynamic
content of f .1/i and f .2/i is given by (5.64b) and (5.64c), respectively. Pressure
(density) and velocity at the wall are known from the prescribed macroscopic
boundary condition. Furthermore, we know that, in this problem, the only non-zero
gradients are @x�, @yux and @2yux. From this, the expressions for f .1/5;7 and f .2/5;7 can be
greatly simplified. For example, f5 becomes

f .1/5 D �w5
"

c5x@x�w C c5xc5y
c2s

�0@yuw;x

#

;

f .2/5 D
�

 � �t

2

�

w5
c5xc25y
c2s

�0@
2
yuw;x:

(5.70)

Introducing the above equations for f5 (and equivalently for f7) into (5.69) and
replacing the lattice-dependent parameters by numerical values for the D2Q9 lattice
(cf. Table 3.1), we obtain

c

18
@x�w � c

6
�0

�

 � �t

2

�

@2yuw;x C Nx D 0: (5.71)

Now we have to determine the hydrodynamic form of Nx.

Example 5.5 Let us illustrate how to find the hydrodynamic content of the trans-
verse momentum correction Nx D � 12 . f1 � f3/ C 1

3c�0uw;x. As usual, the analysis
starts with the second-order Chapman-Enskog analysis:

Nx D �1
2

�
f eq
1 C �f .1/1 C �2f .2/1 � f eq

3 � �f .1/3 � �2f .2/3

�
C 1

3c
�0uw;x: (5.72)

212 5 Boundary and Initial Conditions

With the assumption of steady unidirectional flow, using the linear equilibrium and
introducing numerical values of the D2Q9 model, we obtain after some algebraic
manipulations:

Nx D c

9
@x�w: (5.73)

By substituting the hydrodynamic content of Nx into (5.71) we find that the
NEBB method correctly reproduces the desired macroscopic equation at the wall:

@xpw � c2

3

�

 � �t

2

�

�0@
2
yuw;x D 0: (5.74)

Exercise 5.6 Repeat the above analysis for the vertical link containing the popula-
tions f1 and f3. Demonstrate that its macroscopic content corresponds to the trivial
solution @y�w D 0, as initially assumed.

The NEBB method [27] exactly describes the pressure-driven (Poiseuille)
channel flow on the boundary, thereby agreeing with the LBE in the bulk. In
general flows, the NEBB method expresses the hydrodynamic solution with
a third-order error, due to the O.�3/ terms disregarded in the second-order
Chapman-Enskog analysis. Consequently, the NEBB method is a third-order
accurate boundary scheme for straight walls coinciding with the lattice
nodes.

5.4.2 Mass Conservation at Solid Boundaries

An important feature of LB boundary conditions is whether they conserve the total
mass inside the system or not. Mass conservation is a crucial requirement for the
modelling of many physical processes, such as compressible, multi-phase or multi-
component flows.

The LB algorithm ensures that mass is conserved locally since collision leavesP
i fi D � invariant.26 By inference, mass is also conserved globally in a periodic

domain. However, there is no a priori guarantee that this property holds at boundary
nodes which necessarily must behave differently than bulk fluid nodes, as explained
in Sect. 5.2.4.

A mass conserving boundary node should guarantee the balance between the
amount of mass carried by incoming and outgoing populations. Given that these

26Here, and throughout this discussion, we will assume no mass source is present.

5.4 Further Topics on Boundary Conditions 213

boundary populations undergo different operations, depending on whether link-wise
or wet-node methods are used, we will discuss both approaches separately.

5.4.2.1 Link-Wise Approach: Bounce-Back

The bounce-back method places the wall �x=2 outside the boundary node. In order
for the boundary node to hold its net mass constant it is necessary that what leaves
the node towards the solid domain (after collision) is exactly balanced by what
enters the node (after streaming), see (5.75) below.

The evolution described above is nothing but the particle reflection dynamics
followed by the bounce-back rule, see Fig. 5.12. Thus, for straight walls, the bounce-
back is always mass conserving; a property holding for walls at rest or with a
prescribed tangential movement. Obviously mass is not conserved when a normal
mass flux is prescribed, e.g. for normal velocity in the Dirichlet correction of
the bounce-back formula, recall (5.26). In this case it is expected that the mass
difference in the system is balanced by the mass injection at the wall.

However, two cases may exist where a local mass imbalance can occur. First,
for boundary motions accompanied by the creation or destruction of fluid nodes to
solid nodes and vice-versa [15, 52, 55, 61, 78]. A comparative study on refilling
algorithms can be found in [79]. Second, for boundary shapes not aligning with the
lattice nodes, where numerical errors due to the wall discretisation contaminate the
local mass balance [13, 55].27

5.4.2.2 Wet-Node Approach: Non-equilibrium Bounce-Back

In the wet-node approach, the boundary node is considered to lie in the fluid
domain, yet infinitesimally close to the solid region. This means that wet-node
populations go through an extra step due to the boundary scheme, in addition to the
stream-and-collide dynamics of the LB algorithm in the bulk. However, unlike in
the bounce-back scheme where incoming boundary populations are found through
simple reflection rules, these populations are reconstructed in wet-node approaches.
This reconstruction does not automatically conserve the local mass [13], even for
straight boundaries.

Mass conservation at a boundary node requires that the local mass min that is
streamed in from neighbouring nodes equals the local mass mout that is streamed
out of the node after collision [20, 29, 71]. For a top wall as depicted in Fig. 5.6, the
net mass �m on the boundary node is

�m D min �mout D . f2 C f5 C f6/ � . f ?4 C f ?7 C f ?8 /: (5.75)

27Depending on the definition of mass balance, as explained in [55], a third case may be considered:
the presence of tangential density gradients along the wall surface. Here, a mass flux difference,
proportional to the density gradient, may exist.

214 5 Boundary and Initial Conditions

Let us examine under which circumstances�m ¤ 0 occurs. Considering a BGK
collision f ?i D .�t=/f eq

i C .1 ��t=/f neq
i with the linearised equilibrium f eq

i and
f neq populations subject to the NEBB rule, we may re-express (5.75) as

�m D �wuw;y C �t

�
f neq
4 C f neq

7 C f neq
8

�
: (5.76)

Of course, like in bounce-back, a mass flux has to exist for either a normal
boundary movement, or equivalently, for a boundary with vertical fluid injection.
Both cases are represented by �wuw;y ¤ 0, and as expected lead to a physical
change of mass at the node. However, even when this term is zero, we may still
have�m ¤ 0 from the non-equilibrium contributions. This is a non-physical effect.

Once again we can use the Chapman-Enskog analysis to investigate the hydro-
dynamic content of the f neq

i terms. For this analysis, the first-order decomposition

f neq
i D �f .1/i C O.�2/ is sufficient, where f .1/i is given in (5.64b). By using the

numerical values for the D2Q9 velocity set, we can determine�m up to O.�2/ on a
NEBB boundary node28:

�m D �wuw;y � �t

2
@y.�wuw;y/C �t

6
@y�w: (5.77)

For steady flows moving parallel to straight walls, the NEBB method can
guarantee mass conservation up to the numerical error of the scheme itself,
i.e. �m � O.�3/. In some particular problems mass conservation may be achieved
even exactly, by cancelling effects due to symmetry. However, in more complex
geometries, the mass conservation condition may degrade with the same order as the
NEBB numerical accuracy. In fact, whenever terms like @y.�wuw;y/ become relevant,
e.g. flow impinging an wall, the boundary will experience mass leakage [55]. In
transient problems, the time-dependent solution has an analogous structure to (5.77),
derived assuming steady-state. In this case, however,�m.t/ ¤ 0 cannot be generally
avoided due to the continuity condition @t�w D �@y.�wuw;y/.

There exist wet-node methods where mass conservation is enforced exactly,
e.g. [20, 29, 71]. However, their actual merits remain to be demonstrated in face
of the theoretical criticisms put forward in [13, 55] which show that these methods
may degrade the overall solution accuracy.

5.4.3 Momentum Exchange at Solid Boundaries

In cases such as wind or water flow around a ship or a bridge, one is interested in
the force and torque acting on structures immersed in a fluid. Typical quantities of
interest are the drag and lift coefficients.

28Note that we have used the no-slip condition @xux D @xuy D 0 at the wall to simplify (5.77).

5.4 Further Topics on Boundary Conditions 215

Generally, the total force f acting on a boundary area A can be written as the
surface integral of the traction vector t D � w � On:

f˛ D
Z

dA ˛ D
Z

dA �w;˛ˇ Onˇ (5.78)

where � w is the stress tensor at the surface and On the unit normal vector pointing
from the surface into the fluid.

The key question is how to evaluate the integral in equation (5.78) in a computer
simulation. The conventional approach is to compute the stress tensor � at the
surface, e.g. using finite differences, to approximate the integral in equation (5.78).
This can introduce additional errors and requires tedious computations, in particular
in 3D and for arbitrarily shaped surfaces [80].

Fortunately, the LBM allows direct access to the stress tensor, without those
complicated extra efforts. In the bulk, the viscous shear stress follows directly
from the second-order velocity moment of f neq

i as shown in (4.14) [81, 82]. Also
at boundaries nodes, LBM offers a direct way to evaluate (5.78). We know that
wet boundary nodes also participate in collision and propagation. Therefore, we can
compute the wall shear stress � w on those nodes just as in the bulk, i.e. by computing
the second-order velocity moment of f neq

i .
However, for link-wise methods, such as bounce-back, the wall is shifted by

�x=2 away from the boundary nodes. In this case we cannot directly obtain the
wall stress as in the bulk and a different approach is required.

5.4.3.1 Momentum Exchange in the Bounce-Back Method

Ladd [22, 61] suggested an approach to evaluate (5.78) for the bounce-back method.
The key idea is that the LBM is a particle-based method where the populations fi
represent fluid elements with momentum fici. Following Ladd’s idea, we have to
identify those populations that cross the boundary (both from the fluid into the solid
and the other way around) and sum up all corresponding momentum contributions to
obtain the momentum exchange at the wall. This procedure is called the momentum
exchange algorithm (MEA). Note that the MEA provides only the traction vector t
rather than the full stress tensor � w.

Consider a planar bottom wall along the x-axis in 2D as shown in Fig. 5.12.
During propagation, the populations f4, f7 and f8 stream from fluid to solid nodes.
They hit the boundary half-way on their journey, are bounced back and continue
their propagation as f2, f5, and f6 towards their original nodes. Effectively it seems as
if the populations f4, f7, and f8 vanished into the boundary and f2, f5, and f6 emerged
from the wall.

What does this mean for the momentum exchange between fluid and wall? On
the one hand, momentum is carried by f4, f7, and f8 to the wall, but at the same time
momentum is transported by f2, f5, and f6 from the wall to the fluid. The difference

216 5 Boundary and Initial Conditions

is the net momentum transfer. Note that those populations which move parallel to
the boundary are not relevant as they do not contribute to the momentum transfer
between fluid and solid. The overall idea is very similar to the assessment of the
local mass conservation at solid boundaries as explained in Sect. 5.4.2.

A population fi moving from a boundary node at xb to a solid node at xs D xb C
ci�t is bounced back mid-way29 at a wall location xw D 1

2
.xb C xs/ D xb C 1

2
ci�t.

Those lattice links ci connecting a fluid and a solid node are called boundary links.
For each boundary link there are exactly two populations crossing the wall, one
incoming population f in

i (streaming from the fluid into the wall) and one outgoing
population f out

Ni (moving from the wall into the fluid). All populations moving along
boundary links contribute to the momentum exchange. In order to keep track of the
boundary links we denote them xw

i ; this indicates that population fi crosses the wall
at location xw in direction ci.

Let us pick out a single population, say f4, and investigate its fate more closely.
Just before bounce-back, the incoming population f in

4 carries the momentum pin
4 D

f in
4 c4, but right after, it becomes the outgoing population f out

2 with momentum pout
2 D

f out
2 c2. During bounce-back, the wall has to absorb the recoil such that the total

momentum of the fluid and the wall is conserved. Bounce-back happens at location
xw
4 , so we can write the corresponding momentum exchange as�p.xw

4 / D pin
4 �pout

2 .

Example 5.6 For a stationary wall, bounce-back dictates f out
2 D f in

4 . Hence, the
momentum transfer due to the bounce-back of f4 at xw

4 is �p.xw
4 / D pin

4 � pout
2 D

f in
4 c4 � f out

2 c2 D 2f in
4 c4 since c2 D �c4.

The same idea holds independently for all other populations which are bounced
back anywhere at the boundary. The total momentum exchange between the fluid
and the wall is the sum of all those contributions by all bounced back populations.30

It is therefore straightforward to compute the momentum exchange for any surface
which is described via simple bounce-back boundary conditions:

1. Identify all links between boundary and solid nodes with locations xw
i . If the

boundary is stationary, the list can be constructed once and stored in memory for
the whole simulation.31

2. At each time step (or each other interval when the momentum exchange is
required), evaluate the incoming and bounced back populations f in

i and f outNi at
each of the identified links.

29The MEA also works for curved boundaries as we will discuss in Sect. 11.2.
30Note that the number of identified links varies with the chosen lattice. For example, there will be
more links for the same geometry when D3Q27 rather than D3Q15 is used. This does not affect
the validity of the MEA, though.
31One possible way to implement this is to run over all solid nodes and identify all neighbouring
boundary nodes [80, 83].

5.4 Further Topics on Boundary Conditions 217

3. The total momentum exchange during one streaming step is the sum over all
identified links and, due to cNi D �ci, can be written as

�P D �x3
X

xw
i

�p.xw
i / D �x3

X

xw
i

�
f in
i C f out

Ni
�

ci: (5.79)

The prefactor �x3 in 3D (or equivalently �x2 in 2D) ensures that the result is a
momentum rather than a momentum density.

If we now assume that the momentum is exchanged smoothly during one time step
�t, we can easily find the force acting on the boundary:

f D �P
�t
: (5.80)

Similarly, the angular momentum exchange �L and therefore the total torque T D
�L=�t acting on the wall can be computed. To do this, we have to replace�p.xw

i /

within the sum in (5.79) by .xw
i �xref/��p.xw

i / where xref is a fixed reference point,
e.g. the origin of the coordinate system.

Obviously the MEA is computationally much simpler than solving the integral
in equation (5.78). In fact, neither the surface stress � w nor the normal vector On
are required in the MEA. All necessary information is already contained in the
populations participating in the bounce-back process.

5.4.3.2 Accuracy of the Momentum Exchange Method

Despite its simplicity, the MEA provides an accurate measure of the wall shear
stress [22]. We can verify this through a Chapman-Enskog analysis.

Consider again a planar bottom wall modelled with the bounce-back method
(cf. Fig. 5.12). Let us follow [23] and define �pw

x as the net tangential momentum
(per time step and per unit area) transferred from fluid to solid across the wall, which
is located midway between the solid node xs and the boundary node xb. According
to the momentum exchange principle,�pw

x can be computed as

�pw
x D

cV

�tA

h
. f5 � f6/jxb

� . f8 � f7/jxs

i
D c2

�
. f5 � f6/� . f ?8 � f ?7 /

	ˇˇ
ˇ
xb

(5.81)

where in 3D (2D) we have V D �x3 (V D �x2) and A D �x2 (A D �x). The
evaluation of �pw

x using only local information at xb is possible by exploring the
LB stream-and-collide dynamics.

218 5 Boundary and Initial Conditions

As derived in Sect. 5.4.1, we know that the hydrodynamic content of fi, up to the
second order in steady state, is

fi D f eq
i C �f .1/i C �2f .2/i C O.�3/

D
"

1 � �ci˛@.1/˛ C �2
�

 � �t

2

�

ci˛ciˇ@˛@ˇ

#

f eq
i C O.�3/:

(5.82)

By introducing (5.82) into (5.81) and adopting the linear incompressible equilibrium
(cf. Sect. 4.3.1) we get

�pw
x D �c2s

�

 � �t

2

�

�0 @yux
ˇ
ˇ
xb
C �x

2
c2s

�

 � �t

2

�

�0 @
2
yux
ˇ
ˇ
ˇ
xb

: (5.83)

Equation (5.83) denotes the first-order Taylor expansion of the viscous stress �xy D
�
�0@yux exerted by the fluid on the wall located at yw D yb ��x=2 [15]. We can
rewrite this in the compact form �xyjyw D �xyjyb � �x

2
@y�xyjybCO.�x2/. This proves

the second-order accuracy of the MEA in computing �xy at the wall. This measure is,
at the same time, exact for parabolic solutions, which may be surprising, considering
that the bounce-back parabolic solution comes itself with a viscosity-dependent
error. Such a result has been originally pointed out by [22] and is explained by the
fact that for a linear shear stress solution the second-order derivative term, related
to the viscosity-dependent error, is vanished.

5.4.4 Boundary Conditions in 3D

Up to this point we have only considered the application of boundary conditions in
2D domains. A natural question is: what changes in 3D? The purpose of this section
is to summarise the major differences between 2D and 3D.

The first obvious difference is the geometry. While in 2D domains the prescrip-
tion of boundary conditions is limited to edges and corners, in 3D we have to handle
planes, edges and corners as illustrated in Fig. 5.30. Such a diversity of geometrical
features evidently adds complexity to the treatment of boundary conditions.

The additional challenges in 3D are mostly related to the numerical implementa-
tion rather than the mathematical concept. Since 3D lattices typically contain more
discrete velocity vectors than 2D lattices, we have to deal with more unknowns. This
is summarised in Table 5.2.

But how does this added complexity affect the LB implementation of boundary
conditions in practice? As discussed in Sect. 5.2.4, there are link-wise and wet-
node procedures to treat boundary conditions. These two techniques are not equally
simple to extend to 3D:

• Link-wise boundary methods specify the missing populations based on simple
reflection rules, e.g. bounce-back. Therefore, they naturally extend to 3D.

5.4 Further Topics on Boundary Conditions 219

Fig. 5.30 Schematic representation of different geometrical features in 2D and 3D problems,
inspired by [34]. White surfaces represent fluid-solid boundaries while grey surfaces represent
cuts through the solid. The 3D plane degenerates to a 2D edge, and the two other 3D configurations
degenerate to 2D corners

Table 5.2 Number
of unknown populations for
different lattices and
boundary configurations

Configuration D2Q9 D3Q15 D3Q19 D3Q27

Plane – 5 5 9

Edge (concave) 3 8 9 15

Corner (concave) 5 10 12 17

• Wet node techniques are based on specific rules incorporating the consistency
with bulk dynamics. Also, they are often designed to modify just the unknown
boundary populations, as in, e.g., the NEBB method. Consequently, the added
number of unknowns makes their extension to 3D non-trivial.32

A difficulty particular to wet-node boundaries is the handling of those popula-
tions that never stream into the fluid domain (buried links, cf. Sect. 5.3.6). In 3D,
they appear in concave edges and corners. Strategies to deal with them can be found
in [34, 67].

Convex boundary nodes, on the other hand, do not apply the same rules as in
the concave case because fewer populations emanate from inside the wall. This
naturally leads to an over-constrained problem in the prescription of the unknown
populations. As the problem has too few unknowns, it follows that one cannot
enforce the no-slip condition at convex boundary nodes using general wet-node

32Wet-node formulations that replace all populations are simpler to implement in 3D. Examples
are the equilibrium scheme [23], the non-equilibrium extrapolation method [9], the finite-difference
velocity gradient method [18] and the regularised method [18]. As they are based on reconstructing
all populations, they are not sensitive to the number of populations. The downside of these
approaches is that they either decrease the accuracy or increase the complexity of implementation,
e.g. by making the scheme non-local [18].

220 5 Boundary and Initial Conditions

rules, and bounce-back typically has to be used. This has been thoroughly explained
in [34]. A wet-node procedure aiming at minimising slip along convex edges has
been developed by Hecht and Harting [67].

Considering the ensemble of 3D wet-node methods currently on the market,
the most general and accurate one is the local second-order boundary method by
Ginzburg and d’Humières [13]. However, its implementation is rather cumbersome,
as typical of wet-node strategies in 3D. This was recognised by the authors [13]
who later suggested link-wise boundary methods of identical accuracy, but non-
local implementation, as a simpler alternative [15, 30, 31].

Wet-node boundary conditions may yield superior accuracy over bounce-
back on flat surfaces. However, they are generally difficult to implement
in 3D, owing to the need to distinguish between populations according to
their orientation to the wall and also the cumbersome treatment of edge and
corner nodes. Contrarily, link-wise boundary schemes (in particular bounce-
back) do not distinguish between populations and are easy to implement. In
conclusion, in general 3D geometries, the link-wise boundary methods offer
a better compromise between accuracy and ease of implementation compared
to wet-node techniques.

Finally, we note that the difficulties in going from 2D to 3D are common to any
problem where higher-order lattices are employed. Lattices with a larger number of
velocities appear in a number of applications, like in thermal fluids and compressible
hydrodynamics [84–86], rarefied gas flows [87, 88] or multiphase problems [89].
Despite their vast range of application, so far only few procedures have been devised
to specify boundary conditions in such higher-order lattices, e.g. [90] in link-wise
and [91] in wet-node approaches.

5.5 Initial Conditions

In Sect. 5.2.2 we have already explained the relevance of proper initial conditions
for the NSE. Here, we address how an LB simulation can be initialised. The
basic question is: given a known initial divergence-free velocity field u0.x/ for
the incompressible NSE, how have the populations fi to be chosen to recover a
consistent initial macroscopic state? Skordos was the first who thoroughly discussed
this issue in his seminal paper [2]. In the following, some general ideas about
simulation initialisation (cf. Sect. 5.5.1) and the available LB initialisation schemes
(cf. Sect. 5.5.2) are presented, followed by the decaying Taylor-Green vortex flow
as a benchmark test (cf. Sect. 5.5.3).

5.5 Initial Conditions 221

5.5.1 Steady and Unsteady Situations

Before we discuss the available methods to initialise an LB simulation, it is
worthwhile to take a look at typical simulation scenarios. Every LB simulation falls
into exactly one of the following categories:

1. Steady flows. Since LBM is an inherently time-dependent method, it is generally
not well suited for steady problems. Although one can of course use it to obtain
steady solutions, it usually takes a larger number of iteration (i.e. time) steps
compared to methods tailored for steady problems. In steady situations, e.g. flow
through a porous medium with a constant pressure gradient, the initial state is
normally not relevant for the final outcome. The reason is that all unphysical
transients caused by the initial state decay after some time, and only the desired
steady solution survives. In this context, there exist preconditioning techniques
to accelerate convergence to steady state [74, 92].

2. Unsteady flows after long times. The LB algorithm is particularly powerful
when it is applied to unsteady problems like suspension flows, flow instabilities
or fluid mixing. In many cases, one is interested in the long-time behaviour of
the system or the associated statistical properties such as suspension viscosity,
particle diffusivity or the mass transfer coefficients in multi-component systems.
It turns out that the exact choice of the initial conditions is often not relevant
since unphysical transients decay and the system “finds” its proper state after
some time. In other words: the statistical long-time behaviour of such systems is
usually independent of the initial state.

3. Time-periodic flows. Some flows are time-periodic, for instance Womersley
flow [93]. Fully converged time-periodic flows do not depend on the details of
the initialisation, but in general it can take a long time until undesired transients
have decayed. For Womersley flow, these transients can last for more than tens
of oscillation periods (cf. Sect. 7.3.4).

4. Initialisation-sensitive flows. There are situations where the entire fate of a sim-
ulation depends on the initial state, for example turbulence or some benchmark
tests [2] such as the decaying Taylor-Green vortex flow (cf. Sect. 5.5.3). For such
systems, any error in the initial state propagates in time and can detrimentally
affect the accuracy of the entire simulation.

5.5.2 Initial Conditions in LB Simulations

We first discuss the relationships between the populations fi and the macroscopic
fields (e.g. velocity and pressure) in the context of initial conditions. After thinking
about the role of the order of collision and propagation, we discuss one particular
initialisation scheme for LBM in more detail.

222 5 Boundary and Initial Conditions

5.5.2.1 Role of Populations and Macroscopic Fields

Solving the unsteady NSE implies finding the velocity and the pressure fields u.x; t/
and p.x; t/, respectively. This generally requires knowledge of the initial velocity
and pressure fields u0.x/ and p0.x/.

As shown in Sect. 4.1, the populations fi can be decomposed into equilibrium
and non-equilibrium parts. The equilibrium part, (3.54), can be easily constructed
from the velocity and density (pressure) fields. However, in order to initialise an LB
simulation properly, one also has to specify the strain rate tensor S0 with components
S0˛ˇ.x/ D 1

2
.r˛uˇ C rˇu˛/jtD0 [94]. The first-order non-equilibrium populations

f .1/i are essentially proportional to the velocity gradients. Initialising populations by
the equilibrium populations means that the initial state would not be second-order
accurate. This is a direct consequence of the kinetic nature of the LB algorithm.

The initialisation of LB algorithms is thoroughly described in [3, 94] and, on a
more mathematical basis, in [95, 96]. In the following, we will only report the most
important points and refer to the literature where necessary.

The most common situation is that the initial solenoidal (divergence-free)
velocity field u0.x/ is given, but neither the pressure p0.x/ nor the strain rate
S0.x/ are known. One could therefore be tempted to initialise the populations at
equilibrium, i.e.

fi.x; t D 0/ D f eq
i

�
�;u0.x/

�
; (5.84)

where � is some initial constant density. This will lead to an inconsistent state
because the Poisson equation for the initial pressure,33

�p0 D �� @ˇu˛@˛uˇ
ˇ
ˇ
tD0 ; (5.85)

is not satisfied. In fact, Skordos [2] emphasised that an initialisation with a constant
pressure is generally insufficient. Caiazzo [94] pointed out that a wrong pressure
initialisation leads to undesired initial layers and numerical oscillations which
potentially spoil the entire simulation [3]. In order to obtain a consistent initial
pressure profile from the velocity, one has to solve the Poisson equation, (5.85).
This can be done directly, or one may follow the iterative approach by Mei et al. [3]
as summarised further below.

It is worth recalling that the pressure is not entirely determined by the velocity
for weakly compressible schemes like most LB solvers; it is rather an independent
field which requires its own initialisation [95]. However, since LB simulations are
usually run in the limit of small Knudsen and Mach numbers, we assume that
initialisations in accordance with the incompressible NSE are also good for the
slightly compressible LBM.

33One obtains this equation by computing the divergence of the incompressible NSE.

5.5 Initial Conditions 223

If we assume for a moment that the initial pressure p0.x/ is known, one can refine
(5.84) as

fi.x; t D 0/ D f eq
i

�
�0.x/;u0.x/

�
(5.86)

where

�0.x/ D N�C p0.x/� Np
c2s

(5.87)

is the initial density profile with N� being the average density and Np an appropriate
reference pressure. Equation (5.87) is nothing more than the equation of state of
the standard LBE. The choice of N� is arbitrary as it is a mere scaling factor in all
equations. As will be discussed more thoroughly in Sect. 7.2.1, one usually chooses
N� D 1 in lattice units.

But even if the pressure and therefore the density is set correctly, one still has
to consider the non-equilibrium populations. For given velocity gradients and low
fluid velocities, the BGK non-equilibrium can be approximated through (4.35) as

f neq
i ' �wi

�

c2s
Qi˛ˇ@˛uˇ (5.88)

where Qi˛ˇ D ci˛ciˇ � c2sı˛ˇ .
The velocity gradients can for example be computed from the velocity field u0.x/

analytically or through a finite difference scheme. The second approach is often
employed since analytical expressions for the velocity are not always available.

Skordos [2] proposed an extended collision operator with finite-difference-based
velocity gradients for initialisation. Holdych et al. [97] and van Leemput [95]
reported consistent high-order initialisation schemes as generalisation of Skordos’s
approach. In comparison with finite difference approximation methods, the method
by Mei et al. [3] does not only produce a consistent initial pressure, but also a
consistent initial non-equilibrium field. Details of the latter approach are given
below.

Generally, the populations should, if possible, be initialised according to

fi.x; t D 0/ D f eq
i

�
�0.x/;u0.x/

�C f neq
i

�
�0.x/;S0.x/

�
: (5.89)

It turns out that several conclusions from Sect. 5.2.4 are also applicable here: if the
populations f .2/i are neglected during initialisation, the curvature r2u0 will not be
correctly imposed and the resulting flow field will only be linearly exact and second-
order accurate. In other words, to initialise a Poiseuille flow exactly, all orders up to
f .2/i have to be initialised correctly. More details are provided in [98].

224 5 Boundary and Initial Conditions

5.5.2.2 Chicken or Egg? Order of Collision and Propagation

As mentioned before, in most situations a simulation is initially dominated by
undesired transients until the physical solution dominates. In these cases it is not
relevant whether to start a simulation with collision or propagation.

If, on the other hand, the transients are of interest, one has to start a simulation
with the proper initialisation, followed by collision. The reason lies in the way the
Boltzmann equation is discretised (cf. Chap. 3).

The LBE is the explicit discretisation of the continuous Boltzmann equation. This
means that the equilibrium distribution, which is used for collision, is calculated
using the known velocity and pressure fields. Only after this, propagation is
performed. Initialising a simulation is basically the inverse of the velocity moments
computation: instead of performing fi ! .�;u/, one goes the other way around
and executes .�;u/ ! fi. Therefore, the equilibrium and non-equilibrium parts of
the populations after initialisation assume a state compatible with the state after
propagation, but before collision. Therefore, initialisation has to be followed by
collision rather than propagation.34

We provide a simple example showing that the above argumentation is valid.
Imagine a simulation with D �t. This means that, during collision, the non-
equilibrium is set to zero everywhere and all populations relax to their equilibrium.
The subsequent propagation step leads to the appearance of a new non-equilibrium
if the flow field is not spatially homogeneous. In contrast, if the simulation is
initialised with the correct non-equilibrium populations, a subsequent propagation
will produce a new non-equilibrium which is inconsistent with a previous non-
relaxed flow field. Therefore, one first has to perform collision. This example also
shows that the deviatoric stress tensor (and all other moments) has to be computed
after propagation rather than after collision. No matter how large the velocity
gradients are, for D �t they would always be zero after collision, which is
obviously not correct.

5.5.2.3 Consistent Initialisation via a Modified LB Scheme

Mei et al. [3] proposed a modification of the incompressible35 LB algorithm
(cf. Sect. 4.3) to find a consistent initial state given a solenoidal velocity field u0.x/.
The essential idea is to run the following algorithm until convergence has been
obtained:

1. Initialise the populations fi, e.g. with the initial velocity u0.x/ according to (5.84).
2. Compute the local density from �.x/ DPi fi.x/.

34A more accurate discussion of how to split the time step is found in recent works by Dellar [99]
and Schiller [100].
35For this initialisation method, it is important to employ the incompressible LB algorithm. The
standard equilibrium leads to large initial pressure errors.

5.5 Initial Conditions 225

3. Perform collision by using the modified incompressible equilibrium distributions
f eq
i

�
�.x/;u0.x/

�
, i.e. take the updated density field from step 2 but keep the initial

velocity u0.x/ rather than recomputing it.
4. Propagate.
5. Go back to step 2 and iterate until the populations fi (and the hydrodynamical

fields) have converged to a user-defined degree. It is important to end this
algorithm with propagation rather than collision; otherwise the non-equilibrium
would be incorrect.

This algorithm does not obey momentum conservation (only density is con-
served), it rather relaxes the velocity to its desired value at each point in space. The
outcome is nearly independent of the choice of the relaxation parameter , although
its choice affects the required number of iteration steps. It can be shown [3] that this
procedure results in consistent initial populations, including the non-equilibrium
part and therefore velocity gradients. For this reason, the resulting populations can
be used as initial state for the actual LB simulation.

In fact, by modifying the LB algorithm as detailed above, one effectively solves
the advection-diffusion equation for the density � as a passive scalar field and
the Poisson equation for the pressure p in (5.85) [3]. This will become clearer in
Sect. 8.3.

A disadvantage of this initialisation approach is that an initial force field is not
taken into account, but other authors [94, 96] presented accelerated initialisation
routines which also works in the presence of an initial force density. The major
advantage is that this initialisation approach is much easier to implement than
an additional Poisson solver, though depending on the parameters the solution
of the advection-diffusion equation can be computationally demanding. Another
advantage is that two outcomes are simultaneously available: the pressure field and
consistent initial populations, including their non-equilibrium part.

We should mention a subtle detail of the above initialisation scheme. In the
original paper [3], the authors used an MRT collision operator (cf. Chap. 10) with
!j˛ D 1=�t, where !j˛ is the relaxation frequency for the momentum density.
Without going too much into detail here, the choice !j˛ D 1=�t guarantees local
momentum conservation so that the actual velocity field u.x/ / P

i fici always
equals its input value u0.x/ during the initialisation process. The same effect can
be achieved with ! D 1= D 1=�t in the BGK model. For !j˛ or 1= different
from 1=�t, momentum is not conserved and the velocity as computed from the
populations does not match the specified velocity u0. We will see this in Sect. 5.5.3.
However, the difference between the obtained velocity field and the input velocity
field u0.x/ is of second order and therefore still compatible with a consistent
initialisation of the LBM.

Recently, Huang et al. [96] proposed advanced initialisation schemes based on
the asymptotic analysis of the LBM. We will not discuss these more sophisticated
approaches here.

226 5 Boundary and Initial Conditions

5.5.3 Example: Decaying Taylor-Green Vortex Flow

In order to show how relevant the correct initialisation of velocity, pressure and
stress in a transient situation is, we simulate the decaying Taylor-Green vortex
flow (cf. Sect. A.3 for its definition) with several different initialisation strategies
following (5.89):

1. set velocity, pressure and stress analytically,
2. set velocity and pressure only (initialise with the equilibrium),
3. set velocity and stress only (�0 D 1),
4. use the initialisation scheme by Mei et al. [3].

The simulation parameters are Nx � Ny D 96 � 72, D 0:8�t (
 D 0:1�x2=�t),
Ou0 D 0:03�x=�t, N� D 1 (in lattice units) and p0 D 0. The standard equilibrium
is used for the actual simulations while the incompressible equilibrium is employed
for Mei’s initialisation scheme.36 The vortex decay time is td � 840�t. We run
the simulation for one decay time and show the L2 error as defined in (4.57) as
function of time for velocity u, pressure p and the xx- and xy-components of the
deviatoric stress tensor � . Furthermore, for Mei’s initialisation scheme we use the
same relaxation time as for the actual simulation (although in principle different
relaxation times could be used), and the advection-diffusion scheme is terminated
once the L2 difference of the pressure profile at subsequent iteration steps falls below
10�10. This convergence criterion is sufficient since an even lower threshold (we also
tested 10�12) did not result in more accurate simulations.

The results for the errors after completed initialisation are shown as function
of time in Fig. 5.31. The major observation is that an incorrect pressure is much
more problematic than an incorrect stress. Furthermore, Mei’s initialisation scheme
produces velocity and �xx errors nearly as small as the analytical initialisation while
the pressure and �xy error is slightly smaller with Mei’s approach. We see that the
velocity error in the case of Mei’s approach is initially not zero. The reason is that
 D 0:8�t 6D �t has been used. For D �t, the initial velocity error would be
zero. Yet, the initial velocity error is of the same order as the typical velocity error
and does not significantly affect the subsequent simulation results.

Disregarding the stress in the initialisation process increases the velocity error
only during the first time steps. The pressure errors for initialised or non-initialised
stress are virtually indistinguishable; even the stress errors behave similarly, except
for very short times where they are 100%. In total, neglecting the initial stress does
not lead to significant long-time deviations. The reason why the stress is much
less important is that it represents a higher-order effect in the Chapman-Enskog
expansion. An initially inconsistent stress is corrected after a few time steps without
significant consequences for the flow. Note that, for D �t, a wrong (or missing)

36Using the incompressible equilibrium for the actual simulations does not result in significantly
different results. This is no surprise since the incompressible model is only formally more accurate
for steady flows.

5.5 Initial Conditions 227

Fig. 5.31 L2 errors of (a) velocity, (b) pressure, (c) xx-stress and (d) xy-stress as function of time
t for different initialisation schemes of the decaying Taylor-Green flow. The solid, densely dashed,
loosely dashed and dotted curves denote, respectively, full initialisation, Mei’s initialisation,
velocity and pressure initialisation, velocity and stress initialisation. The legend in (d) applies to
all subfigures

stress initialisation does not have any effect on density and momentum because the
simulation starts with collision and D �t leads to the total extinction of any non-
equilibrium distributions. This has been confirmed by simulations (data not shown
here).

The situation is different when the pressure is initially ignored. The pressure
error itself does never recover from the inconsistency and oscillates in the range
10–100%. The pressure error is nearly two orders of magnitude smaller when
the pressure is properly initialised. The velocity error is less susceptible: without
pressure initialisation it is around 1% whereas the full initialisation leads to velocity
errors below 0:1%. Both stress errors behave qualitatively differently. The error
of �xx strongly depends on the pressure initialisation, while the error of �xy does
not. The explanation is that �xx errors, like pressure errors, are tightly related to
compressibility artefacts while �xy errors are not.

228 5 Boundary and Initial Conditions

We conclude that an incorrect pressure initialisation can spoil the entire simula-
tion while a missing stress initialisation has a nearly vanishing effect. However,
if available, the stress should be included in the initialisation scheme in order
to increase the accuracy and consistency of the simulation. Mei’s scheme is an
excellent approach to find an accurate initial state (in particular the pressure)
although the initial velocity field is slightly incorrect for 6D �t unless MRT is
used to fully relax the momentum in each collision, as described above.

References

1. A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics, 3rd edn.
(Springer, New York, 2000)

2. P.A. Skordos, Phys. Rev. E 48(6), 4823 (1993)
3. R. Mei, L.S. Luo, P. Lallemand, D. d’Humières, Comput. Fluids 35(8-9), 855 (2006)
4. R. Haberman, Applied Partial Differential Equations: with Fourier Series and Boundary

Value Problems (Pearson Prentice Hall, Upper Saddle River, 2004)
5. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge,

2000)
6. J. Anderson, Computational Fluid Dynamics (McGraw-Hill, New York, 1995)
7. H.K. Versteed, M. Malalasekera, An Introduction to Computational Fluid Dynamics, the

Finite Volume Method (Prentice-Hall, Upper Saddle River, 1996)
8. S. Chen, D. Martinez, R. Mei, Phys. Fluids 8, 2527 (1996)
9. Z.L. Guo, C.G. Zheng, B.C. Shi, Chin. Phys. 11, 366 (2002)

10. Z.L. Guo, C.G. Zheng, B.C. Shi, Phys. Fluids 14, 2007 (2002)
11. M. Shankar, S. Sundar, Comput. Math. Appl. 57, 1312 (2009)
12. X. Kang, Q. Liao, X. Zhu, Y. Yang, Appl. Thermal Eng. 30, 1790 (2010)
13. I. Ginzbourg, D. d’Humières, J. Stat. Phys. 84, 927 (1996)
14. M. Junk, Z. Yang, Phys. Rev. E 72, 066701 (2005)
15. I. Ginzburg, D. d’Humières, Phys. Rev. E 68, 066614 (2003)
16. B. Chun, A.J.C. Ladd, Phys. Rev. E 75, 066705 (2007)
17. J.C.G. Verschaeve, B. Müller, J. Comput. Phys. 229, 6781 (2010)
18. J. Latt, B. Chopard, O. Malaspinas, M. Deville, A. Michler, Phys. Rev. E 77(5), 056703 (2008)
19. M. Junk, Z. Yang, J. Stat. Phys. 121, 3 (2005)
20. J.C.G. Verschaeve, Phys. Rev. E 80, 036703 (2009)
21. I. Ginzbourg, P.M. Adler, J. Phys. II France 4(2), 191 (1994)
22. A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)
23. X. He, Q. Zou, L.S. Luo, M. Dembo, J. Stat. Phys. 87(1–2), 115 (1997)
24. M. Bouzidi, M. Firdaouss, P. Lallemand, Phys. Fluids 13, 3452 (2001)
25. D.R. Noble, Chen, J.G. Georgiadis, R.O. Buckius, Phys. Fluids 7, 203 (1995)
26. T. Inamuro, M. Yoshino, F. Ogino, Phys. Fluids 7, 2928 (1995)
27. Q. Zou, X. He, Phys. Fluids 9, 1591 (1997)
28. I. Halliday, L.A. Hammond, C.M. Care, A. Stevens, J. Phys. A Math. Gen. 35, 157 (2002)
29. A.P. Hollis, I.H.H.M. Care, J. Phys. A Math. Gen. 39, 10589 (2006)
30. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)
31. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)
32. C. Pan, L.S. Luo, C.T. Miller, Comput. Fluids 35(8-9), 898 (2006)
33. S. Khirevich, I. Ginzburg, U. Tallarek, J. Comp. Phys. 281, 708 (2015)
34. R.S. Maier, R.S. Bernard, D.W. Grunau, Phys. Fluids 8, 1788 (1996)

References 229

35. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University
Press, Oxford, 2001)

36. M.C. Sukop, D.T. Thorne Jr., Lattice Boltzmann Modeling: An Introduction for Geoscientists
and Engineers (Springer, New York, 2006)

37. S.H. Kim, H. Pitsch, Phys. Fluids 19, 108101 (2007)
38. Q. Zou, S. Hou, S. Chen, G.D. Doolen, J. Stat. Phys. 81, 35 (1995)
39. X. He, L.S. Luo, J. Stat. Phys. 88, 927 (1997)
40. S.V. Patankar, C.H. Liu, E.M. Sparrow, ASME J. Heat Transfer 99, 180 (1977)
41. J. Zhang, D.Y. Kwok, Phys. Rev. E 73, 047702 (2006)
42. O. Gräser, A. Grimm, Phys. Rev. E 82, 016702 (2010)
43. U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56(14), 1505 (1986)
44. R. Cornubert, D. d’Humières, D. Levermore, Physica D 47, 241 (1991)
45. D.P. Ziegler, J. Stat. Phys. 71, 1171 (1993)
46. J. Hardy, Y. Pomeau, O. de Pazzis, J. Math. Phys. 14(12), 1746 (1973)
47. J.P. Rivet, J.P. Boon, Lattice Gas Hydrodynamics (Cambridge University Press, Cambridge,

2001)
48. D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer,

New York, 2005)
49. A.J.C. Ladd, R. Verberg, J. Stat. Phys. 104(5–6), 1191 (2001)
50. A.J. Wagner, I. Pagonabarraga, J. Stat. Phys. 107, 531 (2002)
51. C. Aidun, Y. Lu, J. Stat. Phys. 81, 49 (1995)
52. C.K. Aidun, Y. Lu, E.J. Ding, J. Fluid Mech. 373, 287 (1998)
53. S. Krithivasan, S. Wahal, S. Ansumali, Phys. Rev. E 89, 033313 (2014)
54. N.Q. Nguyen, A.J.C. Ladd, Phys. Rev. E 66(4), 046708 (2002)
55. X. Yin, G. Le, J. Zhang, Phys. Rev. E 86(2), 026701 (2012)
56. O. Filippova, D. Hänel, J. Comput. Phys. 147, 219 (1998)
57. I. Ginzburg, J. Stat. Phys. 126, 157 (2007)
58. D. d’Humières, In Rarefied Gas Dynamics: Theory and Simulations, ed. B. Shizgal, D Weaver

159, 450 (1992)
59. P. Lallemand, L.S. Luo, Phys. Rev. E 61(6), 6546 (2000)
60. D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Phil. Trans. R. Soc. Lond.

A 360, 437 (2002)
61. A.J.C. Ladd, J. Fluid Mech. 271, 311 (1994)
62. L.S. Luo, W. Lia, X. Chen, Y. Peng, W. Zhang, Phys. Rev. E 83, 056710 (2011)
63. A.A. Mohamad, S. Succi, Eur. Phys. J. 171, 213 (2009)
64. R.G.M. Van der Sman, Comput. Fluids 35, 849 (2006)
65. D. d’Humières, I. Ginzburg, Comput. Math. Appl. 58, 823 (2009)
66. I. Ginzburg, Commun. Comput. Phys. 11, 1439 (2012)
67. M. Hecht, J. Harting, J. Stat. Mech. Theory Exp. P, 01018 (2010)
68. H. Chen, Y. Qiao, C. Liu, Y. Li, B. Zhu, Y. Shi, D. Sun, K. Zhang, W. Lin, Appl. Math. Model

36, 2031 (2012)
69. S. Izquierdo, N. Fueyo, Phys. Rev. E 78, 046707 (2008)
70. S. Izquierdo, P. Martinez-Lera, N. Fueyo, Comput. Math. Appl. 58, 914 (2009)
71. A.P. Hollis, I. HalIiday, C.M. Care, J. Comput. Phys. 227, 8065 (2008)
72. S. Izquierdo, N. Fueyo, Phys. Rev. E 78(4) (2008)
73. D. Heubes, A. Bartel, M. Ehrhardt, J. Comput. Appl. Math. 262, 51 (2014)
74. L. Talon, D. Bauer, D. Gland, H. Auradou, I. Ginzburg, Water Resour. Res. 48, W04526

(2012)
75. S. Hou, Q. Zou, S. Chen, G.D. Doolen, A.C. Cogley, J. Comput. Phys. 118, 329 (1995)
76. A.R. da Silva, Numerical studies of aeroacoustic aspects of wind instruments. Ph.D. thesis,

McGill University, Montreal (2008)
77. G. Falcucci, M. Aureli, S. Ubertini, M. Porfiri, Phil. Trans. R. Soc. A 369, 2456 (2011).
78. P. Lallemand, L.S. Luo, J. Comput. Phys. 184(2), 406 (2003)
79. S. Tao, J. Hu, Z. Guo, Comput. Fluids 133, 1 (2016)

230 5 Boundary and Initial Conditions

80. R. Mei, D. Yu, W. Shyy, L.S. Luo, Phys. Rev. E 65(4), 041203 (2002)
81. T. Krüger, F. Varnik, D. Raabe, Phys. Rev. E 79(4), 046704 (2009)
82. W.A. Yong, L.S. Luo, Phys. Rev. E 86, 065701(R) (2012)
83. D. Yu, R. Mei, L.S. Luo, W. Shyy, Prog. Aerosp. Sci. 39, 329 (2003)
84. Y. Chen, H. Ohashi, M. Akiyama, Phys. Rev. E 50(4), 2776 (1994)
85. P.C. Philipi, L.A. Hegele, L.O.E. Santos, R. Surmas, Phys. Rev. E 73, 056702 (2006)
86. A. Scagliarini, L. Biferale, M. Sbragaglia, K. Sugiyama, F. Toschi, Phys. Fluids 22, 055101

(2010)
87. X. Shan, X.F. Yuan, H. Chen, J. Fluid Mech. 550, 413 (2006)
88. S.H. Kim, H. Pitsch, I.D. Boyd, J. Comp. Phys. 227, 8655 (2008)
89. C.E. Colosqui, M.E. Kavousanakis, A.G. Papathanasiou, I.G. Kevrekidis, Phys. Rev. E 87,

013302 (2013)
90. J. Meng, Y. Zhang, J. Comp. Phys. 258, 601 (2014)
91. O. Malaspinas, B. Chopard, J. Latt, Comput. Fluids 49, 29 (2011)
92. Z. Guo, T.S. Zhao, Y. Shi, Phys. Rev. E 70(6), 066706 (2004)
93. A.M.M. Artoli, A.G. Hoekstra, P.M.A. Sloot, Int. J. Mod. Phys. C 14(6), 835 (2003)
94. A. Caiazzo, J. Stat. Phys. 121(1–2), 37 (2005)
95. P. Van Leemput, M. Rheinlander, M. Junk, Comput. Math. Appl. 58(5), 867 (2009)
96. J. Huang, H. Wu, W.A. Yong, Commun. Comput. Phys. 18(02), 450 (2015)
97. D.J. Holdych, D.R. Noble, J.G. Georgiadis, R.O. Buckius, J. Comput. Phys. 193(2), 595

(2004)
98. H. Xu, H. Luan, Y. He, W. Tao, Comput. Fluids 54, 92 (2012)
99. P.J. Dellar, Comput. Math. Appl. 65(2), 129 (2013)

100. U.D. Schiller, Comput. Phys. Commun. 185(10), 2586 (2014)

Chapter 6
Forces

Abstract After reading this chapter, you will be able to add forces to lattice
Boltzmann simulations while retaining their accuracy. You will know how a forcing
scheme can be derived by including forces in the derivation of the lattice Boltzmann
equation, though you will also know that there are a number of other forcing
schemes available. You will understand how to investigate forcing models and
their errors through the Chapman-Enskog analysis, and how initial and boundary
conditions can be affected by the presence of forces.

Forces play an important role in many hydrodynamic problems (Sect. 6.1). There-
fore, a proper discussion of force implementation in the LB algorithm is essential.
Section 6.2 contains quick start instructions to implement an LB algorithm with
forces. In Sect. 6.3 we show how to extend the force-free LBE derivation (i.e.
the LBE derived in Chap. 3) to also reproduce a macroscopic body force at the
hydrodynamic level. This derivation is based on the same discretisation steps
(velocity followed by space-time) that are also used for the force-free LBE.
Section 6.4 contains an overview of existing forcing schemes and a discussion
of their differences and similarities. We will see that many of those schemes are
equivalent if higher-order terms are neglected. In Sect. 6.5 we extend the Chapman-
Enskog analysis to situations with forces to point out the detailed links between the
LBE and the macroscopic PDEs it approximates. Furthermore, we investigate the
errors associated with the selected forcing schemes. We analyse the influence of
the forcing term on simulation initialisation and two types of boundary conditions
in Sect. 6.6. In particular, we show how the bounce-back and the non-equilibrium
bounce-back methods account for the presence of a force. Finally, in Sect. 6.7 we
use a simple Poiseuille flow to demonstrate the previous theoretical elements in
benchmark simulations.

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_6

231

232 6 Forces

6.1 Motivation and Background

Forces play a central role in many hydrodynamic problems. A prominent example
is the gravitational acceleration g which can be cast into a force density Fg by
multiplying it with the fluid density �:

Fg D �g: (6.1)

In fact, in hydrodynamics we will mostly encounter force densities rather than
forces since the momentum equation is a PDE for the momentum density. Forces
are obtained by integrating surface stresses or bulk force densities. Mathematically,
a force (density) is a momentum (density) source term, as can be seen from the
Cauchy equation in (1.57).

Gravity leads to a number of effects which LBM can successfully simulate. If
two fluids with different densities are mixed or if the temperature in a fluid is non-
homogeneous, density gradients in the gravitational field lead to buoyancy effects
and phenomena like the Rayleigh-Bénard instability [1] (cf. Sect. 8.4.1) or the
Rayleigh-Taylor instability [2]. In the Rayleigh-Bénard instability, which is essential
in studies of heat transfer, convection patterns develop when warmed fluid rises from
a hot surface and falls after cooling. The Rayleigh-Taylor instability can occur when
a layer of denser fluid descends as lower-density fluid below it rises. Gravity waves
at a free water surface are another example [3].

Apart from gravity [4], there are several other physical problems where forces
are important. Fluids in rotating reference frames are subject to radial and Coriolis
forces [5–7]. Charged or magnetic particles immersed in a fluid exert forces on
each other, and they may also be forced by external electromagnetic fields. This
is particularly important for modelling the effects of external electric fields on
regions of unbalanced charges (the electrical double layer, EDL) in electrolytes near
a charged solid surface or liquid-liquid interface [8–11].

In incompressible flows, the driving mechanism of the pressure gradient field
may be equivalently described by any divergence-free body force [12]. There
exist cases where the problem physics specify pressure gradients, but where it is
convenient to replace these with forces [12–14]. One reason for this is that the
LB method may lose accuracy when solving pressure fields due to compressibility
errors (cf. Sect. 4.5). While this change is possible in arbitrarily complex flow
geometries, the task of finding an equivalent driving force field is only trivial in
periodic flow configurations. This is often explored in LB simulations of porous
media flows [14].

We will see in Chap. 9 that forces are also commonly used to model multi-
phase or multi-component flows, although a mathematical description of these
phenomena is usually based on the stress tensor. Furthermore, some algorithms
for fluid-structure interactions, e.g. the immersed boundary method, rely on forces
mimicking boundary conditions. We will discuss this in Sect. 11.4.

6.2 LBM with Forces in a Nutshell 233

6.2 LBM with Forces in a Nutshell

We summarise the most important information about the implementation of forces
in the bulk LBM and what a complete time step with forces looks like.

Assuming the BGK collision operator, we can write the order of operations in a
single time step including forces, also illustrated in Fig. 6.1, in the following way:

1. Determine the force density F for the time step (e.g. gravity).
2. Compute the fluid density and velocity from

� D
X

i

fi; u D 1

�

X

i

fici C F�t

2�
: (6.2)

3. Compute the equilibrium populations f eq
i .�;u/ to construct the collision operator

˝i D �1

�
fi � f eq

i

�
: (6.3)

4. If desired, output the macroscopic quantities. If required, the deviatoric stress is
calculated as

�˛ˇ � �
�

1 � �t

2

�X

i

f neq
i ci˛ciˇ � �t

2

�

1 � �t

2

�
�
F˛uˇ C u˛Fˇ

�
: (6.4)

5. Compute the source term

Si D
�

1 � �t

2

�

wi

ci˛
c2s
C
�
ci˛ciˇ � c2sı˛ˇ

�
uˇ

c4s

!

F˛; (6.5)

where the source Si and forcing Fi terms are related as Si D .1 � 1
2
/Fi

Fig. 6.1 An overview of one cycle of the LB algorithm, considering forces but not boundary
conditions. The light grey box shows the optional output sub-step

234 6 Forces

6. Apply collision and source to find the post-collision populations:

f ?i D fi C .˝i C Si/�t: (6.6)

7. Propagate populations.
8. Increment the time step and go back to step 1.

There are a few important remarks:

• The form of the force F depends on the underlying physics and is not itself given
by the LB algorithm. Gravity is the simplest example.

• The velocity u in (6.2) contains the so-called half-force correction. This veloc-
ity u enters the equilibrium distributions and is also the macroscopic fluid
velocity solving the Navier-Stokes equation. Using the bare velocity u? DP

i fici=� would lead to first-order rather than second-order space-time accuracy
(Sect. 6.3.2). The velocity u can be interpreted as the average velocity during the
time step, i.e. the average of pre- and post-collision values.

• The forcing scheme presented here is based on a Hermite expansion (Sect. 6.3.1)
and is the same as proposed by Guo et al. [15]. There are alternative ways to
include forces, as discussed in Sect. 6.4.

• Any cyclic permutation of the above steps is permitted, as long as the simulation
is properly initialised.

6.3 Discretisation

In Chap. 3 we have shown how to derive the LBE from the continuous Boltzmann
equation in the absence of forces. Here we will revisit that derivation from Sect. 3.4
and Sect. 3.5, now highlighting the required steps to include forces. The two
main steps are the discretisation in velocity space (Sect. 6.3.1) and the space-time
discretisation (Sect. 6.3.2).

6.3.1 Discretisation in Velocity Space

Let us briefly recall the velocity space discretisation of the (force-free) Boltzmann
equation as explained in Sect. 3.4. The objective was to reduce the continuous
velocity space � to a finite set of discrete velocities ci while preserving the model’s
ability to capture the desired macroscopic physics via velocity moments.

A natural and systematic approach is to represent the equilibrium distribution
function f eq as a truncated Hermite expansion. This permits an exact evaluation of
macroscopic quantities (e.g. density and velocity) through a Gauss-Hermite quadra-
ture. This procedure led to two important results: (i) a polynomial representation
of f eq in velocity space (cf. Sect. 3.4.5) and (ii) the description of particles’ motion

6.3 Discretisation 235

through a discrete velocity set (cf. Sect. 3.4.7). The question we aim to answer here
is: what is the equivalent polynomial representation in velocity space of the forcing
term in the Boltzmann equation? The following explanation is based on [16, 17].

Let us recall the continuous Boltzmann equation with a forcing term:

@f

@t
C �˛ @f

@x˛
C F˛

�

@f

@�˛
D ˝.f /: (6.7)

Our goal is to find the discrete velocity structure of the forcing term F˛ which aligns
with the velocity space discretisation of f eq in Sect. 3.4.5. An evident problem is that
F˛, contrarily to f eq, does not appear as isolated term in (6.7). Rather, to deal with
F˛ we have to discretise the full term F˛

�

@f
@�˛

. Its discretisation in velocity space is
simple if we keep the following two mathematical results in mind:

1. The Hermite series expansion of the distribution function f .�/ is

f .x; �; t/ � !.�/
NX

nD0

1

nŠ
a.n/.x; t/ �H.n/.�/: (6.8)

2. The derivative property of Hermite polynomials reads

!.�/H.n/ D .�1/nr n
�!.�/: (6.9)

With their help we can rewrite the Hermite expansion of f .� i/ as follows:

f �
NX

nD0

.�1/n
nŠ

a.n/ � r n
�!: (6.10)

This representation allows us to simplify the forcing contribution in (6.7):

F
�
� r � f � F

�
�

NX

nD0

.�1/n
nŠ

a.n/ � rnC1
� !

� �F
�
� !

NX

nD1

1

nŠ
na.n�1/ �H.n/:

(6.11)

The discretisation in velocity space can now be performed directly, by replacing
the continuous � by a discrete set of ci. We rescale the velocities according to
ci D �i=

p
3 and then renormalise the result by the lattice weights wi. Recalling

Sect. 3.4.5, this is similar to what we did in the construction of f eq. Based on this
procedure, the discrete form of the forcing term becomes:

Fi.x; t/ D � wi

!.�/

F
�
� r � f

ˇ
ˇ
ˇ
ˇ
�!p

3ci

; (6.12)

236 6 Forces

with the right-hand side given in (6.11). This way, we can write the discrete velocity
Boltzmann equation with a forcing term similarly to (3.58):

@tfi C ci˛@˛fi D ˝i C Fi; i D 0; : : : ; q � 1: (6.13)

The truncation of the forcing term up to second velocity order (N D 2),
corresponding to the expansion of f eq, reads

Fi D wi

ci˛
c2s
C
�
ci˛ciˇ � c2sı˛ˇ

�
uˇ

c4s

!

F˛: (6.14)

Its first three velocity moments are

X

i

Fi D 0; (6.15a)

X

i

Fici˛ D F˛; (6.15b)

X

i

Fici˛ciˇ D F˛uˇ C u˛Fˇ: (6.15c)

Exercise 6.1 Write down the explicit form of the forcing term Fi in (6.14) for the
velocity sets D1Q3 (cf. Table 3.2) and D2Q9 (cf. Table 3.3). Compare the results
obtained for Fi with the structure of f eq

i expressed by (3.64) and (3.65), respectively.

The zeroth-order moment, (6.15a), denotes a mass source; it is zero in the present
situation. The first-order moment, (6.15b), is a momentum source; it appears as a
body force in the NSE. Finally, the second-order moment, (6.15c), is an energy
source describing the power flux the body force exerts on the fluid [18].

The role of the second-order moment, (6.15c), is subtle. Its appearance, at
first glance, may seem surprising as LBM is typically built upon an isothermal
assumption. However, the (weakly) compressible regime reproduced by LBM with
standard equilibrium still preserves a (weak) link to energy transport, although an
isothermal one [19]. The purpose of (6.15c) is simply to remove the undesirable
footprint left by this connection on the momentum equations. Otherwise, a spurious
term, given by F˛uˇ C u˛Fˇ, appears at the viscous stress level [15, 18, 20]. We
explain this error source in more depth in Sect. 6.5.1.

6.3 Discretisation 237

On the other hand, in the incompressible regime the energy transport is totally
decoupled from the momentum equation [21, 22]. As pointed out in Sect. 4.3.2,
for steady problems the LBM with the incompressible equilibrium can reproduce
the true incompressible NSE. Therefore, the cancelling of errors with link to
compressibility is not required in this case, where we would expect the conditionP

i Fici˛ciˇ D 0 instead. According to the force discretisation process above, this
is equivalent to saying that Fi should be expanded only up to first order in velocity
space:

Fi D wi
ci˛
c2s

F˛: (6.16)

This duality in the expansion order of Fi is explained in more detail in [5, 23].

6.3.2 Discretisation in Space and Time

We discussed the space-time discretisation of the force-free Boltzmann equation in
Sect. 3.5. The idea was to replace the continuous space and time derivatives in the
discrete-velocity Boltzmann equation, (6.13), by difference operators with discrete
space and time steps (�x and �t). In the standard LBM, these discretisation steps
are linked to the velocity space discretisation to ensure that populations fi, travelling
with discrete velocities ci, always reach neighbouring lattice sites within one time
step �t.

We seek a similar result in the presence of forces. The task consists of two
parts [24–26]:

1. Advection, the left-hand side of (6.13), is identical to the force-free case
(cf. Sect. 3.5). By applying the method of characteristics, i.e. defining fi D
fi.x.�/; t.�//, where � parametrises a trajectory in space and time, the propagation
step is exact, without any approximation:

Z tC�t

t

dfi
d�

d� D fi.xC ci�t; tC�t/ � fi.x; t/: (6.17)

2. The only approximation appears in the treatment of the right-hand side of (6.13),
collision, which now includes the forcing term Fi:

Z tC�t

t
.˝i C Fi/ d�: (6.18)

We can evaluate this integral in different ways [26]. We will now discuss two
approximations, as already described for the force-free case in Sect. 3.5.

238 6 Forces

6.3.2.1 First-Order Integration

The least accurate procedure employs a rectangular discretisation. Here, the integral
of collision and forcing terms is approximated by just one point:

Z tC�t

t
.˝i C Fi/ d� D �˝i.x; t/C Fi.x; t/

	
�tC O.�t2/: (6.19)

Using this first-order approximation and the BGK collision operator, the LBE with
a force assumes a form where all terms on the right-hand side are evaluated at .x; t/:

fi.xC ci�t; tC�t/� fi.x; t/ D ��t

�
fi � f eq

i

�C Fi�t: (6.20)

Apart from the inclusion of Fi�t in (6.20), everything else is exactly as the unforced
case in Chap. 3.

While being fully explicit, this scheme is only first-order accurate in time. In
the absence of forces, this is not harmful since we can still obtain second-order
accuracy providing the �t=2 shift is considered in the viscosity-relaxation relation
[26]:
 D c2s . � �t

2
/ instead of
 D c2s . The reason for this accuracy improvement

is that both the “physical” viscous term and its leading-order error have the same
functional form; the latter can be absorbed as a “physical” contribution by redefining
the viscosity.

This “trick” does not work in the presence of forces, though. Hence, the first-
order accuracy inevitably leads to macroscopic solutions corrupted by discrete
lattice artefacts [4, 15]. We show their mathematical form in Sect. 6.5.1 and illustrate
their quantitative effects in Sect. 6.7. We can eliminate these undesired artefacts by
employing a second-order space-time discretisation.

6.3.2.2 Second-Order Integration

The trapezoidal discretisation is more accurate than the rectangular discretisation:

Z tC�t

t
.˝i C Fi/ d� D

�
˝i.x; t/C˝i.xC ci�t; tC�t/

2

CFi.x; t/C Fi.xC ci�t; t C�t/

2

�

�tC O.�t3/:

(6.21)

However, we obtain second-order accuracy at the expense of a time-implicit scheme.
Fortunately, this is not a problem since, as explained in Sect. 3.5, we can recover the
explicit form by introducing a smart change of variables [19, 27]:

Nfi D fi � .˝i C Fi/�t

2
: (6.22)

6.3 Discretisation 239

Using (6.22) and some simple algebra, the LBE for Nfi takes the familiar form

Nfi.xC ci�t; tC�t/� Nfi.x; t/ D
�
˝i.x; t/C Fi.x; t/

	
�t: (6.23)

With the BGK collision operator this simplifies to

Nfi.xC ci�t; tC�t/� Nfi.x; t/ D � �t

 C�t=2

�Nfi � f eq
i � Fi

�
(6.24)

where, once again, all terms on the right-hand side are given at .x; t/. The extension
to other collision operators is straightforward (Sect. 10.5).

The second-order accurate discretisation of the LBGK equation with
forcing term reads

Nfi.xC ci�t; tC�t/ � Nfi.x; t/ D ��t

N
�Nfi � f eq

i

�
C
�

1 � �t

2 N
�

Fi�t

(6.25)

with a redefined relaxation parameter N D C �t=2. Based on the new
variable Nfi, the leading macroscopic moments are

� D
X

i

Nfi C �t

2

X

i

Fi; (6.26a)

�u D
X

i

Nfici C �t

2

X

i

Fici˛; (6.26b)

˘ D
�

1 � �t

2 N
�X

i

Nficici C �t

2 N
X

i

f eq
i cici C �t

2 N
�

1 � �t

2 N
�X

i

Ficici:

(6.26c)

In most cases, the notation of the redefined variables is dropped for conve-
nience and fi and are written instead of Nfi and N . The equilibrium populations
f eq
i have the same functional form as before. However, the velocity entering
f eq
i .�;u/ is now given by (6.26b). The redefinition of the velocity in (6.26b)

can be interpreted as averaging the velocity before and after forcing [29, 30].
If Fi is chosen to incorporate non-zero mass sources in addition to forces, the
density entering f eq

i .�;u/ must also be redefined according to (6.26a) [28].
Sometimes, for convenience, the outcome from the space-time discretisation
of the forcing term, as given in (6.25), is shortened to a source term Si notation,
with the two related as Si D .1 � 1

2
/Fi.

240 6 Forces

Equation (6.26b) can lead to difficulties when F depends on u, e.g. in Brinkman
models [31–34] or Coriolis forces [5–7, 35]. Such a velocity-dependent force leads
to an implicit form of (6.26b) in u. For linear relations, F / u, and other analytically
invertible dependencies we can easily solve (6.26b) for u, e.g. [5, 31]. In more
general cases, however, u has to be found numerically, e.g. [7, 35].

6.4 Alternative Forcing Schemes

In Sect. 6.3, we have shown how the forcing scheme can be constructed through a
systematic procedure consistent with the overall LBE. However, there is a flood of
articles about other LB forcing schemes.

This section aims at clarifying differences and similarities among some of the
most popular forcing schemes. After recollecting important consequences of the
presence of a force in Sect. 6.4.1, we show a few alternative forcing schemes in
Sect. 6.4.2. We focus on results rather than on those lengthy calculations that can
be found in the cited literature. The articles by Guo et al. [15] and Huang et al. [36]
provide derivations and more detailed discussions. Also helpful in this context is
the work by Ginzburg et al. [37] that discusses different, yet equivalent, ways of
introducing the force in the LB equation.

6.4.1 General Observations

Based on the second-order velocity and space-time discretisations, the LBE with a
force can be expressed as

fi.xC ci�t; tC�t/� fi.x; t/ D
�
˝i.x; t/C Si.x; t/

	
�t (6.27)

where ˝i is the BGK collision operator and Si D .1 � 1
2
/Fi denotes a source, with

the forcing Fi given by (6.14). Guo et al. [15] derived the same result following an
approach different from that in Sect. 6.3. Therefore, this scheme is often called Guo
forcing.

It is important that the fluid velocity in the presence of a force is redefined to
guarantee the second-order space-time accuracy (Sect. 6.3.2):

u D 1

�

X

i

ci fi C F�t

2�
: (6.28)

This velocity also enters the equilibrium populations f eq
i D f eq

i .�;u/ and therefore
the BGK collision operator ˝i D �. fi � f eq

i /= . Thus we can say that the fluid
velocity in (6.28) and the equilibrium velocity ueq (i.e. the velocity entering f eq

i)
are the same for Guo forcing.

6.4 Alternative Forcing Schemes 241

The complexity in the LB literature is caused by the fact that there exist different
force algorithms that decompose ˝i and Si differently but lead to essentially the
same results on the Navier-Stokes level. To generalise the forcing method, let us
write

ueq D 1

�

X

i

fici C A
F�t

�
(6.29)

for the equilibrium velocity. A is a model-dependent parameter. For Guo forcing,
we already know that A D 1

2
. Deviating from this value means that the collision

operator ˝i is modified. In turn, also the source term Si has to be redefined to keep
the sum ˝i C Si unchanged, at least to leading order.

Naively we can expect that we cannot distinguish forcing schemes macroscop-
ically as long as the sum ˝i C Si is the same, no matter which individual forms
˝i and Si assume. In fact, there exist several forcing schemes for which ˝i C Si
nearly has the same form as Guo forcing, only up to deviations of order F2 or u3.
Therefore, all those methods can be considered equivalent as long as F and u are
sufficiently small, which cannot always be guaranteed. Furthermore, there are other
forcing schemes that result in different behaviour on the F and u2 orders (or even
worse); those methods are generally less accurate and should be avoided.

6.4.2 Forcing Schemes

Each different LB forcing scheme has a different set of expressions for A in (6.29)
and the source term Si. But not all of the proposed methods lead to acceptable
hydrodynamic behaviour. In the following we collect a few selected forcing schemes
that do recover the correct macroscopic behaviour. Table 6.1 provides a summary.

The fluid velocity needs to assume the form in (6.28), independently of the
chosen forcing scheme. This is a pure consequence of the second-order time
integration and not affected by details of the forcing scheme.

Table 6.1 Overview of accurate forcing schemes and how they modify the collision operator in
(6.27), both directly and through the equilibrium velocity defined in (6.29). In any case the fluid
velocity must obey (6.28) to ensure second-order time accuracy

Method A Si

Guo et al. [15] 1=2
�
1� �t

2

�
wi

�
ci�u
c2s

C .ci�u/ci
c4s

�
� F

Shan and Chen [38] �t 0

He et al. [39] 1=2
�
1� �t

2

�
f

eq
i
�

ci�u
c2s

� F

Kupershtokh et al. [40] 0 f eq
i .�; u

? C�u/� f eq
i .�; u

?/

242 6 Forces

All forcing schemes in Table 6.1 are equivalent up to terms of order F2 or u3

[36].1 In the limit of small Mach number and small forces, all these methods yield
basically the same results. The situation is different for multi-phase flows where
forces in the vicinity of fluid-fluid interfaces can become large so that terms / F2

(and also / r2F) are important.2 We will not discuss the choice of the forcing
scheme in the context of multi-phase flows here and refer to Sect. 9.3.2 and [36, 41]
instead.

6.4.2.1 Guo et al. (2002)

This method is the same as derived in Sect. 6.3. Based on the Chapman-Enskog
analysis, Guo et al. [15] performed a thorough analysis of the lattice effects in the
presence of a force. In their article, which is an extension of previous work by Ladd
and Verberg [20], the parameters assume the values A D 1=2 and Si D .1 � 1

2
/Fi

with Fi as in (6.14). Guo et al. [15] showed that these choices remove undesired
derivatives in the continuity and momentum equation due to time discretisation
artefacts (cf. Sect. 6.3.2). In particular, A D 0 would lead to a term / r � F in the
continuity equation and another term / r � .uFC Fu/ in the momentum equation
(cf. Sect. 6.5.2).

6.4.2.2 Shan and Chen (1993, 1994)

Shan and Chen [38] proposed A D =�t and Si D 0. Although their motivation
was the simulation of multi-phase fluids (cf. Chap. 9), Shan and Chen’s method is
applicable to single-phase fluids as well.

6.4.2.3 He et al. (1998)

The essential idea of He et al. [39] was to approximate the forcing term in the kinetic
equation by assuming a situation close to equilibrium:

F � r cf � F � r cf
eq D �F � c � u

c2s
f eq: (6.30)

1Showing that these forcing schemes are equivalent to leading order is straightforward but involves
lengthy calculations. We will not delve into details here and refer to [36] for a more qualitative
analysis.
2Also in Brinkman and Coriolis force models, where F / u, the error term / r2F is important
[33, 34].

6.4 Alternative Forcing Schemes 243

In the end this leads to A D 1
2

and

Si D
�

1 � �t

2

�
f eq
i

�

ci � u
c2s
� F: (6.31)

6.4.2.4 Kupershtokh (2004)

Kupershtokh [42] proposed a simple forcing method based on kinetic theory, the
so-called exact difference method. The idea is to include the force density F in such
a way that it merely shifts fi in velocity space. As a consequence, A D 0 and

Si D f eq
i .�;u

? C�u/� f eq
i .�;u

?/ (6.32)

where u? D P
i fici=� and �u D F�t=�. This essentially means that the

equilibrium for a velocity u? is directly replaced by the equilibrium for a velocity
u?C�u. In particular, this scheme ensures that an equilibrium distribution remains
in equilibrium upon the action of the force, independently of the chosen value of .

6.4.2.5 Other, Less Accurate Approaches

There exist several other forcing schemes in the LB literature. Guo et al. [15]
reviewed a series of approaches [4, 16, 43, 44] and showed that all of them lead to
certain unphysical terms in the continuity or momentum equations of the weakly
compressible NSE. In other words, those forcing schemes have additional error
terms which are more significant than u3 or F2.

However, the situation changes when modelling steady incompressible hydrody-
namics. In this case, the most accurate forcing scheme is no longer Guo’s [15], but
the scheme proposed by Buick and Greated [4]. We will discuss the reason for this
variation in Sect. 6.5.2; see also [5, 23].

Finally, we would like to emphasise that under some circumstances some of
these models may still be appropriate choices, for example if the force density F
is constant. We illustrate this case in Sect. 6.7 through a numerical example. Still,
we strongly recommend to implement one of the generally more accurate models
mentioned above since they are usually more accurate when boundary conditions
are involved. We will demonstrate this analytically in Sect. 6.6 and numerically in
Sect. 6.7.

Concluding, there exist several different forcing schemes. Many of these
schemes (i.e. Guo, Shan-Chen, He, Kupershtokh) are equivalent up to higher-
order terms (u3 or F2). Their differences are negligible as long as forces and
their gradients are small (e.g. in the case of gravity). Other forcing schemes,
however, lead to additional error terms on the Navier-Stokes level.

244 6 Forces

6.5 Chapman-Enskog and Error Analysis in the Presence
of Forces

We look at the macroscopic behaviour of forces in the LBE. First we revisit the
Chapman-Enskog analysis (cf. Sect. 4.1) and extend it to situations with forces
(Sect. 6.5.1). Based on this analysis, we discuss the structure of errors created at
hydrodynamic level due to incorrectly chosen LB force models (Sect. 6.5.2).

6.5.1 Chapman-Enskog Analysis with Forces

The Chapman-Enskog analysis (Sect. 4.1) reveals the consistency between the
mesoscopic LBM and the macroscopic NSE. We will now extend the Chapman-
Enskog analysis to situations with forces.

Historically, the Chapman-Enskog analysis applied to the forced LBM was
pioneered in [45, 46]. Later, a number of authors [16, 20, 39, 42, 44] extended
its formulation to include second-order terms, as given by (6.14). A subsequent
improvement [4, 15] showed the necessity of correcting discrete lattice effects.
These effects can be corrected in an a priori fashion through a systematic second-
order discretisation of the LBE (Sect. 6.3.2) [24–26]. Even today, the study of a
“clean” inclusion of forces in the LBE remains an active research topic involving, for
example, perturbation (Chapman-Enskog) analyses [5, 23, 28, 29] or exact solutions
of the LBE [32–34, 47].

The Chapman-Enskog analysis of the forced LBE is similar to the force-free
case in Sect. 4.1. The difference is that now we are working with (6.25) as evolution
equation, together with (6.26) for the velocity moments. Hence, the first question
we need to answer is: what should be the expansion order of the forcing term Fi?

In order to be consistent with the remaining terms in the LBE, the forcing
term must scale as Fi D O.�/ [4]. Therefore, we should at least have
Fi D �F.1/i .

Considering Fi D �F.1/i , which is a valid assumption for most hydrodynamic
problems,3 the familiar steps from Sect. 4.1 lead to a hierarchy of �-perturbed

3In certain cases, the forcing term requires a higher-order expansion. For example, for certain
axisymmetric LB models [48, 49], the formal expansion of the forcing term is Fi D �F.1/i C�2F.2/i .

6.5 Chapman-Enskog and Error Analysis in the Presence of Forces 245

equations, similar to (4.9a) and (4.9b), now with a force term:

O.�/ W
�
@
.1/
t C ci˛@

.1/
˛

�
f eq
i �

�

1 � �t

2

�

F.1/i D �
1

f .1/i ;

(6.33a)

O.�2/ W @
.2/
t f eq

i C
�
@
.1/
t C ci˛@

.1/
˛

��

1 � �t

2

��

f .1/i C
�t

2
F.1/i

�

D �1

f .2/i :

(6.33b)

In the presence of an external force, the hydrodynamic moments are no longer
conserved. This leads to a redefinition of the solvability conditions for mass and
momentum:

X

i

f neq
i D ��t

2

X

i

F.1/i ; (6.34a)

X

i

cif
neq
i D ��t

2

X

i

ciF
.1/
i : (6.34b)

Likewise, the extension to “strengthened” order-by-order solvability conditions
reads

X

i

f .1/i D �
�t

2

X

i

F.1/i and
X

i

f .k/i D 0; (6.35a)

X

i

cif
.1/
i D �

�t

2

X

i

ciF
.1/
i and

X

i

cif
.k/
i D 0 (6.35b)

with k 	 2, [5, 37], which results from F.1/i � O.�/, only affecting f .1/i and not
higher � scales.

In order to proceed, we require the functional form of Fi. We continue with the
specific form in (6.14) whose moments are given in (6.15). In particular, there are
no mass sources, i.e. the right-hand sides in (6.34a) and (6.35a) vanish.

By taking the zeroth and first moments of (6.33a), we obtain at O.�/:

@
.1/
t �C @.1/� .�u�/ D 0; (6.36a)

@
.1/
t .�u˛/C @.1/ˇ ˘ eq

˛ˇ D F˛: (6.36b)

246 6 Forces

Here, ˘ eq
˛ˇ D

P
i ci˛ciˇf

eq
i D �u˛uˇ C �c2sı˛ˇ , according to (4.11a). Similarly, by

taking the zeroth and first moments of (6.33b), we obtain at O.�2/:

@
.2/
t � D 0; (6.37a)

@
.2/
t .�u˛/C @.1/ˇ

�

1 � �t

2

�

˘
.1/

˛ˇ D 0: (6.37b)

By combining the mass and momentum equations in (6.36) and (6.37), respectively,
we obtain

�
�@
.1/
t C �2@.2/t

�
�C �@.1/� .�u� / D 0; (6.38a)

�
�@
.1/
t C �2@.2/t

�
.�u˛/C �@.1/ˇ ˘ eq

˛ˇ D �F.1/˛ � �2@.1/ˇ
�

1 � �t

2

�

˘
.1/

˛ˇ : (6.38b)

To close the moment system in (6.38), we require an expression of ˘.1/

˛ˇ in terms
of known quantities. We can achieve this by taking the second moment of (6.33a),

@
.1/
t ˘

eq
˛ˇ C @.1/� ˘ eq

˛ˇ� �
�

1 � �t

2

�X

i

F.1/i ci˛ciˇ D �1

˘
.1/

˛ˇ : (6.39)

Here we have used the identity

˘
.1/

˛ˇ D
X

i

f .1/i ci˛ciˇ C �t

2

X

i

F.1/i ci˛ciˇ (6.40)

that can be deduced by applying the Chapman-Enskog decomposition to (6.26c).
˘
.1/

˛ˇ is the contribution responsible for the viscous stress at macroscopic level.

Therefore, the role of
P

i F
.1/
i ci˛ciˇ is to remove spurious forcing terms possibly

appearing in ˘.1/

˛ˇ so that its form is the same as for the force-free case (cf. (4.15)):

˘
.1/

˛ˇ D ��c2s
�
@
.1/

ˇ u˛ C @.1/˛ uˇ
�
C O.u3/: (6.41)

Therefore, the viscous stress is still given by �˛ˇ D �
�
1 � �t

2

�
˘
.1/

˛ˇ , just as in the

force-free case, (4.14).

6.5 Chapman-Enskog and Error Analysis in the Presence of Forces 247

Finally, we can re-assemble @t D �@
.1/
t C �2@.2/t and use ˘ eq

˛ˇ and ˘.1/

˛ˇ to obtain

from (6.38) the correct form (up to O.u3/ error terms) of the unsteady NSE with
forcing term:

@t�C @�.�u� / D 0; (6.42a)

@t.�u˛/C @ˇ
�
�u˛uˇ C �c2sı˛ˇ

�
D @ˇ

h
�
�
@ˇu˛ C @˛uˇ

�iC F˛: (6.42b)

As usual, the dynamic shear and bulk viscosities are � D �c2s . � �t
2
/ and �B D

2�=3, respectively (cf. Sect. 4.1).

6.5.2 Errors Caused by an Incorrect Force Model

Now that we know how to perform the Chapman-Enskog analysis with forces,
we can evaluate whether the selected forcing scheme introduces errors in the
recovered hydrodynamic model. According to Sect. 6.3, the formulation of the
force model comprises two steps: (i) velocity space discretisation and (ii) space-
time discretisation. Each of these steps comes with different error sources in case
we do not deal with them properly.

6.5.2.1 Discretisation of Velocity Space: The Issue of Unsteady
and Steady Cases

We can recognise the impact of an incorrect velocity space discretisation by
distinguishing between unsteady and steady phenomena.

In unsteady state, the term @
.1/
t ˘

eq
˛ˇ contains the contribution F˛uˇ C u˛Fˇ (see

Exercise 6.2 below). This contribution can be exactly cancelled by
P

i Fici˛ciˇ ,
providing the force term Fi is expanded up to the second velocity order as shown
in (6.14) [15, 20]. This way, we can correctly recover the unsteady NSE with force,
(6.42).

Exercise 6.2 Show that

@
.1/
t ˘

eq
˛ˇ D @.1/t

�
�u˛uˇ C �c2sı˛ˇ

�

D �@.1/�
�
�u˛uˇu�

� � c2s
�
u˛@

.1/

ˇ �C uˇ@
.1/
˛ �

�

� c2sı˛ˇ@
.1/
� .�u� /C F.1/˛ uˇ C u˛F

.1/

ˇ :

(6.43)

Hint: apply the procedure outlined in Appendix A.2.2, including a forcing term.

248 6 Forces

In steady state, however, the term @
.1/
t ˘

eq
˛ˇ is immaterial (cf. Sect. 4.2.3). Hence,

we could expect that the contribution F˛uˇ C u˛Fˇ no longer exists. This is not
absolutely true, though.

On the one hand, when using the standard equilibrium, an identical term is
retrieved due to the requirement that the shear stress depends on the gradients of
the velocity u rather than on the gradients of the momentum �u. Consequently, to
cancel that term,

P
i Fici˛ciˇ is still required as a correction.

On the other hand, with the incompressible LB equilibrium, the steady incom-
pressible NSE is recovered with no spurious terms as discussed in Sect. 4.3. Hence,
unlike the previous cases, here we must set

P
i Fici˛ciˇ D 0, i.e. Fi must be

expanded only to the first velocity order. A second-order expansion of Fi would
lead to an incorrect steady incompressible NSE affected by the divergence of
F˛uˇ C u˛Fˇ . We will illustrate this issue in Sect. 6.7 through numerical examples.
A more detailed explanation of this subtle point can be found in [5, 23].

6.5.2.2 Discretisation of Space and Time: The Issue of Discrete Lattice
Effects

We can understand the effect of an inaccurate space-time discretisation on the
forcing term by repeating the Chapman-Enskog analysis, but this time with a first-
order time integration scheme (cf. Sect. 6.3.1).

Let us assume a time-dependent process and a forcing term with second-order
velocity discretisation, (6.14). It can be shown, see e.g. [4, 15], that the macroscopic
equations reproduced in this case have the following incorrect form:

@t�C @�.�u� / D ��t

2
@�F� ;

@t.�u˛/C @ˇ
�
�u˛uˇ C �c2sı˛ˇ

�
D @ˇ

h
�
�
@ˇu˛ C @˛uˇ

�iC F˛

� �t

2

h
@tF˛ C @ˇ

�
u˛Fˇ C F˛uˇ

�i
:

(6.44)

The difference between (6.44) and the “true” NSE with a force, (6.42), lies in the
added O.�t/ error terms [4, 15]. They are called discrete lattice artefacts since they
act on the same scale as the viscous term � � O.�t/. Thereby, they corrupt the
macroscopic equations below the truncation error O.�t2/. These discrete artefacts
lead to inconsistencies in the macroscopic equations for both mass and momentum.
Therefore discrete lattice artefacts are more problematical than an incorrect velocity
space discretisation which “only” corrupts the momentum equation.

6.6 Boundary and Initial Conditions with Forces 249

6.6 Boundary and Initial Conditions with Forces

So far we have limited the discussion about forces to the bulk solution. In Chap. 5
we have already discussed the topic of initial and boundary conditions, but without
including the effect of forces. We will now point out the required modifications of
initial (Sect. 6.6.1) and boundary conditions (Sect. 6.6.2) due to the presence of
forces.

6.6.1 Initial Conditions

Initial conditions are necessary for time-dependent problems. But even steady flows
must be subject to a proper initialisation. Otherwise, initial errors may be conserved
during the simulation and contaminate the steady-state solution. In Sect. 5.5 we
discussed two ways of initialising LB simulations. Let us revisit them and work out
the necessary modifications when forces are present.

The simplest strategy is to initiate the populations with their equilibrium state,
fi.x; t D 0/ D f eq

i

�
�0.x/;u0.x/

�
, where �0 and u0 refer to known initial density

and velocity fields. We know from Sect. 6.3.2 that for problems with forces the
macroscopic velocity is computed from �u D P

i fici C �t
2

F. Therefore, to set an
initial velocity u0 consistent with the force field, we take [50]

fi.x; t D 0/ D f eq
i

�
�0.x/; Nu0.x/

�
; Nu0 D u0 � F�t

2�0
: (6.45)

Obviously, for low-order forcing schemes, where the macroscopic velocity is
computed from �u D P

i fici, the equilibrium initialisation is the same as in the
force-free case, i.e. Nu0 D u0.

As discussed in Sect. 5.5, a more accurate initialisation consists of adding
the non-equilibrium populations f neq

i to f eq
i . Given that the leading order of f neq

i ,

i.e. f .1/i , depends on F, cf. (6.33a), the non-equilibrium term added to (6.45) must
be redefined [5, 51]:

f neq
i � �wi

c2s
�Qi˛ˇ@˛uˇ � wi�t

2c2s

ci˛F˛ C Qi˛ˇ

2c2s

�
u˛Fˇ C F˛uˇ

�
!

(6.46)

where Qi˛ˇ D ci˛ciˇ � c2sı˛ˇ .

6.6.2 Boundary Conditions

Forces may also affect the operation of boundary conditions (cf. Sect. 5.2.4). We
will discuss the consequences for both bounce-back and non-equilibrium bounce-
back.

250 6 Forces

6.6.2.1 Bounce-Back

Although the principle of the bounce-back rule is not changed by the inclusion of
forces, its accuracy does depend on the force implementation. If we do not work
with the second-order space-time discretisation of the LBE, the macroscopic laws
established by the bounce-back rule will be affected by discrete lattice artefacts. We
demonstrate this issue by looking at a simple example: a hydrostatic equilibrium
where a constant force (e.g. gravity) is balanced by a pressure gradient.

We choose the second-order space-time discretisation for the bulk dynamics
(cf. (6.25)). Also, let us consider a time-independent process: @tfi D 0. Then, the
Chapman-Enskog analysis yields up to O.�/4:

f .1/i D �ci˛@.1/˛ f eq
i C

�

 � �t

2

�

F.1/i : (6.47)

Given that we are interested in the hydrostatic solution, i.e. u D 0, the equilibrium
reduces to f eq

i D wi� and the forcing term to Fi D wici � F=c2s . Inserting f eq
i and Fi

into (6.47), we get f .1/i D �wici˛@
.1/
˛ � C . � �t=2/ci˛F˛=c2s . The macroscopic

behaviour of the populations for this hydrostatic problem is completely determined
by fi D f eq

i C �f .1/i , without any approximation [4, 29].
The next step is transferring these results to the bounce-back formula applied at a

resting wall, i.e. fNi D f ?i (cf. (5.24)). This way, one can describe the closure relation
of the bounce-back rule in the form of a Chapman-Enskog decomposition:

f eq
Ni C �f

.1/

Ni D f eq
i C

�

1 � �t

�

�f .1/i C
�

 � �t

2

�

�t�F.1/i : (6.48)

After substituting the content of f eq
i , f .1/i and F.1/i into (6.48) and undertaking some

algebraic simplifications, we arrive at the hydrostatic solution established by the
bounce-back rule at boundary node xb:

�

 � �t

2

� �
c2s@˛� � F˛

�ˇˇ
ˇ
ˇ
xb

D 0: (6.49)

The first factor in (6.49) is positive due to the stability requirement > �t
2

(cf. Sect. 4.4) and can be cancelled. Hence, we conclude that the LBE with the
bounce-back rule is exact for the hydrostatic pressure solution where we expect the
balance c2s@˛� D F˛.

But does the correct hydrostatic balance also hold for a first-order space-time
discretisation of the force? Based on the bulk analysis presented in Sect. 6.5.2, we
might conclude that nothing changes because bulk errors have the form of force

4Equation (6.47) results from omitting the time derivatives in equation (6.33a) based on the
Chapman-Enskog analysis for steady flows discussed in Sect. 4.2.3.

6.6 Boundary and Initial Conditions with Forces 251

derivatives which in turn vanish for a constant body force. However, the closure in
the bounce-back boundary conditions can retain discrete lattice artefacts even for a
constant force, as shown in Exercise 6.3. More details can be found in [29, 34].

Exercise 6.3 Repeat the Chapman-Enskog analysis for a first-order time discretisa-
tion of the LBE. Show that the hydrostatic balance established by the bounce-back
rule at boundary node xb is then incorrectly predicted as

�

 � �t

2

� �
c2s@˛� � F˛

�ˇˇ
ˇ
ˇ
xb

D �t

2
F˛.xb/:

6.6.2.2 Non-equilibrium Bounce-Back

The fundamental principle of the wet-node technique is that boundary nodes follow
the same rules as bulk nodes. Hence, to be consistent with the bulk, the algorithm
for boundary nodes needs to be reformulated to account for the presence of a force
as well. We demonstrate this for the non-equilibrium bounce-back (NEBB) method
[52].

As we have seen in Sect. 5.3.4, wet boundary nodes must satisfy the macroscopic
laws of bulk nodes through the velocity moments. Therefore, the first-order moment
for the momentum is modified by the presence of a force when we use the second-
order space-time discretisation in (6.26b). This leads to a number of changes in the
NEBB algorithm.

Consider the top wall depicted in Fig. 5.21. As in Sect. 5.3.4, we will work in
dimensional notation, which is noted by the presence of the particle velocity c that
in lattice units is c D 1. The determination of the unknown wall density for the
force-free case in (5.31) now changes to

�w D
X

i

fi D f0 C f1 C f2 C f3 C f5 C f6„ ƒ‚ …
known

C f4 C f7 C f8„ ƒ‚ …
unknown

;

�wu
w
y D

X

i

ficiy C �t

2

X

i

Ficiy D c .f2 C f5 C f6/
„ ƒ‚ …

known

� c .f4 C f7 C f8/
„ ƒ‚ …

unknown

CFw
y �t

2
;

(6.50)

where index w refers to the macroscopic fluid properties evaluated at the wall, where
wet boundary nodes lie. By combining these two equations we get

�w D c

cC uw
y

f0 C f1 C f3 C 2 .f2 C f5 C f6/C
Fw
y �t

2c

!

: (6.51)

The unknown boundary populations still have to be determined by the bounce-
back of their non-equilibrium components, i.e. (5.42). Yet, compared to the

252 6 Forces

force-free case, now it is necessary to consider both tangential and normal momen-
tum corrections N˛ . The reason for that will become clear shortly. For now, let us
consider the top wall in Fig. 5.21 and write the bounce-back of the non-equilibrium
populations as5

f neq
4 D f neq

2 � Ny;

f neq
7 D f neq

5 � Nx � Ny;

f neq
8 D f neq

6 C Nx � Ny:

9
>>>=

>>>;

H)

8
ˆ̂
<̂

ˆ̂
:̂

f4 D f2 C
�
f eq
4 � f eq

2

� � Ny;

f7 D f5 C
�
f eq
7 � f eq

5

� � Nx � Ny;

f8 D f6 C
�
f eq
8 � f eq

6

�C Nx � Ny:

(6.52)

Using the known equilibrium distributions, we get

f4 D f2 �
2�wuw

y

3c
� Ny;

f7 D f5 � �w

6c
.uw

x C uw
y / � Nx � Ny;

f8 D f6 � �w

6c
.�uw

x C uw
y /C Nx � Ny:

(6.53)

We compute Nx by resorting to the first-order velocity moment along the
boundary tangential direction:

�wu
w
x D

X

i

ficix C �t

2

X

i

Ficix

D c . f1 C f5 C f8/� c . f3 C f6 C f7/C Fw
x �t

2

D c . f1 � f3/� c . f7 � f5/C c . f8 � f6/C Fw
x �t

2

D c . f1 � f3/C �wuw
x

3
C 2cNx C Fw

x �t

2
:

(6.54)

This gives

Nx D �1
2
. f1 � f3/C �wuw

x

3c
� Fw

x �t

4c
: (6.55)

5The sign convention for the normal momentum correction is in line with the tangential case, cf.
(5.43). If n and t denote the wall normal and the wall tangential vectors and if their positive sign
coincides with the positive sign of the Cartesian axis, then the normal and tangential momentum
corrections appear in the algorithm as f neq

Ni
.xB; t/ D f

neq
i .xB; t/� .n � ci/Nn � .t � ci/Nt.

6.6 Boundary and Initial Conditions with Forces 253

Similarly, we compute Ny based on the first-order velocity moment along the
boundary normal direction:

�wu
w
y D

X

i

ficiy C �t

2

X

i

Ficiy

D c .f2 C f5 C f6/� c .f4 C f7 C f8/C
Fw
y �t

2

D c .f2 � f4/� c .f7 � f5/C c .f6 � f8/C
Fw
y �t

2

D �wuw
y

3
C 3cNy C

Fw
y �t

2
:

(6.56)

We obtain

Ny D �
Fw
y �t

6c
: (6.57)

Clearly, the normal momentum correction Ny is only relevant when forces are
included.

In the end, the NEBB prescribes the unknown populations with forces, here for
a top wall:

f4 D f2 �
2�wuw

y

3c
C Fw

y �t

6c
;

f7 D f5 C 1

2
.f1 � f3/� �wuw

x

2c
� �wuw

y

6c
C Fw

x �t

4c
C Fw

y �t

6c
;

f8 D f6 � 1
2
.f1 � f3/C �wuw

x

2c
� �wuw

y

6c
� Fw

x �t

4c
C Fw

y �t

6c
:

(6.58)

The extension of (6.58) to other boundary orientations is straightforward (cf.
Exercise 6.4).

The necessity of including force corrections in the NEBB method has been
recognised in a number of works, e.g. [53–55]. These terms prevent the appearance
of discrete lattice artefacts in the macroscopic laws of wet boundary nodes.
However, those errors terms are proportional to r � F. Hence, they will only be
macroscopically visible for spatially varying force fields. We will demonstrate this
numerically in Sect. 6.7.

254 6 Forces

Exercise 6.4 Show that the Dirichlet velocity condition prescribed with the NEBB
method at a left boundary takes the following form in the presence of a force F D
.Fx;Fy/:

� D c

c � uw
x

�

f0 C f2 C f4 C 2 .f3 C f6 C f7/� Fw
x �t

2c

�

;

f1 D f3 C 2�wuw
x

3c
� Fw

x �t

6c
;

f5 D f7 � 1
2
.f2 � f4/C

�wuw
y

2c
C �wuw

x

6c
� Fw

x �t

6c
� Fw

y �t

4c
;

f8 D f6 C 1

2
.f2 � f4/�

�wuw
y

2c
C �wuw

x

6c
� Fw

x �t

6c
C Fw

y �t

4c
:

(6.59)

6.7 Benchmark Problems

So far we have limited the discussion about forces in the LBE to theoretical analyses.
While this helps us understanding basic features underlying LB forcing schemes,
we have yet to see actual effects on LB simulations. The goal of this section,
therefore, is to illustrate the true impact of the force inclusion, particularly when an
incorrect force model is adopted. We will compare four possible forcing strategies
(summarised in Table 6.2).

The alternative forcing schemes presented in Sect. 6.4 can be considered
equivalent to scheme IV in Table 6.2. Although they behave differently at higher
orders, these differences are not relevant for the examples that will follow.

6.7.1 Problem Description

We consider a 2D Poiseuille channel flow driven by a combined pressure gradient
@p=@x and body force Fx:

�

@ux
@y
D @p

@x
� Fx: (6.60)

Table 6.2 LB forcing schemes tested in Sect. 6.7. They have different velocity or space-time
discretisation orders

Scheme Velocity order Space-time order Examples of references

I 1st [(6.16)] 1st [(6.20)] [43, 56–60]

II 2st [(6.14)] 1st [(6.20)] [16, 18, 20, 44, 48, 61]

III 1st [(6.16)] 2st [(6.25)] [4, 23, 37, 45, 46, 62]

IV 2st [(6.14)] 2st [(6.25)] [15, 25, 28, 51, 63, 64]

6.7 Benchmark Problems 255

The velocity solution is

ux.y/ D 1

2�

�
@p

@x
� Fx

�"

y2 �
�
H

2

�2
#

(6.61)

where the no-slip condition (ux D 0) holds at bottom/top walls (y D ˙H=2) as
shown in Fig. 1.1b.

6.7.2 Numerical Procedure

For the bulk nodes we use the BGK collision operator with the incompressible
equilibrium from Sect. 4.3.2. We will make some comments about the application of
the standard (compressible) equilibrium later. We consider and individually discuss
two different wall boundary schemes: the bounce-back and the non-equilibrium
bounce-back (NEBB) methods.

The simulations are initialised by setting fi.x; t D 0/ D f eq
i .� D 1;u D 0/ as

explained in Sect. 6.6.1; they are stopped when the velocity ux reaches the steady-
state criterion L2 � 10�10 between 100 consecutive time steps (cf. Sect. 4.5.2). The
channel domain is discretised using Nx � Ny D 5 � 5 grid nodes. We evaluate the
LB results for each of the four strategies presented in Table 6.2 and compare them
with the analytical solution in (6.61) through the L2 error norm.

6.7.3 Constant Force

Let us start by considering the simplest case: a purely force-driven Poiseuille
flow (@p=@x D 0). We use periodic boundary conditions for the inlet and outlet
(cf. Sect. 5.3.1) and the force magnitude is Fx D 10�3 (in simulation units).

Since the force is uniform, any possible bulk error caused by an incorrect forcing
scheme vanishes (cf. Sect. 6.5.2). However, boundaries can still lead to errors
(cf. Sect. 6.6.2).

6.7.3.1 Bounce-Back

The errors for the LBGK model with bounce-back walls for several values are
summarised in Table 6.3. The velocity discretisation of the force plays no role in
this case. Differences exist in the space-time discretisation, though. While both
strategies are able to reproduce the parabolic solution exactly, this happens at
different values of . The reason is that spatial discretisation errors are cancelled for

256 6 Forces

Table 6.3 L2 errors for Poiseuille flow with constant force and bounce-back at the walls (LBGK,
grid resolution of Nx�Ny D 5�5). Results are identical for standard and incompressible equilibria

�u [%]

=�t Schemes I and II Schemes III and IV

0.6 5.91 5.18

0.8 5.04 2.85p
3=16C 1=2 D 0:933 3.16 2.04�10�12

1.0 1.82 1.82p
13=64C 5=8 D 1:076 1.42�10�12 4.20

1.2 3.72 8.83

1.4 11.60 18.17

specific values of , depending on the discretisation order of the force scheme [20,
43, 62, 65].

6.7.3.2 Non-equilibrium Bounce-Back

The NEBB method reproduces the dynamical rules of the bulk solution at boundary
nodes. Consequently, for a constant force, the errors discussed in Sect. 6.5.2 vanish.
This makes the NEBB method exact for the parabolic velocity solution in (6.61),
regardless the forcing scheme employed.

6.7.4 Constant Force and Pressure Gradient

Let us now increase the complexity of the previous exercise by considering the
simultaneous presence of a constant force and pressure gradient. In terms of imple-
mentation, the only modification concerns the inlet and outlet boundaries which
are now modelled with pressure periodic boundary conditions (cf. Sect. 5.3.2). The
relative fraction of the pressure gradient and the force density has no impact on the
velocity solution of an incompressible flow, providing their combined effect is kept
fixed. Without loss of generality, the overall magnitude is

�
Fx � @p=@x

� D 2� 10�3
(in simulation units), where we consider a 50/50 contribution from each term.

Similarly to the previous case, a constant force leads to vanishing force errors in
the bulk, regardless the forcing strategy adopted (cf. Sect. 6.5.2). Yet, the closure
relations at boundaries established by the bounce-back rule can differ, depending on
the forcing scheme adopted.

6.7 Benchmark Problems 257

Table 6.4 L2 errors for Poiseuille flow with constant force and pressure gradient, bounce-back at
the walls and pressure periodic conditions at inlet/outlet (LBGK, grid resolution of Nx�Ny D 5�5,
incompressible equilibrium)

�u (%)

=�t Schemes I and II Schemes III and IV

0.6 5.55 5.18

0.8 3.94 2.85p
3=16C 1=2 D 0:933 1.58 1.37�10�11

1.0 5.78�10�13 1.82p
13=64C 5=8 D 1:076 2.10 4.20

1.2 6.27 8.83

1.4 14.89 18.17

6.7.4.1 Bounce-Back

Table 6.4 summaries the errors obtained with bounce-back. While the velocity
discretisation order plays no role, the space-time discretisation is important.

In fact, we see that only the second-order space-time discretisation guarantees
that the force-driven solution is unchanged when adding the pressure gradient. This
follows from comparing Table 6.3 and Table 6.4: solutions are exactly equivalent for
any value in that case. From a physical point of view, this result is expected since
a constant force and a constant pressure gradient are equivalent in incompressible
hydrodynamics.

However, this physical equivalence can be violated numerically when a less
accurate space-time force discretisation is adopted. According to Table 6.4, the value
where the solution becomes exact, D �t, now differs from the pure force-driven
case where D .p13=64C 5=8/�t gives the exact solution.

6.7.4.2 Non-equilibrium Bounce-Back

Similarly to the purely force-driven case in Sect. 6.7.3, no force errors occur for a
constant force. The explanation is the same as before.

6.7.5 Linear Force and Pressure Gradient

Finally, let us address the most interesting case in this exercise: the modelling
of a spatially varying force. The force increases linearly along the streamwise
direction, but the total contribution remains constant so that the overall magnitude
remains locally

�
Fx � @p=@x

� D 2 � 10�3 (in simulation units), with a 50/50 local
contribution from each term. That means the slope of variation of each term is equal,
but with different signs. More details about this test case are described in [23].

258 6 Forces

Compared to the last two cases, the key difference is that the body force is
inhomogeneous now. Thus, the force bulk errors in Sect. 6.5.2 do not vanish any
more. Both bulk and boundary errors can now interfere with the LB solution in
case of an incorrect force implementation. This case allows us to identify the most
accurate LB forcing scheme for steady incompressible flow problems.

6.7.5.1 Bounce-Back

According to Table 6.5, the first-order space-time discretisation never reaches the
exact solution, regardless of the value. This is due to the non-vanishing bulk errors
given by (6.44). However, also the velocity discretisation affects the bulk error. As
outlined in Sect. 6.3 and Sect. 6.5.2, the correct modelling of steady incompressible
hydrodynamics with a body force requires a first-order velocity discretisation of the
forcing term. This is confirmed in Table 6.5 where only scheme III can reproduce
the exact solution.

The reason for the exact solution only occurring for D .
p
3=16 C 1=2/�t

is the -dependence of the bounce-back scheme. As explained in Sect. 5.3.3 and
Sect. 5.4.1, only this value of locates the wall exactly halfway between nodes in a
parabolic flow profile.

6.7.5.2 Non-equilibrium Bounce-Back

The NEBB method leads to essentially the same results as the bounce-back scheme;
compare Table 6.5 and Table 6.6. Once again, a bulk error can corrupt the LB
solutions if the velocity and space-time discretisations are not properly handled. To
reproduce steady incompressible hydrodynamics exactly, scheme III is necessary
(cf. Table 6.6). Here the exact solution is reproduced for any value of because:
(i) scheme III leads to a velocity solution in bulk free from errors (cf. Sect. 6.5.2)

Table 6.5 L2 errors for Poiseuille flow with linear force and pressure gradient, bounce-back at the
walls and pressure periodic conditions at inlet/outlet (LBGK, grid resolution of Nx � Ny D 5� 5,
incompressible equilibrium)

�u (%)

=�t Scheme I Scheme II Scheme III Scheme IV

0.6 6:10 5:44 5.18 5:07

0.8 4:12 3:84 2.85 2:74p
3=16C 1=2 D 0:933 1:70 1:48 8.46�10�15 0:12

1.0 0:51 0:51 1.82 1:94p
13=64C 5=8 D 1:076 2:00 2:21 5.47 4:32

1.2 6:19 6:39 8.83 8:96

1.4 14:81 15:03 18.17 18:32

6.7 Benchmark Problems 259

Table 6.6 L2 errors for Poiseuille flow with linear force and pressure gradient, non-equilibrium
bounce-back at the walls and pressure periodic conditions at inlet/outlet (LBGK, grid resolution of
Nx � Ny D 5� 5, incompressible equilibrium)

�u (%)

=�t Scheme I Scheme II Scheme III Scheme IV

0.6 0.19 0.27 8.60�10�14 0.05

0.8 0.42 0.41 4.41�10�15 0.07p
3=16C 1=2 0.63 0.63 1.24�10�14 0.07

1.0 0.74 0.74 1.32�10�14 0.07p
13=64C 5=8 0.87 0.87 1.24�10�14 0.07

1.2 1.08 1.08 2.39�10�14 0.07

1.4 1.42 1.42 1.55�10�14 0.07

and (ii) the NEBB scheme accommodates this solution at the wall in an exact and
-independent way (cf. Sect. 6.6.2).

6.7.6 Role of Compressibility

The previous exercises used the incompressible equilibrium that allows for the exact
description of steady incompressible flows (cf. Sect. 4.3.2). This explains why all
test cases could reach an exact solution, providing the correct forcing scheme is
chosen.

On the other hand, the standard equilibrium recovers the compressible NSE
which approximates incompressible hydrodynamics in the limit of slow flows and
small density (pressure) variations [4]. Associated with this are compressibility
errors, as discussed in Sect. 4.5.4.

Compared to the discrete lattice artefacts, coming from the incorrect force
modelling, and/or the velocity slip, created by the bounce-back boundary scheme,
the compressibility errors typically have a secondary impact [4]. Still, they always
contaminate the solutions. In this case, they preclude exact results even when the
above error sources are corrected. This issue will be illustrated below, by repeating
the previous exercises with the standard (compressible) equilibrium. As we shall
see, although compressibility errors may obscure the clear identification of the force
discretisation artefacts, the trends of the incompressible equilibrium remain. But this
time, the lowest minimum in L2, for a spatially varying force, is found in the forcing
scheme with the second-order discretisation in velocity space (cf. Sect. 6.5.2),
although differences are very small.

260 6 Forces

6.7.6.1 Constant Force

The first test case was the purely force-driven Poiseuille flow. Since no pressure
variations occur in this setup, we have identical results for both the incompressible
and the standard equilibria.

6.7.6.2 Constant Force and Pressure Gradient

The second test case considered the simultaneous presence of a constant force
and pressure gradient. As pressure varies here, the LB solution now contains
compressibility errors.

The effect of the velocity discretisation order remains negligible, although
machine accuracy is never reached. This is in contrast to the incompressible case.
Once again, the space-time discretisation has the largest effect, as shown in Fig. 6.2.

Using bounce-back boundaries (Fig. 6.2a), the first-order space-time discretisa-
tion features the L2 minimum at D �t, while for the second-order discretisation
it is at D .

p
13=64 C 5=8/�t. This behaviour is similar to the incompressible

case, Table 6.4, except that now the minimum does not correspond to the exact
solution. The same kind of qualitative results occur when the NEBB method is used,
yet without showing any clear minimum (cf. Fig. 6.2b). Obviously the NEBB has
superior accuracy when the compressible equilibrium is used.

Fig. 6.2 L2 errors for Poiseuille flow with constant force and pressure gradient, periodic condi-
tions at inlet/outlet (LBGK, grid resolution of Nx � Ny D 5 � 5, compressible equilibrium). (a)
Bounce-back. (b) Non-equilibrium bounce-back

6.7 Benchmark Problems 261

6.7.6.3 Linear Force and Pressure Gradient

The third test case was a linearly varying body force and an according pressure
gradient. In addition to the bulk errors caused by force artefacts, the pressure
(density) variation also introduces compressibility errors.

While the order of the velocity discretisation has a slightly larger effect than
in the previous problem, the LB solution is dominated by compressibility errors.
In fact, using bounce-back, the second-order velocity discretisation is only more
accurate for small values of (cf. Fig. 6.3a). With the NEBB method, the second-
order velocity discretisation is more accurate for all values of (cf. Fig. 6.3b). Yet,
the accuracy improvement due to a second-order velocity discretisation is marginal
and not comparable to the incompressible case. Once again, the accuracy of the LB
solution depends mostly on the space-time discretisation as shown in Fig. 6.3.

The conclusions are similar to those of the case with constant force and pressure
gradient. The second-order space-time discretisation leads to minimum L2 values.
Still, due to the non-trivial interplay of force and compressibility errors, the second-
order space-time discretisation does not perform better in the full range of , which
is particularly noticeable for the bounce-back method. Generally, the NEBB method
has smaller errors for the problem considered in this section.

Fig. 6.3 L2 errors for Poiseuille flow with linear force and pressure gradient, pressure periodic
conditions at inlet/outlet (LBGK, grid resolution of Nx � Ny D 5 � 5, compressible equilibrium).
(a) Bounce-back. (b) Non-equilibrium bounce-back

262 6 Forces

References

1. E. Bodenschatz, W. Pesch, G.Ahlers, Annu. Rev. Fluid Mech. 32, 709 (2010)
2. S.I. Abarzhi, Phil. Trans. R. Soc. A 368, 1809 (2010)
3. J. Lighthill, Waves in Fluids, 6th edn. (Cambridge University Press, Cambridge, 1979)
4. J.M. Buick, C.A. Greated, Phys. Rev. E 61(5), 5307 (2000)
5. G. Silva, V. Semiao, J. Fluid Mech. 698, 282 (2012)
6. P.J. Dellar, Comput. Math. Appl. 65(2), 129 (2013)
7. R. Salmon, J. Mar. Res. 57(3), 847 (1999)
8. J. Wang, M. Wang, Z. Li, J. Colloid Interf. Sci. 296, 729 (2006)
9. M. Wang, Q. Kang, J. Comput. Phys. 229, 728 (2010)

10. T.Y. Lin, C.L. Chen, Appl. Math. Model. 37, 2816 (2013)
11. O. Shardt, S.K. Mitra, J.J. Derksen, Chem. Eng. J. 302, 314 (2016)
12. S.H. Kim, H. Pitsch, Phys. Fluids 19, 108101 (2007)
13. J. Zhang, D.Y. Kwok, Phys. Rev. E 73, 047702 (2006)
14. L. Talon, D. Bauer, D. Gland, H. Auradou, I. Ginzburg, Water Resour. Res. 48, W04526 (2012)
15. Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 46308 (2002)
16. N.S. Martys, X. Shan, H. Chen, Phys. Rev. E 58(5), 6855 (1998)
17. X. Shan, X.F. Yuan, H. Chen, J. Fluid Mech. 550, 413 (2006)
18. L.S. Luo, Phys. Rev. E 62(4), 4982 (2000)
19. P. Dellar, Phys. Rev. E 64(3) (2001)
20. A.J.C. Ladd, R. Verberg, J. Stat. Phys. 104(5–6), 1191 (2001)
21. S. Ansumali, I.V. Karlin, H.C. Öttinger, Phys. Rev. Lett. 94, 080602 (2005)
22. J.R. Clausen, Phys. Rev. E 87, 013309 (2013)
23. G. Silva, V. Semiao, Physica A 390(6), 1085 (2011)
24. Z. Guo, C. Zheng, B. Shi, T. Zhao, Phys. Rev. E 75(036704), 1 (2007)
25. R.W. Nash, R. Adhikari, M.E. Cates, Phys. Rev. E 77(2), 026709 (2008)
26. S. Ubertini, P. Asinari, S. Succi, Phys. Rev. E 81(1), 016311 (2010)
27. X. He, S. Chen, G.D. Doolen, J. Comput. Phys. 146(1), 282 (1998)
28. A. Kuzmin, Z. Guo, A. Mohamad, Phil. Trans. Royal Soc. A 369, 2219 (2011)
29. R.G.M. Van der Sman, Phys. Rev. E 74, 026705 (2006)
30. S.D.C. Walsh, H. Burwinkle, M.O. Saar, Comput. Geosci. 35(6), 1186 (2009)
31. Z. Guo, T.S. Zhao, Phys. Rev. E 66, 036304 (2002)
32. X. Nie, N.S. Martys, Phys. Fluids 19, 011702 (2007)
33. I. Ginzburg, Phys. Rev. E 77, 066704 (2008)
34. I. Ginzburg, G. Silva, L. Talon, Phys. Rev. E 91, 023307 (2015)
35. R. Salmon, J. Mar. Res. 57(3), 503 (1999)
36. H. Huang, M. Krafczyk, X. Lu, Phys. Rev. E 84(4), 046710 (2011)
37. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)
38. X. Shan, H. Chen, Phys. Rev. E 47(3), 1815 (1993)
39. X. He, X. Shan, G. Doolen, Phys. Rev. E. Rapid Comm. 57(1), 13 (1998)
40. A. Kupershtokh, D. Medvedev, D. Karpov, Comput. Math. Appl. 58(5), 965 (2009)
41. D. Lycett-Brown, K.H. Luo, Phys. Rev. E 91, 023305 (2015)
42. A. Kupershtokh, in Proc. 5th International EHD Workshop, University of Poitiers, Poitiers,

France (2004), p. 241–246
43. X. He, Q. Zou, L.S. Luo, M. Dembo, J. Stat. Phys. 87(1–2), 115 (1997)
44. L.S. Luo, Phys. Rev. Lett. 81(8), 1618 (1998)
45. I. Ginzbourg, P.M. Adler, J. Phys. II France 4(2), 191 (1994)
46. A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)
47. Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 83, 036707 (2011)
48. I. Halliday, L.A. Hammond, C.M. Care, K. Good, A. Stevens, Phys. Rev. E 64, 011208 (2001)
49. T. Reis, T.N. Phillips, Phys. Rev. E 75, 056703 (2007)
50. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)

References 263

51. M. Gross, N. Moradi, G. Zikos, F. Varnik, Phys. Rev. E 83(1), 017701 (2011)
52. Q. Zou, X. He, Phys. Fluids 9, 1591 (1997)
53. A. D’Orazio, S. Succi, Future Generation Comput. Syst. 20, 935 (2004)
54. A. Markus, G. Hazi, Phys. Rev. E 83, 046705 (2011)
55. A. Karimipour, A.H. Nezhad, A. D’Orazio, E. Shirani, J. Theor. Appl. Mech. 51, 447 (2013)
56. D.R. Noble, Chen, J.G. Georgiadis, R.O. Buckius, Phys. Fluids 7, 203 (1995)
57. M. Bouzidi, M. Firdaouss, P. Lallemand, Phys. Fluids 13, 3452 (2001)
58. D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer,

New York, 2005)
59. M. Junk, A. Klar, L.S. Luo, J. Comput. Phys. 210, 676 (2005)
60. T. Krüger, F. Varnik, D. Raabe, Phys. Rev. E 79(4), 046704 (2009)
61. C.M. Pooley, K. Furtado, Phys. Rev. E 77, 046702 (2008)
62. I. Ginzburg, D. d’Humières, Phys. Rev. E 68, 066614 (2003)
63. K. Premnath, J. Abraham, J. Comput. Phys. 224, 539 (2007)
64. J. Latt, Hydrodynamic limit of lattice Boltzmann equations. Ph.D. thesis, University of Geneva

(2007)
65. M. Rohde, D. Kandhai, J.J. Derksen, H.E.A. Van den Akker, Phys. Rev. 67, 066703 (2003)

Chapter 7
Non-dimensionalisation and Choice
of Simulation Parameters

Abstract After reading this chapter, you will be familiar with how the “lattice
units” usually used in simulations and articles can be related to physical units
through unit conversion or through dimensionless numbers such as the Reynolds
number. Additionally, you will be able to make good choices of simulation
parameters and simulation resolution. As these are aspects of the lattice Boltzmann
method that many beginners find puzzling, care is taken in this chapter to include a
number of illustrative examples.

Being able to map the physical properties of a system to the lattice (and the results
of a simulation back to a prediction about a physical system) is essential. LB
simulations are mostly performed in “lattice units” where all physical parameters
are represented by dimensionless numbers, as explained in Sect. 3.2.1. This requires
converting any dimensional quantity into a non-dimensional or dimensionless lattice
quantity (and vice versa to interpret the simulation results).

Unless the simulation program has a built-in functionality for performing unit
conversion between physical and lattice units, the user is responsible for specifying
simulation parameters in lattice units. Unit conversion is straightforward once the
basic rules are clear (Sect. 7.1). Unfortunately, few references in the LB literature
cover this topic coherently and rigorously.

LB simulations require not only a good knowledge of unit conversion. Due to
intrinsic restrictions of the LB algorithm, it is crucial to balance the simulation
parameters in such a way that a suitable compromise of accuracy, stability and effi-
ciency is achieved (Sect. 7.2). We also provide numerous examples to demonstrate
the non-dimensionalisation process (Sect. 7.3). Finally, a summary with the most
important rules is given in Sect. 7.4.

7.1 Non-dimensionalisation

We introduce the underlying concepts and basic rules to non-dimensionalise physi-
cal parameters (Sect. 7.1.1). The law of similarity plays a crucial role (Sect. 7.1.2).

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_7

265

266 7 Non-dimensionalisation and Choice of Simulation Parameters

7.1.1 Unit Scales and Conversion Factors

In order to indicate a dimensional physical quantity, one requires a reference scale.
For example, a length ` can be reported in multiples of a unit scale with length
`0 D 1m. If a given length ` is ten times as long as the unit scale `0, we say that its
length is 10m: ` D 10m D 10 `0. This convention is not unique. One may wish to
express the length compared to a different unit scale `0

0, e.g. `0
0 D 1 ft. How long is

` in terms of `0
0? To answer this question we have to know how long `0 is compared

to `0
0. We know that 1 ft corresponds to 0:3048m: `0

0=`0 D 0:3048m=ft. Therefore,
it is straightforward to report ` in feet, rather than metres:

` D 10m D 10 `0 D 10 `0
0

`0

`0
0

D 10 ft
1

0:3048
� 32:81 ft D 32:81 `0

0: (7.1)

Although the numerical values are not the same, the length ` is identical in both
representations. This calculation seems to be trivial, but it is the key to understanding
unit conversion and non-dimensionalisation.

Non-dimensionalisation is achieved by dividing a dimensional quantity by a
chosen reference quantity of the same dimension. The result is a number which we
will sometimes call the lattice value of the quantity, or the quantity’s value in lattice
units, when talking about the LBM. The reference quantity is called the conversion
factor. Let us denote conversion factors by C and non-dimensionalised quantities
by a star ?,1 then we can write for any length `:

`? D `

C`
: (7.2)

The conversion factor C` has to be chosen appropriately. How to do this for a
given LB simulation we will discuss in Sect. 7.2; but let us first focus on the non-
dimensionalisation itself.

Any mechanical quantity q has a dimension which is a combination of the
dimensions of length `, time t and mass m. In the following, let us only use SI
units, i.e. metre (m) for length, second (s) for time and kilogramme (kg) for mass.
The units of q, denoted as Œq	, are therefore

Œq	 D Œ`	q` Œt	qt Œm	qm : (7.3)

1Note that the star also denotes post-collision values. There is no danger of confusing both concepts
in this chapter, though.

7.1 Non-dimensionalisation 267

Table 7.1 Units of selected
mechanical quantities

Quantity Symbol Unit q` qt qm
Length ` m 1 0 0

Time t s 0 1 0

Mass m kg 0 0 1

Velocity u m=s 1 �1 0

Acceleration a m=s2 1 �2 0

Force f kg m=s2 1 �2 1

Force density F kg=.m2 s2/ �2 �2 1

Density � kg=m3 �3 0 1

The exponents q`, qt and qm are numbers. Let us take the velocity u as an example.
We know that the dimension of velocity is length over time:

Œu	 D m

s
D Œ`	1Œt	�1 D Œ`	q` Œt	qt Œm	qm : (7.4)

Therefore, we find q` D 1, qt D �1 and qm D 0. It is a simple exercise to find the
three numbers q`, qt and qm for any mechanical quantity q. Table 7.1 shows a few
examples.

In practical situations, one does not only want to non-dimensionalise one
quantity, but all of them. How can we achieve this in a consistent way?

Since three fundamental dimensions are sufficient to generate the dimension
of any mechanical quantity, one requires exactly three independent con-
version factors in order to define a unique non-dimensionalisation scheme.

Three conversion factors Ci (i D 1; 2; 3) are independent if the relations

ŒCi	 D ŒCj	
ai ŒCk	

bi .i 6D j 6D k 6D i/ (7.5)

have no solution for the numbers ai and bi. In other words: none of the dimensions
of the three conversion factors must be a combination of the other two. For example,
the conversion factors for length, time and velocity are dependent because ŒCu	 D
ŒC`	=ŒCt	. But the conversion factors for velocity, force and time are independent.
This argumentation is tightly related to the Buckingham � theorem [1].

268 7 Non-dimensionalisation and Choice of Simulation Parameters

Exercise 7.1 What are the exponents qu, qt, q� for a force f if velocity u, time t and
density � are used? (Answer: q� D 1, qu D 4, qt D 2)

Let us call any set of three independent conversion factors basic conversion
factors. The first step is to construct a system of three basic conversion factors.
All other required conversion factors can then be easily constructed as we will see
shortly.

It is completely arbitrary which basic conversion factors to choose, but in LB
simulations one usually takes C`, Ct (or Cu) and C� because length, time (or
velocity) and density are natural quantities in any LB simulation. Using basic
conversion factors for energy or force are possible but usually impractical.

Care must be taken when a 2D system is simulated. The dimension of
density � is mass per volume, in 2D it is formally mass per area. But how can
a 3D density be mapped to a 2D density? This dilemma can be circumvented
by pretending that a simulated 2D system is nothing more than a 3D system
with thickness of one lattice constant, i.e. an Nx �Ny system is treated as an
Nx � Ny � 1 system where Nx and Ny are the number of lattice sites along the
x- and y-axes. This enables us to use 3D conversion factors for 2D problems
without any restrictions.

7.1.2 Law of Similarity and Derived Conversion Factors

Let us pretend that we have a set of three basic conversion factors. How do we
obtain the derived conversion factors for other mechanical quantities? First of all
we note that physics is independent of units which are an arbitrary human construct.
Ratios of physical phenomena are what matter: a pipe diameter of 1m means that
the diameter is the length of the path travelled by light in vacuum in 1=299 792 458
of a second, with time intervals defined through periods of radiation from a caesium
atom. In particular, the physical outcome should not depend on whether we use
dimensional or dimensionless quantities.

Related to this is the law of similarity in fluid dynamics which is nicely
explained by Landau and Lifshitz [2]: two incompressible flow systems are
dynamically similar if they have the same Reynolds number and geometry.

(continued)

7.1 Non-dimensionalisation 269

The Reynolds number may be defined as

Re D `U

D �`U

�
(7.6)

where ` and U are typical length and velocity scales in the system and �,

and � are the density, kinematic viscosity and dynamic viscosity of the fluid,
respectively.

The law of similarity is, for instance, regularly used in the automotive or aircraft
industries where models of cars or planes are tested in wind tunnels. Since the
models are usually smaller than the real objects, one has to increase the flow velocity
or decrease the viscosity in such a way that the Reynolds numbers in both systems
match.2 For example, if the model of a car is five times smaller than the car itself,
the velocity of the air in the wind tunnel should be five times larger than in reality
(given the same density and viscosity).

Another example is the flow in a T-junction. Consider two fluids: one with water-
like viscosity and one with the same density but ten times more viscous. Both flow
at the same average speed through a T-junction with circular pipes, but the more
viscous fluid flows through pipes with ten times the diameter (and ten times the
length of pipe before and after the junction). In this example, the Reynolds number
is the same and the geometry is similar, and so we expect identical solutions (in non-
dimensional space). Should we perform a simulation that matches the physical
properties of the water flow or the more viscous flow? The answer is that the
simulation should match the Reynolds number in a way that optimises the accuracy
of the solution. The results of the simulation can then be applied to both physical
systems.

This means that the Reynolds number must be identical in both unit systems
(the physical and the lattice system):

`?U?

?
D `U

: (7.7)

Plugging in the definition of the conversion factors (e.g. C` D `=`?) simply yields

C`Cu

C

D 1 (7.8)

2Note that the definition of the Reynolds number is not unique: on the one hand, some people may
choose ` for the length, others for the width of the considered system. On the other hand, U may
be the average velocity or the maximum velocity—depending on the person defining the Reynolds
number. This has to be kept in mind when comparing Reynolds numbers from different sources.

270 7 Non-dimensionalisation and Choice of Simulation Parameters

or, if for example C
 shall be computed from C` and Cu:

C
 D C`Cu: (7.9)

Based on the dimensions of the conversion factors alone, one could have come to the
conclusion that C
 / C`Cu must hold, although this is only a proportionality rather
than an equality. The law of similarity for the Reynolds number, however, uniquely
defines the relation of the conversion factors for viscosity, length and velocity.

This result can be generalised to all missing conversion factors. Any derived
conversion factor Cq can be constructed directly by writing down a suitable
combination of basic conversion factors of the form

Cq D Cq1
1 C

q2
2 C

q3
3 (7.10)

without any additional numerical prefactor.3 The problem reduces to finding a
suitable set of numbers qi, which is usually not a difficult task. The resulting
expression for Cq is unique and guarantees that the conversion is consistent:
the physics of the system, i.e. the characteristic dimensionless numbers are kept
invariant, and the law of similarity is satisfied.

Example 7.1 For the given basic conversion factors C`, Ct and C�, one can easily
construct the conversion factor for pressure p. First we observe that Œp	 D N=m2 D
.kg=m3/m2=s2. Therefore one directly finds

Cp D C�C2`
C2t

: (7.11)

We show some concrete examples of non-dimensionalisation procedures in
Sect. 7.3.

Exercise 7.2 How does the pressure conversion factor look like if Cu rather than Ct

is used? (Answer: Cp D C�C2u)

Unit systems must not be mixed. This is a typical mistake made by most
users at some point. Mixing unit systems causes inconsistencies in the
definition of the conversion factors and a subsequent violation of the law
of similarity. We strongly advise to clearly mark quantities in different unit
systems (e.g. by adding ? or subscripts like p for “physical” and l for “lattice”).

(continued)

3This is true as long as we stick to base SI units. Mixing metres, kilometres and feet, for example,
will generally lead to additional numerical prefactors. This is the beauty of using SI units!

7.2 Parameter Selection 271

Additionally, we recommend to perform all calculations in pure SI units
without using prefixes like “milli” or “centi” which otherwise easily lead to
confusion.

7.2 Parameter Selection

We discuss the relevance of parameters in the LBM in general (Sect. 7.2.1), the
effect of accuracy, stability and efficiency (Sect. 7.2.2) and the strategies how to
find simulation parameters for a given problem in particular (Sect. 7.2.3).

7.2.1 Parameters in the Lattice Boltzmann Method

Any LB simulation is characterised by a set of parameters:

• The lattice constant �x is the distance between neighbouring lattice nodes in
physical units, i.e. Œ�x	 D m.

• The physical length of a time step is denoted�t, therefore Œ�t	 D s.
• The BGK relaxation parameter is often understood as a dimensionless quantity.

Strictly speaking, is a relaxation time with Œ 	 D s. This is how we understand
 in this book. Therefore, we write for the physical relaxation time and ? for
the dimensionless relaxation parameter.

• The dimensionless fluid density is �?. Its average value is usually set to unity,
�?0 D 1.4 This situation is slightly more complicated for multicomponent or
multiphase simulations (Chap. 9), where the density can be different from unity.

• Another important parameter is the typical simulated velocity U?. It is usually
not an input parameter but rather part of the simulation output. However, some
boundary conditions require specification of U? on the boundaries as inlet and
outlet velocities. Additionally, it is desired to estimate the magnitude of U?

before the simulation is started in order to avoid unstable situations or very long
computing times.

4Here it is important to remember that the physical density of an incompressible fluid is constant
while the LB density can fluctuate. Therefore, we relate the physical density � to the average lattice
density �?0 . The fluctuation of the LB density, �0?, is then related to the pressure, as shown in (7.16).

272 7 Non-dimensionalisation and Choice of Simulation Parameters

• In the standard LBM, the lattice speed of sound c?s is
p
1=3 � 0:577. In order

to operate in the quasi-incompressible limit, all simulated velocities have to be
significantly smaller: U? � c?s . In practice this means that the maximum value
of U? should be below 0:2.

The first step is to relate the physical parameters �x, �t, , � and U to their
lattice counterparts�x?, �t?, ?, �?0 and U?.

It is very common and recommended to set �x? D 1, �t? D 1 and �?0 D 1.
This means that the conversion factors for length, time and density equal
the dimensional values for the lattice constant, time step and density:

C` D �x; Ct D �t; C� D �: (7.12)

It is extremely important to realise that �x and �x? are the same quantity in
different unit systems. The units defined by �x? D 1 and �t? D 1 are called
lattice units.

Some authors prefer to set the total system size and the total simulation time,
rather than the lattice constant and the time step, to unity. This is nothing more than
a different but valid unit system. As a consequence, the conversion factors C` and
Ct would be different.

Most non-dimensionalisation problems are caused by the fact that users confuse
physical and non-dimensional quantities, i.e. �x with �x?, or �t with �t?. The
parameters and ? are connected through the conversion factor for �t because
has the dimension of time:

 D ?Ct D ?�t: (7.13)

The conversion factor for the velocity is Cu D C`=Ct D �x=�t, and it is not
independent. Thus, �x, �t and � form a complete set of basic conversion factors.
Alternatively one may use �x, Cu and � or other independent combinations. As we
will see later, different choices of the set of conversion factors result in different
strategies for non-dimensionalisation.

7.2.1.1 Viscosity

One of the important physical fluid properties is viscosity. From Sect. 4.1 we know
that the kinematic lattice viscosity is related to the relaxation parameter according
to
? D c?s

2.? � 1=2/. A typical problem is to relate the dimensionless relaxation
parameter ? to the physical kinematic viscosity
 since the latter is usually given
by an experiment and the former has to be defined for a simulation. The conversion

7.2 Parameter Selection 273

factor for
 is C
 D C2`=Ct which directly follows from the dimension of
: Œ
	 D
m2=s.

The kinematic viscosity is related to the simulation parameters according to

 D c?s
2

�

? � 1
2

�
�x2

�t
: (7.14)

This is a consistency equation for the three simulation parameters ?, �x and
�t, which means that these three parameters are not independent. Only two
of them can be chosen freely.

We will soon consider the intrinsic limitations of the LB algorithm which further
restrict the choice of parameters.

7.2.1.2 Pressure, Stress and Force

There are other additional quantities which are commonly encountered in LB
simulations: pressure p, stress � and force f . We know from Sect. 4.1 that the
equation of state of the LB fluid is

p? D c?s
2�?: (7.15)

This is, however, not the entire truth. Only the pressure gradient rp rather than the
pressure p by itself appears in the NSE. While the total pressure p does appear in
the energy equation, this equation is not relevant for non-thermal LB models. The
reference pressure is thus irrelevant; only pressure changes matter.

To connect with the physical pressure, one decomposes the LB density into its
constant average �?0 and deviation �0? from the average:

�? D �?0 C �0?: (7.16)

It is often wrongly assumed that the reference density �?0 has to correspond to a
physical reference pressure p0, e.g. atmospheric pressure. Generally, the LB density
can be converted to the physical pressure for non-thermal models as

p D p0 C p0 D p0 C p0?Cp; p0? D c?s
2�0?; (7.17)

274 7 Non-dimensionalisation and Choice of Simulation Parameters

where Cp D C�C2`=C
2
t D C�C2u is the conversion factor for pressure and p0 is the

physical reference pressure which can be freely specified by the user. Thus, the LB
equation of state can model a number of realistic equations of state [3]; see also
Sect. 1.1.3 for more details.

Example 7.2 A simulation with �?0 D 1 yields a density fluctuation �0? D 0:03 at a
given point. The pressure conversion factor is known to be Cp D 1:2 � 103 Pa. What
is the physical pressure at that point? First we can compute the physical value of the
pressure fluctuation from p0 D c?s

2�0?Cp D 1
3
� 0:03 � 1:2 � 103 Pa D 12 Pa. However,

since p0 has not been specified, we do not know the absolute pressure in physical
units. It may be wrong to compute it from c?s

2�?0Cp which would give 400 Pa.
Atmospheric pressure, for example is roughly 105 Pa and orders of magnitude larger
than the “wrong” reference pressure of 400 Pa. This misconception often leads to
confusion and incorrectly computed real-world pressure values.

The components of the stress tensor have the same dimension as a pressure,
therefore the conversion factor C�C2`=C

2
t is always identical.

For example, we can obtain the lattice deviatoric stress tensor via (4.14) and then
convert it to physical units by � D � ?C� with C� D Cp.

The procedure for forces is straightforward (cf. Table 7.1). A force which is often
encountered in hydrodynamic situations is the drag or lift force acting on the surface
of obstacles in the flow. It is obtained by computing the surface integral of the stress
(cf. Sect. 5.4.3). The conversion factor for any force (no matter if body force or
surface force) is Cf D C�C4`=C

2
t . One has to be careful when talking about body

forces, though: authors often write “body force” but actually mean “body force
density” as in body force per volume. The conversion factor for a body force density
F is obviously CF D Cf =C3` D C�C`=C2t .

Additional confusion is commonly caused by gravity. In physical terms, gravity
g is an acceleration, Œg	 D m=s2, not a force or force density. The gravitational
force density Fg is given by Fg D �g. The conversion factor for gravity is C`=C2t . A
precise language is therefore very helpful when talking about gravity (acceleration),
force and force density.

The dimensions of pressure, stress and force density depend on the number of
spatial dimensions. This has to be taken into account when 2D rather than 3D
simulations are performed. It is always helpful to write down a table similar to
Table 7.1 with all quantities of interest, their dimensions and chosen conversion
factors.

7.2 Parameter Selection 275

7.2.2 Accuracy, Stability and Efficiency

Equation (7.14) tells us that there is an infinite number of possibilities to get the
correct physical viscosity by balancing ?, �x and �t. The key question is: how
does one choose these parameters? To answer this, we have to consider intrinsic
limitations of the LB algorithm. In the end, one has to choose the parameters in such
a way that simulation accuracy, stability and efficiency are reasonably considered.
Here we will focus on the BGK collision operator. Note that some stability and
accuracy problems of the BGK operator can be solved by using advanced collision
operators (TRT or MRT, cf. Chap. 10) instead. We will see that there is no free lunch:
increased accuracy and stability usually come at the expense of increased computing
time. A similar, yet shorter discussion of this topic can be found in section 2.2 of [4].

7.2.2.1 Accuracy and Parameter Scaling

There are several error terms which affect the accuracy of an LB simulation
(cf. Sect. 4.5):

• The spatial discretisation error scales like �x2 [5, 6].
• The time discretisation error scales like �t2 [5, 7, 8].
• The compressibility error for simulations in the incompressible limit is/ Ma2 /

U?2 [5, 9]. Since U? decreases with increasing Cu D C`=Ct D �x=�t, this error
scales like �t2=�x2.

• The BGK truncation error in space is proportional to . � 1=2/2 [10].

The user’s task is to make sure that none of these error contributions plays too
large a role. In fact, we observe that increasing the lattice resolution (decreasing�x)
alone does not necessarily reduce the error because the compressibility error will
grow and dominate eventually. Reducing only the time step (decreasing �t) does
not decrease the spatial error. Thus, one needs to come up with certain relationships
between�x and�t to control the error.

One particular relation between �x and �t is given by the diffusive scaling5:
�t / �x2. It guarantees that the leading order of the overall error scales like �x2.
However, the LB algorithm then becomes effectively first-order accurate in time [6].
Additionally, since U?2 / �t2=�x2 / �x2 in the diffusive scaling, LB becomes
second-order accurate in velocity.

5The expression “diffusive scaling” stems from the apparent similarity of �t / �x2 and the
diffusion equation, but there is no physical relation between both. Such a relation between the
spatial and temporal scales is no special feature of the LB algorithm. It can also be found in typical
time-explicit centred finite difference schemes, such as the DuFort-Frankel scheme.

276 7 Non-dimensionalisation and Choice of Simulation Parameters

The diffusive scaling leaves ?, and hence the non-dimensional viscosity
?,
unchanged. This follows from (7.14). The diffusive scaling is the standard
approach to test if an LB algorithm is second-order accurate: one performs a
series of simulations, each with a finer resolution �x than the previous. The
overall velocity error should then decrease proportionally to �x2.

The acoustic scaling�t / �x keeps the compressibility error unchanged. If one
is only interested in incompressible situations, the speed of sound does not have any
physical significance and any compressibility effects are undesired. The diffusive
scaling is then the method of choice to reduce compressibility effects proportional
to �x2. If, however, the speed of sound is a physically relevant parameter (as in
compressible fluid dynamics and acoustics), the acoustic scaling must be chosen as
it maintains the correct scaling of the speed of sound. Holdych et al. [6] emphasised
that the numerical solution can only converge to the solution of the incompressible
NSE when �t / �x� with � > 1 since the compressibility error remains constant
for � D 1.

We have also seen in Sect. 4.5 that the value of ? affects the accuracy. ?
 1

should be avoided [6] because the error of the bulk BGK algorithm grows with
.? � 1=2/2. Note that the presence of complex boundary conditions modelled with
lower-order methods (such as simple bounce-back) leads to a non-trivial overall
error dependence on ?. It is generally recommended to choose relaxation times
around unity [6, 11, 12]. This is not feasible if the desired Reynolds number is large
and the viscosity (and therefore ?) are small. We will get back to this point in
Sect. 7.2.3.

The above discussion can only give a recommendation as to how �x and �t
should be changed at the same time, e.g. for a grid convergence study, but it does
not provide any information about the initial choice of �x and �t. We will discuss
this in Sect. 7.2.3.

7.2.2.2 Stability

We have already discussed the stability of LB algorithms in Sect. 4.4. The essential
results are that the relaxation parameter ? should not be too close to 1=2 and
that the velocity U? should not be larger than about 0:4 for ? 	 0:55. Another
result of Sect. 4.4 was that the achievable maximum velocity is decreasing when ?

approaches 1=2. For ? < 0:55, we can approximate this relation by

? >
1

2
C ˛U?

max (7.18)

where ˛ is a numerical constant which is of the order of 1=8.

7.2 Parameter Selection 277

Example 7.3 On the one hand, if we choose ? D 0:51, the maximum velocity
should be below 0:08. On the other hand, for an expected maximum velocity of
0:01, ? could be as low as 0:50125.

The values reported above are only guidelines. The onset of instability also
depends on the flow geometry and other factors. Simulations may therefore remain
stable for smaller values of ? or become unstable for larger values. In fact,
instabilities are often triggered at boundaries rather than in the bulk [13].

Related to the stability considerations above is the grid Reynolds number Reg

that is defined by taking the lattice resolution�x as length scale:

Reg D U?
max�x?

?
D U?

max

c?s
2
�
? � 1

2

� H) ? D 1

2
C U?

max

c?s
2Reg

: (7.19)

A comparison with (7.18) reveals that the grid Reynolds number Reg should
not be much larger than O.10/. The physical interpretation is that the lattice
should always be sufficiently fine to resolve local vortices. In other words: the
simulation usually remains stable as long as all relevant hydrodynamic length
scales are resolved.

7.2.2.3 Efficiency

The efficiency of an LB simulation can have two meanings: performance and
optimisation level of the simulation code on the one hand and required number of
lattice sites and iterations for a given physical problem on the other hand. Here, we
will only address the latter. We will address code optimisation in Chap. 13.

The total number of site updates required to complete a simulation is NsNt where
Ns is the total number of lattice sites and Nt is the required number of time steps.
The memory requirements are proportional to Ns (LB is a quite memory-hungry
method). It is clear that Ns / 1=�xd in a situation with d spatial dimensions.
Additionally, Nt / 1=�t holds independently of the chosen lattice. The finer space
and time are resolved (i.e. the smaller �x and �t are), the more site updates are
required. Assuming that the computing time for one lattice site and one time step is
a fixed number (typical codes reach a few million site updates per second on modern
desktop CPUs), the total required runtime T and memory M obey

T / 1

�xd�t
; M / 1

�xd
: (7.20)

It is therefore important to choose �t and especially �x as large as possible to
reduce the computational requirements. However, as we have seen before, a coarser
resolution usually reduces the accuracy and brings the system closer to the stability
limit.

278 7 Non-dimensionalisation and Choice of Simulation Parameters

7.2.3 Strategies for Parameter Selection

We have to consider the intrinsic limitations of the LB algorithm, as briefly
discussed in the previous section, when choosing the simulation parameters for the
BGK collision operator:

• If the spatial or temporal resolution shall be refined or coarsened, one should
usually obey the diffusive scaling �t / �x2.

• ? should be close to unity if possible.
• For ? close to 1=2, ? should obey (7.18) which is equivalent to the requirement

of having a sufficiently small grid Reynolds number Reg.
• In any case, the maximum velocity U?

max should not exceed 0:4 to maintain
stability. If accurate results are desired, U?

max should even be smaller (below 0:1

or even below 0:03) due to the error caused by the truncation of the equilibrium
distributions.

• Since the computing time and memory requirements increase very strongly with
(powers of) the inverse of�x, one should choose�x as large as possible without
violating the aforementioned limitations.

These intrinsic LB restrictions are also collected in Table 7.2.

7.2.3.1 Mapping of Dimensionless Physical Parameters

Any physical system can be characterised by dimensionless parameters like the
Reynolds or Mach numbers. The first step before setting up a simulation is to
identify these parameters and assess their relevance.

Inertia, for example, is relevant as long as Re is larger than order unity. Only
flows with vanishing small Reynolds number (Stokes flow) do not depend on the
actual value of Re: there is virtually no difference between the flow patterns for
Re D 10�3 and Re D 10�6. The limit below which Re does not matter depends on

Table 7.2 Overview of intrinsic LB limitations and suggested remedies

Accuracy (i) ? not much larger than unity

(ii) U?
max < 0:03–0:1

(iii) �x sufficiently fine to resolve all flow features

(iv) �t sufficiently fine to reduce time discretisation artefacts

Stability (i) U?
max < 0:4

(ii) ? not too close to 1=2, cf. (7.18)

(iii) Sufficiently small grid Reynolds number, cf. (7.19)

Efficiency Lattice constant �x and time step �t not unnecessarily small (memory
requirements / �x�d , simulation runtime / �t�1�x�d in d dimensions)

Interface width Droplet/bubble radius significantly larger than interface width: r? 	 d? D
O.3/

7.2 Parameter Selection 279

the flow details and the definition of Re. For many applications in fluid dynamics,
Re is not small and, thus, it has to be properly mapped from the real world to the
simulation, as per the law of similarity.6

LB is mostly used for the simulation of incompressible fluids where the
Mach number is small. It is not necessary to map the exact value of Ma then;
it is sufficient to guarantee that Ma is “small” in the simulation.

A lattice Mach number, which is defined as Ma.l/ D U?=c?s , is considered small
if Ma.l/ < 0:3. Larger Mach numbers lead to more significant compressibility errors.
Note that many users try to match the lattice and real-world Mach numbers; this is
not necessary in almost all situations where LBM is used.

Example 7.4 Let us investigate which effect a mapping of Re and Ma has on the
simulation parameters. We have already found (7.14) that is based on the law of
similarity for the Reynolds number. This equation poses one relation for the three
parameters ?,�x and�t. If we now additionally claim that the lattice and physical
Mach numbers shall be identical, we obtain

Ma.l/ D Ma.p/ H) U?

c?s
D U

cs
H) �x

�t
D Cu D U

U?
D cs

c?s
: (7.21)

Since c?s is known and cs is defined by the physical system to be simulated, the ratio
of�x and�t is fixed by the claim that the Mach numbers match (acoustic scaling).
This leaves only one of the three parameters ?, �x and �t as an independent
quantity.7

Luckily, in situations where compressibility effects are not desired, the Mach
number mapping can be dropped. It is computationally more efficient to increase
the lattice Mach number as much as possible, since the time step scales like 1=U? /
1=Ma.l/.

Example 7.5 Typical wind speeds are a few metres per second while the speed of
sound in air is about 330m=s. The Mach number is then of the order of 0:01, and
compressibility effects are not relevant. By choosing a simulation Mach number
of Ma.l/ D 0:3, while keeping the Reynolds number fixed, the simulation runs 30

6Some phenomena remain (inversely) proportional to Re, for example the drag coefficient. Thus,
there is still a significant difference in the result of a simulation between Re D 10�3 and 10�6,
although inertia may be irrelevant in both.
7As we will cover in Chap. 12, treating cs as physically relevant usually leads to small values of
? or�x and �t, rendering LB an expensive scheme to simulate acoustic problems. The only way
to decrease the lattice size is by reducing ? which in turn can cause stability issues, though these
can be alleviated, at least in part, by using other collision models than BGK.

280 7 Non-dimensionalisation and Choice of Simulation Parameters

times faster than a simulation with a mapping of the Mach number. Of course it is
not automatically guaranteed that this simulation is sufficiently accurate and stable,
but this example gives an idea about how useful it can be to increase the Mach
number.

Starting from (7.6), the relation of the simulation parameters in terms of
Reynolds and Mach numbers can be written in the useful form

Re.l/ D `?U?

?
D `?U?

c?s
2

�
? � 1

2

� H) Re.l/

Ma.l/
D `

c?s
�
? � 1

2

�
�x
:

(7.22)
Here, `? D `=�x is a typical system length scale in lattice units.

In particular, we may choose `? as the number of lattice sites along one axis of
the system. The total number of lattice sites for the 3D space is therefore of the order
of `?3. For a target Reynolds number Re.l/ and a given system size `, this equation
allows to balance the simulation parameters in such a way that Ma.l/, ? and�x are
under control. If all these parameters are set, one can find the time step from (7.14),
which requires knowledge of the physical viscosity
.

It should be noted that Ma.l/=Re.l/ is the lattice Knudsen number Kn. For
? D O.1/, Kn is basically �x=`. Hydrodynamic behaviour is only expected
for sufficiently small Knudsen numbers. This sets an upper bound for the lattice
constant�x.

7.2.3.2 Parameter Selection Strategies

Usually, the first step is to set the lattice density �?0 . It plays a special role in
LB simulations because it is a pure scaling parameter which can be arbitrarily
chosen, without any (significant) effect on accuracy, stability or efficiency.8 The
most obvious choice is �?0 D 1, as already mentioned. Other values are possible, but
there is no good reason to deviate from unity. Changing �?0 leads to a change of the
conversion factor for the density (�?0 6D 1 leads to C� 6D �), and it will affect the
lattice value of every quantity whose dimension contains mass (e.g. force, stress or
energy).

A typical scenario is that there is a maximum lattice size `? which can be handled
by the computer. This suggests that the lattice constant �x should be set next.
The lattice Mach number (or the non-dimensional velocity U?) is then reasonably
chosen, e.g. Ma.l/ D 0:1 or U? D 0:1. For given system size `?, velocity U?

and Reynolds number, ? can then be computed from (7.19). Now we have to

8Round-off errors may become important if �?0 deviates too strongly from unity.

7.2 Parameter Selection 281

check via (7.18) whether the chosen values for U? D Ma.l/c?s and ? provide
stable simulations. If ? is too small, (7.22) reveals that �x should be decreased
(increase `?) making simulations more expensive or Ma.l/ (increase U?) should be
increased (less accurate, less stable). Once the parameters U? and �x are fixed, we
can calculate �t.

This scenario reveals some problems arising when large Reynolds numbers are
simulated: it requires either large lattices, small relaxation parameters or large Mach
numbers. It is possible only to a limited extent to reach large Reynolds numbers
by increasing the Mach number and decreasing the relaxation parameter due to
accuracy and stability issues. In the end, the only way is to increase the resolution
which becomes progressively more computationally expensive.

Example 7.6 What is the maximum Reynolds number which can be achieved for a
given lattice size? Assuming that we choose ? near the stability limit, say ? D
1=2C U?=4, we find

Re.l/ D `?U?

c?s
2
�
? � 1

2

� D 4`?

c?s
2
: (7.23)

This shows that the achievable Reynolds number is limited by O.10/ `?.

It is also possible to set the Mach number (or U?) and viscosity
? (or ?) first.
Here (7.18) has to be considered for stability reasons. Consequently, we can find the
system size `? and therefore the required lattice resolution �x, and finally the time
step �t.

Another approach is to set the resolution�x (or non-dimensional system size `?)
and viscosity
? first. Matching Re in physical and lattice systems gives the velocity
U? which needs to be less than 0:4 (or below 0:03–0:1 if high accuracy is required).

Overall, it is up to the user which strategy is most convenient. In any case, it has to
be checked whether the accuracy, stability and efficiency conditions are reasonably
satisfied. We will discuss several concrete examples in Sect. 7.3 to illustrate the
parameter selection strategies.

7.2.3.3 Small Reynolds Numbers

We have seen above that it can be difficult to reach large Reynolds numbers in
simulations. However, there is also an intrinsic limitation when it comes to small
Reynolds numbers.

Equation (7.22) shows that a small Reynolds number can be reached by choosing
a large �x, a large relaxation parameter ? or a small lattice Mach number Ma.l/.
The resolution cannot be arbitrarily decreased; at some point the lattice domain is
so small that the details of the flow are finer than the spacing between lattice nodes.
It is not advisable to use ?
 1 as the numerical errors increase strongly with ?

(this can be avoided by using advanced collision operators such as TRT or MRT).

282 7 Non-dimensionalisation and Choice of Simulation Parameters

Therefore, the only unbounded way to reduce Re.l/ is to decrease Ma.l/ and therefore
the flow velocity U?. This in turn means that the time step �t becomes very small
because�t D �x=Cu and Cu / 1=Ma.l/ so that �t / Ma.l/.

Example 7.7 How small can the Reynolds number be for a given resolution? A
typical flow geometry has an extension of about 100 lattice constants, i.e. `? D 100.
Assuming that we do not want to use ? > 2, (7.22) yields

Re.l/ D U? 100
3
2
c?s
2
: (7.24)

Reaching Re.l/ D 0:01 therefore requires U? � 10�4. The velocity is relatively
small, and it takes a large number of time steps and therefore computing time to
follow the development of the flow field. The situation becomes even worse when
the spatial resolution is larger or smaller Reynolds numbers are required.

At this point it is advisable to consider a violation of the Reynolds number
mapping and the law of similarity. As explained before, the flow field is in most
cases not sensitive to the Reynolds number as long as it is sufficiently small. One
of the examples where the Reynolds number is not important are capillary flows
[14, 15] or microfluidic applications [16]. In these situations the time scale is not
given by viscosity [17].

In some situations, when the Reynolds number is not important, we can use
a numerical Reynolds number which is larger than the physical Reynolds
number to accelerate the simulations: Re.l/ > Re.p/. A word of warning: it
is very tempting to speed up simulations by violating the law of similarity.
One should always check if the simulation results are still valid, e.g. by
benchmarking against analytical results or varying the numerical Reynolds
number.

Concluding our achievements in this chapter so far, we have seen that LB
is particularly useful for flow problems with intermediate Reynolds numbers,
especially in the range between O.1/ and O.100/ [18].

7.3 Examples

The examples collected in this section shall underline the relevance of the parameter
selection process for LB simulations. Poiseuille (Sects. 7.3.1, 7.3.2 and 7.3.3) and
Womersley flow (Sect. 7.3.4) are covered in detail. Furthermore, we talk about
surface tension in the presence of gravity (Sect. 7.3.5). It is recommended to read all
examples in order of appearance since additional important concepts are introduced
in each example.

7.3 Examples 283

7.3.1 Poiseuille Flow I

Consider a force-driven 2D Poiseuille flow. The physical parameters for channel
diameter w, kinematic viscosity
, density � and gravity g are w D 10�3 m,
 D
10�6 m2=s, � D 103 kg=m3 and g D 10m=s2. How should we choose the simulation
parameters?

First of all we compute the expected centre velocity Ou of the flow. This is possible
since the flow field is known analytically:

Ou D gw2

8

D 1:25m=s: (7.25)

We define the Reynolds number as

Re D Ouw

D 1 250; (7.26)

but other definitions are possible, e.g. by taking the average velocity which is Nu D
Ou=2 for 2D Poiseuille flow.

We may now set the resolution, e.g. �x D 5 � 10�5 m, which corresponds to
w? D 20. The lattice density is taken as �?0 D 1 and therefore C� D 103 kg=m3.
Furthermore we choose ? D 0:6. The system is now fully determined (the user may
start with a different set of initial values, though), and we can compute all dependent
parameters.

Let us first obtain the conversion factor�t by applying (7.14):

�t D c?s
2

�

? � 1
2

�
�x2

D 8:33 � 10�5 s: (7.27)

This means that 12 000 time steps are required for 1 s physical time. We can now
compute the expected value of the lattice velocity.9 We can do this by either using
the law of similarity and the relation Re.p/ D Re.l/ D Ou?w?=
? or by computing
the conversion factor for the velocity, Cu D �x=�t D 0:6m=s. In either case we
find Ou? D 2:08 which is an invalid value because it is much larger than the speed of
sound.

We have seen that the initially chosen parameters do not lead to a proper set of
simulation parameters. This is very common, but one should not be discouraged.
The invalidity of the simulation parameters could have been guessed before: the
Reynolds number is nearly two orders of magnitude larger than the length scale
w? which is in conflict with the findings in (7.23). This means that we have to
increase the spatial resolution. Let us try a finer resolution (�x D 1 � 10�5 m rather
than 5 � 10�5 m) and a reduced viscosity (? D 0:55 instead of 0:6). The same

9If there is no analytical solution for the problem, one may run a test simulation and extract Ou?.

284 7 Non-dimensionalisation and Choice of Simulation Parameters

calculation as before now yields Ou? D 0:208, which may be acceptable for certain
applications. The user may choose yet another parameter set; there is no general
reason for sticking with the values provided here.

In order to run the simulation, the lattice value for the force density F D �g
has to be obtained. We first compute the conversion factor for g: Cg D �x=�t2 D
3:6 � 106 m=s2 where we have used the time conversion factor �t D 1:667 � 10�6 s.
Therefore, we get g? D 2:78 � 10�6 and F? D �?0g

? D 2:78 � 10�6. The simulation
can now be performed, and any results on the lattice can be mapped back to the
physical system by using the known conversion factors.

We could have pursued alternative routes to find the simulation parameters,
e.g.:

1. Choose w? and Ou?, which gives�x and Cu.
2. Find the viscosity conversion factor C
 D �x2=�t D �xCu and therefore
?.
3. Compute ? from
?.
4. Find the remaining conversion factors and check the validity of the parameters.

Another different approach is this:

1. Select Ou? and ? and therefore Cu and
?.
2. Find the viscosity conversion factor C
 .
3. Compute the lattice resolution �x D C
=Cu and then w? (if an integer value for

w? is required, the other parameters have to be slightly adapted).
4. Calculate all other required conversion factors and check the validity of the

parameters.

Exercise 7.3 Find conversion factors for the above example by first selecting
reasonable values for Ou? and ?.

If the initially guessed simulation parameters give invalid or otherwise
unacceptable results, one has to modify one or two parameters (which are not
necessarily the initially chosen parameters) while updating the dependent
parameters until the desired level of accuracy, stability and efficiency is
obtained.

The Reynolds number has to be kept invariant, which can be enforced by
exploiting equation (7.22). This can be a frustrating process because one may
find that the lattice becomes too large or the time step too small. However, this a
priori analysis is necessary to assess whether the simulation is feasible at all. The
alternative is to run a series of simulations blindly and adapt the parameters after
each run. This very time consuming approach should be avoided.

After some trial and error the user will be able to make educated guesses for
the initial parameter set based on the intrinsic limitations of the LB algorithm. It is
absolutely justified to say that the parameter selection for LB simulations is an art
which can be practised. We particularly recommend [17] for further reading.

7.3 Examples 285

7.3.2 Poiseuille Flow II

In the previous example, we obtained the simulation parameters for a Poiseuille flow
after the physical set of parameters had been defined. Thanks to the law of similarity
there is, however, another approach: one can set up simulations without any given
dimensional parameter! For the Poiseuille flow it is absolutely sufficient to know
the target Reynolds number.

Let us pursue this idea here. We assume that we only know the Reynolds number
(e.g. Re D 1250 as in the previous example) but nothing else. We can then take
advantage of (7.22) (where U? has to be replaced by Ou?) and start with an initial
guess for any two independent parameters. Since we know that the Reynolds number
is relatively large, we may want to run a well-resolved simulation with w? D 100.
We may wish to limit the velocity to Ou? D 0:1. From this we can directly compute
? D 0:524, which should yield a stable simulation (cf. (7.18)). The required force
density F? D �?0g? can then be obtained from

Ou? D g?w?2

8
?
H) g? D 6:4 � 10�7 (7.28)

after �?0 has been chosen (�?0 D 1 in this case).
An interesting consequence is that we have all required simulation parameters,

but not a single conversion factor. This is not a problem at all because the
simulation is valid for all similar physical systems, i.e. for all systems with the same
Reynolds number. The conversion factors can be obtained a posteriori by setting
the physical scales after a successful simulation. For example, if w is known, one
can compute�x. The full set of conversion factors can only be obtained when three
independent physical parameters are given (e.g. w, Ou, � or F, �, w).

In physics it is often the case that systems are only characterised by the
relevant dimensionless parameters without giving the scales like length or
velocity themselves. This is sufficient to set up and run simulations, at least
as long as all required dimensionless parameters are known.

This leads to the important question how many dimensionless parameters have
to be known for a given physical system. We will give the answer in Sect. 7.3.4.

7.3.3 Poiseuille Flow III

It is very common to drive a Poiseuille flow by a pressure gradient rather than by
gravity or a force density. The required boundary conditions for pressure-driven
flow are provided in Sect. 5.3. Here, we address how to obtain the required pressure
values at the inlet and outlet and which implications this brings along.

286 7 Non-dimensionalisation and Choice of Simulation Parameters

First we note that the pressure gradient p0 D �p=` (where �p D pin � pout > 0

is the pressure difference between inlet and outlet and ` is the length of the channel)
and the force density F is simply p0 D F. From (7.28) we immediately find

Ou? D �p?

�?0

w?2

8`?
?
H) ��?

�0?
D 8`?
? Ou?

cs
?2w?2

(7.29)

for a 2D Poiseuille flow.10 We have introduced the average density �?0 to appreciate
the fact that the density is not constant. In the second step, we replaced the pressure
difference �p? by the density difference via c?s

2��?. Equation (7.29) provides a
direct expression for the required relative difference between the inlet and outlet
densities.

In the incompressible limit, we require the density difference between any
two points in the simulation, ��?, to be small compared to the average
density �?0 .

In particular, the right-hand-side of (7.29) has to be a small quantity. This is
another restriction for an LB simulation and sets additional bounds, especially for
the system length `?. Note that this problem does not exist for a force-driven flow.

Example 7.8 How long can we choose a channel for a typical set of simulation
parameters (Ou? D 0:1,
? D 0:1, w? D 50, c?s

2 D 1=3)? Assuming that we
allow density variations of up to 5% (��?=�0? D 0:05), the maximum channel
length becomes `? � 520. This is only ten times more than the channel diameter.
If longer channels are required, the user has to re-balance the simulation parameters
on the right-hand-side of (7.29), keeping all relevant dimensionless parameters
(here only the Reynolds number) invariant. In the end, this leads to an increased
spatial resolution which allows larger ratios of `?=w? but requires more expensive
simulations.

How can we now choose the inlet and outlet densities in lattice units? If��? and
the average density �?0 are known, we set

�?in D �?0 C
��?

2
and �?out D �?0 �

��?

2
: (7.30)

Obviously,��? D �?in��?out is satisfied. In turn, the local pressure p? can be obtained
from the local density �? according to p? D p?0 C c?s

2.�? � �?0 /. The constant
reference pressure p?0 does not affect the simulation and is chosen by the user as
discussed in (7.17).

10The numerical prefactor becomes 4 in a 3D Poiseuille flow with circular cross-section.

7.3 Examples 287

7.3.4 Womersley Flow

Womersley flow denotes a Poiseuille-like flow (channel width w, viscosity
) with
an oscillating pressure drop along the length ` of the channel: �p.t/ D �p0 cos!t
with angular frequency !. Since there exists an analytical solution for this unsteady
flow, it is an ideal benchmark for Navier-Stokes solvers. Hence, Womersley flow
has often been simulated with the LB algorithm (e.g. [19–21]). We will not show
the analytical solution and refer the reader to the literature instead. Here we will
rather consider the generic implications arising from simulating non-steady flows.

The Reynolds number for an oscillatory flow is usually defined through the
velocity one would observe for ! D 0: Re D Ou0w=
 where Ou0 is related to �p0
according to (7.29):

Ou0 D �p0w2

8`�

(7.31)

for a 2D channel. Due to the presence of the frequency !, which is obviously
zero for simple Poiseuille flow, an additional dimensionless number is required to
characterise the flow. There are different ways to construct such a number: we just
have to write down a dimensionless combination containing ! and other suitable
parameters. One possibility is !w2=
. The Womersley number is defined as the
square root

˛ D
r
!

w: (7.32)

Before we continue with the discussion of unsteady flows in LB simulations, let
us first address the issue of finding dimensionless numbers for a physical system.

The Buckingham � theorem [1] states that for Q independent quantities
whose physical dimension can be constructed fromD independent dimensions
there are N D Q �D independent dimensionless parameters.

For example, for a simple Poiseuille flow, there are Q D 4 independent
quantities: channel width, flow velocity, viscosity and density. We know that any
mechanical system is characterised by D D 3 independent dimensions: length, time
and mass. This gives N D 1 parameter which is the Reynolds number. For each
additional physical parameter, one dimensionless number is required. Womersley
flow is characterised by Q D 5 quantities (the four Poiseuille parameters and the
oscillation frequency) and therefore N D 2 dimensionless numbers.

Another very helpful way to look at this is the definition of characteristic
time scales and their ratios. In a Poiseuille flow, there are two time scales: the

288 7 Non-dimensionalisation and Choice of Simulation Parameters

advection time ta � w=Ou and the diffusion or viscous time t
 � w2=
. N C 1

such time scales define N independent time scale ratios (e.g. Re � t
=ta for the
Poiseuille flow). For Womersley flow, a third time scale is given by t! � 1=!.
A second suitable dimensionless number is therefore t!=t
 or t!=ta or appropriate
combinations thereof (like ˛ � p

t
=t!). Any additional dimensionless number
would not be independent. For example, one can also define the Strouhal number
St D !w=.2� Ou0/ � ta=t! . It can be expressed as a combination of Reynolds and
Womersley numbers: ˛ � pRe St. Womersley flow is usually characterised by Re
and ˛.

Let us now get back to the LBM. When setting up a Womersley flow (or any other
unsteady flow) in an LB framework, one has to be aware of the subtleties of the LB
algorithm. As LB is a local algorithm without a Poisson equation for the pressure,
any information on the lattice propagates with a finite velocity comparable to the
speed of sound.

All physical time scales which shall be resolved must be sufficiently long
compared to the intrinsic sound wave (or acoustic) time scale t?s � `?=c?s .

In other words, the acoustic time scale t?s on the one hand and the advection,
diffusion and oscillation time scales (t?a , t?
 and t?!) on the other hand have to
be sufficiently separated (cf. section 3.1 in [22]) as long as one is interested in
incompressible flows: t?a ; t

?; t!?
 ts?. This defines, for a given lattice size, a lower
bound for the oscillation time scale and therefore an upper bound for the frequency
(here we assume that `? > w?):

!? � c?s
`?
: (7.33)

Any unsteady incompressible flow violating this condition is non-physical, and
the results will not be a good approximation of the incompressible Navier-Stokes
solution.

Having clarified this, we provide a suggested procedure to set up Womersley flow
with known Re and ˛:

1. Select initial values for `? and w? which are compatible with the Reynolds
number, e.g. w? > 0:1Re (stability).

2. Estimate the sound propagation time scale t?s � `?=c?s and therefore the
recommended maximum for !? via 2�=!? D T?
 ts?. It requires some trial
and error to find a sufficient minimum ratio T?=ts?, but one should at least use a
factor of ten.

3. Balance !? and
? to match ˛ via (7.32) by taking into account the law of
similarity for the Womersley number: ˛.l/ D ˛.p/. There is no unique way to

7.3 Examples 289

choose !? and
?, but keep in mind already now that the relaxation parameter ?

should not be too close to 1=2 or much larger than unity.
4. Estimate the velocity Ou?0 from Re using the selected values for w? and
?.
5. Check the validity of Ou?0 : if its value is not in the desired range (too large

for reasonable stability or accuracy or too small for a feasible time step), the
parameters have to be re-balanced while keeping Re and ˛ invariant. This process
is more complicated than for the Poiseuille flow because Re and ˛ have to be
considered simultaneously.

6. The required pressure difference�p?0 finally can be obtained from (7.31).

A parameter optimisation scheme for unsteady LB simulations is thoroughly
discussed in [20].

Example 7.9 Let us consider a flow with Re D 1000 and ˛ D 15 which is typical
for blood flow in the human aorta. First we choose �?0 D 1, `? D 500 and w? D 100
and find that T?
 870 should hold. We choose T? D 8700 and therefore !? D
7:22 � 10�4. Hence, we get
? D !?w?2=˛2 D 0:0321 and ? D 0:596 for a lattice
with c?s

2 D 1=3. This is a reasonable value for the relaxation parameter. We find
Ou?0 D Re
?=w? D 0:321, though, which seems quite large. However, the maximum
velocity actually observed in a Womersley flow is always smaller than Ou?0 , especially
for ˛ > 1. The reason is that the flow lags behind the pressure gradient and does not
have enough time to develop fully. The required pressure difference follows from
(7.31) and yields �p?0 D 4:12 � 10�3 which is small compared to order unity. We
can therefore assume that the present set of simulation parameters is suitable for a
simulation of Womersley flow, but one may want to decrease the time step further
to obtain a better separation of time scales.

LB simulations are usually subject to initial unphysical or at least undesired
transients (cf. Sect. 5.5) that decay after some time. As a rule of thumb, the transient
length in channel flow is given by the diffusion time scale t
 D w2=
; for the
above example we find t?
 � 3:11 � 105 � 36 T?! It may therefore be necessary
to simulate about 40 full oscillations before the numerical solution converges.
The actual transient length depends on the simulated flow and the chosen initial
conditions. It is recommended to employ an on-the-fly convergence algorithm which
aborts the simulation after a given convergence criterion has been satisfied.11 Under
the assumption that 40 oscillation periods are required, the simulation will run for
348 000 time steps. Further assuming a relatively slow D2Q9 code with 2 million
site updates per second and taking the lattice size `? � w? D 500 � 100, the total
simulation runtime will be 8 700 seconds or nearly three hours. A comparable 3D
simulation would be roughly 100 times more expensive (assuming a circular cross-
section with 100 lattice sites across the diameter), which is unfeasible for a serial
code.

11One may check for temporal convergence by comparing the velocity profiles at times t? and
t? � T? and applying a suitable error norm.

290 7 Non-dimensionalisation and Choice of Simulation Parameters

7.3.5 Surface Tension and Gravity

Let us now consider a droplet of a liquid in vapour (or the other way around: a
vapour bubble in a liquid). The surface tension of the liquid-gas interface is � . The
droplet/bubble may be put on a flat substrate or into a narrow capillary. For the
implementation of such a system, we refer to Chap. 9. Here, we focus on the unit
conversion in presence of surface tension and gravity, which is independent of the
underlying numerical model.

The density difference of the liquid and vapour phases is defined as �� D �l �
�v > 0. In the presence of the gravitational acceleration with magnitude g we can
define the dimensionless Bond number

Bo D ��gr2

�
: (7.34)

It characterises the relative strength of gravity and surface tension effects where r is
a length scale typical for the droplet/bubble. A common definition for r is the radius
of a sphere with the same volume V as the droplet/bubble12:

r D
�
3V

4�

�1=3
: (7.35)

A small Bond number means that gravity is negligible and the droplet/bubble shape
is dominated by the surface tension. This will result in a spherical shape of the
droplet/bubble if it is not in contact with any wall or a shape like a spherical cap
if it is attached to a wall. For larger Bond numbers, gravity is important, and the
droplet/bubble is generally deformed. This is illustrated in Fig. 7.1.

Fig. 7.1 Illustration of typical shapes of a droplet on a substrate (a) for small Bond number (Bo �
1) with negligible gravity and (b) large Bond number (Bo 	 1) where gravity is important. In both
cases the contact angle is 90ı. More details about contact angles are given in Chap. 9

12This definition appreciates the fact that the droplet/bubble may be deformed and therefore have
a more complex shape than a section of a sphere.

7.3 Examples 291

How do we find the simulation parameters in lattice units for a given Bond
number? The first step is to set the lattice densities which are usually tightly related
to the numerical model (cf. Chap. 9). Let us take the liquid density as reference and
write

�?v D
1

�
�?l DW

1

�
�? (7.36)

where � > 1 is the achievable density ratio of the model. The next step is to
choose the radius r? properly. In lattice-based methods, interfaces between phases
are always subject to a finite width of a few �x (d? D O.3/) as we will detail in
Chap. 9. We have to make sure that the radius r? is significantly larger than this
interface width, r?
 d?, otherwise the simulated system will be dominated by
undesired diffuse interface properties. Typical recommended thresholds are r? 	 8,
but one may obtain decent results for smaller resolutions. This is an important
additional restriction in multiphase or multicomponent LB models.

Separating the known and unknown parameters, we get

�?

g?
� �?r?2

Bo.l/
(7.37)

where we have approximated�� � �l D �, which is valid for �
 1. Furthermore,
we have taken advantage of the law of similarity in the form Bo.l/ D Bo.p/. All
quantities on the right-hand-side of (7.37) are known. This leaves us with one degree
of freedom: it is up to the user to choose �? and g? in such a way that (7.37) is
satisfied. On the one hand, based on the underlying LB model, the surface tension
may be restricted to a certain numerical range (similar to the restriction of ?). On
the other hand, if g? is chosen too big, the lattice acceleration and therefore velocity
may be too large, and the simulation is less accurate or even unstable. Since the time
step is effectively defined by g? via

g D g?
�x

�t2
; �x D r

r?
; (7.38)

the user has to consider the total runtime of the simulation as well. Reducing �? and
g? will decrease the time step and result in a longer computing time.

We have not said anything about viscosity. The reason is that, so far, we have only
taken advantage of the Bond number scaling. If for example the Reynolds number is
a relevant parameter as well, i.e. if Re is not small, the simulation parameters have
to be chosen simultaneously.

Example 7.10 Liquid glycerol with density �l D 1 260 kg=m3 and kinematic
viscosity
 D 8:49 � 10�4 m2=s (dynamic viscosity � D 1:07 Pa s) is flowing in
a vertical pipe of diameter w D 0:015m in the gravitational field g D 9:81m=s2.
We want to simulate an air bubble in the liquid with radius r D 4 � 10�3 m and large
density contrast, �
 1. The Reynolds number is defined according to the flow we

292 7 Non-dimensionalisation and Choice of Simulation Parameters

would observe in the absence of the bubble (cf. Sect. 7.3.1):

Re D Ouw

D gw3

4
2
D 11:5: (7.39)

The surface tension of glycerol in air at 20 ıC is � D 6:34 � 10�2 N=m resulting
in Bo D 3:12. Note that the confinement � WD 2r=w D 0:533 is also a relevant
dimensionless parameter which is, however, easily mapped to the lattice as it
is merely the ratio of two length scales. How should we select the simulation
parameters? We start by setting w? D 30 and r? D 8 obeying the confinement
scaling. The Reynolds number Re.p/ D Re.l/ therefore restricts the ratio of gravity
and viscosity:

g?

?2
D 4Re

w?3
D 1:70 � 10�3: (7.40)

We choose �? D 1 and find from the Bond number:

�?

g?
D �?r?2

Bo.l/
D 20:5: (7.41)

We have one degree of freedom left because the choice of the three parameters g?,

? and �? is restricted by two conditions. We may now set the surface tension first:
�? D 0:06. This gives g? D 2:93 � 10�3 and therefore
? D 1:31 and ? D 4:44.
Additionally, we find the maximum velocity Ou? D 0:50. These parameters are not
acceptable, and the velocity and viscosity have to be reduced. Different strategies
are available:

1. Keep �? fixed. This leads to the scalings g? / r?�2,
? / r?1=2 and Ou? / r?�1=2.
Showing these relations is left as an exercise for the reader. We notice that we
can either reduce the viscosity or the velocity by changing the resolution, but
we cannot reduce both at the same time. It is therefore not possible to keep the
surface tension unchanged.

2. Keep r? fixed. Now we get g? / �?,
? / �?1=2 and Ou? / �?1=2. By reducing
the surface tension we can therefore reduce the viscosity and the velocity
simultaneously. But it depends on the selected numerical model if a decrease
of surface tension is feasible at all.

The two above-mentioned approaches are usually combined to further balance the
simulation parameters. One has to keep in mind, though, that every numerical
method has intrinsic limitations which make certain combinations of dimensionless
numbers (here: Re, Bo, �) unfeasible if not impossible to access in a simulation.

7.4 Summary 293

7.4 Summary

We conclude this chapter by collecting the relevant results about unit conversion
and parameter selection.

• Purely mechanical systems require exactly three conversion factors. The first step
is to define three independent (basic) ones. All other conversion factors can be
derived according to (7.10).

• Some dimensions (e.g. for pressure or density) are different in 2D and 3D. This
problem can be circumvented by interpreting a 2D system as a 3D system with
thickness �x.

• The law of similarity (e.g. for the Reynolds, Womersley or Bond number) is the
physical basis for consistent non-dimensionalisation: two systems with the same
set of relevant dimensionless parameters are similar.

• Unit systems must not be mixed as this will lead to inconsistencies and wrong
physical results.

• Typical basic conversion factors for LB simulations are those for length, time (or
velocity) and density: C`, Ct (or Cu) and C�. Other sets are possible but usually
less practical.

• Relevant simulation parameters are the lattice spacing �x, the time step �t,
the relaxation parameter ?, the average density �?0 and the characteristic flow
velocity U? (a star ? denotes non-dimensionalised parameters). They are not
independent. Their relations are partially dictated by characteristic dimensionless
numbers such as the Reynolds number. For example, the physical kinematic
viscosity
 poses a condition for ?, �x and�t:

 D c?s
2

�

? � 1
2

�
�x2

�t
: (7.42)

• Choose simulations parameters in such a way that the intrinsic LB restrictions
are considered (cf. Table 7.2).

• The LB algorithm is second-order accurate in space and first-order accurate in
time when choosing the diffusive scaling�t / �x2. This is the preferred scaling
for resolution refinement if compressibility effects are unimportant (otherwise
the acoustic scaling �t / �x is the way to go).

• For incompressible simulations the Mach number is an unimportant parameter, as
long as it is not too large. The correct scaling of the Mach number is therefore not
necessary and should actually be avoided to increase the simulation efficiency.
Another handy relation between the simulation parameters is given by

Re?

Ma?
D `

c?s
�
? � 1

2

�
�x

(7.43)

where Re? D `?U?=
? and Ma? D U?=c?s .

294 7 Non-dimensionalisation and Choice of Simulation Parameters

• It is recommended to set the average lattice density �?0 first. There is usually no
good reason to deviate from �?0 D 1.

• LB simulations can be performed without specifying any conversion factors. The
results can later be mapped to a physical system with the same dimensionless
parameters. In particular, one can find all LB parameters from the dimensionless
parameters without the necessity to specify absolute scales.

• Any LB simulation for incompressible flows has to be set up in a way such that
the local density variation �0? is small compared to �?0 .

• The number of independent simulation parameters is reduced by each imposed
dimensionless parameter. Simulation parameters have to be chosen such that all
relevant dimensionless numbers are correct, i.e. that all laws of similarity are
satisfied. This is tightly related to the Buckingham � theorem and can also be
understood from defining all relevant time scales and their ratios. For example,
the Reynolds number is the ratio of the characteristic viscous and advection time
scales. The Strouhal number is the ratio of the advection and the oscillation time
scale of an oscillating flow.

• Any relevant time scale (e.g. advection, diffusion, oscillation) has to be signifi-
cantly larger than the sound propagation time scale t?s � `?=cs

?. Otherwise the
physical properties of the system change faster than the simulation can adapt.

References

1. E. Buckingham, Phys. Rev. 4, 345 (1914)
2. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987)
3. E.M. Viggen, Phys. Rev. E 90, 013310 (2014)
4. Y.T. Feng, K. Han, D.R.J. Owen, Int. J. Numer. Meth. Eng. 72(9), 1111–1134 (2007)
5. P.A. Skordos, Phys. Rev. E 48(6), 4823 (1993)
6. D.J. Holdych, D.R. Noble, J.G. Georgiadis, R.O. Buckius, J. Comput. Phys. 193(2), 595 (2004)
7. S. Ubertini, P. Asinari, S. Succi, Phys. Rev. E 81(1), 016311 (2010)
8. P.J. Dellar, Comput. Math. Appl. 65(2), 129 (2013)
9. M. Reider, J. Sterling, Comput. Fluids 118, 459 (1995)

10. D. d’Humières, I. Ginzburg, Comput. Math. Appl. 58, 823 (2009)
11. T. Krüger, F. Varnik, D. Raabe, Phys. Rev. E 79(4), 046704 (2009)
12. I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys. 139, 1090 (2010)
13. J.C.G. Verschaeve, Phys. Rev. E 80, 036703 (2009)
14. A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, J. Derksen, Chem. Eng. J. 171, 646 (2011)
15. A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, J. Derksen, Chem. Eng. J. 178, 306 (2011)
16. T. Krüger, D. Holmes, P.V. Coveney, Biomicrofluidics 8(5), 054114 (2014)
17. M.E. Cates, J.C. Desplat, P. Stansell, A.J. Wagner, K. Stratford, R. Adhikari, I. Pagonabarraga,

Philos. T. Roy. Soc. A 363(1833), 1917 (2005)
18. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University

Press, Oxford, 2001)
19. X. He, G. Doolen, J. Comput. Phys. 134, 306 (1997)
20. A.M.M. Artoli, A.G. Hoekstra, P.M.A. Sloot, Comput. Fluids 35(2), 227 (2006)
21. R.W. Nash, H.B. Carver, M.O. Bernabeu, J. Hetherington, D. Groen, T. Krüger, P.V. Coveney,

Phys. Rev. E 89(2), 023303 (2014)
22. B. Dünweg, A.J.C. Ladd, in Advances in Polymer Science (Springer, Berlin, Heidelberg, 2008),

pp. 1–78

Part III
Lattice Boltzmann Extensions,

Improvements, and Details

Chapter 8
Lattice Boltzmann for Advection-Diffusion
Problems

Abstract After reading this chapter, you will understand how the lattice Boltzmann
equation can be adapted from flow problems to advection-diffusion problems with
only small changes. These problems include thermal flows, and you will know how
to simulate these as two interlinked lattice Boltzmann simulations, one for the flow
and one for the thermal advection-diffusion. You will understand how advection-
diffusion problems require different boundary conditions from flow problems, and
how these boundary conditions may be implemented.

The LBM is not only used for fluid dynamics; it is also a powerful method to solve
advection-diffusion problems. In fact, there is a growing interest in studying systems
with coupled fluid dynamics and diffusion with LBM. First, we briefly summarise
how LB advection-diffusion is implemented in Sect. 8.1. Then, we give a general
overview of advection-diffusion problems in Sect. 8.2, and cover in more detail in
Sect. 8.3 why and how the LBM can solve the advection-diffusion equation and
which model extensions exist. Section 8.4 is dedicated to the important special
case of thermal flows where the advection-diffusion equation is replaced by the
heat or energy equation. Similarly to the Navier-Stokes equation, the advection-
diffusion equation requires the specification of boundary conditions. We provide a
short summary of simple diffusion boundary conditions for the LBM in Sect. 8.5.
In Sect. 8.6 we demonstrate the suitability and accuracy of the LBM for advection-
diffusion problems through a number of benchmark tests.

8.1 Lattice Boltzmann Advection-Diffusion in a Nutshell

Advection-diffusion problems are common in nature (cf. Sect. 8.2). They include
mixing of and heat diffusion in fluids. The governing equation is the advection-
diffusion equation (ADE, cf. (8.6)) for a scalar field C, which could be e.g. a
concentration or temperature:

@C

@t
C r � .Cu/ D r � .DrC/C q: (8.1)

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_8

297

298 8 Lattice Boltzmann for Advection-Diffusion Problems

The left-hand side describes the advection of C in the presence of an external
fluid velocity u, while the right-hand side contains a diffusion term with diffusion
coefficient D and a possible source term q.

The ADE and the Navier-Stokes equation have strong similarities (cf. Sect. 8.3).
In fact, we can understand the NSE as an ADE for the fluid momentum density
vector �u. Therefore, the LBM is easily adapted to advection-diffusion problems. It
turns out that the LBE

gi.xC ci�t; tC�t/� gi.x; t/ D ˝i.x; t/C Qi.x; t/ (8.2)

with

˝i.x; t/ D � 1
g

�
gi.x; t/ � geq

i .x; t/
�

(8.3)

and suitable source terms Qi solves the ADE for the concentration field C DPi gi.
This collision operator results in a diffusion coefficient

D D c2s

�

g � �t

2

�

: (8.4)

This is equivalent to the relation between kinematic viscosity
 and relaxation time
 for the standard LBM.

The main difference between LBM for Navier-Stokes and advection-diffusion
problems is that in the latter there is only one conserved quantity: C. The velocity u
is not obtained from gi; it is rather imposed externally.

The equilibrium distribution typically assumes the form

geq
i D wiC

1C ci � u
c2s
C .ci � u/2

2c4s
� u � u
2c2s

!

: (8.5)

It is also possible to employ a linear equilibrium given in (8.24), though this
leads to undesired error terms (cf. Sect. 8.3.4). We can use the same lattices
as for the standard LBM, but due to the less strict isotropy requirements for
advection-diffusion problems, we can also use smaller and more efficient velocity
sets (cf. Sect. 8.3.3).

One of the most important applications of the advection-diffusion model is
thermal flows where the advection and diffusion of heat is coupled to the dynamics
of the ambient fluid (cf. Sect. 8.4). In this case, the velocity u is provided by a
Navier-Stokes solver, e.g. the LBM, whereas temperature acts back on the fluid.
This feedback is often modelled as, but not always limited to, a temperature-density
coupling. For example, the Boussinesq approximation assumes a temperature-
dependent fluid density that can be modelled as a buoyancy force instead of
changing the simulation density (cf. Sect. 8.4.1).

8.2 Advection-Diffusion Problems 299

In thermal flows we have to distinguish between situations with and without
energy conservation. If viscous heating and pressure work are relevant, an energy-
conserving model is required (cf. Sect. 8.4.3). In many situations it is safe to assume
that viscous dissipation does not lead to a large temperature increase, and energy
conservation does not have to be satisfied (cf. Sect. 8.4.4).

The boundary conditions used for LB advection-diffusion are different to those
used for Navier-Stokes LB. In particular, the simple bounce-back method is replaced
by an anti-bounce-back method for Dirichlet boundary conditions. This is discussed
in more detail in Sect. 8.5, followed by a number of benchmark tests in Sect. 8.6.

8.2 Advection-Diffusion Problems

Advection and diffusion are two common phenomena that we can observe in daily
life and many hydrodynamic problems. Both are illustrated in Fig. 8.1. We have
already seen that the Reynolds number in the NSE indicates the relative importance
of advection and momentum diffusion as two important transport phenomena.

As an example of advection, oil spilled in a river is dragged along with the
water, therefore moving downstream with the current. Clouds moving in the sky
are another example: the clouds travel along with the wind in the atmosphere due to
the drag force between both.

Diffusion is slightly less intuitive. At finite temperature, molecules show random
motion, even if the average velocity in a medium is zero. A famous effect is the
Brownian motion of dust particles on top of a water surface. The particles are
constantly being randomly hit by water molecules, which leads to the characteristic
Brownian trajectories. The mean square displacement of the dust particles increases
linearly with time. Due to this kind of random molecular motion, two miscible
fluids such as ethanol and water mix themselves when put into the same container.
Both molecular species diffuse until the concentration of both ethanol and water is
constant.

Fig. 8.1 Illustration of pure advection (left), pure diffusion (middle) and advection-diffusion
(right). u and D are the advection velocity and diffusion coefficients, respectively. The grey curve
is an initial concentration distribution C.x; t D 0/, the black curve shows the concentration at a
later time

300 8 Lattice Boltzmann for Advection-Diffusion Problems

Thermal diffusion is relevant in many industrial applications, for instance to keep
the temperature in a reactor as constant and homogeneous as possible. Local heat
sources, e.g. due to chemical reactions, or heat sinks, e.g. caused by the presence of
cold walls, cause a temperature gradient. Heat then diffuses from warmer to colder
regions; therefore, heat diffusion tends to reduce temperature gradients.

Diffusion is often a slow process, in particular when the physical system is
large. Since the mean square displacement grows linearly with time, diffusion is
characterised by a

p
t behaviour. Advection with a constant velocity u, however,

scales linearly with time since the distance travelled at constant velocity is ut.
It therefore often depends on the spatial scale whether advection or diffusion
dominate. We will pick up this idea again shortly.

The advection-diffusion equation (ADE) or convection-diffusion equation
for a scalar field C (e.g. the concentration of a chemical species or tempera-
ture) with isotropic diffusion coefficient D and source term q reads [1]

@C

@t
C r � .Cu/ D r � .DrC/C q: (8.6)

Equation (8.6) shows that there are three mechanisms that lead to a local change
of C:

• Advection is caused be a prescribed advection velocity u. This is typically the
velocity of the ambient medium.

• The scalar field shows intrinsic diffusion according to the divergence of the term
j D �DrC. This linear relation between the diffusion flux j and the gradient
rC is called Fick’s first law. We see that diffusion is generally driven by the
gradient of C. The diffusion coefficient D is a material property that is normally
temperature-dependent. Its physical unit is m2=s, just like the kinematic viscosity.

• C may be locally produced or destroyed as indicated by the source term q. One
possible mechanism is a chemical reaction that produces heat or consumes a
given chemical species.

If we assume that D is homogeneous, we can simplify (8.6) further:

@C

@t
C r � .Cu/ D Dr2CC q: (8.7)

There are certain situations where D is non-homogeneous (so that (8.6) applies)
or non-isotropic (where D becomes a direction-dependent diffusion tensor D). One
example is systems with inhomogeneous temperature and therefore inhomogeneous
diffusivity, and another is anisotropic diffusion in porous media. If not otherwise
stated, we only consider the simplified ADE as in (8.7).

8.2 Advection-Diffusion Problems 301

Equation (8.7) is general in the physical sense, as it describes not only a
concentration C, but for example also the temperature T. In this case, one
often writes the heat equation

@T

@t
C r � .Tu/ D �r2T C q (8.8)

where � is the thermal diffusivity.

To highlight the generality of the ADE, we continue writing C and keep in mind
that C may be replaced by T (and D by �) if we want to consider thermal problems.

Like the Reynolds number for the NSE, we can define a characteristic dimen-
sionless number for advection-diffusion problems: the Péclet number. Introducing a
characteristic velocity U, length L and time T D L=U, we can rewrite (8.7) without
source term q as

@C

@t?
C r? � .Cu?/ D D

LU
r?2C (8.9)

where variables with a star ? are dimensionless, e.g. t? D t=T and r? D Lr . The
dimensionless prefactor on the right-hand side is the inverse Péclet number:

Pe D LU

D
: (8.10)

Problems with large Péclet number are advection-dominated, i.e. the change of C
due to the advection velocity u is more important than diffusive contributions. In
the limit Pe ! 0, for small or vanishing velocity or at small length scales, (8.7) is
dominated by diffusion.

Thermal advection-diffusion problems often occur together with hydrodynamics.
The ADE for temperature and the NSE for momentum are then coupled and have to
be solved simultaneously, as we will discuss in more detail in Sect. 8.4. In this case,
there is another relevant dimensionless number: the Prandtl number is the ratio of
kinematic viscosity
 to thermal diffusivity �:

Pr D

�
: (8.11)

It is about 0:7 for air and 7 for water. If the diffusion of a substance in a viscous
medium is considered instead of temperature diffusion, the Schmidt number is used:

Sc D

D
: (8.12)

302 8 Lattice Boltzmann for Advection-Diffusion Problems

There exist different numerical methods to solve advection-diffusion problems.
The most commonly used is the finite difference method (Sect. 2.1.1). However,
Wolf-Gladrow [2] showed that an LB-based diffusion solver can achieve higher
diffusion coefficients than explicit finite-difference schemes since LBM permits
larger time steps than finite-difference schemes with the same spatial resolution. In
the remainder of this chapter, we will focus on the LBM as an advection-diffusion
solver.

8.3 Lattice Boltzmann for Advection-Diffusion

In this section we show how the LBM can be used to simulate advection-diffusion
problems. The governing equations are presented in Sect. 8.3.1. This requires a
modified equilibrium distribution function (Sect. 8.3.2) and some comments about
the lattice velocities (Sect. 8.3.3). The Chapman-Enskog analysis in Sect. 8.3.4
is similar to the analysis of the standard LBM for fluid dynamics. We conclude
the section by mentioning a few extensions of the LB advection-diffusion model
(Sect. 8.3.5). Particular usage of LB modelling of thermal flows will be covered in
Sect. 8.4.

8.3.1 Similarities of Advection-Diffusion
and Navier-Stokes

There are different approaches to construct an LB algorithm for advection-diffusion
problems. A straightforward way is to start from the incompressible NSE and
rewrite it as

@.�u/
@t
C r � .�uuC pI/ D
r2.�u/C F: (8.13)

The similarity with the ADE in (8.7) becomes obvious when the following
substitutions are performed:

�u! C; �uuC pI! Cu;
 ! D; F! q: (8.14)

Instead of working with the momentum density vector �u, we want to have the
scalar C as the central observable. The kinematic viscosity
 is replaced by the
diffusion coefficient D. There is no analogue for the fluid incompressibility in the
advection-diffusion formalism. While the NSE involves two conserved quantities
(density and momentum density), there is only one conserved quantity in the ADE
(concentration).1

1Of course “conserved” quantities are only conserved in the absence of source terms.

8.3 Lattice Boltzmann for Advection-Diffusion 303

Exercise 8.1 Show that the NSE is an ADE for the momentum density �u. What is
the meaning of the kinematic viscosity
 and the force density F?

Since the functional forms of (8.7) and (8.13) are very similar, the next logical
step is to use the same general LB algorithm as before:

gi.xC ci�t; t C�t/� gi.x; t/ D ˝i.x; t/C Qi.x; t/: (8.15)

Here, we write gi to denote populations for the scalar C,˝i is the collision operator,
and Qi is responsible for the source term q.

The simplest collision model for advection-diffusion problems is the BGK
operator:

˝i.x; t/ D � 1
g

�
gi.x; t/ � geq

i .x; t/
�
: (8.16)

We write g to distinguish the relaxation time from in the standard LBM for the
NSE. The application of the LBGK model to ADE problems goes back to works by
Flekkoy [3] and Wolf-Gladrow [2] in the early 1990s.

It will be shown in Sect. 8.3.4 that the diffusion coefficient D in the BGK
model is given by the relaxation time g, similarly to the viscosity in the NSE:

D D c2s

�

g � �t

2

�

: (8.17)

The speed of sound cs depends on the chosen lattice (Sect. 8.3.3).

Now we have to find out how to construct the equilibrium populations geq
i to

recover the ADE, rather than the NSE, in the macroscopic limit.

8.3.2 Equilibrium Distribution

It would seem reasonable to assume that the zeroth and first moments of gi obey

X

i

gi D
X

i

geq
i ;

X

i

gici D
X

i

geq
i ci; (8.18)

just as in the LBM for the NSE. However, the second equality does not hold. As we
will see shortly, the momentum in the ADE is not conserved by collision.

304 8 Lattice Boltzmann for Advection-Diffusion Problems

To satisfy the substitutions in (8.14), we claim

X

i

geq
i D C D

X

i

gi; (8.19a)

X

i

geq
i ci D Cu: (8.19b)

Let us construct an equilibrium in such a way that these moments are satisfied. The
flow velocity u is an externally imposed field; it is not found from gi.

The ADE is linear in C and u, so we start with a linear ansatz for the
equilibrium [3, 4]:

geq
i D wiC.AC Bi � u/ (8.20)

with an unknown scalar A and vectors Bi. We have included the lattice weights wi

of the so far unspecified lattice. From (3.60), the weights’ velocity moments up to
second order are:

X

i

wi D 1;
X

i

wici˛ D 0;
X

i

wici˛ciˇ D c2sı˛ˇ: (8.21)

Inserting (8.20) into (8.19a) yields

X

i

wiC.AC Bi � u/ D C: (8.22)

Since the right-hand side of this equation does no depend on u, the vector B has to
satisfy

P
i wiBi˛ D 0. We find

P
i wiCA D C or, exploiting equation (8.21), A D 1.

Combining (8.20) with (8.19b) gives

X

i

wiCuˇBiˇci˛ D Cu˛: (8.23)

From this and (8.21) we can infer Bi˛ D ci˛=c2s .

Thus, the simplest equilibrium distribution that leads to the ADE is the
linear function

geq
i D wiC

1C ci � u
c2s

!

(8.24)

(continued)

8.3 Lattice Boltzmann for Advection-Diffusion 305

where the concentration C is obtained from

C D
X

i

gi: (8.25)

The velocity u is an external field that has to be provided. It could be (but does
not have to be) the solution of the NSE. As the velocity u is not computed from
the populations gi, the ADE scheme does not conserve momentum.

The most commonly used lattices are the same as for fluid dynamics:
D2Q9, D3Q15 or D3Q19, all with c2s D .1=3/�x2=�t2; but reduced lattices
are also possible (cf. Sect. 8.3.3).

We also could have obtained geq
i through a Hermite series expansion, as in

Chap. 3. Since only the concentration C is conserved, the expansion should be at
least first order in the Hermite polynomials, and therefore (8.24) is sufficient.

In general, the NSE and the ADE may have to be solved simultaneously. This is
particularly important for thermal flows, such as evaporation or natural convection.
We will discuss this in more detail in Sect. 8.4. For now we assume that the
advection velocity u is given and not affected by the ADE.

Although the equilibrium is linear in C, it does not have to be linear in the
velocity u. An alternative quadratic equilibrium assumes the form [5, 6]

geq
i D wiC

1C ci � u
c2s
C .ci � u/2

2c4s
� u � u
2c2s

!

: (8.26)

The choice of the equilibrium distribution has some subtle effects on the accuracy
and convergence. We will briefly discuss this in Sect. 8.3.4.

Exercise 8.2 Show that the non-linear equilibrium in (8.26) and the linear equilib-
rium in (8.24) both fulfil the moments in (8.19). (This requires using the third-order
lattice isotropy condition

P
i wici˛ciˇci� D 0 from (3.60).)

In many applications, two LBEs are solved side by side: one for the
momentum and therefore the velocity u, and the other for the field C. This is
particularly straightforward if C is purely passive, i.e. if it is merely dragged
along by the fluid, without affecting the NSE in return. This assumption is
typically justified if C indicates a dilute chemical species where collisions
between majority and minority components can be neglected [4]. If C is used
for the temperature T, however, and the fluid density � is a function of T,
then the NSE itself depends on the dynamics of C. A fully coupled system
of equations has to be solved then. We will describe this in more detail in
Sect. 8.4.

306 8 Lattice Boltzmann for Advection-Diffusion Problems

8.3.3 Lattice Vectors

The major difference between LBM for the NSE and the ADE is that the former
requires velocity moments up to the second order, but the latter requires only the
zeroth and first moments. We can therefore assume that we can get away with a
lower-isotropy lattice when we are only interested in the ADE. Indeed it has been
known for some time now that a square lattice is sufficient to resolve diffusion
phenomena in 2D [7].

Although D2Q9 and D3Q15/D3Q19 are often employed for the ADE, it is
sufficient to use D2Q5 and D3Q7 instead.2 The D2Q5 lattice is defined by

c0 D

0

0

!

; c1 D

1

0

!

; c2 D

0

1

!

; c3 D

�1
0

!

; c4 D

0

�1

!

:

(8.27)

Accordingly, D3Q7 has a rest velocity c0 and six velocities along the main lattice
axes, such as .1; 0; 0/> and .0; 1; 0/>. More details about those reduced lattices and
their role in LBM for diffusion problems are given in [9–11].

It is even possible to drop the rest velocity and simulate diffusion on a D2Q4
lattice. According to Huang et al. [12], the accuracy can be comparable to D2Q5
and D2Q9, while the main difference is the numerical stability [10].

8.3.4 Chapman-Enskog Analysis

We will now discuss the relevant steps of the Chapman-Enskog analysis. The aim is
to show that the BGK equation

gi.xC ci�t; tC�t/ D gi.x; t/ � �t

g

�
gi.x; t/ � geq

i .x; t/
�

(8.28)

indeed recovers the ADE. For simplicity, we show this using the linear ADE
equilibrium of (8.24). We will also show how the relaxation time g and the diffusion
coefficient D are connected. Finally, we point out the existence of an error term that
can reduce the convergence of the ADE to first order.

2Note that D2Q5 and D3Q7 are not sufficient for problems involving anisotropic diffusion with
non-zero off-diagonal coefficients [8].

8.3 Lattice Boltzmann for Advection-Diffusion 307

8.3.4.1 Analysis Procedure

The Chapman-Enskog analysis of (8.28) is a little simpler than the corresponding
analysis of the standard LBE, shown in Sect. 4.1. The broad strokes are the same,
and we refer to Sect. 4.1 for details on the parts that are identical.

One difference between the two derivations lies in the moments of gi. The zeroth
to second equilibrium moments are

X

i

geq
i D C;

X

i

ci˛g
eq
i D Cu˛;

X

i

ci˛ciˇg
eq
i D c2sCı˛ˇ; (8.29)

where the two first equalities have been established earlier in this chapter, and
the third follows from the ADE equilibrium in (8.24) and the isotropy conditions
in (3.60). Since concentration is conserved in collisions, we have that

P
i gi DP

i g
eq
i D C. This leads us to assume a strengthened solvability condition analogous

to (4.4), namely that
P

i g
.n/
i D 0 for all n 	 1. However, unlike momentum in

the standard LBE,
P

i ci˛gi is not conserved in collisions, and we can therefore not

assume that
P

i ci˛g
.n/
i D 0 for any n 	 1.

The first part of the analysis proceeds exactly as in Sect. 4.1. The Taylor
expansion of (8.28) leads to an analogue of (4.7), namely

�t .@t C ci˛@˛/ gi D ��t

g
gneq
i C�t .@t C ci˛@˛/

�t

2g
gneq
i : (8.30)

Expanding gi and the derivatives in � and separating the result into terms of different
order, we find

O.�/ W
�
@
.1/
t C ci˛@

.1/
˛

�
geq
i D �

1

g
g.1/i ; (8.31a)

O.�2/ W @
.2/
t geq

i C
�
@
.1/
t C ci˛@

.1/
˛

�

1 � �t

2g

!

g.1/i D �
1

g
g.2/i : (8.31b)

The zeroth and first moments of (8.31a) are

@
.1/
t CC @.1/� .Cu� / D 0; (8.32a)

@
.1/
t .Cu˛/C c2s@˛C D �

1

g

X

i

ci˛g
.1/
i : (8.32b)

As we discussed above, the right-hand side of (8.32b) does not disappear like it
would in the analysis of the standard LBE where momentum is conserved. However,

308 8 Lattice Boltzmann for Advection-Diffusion Problems

from (8.32b) we can find
P

i ci˛g
.1/
i explicitly as

X

i

ci˛g
.1/
i D �g

h
@
.1/
t .Cu˛/C c2s@˛C

i
: (8.33)

The zeroth moment of (8.31b) is

@
.2/
t CC @.1/�

1 � �t

2g

!
X

i

ci�g
.1/
i D 0: (8.34)

Combining this equation with (8.32a), inserting for
P

i ci�g
.1/
i from (8.33), and

reversing the derivative expansion, we finally find the ADE equation

@tCC @� .Cu� / D @�
�
D@�C

�C E; (8.35a)

with a diffusion coefficient

D D c2s

�

g � �t

2

�

: (8.35b)

However, the equation also contains an error term

E D @�
�

g � �t

2

�

@t.Cu� /; (8.35c)

which cannot always be neglected.
It is possible to vary D locally by changing g according to (8.35b) at each x.

Note, however, that g should not be varied too much if the BGK collision operator
is used. There exist model extensions that make larger variations of D possible,
though. We will briefly summarise them in Sect. 8.3.5.

8.3.4.2 Error Term

We have seen that, up to O.�t2/ and O.�2/, we encounter an error term E shown in
(8.35c). This term interferes with the second-order convergence of the ADE based
on the LBM.

Chopard et al. [13] showed that the error term can be rewritten as

E D �D

c2s
u2r2C (8.36)

when the linear equilibrium, (8.24), is taken. As it has the same functional form as
the governing diffusion term, we can write an effective velocity-dependent diffusion
term D.1 � u2=c2s /r2C. This is clearly undesirable as we would expect accurate
results only when Ma2 � 1.

8.3 Lattice Boltzmann for Advection-Diffusion 309

For the quadratic equilibrium, (8.26), however, the error term assumes the form
[13]

E D �D

c2s
@˛

C

�f
@˛pf

!

(8.37)

if we assume that the external velocity field obeys the incompressible NSE. Here,
pf and �f are the pressure and density of the ambient fluid. This error is velocity-
independent.

We conclude that the quadratic equilibrium in (8.26) should be preferred
over the linear equilibrium to avoid a velocity-dependent diffusivity.

Several improvements have been proposed to remove the error term in the first
place. A common approach is to add an artificial source term that cancels the error
[13, 14], but we will not discuss this further here.

8.3.5 Model Extensions

We point out a few of the various extensions for LB-based advection-diffusion
modelling. The recent review paper by Karlin et al. [15] is a valuable source of
further references. We will discuss thermal flows in more detail in Sect. 8.4.

8.3.5.1 Source Term

We have so far omitted a discussion of the source term q in (8.6). This term is impor-
tant when reactions consume or produce chemical species (e.g. reactive transport in
porous media [16], pattern formation [17, 18], the Keller-Segel chemotaxis model
[19] or catalytic reactions [20]). Other systems that usually require a source term are
thermal flows with heat sources (e.g. due to viscous dissipation) as further explained
in Sect. 8.4.

To include a source q in the LB algorithm in (8.15), we define population sources

Qi D wiq: (8.38)

Exercise 8.3 Show that
P

i Qi D q and
P

i Qici D 0. This means that Qi represents
a concentration source but leaves the “momentum” Cu unchanged.

310 8 Lattice Boltzmann for Advection-Diffusion Problems

Performing a Chapman-Enskog analysis with the additional terms Qi, we find
that the macroscopic ADE becomes [21]

@C

@t
C r � .Cu/ D r � .DrC/C q � �t

2

@q

@t
: (8.39)

When we compare this result with (8.6), we see that there is obviously an unwanted
term .�t=2/@q=@t. This is a discrete lattice artefact, similar to that observed for
forces in Sect. 6.3.

To remove this unphysical term, we can redefine the macroscopic moments
according to [21]

C D
X

i

gi C Qi�t

2
; Qi D

1 � 1

2g

!

wiq: (8.40)

This is completely analogous to the procedure in Sect. 6.3.2 to remove the discrete
lattice artefact of the forcing scheme and reach second-order accuracy in time. A
different approach is to add another term / @C=@t to the evolution equation in
(8.15) [22].

8.3.5.2 Advanced Physical Models

As mentioned earlier, the standard ADE involves a scalar diffusion coefficient D,
but for more general applications it may be necessary to replace it by a diffusion
tensor D. This makes anisotropic and cross-diffusion possible: the former is caused
by different diagonal elements of D, the latter by non-zero off-diagonal elements
of D. Anisotropic diffusion is thoroughly discussed in various publications, such as
[8, 23–26].

Like the standard LBM for fluid dynamics problems, LBM for the ADE can be
extended to an axisymmetric formulation [27] or rectangular lattices [28]. Huang
et al. [29] recently presented a multi-block approach for the thermal LBM. Li
et al. [30] recently presented an advanced ADE solver for problems with variable
coefficients.

Another important application is the simulation of phase fields for multi-phase
or multi-component problems. We will get back to this in more depth in Sect. 9.2.

It is possible to modify the diffusion coefficient D not only through g, but
also through the choice of the equilibrium distribution [8, 10]. This allows better
flexibility in terms of stability and range of achievable diffusion coefficients.

8.3.5.3 Stability Improvements and Advanced Collision Operators

The restrictions of the BGK collision operator, in particular stability (Sect. 4.4) and
accuracy (Sect. 4.5), also apply to the ADE. This means that the relaxation time g
cannot be varied arbitrarily; values near 1=2 lead to instability, values significantly

8.4 Thermal Flows 311

larger than unity to reduced accuracy. It is therefore not possible to choose very
small or large values for the Péclet, Prandtl and Schmidt numbers.

Suga [9, 24] performed stability analyses of LBM for the ADE. Perko and
Patel [31] proposed a way to realise a large spatial variation of the diffusion
coefficient within the BGK model. Yang et al. [32] improved the BGK stability
by adding correction terms.

In recent years, advanced collision operators (particularly TRT and MRT, as
detailed in Chap. 10) have become popular for ADE applications. Thorough
analyses have been done of the TRT collision operator [10, 33, 34] and the more
general MRT operator [25, 35, 36] applied to ADE problems.

8.4 Thermal Flows

The ADE model introduced in Sect. 8.3.1 is often used for situations where the field
C does not affect the fluid dynamics. This means that on the one hand, the velocity
u in (8.7) is given by a Navier-Stokes solver (which could be anything, e.g. LBM),
an analytical solution or any otherwise defined flow field. On the other hand, since
C does not enter the NSE, the fluid dynamics are not affected by the dynamics of C
at all. In a one-way situation like this, C is called a passive field.

This simplification is often not applicable for thermal flows where the fluid
dynamics can be strongly affected by the temperature field. Examples are evapo-
ration and boiling and more general situations where the fluid density or viscosity
change with temperature (cf. Sect. 1.1.3 for a discussion of the ideal gas law). Here
we discuss the fully coupled situation where fluid dynamics and temperature affect
each other.

We begin by introducing the Boussinesq approximation and briefly discussing
the popular Rayleigh-Bénard convection in Sect. 8.4.1. In Sect. 8.4.2 we comment
on the non-dimensionalisation in the presence of temperature. Section 8.4.3 deals
with fully coupled thermal flows with energy conservation, i.e. viscous dissipation
and pressure work act as heat source in the energy equation. In many cases, energy
conservation is not required, and a simpler model can be used to model the coupled
momentum and temperature equations (Sect. 8.4.4).

8.4.1 Boussinesq Approximation and Rayleigh-Bénard
Convection

A relevant problem in nature and industry is the coupled dynamics of momentum
and advection-diffusion in a thermal flow with temperature-dependent density. One
of the best known problems is the Rayleigh-Bénard convection. This flow is well
understood [37] and often used for code benchmarks, e.g. [4–6].

312 8 Lattice Boltzmann for Advection-Diffusion Problems

The geometrical setup for the Rayleigh-Bénard convection involves two parallel
plates separated by a distance H. The bottom plate is kept at a higher temperature
than the top plate (using, for instance, Dirichlet temperature boundary conditions
as in Sect. 8.5.2 or [5]): Tb > Tt. At the same time, both plates are subject to the
no-slip condition for the fluid momentum.

Now consider a fluid with a thermal expansion coefficient at constant pressure p:

˛ D ��0
�2

�
@�

@T

�

p

: (8.41)

The density depends on temperature, � D �.T/, and �0 is the density for a reference
temperature T0: �0 D �.T0/. For a positive expansion coefficient ˛, the density
decreases (i.e. the volume increases) with increasing temperature, just as we would
expect it from most fluids, such as an ideal gas.

A typical but not necessary assumption is that the temperature and density
changes are small so that we can linearise �.T/ about �0 and T0 and obtain

�.T/ � �0
�
1 � ˛.T � T0/

	
: (8.42)

For larger temperature ranges it is necessary to use a more accurate description of
�.T/, e.g. by introducing a temperature-dependent expansion coefficient ˛.T/.

Let us turn our attention back to the Rayleigh-Bénard convection. In the presence
of gravity with acceleration g, the fluid at the bottom plate will heat up, leading to
a decrease of its density (if ˛ > 0) and therefore a buoyancy force. There exists
a stationary solution to this problem with zero velocity everywhere. This state is
called conductive because heat is only transported from the hot to the cold plate
by conduction. However, if the system is perturbed (e.g. by adding small random
momentum or temperature fluctuations) and the temperature gradient is sufficiently
large, parts of the heated fluid will move upwards while colder fluid from the top
will move down. This will eventually lead to convection.

The physics of the Rayleigh-Bénard convection is governed by the Rayleigh
number

Ra D g˛.Tb � Tt/H3

�

; (8.43)

the ratio of temperature-driven buoyancy and viscous friction forces. � and
 are the
thermal diffusivity and kinematic viscosity of the fluid, respectively. For Ra < 1708,
perturbations are dissipated by viscosity [38]. If Ra becomes larger, bouyancy can
overcome dissipation, and convection sets in. Finding the critical Ra in simulations
and comparing it with the above value from a stability analysis is a standard
benchmark test.

We can model the advection and diffusion of the temperature field T.x/ with
the LBM for the ADE as outlined in Sect. 8.3. The local advection velocity u.x/
is then given by the fluid velocity that we can obtain from the LBM for the NSE.

8.4 Thermal Flows 313

This establishes the flow-to-temperature coupling. However, which effect does the
temperature have on the flow?

Now we perform another approximation to couple the temperature back to
the NSE. Above we have seen that small temperature changes lead to density
fluctuations according to (8.42).

The Boussinesq approximation states that the effect of a small density
change (j�0j=�0 D j� � �0j=�0 � 1) creates a buoyancy force density

Fb D .�.T/ � �0/g D �˛�0.T � T0/g (8.44)

in the presence of a gravitational field with acceleration g.

The buoyancy force vanishes for � D �0, i.e. it describes only the contribution
to the gravitational force that deviates from the “background” force �0g. The
physical motivation of the Boussinesq approximation is that the effect of the density
difference �0 on inertia is much smaller than the buoyancy force �0 g. This justifies
keeping the original density �0 everywhere in the NSE, except for the buoyancy
force that depends on the density fluctuation �0.

The advantage of using the Boussinesq approximation is that the temperature
effect enters only through the body force density in (8.44). It is included like any
other body force density in the NSE (cf. Chap. 6); the fluid density in the NSE
itself is kept unchanged. This way we avoid fiddling around with the fluid density
in the LBM, which could potentially lead to problems with mass conservation.
Any occuring density fluctuation in the fluid can still be interpreted as pressure
fluctuation as outlined in Sect. 7.3.3.

8.4.2 Non-dimensionalisation of the Temperature Field

Before we provide specific details about the LB-based modelling of thermal flows,
we briefly discuss how to convert between physical and simulation units when
temperature is important. In Chap. 7 we only considered mechanical quantities, such
as velocity or pressure; temperature is a non-mechanical quantity.

The units of T and ˛ are K and 1=K, respectively. How can we now perform the
unit conversion? It is important to realise that, for the Boussinesq approximation in
Sect. 8.4.1, only the dimensionless combination ˛.T � T0/ is relevant and ˛ and
T are never converted independently. One should rather express all temperature-
dependent terms as function of ˛.T�T0/. This has to be a small number to guarantee
that the linear relation in (8.42) is justified. We therefore recommend to choose T0
as the characteristic temperature of the system, for example its average temperature.

314 8 Lattice Boltzmann for Advection-Diffusion Problems

Having said this, the unit conversion does not pose any challenge. We only have
to make sure that the Boussinesq approximation is valid. This requires an estimation
of the typical magnitude of ˛.T � T0/ and consequently of the expected density
variation �0.

Example 8.1 Let us consider water near T0 D 20 ıC (293K) where ˛ D 2:1 �
10�4=K. We find that ˛.T � T0/ is small for all temperatures where water is in
its liquid state. Note, however, that ˛ varies significantly between the freezing and
boiling points of water. Even if the Boussinesq approximation is valid, a non-linear
relation �.T/ is required if the water temperature changes more than a few degrees.

8.4.3 LBM for Thermal Flows with Energy Conservation

In reality, fluids are always slightly compressible and dissipate kinetic energy due
to viscous friction. This leads to compression work and viscous heating, and both
mechanisms act as heat source or sink in the energy equation. In this case, we have
to consider the compressible NSE

@t.�u˛/C @ˇ.�u˛uˇ/ D �@˛pC @ˇ
"

�
�
@ˇu˛ C @˛uˇ

�C
�

�B � 2�
3

�

ı˛ˇ@�u�

#

(8.45)

and the energy equation

@t� C @˛.�u˛/ D @˛.�@˛�/C �˛ˇ@˛uˇ � p@˛u˛ (8.46)

which is the ADE for the internal energy density � with two source terms. The
first, �˛ˇ@˛uˇ, reflects the heating due to viscous dissipation. The second source
term, �p@˛u˛, is the pressure work that can be positive or negative, depending on
whether the fluid is compressed or expanded. For (nearly) incompressible fluids we
have @˛u˛ � 0, and only the viscous heating is relevant.

To simultaneously solve the above equations with the LBM there are essentially
two approaches that we will briefly present in the following.

8.4.3.1 Single-Population Model

From Sect. 1.3.5 we know that the moments of the distribution function f .x; �; t/
provide density, momentum density and energy density. Therefore, it has been
suggested during the early years of LBM to use a single set of discrete populations
fi to recover the NSE and the energy equation [39, 40].

8.4 Thermal Flows 315

Recovering the correct energy equation requires third- and fourth-order velocity
moments of the distribution function. We saw in Sect. 3.4.7 that the standard lattices
that are used for the NSE (e.g. D2Q9 or D3Q19) do not have enough velocity
components to correctly resolve velocity moments higher than second order. This
means that we have to consider higher-order lattices, such as D3Q21 [41].3

The advantage of the single-population model is that the coupling between the
NSE and the energy equation is automatically included; viscous dissipation and
compression work emerge naturally and consistently from the mesoscopic model.
Yet, single-population models in 3D turned out to be relatively unstable and suffer
from a constant Prandtl number when using the BGK collision operator [42]. This
is the main reason why they are not often employed today, and the two-population
model (see below) has become more popular [15].

In section 5.5 of his book [43], Wolf-Gladrow provides a concise review of the
single-population model and extensions to improve stability and allow a variable
Prandtl number. See also [15] for a collection of more recent works improving the
single-population model.

8.4.3.2 Two-Population Model

Another idea is to use two sets of populations, one for the momentum and one for the
internal energy [6, 15, 44]. The main advantages of such an approach is the improved
stability compared to the single-population model and that standard lattices (such
as D2Q9 and D3Q19) are sufficient. However, if viscous heating and compression
work are relevant and energy conservation is required, we have to include both as
source terms in the energy equation.

He et al. [6] proposed a consistent two-population model with energy conser-
vation. The governing mesoscopic equations for the temperature populations gi are
given by (8.15) with collision operator in (8.16) and the source term [6]

Qi.x; t/ D �

1 � 1

2g

!

fi.x; t/qi.x; t/�t (8.47)

with

qi D .ci˛ � u˛/

1

�
.�@˛pC @ˇ�˛ˇ/C .ciˇ � uˇ/@˛uˇ

�

: (8.48)

This specific form of the source term guarantees that the local heating in the energy
equation is consistent with the dissipation and pressure work in the momentum

3D3Q21 is the D3Q15 lattice with six additional vectors .˙2; 0; 0/>, .0;˙2; 0/> and
.0; 0;˙2/>.

316 8 Lattice Boltzmann for Advection-Diffusion Problems

equation. Furthermore, the energy density becomes

� D
X

i

gi � �t

2

X

i

fiqi (8.49)

to recover second-order time accuracy (cf. (8.40)). Note that the form of the equi-
librium distribution function geq

i in [6] differs from those discussed in Sect. 8.3.2.
The original model [6] has two disadvantages: it is relatively complicated and

lacks locality since the computation of the coupling terms qi involves gradients.
More recently Guo et al. [45] and Karlin et al. [15] reviewed and improved He’s
model [6] by replacing the conservation equation for the thermal energy by the
conservation equation for the total energy. This subtle change of variables leads to
a simplified algorithm with local coupling. Also the consideration of enthalpy has
been proposed as an alternative simplification strategy [46].

8.4.4 LBM for Thermal Flows Without Energy
Conservation

In many situations, the work from viscous dissipation and compression is so small
that it does not significantly contribute to the heat balance. It is then sufficient to
consider an ADE without heat source terms (unless there are other mechanisms
that reduce or increase heat locally), together with the incompressible NSE. The
governing equations (8.45) and (8.46) then become

@t.�u˛/C @ˇ.�u˛uˇ/ D �@˛pC @ˇ�
�
@ˇu˛ C @˛uˇ

�
(8.50)

and

@t� C @˛.�u˛/ D @˛.�@˛�/: (8.51)

Note that the internal energy density and temperature are related by � D dRT=2 [47]
(with d being the number of spatial dimensions and R the specific gas constant),
and (8.51) can therefore be simply written as an ADE for temperature with the
same transport coefficient �. This means that we can use the simple algorithm from
Sect. 8.3 to simulate the advection and diffusion of the temperature field.

Using the Boussinesq approximation from Sect. 8.4.1, we now explain the
algorithm for the coupled dynamics of the fluid momentum and the temperature
field (see also [48]):

1. Initialise the system with two sets of populations, fi for the NSE and gi for the
ADE of the temperature field, (8.8). Specify gravity g, the fluid viscosity �,
the thermal conductivity � and the thermal expansion coefficient ˛ as desired.

8.5 Boundary Conditions 317

Define a reference temperature T0, taking Sect. 8.4.2 into account. If required,
implement boundary conditions for the NSE and the ADE as specified in Chap. 5
and Sect. 8.5, respectively.

2. Using the fluid velocity u as external velocity, perform one time step of the LB
algorithm for the populations gi as detailed in Sect. 8.3. In particular, evaluate
the temperature T.x/ from (8.25).

3. Compute the buoyancy force density Fb.x/ from (8.44).
4. Perform one time step of the standard LB algorithm (cf. Chap. 3) for the

populations fi. Use the buoyancy force Fb.x/ to drive the flow (cf. Chap. 6).
Evaluate the new fluid velocity u.

5. Go back to step 2 for the next time step.

8.5 Boundary Conditions

In this section we provide a concise presentation of the most common boundary
conditions for the ADE. The boundary conditions are similar to those for the NSE
in Chap. 5, but there is an important difference between the normal and tangential
behaviour as outlined in Sect. 8.5.1. Here, we cover Dirichlet (Sect. 8.5.2) and
Neumann (Sect. 8.5.3) boundary conditions. Robin boundary conditions, i.e. linear
combinations of Dirichlet and Neumann conditions, are omitted here, but details
can be found elsewhere [49]. A comparison and discussion of various boundary
conditions for the ADE is available in [12, 49]. More recently, the immersed
boundary method has been employed for advection-diffusion boundaries (see,
e.g., [21]).

8.5.1 Normal and Tangential Conditions

Before we start with the presentation of boundary conditions, it is helpful to
understand some underlying concepts better. Let n be the normal vector at a
boundary point. We define n in such a way that it points into the fluid. If a field
C cannot penetrate a boundary, then there is no flux j of C through the boundary and
we call the boundary impermeable to C. This, however, is only a condition for the
normal component of j and not its tangential component.

The normal flux at a boundary, j � n, is related to a normal gradient of C,
@C=@n:

D
@C

@n
D �j � n: (8.52)

(continued)

318 8 Lattice Boltzmann for Advection-Diffusion Problems

For an impermeable wall, j�n D 0, and therefore @C=@n D 0. It is still possible
that the value of C changes along the boundary, though. Unlike in fluid
dynamics where usually both the relative normal and tangential velocities
between fluid and boundary are zero, we can only impose the normal
behaviour of C at a boundary. The tangential flux is a pure consequence of
the gradient of C along the boundary.

Example 8.2 Imagine a quiescent fluid with an initially inhomogeneous concentra-
tion C.x/ in a container. This could be sugar in a cup of hot but unstirred coffee.
According to the ADE in (8.7), diffusion fluxes will lead to a homogenisation of C
eventually. This is also true in the direct vicinity of the wall, where the diffusion
flux can only be tangential. The sugar can diffuse along the surface of the cup but
can never penetrate it.

Fluxes are also often specified at inlets and outlets, leading to positive (inward)
and negative (outward) fluxes, respectively. As we will show below, the normal and
tangential conditions can be implemented through Dirichlet or Neumann boundary
conditions.

8.5.2 Dirichlet Boundary Conditions

Dirichlet boundary conditions specify the value of a field at a wall, e.g. a concen-
tration C D Cw or temperature T D Tw. One example for a Dirichlet boundary
condition in fluid dynamics is a pressure boundary condition. Therefore, the non-
equilibrium bounce-back (Zou-He) scheme from Sect. 5.3.4 could be employed to
simulate a constant concentration in the ADE. A disadvantage of this approach is
the rather complicated implementation in 3D. We focus on two alternatives that are
suitable for arbitrary geometries with staircase approximation: the anti-bounce-back
scheme and Inamuro’s boundary condition. We show a numerical example using
both boundary conditions in Sect. 8.6.2.

8.5.2.1 Anti-Bounce-Back Scheme

The anti-bounce-back scheme [23] (cf. Sect. 5.3.5 for its hydrodynamic counterpart)
is nearly as simple as the standard bounce-back method. Let xb be a fluid node close
to a wall (i.e. a boundary node) and xw be the intersection of the wall and a lattice
link ci (cf. Fig. 8.2). For bounce-back-like schemes, the standard implementation
relies on the assumption that the surface is located half-way between a boundary
and a solid node, so we have xw D xb C 1

2
ci�t. The anti-bounce-back algorithm

8.5 Boundary Conditions 319

Fig. 8.2 Schematic representation of the anti-bounce-back rule. xb and xs denote a boundary and
a solid node, respectively. The wall is located half-way between both nodes at xw

reads

gNi.xb; tC�t/ D �g?i .xb; t/C 2geq
i .xw; tC�t/ (8.53)

where the superscript ? denotes post-collision populations. In contrast to the usual
bounce-back rule that recovers a zero-velocity condition, here we observe a minus
sign. The anti-bounce-back algorithm recovers the zero-gradient condition for the
concentration.

If the wall has zero velocity and the imposed wall concentation is Cw, then the
anti-bounce-back condition simplifies to

gNi.xb; tC�t/ D �g?i .xb; t/C 2wiCw: (8.54)

This method works with any arbitrary geometry.

8.5.2.2 Inamuro’s Boundary Condition

Inamuro et al. [4, 50] proposed another boundary condition to impose a con-
centration value. For a wall with normal n, unknown populations gi moving
into the fluid obey ci � n > 0. Inamuro et al. assumed that those pre-collision
populations can be represented through the equilibrium populations with a yet
unknown concentration C0,

gi D geq
i .C

0;uw/; (8.55)

where the equilibrium assumes the form of (8.24) or (8.26).
Inamuro’s boundary condition is a wet-node model, i.e. the wall nodes are located

just inside the fluid domain and participate in collision. This way we can find the
unknown value C0. Right after propagation, we know all populations satisfying ci �
n � 0 at the wall node. Assuming that the desired concentration at a wall node is
Cw, we can write this concentration as the sum of known and unknown populations:

Cw D
X

i

gi D
X

ci�n>0
gi

„ƒ‚…
unknown

C
X

ci�n
0
gi

„ ƒ‚ …
known

D
X

ci�n>0
geq
i .C

0;uw/C
X

ci�n
0
gi: (8.56)

320 8 Lattice Boltzmann for Advection-Diffusion Problems

From this equation we can find the required concentration C0. After C0 has been
found, the populations moving into the fluid could be reconstructed via (8.55).

For a moving wall, one can use expressions from [4]. However, usually the case
with zero velocity, uw D 0, is used in typical mass transfer simulations. Then, the
result is

C0 D Cw �Pci�n
0 giP
ci�n>0 wi

: (8.57)

8.5.3 Neumann Boundary Conditions

Neumann boundary conditions specify a normal gradient, e.g. @C=@n, and therefore
a normal flux j � n at a wall, according to (8.52). Here, two different procedures
are commonly used: one is to directly impose the flux, the other is to transform the
Neumann boundary condition into a Dirichlet condition.

8.5.3.1 Inamuro’s Flux Boundary Condition

The species flux is computed from the first moment of gi: j D P
i gici. For a given

normal n, the normal flux is

j � n D
X

i

gici � n: (8.58)

We can now repeat Inamuro’s approach for the Dirichlet boundary condition in
Sect. 8.5.2, but this time for the flux j rather than the concentration C. We still
assume that the unknown populations are computed from (8.55) with an unknown
C0 [50]:

j � n D
X

i

gici � n D
X

ci�n>0
gici � n

„ ƒ‚ …
unknown

C
X

ci�n
0
gici � n

„ ƒ‚ …
known

D
X

ci�n>0
geq
i .C

0;uw/ci � nC
X

ci�n
0
gici � n:

(8.59)

If we again assume a resting wall, we get geq
i D wiC0 and finally

C0 D j � n �Pci�n
0 gici � nP
ci�n>0 wici � n : (8.60)

8.6 Benchmark Problems 321

8.5.3.2 Transformation of Neumann into Dirichlet Boundary Condition

The second procedure is to turn the diffusion flux condition into a concentration
condition. For example, for a known normal n the flux at the wall can be approxi-
mated by the desired wall concentration Cw at xw and the known concentration Cb

at a boundary node located at xb along the normal direction:

j � n D D
@C

@n
� D

Cb � Cw

jxb � xwj : (8.61)

Obviously this procedure becomes more complicated when n is not aligned with
the lattice. We refer readers to [23] for imposing Dirichlet and Neumann boundary
condition for more complex wall shapes.

We can now estimate the wall concentration:

Cw � Cb � j � njxb � xwj
D

: (8.62)

Let us say a few words about the accuracy of this approach. There are two aspects
to consider: the implementation accuracy of the Dirichlet boundary condition itself
and the approximation of the normal flux through the concentration derivative.
The simple approximation in (8.61) will generally suffice for a first-order accurate
boundary condition, and a more accurate gradient estimate at the boundary is
necessary for a higher-order accuracy.

One widely used application of this scheme is the outflow boundary condition.
It is often assumed that the concentration C does not change along the outflow
direction at the outlet. This translates to a vanishing diffusion flux and Cw D Cb.
We can easily implement this condition by evaluating C at the fluid plane just before
the outlet and impose those values on the outlet plane. One approach is to copy the
post-collision populations to the outlet plane before propagation. We demonstrate
this approach in Sect. 8.6.3 and Sect. 8.6.4.

Another important note is that for impermeable walls one can use the simple
bounce-back rule because of mass conservation. The non-zero tangential velocity
is defined on boundary nodes, while bounce-back implies zero velocity on the
middle plane between bounce-back nodes and boundary nodes. Thus, there is no
contradiction in using bounce-back to mimic impermeable boundaries. In fact, we
employ this approach to successfully simulate a symmetric flow in Sect. 8.6.4.

8.6 Benchmark Problems

We present a series of benchmark tests for the bulk ADE algorithm and its boundary
conditions. The aim of this section is two-fold: to show analytical solutions for
general benchmark tests and to demonstrate the performance of LB advection-
diffusion. We will take a closer look at four different tests: advection-diffusion of

322 8 Lattice Boltzmann for Advection-Diffusion Problems

a Gaussian hill (cf. Sect. 8.6.1), a more complicated example of diffusion from
the walls of a two-dimensional cylinder (cf. Sect. 8.6.2), the concentration layer
development in a uniform velocity field (cf. Sect. 8.6.3) and finally the concentration
layer development in Poiseuille flow (cf. Sect. 8.6.4).

8.6.1 Advection-Diffusion of a Gaussian Hill

This example shows how a species with concentration C with an initial Gaussian
profile develops in the presence of a uniform velocity field u. We will observe both
advection, due to the non-zero velocity, and diffusion, due to the inhomogeneous
concentration.

The initial concentration profile is taken as Gaussian

C.x; t D 0/ D C0 exp

� .x � x0/2

2�20

!

(8.63)

with width �0. In the presence of a homogeneous advection velocity u, the time
evolution has an analytical solution [8]:

C.x; t/ D �20
�20 C �2D

C0 exp

� .x � x0 � ut/2

2
�
�20 C �2D

�

!

; �D D
p
2Dt: (8.64)

In order to avoid the treatment of special boundary conditions, we choose
periodic boundaries in a large 2D domain with Nx � Ny D 512 � 512 lattice nodes
on a D2Q9 lattice. The initial centre of the Gaussian hill is at x0 D .200; 200/>�x,
and the initial width of the Gaussian hill is �0 D 10�x. In our simulations, we use
C0 D 1 (in lattice units). We employ the BGK and the two-relaxation-time (TRT)
collision operators (see Sect. 10.6).

We examine both the diffusion-dominated (small Péclet number) and the
advection-dominated (large Péclet number) regimes. For Pe D 0 we choose the
velocity u D 0 and the diffusion coefficient D D 1:5�x2=�t, i.e. g D 5�t.
Figure 8.3 shows the concentration contour plot and the concentration profile for
y D 200�x at t D 200�t. Note that we have intentionally defined a rather large
relaxation time g that leads to significant errors for the BGK collision operator.
We see that the TRT collision operator is superior in terms of accuracy. Here, we
have chosen the so-called magic parameter � D 1=6 that minimises the TRT error
in a pure diffusion case, as detailed in Sect. 10.6. However, this choice of � does
not cancel the error completely. We see a small deviation from the analytical curve,
even for the TRT results.

8.6 Benchmark Problems 323

Fig. 8.3 Concentration contour plot (left) and concentration profile (right) of the Gaussian hill
at t D 200�t in the pure diffusion case (zero advection velocity). The diffusion coefficient is
D D 1:5�x2=�t, i.e. g D 5�t. The BGK collision operator results show deviations, while the
TRT collision operator with� D 1=6 performs better

Fig. 8.4 Concentration contour plot (left) and concentration profile (right) of the Gaussian hill at
t D 200�t in the advection-dominated case. The diffusion coefficient is D D 0:0043�x2=�t,
i.e. g D 0:513�t, and the uniform velocity is u D .0:1; 0:1/>�x=�t. The TRT results are
obtained with the optimal advection parameter � D 1=12

Let us now investigate the advection-dominated regime with a small diffusion
coefficient (D D 0:0043�x2=�t, i.e. g D 0:513�t) and an advection velocity
u D .0:1; 0:1/>�x=�t. As a consequence, we expect the Gaussian hill to essentially
keep its initial shape while being advected. Figure 8.4 illustrates the results at t D
200�t. Here, the differences between analytical, BGK and TRT collision operators
are small. The TRT results are obtained with the magic parameter � D 1=12 for
optimal advection accuracy (cf. Sect. 4.5 and Sect. 10.6).

324 8 Lattice Boltzmann for Advection-Diffusion Problems

8.6.2 Diffusion from Cylinder Without Flow

We investigate a system consisting of a cylindrical cavity of radius a filled with a
stationary liquid (u D 0). The initial concentration of a chemical species inside
the cavity is C0, and the concentration at the cylinder surface is kept constant at
Cc > C0. With time, the species diffuses from the cylinder surface into the liquid.

The governing equation represented in cylindrical coordinates is

@

@t
C.r; t/ D D

1

r

@

@r
r
@

@r
C.r; t/; (8.65)

with initial and boundary conditions C.r < a; t D 0/ D C0, C.r D a; t/ D Cc. Its
analytical solution is [51]

C.r; t/ � Cc

C0 � Cc
D

1X

nD1

2

�nJ1.�n/
exp

�

��2n
Dt

a2

�

J0

�

�n
r

a

�

: (8.66)

J0.x/ and J1.x/ are the zeroth- and first-order Bessel functions, respectively.�n is the
n-th root of J0.x/: J0.�n/ D 0. The first five roots are �1 D 2:4048, �2 D 5:5201,
�3 D 8:6537, �4 D 11:7915 and �5 D 14:9309. By taking the initial concentration
as C0 D 0, the analytical solution becomes

C.r; t/ D Cc

2

41 �
1X

nD1

2

�nJ1.�n/
exp

�

��2n
Dt

a2

�

J0

�

�n
r

a

�
3

5 : (8.67)

The numerical domain consists of Nx � Ny D 129 � 129 lattice nodes on a
D2Q9 lattice, and the cylinder radius is a D 40�x. We approximate the cylinder
boundary through a stair-case curve. The constant concentration at the cylinder
surface, Cc D 1 in lattice units, is imposed by using two different boundary
conditions: anti-bounce-back and Inamuro’s boundary condition. We use the BGK
collision operator with g D 0:516�t and D D 0:0052�x2=�t.

Figure 8.5 shows the comparison of both boundary conditions at two different
times. The curves correspond to the concentration profile along the x-axis. We
observe that the simulation captures the time evolution of the concentration field
well. Both boundary conditions perform similarly, and we can see small deviations
near the cylinder boundary (r! a) caused by the stair-case nature of the boundary
discretisation.

8.6.3 Diffusion from Plate in Uniform Flow

We now look at the concentration layer development near a semi-infinite plate as
illustrated in Fig. 8.6. Here we assume a uniform fluid velocity u0 along the x-axis
and a constant concentration Cp at the surface of the plate.

8.6 Benchmark Problems 325

Fig. 8.5 Concentration profiles along the x-axis for the diffusion from a cylinder. The concentra-
tion at the cylinder surface is kept constant at Cc D 1 in lattice units. The diffusion coefficient
is D D 0:0052�x2=�t. Profiles are shown at two dimensionless times Ot D Dt=a2 for both
investigated boundary conditions (anti-bounce-back and Inamuro’s approach) and are compared
with the analytical solution from (8.67)

Fig. 8.6 Sketch of simulation domain for the semi-infinite plate problem. The bottom boundary
(hatched region) is maintained at a constant plate concentration Cp. The three open boundaries
(dashed lines) are modelled by Dirichlet (C D 0 at inlet) and Neumann conditions (zero normal
gradient of C at top boundary and outlet). Further we assume a uniform background flow u0

The governing equation for the stationary situation is

@C

@x
u0 D D

@2C

@y2
(8.68)

with the boundary conditions C.x D 0; y/ D 0 and C.x; y D 0/ D Cp.
In (8.68) we have assumed that the diffusion of the species along the x-axis is
negligible compared to its advection (high Péclet number), therefore omitting the
term D@2C=@x2. The analytical solution of (8.68) is [52]

C.x; y/ D Cp erfc

y

p
4Dx=u0

!

(8.69)

326 8 Lattice Boltzmann for Advection-Diffusion Problems

Fig. 8.7 Development of concentration C with uniform velocity profile. The analytical solution
is constructed from (8.69). The domain is Nx � Ny D 1600�x � 160�x. The relaxation rate
! D 1:38=�t corresponds to the diffusion coefficient D D 0:07407�x2=�t. The uniform velocity
magnitude is u0 D 0:05�x=�t, giving Pe D u0Ny=D D 106

where erfc.x/ is the complementary error function:

erfc.x/ D 1 � erf.x/ D 1 � 2p
�

Z x

0

e�x02

dx0 D 2p
�

Z 1

x
e�x02

dx0: (8.70)

Although this example looks simple, there is one interesting issue to discuss.
For semi-infinite domains, such as in the present case, it is often assumed that the
solution does not change at large distances, i.e. the normal gradient is set to zero
somewhere. In these cases one always has to verify that the cutoff distance is large
enough not to affect the numerical solutions. One possibility is to take a look at the
expected solution, here in (8.69), and to find a distance for which the flux becomes
sufficiently small. For the outlets at the top and the right of the domain (see Fig. 8.6),
we copy post-collision populations from the outermost fluid layer to the boundary
layer; this mimics the condition @C=@y D 0 and @C=@x D 0, respectively. We model
the impermeable wall at the bottom of the domain with anti-bounce-back.

We choose a domain with Nx � Ny D 1600 � 160 lattice nodes and a plate
concentration Cp D 1 in lattice units. The relaxation rate ! D 1:38=�t corresponds
to the diffusion coefficient D D 0:07407�x2=�t, and the uniform velocity
magnitude is u0 D 0:05�x=�t. This leads to a Péclet number Pe D u0Ny=D D 106.
With this Péclet number and the domain size chosen, the zero flux conditions at the
top wall and at the outlet do not strongly affect the numerical solution, as evidenced
in Fig. 8.7.

8.6.4 Diffusion in Poiseuille Flow

Finally we present a slightly more complicated example: the concentration layer
development in a Poiseuille flow between two parallel plates with distance 2H.

8.6 Benchmark Problems 327

The governing stationary ADE for the concentration field C is

@C

@x
ux D D

@2C

@y2
(8.71)

with the known velocity profile

ux.y/ D u0

"

1 �
�
y

H

�2
#

; .�H � y � H/ (8.72)

and the concentration boundary conditions C.y D ˙H/ D Cp at the surface of the
plates. At the inlet we impose C D 0, and for the inlet we assume a zero-gradient
condition: @C=@x D 0. As in Sect. 8.6.3, we neglect the term D@2C=@x2, which
implies a large Péclet number.

We note that the problem has a symmetry plane at y D 0 as indicated in Fig. 8.8.
Thus, we use only one half of the channel (0 � y � H) and employ an additional
symmetry condition: @C=@yjyD0 D 0.

The procedure to obtain the analytical solution for this problem is presented in
detail in the appendix of [53]. The final solution is

C.x; y/ D Cp

2

41 �
X

m

Cme�m4x=.HPe/�m2y2=.2H2/
1F1

�m
2

4
C 1

4
;
1

2
;m2

y2

H2

!3

5

(8.73)
where 1F1 is the hypergeometric function, Pe D u0H=D is the Péclet number and m
is the root of the following expression:

1F1
�1

4
� m2

4
;
1

2
;m2

�
D 0: (8.74)

The first ten roots of (8.74) are 1:2967, 2:3811, 3:1093, 3:6969, 4:2032, 4:6548,
5:0662, 5:4467, 5:8023 and 6:1373.

Fig. 8.8 Diffusion from a plate in Poiseuille flow with parabolic velocity profile ux.y/. The
imposed concentration at the plate (hatched pattern) is Cp. Due to symmetry (dotted line) only one
half of the channel is simulated. Inlet and outlet (dashed lines) are open Dirichlet and Neumann
boundaries, respectively

328 8 Lattice Boltzmann for Advection-Diffusion Problems

Fig. 8.9 Comparison of the analytical concentration contours and simulations with anti-bounce-
back conditions for concentration at the inlet and the top wall. The simulations were done for the
diffusion coefficient D D 0:2857 with a 160 � 1600 grid. The centreline velocity is u0 D 0:05,
and the Péclet number is 27:65

The coefficients Cm can be found through the integrals of the hypergeometric
function:

Cm D �Cp

R 1
0
.1 � �2/e�m2�2=2

1F1
�
�m2

4
C 1

4
; 1
2
;m2�2

�
d�

R 1
0
.1 � �2/e�m2�2

1F1
�
�m2

4
C 1

4
; 1
2
;m2�2

�2
d�
: (8.75)

For Cp D 1, the first ten coefficients,C0–C9, are 1:2008,�0:2991, 0:1608,�0:1074,
0:0796, �0:0627, 0:0515, �0:0435, 0:0375 and �0:0329.

We performed a simulation on a D2Q9 lattice with Nx � Ny D 1600 � 160
nodes, diffusion coefficient D D 0:2857�x2=�t and centreline velocity u0 D
0:05�x=�t. The Péclet number is Pe D 27:65. We use bounce-back for the
symmetry boundary condition and anti-bounce-back for the inlet and the plate
surface (constant concentration). For the Neumann condition at the outlet we copied
the concentration values of the last layer in the fluid domain to the outlet layer.

Figure 8.9 shows the comparison of the analytical and numerical results. For the
analytical solution we used the first ten series terms (up to m D 9) as given above.
We observe a good agreement.

References

1. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd edn. (Wiley, New York,
1960)

2. D. Wolf-Gladrow, J. Stat. Phys. 79(5–6), 1023 (1995)
3. E.G. Flekkoy, Phys. Rev. E 47(6), 4247 (1993)
4. T. Inamuro, M. Yoshino, H. Inoue, R. Mizuno, F. Ogino, J. Comp. Phys. 179(1), 201 (2002)
5. X. Shan, Phys. Rev. E 55(3), 2780 (1997)
6. X. He, S. Chen, G.D. Doolen, J. Comput. Phys. 146(1), 282 (1998)
7. T. Toffoli, N.H. Margolus, Physica D 45(1-3), 229 (1990)
8. I. Ginzburg, Adv. Water Resour. 28(11), 1171 (2005)
9. S. Suga, Int. J. Mod. Phys. C 17(11), 1563 (2006)

References 329

10. I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys. 139(6), 1090 (2010)
11. L. Li, C. Chen, R. Mei, J.F. Klausner, Phys. Rev. E 89(4), 043308 (2014)
12. H.B. Huang, X.Y. Lu, M.C. Sukop, J. Phys. A: Math. Theor. 44(5), 055001 (2011)
13. B. Chopard, J.L. Falcone, J. Latt, Eur. Phys. J. Spec. Top. 171, 245 (2009)
14. Z. Chai, T.S. Zhao, Phys. Rev. E 87(6), 063309 (2013)
15. I.V. Karlin, D. Sichau, S.S. Chikatamarla, Phys. Rev. E 88(6), 063310 (2013)
16. Q. Kang, P.C. Lichtner, D. Zhang, J. Geophys. Res. 111(B5), B05203 (2006)
17. S.G. Ayodele, F. Varnik, D. Raabe, Phys. Rev. E 83(1), 016702 (2011)
18. J. Zhang, G. Yan, Comput. Math. Appl. 69(3), 157 (2015)
19. X. Yang, B. Shi, Z. Chai, Comput. Math. Appl. 68(12, Part A), 1653 (2014)
20. J. Kang, N.I. Prasianakis, J. Mantzaras, Phys. Rev. E 89(6), 063310 (2014)
21. T. Seta, Phys. Rev. E 87(6), 063304 (2013)
22. B. Shi, B. Deng, R. Du, X. Chen, Comput. Math. Appl. 55(7), 1568 (2008)
23. I. Ginzburg, Adv. Water Resour. 28(11), 1196 (2005)
24. S. Suga, Int. J. Mod. Phys. C 20, 633 (2009)
25. H. Yoshida, M. Nagaoka, J. Comput. Phys. 229(20), 7774 (2010)
26. I. Ginzburg, Commun. Comput. Phys. 11, 1439 (2012)
27. A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering Applications with

Computer Codes, 1st edn. (Springer, New York, 2011)
28. R.G.M. Van der Sman, Phys. Rev. E 74, 026705 (2006)
29. R. Huang, H. Wu, Phys. Rev. E 89(4), 043303 (2014)
30. Q. Li, Z. Chai, B. Shi, Comput. Math. Appl. 70(4), 548 (2015)
31. J. Perko, R.A. Patel, Phys. Rev. E 89(5), 053309 (2014)
32. X. Yang, B. Shi, Z. Chai, Phys. Rev. E 90(1), 013309 (2014)
33. B. Servan-Camas, F. Tsai, Adv. Water Resour. 31, 1113 (2008)
34. I. Ginzburg, Adv. Water Resour. 51, 381 (2013)
35. Z. Chai, T.S. Zhao, Phys. Rev. E 90(1), 013305 (2014)
36. R. Huang, H. Wu, J. Comput. Phys. 274, 50 (2014)
37. E.D. Siggia, Ann. Rev. Fluid Mech. 26, 137 (1994)
38. W.H. Reid, D.L. Harris, Phys. Fluids 1(2), 102 (1958)
39. F.J. Alexander, S. Chen, J.D. Sterling, Phys. Rev. E 47(4), R2249 (1993)
40. Y. Chen, H. Ohashi, M. Akiyama, Phys. Rev. E 50(4), 2776 (1994)
41. Y.H. Qian, J. Sci. Comput. 8(3), 231 (1993)
42. G.R. McNamara, A.L. Garcia, B.J. Alder, J. Stat. Phys. 81(1–2), 395 (1995)
43. D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer,

New York, 2005)
44. Y. Peng, C. Shu, Y.T. Chew, Phys. Rev. E 68(2), 026701 (2003)
45. Z. Guo, C. Zheng, B. Shi, T.S. Zhao, Phys. Rev. E 75(3), 036704 (2007)
46. S. Chen, K.H. Luo, C. Zheng, J. Comput. Phys. 231(24) (2012)
47. P.A. Thompson, Compressible-Fluid Dynamics (McGraw-Hill, New York, 1972)
48. Z. Guo, B. Shi, C. Zheng, Int. J. Numer. Meth. Fluids 39(4), 325 (2002)
49. T. Zhang, B. Shi, Z. Guo, Z. Chai, J. Lu, Phys. Rev. E 85(016701), 1 (2012)
50. M. Yoshino, T. Inamuro, Int. J. Num. Meth. Fluids 43(2), 183 (2003)
51. A. Polyanin, A. Kutepov, A. Vyazmin, D. Kazenin, Hydrodynamics, Mass and Heat Transfer

in Chemical Engineering (Taylor and Francis, London, 2002)
52. M. Ozisik, Heat Conduction (Wiley, New York, 1993)
53. A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, J. Derksen, Chem. Eng. J. 225, 580 (2013)

Chapter 9
Multiphase and Multicomponent Flows

Abstract After reading this chapter, you will be able to expand lattice Boltzmann
simulations by including non-ideal fluids, using either the free-energy or the Shan-
Chen pseudopotential method. This will allow you to simulate fluids consisting
of multiple phases (e.g. liquid water and water vapour) and multiple components
(e.g. oil and water). You will also learn how the surface tension between fluid
phases/components and the contact angle at solid surfaces can be varied and
controlled.

We start by introducing the physical basis of multiphase and multicomponent
flows in Sect. 9.1. In particular, we cover the concepts of the order parameter,
surface tension, contact angle and thermodynamic consistency, and we discuss the
differences between sharp and diffuse interface models. We then introduce and
analyse two popular classes of LB multiphase and multicomponent models: the
free-energy model in Sect. 9.2 and the pseudopotential (or Shan-Chen) model in
Sect. 9.3. Section 9.2 and Sect. 9.3 can be read independently, but the prior study
of Sect. 9.1 is strongly recommended. In Sect. 9.4 we will discuss limitations and
extensions of both models, e.g. how to increase the range of physical parameters
and how to improve accuracy and numerical stability. Finally, in Sect. 9.5, we
provide a few example applications demonstrating the usefulness and suitability of
LB multiphase and multicomponent methods.

There exist even more LB methods for multiphase and multicomponent prob-
lems. We cannot review all of them here. The most popular of those methods is
the colour method [1–6]. Being rooted in lattice gas automata, the colour method
is in fact the earliest multicomponent extension to the LBM. Other multiphase and
multicomponent methods have also been suggested, e.g. [7–10].

Apart from reading this chapter, we recommend the study of a number of
recent articles. Scarbolo et al. [11] developed a unified framework to analyse the
similarities and differences of the free-energy and the Shan-Chen models. Chen
et al. [12] performed a critical and topical review of the Shan-Chen method. Liu
et al. [13] provide an extensive overview of the colour, the Shan-Chen and the
free-energy models. The book by Huang, Sukop and Lu [14] is also dedicated to
multiphase LB methods.

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_9

331

332 9 Multiphase and Multicomponent Flows

9.1 Introduction

One of the most popular applications of the LBM is simulating multiphase and
multicomponent flows.

Multiphase and multicomponent flows refer to flows comprising two (or
more) different fluids which differ by their physical properties, such as
density, viscosity, conductivity etc. For single-component multiphase flows,
the liquid and gas phases of the same substance are in coexistence. These two
phases can interconvert from one to another: the gas can condense to form
more liquid, and the liquid can evaporate. A typical example is liquid water
and water vapour. Contrarily, multicomponent flows contain two (or more)
different substances, for example water and oil. In a multicomponent flow, the
substances do not interconvert. Instead, we have to account for the diffusion
between these components.

Multiphase and multicomponent flows are important for a wide range of
applications [15]. For example, emulsions are formed when one attempts to
mix several immiscible liquids [16]. This is ubiquitously exploited in the food,
pharmaceutical and personal care industries. Other examples include enhanced oil
recovery [17], high-performance heat exchangers [18], polymer processing [19] and
microfluidics [20].

In practice, the distinction between multiphase and a multicomponent flows can
be quite blurry. Many flows are in fact a mixture between the two, where the liquid
and gas phases can separately comprise of several components. One example is
cooking: boiling water (liquid water and water vapour) with olive oil. In cases where
there is no transfer of material between the different fluid domains and inertia plays
a negligible role (e.g. low Reynolds number flow), equivalent results are obtained
whether we are using a single-component multiphase or a multicomponent model
[21], assuming the material parameters (e.g. viscosity, surface tension, etc.) used in
the two types of simulations are equivalent. In this chapter, we will focus on two-
phase and two-component flows, but not a mix between them.

To distinguish the two fluid phases in a multiphase flow, or similarly the two
components in a multicomponent flow, we introduce a concept called the order
parameter.1 For multiphase flows, this order parameter is the fluid density. The gas
and liquid phases are uniquely characterised by their values of density �g and �l.

For multicomponent flows, density is often not a suitable parameter. For example,
the densities of water and oil are quite similar. Instead, a more effective order

1This concept can easily be extended to systems with more than two components by introducing
more order parameters.

9.1 Introduction 333

Fig. 9.1 Illustrations of binary fluid mixtures which are (a) miscible and (b) immiscible. In (b), the
fluid particles separate into regions which are black-rich and grey-rich. At the interface, the black
(grey) particles lose favourable interactions with black (grey) particles and gain less favourable
interactions with grey (black) particles, resulting in an excess energy for forming the interface

parameter � is given by

� D �.1/ � �.2/
�.1/ C �.2/ (9.1)

where �.1/.x; t/ and �.2/.x; t/ are the local densities of components 1 and 2. We
denote the densities of the pure components �.1/b and �.2/b . These values are also

called bulk densities. The two bulk phases correspond to cases where (i) �.1/ D �.1/b ,

�.2/ D 0 and (ii) �.1/ D 0, �.2/ D �
.2/
b , respectively.2 It is easy to verify that this

leads to two distinct bulk values for the order parameter:

� D
8
<

:

C1 for component 1,

�1 for component 2.
(9.2)

Multicomponent fluids, i.e. systems comprising different fluids, can be miscible
or immiscible. Miscible fluids can form a completely homogeneous mixture without
internal interfaces, as illustrated in Fig. 9.1a. For example, ideal gases are always
miscible. Water and ethanol are also miscible, at least over a wide range of

2In reality we cannot write �.1/ D 0 or �.2/ D 0 since the local density of a given component is
never exactly zero. For example, in a water-oil mixture, one can always find a few water molecules
in the oil-rich phase and the other way around. However, these minority densities are usually so
small that we can neglect them here.

334 9 Multiphase and Multicomponent Flows

concentrations. Immiscible fluids, however, are characterised by inhomogeneity.
One example is an oil-water mixture that forms some regions that are rich in oil
and others that are rich in water. These regions are separated by internal interfaces
that are characterised by surface tension, as shown in Fig. 9.1b.

9.1.1 Liquid-Gas Coexistence and Maxwell Area Construction
Rule

When dealing with a multiphase system, such as liquid water and water vapour,
the key question is what the condition for liquid-vapour equilibrium is. How are
the liquid and vapour (gas) densities �l and �g related? And how does the pressure
depend on the densities?

In nature we observe many situations with coexisting fluid phases or compo-
nents. The physical requirement of having coexisting phases or components
puts a constraint on the equation of state, which describes a complex
interdependency between pressure p, molar volumes � (alternatively: density
� / 1=�) and order parameter � for a given temperature T. (We introduced
the concept of equations of state in Sect. 1.1.3.) The equation of state
p D pb.�; �;T; : : :/ uniquely defines the bulk (i.e. the region not close to
any interface) thermodynamic state of the multiphase and multicomponent
system.

Let us now focus on one of the most commonly used equations of state, namely
the van derWaals equation for a liquid-vapour system, shown in Fig. 9.2. We can see
that the pressure-molar volume curve has a minimum and a maximum. Any equation
of state that displays this property allows for two coexisting bulk fluids. In fact,
the thermodynamic states between these two extrema are unstable. If the system is
prepared at any of these intermediate states, it will spontaneously phase separate
into liquid and gas domains [22]. For a given pressure p0, the molar volumes of the
liquid and gas phases are, respectively, �l and �g.

From Fig. 9.2, we see that there is a range of pressures for which two distinct
molar volumes � can be adopted for the same bulk pressure value pb. To decide
which exact pressure value the system will adopt (i.e. which p0 the system will relax
to) and, correspondingly, which values of molar volumes the liquid and gas phases
will assume, we need to use the so-called Maxwell area construction rule [22].

9.1 Introduction 335

vl vg

p0

v

pb

Fig. 9.2 Maxwell area construction rule for the van-der-Waals equation of state for a fixed
temperature T. Note that the phase transition occurs at a pressure p0 that equalises the areas below
(dark grey) and above (light grey) the pressure curve

The Maxwell area construction rule postulates that, for a given temperature
T, the liquid-gas coexistence happens at a pressure p0 such that both shaded
areas in Fig. 9.2 are identical:

Z �l

�g

�
p0 � pb.�

0;T/
�

d� 0 D 0: (9.3)

The molar volumes of the gas and the liquid both satisfy

p0 D pb.�g;T/ D pb.�l;T/: (9.4)

In essence, the Maxwell area construction rule states that, at coexistence, the
Gibbs free energy G, or equivalently the chemical potential �, of the liquid and gas
phases must be equal.3 To see this, we note that the difference in the Helmholtz free
energy F in both fluid phases is given by [22]

Fl � Fg D �
Z �l

�g

pb.�
0;T/ d� 0 (9.5)

and that the Gibbs free energy is [22]

Gl/g D Fl/g C p0�l/g: (9.6)

3For readers unfamiliar with Gibbs and Helmholtz free energies, their descriptions can be found in
most textbooks on thermodynamics, e.g. [22]. Briefly, Gibbs free energy is usually used when the
system is under constant pressure and temperature, while the Helmholtz free energy is taken when
the system is under constant volume and temperature.

336 9 Multiphase and Multicomponent Flows

Equation (9.3) essentially states that the Gibbs free energy of the system obeys
G D Gl D Gg (see Exercise 9.1). The chemical potential is the molar Gibbs free
energy at constant pressure and temperature, G D �n, where n is the number of
moles. Therefore, an equivalent statement is that the chemical potential in the liquid
and gas phases are equal: �l D �g. If the chemical potentials of the liquid and gas
phases are not the same, either the liquid will evaporate or the gas will condense.

Exercise 9.1 Starting from the definitions in (9.5) and (9.6), show that (9.3) leads
to the condition that Gl D Gg.

The molar volume � is not a convenient parameter to use in LB simulations.
Since it is proportional to the inverse of density, � / 1=�, the Maxwell area
construction rule can easily be rewritten in terms of the density:

Z �l

�g

�
p0 � pb.�

0;T/
� d�0

�02 D 0; p0 D pb.�g;T/ D pb.�l;T/: (9.7)

Equation (9.7) provides three equations for the three unknowns p0, �g and �l. Given
the form of the equation of state pb.�;T/ at a fixed temperature T, this system of
equations can be uniquely solved.

Any model for the equation of state that satisfies (9.7) is thermodynamically
consistent. Ideally all models should follow this requirement, which is the case for
free-energy multiphase and multicomponent models (cf. Sect. 9.2). However, this
is not necessarily true for the Shan-Chen model. In practice, this means that the
recovered liquid and vapour densities do not exactly assume their expected values.
We will elaborate on this issue in Sect. 9.3.

All these considerations are valid for the bulk, far away from any interface. Now
we have to look closer at the effect interfaces have on the thermodynamic behaviour.

9.1.2 Surface Tension and Contact Angle

The richness of the multiphase and multicomponent flow behaviour comes, among
others, from the interfaces formed between the bulk fluid phases. The presence
of surface tension gives rise to complex viscoelastic behaviour, even though each
phase/component in the flow itself may be a simple Newtonian fluid [23, 24].

A key concept for multiphase and multicomponent flows is the surface tension
� . It is the energy per unit area required to form the interface between the two fluid
phases or components.4 Therefore, surface tension is often given in Joule per square
metre or, more commonly, Newton per metre.

4This definition is strictly valid only for simple liquids. More generally, the energy per unit area
for stretching the interface is given by � D � C d�=d� where � is the strain. For simple liquids
we have d�=d� D 0 and � D � .

9.1 Introduction 337

Surface tension is caused by molecular interactions. Like molecules in a fluid
typically attract each other. As illustrated in Fig. 9.1b, if such a molecule is in the
bulk region, it will interact on average with z molecules of the same species, where
z is the coordination number or the average number of neighbours. If this molecule
is at an interface, it will lose interactions with approximately z=2 neighbours of like
molecules. Furthermore, for multicomponent systems, the molecule will pick up less
favourable interactions with molecules of a different species at the interface. This
excess energy associated with an interface is usually positive, and it is a function of
temperature. Thermodynamically, any physical system will prefer to minimise the
amount of surface energy and therefore the total interface area.

If the volume bounded by the interface is not constrained, for example in the
case of soap films, the shape of the interface will adopt one of the so-called minimal
surfaces. Examples of well-known minimal surfaces include the plane (which is the
trivial case), the catenoids, and the Schwarz triply periodic minimal surfaces [25].
For minimal surfaces, the surface is locally flat and there is no pressure jump across
the interface. More precisely, the mean curvature of the surface is zero, although the
Gaussian curvature may assume a non-zero value.5

For many multiphase and multicomponent flows, however, we find closed
interfaces that enclose a certain volume, e.g. oil droplets in a pot of water or rain
drops in air. In general, at mechanical equilibrium, the pressures on either side of
these interfaces are different; the pressure at the inside is higher than the pressure
outside. The pressure difference satisfies the so-called Laplace pressure [26].

Consider a droplet of one fluid (e.g. a liquid) suspended in another fluid (e.g. a
gas). The Laplace pressure is

pl � pg D �lg

�
1

R1
C 1

R2

�

(9.8)

where R1 and R2 are the local curvature radii and �lg is the liquid-gas surface
tension. This is illustrated in Fig. 9.3a.

Equation (9.8) has two important physical interpretations. First, it is a conse-
quence of the force balance between the work done by the pressures on either side
of the interface, and the energy penalty from changing the interfacial area. Secondly,
it states that in equilibrium the mean curvature of the interface between the two
fluid phases is constant. If this condition is not satisfied, it results in a force in the

5At a given point on a surface, we can define two radii of curvature, as shown in Fig. 9.3a. The
mean curvature is simply defined as the average .1=R1 C 1=R2/=2, while the Gaussian curvature is
the product 1=.R1R2/. Since one of the curvature radii can be negative and the other positive (e.g. a
saddle surface), the mean curvature can vanish, even for a non-planar surface.

338 9 Multiphase and Multicomponent Flows

Fig. 9.3 Schematic diagrams for (a) the Laplace pressure and (b) Young’s contact angle. Each
point at the interface can be characterised by two independent radii of curvature that can be positive
or negative. In (a), the surface is convex and both radii are positive. The average curvature .1=R1C
1=R2/=2 and the surface tension �lg are related to the pressure jump (Laplace pressure) pl � pg

across the interface. In (b), a liquid droplet is in contact with a surface and forms a contact angle
� . For this angle, all surface tension force components tangential to the surface are in mechanical
equilibrium

hydrodynamic equations of motion, driving the system towards equilibrium. We will
see later how this is accounted in the Navier-Stokes equation.

In many (if not most) situations, multicomponent and multiphase flows are also
confined by solid surfaces, e.g. in porous media and microfluidics. The different
fluid phases may have different affinities to these surfaces. This is usually quantified
by a material property called the contact angle � as shown in Fig. 9.3b.

For a droplet of one fluid (e.g. a liquid) surrounded by another fluid (e.g. a
gas), we write

cos � D �sg � �sl

�lg
(9.9)

for the contact angle. Here, �sl, �sg and �lg are, respectively, the solid-liquid,
solid-gas and liquid-gas surface tensions. The contact angle is usually defined
with respect to the liquid phase. We can understand the contact angle as a
consequence of mechanical stability at the contact line where all three phases
are in contact with each other [27, 28].

When � < 90ı in (9.9), the liquid phase preferably wets the solid surface. Such
a surface is usually called a hydrophilic, or more generally a lyophilic surface. In
contrast, a surface is called hydrophobic or lyophobic when � > 90ı, i.e. when
the gas phase has a favourable interaction with the solid. In the wetting literature,

9.1 Introduction 339

special terms are also reserved for � D 0ı (complete wetting), � D 90ı (neutral
wetting) and � > 160ı (superhydrophobic).

The wetting properties can significantly affect the fluid flow near a solid bound-
ary [29, 30]. Furthermore, it has been demonstrated that we can take advantage of
surface patterning, both chemical and topographical, to control the motion of fluids
[31, 32].

9.1.3 Sharp and Diffuse Interface Models

There are two different approaches to model multiphase and multicomponent flows:
(i) sharp and (ii) diffuse interface models.

In the sharp interface model, the interface is a 2D boundary which is usually
represented by a distinct computational mesh. The motion of this interface needs
to be explicitly tracked, and we require a Navier-Stokes solver on either side of
the boundary. Furthermore, the fluid velocity at the boundary must be continuous,
and there is a stress jump normal to the interface corresponding to the Laplace
pressure in (9.8). There are various publications describing in detail how such a
sharp interface model can be efficiently implemented, which include volume-of-
fluid [33], front-tracking [34], and immersed boundary [35] methods.

Contrarily, the models employed in the LB community usually belong to the
diffusive interface approach. A typical 1D order parameter profile (density for
multiphase flow; � as defined in (9.2) for multicomponent flow) across a diffuse
interface is shown in Fig. 9.4. Far from the interface, for x ! ˙1, the order
parameter approaches the bulk values. The order parameter profile smoothly varies
across the interface between the two bulk values.

The length scale that characterises the variation in the density profile across the
interface is called the interface width. For a real physical system, this is usually
of the order of nanometres. In the computational domain, the interface width is
chosen to be several lattice spacings for the simulations to be stable. However, this
does not necessarily mean that the grid spacing in multiphase and multicomponent
simulations is assigned to several nanometres; this would limit the applicability of
those simulations to nanoscale systems. Instead, we take advantage of the separation

Fig. 9.4 A typical interface
profile in the diffuse interface
model. The order parameter
varies smoothly across the
interface to assume its bulk
value on either side of the
interface. For a multiphase
system, the density varies
from the gas density �g to the
liquid density �l across the
interface

340 9 Multiphase and Multicomponent Flows

of length scales. Ideally we work in a regime where the simulation results do not
depend on the interface width. This can be achieved when the interface width is
small enough, typically by an order of magnitude smaller than the first important
length scale (e.g. the diameter of a droplet). It is often not necessary to truthfully
represent the ratio between the physical length scale and the interface width, which
makes diffuse-interface multiphase simulations possible in the first place.

The key advantage of diffuse interface models is that the motion of the
interface need not be tracked explicitly. All fluid nodes can be treated on an
equal footing, whether they are in the bulk of the fluid or at the interface.
There is no need to introduce any additional mesh for the interface. Thus,
diffuse interface models are convenient for studying problems with complex
surface geometries.

The density (or order parameter) variation in diffuse interface models is smooth.
This allows us to incorporate the description of surface tension into the bulk fluid
equations of motion, more specifically in the description of the pressure tensor P
that also varies smoothly across the interface.

In the definition of pressure as a tensor, P˛ˇ corresponds to force per unit area
in the ˇ-direction on a surface pointing in the ˛-direction. For a homogeneous and
isotropic fluid, which is the case we encountered up to this point, the pressure is the
same in all directions. This isotropy means the pressure tensor is given by P˛ˇ D
pbı˛ˇ, and we can treat pressure as a scalar.

When an interface is involved, isotropy is clearly broken: the directions normal
and tangential to the interface do not behave in the same way. The fluid equations
of motion for diffuse interfaces are given by none other than the continuity and
Navier-Stokes equations with a modified pressure tensor6:

@t�C @˛.�u˛/ D 0; (9.10)

@t.�u˛uˇ/ D �@ˇP˛ˇ C @ˇ�.@ˇu˛ C @˛uˇ/: (9.11)

It is important to note that the divergence of the pressure tensor, �@ˇP˛ˇ , is equiv-
alent to a body force density F˛. Therefore, the multiphase and multicomponent
behaviour can be included in the governing equations in different ways as we will
discuss in Sect. 9.2.

We have not yet specified how the pressure tensor looks like, in particular, how it
depends on the density (or order parameter). Indeed, this is where the different LB

6For multicomponent flows, an additional equation of motion is needed to describe the evolution
of the order parameter. This is usually given by the Cahn-Hilliard or Allen-Cahn equation, see e.g.
Sect. 9.2.2.3.

9.1 Introduction 341

models distinguish themselves. Broadly speaking, these models can be categorised
into a bottom-up or a top-down approach.

In a bottom-up approach, the starting point is often kinetic theory, and
some form of interactions are postulated between the fluids at the level of the
Boltzmann equation. Similar to many other lattice- and particle-based simu-
lation techniques, separation between different fluid phases and components
can be induced by tuning the interaction potentials. The Shan-Chen method
(cf. Sect. 9.3) is one famous example. In particular, the Shan-Chen model
makes use of an additional body force density rather than a modified pressure
tensor.

In a top-down approach, we start by writing down the free energy of the
fluids (cf. Sect. 9.2). The form of the free energy functional should capture
intended features of the thermodynamics of the system, e.g. phase separation
and surface tension between different fluids. The corresponding chemical
potential and pressure tensor can then subsequently be derived.

9.1.4 Surface Tension and Young-Laplace Test

While the detailed form of the pressure tensor is model specific, irrespective of the
model, the pressure tensor must describe an equation of state that allows for phase
coexistence between several fluid phases/components, and it must account for the
surface tension. In Sect. 9.1.1 we discussed the van der Waals equation of state,
one of the most popular equations of state for a multiphase flow. Other equations of
states are possible and will be discussed later in this chapter.

The surface tension, in diffuse interface models, is typically introduced via a
surface tension force given by [36, 37]

F D ��r��: (9.12)

For a multicomponent flow, the same form applies except we replace the density �
by the order parameter �.

At this point, it is also useful to recognise that the relevant term in the Navier-
Stokes equation is the divergence of the pressure tensor, not the pressure tensor
itself. In this context, we can immediately show that

@˛pb � F˛ D @˛pb � ��@˛@�@�� D @˛pb � �@˛.�@�@��/C �.@˛�/@�@��
D @˛pb � �@˛.�@�@��/C �@�

�
.@˛�/.@��/

� � �.@��/@˛@��
D @˛pb � �@˛.�@�@��/C �@�

�
.@˛�/.@��/

� � �
2
@˛

�
.@��/

2
�

342 9 Multiphase and Multicomponent Flows

D @ˇ

"�

pb � �
2
.@��/

2 � ��@�@��
�

ı˛ˇ C �.@˛�/.@ˇ�/
#

D @ˇP˛ˇ: (9.13)

The term in the square bracket defines the pressure tensor P˛ˇ: it contains informa-
tion about the equation of state and the fluid-fluid surface tension. We also note that
it is the �.@˛�/.@ˇ�/ term that causes the pressure tensor to be anisotropic.

Given the pressure tensor P, the surface tension can be computed. It is defined
as the mismatch between the normal and transversal components of the pressure
tensor, integrated across the interface in its normal direction [28, 38]:

� D
Z 1

�1
.Pn � Pt/ dOn (9.14)

where On is a unit vector normal to the interface.
To clarify the notation, let us take an example where the interface is located at

x D 0 and spans across the y-z plane. In such a case, On is in the x-direction, Pn D Pxx

and Pt D Pyy D Pzz. Using the definition of the pressure tensor in (9.13), we can
show that

Pn D Pxx D
�

pb � �
2
.@��/

2 � ��@�@��
�

C �.@x�/.@x�/; (9.15)

Pt D Pyy D Pzz D
�

pb � �
2
.@��/

2 � ��@�@��
�

; (9.16)

� D
Z 1

�1
.Pn � Pt/ dx D �

Z 1

�1

�
d�

dx

�2
dx: (9.17)

Note that we can also compute the interface profile �.x/ or �.x/, given the
functional form of the pressure tensor. This is demonstrated in Appendix A.7 and
Appendix A.8.

The surface tension as defined in (9.14) is not always straightforward to compute
in simulations. There is, however, a simpler way to measure � by exploiting the
Laplace pressure relation in (9.8). In practice, this is usually achieved by simulating
a spherical domain of fluid 1 with radius R, surrounded by fluid 2. Depending on
the system of interest, this can be (i) a liquid droplet in a gas phase, (ii) a gas bubble
in a liquid phase or (iii) a liquid droplet in another liquid phase. This procedure is
called the Young-Laplace test or just Laplace test.

We have to distinguish between a spherical droplet/bubble in 3D and a circular
droplet/bubble in 2D. While in 3D we have two principal curvature radii, there is
only a single radius in 2D. Therefore, the pressure difference between the inside

9.2 Free-Energy Lattice Boltzmann Model 343

(phase/component 1) and the outside (phase/component 2) assumes the form

p.1/ � p.2/ D
8
<

:

�=R (2D),

2�=R (3D).
(9.18)

By computing the pressure values at the centre of the droplet/bubble, i.e. p.1/, and
far away from the interface in the exterior phase/component, i.e. p.2/, we can then
obtain the surface tension � .

For this test to be successful we have to be aware of several issues. First, it is
crucial to use a sufficiently large droplet/bubble. If it is too small, the interior will
be dominated by the shape of the diffuse interface and the measured pressure p.1/

will not represent the correct value of the bulk pressure in the interior phase. A
reasonable radius to start with is R � 10�x, assuming the interface width is 2–4
grid nodes. Secondly, it is not obvious how to define the radius of a droplet/bubble
with a diffuse interface. Many researchers define the interface as the surface where
either the order parameter becomes zero or the density reaches the average of the
bulk gas and liquid densities. It is good practice to run several simulations with
different droplet radii to show that the measured curve p.1/ � p.2/ vs. 1=R is linear,
with the gradient of the curve being the surface tension � in 2D and 2� in 3D.

9.2 Free-Energy Lattice Boltzmann Model

In this section we will focus on the free-energy lattice Boltzmann models, covering
both multiphase and multicomponent systems [39, 40]. The free-energy approach
has a top-down philosophy: we start with a free-energy functional that contains the
thermodynamics of the intended systems, and then other relevant physical quantities
can be derived from this functional. Thus, an attractive feature of free-energy LB
models is that, by design, they are always thermodynamically consistent.7 This
is in contrast to the Shan-Chen method covered in Sect. 9.3, where we begin by
postulating interactions between the lattice fluids, and the thermodynamics of the
multiphase and multicomponent systems emerge from these interactions.

So, what information is contained in the free energy functional? It prescribes the
free energy that a given system has in a particular arrangement. For particle-based
models, the energy depends on the position and orientation of the particles. For con-
tinuum models, such as the ones we have here, the situation is similar, except that the
energy now depends on collective, coarse-grained variables. For example, density is
a suitable collective variable for multiphase flows; the relative concentration (order
parameter) is appropriate for multicomponent flows. In thermodynamic equilibrium,

7Thermodynamic consistency is defined in Sect. 9.1.1. See also Appendix A.7 where this is shown
explicitly for the Landau multiphase model.

344 9 Multiphase and Multicomponent Flows

the free energy functional is minimised. If the system is out of equilibrium, e.g. due
to external influence, the free energy is not minimised and there is a thermodynamic
force driving the system towards equilibrium. In the context of the Navier-Stokes
equation, such thermodynamic force can be equivalently represented as a body force
or as gradient in the fluid pressure tensor.

For multiphase and multicomponent flows, the free energy functional usually
consists of three terms:

� D
Z

V

�
 b C g

	
dV C

Z

A
 s dA (9.19)

where b, g and s are functions of space and time. The first term, b, describes
the bulk free energy. This term, most importantly, must lead to an equation of
state that allows for the coexistence of several fluid phases and/or components. The
equation of state for an isothermal ideal gas, pb D c2s�, does not have this capacity.
A wide range of models have been proposed in the literature for the bulk free energy.
The simplest models correspond to Landau free-energy models [41–43], which are
essentially Taylor expansions in terms of the order parameters. These models are
very popular due to their simplicity. However, more complex and realistic bulk free
energies, such as the van der Waals [39, 40, 44] or Peng-Robinson models [45], may
also be used.

The second term, g, is a gradient term which penalises any variation in the order
parameter, be it the fluid density for multiphase flows or the relative concentration
for multicomponent flows. This term captures the free energy of the interface
between two fluid phases or components. Its form can be adjusted to handle surface
tension and/or bending energy of the interface.

The last term, s, describes the interaction between the fluid and the surrounding
solid. This term is required when the physics of wetting phenomena are relevant.

In the following, we will demonstrate how the equation of state, the pressure
tensor and the chemical potential can be written down. We will show how suitable
LB schemes can be devised to solve the hydrodynamic equations of motion for
multiphase (cf. Sect. 9.2.1) and multicomponent flows (cf. Sect. 9.2.2).

9.2.1 Liquid-Gas Model

Here we will focus on the multiphase free-energy LBM. Following the top-down
philosophy, we will start by describing the bulk thermodynamics of the multiphase
fluid, followed by how the thermodynamics enter the fluid equations of motion,
and subsequently the LB algorithm. For many applications of multiphase LBM, the
wettability of the surface confining the fluid is also important. We will discuss how
suitable surface thermodynamics can be introduced, and show that it enters our LB
algorithm as a boundary condition.

9.2 Free-Energy Lattice Boltzmann Model 345

9.2.1.1 Bulk Thermodynamics

We start by investigating the bulk properties far away from any solid boundaries,
i.e. s does not play a role. The simplest multiphase model is a two-phase system
where a liquid is in coexistence with its own vapour.

For pedagogical reasons, we will use a model based on Landau theory [41]
so that we can derive all relevant quantities analytically:

� D
Z

V

�
 b C g

	
dV; (9.20)

 b D pc

�

2� � ˇw

�2 C �0� � p0; (9.21)

 g D �

2
.r�/2 (9.22)

where we have defined the reduced density
� D .�� �c/=�c and the reduced
temperature w D .Tc � T/=Tc. The subscript c indicates the critical point of
the liquid-gas system, such that pc, �c and Tc describe the pressure, density
and temperature at the critical point. ˇ is a constant which can be tuned to
control the liquid-gas density ratio, and � is a constant which controls the
magnitude of the surface tension. The constants �0 and p0 are the reference
chemical potential and pressure of the fluids. We will describe the relevance
of these parameters in more detail below.

Other bulk free energy functionals, leading to more realistic equations of state,
can be used instead for b. The machineries for deriving the pressure tensor, surface
tension and LB schemes are the same as the ones we will show below for the
Landau model. The form for the gradient free energy functional, g, is the one
most commonly used to capture surface tension, but once again, it is not unique.
Additional terms can be introduced, e.g. to account for the bending energy of the
interface [46]. In standard LB methods, we also have total mass conservation such
that (9.20) is subject to the constraint

R
V � dV D const.

The Landau free energy functional is written such that, below the critical temper-
ature Tc (for positive w), the system will favour two bulk solutions corresponding
to
2� � ˇw D 0. The positive branch
l D .� � �c/=�c D C

p
ˇw is the liquid

state, while the negative branch
g D .� � �c/=�c D �
p
ˇw is the gas state.

Above the critical temperature, the system cannot exhibit liquid-gas coexistence.
Mathematically speaking, the solution for
� becomes imaginary above Tc in this
model. �c and pc are the density and pressure at the critical point of the material,
where the liquid and gas phases are indistinguishable. In this model, the liquid and
gas densities can be varied by tuning the value of ˇw, as shown in Fig. 9.5.

346 9 Multiphase and Multicomponent Flows

Fig. 9.5 The bulk liquid and
gas densities for the Landau
model given in (9.21) as a
function of the reduced
temperature w. We have used
ˇ D 0:1 for this plot. Above
the critical temperature Tc

(i.e. for w < 0) the liquid
and gas phases are
indistinguishable

The gradient term in (9.22) penalises changes in the density. This is key to the
formulation of surface tension in this model. To appreciate this statement, let us first
derive the chemical potential.

The chemical potential is defined as the free energy cost (gain) for adding
(removing) materials to (from) the system. Mathematically, this is given by

� � ı. b C g/

ı�
D 4pc

�c

�

�

2� � ˇw

�
C �0 � ���: (9.23)

In thermodynamic equilibrium, the chemical potential is constant everywhere in
space. If it is not constant, there will be a free energy gain by transferring fluid
material from one part of the system to another. In other words, there will be a
thermodynamic force.

When the system is in one of the bulk free energy minimum solutions, either in
the liquid or in the gas phase, then
2� � ˇw D 0 and the gradient term in (9.23)
also vanishes. Therefore, we find � D �0 in the liquid and gas bulk phases. Now,
our statement that the chemical potential is constant everywhere in space includes
the liquid-gas interface where the density varies. For simplicity, let us assume the
interface is flat and is located at x D 0. The differential equation in (9.23), after
setting � D �0, thus reads

4pc

�c

�

�

2� � ˇw

�
� ��c�
� D 0 (9.24)

with boundary conditions
� D ˙
p
ˇw (corresponding to the liquid and gas bulk

densities) for x D ˙1.

Equation (9.24) has the following solution for the liquid-gas interface
profile:

� D
p
ˇw tanh

xp
2�

!

(9.25)

(continued)

9.2 Free-Energy Lattice Boltzmann Model 347

where � D p
��2c=.4ˇwpc/ is defined as the interface width, as shown in

Fig. 9.4. While � can take any value in the analytical model, to have a good
numerical resolution in LBM, � is usually chosen to be a few lattice spacings.

Furthermore, the surface tension of the liquid-gas interface can then be
calculated by integrating the free energy density across the interface:

�lg D
Z 1

�1

pc

�

2� � ˇw

�2 C �

2
.r�/2

�

dx D 4

3

p
2�pc.ˇw/

3=2�c:

(9.26)

We can ignore the terms �0� and p0 from the above integral because they only
contribute to a constant in the free energy. An alternative derivation for the liquid-
gas interfacial profile is also given in Appendix A.7 for the free-energy model.

9.2.1.2 Equations of Motion

In a multiphase model, the continuum equations of motion for the fluid are described
by the continuity and Navier-Stokes equations (in the absence of external forces):

@t�C @ˇ
�
�uˇ

� D 0; (9.27)

@t.�u˛/C @ˇ
�
�u˛uˇ

� D �@ˇP˛ˇ C @ˇ�
�
@ˇu˛ C @˛uˇ

�
: (9.28)

The thermodynamics of the multiphase system, including the description of the
surface tension, enter the equations of motion through the pressure tensor P˛ˇ .

The pressure tensor P˛ˇ can be derived (up to a constant contribution in
space throughout the simulation domain) by requiring [47]

@ˇP˛ˇ D �@˛�: (9.29)

This equation states that the presence of a thermodynamic force leads to a
pressure tensor gradient for the fluids. This statement is general, not only for
Landau models. For our specific Landau model, using the definition of the
chemical potential � in (9.23), it follows that

P˛ˇ D
�

pb � �
2
.@��/

2 � ��@�@��
�

ı˛ˇ C �.@˛�/.@ˇ�/; (9.30)

pb D pc.
� C 1/2
�
3
2� � 2
� C 1 � 2ˇw

�
: (9.31)

(continued)

348 9 Multiphase and Multicomponent Flows

Equation (9.31) is the equation of state for this model. It relates the bulk
pressure of the fluid to other thermodynamic quantities such as density and
temperature.

Exercise 9.2 Starting from the equation of state in (9.31), show that the pressures at
the bulk liquid and gas densities,
� D .� � �c/=�c D ˙

p
ˇw, for the free-energy

model in (9.20) are equal and satisfy

p0 D pc.1� ˇw/
2: (9.32)

Exercise 9.3 In (9.14) we defined the surface tension as the integral of the
mismatch between the normal and transversal components of the pressure tensor. By
evaluating the integral using (9.30), show that we can recover the same expression
for the liquid-gas surface tension as in (9.26).

Exercise 9.4 An alternative approach to derive the pressure tensor is by exploiting
equation (9.13) and the standard relation for the equation of state [40, 41]

pb D �@� b � b: (9.33)

Verify that the pressure tensor derived using this approach is the same as in
(9.30). Furthermore, by substituting the expressions for the pressure tensor and the
chemical potential, show that (9.29) is satisfied.

9.2.1.3 The Lattice Boltzmann Algorithm

The thermodynamics of the multiphase flow is encoded in the modified pressure
tensor. Therefore, the next step in free-energy LBM is to translate the description of
the pressure tensor into the LB equation. This can be done either through a forcing
term8 Fi, a pressure tensor term Gi, or a mix between the two [48]:

fi.xC ci�t; tC�t/ D fi.x; t/ � fi.x; t/ � f eq
i .x; t/

�t

C
�

1 � �t

2

�

Fi.x; t/�t C Gi.x; t/�t: (9.34)

Here we will limit our discussion to the BGK collision operator. The extension to
multiple relaxation times is straightforward.

8We note that our convention here follows that of Chap. 6. In the literature, sometimes the prefactor�
1� 1

2

�
is included in the definition of Fi itself.

9.2 Free-Energy Lattice Boltzmann Model 349

The properties of the forcing term Fi have been discussed in detail in Chap. 6.
The moments of the pressure tensor term Gi have the following properties:

X

i

Gi D 0;
X

i

Gici˛ D 0;
X

i

Gici˛ciˇ D A˛ˇ;

X

i

Gici˛ciˇci� D 0:

(9.35)

It is important that only the second moment of the pressure tensor term is non-zero.
It does not change the density or momentum of the fluid.

Pressure tensor approach: In the original free-energy LBM, the thermodynam-
ics of the multiphase system is completely accounted for through a pressure tensor
term, such that A˛ˇ D P˛ˇ � c2s�ı˛ˇ . This term corresponds to how the pressure
tensor departs from the ideal gas scenario. The forcing term Fi is then set to zero,
unless there is an additional external body force (e.g. gravity), which can be dealt
with as in the usual way (cf. Chap. 6).

In the literature, it is further customary to absorb the pressure tensor term
Gi into the the equilibrium distribution f eq

i . Its resulting form for i ¤ 0 is
given by

f eq
i D wi�

1C ci˛u˛
c2s
C u˛uˇ

�
ci˛ciˇ � c2sı˛ˇ

�

2c4s

!

Cwi

c2s

�
pb � c2s� � ����

�
C �

X

˛;ˇ

w˛ˇi .@˛�/.@ˇ�/: (9.36)

The corresponding expression for f eq
0 is given in (9.39). The first line in

(9.36) is identical to that for standard single-phase and single-component
equilibrium distribution functions. The second line accounts for surface
tension (the gradient terms) and the deviation of the equation of state pb from
the ideal gas case, which must allow for a coexistence between the liquid and
gas phases.

The density gradients can be computed using finite difference schemes. We
strongly recommend to choose stencils which are at least second-order accurate.
Inexactness in computing these derivatives is one of the main reasons for the
appearance of spurious velocities that affect the accuracy of LBM, and in some

350 9 Multiphase and Multicomponent Flows

cases its stability. Improving the stencil isotropy of the numerical derivatives has
been shown to strongly reduce spurious velocities close to the liquid-gas interface
[49–51].

The coefficients w˛ˇi in (9.36) are chosen to minimise the spurious velocities
at the interface. For example, following the work of Furtado and Pooley [51], for
D3Q19 we can use

wxx
1;2 D wyy

3;4 D wzz
5;6 D 5

12
;

wxx
3–6 D wyy

1;2;5;6 D wzz
1–4 D � 13 ;

wxy
1–6 D wyz

1–6 D wzx
1–6 D 0;

wxx
7–10;13–16 D wyy

7–8;11–14;17–18 D wzz
9–12;15–18 D � 1

24
;

wxx
11;12;17;18 D wyy

9;10;15;16 D wzz
7;8;13;14 D 1

12
;

wxy
7;8 D wyz

11;12 D wzx
9;10 D 1

4
;

wxy
13;14 D wyz

17;18 D wzx
15;16 D � 14 ;

wxy
9–12;15–18 D wyz

7–10;13–16 D wzx
7;8;11–14;17;18 D 0:

(9.37)

Similarly, for D2Q9 we have

wxx
1;2 D wyy

3;4 D 1
3
;

wxx
3;4 D wyy

1;2 D � 16 ;
wxx
5–8 D wyy

5–8 D � 1
24
;

wxy
1–4 D 0;

wxy
5–8 D 1

4
:

(9.38)

The expression for the equilibrium distribution function for i D 0 is quite lengthy,
but in practice we can exploit conservation of mass to write

f eq
0 D � �

X

i¤0
f eq
i : (9.39)

Force approach: The thermodynamics of the multiphase system can be equiva-
lently taken into account through a forcing term.

The appropriate force density due to the thermodynamics of a multiphase
system is the divergence of the non-ideal terms in the pressure tensor

(continued)

9.2 Free-Energy Lattice Boltzmann Model 351

F˛ D �@ˇ.P˛ˇ�c2s�ı˛ˇ/. Additional external forces (e.g. gravity) can also be
added to the definition of the total force if they are present. We set Gi D 0 in
(9.34) and the equilibrium distribution functions take identical forms as those
for single-phase flow:

f eq
i D wi�

1C ci˛u˛
c2s
C u˛uˇ

�
ci˛ciˇ � c2sı˛ˇ

�

2c4s

!

; (9.40)

Fi D wi

ci � u
c2s
C .ci � u/ ci

c4s

!

� F; (9.41)

�u D
X

i

fici C F�t

2
: (9.42)

Here we have used the method of Guo et al. [52] to implement the body
force. More detailed explanations of the forcing term in LBM are discussed
in Chap. 6.

At the level of numerical implementation, the forcing approach can be imple-
mented in two different ways. First, in the so-called pressure form (not to be
confused with the pressure tensor approach), the force density at every time step
is computed as

F˛ D �@ˇP˛ˇ C @˛c2s�; (9.43)

as we have written above. Secondly, in the potential form, the force density is

F˛ D ��@˛�C @˛c2s�: (9.44)

Analytically the two forms are of course equivalent, cf. (9.29). However, upon
discretisation, they are not exactly identical since the derivatives are usually
approximated using finite difference schemes [53, 54]. Numerical evidence suggests
that schemes which employ the potential form have lower spurious velocities
[49, 55]. However, an important caveat is that the potential form is no longer
written in a conservative form (i.e. as a divergence). This means momentum
conservation is no longer satisfied exactly for the discretised potential form [53].
In his implementation, Wagner [55] also introduced a small amount of numerical
viscosity to render the simulations stable.

As we shall see below, the pressure tensor approach as currently stated is
inadequate for most applications because it does not satisfy Galilean invariance.
The pressure tensor approach generally also produces higher spurious velocities
[51, 55]. However, an advantage of using the pressure tensor approach is that we do

352 9 Multiphase and Multicomponent Flows

not need to compute the third-order derivative in �, which is unavoidable in the force
approach (potential form). Computing third-order derivatives require information
from more neighbours, which affect parallelisation, and are more expensive to
compute. In this context, to avoid computing third derivatives, a possible hybrid
approach is to rewrite (9.29) as

@ˇP˛ˇ D �@˛� D @˛.��/ � �@˛�: (9.45)

The first term can be absorbed in the equilibrium distribution, by defining a modified
isotropic pressure Qpb D ��, while the second term is introduced as a forcing term
F˛ D ��@˛�. The suitable equilibrium distribution function for i > 0 in the hybrid
approach is then

f eq
i D wi�

�

c2s
C ci˛u˛

c2s
C u˛uˇ

�
ci˛ciˇ � c2sı˛ˇ

�

2c4s

!

: (9.46)

9.2.1.4 Galilean Invariance

The original free-energy LB algorithm was shown to break Galilean invariance [48,
56, 57]. This is a serious limitation as real physical phenomena do not depend on
the frame of reference. To appreciate this issue, let us consider a Chapman-Enskog
analysis of (9.34). The analysis results in the continuity equation and the following
momentum conservation equation [48]:

@t.�u˛/C @ˇ
�
�u˛uˇ

� D �@ˇ
�
A˛ˇ C c2s�ı˛ˇ

�
C F˛

C@ˇ�

�
@ˇu˛ C @˛uˇ C @�u� ı˛ˇ

�

�
@ˇ
�
u˛@�Aˇ� C uˇ@�A˛� C @�A˛�@� .�u�/

�

C
@ˇ@� .�u˛uˇu� /: (9.47)

We remember that A˛ˇ D P˛ˇ�c2s�ı˛ˇ and F˛ D 0 for the pressure tensor approach,
while A˛ˇ D 0 and F˛ D �@ˇ.P˛ˇ � c2s�ı˛ˇ/ for the forcing approach, as described
above. The first two rows on the right-hand side of (9.47) correspond to the desired
Navier-Stokes equation. The last term is an error term which is also present for
standard LBM, cf. Sect. 4.1. This term is negligible for Ma2 � 1, which is usually
the case for multiphase flow.

Thus, the problematic terms are those in the third row. They break Galilean
invariance in the free-energy multiphase model. To restore it, we need to add
appropriate correction terms. As an example, let us consider the pressure tensor
approach where A˛ˇ D P˛ˇ � c2s�ı˛ˇ . To restore Galilean invariance, one option is
to introduce a body force

F˛ D
@ˇ
�
u˛@�Aˇ� C uˇ@�A˛� C @�A˛�@� .�u� /

�
(9.48)

9.2 Free-Energy Lattice Boltzmann Model 353

which cancels all the leading error terms in (9.47). Another option is to modify A˛ˇ
such that

A˛ˇ D P˛ˇ � c2s�ı˛ˇ �

�
@˛.�uˇ/C @ˇ.�u˛/C @� .�u�/ı˛ˇ

�
: (9.49)

This approach cancels most of the error terms, leaving terms which are proportional
to the second derivatives of the fluid pressure, which are usually small for systems
close to equilibrium and for moderate Reynolds number.

9.2.1.5 A Practical Guide to Simulation Parameters

The Landau free-energy model is originally designed to describe physical multi-
phase systems close to the critical point beyond which the liquid and gas phases
are no longer distinguishable. However, in practice the Landau model has been
exploited for liquid-gas systems far from the critical point. This assumption is valid
for cases where the details of the equation of state are irrelevant for the problems
at hand. For more realistic equations of state, the van der Waals [39, 40, 44] or
Peng-Robinson models [45] should be used.

In the Landau model there are effectively four free parameters to tune
the thermodynamics of the liquid-gas system: ˇw, �, pc and �c. As a
starting point, the following parameters are often chosen for the multiphase
Landau model, all in lattice units: ˇw D 0:03, � D 0:004, pc D 0:125 and
�c D 3:5 [41, 58]. These parameters can be modified with considerations as
detailed below.

• ˇw is important for adjusting the liquid-gas density ratio, since �l=�g D .1 Cp
ˇw/=.1�

p
ˇw/. Theoretically, ˇw can be chosen such that the density ratio

is � 1000, which is the case for most liquid-gas systems. In practice, however,
this is not possible with the algorithms described thus far. The highest density
ratio is limited to � 10. This is due to spurious velocities which act to destabilise
the simulations. We will discuss this issue in Sect. 9.4.1 and Sect. 9.4.2, together
with approaches that have been developed to reduce these spurious velocities,
and hence achieve realistic density ratios.

• Combined with ˇw, we can choose �c to tune the actual values of the liquid and
gas densities, since �l,g D �c.1˙

p
ˇw/.

• Given the choices for ˇw and �c, we can use � and pc to control two physically
meaningful variables: the interface width � D p

��2c=.4ˇwpc/ and the surface
tension �lg D 4

3

p
2�pc.ˇw/

3=2�c. In LBM we usually want the interface width
� to be � 2 � 3 lattice spacings. Anything smaller will result in the interfacial
profile being resolved very poorly. Larger � is in principle better, but this makes

354 9 Multiphase and Multicomponent Flows

the simulation very expensive, since any relevant physical length scale in the
simulation should be at least an order of magnitude larger. Similar to the density
ratio, the possible values of the surface tension are usually limited by spurious
velocities. As a rule of thumb, the generated spurious velocity increases with the
chosen surface tension. In the Landau model, the surface tension (in lattice units)
is usually taken to be �lg � O.10�2/ or less.

It is worth noting that one useful advantage of the Landau free-energy model
is that we can compute all equilibrium quantities analytically. This allows us to
initialise the desired liquid and gas domains with appropriate densities given by
�l,g D �c.1˙

p
ˇw/. Furthermore, rather than a step density change, it is advisable

to implement a smooth interface, following the tanh profile9 given in (9.25), with an
interface width � Dp��2c=.4ˇwpc/.

Exercise 9.5 Perform the Young-Laplace test as presented in Sect. 9.1.4. Prepare a
liquid droplet of radius R surrounded by the gas phase in a periodic system. After
the system has equilibriated, measure the bulk liquid and gas densities. Compute the
corresponding bulk pressures from (9.31). You will notice that bulk liquid and gas
densities deviate slightly from � D �c.1˙

p
ˇw/. This is because the interface is no

longer flat, and the deviation is necessary to account for the Laplace pressure. Make
sure you compute these values far from the liquid-gas interface. Repeat this calcula-
tion for several values of droplet radiusR and plot the pressure difference as function
of 1=R. Note the differences between 2D and 3D as pointed out in (9.18). You should
reproduce a similar result to Fig. 9.10 as obtained with the Shan-Chen method.

9.2.1.6 Surface Thermodynamics

In multiphase flows we are often interested in cases where the fluids are in contact
with solid surfaces. In general, the liquid and gas phases can interact differently
with the surface, which results in the liquid phase wetting or dewetting the surface.
The degree of affinity for the liquid and gas phases is often described by the contact
angle, as defined in (9.9).

Similar to the bulk thermodynamics, we have different options to represent the
surface thermodynamics. Following Cahn [59], we choose a surface energy
term

�s D
Z

A
 s dA D �

Z

A
h�s dA (9.50)

(continued)

9In fact, the tanh profile provides a good initial interfacial profile for most multiphase and
multicomponent models.

9.2 Free-Energy Lattice Boltzmann Model 355

where �s is the value of the density at the surface and the integral is taken over
the solid surface in our simulation domain. The parameter h is an effective
interaction potential between the fluid and the solid surface, which we take
to be constant. If h is positive, the fluid molecules interact favourably with
the surface, and as such the liquid phase will be preferred over the gas phase
close to the surface, as it lowers the free energy of the system more than the
gas phase. If h is negative, the solid-fluid interaction is unfavourable, and the
gas phase is preferably close to the solid surface. We will see later in (9.65)
that the parameter h enters the LB equation as a boundary condition for the
density gradient.

To derive an explicit relation between the variable h and the contact angle � , we
will use techniques from calculus of variation. First we will obtain the liquid and
gas densities at the solid surface, followed by the solid-liquid and solid-gas surface
tensions. Then, using Young’s formula in (9.9), we can relate the surface tensions to
the contact angle.

Let us start by computing the free energy changes upon variation in the fluid
density in (9.19). The rationale behind this is that the contact angle is an equilibrium
material parameter, and at equilibrium, the free energy functional is minimised. We
find that

ı� D
Z

V

4pc

�c

�

�

2� � ˇw

�
C �0

�

ı� dV C
Z

V
�.r�/ � .rı�/ dV

�
Z

A
hı�s dA

D
Z

V

4pc

�c

�

�

2� � ˇw

�
C �0 � ���

�

ı� dV C
Z

V
�r � .ı�r�/ dV

�
Z

A
hı�s dA

D
Z

V

4pc

�c

�

�

2� � ˇw

�
C �0 � ���

�

ı� dV

C
Z

A
�
�
.r� � On/ � h

	
ı�s dA: (9.51)

To derive (9.51), we have used the divergence theorem to convert one of the volume
integrals into a surface integral. We have also used the convention that On is the
unit vector normal to the surface (pointing outward, not inward). Now the integrand
for the volume integral is nothing but our definition for the chemical potential in
(9.23). The new term in the presence of a solid surface is the surface integral. Setting

356 9 Multiphase and Multicomponent Flows

ı�=ı�s D 0, which is valid for an equilibrium solution, we obtain

�.r� � On/ D �r?� D h: (9.52)

This sets the gradient of the density normal to the solid surface.
To compute the liquid and gas densities at the solid surface, we will exploit the

so-called Noether theorem [60]. In our context, this allows us to compute a quantity
which is conserved across the spatial dimension at equilibrium:

ı. b C g/

ı.r�/ � r� � . b C g/C �0� D const (9.53)

and therefore

�

2
.r�/2 � pc

�

2� � ˇw

�2 D const D 0: (9.54)

For the last equality, we have used the fact that far from the interface (in the bulk),

� D ˙

p
ˇw and r� D 0. Substituting (9.52) into (9.54), we find that the values

of the density at the surface may take four possible values corresponding to

�;s D �s � �c

�c
D ˙

v
u
u
tˇw ˙ h

s
1

2�pc
: (9.55)

To decide which solutions are physically admissible, let us consider the following
argument. If h > 0, we argued above that the fluid molecules have favourable
interactions with the solid surface. As such, we expect to have a local increase in
the fluid density close to the surface. The relevant solutions for the liquid and gas
phases are thus

sl D
p
ˇw

s

1C h

ˇw
p
2�pc

D pˇw

p
1C˝; (9.56)

sg D �
p
ˇw

s

1 � h

ˇw
p
2�pc

D �pˇw

p
1 �˝ (9.57)

where we have defined ˝ D h=.ˇw
p
2�pc/. It is also straightforward to see that

for h < 0 the above solutions give us a local decrease in fluid density close to the
surface.

The solid-liquid and solid-gas surface tensions can be calculated similarly to
the liquid-gas surface tension in (9.26), except that now we also have to take into
account the contributions from the surface energy term. For the solid-liquid surface
tension, assuming a flat solid interface at x D 0, we find

�sl D �h�sl C
Z 1

0

pc

�

2� � ˇw

�2 C �

2
.r�/2

�

dx: (9.58)

9.2 Free-Energy Lattice Boltzmann Model 357

To evaluate this integral, we take advantage of Noether’s theorem given in (9.54)
and use a change of variables such that

Z 1

0

"

pc

�

2� � ˇw

�2 C �

2

�
d�

dx

�2
#

dx D
Z
l

sl

�c

p
2�pc

�
ˇw �
2�

��

d
�:

(9.59)
After some algebra, it is then possible to show that

�sl D �h�c C �lg

2
� �lg

2
.1C˝/3=2 (9.60)

with �lg given in (9.26).
The solid-gas surface tension can be derived in a similar way, and we obtain

�sg D �h�c C �lg

2
� �lg

2
.1 �˝/3=2: (9.61)

The contact angle follows from substituting the values of the surface tensions into
Young’s law in (9.9) to give

cos � D �sg � �sl

�lg
D .1C˝/3=2 � .1 �˝/3=2

2
: (9.62)

Equation (9.62) can be inverted to give a relation between the phenomenological
parameter˝ and the equilibrium contact angle � :

˝.�/ D 2 sgn.�=2 � �/
p

cos.˛=3/Œ1 � cos.˛=3/	 (9.63)

where ˛.�/ D arccos.sin2 �/ and the function sgn.x/ returns the sign of x.
Figure 9.6 shows how ˝ depends on the contact angle � in (9.63).

Fig. 9.6 The
phenomenological parameter
˝ D h=.ˇw

p
2�pc/ as a

function of the contact angle
� , corresponding to (9.63)

358 9 Multiphase and Multicomponent Flows

9.2.1.7 Wetting Boundary Condition

At this point, we have elaborated on the surface thermodynamics required to
introduce preferential wetting between the liquid and gas phases on the solid
surface. When dealing with multiphase flow (similarly multicomponent flow) using
free-energy LBM, in addition to standard no-slip boundary condition for the fluid
velocity, we also need an additional wetting boundary condition.

To realise the wetting condition in the LB equation, we need two key
equations. First, from (9.63) we have an analytical expression relating the
desired contact angle � to the parameter h which is an input in our model:

h D ˇw

p
2�pc˝ D 2ˇw

p
2�pc sgn.�=2� �/pcos.˛=3/Œ1� cos.˛=3/	:

(9.64)

Secondly, the parameter h enters the LB equation through the wetting
boundary condition in (9.52), which sets the gradient of the density normal
to the solid surface:

r� � On D r?� D h

�
: (9.65)

The unit normal vector On points outward, i.e. into the solid.

We note that the boundary condition in (9.65) specifies the normal gradient of
the density at the solid surface. If we use the bounce-back approach to implement
the no-slip boundary condition, then the position of the solid wall is usually halfway
between two lattice nodes, with a fluid (subscript f below) and a solid (subscript s)
node on each side of the wall. A common implementation of the wetting boundary
condition is to assign appropriate density values to the solid nodes neighbouring the
boundary. For example, we can use a standard finite difference scheme to write

r?� D �s � �f

�x
D h

�
; (9.66)

and as such,

�s D �f C h

�
�x: (9.67)

An advantage of this approach is that higher order gradients can be calculated in the
same way as in the bulk, since neighbouring solid nodes are assigned appropriate
density values. For more complex geometries, for example surfaces which do not
follow a lattice axis, the wetting boundary conditions can be implemented in a
similar way. This typically gives a set of linear equations that must be solved

9.2 Free-Energy Lattice Boltzmann Model 359

Fig. 9.7 (a) A typical simulation result for the contact angle test, as discussed in Exercise 9.6. The
white line marks the contour where the local density assumes the value .�l C �g/=2. The contact
angle is measured locally at the contact line where the liquid-gas interface meets the solid. (b)
The comparison between the prescribed and the measured contact angles. Excellent agreement is
obtained apart from very small and very large contact angles. This discrepancy is due to the finite
width of the interface

simultaneously. Furthermore, if a solid node is surrounded by several fluid nodes
(e.g. a corner), its density value can be defined in multiple ways via (9.67). In this
case, we usually then take the average value.

Exercise 9.6 Implement the wetting boundary condition. Following (9.64), com-
pute the suitable value of h for a given contact angle � . This effectively sets the
value of the density gradient normal to the solid surface, as discussed in (9.65). To
set up the simulation, prepare solid nodes at the top and bottom of your simulation
box, as shown in Fig. 9.7a. You may use periodic boundary conditions in the other
directions. Then place a liquid droplet of radius R (use e.g. R D 30�x) surrounded
by the gas phase next to one of the solid planes, and let the system equilibrate. After
the simulation reaches a steady state, measure the contact angle the droplet forms
with the solid surface and compare the result with the prescribed contact angle. This
is best done by fitting the interfacial profile of the droplet to the equation for a circle
(in 2D) or a sphere (in 3D). The contact angle is the angle formed by the liquid-
gas interface and the solid surface. Repeat the simulation for contact angles ranging
from 0ı to 180ı. You should obtain excellent agreement to within 2–3ı for � D 20–
160ı. Larger deviations are observed for very small and very large contact angles,
as shown in Fig. 9.7b.

9.2.2 Binary Fluid Model

We will now move on to a multicomponent system. For simplicity, we will consider
a binary fluid where the fluid is a mixture of two distinct fluid components. Similar

360 9 Multiphase and Multicomponent Flows

to the multiphase model, we will start from the thermodynamics of the model
and then discuss how they translate to the LBM. The techniques to implement the
multicomponent model are largely the same as for the multiphase model. For this
reason, it may be useful for the readers to first read the multiphase free energy
section. The main difference is the need to introduce a new equation of motion for
the order parameter.

9.2.2.1 Bulk Thermodynamics

As introduced in (9.1), we will use the relative concentration � to distinguish the
bulk of one fluid from another. We will use the convention where � D 1 signifies
fluid 1 (e.g. water) and � D �1 fluid 2 (e.g. oil). The isosurface � D 0 then
corresponds to the interface between the two fluids (e.g. oil-water interface). Given
these conventions, we want to construct a free energy functional that has two minima
at � D ˙1 and provides an energy penalty which scales with the area of the fluid-
fluid interfaces. The proportionality constant is the surface tension. We will start
with the bulk properties far away from any solid boundary.

The simplest model for a multicomponent system which captures the
physics mentioned above is given by the following Landau free energy
[42, 61]:

� D
Z

V

�
 b C g

	
dV D

Z

V

c2s� ln �C A

4

�
�2 � 1

�2 C �

2
.r�/2

�

dV:

(9.68)

The first term in the bracket is the ideal gas free energy, and we will assume
here that the density of the two fluids are the same. Otherwise we would
need terms that couple the density � and the order parameter �. For the
multicomponent Landau model, the second term is key, and it is easy to see
that it has two bulk minima at � ˙ 1 for A > 0. When A < 0 the two fluids
are miscible. Extensions to more than two fluid components have also been
proposed, in particular for ternary systems [43, 62, 63]. The final term, the
gradient term, accounts for surface tension.

Let us consider the fluid-fluid interface and derive an analytical expression for
both the surface tension and the interface width. Taking the functional derivative
of the free energy in (9.68) with respect to � leads to an equation for the chemical
potential:

� � ı. b C g/

ı�
D �A� C A�3 � ��� D const: (9.69)

9.2 Free-Energy Lattice Boltzmann Model 361

We know that in equilibrium the chemical potential must be constant in space.
Otherwise there would be a thermodynamic force density corresponding to F D
��r�. We can set the constant in the above equation to zero, � D 0, by taking the
bulk behaviour of fluids 1 or 2, where � D ˙1 and�� D 0.

For simplicity, we shall now assume that the interface between the two fluids is
flat and located at x D 0. The bulk behaviour at x D ˙1 is such that � D ˙1,
respectively.

Equation (9.69) allows an interface solution of the form

� D tanh

xp
2�

!

(9.70)

where � D p
�=A is defined as the interface width. The surface tension of

the interface between fluids 1 and 2 can then be calculated by integrating the
free energy density across the interface. Using (9.70) for the order parameter
profile, we obtain

�12 D
Z 1

�1

A

4

�
�2 � 1

�2 C �

2
.r�/2

�

dx D
r
8�A

9
: (9.71)

9.2.2.2 Surface Thermodynamics

To account for the interactions between the fluids and the solid, here we can
prescribe a surface energy contribution given by [59]

�s D
Z

A
 s dA D �

Z

A
h�s dA (9.72)

where �s is the value of the order parameter at the surface and the integral is taken
over the system’s solid surface. The readers will notice that this has the same form
as for the liquid-gas model, except that s now depends on the order parameter �,
and not the density.

Minimisation of the total free energy functional with respect to � at the
solid boundary leads to a Neumann boundary condition in the gradient of order
parameter �:

�.r� � On/ D �r?� D h: (9.73)

The important consequence of this equation is that the contact angle of the surface
can be implemented by setting the perpendicular derivative of the order parameter.
In our convention, the normal unit vector is pointing outward, into the solid. We

362 9 Multiphase and Multicomponent Flows

leave the derivation of (9.73) to the readers since the mathematical steps are identical
to those for the liquid-gas model in Sect. 9.2.1.

The variable h can be used to tune the contact angle. For h > 0, fluid 1 interacts
favourably with the solid (more wetting) compared to fluid 2. The opposite is true
for h < 0. To derive an explicit relation between the variable h and the contact angle
� , we can exploit Noether’s theorem [60]

ı. b C g/

ı.r�/ � r� � . b C g/ D const (9.74)

to show that

�

2
.r�/2 � A

4

�
�2 � 1

�2 D const D 0: (9.75)

In the last step, we have used the fact that far from the interface (in the bulk), � D
˙1 and r� D 0.

Substituting (9.73) into (9.75), we find that the values of the order parameter at
the surface may take four possible values: �s D ˙.1˙ .2h2=�A/1=2/1=2. To decide
which solutions are physically admissible, let us consider the following arguments.
For fluid 1, the bulk solution is given by � D 1. If h > 0, there is an energy gain
for having higher concentration of fluid 1 at the solid surface such that the order
parameter for fluid 1 at the solid surface �s1 > 1. On the other hand, if h < 0, it is
favourable to have �s1 < 1. A solution satisfying this requirement is

�s1 D C
s

1C
r

2

�A
h: (9.76)

Using similar arguments, we can conclude that for fluid 2, the order parameter at
the solid surface is

�s2 D �
s

1 �
r
2

�A
h: (9.77)

The fluid-solid surface tensions can be calculated in a similar way to the fluid-
fluid surface tension, except that now we also have to take into account the
contributions from the surface energy term. For the tension between fluid 1 and
the solid surface, assuming a flat interface at x D 0, we have

�s1 D �h�s1 C
Z 1

0

A

4

�
�2 � 1

�2 C �

2
.r�/2

�

dx: (9.78)

To evaluate this integral, we take advantage of Noether’s theorem in (9.75) and
introduce a change of variables:

Z 1

0

"
A

4

�
�2 � 1

�2 C �

2

�
d�

dx

�2
#

dx D
Z 1

�s1

"r
A�

2

�
1 � �2

�
#

d�: (9.79)

9.2 Free-Energy Lattice Boltzmann Model 363

Using the definition of �s1 given in (9.76), it is straightforward to show that

�s1 D �12

2

h
1 � .1C˝/3=2

i
(9.80)

where ˝ D h
p
2=.�A/ and �12 D

p
8�A=9. The surface tension between fluid 2

and the solid can be derived in a similar way, and we obtain

�s2 D �12

2

h
1 � .1 �˝/3=2

i
: (9.81)

The contact angle follows from substituting the values of the surface tensions
into Young’s law, (9.9), to give (with � defined as the contact angle of fluid 1)

cos � D �s2 � �s1

�12
D .1C˝/3=2 � .1 �˝/3=2

2
: (9.82)

Equation (9.82) can be inverted to give a relation between the phenomenological
parameter˝ and the equilibrium contact angle � :

˝ D 2 sgn.�=2 � �/
q

cos.˛=3/
�
1 � cos.˛=3/

	
(9.83)

where ˛.�/ D arccos.sin2 �/ and the function sgn.x/ returns the sign of x. This is
exactly the same equation as in (9.63), except for the definition of ˝ D h

p
2=.�A/

in the multicomponent model.

9.2.2.3 Equations of Motion

Before we write down the LB equations for a binary fluid, let us review the
corresponding continuum equations of motion. The fluid motion is described by
the continuity and Navier-Stokes equations, as described in (9.27) and (9.28). The
key additional physics due to the thermodynamics of a binary fluid is contained in
the pressure tensor. The pressure tensor needs to satisfy the condition

@ˇP˛ˇ D �@˛

ı. b C g/

ı�

�

C �@˛

ı. b C g/

ı�

�

: (9.84)

This is a generalisation of (9.29), where in principle we now have two variables, the
density � and the order parameter �, which can vary in space. This equation can be
simplified to

@ˇP˛ˇ D @˛.c2s�/C �@˛�: (9.85)

364 9 Multiphase and Multicomponent Flows

The first term has the same form as the hydrodynamic pressure for the standard
lattice Boltzmann model. The thermodynamic of the multicomponent model is con-
tained in the second term. We remind the reader that, in thermodynamic equilibrium,
the chemical potential has to be the same everywhere. Any inhomogeneity leads to a
body force proportional to the gradient of the chemical potential, driving the system
to equilibrium. Using the definition of � in (9.69), it follows that

P˛ˇ D
�

pb � �
2
.@��/

2 � ��@�@��
�

ı˛ˇ C �.@˛�/.@ˇ�/; (9.86)

pb D c2s�C A

�

�1
2
�2 C 3

4
�4
�

: (9.87)

Equation (9.87) is the equation of state for the binary fluid model. pb can be
interpreted as the bulk pressure far from the interface, where the gradient terms
are zero. In this model, the value of � usually deviates slightly from˙1 in the bulk
when there is a Laplace pressure difference between the two fluid domains.

The order parameter itself evolves through the Cahn-Hilliard equation

@�

@t
C r � .�u/ D r � �Mr�� : (9.88)

This equation is also sometimes called the interface-capturing equation in
multicomponent flows. The second term on the left-hand side is an advection
term, where the order parameter moves along with the fluid. The diffusive
term on the right-hand side accounts for the motion of the order parameter
due to inhomogeneities in the chemical potential. In many cases, the mobility
parameter M is taken to be constant, although in general it is a function of
the fluid order parameter [64, 65]. The mobility parameter is also important
in the context of contact line motion, as it controls the effective contact line
slip length [66].

9.2.2.4 The Lattice Boltzmann Algorithm

We now describe an LB algorithm that solves (9.27), (9.28), and (9.88). For a binary
fluid, we need to define two distribution functions, fi.x; t/ and gi.x; t/, corresponding
to the density and relative concentration of the two fluids. The physical variables are
related to the distribution functions by

� D
X

i

fi; �u˛ D
X

i

fici˛ C F˛�t

2
; � D

X

i

gi; (9.89)

9.2 Free-Energy Lattice Boltzmann Model 365

Here we have chosen to evolve both the density and the order parameter using LBM.
This is not a requirement at all. It is possible to solve the continuity and Navier-
Stokes equations using LBM (via the fi.x; t/ only), and solve the Cahn-Hilliard
equation using a different method (e.g. finite difference).

The equations of motion for multicomponent flows are similar to those for
advection-diffusion systems described in Chap. 8. As usual, the LB algorithm for
multicomponent flows can be broken into two steps. For simplicity, we here use the
BGK collision operator. Extensions to the MRT collision operator follow the same
route as described in Chap. 10. The collision and propagation steps read

f ?i .x; t/ D fi.x; t/ � �t

.fi.x; t/ � f eqi.x; t//C

�

1 � �t
2

�

Fi.x; t/�t;

g?i .x; t/ D gi.x; t/ � �t

�

�
gi.x; t/ � geq

i .x; t/
�
:

(9.90)

and

fi.xC ci�t; tC�t/ D f ?i .x; t/;

gi.xC ci�t; tC�t/ D g?i .x; t/:
(9.91)

f eq
i and geq

i are local equilibrium distribution functions. The relaxation parameters
 and � are related to the transport coefficients
 and M in the hydrodynamic
equations through

 D c2s

�

 � �t

2

�

; (9.92)

M D �
�

� � �t

2

�

(9.93)

where � is a tunable parameter that appears in the equilibrium distribution as shown
below. Since
 and M are positive quantities, the values of the relaxation times and
� have to be larger than�t=2.

Like for the one-component multiphase flows, the physics of surface tension
can be implemented in two different ways. The first approach is to modify the
equilibrium distribution functions f eq

i to fully represent the pressure tensor. The
suitable form of f eq

i for i ¤ 0 is given by

f eq
i D wi�

1C ci˛u˛
c2s
C u˛uˇ

�
ci˛ciˇ � c2sı˛ˇ

�

2c4s

!

Cwi

c2s

�
pb � c2s� � ����

�
C �

X

˛;ˇ

w˛ˇi .@˛�/.@ˇ�/: (9.94)

The form of (9.94) is similar to that of the equivalent equation for the liquid-
gas model in (9.36). The difference is that now pb is given by (9.87), and the

366 9 Multiphase and Multicomponent Flows

relevant gradient terms are for the order parameter � rather than for the density
�. The derivatives are usually approximated through finite difference schemes.
The equilibrium distribution function for i D 0 can be obtained by exploiting
conservation of mass, such that

f eq
0 D � �

X

i¤0
f eq
i : (9.95)

The second approach is to implement a forcing term. As already discussed in
Sect. 9.2.1 for a multiphase fluid, this can be done by either using the pressure
form, F˛ D �@ˇ.P˛ˇ � c2s�ı˛ˇ/, or the potential form, F˛ D ��@˛�. Remember
that @ˇP˛ˇ D @˛c2s� C �@˛�, as given in (9.85). Since the derivatives of the
order parameter (mostly obtained through a finite difference scheme) are only
approximate, these two forms are not exactly identical numerically, therefore
resulting in a loss of exact momentum conservation in the LB scheme.

The potential form requires the computation of third-order derivatives of the
order parameter which are expensive to compute if we want to maintain accuracy.
To alleviate this issue, a common mathematical trick is to rewrite the derivative of
the pressure tensor as [13, 67]

@ˇP˛ˇ D @˛c2s�C �@˛� D @˛
�
c2s�C ��

�
� �@˛�: (9.96)

Thus, a possible hybrid approach is (i) to modify the equilibrium distribution
functions to account for the bulk pressure term corresponding to c2s�C�� and (ii) to
introduce a forcing term given by F˛ D �@˛�. In this case, the suitable equilibrium
distribution functions for i ¤ 0 are

f eq
i D wi�

1C ��

�c2s
C ci˛u˛

c2s
C u˛uˇ

�
ci˛ciˇ � c2sı˛ˇ

�

2c4s

!

: (9.97)

For the equilibrium distribution function geq
i of the order parameter, a comparison

with (8.29) is appropriate. The key difference between the advection-diffusion
equation in Chap. 8 and the Cahn-Hilliard equation is in the form of the diffusion
term. For the latter, we have a term that is proportional to��, whereas for the former
�C where C is the concentration. As such, the equilibrium distribution function geq

i
has to obey

X

i

geq
i D �;

X

i

geq
i ci˛ D �u˛;

X

i

geq
i ci˛ciˇ D ��ı˛ˇ C �u˛uˇ:

(9.98)

9.3 Shan-Chen Pseudopotential Method 367

The form of geq
i that satisfies these conditions is

geq
i D wi

��

c2s
C �u˛ci˛

c2s
C �u˛uˇ

�
ci˛ciˇ � c2sı˛ˇ

�

2c4s

!

.i ¤ 0/ (9.99)

and

geq
0 D � �

X

i¤0
geq
i : (9.100)

Compared to (8.26), the key difference is the term ��=c2s in (9.99). For the Cahn-
Hilliard equation, we have �� rather than the concentration C in the advection-
diffusion equation.

9.2.2.5 A Practical Guide to Simulation Parameters

The Landau free-energy model for a binary fluid is simple. There are only two free
parameters: � and A. They can be varied to tune the interface width � D p�=A and
the surface tension �12 D

p
.8�A/=9. Similar to the liquid-gas model, the interface

width is usually chosen to be � 2 � 3 lattice spacings, and the surface tension (in
lattice units) is limited to �12 D O.10�2/ or less due to the presence of spurious
velocities.

For the binary model, we also have to choose the values of � and � which
control the mobility parameter M in the Cahn-Hilliard equation via M D �

.���t=2/. A common practice is to set � D �t such that the distribution functions
for gi.x; t/ are always relaxed to equilibrium, which simplifies the algorithm. The
parameter � can be varied across a wide range of values, typically � D 10�2 � 10,
while keeping the simulation stable.

Exercise 9.7 Repeat the Laplace pressure and contact angle benchmarks, as dis-
cussed in Exercises 9.5 and 9.6, for the binary fluid model.

9.3 Shan-Chen Pseudopotential Method

As we have discussed in Sect. 9.1, there are several ways to model multiphase or
multicomponent flows within the LBM. For example, in Sect. 9.2 we described
the commonly used free-energy method, a “top-down” approach. We started with
a macroscopic concept, the free energy, and ended up with a force that can lead to
phase separation.

Another way is to introduce a “bottom-up” approach by, e.g., postulating a
microscopic interaction between fluid elements. This could be in the form of

368 9 Multiphase and Multicomponent Flows

interaction potentials that eventually lead to the macroscopic separation of phases.
Historically, this is how the Shan-Chen (SC) model was presented [68, 69].

The advantage of the SC approach is its intrinsic simplicity and mesoscopic
nature. Surface tension is an emergent effect. This is akin to the LBM itself:
LBM is based on simple mesoscopic rules with emergent transport coefficients, in
particular the fluid viscosity. Additionally, for the multicomponent model, each of
several different population sets directly represents a fluid component. This is a very
intuitive approach to multicomponent physics, perhaps more so than the phase order
parameters for free energy.

To keep this overview accessible also to an inexperienced audience, we omit
technical details and refer to the literature instead. For example, for a deep
explanation of the bottom-up approach, we encourage the reader to study [70]. We
also recommend going through general SC review articles, such as [12, 13]. The
earlier articles about the method, e.g. [68, 69, 71], are well worth reading.

We will start by explaining the general SC concepts in Sect. 9.3.1. Then we
will distinguish between the two most important special cases: SC for a single-
component multiphase system (e.g. liquid water and water vapour) in Sect. 9.3.2 and
SC for a multicomponent system without phase change (e.g. a water-oil mixture) in
Sect. 9.3.3. An overview of limitations and available extensions of the SC method
(and the free-energy method), such as spurious currents and limited density ratio,
will be discussed in Sect. 9.4.

9.3.1 General Considerations

In the following we will motivate the SC model and show fundamental concepts and
equations. We will provide the basis for both the multiphase and the multicomponent
cases that are covered in Sect. 9.3.2 and Sect. 9.3.3, respectively.

As a multiphase example, the coexistence of a liquid and a gas phase is caused
by an attractive force between molecules in the liquid phase. The strength of this
intermolecular force is tightly related to the boiling point and the vapour pressure of
the liquid. For example, the dipolar molecules of water show a strong intermolecular
interaction that leads to a relatively high boiling point of 100ıC at normal pressure.
Methane molecules, on the other hand, do not have a permanent dipole, and the
attraction between CH4 molecules is much weaker. As such, the boiling point of
methane at �162ıC is much lower compared to water.

Furthermore, different molecules in a multicomponent mixture (e.g. oil and
water) interact differently with each other: the interaction between two water
molecules is different from the interaction of two oil molecules or even between
a water and an oil molecule.

These considerations raise the question of whether it is possible to simulate
liquid-vapour or multicomponent systems by introducing a suitable local interaction
force between fluid elements. In fact, this is exactly the underlying idea of the SC
model. We will see shortly that the addition of a relatively simple interaction force

9.3 Shan-Chen Pseudopotential Method 369

defined at lattice nodes can be used to model both multiphase and multicomponent
systems with or without surface tension. Of course, not every interaction force is
suitable for this purpose.

Ideally, for multiphase systems, the force should have a thermodynamically
consistent form, i.e. the values of the pressure and the equilibrium densities for
a given temperature should be the same as those derived from thermodynamic
principles using the Maxwell area construction rule (cf. Sect. 9.1). We will get back
to this in Sect. 9.3.2.

Even if we find a suitable force in terms of thermodynamic consistency, it is
not guaranteed that its discretised form allows for stable simulations. It is known
that large surface tensions or large liquid-gas density ratios can lead to numerically
“stiff” forces that cause negative LB populations and therefore instability [12].

In what follows we focus on a multiphase system for simplicity, but the results
can be extended to multicomponent problems. In order to find a functional form
for the interaction force, we have to consider its origin. We can assume that
intermolecular forces act between pairs of molecules and are additive. Therefore,
a higher density of molecules will lead to stronger forces. As a consequence, we
expect that the magnitude of the interaction between fluid elements at x and Qx 6D x
is proportional to �.x/�.Qx/. Additionally, the interaction is a strong function of the
distance between the fluid elements. We can thus introduce a kernel function G.x; Qx/
that carries the information about the spatial dependency of the force. Also, the total
force acting on a fluid element at x is the integral over all possible interaction sites
Qx. We can finally write the interaction force density at x as [68, 72]

FSC.x/ D �
Z

.Qx � x/G.x; Qx/ .x/ .Qx/ d3Qx: (9.101)

Here we have replaced the density � by an effective density function that is
also called the pseudopotential. The prefix “pseudo” indicates that represents
an effective density, rather than the fluid density �.

The reason for using rather than � is the possible numerical instability
mentioned earlier. A widely accepted and often used form of the pseudopotential
is

 .�/ D �0
�
1 � exp.��=�0/

	
(9.102)

with a reference density �0 that in simulation units is mostly set to unity. The
pseudopotential in (9.102) is bounded between 0 and �0 for any value of the density
�. Therefore, the interaction force in (9.101) remains finite, even for large densities.

Exercise 9.8 By performing a Taylor expansion, show that .�/ � � for �� �0.

Another common form of the pseudopotential is simply the fluid density itself:

 .�/ D �: (9.103)

370 9 Multiphase and Multicomponent Flows

In this case there is no bound, and the interaction force in (9.101) can diverge
for large �. There are even more functional forms in use throughout the literature
(cf. Sect. 9.4).

The next step is the spatial discretisation of (9.101). This means that we want
to restrict x and Qx to lattice nodes. Furthermore, we claim that the interaction force
is short-ranged, i.e. fluid elements at x only interact with other fluid elements at Qx
that are in the vicinity. Therefore, G.x; Qx/ D 0 for sufficiently large jx� Qxj. Finally,
G.x; Qx/ should be isotropic and therefore a function of jx � Qxj only.

There exist different discretisations for G.x; Qx/ [72, 73], but the most common
involves interactions between lattice nodes that are connected by one of the vectors
ci�t [74, 75]:

G.x; Qx/ D
8
<

:

wiG for Qx D xC ci�t;

0 otherwise.
(9.104)

The simplest form of the discretised Shan-Chen force for a single compo-
nent is represented through a sum of pseudopotential interactions with nearest
lattice neighbours [68]:

FSC.x/ D � .x/G
X

i

wi .xC ci�t/ci�t: (9.105)

The sum runs over all velocities ci of the underlying lattice (e.g. D2Q9 or
D3Q19, as illustrated in Fig. 9.8) and the wi are the usual lattice weights.
The pseudopotential .x/ is given by (9.102) or (9.103). The coefficient
G is a simple scalar that controls the strength of the interaction. It is
attractive for negative and repulsive for positive G. A more mathematical and
thermodynamic rationale for this force will be provided in Sect. 9.3.2.

Exercise 9.9 The SC model violates local momentum conservation as the interac-
tion force is not local. Show that the global momentum is conserved when the system
is fully periodic. Use the fact that the interaction force between two fluid elements
at x and Qx satisfies Newton’s third law.

The SC model can be easily extended to systems with S fluid components. In this
case, we label different components (e.g. water and oil) with the indices 1 � �; Q� �
S and write

FSC.�/.x/ D � .�/.x/
X

Q�
G� Q�

X

i

wi
.Q�/.xC ci�t/ci�t (9.106)

for the force density acting on component � at location x. The new sum runs over
all S values of Q� , including Q� D � . The coefficients G� Q� D GQ�� with Q� 6D �

9.3 Shan-Chen Pseudopotential Method 371

Fig. 9.8 The Shan-Chen force is often implemented along node pairs that are connected through
one of the lattice vectors ci�t. In D2Q9, the central node interacts with its eight neighbours, as
indicated by the arrows. These nodes can be in the fluid region (circles) or in the solid region
(squares; cf. Sect. 9.3.2 and Sect. 9.3.3 for more details about the treatment of solid boundaries).
To be consistent with the remainder of this book, we distinguish between fluid nodes (white) and
boundary nodes (grey), the latter being neighbours of at least one solid node

denote the molecular interactions between different fluid components. Those are
often repulsive. Each of the fluid components can potentially self-interact; this is
captured by the coefficients G�� . The SC model in (9.106) may thus be used to
model a mixture of two (or more) fluids that could all exist in the liquid and gas
phases, i.e. a multicomponent-multiphase system.

In Sect. 9.3.2 we will discuss in more detail how to use the SC model to simulate
a multiphase system with a single component (i.e. S D 1 and G D G11 6D 0),
while in Sect. 9.3.3 we will discuss multicomponent systems without phase change
(i.e. S > 1 and G�� D 0). We will not consider multicomponent-multiphase
problems in this book (i.e. problems with S > 1 and G�� 6D 0). Those systems
are investigated in [76] and reviewed in section 6 in [12].

9.3.2 Multiphase Model for Single Component

Here we deal with a single fluid component that can coexist in two phases, e.g. liquid
water and water vapour. First we will investigate the physical content of the
SC model in (9.105) and show how it can lead to phase separation and surface
tension. We will then take a closer look at a planar interface and discuss the issue
of thermodynamic consistency within the SC model. Later we will present how
solid boundaries with given wetting properties can be simulated. After providing a

372 9 Multiphase and Multicomponent Flows

summary of the algorithm for SC multiphase systems, we show a classical example:
the Young-Laplace test to obtain the surface tension from the pressure jump across
the interface of a droplet.

9.3.2.1 Physical Interpretation and Equation of State

In Sect. 9.3.1 we argued that the liquid-vapour coexistence is caused by an attractive
interaction between fluid molecules. The SC model in (9.105) is one possible
realisation of an attractive interaction (for negative G) between neighbouring lattice
nodes. Since the equation of state dictates the physical behaviour of the liquid-
vapour system, the key question is which equation of state corresponds to the SC
force.

In the original works of Shan and Chen [68, 72], the equilibrium distribution f eq
i

is taken in its usual form from (3.54). This means that the bulk pressure, i.e. far
away from any interfaces, obeys the isothermal form of the ideal equation of state,
pb D c2s� (cf. Sect. 1.1.3). From thermodynamics we know that the ideal equation of
state cannot invoke liquid-vapour coexistence. Therefore, the SC equation of state
must include additional terms. In fact, the desired phase separation is linked to the
SC force, as we will now investigate in more detail.

Let us first Taylor-expand the pseudopotential .xC ci�t/ about x:

 .xC ci�t/ D .x/C ci˛�t@˛ .x/C 1

2
ci˛ciˇ�t2@˛@ˇ .x/

C1
6
ci˛ciˇci��t3@˛@ˇ@� .x/C : : : (9.107)

Substituting this into (9.105) gives

FSC.x/ D �G .x/
X

i

wici�t
�
 .x/C ci˛�t@˛ .x/

C1
2
ci˛ciˇ�t2@˛@ˇ .x/C : : :

�
: (9.108)

Due to the symmetry of the velocity sets, shown in (3.60), the terms
P

i wici andP
i wicici˛ciˇ vanish.

Including expansion terms from (9.107) up to third order, the continuum
form of the Shan-Chen force becomes [77]

FSC.x/ D �G .x/

c2s�t2r .x/C c4s�t4

2
r� .x/

!

: (9.109)

9.3 Shan-Chen Pseudopotential Method 373

Exercise 9.10 Derive (9.109) by taking advantage of (3.60) for the moments of
the weights wi. Note that the result in (9.109) generally depends on the underlying
lattice structure.

The first term on the right-hand side of (9.109) has the form of a gradient:

� c2s�t2G .x/r .x/ D �c
2
s�t2G

2
r 2.x/: (9.110)

Therefore we can include it in the equation of state.

The equation of state of the multiphase SC model in (9.105) is

pb.�/ D c2s�C
c2s�t2G

2
 2.�/: (9.111)

The SC contribution leads to a non-ideal term that allows for the coexistence
of a liquid and a vapour phase.

Exercise 9.11 Plot the bulk pressure pb.�/ from (9.111) with the pseudopotential
in (9.102). For the sake of simplicity, set �0 D 1, c2s D 1=3 and �t D 1. Show
that, if G < �4, there exist two distinct density values for a given pressure value,
i.e. gas and liquid with respective densities �g and �l can coexist. What happens for
G 	 �4?

The second term proportional to G r� in (9.109) looks nearly like the surface
tension term k�r�� in (9.12). Obviously, we expect deviations when 6D �.

One can show that the SC pressure tensor PSC, which is defined by r � PSC D
r.c2s�/�FSC and has been introduced in Sect. 9.1, assumes the form (setting�t D 1
for simplicity) [77]

PSC
˛ˇ D

c2s�C
c2sG

2
 2 C c4sG

4
.r /2 C c4sG

2
 �

!

ı˛ˇ � c4sG

2
.@˛ /.@ˇ /:

(9.112)
This pressure tensor differs from the thermodynamically consistent pressure tensor
in (9.30). However, the resulting surface tension behaviour and the density profiles
are acceptable for many practical purposes. Furthermore, there exist modifications
of the SC model that allow for improved thermodynamic consistency (cf. Sect. 9.4).

The Shan-Chen force from (9.105) introduces two terms in the Navier-Stokes
equation: one leads to a non-ideal equation of state, (9.111), the other acts

(continued)

374 9 Multiphase and Multicomponent Flows

like a surface tension from (9.12). The single parameter G, which appears in
both terms, can be changed to control the phase separation. This is the reason
why G is sometimes referred to as a temperature-like parameter.

9.3.2.2 Planar Interface and Thermodynamic Consistency

A suitable test for checking thermodynamical consistency is the planar interface
between phases. For the free-energy liquid-gas model, the density profile across
the interface satisfies the Maxwell area construction rule, cf. Appendix A.7. Yet,
we have to investigate thermodynamic consistency in the context of the SC model.
Below we collect the final results of the calculations, with algebraic details shown
in Appendix A.8.

For the Shan-Chen model, there is an expression similar to the Maxwell
area construction rule that allows to obtain the phase transition densities.
The coexistence pressure is

p0 D c2s�g C c2s�t2G

2
 2.�g/ D c2s�l C c2s�t2G

2
 2.�l/: (9.113)

where the liquid and gas densities �l and �g obey

Z �l

�g

p0 � c2s Q� �
c2s�t2G

2
 2. Q�/

!
 0. Q�/
 2. Q�/d Q� D 0: (9.114)

Instead of having the multiplier 1= Q�2 in the thermodynamically consistent
model in (9.7), we now have an expression depending on the pseudopotential
and its derivative, 0.�/= 2.�/, with 0 D d =d�.

The obvious choice to satisfy the thermodynamic consistency is / �.
However, for large liquid-gas density ratios this leads to large gradients and
eventually numerical instability. In Sect. 9.4.2 we show how to choose different
equations of state. For the van der Waals equation of state, for example, the
achievable liquid-gas density ratio with / � is around 10. However, reverting
to the exponential pseudopotential in (9.102) for the same equation of state allows
increasing the liquid-gas density ratio by an additional factor of 3–5.

Although the expressions for the Maxwell area construction rule and its SC
equivalent are different, the phase separation densities �l and �g for the particular
equation of state in (9.111) are similar to their thermodynamically consistent

9.3 Shan-Chen Pseudopotential Method 375

Fig. 9.9 Phase separation
densities for (9.111) with the
pseudopotential in (9.102)
versus the temperature-like
parameter G (in lattice units).
The densities represent the
solution of (9.114)

counterparts in many situations. More particular examples of possible equations of
state are given in [78]. The Peng-Robinson and Carnahan-Sterling equations of state
give practically the same gas and liquid density values while the results obtained
from the van der Waals equation of state are significantly different.

In Fig. 9.9 we present the gas and liquid densities from (9.114) as function of the
temperature-like parameter G. We do not present the thermodynamically consistent
Maxwell-area reconstruction curve, as both curves would be indistinguishable in
this figure.10 We can see that phase separation occurs only for G < �4. The point
at which the liquid and gas densities become equal (G D �4) is called critical
point. For the equation of state in (9.111) with the pseudopotential in (9.102), the
critical density is �crit=�0 D ln 2. Figure 9.9 is widely used to initialise simulations
consistently, i.e. by setting the initial density as �l and �g in the liquid and gas
phases, respectively. For example, for G D �6 the initial densities are �g D 0:056

and �l D 2:659 with the associated liquid-gas density ratio 47.
For the original SC model with the equation of state p D c2s�C c2s�t2G 2.�/=2,

simulations can be stable for G as low as � �7. This defines the achievable
liquid-gas density ratio around 60–80 and the maximum surface tension of 0:1 (in
lattice units) [79]. To reach higher liquid-gas density ratios, one needs to revert to
extensions as covered in Sect. 9.4.

Exercise 9.12 Derive the values of the critical parameters (G and �crit). Use the
fact that for a phase transition the first and second derivatives of the equation of
state pb.�/ with respect to density vanish at the critical point.

Finally, we can compute the SC liquid-gas surface tension at the planar interface
and compare it with its thermodynamic consistent form. The surface tension for an

10Differences usually become visible at low densities when the density is plotted logarithmically.

376 9 Multiphase and Multicomponent Flows

assumed planar interface at x D 0 can be derived from (9.14). Using the pressure
tensor in (9.112), we get

�SC D
Z 1

�1

�
PSC
xx � PSC

yy

�
dx D �c

4
sG

2

Z 1

�1

�
d

dx

�2
dx: (9.115)

The Shan-Chen surface tension for the multiphase model is different from
the thermodynamically consistent one. This reflects the difference between
the SC and the thermodynamically consistent density profiles. However, the
equilibrium bulk density values are often sufficiently similar for practical
applications. Moreover, in reality the interface width is extremely thin
(nanometres), and computational tools such as LBM are not able to resolve
them properly. The diffuse interface method is just a way to describe multi-
phase physics numerically. Researchers are mainly interested in macroscopic
parameters, such as the bulk densities and surface tension, rather than the
exact shape of the interface between phases.

It is not feasible to express the pseudopotential gradient in (9.115) analytically
and derive an expression for the surface tension. Instead, the Young-Laplace test
yields the surface tension without evaluating the integral. We show the Young-
Laplace results for the multiphase model in Sect. 9.3.2.5.

9.3.2.3 Boundary Conditions and Contact Angle

In the fluid domain, the velocity and pressure boundary conditions for the multi-
phase SC model are the same as for the standard LBM (cf. Chap. 5). In addition
to pressure and velocity boundary conditions, we also have to consider multiphase
effects near the boundary.

As pointed out in Sect. 9.1 and Sect. 9.2, fluid interfaces in contact with a solid
boundary will assume a certain contact angle. The easiest way to include solid
nodes with a given wetting behaviour is the introduction of a SC-like interaction
force between solid nodes and boundary nodes (i.e. fluid nodes near solid nodes) as
illustrated in Fig. 9.8:

FSC,s.x/ D �G .x/
solidX

i

wi .�s/ci�t: (9.116)

This force acts on a fluid node at x. The sum runs over all directions ci for which
xCci�t is a solid node. Solid nodes are assigned an effective density �s. The contact
angle at the solid boundary is indirectly controlled by the value of �s.

9.3 Shan-Chen Pseudopotential Method 377

The standard SC force in (9.105) continues to act between neighbouring fluid
nodes. Therefore, we can write the total SC force at a fluid node at x as

FSC.x/ D �G .x/
0

@
fluidX

i

wi .xC ci�t/ci�tC
solidX

i

wi .�s/ci�t

1

A : (9.117)

Solid and fluid nodes are treated on an equal footing; the only difference is that the
density is prescribed at solid nodes. Therefore, the solid treatment is straightforward
and easy to implement.

One needs to be attentive to avoid unnecessary condensation or evaporation near
those boundaries. It is required to have densities consistent with the value forG from
Fig. 9.9. For example, if the effective density is above the critical density �crit, then
the density in the fluid near this boundary will be driven towards the liquid density
�l, thus giving condensation (that may be undesired).

In order to achieve full wetting (contact angle 0ı), we choose the bulk liquid
density for the solid density: �s D �l. For a completely hydrophobic surface (contact
angle 180ı), we select �s D �g. All other contact angles can be realised by taking a
solid density value between these two extremes.

For the free-energy model, the contact angle depends on the order parameter
gradient (cf. (9.65)). A similar expression may be developed for SC involving the
pseudopotential integrals [80]. However, it is difficult to apply in simulations due to
its integral form.

9.3.2.4 Algorithm and Forcing Schemes

We briefly describe the relevant steps of the numerical algorithm for multiphase SC
simulations. The choice of the forcing scheme is particularly important.

One should initialise the domain with gas and liquid densities obtained from
(9.113) (or from Fig. 9.9) for a specific value of G. A common situation is a single
liquid drop in vapour (or a single gas bubble in a liquid). It is recommended to
implement an initially smooth interface. Starting with a density step change at the
interface can cause instability for large liquid-gas density ratios. If the simulation
involves solid boundaries with certain wetting properties, one may initialise a
droplet as a spherical cap at a wall with a contact angle close to its expected value.

Another situation occurs if one is interested in phase separation, i.e. growth of
liquid domains over time. To achieve his, the initial density is taken between �g and
�l, and a small random fluctuation is imposed. For example, if the chosen average
density of the system is N�, one could initialise the density with random values in the
interval N�.1˙ 0:001/, i.e. with a 0:1% perturbation. The tendency of the system to
minimise its interface area will lead to an amplification of these perturbations and
phase separation eventually.

In the following we will only consider the LBGK algorithm. For a short
discussion of the MRT collision operator for multiphase and multicomponent
models, see Sect. 9.4.

378 9 Multiphase and Multicomponent Flows

Each time step of the LB simulation after successful initialisation can be written
as follows:

1. Find the fluid density � DPi fi everywhere.
2. Calculate the SC force density FSC from (9.105). For fluid sites interacting with

a solid wall, apply (9.116) to satisfy the wetting condition. If additional forces,
such as gravity, act on the fluid, sum up all force contributions.

3. Compute the equilibrium distributions f eq
i as usual. This involves the fluid

velocity

u D 1

�

0

@
X

i

fici C F�t

2

1

A (9.118)

where F includes all forces acting on the fluid. The velocity u is taken both as
the equilibrium velocity ueq and as the physical velocity that solves the Navier-
Stokes equation.

4. Use Guo’s approach (cf. Sect. 6.3) to include the force in the collision step. See
below for additional comments.

5. Collide and stream as usual. Hydrodynamic boundary conditions, such as
bounce-back, are included in the normal way (cf. Chap. 5).

6. Go back to step 1.

In fact, the only novelty in this algorithm is the calculation of the SC force from the
density; everything else is the standard LBM with forces. To the LB algorithm, the
SC forces behave as every other external force.

Historically, the force density in the original SC works (and also in many more
recent publications) was implemented via a modification of the equilibrium velocity
without additional forcing terms in the LBE:

ueq D 1

�

0

@
X

i

fici C F

1

A : (9.119)

Although this so-called Shan-Chen forcing approach, which is also discussed in
Sect. 6.4, tends to be more stable, it leads to -dependent surface tension [81].
Therefore, we recommend to follow the algorithm as summarised above. See also
[77] for a recent and careful discussion of forcing in the SC method.

Exercise 9.13 Perform the contact angle test similarly to that explained in Exer-
cise 9.6. To control the contact angle in the SC model, vary the wall density �s

between �g and �l. In contrast to the free-energy model to which Exercise 9.6
applies, it is not possible to set the contact angle in the SC model directly. Measure
the contact angle � for different wall densities �s and produce a diagram �.�s/. As
we cannot compare this curve with theoretical predictions in the SC model, we use
the curve �.�s/ as a constitutive law to find the appropriate wall density for a desired
contact angle.

9.3 Shan-Chen Pseudopotential Method 379

Fig. 9.10 Results of the Young-Laplace test for a liquid droplet in a gas phase. The pressure
difference ıp across the droplet interface is proportional to the inverse droplet radius R with
the surface tension �SC as the proportionality factor. Simulations are shown for three different
interaction parameters G. Pressure difference and surface tension are shown in lattice units.
Simulations involve the standard SC model with the pseudopotential in (9.102) and Guo’s forcing.
The system size is 64�x � 64�x

9.3.2.5 Example: Young-Laplace Test

In Sect. 9.1.2 we have seen that in mechanical equilibrium the curved surface of a
droplet leads to an increase of the interior pressure. For a 2D droplet, the pressure
difference ıp D pl � pg, the surface tension � and the droplet radius R satisfy

ıp D pl � pg D �

R
: (9.120)

Instead of evaluating (9.115) to determine the SC surface tension �SC, we simulate
a liquid droplet in the gas phase11.

We define the droplet radius R as the radial position where the density profile
reaches .�gC�l/=2. Due to the diffuse nature of the interface, other radius definitions
are possible; this would lead to different interpretations of the surface tension. The
pressure is computed from (9.111). We average the pressure over 4 � 4 grid nodes
at the droplet centre and far away from the droplet surface, respectively.

It is common to simulate different droplet radii for fixed G to show that the
measured pressure difference is indeed proportional to the inverse radius. The
surface tension is then obtained from a linear fit. The results for different interaction
parameters G are shown in Fig. 9.10. Note that the Young-Laplace test fails to work

11We could also simulate a gas bubble in a liquid.

380 9 Multiphase and Multicomponent Flows

in the limit of small radii (large �x=R, not shown here). If the radius becomes
comparable to the diffuse interface width, the droplet is not well-defined, and the
pressure difference does not reach its expected value. This problem is more severe
for smaller values of jGj for which the interface width is larger.

9.3.3 Multicomponent Method Without Phase Change

In Sect. 9.3.2 we discussed how the SC model can be used to simulate a single-
component multiphase system containing, e.g., liquid water and water vapour.
In this section we discuss the SC model for miscible or immiscible mixtures
of different fluids, e.g. oil and water. Although there are several similarities
with the multiphase model, the simultaneous treatment of different fluids requires
algorithmic extensions. We will first discuss these changes and then get back to the
physics of multicomponent systems, followed by a revision of boundary conditions
in the context of multicomponent fluids.

This section is mostly based on early works about the SC approach for multicom-
ponent systems [68, 69, 71] with newer developments mentioned in passing. Shan
[82] demonstrated how to derive this model from continuum kinetic theory. For
recent review articles covering several extensions of the LBM for multicomponent
flows we refer to [12, 13]. Also see Sect. 9.4 for a more detailed discussion of the
limitations and extensions of the SC multicomponent method.

9.3.3.1 Shan-Chen Force and Algorithmic Implications

Let us take another look at the general SC interaction force for S components in
(9.106). If we are only interested in the mixture of S ideal fluids, we can assume that
each fluid component � does not interact with itself. Therefore, the SC force only
includes interactions between different fluid components, � 6D Q� :

FSC.�/.x/ D � .�/.x/
X

Q� 6D�
G� Q�

X

i

wi
.Q�/.xC ci�t/ci�t: (9.121)

Here, G� Q� � GQ�� is the interaction strength of fluids � and Q� , and .�/ is the
pseudopotential of component � , e.g. (9.102) or (9.103). Alternatively, we can allow
the sum to run over all pairs, including Q� D � , and set G�� D 0. In principle, there
can be an arbitrary number of fluid components, but the SC model is mostly used
for systems with two components (S D 2 as illustrated in Fig. 9.11). To achieve
(partially) immiscible fluids, the interaction between components must be repulsive
and hence the coupling strengths G� Q� positive. Different components can have
different pseudopotentials.

9.3 Shan-Chen Pseudopotential Method 381

Fig. 9.11 Illustration of the
interaction forces in a
two-component system. At
each lattice node, there exist
two fluid components (grey
and black). The black
component interacts with the
grey component at
neighbouring cells and vice
versa. These force pairs obey
Newton’s third law, illustrated
by the double-headed arrows

In the multicomponent model, we need a set of populations f .�/i for each
component � . Each of these sets of populations obeys the standard LBGK equation

f .�/i .xC ci�t; tC�t/ D f .�/i .x; t/ � f .�/i .x; t/ � f eq
i
.�/
.x; t/

.�/
�t

C
�

1 � �t

2.�/

�

F.�/i .x; t/�t (9.122)

with its own relaxation time .�/ (and therefore viscosity
.�/) and forcing terms
F.�/i as defined below. We will briefly discuss the extension to the MRT collision
operator in Sect. 9.4.

Now we have to discuss how to include the SC forces in the LBE and how to
choose the equilibrium distributions when there is more than one LBGK equation.

9.3.3.2 Fluid Velocity in the Multicomponent Model

The most important change with respect to the single-component LBM involves

the equilibrium distributions f eq
i
.�/
.�.�/;ueq.�//. They are still given by (3.54) where

the density � has to be replaced by the component density �.�/. However, it is not
immediately clear which velocity ueq.�/ to use for the equilibrium distributions since
we have more than one set of populations now.

We can define several velocities. The bare component velocity is given by

u.�/ D 1

�.�/

X

i

f .�/i ci; �.�/ D
X

i

f .�/i : (9.123)

382 9 Multiphase and Multicomponent Flows

The barycentric velocity of the fluid mixture reads [83]

ub D 1

�

X

�

0

@
X

i

f .�/i ci C FSC.�/�t

2

1

A ; � D
X

�

�.�/: (9.124)

This velocity is force-corrected to achieve second-order time accuracy
(cf. Sect. 6.3.2). It is also the physical velocity that has to be taken as the
solution to the Navier-Stokes equation describing the fluid mixture [69].

Just as in the multiphase SC model in Sect. 9.3.2, there are essentially two
different approaches for the multicomponent LB algorithm: Shan-Chen forcing and
Guo forcing. The computation of the SC force density FSC.�/ itself is not affected
by this choice. As this issue is generally not carefully addressed in the literature, we
discuss it in more detail here.

Shan-Chen forcing: In the original works [68, 69, 71], the equilibrium velocity
of component � was chosen as

ueq.�/ D u0 C .�/FSC.�/

�.�/
(9.125)

with a common velocity u0 that is given by the weighted average

u0 D
P

�
�.�/u.�/

.�/

P
�
�.�/

.�/

: (9.126)

This expression becomes particularly simple if all relaxation times are identical:
u0 D P

� �
.�/u.�/=�. The fluid components interact (i) through the SC force in

(9.121) and (ii) by sharing the same velocity u0 in (9.126).

Exercise 9.14 The common velocity u0 has to assume the form in (9.126) to ensure
momentum conservation during collision in the absence of forces [69]. Start from
(9.122) and show that this is indeed the case.

If this so-called SC forcing approach is used, the additional forcing terms F.�/i in
(9.122) have to be set to zero (see also Sect. 6.4). This forcing is easy to implement,
in particular when all components have the same viscosity. In fact, most published
works about SC-based multicomponent systems follow this approach.

The problem with the SC forcing is that it has been shown to lead to -dependent
surface tension [81], which is clearly an unphysical effect.

Guo forcing: A forcing approach that leads to viscosity-independent surface
tension is the extension of Guo’s forcing to multiple components. Sega et al. [83]
carefully derived the correct algorithm. The first ingredient is to use the barycentric

9.3 Shan-Chen Pseudopotential Method 383

fluid velocity in (9.124) for all component equilibrium velocities:

ueq.�/ D ub: (9.127)

Additionally, we have to specify the forcing terms F.�/i in (9.122). They are still
given by (6.14), with the force replaced by the component SC force and the fluid
velocity by the barycentric velocity [83]:

F.�/i D wi

ci˛
c2s
C
�
ci˛ciˇ � c2sı˛ˇ

�
ubˇ

c4s

!

FSC.�/
˛ : (9.128)

Exercise 9.15 Show that (9.127) and (9.128) reduce to the standard Guo forcing
presented in Sect. 6.3 if only a single fluid component exists (S D 1).

Shan-Chen and Guo forcing are equivalent to linear order in the force. Both
methods differ by terms quadratic in FSC.�/. These terms are responsible for the
-dependence of the surface tension of the SC forcing method.

9.3.3.3 Component Forces

So far we have considered systems that are only subjected to SC interaction forces.
Each component � feels the SC force FSC.�/ according to (9.121). Furthermore,
there may be external forces Fext that act on all components, e.g. gravity. In this
case, these forces are distributed to the components according to their concentration:

Fext.�/ D �.�/

�
Fext; � D

X

�

�.�/: (9.129)

The total force felt by component � is then given by

F.�/ D FSC.�/ C Fext.�/: (9.130)

9.3.3.4 Immiscible and (Partially) Miscible Fluids, Surface Tension

To simplify the discussion, let us consider a system with two fluid components
and interaction strength G12. For G12 D 0, both fluids interact only through their
common velocity u0 (in case of SC forcing) or ub (in case of Guo forcing), but
there is no interaction force and the system is an ideal fluid mixture and therefore
completely miscible.

With increasing G12, both components repel each other; above a critical value of
G12, both fluids finally separate and form an interface. The larger G12, the thinner
the interface region. This is shown in Fig. 9.12. If the repulsion was sufficiently

384 9 Multiphase and Multicomponent Flows

Fig. 9.12 Density profiles across the interface between two immiscible fluids. The interface is
located at x D 32�x. Black curves show the density of one component, grey curves the density of
the other component. Symbols are only shown for the black lines to improve readability. Increasing
G12 leads to a sharper interface and a more pronounced demixing of the components. No interface
forms for values G12 � 4 or smaller. Although the total fluid density is not constant across the
interface, the pressure according to (9.131) is constant up to finite difference approximation errors
(both datasets not shown). Results have been obtained by using the pseudopotential in (9.102) and
Guo’s forcing

strong, the fluids would completely demix (completely immiscible). However, in
reality there is always a small amount of fluid 1 in the domain of fluid 2 and the
other way around (partially miscible). Particularly with diffuse interface methods, it
is not possible to achieve completely immiscible fluids. In case of the SC model, the
SC forces would become so large and numerically stiff at some point that component
densities would become negative and the algorithm unstable [12].

In the miscible limit, where G12 is finite but sufficiently small, the system is
characterised by mutual diffusion of the components. Shan and Doolen [69, 84]
have thoroughly investigated the diffusion characteristics and the mixture viscosity
in those systems. Miscible systems with a minority component, i.e. �.�/ � �.Q�/, can
also be simulated with the methods presented in Chap. 8.

The SC model is particularly powerful when the components are immiscible. For
sufficiently large G12, when demixing occurs and interfaces between components
appear, surface tension is an emergent feature of the SC model. Unfortunately, like
in the multiphase model in Sect. 9.3.2, it is not clear a priori what the value of the
surface tension � is for a given choice of the interaction parameter G12. We can
pursue exactly the same strategy as in Sect. 9.3.2 and perform the Young-Laplace
test to find the relation between G12 and � for a given choice of pseudopotential.
In order to undertake the Young-Laplace test, we need to know the pressure of the
multicomponent fluid.

9.3 Shan-Chen Pseudopotential Method 385

The equation of state for the multicomponent SC model in the continuum
limit is [69]

p D c2s
X

�

�.�/ C c2s�t2

2

X

�;Q�
G� Q� .�/ .Q�/: (9.131)

The first term on the right-hand side reflects the ideal gas properties of the
components while the second term denotes the interaction between them. It is
this second term that can lead to phase separation of the components.

The Young-Laplace procedure is similar to that in Sect. 9.3.2. A droplet of one
fluid is placed in the other fluid. Due to the surface tension and the curved droplet
surface, the pressure from (9.131) in the droplet interior is larger then the exterior
pressure. Measuring the pressure difference and the droplet radius allows us to
obtain the surface tension in the usual way.

9.3.3.5 Boundary Conditions and Contact Angle

One of the most important applications of the multicomponent model is the
simulation of flows in porous media where the flow behaviour is dominated by
the interaction of the fluid components with the solid phase. These situations are
commonly encountered in oil recovery and in the textile, pharmaceutical and food
industries [13, 85, 86].

Like in the case of a multiphase fluid in Sect. 9.3.2, the interaction of a
multicomponent fluid with a solid wall requires two main ingredients: (i) the no-
slip condition and (ii) a wetting condition. The former is normally realised by the
simple bounce-back method for all fluid components (cf. Sect. 5.3.3). For the latter
we follow a similar approach as for a multiphase fluid in (9.116). In order to achieve
the desired contact angle � at the solid surface, different fluid components have to
interact differently with the solid. The contact angle satisfies (9.9) where gas “g”
and liquid “l” have to be replaced by fluid 1 and fluid 2.

Martys and Chen [71] proposed an interaction force between fluid and adjacent
solid nodes:

Fs.�/.x/ D �G�s�
.�/.x/

X

i

wis.xC ci�t/ci�t: (9.132)

Here, s.x/ is an indicator function that assumes the values 0 and 1 for fluid and solid
nodes, respectively, and G�s is the interaction strength between fluid component �
and the solid boundary. For a wetting fluid, the interaction should be attractive and
thereforeG�s < 0 [87]. Accordingly, non-wetting fluids should have a positive value

386 9 Multiphase and Multicomponent Flows

of G�s. Taking a binary fluid with a given value of G12 as an example, the contact
angle � can be tuned by varying the two free parameters G1s and G2s.

We can find different fluid-surface force models in the literature, e.g. [12, 88, 89].
Chen et al. [12] proposed a form that is a direct extension of (9.116):

Fs.�/.x/ D �G�s
.�/.x/

solidX

i

wi .�s/ci�t: (9.133)

This model includes a “solid density” �s as another degree of freedom. The solid
density can be used to tweak the contact angle, see [88, 89] for example. If �s is
constant everywhere on the solid, it can be absorbed in the definition of G�s. In that
case, and choosing .�/ D �.�/, (9.132) and (9.133) are equivalent.

Depending on the exact details of the chosen fluid-solid interaction model, it is
generally necessary to run a series of simulations to establish the relation between
the desired contact angle � and the simulation parameters, i.e. G12, G1s, G2s and �s.
Huang et al. [87] carefully investigated the behaviour of the contact angle in a binary
system subject to the force in (9.132). They suggested a simple equation to predict
the contact angle a priori. Their results indicate that the solid interaction parameters
G1s and G2s should be similar in magnitude, G1s � �G2s, although it is in principle
possible to choose different values.

To extract the contact angle from a simulation, we proceed in the same way as
in Sect. 9.3.2. The only difference is that the number of free parameters controlling
the wetting properties is larger in the multicomponent model.

9.4 Limitations and Extensions

All multiphase and multicomponent models are challenging to develop and usually
show a number of limitations. We discuss the most common and most important
limitations of the free-energy and Shan-Chen models and some remedies that have
been suggested. These include spurious currents (cf. Sect. 9.4.1), restricted density
ratio (cf. Sect. 9.4.2), limited surface tension range (cf. Sect. 9.4.3) and viscosity
ratio restrictions (cf. Sect. 9.4.4). The section is concluded with a non-exhaustive
list of extensions in Sect. 9.4.5, showing the breadth of applications that can be
tackled with LB-based multiphase and multicomponent models. We treat the free
energy and the Shan-Chen models side by side as their limitations are of a similar
nature.

9.4 Limitations and Extensions 387

Fig. 9.13 Spurious currents
appearing in the standard
multiphase Shan-Chen
model. A droplet with radius
20�x is located at the centre
of a 2D domain with size
128�x � 128�x. The
interaction parameter is
G D �5:0, and the relaxation
time is D �t. The
pseudopotential is
 D 1� exp.��/. Velocities
with the magnitude less than
10�3�x=�t are eliminated
from the plot

9.4.1 Spurious Currents and Multirange Forces

When simulating a steady droplet, we expect zero fluid velocity everywhere. How-
ever, numerical simulations often reveal a different picture showing microcurrents
(also spurious or parasitic currents) near the droplet interface. This is an unphysical
and therefore undesirable effect. If the magnitude of the spurious currents is large,
they can lead to numerical instability. Spurious currents are a well-known problem
for LB and non-LB methods (see [11] and references therein). A recent review of
spurious currents in LBM is available in [53].

Spurious currents appear both in the free-energy and the Shan-Chen models,
both in multiphase and multicomponent applications [11]. Figure 9.13 shows the
steady spurious currents near the surface of a droplet simulated with the Shan-Chen
multiphase model. A similar profile for spurious currents is also observed for the
free-energy model [51, 53].

Spurious currents are caused by numerical approximations of the surface
tension force [12, 90]. For example, the surface tension force at the interface
of a steady circular droplet should always point towards the centre of the
droplet. If the numerical discretisation is not perfectly isotropic, we expect
tangential force components that drive the spurious currents.

In many cases, the characteristic flow (e.g. due to droplet formation or
phase separation) is significantly faster than the spurious currents. Those

(continued)

388 9 Multiphase and Multicomponent Flows

situations can usually be modelled well without taking additional care of the
spurious currents. Simulations with large liquid-gas density ratios, however,
usually require a special treatment of the spurious currents to avoid numerical
instability.

It is also worth noting that all the strategies discussed in the following are
analysed at equilibrium, with the key assumption that the spurious velocities are
similarly reduced in transient simulations.

9.4.1.1 Shan-Chen Model

We can investigate the anisotropy of the Shan-Chen model analytically. Continuing
the Taylor expansion in (9.107) to higher orders, we can write the Shan-Chen force
on a D2Q9 lattice as a combination of dominating isotropic contributions and an
anisotropic error term [74]:

FSC.x/ D �G .x/
�
1

3
r .x/C 1

18
r� .x/C 1

216
r�2 .x/

�

„ ƒ‚ …
isotropic

CFaniso:

(9.134)
The isotropic terms (up to fourth order) lead to radial forces, while the anisotropic
term (fifth order),

Faniso / G .x/
�
Oex@5x C Oey@5y

�
 .x/; (9.135)

gives rise to a tangential force component and therefore the spurious currents in
Fig. 9.13.

As the spurious currents are caused by the discretisation of the force, possible
improvements could aim at the Shan-Chen force and its discretisation. One approach
is to use a special mean-value approximation of the surface tension force [91].
Another solution is to improve the force isotropy. This approach is called multirange
as it involves larger numerical stencils involving lattice nodes at greater distances
(cf. Fig. 9.14).

The simplest multirange interaction force can be written with two interaction
parameters G1 and G2 [74]:

FSC.x/ D � .x/
2

4G1
X

i2b1

wi .xC ci�t/ci�tCG2
X

i2b2

wi .xC ci�t/ci�t

3

5

(9.136)

9.4 Limitations and Extensions 389

Fig. 9.14 Illustration of multirange stencils for a 2D Shan-Chen model. Increasing the range and
therefore the number of interacting lattice nodes leads to an increasing isotropy order. The standard
Shan-Chen model in (9.105) involves only the D2Q9 neighbours (4th order, solid line). The weights
for the more isotropic numerical stencils are specified in [74]

where the first sum runs over belt 1 (b1, solid line in Fig. 9.14) and the second over
belt 2 (b2, dotted line in Fig. 9.14). Including more and more belts of interacting
lattice nodes decreases the magnitude of the spurious currents. We will come back
to the multirange model in Sect. 9.4.3.

Despite its advantages, the multirange model is computationally more expensive.
Also, boundary conditions need to be modified as there can now be several layers of
solid nodes interacting with a fluid node. Apart from its primary function to increase
isotropy, the multirange model has been employed to simulate emulsions with non-
Newtonian rheology and non-coalescing droplets [92–94].

9.4.1.2 Free-Energy Model

Spurious currents appear in the free-energy model as well, and the root is the
inexactness of discretised numerical stencils for approximating derivatives in the
density or order parameter. Generally there are two common strategies which have
been proposed to reduce spurious velocities in free-energy models. The first strategy,
akin to the Shan-Chen model, is to improve the isotropy of the stencils for the
derivatives [49–51], often at the expense of more computational time. Pooley and
Furtado [51] showed that a good choice of stencil can lead to a reduction in spurious
velocities by an order of magnitude.

As shown in Sect. 9.2, we have several choices to implement the non-ideal
terms in the pressure tensor which account for the physics of surface tension.
So the second strategy is to consider which form of the non-ideal terms can be
discretised with least error. Numerical evidence shows that the forcing approach
tends to perform better in comparison to the pressure tensor approach [51, 55]. For
the forcing approach, we have seen that the non-ideal terms can be written either
in the so-called pressure or potential form. While they are identical analytically,

390 9 Multiphase and Multicomponent Flows

their discretised forms are slightly different. The analysis by Jamet et al. [54] shows
that the difference between the two forms is proportional to gradients of density,
which are exacerbated at the interface. Using the potential form for implementing
the non-ideal terms as a body force, and combining this with isotropic numerical
derivatives for the density, Lee and Fischer [49] showed quite impressively that such
a strategy can reduce the spurious velocities to essentially machine precision. One
valid criticism on using the potential form is that momentum is no longer conserved
exactly [95, 96].

9.4.2 Equation of State and Liquid-Gas Density Ratio

In some multiphase applications it is desirable to achieve large liquid-gas density
ratios. Realistic density ratios seen in nature can be of the order of 103; this
poses significant challenges for numerical stability. For example, the Shan-Chen
multiphase model with its equation of state from (9.111) becomes unstable at
G . �7:0 with a density ratio around 70 [79]. For the standard free-energy model,
the situation is even worse because the surface tension force k�r�� becomes
unstable in the presence of large density differences, and the density ratio is limited
to around 10. This instability is caused by the numerical stiffness of the forces.

The gas and liquid coexistence densites are determined by the equation of state
through the Maxwell area construction rule (cf. Sect. 9.1.1). Thus, a key strategy
to increasing the liquid-gas density ratio is by changing the equation of state.
For the Shan-Chen model, the inclusion of an arbitrary equation of state requires
redefinition of the pseudopotential function [78]. Starting from (9.111), we find

pb.�/ D c2s�C
c2s�t2G

2
 2.�/ H) .�/ D

s
2

c2s�t2jGj
�
pb.�/� c2s�

�
:

(9.137)

The interaction strength G effectively cancels when substituting the pseudopotential
in (9.137) into the Shan-Chen force. One should especially make sure that the
expression under the root remains always positive [12]. This is possible by adopting
a special form of equilibrium functions [70].

In principle, any equation of state can be incorporated into the Shan-Chen model.
However, it is usually suggested to use the Peng-Robinson or Carnahan-Starling
equations of state because they can reach a density ratio up to 103 and the obtained
densities have smaller deviations from their predicted values from the Maxwell
area construction rule. The van der Waals equation of state usually yields a larger
violation of thermodynamic consistency and is not generally recommended [78].

It is possible to make the Shan-Chen model thermodynamically consistent [97].
Such models, however, suffer from instability due to the discretisation of the term
k�r��. This term is potentially unstable when the liquid-gas density ratio (and
therefore the density gradients) are large.

9.4 Limitations and Extensions 391

Recently, Lycett-Brown and Luo [77] showed that the liquid-gas coexistence
behaviour of the Shan-Chen model can be significantly improved when additional
forcing terms are considered. They performed a Chapman-Enskog analysis up to
third order in the force and derived correction terms that remove or improve a
number of shortcomings of the Shan-Chen model (see also Sect. 9.4.3).

For the free-energy model, different equations of state are easily integrated
by modifying the equilibrium functions (cf. (9.36)) or by including the non-ideal
terms as forcing terms (cf. (9.43) and (9.44)). Only changing the equation of state,
however, is inadequate to reach density ratios of the order of 103.

To improve the stability of multiphase free-energy models, several successful
approaches have been developed which share a common thread: they exploit two
distribution functions. Inamuro et al. [98] used one distribution for the density and
another distribution for the predicted velocity without pressure gradient. Every LB
step is then followed by a pressure correction step which is relatively expensive
computationally. Lee and Lin [44] also used two distribution functions to track
the density and pressure, respectively. Lee and Lin’s method does not require a
pressure correction step. However, its implementation is quite complex as it requires
discretisations of many first- and second-order derivatives, as well as different
representations of the surface tension force. Zheng et al. [99] developed a scheme
which is effectively a “hybrid” between the multiphase and multicomponent model.
In their scheme, one distribution function is assigned to the density field and for
solving the hydrodynamic equations of motion. The other distribution belongs to an
order parameter for tracking the liquid-gas interface. In contrast to Sect. 9.2.2 for
the standard binary model where the density is required to be a constant, the fluid
density is allowed to vary between the phases in Zheng et al.’s method.

More recently, Karlin and co-workers [45, 100] developed an entropic LB scheme
for multiphase flow and achieved large density ratios without the need to implement
a pressure correction or an additional set of distribution functions. In entropic LBM,
entropy balance is approximated in the relaxation step at each node, which helps
stabilise the liquid-gas interface.

Multiphase flows are often characterised by low capillary and low Reynolds
numbers. One example is Bretherton flow of long bubbles or fingers in a
microchannel. In this case the liquid-gas density ratio is not the governing
non-dimensional number. As a consequence, the exact density ratio does
not have to be matched and a simple multiphase or a multicomponent model
can be employed. In many situations, it is actually possible to replace a mul-
tiphase model by a multicomponent model with much lower liquid-gas
density ratio [101, 102], thus avoiding numerical instability and undesirable
condensation/evaporation.

392 9 Multiphase and Multicomponent Flows

9.4.3 Restrictions on the Surface Tension

In practical applications, the numerically accessible range of the surface tension
is limited. Large surface tensions can lead to instability, and this issue often goes
hand-in-hand with spurious velocities discussed in Sect. 9.4.1. The magnitude of
the spurious velocities typically increases with the surface tension.

For standard multiphase and multicomponent free-energy models, the highest
achievable surface tension is no more than 0:1 (lattice units). The standard Shan-
Chen model also has a similar limitation; a surface tension of � 0:1 is achievable
for G � �7 beyond which simulations become unstable.

In interface-governed flows, the important dimensionless parameters include the
capillary number Ca D �u=� (u is a characteristic velocity) and the Bond number
Bo D �g`2S=� (g is the gravitational acceleration and `S is a characteristic length
scale, e.g. the system size). While the numerical range of the surface tension in
LBM is limited, the relevant dimensionless numbers can, to some extent, be varied
by changing the other parameters (cf. Sect. 7.3.5).

In the context of surface tension, an advantage of free-energy models is that
the equation of state, the surface tension, and the interface width can all be varied
independently. This is not the case for the original Shan-Chen model where the
parameter G determines both the equation of state in (9.111) and the surface tension
force/ G .�/r� .�/. As such, low values of the surface tension are often linked
to a large interface width and loss of immiscibility (in case of multicomponent
fluids).

To decouple the equation of the state from the surface tension, the Shan-Chen
multirange approach from Sect. 9.4.1 can be used. Starting from (9.136) and a
Taylor expansion as in Sect. 9.3.2, one can show that the equation of state and the
surface tension change to [103]

pb.�/ D c2s�C
c2s�t2A1

2
 2.�/;

� D �c
4
sA2
2

Z �
d

dx

�2
dx

(9.138)

with A1 D G1C 2G2 and A2 D G1C 8G2. By changing G1 and G2 accordingly, the
equation of state and surface tension can be modified independently.

Exercise 9.16 Show the validity of (9.138), following the derivation outlined in the
previous paragraph.

Recent progress in understanding the role of the Shan-Chen force makes it
possible to change the equation of state (and therefore the liquid-gas density ratio),
surface tension and interface width independently and over a wider range than
previously possible [77].

9.4 Limitations and Extensions 393

9.4.4 Viscosity Ratio and Collision Operator

Multicomponent problems often involve fluids with different kinematic viscosities
(or densities). Miscible multicomponent fluids are characterised by their Schmidt
number (ratio of mass and momentum diffusivity). Modelling these systems can
be challenging [104]. The original Shan-Chen model, for example, is limited to a
viscosity ratio of about 5 [105]. For mixtures with density ratios other than unity,
section 6 in the review [12] contains an overview of recent progress in the field.

Due to the well-known restrictions of the BGK collision operator, it is generally
recommended to use MRT for fluid mixtures with large viscosity ratio. Porter et
al. [104] achieved a kinematic viscosity ratio of up to 1000 in the Shan-Chen
model by using MRT and enhanced force isotropy. MRT also helps to reach higher
Reynolds numbers in bubble simulations [106]. While the BGK operator leads to a
fixed Schmidt number, the MRT collision operator can be employed to change mass
and momentum diffusivity independently [107]. Other works involving the MRT
collision operator (both for multicomponent and multiphase, and free energy and
Shan-Chen) include [81, 108–111].

It is worth mentioning that Zu and He [112] suggested a multicomponent model
with density ratio; a feature that is usually neglected in other works.

9.4.5 What Else Can Be Done with These Models?

In this chapter we have deliberately focussed on two-phase and two-component
flows, both using the free-energy and the Shan-Chen approaches. The ideas
developed here can be extended in many different directions, and these are areas of
current active research. We will now highlight some examples, inevitably selective,
of interesting problems.

The simplest extension to models described here is to introduce more fluid
components, and in recent years particularly ternary systems [6, 43, 113, 114] have
attracted growing interest. In fact, we are not limited to “normal” fluids. It is also
possible to extend the model to include surfactants [115, 116]. Surfactants are
amphiphilic molecules; one end of the molecule is hydrophilic (likes water; dislikes
oil), the other hydrophobic (dislikes water; likes oil). Thus, surfactants tend to sit
at the interface between water and oil, and they tend to reduce the water-oil surface
tension. Surfactants are foundational for many industries, from oil recovery to food
and consumer products.

The complexity of fluid dynamical problems is tightly related to the boundary
conditions. There is a large literature base covering systems with, e.g., free surfaces
[117–119], droplet spreading on solid surfaces [120, 121] and Leidenfrost droplets
[122]. The LBM is excellent for handling tortuous boundary conditions, such as for
flow in porous materials [123, 124]. The wetting boundary conditions can also be

394 9 Multiphase and Multicomponent Flows

extended to cases where the solid surfaces are mobile, thus allowing the simulation
of colloidal particles and polymers at fluid-fluid interfaces [83, 89, 125–128].

Many investigations only focus on steady droplets for which conditions at the
domain boundaries do not play an important role. Contrarily, despite some progress
[129], open boundary conditions for multiphase flows have not yet been thoroughly
investigated. Those conditions are important for problems such as droplet formation
and manipulation in microfluidic channels [130, 131]. Pressure boundary conditions
pose a particular challenge as they have to be combined with the modified pressure
due to the non-ideal equation of state. In simulations this can manifest as unexpected
condensation or evaporation.

Throughout this chapter we have mostly neglected phase change. LB models
have been successfully applied to systems with evaporation [132, 133], solidification
[134, 135] and even chemical reactions, e.g. at liquid interfaces [136].

The free-energy approach is particularly popular in the physics community.
Different choices for the free energy can allow for new physics, and there is a wide
range of problems in complex fluids where hydrodynamics is important. Including
curvature energy into the gradient terms allow the study of lamellar phases [137]
and vesicles [138, 139]. The bulk free energy can be modified as well to add more
complex equations of state, e.g. for liquid crystals [140]. The descriptions of these
physical phenomena enter the Navier-Stokes equation through the pressure tensor,
which in turn can be implemented in the LBE through the equilibrium distribution
functions or forcing terms.

9.5 Showcases

We discuss two common multiphase/multicomponent applications and explain how
to simulate them using LB simulations: droplet collisions in Sect. 9.5.1 and wetting
on structured surfaces in Sect. 9.5.2. Both applications are of great relevance for
today’s engineering challenges, such as inkjet printing and functional surfaces.

9.5.1 Droplet Collisions

One important application of multiphase LBM is the collision of droplets, in particu-
lar in an ambient gas phase. This phenomenon occurs in nature, e.g. cloud formation,
and in many industrial areas, such as ink-jet printing and spray combustion in inter-
nal combustion engines. A better understanding of droplet collision helps improving
these industrial processes. For example, the coalescence of droplets impinging on
paper affects the quality of ink-jet printing. There are many experimental works

9.5 Showcases 395

Fig. 9.15 Sketch of two
colliding droplets with radii
R1 and R2. This collision is
shown in the rest frame of the
larger droplet, having the
smaller droplet approaching
with velocity U. Collisions
usually happen with a finite
off-centre distance L

studying droplet collisions [141, 142]. It was found that this phenomenon exhibits a
rich map of collision modes as detailed below.

Collisions of two droplets are characterised by a number of physical parameters,
such as the droplet radii R1 and R2, impact velocity U, off-centre distance L, density
� and viscosity � of both the liquid droplets (denoted by “l”) and the surrounding
gas (denoted by “g”), and surface tension � (cf. Fig. 9.15). From those physical
parameters we can construct relevant non-dimensional groups [141, 143]:

We D U2.m1 C m2/

4��
�
R21 C R22

� ; (symmetric Weber number)

Re D �lU.R1 C R2/

�l
; (Reynolds number)

B D L

R1 C R2
; (impact factor)

R1
R2
;
�l

�g
;
�l

�g
: (radius, density and viscosity ratios)

(9.139)

Many works concentrate on droplets with equal sizes (R1 D R2 D R). Thus, the
Weber and Reynolds numbers simplify to We D �lRU2=.3�/ and Re D 2�lRU=�l,
respectively.

Depending on the value of the collision parameters, different regimes can be
identified [141, 144]. Figure 9.16 shows a droplet collision map obtained from a
large number of experiments. This map can be explained by considering the roles of
surface tension and inertia, and by using the illustrations in Fig. 9.17.

1. Coalescence after minor deformation. If the kinetic energy is small, the gas
between droplets is able to drain and the droplet deformation is small. Thus,
the gas film does not lead to a strong repulsion between the droplets. When the
droplets are close enough, coalescence happens through the van der Waals force.

2. Bouncing. Increasing the kinetic energy (higher Weber number), the gas between
the droplets is not able to drain in time. A high pressure builds up between the
droplets, and the kinetic energy is temporarily stored in the deformed surfaces.
The droplets are pushed back and bounce before coalescence can occur.

396 9 Multiphase and Multicomponent Flows

Fig. 9.16 Collision map for droplets of equal size. Depending on the Weber number and the
impact parameter B, the following regimes can be found: (I) coalescence after minor deformation,
(II) bouncing, (III) coalescence after substantial deformation, (IV) reflective separation and (V)
stretching separation. See the text for more explanation and Fig. 9.17 for illustrations

3. Coalescence after substantial deformation. With further increase of the kinetic
energy, the droplets are substantially deformed. The pressure at the centre of the
film between the droplets is higher than at the outer film region, and it pushes
gas out of the gap. After the gas in the film has sufficiently drained, the droplets
coalesce. At the initial stage of coalescence, the newly formed droplet has a torus-
like shape. Surface tension drives the droplet towards a spherical shape. This
leads to droplet oscillations that are eventually damped by viscous dissipation.

4. Reflexive separation. For even higher Weber number, the droplet oscillation is
not efficiently damped. Due to the large kinetic energy in the system, two liquid
pockets form at opposite ends that drive the droplet apart along the original
collision axis. Surface tension is too weak to balance the inertial force, and the
droplet breaks up into two smaller droplets. Sometimes more droplets are formed
as the filament between the droplets becomes unstable and breaks up into several
satellite droplets.

5. Stretching separation. If the impact parameter B is large, droplet separation can
happen without oscillations as significant parts of the droplets do not interact
with each other. Instead, these droplet parts continue moving in their original
directions. While moving, a filament forms between the droplets. Depending on
the droplet parameters, the filament can either stabilise or disintegrate by forming
small satellite droplets.

The collision map in Fig. 9.16 does not include the viscosity and density ratios;
in fact, these parameters also have a strong effect on the collision outcome. For
example, there is no bouncing regime for water droplets colliding in air, but
bouncing exists for hydrocarbon droplets in air [141]. For more detailed parameter
studies we refer to experimental works [141–143] and numerical studies [144–146].

To conclude this section, we now focus on the role of LBM in droplet collisions.
Numerical studies allow us to obtain important information that is difficult to

9.5 Showcases 397

Fig. 9.17 Droplet collision regimes and mechanisms. See Fig. 9.16 for more details

398 9 Multiphase and Multicomponent Flows

observe experimentally, e.g. mixing of the liquids during droplet collisions. Also,
it is possible to study the influence of viscosity and density ratios which are
usually neglected in experimental works. However, there are several challenges
that LB users need to consider in order to perform successful droplet collision
simulations:

• To realise the droplets’ collision velocity, body forces based on the density
difference between phases acting on the liquid regions are often employed [147].

• The liquid-gas density ratio in experiments is around 500–1000 (e.g. oil or water
droplets in air). To reach such density ratios in simulations, special equations
of state are usually employed (cf. Sect. 9.4), such as Peng-Robinson [146] or
Carnahan-Sterling [144].

• Real-world Weber numbers are usually between� 0 and 100. It is hard to achieve
large values in simulations due to intrinsic velocity and liquid density limitations.
Usually, one needs to reduce the surface tension accordingly, cf. (9.139).

• Diffuse interface methods often lead to problems with droplet coalescence. If the
droplets are close enough, they “feel” each other due to their diffuse interface
shapes. This can lead to premature coalescence. Physical coalescence happens
within the range of the van der Waals force, i.e. 10 nm and therefore orders
of magnitude smaller than the interface thickness in simulations. This issue has
been examined carefully in the context of droplet collisions and the conditions
for coalescence in liquid-liquid systems through high-resolution simulations
having droplet radii up to 200 lattice nodes [148, 149]. It has been suggested
that premature coalescence is one of the possible reasons for the difficulty of
simulating the bouncing regime [144]. Another resolution problem manifests in
the dissolution of thin liquid filaments, such as the lamina between droplets. This
can lead to premature droplet breakup [146].

Overall, droplet collision is an interesting phenomenon with a rich parameter
space. It is a suitable benchmark for multiphase models. Limitations caused by
the diffuse interface method are challenging and often lead to deviations between
experimental and numerical results. More research is still required.

9.5.2 Wetting on Structured Surfaces

One of the primary advantages of the LBM is its ability to handle complex boundary
conditions. This advantage remains for multiphase and multicomponent flows.
Variation in the surface wettability can be implemented easily by applying different
values of the phenomenological parameter h in (9.64) and (9.83) for the free-energy
multiphase and multicomponent models, or by varying the solid density �s and the
solid-fluid interaction parameters G�s for the Shan-Chen models at different surface
lattice sites.

Here we will highlight how LBM can be used to model drops spreading on
chemically and topographically patterned surfaces. There are two complementary

9.5 Showcases 399

perspectives why such modelling is of great scientific interest. First, any real
surface is never perfectly smooth and chemically homogeneous; indeed, surface
heterogeneities are an important consideration in many areas, including oil recovery,
fluid filtration and capillary action in plants [150, 151]. Secondly, it is becoming
increasingly feasible to fabricate surfaces with roughness and heterogeneities in a
controlled and reproducible manner. Thus, instead of being viewed as a problem,
surface patterning has now become a versatile part of a designer toolbox to control
the shapes and dynamics of liquid droplets and interfacial flows [152, 153].

9.5.2.1 Chemical Patterning

We first look at a drop spreading on a chemically patterned surface. For a
homogeneous surface, the droplet’s final state is a spherical cap with a contact angle
equalling the Young angle, as illustrated in Exercise 9.6. This is not the case for
heterogeneous surfaces, however.

Figure 9.18 shows simulation results of drops on a chemically patterned sub-
strate. The surface is lined with hydrophilic and hydrophobic stripes with Young
angles of 45ı and 105ı and widths of 8�x and 24�x, respectively. The drop volumes
have been chosen so that their final diameters were comparable to the stripe width.

Simulations and experiments show that the final drop shape is selected by the ini-
tial impact position and velocity. If the drop can touch two neighbouring hydrophilic
stripes as it spreads, it will reach the “butterfly” configuration, Fig. 9.18a. Otherwise,
it will retract back to the “diamond” pattern, spanning a single stripe, Fig. 9.18b.
Both states are free energy minima but one of the two is a metastable minimum:
which one is metastable depends on the exact choice of the physical parameters.
For more detailed discussion we refer the readers to dedicated articles on this topic
[32, 154, 155].

Fig. 9.18 Drops spreading on chemically striped surfaces. Hydrophilic (45ı) and hydrophobic
(105ı) stripes are shown in dark and light grey, respectively. The drop shapes depend on the initial
impact position and velocity, either spanning across (a) two or (b) one hydrophilic stripes

400 9 Multiphase and Multicomponent Flows

More complex chemical heterogeneities can be modelled in LB simulations.
Such strategies have been proposed, for example, to control drop position in inkjet
printing [156] or to control flow in open microfluidic platforms [157].

9.5.2.2 Topographical Patterning: Superhydrophobic Surfaces

In addition to chemical heterogeneities, surface roughness is important for deter-
mining the wetting properties of a solid surface. A prime example is the so-called
superhydrophobic surface [158]. On a smooth hydrophobic surface, the highest
contact angle that can be achieved is of the order of 120ı, which is attainable
for fluorinated solids (e.g. teflon). When the hydrophobic surface is made rough,
however, higher contact angles are possible. The most famous example of a
superhydrophobic surface is the lotus leaf (superhydrophobicity is often called the
lotus effect) [159], but many other natural materials, such as butterfly wings, water
strider legs, and duck feathers also exhibit this property. We are also now able to
fabricate synthetic superhydrophobic surfaces [160, 161].

It is possible to distinguish two ways in which a drop can behave on a rough
surface. One possibility is for the drop to be suspended on top of the surface
roughness, as shown in Fig. 9.19a. The droplet effectively sees a composite of
liquid-solid and liquid-gas areas. We use ˚ to denote the area fraction of the liquid-
solid contact (and hence 1 � ˚ is the area fraction of the liquid-gas contact). If
the length scale of the patterning is much smaller than the drop size, the effective
liquid-solid surface tension is the weighted average ˚ �sl C .1 � ˚/ �lg. The gas-
solid surface tension is ˚ �sg. Substituting these into Young’s equation, (9.9), gives
us the Cassie-Baxter formula [162]

cos �CB D ˚ cos � � .1 �˚/ (9.140)

where � is the contact angle if the surface was smooth, and �CB is the effective
contact angle. This equation provides an important insight: the presence of the
second term means �CB > � . When the droplet is suspended on top of what is

Fig. 9.19 Final states of drops spreading on topographically patterned surfaces. The material (if
the surface was smooth) contact angle is 120ı and 80ı for panels (a) and (b) respectively. In (a)
the drop is suspended on top of the corrugations, while it penetrates the posts in (b)

References 401

effectively an air mattress, it slides very easily across the surface. The drag reduction
property of superhydrophobic surfaces is also highly superior. Slip lengths as high
as several microns have been reported [163].

The suspended state is not always stable. For example, as we lower the material’s
contact angle, the liquid usually penetrates the corrugation and fills the space in
between the posts, as shown in Fig. 9.19b. In such a case, both the liquid-solid and
gas-solid contact areas are increased by a roughness factor r, which is the ratio of
total area of the textured surface to its projected area. The effective contact angle �W
is therefore given by the Wenzel equation [164]

cos �W D r cos �: (9.141)

This equation suggests that a hydrophilic surface will appear more hydrophilic in
the presence of roughness, and similarly a hydrophobic surface will appear more
hydrophobic. Compared to the case where the liquid is suspended, fluid drag is
strongly increased when liquid penetrates the corrugation. In this collapsed state,
the fluid interface is also strongly pinned by the surface corrugations.

Let us end this section by discussing typical considerations for simulating wetting
on structured surfaces using LBM:

• It is important to get the hierarchy of length scales correctly. Both for chemically
and topographically patterned surfaces, we have (i) the interface width, (ii) the
pattern size, and (iii) the drop radius. Ideally we want to make sure that drop
radius
 pattern size
 interface width, which can be demanding computa-
tionally. In practice, a separation of length scales by an order of magnitude is
adequate.

• There is, in fact, a fourth length scale corresponding to mechanisms for which the
contact line can move. In diffuse interface models, the contact line moves due to
an evaporation-condensation mechanism for the multiphase model [41, 165], and
due to a diffusive mechanism for the multicomponent model [42, 88]. We refer
the readers to [66] for a detailed analysis on the effect of varying the contact line
slip length against the interface width.

• Similar to the previous subsection, capturing realistic density ratios of 500–
1000 can be critical for the accuracy of the simulations, and it is therefore
desirable. However, depending on the applications, we can often get away
with much smaller density ratios, for example when we are only interested in
equilibrium/final configurations, or when the inertial terms in the Navier-Stokes
equation are irrelevant for the problem at hand. For the latter, usually getting the
viscosity ratio right is more important.

References

1. A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, Phys. Rev. A 43(8), 4320 (1991)
2. D. Grunau, S. Chen, K. Eggert, Phys. Fluids A 5(10), 2557 (1993)

402 9 Multiphase and Multicomponent Flows

3. M.M. Dupin, I. Halliday, C.M. Care, J. Phys. A: Math. Gen. 36(31), 8517 (2003)
4. M. Latva-Kokko, D.H. Rothman, Phys. Rev. E 71(5), 056702 (2005)
5. H. Liu, A.J. Valocchi, Q. Kang, Phys. Rev. E 85(4), 046309 (2012)
6. S. Leclaire, M. Reggio, J.Y. Trépanier, J. Comput. Phys. 246, 318 (2013)
7. P. Asinari, Phys. Rev. E 73(5), 056705 (2006)
8. S. Arcidiacono, I.V. Karlin, J. Mantzaras, C.E. Frouzakis, Phys. Rev. E 76(4), 046703 (2007)
9. T.J. Spencer, I. Halliday, Phys. Rev. E 88(6), 063305 (2013)

10. J. Tölke, G.D. Prisco, Y. Mu, Comput. Math. Appl. 65(6), 864 (2013)
11. L. Scarbolo, D. Molin, P. Perlekar, M. Sbragaglia, A. Soldati, F. Toschi, J. Comput. Phys. 234,

263 (2013)
12. L. Chen, Q. Kang, Y. Mu, Y.L. He, W.Q. Tao, Int. J. Heat Mass Transfer 76, 210 (2014)
13. H. Liu, Q. Kang, C.R. Leonardi, S. Schmieschek, A. Narváez, B.D. Jones, J.R. Williams, A.J.

Valocchi, J. Harting, Comput. Geosci. pp. 1–29 (2015)
14. H. Huang, M.C. Sukop, X.Y. Lu, Multiphase Lattice Boltzmann Methods: Theory and

Applications (Wiley-Blackwell, Hoboken, 2015)
15. C.E. Brennen, Fundamentals of Multiphase Flows (Cambridge University Press, Cambridge,

2005)
16. J. Bibette, F.L. Calderon, P. Poulin, Reports Progress Phys. 62(6), 969 (1999)
17. M.J. Blunt, Current Opinion Colloid Interface Sci. 6(3), 197 (2001)
18. A. Faghri, Y. Zhang, Transport Phenomena in Multiphase Systems (Elsevier, Amsterdam,

2006)
19. C.D. Han, Multiphase Flow in Polymer Processing (Academic Press, New York, 1981)
20. A. Gunther, K.F. Jensen, Lab Chip 6, 1487 (2006)
21. C. Wang, P. Cheng, Int. J. Heat Mass Transfer 39(17), 3607 (1996)
22. S. Blundell, K.M. Blundell, Concepts in Thermal Physics (Oxford University Press, Oxford,

2006)
23. M. Doi, T. Ohta, J. Chem. Phys. 95(2), 1242 (1991)
24. T.G. Mason, Current Opinion Colloid Interface Sci. 4(3), 231 (1999)
25. R. Osserman, A Survey of Minimal Surfaces (Dover Publications, New York, 1986)
26. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987)
27. P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops,

Bubbles, Pearls, Waves (Springer, New York, 2004)
28. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University Press,

Oxford, 1989)
29. J.L. Barrat, L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999)
30. D.M. Huang, C. Sendner, D. Horinek, R.R. Netz, L. Bocquet, Phys. Rev. Lett. 101, 226101

(2008)
31. A. Lafuma, Quéré, Nat. Mat. 2, 457–460 (2003)
32. J. Léopoldés, A. Dupuis, D.G. Bucknall, J.M. Yeomans, Langmuir 19(23), 9818 (2003)
33. Z. Wang, J. Yang, B. Koo, F. Stern, Int. J. Multiphase Flow 35(3), 227 (2009)
34. G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas,

Y.J. Jan, J. Comput. Phys. 169(2), 708 (2001)
35. C.S. Peskin, Acta Numerica 11, 479–517 (2002)
36. J. van der Walls, J. Stat. Phys. 20(2), 197 (1979)
37. D. Anderson, G. McFadden, A. Wheeler, Annu. Rev. Fluid Mech. 30, 139 (1998)
38. J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 17(3), 338 (1949)
39. M.R. Swift, W.R. Osborn, J.M. Yeomans, Phys. Rev. Lett. 75, 830 (1995)
40. M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54, 5041 (1996)
41. A.J. Briant, A.J. Wagner, J.M. Yeomans, Phys. Rev. E 69, 031602 (2004)
42. A.J. Briant, J.M. Yeomans, Phys. Rev. E 69, 031603 (2004)
43. C. Semprebon, T. Krüger, H. Kusumaatmaja, Phys. Rev. E 93(3), 033305 (2016)
44. T. Lee, C.L. Lin, J. Comput. Phys. 206(1), 16 (2005)
45. A. Mazloomi M., S.S. Chikatamarla, I.V. Karlin, Phys. Rev. E 92(2), 023308 (2015)
46. G. Gompper, S. Zschocke, Europhys. Lett. 16(8), 731 (1991)

References 403

47. V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.C. Desplat, P. Bladon, J. Fluid Mech. 440, 147
(2001)

48. A. Wagner, Q. Li, Physica A Stat. Mech. Appl. 362(1), 105 (2006)
49. T. Lee, P.F. Fischer, Phys. Rev. E 74, 046709 (2006)
50. T. Seta, K. Okui, JFST 2(1), 139 (2007)
51. C.M. Pooley, K. Furtado, Phys. Rev. E 77, 046702 (2008)
52. Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 46308 (2002)
53. K. Connington, T. Lee, J. Mech. Sci. Technol. 26(12), 3857 (2012)
54. D. Jamet, D. Torres, J. Brackbill, J. Comput. Phys. 182(1), 262 (2002)
55. A.J. Wagner, Int. J. Modern Phys. B 17(01n02), 193 (2003)
56. T. Inamuro, N. Konishi, F. Ogino, Comput. Phys. Commun. 129(1), 32 (2000)
57. D.J. Holdych, D. Rovas, J.G. Georgiadis, R.O. Buckius, Int. J. Modern Phys. C 09(08), 1393

(1998)
58. H. Kusumaatmaja, J. Léopoldés, A. Dupuis, J. M. Yeomans, Europhys. Lett. 73(5), 740 (2006)
59. J.W. Cahn, J. Chem. Phys. 66(8), 3667 (1977)
60. K.F. Riley, M.P. Hobson, S.J. Bence, Mathematical Methods for Physics and Engineering

(3rd edition): A Comprehensive Guide (CUP, Cambridge, 2006)
61. H. Kusumaatmaja, J.M. Yeomans, in Simulating Complex Systems by Cellular Automata, ed.

by J. Kroc, P.M. Sloot, A.G. Hoekstra, Understanding Complex Systems (Springer, New York,
2010), chap. 11, pp. 241–274

62. A. Lamura, G. Gonnella, J.M. Yeomans, Europhys. Lett. 45(3), 314 (1999)
63. Q. Li, A.J. Wagner, Phys. Rev. E 76(3), 036701 (2007)
64. J.W. Cahn, C.M. Elliott, A. Novick-Cohen, Eur. J. Appl. Math. 7, 287 (1996)
65. J. Zhu, L.Q. Chen, J. Shen, V. Tikare, Phys. Rev. E 60, 3564 (1999)
66. H. Kusumaatmaja, E.J. Hemingway, S.M. Fielding, J. Fluid Mech. 788, 209 (2016)
67. J.J. Huang, C. Shu, Y.T. Chew, Phys. Fluids 21(2) (2009)
68. X. Shan, H. Chen, Phys. Rev. E 47(3), 1815 (1993)
69. X. Shan, G. Doolen, J. Stat. Phys. 81(1), 379 (1995)
70. J. Zhang, F. Tian, Europhys. Lett. 81(6), 66005 (2008)
71. N.S. Martys, H. Chen, Phys. Rev. E 53(1), 743 (1996)
72. X. Shan, H. Chen, Phys. Rev. E 49(4), 2941 (1994)
73. M.C. Sukop, D.T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists

and Engineers (Springer, New York, 2006)
74. M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, F. Toschi, Phys. Rev. E

75(026702), 1 (2007)
75. M. Sbragaglia, H. Chen, X. Shan, S. Succi, Europhys. Lett. 86(2), 24005 (2009)
76. J. Bao, L. Schaefer, Appl. Math. Model. 37(4), 1860 (2013)
77. D. Lycett-Brown, K.H. Luo, Phys. Rev. E 91, 023305 (2015)
78. P. Yuan, L. Schaefer, Phys. Fluids 18(042101), 1 (2006)
79. A. Kuzmin, A. Mohamad, S. Succi, Int. J. Mod. Phys. C 19(6), 875 (2008)
80. R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Phys. Rev. E 74(2), 021509 (2006)
81. Z. Yu, L.S. Fan, Phys. Rev. E 82(4), 046708 (2010)
82. X. Shan, Phys. Rev. E 81(4), 045701 (2010)
83. M. Sega, M. Sbragaglia, S.S. Kantorovich, A.O. Ivanov, Soft Matter 9(42), 10092 (2013)
84. X. Shan, G. Doolen, Phys. Rev. E 54(4), 3614 (1996)
85. J. Yang, E.S. Boek, Comput. Math. Appl. 65(6), 882 (2013)
86. H. Liu, Y. Zhang, A.J. Valocchi, Phys. Fluids 27(5), 052103 (2015)
87. H. Huang, D.T. Thorne, M.G. Schaap, M.C. Sukop, Phys. Rev. E 76(6), 066701 (2007)
88. S. Chibbaro, Eur. Phys. J. E 27(1), 99 (2008)
89. F. Jansen, J. Harting, Phys. Rev. E 83(4), 046707 (2011)
90. I. Ginzburg, G. Wittum, J. Comp. Phys. 166(2), 302 (2001)
91. A. Kupershtokh, D. Medvedev, D. Karpov, Comput. Math. Appl. 58(5), 965 (2009)
92. R. Benzi, M. Sbragaglia, S. Succi, M. Bernaschi, S. Chibbaro, J. Chem. Phys. 131(10),

104903 (2009)

404 9 Multiphase and Multicomponent Flows

93. R. Benzi, M. Bernaschi, M. Sbragaglia, S. Succi, Europhys. Lett. 91(1), 14003 (2010)
94. S. Chibbaro, G. Falcucci, G. Chiatti, H. Chen, X. Shan, S. Succi, Phys. Rev. E 77(036705), 1

(2008)
95. Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 83, 036707 (2011)
96. D. Chiappini, G. Bella, S. Succi, F. Toschi, S. Ubertini, Commun. Comput. Phys. 7, 423

(2010)
97. A. Kuzmin, A. Mohamad, Comp. Math. Appl. 59, 2260 (2010)
98. T. Inamuro, T. Ogato, S. Tajima, N. Konishi, J. Comp. Phys. 198, 628 (2004)
99. H. Zheng, C. Shu, Y. Chew, J. Comput. Phys. 218(1), 353 (2006)

100. A. Mazloomi M, S.S. Chikatamarla, I.V. Karlin, Phys. Rev. Lett. 114, 174502 (2015)
101. A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, J. Derksen, Chem. Eng. J. 171, 646

(2011)
102. A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, J. Derksen, Chem. Eng. J. 178, 306

(2011)
103. A. Kuzmin, Multiphase simulations with lattice Boltzmann scheme. Ph.D. thesis, University

of Calgary (2010)
104. M.L. Porter, E.T. Coon, Q. Kang, J.D. Moulton, J.W. Carey, Phys. Rev. E 86(3), 036701

(2012)
105. Q. Kang, D. Zhang, S. Chen, Adv. Water Resour. 27(1), 13 (2004)
106. Z. Yu, H. Yang, L.S. Fan, Chem. Eng. Sci. 66(14), 3441 (2011)
107. M. Monteferrante, S. Melchionna, U.M.B. Marconi, J. Chem. Phys. 141(1), 014102 (2014)
108. K. Premnath, J. Abraham, J. Comput. Phys. 224, 539 (2007)
109. Z.H. Chai, T.S. Zhao, Acta. Mech. Sin. 28(4), 983 (2012)
110. D. Zhang, K. Papadikis, S. Gu, Int. J. Multiphas. Flow 64, 11 (2014)
111. K. Yang, Z. Guo, Sci. Bull. 60(6), 634 (2015)
112. Y.Q. Zu, S. He, Phys. Rev. E 87(4), 043301 (2013)
113. H. Liang, B.C. Shi, Z.H. Chai, Phys. Rev. E 93(1), 013308 (2016)
114. Y. Fu, S. Zhao, L. Bai, Y. Jin, Y. Cheng, Chem. Eng. Sci. 146, 126 (2016)
115. H. Chen, B.M. Boghosian, P.V. Coveney, M. Nekovee, Proc. R. Soc. Lond. A 456, 2043

(2000)
116. M. Nekovee, P.V. Coveney, H. Chen, B.M. Boghosian, Phys. Rev. E 62(6), 8282 (2000)
117. S. Bogner, U. Rüde, Comput. Math. Appl. 65(6), 901 (2013)
118. D. Anderl, S. Bogner, C. Rauh, U. Rüde, A. Delgado, Comput. Math. Appl. 67(2), 331 (2014)
119. S. Bogner, R. Ammer, U. Rüde, J. Comput. Phys. 297, 1 (2015)
120. M. Gross, F. Varnik, Int. J. Mod. Phys. C 25(01), 1340019 (2013)
121. X. Frank, P. Perré, H.Z. Li, Phys. Rev. E 91(5), 052405 (2015)
122. Q. Li, Q.J. Kang, M.M. Francois, A.J. Hu, Soft Matter 12(1), 302 (2015)
123. C. Pan, M. Hilpert, C.T. Miller, Water Resour. Res. 40(1), W01501 (2004)
124. E.S. Boek, M. Venturoli, Comput. Math. Appl. 59(7), 2305 (2010)
125. J. Onishi, A. Kawasaki, Y. Chen, H. Ohashi, Comput. Math. Appl. 55(7), 1541 (2008)
126. A.S. Joshi, Y. Sun, Phys. Rev. E 79(6), 066703 (2009)
127. T. Krüger, S. Frijters, F. Günther, B. Kaoui, J. Harting, Eur. Phys. J. Spec. Top. 222(1), 177

(2013)
128. K.W. Connington, T. Lee, J.F. Morris, J. Comput. Phys. 283, 453 (2015)
129. Q. Luo, Z. Guo, B. Shi, Phys. Rev. E 87(063301), 1 (2013)
130. Z. Yu, O. Hemminger, L.S. Fan, Chem. Eng. Sci. 62, 7172 (2007)
131. H. Liu, Y. Zhang, J. Appl. Phys. 106(3), 1 (2009)
132. T. Munekata, T. Suzuki, S. Yamakawa, R. Asahi, Phys. Rev. E 88(5), 052314 (2013)
133. R. Ledesma-Aguilar, D. Vella, J.M. Yeomans, Soft Matter 10(41), 8267 (2014)
134. D. Sun, M. Zhu, S. Pan, D. Raabe, Acta Mater. 57(6), 1755 (2009)
135. R. Rojas, T. Takaki, M. Ohno, J. Comput. Phys. 298, 29 (2015)
136. P.R. Di Palma, C. Huber, P. Viotti, Adv. Water Resour. 82, 139 (2015)
137. G. Gonnella, E. Orlandini, J.M. Yeomans, Phys. Rev. E 58, 480 (1998)
138. Q. Du, C. Liu, X. Wang, J. Comput. Phys. 198(2), 450 (2004)

References 405

139. J.S. Lowengrub, A. Rätz, A. Voigt, Phys. Rev. E 79, 031926 (2009)
140. C. Denniston, E. Orlandini, J.M. Yeomans, Phys. Rev. E 63, 056702 (2001)
141. J. Qian, C. Law, J. Fluid Mech. 331, 59 (1997)
142. N. Ashgriz, J. Poo, J. Fluid Mech. 221, 183 (1990)
143. C. Rabe, J. Malet, F. Feuillebois, Phys. Fluids 22(047101), 1 (2010)
144. D. Lycett-Brown, K. Luo, R. Liu, P. Lv, Phys. Fluids 26(023303), 1 (2014)
145. T. Inamuro, S. Tajima, F. Ogino, Int. J. Heat Mass Trans. 47, 4649 (2004)
146. A. Moqaddam, S. Chikatamarla, I. Karlin, Phys. Fluids 28(022106), 1 (2016)
147. A.E. Komrakova, D. Eskin, J.J. Derksen, Phys. Fluids 25(4), 042102 (2013)
148. O. Shardt, J.J. Derksen, S.K. Mitra, Langmuir 29, 6201 (2013)
149. O. Shardt, S.K. Mitra, J.J. Derksen, Langmuir 30, 14416 (2014)
150. H. Kusumaatmaja, C.M. Pooley, S. Girardo, D. Pisignano, J.M. Yeomans, Phys. Rev. E 77,

067301 (2008)
151. J. Murison, B. Semin, J.C. Baret, S. Herminghaus, M. Schröter, M. Brinkmann, Phys. Rev.

Appl. 2, 034002 (2014)
152. A.A. Darhuber, S.M. Troian, Annu. Rev. Fluid Mech. 37(1), 425 (2005)
153. H. Gau, S. Herminghaus, P. Lenz, R. Lipowsky, Science 283(5398), 46 (1999)
154. M. Brinkmann, R. Lipowsky, J. Appl. Phys. 92(8), 4296 (2002)
155. H.P. Jansen, K. Sotthewes, J. van Swigchem, H.J.W. Zandvliet, E.S. Kooij, Phys. Rev. E 88,

013008 (2013)
156. A. Dupuis, J. Léopoldés, D.G. Bucknall, J.M. Yeomans, Appl. Phys. Lett. 87(2), 024103

(2005)
157. S. Wang, T. Wang, P. Ge, P. Xue, S. Ye, H. Chen, Z. Li, J. Zhang, B. Yang, Langmuir 31(13),

4032 (2015)
158. D. Quéré, Annu. Rev. Mater. Res. 38(1), 71 (2008)
159. W. Barthlott, C. Neinhuis, Planta 202(1), 1 (1997)
160. J. Bico, C. Marzolin, D. Quéré, Europhys. Lett. 47(2), 220 (1999)
161. A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E.

Cohen, Science 318(5856), 1618 (2007)
162. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)
163. C.H. Choi, C.J. Kim, Phys. Rev. Lett. 96, 066001 (2006)
164. R.N. Wenzel, J. Phys. Colloid Chem. 53(9), 1466 (1949)
165. F. Diotallevi, L. Biferale, S. Chibbaro, G. Pontrelli, F. Toschi, S. Succi, Euro. Phys. J. Special

Topics 171(1), 237 (2009)

Chapter 10
MRT and TRT Collision Operators

Abstract After reading this chapter, you will have a solid understanding of
the general principles of multiple-relaxation-time (MRT) and two-relaxation-time
(TRT) collision operators. You will know how to implement these and how to choose
the various relaxation times in order to increase the stability, the accuracy, and the
possibilities of lattice Boltzmann simulations.

The BGK model is an elegant way to simplify the collision operator of the
Boltzmann equation. However, the simplicity and efficiency of the lattice Boltzmann
BGK collision operator comes at the cost of reduced accuracy (in particular for large
viscosities) and stability (especially for small viscosities). Multiple-relaxation-time
(MRT) collision operators offer a larger number of free parameters that can be tuned
to overcome these problems.

After a short introduction to the main concept of these operators in Sect. 10.1,
we will discuss the advantages of performing relaxation in moment rather than
in population space (Sect. 10.2). These ideas lead to the general MRT algorithm
(Sect. 10.3). We discuss two different approaches, namely the Hermite polynomial
and the Gram-Schmidt procedures, demonstrated for the D2Q9 lattice (Sect. 10.4).
Results for the common 3D lattices are given in Appendix A.6. We also address the
inclusion of forces into the MRT collision operator (Sect. 10.5). The two-relaxation-
time (TRT) collision operator (Sect. 10.6) can be viewed as a reduced MRT model
which is nearly as simple as the BGK model but which still offers significant
advantages. We conclude the chapter with an overview of practical guidelines as
to how to choose the collision model and the relaxation rates (Sect. 10.7).

10.1 Introduction

Under certain conditions, the BGK collision operator approaches its limits of
accuracy and/or stability. For example, stability issues can often occur for large
Reynolds number simulations. In order to avoid increasing the grid resolution, a
common approach to reach large Reynolds numbers is to reduce the viscosity or
to increase the magnitude of the fluid velocity u. As discussed in Sect. 4.4, small

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_10

407

408 10 MRT and TRT Collision Operators

viscosities (i.e. relaxation times =�t close to 1=2) and large velocity magnitudes
(u 6� cs) can lead to stability problems. In the end, the only viable solution for the
BGK collision operator may be to increase the grid size, making the simulations
more computationally expensive.

Furthermore, the accuracy of simulations based on the BGK collision operator
varies with the relaxation time . This is the case for both the bulk LB algorithm
(see Sect. 4.5) and some boundary conditions. For example, the wall location
depends on the numerical value of when the standard bounce-back algorithm
is used (see Sect. 5.3.3). This issue can be easily demonstrated by simulating
a Poiseuille flow [1–3]. The error is found to increase with [4, 5]. This is
a problem especially for porous media simulations where the apparent porosity
strongly depends on the exact wall location [6]. Ideally, one wants to obtain so-
called viscosity-independent numerical solutions [7] which only depend on the
physical parameters (such as the Reynolds number), but not the relaxation time .

The LBM is also known to violate Galilean invariance [8, 9]. Galilean invariance
means that physical phenomena occur in the same way in all inertial systems, i.e. in
systems moving with constant velocities relatively to each other. The reason is that
the second-order Hermite series expansion in (3.54) is not sufficient to guarantee
Galilean invariance [10], causing an O.u3/ error term in the macroscopic dynamics
as shown in Sect. 4.1.

These examples indicate that something else beyond the hydrodynamic level
influences the overall accuracy and stability of the LBM as a Navier-Stokes solver.
We have to understand that the relaxation time is a kinetic parameter, and its
relation to viscosity has to be analysed via the Chapman-Enskog analysis (Sect. 4.1).
Contrarily, all other parameters (e.g. velocity, lattice size) are directly connected
to macroscopic quantities. Essentially, this is the reason why the numerical BGK
solutions (and their stability/accuracy) depend on [7, 11–13].

Since enters the LBE only through the collision operator, the underlying idea
is to revise and improve the collision step to increase the accuracy and stability
of LB simulations. A general requirement for the collision operator to recover the
Navier-Stokes equation is the conservation of density and momentum. So far, we
have considered the simplest form of such an operator: the BGK model. However,
as we will see in the following, it is possible to construct collision operators that
have more degrees of freedom than the BGK operator and can be used to improve
accuracy and stability. The models discussed here are the multiple-relaxation-time
(MRT) and the two-relaxation-time (TRT) collision operators.

Let us now present the main idea behind the MRT and TRT collision operators,
starting from the BGK collision operator. The BGK collision operator uses only one
relaxation rate ! D 1= for all populations, i.e. ˝i D �!. fi � f eq

i /. The first naive
idea is to introduce different collision rates for each population: ˝i D �!i. fi �
f eq
i /. However, it is easy to see that one needs certain constraints to satisfy the

10.1 Introduction 409

conservation laws for density and momentum (in the absence of forces):

0 D
X

i

˝i D �
X

i

!i
�
fi � f eq

i

� H)
X

i

!i fi D
X

i

!i f
eq
i ;

0 D
X

i

˝ici D �
X

i

!i
�
fi � f eq

i

�
ci H)

X

i

!i fici D
X

i

!i f
eq
i ci:

(10.1)

Equation (10.1) is satisfied in the case of the BGK collision operator (!i D !).
For a general situation with distinct values of !i, however, the situation is more
complicated and not obvious. This model is called MRT-L model [7, 13, 14], but we
will skip it due to its complexity.

The next, slightly more sophisticated, idea is to use velocity moments
(Sect. 1.3.5). Let us take another careful look at (10.1) for the BGK operator:

0 D
X

i

˝i D �
X

i

!
�
fi � f eq

i

� D �! �� � �eq
�
;

0 D
X

i

˝ici D �
X

i

!
�
fici � f eq

i ci
� D �! �j � jeq

�
:

(10.2)

Here, the density � and momentum j are the zeroth and first velocity moments. In
the BGK model, all moments are relaxed with a single relaxation rate !. However,
the moments can in principle be relaxed with individual rates. This is the basic
idea behind the MRT collision operators, i.e. to individually control the different
moments’ relaxation to achieve better accuracy and stability.

The major change compared to the BGK model is that MRT collisions are
performed in moment space. Thus, we first have to map the populations fi to moment
space, then collide (i.e. relax) the moments toward equilibrium, and finally map
the relaxed moments back to population space. We will investigate the underlying
mathematics in Sect. 10.2.

There are also other advanced LB collision operators which we will not cover
in this chapter. One example is the regularised collision operator [15–17], which is
based on using a reconstructed f .1/i instead of f neq

i in a BGK-like collision operator; it
can also be equivalently expressed as a type of MRT collision operator [18]. Another
example is entropic collision operators, which are based on defining a lattice version
of the H function described in Sect. 1.3.6 and ensuring that collisions only ever
decrease H [19, 20]. This can be seen as ensuring that entropy always increases
in collisions, thus ensuring that many cases of instability cannot occur. Another
MRT-like method is the central moment (also known as cascaded) method, where
the moments are taken in a reference frame moving with the macroscopic velocity
[21, 22]. Similar to the central moment method is the newer cumulant method,
which individually relaxes cumulants, a set of fully independent properties of the
distribution fi, rather than its moments [23].

410 10 MRT and TRT Collision Operators

10.2 Moment Space and Transformations

We will now sketch the general mathematical procedure behind the MRT collision
operators. In particular, transformations from population to moment space and back
will be covered.

In Sect. 3.4 (cf. (3.57)) we introduced moments as certain summations over
populations with Hermite polynomials:

a.n/ D
X

i

H.n/
i fi: (10.3)

We can use a similar definition here and say that the moment mk in a DdQq velocity
set can be found through a q � q matrix as:

mk D
q�1X

iD0
Mki fi for k D 0; : : : ; q � 1. (10.4)

This equation can be rewritten in vector-matrix form:

m D Mf ; m D

0

B
B
@

m0
:::

mq�1

1

C
C
A ; M D

0

B
B
@

M0;0 � � � M0;q�1
:::

: : :
:::

Mq�1;0 � � � Mq�1;q�1

1

C
C
A ; f D

0

B
B
@

f0
:::

fq�1

1

C
C
A :

(10.5)

The matrix M with elements Mki can also be interpreted as a q-tuple of row vectors
Mk.Mk;0; : : : ;Mk;q�1/, with mk D Mk �f . Generally speaking, one obtains q moments
mk from the q populations fi through the linear transformation from population
space to moment space in (10.5).

The basic idea behind the MRT collision operator is to relax moments (rather
than populations) with individual rates. By carefully choosing the transformation
matrix M, the obtained moments mk can be made to directly correspond to
hydrodynamic moments. Thus, it is possible to affect those hydrodynamic terms
(density, momentum, momentum flux tensor, etc.) individually by choosing different
distinct relaxation rates. In contrast, the BGK collision operator relaxes all moments
with one relaxation rate ! D 1= .

So far, we have not yet specified how the MRT operator looks like in detail, but
we do know that the BGK operator is the special case of the MRT collision operator
with identical relaxation rates, all equal to !. We can use this relation to derive the
MRT operator from the BGK operator.

First we write the LBGK equation in vector form:

f .xC ci�t; tC�t/� f .x; t/ D �! �f .x; t/ � f eq.x; t/
�
�t: (10.6)

10.2 Moment Space and Transformations 411

The collision step is not changed when multiplied by the identity matrix I D M�1M
(assuming that M can be inverted):

f .xC ci�t; tC�t/� f .x; t/ D �M�1M!
�
f .x; t/ � f eq.x; t/

	
�t

D �M�1!
�
Mf .x; t/ �Mf eq.x; t/

	
�t

D �M�1!I
�
m.x; t/ �meq.x; t/

	
�t

D �M�1S
�
m.x; t/ �meq.x; t/

	
�t:

(10.7)

Here, we have introduced a diagonal matrix S D !I D diag.!; : : : ; !/ and the
equilibrium moment vector meq D Mf eq.

Let us take a detailed look at (10.7). The expression S.m�meq/ is the relaxation
of all moments with one rate !. The result is then multiplied by the inverse matrix
M�1. This step represents the transformation from moment space back to population
space. The left-hand-side of (10.7) is the usual streaming step.

The fact that the matrix S contains only one parameter ! reflects that the BGK
operator is a single-relaxation model. It is straightforward to introduce individual
collision rates for every moment, which leads to a relaxation matrix

S D

0

B
B
B
B
@

!0 0 : : : 0

0 !1 : : : 0
:::
:::
: : :

:::

0 0 : : : !q�1

1

C
C
C
C
A
: (10.8)

Using such a relaxation matrix S to relax the moments as S.m�meq/ represents the
core of an MRT collision operator.

The basic idea behind the MRT collision operator is a mapping from popula-
tion to moment space via a transformation matrix M. This allows moments
rather than populations to be relaxed with individual rates (in the form of
a relaxation matrix S). The relaxed moments are then transformed back to
population space where streaming is performed as usual. This procedure is
shown in Fig. 10.1.

In Sect. 10.3 we will present the MRT algorithm more thoroughly, but first we
must discuss the moments and their meaning. We know that the density and the
momentum are conserved. Those conserved quantities could act as moments in the
MRT framework.

412 10 MRT and TRT Collision Operators

Fig. 10.1 Schematic representation of the MRT LBM. Populations are mapped to moment space
where collision (relaxation) takes place. Relaxed moments are transformed back to population
space before streaming. The superscript ? denotes post-collision values

For example, the zeroth moment corresponds to the density:

m0 D � D
X

i

fi: (10.9)

By expanding the zeroth order in terms of populations m0 DPi M0;ifi, one can find
the entire first row of the matrix M as M0;i D 1. Since the first row is related to the
density �, we introduce the notation M�;i D M0;i (i D 0; : : : ; q � 1).

Next we have momentum, which has two components in 2D and three in 3D. For
the x-component we can write:

m1 D jx D �ux D
X

i

ficix: (10.10)

A similar equation holds for m2 D jy and also for m3 D jz in 3D. From this we can
find the components of the matrix M corresponding to the momentum: Mj˛ ;i D ci˛
with ˛ 2 fx; yg in 2D and ˛ 2 fx; y; zg in 3D.

For the transformation matrix M we have specified so far only three row vectors
in 2D and four row vectors in 3D. To specify the other moments (and therefore the
other missing rows of the matrix M), different approaches can be used. The two
most common approaches are covered below. Another one is to reconstruct vectors
of the matrix M from the tensor product of velocity vectors for one-dimensional
lattices. This approach is used for entropic lattice Boltzmann models [24], and it is
not covered here.

• Hermite polynomials: the most straightforward approach is to employ Her-
mite polynomials which are also used in the discretisation of the continuous
Boltzmann equation as shown in Sect. 3.4. The moments can be taken as
the Hermite polynomials H.n/.ci/. Density corresponds to the zeroth order
polynomial, and the various components of momentum are in the first-order
polynomial. Other Hermite moments are at least of second order in velocity.
Despite its straightforwardness, this approach is not very common. It is mainly
used for the D2Q9 lattice [25–27].

10.3 General MRT Algorithm 413

• Gram-Schmidt procedure: this is based on the idea of constructing a set of
orthogonal vectors. We start the process with the vectors for the known moments
(density � and momentum j). The next step is to take a combination of the
velocity vectors ci˛ of appropriate order and find the coefficients in such a way
that the resulting vector is orthogonal to all previously found ones. By repeating
this process, one can construct the entire matrix Mki consisting of orthogonal row
vectors Mk.

Each approach is thoroughly presented in Sect. 10.4 where we will construct M
for the D2Q9 lattice. The corresponding Gram-Schmidt matrices for D3Q15 and
D3Q19 can be found in Appendix A.6.

Both approaches provide consistent ways to obtain all moments mk. The linear
independence of vectors guarantees that M can be inverted, i.e. M�1 exists.
Moreover, the corresponding vectors Mk are mutually orthogonal. Orthogonal-
ity guarantees that the hydrodynamic moments mk are uniquely defined. As a
consequence, moments can be independently relaxed, which in turn provides the
necessary flexibility to tune accuracy and stability.

Though vectors are orthogonal in both bases, there is a difference. For the Gram-
Schmidt vectors (denoted by G), orthogonality means

q�1X

iD0
GMki

GMli D 0 for k ¤ l: (10.11)

In the case of the Hermite polynomials (denoted by H), the vectors are orthogonal
when weighted with the lattice weights wi:

q�1X

iD0
wi

HMki
HMli D 0 for k ¤ l: (10.12)

Now that we have discussed the moment space, we will discuss the individual
steps of the MRT algorithm in the next section.

10.3 General MRT Algorithm

Once we know the transformation matrix M and the relaxation matrix S, which
includes all the relaxation rates !k, we can perform the MRT algorithm as sketched
in Fig. 10.1.1 Explicitly, this algorithm can be written as

f .xC ci�t; tC�t/ � f .x; t/ D �M�1SM
�
f .x; t/ � f eq.x; t/

	
�t; (10.13)

1In the following we will only explain the force-free algorithm; the inclusion of forces is discussed
in Sect. 10.5.

414 10 MRT and TRT Collision Operators

and it can be logically split up into the following steps:

1. Compute conserved moments: The density � and momentum j D �u can be
obtained from the pre-collision populations as usual:

� D
X

i

fi; �u D
X

i

fici: (10.14)

2. Transform to moment space: The moments mk are obtained from the popula-
tions fi via

m D Mf ; mk D
X

i

Mki fi: (10.15)

3. Compute equilibrium moments: The equilibrium moments can be straight-
forwardly computed as meq D Mf eq. Alternatively, one can also construct
equilibrium moments more precisely and efficiently from the known moments
� and �u using a general polynomial representation:

meq
k D �

X

l;m;n

ak;lmnu
l
xu

m
y u

n
z : (10.16)

We discuss how to obtain the coefficients ak;lmn below. Exact forms of the
equilibrium moments are given in Sect. 10.4.1 for the Hermite polynomial
approach and in Sect. 10.4.2 for the Gram-Schmidt approach.

4. Collide: Once the moments m and meq have been calculated, collision is
performed in moment space in a BGK relaxation manner:

m?k D mk � !k
�
mk �meq

k

�
�t: (10.17)

Note that collision does not have to be performed for the conserved moments
since they are not changed during collision, i.e. � D �eq and j D jeq. An exception
is the presence of mass or momentum sources (e.g. forces which will be discussed
in Sect. 10.5).

5. Transform to population space: After relaxation, the post-collision populations
are obtained using the inverse transformation:

f ?i D
X

k

M�1
ik m?k : (10.18)

Given a matrix M, its inverse M�1 can be computed directly using any mathe-
matical package.

6. Stream: Finally, streaming is performed in population space:

fi.xC ci�t; tC�t/ D f ?i .x; t/: (10.19)

10.3 General MRT Algorithm 415

Let us provide a few comments about the algorithm above. For the efficient
computation of the equilibrium moments meq

k one needs to find the coefficients
ak;lmn. Recall that the equilibrium populations f eq

i from (3.54) are given by conserved
moments � and �u as

f eq
i D wi�

�
1C ci˛u˛

c2s
C 1

2c4s

�
ci˛ciˇ � c2s

�
u˛uˇ

�
: (10.20)

The “brute force” matrix-vector multiplication, i.e. meq
k D

P
i Mki f

eq
i [28], provides

the macroscopic equilibrium moments up to second order in velocity, i.e. lCnCm �
2 in (10.16). However, if we multiply each row vector Mk in the matrix M with
the equilibrium function f eq analytically, we can find the coefficients ak;lmn. Thus,
we can find analytical expressions for the equilibrium moments as functions of the
density � and velocity u. This approach is much more efficient than using the brute
force approach in every time step.

One limitation of the “brute force” method is that velocity terms in the equilib-
rium moments are only up to second order in u due to the lack of higher-order terms
in f eq

i . Sometimes it is desirable to include terms of third or even higher orders in
velocity, for example to improve accuracy, stability or Galilean invariance [10]. In
Chap. 3 we presented the expression for Hermite polynomial moments (cf. (3.57)).
We also mentioned that only Hermite polynomials up to the second order in velocity
are required to satisfy the conservation rules. However, one can calculate higher-
order Hermite polynomial equilibrium moments. Those equilibrium moments and
their corresponding Hermite polynomials can be included into the MRT approach.
We underline here that those equilibrium moments are known exactly due to the
Gauss quadrature rule.

There is one caveat. Only a few higher-order discretised Hermite polynomials are
distinct. This is connected to the degeneracy of the velocity set, which we discussed
in Sect. 4.2.1; i.e., c3i˛ D ci˛.�x

�t /
2 for the common velocity sets presented in this

book. Thus, as we will see later in Sect. 10.4.1, only equilibrium moments up to the
fourth order in velocity are constructed in this approach.

In general, any MRT vector Mk (not necessarily obtained through Hermite
polynomials or Gram-Schmidt procedures) can be represented as a linear
combination of Hermite vectors: Ml DPk blk

HMk. For each of the Hermite
vectors, we know exactly the associated equilibrium moment from Sect. 3.4.4
(see also (3.66)). This allows construction of the equilibrium moments for an
arbitrary matrix M.

Surprisingly, the MRT model can be implemented with only 15–20% compu-
tational overhead compared to the BGK implementation [29]. For example, the
calculation of the equilibrium moments for MRT has the same overhead as the

416 10 MRT and TRT Collision Operators

calculation of the equilibrium functions for BGK. This is because of the density
and the momentum being calculated through populations, which are then similarly
used to calculate the equilibrium moments. Also, the components of M and M�1 are
known and constant, so the calculation of moments m D Mf and reverting collided
moments M�1m back to populations can be done efficiently through vector-matrix
multiplication. It is also possible to compute the non-equilibrium populations first,
followed by the application of the matrix M�1SM. Streaming is the same operation
for the BGK and the MRT collision operators.

10.4 MRT for the D2Q9 Velocity Set

We will now present the MRT model for the D2Q9 velocity set in more detail. Note
that the matrices that will be presented in this section depend on the ordering of
the velocities. We will follow the ordering of Sect. 3.4.7, but different choices of
velocity order can be found in the literature, which would lead to matrices with
differently ordered columns. In this section we will also simplify the notation by
adopting “lattice units”, so that �x D �t D 1 and c2s D 1

3
.

In Sect. 10.4.1 we will discuss the Hermite polynomial procedure, which also
allows us to find the exact form of equilibrium moments beyond the second order in
u. In Sect. 10.4.2, we will investigate the Gram-Schmidt procedure. Finally we will
discuss both methods in Sect. 10.4.3.

10.4.1 Hermite Polynomials

In the Hermite approach, denoted by H, the moment row vectors HMk correspond to
Hermite polynomials of the LBM velocities ci. For D2Q9, we can write

HM�;i D H.0/ D 1;
HMjx;i D H.1/

x D cix;
HMjy;i D H.1/

y D ciy;

HMpxx;i D H.2/
xx D cixcix � c2s ;

HMpyy;i D H.2/
yy D ciyciy � c2s ;

HMpxy;i D H.2/
xy D cixciy;

HM�x;i D H.3/
xyy D cixc

2
iy � c2scix;

HM�y;i D H.3/
yxx D ciyc

2
ix � c2sciy;

HM�;i D H.4/
xxyy D c2ixc

2
iy � c2sc

2
ix � c2sc

2
iy C c4s :

(10.21)

We have introduced several subscripts denoting the nine moments �, jx, jy, pxx,
pxy, pyy, �x, �y and � . While the first six are the components of the macroscopic
density, momentum vector and stress (or pressure) tensor, the additional moments
�x, �y and � are higher-order moments that do not affect the Navier-Stokes

10.4 MRT for the D2Q9 Velocity Set 417

level hydrodynamics. They are sometimes called “non-hydrodynamic” or “ghost”
moments [30, 31]. The nine vectors HMk in (10.21) are orthogonal according to the
condition specified in (10.12).

Substituting the numerical values of the D2Q9 velocity set, including c2s D 1
3
,

(10.21) can be written as the transformation matrix HM:

HM D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

HM�
HMjx
HMjy

HMpxx
HMpyy
HMpxy
HM�x
HM�y
HM�

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 1 1 1 1 1 1 1 1

0 1 0 �1 0 1 �1 �1 1

0 0 1 0 �1 1 1 �1 �1
� 1
3

2
3
� 1
3

2
3
� 1
3
2
3

2
3

2
3

2
3

� 1
3
� 1
3

2
3
� 1
3

2
3

2
3

2
3

2
3

2
3

0 0 0 0 0 1 �1 1 �1
0 � 1

3
0 1

3
0 2

3
� 2
3
� 2
3

2
3

0 0 � 1
3
0 1

3
2
3

2
3
� 2
3
� 2
3

1
9
� 2
9
� 2
9
� 2
9
� 2
9
4
9

4
9

4
9

4
9

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: (10.22)

The equilibrium moments are simple functions of the density � and velocity u.
Using (3.43), the equilibrium moments are calculated exactly:

�eq D �; jeq
x D �ux; jeq

y D �uy;
peq
xx D �u2x ; peq

yy D �u2y ; peq
xy D �uxuy;

� eq
x D �uxu2y; � eq

y D �u2xuy; � eq D �u2xu2y :
(10.23)

In this way, we can avoid having to compute meq from Mf eq in each time step.
The matrix HM�1 can be easily obtained by inverting HM analytically using any

computer algebra system or by numerical matrix inversion.2 We thus find:

HM�1 D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

4
9

0 0 � 2
3
� 2
3
0 0 0 1

1
9

1
3

0 1
3
� 1
6
0 � 1

2
0 � 1

2
1
9

0 1
3
� 1
6

1
3

0 0 � 1
2
� 1
2

1
9
� 1
3

0 1
3
� 1
6
0 1

2
0 � 1

2
1
9

0 � 1
3
� 1
6

1
3

0 0 1
2
� 1
2

1
36

1
12

1
12

1
12

1
12

1
4

1
4

1
4

1
4

1
36
� 1
12

1
12

1
12

1
12
� 1
4
� 1
4

1
4

1
4

1
36
� 1
12
� 1
12

1
12

1
12

1
4
� 1
4
� 1
4

1
4

1
36

1
12
� 1
12

1
12

1
12
� 1
4

1
4
� 1
4

1
4

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: (10.24)

2Alternatively, because of the orthogonality condition (10.12) one can represent each column of
M�1 through the corresponding row vector of M. We leave this as an exercise for an interested
reader.

418 10 MRT and TRT Collision Operators

The last missing piece of the puzzle is the relaxation matrix HS. It is almost
diagonal. One can show through the Chapman-Enskog procedure that in order
to recover the Navier-Stokes equation the relaxation matrix HS should have the
following form for D2Q9 [32]:

HS D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0
!�C!

2

!��!

2

0 0 0 0

0 0 0
!��!

2

!�C!

2

0 0 0 0

0 0 0 0 0 !
 0 0 0

0 0 0 0 0 0 !�˛ 0 0

0 0 0 0 0 0 0 !�˛ 0

0 0 0 0 0 0 0 0 !�

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: (10.25)

The relaxation rates for conserved moments (density and momentum) are arbitrary;
they are chosen as zero here.

A Chapman-Enskog analysis of the resulting MRT collision operator ˝ D
� HM�1 HS HM is briefly covered in Appendix A.2.3. Through the analysis we
recover a macroscopic Navier-Stokes equation

@t.�u˛/C @ˇ.�u˛uˇ/ D �@˛pC @ˇ
"

�
�
@ˇu˛ C @˛uˇ

�C
�

�B � 2�
3

�

ı˛ˇ@�u�

#

;

(10.26)

with neglected O.u3/ error terms and pressure p, shear viscosity �, and bulk
viscosity �B given by

p D �c2s ; � D �c2s
�
1

!

� 1
2

�

; �B D �c2s

1

!�
� 1
2

!

� �
3
: (10.27)

Unlike in the BGK model, shear and bulk viscosity can be chosen independently.
This is a clear advantage of MRT over BGK. In particular, when the Reynolds
number is large (and the shear viscosity small), increasing the bulk viscosity can
stabilise simulations by attenuating any spurious pressure waves more quickly. (The
effect of viscosity on pressure waves will be covered further in Sect. 12.1.)

For the higher order moments �x and �y, the same relaxation rate !�˛ is taken
to satisfy isotropy. Therefore, there are four independent relaxation rates. Only two
of them are related to physical quantities. The relaxation rates !�˛ and !� do not
appear in the leading-order terms, but they can be tuned to increase accuracy and
stability [10, 27, 30].

10.4 MRT for the D2Q9 Velocity Set 419

In conclusion, the above expressions for the matrices HM, HM�1 and HS, together
with the equilibrium moments in (10.23), can be used directly in the general MRT
implementation detailed in Sect. 10.3.

10.4.2 Gram-Schmidt Procedure

The Gram-Schmidt approach is more widely used in the LB literature than the
Hermite polynomial approach. The underlying idea of the Gram-Schmidt procedure
is to construct a set of orthogonal vectors to form the transformation matrix M.
Note that we seek these vectors to be directly orthogonal without any corresponding
weights unlike the Hermite approach in (10.12).

We start with a set of q linearly independent vectors fvng with n D 0; : : : ; q � 1.
These vectors are generally not mutually orthogonal. The Gram-Schmidt procedure
maps these vectors to a set of q other vectors fungwhich are all mutually orthogonal,
through the following process:

u0 D v0;

u1 D v1 � u0
u0 � v1
u0 � u0 ;

u2 D v2 � u0
u0 � v2
u0 � u0 � u1

u1 � v2
u1 � u1 ;

: : :

uq�1 D vq�1 �
q�2X

iD0
ui

ui � vq�1
ui � ui

:

(10.28)

This algorithm essentially projects each vector vn onto a direction which is
orthogonal to that of all previous vectors um<n.

Exercise 10.1 Show that all vectors fung are mutually orthogonal.

We seek the initial vector set fvng in the form cnixc
m
iy. Notice that the pair of

coefficients .n;m/ D .0; 0/ is the vector (1, 1, 1, 1, 1, 1, 1, 1, 1) related to density �.
Pairs .n;m/ D .0; 1/ and .n;m/ D .1; 0/ give us vectors (0, 1, 0, �1, 0, 1, �1, �1,
1) and (0, 0, 1, 0, �1, 1, 1, �1, �1) related to x- and y-components of momentum j.
Those vectors are already orthogonal in the sense of (10.11).

The next step is to find the remaining six vectors for D2Q9. We have already
shown in Sect. 4.2.1 that there are three distinct polynomials of second order
corresponding to .n;m/ D .1; 1/; .2; 0/; .0; 2/, two third-order polynomials corre-
sponding to .n;m/ D .2; 1/; .1; 2/, and one fourth-order polynomial corresponding
to .n;m/ D .2; 2/. This gives nine linearly independent vectors in total.

420 10 MRT and TRT Collision Operators

Now we can perform the Gram-Schmidt procedure to reduce these initial vectors
to a set of nine mutually orthogonal vectors. We will only show the result of the
procedure. Taking the notation GMk for the final Gram-Schmidt vectors, the set of
orthogonal vectors is as follows [9]:

GM�;i D 1; GMe;i D �4C 3
�
c2ix C c2iy

�
;

GM�;i D 4 � 21
2

�
c2ix C c2iy

�
C 9

2

�
c2ix C c2iy

�2
;

GMjx;i D cix;
GMqx;i D

�

�5C 3
�
c2ix C c2iy

��

cix;

GMjy;i D ciy;
GMqy;i D

�

�5C 3
�
c2ix C c2iy

��

ciy;

GMpxx;i D c2ix � c2iy;
GMpxy;i D cixciy:

(10.29)

The moments GMkf correspond to the physical quantities; i.e., � is the density, jx
and jy are components of momentum flux, qx and qy correspond to the energy flux
components, e and � correspond to the energy and the energy squared, pxx and
pxy correspond to the diagonal and off-diagonal components of the stress tensor.
Replacing the velocities ci˛ by their numerical values, we can write the Gram-
Schmidt transformation matrix:

GM D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

GM�
GMe
GM�
GMjx
GMqx
GMjy
GMqy
GMpxx
GMpxy

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 1 1 1 1 1 1 1 1

�4 �1 �1 �1 �1 2 2 2 2

4 �2 �2 �2 �2 1 1 1 1

0 1 0 �1 0 1 �1 �1 1

0 �2 0 2 0 1 �1 �1 1

0 0 1 0 �1 1 1 �1 �1
0 0 �2 0 2 1 1 �1 �1
0 1 �1 1 �1 0 0 0 0

0 0 0 0 0 1 �1 1 �1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: (10.30)

The next step is to find the equilibrium moments meq in the Gram-Schmidt basis.
One way is the rather complicated linear wave number analysis as presented in [9].
Another route followed here is to represent the Gram-Schmidt vectors by Hermite
vectors whose equilibrium moments are already known. In fact, the Gram-Schmidt

10.4 MRT for the D2Q9 Velocity Set 421

vectors can be written as linear combinations of the Hermite vectors:

GM.�/
i D HM.�/

i ; GM.e/
i D �2C 3

�
HM.pxx/

i C HM
.pyy/
i

�
;

GM.�/
i D 9 HM.�/

i � 3
�

HM.pxx/
i C HM

.pyy/
i

�
C HM.�/

i ;

GM.jx/
i D HM.jx/

i ; GM.qx/
i D 3 HM.�x/

i � HM.jx/
i ;

GM
.jy/
i D HM

.jy/
i ; GM

.qy/
i D 3 HM

.�y/

i � HM
.jy/
i ;

GM.pxx/
i D HM.pxx/

i � HM
.pyy/
i ; GM

.pxy/
i D HM

.pxy/
i :

(10.31)

Thus, one can work out the corresponding Gram-Schmidt equilibrium moments as
function of density and velocity:

�eq D �; eeq D � � 3�
�
u2x C u2y

�
; �eq D 9�u2xu2y � 3�

�
u2x C u2y

�
C�;

jeq
x D �ux; qeq

x D 3�u3x � �ux; jeq
y D �uy;

qeq
y D 3�u3y � �uy; peq

xx D �
�
u2x � u2y

�
; peq

xy D �uxuy: (10.32)

The inverse matrix GM�1 can be obtained from GM by the help of any mathemat-
ical package:

GM�1 D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1
9
� 1
9

1
9

0 0 0 0 0 0
1
9
� 1
36
� 1
18

1
6
� 1
6
0 0 1

4
0

1
9
� 1
36
� 1
18

0 0 1
6
� 1
6
� 1
4
0

1
9
� 1
36
� 1
18
� 1
6

1
6

0 0 1
4

0
1
9
� 1
36
� 1
18

0 0 � 1
6

1
6
� 1
4
0

1
9

1
18

1
36

1
6

1
12

1
6

1
12

0 1
4

1
9

1
18

1
36
� 1
6
� 1
12

1
6

1
12

0 � 1
4

1
9

1
18

1
36
� 1
6
� 1
12
� 1
6
� 1
12

0 1
4

1
9

1
18

1
36

1
6

1
12
� 1
6
� 1
12

0 � 1
4

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: (10.33)

The relaxation matrix in the Gram-Schmidt basis assumes the diagonal form

GS D diag
�
0; !e; !�; 0; !q; 0; !q; !
; !

�
: (10.34)

Zero relaxation rates above are for the conserved moments of density and momen-
tum, !e and !
 are connected with bulk and shear viscosities, and !� and !q are
free parameters to tune. As shown in Sect. A.2.3, this recovers the Navier-Stokes

422 10 MRT and TRT Collision Operators

equation

@t.�u˛/C @ˇ.�u˛uˇ/ D �@˛pC @ˇ
"

�
�
@ˇu˛ C @˛uˇ

�C
�

�B � 2�
3

�

ı˛ˇ@�u�

#

;

(10.35)

with neglected O.u3/ error terms. Pressure p, shear viscosity �, and bulk viscosity
�B are given by

p D �c2s ; � D �c2s
�
1

!

� 1
2

�

; �B D �c2s
�
1

!e
� 1
2

�

� �
3
: (10.36)

10.4.3 Discussion of MRT Approaches

MRT vectors: each velocity set has spurious invariants that are not found with
a continuous velocity space. This was covered in Sect. 4.2.1. As a result of such
invariants, only a limited number of independent Hermite polynomials can be
obtained for discretised velocity sets. This number does not necessarily coincide
with the number of velocity directions [33]. For D2Q9 and D3Q27 the number of
Hermite polynomials equals the number of velocities, but for D3Q15 or D3Q19 this
is not the case. Missing vectors have to be constructed, and this is usually done with
the Gram-Schmidt procedure. This is one of the reasons why the Gram-Schmidt
approach is more widely used than the Hermite approach.

Equilibrium moments: only the Hermite approach provides a relatively easy
way to find analytical higher-order equilibrium moments than those found directly
from the second-order equilibrium as meq

k D Mkf eq. Thus, any arbitrary set of
MRT vectors can be represented as linear combinations of Hermite vectors to obtain
the equilibrium moments. This approach is significantly simpler than obtaining the
moments from a linear wavenumber analysis [9].

In both approaches, some analytical equilibrium moments meq
k contain third-

or fourth-order terms in u. In contrast, the equilibrium moments found directly
as meq

k D Mkf eq are of second order, yet they are still sufficient to recover the
Navier-Stokes equation. Thus, one common approach is to neglect all equilibrium
moment terms of order u3 and u4 [9]. Although there are some indications that
keeping higher-order terms can improve stability [27, 34], these are only minor
improvements.

One difference between the two approaches is that the equilibrium moments
in the Hermite polynomial approach are in increasing order in the macroscopic
velocity u. In the Gram-Schmidt approach, however, polynomials of different order
are mixed, as can be seen in (10.32).

10.5 Inclusion of Forces 423

Relaxationmatrix: We have seen that the Gram-Schmidt relaxation matrix GS in
(10.34) is diagonal, while the Hermite relaxation matrix HS in (10.25) is only nearly
diagonal. This is an additional reason why the Gram-Schmidt approach is normally
preferred.

We will discuss the choice of the relaxation rates for both relaxation matrices HS
and GS and provide more practical advice on improving stability and accuracy in
Sect. 10.7. However, we have already seen one clear advantage: the MRT collision
operator allows tuning shear and bulk viscosities independently. Increasing the
bulk viscosity can often improve stability by damping underresolved hydrodynamic
artefacts [29, 35, 36].

10.5 Inclusion of Forces

So far we have assumed that the momentum is conserved during collision. This is no
longer the case when external forces are present. We will now give a brief overview
of how to include forces in the MRT collision model.

Let us start by recalling forcing in the BGK model:

fi.xC ci; tC 1/ D fi.x; t/ � �t

�
fi.x; t/ � f eq

i .x; t/
�C Si.x; t/�t: (10.37)

As thoroughly discussed in Chap. 6, the effect of an external force density Fext can
be included in the equilibrium distributions f eq

i and/or the additional source term Si.
This depends on the chosen forcing model. For MRT, the following implementations
are common.

Simple Forcing: The simplest approach is to approximate Si by

Ssimple
i D 3wiFext � ci: (10.38)

One can easily add this force contribution to the right-hand-side of the MRT
equation:

f? D f �M�1S
�
m �meq��tC Ssimple�t: (10.39)

Note that the equilibrium velocity used to calculate the equilibrium moments meq
k is

not shifted, i.e. �ueq DPi fici. However, the Navier-Stokes equation is reproduced
via the Chapman-Enskog analysis with the shifted macroscopic physical velocity
according to �up DPi fici C �t

2
Fext (cf. Chap. 6).

424 10 MRT and TRT Collision Operators

Guo Forcing: Guo’s model [37] for the BGK collision operator leads to

SGuo
i D

�

1 � �t

2

�

wi

ci � up

c2s
C .ci � up/ ci

c4s

!

� Fext D
�

1 � �t

2

�

Fi; (10.40)

where we have introduced the abbreviation Fi. Again, the physical velocity is given
by �up DP

i fici C �t
2

Fext. Furthermore, the equilibrium velocity is also shifted in
the same way: �ueq D P

i fici C �t
2

Fext. In the MRT model, one can use a similar
form for the force contribution [2, 38]. The relaxed moments then become

m?k D mk � !k�t
�
mk �meq

k

�C
�

1 � !k�t

2

�

MkF: (10.41)

The forcing term Fi is first transformed to momentum space, and then its contribu-
tion to the corresponding moment is multiplied by 1�!k�t=2. After relaxation, the
moments are transformed back to population space via f? D M�1m?, followed by
the normal streaming. For D2Q9, the result of the matrix-vector multiplication MF
in (10.41) is given by [2, 39]:

HMF D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0

Fext
x

Fext
y

2Fext
x up

x

2Fext
y up

y

Fext
x up

y C Fext
y up

x

0

0

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; GMF D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0

6
�
Fext
x up

x C Fext
y up

y

�

�6
�
Fext
x up

x C Fext
y up

y

�

Fext
x

�Fext
x

Fext
y

�Fext
y

2Fext
x up

x � 2Fext
y up

y

Fext
y up

x C Fext
x up

y

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: (10.42)

Other Forcing Schemes: An implicit formulation of the force inclusion is given
in [40, 41]. This approach is similar to Guo’s. Another MRT force implementation
can be found in [42] where only the momentum is shifted without a need to
introduce the source term Si.

10.6 TRT Collision Operator

The two-relaxation-time (TRT) model (Sect. 10.6.1) combines the algorithmic
simplicity of the BGK operator and improved accuracy and stability properties of the
more general MRT model. We discuss the implementation of TRT in Sect. 10.6.2.

10.6 TRT Collision Operator 425

10.6.1 Introduction

The MRT model provides a great deal of flexibility in tuning the relaxation of
individual moments. However, the number of free MRT parameters may be large
and confusing from the perspective of an average LBM user. For example, for D2Q9
MRT there are two free relaxation rates to tune, and for D3Q15 and D3Q19 MRT,
presented in Appendix A.6, there are even more free parameters. As these relaxation
rates do not affect the macroscopic equations, it is not obvious how these rates
should be tuned to achieve better accuracy or stability.

So far optimal MRT parameters have only been obtained numerically through
parameter studies. One such example is the three-dimensional shear wave propaga-
tion study [29], which found the parameter values !e�t D 1:19, !��t D !��t D
1:4, !q�t D 1:2 and !m�t D 1:98 to give optimal stability for D3Q19 MRT
(cf. Appendix A.6). However, in more general situations it is almost impossible or
at least impractical to perform a parameter study or a linear stability analysis to
optimise accuracy and/or stability.

Fortunately, there exists a collision model that combines the accuracy and
stability advantages of the MRT model and the simplicity of the BGK model: the
two-relaxation-time (TRT) model [1, 7, 43] requires only two relaxation rates. The
first relaxation rate is related to the shear viscosity, the other is a free parameter.
Having only two rates significantly simplifies the mathematical analysis of accuracy
and stability.

The TRTmodel is a simplification of the MRT model. All moments related to
even-order polynomials in velocity (i.e. �, pxx, pyy, pxy, etc.) are relaxed with a
rate !C, and odd-order moments (i.e. jx, jy, �x, �y, etc.) with another rate !�.

Two relaxation rates can cure the BGK collision operator’s “disease” where
the accuracy errors depend on the relaxation rate !. Previously in Sect. 4.5 we
presented the complicated dependency of the accuracy error on D 1

!
. The spatial

accuracy error is proportional to . � �t=2/2; and the time accuracy error also
depends on . Because the viscosity depends on (i.e. !), the error is said to
be dependent on viscosity. Especially, high viscosities (!�t ! 0) drastically
deteriorate accuracy. Performing simulations across different values of while
keeping all other parameters fixed (i.e. grid number, macroscopic velocity, etc.),
may give significantly different errors. Usually, to guarantee consistent errors across
simulations one needs to simultaneously tune the relaxation rate !, the grid number
N and to a smaller extent the macroscopic velocity u. In contrast, for the TRT
collision operator it can be shown that the accuracy error depends on a certain
combination of the two relaxation rates !C and !�.

426 10 MRT and TRT Collision Operators

The so-called magic parameter � characterises the truncation error and
stability properties of the TRT model. It is a function of the TRT relaxation
rates !C and !�:

� D
�

1

!C�t
� 1
2

��
1

!��t
� 1
2

�

: (10.43)

Thus, controlling the accuracy is drastically simplified with the TRT collision
operator. If one needs to guarantee the same accuracy errors for simulations
where the viscosity changes, then there is no need to tune a number of
parameters like the grid number and the macroscopic velocity. The only thing
required is to keep � fixed while changing the viscosity through !C by
correspondingly changing the free parameter !� [14].

One can show [7, 11, 43, 44] that the higher-order truncation errors of the steady-
state TRT model scale with�� 1

12
(third-order error) and�� 1

6
(fourth-order error).

Thus, there exist specific values of � that improve accuracy and stability. We will
get back to specific numerical values of � in Sect. 10.7. An example of an optimal
parameter choice leading to TRT’s superiority is shown by a simulation of diffusion
in Sect. 8.6.1.

10.6.2 Implementation

We will now provide the algorithmic details of TRT and show that it can be as
computationally efficient as the BGK model, while offering more control over
accuracy and stability.

Naive implementation: as we have already mentioned, one can use the MRT
model with !C for all even-order moments and !� for all odd-order moments. This
implementation is as computationally “heavy” as the original MRT model, but it is
a good starting point for optimising MRT relaxation rates.

Standard implementation: the TRT model is based on the decomposition of
populations into symmetric and antisymmetric parts. Any LB velocity set is always
symmetric, i.e. for any given velocity ci there is always a velocity cNi D �ci. This is
also true for c0 D 0. Using these notations one can decompose the populations and
equilibrium populations into their symmetric and antisymmetric parts:

fC
i D

fi C fNi
2

; f�
i D

fi � fNi
2

;

f eqC
i D f eq

i C f eq
Ni

2
; f eq�

i D f eq
i � f eq

Ni
2

;

(10.44)

10.6 TRT Collision Operator 427

with equilibrium distributions from (3.54). For the rest population we have fC
0 D f0

and f�
0 D 0. The same correspondingly applies to the equilibrium value f eq

0 . From
(10.44) we can now decompose the populations in terms of their symmetric and
antisymmetric parts:

fi D fC
i C f�

i ; fNi D fC
i � f�

i ;

f eq
i D f eqC

i C f eq�
i ; f eq

Ni D f eqC
i � f eq�

i :
(10.45)

The standard TRT model can be implemented similarly to the BGK model:

f ?i D fi � !C�t
�
fC
i � f eqC

i

�
� !��t

�
f�
i � f eq�

i

�
;

fi.xC ci�t; tC�t/ D f ?i .x; t/:
(10.46)

This algorithm is independent of the chosen lattice (e.g. D2Q9, D3Q19).

The TRT model solves the Navier-Stokes equation with kinematic shear viscosity

 D c2s

�
1

!C�t
� 1
2

�

: (10.47)

Thus, !� is a free parameter. We have already seen that it can be used to choose
certain values for � in order to improve accuracy or stability (cf. Chap. 4 and
Sect. 10.7). Note, however, that unlike the MRT model, the TRT model does not
allow setting the bulk viscosity independently of the shear viscosity.

The standard implementation is equivalent to the naive implementation but it is
much more computationally efficient [45].

Efficient implementation: this is similar to the standard implementation, except
that it takes advantage of the symmetric structure of TRT. The collision step is per-
formed for just one half of the velocity set, and the other half follows automatically
by symmetry considerations, with no need for computation. So compared to BGK,
in TRT the added computational operations required to determine the even and odd
parts of populations is compensated by the halved number of operations for the
collision step of TRT. Thus, this TRT implementation is as efficient as BGK. More
details can be found in the literature [6].

428 10 MRT and TRT Collision Operators

10.7 Overview: Choice of Collision Models and Relaxation
Rates

There is a hierarchy of collision operators. MRT, as the most general relaxation
model, can be reduced to the TRT model by taking one relaxation rate for all odd-
order moments and another for all even-order moments. The TRT model can be
further reduced to the BGK model if only one relaxation rate is used.

Which model should be employed in which situation, and how should the
relaxation rates be chosen? We will now provide a simple guide on how to select the
collision model and the relaxation rates.

10.7.1 BGK Model

There is only a single relaxation rate ! D 1= in the BGK model. It is therefore
the simplest choice, and the most commonly used model. The relaxation rate is
determined by the chosen viscosity. This model has accuracy and stability properties
determined by the assigned viscosity value, which leads to the deficiencies that are
thoroughly discussed in Chap. 4.

We recommend that LBM newcomers should start with the BGK model.
The first step is to master non-dimensionalisation and parameter selection
strategies for the BGK model (Chap. 7). The next step is to understand its
limitations. If the BGK deficiencies are severe for the given problem, the user
should move on to TRT.

10.7.2 TRT Model

The TRT model provides more flexibility and control than the BGK model. At the
same time, it is still relatively easy to mathematically analyse the TRT model.

There are some situations where TRT should definitely be chosen instead of
BGK, for example in systems with large boundary areas (e.g. porous media).
However, one has to understand that the TRT model itself is limited, and that it
cannot cure all deficiencies of the BGK model. There are still truncation errors in
TRT and they can be large for certain simulations. Sometimes it is not possible to
improve stability by simply switching from the BGK to the TRT collision operator.

10.7 Overview: Choice of Collision Models and Relaxation Rates 429

As the central part of the TRT model we have two relaxation rates !C and !�
and the magic parameter

� D
�

1

!C�t
� 1
2

��
1

!��t
� 1
2

�

: (10.48)

While !C controls the kinematic viscosity via (10.47), � can be used to control
accuracy and stability. There are certain values of � that show distinctive proper-
ties:

• � D 1
12

cancels the third-order spatial error, leading to optimal results for pure
advection problems.

• � D 1
6

cancels the fourth-order spatial error, providing the most accurate results
for the pure diffusion equation.

• � D 3
16

results in the boundary wall location implemented via bounce-back for
the Poiseuille flow exactly in the middle between horizontal walls and fluid nodes
[1].

• � D 1
4

provides the most stable simulations [46, 47].

We recommend that the user should experiment with different values of �
for a given problem. The list above provides a starting point. When changing
the viscosity via !C, � should be kept fixed by adapting the value of !�. If
the underlying problems can still not be solved, the next step is to move on to
MRT.

10.7.3 MRT Model

MRT is the most general and advanced of the relaxation models, with the largest
number of free parameters to tune accuracy and stability. It also allows choosing
the bulk viscosity independently of the shear viscosity. However, it is also more
difficult to code and understand, and it requires more computational resources if it
is not coded efficiently.

The full power of the MRT model can only be exploited after careful testing.
For example, the optimal relaxation rates to simulate lid-driven cavity flow with the
D3Q15 model are !e�t D 1:6, !��t D 1:2, !q�t D 1:6 and !m�t D 1:2 as
numerically obtained through a linear von Neumann analysis [29]. (More details for
the D3Q15 Gram-Schmidt model can be found in Appendix A.6). Such an analysis
for more complex problems is impractical. As general advice, the initial set of MRT
relaxation rates could be the equivalent rates obtained from a tested TRT model.
Thus, once !C and !� are determined, all even-order moments are relaxed with

430 10 MRT and TRT Collision Operators

!C and all odd-order moments with !�. After this, individual rates can be changed
to further improve the simulation accuracy and stability.

Unfortunately there is no ready-to-use recipe for choosing MRT relaxation
rates different from the TRT rates. One general suggestion is to increase the bulk
viscosity by decreasing the corresponding relaxation rate. This can suppress some
underresolved numerical artefacts to improve stability and accuracy of simulations
[35], and spurious sound waves are additionally suppressed (cf. Chap. 12). Some
authors also choose !k�t D 1 for non-hydrodynamic modes so that they relax
instantaneously to their equilibrium values [28].

As a final suggestion for the typical situation when one wants to keep numerical
errors independent of viscosity in MRT simulations, a number of parameter products
�i�j should be kept constant, where a general parameter is �i D 1

!i�t � 1
2

[6, 26].
For example, the following parameter products should be kept fixed for D2Q9:

• Hermite approach: �
��˛ , ����˛ , and ����˛
• Gram-Schmidt approach: �
�q, �e�q, and ���q.

References

1. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)
2. A. Kuzmin, Multiphase simulations with lattice Boltzmann scheme. Ph.D. thesis, University

of Calgary (2010)
3. X. He, Q. Zou, L.S. Luo, M. Dembo, J. Stat. Phys. 87(1–2), 115 (1997)
4. I. Ginzbourg, P.M. Adler, J. Phys. II France 4(2), 191 (1994)
5. I. Ginzburg, D. d’Humières, Phys. Rev. E 68, 066614 (2003)
6. S. Khirevich, I. Ginzburg, U. Tallarek, J. Comp. Phys. 281, 708 (2015)
7. D. d’Humières, I. Ginzburg, Comput. Math. Appl. 58, 823 (2009)
8. Y.H. Qian, Y. Zhou, Europhys. Lett. 42(4), 359 (1998)
9. P. Lallemand, L.S. Luo, Phys. Rev. E 61(6), 6546 (2000)

10. P.J. Dellar, J. Comput. Phys. 259, 270 (2014)
11. G. Silva, V. Semiao, J. Comput. Phys. 269, 259 (2014)
12. B. Servan-Camas, F. Tsai, Adv. Water Resour. 31, 1113 (2008)
13. I. Ginzburg, Phys. Rev. E 77, 066704 (2008)
14. I. Ginzburg, Adv. Water Resour. 28(11), 1171 (2005)
15. J. Latt, Hydrodynamic limit of lattice Boltzmann equations. Ph.D. thesis, University of Geneva

(2007)
16. J. Latt, B. Chopard, Math. Comput. Simul. 72(2–6), 165 (2006)
17. R. Zhang, X. Shan, H. Chen, Phys. Rev. E 74, 046703 (2006)
18. A. Montessori, G. Facucci, P. Prestininzi, A. La Rocca, S. Succi, Phys. Rev. E 89, 053317

(2014)
19. B.M. Boghosian, J. Yepez, P.V. Coveney, A. Wagner, Proc. R. Soc. A 457(2007), 717 (2001)
20. S. Ansumali, I.V. Karlin, H.C. Öttinger, Europhys. Lett. 63(6), 798 (2003)
21. M. Geier, A. Greiner, J. Korvink, Phys. Rev. E 73(066705), 1 (2006)
22. Y. Ning, K.N. Premnath, D.V. Patil, Int. J. Num. Meth. Fluids 82(2), 59 (2015)
23. M. Geier, M. Schönherr, A. Pasquali, M. Krafczyk, Comput. Math. Appl. 70(4), 507 (2015)
24. I. Karlin, P. Asinari, Physica A 389(8), 1530 (2010)
25. R. Adhikari, S. Succi, Phys. Rev. E 78(066701), 1 (2008)
26. P.J. Dellar, J. Comp. Phys. 190, 351 (2003)

References 431

27. A. Kuzmin, A. Mohamad, S. Succi, Int. J. Mod. Phys. C 19(6), 875 (2008)
28. F. Higuera, S. Succi, R. Benzi, Europhys. Lett. 9(4), 345 (1989)
29. D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Phil. Trans. R. Soc. Lond.

A 360, 437 (2002)
30. P.J. Dellar, Phys. Rev. E 65(3) (2002)
31. R. Benzi, S. Succi, M. Vergassola, Phys. Rep. 222(3), 145 (1992)
32. P. Asinari, Phys. Rev. E 77(056706), 1 (2008)
33. R. Rubinstein, L.S. Luo, Phys. Rev. E 77(036709), 1 (2008)
34. D.N. Siebert, L.A. Hegele Jr., P.C. Philippi, Phys. Rev. E 77, 026707 (2008)
35. P. Asinari, I. Karlin, Phys. Rev. E 81(016702), 1 (2010)
36. P. Dellar, Phys. Rev. E 64(3) (2001)
37. Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 46308 (2002)
38. A. Kuzmin, Z. Guo, A. Mohamad, Phil. Trans. Royal Soc. A 369, 2219 (2011)
39. G. Silva, V. Semiao, J. Fluid Mech. 698, 282 (2012)
40. S. Mukherjee, J. Abraham, Comput. Fluids 36, 1149 (2007)
41. K. Premnath, J. Abraham, J. Comput. Phys. 224, 539 (2007)
42. P. Lallemand, L.S. Luo, Phys. Rev. E 68, 1 (2003)
43. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)
44. I. Ginzburg, Commun. Comput. Phys. 11, 1439 (2012)
45. I. Ginzburg, Adv. Water Resour. 28(11), 1196 (2005)
46. I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys. 139, 1090 (2010)
47. A. Kuzmin, I. Ginzburg, A. Mohamad, Comp. Math. Appl. 61, 1090 (2011)

Chapter 11
Boundary Conditions for Fluid-Structure
Interaction

Abstract After reading this chapter, you will have insight into a large number of
more complex lattice Boltzmann boundary conditions, including advanced bounce-
back methods, ghost methods, and immersed boundary methods. These boundary
conditions will allow you to simulate things like curved boundaries, flows in media
with sub-grid porosity, rigid but moveable objects immersed in the fluid, and even
flows with deformable objects such as red blood cells.

Boundary conditions play a paramount role in hydrodynamics. Chapter 5 concerns
itself with the definition and conceptual introduction of boundary conditions, and it
provides an overview of boundary conditions for relatively simple solid geometries,
flow inlets and outlets and periodic systems. Here, we turn our attention to resting
and moving boundaries with complex shapes (Sect. 11.1). It is nearly impossible
to give an exhaustive overview of all available boundary conditions for fluid-
structure interaction in the LBM. We will therefore focus on the most prominent
examples: bounce-back methods in Sect. 11.2, extrapolation methods in Sect. 11.3
and immersed-boundary methods in Sect. 11.4. We provide a list of comparative
benchmark studies and an overview of the strengths and weaknesses of the discussed
boundary conditions in Sect. 11.5.

11.1 Motivation

Many works about boundary conditions in the LBM assume flat, resting and rigid
boundaries. We have reviewed a selection of those methods in Chap. 5. But our
experience tells us that only a small number of boundaries in fluid dynamics obey
these assumptions. In reality, most boundaries are curved, some can move and others
are deformable. Prominent examples are porous media, curved surfaces of cars and
planes in aerodynamics, suspensions (e.g. clay, slurries) or deformable objects (e.g.
cells, wings, compliant containers). Analytical solutions are often impossible to
obtain, which makes computer simulations an indispensible tool. This challenge
led to a remarkable variety of proposed methods to model complex boundaries in
LB simulations.

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_11

433

434 11 Boundary Conditions for Fluid-Structure Interaction

Fig. 11.1 Unstructured and structured meshes. The same boundary problem (solid black circles
connected with thick lines) can be treated by, for example, an unstructured (left) or structured
(right) approach. The former requires remeshing if the boundary moves, the latter leads to
interpolations or extrapolations near the boundary

In order to accurately describe a complex domain, there are essentially two
options (Fig. 11.1). The first approach is to formulate the problem in a coordinate
system which fits the shape of the boundary. This leads to curvilinear or body-
fitted meshes where the boundary treatment itself is trivial. However, this way
we lose the advantages of the simple cartesian grid. For example, if the boundary
shape changes in time, the curvilinear coordinate system also changes or remeshing
becomes necessary. This can be a challenging and time-consuming task [1]. The
alternative is to retain the cartesian structure of the bulk geometry, but then we have
to introduce special procedures to account for the complex shape of the boundary
which does generally not conform with the underlying lattice structure. In the end,
this leads to interpolation and extrapolation boundary schemes.

Since most LB algorithms take advantage of the cartesian grid, the second route
is usually preferred. First, it is easier to correct only the behaviour of the boundary
nodes than touching all bulk nodes. Secondly, remeshing of the bulk involves inter-
polations in the entire numerical domain, which can lead to detrimental numerical
viscosities (hyperviscosities) and a loss of exact mass/momentum conservation.
More details about LB for non-cartesian geometries (i.e. curvilinear structured
meshes or unstructured meshes) are provided in, e.g., [2–7]. It is therefore less
harmful to use interpolations only in the vicinity of the boundaries. In this chapter
we will exclusively address boundary treatments of the second kind, where the
underlying lattice structure is not changed.

There are different types of problems which are typically encountered in
connection with off-lattice boundaries. We can identify three main categories:

• stationary rigid obstacles (e.g. porous media, microfluidic devices, flow over
stationary cylinders)

• moving rigid obstacles (e.g. suspensions of non-deformable particles, oscillating
cylinder, rotating turbine blades)

11.2 Bounce-Back Methods 435

Fig. 11.2 Overview of boundary conditions for complex geometries in LB simulations as
presented in this chapter. We can roughly distinguish between bounce-back, ghost and immersed-
boundary (IB) methods. Each of them has several flavours. A large selection of those is covered in
the following sections

• moving deformable obstacles (e.g. flexible wings, red blood cells, compliant
channels)

No single numerical boundary treatment works best for all of them. It is therefore
worth to properly categorise the problem first, identify the main challenge and then
“shop around” and look for the most suitable boundary treatment for the problem
at hand. This chapter helps the reader to understand what the differences of the
available methods are, when they are applicable and what their advantages and
disadvantages are.

There exists a zoo of curved boundary conditions for LB simulations. We can
only cover the most popular ones in any depth, but we will provide references to
a wider range of boundary conditions in passing. Figure 11.2 shows an overview
of the boundary conditions discussed here. For the sake of compactness, we only
consider single-phase fluids. Note that everything said in this chapter does equally
apply to 2D and 3D systems.

11.2 Bounce-Back Methods

The most famous and certainly easiest boundary condition for LB simulations is
bounce-back (Sect. 5.3.3). Many researchers believe that its locality, simplicity
and efficiency should be retained even in the presence of complex boundary
shapes. Therefore, the obvious way is to approximate a curved boundary by a
staircase (Sect. 11.2.1). This can lead to some problems, in particular a reduction
of the numerical accuracy. For that reason, improved and interpolated bounce-back
schemes have been proposed (Sect. 11.2.2). Another variant to account for complex
geometries is the partially saturated method (Sect. 11.2.3). A problem related to
staircase and interpolated bounce-back BCs is the destruction and creation of fluid

436 11 Boundary Conditions for Fluid-Structure Interaction

sites if the boundaries move. We will discuss the creation of so-called fresh nodes in
Sect. 11.2.4. Finally we will elaborate on the calculation of the wall shear stress in
the presence of complex boundaries (Sect. 11.2.5). We recommend reading [8–15]
to understand bounce-back methods in greater detail.

11.2.1 Simple Bounce-Back and Staircase Approximation

One of the motivations to simulate complex geometries is to study flows in
porous media. The simplest way to introduce curved or inclined boundaries in LB
simulations is through a staircase approximation of the boundary and the bounce-
back scheme, often called simple bounce-back (SBB, Sect. 5.3.3). This is illustrated
in Fig. 11.3. The advantages are obvious: everything lives on the lattice, and SBB
is fast and easy to implement. The problem becomes more complex when the
boundaries can move, which requires the destruction and creation of fluid sites
(Sect. 11.2.4).

Fig. 11.3 Staircase approximation of a circle. A circle (here with an unrealistically small radius
r D 1:8�x) can be discretised on the lattice by identifying exterior fluid nodes (white circles),
external boundary nodes (grey circles) and interior solid nodes (black circles) first. Any lattice link
ci connecting a boundary and a solid node is a cut link (lines) with a wall node (solid squares)
in the middle. The resulting staircase shape is shown as a grey-shaded area. Populations moving
along cut links ci (defined as pointing inside the solid) from xb to xs are bounced back at xw

11.2 Bounce-Back Methods 437

11.2.1.1 Revision of the Halfway Bounce-Back Method

In the following we will only consider the halfway bounce-back scheme: an
incoming (post-collision) population f ?i .xb; t/which would propagate through a wall
from a boundary node1 xb to a solid node xs D xb C ci�t is instead reflected half-
way to the solid node at the wall location xw D xb C 1

2
ci�t at time t C 1

2
�t and

returns to xb as

fNi.xb; tC�t/ D f ?i .xb; t/ � 2wi�
uw � ci
c2s

(11.1)

where uw D u.xw; t C 1
2
�t/ is the velocity of the wall, � is the fluid density at xw

and Ni is defined by cNi D �ci. In practical implementations, � is often taken as the
fluid density at xb or the average fluid density instead (cf. Sect. 5.3.3).

The halfway bounce-back scheme requires detection of all lattice links ci
intersecting the boundary. If the boundary is stationary, this has to be done only
once.

We can compute the momentum exchange at the wall based on the incoming
and bounced back populations alone by using the momentum exchange algorithm
(MEA, Sect. 5.4.3). Here we will briefly revise the MEA for the simple bounce-back
method. The first step is to evaluate the incoming and bounced back populations f ?i
and fNi at each boundary link. The total momentum exchange between the fluid and
the solid during one time step is given by (5.79):

�P D �x3
X

xw ;i

�
f ?i .xw � 1

2
ci�t; t/C fNi.xw � 1

2
ci�t; tC�t/

�
ci

D �x3
X

xw ;i

2f ?i .xw � 1
2
ci�t; t/ � 2wi�

uw � ci
c2s

!

ci

(11.2)

where the sum runs over all incoming links ci (pointing from the fluid into the solid)
intersecting the wall at xw. Accordingly, the total angular momentum exchange
during one time step is

�L D �x3
X

xw;i

2f ?i .xw � 1
2
ci�t; t/ � 2wi�

uw � ci
c2s

!

.xw � R/ � ci: (11.3)

R is a reference point. If the torque acting on a particle is computed, the reference
point is the particle’s centre of mass.

1We use the same notation as in Chap. 5: solid nodes are inside the obstacle, boundary nodes are
outside the obstacle but have at least one solid neighbour, and fluid nodes are those without a solid
neighbour (see Fig. 11.3).

438 11 Boundary Conditions for Fluid-Structure Interaction

The MEA works for any geometry approximated by the simple bounce-back
scheme, including the staircase shown in Fig. 11.3. The tedious part is the identi-
fication of all cut links pointing from a boundary to a solid node and obtaining the
wall velocity uw at each of the wall locations xw.

11.2.1.2 Stationary Boundaries

There is a large number of applications where the flow in a complex stationary
geometry has to be simulated. Examples are flows in porous media or blood flow in
the vascular system (Fig. 11.4). Those geometries can by obtained by, for example,
CT or MRI scans. Due to the large surface and complex shape of those geometries,
it is preferable to use a simple and fast boundary condition algorithm, such as SBB.

Back in the 90s, Ginzburg and Adler [9] presented a very careful analysis of
halfway SBB with several important conclusions. A more updated discussion of
this work can be found in [15]. Apart from developing general theoretical tools to
study boundary conditions, one contribution was the understanding of the numerical
mechanism leading to the velocity slip at the wall. The exact location where the no-
slip condition is satisfied is not a pre-determined feature; it rather depends on the
specific choice of the relaxation rate(s). Furthermore, the above-mentioned defect
is anisotropic with respect to the underlying lattice structure, i.e. the slip velocity
depends on the way the boundary is inclined. This is confirmed for a Poiseuille
flow in an horizontal channel where the wall can only be exactly located midway
between lattice nodes if =�t D 1=2Cp3=16 � 0:933 (cf. Sect. 5.3.3). Contrarily,
for a diagonal channel, =�t D 1=2 C p

3=8 � 1:11 has to be chosen. With

Fig. 11.4 Visualisation of a segment of the blood vessel network in a murine retina which has been
used for LB simulations. This example shows the complexity of the involved boundaries. Original
confocal microscope images courtesy of Claudio A. Franco and Holger Gerhardt. Luminal surface
reconstruction courtesy of Miguel O. Bernabeu and Martin L. Jones. For more details see [16]

11.2 Bounce-Back Methods 439

the LBGK method this -dependence leads to a viscosity-dependent slip velocity
artefact, which is highly undesired from the physical viewpoint.

While in complex geometries the wall intersects the lattice at different positions,
the SBB enforces the no-slip condition to be fixed at all lattice links. This leads to
the staircase representation of the boundary, where the exact location of the no-slip
surface will further depend on the choice of the relaxation time . In other words, the
effective shape and location of the “numerical” wall will not agree with the expected
boundary.

The aforementioned problems are particularly harmful in narrow domains where
the distance between walls can be of the order of a few lattice units, for example
in porous media flows or solid particles in suspensions. Hereby, using TRT/MRT
collision operators with a properly tuned set of relaxation rates [12, 15, 17, 18],
rather than BGK, helps controlling this situation. When is chosen close to 1 and
the fluid domain is sufficiently resolved, SBB with BGK leads to acceptable results,
though [19].

We also have to note that biological geometries obtained from CT or MRI scans
are usually not very accurate in the first place. The resolution of those imaging
techniques can be of the same order as the pore or channel size so that it may be
nonsensical trying to increase the resolution of the numerical domain or choose
more accurate boundary conditions. This means that SBB, although generally not
the most recommendable solution, is still a good choice given the large geometrical
modelling error in many applications. Furthermore, it is worth mentioning that SBB
is exactly mass-conserving when used for stationary geometries of any shape; an
advantage only a few higher-order accurate boundary conditions can claim (the
reasons are explained in [20]). Therefore, before setting up a simulation, one should
always ask whether the boundary condition is really the limiting factor in terms of
accuracy.

Using simple bounce-back (SBB) for complex geometries generally leads to
two sources of error:

1. geometrical discretisation error (modelling error) by approximating a
complex shape by a staircase,

2. artificial and anisotropic slip caused by the choice of the relaxation rate(s),
leading to a viscosity-dependent effect when is BGK used.

The advantages of SBB (mass conservation, ease of implementation, locality)
explain why it is still a popular method.

440 11 Boundary Conditions for Fluid-Structure Interaction

11.2.1.3 Rigid Moving Particles

So far we have only addressed stationary boundaries with SBB. In the 90s
researchers became interested in the simulation of suspensions via LBM. This
requires the treatment of multiple rigid particles with translational and rotational
degrees of freedom. One of the problems of earlier computational suspension
models was the numerical cost which scaled with the square or cube of the particle
number [10]. Ladd [10, 21, 22] introduced an LB-based model for suspensions of
rigid particles with hydrodynamic interactions whose numerical cost scales linearly
with the particle number.

Particle suspensions give rise to a plethora of physical effects and phenomena.
In this section we will only focus on the algorithmic details. For physical results
we refer to review articles about LB-based suspension simulations [23, 24] and the
references therein.

For the sake of brevity we will not discuss lubrication forces which become
necessary at high particle volume fractions. There exist several articles dealing
with lubrication corrections in LB simulations [24–26]. The review by Ladd and
Verberg [23], which we generally recommend to read, also descibes the use of
thermal fluctuations for the simulation of Brownian motion in suspensions. Aidun
and Clausen [24] have published a review about LBM for complex flows, which is
an excellent starting point to learn about more recent developments.

In the following we will outline Ladd’s [10, 22] idea of how to use SBB for
suspensions. See also [25] for a compact and [23] for an extensive review of Ladd’s
method. Note that the particles in Ladd’s algorithm are filled with fluid in order
to avoid destruction and recreation of fluid nodes when the particles move on the
lattice. The dynamics of the interior fluid is therefore fully captured. One can
imagine this like a can filled with liquid concrete in an exterior fluid rather than
the same can with set (and therefore solid) concrete. This is different compared to
Aidun’s model [27] which we will briefly describe at the end of this section.

The first step is to start with a distribution of suspended spherical particles on
the lattice. For each particle, it is straightforward to work out which lattice nodes
are located inside and outside of a particle (cf. Fig. 11.3). There is no conceptual
difficulty in extending the model to non-spherical particles; but it will generally be
more demanding to identify interior and exterior lattice nodes.

The next step is to identify all lattice links between boundary and solid nodes,
i.e. those links cut by any particle surface. For moving boundaries, the list of those
links has to be updated whenever the boundary configuration on the lattice changes.
Generally one has to update the list every time step before propagation is performed.
In the following, let xb be the location of a boundary node and xs D xb C ci�t the
location of a solid node just inside the particle. The boundary link is then located at
xw D xb C 1

2
ci�t (cf. Fig. 11.3).

11.2 Bounce-Back Methods 441

Now we have to compute the wall velocity uw at each link xw. From the known
linear velocity U and angular velocity ˝ of the particle we can obtain

uw D UC˝ � .xw � R/ (11.4)

where R is the particle’s centre of mass.
With the known wall velocity at each link, we can compute the momentum

exchange and therefore the value of all bounced-back populations. We have to take
into account that a particle in Ladd’s method is filled with fluid, as explained earlier,
and all interior nodes participate in collision and propagation as well. This means
that there are also populations streaming from the interior nodes at xs to exterior
nodes at xb. These populations have to be bounced back at xw, too. While the
populations streaming from the outside to the particle’s interior are described by
(11.1), we now also have to consider those populations streaming from the inside
towards the exterior:

fi.xs; tC�t/ D f ?Ni .xs; t/ � 2wNi�
uw � cNi
c2s
D f ?Ni .xs; t/C 2wi�

uw � ci
c2s

: (11.5)

Equation (11.1) and (11.5) express that the two populations hitting a boundary link
from both sides exchange a certain amount of momentum, 2wi�uw � ci=c2s . This
operation is obviously mass-conserving since fi gains exactly the loss of fNi (or the
other way around) so that the sum of both populations moving along the same link
in different directions is not changed by the interaction with the boundary, at least
as long the same density � is used in both equations. Ladd uses the average fluid
density, and not the local density, for �.

Effectively, we can view the momentum transferred from the exterior to the
interior fluid as the momentum transferred from the exterior fluid to the particle.
In order to obey the global momentum and angular momentum conservation,
we therefore have to update the particle momentum and angular momentum by
summing up all transferred contributions. Equation (11.2) and (11.3) provide the
total momentum �P and angular momentum �L transferred during one time step,
but we have to take into account that each link has to be counted twice: once for
all populations coming from the outside and once for all populations coming from
the inside. This is necessary because the interior fluid participates in collision and
propagation and therefore the momentum exchange.

The simplest way to update the particle properties is the forward Euler method,
but more accurate and more stable methods are available, e.g. implicit time
integration [23]. At each time step, the velocity and angular velocity are updated
according to

U.tC�t/ D U.t/C �P
M
; ˝.tC�t/ D ˝.t/C I�1 ��L (11.6)

442 11 Boundary Conditions for Fluid-Structure Interaction

where M and I are the particle’s mass and tensor of inertia. The centre of mass
is then moved according to the old or new velocity.2 If the particles are spherical,
their orientation does not have to be updated. For non-spherical particles, however,
the situation is different, and several authors have suggested algorithms for this
case. Aidun et al. [27], for example, use a fourth-order Runge-Kutta integration to
update the particle orientation. Qi [28] employed quaternions to capture the particle
orientation and a leap-frog time integration. It is noteworthy that Ladd [10] does not
follow the simple scheme in (11.6). He instead averages the momentum and angular
momentum transfer over two time steps before updating the particle properties. The
reason for this is to reduce the undesired effect of so-called staggered momenta
which are an artefact of lattice-based methods. We refer to [10] for a more thorough
discussion of this issue (see also Sect. 5.3.3).

Ladd’s algorithm [10] can be summarised in the following way:

1. Find the particle discretisation on the lattice (Fig. 11.3).
2. Identify all boundary links and compute uw by applying (11.4).
3. Perform collision on all nodes since particles are filled with fluid.
4. Propagate the populations. If a population moves along a boundary link, bounce-

back this population via (11.1) or (11.5).
5. Compute the total momentum and angular momentum exchange according to

(11.2) and (11.3).
6. Update the particle configuration, for example via (11.6).
7. Go back to step 1 for the next time step. There is no need to treat nodes crossing

a boundary in a special way.

It is interesting to note why Ladd has chosen a link-based (halfway) rather
than a node-based (fullway) bounce-back method. The simple explanation is that
the link-based bounce-back leads to a “somewhat higher resolution” [10] for the
same discretisation since there are more cut links than solid nodes near the particle
surface. This can be easily seen in Fig. 11.3.

Ladd [10] pointed out that his method has a few disadvantages. First, the
dynamics of the fluid inside the particles can affect the particle dynamics at higher
Reynolds numbers where the interior fluid cannot any more be approximated by
an effectively rigid medium. Furthermore, Ladd’s method is limited to situations
where the particle density is larger than the fluid density. Aidun et al. [27] proposed
an alternative method with one major distinctive feature: the absence of fluid inside
the particles. Therefore, in Aidun’s approach, only the exterior fluid contributes to
the momentum and angular momentum exchange in (11.2) and (11.3). Removing
the fluid from the interior solves both disadvantages of Ladd’s method, but it also
introduces a new complexity: what happens when lattice nodes change their identity
(fluid nodes become solid nodes and the other way around) when the particles move?
We will come back to this point in Sect. 11.2.4. In contrast to Ladd’s approach,

2The velocities are usually small so that the exact form of the position update is not very important.

11.2 Bounce-Back Methods 443

Aidun’s method does not obey global mass conservation [27]. Yin et al. [29] provide
a detailed comparative study on the performance of both models.

We emphasise that several researchers have further improved the methods
presented above. For example, Lorenz et al. [30], Clausen and Aidun [31] and
Wen et al. [32] proposed modified versions of the momentum exchange to improve
Galilean invariance.

We have only discussed link-based BB schemes in this section. It is possible to
implement node-based BB schemes for complex geometries where the boundary
velocity is enforced directly on lattice nodes, though. Behrend [33] and Gallivan
et al. [34] provide discussions of the node-based BB approach. In Sect. 11.2.3 we
will present partially saturated methods which are also built on the node-based BB
scheme.

As pointed out by Han and Cundall [35], the simple bounce-back (SBB)
applied to moving boundaries has its limitations compared to higher-order
schemes, such as the partially saturated method (Sect. 11.2.3). This becomes
most obvious when the particles are rather small (a few �x in diameter) and
move on the lattice. Eventually, the user has to decide whether the focus lies
on the ease of implementation or level of accuracy. In the former case, SBB
can be recommended. In the latter, a smoother boundary condition should be
implemented.

11.2.2 Interpolated Bounce-Back

We will now cover interpolated bounce-back (IBB) methods which are suitable
to describe curved and inclined boundaries with a higher accuracy than SBB. We
emphasise the conceptual difference between IBB schemes and extrapolation-based
methods (Sect. 11.3). While the idea of the former is to interpolate populations in
the fluid region to perform bounce-back at a curved wall, the motivation for the latter
is to create a virtual (ghost) fluid node inside the solid to compute the populations
streaming out of the wall. We generally recommend reading [12, 17, 18, 36] for
thorough reviews of IBB methods.

11.2.2.1 Basic Algorithm

In 2001, Bouzidi et al. [11] proposed the IBB approach for curved boundaries. The
IBB is second-order accurate for arbitrary boundary shapes and therefore reduces
the modelling error of the staircase bounce-back method which is only first-order
accurate for non-planar boundaries.

444 11 Boundary Conditions for Fluid-Structure Interaction

Fig. 11.5 Interpolated bounce-back cases. For q < 1
2

(left), the distance d between the wall
(vertical line) and the boundary node at xb is smaller than half a lattice spacing. Interpolations
are required to construct the post-collision population (small black circle). For q � 1

2
(right), d is

larger than half a lattice spacing and the endpoint of the streaming population (small black circle)
lies between the wall and xb. xs denotes a solid node behind the wall, and xf is a fluid node required
for the interpolation

The basic idea of IBB is to include additional information about the wall location
during the bounce-back process. A boundary link ci generally intersects the wall at
a distance d between 0 and jcij�t measured from the boundary node (Fig. 11.5). We
define q D d=.jcij�t/ 2 Œ0; 1/ as the reduced wall location and note that q D 1

2

holds for simple bounce-back. In the following, we introduce three lattice nodes
with locations xb, xs D xb C ci�t and xf D xb � ci�t as shown in Fig. 11.5. xb and
xs are neighbouring boundary and solid nodes which are located on either side of
the wall, and xf is the nearest fluid node beyond xb.

The starting point of IBB is to assume that any population fi moves a distance
jcij�t during propagation. If the population hits a wall which is modelled by the
halfway bounce-back, fi first travels a distance jcij�t=2 from the original boundary
node to the wall and then another distance jcij�t=2 back to the boundary node after
bounce-back. If the wall is not located halfway between lattice nodes, q 6D 1

2
, fi

cannot reach another lattice node. Therefore, the origin of the population is chosen
such that fi exactly reaches a lattice node. This requires interpolation to find the
post-collision value of fi as illustrated in Fig. 11.5.

Bouzidi et al. [11] proposed a linear interpolation to construct the a priori
unknown bounced back population fNi.xb; t C �t/ from the post-collision values of
the known populations at xb and xf. The algorithm for any cut link at a resting wall
reads

fNi.xb; tC�t/ D
8
<

:

2q f ?i .xb; t/C .1 � 2q/f ?i .xf; t/ q � 1
2

1
2q f

?
i .xb; t/C 2q�1

2q f ?Ni .xb; t/ q 	 1
2

: (11.7)

Exercise 11.1 Show that both cases in (11.7) reduce to simple bounce-back for
q D 1

2
.

There are several remarks:

• The reason for having different expressions for q < 1
2

and q 	 1
2

is to ensure that
fNi.xb; t C �t/ is always non-negative (given that the post-collision populations

11.2 Bounce-Back Methods 445

on the right-hand-side of (11.7) are positive), which improves the stability of the
algorithm.

• Bouzidi et al. [11] have also proposed a quadratic interpolation which improves
results, but the method remains second-order accurate. This extension requires a
second fluid node xff D xb � 2ci�t.

• The boundary slip for linear and quadratic interpolations still depends on the
collision relaxation rate(s). However, unlike with the SBB, the adoption of
TRT/MRT collision operators does not allow absolute control of this error; the
IBB thereby always presents some degree of viscosity dependence. For strategies
to render IBB exactly viscosity-independent we refer to [15, 37, 38].

• The IBB algorithm, like simple bounce-back, is completely decoupled from the
collision step and can therefore be combined with any collision operator.

• Due to its non-local implementation, the IBB may lead to problems in very
narrow gaps (e.g. in porous media simulations) where there are not enough
fluid nodes between neighbouring walls to apply (11.7) (two nodes required)
or the quadratic interpolation (three nodes required). The number of required
nodes may be reduced by one with a judicious choice of pre- and post-collision
populations within the IBB algorithm, cf. [15, 17]. For example, the IBB with
linear interpolations can be written in local form. Chun and Ladd [18] have
addressed this issue and proposed an alternative local boundary scheme which
works in general situations and corrects some defects of the IBB, e.g. its viscosity
dependence.

• Due to its interpolations, IBB is generally not mass-conserving. There exist
approaches to (partially) remedy this shortcoming, e.g. [36].

The interpolated bounce-back algorithm can be summarised as follows:

1. Identify all links penetrating a wall and compute their reduced distance q. If the
boundary configuration does not change in time, this has to be done only once.

2. Collide on all fluid and boundary nodes. This will provide f ?i .xb; t/, f ?Ni .xb; t/ and
f ?i .xf; t/.

3. Compute all fNi.xb; t C�t/ from (11.7).
4. Propagate all remaining populations.
5. Go back to step 1.

The extension of the momentum exchange algorithm to the IBB is straight-
forward. According to Bouzidi et al. [11], the momentum exchange for a resting
boundary link in Fig. 11.5 is

�pi D �x3
�
f ?i .xb; t/ � fNi.xb; tC�t/

�
ci; (11.8)

no matter the value q of the link. An alternative to (11.5), which improves its
accuracy, can be found in [17].

446 11 Boundary Conditions for Fluid-Structure Interaction

11.2.2.2 Moving Boundaries

Most IBB applications in the literature deal with rigid boundaries (which can either
be stationary or move on the lattice). There is only a small number of works
featuring the IBB for deformable boundaries, e.g. [39]. The immersed boundary
method (Sect. 11.4) is a more common approach in those situations. We will
therefore not discuss deformable boundaries here.

Lallemand and Luo [40] extended the IBB to moving boundaries. The first
ingredient is Ladd’s algorithm: the term �2wi�uw � ci=c2s has to be added to the
right-hand-side of (11.7), where uw is the wall velocity at the intersection point.
Also, since there is generally no fluid inside the solid in the IBB framework, a refill
mechanism has to be implemented when boundaries move and uncover new (fresh)
fluid nodes. We will get back to this in Sect. 11.2.4. Lallemand and Luo’s important
finding is that the motion of a cylinder on the lattice and the subsequent destruction
and creation of fresh nodes leads to some fluctuations of the drag coefficient. This
is one of the largest disadvantages of the IBB for moving boundaries; a problem
which can be reduced by using an advanced fresh node treatment (Sect. 11.2.4) or
the immersed boundary method (Sect. 11.4).

11.2.2.3 Extended and Alternative Methods

Several other second-order accurate bounce-back-based boundary conditions for
arbitrary geometries have been proposed. The following list shows a selection of
those methods and their most notable properties.

• Yu et al. [41] presented a unified scheme of Bouzidi’s algorithm which does not
require separate treatment of the regions q < 1

2
and q 	 1

2
. Otherwise Yu’s

and Bouzidi’s approaches lead to similar results, including viscosity-dependent
slip (not easily solved by TRT/MRT collision models) and violation of mass
conservation.

• Ginzburg and d’Humières [17] proposed the so-called multireflection boundary
condition as an enhanced IBB. The key feature of this method is that it determines
the coefficients of the interpolation, rather than heuristically, using the second-
order Chapman-Enksog expansion on the interpolated populations. This way, it
guarantees the closure condition reproduced by the mesoscopic populations are
in exact agreement with the intended hydrodynamic condition. For the reasons
explained in Chap. 5, the multireflection method is generally constructed to be
formally third-order accurate, and that can be achieved in different ways: the
original multireflection scheme [17] adopts a (non-local) interpolation process
over five populations, while the more recent MLI scheme [15, 37, 38] only
operates over three populations (belonging to the same node) and supplements
this information with a (non-local) link-wise second-order finite difference
approximation of the hydrodynamic quantity of interest. Both these variants
can be implemented in two nodes only [15, 37, 38] and, also in both cases,

11.2 Bounce-Back Methods 447

the algorithm shall consider a post-collision correction term, which guarantees
the method’s higher-order accuracy and consistency (i.e. viscosity independence
with TRT/MRT collision models). A drawback of the multireflection technique,
common to the generality of interpolation-based schemes, is the possible viola-
tion of mass conservation.

• Chun and Ladd [18] proposed a method based on the interpolation of the
equilibrium distribution. It has the advantage that it requires only one node—in
contrast to two or three nodes in the standard linear and quadratic IBB scheme.
Similar to the SBB and multireflection schemes, this method guarantees the exact
wall location is viscosity-independent with TRT/MRT collision models. This
approach is particularly suitable for the time-dependent simulation of geometries
with narrow gaps between solids, e.g. for porous media. Mass conservation is
generally violated, just as in the majority of interpolation schemes.

• Kao and Yang [36] suggested an interpolation-free method based on the idea of
local grid refinement in order to improve the mass conservation of the boundary
condition.

• Yin and Zhang [42] presented another improved bounce-back scheme. Their idea
was to use Ladd’s momentum correction term and linearly interpolate the fluid
velocity between a nearby boundary node and the wall location (which can be
anywhere between two lattice nodes) to obtain the fluid velocity midway between
boundary and solid nodes. This promising method shares common disadvantages
with other interpolated bounce-back schemes: violation of mass conservation and
viscosity-dependent wall location.

The interpolated bounce-back (IBB) method is a common extension of
the simple bounce-back scheme for rigid resting or moving obstacles with
complex shapes. IBB is second-order accurate but introduces an important
weakness: the viscosity-dependent boundary slip is not easily corrected with
TRT/MRT collision operators. Furthermore, due to the involved interpola-
tions, IBB is not mass-conserving. Even so, due to its intuitive working
principle and relatively simple implementation, the IBB is often the method
of choice for improving the SBB accuracy in describing stationary complex
geometries.

11.2.3 Partially Saturated Bounce-Back

Now we present the so-called partially saturated method (PSM), also known as
grey LB model or continuous bounce-back, where a lattice node can be a pure fluid,
a pure solid or a mixed (partially saturated) node as shown in Fig. 11.6. Interestingly,

448 11 Boundary Conditions for Fluid-Structure Interaction

Fig. 11.6 Partially saturated
bounce-back. A spherical
particle (circle) covers a
certain amount of each lattice
cell. White corresponds to no
coverage, black to full
coverage. The solid fraction
0
 �
 1 for each cell is
shown up to the first digit.
Lattice nodes (not shown
here) are located at the centre
of lattice cells

there exist two research communities which do not seem to interact strongly. The
first applies the PSM to simulations of flows in porous media with heterogeneous
permeability [43–45]. The other community is interested in suspension flows; they
employ the PSM to map the sharp surface of an immersed structure onto the lattice
[13, 35, 46, 47]. For the sake of brevity and since both approaches are technically
similar, we only elaborate on the latter application. We emphasise that the PSM
must not be confused with immersed boundary schemes (Sect. 11.4) which are,
according to our definition, fundamentally different in nature. As demonstrated in
a series of studies, e.g. [44, 45, 48, 49], the way PSM works can be considered
equivalent to the standard LBE with an added friction force. The magnitude of this
force varies locally, depending on the nodal fluid/solid fraction. This results in a
continuous accommodation of the solution from open (fluid) to very impermeable
(solid) regions. Hence, in PSM the nature of the wall can be understood as an
interface condition, separating nodes of contrasting properties [48–50].

11.2.3.1 Basic Algorithm

In 1998, Noble and Torczynski [46] presented a bounce-back-based approach, later
investigated more thoroughly by Strack and Cook [13], to approximate complex
boundaries on lattice nodes. The central part of the PSM algorithm is a modified
LBGK equation:

fi.xC ci�t; tC�t/ D fi.x; t/C .1 � B/˝ f
i C B˝s

i (11.9)

where

˝ f
i D �

fi.x; t/ � f eq
i .x; t/

(11.10)

11.2 Bounce-Back Methods 449

is the standard BGK collision operator for fluid (f) nodes and

˝s
i D

�
fNi.x; t/ � f eq

Ni .�;u/
�
� � fi.x; t/ � f eq

i .�;us/
�

(11.11)

is the collision operator for solid (s) nodes. u is the local fluid velocity and us is the
velocity of the boundary at point x. B is a weighting parameter defined by [46]

B.�; / D
�
�
 � 1

2

�

.1 � �/C
�
 � 1

2

� (11.12)

where 0 � � � 1 is the solid fraction of the node. It can be shown that B.�/ increases
monotonically between 0 for � D 0 (pure fluid node) and 1 for � D 1 (pure solid
node) for any fixed value of > 1

2
. The essential idea is to surrender any shape

details of the off-lattice boundary and use an on-lattice volume fraction � instead.

Exercise 11.2 Show that the collision operator in (11.9) is mass-conserving by
computing

P
i˝

f
i and

P
i˝

s
i .

Note that the PSM assumes the standard BGK form for B D 0 and describes a
bounce-back of the non-equilibrium for B D 1. A mixed collision and bounce-back
scheme is performed for partially saturated nodes (0 < � < 1), which are only found
in direct boundary neighbourhood (Fig. 11.6).

Force and torque acting on the boundary can be computed from

f D �x3

�t

X

xn

B.xn/
X

i

˝s
i .xn/ci;

T D �x3

�t

X

xn

B.xn/.xn � R/ �
X

i

˝s
i .xn/ci;

(11.13)

respectively, where the xn are all lattice nodes in contact with the solid (including
all interior nodes), i.e. those nodes with � > 0, i runs over all lattice directions at a
given position xn and R is the location of the centre of mass of the solid. Updating the
solid’s momentum and angular momentum according to (11.13) guarantees overall
momentum conservation.

It is worth mentioning that Zhou et al. [51] have combined the node-based
method with Lees-Edwards BCs, which is relevant for the simulation of large bulk
systems. Furthermore, Chen et al. [47] have recently proposed a combination of
the PSM and a ghost method (Sect. 11.3) to improve the no-slip condition at the
boundary surface. Yu et al. [52] proposed another variant taking into account a mass-
conserving population migration process in the vicinity of moving walls.

450 11 Boundary Conditions for Fluid-Structure Interaction

11.2.3.2 Advantages and Limitations

The implementation of this algorithm is relatively straightforward. If the boundary
is stationary, as for example encountered for a porous medium, � can be computed
once at each lattice site. For moving boundaries, � has to be updated, which is the
most challenging aspect of the PSM. Also, the correspondence between � and the
actual boundary shape is not trivial and requires some calibration [44, 45, 49]. For
example, Han and Cundall [35] use a sub-cell method to estimate � for a given
lattice site while Chen et al. [47] employ a cut-cell approach. Apart from updating
�, no additional measures have to be taken when objects are moving on the lattice. In
particular, fresh nodes appearing on the rear of a moving obstacle do not have to be
treated in a special way. Neither are fluid nodes destroyed when they are covered
by the advancing boundary. Since the interior fluid is never destroyed and still
participates in the collisions described by ˝s

i , mass and momentum are conserved.
In reality, curved boundaries in the PSM are nothing more than a sophisticated

staircase (cf. Fig. 11.6). In the PSM, there is no information about the distance
between lattice nodes and boundaries; instead, the local fluid filling fraction is
considered. It is easy to imagine that many different boundary configurations can
lead to the same filling fraction. Therefore, the PSM fails to capture the correct
shape of the boundary.

Strack and Cook [13] performed careful 3D benchmark tests of the PSM. The
authors report a significantly smoother motion when the weight B.�; / is used,
rather than just falling back to a staircase approximation of the boundary. This is
mostly due to the smooth uncovering of fluid nodes which have previously been
solid nodes and vice versa. However, the smoothness of the observables (velocity,
force and torque) depends on the accurate computation of the solid ratio �.

Later, Han and Cundall [35] investigated the resolution sensitivity of the PSM
and Ladd’s BB scheme (Sect. 11.2.1) in 2D. They found that both methods are
comparably accurate in terms of the drag coefficient of relatively large circles
(diameter � 10�x). However, for diameters as small as 4 � 5�x, the PSM is
superior, in particular when the objects are moving on the lattice.

The PSM has a number of advantages. The first is that one does not face the
fresh node problem (Sect. 11.2.4) which causes some trouble in most of the other
BB variants. Moreover, the PSM, unlike IBB, is exactly mass conserving. Another
advantage is the absence of interpolations to enforce the boundary condition. This
makes the PSM a promising candidate for dense suspensions and porous media with
small pore sizes.

However, when used for suspension flow, the PSM has so far mostly been applied
to very simple geometries like circles in 2D or spheres in 3D. Although it is possible
to construct more complex geometries by assembling several circles or spheres [35],
additional work is necessary to make the PSM more attractive for moving, arbitrarily
shaped boundaries. (Chen et al. [47] provide a short discussion of algorithms which
can be used for more complex shapes.) Also, by sacrificing the treatment of the exact
boundary shape, one cannot expect that the no-slip condition is accurately satisfied
at the boundary [48, 49]. More investigations of the accuracy of the PSM for simple

11.2 Bounce-Back Methods 451

and complex boundary shapes would certainly be beneficial. Furthermore, the PSM
in its present form is not suitable for the simulation of deformable boundaries or
thin shells with fluid on both sides (unlike interpolated bounce-back, for example).

The partially saturated method (PSM) is a node-based method. PSM is
exactly mass-conserving and does not require the treatment of fresh fluid
nodes. The disadvantage is the difficulty of finding correct values for the solid
fraction near solid boundaries, which is effectively limiting this method to
stationary geometries (where the solid fraction has to be computed only once)
or to spherical particles.

11.2.4 Destruction and Creation of Fluid Nodes

When boundaries move, it happens from time to time that lattice nodes cross the
boundary, either from the fluid to the inside of the boundary or vice versa. If the
interior of the boundary is not filled with a fluid, the former event requires the
destruction, the latter the creation of a fluid site as shown in Fig. 11.7. Newly
created nodes are also called fresh nodes. This applies to most methods described in
Sect. 11.2 and also Sect. 11.3, but not to Ladd’s method (Sect. 11.2.1) or the partially
saturated method (Sect. 11.2.3) where nodes are neither created nor destroyed.
Generally the number of fluid and solid nodes is not conserved when boundaries
move on the lattice.

Fig. 11.7 Creation and destruction of fluid nodes. A particle is moving from its previous position
(dotted circle) to its new position (solid circle). As a consequence, one fresh fluid node (open
square) appears behind the particle and a fluid node is destroyed (solid square) at the front of the
particle. Fluid and solid nodes are shown as open and solid symbols, respectively

452 11 Boundary Conditions for Fluid-Structure Interaction

Destruction is straightforward [27]: the state of the site is switched from “fluid”
to “solid”, and its momentum and angular momentum are transferred to the solid.
For a destroyed fluid node at xd with density � and velocity u, the particles receives
a momentum contribution �u�x3 and an angular momentum contribution .xd�R/�
.�u/�x3 where R is the particle’s centre of mass. Finally, the fluid information of
the site at xd is omitted.

The inverse process, creation of a fluid site, is more difficult because the density,
velocity and even all populations are unknown at first. The simplest approach to
initialise a fresh node at point xf and time t is to estimate the density as the average
of the neighbouring fluid sites [27],

�f D �.xf; t/ D 1

Nf

X

i

�.xf C ci�t; t/; (11.14)

where the sum runs only over those Nf neighbouring sites which are fluid. The
velocity uf of the fresh node is computed from the known boundary velocity of
the obstacle at the same point via (11.4). The populations fi are then initialised with
their equilibrium values f eq

i .�f;uf/. As additional step, the momentum and angular
momentum of the fresh node have to be subtracted from the solid.

Although this approach is easy to implement, two disadvantages are obvious:
the total mass in the system is generally not conserved, and the non-equilibrium
contribution of the fresh node is missing, which can lead to distortions of the flow
field.

Chen et al. [14] compared the above-mentioned approach and three other algo-
rithms to initialise fresh nodes. One of those relies on extrapolation of populations
from neighbouring fluid sites [40]. The other two approaches, both first described
in [14], are based on the consistent initialisation [53] (see also Sect. 5.5). From
benchmark tests involving moving cylinders, the authors come to the conclusion that
the consistent initialisation methods are usually more accurate than interpolation
[27] or extrapolation [40].

The destruction and creation of fluid nodes is necessary when the standard
or interpolated bounce-back method (or certain other boundary conditions)
are used for moving boundaries. Boundary treatments without the need for
this consideration are Ladd’s method for suspended particles and the partially
saturated method. It has been observed that the treatment of fresh nodes is
crucial to reduce oscillations of the particle drag and creation of detrimental
sound waves.

11.2 Bounce-Back Methods 453

11.2.5 Wall Shear Stress

We conclude this section with a more general discussion of the wall shear stress that
is useful for most LB boundary conditions.

Several diseases of the circulatory system are assumed to be linked to patho-
logical levels or changes of the shear stress at the arterial wall (see, e.g., [54]
and references therein). Two prominent examples are atherosclerosis or aneursym
formation. In recent years, a growing number of scientists became interested in the
LB modelling of blood flow in realistic blood vessel geometries. Apart from finding
and implementing reasonable boundary conditions, a key question is how the wall
shear stress (WSS) can be computed and how accurate the obtained values are.

We will provide a brief review of the comparatively small number of publications
in this field, but before that a few words about the WSS are necessary. The WSS is
tightly connected to the momentum exchange at the boundary. Evaluating (11.2) is
not sufficient to find the WSS, though. The reason is that WSS is a local quantity
and not an integrated property of the entire surface of the boundary.

In order to find the WSS, the boundary location and orientation have to be known
at each point of interest. Assuming that xw is a point on the wall, we denote On the
wall normal vector at xw pointing inside the fluid domain. For a given fluid stress
tensor � at xw, we first define the traction vector as T D � � On. It is the force acting
on an infinitesimal, oriented wall area element dA D dA On. The WSS vector � is
the tangential component of the traction vector, i.e. we have to subtract the normal
component of the traction:

� D T � .T � On/ On; ˛ D �˛ˇ Onˇ � .�ˇ� Onˇ On� /On˛: (11.15)

The subtracted normal component .T � On/ On contributes to the wall pressure. It is
common to report only the magnitude of the WSS vector, simply called the WSS
 D j�j (not to be confused with the BGK relaxation time).

We distinguish three typical situations:

1. The normal vector On is known everywhere on the boundary, but the geometry is
approximated by a staircase boundary (simple bounce-back).

2. The geometry is only known as a staircase, and no additional information about
the normal vector On is available.

3. A higher-order boundary conditions is used for the boundaries (e.g. IBB). We
will not consider this case here.

An example for the first case is the discretisation of a known boundary geometry
where a surface tessellation is converted to a staircase surface. Here we still have
access to the original normal vectors, but the LB simulation is only aware of the
staircase. The second case is important when voxel data is directly converted into
a staircase geometry, without a priori knowledge of the boundary normals. This
means that we first need to estimate On from the known data before we can compute
the WSS.

454 11 Boundary Conditions for Fluid-Structure Interaction

Stahl et al. [55] were the first authors to provide a careful investigation of the
behaviour of the WSS in LB simulations with staircase geometries. They presented
a scheme to obtain the unknown normal vectors On from the flow field. This is
straightforward in 2D where the no-penetration condition requires u � On D 0

for the fluid velocity u at the wall. From the known velocity u we can easily
compute the unknown On up to its sign. This is more complicated but possible in
3D, where additional information is required (see [55] for details). The authors then
investigated the accuracy of the stress computation near the boundary in an inclined
Poiseuille flow. They found strongly anisotropic behaviour: the error is minimum
for walls aligned with one of the major lattice directions (i.e. when the wall is flat),
but larger errors for arbitrarily inclined walls. This error, however, decreases when
the stress is evaluated farther away from the wall. Therefore the authors suggested to
measure the fluid stress a few lattice sites away from the wall. All in all, it requires
relatively high resolutions (several 10�x) to estimate the WSS reasonably well in a
staircase geometry, which makes this method unfeasible when the average channel
diameter is small.

Later, Matyka et al. [56] proposed a different scheme to obtain a better estimate
of the unknown normal vectors On. Their idea was to compute a weighted average of
the staircase information of the neighbouring lattice nodes. The advantage of their
approach is that it is based on the geometry alone; it is independent of the flow field.
Furthermore, the authors showed that the WSS error is dominated by the flow field
error and not by an inaccurate approximation of the normal vector. The flow field
error in turn is caused by the staircase approximation (modelling error), which can
only be decreased by using a more accurate boundary condition for the LBM.

Pontrelli et al. [54] used a finite-volume LBM to compute the WSS in a small
artery with a realistic endothelial wall profile. Unfortunately the authors did not
provide a benchmark test of the WSS accuracy in their setup. It would be interesting
to investigate whether the finite-volume LBM is able to mitigate the shortcomings
of the regular lattice with staircase approximation.

Very recently, Kang and Dun [57] studied the accuracy of the WSS in inclined
2D Poiseuille and Womersley flows for BGK and MRT collision operators and for
SBB and IBB at the walls. One of the basic results is that, in channels aligned with
a major lattice axis, the WSS converges with a first-order rate upon grid refinement
when it is evaluated at the fluid layer closest to the wall and with a second-order
rate when the result is extrapolated to the wall location. This is no surprise since the
distance of the last fluid layer and the wall itself converges to zero with first-order
rate. The authors report similar results for BGK and MRT for their chosen parameter
range. When the flow in an inclined channel is simulated, the choice of the boundary
condition plays a significant role. IBB leads to errors which are about one order of
magnitude smaller than for SBB. Moreover, MRT leads to slightly better results than
BGK.

11.3 Ghost Methods 455

The choice of wall boundary condition critically affects the quality of wall
shear stress estimates. The best results are obtained when a curved boundary
condition is used as this increases the accuracy of the flow field and the fluid
stress tensor in direct vicinity of the wall. Further research is necessary to
develop improved boundary conditions for more accurate WSS computations
in complex geometries.

11.3 Ghost Methods

We will now present LB boundary methods which require extrapolations. A typical
scenario is the extrapolation of fluid properties at virtual nodes within a solid
body. These so-called ghost nodes then participate in collision and propagation
like normal fluid nodes. This process produces those populations which stream out
of the solid and would otherwise be unknown. After providing some definitions
in Sect. 11.3.1, we discuss three distinct classes of extrapolation-based boundary
conditions: the Filippova-Hänel and Mei-Luo-Shyy methods (Sect. 11.3.2), the
Guo-Zheng-Shi method (Sect. 11.3.3) and comparably novel image-based ghost
methods (Sect. 11.3.4). Some recommended articles are [58–62].

11.3.1 Definitions

In order to understand the motivation for the boundary conditions presented in this
section, we first have to define certain terms and understand their implications.

• Extrapolation in the present context means that the known information of a
quantity (e.g. velocity) within a geometrical region is used to approximate the
quantity outside this region. The known region is typically the fluid region
whereas the interior of a solid is unknown. For example, if we know the velocity
u at points x and x0 D x C �x (which may be inside the fluid) but not at
x00 D x0 C �x0 (which may be inside the solid), we can still approximate it by
assuming a linear behaviour and write

u.x00/ D u.x0/C u.x0/ � u.x/

�x
�x0: (11.16)

Higher-order extrapolations require more known data points (usually nC1 points
for extrapolation of order n). Extrapolations can often lead to instability (in
particular when �x in (11.16) is small) and loss of accuracy.

456 11 Boundary Conditions for Fluid-Structure Interaction

• Fictitious domain methods are based on the idea that the solution of a problem in
a given (usually complex) domain ˝ can be simpler when instead a substitute
problem in a larger (and simpler) domain ˝ 0 with ˝ � ˝ 0 is solved. This
obviously means that information in the complement region ˝ 0 n ˝ has to be
constructed. This usually involves extrapolations.

• Ghost methods are a special case of fictitious domain methods where virtual fluid
nodes (ghost nodes) are created inside the solid region close to the boundary.
Extrapolations of fluid and boundary properties are used to reconstruct the ghost
nodes. These nodes then participate in collision and propagation in the normal
way in order to supply the boundary nodes with otherwise missing popula-
tions. Unfortunately these methods are sometimes denoted as sharp-interface
immersed-boundary methods, although they hardly share any similarities with
the immersed boundary method originally introduced by Peskin (Sect. 11.4).

Revisiting the bounce-back boundary conditions presented in Sect. 11.2, we can
make the following comments:

• Standard and interpolated bounce-back do not involve any extrapolation or ghost
nodes. Although one can implement both methods with the help of nodes which
are on the solid side of the boundary, these nodes are only used for memory
storage purposes and do not qualify these methods as ghost methods.

• The partially saturated method uses nodes which are inside the solid, but no
extrapolations are required to create them. The reason is that the fluid is simply
kept in the interior without the need to reconstruct it at every time step.

Therefore, neither of the bounce-back-based boundary conditions in Sect. 11.2 is an
extrapolation or ghost method.

We present three extrapolation-based methods in more detail: the Filippova-
Hänel and Mei-Luo-Shyy methods, the Guo-Zheng-Shi method and image-based
ghost methods. Apart from this, the method by Verschaeve and Müller [63] as
an extension of [64] to curved boundaries is yet another alternative which we
will, however, not discuss in detail. In short, the underlying idea of [63] is
to have boundary nodes in both the fluid and solid regions and to interpolate
and extrapolate fluid properties, respectively. The equilibrium distributions are
reconstructed from the density and velocity, the non-equilibrium distributions from
the velocity gradient.

11.3.2 Filippova-Hänel (FH) and Mei-Luo-Shyy (MLS)
Methods

In 1998, Filippova and Hänel [65] proposed the first LB boundary condition for
curved geometries (FH method) using extrapolations. They assume the following
situation: a population f ?i .xb; t/ propagates towards a wall located between a
boundary node at xb and a solid node at xs D xb C ci�t. The wall is located at

11.3 Ghost Methods 457

Fig. 11.8 Filippova and Hänel boundary condition. A link ci is cut by a curved boundary at
xw (solid square). Fluid, boundary and solid nodes are shown as white, grey and black circles,
respectively. Information about the velocity at the solid node xs is required to find the post-
streaming population fNi.xb/. The original method [65] requires the velocity at xb only, while the
improved method [58] uses the velocity at xf as well

xw D xb C qci�t as illustrated in Fig. 11.8. The question is how to find the missing
population fNi.xb; tC�t/.

11.3.2.1 Original Method by Filippova and Hänel (FH)

Filippova and Hänel [65] suggested the equation

fNi.xb; tC�t/ D .1 � �/f ?i .xb; t/C � f eq
i .xs; t/ � 2wi

uw � ci
c2s

(11.17)

for each direction ci crossing a wall. Here, uw is the wall velocity (i.e. the velocity
of the wall at the intersection point xw, cf. Fig. 11.8) and � a weighting factor (with
the dimensionless BGK relaxation time):

� D
8
<

:

1

2q�1
1� 1

q < 1
2

1

.2q � 1/ q 	 1

2

: (11.18)

Exercise 11.3 Show that (11.17) reduces to simple bounce-back for q D 1
2
.

Equation (11.17) is essentially an interpolation of populations at xb and xs, but
we still have to investigate the shape of the required equilibrium term f eq

i .xs; t/.
Filippova and Hänel [65] construct the “equilibrium distribution in the rigid nodes”
from

f eq
i .xs; t/ D wi

p.xb; t/

c2s
C ci � us

c2s
C .ci � ub/

2

2c4s
� ub � ub

2c2s

!

: (11.19)

where we have used the abbreviations ub D u.xb; t/ and us D u.xs; t/. This is nearly
the standard incompressible equilibrium evaluated at xb, with the only exception that

458 11 Boundary Conditions for Fluid-Structure Interaction

the fluid velocity ub is replaced by the solid node velocity us in the linear term. The
authors suggested

us D
8
<

:

ub q < 1
2

q�1
q ub C 1

quw q 	 1
2

(11.20)

to find the missing velocity at xs.
This deserves a few comments:

• For q 	 1
2
, the solid node velocity is obtained by extrapolating the velocity at xs

from xb and xw.
• Since the extrapolation would lead to unstable results for q! 0, the authors fall

back to us D ub for q < 1
2
.

• The choice of the incompressible equilibrium also explains why the fluid density
does not appear in the momentum exchange term on the right-hand-side of
(11.17): in the incompressible method the density is constant and typically set
to unity.

Although the FH method reduces to simple bounce-back for q D 1
2
, it is

conceptually different from interpolated bounce-back (IBB, Sect. 11.2.2) which also
reduces to simple bounce-back for q D 1

2
. For any q-value, only one fluid node is

required in (11.17), which makes the FH method more local than IBB. The FH
method requires an extrapolation for q 	 1

2
, IBB does not.

11.3.2.2 Improvements by Mei, Luo and Shyy (MLS)

The FH method has the major disadvantage that the weight � diverges for ! 1

and q < 1
2
, which leads to instability. Mei et al. [58] therefore analysed the FH

method and its stability properties in detail and proposed an improved version (MLS
method). The starting point for the improvement is to realise that there are different
ways to construct the term f eq

i .xs; t/. The authors proposed new expressions for
q < 1

2
:

us D uf; � D 2q � 1
 � 2 ; (11.21)

where uf D u.xf; t/ and xf D xb � ci�t is the location of the fluid node beyond the
boundary node (cf. Fig. 11.8). The expressions for q 	 1

2
remain untouched.

Mei et al. [58] showed that this modification indeed improves the stability of
the original FH method, but they are also sacrificing its locality as a boundary and
a fluid node are required. The authors further mention that the above expressions
are only strictly valid for stationary flows. They therefore suggested a higher-order
extrapolation at us for transient flows.

11.3 Ghost Methods 459

It is important to note that most follow-up works in the literature employ the
improved [58] rather than the original [65] implementation. In the following we
summarise some notable progress:

• Mei et al. [66] were the first to perform a thorough comparative evaluation of
the momentum exchange algorithm (MEA) and stress integration in the context
of the MLS method to obtain drag and lift coefficients at stationary curved
boundaries. They found that the stress integration is much more demanding
in terms of implementation effort and computing time while the MEA is still
relatively accurate. Mei et al. therefore recommend to use the MEA.

• Like other interpolation- and extrapolation-based approaches, the FH and MLS
methods suffer from a violation of mass conservation. Therefore, Bao et al. [67]
analysed the mechanism responsible for the mass leakage in those boundary
treatments and presented an improved mass-conserving method.

• Wen et al. [59] extended the MEA [66] to moving boundaries.

11.3.3 Guo-Zheng-Shi (GZS) Method

Guo et al. [60] proposed yet another extrapolation-based LB boundary condition for
curved boundaries (GZS). The problem is the same as in Sect. 11.3.2 and Fig. 11.8.
In particular, the cut link ci points into the solid.3

The question is how to find fNi.xb; tC�t/. The GZS method uses a fictitious fluid
node at xs which is assigned an equilibrium value

f eq
Ni .xs; t/ D f eq

Ni .�s;us/ (11.22)

where f eq
i .�;u/ is the standard incompressible equilibrium. Note that the only

ficticious nodes are those solid nodes which are directly connected to a boundary
node by a lattice vector ci.

The authors approximate the density at the solid site by its neighbour value:
�s D �.xs; t/ D �.xb; t/. For the velocity, they suggested

us D
8
<

:

qu.1/ C .1 � q/u.2/ q < 3
4

u.1/ q 	 3
4

(11.23)

3Guo et al. [60] defined ci exactly the other way around.

460 11 Boundary Conditions for Fluid-Structure Interaction

where u.1/ and u.2/ are extrapolations using the nodes at xb and xf, respectively:

u.1/ D .q � 1/ub C uw

q
;

u.2/ D .q � 1/uf C 2uw

1C q
:

(11.24)

This means that us can be different for each considered link ci crossing a boundary;
it is therefore not a property of the position xs alone. When q is large enough, an
extrapolation from the closest fluid node at xb is sufficiently stable, but for smaller
q-values an extrapolation from the fluid node at xf becomes necessary.

Now, apart from the equilibrium, the GZS method also involves the non-
equilibrium populations at the solid node. The authors proposed the extrapolation

f neq
Ni .xs; t/ D

8
<

:

q f neq
Ni .xb; t/C .1 � q/f neq

Ni .xf; t/ q < 3
4

f neq
Ni .xb; t/ q 	 3

4

: (11.25)

The GZS algorithm includes the following steps:

1. Find q for a cut link connecting a boundary node xb and a solid node xs.
2. Reconstruct the populations of the fictitious nodes by

fNi.xs; t/ D f eq
Ni .xs; t/C f neq

Ni .xs; t/; (11.26)

where the equilibrium and non-equilibrium parts are computed from (11.22) and
(11.25).

3. Collide on all fluid/boundary nodes and fictitious nodes.4

4. Stream populations from all fluid/boundary nodes and fictitious nodes to their
fluid neighbours. In particular, f ?Ni streams from the fictitious to the boundary
node and provides the missing value for fNi.xb; tC�t/.

5. Go back to step 1.

According to Guo et al. [60], the present method has advantages over the methods
in Sect. 11.3.2. First, while the FH and MLS methods assume a slowly varying
flow field, the GZS method only requires a low Mach number flow which can be
unsteady. Secondly, the GZS scheme is more stable than the MLS approach.

We would also like to mention that Guo et al. [60] view FH and MLS as
improved bounce-back methods. Although that statement is certainly not wrong (the
functional form for the missing population fNi.xb; tC�t/ is similar to the standard and
interpolated bounce-back expressions), the FH, MLS and GZS methods all require

4In the original paper [60], the fictitious populations are already constructed in their post-collision
state f ?

Ni
.xs; t/ D f eq

Ni
.xs; t/C .1� 1

/f neq

Ni
.xs; t/. In this case, collision on fictitious nodes is of course

not additionally performed.

11.3 Ghost Methods 461

extrapolations and are ghost-like methods. They are therefore conceptually different
from the bounce-back methods presented in Sect. 11.2 which are all extrapolation-
free.

11.3.4 Image-Based Ghost Methods

Only in 2012, Tiwari and Vanka [61] developed a ghost-fluid boundary condition for
the LBM which is based on the so-called image method. The idea of their boundary
condition is illustrated in Fig. 11.9.

The algorithm consists of the following steps:

1. Identify all required ghost nodes xs. Those are all solid nodes which are
connected to at least one boundary node along a lattice vector ci.

2. For each ghost node xs find the closest point xw on the wall. We define n D xw�xs

as the outward-pointing normal vector at the wall. Note that jnj is the distance of
the ghost node from the wall and n is generally not aligned with any of the lattice
vectors ci.

3. The next step is to find the image point xi in the fluid:

xi D xs C 2n D xw C n: (11.27)

For a stationary boundary, steps 1–3 have to be performed only once.
4. Interpolate the required fluid properties (velocity and density) at the image point

xi to obtain ui and �i. The interpolation process is somewhat tedious as it depends
on whether interpolation support points are located in the fluid or on the wall. We
refer to [61] for a detailed discussion.

Fig. 11.9 Image-based ghost method. For each ghost node xs, the closest wall point xw is
computed. The corresponding image point xi in the fluid (open circles) is constructed along the
normal vector n. Fluid properties at the image point are obtained from an interpolation in the grey
region (fluid nodes A, B, C, D). A different interpolation is required if not all interpolation support
points are located within the fluid

462 11 Boundary Conditions for Fluid-Structure Interaction

5. Extrapolate velocity and density along the normal n to the ghost node. Tiwari
and Vanka [61] used

us D 2uw � ui; �s D �i: (11.28)

The first equation refers to a linear extrapolation of the velocity, the second to a
zero density gradient at the wall.

6. Compute the equilibrium distributions at the ghost nodes from f eq
i .xs; t/ D

f eq
i .�s;us/.

7. The non-equilibrium distributions f neq
i .xs; t/ are obtained like the fluid density:

interpolate them at xi first, then apply f neq
i .xs; t/ D f neq

i .xi; t/.
8. Combine the equilibrium and non-equilibrium distributions at the ghost nodes

and perform the propagation step, followed by the collision step.
9. Go back to step 1.

This algorithm deserves a few remarks:

• In contrast to the previous methods in this section, us does not depend on the
considered link ci; it is rather a unique property of each ghost node.

• According to [61], the extrapolated values of density, velocity and non-
equilibrium distributions are post-collision rather than pre-collision. This is
unusual since the moments (density, velocity, stress) are normally computed
after the previous streaming and before the next collision step.

• The boundary condition is based on the hydrodynamic fields rather than the
populations. This allows implementing Neumann boundary conditions. The
authors for example demonstrated the applicability of their method for inlet and
outlet boundary conditions [61].

• Extrapolation along normal vectors as in step 5 avoids typical stability issues
encountered with other extrapolation methods.

• Although being trivial for circular or spherical boundary segments, finding the
image point can be tedious for complex boundary shapes. Also the interpolation
at the image points is complicated if not all interpolation support points are
within the fluid domain. The application of this boundary condition to moving
boundaries of complex shape, in particular in 3D, is therefore difficult and
expensive. Tiwari and Vanka [61] simulated only circular boundaries in 2D.

• The assumption of a zero density gradient across the boundary is a gross over-
simplification. For example, it fails when a force density along the extrapolation
direction exists which is balanced by a pressure gradient [62]. Since errors
in the pressure gradient are of higher order, the velocity profile may still be
second-order accurate, though. A similar objection can be made for the non-
equilibrium distributions. At least a linear extrapolation for the density and the
non-equilibrium distributions are required to accurately capture second-order
flows like the Poiseuille flow.

11.4 Immersed Boundary Methods 463

Several extensions and improvements of the algorithm have been proposed in the
meantime:

• Khazaeli et al. [68] followed a similar route as Tiwari and Vanka [61] to impose
higher-order boundary conditions for coupled fluid-heat problems in the two-
population LBM.

• Mohammadipoor et al. [62] followed the same line as [61] and extended the
approach of Zou and He [69] to curved boundaries.

• Pellerin et al. [70] proposed an image-based method that relies only on equilib-
rium distributions.

There exist several extrapolation-based boundary conditions for the LBM.
These methods are conceptually more difficult than bounce-back-based meth-
ods. A common algorithmic complication all these methods share with the
interpolated bounce-back method is the detection of boundary points (either
on cut links or closest points to ghost nodes). In practice, these methods are
quite unhandy for moving boundaries of complicated shape although they are
promising candidates for highly accurate boundary conditions when properly
applied. More research is required to make extrapolation-based method more
attractive for moving objects with non-trivial shape.

11.4 Immersed Boundary Methods

The immersed boundary method (IBM) [71–73] is older than LBM, but the
combination of both was not suggested before 2004 [74] (Sect. 11.4.1). The basic
idea of the IBM is to approximate a boundary by a set of off-lattice marker points
that affect the fluid only via a force field. An interpolation stencil is introduced
to couple the lattice and the marker points (Sect. 11.4.2). This allows a relatively
simple implementation of complex boundaries. There are several IBM variants, for
example explicit (Sect. 11.4.3) or direct-forcing (Sect. 11.4.4) for rigid boundaries
and explicit IBM for deformable boundaries (Sect. 11.4.5). We also mention a series
of other related boundary conditions which are less commonly used (Sect. 11.4.6).
We recommend reading [75, 76] for introductions and investigations of the IBM in
conjunction with the LBM.

464 11 Boundary Conditions for Fluid-Structure Interaction

11.4.1 Introduction

Boundary conditions in the LBM are usually treated on the population level, i.e. the
populations fi are manipulated or constructed in such a way that the desired values
for pressure and velocity (or their derivatives) are obtained at the boundary. This
applies to all boundary conditions discussed in Chap. 5 and in the present chapter
up to this point.

There is, however, a completely different way to enforce boundary conditions
which was available long before anybody knew of the LBM. In 1972, Peskin
proposed the immersed boundary method (IBM) in his dissertation [71], followed
by an article in 1977 [72]. Peskin’s idea was to use the force density F.x; t/ in
the Navier-Stokes equation to mimic a boundary condition. To this end, F.x; t/
has to be computed such that the fluid behaves as if there was a boundary with
desired properties (e.g. no-slip). When correctly applied, this approach can be used
to recover immersed rigid or deformable objects with nearly arbitrary shape. Since
the boundary condition exists only on the Navier-Stokes level (via the force density
F.x; t/), IBM is not aware of the populations fi.

The IBM provides a number of advantages. The main advantage is its front-
tracking character, i.e. the shape of the boundary is directly known and does
not have to be reconstructed (as in phase-field or level-set approaches). Neither
do intersection points have to be computed (as required for nearly all boundary
conditions presented in this chapter so far). The IBM can be combined with any
Navier-Stokes solver which supports external forcing, such as the LBM. The IBM
is relatively simple to implement and, if done so properly, its numerical overhead is
small. Moving and deformable boundaries can be realised without remeshing. It has
to be noted that fluid exists on both sides of an IBM surface. In particular, closed
surfaces are filled with fluid.

The original IBM does not take any consideration of the kinetic origin of the
LBM as it only operates on the Navier-Stokes level. Still, the combination of
the IBM and the LBM, also called immersed-boundary-lattice-Boltzmann method
(IB-LBM), first proposed by Feng and Michaelides [74], has become a popular
application. It therefore deserves a somewhat thorough introduction in this book,
together with some recent developments and related approaches. We cannot provide
an exhaustive coverage of the IBM in general, though. Readers who are interested
in the IBM independently of the LBM should read the seminal paper by Peskin [73]
and the review by Mittal and Iaccarino [77].

There is some dissent in the literature what “immersed boundary method”
actually means and how it is defined. Some people use it for nearly all methods
where a boundary is immersed in a fluid, including, for example, fictitious domain
methods (Sect. 11.3). Here, we define those methods as immersed boundary
methods which involve, on the one hand, an Eulerian grid and Lagrangian markers
and, on the other hand, some kind of velocity interpolation and force spreading as
devised by Peskin [73], but there is no clear distinction between the IBM and related

11.4 Immersed Boundary Methods 465

methods. Another way of putting this is the following.5 In IBM we have marker
points without mass that move exactly with the fluid. Through some mechanical
model (e.g. a constitutive model for a deformable membrane or a penalty force for
a rigid body), we can compute forces at these points which we apply to the fluid
directly, rather than to the mechanical model itself.

In the remainder of this section we will focus on the IBM combined with LBM
using the BGK collision operator. However, several authors recently pointed out that
the MRT or TRT collision operators can bring additional advantages by reducing
undesired velocity slip at the immersed boundaries [78, 79]. We will not discuss
those extensions further.

11.4.2 Mathematical Basis

We will now review the original IBM, discuss its mathematical properties and show
its basic numerical algorithm.

11.4.2.1 Eulerian and Lagrangian Systems

Mathematically, the basis of the IBM is an Eulerian and a Lagrangian system. The
former is represented by a fixed regular grid on which the fluid lives and the Navier-
Stokes equations are solved. The latter is an ensemble of marker points frjg. They
can be (nearly) arbitrarily distributed in space, as long as they are sufficiently dense
(see below). These markers represent discrete surface points of the boundary and
are generally allowed to move: rj D rj.t/. We therefore have to distinguish between
two node systems (Fig. 11.10) with the following properties:

1. The Eulerian grid defined by the LBM lattice nodes (coordinates designated by
x) is regular and stationary.

2. The immersed boundary marker points rj.t/ are Lagrangian nodes. They are not
bound to the Eulerian grid and can move in space.

If the boundary is rigid, one would ideally fix relative distances such that
jrjk.t/j D jrj.t/ � rk.t/j D const. This is often not achievable, and a somewhat
softened condition jrjk.t/j � const is used instead. For deformable boundaries, a
relative marker motion is actually desired.

It may or may not be necessary to connect neighbouring markers. Most imple-
mentations of rigid boundary conditions do not require connected markers, while
all deformable algorithms require some kind of surface tessellation which involves
defining the markers and their connectivity (surface mesh). This mesh is called
nonconforming as it does not have to be aligned with the lattice of the LBM. The

5Thanks to Eric Lorenz for suggesting this description.

466 11 Boundary Conditions for Fluid-Structure Interaction

Fig. 11.10 Cylinder with
boundary markers arbitrarily
positioned in the regular fluid
domain. The Eulerian mesh
(fluid nodes, open circles)
and the Lagrangian mesh
(boundary, solid nodes) are
independent. No intersections
of lattice links with the
boundary have to be
computed

main advantage of the IBM is that the complex shape of the boundary is not related
to the lattice structure and no intersection points have to be computed. This makes
the IBM particularly useful for deformable boundaries (Sect. 11.4.5).

The decomposition of the geometry into two coordinate systems brings up the
important question how to couple the dynamics of the boundary and the fluid. We
need a bi-directional coupling where the fluid has to know about the presence of the
boundary and vice versa. It is therefore required to communicate some information
between both node systems through velocity interpolation and force spreading.

11.4.2.2 Continuous Governing Equations

We start with a fully continuous description and later turn our attention to the
discretised version. In the following we assume the validity of the no-slip boundary
condition, which is the first key idea of the IBM. It implies that each point of the
surface r.t/ and the ambient fluid at position r have to move with the same velocity:

Pr.t/ D u.r.t/; t/: (11.29)

The time dependence on the right-hand side of (11.29) is, on the one hand, caused
by the variation of u itself and, on the other hand, by the boundary moving and
therefore seeing different parts of the flow field. We can rewrite (11.29) as

Pr.t/ D
Z

d3x u.x; t/ı.x � r.t// (11.30)

where ı.x � r.t// is Dirac’s delta distribution. Equation (11.30) is the first of
two governing equations of the as yet continuous IBM. We will later see that the
discretised version of (11.30) requires velocity interpolation. Note that we write all

11.4 Immersed Boundary Methods 467

equations for 3D applications, but everything said (unless otherwise stated) can be
directly applied in 2D as well.

The second governing equation describes the momentum exchange between the
boundary and the fluid. In the IBM picture, we are interested in the force the
boundary surface exerts on the nearby fluid, rather than the other way around. Let us
assume we know the force density (per area) FA.r.t/; t/ everywhere on the boundary
surface. Therefore, FA d2r is the force acting on a small area element d2r.6 The
force density (per volume) that the fluid feels due to the presence of the immersed
boundary can then be written as

F.x; t/ D
Z

d2r FA.r.t/; t/ı.x � r.t//: (11.31)

The delta distribution is the same as in (11.30). Equation (11.31) essentially means
that the Lagrangian boundary force is spread to the Eulerian fluid. Therefore this
equation is called force spreading.

Note that F.x; t/ is singular. Since the delta distribution ı.x � r.t// is 3D, but
the integration is only 2D along the boundary, F.x; t/ is singular when crossing the
boundary in normal direction. This marks the defining difference between velocity
interpolation (which is non-singular) and force spreading.

Equation (11.30) and (11.31) are the basic IBM equations in their continuous
form. We will now show their discretised versions which can be used in computer
simulations.

11.4.2.3 Discretised Governing Equations

Since the velocity field is only known at discrete lattice sites, the integral in
equation (11.30) cannot be exactly computed in a lattice-based simulation. The same
holds for (11.31). Instead, both integrals have to be replaced by sums with a suitably
chosen discretisation of the delta distribution.

Peskin [73] provided a full derivation of a general set of equations for the
IBM. We will restrict ourselves, for the sake of brevity and clarity, to the final
set of equations based on the assumption that the fluid in the entire volume is
homogeneous, in particular its density and viscosity. We further assume that the
markers are massless, which means that the boundary has the same density as the
surrounding fluid.

6Remember that the boundary in 3D is a 2D surface.

468 11 Boundary Conditions for Fluid-Structure Interaction

The discretised IBM equations read

Prj.t/ D
X

x

�x3u.x; t/�.rj.t/; x/ (11.32)

and

F.x; t/ D
X

j

f j.t/�.rj.t/; x/: (11.33)

The fluid is discretised as an Eulerian lattice with coordinates x, the boundary
is approximated by an ensemble of markers at rj.t/. Here, u and F are velocity
and force density (per volume) on the lattice, Prj and f j are the velocity of and
the total force acting on the markers. Velocity interpolation in (11.32) and
force spreading in (11.33) are the central IBM equations. Both require an
appropriate kernel function (or stencil) �, as discussed below.

It is important to realise that f j.t/ is the total force (not force density) acting on
node j at position xj.t/. Apart from the no-slip condition discussed above, it is one
of the key ideas of the IBM that the force f j.t/ is first computed in the Lagrangian
system and then spread to the lattice. This brings up the central question how f j.t/
can be found in the first place. In fact, this depends strongly on the chosen kind of
the IBM. We will discuss this problem in the upcoming sections. Let us for now
simply assume that all forces f j.t/ are known at each time step.

We further emphasise that F.x; t/ is the only mechanism through which the fluid
is aware of the presence of the boundary; there is otherwise no direct boundary
condition for the fluid. Once we know F.x; t/, we can use one of the forcing schemes
described in Chap. 6 to update the fluid. To the LBM, the IBM force density is not at
all different from gravity (although gravity is usually homogeneous and constant).

11.4.2.4 Kernel Functions

The function�.rj; x/ is a suitably discretised version of the Dirac delta distribution
and another key ingredient of any IBM. It is in most cases simplified by assuming
�.rj; x/ D �.rj� x/, i.e. it is only a function of the distance vector rj � x rather than
a more general function of rj and x (see [80] for a kernel without this simplification).
It is not directly obvious which functions �.rj � x/ qualify as valid interpolation
and spreading kernels. While Peskin [73] explains the procedure to find suitable
discretisations in detail and an overview of interpolation function can be found in
[76, 81], we will only provide the basic ideas and final results.

11.4 Immersed Boundary Methods 469

Fig. 11.11 IBM interpolation stencils �2, �3, and �4. The total kernel range is two, three and four
lattice sites, respectively

The fundamental claims and restrictions are:

• Interpolation and spreading should be short-ranged. This is required to reduce
computational overhead by making the number of summands in (11.32) and
(11.33) as small as possible.

• Momentum and angular momentum have to be identical when evaluated either in
the Eulerian or the Lagrangian system (same speed and rotation in both systems).

• Lattice artefacts (“bumpiness” of the interpolation when boundaries move)
should be suppressed as much as possible.

• The kernel has to be normalised:
P

x�x3�.x/ D 1.

It is convenient to factorise the kernel function as �.x/ D �.x/�.y/=�x2 in 2D
and �.x/ D �.x/�.y/�.z/=�x3 in 3D, i.e. each major coordinate axis contributes
independently. This is not essential but simplifies the procedure. Peskin [73] derived
a series of stencils which are also shown in Fig. 11.11. Those kernels read

�2.x/ D
8
<

:

1 � jxj .0 � jxj � �x/

0 .�x � jxj/ ; (11.34)

�3.x/ D

8
ˆ̂
<̂

ˆ̂
:̂

1
3

�
1Cp1 � 3x2

�
0 � jxj � 1

2
�x

1
6

�
5 � 3jxj �p�2C 6jxj � 3x2

�
1
2
�x � jxj � 3

2
�x

0 3
2
�x � jxj

; (11.35)

�4.x/ D

8
ˆ̂
<̂

ˆ̂
:̂

1
8

�
3 � 2jxj Cp1C 4jxj � 4x2

�
0 � jxj � �x

1
8

�
5 � 2jxj �p�7C 12jxj � 4x2

�
�x � jxj � 2�x

0 2�x � jxj
: (11.36)

The integer index denotes the number of lattice nodes required for interpolation and
spreading along each coordinate axis (Fig. 11.11). Therefore, the stencils require 2d,
3d and 4d lattice sites in d dimensions, respectively.

470 11 Boundary Conditions for Fluid-Structure Interaction

�4 fulfills all of Peskin’s requirements, but it also leads to a diffuse boundary
since the interpolation range is rather large. �3 also fulfills all requirements, but it is
less smooth. �2 is most efficient in terms of computing time and leads to the sharpest
boundaries, but the lattice structure is not well hidden, i.e. the resulting flow field is
generally more bumpy. Sometimes, �4.x/ is replaced by another stencil which has
nearly the same shape but does not exactly satisfy all of the requirements mentioned
above:

�0
4.x/ D

8
<

:

1
4

�
1C cos.�x

2
/
�

0 � jxj � 2�x

0 2�x � jxj
: (11.37)

We also note that additional, smoothed representations of the delta distribution have
been proposed [82].

11.4.2.5 General IB-LBM Algorithm

Without specifying yet how the forces f j acting on the boundary nodes are obtained,
we can still jot down a simple IB-LBM algorithm. It consists of the following sub-
steps:

1. Compute the Lagrangian forces f j.t/ from the current boundary configuration
frj.t/g. This is a model-dependent step which still remains to be discussed.

2. Spread the Lagrangian forces f j.t/ to the lattice via (11.33) to obtain the Eulerian
force density F.x; t/. See also Fig. 11.12.

3. Compute the uncorrected (pre-collision) velocity u.x; t/ from u DPi fici=�.
4. Perform the LB algorithm (computing equilibrium distributions, collision and

propagation) with forcing (Chap. 6), using u.x; t/ and F.x; t/ as input. If other
forces, such as gravity, are present, the total force is the sum of all these
contributions. Note that the choice of an accurate forcing scheme (e.g. Guo
et al. [83]) is important. This is often ignored in the literature.

Fig. 11.12 Interpolation and spreading. The lattice velocity is interpolated at rj.t/. For this
operation, all lattice nodes within the grey region are required (here �2 is used). The force density
at a given lattice node x is the sum of all contributions from those nodes rj.t/ whose interpolation
box covers x

11.4 Immersed Boundary Methods 471

5. As we know from Chap. 6, the physical fluid velocity during the time step is
given by the first moment of the populations and a force correction:

uf.x; t/ D u.x; t/C F.x; t/�t

2�.x; t/
: (11.38)

Leaving the force correction out can lead to significant stability (and accuracy)
problems.

6. Interpolate the fluid velocity uf.x; t/ at the Lagrangian node positions via (11.32)
to obtain Prj.t/. See also Fig. 11.12.

7. Advect the boundary nodes (usually by the explicit forward Euler method) to find
the new boundary configuration:

rj.tC�t/ D rj.t/C Prj.t/�t: (11.39)

There exist different explicit time integration schemes [84, 85], though.
8. Go back to step 1 for the next time step.

Note that the time steps for the LBM and the marker position update are identical,
i.e. in the standard IB-LBM there can only be one marker update per LB time step.

Not all IBM flavours follow this algorithm. There are several approaches (and
algorithms) to deal with rigid boundaries. We will get back to those later.

Once the discretised kernel functions�.x/ have been implemented, the rules for
computing the forces f j have been defined and the initial boundary node locations
rj.t D 0/ are known, the simulation can be executed. The real challenge is normally
hidden behind the models providing the required forces f j. We will get back to this
point in the following sections.

For the sake of efficiency, note that is it very easy to implement a naive
IBM which is, despite being mathematically correct, horribly inefficient.
Equation (11.32) clearly shows that the sum should run over the lattice
neighbours of a given boundary node. For a boundary node rj, it is easy to
identify the neighbouring lattice sites. However, (11.33) suggests to go the
other way around and to identify all boundary markers in the vicinity of a
given lattice site. This can be extremely expensive, in particular when the
Eulerian lattice is large. A small trick can make the computational effort for
interpolation and spreading identical though. In order to do so, we run over
all known boundary markers rj and compute the fraction of the force density
a neighbouring lattice site x would receive:

ıjF.x/ D f j.t/�.rj.t/; x/: (11.40)

(continued)

472 11 Boundary Conditions for Fluid-Structure Interaction

Here, ıjF.x/ is the contribution to F.x/ due to the presence of rj alone.
All these contributions are simply summed and the correct total force
density F.x/ D P

j ıjF.x/ is automatically obtained in the end. This also
highlights the conceptual difference between interpolation and spreading. In
fact, Tryggvason et al. [86] give the helpful advice (where “front” means
“boundary” in our case):

When information is transferred between the front and the fixed grid, it is always
easier to go from the front to the grid and not the other way around. Since the fixed
grid is structured and regular, it is very simple to determine the point on the fixed
grid that is closest to a given front position.

11.4.2.6 Implications of the Combination of IBM and LBM

Although the IBM is just another way to impose boundary conditions on the Navier-
Stokes level, the populations fi are completely unimpressed by the presence of
the Lagrangian marker points. In particular, the fi simply penetrate any closed IB
surface. This is not problematic as long as one is only interested in the no-slip
condition of the velocity u and one does not care what the populations are doing.
But we can already see that the IBM is not an ideal approach when one wants to
keep, for example, two fluids separate on two sides of a membrane.

Another observation is that the fluid usually fills the entire space, including the
regions inside any boundary. This significantly simplifies things but can also lead
to additional difficulties. For example, it has been shown that the dynamics of the
interior fluid can have an effect on the dynamics of the exterior fluid if the immersed
boundaries are rotating [87]. There are ways around this, for example by adding
interior marker points. In the following, we will not discuss methods with interior
markers, such as direct-forcing/fictitious-domain methods [88].

11.4.2.7 Distribution of Markers in Space

One open question is how to distribute the markers rj in space initially. For 2D
problems this answer is easy to answer: define a 1D chain of markers with a given
mutual distance d on the boundary. Each marker knows which one is its left and
right neighbour.

The choice of d is a more delicate issue. On the one hand, intuitively, d cannot
be too large because otherwise there are “holes” in the boundary and fluid can flow
between markers. On the other hand, too small a value for d can lead to problems
as well [89]. This is due to the peculiarities of the IBM algorithm: the marker
position update relies on the interpolated fluid velocity. If two markers are very
close, d � �x, they essentially see the same fluid environment and move with the

11.4 Immersed Boundary Methods 473

same velocity. Markers which are too close can therefore not be separated again (or
only with a lot of effort) and they can stick together. It is usually recommended to
choose d somewhere between 0:5 and one lattice constant, but some authors even
choose d � 2�x. We will get back to this point in Sect. 11.4.3.

The situation is much more complicated in 3D where boundaries are generally
curved 2D surfaces. One has to distribute the markers such that the mutual distance
of any pair of neighbours is approximately the same. This can be a tedious task for
general surface shapes and is one of the biggest challenges when applying the IBM
in 3D. Furthermore, the node connectivity (i.e. an unstructured mesh) is required for
deformable boundaries and additional constraints may apply in those situations (e.g.
the resulting triangular face elements should be as equilateral as possible). Here, we
can only give some starting points for further literature studies:

• For simple geometries of high symmetry (spheres, red blood cells), one can
start from an icosahedron and subdivide each triangular surface element into n2

(n > 1 being an integer) triangular elements [85, 90]. The markers are radially or
tangentially shifted to approximate the desired boundary shape.

• In the minimum potential approach [91] a fixed number of markers is initially
randomly distributed on the surface. Markers interact via repulsive forces and
move along the surface until the system has found an energetic minimum. The
resulting marker configuration can then be used in simulations as initial boundary
discretisation.

• Feng and Michaelides [91] presented another approach to distribute markers on
a sphere by defining parallel segments containing equidistant nodes.

• There exist free meshing tools which can cope with more complicated boundary
shapes, for example [92, 93].

11.4.2.8 Accuracy and Convergence

One shortcoming of the IBM is that the velocity interpolation does not generally
maintain the solenoidal properties of the fluid. Even if the fluid solver is perfectly
divergence-free (which LBM usually cannot claim), the interpolated velocity may
not be divergence-free. The consequence is that the volume of an enclosed region
can change in time.

Furthermore, the IBM is formally a first-order accurate boundary condition [73].
There seems to be some dispute in the literature about the actual convergence rate,
though. While Peng and Luo [94] report second-order convergence, other authors
observed only first-order convergence for the velocity field [95, 96].

Related to the question of accuracy and convergence is the apparent size of
particles and/or apparent location of walls modelled with the IBM. Several authors,
e.g. [85, 91, 97], have reported that particles appear to be larger than they actually
are. Instead of the input radius r, a larger radius r C ır is observed where ır is
somewhere between 0:2�x and 0:5�x, depending on the chosen stencil (a kernel
with wider support usually leads to a larger ır). In order to model a sphere of actual

474 11 Boundary Conditions for Fluid-Structure Interaction

radius r, Feng and Michaelides [91] suggested to distribute markers on a sphere with
radius

rb D 3

r
r3 C .r ��x/3

2
(11.41)

instead. This finding is important for the modelling of particle suspensions or porous
media where the rheology strongly depends on the volume fraction and porosity. We
will get back to the convergence and apparent wall location in Sect. 11.4.3.

Once again, we see that there is no free lunch. The advantages of the standard
IBM (ease of implementation, no need to find boundary intersections, no treatment
of fresh fluid nodes required), which explain the IBM’s popularity, are challenged
by inferior accuracy and convergence compared to other boundary conditions. Note,
however, that there have been efforts to make the IB-LBM more accurate [78, 79,
97].

11.4.3 Explicit Feedback IBM for Rigid Boundaries

We show a simple way to compute the nodal forces f j for (nearly) rigid boundaries.
This explicit IBM is easy to implement but shows weak stability properties. After
discussing the algorithm we use the explicit IBM to model Poiseuille flow and
demonstrate the convergence and boundary location issues within the IBM. Note
that the explicit IBM does not work very well for unsteady flows as it takes some
time for the marker points to respond to the flow.

11.4.3.1 Algorithm

A rigid body is defined by jrj.t/ � rk.t/j D const for any two points rj and rk of
the body. The simplest way to approximate rigid objects with the IBM is to model
the boundary as a collection of marker points rj.t/ which are individually connected

by an elastic spring to their reference locations r.0/j .t/. Feng and Michaelides [74]
first proposed this idea within the framework of IB-LBM in 2004. While the virtual
reference locations obey the rigidity condition exactly, jr.0/j .t/� r.0/k .t/j D const, the
real markers are allowed to deviate slightly from this condition.

The magnitude of the undesired body deformation can be controlled by springs
with strength �. We can then explicitly compute the marker “penalty” force f j from
a function like

f j.t/ D ��ırj.t/; ırj.t/ D rj.t/ � r.0/j .t/ (11.42)

11.4 Immersed Boundary Methods 475

at each time step so that the required nodal forces f j are known. Contrarily, Feng
and Michaelides [74] proposed a form similar to

f j.t/ D
8
<

:

0 jırj.t/j D 0
�� ırj.t/

jırj.t/j jırj.t/j > 0
: (11.43)

In the example shown below, we use another penalty force:

f j.t/ D �� d

�x
ırj.t/: (11.44)

The difference to (11.42) is that the force per node is weighted by the average
distance d between the nodes. This guarantees that increasing the number of markers
(and therefore decreasing d) does not increase the total force at the boundary. In any
case, the IBM algorithm in Sect. 11.4.1 is employed: in step 1, the forces f j.t/ are
obtained via one of the approaches shown above.

Using the explicit penalty IBM, each marker point is allowed to be slightly
carried away from its reference position. Each point applies a penalty force as
discussed above. This force then tends to pull the marker back towards its reference
position. After a few time steps (given a steady flow), a marker point will reach
an “equilibrium position” where the force it exerts on the fluid is just enough to
keep the fluid, and therefore itself, in place. It has then achieved a no-slip condition
locally.

Ideally, the exact form of the penalty force should not be important, but it depends
on the chosen parameter values whether this is actually the case. For example, if �
is too small, the undesired deformation becomes too large, and if � is too large,
the simulation can become unstable. A clear disadvantage of this method is that
the optimum range for � has to be obtained and that a small time step may be
necessary. It is not possible to achieve perfectly rigid boundaries with an explicit
IBM algorithm.

Finally, we distinguish between three fundamental cases:

1. The rigid body is fixed in space. All reference points r.0/j are stationary, and their
positions do not have to be updated. The Poiseuille flow in the example below
belongs to this category.

2. The body is rigid, and its motion is externally prescribed. This is similar to the
first case, but the marker point positions r.0/j are updated according to the a priori
known velocity.

3. The body is rigid but can move freely in space. This means that the reference
points r.0/j have to be updated according to the equations of motion of a rigid
body. In contrast to the second case, this requires the momentum and angular
momentum exchange to be integrated on the surface of the body to find the total
force and torque acting on the body. Updating the marker positions of rigid bodies
can be complicated. We will not discuss details here and instead refer to the
literature [74, 87, 91, 98].

476 11 Boundary Conditions for Fluid-Structure Interaction

11.4.3.2 Stationary Boundary: Poiseuille Flow

We simulate a force-driven Poiseuille flow along the x-axis in 2D with (nearly) rigid
boundaries as shown in Fig. 11.13. The gravitational force density driving the flow
is F D 10�5, and the fluid domain consists of Nx � Ny D 19 � 20 nodes on a D2Q9
lattice. The BGK collision operator with D �t is used. We approximate both
walls by lines of markers with mutual distance d as free parameter and employ the
penalty force in (11.44). The distance between the IBM walls is D D 15:3�x. The
spring constant � is the second free parameter. Simulations are run until the velocity
profile is stationary.

We have chosen a prime number for Nx and a non-integer for D to reduce the
symmetry of the problem and therefore avoid situations which may accidentally
have small numerical errors. Note, however, that the chosen benchmark problem is
still highly idealised. Typical IBM applications involve moving curved boundaries
with complex shapes. The purpose of this exercise is to get an initial feeling for the
IBM simulation parameters.

The first task is to investigate the effect of the Lagrangian mesh spacing d=�x.
We keep � D �t fixed and vary d for two interpolations stencils, �2 and �4. As
error measure we take the largest value of uy in the simulation, normalised by the
Poiseuille peak velocity Oux. Note that ideally we expect uy D 0 everywhere. The
results are shown in Fig. 11.14a. The �2-errors are larger than the �4-errors for
d > �x, but they are smaller for d < �x. A resonance effect with vanishing
uy can be seen for d D �x and d D 0:5�x. In those situations the problem is
highly symmetric as the system is x-periodic after a single lattice unit. Generally we
conclude that d should not be larger than 1:5�x. Cheng et al. [76] reported a similar

Fig. 11.13 Setup of the
Poiseuille flow problem. The
lattice size is
Nx � Ny D 19�x � 20�x,
and the distance between the
IBM walls is D D 15:3�x. In
this particular example,
d D 0:95�x is chosen

11.4 Immersed Boundary Methods 477

Fig. 11.14 Benchmark results showing the effect of mesh spacing d and penalty parameter � on
the accuracy of the explicit IBM for Poiseuille flow. (a) Sensitivity to mesh spacing. (b) Sensitivity
to penalty parameter

observation. For this simple example, �2 provides significantly better results than
�4, but this observation should certainly not be generalised to arbitrary situations.
The resonance effect is expected to disappear for more complex geometries with
curved boundaries.

In the second test, we set d D �x and vary the penalty parameter �. Due to
the explicitness of the algorithm, the Lagrangian nodes are slightly dragged by the
fluid along the x-axis until the penalty force balances the drag force. We show
the displacement of the Lagrangian nodes as function of penalty parameter � in
Fig. 11.14b. As expected, the displacement is inversely proportional to the penalty
parameter. For � D 1, the displacement is less than 0:1% of a lattice spacing �x,
which should be sufficient for most applications. We found that � > 3 leads to
instability. Concluding, d D �x and � D 1 are reasonable choices for the current
problem; we will keep these values for the final tests. Note, however, that different
flow configurations may require different parameter values for optimum results.

We now investigate the apparent boundary location and the convergence rate
of the IBM. For that purpose, we perform a grid refinement study. We only vary
the system size, but keep d D �x, � D 1 and D �t fixed (diffusive scaling).
As a consequence, the gravitational force density F scales with .D=�x/�3 and the
expected peak velocity Oux with .D=�x/�1 (cf. Chap. 7). For each simulation, we
fit a parabola to the flow field in the central region between˙D=2 and compute the
appararent channel diameter Dapp. Figure 11.15a shows the mismatch of the channel
diameter, Dapp � D, as function of resolution. Obviously the channel appears to be
smaller than expected, which also leads to a reduced peak velocity compared to
its expected values (not shown here). The mismatch is larger for �4 than for �2.
Futhermore, the diameter mismatch does not significantly depend on the resolution.
This means that the mismatch cannot be removed by increasing the resolution,
which leads only to a first-order convergence rate of the velocity error.

478 11 Boundary Conditions for Fluid-Structure Interaction

Fig. 11.15 Channel diameter mismatch as function of spatial resolution and LBM relaxation
time . (a) Sensitivity to resolution. (b) Sensitivity to relaxation time

In the final test we investigate how the wall location mismatch depends on the
relaxation time . We now vary at fixed resolution. Figure 11.15b reveals that
Dapp is a function of . Depending on the value of , the channel can appear
smaller or larger than expected. While the exact values depend on the choice of the
interpolation stencil, we can conclude that the appararent channel diameter increases
roughly linearly with for > �t. This is a highly undesirable effect that has
been discussed by several authors [76, 79, 99]. It has recently been suggested to use
the MRT [78] or TRT [79] collision operators to resolve this problem. We will not
discuss these approaches here.

As already concluded at the end of Sect. 11.4.2, the IBM accuracy is typically
inferior to other available boundary conditions. Care has to be taken when the exact
channel diameter or particle size (for suspension simulations) is important. In the
end, it can take a significant amount of work to make sure that an IBM code is
working reliably.

11.4.4 Direct-Forcing IB-LBM for Rigid Boundaries

The explicit penalty IBM for rigid boundaries has a major disadvantage: it involves
a free parameter whose choice affects the stability and accuracy. We seek an
alternative implementation without a free parameter. This means that the IB force
has to be computed directly from the flow field. Therefore, we call this class of
methods direct-forcing IB-LBM.

Feng and Michaelides [91, 100] originally combined the direct forcing IBM with
the LBM. A number of alternative direct-forcing IB-LBMs have been proposed

11.4 Immersed Boundary Methods 479

since then. We can distinguish between three different approaches, each with
different levels of accuracy and numerical cost:

1. implicit IBM
2. multi-direct-forcing IBM (iterative)
3. direct-forcing IBM (explicit)

We cannot present and compare all available approaches in depth. Instead, we
will start from the underlying hydrodynamic problem and show which steps are
necessary to construct a reliable parameter-free IB-LBM.

11.4.4.1 Background

We assume a rigid boundary described by a number of marker points at positions rj.
The markers have known velocities Prj D ub.rj/, the desired boundary velocity. In
most situations, the boundary is resting, but there is no fundamental difficulty with
moving (translating and rotating) boundaries.

Before collision, the fluid velocity on a lattice node x is

u.x/ D 1

�.x/

X

i

fi.x/ci: (11.45)

In the absence of a force, collision leaves the momentum and velocity invariant.
The only mechanism that can change the fluid velocity during collision is a body
force F:

u?.x/ D 1

�.x/

X

i

f ?i .x/ci D
1

�.x/

X

i

fi.x/ci C F.x/�t

�.x/
: (11.46)

As usual, a star denotes post-collision quantities. Furthermore, we drop the time t
because everything which follows is happening within a single time step.

We know that the physical fluid velocity during a time step is the average of the
pre- and post-collision velocities [83]:

uf.x/ D u.x/C u?.x/
2

D u.x/C F.x/�t

2�.x/
: (11.47)

The central idea of any direct-forcing IB-LBM is to construct the force F.x/ in
such a way that uf.x/ matches the known boundary velocity ub.rj/ at the marker
positions to satisfy the no-slip condition. As we will now see, this is a non-trivial
task and explains why there is a number of direct-forcing variants in the literature.

Since we are working in the framework of the IBM, the boundary velocity is
known at the positions of the boundary markers: ub.rj/ D Prj. This means that we
have to interpolate uf.x/ at the boundary markers rj to obtain uf.rj/ first, then find

480 11 Boundary Conditions for Fluid-Structure Interaction

the required boundary force f j and finally spread the force back to the lattice to
obtain F.x/.

The difficulty is caused be the non-local velocity interpolation and force spread-
ing. In order to compute f j, we require the velocity on all lattice nodes x close to rj.
In return, we have to spread f j back to those lattice nodes. However, many lattice
nodes x participate in interpolation and spreading of more than one marker rj at the
same time. This means that (11.47) has to be solved simultaneously on all lattice
nodes to guarantee a consistent solution.

11.4.4.2 Implicit IB-LBM

In 2009, Wu and Shu [101] proposed the implicit velocity correction-based IB-
LBM which is probably the most accurate and consistent way to enforce the no-slip
condition at a rigid boundary with the IB-LBM. We will only provide the derivation
of the algorithm. Benchmark tests can be found in [101–103].

The basic idea of the implicit IB-LBM is to consider the required force density
F.x/ as the unknowns for which the problem has to be solved in such a way that the
no-slip condition is satisfied. Since the unknowns F.x/ depend on the current and
the desired flow field, the problem is implicit.

The first step is to write the physical fluid velocity in (11.47) as

uf.x/ D u.x/C ıu.x/ (11.48)

where u.x/, given by (11.45), is the known uncorrected velocity and ıu.x/ D
.F.x/�t/=.2�.x// is the unknown velocity correction required to achieve the desired
no-slip condition.

Now, we use the IBM relations in (11.32) and (11.33) to link Eulerian and
Lagrangian quantities. We can express the Eulerian correction terms ıu.x/ by their
Lagrangian counterparts ıu.rj/:

ıu.x/ D
X

j

ıu.rj/�.rj; x/: (11.49)

Note that ıu.rj/ is proportional to the unknown Lagrangian force f j.
Let ub.rj/ be the desired boundary velocity imposed on the Lagrangian nodes.

The aim is construct an Eulerian flow field uf.x/ which, interpolated at the boundary
nodes, equals the boundary velocity ub.rj/:

ub.rj/ D
X

x

uf.x/�.rj; x/: (11.50)

11.4 Immersed Boundary Methods 481

To achieve this, we combine (11.48), (11.49) and (11.50):

ub.rj/ D
X

x

2

4u.x/C
X

k

ıu.rk/�.rk; x/

3

5�.rj; x/: (11.51)

The only unknowns in this equation are the desired correction terms ıu.rk/. We can
rewrite this equation in the following way:

X

k

2

4
X

x

�.rk; x/�.rj; x/

3

5

„ ƒ‚ …
Ajk

ıu.rk/
„ƒ‚…

Xk

D ub.rj/�
X

x

u.x/�.rj; x/

„ ƒ‚ …
Bj

(11.52)

or, in simple matrix-vector notation, as AX D B.
The vectors X and B have N elements, and A is an N � N-matrix where N is

the number of marker points, i.e. j and k run from 1 to N. The elements of A are
functions of the node positions rj only, depending on the choice of the IBM stencil
�. Finding the unknowns X via X D A�1B requires inversion of A. Obviously the
matrix A can be large, with N typically ranging from several 102 to several 104

or 105.
Concluding, the implicit IB-LBM algorithm works as follows:

1. Compute the matrix A and its inverse A�1 from the known node positions rj. See
[101] for details.

2. Stream the populations to obtain fi.x/ and compute the density and uncorrected
velocity from �u DPi fici.

3. Using the known boundary velocity ub.rj/ and the uncorrected fluid velocity
u.x/, solve the matrix equation, (11.52), for the unknown corrections ıu.rj/.

4. Spread ıu.rj/ to the Eulerian grid via (11.49).
5. Compute the desired force density from ıu.x/ D .F.x/�t/=.2�.x//.
6. Perform collision with forcing.
7. If the boundary is stationary, i.e. all boundary velocities obey ub.rj/ D 0, go back

to step 2 for the next time step.
8. If the boundary is not stationary, update the positions rj and velocities Prj D ub.rj/.

The position update may be enforced (e.g. oscillating cylinder) or a consequence
of fluid stresses (e.g. freely moving cylinder). In the latter case, a suitable time
integrator has to be chosen [74, 87, 91, 98].

9. Go back to step 1 for the next time step.

Note that the re-computation of the matrix A and its inverse at each time step for
non-stationary boundaries can be expensive when N is large. Therfore, alternative
approaches, such as multi-direct forcing, which are computationally more efficient
and conceptually simpler, have been suggested.

482 11 Boundary Conditions for Fluid-Structure Interaction

11.4.4.3 Multi Direct-Forcing IB-LBM

The aim of multi direct-forcing IB-LBM is to avoid the construction and inversion
of the matrix A of the implicit IB-LBM, while keeping its consistency. Kang and
Hassan [75] provided an exhaustive overview of the multi direct-forcing IB-LBM.
Since the underlying idea is similar to that of the implicit IB-LBM, we only provide
the algorithm and a few comments.

Instead of constructing and inverting a large matrix A, the multi direct-forcing
method relies on an iterative approach to satisfy the no-slip condition at all markers
rj simultaneously. Again, the underlying idea is to take advantage of the velocity
correction in (11.47). The algorithm of the multi direct-forcing approach can be
summarised as follows:

1. Set iteration counter m to 0.
2. Stream the populations to obtain fi.x/ and compute the density and uncorrected

velocity from �u.m/ DPi fici.
3. Interpolate u.m/.x/ at the boundary marker locations rj to obtain u.m/.rj/.
4. Increment iteration counter m by 1.
5. Compute the Lagrangian correction force from [75]

f .m/j D 2�
ub.rj/ � u.m�1/.rj/

�t
: (11.53)

6. Spread f .m/j to the Eulerian lattice to obtain F.m/.x/.
7. Correct previous Eulerian velocity according to

u.m/.x/ D u.m�1/.x/C F.m/.x/�t

2�.x/
: (11.54)

8. Repeat steps 3–7 until m reaches a pre-defined limit mmax or until u.m/.rj/
converges to ub.rj/.

9. Use the total correction force

F.x/ D
mmaxX

mD1
F.m/.x/ (11.55)

in the collision step.
10. Go back to step 1 for the next time step.

11.4 Immersed Boundary Methods 483

Kang and Hassan [75] compared results of benchmark tests for different iteration
numbers up to mmax D 20. They found that mmax D 5 is a reasonable compromise
of accuracy and efficiency. Since the iteration involves only those lattice nodes close
to the boundary, the additional computational cost is relatively low.

11.4.4.4 Explicit, Non-iterative Direct-Forcing IB-LBM

As pointed out by Kang and Hassan [75], a non-iterative direct-forcing scheme
can be obtained as special case of the multi direct-forcing method in the previous
section. Setting mmax D 1 leads to a simple explicit scheme that does not require
expensive matrix inversions or iterations. This special case is commonly denoted
“direct-forcing” IB-LBM, although the implicit and iterative methods are, strictly
speaking, also direct-forcing methods.7

There exist different flavours of non-iterative direct-forcing IB-LBM (see for
example [79]). However, it is obvious that this method will generally not give results
of a comparable accuracy and consistency compared to implicit or iterative schemes.

11.4.5 Explicit IBM for Deformable Boundaries

The first works utilising the deformable IB-LBM for flowing deformable red blood
cells were published in 2007 by several groups [104–106]. The overall algorithm
follows the layout described in Sect. 11.4.2. The step from the IBM algorithm
for rigid boundaries as presented in Sect. 11.4.3 to deformable boundaries is
straightforward. Instead of finding suitable penalty forces to keep the boundary
deformation as small as possible, one has to use forces which arise from elastic
surface stresses due to the (desired) deformation of the boundary. This requires two
additional ingredients: (i) a constitutive model for the boundary deformation and
(ii) a surface mesh (i.e. markers and their connectivity) to evaluate the boundary
deformation.

Sui et al. [107] were the first to present a 3D model for elastic particles (capsules,
red blood cells) in an LB simulation with well-defined constitutive behaviour and a
finite-element method to find the elastic membrane forces. Krüger et al. [85] later
investigated the effect of the choice of interpolation stencil and distance between
neighbouring Lagrangian nodes on the deformation of a capsule in shear flow.
The IB-LBM for elastic problems has been applied to, for example, viscous flow
over a flexible sheet [96] and dense suspensions of red blood cells [108] (see also
Fig. 11.16).

7Remember that “direct forcing” means that there are no free parameters, such as the elasticity �
of the explicit method in Sect. 11.4.3.

484 11 Boundary Conditions for Fluid-Structure Interaction

Fig. 11.16 Flow of a single (left) and multiple (right) red blood cells in a straight tube (indicated
by solid horizontal lines) with circular cross-section. The tube diameter is slightly larger than that
of an undeformed red blood cell. The Lagrangian mesh consists of 998 nodes and 2000 triangular
elements. The simulations are based on the model presented in [108]

The IBM provides a major advantage over other boundary conditions for
the LBM when it comes to deformable objects. Since IBM boundaries in
the original implementation are intrinsically deformable, it is relatively simple
to turn this presumed disadvantage into an advantage for problems where the
deformability is actually desired. Allowing Lagrangian markers to move with
the fluid and distributing forces to the fluid is the natural algorithm of the
IBM and lends itself to problems where the fluid causes structure deformation
and the structure “reacts” elastically. Applying any of the other boundary
conditions presented in this chapter to deformable boundaries is significantly
more difficult.

11.4.5.1 Constitutive Models

The constitutive model contains all the physics of the boundary deformation. Its
choice is independent of the IBM algorithm itself and has to be defined by the user.
In the end, the IBM expects the marker forces f j, but the IBM itself is unable to
provide them. Boundaries are mostly considered hyperelastic (i.e. the dynamics can
be fully described in terms of an energy density) or viscoelastic. In the former case,
the marker forces depend only on the current deformation state, in the latter case the
forces depend both on the deformation state and its rate of change.

There exists a large variety of hyperelastic and viscoelastic models for
deformable boundaries. The problem of finding and implementing an appropriate
constitutive model is highly problem-specific. We cannot delve into details here;
this could easily fill a book on its own. The most commonly used hyperelastic
models for red blood cells are briefly discussed in [107].

11.4 Immersed Boundary Methods 485

For simplicity, we will assume that hyperelastic models can be written in the
form

f j.t/ D f j.frk.t/g/ (11.56)

and viscoelastic models as

f j.t/ D f j.frk.t/g; fPrk.t/g/: (11.57)

This means that the instantaneous marker forces are (arbitrarily complicated)
functions of all current boundary marker positions and, if viscoelastic, of all current
boundary marker velocities. Once these laws have been specified, they can be coded
and used to find the forces f j for a given deformation state at every time step.

Example 11.1 A simple hyperelastic constitutive model which can be used in 2D
and 3D is (dropping the time dependence for simplicity)

f j.frkg/ D ��
X

k 6Dj

djk � d.0/jk

d.0/jk

djk

djk
; djk D rk � rj; djk D jdjkj (11.58)

where � is an elastic modulus, the sum runs over all next neighbours of marker j and
d.0/jk is the equilibrium distance between markers j and k. This example shows that
not only the markers, but also their connectivity is an important part of the problem
description. In many situations, additional constraints are necessary, for instance
conservation of the total volume or surface of a boundary.

In most cases of hyperelastic boundaries one first defines an elastic energy
density �.frj.t/g/. The force acting on node j can then be recovered by applying
the principle of virtual work,

f j D @�.frkg/
@rj

Aj; (11.59)

where Aj is the area related to marker j, e.g. its Voronoi area. More details are
provided in [85, 107].

11.4.6 Additional Variants and Similar Boundary
Treatments

The previous sections cover the most prominent flavours of the IB-LBM. This is,
however, not the end of the rope. There are more variations on the market, some of
which we want to mention in the following.

486 11 Boundary Conditions for Fluid-Structure Interaction

There are a number of fluid-structure interaction approaches which share some
features with the IBM (in particular the existence of off-lattice markers or a
Lagrangian mesh and kernel functions for velocity interpolation and/or force
spreading), but their algorithms reveal distinct differences. Schiller [109] recently
revisited those algorithms and pointed out their mathematical similarity.

1. Ahlrichs and Dünweg [110] introduced a dissipative coupling method for LBM
and molecular dynamics (MD), which has been further analysed by Caiazzo
and Maddu [95] and recently reviewed by Dünweg and Ladd [111] and is used
in the open-source package ESPResSo [112], mostly for polymer simulations.
Lagrangian markers are allowed to move with a different velocity than the veloc-
ity of the fluid at the location of the marker (obtained by velocity interpolation). A
finite slip velocity results in a drag force acting on the marker whose magnitude is
controlled via a numerical drag coefficient. An equal but opposite force is exerted
on the fluid by spreading it to the Eulerian lattice. Additionally, the markers
may experience external or interaction forces. The marker update is treated by
higher-order MD, which requires the introduction of another model parameter,
a finite marker mass. An advantage of this approach is that the time step for
the update of the markers is decoupled from the LB time step, which can be
exploited to implement more stable time-integration schemes; a freedom which
is not available for the conventional IB-LBM algorithm. Disadvantages are that
the no-slip condition is not strictly satisfied and that two model parameters are
required (drag coefficient and marker mass).

2. The momentum-exchange-based IB-LBM, as proposed for rigid boundaries
[113, 114] and recently extended to flexible boundaries [115], uses a different
approach to obtain the force density acting on the fluid. The basic idea is to
interpolate the LB populations (rather than the velocity) to find their value at the
location of the Lagrangian markers. The bounce-back scheme is then applied on
the Lagrangian mesh to find the momentum exchange and therefore the marker
force f j which is then distributed to the lattice via the standard force spreading
operation. As a consequence, there is no need for user-defined penalty parameters
(for rigid boundaries) and the markers can move independently of the fluid
motion. However, this may lead to a violation of the no-slip condition.8

3. Wu and Aidun [116] proposed the so-called external-boundary force (EBF)
which can be used both as alternative to the direct-forcing IBM for rigid
boundaries and for deformable objects. Similar to the other two examples above,
the most notable difference to the IBM is that the markers are not directly
advected by the fluid. Instead, a relative slip velocity is permitted which is
counteracted by a fluid-solid interaction force, which is essentially a penalty
force. Note that this force does not require a free parameter like the dissipative

8While the authors of [113] use bounce-back to obtain the momentum exchange at the boundary
markers, the populations on the lattice are not directly affected by this bounce-back procedure.
Although the momentum exchange is correctly obtained, there is no strong mechanism enforcing
the local no-slip condition. Therefore, streamlines may penetrate the boundary.

11.5 Concluding Remarks 487

coupling does. Also here, the allowance of a relative slip velocity may lead to
problems with the no-slip condition.

Concluding, we can say that, although it is desirable to decouple the motion of
the marker points from the fluid motion (as this allows higher-order and therefore
potentially more stable time integration schemes), the no-slip condition at the
boundary cannot be strictly enforced at the same time. The reason is that all the
methods discussed above [110, 113, 115, 116] are explicit with respect to the fluid
velocity computation. Still, if the precise realisation of the no-slip condition is not
the primary goal, the above methods are attractive alternatives and overcome some
of the disadvantages of the more conventional IB schemes.

It is also worth mentioning that the IBM can be used to model thermal boundary
conditions. In 2010, Jeong et al. [117] combined the IBM with a thermal LBM to
simulate flows around bluff bodies with heat transfer. Seta [118] later improved the
thermal IB-LBM by analysing the governing equations through a Chapman-Enskog
analysis. Another IBM variant that has apparently not yet been combined with the
LBM is the so-called penalty IBM (p-IBM) [119–121] for flexible boundaries. It
involves two set of Lagrangian markers: one interacting with the fluid, the other
used for the calculation of the Lagrangian forces. Both marker sets are coupled by
springs generating penalty forces.

11.5 Concluding Remarks

The number of available boundary conditions for the LBM is overwhelming, and
it can be a daunting task to grasp the implications of those schemes. In the
following we list a series of publications which provide comparative studies of
boundary conditions for curved geometries. This should help to understand the
relative performance of certain boundary methods for a given flow geometry.

• Ginzburg and d’Humières [17] compared simple (Sect. 11.2.1) and interpolated
bounce-back (Sect. 11.2.2) with the multireflection method [17] in a number
of stationary situations (inclined Couette and Poiseuille flows, flow over single
cylinder and array of cylinders, impulsively started cylinder and moving sphere
in a cylinder). They conclude that the multireflection method is more accurate
than the linear interpolated bounce-back method.

• Pan et al. [12] compared the performance of simple bounce-back, interpo-
lated bounce-back (both linear and quadratic interpolations) and multireflection
boundary conditions for porous media simulations. They also included an
analysis of the effect of collision operator (BGK vs. MRT) on the permeability of
idealised porous media. Their main finding is that the permeability is generally
viscosity-dependent through an unphysical dependence on the relaxation rate(s).
Especially the combination of BGK and simple bounce-back leads to a strongly
increasing permeability with viscosity, an effect caused by the increasing slip
velocity at the boundary. They conclude that the combination of simple bounce-

488 11 Boundary Conditions for Fluid-Structure Interaction

back with MRT is consistently better than with BGK. The reason is that the
no-slip condition can be much better controlled in the MRT framework when
the viscosity is large. Using interpolated rather than simple bounce-back can also
improve the accuracy of the simulations.

• Peng and Luo [94] investigated the relative performance of interpolated bounce-
back and a direct-forcing immersed boundary method (IBM, Sect. 11.4.4). They
considered steady and unsteady flows about a stationary rigid cylinder in 2D.
Their major findings are that both methods require roughly the same computing
time, the interpolated bounce-back is more accurate, but that the IBM is easier to
implement.

• Chen et al. [47] have combined the ghost method (Sect. 11.3.4) with the
partially saturated method (PSM, Sect. 11.2.3) in order to remove spurious
pressure oscillations. The immediate consequence is that the algorithm becomes
significantly more complicated than Noble’s and Torczynski’s [46] original
one: interpolations become necessary to find the ghost node properties and a
treatment of fresh nodes is required. This is a clear disadvantage compared to
the original method [46] where the fresh node problem is naturally avoided. The
conclusion is that the combined method yields better results than the original
PSM or the interpolated bounce-back method, especially for moving obstacles
at smaller resolutions. According to Chen et al., PSM is recommended when
code simplicity and efficiency are desired, while the combined method should be
favoured for high-accuracy applications.

• Chen et al. [14] recently conducted a thorough comparison of three bounce-back
schemes (standard, interpolated and unified interpolation), two IBM variants
(explicit and implicit direct forcing) and three additional methods. The authors
were primarily interested in acoustic problems involving sound wave generation
from moving bodies due to the fresh node treatment. The authors found that the
IBM is more suitable for moving boundaries than the interpolated bounce-back
when fresh nodes are involved.

• Nash et al. [122] compared the accuracy of simple and interpolated bounce-back,
the Guo-Zheng-Shi extrapolation method (GZS, Sect. 11.3.3) and the Junk-Yang
method in non-grid-aligned Poiseuille, Womersley and Dean flows at moderate
Reynolds numbers (up to 300). The authors found that the Junk-Yang method
shows poor stability in the selected parameter range. The linear interpolated
bounce-back and the GZS methods have comparable accuracy (with a second-
order convergence) although the latter becomes unstable for the highest Reynolds
numbers tested. For the situation of interest (flow in inclined channels with
moderate Reynolds number), the authors conclude that interpolated bounce-back
is the best all-around option, although simple bounce-back (despite its first-order
convergence) may be the method of choice when code development time is at a
premium.

Everything said up to this point applies to rigid boundaries. It seems that the
IBM and its related methods is still the most convenient approach for deformable
boundaries (cf. Sects. 11.4.5 and 11.4.6). The reason is that all other boundary

References 489

conditions presented in this chapter require an accurate local momentum exchange
algorithm to compute the local stresses in the deformable material.9 This is normally
a very challenging and expensive problem that is elegantly circumvented by the
IBM.

We can generally conclude that all existing boundary conditions claim their
own compromise of accuracy, stability and efficiency/ease of implementation.
Furthermore, some boundary conditions perform better in stationary situations,
others when the boundaries are moving. It is up to the user to identify the
requirements before choosing one of the many available boundary conditions. There
is no best boundary treatment for all possible scenarios. We hope that this chapter
sheds some light on the plethora of boundary conditions and helps the reader to find
a suitable scheme for a given problem.

References

1. S. Haeri, J.S. Shrimpton, Int. J. Multiphas. Flow 40, 38 (2012)
2. X. He, G. Doolen, J. Comput. Phys. 134, 306 (1997)
3. P. Lallemand, L.S. Luo, Phys. Rev. E 61(6), 6546 (2000)
4. T. Lee, C.L. Lin, J. Comput. Phys. 171(1), 336 (2001)
5. Z. Guo, T.S. Zhao, Phys. Rev. E 67(6), 066709 (2003)
6. N. Rossi, S. Ubertini, G. Bella, S. Succi, Int. J. Numer. Meth. Fluids 49(6), 619 (2005)
7. H. Yoshida, M. Nagaoka, J. Comput. Phys. 257, Part A, 884 (2014)
8. R. Cornubert, D. d’Humières, D. Levermore, Physica D 47, 241 (1991)
9. I. Ginzburg, P.M. Adler, J. Phys. II France 4(2), 191 (1994)

10. A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)
11. M. Bouzidi, M. Firdaouss, P. Lallemand, Phys. Fluids 13, 3452 (2001)
12. C. Pan, L.S. Luo, C.T. Miller, Comput. Fluids 35(8-9), 898 (2006)
13. O.E. Strack, B.K. Cook, Int. J. Numer. Meth. Fluids 55(2), 103 (2007)
14. L. Chen, Y. Yu, J. Lu, G. Hou, Int. J. Numer. Meth. Fluids 74(6), 439 (2014)
15. S. Khirevich, I. Ginzburg, U. Tallarek, J. Comp. Phys. 281, 708 (2015)
16. M.O. Bernabeu, M.L. Jones, J.H. Nielsen, T. Krüger, R.W. Nash, D. Groen, S. Schmieschek,

J. Hetherington, H. Gerhardt, C.A. Franco, P.V. Coveney, J. R. Soc. Interface 11(99),
20140543 (2014)

17. I. Ginzburg, D. d’Humières, Phys. Rev. E 68, 066614 (2003)
18. B. Chun, A.J.C. Ladd, Phys. Rev. E 75, 066705 (2007)
19. X. He, Q. Zou, L.S. Luo, M. Dembo, J. Stat. Phys. 87(1–2), 115 (1997)
20. I. Ginzburg, D. d’Humières, J. Stat. Phys. 84, 927 (1996)
21. A.J.C. Ladd, Phys. Rev. Lett. 70(9), 1339 (1993)
22. A.J.C. Ladd, J. Fluid Mech. 271, 311 (1994)
23. A.J.C. Ladd, R. Verberg, J. Stat. Phys. 104(5–6), 1191 (2001)
24. C.K. Aidun, J.R. Clausen, Annu. Rev. Fluid Mech. 42, 439 (2010)
25. N.Q. Nguyen, A.J.C. Ladd, Phys. Rev. E 66(4), 046708 (2002)
26. E.J. Ding, C.K. Aidun, J. Stat. Phys. 112(3–4), 685 (2003)
27. C.K. Aidun, Y. Lu, E.J. Ding, J. Fluid Mech. 373, 287 (1998)

9For rigid objects it is sufficient to compute the total momentum and angular momentum transfer.
Soft objects, however, deform locally. This local deformation depends on the local stresses.

490 11 Boundary Conditions for Fluid-Structure Interaction

28. D. Qi, J. Fluid Mech. 385, 41 (1999)
29. X. Yin, G. Le, J. Zhang, Phys. Rev. E 86(2), 026701 (2012)
30. E. Lorenz, A. Caiazzo, A.G. Hoekstra, Phys. Rev. E 79(3), 036705 (2009)
31. J.R. Clausen, C.K. Aidun, Int. J. Multiphas. Flow 35(4), 307 (2009)
32. B. Wen, C. Zhang, Y. Tu, C. Wang, H. Fang, J. Comput. Phys. 266, 161 (2014)
33. O. Behrend, Phys. Rev. E 52(1), 1164 (1995)
34. M.A. Gallivan, D.R. Noble, J.G. Georgiadis, R.O. Buckius, Int. J. Numer. Meth. Fluids 25(3),

249–263 (1997)
35. Y. Han, P.A. Cundall, Int. J. Numer. Meth. Fluids 67(3), 314–327 (2011)
36. P.H. Kao, R.J. Yang, J. Comput. Phys. 227(11), 5671 (2008)
37. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)
38. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)
39. X. Descovich, G. Pontrelli, S. Melchionna, S. Succi, S. Wassertheurer, Int. J. Mod. Phys. C

24(05), 1350030 (2013)
40. P. Lallemand, L.S. Luo, J. Comput. Phys. 184(2), 406 (2003)
41. D. Yu, R. Mei, W. Shyy, in 41st Aerospace Sciences Meeting and Exhibit, 2003-953 (AIAA,

New York, 2003)
42. X. Yin, J. Zhang, J. Comput. Phys. 231(11), 4295 (2012)
43. O. Dardis, J. McCloskey, Phys. Rev. E 57(4), 4834 (1998)
44. S.D.C. Walsh, H. Burwinkle, M.O. Saar, Comput. Geosci. 35(6), 1186 (2009)
45. J. Zhu, J. Ma, Adv. Water Resour. 56, 61 (2013)
46. D.R. Noble, J.R. Torczynski, Int. J. Mod. Phys. C 09(08), 1189 (1998)
47. L. Chen, Y. Yu, G. Hou, Phys. Rev. E 87(5), 053306 (2013)
48. I. Ginzburg, Adv. Water Resour. 88, 241 (2016)
49. I. Ginzburg, G. Silva, L. Talon, Phys. Rev. E 91, 023307 (2015)
50. H. Yoshida, H. Hayashi, J. Stat. Phys. 155, 277 (2014)
51. G. Zhou, L. Wang, X. Wang, W. Ge, Phys. Rev. E 84(6), 066701 (2011)
52. H. Yu, X. Chen, Z. Wang, D. Deep, E. Lima, Y. Zhao, S.D. Teague, Phys. Rev. E 89(6),

063304 (2014)
53. R. Mei, L.S. Luo, P. Lallemand, D. d’Humières, Comput. Fluids 35(8-9), 855 (2006)
54. G. Pontrelli, C.S. König, I. Halliday, T.J. Spencer, M.W. Collins, Q. Long, S. Succi, Med.

Eng. Phys. 33(7), 832 (2011)
55. B. Stahl, B. Chopard, J. Latt, Comput. Fluids 39(9), 1625–1633 (2010)
56. M. Matyka, Z. Koza, Ł. Mirosław, Comput. Fluids 73, 115 (2013)
57. X. Kang, Z. Dun, Int. J. Mod. Phys. C p. 1450057 (2014)
58. R. Mei, L.S. Luo, W. Shyy, J. Comput. Phys. 155(2), 307 (1999)
59. B. Wen, H. Li, C. Zhang, H. Fang, Phys. Rev. E 85(1), 016704 (2012)
60. Z.L. Guo, C.G. Zheng, B.C. Shi, Phys. Fluids 14, 2007 (2002)
61. A. Tiwari, S.P. Vanka, Int. J. Numer. Meth. Fluids 69(2), 481 (2012)
62. O.R. Mohammadipoor, H. Niazmand, S.A. Mirbozorgi, Phys. Rev. E 89(1), 013309 (2014)
63. J.C.G. Verschaeve, B. Müller, J. Comput. Phys. 229, 6781 (2010)
64. J. Latt, B. Chopard, O. Malaspinas, M. Deville, A. Michler, Phys. Rev. E 77(5), 056703 (2008)
65. O. Filippova, D. Hänel, J. Comput. Phys. 147, 219 (1998)
66. R. Mei, D. Yu, W. Shyy, L.S. Luo, Phys. Rev. E 65(4), 041203 (2002)
67. J. Bao, P. Yuan, L. Schaefer, J. Comput. Phys. 227(18), 8472 (2008)
68. R. Khazaeli, S. Mortazavi, M. Ashrafizaadeh, J. Comput. Phys. 250, 126 (2013)
69. Q. Zou, X. He, Phys. Fluids 9, 1591 (1997)
70. N. Pellerin, S. Leclaire, M. Reggio, Comput. Fluids 101, 126 (2014)
71. C.S. Peskin, Flow patterns around heart valves: A digital computer method for solving the

equations of motion. Ph.D. thesis, Sue Golding Graduate Division of Medical Sciences,
Albert Einstein College of Medicine, Yeshiva University (1972)

72. C.S. Peskin, J. Comput. Phys. 25(3), 220 (1977)
73. C.S. Peskin, Acta Numerica 11, 479–517 (2002)
74. Z.G. Feng, E.E. Michaelides, J. Comput. Phys. 195(2), 602 (2004)

References 491

75. S.K. Kang, Y.A. Hassan, Int. J. Numer. Meth. Fluids 66(9), 1132 (2011)
76. Y. Cheng, L. Zhu, C. Zhang, Commun. Comput. Phys. 16(1), 136 (2014)
77. R. Mittal, G. Iaccarino, Annu. Rev. Fluid Mech. 37, 239 (2005)
78. J. Lu, H. Han, B. Shi, Z. Guo, Phys. Rev. E 85(1), 016711 (2012)
79. T. Seta, R. Rojas, K. Hayashi, A. Tomiyama, Phys. Rev. E 89(2), 023307 (2014)
80. B.E. Griffith, X. Luo, D.M. McQueen, C.S. Peskin, Int. J. Appl. Mech. 01, 137 (2009)
81. X. Wang, L.T. Zhang, Comput. Mech. 45(4), 321 (2010)
82. X. Yang, X. Zhang, Z. Li, G.W. He, J. Comput. Phys. 228(20), 7821 (2009)
83. Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 46308 (2002)
84. S.K. Doddi, P. Bagchi, Int. J. Multiphas. Flow 34(10), 966 (2008)
85. T. Krüger, F. Varnik, D. Raabe, Comput. Method. Appl. 61(12), 3485 (2011)
86. G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas,

Y.J. Jan, J. Comput. Phys. 169(2), 708 (2001)
87. K. Suzuki, T. Inamuro, Comput. Fluids 49(1), 173 (2011)
88. D. Nie, J. Lin, Commun. Comput. Phys. 7(3), 544 (2010)
89. S.K. Doddi, P. Bagchi, Phys. Rev. E 79(4), 046318 (2009)
90. S. Ramanujan, C. Pozrikidis, J. Fluid Mech. 361, 117 (1998)
91. Z.G. Feng, E.E. Michaelides, Comput. Fluids 38(2), 370 (2009)
92. CGAL, Computational Geometry Algorithms Library. http://www.cgal.org
93. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-

processing facilities. http://www.geuz.org/gmsh
94. Y. Peng, L.S. Luo, Prog. Comput. Fluid Dyn. 8(1), 156 (2008)
95. A. Caiazzo, S. Maddu, Comput. Math. Appl. 58(5), 930 (2009)
96. L. Zhu, G. He, S. Wang, L. Miller, X. Zhang, Q. You, S. Fang, Comput. Math. Appl. 61(12),

3506 (2011)
97. Q. Zhou, L.S. Fan, J. Comput. Phys. 268, 269 (2014)
98. O. Shardt, J.J. Derksen, Int. J. Multiphase Flow 47, 25 (2012)
99. G. Le, J. Zhang, Phys. Rev. E 79(2), 026701 (2009)

100. Z.G. Feng, E.E. Michaelides, J. Comput. Phys. 202(1), 20 (2005)
101. J. Wu, C. Shu, J. Comput. Phys. 228(6), 1963 (2009)
102. J. Wu, C. Shu, Y.H. Zhang, Int. J. Numer. Meth. Fluids 62(3), 327 (2010)
103. J. Wu, C. Shu, Int. J. Numer. Meth. Fluids 68(8), 977 (2012)
104. P. Bagchi, Biophys. J. 92(6), 1858 (2007)
105. M.M. Dupin, I. Halliday, C.M. Care, L. Alboul, L.L. Munn, Phys. Rev. E 75(6), 066707

(2007)
106. J. Zhang, P.C. Johnson, A.S. Popel, Phys. Biol. 4(4), 285 (2007)
107. Y. Sui, Y. Chew, P. Roy, H. Low, J. Comput. Phys. 227(12), 6351 (2008)
108. T. Krüger, M. Gross, D. Raabe, F. Varnik, Soft Matter 9(37), 9008 (2013)
109. U.D. Schiller, Comput. Phys. Commun. 185(10), 2586 (2014)
110. P. Ahlrichs, B. Dünweg, Int. J. Mod. Phys. C 09(08), 1429 (1998)
111. B. Dünweg, A.J.C. Ladd, in Advances in Polymer Science (Springer, Berlin, Heidelberg,

2008), pp. 1–78
112. I. Cimrák, M. Gusenbauer, I. Jančigová, Comput. Phys. Commun. 185(3), 900 (2014)
113. X.D. Niu, C. Shu, Y.T. Chew, Y. Peng, Phys. Lett. A 354(3), 173 (2006)
114. Y. Hu, H. Yuan, S. Shu, X. Niu, M. Li, Comput. Math. Appl. 68(3), 140 (2014)
115. H.Z. Yuan, X.D. Niu, S. Shu, M. Li, H. Yamaguchi, Comput. Math. Appl. 67(5), 1039 (2014)
116. J. Wu, C.K. Aidun, Int. J. Numer. Meth. Fl. 62(7), 765–783 (2009)
117. H.K. Jeong, H.S. Yoon, M.Y. Ha, M. Tsutahara, J. Comput. Phys. 229(7), 2526 (2010)
118. T. Seta, Phys. Rev. E 87(6), 063304 (2013)
119. Y. Kim, M.C. Lai, J. Comput. Phys. 229(12), 4840 (2010)
120. W.X. Huang, C.B. Chang, H.J. Sung, J. Comput. Phys. 230(12), 5061 (2011)
121. W.X. Huang, C.B. Chang, H.J. Sung, J. Comput. Phys. 231(8), 3340 (2012)
122. R.W. Nash, H.B. Carver, M.O. Bernabeu, J. Hetherington, D. Groen, T. Krüger, P.V. Coveney,

Phys. Rev. E 89(2), 023303 (2014)

http://www.cgal.org
http://www.geuz.org/gmsh

Chapter 12
Sound Waves

Abstract After reading this chapter, you will understand the fundamentals of sound
propagation in a viscous fluid as they apply to lattice Boltzmann simulations, and
you will know why sound waves in these simulations do not necessarily propagate
according to the “speed of sound” lattice constant. You will have insight into why
sound waves can appear spontaneously in lattice Boltzmann simulations and know
how to create sound waves artificially in your simulations. Additionally, you will
know about special boundary conditions that minimise the reflection of sound waves
back into the system, allowing you to avoid reflected sound waves polluting the
simulation results.

We previously saw in Chap. 4 that the lattice Boltzmann method behaves on
the macroscopic scale according to the continuity equation and the compressible
Navier-Stokes equation. As a natural consequence of this, any fluid phenomenon
that is in keeping with these equations can also be captured in a lattice Boltzmann
simulation.

One such phenomenon is that of sound waves, which follows from the continuity
equation and the Euler equation, the latter of which is an approximated version of
the compressible Navier-Stokes equation. Indeed, if we plot the pressure field of
an LB simulation right after its startup we can often reveal sound waves caused
by the initial conditions of the simulation. Most simulations contain sound waves
to some degree or other, even though their presence may be unintended. For this
reason, everyone who performs LB simulations can benefit from knowing a little
about sound waves.

Even so, sound in LB simulations has been a neglected subfield compared
to e.g. incompressible and multiphase/multicomponent flows. The first detailed
treatment of LB sound waves came as late as 1998 [1]. However, since 2007
several theses have been published on this topic [2–9], especially on the subtopics
of aeroacoustics1 and boundary conditions that do not reflect sound waves.

This chapter starts with a brief general introduction to acoustics in Sect. 12.1, as
some knowledge on acoustics is required to read the rest of the chapter. Section 12.2
deals with how sound propagates in LB simulations, Sect. 12.3 covers how sound

1Typically in the wider sense of the word aeroacoustics, i.e. as the interaction of sound and flow.

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_12

493

494 12 Sound Waves

may appear or be deliberately imposed in simulations, and Sect. 12.4 introduces
boundary conditions that do not reflect sound waves.2

12.1 Background: Sound in Viscous Fluids

This section will give a quick introduction to where sound waves come from and
how they propagate, with the aim of giving readers without a special background
in acoustics some required insight for the rest of this chapter.3 For those readers
desiring a deeper insight, there are many books available that all provide a thorough
grounding in acoustics [10–14].

Sound waves follow as a consequence of the conservation equations of a
compressible fluid. The scientific field of acoustics is largely based on the linearised
Euler equations, which result in a linear, ideal and lossless wave equation. Here
we will instead base the discussion on the linearised Navier-Stokes equations,
which gives a wave equation with viscous sound attenuation.4 The reason for
this slightly more complex choice is that the sound waves that we observe in LB
simulations are typically heavily affected by fluid viscosity. Indeed, we will soon
see that we will typically need to choose a relaxation time =�t very close to 1=2
when simulating sound below the high ultrasonic range. Otherwise, the simulations
require an enormous numerical grid, or the sound waves will be attenuated far too
quickly.

To linearise the conservation equations, we assume that the field variables of
density �, pressure p, and velocity u are of the form of an infinitesimal perturbation
around a constant rest state,5

�.x; t/ D �0 C �0.x; t/;

p.x; t/ D p0 C p0.x; t/;

u.x; t/ D 0C u0.x; t/:

(12.1)

Here, the subscripted zeros indicate the rest state constants while the perturbations
are indicated as primed quantities.

2These non-reflecting BCs are in contrast to pressure and velocity BCs, which reflect sound waves
back into the system.
3Deeper insight in acoustics is often missing in the LB literature, as most LB researchers are more
interested in incompressible fluid mechanics than in acoustics.
4The basic LB model which gives isothermal Navier-Stokes behaviour is only affected by this
viscous sound attenuation. It does not allow for attenuation due to heat conduction or molecular
relaxation, the latter of which dominates at audible frequencies in e.g. air and seawater. We will
touch on these attenuation mechanisms in Sect. 12.1.5.
5An LB model for the linearised conservation equations was discussed briefly in Sect. 4.3.1.

12.1 Background: Sound in Viscous Fluids 495

Inserting these linearised variables into the conservation equation and neglecting
terms that are nonlinear in the infinitesimal fluctuations, we end up with

@t�C �0@˛u˛ D 0; (12.2a)

�0@tu˛ C @˛p D @ˇ� 0̨
ˇ: (12.2b)

The viscous stress tensor is unchanged by the linearisation:

� 0̨
ˇ D �

�
@ˇu˛ C @˛uˇ � 2

3
ı˛ˇ@�u�

�
C �Bı˛ˇ@�u� : (12.2c)

The equation of state is also very important for sound waves. We use here the
isothermal equation of state,

p D �c2s I (12.2d)

not only is it exact for the basic LBE, but as we discussed previously in Sect. 1.1.3,
it also works as a linear approximation to other equations of state given that entropy
changes are small.

12.1.1 The Viscous Wave Equation

The wave equation is quite simple to derive from these equations in the ideal Euler
equation case (i.e. � 0̨

ˇ D 0), and the derivation is only slightly more difficult if we
carry along the viscous stress tensor. To begin, we find the sum @t(12.2a)�@˛(12.2b),
which results in

@2t � � r2p D �
�
4
3
�C �B

�
r2 .@˛u˛/ D

�
4
3

 C
B

�
r2 �@t�

�
: (12.3)

The simplification of the viscous stress in the last equality uses (12.2a). In addition,
we can assume that the viscosities are nearly constant, with only an infinitesimal
variation.

At this point we nearly have the wave equation already. The final piece of the
puzzle is the equation of state, (12.2d), with which we can replace the density �
with p=c2s .6

6It is also possible to use the equation of state the other way around, which results in a wave
equation with the density as the only remaining variable instead of the pressure.

496 12 Sound Waves

Applying the equation of state in this way, we find the viscous wave equation

1

c2s
@2t p � .1C vi@t/r2p D 0; (12.4a)

where the effect of viscosity on sound propagation is expressed through the
viscous relaxation time

vi D 1

c2s

�
4

3

 C
B

�

: (12.4b)

The ideal wave equation, which is used more widely in the literature and is
typically derived from the Euler equation, can be found from this simply by
assuming vi ' 0,

1

c2s
@2t p � r2p D 0: (12.4c)

Exercise 12.1

(a) Show that the generic one-dimensional function p.cst x/, known as
d’Alembert’s solution, is a solution of the ideal wave equation, (12.4c). Hint:
Insert the solution into the wave equation and apply the chain rule.

(b) Show that this solution propagates at the speed of sound, i.e.˙cs.

Exercise 12.2

(a) Show that the incompressible fluid model, its linearised equations being @�u� D
0 and �0@tu˛C@˛p D �@ˇ@ˇu˛, does not support sound waves. Hint: Show that
a wave equation cannot be derived from its equations.

(b) Show that the “incompressible” LBE model actually does support sound waves
due to its artificial compressibility, by deriving a wave equation from (4.45).

The viscous relaxation time can be seen as a characteristic time for the stabilisa-
tion of viscous processes. For physical fluids, it is typically on the order of 10�10 s
for gases and 10�12 s for liquids [10]. Inserting the LBE viscosities into (12.4b)
using the isothermal bulk viscosity �B D 2�=3 found in Sect. 4.1.4, we can relate
the viscous relaxation time with the BGK relaxation time as

vi D 2
�
 ��t=2

�
: (12.5)

12.1 Background: Sound in Viscous Fluids 497

12.1.2 The Complex-Valued Representation of Waves

The linearity of the wave equation lets us employ some neat tricks. Steady-state
solutions of a single angular frequency !, related to the wave period T as ! D
2�=T, are commonly expressed using complex-valued notation. This complex-
valued approach has been widely used in acoustics since Lord Rayleigh introduced
it in 1877 [15, 16]. If we know the solution of a particular case for any frequency
!, a corresponding time-domain solution can be found through an inverse Fourier
transform [10, 11].

The simplest solution to the wave equation is an infinite plane wave, which is
a one-dimensional solution that is not localised in space or time. In complex
form, this solution of the ideal (i.e. vi D 0) wave equation is

Op.x; t/ � p0 D Op0.x; t/ D Opıei.!0t�k0x/: (12.6)

In this notation, we indicate complex-valued variables by carets and plane
wave amplitudes by circles. As can be found by comparison with Exer-
cise 12.1, the angular frequency !0 and the wavenumber k0 are related as
!0=k0 D cs. (The real-valued frequency and wavenumber for the ideal wave
equation are indicated by subscripted zeroes.) The complex amplitude Opı has
both a magnitude jOpıj and a phase 'p, i.e. Opı D jOpıjei'p .

Of course, the physical pressure is not complex. It can be found directly
from the real part of the complex-valued pressure,

p0.x; t/ D < �Op0.x; t/
� D ˇˇOpıˇˇ cos

�
!0t k0xC 'p

�
: (12.7)

The motivation for using complex notation is that these complex quantities are
much easier to handle than the corresponding real expressions. We can augment
an originally real-valued field with an imaginary part, perform calculations on the
result, and retrieve the real part of the result, because the wave equation is linear,
and taking the real part is also a linear operation. These operations commute. On
the other hand, we must be careful when using the complex notation in nonlinear
equations. As an example,<.Op2/ ¤ �<.Op/�2.

We can also simulate complex quantities directly in LB simulations by letting
artificial sound sources (which will be described later in Sect. 12.3) emit complex-
valued distribution functions. However, this should only be used with the linearised
equilibrium described earlier in Sect. 4.3.1 as linearity is a prerequisite for the
complex wave notation. This approach has been used to simplify the analysis of
sound wave simulations [17].

498 12 Sound Waves

Exercise 12.3 Show by insertion that (12.6) and (12.7) are both valid solutions of
the ideal wave equation, (12.4c).

Exercise 12.4 Show that the plane wave expressed in (12.6) has a period (i.e. the
time before the wave repeats itself) of T D 2�=!0 and a wavelength (i.e. the
distance between successive wave peaks) of � D 2�=k0, and that it propagates
at the speed of sound cs D !0=k0.

The corresponding plane wave solution to the viscous wave equation (i.e. for
vi ¤ 0) is similar, but has a complex wavenumber Ok and/or frequency O!.
For a wave propagating in the Cx direction in a viscous fluid, a plane wave
looks like

Op0.x; t/ D Opıei
�

O!t�Okx
�

D Opıe�˛t te�˛xxei.!t�kx/: (12.8)

Here, the complex wavenumber and frequency have been split into their real
and imaginary parts,

O! D ! C i˛t; Ok D k � i˛x: (12.9)

The ˛s represent attenuation coefficients, while the phase speed of the
sound wave is given by cp D !=k, which may differ from the ideal sound
speed cs D !0=k0. This means that sound propagation in viscous fluids is
dispersive: the discrepancy between cp and cs increases with frequency and
vi, as found in Exercise 12.5.

Wave dispersion is often seen in LB simulations; unintended sound waves
usually move at a speed noticably different from cs. However, the dispersion in LB
simulations is also partly due to numerical error, and the rest of the dispersion differs
from what is predicted by the Navier-Stokes equation, as we will see in Sect. 12.2.

Exercise 12.5

(a) Show by insertion that (12.8) being a solution of (12.4a) implies a dispersion
relation that relates the frequency and wavenumber as

O!2
Ok2 D c2s

�
1C i O!vi

�
: (12.10)

(b) In which limits can this dispersion relation become the ideal dispersion relation
cs D !0=k0?

12.1 Background: Sound in Viscous Fluids 499

12.1.3 Simple One-Dimensional Solutions: Free and Forced
Waves

For an attenuated sound wave, typically either the frequency or the wavenumber is
complex; not both. For instance, let us take the semi-infinite system 0 � x. If the
boundary condition at x D 0 is Op0.0; t/ D Opıei!0t, i.e. the pressure oscillates with
a frequency !0 and constant amplitude jOpıj, the resulting wave in the rest of the
system must have the same frequency O! D !0,

Op0.x; t/ D Opıe�˛xxei.!0t�kx/: (12.11a)

Following the nomenclature of Truesdell [18], this is a forced wave. In general,
forced waves are radiated (or forced) by a source oscillating at a constant amplitude.

Forced waves are an idealisation of physically attainable waves. For instance,
the wave above could be a high-frequency sound wave in a duct (neglecting the
marginal effect of no-slip boundaries).

Using the same nomenclature, a free wave is a wave which is not emitted by any
source, but which is attenuated as it propagates. Let us say that at t D 0 we have
a plane wave of constant amplitude and infinite extent, i.e. Op0.x; 0/ D Opıe�ik0x. For
such a case, the resulting plane wave is

Op0.x; t/ D Opıe�˛t tei.!t�k0x/: (12.11b)

Free waves are not as relevant or even physically realisable in the same way as
forced waves. Even so, they may serve as useful simulation benchmarks since their
periodicity in space can be captured perfectly using a periodic boundary condition.7

Exercise 12.6

(a) Show from (12.10) that the complex wavenumber for the forced plane wave and
the complex frequency for the free plane wave are respectively

Ok
k0
D 1p

1C i!0vi
; (12.12a)

O!
!0
D i

!0vi

2
C
s

1 �
�
!0vi

2

�2
; (12.12b)

with k0 and !0 related through cs D !0=k0.

7Free waves are also key in the von Neumann stability analyses described in Sect. 4.4.

500 12 Sound Waves

(b) Show from Taylor expansion of these equations that the nondimensionalised
attenuation and dispersion for forced and free waves are, to lowest order,

Forced:
˛x

k0
D !0vi

2
;

cp

cs
D k0

k
D 1C 3

8
.!0vi/

2; (12.13a)

Free:
˛t

!0
D !0vi

2
;

cp

cs
D !

!0
D 1 � 1

8
.!0vi/

2: (12.13b)

Generally, the dimensionless number !0vi, which we can call the acoustic
viscosity number, indicates the effect of viscosity on sound propagation at a given
frequency. The higher the value of!0vi, the higher the degree of viscous attenuation
and dispersion.

Exercise 12.7 Let us take a look at how the acoustic viscosity number scales. We
know that !0 � cs=� and that
 �
B � cs`mfp, `mfp being the mean free path.
From this, show that

!0vi � `mfp

�
; (12.14)

i.e. that the acoustic viscosity number represents an acoustic Knudsen number.

From (12.13) we see that for both forced and free waves, the attenuation
coefficient (˛x and ˛t, respectively) to lowest-order increases with the square of the
frequency !0. (Due to the typically low values of !0vi, the lowest order is typically
the only one felt.) However, free and forced waves experience different dispersion
according to the isothermal Navier-Stokes model; the wave speed increases with
frequency for forced waves, and decreases with frequency for free waves.

The attenuation and dispersion given above are derived from the Navier-Stokes
equation, which can be seen as a continuum approximation to the Boltzmann
equation. Higher-order fluid models such as the Burnett equation generally predict
the same viscous attenuation to lowest order, but make different predictions for
terms of higher order in !0vi [7, 19]. One thing that generally holds for all these
fluid models is that in a series expansion of Ok=k0 or O!=!0 odd powers in !0vi are
related to attenuation while even powers are related to dispersion.

Let us take a quick look at typical values of !0vi for audible sound. At
everyday conditions, the ideal speed of sound in air is around cs ' 340m=s,
the kinematic shear viscosity is
 ' 1:5�10�5 m2=s and the bulk viscosity is

B ' 0:61
 [11, 13, 14]. For a high but audible frequency of 10 kHz, we get
an acoustic viscosity number of !0vi D 1:6 � 10�5. From Chap. 7, we know
that this dimensionless number will be the same in any system of units.

Now, what would it require to achieve such a number in lattice units? Just
to have a number, let us assume a reasonable lattice wavelength of � D 10,

(continued)

12.1 Background: Sound in Viscous Fluids 501

which corresponds to an angular frequency of !0 D 2�cs=� � 0:36. Relating
vi to using (12.5), we find that this acoustic viscosity number, given� D 10,
requires =�t D 0:500022. This incredibly low value of =�t is hard to
achieve. In principle it can be increased by increasing the lattice wavelength,
but that is equivalent with increasing the resolution which may lead to a
simulation domain with unfeasibly many nodes. On the other hand, it has
been shown possible to simulate at least some acoustic phenomena for the
inviscid case of =�t D 0:5 with both accuracy and stability using MRT or
MRT-like collisions [7, 17]. Generally, low values of are very important
for LB acoustics.

In some cases, it may be possible to simulate larger acoustic systems at higher
values of , by using a much higher acoustic viscosity number !0vi than what
would be realistic and compensating for the additional viscous attenuation in the
received pressure wave [20].

12.1.4 Time-Harmonic Waves: The Helmholtz Equation

The wave equation can be simplified considerably in the steady-state case where the
entire field is harmonically varying in time, which means that the field varies with
time as ei!0t. Such a time variation allows the simplifying substitution @t ! i!0.
Consequently, the viscous wave equation, (12.4a), can be reduced to the viscous
Helmholtz equation

r2 Op0 C Ok2 Op0 D 0; (12.15)

with the wavenumber Ok D k0=
p
1C i!0vi. (In the more commonly seen inviscid

case, vi ! 0 and the wavenumber is real, i.e. Ok2 D k20.)
The Helmholtz equation holds universally for a harmonic time variation no

matter the spatial shape of the wave; it may be plane, cylindrical, spherical, a sound
beam, or any other shape, and the complex wavenumber Ok remains the same. This
shows that the wavenumber of a forced plane wave, described in Sect. 12.1.3, equals
that of any other viscously affected wave.

The Helmholtz equation is a steady-state equation and time does not enter into
it except through the underlying assumption that the fields vary as ei!0t. On the
other hand, LB simulations are inherently time-dependent. This means that LB
simulations can only approximate Helmholtz equation solutions, and then only in
cases with time-harmonic sound sources that are left to radiate sound until a near-
steady state is reached.

502 12 Sound Waves

12.1.5 Other Attenuation and Absorption Mechanisms

In isothermal lattice Boltzmann simulations, shear and bulk viscosity are typically
the only causes of sound wave attenuation. However, in real fluids, there are other
mechanisms that cause attenuation and absorption of sound waves in free fields and
for wave-surface interaction, respectively. We will not go into these mechanisms
in too much depth here; they are described more thoroughly in the acoustics
literature [7, 10, 11, 13].

One free-field mechanism is heat conduction, which does not appear in isother-
mal LB fluids. In short, sound wave peaks experience an increase not only in
pressure and density, but also in temperature. Sound wave troughs experience a
corresponding decrease in temperature. This temperature inhomogenity results in
heat conduction. This reduces the temperature differences, and consequently the
pressure differences, between peaks and troughs; the wave amplitude decreases.

Heat conduction causes a wave attenuation which, similarly to the viscous
attenuation, is proportional to the square of the frequency. In gases, this heat
conduction typically causes an attenuation of similar strength to that from viscosity.
In liquids, attenuation from heat conduction is typically negligible. For free-field
attenuation, the importance of viscosity compared to heat conduction scales with
the Prandtl number as O.Pr/ [10].

Additionally, when a sound wave interacts with a solid boundary, the viscous
friction and heat transfer between the two will also cause a partial absorption of the
sound wave, in particular at high frequencies [10, 13].

Another free-field mechanism is molecular relaxation processes, which is linked
to transfer of energy between various forms [7, 10, 11]. In short, a passing sound
wave will temporarily change the temperature of the fluid. As we saw in Sect. 1.3,
the temperature is directly proportional to the translational energy of the fluid
molecules. Increasing the translational energy in this way puts it out of equilibrium
with inner forms of energy in the fluid. In a polyatomic gas, these are the vibrational
and rotational energies of the molecules. In seawater, the increase in temperature
changes the equilibrium point of a chemical reaction between solutes in the water.
In both cases, translational energy is equilibrated with these inner energies through
a relaxation process. This reduces the temperature differences (and consequently the
pressure differences) between peaks and troughs, weakening the pressure wave as it
propagates.

At audible frequencies, this tends to completely dominate viscous and thermal
attenuation in typically encountered fluids such as air or seawater. However, this
mechanism is dependent on the rate at which translational energy is converted to
inner energies and back.8 Therefore, it is less effective at very high frequencies
where the inner energies cannot keep up and remain nearly constant, or frozen.

8These rates can depend on the presence of other molecules. For instance, water molecules act as a
catalyst for the transfer between translational and vibrational energy in air [21]. Humidity therefore
has a surprisingly large effect on sound attenuation in air.

12.1 Background: Sound in Viscous Fluids 503

Fig. 12.1 Contributions to the total sound attenuation for air at conditions of 293.15 K, atmo-
spheric pressure, and 70 % relative humidity [11], according to ISO 9613-1:1993

The relative importance of vibrational energy to sound attenuation in air,
compared to a combined attenuation due to viscosity and heat conduction, is
shown in Fig. 12.1. In the audible range, the thermoviscous attenuation is typically
negligible.

The most important source of sound absorption in day-to-day situations, how-
ever, is sound waves’ interaction with surfaces that are not perfectly rigid. This
can be represented through the surface property of normal impedance OZn D Op=Oun,
where Oun is the normal velocity of the surface for an applied pressure Op [10]. Higher
impedance, corresponding to a harder and less moveable surface, typically results in
the surface absorbing less sound. For instance, a room with hard concrete walls will
be more reverberant (i.e., sound will linger for a longer time) than a similar room
with softer wooden walls.

Now, how can these mechanisms be captured in LB simulations? Thermal
attenuation is something we get for free in thermal LB models, and the attenuation
in such LB simulations matches theory [22]. Vibrational relaxation, on the other
hand, is a more complex effect that cannot be captured so easily. The only published
attempt at this time of writing was very simple and limited itself to a single
relaxation process and monofrequency sound. It achieved good accuracy but poor
stability [7]. Similarly, only a little has been published on impedance BCs for the
LBM [23].

12.1.6 Simple Multidimensional Waves: The Green’s
Function

The wave and Helmholtz equations discussed above only describe how existing
waves propagate, not how they are generated. One simple mathematical description

504 12 Sound Waves

of sound wave generation is given through Green’s functions OG.x; t/. In general,
a Green’s function is the response to a delta function inhomogenity in a partial
differential equation.

For the viscous wave equation in (12.4a), the time-harmonic Green’s function is
defined through

1

c2s
@2t � .1C vi@t/r2

!

OG.x; t/ D ı.x/ ei!0t; (12.16)

ı.x/ being the Dirac delta function. We will see how such inhomogenities can appear
in the wave equation in Sect. 12.3.

The solution to this inhomogeneous equation depends on the number of
spatial dimensions and represents the simplest type of wave for that number
of dimensions. For a 1D space, the Green’s function is a plane wave. For
2D space, it is a cylindrical wave. For 3D space, it is a spherical wave.
Explicitly, these solutions are [12]

1D: OG.x; t/ D 1

2iOk ei.!0t�Okjxj/; (12.17a)

2D: OG.x; t/ D 1

4i
H.2/
0 .
Okjxj/ ei!0t; (12.17b)

3D: OG.x; t/ D 1

4�jxje
i.!0t�Okjxj/: (12.17c)

In these equations jxj is the distance to the origin (often denoted as r in the
literature), andH.2/

n is an n-th order Hankel function of the second kind, which
is a particular superposition of Bessel functions.

It is also possible to define time-impulsive Green’s functions through the
alternate inhomogenity term ı.x/ı.t/. However, these have no similarly simple
analytical solutions for two dimensions or for sound waves affected by viscosity.
In any case, such time-impulsive Green’s functions can be indirectly found through
an inverse Fourier transformation of time-harmonic Green’s functions.

Knowing the response of a point inhomogenity also lets us find the pressure field
from a spatially distributed inhomogenity, meaning that the equation

1

c2s
@2t � .1C vi@t/r2

!

Op.x; t/ D OT .x/ ei!0t; (12.18a)

12.2 Sound Propagation in LB Simulations 505

is solved by

Op0.x; t/ D
Z
OT .y/ OG.x � y; t/ d3y; (12.18b)

where x is the “receiver” point and we integrate over all possible “source” points y.
These delta function inhomogenities radiate waves equally in every direction,

which means that they are monopole sources. However, inhomogenities that radiate
directively, for instance as dipoles and quadrupoles, are also possible. Such
inhomogenities are represented as tensor terms with spatial derivatives applied to
them [7, 24, 25], i.e. as

1

c2s
@2t � .1C vi@t/r2

!

Op.x; t/ D ei!0t
� OT .x/C @˛ OT˛.x/

C @˛@ˇ OT˛ˇ.x/
	
:

(12.19a)

It can be shown [7, 24, 25] that this equation is solved by

Op0.x; t/ D
Z
� OT .y/ OG.x � y; t/C OT˛.y/@˛ OG.x � y; t/

C OT˛ˇ.y/@˛@ˇ OG.x � y; t/
	

d3y;

(12.19b)

where the spatial derivatives in the integrand are always operating on x. The first
spatial derivative of the Green’s function corresponds to dipole radiation and the
second spatial derivative of the Green’s function to quadrupole radiation.

Exercise 12.8

(a) Using the 3D Green’s function in (12.17c), show for the far field (i.e. for large
jxj), that @˛G.x; t/ has a dipole variation in space, i.e. that it varies as x˛=jxj.

(b) Similarly, show that @˛@ˇG.x; t/ has a quadrupole variation in space, i.e. that it
varies as x˛xˇ=jxj2.

12.2 Sound Propagation in LB Simulations

If we would look at the sound waves that typically appear by accident in LB
simulations, one of the first two things we would notice is that they are attenuated
fairly quickly and that they do not propagate at a speed cs. For the latter point, we

506 12 Sound Waves

already established in Sect. 12.1.3 that waves in a viscous medium are dispersive at
high frequencies.9

Additionally, sound waves do not propagate in numerical solvers exactly
as predicted by the NSEs. There are several reasons for this:

• Due to discretisation error, waves (or Fourier components of waves)
that are more heavily discretised, meaning that they have fewer points per
wavelength, will propagate differently to well-resolved waves.

• Numerical solvers typically discretise space into elements or a grid, and
it is not possible to discretise space in a fully isotropic way. Therefore,
sound propagation is typically slightly anisotropic, again especially at
short wavelengths.

These points hold fully for the lattice Boltzmann method, though there are
some LB-specific issues as well:

• The LBM discretises velocity space, and it is not possible to do this fully
isotropically. Even without the discretisation in space and time, this makes
sound propagation anisotropic, though this effect is only significant for
!0vi > 0:1 [28].

• At second order and higher in series expansions in !0vi, the Boltzmann
equation predicts different sound propagation to the NSEs [19]. It
is similar for the LBE: To O.!0vi/ the attenuation is the same as for
Navier-Stokes, but the dispersion (which to lowest order is O.!0vi/

2) is
different.10

Consequently, the sound attenuation and dispersion in LB simulations depends
both on the physical model (i.e. the discrete-velocity Boltzmann equation) and on
the purely numerical discretisation. As we will see in the following sections, it is
possible to tell these effects apart. Additionally, the anisotropy of each velocity set
may also uniquely affect LB sound propagation.

One classic method for analysing the sound propagation predicted by fluid
models goes back to Stokes’ first article on his fluid momentum equation that we
now know as the Navier-Stokes equation [29]. In this method, sometimes known as
linearisation analysis, we assume that the unknowns (i.e. density, pressure, and fluid
velocity) are varying on the form of an infinitesimal plane wave around a rest state,

9For strong sound waves non-linear effects also affect the local wave speed. These non-linear
effects can be reproduced in LB simulations [26, 27], though we will not go into non-linear sound
in this book.
10This is not to say that the sound propagation is the same in the LBE as in the Boltzmann equation.
Remember that the LBE is a minimal discretisation of the Boltzmann equation, only detailed
enough such that correct Navier-Stokes behaviour is reproduced.

12.2 Sound Propagation in LB Simulations 507

e.g. Op D p0COpıei. O!t�Okx/. In the fluid model’s governing partial differential equations,
space and time derivatives can be applied directly to these unknown quantities
since their behaviour in space and time is known. From the resulting derivative-
free equations, dispersion relations such as (12.10) which relate the frequency O!
and wavenumber Ok can be found.

Such linearisation analyses have also been applied to the Boltzmann equa-
tion [30–32]. However, they were not able to determine a closed-form dispersion
relation, instead ending up with a non-convergent power series in quantities of
O.!0vi/. Thankfully, the finite velocity space of the discrete-velocity Boltzmann
equation and the lattice Boltzmann method make them more amenable to this kind
of analysis.

12.2.1 Linearisation Method

To analyse LB sound propagation, a linearisation analysis similar to the von
Neumann analysis mentioned in Sect. 4.4 can be used. Similarly to what we saw
in Sect. 12.1.2, the unknowns fi are assumed to be varying on plane wave form.
However, exact space and time derivatives do not exist in any numerical solver with
discretised space and time, which complicates the analysis somewhat. Instead, we
must relate the unknowns fi over several nodes and time steps.

A number of such analyses have been performed in the literature [7, 27, 28, 33–
39]. However, the most thorough and detailed analyses have unfortunately only been
performed for free waves. As discussed in Sect. 12.1.3, free waves are not usually
relevant in practice beyond benchmarks and stability analyses, and knowing how
free waves behave is not sufficient to know how forced waves behave [18].

In this section we will go through a simple linearisation analysis of sound
propagation for the D1Q3 velocity set given in Table 3.2. This will result in
expressions for the attenuation and dispersion of sound in the LBM. This analysis
does not take into account the anisotropy of each higher-dimensional velocity
set. Even so, the end results hold for propagation along the x-, y-, or z-axis in
higher-dimensional velocity sets of which D1Q3 is a one-dimensional projection
as discussed in Sect. 3.4.7.

The process behind this analysis, which will now be presented, is not really
necessary to understand the results, which are presented in Sect. 12.2.2. For
notational simplicity, this analysis uses lattice units, i.e. �t D 1 and�x D 1.

In this linearisation analysis we assume that the solution is an infinitesimally
weak plane sound wave on top of a rest state. Consequently, we can use a linearised
equilibrium like in Sect. 4.3.1,

f eq
i D wi

�0 C O�0 C �0 Ou0

c2s
ci

!

: (12.20)

508 12 Sound Waves

Since we are basing this analysis on the one-dimensional D1Q3 velocity set, this
linearised equilibrium distribution is also one-dimensional.

We define the distribution function f fig to be split into two parts:

Ofi.x; t/ D Feq
i C Of 0

i .x; t/ D Feq
i C Of ı

i ei. O!t�Okx/: (12.21)

Here, we define Feq
i to be the quiescent (i.e. rest state) component of the distribution

function. Of 0
i is defined to be the infinitesimal plane-wave disturbance on top, and Of ı

i is
the plane-wave amplitude. As the Feq

i component is constant and unaffected by the
fluctuations Of 0

i due to linearity, it remains in a permanent state of both macroscopic
and mesoscopic equilibrium. Mathematically, these definitions can be expressed as

" P
i
Ofi.x; t/P

i ciOfi.x; t/

#

D
" P

i F
eq
iP

i ciF
eq
i

#

C
" P

i
Of ı
i .x; t/P

i ci Of ı
i .x; t/

#

ei. O!t�Okx/

D
"
O�.x; t/
�0 Ou.x; t/

#

D
"
�0
0

#

C
"
O�ı
�0 Ouı

#

ei. O!t�Okx/:

(12.22)

The distribution function f fig has the same zeroth and first moments as its
corresponding equilibrium f f eq

i g. Therefore, the linearised equilibrium in (12.20)
can similarly be split into a quiescent component and a plane wave fluctuation
component,

Feq
i D �0wi; Of ıeq

i D wi

O�ı C �0 Ouı

c2s
ci

!

: (12.23)

Inserting this split equilibrium distribution into the LBE, the quiescent component
is cancelled out everywhere and we are left with an LBE only for the fluctuation
itself,

Of 0
i .xC ci; tC 1/ D

�
1 � 1

� Of 0
i .x; t/C 1

Of 0eq
i .x; t/: (12.24)

From the above definitions we can perform the substitution Of 0
i .x; t/ D Of ı

i ei. O!t�Okx/.
Subsequently explicitly expanding the moments in the equilibrium distribution and
dividing the resulting LBE by ei. O!t�Okx/, we find

Of ı
i ei. O!�Okci/ D

�
1 � 1

� Of ı
i C

wi

Of ı
1 C Of ı

0 C Of ı
2 C 3

�Of ı
1 � Of ı

2

�
ci

�

: (12.25)

12.2 Sound Propagation in LB Simulations 509

This corresponds to three explicit equations, one for each i. These relate the three
unknown fis with each other and with O! and Ok. After some algebra, these can be put
in the form of an eigenvalue problem OAf ı D ei O!f ı, which in explicit form is

OAOf ı D 1

3

2

6
4

e�iOk �3 � 1=� e�iOk=2 �e�iOk=
2= 3 � 1= 2=

�eiOk= eiOk=2 eiOk �3 � 1=�

3

7
5

2

6
4

Of ı
2Of ı
0Of ı
1

3

7
5 D ei O!

2

6
4

Of ı
2Of ı
0Of ı
1

3

7
5 :

(12.26)

Now, let us remember what we are really looking for here: a dispersion
relation that relates the unknowns O! and Ok. This can be found from the
characteristic polynomial of the above eigenvalue problem,

det
� OA� Iei O!

�
D g. O!; Ok; / D 0: (12.27)

Here, g. O!; Ok; / D 0 is the analytical dispersion relation that is our goal.
However, this relation is very cumbersome; it should not be dealt with by
hand, nor will it be reproduced explicitly here.

12.2.2 Linearisation Results

With the help of a computer algebra system, the dispersion relation in (12.27) can
be solved for either Ok or O!, given some assumption on the relation between the
two. In particular, we can determine exactly how D1Q3 waves propagate for the
aforementioned forced and free wave cases, where the frequency or the wavenumber
are real-valued, respectively.

12.2.2.1 Forced Waves

For forced waves, the frequency is real-valued, i.e. O! D !0, and we can solve
the dispersion relation to find an exact, though extremely unwieldy, analytical
wavenumber Ok. There are two solutions for Ok, corresponding to propagation in the
Cx and the �x direction. TheCx-propagating solution is:

Ok D i ln

"
3.�2 � � C 1 � ��1/C � � 2C ��1.3Cp3�/

4C 6.� � 1/� 2�

#

; (12.28a)

510 12 Sound Waves

where the shorthands � D ei!0 and

� D .� C 1/.� � 1/2.� C 1 � /.3�2 � � C 3 � 3/ (12.28b)

have been used.
While this solution is exact for D1Q3 and a good approximation11 for those

velocity sets that can be projected to D1Q3, it is a mess to look at. It is difficult
to get any feeling from this solution for how the wavenumber behaves.

Instead, we can find something simpler and clearer by series expanding this and
cleverly arranging the result as

Ok
k0
D
h
1C 1

12
!20 C 13

480
!40 C O.!60 /

i
� i 1

2
.!0vi/

h
1C 5

12
!20 C O.!40 /

i

� 5
8
.!0vi/

2
h
1C 13

20
!20 C O.!40 /

i
C i 13

16
.!0vi/

3
h
1C O.!20 /

i

C O.Œ!0vi	
4/:

(12.29)

This arrangement nests a series expansion in !0, which here represents the numeri-
cal resolution, in a series expansion in the dimensionless acoustic viscosity number
!0vi, which represents the physical effect of viscosity on sound propagation in
the model. From (12.9) we know that the imaginary terms represent sound wave
attenuation while the real terms represent dispersion.

To make the expansion more clear, consider letting !0 ! 0 while keeping !0vi

constant. This is equivalent to having an infinitely refined resolution for sound
waves. This limit removes the discretisation error in space and time, resulting in
the same wave propagation as for the discrete-velocity Boltzmann equation [28].
Conversely, letting !0vi ! 0 while keeping !0 finite is equivalent to ideal sound
propagation unaffected by dissipative effects. Only the discretisation error in space
and time remains.

12.2.2.2 Free Waves

For free waves, the wavenumber is real-valued, i.e. Ok D k0, and we can solve the
dispersion relation for the unknown O!. This actually admits three solutions [7]: two
for plane wave propagation in each direction and one non-propagating dissipative
mode. All three solutions are significantly more cumbersome than even (12.28a),

11Again, it is exact if we disregard anisotropy.

12.2 Sound Propagation in LB Simulations 511

and we will jump straight to the approximate series expansion form,

O!
!0
D
h
1 � 1

36
k20 � 1

1440
k40 C O.k60/

i
C i 1

2
.!0vi/

h
1C O.k40/

i

C 1
8
.!0vi/

2
h
1� 1

4
k20 C O.k40/

i
C i 1

8
.!0vi/

3
h
1C O.k20/

i

C O.Œ!0vi	
4/:

(12.30)

In this case, !0vi still represents the physical effect of viscosity in the model while
numerical resolution is represented by k0.

12.2.2.3 Discussion

For both forced and free waves, we have seen that the time and space discretisation
error first appears at second order in the parameter describing the numerical
resolution. This shows that LB sound wave propagation is second-order accurate.

The results presented from this analysis are highly dependent on the specifics of
the LBE. Take for example the model described in Sect. 4.3.3, where the equilibrium
f eq
i can be altered in order to change the equation of state. A linearisation analysis

of this model found that changing the equilibrium affects every order of the time
and space discretisation error [27]. Additionally, this change affects the continuous
model, represented by !0vi for !0 ! 0, at O.!0vi/

2 and presumably also higher
orders. Similar results have also been reported elsewhere in the literature [34, 37].

On the other hand, the results from this derivation accurately describe the wave
propagation for the classic isothermal equilibrium, even for non-plane forced waves,
as explained in Sect. 12.1.4. This will be demonstrated in Sect. 12.3 for a case with
2D cylindrical waves and a simple MRT operator.

In the same continuous-model limit, we can compare (12.29) and (12.30) with
the corresponding results in (12.13) for the isothermal Navier-Stokes model. We
see that to lowest order, the attenuation is consistent while the dispersion is not.
In fact, it can be found that all terms above O.!0vi/ deviate from the isothermal
Navier-Stokes model [7]. This deviation becomes significant at !0vi � 0:1 [7, 28].

Example 12.1 We have from (12.5) that vi D 2. ��t=2/ for the BGK collision
operator, so that for =�t D 1 we get vi D �t. Having !0vi < 0:1, so that waves
still propagate more or less according to the Navier-Stokes model, thus requires a
sound wave period of T D 2�=!0 > 62:8�t. This high resolution requirement for
=�t D 1 underlines the importance of choosing low numerical viscosities for LB
simulations where sound is physically relevant.

The analysis performed here has some clear limits: it assumes that there is no
background flow, it is performed for one specific equilibrium, it is limited to D1Q3

512 12 Sound Waves

(i.e. the anisotropy of other velocity sets12 is lost), and it does not take into account
various possible choices of collision operator. There exist articles that take these
effects into account in D2Q9-based linearisation analyses [34, 37], though their
analyses are unfortunately limited to free waves and are by necessity far more
complex.

12.3 Sources of Sound

There are many reasons why sound waves may appear in LB simulations:

• Intentional setup: The initial conditions of the simulation can be set up to
contain sound waves. Free waves can be initialised with one wavelength in a
periodic system [1, 7, 26, 27, 35, 40, 41]. Forced waves can be initialised with an
inhomogeneous (e.g. Gaussian) density distribution [5, 42–47].

• Unintentional setup: When setting up a flow field as an initial condition for a
simulation, this field is seldom perfect for the case at hand. Typically, this initial
condition will be a mix of an incompressible flow field and a sound wave field.
However, generally separating a low-Ma field into incompressible flow and sound
is an unsolved, and perhaps unsolvable, problem,13 which makes it hard to avoid
including sound waves in initial flow conditions of simulations.14

• Aerodynamic noise: Sound can come from unsteady flow fields and their
interaction with surfaces. Indeed, this is the main source of e.g. aircraft noise.
As this behaviour is a consequence of the fluid conservation equations, it can
also be captured in LB simulations.

• Artificial sound sources: It is also possible to make sound sources in simulations
that generate sound artificially during the simulation. These can either be inside
the domain or be implemented as boundary conditions.

In this section we will focus on the last two cases. They are tied together through
the theory of sound sources which we will now look into.

12For forced waves in the continuous model using the D2Q9 velocity set, anisotropy first occurs at
O.!0vi/

3. Thus, attenuation and dispersion are both isotropic to lowest order, though anisotropy
becomes significant at around !0vi � 0:2 [7, 28].
13Even so, some filtering techniques have been developed to approximately separate the sound field
from the total flow field [48–51].
14Initial flow conditions for LB simulations are described in Sect. 5.5.

12.3 Sources of Sound 513

Fig. 12.2 Exaggerated sketch of four stages of a pulsating sphere of rest radius a. From left
to right: Expanding, fully expanded, contracting, and fully contracted. The surface velocity is
indicated by arrows

12.3.1 Example: The Pulsating Sphere

One of the most basic examples of a sound source within a fluid is a pulsating sphere
which continuously expands and contracts at a single frequency !0. For a sphere
with a rest radius of a centred at x D 0, such a pulsation is typically modelled by
a velocity boundary condition ur.jxj D a; t/ D uıei!0t, ur being the fluid velocity
in the radial direction and uı being the sphere’s velocity amplitude. The sphere’s
pulsation is sketched in Fig. 12.2.

This velocity boundary condition leads to a mass displacement per time unit of
Qei!t D 4�a2�0u0ei!t. In three dimensions it also leads to the generation of the
pressure wave [10]

Op0.x; t/ D i!Q

4�jxje
i.!0t�Okjxj/: (12.31)

Alternatively, we can model this mass displacement as a mass source at x D 0
through an inhomogeneous linearised continuity equation

@t�C �0@˛u˛ D Qı.x/ei!t; (12.32)

which leads to a wave equation

1

c2s
@2t � .1C vi@t/r2

!

Op0.x; t/ D i!Qı.x/ei!t; (12.33)

which, from the Green’s functions in Sect. 12.1.6, has a solution identical to (12.31).
From this we can tell that pulsating objects scattered throughout the fluid can be

modelled as mass sources. Similarly, oscillating objects (i.e. objects moving side-
to-side) can be modelled as forces throughout the fluid.

Now, how is this relevant to LB simulations? In Sect. 12.3.3 we will come back
to how such a simple source can be implemented in LB simulations.

514 12 Sound Waves

12.3.2 The Inhomogeneous Wave Equation

In Sect. 12.3.1 we saw how a pulsating sphere may be modelled as a mass source,
causing an inhomogeneous term to appear in the wave equation. Indeed, there are
several possible sources of such inhomogeneous terms which we will now look at.

Instead of using approximate, linearised, forceless conservation equations, the
wave equation may also be derived from the Navier-Stokes-level conservation
equations

@t�C @˛�u˛ D Q.x; t/; (12.34a)

@t
�
�u˛

�C @ˇ
�
�u˛uˇ

� D �@˛pC @ˇ� 0̨
ˇ C f˛.x; t/; (12.34b)

where Q.x; t/ is a time-varying distribution of mass sources throughout the physical
domain.

From these, an exact inhomogeneous wave equation for the density can be
derived

1

c2s
@2t � r2

!

c2s�
0.x; t/ D @tQ.x; t/ � @˛f˛.x; t/C @˛@ˇT˛ˇ.x; t/: (12.35)

Each of the terms on the right-hand side represents a type of sound source. The last
term contains the Lighthill stress tensor

T˛ˇ D �u˛uˇ C . p0 � c2s�
0/ı˛ˇ � � 0̨

ˇ: (12.36)

The latter two terms in the Lighthill stress tensor do not typically contribute
as sources of sound [25]. However, the second is linked to the deviation from
the linearised isentropic equation of state,15 while the third is linked to viscous
attenuation as discussed earlier in this chapter.

The first term, which comes from the nonlinear term on the left-hand side of the
momentum equation, does contribute. The contribution from the inhomogeneous
term @˛@ˇ.�u˛uˇ/ is typically strongest when there is a strongly fluctuating
underlying flow field, such as a turbulent field.

From an impulsive Green’s function approach, similar to the time-harmonic
Green’s function approach described in Sect. 12.1.6, an exact solution for the
inhomogeneous density wave equation (12.35) can be found as an integral of the

15This term is zero for the isothermal equation of state.

12.3 Sources of Sound 515

inhomogeneous terms over the entire domain [7, 24]:

c2s�
0.x; t/ D

Z
� �
@tQ.y; t/

�
G.x � y; t/ � f˛.y; t/@˛G.x � y; t/

C T˛ˇ.y; t/@˛@ˇG.x � y; t/
	

d3y:

(12.37)

From Sect. 12.1.6 we know that these three terms can be interpreted as monopole,
dipole, and quadrupole terms, respectively. For the case where all the inhomoge-
neous terms in (12.35) are time-harmonic, the corresponding Green’s function is
shown in (12.17).16

The sound generated by the interaction of the flow field, in particular the pressure,
with extended surfaces is a field of study in of itself. For more on this this we refer
to the literature [24, 52–54].

12.3.3 Point Source Monopoles in LB Simulations

At this point we have introduced three sources of sound: the mass displacement
Q from small pulsating structures makes monopole sound sources, time-varying
inhomogeneous forces are dipole sound sources, and a strongly fluctuating fluid
velocity represents a distributed quadrupole sound source.

Now, how do these inhomogeneous sound waves appear in LB simulations? The
forcing can be imposed using any of the forcing schemes described in Chap. 6. The
quadrupole source is a direct consequence of the Navier-Stokes equation, which
means that even the most basic LBE is therefore able to simulate such sources
without modification if the flow is resolved finely enough [55–57].

On the other hand, the mass fluctuation must be imposed. In this section we will
describe how this can be done through an approach that can also be generalised
further to dipoles and quadrupoles.

An early approach to monopole point sources in LB simulations was to replace
the entire particle distribution in a node with an equilibrium distribution at an
imposed density that fluctuates around the rest density �0 [5, 58]. However, this
method is not advisable for several reasons [17]: it will disturb the flow unphysically,
and the relationship between the source and the radiated wave’s amplitude and phase
is unknown.

16Note again that there is no simple impulsive Green’s function available for 2D cases [11].

516 12 Sound Waves

A newer approach to LB sound sources is based on adding a particle source
term ji to the lattice Boltzmann equation,

fi.xC ci�t; tC�t/� fi.x; t/ D ji.x; t/C˝i.x; t/�t: (12.38)

This term represents particles being added to or removed from the distribution
function with a certain distribution in velocity space, physical space, and time.
This can be contrasted with the mass source in (12.34a), which is distributed
in space and time but not in velocity space.

The effect of the particle source term ji is best seen through its moments, which
we define similarly to the moments of fi,

J D
X

i

ji; J˛ D
X

i

ci˛ji; J˛ˇ D
X

i

ci˛ciˇji: (12.39)

Naturally, adding a source term to the LBE will affect its macroscopic behaviour.
This behaviour can be determined by a Chapman-Enskog analysis as detailed in
Sect. 4.1, resulting in mass and momentum conservation equations

@t�C @ˇ.�uˇ/ D J � �t
2

�
@tJ C @ˇJˇ

�
; (12.40a)

@t.�u˛/C @ˇ.�u˛uˇ/ D �@˛pC @ˇ� 0̨
ˇ C .1 � �t

2
@t/J˛ � @ˇ

�
J˛ˇ

�
(12.40b)

C @ˇ
�

 � �t

2

��
ı˛ˇc

2
sJ C u˛Jˇ C uˇJ˛ � u˛uˇJ

�
;

where the viscous stress tensor is, as usual, � 0̨
ˇ D �c2s . � �t=2/.@ˇu˛ C @˛uˇ/.

These conservation equations have gained source terms given by the moments of
the particle source term ji. The derivative terms with the �t=2 prefactor are a result
of the velocity space discretisation error of the LBE [7]. Disregarding these terms,
the moment J directly takes the place of Q in (12.34a).

Many of these additional terms in the conservation equations are small, being
of order . ��t=2/uj. Neglecting these, we can derive a viscous wave equation as
done in Sect. 12.1.1, resulting in

"
1

c2s
@2t � .1C vi@t/r2

#

p D
�
1 � �t

2
@t

�
@tJ � @˛J˛

C @˛@ˇJ˛ˇ �
�
 � �t

2

�
@˛@ˇ

�
3ı˛ˇc

2
s J
�
:

(12.41)

12.3 Sources of Sound 517

Example 12.2 Let us look at the radiated wave from a point source at x D 0, which
from (12.35) and (12.37) is

Op0.x; t/ D
2

4

i!0 C !20
2

!

J

3

5 OG.x; t/ � J˛@˛ OG.x; t/

C
"

J˛ˇ �
�

 � �t

2

�

3ı˛ˇc
2
sJ

#

@˛@ˇ OG.x; t/:
(12.42)

The J moment affects monopoles and quadrupoles, the J˛ moment only affects
dipoles, and the J˛ˇ moment only affects quadrupoles.

In general, we can choose ji cleverly to tailor which moments are non-zero
and which are zero. For monopoles, a simple assumption is that mass appears at
equilibrium, i.e.

ji.x; t/ D wiQ.x; t/; (12.43)

which from (3.60) results in the moments

J D
X

i

ji D Q; J˛ D
X

i

ci˛ji D 0; J˛ˇ D
X

i

ci˛ciˇji D c2sı˛ˇQ: (12.44)

It might seem contradictory to choose a monopole source that also affects the
quadrupole moment. However, this choice is ideal as it causes the quadrupole
moment to cancel against the discretisation error term for low values of =�t. (As
explained in Sect. 12.1.3, such low values are generally necessary to use in LB
acoustics.)

Let us show where this cancellation comes from: using the harmonic 2D and 3D
Green’s functions in (12.17), it can be found that (12.42) becomes

@˛@˛ OG.x; t/ D �Ok2 OG.x; t/ (12.45)

in both cases. Consequently, since (12.44) shows that J˛ˇ D c2sı˛ˇJ and J˛ D 0, and
since .Okcs/ � !0, for ji D wiQ.t/ı.x/ and =�t! 1

2
(12.42) becomes simply

Op0.x; t/ D i!0Q OG.x; t/; (12.46)

just as it should be for a monopole point source.

To summarise, we can add sound sources to LB simulations through a particle
source term ji as in (12.38). By setting ji.x; t/ D wiQ.x; t/, we can create

(continued)

518 12 Sound Waves

monopole sound sources. These sources can either be single point sources
that radiate as (12.46) or distributions of such point sources around the
domain.

The same approach can be expanded to create dipole and quadrupole sources.
Indeed, ji can be decomposed into a basis of a monopole and various dipole and
quadrupole sources. We will not go into this further here, but rather refer to the
literature [7, 17].

As an example of the monopole point source in action, Fig. 12.3 compares the
field of a D2Q9 monopole sound source simulated at =�t D 1=2 using both the
BGK operator and a simple MRT operator with immediate relaxation (i.e. relaxation
times of 1) of the non-hydrodynamic moments. Taking the analytical wavenumber
from (12.28a), we find excellent agreement for MRT collisions while the BGK case
shows spurious oscillations around the analytical solution. It should also be pointed
out that there is a singularity in the analytical solution at x D 0, which means that
the simulated solution can never match the analytical solution in the immediate area
around the source point.

Finally, we should briefly mention precursors, a wave phenomenon that appears
in dispersive media. If sources are immediately switched on at reasonably high
viscosities, precursors will appear [59], manifesting as bumps at the first wavefront.
Additionally, if sources are immediately turned on in simulations at very low vis-
cosities, errors may be visible along the first wavefront. In such cases, sound sources
should be turned on smoothly. More details on this can be found elsewhere [7].

Fig. 12.3 Left: Snapshot of the pressure wave radiated by a smoothly switched-on monopole
source, using a simple MRT operator at =�t D 1=2. Right: Comparison of the radial pressure
along the dashed line on the left with the pressure predicted by theory, for MRT and BGK operators
at =�t D 1=2. Taken from [7]

12.4 Non-reflecting Boundary Conditions 519

12.4 Non-reflecting Boundary Conditions

The most commonly used boundary conditions for inlets and outlets in lattice
Boltzmann simulations specify the flow field’s velocity or density. Such boundary
conditions are far from ideal for flows containing sound waves, as they will reflect
sound waves back into the fluid [60]. Consequently, any sound waves generated in
the simulated system will not exit the system, and this may pollute the simulation
results. In particular, the density field may be strongly polluted [6] as its variations
are typically quite weak for steady flows, where they scale as �0=�0 D O.Ma2/ [61].
(And of course, when the density field is polluted, the pressure field is polluted
accordingly, as p0 D c2s�

0.) It is also desirable that the boundary conditions allow
other wavelike phenomena, such as vorticity waves and entropy waves [13] to exit
the system smoothly [45].

This is not an LB-specific problem, but a general problem for compressible flow
solvers. To solve it, a variety of different BC approaches that reflect much less sound
have been proposed [62]. Some work has been done on adapting such non-reflecting
BCs (or NRBCs) to lattice Boltzmann simulations [6, 45, 47, 63–65], but at this
point there has been little work done on comparing different approaches against
each other [9].

There are two main approaches to NRBCs. The first is characteristic
boundary conditions (CBCs), where the fluid equations are decomposed in
boundary nodes in a way that allows supressing waves being reflected back
from the boundary. The second approach is absorbing layers, where the
simulated domain is bounded by a layer several nodes thick. In an absorbing
layer, the LBM is modified in such a way that incoming waves are absorbed
as they pass through the layer without being reflected back.

Absorbing layers are generally more demanding than CBCs, as they add more
nodes to the system that need to be computed similarly to the existing ones.
However, better results may be achieved by absorbing layers [9].

12.4.1 Reflecting Boundary Conditions

To understand the point of NRBCs, we must first comprehend how sound waves are
reflected by simpler boundary conditions. These BCs typically impose a constant
value for the fluid pressure or the fluid velocity. In this section we will look at
what happens when an incoming sound wave, which represents a fluctuation around
this constant pressure or velocity, meets such a BC. For simplicity, we will restrict
ourselves to the basic one-dimensional case of a plane sound wave hitting the

520 12 Sound Waves

boundary at normal incidence. The reflection of non-plane waves is a more difficult
topic which we will not go into here.

First, however, we must know how the pressure and the velocity in a sound
wave are coupled. From Exercise 12.1 we already know that the pressure of a one-
dimensional wave propagating in the˙x direction can be represented as p0.cst x/.
From Euler’s momentum equation, the relation to the fluid velocity u0.cst x/ can
be determined:

Exercise 12.9 From the linearised one-dimensional Euler’s equation �0@tu0 D
�@xp, show that the pressure and velocity are coupled as

p0.cst x/ D ˙�0csu
0.cst x/: (12.47)

Hint: Use the chain rule with the argument cst x.

In the following examples, we will consider boundary conditions imposed at
x D 0, with a known incoming sound wave p0

i.cst � x/ and an unknown reflected
sound wave p0

r.cstC x/, the physical domain being x � 0.
Let us first consider a pressure boundary condition, which imposes p D p0 at

x D 0. Imposing this constant pressure means imposing a zero pressure fluctuation,
p0 D 0, at x D 0, so that

p0.0; t/ D p0
i.cst � 0/C p0

r.cstC 0/ D 0: (12.48a)

The unknown reflected wave pr must therefore be the inverse of the incoming
wave, i.e.

p0
r.cstC x/ D �p0

i.cst � x/: (12.48b)

Second, let us consider a velocity boundary condition, which imposes u D u0,
i.e. u0 D 0, at x D 0. The incoming and reflected fluid velocities are linked as

u0.0; t/ D u0
i.cst � 0/C u0

r.cstC 0/ D 0; (12.49a)

and from (12.47) this links the incoming and reflected pressures as

p0
r.cstC x/ D p0

i.cst � x/: (12.49b)

Both for a pressure and a velocity BC, the incoming wave is transformed
into an identically shaped reflected wave of the same amplitude. For the
pressure BC, the reflected wave has the opposite sign, while it has the same
sign for the velocity BC. These two cases are shown in Fig. 12.4, which also

(continued)

12.4 Non-reflecting Boundary Conditions 521

Fig. 12.4 For two different BCs, the incoming pressure pulse p0

i.cst� x/ (dashed) hits a boundary
at x D 0 and a reflected pulse p0

r.cstC x/ (dotted) is sent back. The total pressure p0

i C p0

r (solid) in
the physical domain (x
 0) is also shown. (The non-physical “mirror” domain (x > 0) is indicated
by a darker colour)

shows the non-physical “mirror” domain x > 0 from which the reflected
waves come.

Consequently, any LB BCs that enforce constant pressure or constant
velocity along a boundary will reflect sound waves back into the system,
regardless of the specific implementation of these BCs.

In a more realistic case, such as a sound wave hitting a building wall, there
will not just be an incoming and a reflected sound wave: as most people will
have noticed, sound can also be transmitted into the wall, and transmitted again
from the wall to the air on the other side. Considering only normal incidence, the
efficiency of this transmission between two media depends on their characteristic
impedance Z D �0cs D ˙p0=u0 [10]. If the impedances of both media are equal,
the transmission is perfect, meaning that the incoming and transmitted waves are
equal and that nothing is reflected at the boundary. The same reflections as for the
pressure and velocity BCs are recovered if the impedance of the second medium is
Z D 0 and Z !1, respectively.17

17Such transmission between two media of different impedances has also been simulated cor-
rectly using the LBM, including weak interfacial effects not predicted by the hydrodynamic
equations [66].

522 12 Sound Waves

12.4.2 Characteristic Boundary Conditions

A characteristic BC (CBC) is a type of NRBC where the macroscopic variables
on the boundary nodes are determined in such a way that no waves are reflected.
This is done by separating the macroscopic flow equations on the boundary into
various components or characteristics, typically representing outgoing waves, pure
advection, and incoming waves. Setting the amplitude of the incoming wave
component to zero determines the macroscopic variables at the boundary in the next
time step. These must then be implemented through another boundary condition.

Classic CBC approaches [67, 68] have in recent years been adapted to the LB
method [47, 63]. In the following, we will follow the simplest exposition [47].

We first assume that the conservation equations at the boundary are nearly
Eulerian, i.e. we neglect the effect of viscosity. For the force-free two-dimensional
case, the Euler conservation equations can be expressed in vector and matrix form as

@tmC X@xmC Y@ym D 0; (12.50a)

using the fluid variable vector m D .�; ux; uy/T and the matrices

X D

2

6
4

ux � 0

c2s=� ux 0
0 0 ux

3

7
5 ; Y D

2

6
4

uy 0 �

0 uy 0
c2s=� 0 uy

3

7
5 : (12.50b)

As this system of equations is hyperbolic, these matrices are diagonalisable
as X D P�1

x �xPx and Y D P�1
y �yPy, where �x and �y are diagonal matrices

containing the eigenvalues of X and Y,

�x D diag.�x;1; �x;2; �x;3/ D diag.ux � cs; ux; ux C cs/;

�y D diag.�y;1; �y;2; �y;3/ D diag.uy � cs; uy; uy C cs/:
(12.51a)

The diagonalisation matrices are given by

Px D

2

6
4

c2s �cs� 0

0 0 1

c2s cs� 0

3

7
5 ; P�1

x D

2

6
6
4

1
2c2s

0 1
2c2s

� 1
2�cs

0 1
2�cs

0 1 0

3

7
7
5 ;

Py D

2

6
4

c2s 0 �cs�

0 1 0

c2s 0 cs�

3

7
5 ; P�1

y D

2

6
6
4

1
2c2s

0 1
2c2s

0 1 0

� 1
2�cs

0 1
2�cs

3

7
7
5 :

(12.51b)

12.4 Non-reflecting Boundary Conditions 523

The physical meaning of this diagonalisation can be seen in a y-invariant case
where @ym D 0. Left-multiplying (12.50a) with Px results in

Px@tmC�xPx@xm D 0: (12.52)

A subsequent definition dn D Pxdm leads to the three equations

@tni C �x;i@xni D 0: (12.53)

These equations are mathematically identical to the advection equation, describing
propagation of the quantities ni, the propagation speeds being given by the eigen-
values �x;i. From (12.51), these propagation speeds in turn describe the combined
effect of advection and sound propagation in the �x direction, pure advection,
and advection and sound propagation in the Cx direction. The quantities ni can
consequently be interpreted as amplitudes of the corresponding components of the
flow field.

Why this decomposition into characteristics is relevant for non-reflecting
BCs can now be seen. If we can enforce ni D 0 at the boundary for the
characteristics that represent sound entering the system, we can in principle
ensure that sound waves smoothly exit the system without reflection. Let us
now look at how to implement this.

The x-derivative term in (12.50a) can be expressed as

X@xm D P�1
x �xPx@xm D P�1

x Lx; (12.54)

defining a characteristic vector as Lx;i D �x;i
P

j Px;ij@xmj. Each component Lx;i

is proportional to the amplitude of one of the three characteristics. Explicitly, the
components of Lx are

Lx;1 D .ux � cs/
h
c2s@x� � cs�@xux

i
;

Lx;2 D .ux/
�
@xuy

	
;

Lx;3 D .ux C cs/
h
c2s@x�C cs�@xux

i
:

(12.55)

At x-boundaries we want to enforce a modified characteristic vector with
elements

L0
x;i D

(
Lx;i for outgoing characteristics,
0 for incoming characteristics.

(12.56)

524 12 Sound Waves

Outgoing characteristics are those where the eigenvalue �x;i corresponds to prop-
agation out of the system (e.g. �x;3 D ux C cs at the rightmost boundary). For
incoming characteristics, the eigenvalue corresponds to propagation into the system
(i.e. �x;1 D ux � cs at the same boundary). In this way, we ensure that the outgoing
characteristics are undisturbed while the incoming characteristics carry nothing
back into the system.

A similar characteristic vector can be defined for the y-derivatives as Ly;i D
�y;i

P
j Py;ij@ymj. The only difference to Lx;i given in (12.55) is that all the x and y

indices are switched. We similarly want to enforce a modified characteristic vector
L0

y at the y boundaries.
There are several different approaches to evolving the fluid variables at the x-

boundary that enforce Lx. They can be generalised using a modified version of
(12.50a) as

x-boundary: @tm D �P�1
x L0

x � �Y@ym: (12.57a)

Here, � D 1 corresponds to the original approach of Thompson [67], while the LB
CBC of Izquierdo and Fueyo used an one-dimensional approach with � D 0 that
does not include any y-contribution [63]. Heubes et al. found the choice of � D 3=4
to be superior [47]. In the same generalised approach, y-boundaries and the x- and
y-boundary conditions at corners may be treated as

y-boundary: @tm D ��X@xm � P�1
y L0

y; (12.57b)

corner: @tm D �P�1
x L0

x � P�1
y L0

y: (12.57c)

To determine the time derivatives @tm, the characteristic vectors must be
estimated according to (12.56) and (12.55). This requires estimating the spatial
derivatives. For derivatives across a boundary (e.g. x-derivatives at an x-boundary),
this can be done through the one-sided second-order finite difference approxima-
tions

.@xmi/.x/ � 3mi.x/˙ 4mi.x˙�x/ mi.x˙ 2�x/

2�x
; (12.58a)

where the upper and lower signs correspond to forward and backward difference
approximations, respectively. For derivatives along a boundary (i.e. y-derivatives at
an x-boundary), the second-order central difference approximation

.@xmi/.x/ � mi.xC�x/� mi.x ��x/

2�x
; (12.58b)

is appropriate.
With the spatial derivatives in place, we have a known approximation of the

macroscopic variables’ time derivative @tm on every edge of the system. To
determine these macroscopic variables for the next time step, a simple approach

12.4 Non-reflecting Boundary Conditions 525

is a forward Euler one where

mi.x; t C�t/ � mi.x; t/C�t@tmi.x; t/: (12.59)

In one benchmark, this simple first-order approach performed near-identically to
a higher-order Runge-Kutta approach [47], which suggests that the error of this
approximation is typically dominated by other sources of error in the CBC method.

With a known approximation of each macroscopic variable mi on the non-
reflecting boundary at the next time step, these macroscopic variables may be
implemented through any boundary condition that allows specifying �, ux, and uy.
The simplest choice, which has also been made in the literature [9, 47], is to simply
replace the distribution function fi at the boundary with an equilibrium distribution
f eq
i determined by the macroscopic variables �, ux, and uy, like in the equilibrium

scheme discussed in Sect. 5.3.4.
When implementing this boundary condition in code, no collisions are required

in the CBC boundary nodes. After the macroscopic variables have been determined,
but before streaming, the fis in the CBC boundary nodes are replaced using
predetermined macroscopic variables mi.t/, and the macroscopic variables mi.t C
�t/ for the next time step are determined.

As an example of how CBCs are significantly less reflective than velocity
boundaries, CBC boundaries as described above are compared against no-slip
bounce-back in Fig. 12.5. In the simulation, a pulse was initialised as a Gaussian-
distributed density �0.x; t D 0/ D 10�4e�.x�x0/2=10, x0 being the centre of the
system. The simulation was run using the BGK collision operator with =�t D
0:51, and the CBC used � D 0:75. Note however that the CBCs are not perfect;
weak reflections can be seen from these boundaries.

Fig. 12.5 Reflection of a sound pulse from bounce-back boundaries (bottom and left) and
characteristic BC boundaries (top and right)

526 12 Sound Waves

12.4.3 Absorbing Layers

A characteristic boundary condition (CBC), as described in Sect. 12.4.2, is a type of
a non-reflecting BC (NRBC) that only affects the nodes adjacent to a boundary. A
different approach is taken by absorbing layer-type NRBCs, where the simulation
domain is bounded by a layer of many nodes of thickness. In this layer, the LBM
is modified in a way that attenuates sound waves as they pass through the layer,
with as much attenuation and as little reflection as possible. The performance of an
absorbing layer typically increases with its thickness.

At the outer edge of the layer, another BC must be chosen to close the system.
Ideally this should be a CBC or similar in order to reduce the reflection at the edge
of the system (in addition to the wave absorption in the layer) [62]. In this case,
waves are not only attenuated as they pass through the layer, but only a small part of
the wave that hits the edge of the system is reflected back in, and that part is further
attenuated as it passes back through the layer into the simulation domain.

We will not treat absorbing layers in any depth here, as the worthwhile methods
are somewhat complex and do not offer as much additional physical insight as
CBCs.

The simplest absorbing layer is the viscous sponge layer, where the simulated
system is bounded by a layer with a higher viscosity than the simulation domain [46,
69]. This viscosity is typically smoothly increasing from the viscosity of the interior
domain to a very high viscosity near the edge of the system. Viscous sponge layers
are very simple to implement; the value of must be made a local function of space
inside the layer, but otherwise the LBM proceeds as normal. On the other hand,
viscous sponge layers are not as effective at being non-reflective as other types of
NRBCs [9]; sound waves may be reflected as they pass through the layer itself [62].

A more complex but more effective absorbing layer is the perfectly matched layer
(PML), which is designed not only to damp waves passing through it, but also to
be non-reflecting for these waves; the governing equations of a PML are perfectly
matched to the equations of the interior in such a way that sound is not reflected.

PMLs are implemented by adding terms to the governing equations. These terms
are determined using the deviation of the field from some nominal state [62], such
as an equilibrium rest state defined by �0 and u0. The amplitude of these additional
attenuating terms is increased smoothly into the layer.

LBM adaptations of PMLs [64, 65] and similar absorbing layers [45] can be
found in the literature. A comparison of one LB PML implementation with a viscous
sponge layer and a CBC as described in Sect. 12.4.2 found that PMLs perform
the best and sponge layers the worst, using a layer thickness of 30 nodes in the
comparison [9].

12.5 Summary 527

12.5 Summary

Fluid models represented by a set of conservation equations, such as the Euler model
or Navier-Stokes model, support sound waves if they fulfill certain criteria: they
must have a mass conservation equation of the form @�=@tCr � .�u/, a momentum
equation with a pressure gradient, and an equation of state relating the changes in
pressure and density. If those criteria are fulfilled, a wave equation can be derived
as in Sect. 12.1.1, which indicates that the fluid model in question supports sound
waves.

The Euler and Navier-Stokes models both fulfill these criteria and therefore
support sound waves. On the other hand, the incompressible Navier-Stokes model
presented in Sect. 1.1.2 does not: its assumption of constant density modifies the
continuity equation to r � u and breaks the link between changes in pressure
and changes in density. (Interestingly, the incompressible LB model described in
Sect. 4.3.2 does fulfill the criteria and therefore supports sound waves.)

As discussed in Sect. 12.3, there are several ways that sound waves can appear in
simulations. Sound waves can be present in the initial conditions of a simulation,
either intentionally or unintentionally. Additionally, sound can be generated by
unsteady flow fields, either by their interaction with surfaces or in areas of rapid fluid
velocity variation such as turbulent areas. As these sound generation mechanisms
follow from the fluid model’s equations, they are not in any way specific to LB
simulations; sound waves can generally appear spontaneously in compressible fluid
simulations. (Artificial sound sources can also be put in LB simulations, as discussed
in Sect. 12.3.)

These sound waves are typically reflected from velocity or density boundary
conditions back into the simulated system as discussed in Sect. 12.4. This pollutes
the flow field of the solution; in particular, the density and pressure fields. In order
to ensure that the sound waves exit the system smoothly, special non-reflecting
boundary conditions must be applied such as characteristic boundary conditions,
viscous layers, or perfectly matched layers.

Sound waves in LB simulations do not propagate in quite the same way as in
theory, as discussed in Sect. 12.2. There are two reasons for this. The first is the
second-order discretisation error in space and time. The second is the fact that the
Boltzmann equation, and its discrete-velocity version that the LBM is based on,
predicts a different attenuation and dispersion in some cases. This deviation can
be quantified through the acoustic viscosity number !0vi � Kn, where !0 is the
angular frequency and vi D .4
=3C
B/=c2s is the viscous relaxation time.

Disregarding the discretisation error, the sound wave propagation of the LBM
starts to deviate significantly from that predicted by the Navier-Stokes model at
!0vi � 0:1 [28]. From !0vi � 0:2, anisotropy can also start becoming significant.

Generally, choosing =�t values as close to 1=2 as possible is important for LB
sound simulations; this was also discussed in Sect. 12.1.3. However, as shown in
Fig. 12.3, this can push the limits of the BGK collision operator and can thus require

528 12 Sound Waves

choosing another collision operator such as the TRT or MRT operators described in
Chap. 10.

As a concluding remark, sound waves are to some degree inevitable in unsteady
LB simulations, and it therefore benefits researchers who use the LBM to know
something about sound waves, regardless of whether they are interested in sound-
related applications or not.

References

1. J.M. Buick, C.A. Greated, D.M. Campbell, Europhys. Lett. 43(3), 235 (1998)
2. A. Wilde, Anwendung des Lattice-Boltzmann-Verfahrens zur Berechnung strömungsakustis-

cher Probleme. Ph.D. thesis, TU Dresden (2007)
3. S. Marié, Etude de la méthode Boltzmann sur réseau pour les simulations en aéroacoustique.

Ph.D. thesis, Institut Jean le Rond d’Alembert, Paris (2008)
4. A.R. da Silva, Numerical studies of aeroacoustic aspects of wind instruments. Ph.D. thesis,

McGill University, Montreal (2008)
5. E.M. Viggen, The lattice Boltzmann method with applications in acoustics. Master’s thesis,

Norwegian University of Science and Technology (NTNU), Trondheim (2009)
6. M. Schlaffer, Non-reflecting boundary conditions for the lattice Boltzmann method. Ph.D.

thesis, Technical University of Munich (2013)
7. E.M. Viggen, The lattice Boltzmann method: Fundamentals and acoustics. Ph.D. thesis,

Norwegian University of Science and Technology (NTNU), Trondheim (2014)
8. M. Hasert, Multi-scale lattice Boltzmann simulations on distributed octrees. Ph.D. thesis,

RWTH Aachen University (2014)
9. S.J.B. Stoll, Lattice Boltzmann simulation of acoustic fields, with special attention to non-

reflecting boundary conditions. Master’s thesis, Norwegian University of Science and
Technology (NTNU), Trondheim (2014)

10. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 4th edn.
(Wiley, New York, 2000)

11. D.T. Blackstock, Fundamentals of Physical Acoustics (Wiley, New York, 2000)
12. P.M. Morse, K.U. Ingard, Theoretical Acoustics (McGraw-Hill Book Company, New York,

1968)
13. A.D. Pierce, Acoustics (The Acoustical Society of America, New York, 1989)
14. S. Temkin, Elements of Acoustics (Wiley, New York, 1981)
15. Lord Rayleigh, The Theory of Sound, vol. 1, 1st edn. (Macmillan and Co., London, 1877)
16. Lord Rayleigh, Proc. Lond. Math. Soc. s1-9(1), 21 (1877)
17. E.M. Viggen, Phys. Rev. E 87(2) (2013)
18. C. Truesdell, J. Rat. Mech. Anal. 2(4), 643 (1953)
19. M. Greenspan, in Physical Acoustics, vol. IIA, ed. by W.P. Mason (Academic Press, New York,

1965), pp. 1–45
20. E.M. Salomons, W.J.A. Lohman, H. Zhou, PLOS ONE 11(1), e0147206 (2016)
21. N.H. Johannesen, J.P. Hodgson, Reports Prog. Phys. 42(4), 629 (1979)
22. Y. Li, X. Shan, Phil. Trans. R. Soc. A 369(1944), 2371 (2011)
23. C. Sun, F. Paot, R. Zhang, D.M. Freed, H. Chen, Commun. Comput. Phys. 13(1), 757 (2013)
24. M.S. Howe, Theory of Vortex Sound (Cambridge University Press, Cambridge, 2003)
25. M.J. Lighthill, Proc. R. Soc. Lond. A 211(1107), 564 (1952)
26. J.M. Buick, C.L. Buckley, C.A. Greated, J. Gilbert, J. Phys. A 33, 3917 (2000)
27. E.M. Viggen, Phys. Rev. E 90, 013310 (2014)
28. E.M. Viggen, Commun. Comput. Phys. 13(3), 671 (2013)
29. G.G. Stokes, Trans. Cambridge Phil. Soc. 8, 287 (1845)

References 529

30. C.S. Wang Chang, G.E. Uhlenbeck, in Studies in Statistical Mechanics, vol. V (North-Holland
Publishing, Amsterdam, 1970)

31. J. Foch, G. Uhlenbeck, Phys. Rev. Lett. 19(18), 1025 (1967)
32. J. Foch, M. Losa, Phys. Rev. Lett. 28(20), 1315 (1972)
33. J.D. Sterling, S. Chen, J. Comput. Phys. 123(1), 196 (1996)
34. P. Lallemand, L.S. Luo, Phys. Rev. E 61(6), 6546 (2000)
35. P. Dellar, Phys. Rev. E 64(3) (2001)
36. A. Wilde, Comput. Fluids 35, 986 (2006)
37. T. Reis, T.N. Phillips, Phys. Rev. E 77(2), 026702 (2008)
38. S. Marié, D. Ricot, P. Sagaut, J. Comput. Phys. 228(4), 1056 (2009)
39. E.M. Viggen, Phil. Trans. R. Soc. A 369(1944), 2246 (2011)
40. D. Haydock, J.M. Yeomans, J. of Phys. A 34, 5201 (2001)
41. J.M. Buick, J.A. Cosgrove, J. Phys. A 39(44), 13807 (2006)
42. X.M. Li, R.C.K. Leung, R.M.C. So, AIAA J. 44(1), 78 (2006)
43. X.M. Li, R.M.C. So, R.C.K. Leung, AIAA J. 44(12), 2896 (2006)
44. A.R. da Silva, G.P. Scavone, J. Phys. A 40(3), 397 (2007)
45. E.W.S. Kam, R.M.C. So, R.C.K. Leung, AIAA J. 45(7), 1703 (2007)
46. E. Vergnault, O. Malaspinas, P. Sagaut, J. Comput. Phys. 231(24), 8070 (2012)
47. D. Heubes, A. Bartel, M. Ehrhardt, J. Comput. Appl. Math. 262, 51 (2014)
48. W. de Roeck, M. Baelmans, W. Desmet, AIAA J. 46(2), 463 (2008)
49. C. Silva, F. Nicoud, S. Moreau, in 16th AIAA/CEAS Aeroacoustics Conference (2010)
50. S. Sinayoko, A. Agarwal, Z. Hu, J. Fluid Mech. 668, 335 (2011)
51. S. Sinayoko, A. Agarwal, J. Acoust. Soc. Am. 131(3), 1959 (2012)
52. N. Curle, Proc. R. Soc. A 231, 505 (1955)
53. J.E. Ffowcs Williams, D.L. Hawkings, Phil. Trans. R. Soc. A 264(1151), 321 (1969)
54. K.S. Brentner, F. Farassat, AIAA J. 36(8), 1379 (1998)
55. T. Colonius, S.K. Lele, Progress Aerospace Sci. 40(6), 345 (2004)
56. M. Wang, J.B. Freund, S.K. Lele, Annu. Rev. Fluid Mech. 38(1), 483 (2006)
57. E. Garnier, N. Adams, P. Sagaut, Large Eddy Simulation for Compressible Flows. Scientific

Computation (Springer, New York, 2009)
58. H. Yu, K. Zhao, Phys. Rev. E 61(4), 3867 (2000)
59. D.T. Blackstock, J. Acoust. Soc. Am. 41(5), 1312 (1967)
60. S. Izquierdo, P. Martínez-Lera, N. Fueyo, Comp. Math. Appl. 58(5), 914 (2009)
61. P.A. Thompson, Compressible-Fluid Dynamics (McGraw-Hill, New York, 1972)
62. T. Colonius, Annu. Rev. Fluid Mech. 36, 315 (2004)
63. S. Izquierdo, N. Fueyo, Phys. Rev. E 78(4) (2008)
64. M. Tekitek, M. Bouzidi, F. Dubois, P. Lallemand, Comp. Math. Appl. 58(5), 903 (2009)
65. A. Najafi-Yazdi, L. Mongeau, Comput. Fluids 68, 203 (2012)
66. M.M. Tekitek, M. Bouzidi, F. Dubois, P. Lallemand, Prog. Comput. Fluid Dyn. 8(1–4), 49

(2008)
67. K.W. Thompson, J. Comput. Phys. 68(1), 1 (1987)
68. T. Poinsot, S. Lele, J. Comput. Phys. 101, 104 (1992)
69. E. Vergnault, O. Malaspinas, P. Sagaut, J. Acoust. Soc. Am. 133(3), 1293 (2013)

Part IV
Numerical Implementation of the Lattice

Boltzmann Method

Chapter 13
Implementation of LB Simulations

Abstract After reading this chapter, you will understand the fundamentals of high-
performance computing and how to write efficient code for lattice Boltzmann
method simulations. You will know how to optimise sequential codes and develop
parallel codes for multi-core CPUs, computing clusters, and graphics processing
units. The code listings in this chapter allow you to quickly get started with an
efficient code and show you how to optimise your existing code.

This chapter presents a tutorial-style guide to high performance computing and the
efficient implementation of LBM algorithms. In Sect. 13.1 we discuss the selection
of appropriate programming languages and review floating point arithmetic. We
then cover essential optimisation strategies in Sect. 13.2, including the simplifi-
cation of arithmetic expressions and loop optimisations (Sect. 13.2.1), the use of
automatic optimisation features during compilation (Sect. 13.2.2), and memory
caches (Sect. 13.2.3). This section also covers how to assess the performance of
code (Sect. 13.2.4). Section 13.3 then introduces a simple implementation of a
Taylor-Green vortex decay simulation (Sect. 13.3.1), and the performance of this
code is subsequently analysed and optimised (Sect. 13.3.2). Several optimisations
related to the LBM algorithm itself are presented in Sect. 13.3.4. Next, we turn
our attention to parallel computing (Sect. 13.4). Section 13.4.1 presents the use
of OpenMP for writing code for multiple cores and CPUs that share access to a
common memory system. Section 13.4.2 describes programming for clusters of
interconnected computers with MPI. Finally, Sect. 13.4.3 presents programming for
graphics processing units. Complete code examples accompany this book.1

13.1 Introduction

When developing simulation software, researchers have a broad range of options for
the tools they can use to program and the hardware that carries out the computations.
Often the choice of hardware and software is pragmatic: the most readily available

1https://github.com/lbm-principles-practice

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3_13

533

https://github.com/lbm-principles-practice

534 13 Implementation of LB Simulations

laptop or desktop hardware and whichever programming language the researcher
knows best. For many problems, this simple choice is adequate, but when simulation
times reach several hours to perhaps months, researchers will undoubtedly consider
whether they could write a code that finishes faster and what would be the most
efficient way to develop such a code. The purpose of this chapter is to provide
an introductory to intermediate level guide to implementing LBM simulations on
modern high performance computing platforms, with a special emphasis on parallel
programming. It is intended to be accessible to readers without significant prior
training in scientific computing, and therefore introduces readers to many aspects of
development tools and system architectures.

This chapter is not intended to show readers how to develop a code with
the shortest possible execution time. Many optimisations that are possible for a
particular problem are not relevant to other problems, and it is unlikely that many
readers will benefit from a highly tuned code for the specific problem we use as
an example throughout this chapter. Similarly, many optimisation decisions that
are needed to eke out the last possible improvements depend on the details of the
processors and memory that run the software, and it is difficult to adequately handle
the wide range of platforms that readers may be using. Finally, it is often impractical
to dedicate significant time to optimising software for a small improvement in
performance.

A 4% improvement to the speed of a simulation that already takes one
day to finish reduces the execution time by only one hour. In contrast,
a programming mistake that causes 2–10 times worse performance can
make an otherwise feasible project appear impractical. We therefore focus
on issues that have the potential to make such a significant impact on
performance, and explain why certain subtle differences in code can cause
major differences in the time a program takes to finish.

In this chapter, we use a model problem, the decay of a Taylor-Green vortex, to
demonstrate the key ideas that are important for writing codes that run efficiently
on a single core of a contemporary conventional central processing unit (CPU),
multiple CPU cores on one computer, clusters of many interconnected computers,
and graphics processing units (GPUs). Named for their initial use in accelerating
algorithms for generating computer graphics, GPUs were later extended to facilitate
more general computational tasks, and they were quickly adopted in the LBM
community due to their numerous computational cores and fast memories.

13.1 Introduction 535

13.1.1 Programming Languages and Development Tools

Programming languages are often classified as either interpreted or compiled based
on the way that the operations described in source code are eventually carried out
by a processor. To run code written in an interpreted language, a program called
the interpreter reads the source code file and carries out the operations it describes.
In contrast, the source code for a program written in a compiled language is first
“translated” (i.e. compiled using a program called a compiler) to produce a binary
executable file that contains the sequence of elementary operations (instructions)
that a processor will later execute when the program is started within an operating
system. In principle, the fastest programs can be written by avoiding compilation
and directly specifying the sequence of instructions that the processor will carry
out, but few projects justify the time and effort required by this approach.

For many tasks, interpreted languages provide convenient features that outweigh
their performance drawbacks and allow programmers to write programs faster.
Such features include automatic memory management, conversion between data
types, easy manipulation of complex data structures, and flexibility with function
definitions. These conveniences increase memory use and reduce the speed of
execution because the exact operation that a statement describes, or even whether
the statement is meaningful, is not known until all the statements preceding it have
been completed. For example, in a hypothetical interpreted language the statement
b = a+2 could involve integer addition (if it follows a = 1), floating point
addition (after a = 3.14), addition of a constant to each element of an array
(after a = [1,2,3]), text concatenation (after a = "Price: $"), or produce
an error (if the variable a has not been defined).

Where needed, performance-sensitive portions of programs can be written in a
compiled language and compiled to generate a library file that is then used within
an interpreted language. The developers of interpreted languages strive to provide
the conveniences of interpreted languages with minimal impact on performance,
making these languages competitive for many computational tasks. As a result, the
line between the two classes of programming languages is blurred because it is based
on how a language is implemented rather than the characteristics of the language
itself (its syntax and semantics). One could write a compiler for what is usually
considered an interpreted language, and this is how some interpreters are designed.

Since they reduce programming effort and development time, interpreted lan-
guages are preferable for computational tasks that do not take a significant amount
of time to complete. For example, a program that finishes in less than a few minutes,
perhaps a comparison of boundary condition implementations in a small domain,
could be conveniently programmed with an interpreted language. Interpreted lan-
guages, such as Python and MATLAB (or the GNU alternative Octave), are also
often used to post-process the results of simulations. In fact, these languages were
used to generate many of the figures in this book. In the code samples accompanying
this book, we have included codes in Python and MATLAB for the same problem
that the code in this chapter solves.

536 13 Implementation of LB Simulations

This chapter does not examine performance optimisation for interpreted
languages, but we offer here one key guideline for writing efficient com-
putational code for interpreted languages: avoid explicit loops where
possible. Instead, programmers should use efficient built-in features for
matrix multiplication and vector/array manipulation rather than writing loops
to perform these tasks.

For example, in MATLAB, one should write

c = a+b;

to add the components of two arrays together rather than

for n = 1:length(a)
c(n) = a(n) + b(n);

end

Similarly, functions that operate directly on arrays should be used instead of one
function call for each element of the array. Clever array indexing can also be used
to avoid a loop. To compute a central finite difference first derivative in MATLAB,
the single statement

diffy = 0.5/dx*(y(3:end)-y(1:end-2));

runs faster than

for n = 2:length(y)-1
diffy(n-1) = 0.5/dx*(y(n+1)-y(n-1));

end

Exercise 13.1 Which of the codes for a central difference uses more memory?
Why?

The guidelines we describe later in this chapter for compiled code also apply to
interpreted code, specifically those regarding memory use, but the ability to control
the organisation of memory is rarely available in these languages.

Exercise 13.2 Run the provided sample Python or MATLAB code for a Taylor-
Green vortex decay computation or code written in an interpreted language of your
choice. How does the speed compare with the performance results given later in this
chapter for the compiled code?

The differences in performance of compiled programs written in different lan-
guages are more subtle and sometimes controversial. Two languages, C and Fortran,
remain common in high performance computing, and the choice of the language for

13.1 Introduction 537

a project depends on the project’s history and programmers’ knowledge. Reasons
for variations in performance in specific tests include programmers’ familiarity
with the languages’ features, the languages’ default rules for organising variables in
memory, the quality of the compiler (for the particular processor architecture used
to run the program), and the configuration options specified during compilation. In
general, well-written codes in compiled languages will outperform interpreted codes
significantly, likely by factors from two to two orders of magnitude.

The code in this chapter is written in C++, but it could be easily converted
to a purely C code because it uses only a few features of C++ for convenience.
The optimisation strategies discussed in this chapter, in particular those concerning
memory access, can be applied to other compiled languages. We present these
optimisation methods and cover some of the differences between C and Fortran
in Sect. 13.2.

In this chapter, we focus on the software development tools and hardware
architectures that are commonly encountered in contemporary academic high
performance computing (HPC) systems. We use the open source GNU compiler
collection (GCC), which includes compilers for C, C++, and Fortran. For parallel
programming, we use OpenMP and MPI, of which open source implementations
are available. We run the codes on processors with 64 bit x86 architecture, which
are readily available from Intel and AMD and are found in most current laptops,
desktops, and servers. For GPU programming, we use the devices and proprietary
development tools from NVIDIA. Computing clusters are usually shared by many
researchers, may be located far from the researchers’ work places, and are therefore
used by remote access over the Internet. The operating systems on these clusters are
often Unix or Unix-like, such as Linux, and we make use of some utilities available
on these systems in the code examples. These utilities are also available in a terminal
in Mac OS X (which is a Unix system) and can be installed on Windows.

All the code in this chapter is presented as plain text that can be written and edited
with any text editor, and we show the commands that would be typed to compile
and run the code. Naturally, readers may work with their preferred editors and
integrated development environments (IDEs). In these environments, the options
for the compilers can be specified in various configuration windows.

To assist readers who are unfamiliar with programming in C or C++,
Appendix A.9 reviews the main features of these languages that are used in the
code presented in this chapter and accompanying the book. We do not make use
of the object-oriented programming features of C++ and do not aim to provide an
object-oriented framework for LBM simulations. We focus on writing a simple and
efficient code that readers could adapt to their own problems or incorporate into a
framework.

To avoid ambiguity, especially in memory bandwidth calculations, we express
large memory quantities with units based on powers of two. While in some contexts
a kilobyte might refer to 1000 or 1024 D 210 bytes, a kibibyte denotes the
“binary” version of a kilobyte and is abbreviated as KiB, i.e. 1 KiBD 210 bytes D
1024 bytes. Similarly, we use mebibyte (MiB) and gibibyte (GiB) instead of

538 13 Implementation of LB Simulations

megabyte and gigabyte, with 1 MiB D 220 bytes � 1:05 � 106 bytes and 1 GiB D
230 bytes � 1:07 � 109 bytes.

13.1.2 Floating Point Arithmetic

Modern computing hardware efficiently performs computations with rational
approximations of real numbers called floating point numbers. Such numbers
can be written as s � v � 2p, where s D ˙1 is the sign, v is a non-negative integer,
and p is an integer, with both v and p being bounded (represented with a finite
number of binary digits, i.e. bits). We omit here the details of how these numbers
are represented in binary, though this usually follows the IEEE 754 standard [1].
In this chapter, we use exclusively double precision floating point values in which
a total of 64 bits (8 bytes) are used to store one such value. IEEE 754 double
precision numbers have 53 bits of precision, and the exponent p can range from -
1022 to 1023, which provides about 16 decimal digits of precision for numbers from
10�308 to 10308. In some situations, single precision values (32 bits) are sufficient
and appealing because they occupy half the memory and processors can perform
computations with them faster.

Floating point numbers and arithmetic operations with them have several key
properties with important consequences. Clearly, neither irrational numbers nor
rational numbers with prime factors other than two in their denominator can be
represented exactly. Therefore, an exact representation of 1=2 is possible, but 1=3
must be approximated as 1

4
C 1

16
C 1

64
C 1

256
C 1

1024
C : : :, truncated to the available

precision. The results of arithmetic operations are generally inexact and can be
interpreted as being the outcome of rounding the exact result to the closest available
floating point number.

The accuracy of arithmetic operations and the representation of real numbers
is characterised by a number called the machine epsilon. For double preci-
sion, it is 2�52 � 2:22 � 10�16, and this is the smallest number that can be
added to 1 to yield a value that differs from 1.

Operations with floating point numbers are in general not associative or distribu-
tive due to the rounding of intermediate results. Due to these rounding errors, the
results of computations should not be tested for exact equality (using the equality
operator ==) with an exact expected value or a value computed in a different way.
Instead, the difference between two floating point values should be compared with
a threshold that is reasonable for that situation, i.e. by using abs(a-b) < tol
instead of a==b.

13.2 Optimisation 539

Exercise 13.3 Compute 1�Pn
iD1 1n for several values of n. For which values of n is

the result exactly 0? Why? How much do the results differ from 0 and how does the
error increase with n? Compare results for double and single precision calculations.

Another caveat regarding programming with floating point numbers concerns
the use of numerical constants in code. In C and C++, numbers written in code are
interpreted as integers if they have no decimal part and as double precision values if
one is present. For example, double d = 3/2; is interpreted as assignment of
the result of integer division of the integers 3 and 2 to a double. The result is a value
of 1 in d. To obtain 1.5 in d, one must write 3.0/2.0, 3/2.0, or 3.0/2 because
the presence of at least one floating point quantity in the division triggers the use
of floating point division (and automatic conversion of the integer to a double).
Readers should therefore familiarise themselves with the rules for conversion
between different numerical data types from a standard language reference.

13.1.3 Taylor-Green Vortex Decay

All the codes in this chapter solve the same problem, the decay of a Taylor-
Green vortex. This choice allows us to compare the performance of the codes and
better understand how the code needs to be changed to run efficiently on single
cores (Sect. 13.3), multiple cores (Sect. 13.4.1), clusters (Sect. 13.4.2), and GPUs
(Sect. 13.4.3). The details of this flow problem are provided in Appendix A.3. It
involves the decay over time of a particular initial velocity and pressure distribution,
shown in Fig. A.1, in a fully periodic two-dimensional domain. We use a D2Q9
velocity set (Sect. 3.4.7) and the BGK collision operator (Sect. 3.5.3).

Since an analytical solution is available, we can compare it with the numerical
solutions, and we will use the parallel codes to perform a convergence study with
domain sizes from 32 � 32 to 4096 � 4096 lattice nodes. The results are presented
in Sect. 13.5, and they show second-order convergence. In this chapter, we focus on
the programming aspects of simulating large domains efficiently, and readers may
find further information about the convergence of LBM simulations in Sect. 4.5.

13.2 Optimisation

When writing code for numerical methods, it is generally sufficient for us to work
with a highly simplified conceptual model of how a computer carries out the
sequence of operations we specify. We might imagine that a program is stored
within the memory of the computer as a sequence of instructions. Other regions of
memory store the data that the program manipulates. This memory, which contains
the instructions and data, is a large ordered list of numbers, and instructions can
refer to these numbers by their index (or address). Each instruction takes a particular

540 13 Implementation of LB Simulations

amount of time, during which the computer’s processor may need to load numbers
from addresses in memory specified within the instruction and save the result to
another address. When all the tasks required by an instruction are completed, the
processor moves on to the next instruction, and the process repeats indefinitely. A
clock signal, which switches its state several billion times a second, synchronises
the operation of a processor. The tasks that a processor carries out include arithmetic
operations, movement of data between locations in memory, and selection of which
instruction will be performed next by moving forward or backward in the instruction
sequence based on the result of a previous operation.

To ensure we accomplish a computational task in as little time as possible, we
have two main options within this simple model of computing. The first option
is to devise a better algorithm, one that achieves the same result in fewer
steps. The second is to perform optimisation at the level of the instructions by
finding ways to use one or more faster instructions in the place of one that
takes more time to finish.

Though in many cases the simple model is adequate to guide the minimi-
sation of execution time, the details of computer architecture are much more
complex and can have a significant impact on performance. Many scientific
computing applications, such as CFD, involve the processing of large data
sets. For such applications, the details of how memory is used are critical.

Modern processors have a hierarchy of memory types ranging from small and
fast memories located on the same chip as the processor to large but slow memories
residing on other chips or devices. Circuits on the processor chips, such as registers
and caches, provide small amounts of memory with minimal access delays. Off-
chip hardware devices, such as random access memory (RAM) and hard drives, have
much larger capacities but access is significantly slower. For example, an instruction
that operates on data held in registers can be completed within several clock cycles,
while access to RAM can incur a delay of several hundred clock cycles.

Algorithms need to be implemented in ways that maximise the use of fast
memory. One common strategy is to load a portion of memory from a slow location
to a faster one, process this segment of data, and then move on to the next portion.
Caches, the topic of Sect. 13.2.3, automatically assist in improving memory access
by loading data before it is likely to be used. Care must be taken, however, to
implement algorithms in ways that take advantage of such features rather than
interfering with them and reducing performance.

Internally, processors employ a variety of optimisations to speed up the execution
of instruction sequences. For example, when one instruction does not depend on
the outcome of an instruction that precedes it, this instruction might be executed
without waiting for the previous one to finish. This optimisation is possible when
the instructions use different computational circuits, such as those for integer and

13.2 Optimisation 541

floating point arithmetic or different types of arithmetic such as multiplication and
division. Due to such optimisations and the details of memory architecture, the time
needed to execute an instruction depends not only on the instruction being executed,
but also on the nature of the instructions that preceded it and the memory locations
they accessed.

Most modern computers, from mobile phones to supercomputers, have multiple
processors. When these processors are combined on one chip or consist of several
connected chips in one package, they are called cores and share some resources,
such as memory access channels and caches. Many contemporary workstations and
servers have several multi-core processors, and systems with 20 or more cores in
total are readily available. In this section, we consider only optimisation of the
tasks that occur on one core. Parallel programming that takes advantage of multiple
cores and processors operating simultaneously is discussed in Sect. 13.4.1 and
Sect. 13.4.2.

The optimisation of computer codes is a highly complex topic due to the wide
range of techniques that can be employed and cases that need to be considered.
The sections that follow provide an introduction and overview of the main topics,
starting with the basic methods for simplifying algorithms and the evaluation of
mathematical expressions in Sect. 13.2.1. This is followed in Sect. 13.2.2 by a
discussion of the automatic optimisation features of modern compilers that analyse
code and transform it to generate better sequences of machine instructions. The
behaviour and use of memory caches is then presented in Sect. 13.2.3.

13.2.1 Basic Optimisation

In this section, we review some of the most common strategies used to implement
algorithms in ways that efficiently utilise computational resources and minimise
execution time. Since code can be adjusted in numerous ways while attempting
to optimise it, programmers should carefully consider how they spend their time
optimising a program. Completely eliminating a sequence of operations that
accounts for 1% of total execution time is clearly less useful than a 10% reduction in
the execution time of a task that takes 50% of the total time. It is therefore beneficial
to first understand what tasks in an algorithm contribute the most to its execution
time. Software such as gprof is available to assist in this type of assessment, called
profiling, of a program.

The first, and perhaps simplest, optimisation strategy is to avoid unnec-
essary repetition of sequences of computations by storing their results
in memory the first time they are computed. This simplification is quite
intuitive and involves replacing, for example, v1 = f1(x,g(x));

(continued)

542 13 Implementation of LB Simulations

v2 = f2(x,g(x)); with gx = g(x); v1 = f1(x,gx); v2 =
f2(x,gx);. The expression or function g(x) must always yield the same
result for identical values of x and therefore cannot involve variables that are
modified during previous calls to the function or depend on external events or
variables (such as the system time). The identification of suitable expressions
and their replacement with a new variable is called common subexpression
elimination.

When evaluation of g(x) is time-consuming and the variable g can be stored in
memory that is quick to access, the benefit of this simplification is clear. However,
when the common subexpression is trivial, such as perhapsm+n for integersm and n,
and the availability of fast memory for temporary variables is scarce, programmers
must compare the time required to recompute the expression each time it is needed
or load a pre-computed value from memory. When the decision is not obvious but
has the potential to make a noticeable improvement, one may proceed empirically
and compare execution times with and without the potential optimisation; otherwise
programmers should focus on optimising other parts of the code. In addition to
improving execution time, the elimination of common subexpressions can also make
code easier to understand and maintain because changes to the subexpression need
to be made in only one place.

A second common type of optimisation is to exploit the mathematical
properties of expressions to evaluate them more efficiently. The possibility
of such optimisations depends on the details of the expressions involved, and
identifying simplifications may require specific insights into the nature of the
expressions.

We consider here the evaluation of polynomials as an example that is often
encountered in scientific computing. Evaluating the polynomial p.x/ D Pn

iD0 qixi
in the form it has been written here requires n addition operations and n.nC 1/=2
multiplication operations if each power of x is evaluated separately by repeated mul-
tiplication. Recognising that xi D x � xi�1 decreases the number of multiplications
required to 2n � 1, but this is still not the optimal approach. Instead, one should
rewrite the polynomial as p.x/ D q0 C x.q1 C x.q2 C x.: : :///. Evaluation of a
polynomial in this way is called Horner’s method, and it requires n additions and
n multiplications. On architectures that provide a combined (fused) multiplication
and addition operation, n such operations are required.

Even though the mathematical identities used to transform expressions are exact
when the numbers involved are real, transformed expressions will in general yield
slightly different results when floating point arithmetic is used due to rounding

13.2 Optimisation 543

errors. Optimisation of numerical methods must therefore be performed with
caution and awareness of the effects of runtime optimisations on the accuracy of
results.

Other optimisations deal with how features of higher-level programming lan-
guages are implemented as low-level machine instructions. Functions (or subrou-
tines) are available in many languages and they allow sections of code to be
separated to avoid repetition, enhance readability, and facilitate implementation of
recursive algorithms. Depending on the language and compiler, several tasks need to
be performed when a function starts and finishes. For example, memory may need
to be allocated for use by the variables in the function and freed for subsequent reuse
when the function completes its task.

When the task performed by a function takes sufficiently little time that the time
needed to set up and complete the function call is significant, it is useful to avoid
this overhead, especially when the function is used frequently. In C and C++, the
function qualifier inline indicates to the compiler that a function should not be
implemented as a regular function, but instead any calls to this function should
be replaced with the definition of the function. Thus, an inline function assists in
organising code without hindering performance.

In many algorithms, computational tasks are repeated for every element of
a data set, and this is often implemented with a for loop. We consider here
three common optimisations of for loops: loop unrolling, loop peeling, and
loop combining.

When the inner block of a for loop finishes quickly, the overhead of incre-
menting a counter and checking if it has exceeded a bound constitutes a noticeable
portion of the execution time of the loop. Loop unrolling involves replacing the
iterations of a for loop with explicit repetition of the inner block. For example,

for(int i = 0; i < N; ++i)
short_task(i);

would be replaced with

short_task(0);
short_task(1);
short_task(2);
// ...
short_task(N-1);

When N is large, the binary file produced by compilation becomes unreasonably
large due to repetition of the required instructions. However, a loop does not need

544 13 Implementation of LB Simulations

to be unrolled completely to improve performance. One may repeat the inner block
several times to reduce the overhead of the loop, for example as follows:

for(int i = 0; i < N; i = i+3)
{

short_task(i);
short_task(i+1);
short_task(i+2);

}

Though one would typically pick a number of repetitions that divides N evenly, in
some cases the number of explicit repetitions is set by other considerations. When
N is not divisible by the number of repetitions, the additional iterations that are
necessary can be executed after the for loop. One should not add if statements
within the loop to check if each repetition inside the for loop should be performed!

The second optimisation of for loops, loop peeling, deals with the handling of
special cases in loops. In general, the use of if statements inside a for loop should
be evaluated carefully to ensure that checking the conditional expression frequently
does not reduce performance unnecessarily. For example, the inner block of this
for loop is clearly inefficient, especially when check_special is expensive to
evaluate and is rarely true:

for(int i = 0; i < N; ++i)
{

if(check_special(i))
handle_special(i);

else
short_task(i);

}

When it is easy to determine which i are special, we can avoid expensive
calls to check_special() by writing if(i == special) instead of
if(check_special(i)). However, it would be even better to write

for(int i = 0; i < special; ++i)
short_task(i);

handle_special(special);

for(int i = special+1; i < N; ++i)
short_task(i);

assuming that only one particular index needs to be treated differently. When the
special cases occur at the beginning or end of a for loop, the relevant iterations
can be “peeled” off of the main loop. For example, a loop that estimates the first
derivative of uniformly spaced data with spacing h might be written as

diff[0] = (data[1]-data[0])/h;
for(int i = 1; i < N-1; ++i)

13.2 Optimisation 545

diff[i] = (data[i+1]-data[i-1])/(2.0*h);
diff[N-1] = (data[N-1]-data[N-2])/h;

instead of the less efficient alternative

for(int i = 0; i < N; ++i)
{

if(i < 1) // handle first
diff[i] = (data[i+1]-data[i])/h;

else if(i == N-1) // handle last
diff[i] = (data[i]-data[i-1])/h;

else
diff[i] = (data[i+1]-data[i-1])/(2.0*h);

}

The third optimisation considers the relationship between several for loops. It
seems intuitive that

for(int i = 0; i < N; ++i)
task_a(i);

for(int i = 0; i < N; ++i)
task_b(i);

could be replaced with

for(int i = 0; i < N; ++i)
{

task_a(i);
task_b(i);

}

to avoid the overhead of one of the loops, assuming that task_b(i) does not
require data derived from later iterations of task_a. This optimisation is called
loop combining, and it can save more time than only the loop overhead when
task_a generates intermediate results that can be re-used in task_b. However,
as will be discussed in Sect. 13.2.3, keeping tasks separated is sometimes beneficial,
for example when task_b interferes with the caching of data for task_a. As is
the case with many other potential optimisations, the net benefit of this optimisation
depends on a variety of factors, making optimisation an iterative process that
involves repeated profiling and modification of code.

13.2.2 Automatic Optimisation During Compilation

Modern compilers incorporate a wide range of algorithms that analyse the code
being compiled to produce sequences of machine instructions that execute as
quickly as possible. Detailed optimisation of arithmetic expressions is one task

546 13 Implementation of LB Simulations

that may often be left for the compiler to perform automatically, and in this
section we examine how and when to use compilers’ automatic optimisation
features. The extent to which compilers attempt to optimise code is specified
on the command line during compilation. For example, GCC has three pre-
configured levels of optimisation. The lowest level performs only optimisations that
do not increase compilation time significantly. Higher levels of optimisation use
additional strategies, but require more time and memory to analyse and optimise
the code. The option for selecting an optimisation level is -On where n is an
integer from 0, which requests no optimisation and fastest compilation, to 3, the
highest and most computationally expensive level. To compile the source code
in the file source_code.cpp to generate the program sim, one can use the
command g++ source_code.cpp -o sim to compile without optimisation
(the default) or use g++ -O3 source_code.cpp -o sim to compile with
level 3 optimisation. Specific optimisations can be enabled or defaults can be
disabled with special options that start with -f.

Programmers sometimes attempt optimisations that are better left to compilers,
which have been developed by experts in finding quick ways to accomplish common
tasks. Consider, for example, a programmer who is considering replacing division
of an integer by 2p with a shift right by p places2 to avoid a time consuming division
instruction. Such optimisations that take advantage of the binary representation of
numbers and many others are part of the automatic optimisations that compiler
developers have implemented.

While many programmers are likely aware that shifting can be used instead
of division by powers of two, many more optimisations of simple arithmetic
operations are possible. We show here one example that illustrates the extent of the
“tricks” that compilers perform automatically: division of an integer by an integer
constant is implemented as a combination of multiplication and bit shifting [2].
With this algorithm, division of an unsigned 32 bit integer by 5 is performed as a
multiplication by the 32 bit constant 3435973837 followed by a right shift by 2 of
the upper 32 bits of the 64 bit product. The use of the upper 32 bits of the product is
effectively a right shift of the 64 bit product by 32 places. The algorithm therefore
performs multiplication by 3435973837 followed by division by 234. The selection
of the magic number and the required number of shifts follows from noting that
3435973837=234 D 1=5C 1=85899345920D 0:2C O.10�11/. Though we do not
go into the proof here, the precision of this approximation of 1=5 is sufficient to
obtain the correct result for all 32 bit unsigned integers.

The main message of this example is that most programmers should spend
time thinking about the algorithms they are implementing and how they

(continued)

2This is analogous to dividing decimal numbers by powers of 10 by “shifting” right.

13.2 Optimisation 547

use memory rather than focusing on the details of the instructions used
to implement operations and the binary representation of the data they are
processing. Instruction-level optimisation can be left to the compiler,
allowing programmers to focus on writing code that is easier to understand.

Though compilers can, in general, convert mathematical expressions to efficient
sequences of machine instructions, two special topics that restrict the extent of
automatic optimisation are important for numerical algorithms. The first issue
occurs due to the availability of pointers3 in languages such as C and C++. Though
useful for managing memory, pointers restrict the optimisations that a compiler
can perform because of the possibility that two different pointer variables refer to
the same location in memory (i.e. the pointer variables contain the same memory
address). This is called aliasing because the same value in memory can be read and
modified in different ways. The reduction in possible optimisation occurs because
the code must be compiled in such a way that the result is correct whether or not
some pointers refer to the same locations in memory.

Listing 13.1 Example function for demonstrating the effects of pointer aliasing.
void aliasfunc(double *a, double *b)
{

*b = *a + 1.0;

*a = *a + 2.0;
}

Consider, for example, the function void aliasfunc(double *a,
double *b) in Listing 13.1. When optimising, the compiler must ensure that
the result is correct whether or not a and b hold the same memory address. In other
words, the result must be correct whether the programmer uses aliasfunc(p,q)
or aliasfunc(p,p). The quantity *a must therefore be loaded twice from
memory because the first statement, which changes *b, might change the value of
*a that should be used in the second statement. The compiler cannot load *a into
a temporary variable once and then add the two constants and store the results to
their destinations. In many cases, however, this optimisation is desirable because
the functions are never used with identical arguments.

3Pointers are variables that hold the address of another variable. See Appendix A.9.6 for more
details.

548 13 Implementation of LB Simulations

One way to circumvent the reduction in automatic optimisation is to use a
temporary variable to unambigously indicate to the compiler how the code is
supposed to behave in all cases. This modification is shown in Listing 13.2

Listing 13.2 An alternative to the function in Listing 13.1 that avoids the aliasing problem.
void aliasfunc(double *a, double *b)
{

double temp = *a;

*b = temp + 1.0;

*a = temp + 2.0;
}

This is a reasonable strategy when the pointer refers to a single value or a small
array, but it is unreasonable for a programmer to define a new variable for every
element of a large array and impossible to do so when the size of the array is not
known. For such cases, compilers have options that allow programmers to indicate
when pointers are guaranteed to refer to different memory locations. In the C99
standard, the restrict keyword serves this purpose. Standard C++ does not have
such a keyword, but GCC provides __restrict__ as a custom extension of the
language that serves the same purpose as the C99 keyword. An example of the use
of this keyword is shown in Listing 13.3.

Listing 13.3 Use of the __restrict__ keyword to indicate absence of aliasing.
void aliasfunc(double * __restrict__ a,

double * __restrict__ b)
{

*b = *a + 1.0;

*a = *a + 2.0;
}

The problem of aliasing does not exist in languages without pointers, such as
versions of Fortran prior to Fortran 90. In such languages, more optimisations are
possible by default, and this is one of the reasons why Fortran has been considered
a fast language for scientific computing.

The second main issue that restricts the extent of optimisation relates to the
specifications for floating point arithmetic (most often the IEEE 754 standard [1]).
Consider the function in Listing 13.4 that computes a*c + b*c for floating point
values a, b, and c. By default, compilers do not simplify expressions in ways
that change the propagation of error. As a result, the expression a*c + b*c is
not simplified to (a+b)*c to save a multiplication operation unless we ask the
compiler to do so.

Listing 13.4 Example function used to illustrate the effects of various optimisation options.
double multiply_add(double a, double b, double c)
{

return a*c + b*c;
}

13.2 Optimisation 549

When compiled without optimisation (the default for GCC), the resulting machine
instructions 4 are those shown in Listing 13.5.

Listing 13.5 Disassembly of the result of compiling Listing 13.4 without optimisation (default)
or specifying the compiler option -O0 to explicitly disable optimisation

push rbp
mov rbp,rsp
movsd QWORD PTR [rbp-0x8],xmm0
movsd QWORD PTR [rbp-0x10],xmm1
movsd QWORD PTR [rbp-0x18],xmm2
movsd xmm0,QWORD PTR [rbp-0x8]
movapd xmm1,xmm0
mulsd xmm1,QWORD PTR [rbp-0x18]
movsd xmm0,QWORD PTR [rbp-0x10]
mulsd xmm0,QWORD PTR [rbp-0x18]
addsd xmm0,xmm1
movsd QWORD PTR [rbp-0x20],xmm0
mov rax,QWORD PTR [rbp-0x20]
mov QWORD PTR [rbp-0x20],rax
movsd xmm0,QWORD PTR [rbp-0x20]
pop rbp
ret

The inefficiency of the unoptimised compilation is particularly noteworthy: many
unnecessary transfers between memory and registers are performed. After the addi-
tion instruction addsd, xmm0 is saved to memory, the value in memory is trans-
ferred to the register rax, back to memory, and finally from memory back to xmm0.

In comparison, only four instructions are generated when optimisation is enabled,
as shown in Listing 13.6. As expected, there are two multiplication instructions and
one addition.

4For readers unfamiliar with assembly language or the instructions shown here for a typical modern
64 bit Intel processor, push and pop are instructions that save and retrieve their parameter from
the “stack,” a special memory region where data can be stored temporarily. The instruction mov
dst,src copies the contents of src to dst where src and dst may be locations in memory or
registers. QWORD PTR [addr] refers to the contents of the quadword (four words, which is eight
bytes) at the location addr in memory. Numbers written as 0xhh represent the value hh in base
16 (hexadecimal). The symbols rax, rbp, and rsp denote 64 bit general purpose registers, and
xmm0, xmm1, and xmm2 are registers for floating point values. Note that these are 128 bit floating
point registers that can store two double precision values or four single precision values, but in
this code only the lower 64 bits are used. The instruction movsd dst,src means “move scalar
double” and copies src to dst using only the lowest 64 bits if a register is specified. movapd
dst,src moves the full 128 bit value from src to dst. The instructions addsd dst,src and
mulsd dst,src are scalar addition and multiplication instructions, repectively, that store the
result of adding/multiplying dst and src to dst. The function’s parameters are provided in the
registers xmm0-2 and its result is returned in xmm0. Execution continues in the calling function
after the instruction ret.

550 13 Implementation of LB Simulations

Listing 13.6 Disassembly of the result of compiling Listing 13.4 with the options -O1, -O2, or
-O3

mulsd xmm0,xmm2
mulsd xmm1,xmm2
addsd xmm0,xmm1
ret

Two compiler options are relevant to the simplification of floating point arith-
metic expressions. Quoting from the documentation of GCC (4.9.2), these options
are:

• -fassociative-math
Allow re-association of operands in series of floating-point operations. This
violates the ISO C and C++ language standard by possibly changing computation
result. [. . .]
The default is -fno-associative-math.

• -freciprocal-math
Allow the reciprocal of a value to be used instead of dividing by the value if this
enables optimisations. For example x / y can be replaced with x * (1/y),
which is useful if (1/y) is subject to common subexpression elimination. Note
that this loses precision and increases the number of flops operating on the value.

The default is -fno-reciprocal-math.

Both of these options are enabled by the option -funsafe-math-
optimizations, which in turn is enabled by -ffast-math. The option
-Ofast permits the compiler to disregard strict standards compliance and includes
the optimisations enabled by -O3 and -ffast-math. These optimisation options
cannot be used when an algorithm relies on having error be propagated in a
particular way. The machine instructions generated after compilation with -Ofast
or -O3 with -ffast-math are shown in Listing 13.7, and there is only one
multiplication instruction, as expected.

Listing 13.7 Disassembly of the result of compiling Listing 13.4 with the options -Ofast or
-O3 together with -ffast-math

addsd xmm0,xmm1
mulsd xmm0,xmm2
ret

Due to differences in error propagation, the results of simulations obtained with
-Ofast or -ffast-math will not in general be identical with the results
computed by code compiled with different optimisation options. When comparing
the results of floating point operations, it is important to take into account the
presence of rounding error.

Recent processors from both AMD and Intel as well as GPUs provide a fused
multiply add instruction that computes a+b*c in one step, rounding the result only
at the end. The generation of executables with these instructions can be enabled
through compiler options that specify the processor architecture on which the

13.2 Optimisation 551

code will run. Due to variations in compilation settings and processor architecture,
the same code when compiled with different (possibly non-standards-compliant)
optimisations enabled may yield numerically different results due to differences in
rounding and the order of evaluation of expressions. On one system the expression
a+b*c might result in one multiplication then one addition, while another computes
the result in one step. Programmers must therefore be cautious when comparing the
results of codes compiled for different architectures.

The difference between the unoptimised (Listing 13.5) and optimised (List-
ing 13.6) compilation outputs is striking. The difference between Listings 13.6
and 13.7 is important for LBM implementations because the computation of the
equilibrium distributions involves similar expressions.

Though convenient for debugging because it prevents the compiler from elim-
inating unnecessary functions and variables, compilation without optimisa-
tion should not be used for actual simulations. The resulting executables run
too slowly, wasting resources that are often shared on clusters. Considering
the excessive memory access in the version without optimisation, optimisation
should also be enabled when checking the benefits of changes to algorithms
and memory layout. In some cases, however, the compiler may make an
optimisation that adversely affects the memory access pattern. Therefore,
some tuning of compiler options, such as using a lower optimisation level,
may be needed to obtain the fastest outcome.

13.2.3 Memory Caches

Consider a typical CPU with a 3 GHz clock of which one core can perform 4 double
precision arithmetic operations per clock cycle. The theoretical peak computational
speed of this core is therefore 12 GFlops (12 � 109 floating point operations per
second) in double precision. Suppose that the operation being performed is an
addition or multiplication of two values whose sum is stored to a third variable,
all of which must eventually be loaded from and stored to RAM (rather than CPU
registers). Given that each double precision value is 8 bytes, computation at the
peak speed would require reading 179 GiB/s and writing 89 GiB/s for a total
required memory bandwidth of 268 GiB/s. In comparison, memory transfer rates
are typically 10–25 GiB/s for CPU systems. For example, one channel of DDR4
2400 memory provides a peak theoretical rate just under 18 GiB/s, so four channels
would provide 72 GiB/s.

Multiple cores increase demand for memory bandwidth, while multiple memory
channels help satisfy this demand. Nonetheless, memory access rates are signifi-
cantly slower than possible processing speeds. The speed at which memory can be
read and written therefore determines the performance of algorithms that perform

552 13 Implementation of LB Simulations

relatively few operations per byte they read or write. As we will see later, LBM
simulations typically fall in this category, and therefore implementations must use
memory carefully. Since they can have more recent memory systems, newer models
of inexpensive laptops may run memory-intensive programs faster than older high-
end workstations and servers that have an earlier generation of memory architecture.

The mismatch between memory access and computation speeds led to the
development of caches, small but fast memories that temporarily store the
data the processor is using. In contemporary CPUs, several levels of caches
are present between the processor and RAM: each level of cache therefore
mediates either the memory transfers between the processor and another
cache, between two caches, or between a cache and the RAM chips. The
smallest and fastest of these caches are located on the same chips as the
CPUs and can be accessedwithin several clock cycles compared with several
hundred cycles for RAM.

In general, caches operate under two assumptions:

• Recently accessed memory is likely to be re-used. Code that satisfies this
assumption is said to exhibit temporal locality in its memory access pattern,
meaning that little time elapses between consecutive uses of the data and it is
therefore read/written at nearby points in time.

• Memory residing in addresses adjacent to those of a recent access are likely to be
used soon. Code that satisfies this assumption has a memory access pattern that
exhibits spatial locality.

Based on these assumptions about how programs use memory, caches work in the
background to keep processors supplied with the data they need. While they are
beneficial “on average,” caches cannot help in some cases and will interfere in
others. Programmers therefore need to understand how caches behave to be able
to write codes that access memory as quickly as possible.

Caches improve performance in the following way. When the CPU initiates a
read or write of a memory address that is available in cache, which is called a
cache hit, the cache handles the request and supplies or stores the relevant data.
This process occurs significantly faster than reading or writing data directly from/to
RAM chips. A cache miss occurs when the CPU requests a memory address that
is not available in a cache. In this case the cache requests from RAM not only the
desired number of bytes at the requested address but also the adjacent bytes that
form what is called a cache line. If needed, previously-cached data is written back
to RAM to make space available for the new data.

A cache line is the smallest unit of memory that is transferred between caches
and the main RAM. A typical size is 64 bytes (512 bits), which can hold 16 32-
bit integers, 16 single-precision floating point values, 8 “long” 64-bit integers, or

13.2 Optimisation 553

8 double precision floating point values. Access to any byte in memory results in
the entire corresponding cache line being loaded into the cache from RAM. An
algorithm with good spatial locality of its memory accesses will then use all the
memory that was loaded. In contrast, consecutive access to, for example, 32 bit
integers (4 bytes) at addresses that are 64 bytes apart causes very poor performance:
64 bytes are loaded for each 4 bytes that are used. To achieve good spatial locality,
programmers must ensure that data is organised appropriately in memory and
accessed in a sensible order.

Temporal locality of memory accesses improves peformance because a cache line
remains unchanged in the cache until this cache line needs to hold a different line
from RAM. The conditions that cause the eviction of a cache line back to main RAM
depend on how the cache is organised. Consider, for the purpose of illustration, a
1024 byte cache with 16 lines that store 64 bytes. In a direct-mapped cache, which is
one possible cache design, every address in memory can reside in only one location
in the cache. For this hypothetical 1 KiB cache, one can imagine that all memory is
split into 1024 byte blocks. Whenever an address in the first 64 bytes of a 1024 byte
block is accessed, these 64 bytes are loaded into the first cache line. In general, an
access of any byte in the nth group of 64 bytes of a 1024 byte block results in the
use of the nth cache line.

An advantage of these direct-mapped caches is that the task of checking whether
a particular address is in the cache is quick to perform because any address can only
reside in one line. The cache only needs to check whether that line holds the right
data. This is also a disadvantage because consecutive accesses to memory addresses
that map to the same cache line lead to poor performance. In other words, reading
data at the address 1024nC8 after reading 1024mC56, where n and m are integers,
requires use of the same cache line. (The offsets 8 and 56, as long as they are less
than 64, do not change which cache line is used.) This problem is called cache
thrashing and occurs when one memory transaction uses the same cache line as
a recent transaction, forcing the previous data to be evicted from the cache and
returned to main RAM.

Another type of cache organisation, called a fully-associative cache, avoids this
problem at the expense of requiring more resources to check whether a particular
address is available. In a fully-associative cache, each cache line can store any block
of 64 bytes (whose first byte is at an address that is a multiple of 64). Cache lines
are only evicted when no more space is available in the cache.

An n-way set associative cache organisation lies in between the two extremes of
direct mapped and fully-associative caches. In such caches, each memory address
may be stored in any of n potential lines in the cache. Such caches offer a trade-off
between the benefits of avoiding cache thrashing and the logic circuits required to
check which addresses are in the cache.

As an example, suppose the previous 1024 byte cache is 2-way set associative.
We then imagine memory to be split into 512 byte blocks instead of 1024 bytes
for the direct-mapped cache. A memory access to the nth set of 64 bytes within a
512 byte block can be loaded to either of two possible lines in the cache. With this
cache design, reading memory at the address 512n C 8 after 512m C 56 does not

554 13 Implementation of LB Simulations

Fig. 13.1 Diagram of a hypothetical cache designed around the decimal representation of memory
addresses. This cache holds 100 bytes, uses 10-byte lines, and is 2-way set associative. When read,
the shaded byte at the address 113 would be loaded into line 1 in one of the 2 blocks, whichever
is available or holds the oldest data (which must first be evicted back to RAM if it was modified
while it resided in the cache). The tags identify which data in RAM is held in each cache line

cause the cache to evict the line that was used for 512m C 56. However, a third
access to the same set of 64 bytes within a 512 byte block, for example 512pC 24,
would cause a previous line to be evicted. Thus, the likelihood of cache thrashing
is reduced, but for each memory access the cache controller has more work to do:
it must check what is stored in two potential places. Both direct mapped and fully
associative caches are rare in current CPU architectures, and varying levels of set
associativity are used instead.

To help explain the organisation and operation of n-way set associative caches,
Fig. 13.1 shows a hypothetical cache designed with lines that hold 10 bytes. The
left portion illustrates the bytes stored in RAM grouped into rows of 10 bytes. The
starting addresses of each row are therefore multiples of 10. Whenever the CPU
needs to read a byte in RAM, the whole row containing that byte will be loaded into
a cache line. The destination of that row depends on the starting address of that row.
The last digit (or the required number of bits for binary systems) of the address is
dropped, and the upper digits modulo 5 (the number of lines in each block, which is
the total number of lines in the cache divided by n) gives the line number that will
be used.

Of the two blocks, the block that holds the oldest data in the required cache line
will be used to store new data. First, however, the data in this line would be written
back to memory if needed. When it fills a cache line, the cache also stores a tag
that identifies the the starting address of the memory that was loaded into the line.

13.2 Optimisation 555

This identifies the data in the cache line, and it is used to test whether data requested
by the CPU is available in the cache. The tag is the starting address divided by the
number of bytes in a block, and dropping the fractional part.

Modern CPUs have a hierarchy of caches. The first cache level, theL1 cache,
is the fastest, smallest, has the lowest level of associativity, and is physically
closest to the CPU core it assists. The L1 cache mediates access to an L2
cache that, though slower, is larger and designed to satisfy a higher proportion
of memory requests. The L2 cache, which may be dedicated to one core or
shared by several, in turn provides access to an L3 cache, which is the largest
and has the highest associativity. The L3 cache is usally shared by all cores in
a processor, and it interfaces with the main system memory.

Writing to cached memory deserves special attention because several strategies
are used to update cache and main memory and maintain their consistency. With
the first option, called write-through, data written to cache is also always written
to main memory (or the next highest cache level). Appealing because it guarantees
consistency, this strategy is disadvantageous when the same memory location is
written frequently. With the second option, called write-back, data is only written
back to main memory when a cache line is evicted and was modified while residing
in the cache. This option offers better performance because it avoids unnecessarily
frequent writing to memory, but maintaining a consistent memory state for multiple
CPUs is challenging. Consider what happens when one CPU needs to read data that
was modified while it was in a cache belonging to another CPU: the processors need
to communicate to ensure that they are aware of changes to cached data.

These two writing policies assume that the address being written is already in
the cache. When it is not, two strategies are available. The first is to simply write
the value directly to memory and only load it into cache if it is subsequently read.
The second strategy is to first read the destination address, load the cache line, and
then write to cache (and also main memory if the cache uses the write-through
strategy). Caches in the most common current CPUs follow the second option due
to the assumption of temporal locality and that therefore a memory address what
was recently written is likely to be read soon as well.

Programmers can conceptually assume that writing to an uncached location
causes (1) eviction and writing to memory (if required) of the cache line that
will be occupied, (2) reading the cache line that will be written to, (3) writing
to cache, and (4) writing to main memory once the cache line is evicted by
a future memory access. Though somewhat simplified, this model of cache

(continued)

556 13 Implementation of LB Simulations

is sufficient for the purposes of this chapter. Interested readers are invited to
look at the technical documentation from the manufacturers of the CPUs they
use or other reference materials. Special instructions can be used to bypass
the caching mechanism to improve writing performance (see Sect. 13.3.4).

Multi-core CPUs and multi-CPU systems present many challenges for cache
design. The different cache levels are often shared by the cores of a CPU. For
example, each core may have its own L1 cache, pairs of cores may share L2
caches, and all cores on one chip may share an L3 cache. The organisation, size,
and communication features of caches are important differences between the CPUs
from different manufacturers and differentiate the performance of laptop, personal
desktop, and high performance server-class CPUs. For example, the author of this
chapter has a laptop with a dual core CPU with 128 KiB of 8-way L1 cache split
among the cores, 512 KiB of 8-way L2 cache also split, and 3 MiB of 12-way L3
cache that is shared by the cores. In comparison, a recent Intel server-class CPU
with 18 cores has 1152 KiB L1, 4.5 MiB L2, and 45 MiB of L3 cache. We will see
later when optimising the LBM code how performance depends on the sizes of the
caches.

The optimal use of available caches is a complex topic, and we do not examine
caches in greater detail in this chapter. Interested readers are invited to pursue
strategies to further optimise the use of caches, both in code for a single core (see
also Sect. 13.3.4) and multiple cores and processors (Sect. 13.4.1 and Sect. 13.4.2).
Helpful tutorials that describe more about cache architecture can be found in
references [3] and [4].

13.2.4 Measuring Performance

To assess the impact of optimisations and determine where bottlenecks exist before
optimising code, programmers need to know what functions to use to accurately
measure time intervals. This is achieved by calling a function that provides the
time elapsed since an arbitrary event, such as when the operating system was
started, and finding the difference between the values before and after running
the code being tested. Common functions that provide the local time and date are
not suitable for this task. They are not sufficently precise (micro- or nanosecond
accuracy is needed), and do not always increase monotonically because the system
might synchronise its time with an external server, for example. Instead, high-
precision timers need to be used. The interfaces that provide access to these timers
and the nature of the timers that are available are unfortunately not standard and
vary between platforms. A sample function double seconds() that returns

13.3 Sequential Code 557

the number of seconds since an arbitrary reference time is provided in the code
accompanying this book, and it uses different functions and libraries when compiled
for Unix, Windows, and Mac OS X systems.

The timing function is used in the example code to calculate the speed at
which lattice nodes are updated and the apparent memory transfer rate. The net
rate at which the code uses memory is the total number of nodes updated in the
simulation multiplied by twice (read and write once per update) the number of
bytes that each node’s populations occupy (9 � 8 D 72 bytes for a D2Q9 lattice
and double precision) and divided by the time taken. The following code shows
these calculations:

double start = seconds();

// take NSTEPS simulation time steps
for(int n = 0; n < NSTEPS; ++n)
{

// main simulation loop
}

double end = seconds();
double runtime = end-start;

size_t nodes_updated = NSTEPS*size_t(NX*NY);

// calculate speed in million lattice updates per second
double speed = nodes_updated/(1e6*runtime);

// calculate memory access rate in GiB/s
double bytesPerGiB = 1024.0*1024.0*1024.0;
double bandwidth = nodes_updated*(2*ndir)

*sizeof(double)/(runtime*bytesPerGiB);

Note that a large integer type, size_t, is used in this code because the quantities
involved can be rather large: 2000 updates of a 2048�2048 domain is about 8 billion
node updates, twice the maximum number that can be stored in an unsigned 32 bit
integer.

13.3 Sequential Code

13.3.1 Introductory Code

We start with a relatively simple code with few optimisations to illustrate the
capabilities of automatic optimisation and point out which areas of the code are
most important to optimise manually.

558 13 Implementation of LB Simulations

To introduce how the code is structured, we begin with the main() function,
which can be found in the file main.cpp and is shown in Listing 13.8. In this
listing and those that follow, some details, such as output statements and the code
for measuring performance, have been omitted for clarity. The full code is included
with this book. Note that the program, as presented, does nothing useful because the
computed values are never used and an optimising compiler would likely generate
an empty program that truly does nothing. In the actual code, the computed values
are used when the density and velocity fields are saved at the end and the error
between the computed and analytical flow and pressure fields is calculated and
displayed.5

Listing 13.8 main() function for the Taylor-Green vortex decay simulation
int main(int argc, char* argv[])
{

// allocate memory
double *f1 = (double*) malloc(mem_size_ndir);
double *f2 = (double*) malloc(mem_size_ndir);
double *rho = (double*) malloc(mem_size_scalar);
double *ux = (double*) malloc(mem_size_scalar);
double *uy = (double*) malloc(mem_size_scalar);

// compute Taylor-Green flow at t=0
// to initialise rho, ux, uy fields.
taylor_green(0,rho,ux,uy);

// initialise f1 as equilibrium for rho, ux, uy
init_equilibrium(f1,rho,ux,uy);

// main simulation loop; take NSTEPS time steps
for(unsigned int n = 0; n < NSTEPS; ++n)
{

// stream from f1 storing to f2
stream(f1,f2);

// calculate post-streaming density and velocity
compute_rho_u(f2,rho,ux,uy);

// perform collision on f2
collide(f2,rho,ux,uy);

// swap pointers
double *temp = f1;
f1 = f2;
f2 = temp;

}

// deallocate memory

5Only calculating these values is not enough; they must be used somehow or the compiler will
discard the unnecessary calculations.

13.3 Sequential Code 559

free(f1); free(f2);
free(rho); free(ux); free(uy);

return 0;
}

Several constants are used in the main() function and other functions in the
code. These variables are declared as constants (with the qualifier const) to enable
compiler optimisations such as the evaluation of expressions involving constants at
compilation time. They are declared as global variables, which means they can be
used in any function. The parameters are:

• The scaling factor for convergence studies and the domain size. The factor
scale is used to perform a convergence study in which the Reynolds number
of the flow is kept constant while decreasing the grid size (Sect. 13.1.3 and
Sect. 13.5).
const unsigned int scale = 1;
const unsigned int NX = 32*scale;
const unsigned int NY = NX;

• The number of directions in the lattice
const unsigned int ndir = 9;

• The memory size (in bytes) for the populations and scalar values
const size_t mem_size_ndir = sizeof(double)

*NX*NY*ndir;
const size_t mem_size_scalar = sizeof(double)*NX*NY;

• The lattice weights
const double w0 = 4.0/9.0; // zero weight
const double ws = 1.0/9.0; // adjacent weight
const double wd = 1.0/36.0; // diagonal weight

• Arrays of the lattice weights and direction components
const double wi[] = {w0,ws,ws,ws,ws,wd,wd,wd,wd};
const int dirx[] = {0,1,0,-1, 0,1,-1,-1, 1};
const int diry[] = {0,0,1, 0,-1,1, 1,-1,-1};

• The kinematic viscosity
 and the corresponding relaxation parameter
const double nu = 1.0/6.0;
const double tau = 3.0*nu+0.5;

• The maximum flow speed
const double u_max = 0.04/scale;

• The fluid density
const double rho0 = 1.0;

• The number of time steps in the simulation
const unsigned int NSTEPS = 200*scale*scale;

The first task in the main() function is to allocate memory for the two particle
populations (f1 and f2) and the scalar density (rho) and velocity components
(ux and uy). Memory is allocated as contiguous blocks for each quantity and
the address of the first entry in each block is stored in the corresponding pointer.
The use of multidimensional arrays or array objects provided by libraries is

560 13 Implementation of LB Simulations

generally not recommended because their use may introduce inefficiencies such
as increased memory requirements (for padding or due to automatic resizing) or
increased overhead for every memory access (bounds checking or multiple pointer
dereferencing). Two dimensional array coordinates are converted to linear indices
using the two functions in Listing 13.9. These functions are declared as inline to
hint to the compiler that they should be expanded where they are used to avoid the
overhead of an actual function call.

For scalar variables, the nodes are numbered consecutively along the x direction
and increase in multiples of the domain width in the y direction. The populations
are laid out as consecutive blocks of NX � NY doubles for each direction, and each
block is indexed in the same way as the scalar variables. This can be seen by re-
writing the expression NX � .NY � d C y/C x as .NX � NY � d/C .NX � yC x/.
As will be discussed in detail in the section that follows, this choice is not optimal,
and improving it is the main opportunity for optimising this code.

Listing 13.9 Functions for computing linear array indexes from two-dimensional coordinates
inline size_t scalar_index(unsigned int x, unsigned int y)
{

return NX*y+x;
}

inline size_t field_index(unsigned int x, unsigned int y,
unsigned int d)

{
return NX*(NY*d+y)+x;

}

After the memory has been allocated, it is initialised. We first compute the density
and velocity components for the Taylor-Green vortex flow using the functions in
Listing 13.10. The first function computes the solution at a particular position and
time while the second fills the density and velocity variables with the values for the
whole domain. The task was split into two functions because the first function is re-
used in the code that computes the error between the numerical and exact solutions.

Listing 13.10 Functions used to compute the exact solution for Taylor-Green vortex decay
void taylor_green(unsigned int t,

unsigned int x, unsigned int y,
double *r, double *u, double *v)

{
double kx = 2.0*M_PI/NX;
double ky = 2.0*M_PI/NY;
double td = 1.0/(nu*(kx*kx+ky*ky));

double X = x+0.5;
double Y = y+0.5;
double ux = -u_max*sqrt(ky/kx)*cos(kx*X)*sin(ky*Y)

*exp(-1.0*t/td);
double uy = u_max*sqrt(kx/ky)*sin(kx*X)*cos(ky*Y)

*exp(-1.0*t/td);

13.3 Sequential Code 561

double P = -0.25*rho0*u_max*u_max

*((ky/kx)*cos(2.0*kx*X)
+(kx/ky)*cos(2.0*ky*Y))

*exp(-2.0*t/td);
double rho = rho0+3.0*P;

*r = rho;

*u = ux;

*v = uy;
}

void taylor_green(unsigned int t, double *r,
double *u, double *v)

{
for(unsigned int y = 0; y < NY; ++y)
for(unsigned int x = 0; x < NX; ++x)
{

size_t sidx = scalar_index(x,y);
taylor_green(t,x,y,&r[sidx],&u[sidx],&v[sidx]);

}
}

Next, the particle population f1 is initialised with the equilibrium populations
for the initial values of the density and velocity. The function that performs this
task, init_equilibrium, is presented in Listing 13.11.

Listing 13.11 Function for initialising a particle population with the equilibrium values for the
specified density and velocity

void init_equilibrium(double *f, double *r,
double *u, double *v)

{
for(unsigned int y = 0; y < NY; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

double rho = r[scalar_index(x,y)];
double ux = u[scalar_index(x,y)];
double uy = v[scalar_index(x,y)];

for(unsigned int i = 0; i < ndir; ++i)
{

double cidotu = dirx[i]*ux + diry[i]*uy;
f[field_index(x,y,i)] =

wi[i]*rho*(1.0 + 3.0*cidotu
+4.5*cidotu*cidotu
-1.5*(ux*ux+uy*uy));

}
}

}
}

562 13 Implementation of LB Simulations

With all the required variables initialised, the next part of the main() function is
the for loop that performs each time step of the simulation. This loop performs four
tasks: (1) streaming the populations in f1 along the lattice’s directions and storing
the result in the temporary populations in f2 (Listing 13.12), (2) computing the
post-streaming values of the density and velocity (Listing 13.13), (3) performing
the collision operation (relaxation to equilibrium) on f2 (Listing 13.14), and (4)
exchanging the pointers f1 and f2 so that in the next iteration the roles of the
memory designated by f1 and f2 are reversed.

Listing 13.12 Function that performs streaming of the populations in a fully periodic domain,
reading from f_src and storing to f_dst

void stream(double *f_src, double* f_dst)
{

for(unsigned int y = 0; y < NY; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

for(unsigned int i = 0; i < ndir; ++i)
{

// enforce periodicity
// add NX to ensure that value is positive
unsigned int xmd = (NX+x-dirx[i]) % NX;
unsigned int ymd = (NY+y-diry[i]) % NY;

f_dst[field_index(x,y,i)] =
f_src[field_index(xmd,ymd,i)];

}
}

}
}

Listing 13.13 Function that computes the density and velocity of the provided populations f
void compute_rho_u(double *f, double *r,

double *u, double *v)
{

for(unsigned int y = 0; y < NY; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

double rho = 0.0;
double ux = 0.0;
double uy = 0.0;

for(unsigned int i = 0; i < ndir; ++i)
{

rho += f[field_index(x,y,i)];
ux += dirx[i]*f[field_index(x,y,i)];
uy += diry[i]*f[field_index(x,y,i)];

}

13.3 Sequential Code 563

r[scalar_index(x,y)] = rho;
u[scalar_index(x,y)] = ux/rho;
v[scalar_index(x,y)] = uy/rho;

}
}

}

Listing 13.14 Function that performs the collision operation on the particle populations using
pre-computed density and velocity values

void collide(double *f, double *r, double *u, double *v)
{

// useful constants
const double tauinv = 2.0/(6.0*nu+1.0); // 1/tau
const double omtauinv = 1.0-tauinv; // 1 - 1/tau

for(unsigned int y = 0; y < NY; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

double rho = r[scalar_index(x,y)];
double ux = u[scalar_index(x,y)];
double uy = v[scalar_index(x,y)];

for(unsigned int i = 0; i < ndir; ++i)
{

// calculate dot product
double cidotu = dirx[i]*ux + diry[i]*uy;

// calculate equilibrium
double feq = wi[i]*rho*(1.0 + 3.0*cidotu

+4.5*cidotu*cidotu
-1.5*(ux*ux+uy*uy));

// relax to equilibrium
f[field_index(x,y,i)] =

omtauinv*f[field_index(x,y,i)]
+tauinv*feq;

}
}

}
}

Finally, at the end of the main function, the memory allocated for all the arrays is
released.

The code was compiled with GCC version 4.9.2 with several levels of automatic
optimisation and run on a workstation with an Intel Xeon W3550 CPU and 12 GiB
of DDR3 RAM running at 1066 MHz in a triple channel configuration for a total
theoretical maximum transfer rate of 24 GiB/s (8 GiB/s per memory channel). The
performance results for several domain sizes are presented in Table 13.1. The speed
of the code is reported in millions of lattice updates per second (Mlups). This is the

564 13 Implementation of LB Simulations

Table 13.1 Performance of the introductory code compiled with several optimisation levels and
domains of varying sizes

Domain size Time steps Memory (MiB) Optimisation Speed (Mlups) Relative speed

32 � 32 100000 0:14 -O0 2:3 0.2

-O1 11:0 1

-O3 12:2 1.1

-Ofast 14:8 1.3

128 � 128 5000 2:25 -O0 2:2 0.2

-O1 9:7 1

-O3 10:9 1.1

-Ofast 13:9 1.4

256 � 256 2000 9 -O0 2:1 0.3

-O1 6:6 1

-O3 8:2 1.2

-Ofast 10:8 1.6

512 � 512 500 36 -O0 2:1 0.4

-O1 5:3 1

-O3 6:2 1.2

-Ofast 8:4 1.6

2048 � 2048 25 576 -O0 2:0 0.4

-O1 5:1 1

-O3 5:6 1.1

-Ofast 8:0 1.6

number of nodes in the domain multiplied by the number of time steps performed
and divided by the runtime. For each domain size, the number of time steps was
chosen so that the runtime was at most one minute and the average of three runs is
reported.

The most obvious result is the exceedingly poor performance without opti-
misation: five times slower than with the lowest optimisation level. As noted in
Sect. 13.2 (Listing 13.5), this is not surprising since the compiler makes no effort to
remove unnecessary instruction sequences. With optimisation, the improvement in
performance between levels 1 and 3 is about 10–20% and another 30% improvement
is achieved by using -Ofast.

In general, the speed decreases as the domain size increases. The performance
drops noticeably when the memory allocated exceeds the size of the 8 MiB L3 cache
on this CPU. For the largest domain, the speed is approximately half the speed of
small domains. The reasons for the dependence of the performance on the cache
size and ways to improve this, are discussed in the next section (Sect. 13.3.2).

13.3 Sequential Code 565

13.3.2 Optimising the Introductory Code

The code introduced in the previous section presents several opportunities for
optimisation. We start by noticing one relatively minor optimisation: the rest
populations f0 should not need to be copied during streaming. To avoid this
unnecessary memory access, we use a separate variable f0 for the rest populations
and keep two variables, f1 and f2, for f1–8. The indices for the f0 array are
computed in the same was as for the scalars.

The second optimisation follows from noticing that the values of the populations
stored for every node during streaming are those that are then read during the
collision step. Consequently, the three functions stream, compute_rho_u, and
collide may be combined into one function, stream_collide_save, that
accesses memory significantly less frequently. The code for this function is shown
in Listing 13.15.

This combined function includes several less important optimisations. The
function includes a boolean parameter save that is used to indicate whether the
moments should be written to memory. For simulations that save the intermediate
density and velocity fields at regular intervals, the required memory writing is
avoided for the majority of the time steps taken. The second optimisation is the
unrolling of all for loops that iterate over the nine populations (cf. (3.12) and
(3.65)). In addition to avoiding the overhead of the loop, this allows many terms
to be dropped in the evaluation of the equilibrium populations. Finally, several
common factors are stored in temporary variables to assist the evaluation of the
equilibrium values. The function field0_index for indexing into the array of
rest populations is the same as the scalar_index function.

Note that after combining the streaming and collision operations into one step it
is no longer beneficial to keep the rest populations in a separate variable because
now all populations are read and written by the combined function. However, we
keep the rest populations separate because this is useful for parallel versions of the
code (Sect. 13.4.2) in which only the non-rest populations need to be shared between
the processors working on different portions of the simulation domain.

Listing 13.15 Function that performs streaming, computation of moments, and collision in one
step

void stream_collide_save(double *f0, double *f1, double *f2,
double *r, double *u, double *v,
bool save)

{
// useful constants
const double tauinv = 2.0/(6.0*nu+1.0); // 1/tau
const double omtauinv = 1.0-tauinv; // 1 - 1/tau

for(unsigned int y = 0; y < NY; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

566 13 Implementation of LB Simulations

unsigned int xp1 = (x+1)%NX;
unsigned int yp1 = (y+1)%NY;
unsigned int xm1 = (NX+x-1)%NX;
unsigned int ym1 = (NY+y-1)%NY;

// direction numbering scheme
// 6 2 5
// 3 0 1
// 7 4 8

double ft0 = f0[field0_index(x,y)];

// load populations from adjacent nodes
double ft1 = f1[fieldn_index(xm1,y, 1)];
double ft2 = f1[fieldn_index(x, ym1,2)];
double ft3 = f1[fieldn_index(xp1,y, 3)];
double ft4 = f1[fieldn_index(x, yp1,4)];
double ft5 = f1[fieldn_index(xm1,ym1,5)];
double ft6 = f1[fieldn_index(xp1,ym1,6)];
double ft7 = f1[fieldn_index(xp1,yp1,7)];
double ft8 = f1[fieldn_index(xm1,yp1,8)];

// compute moments
double rho = ft0+ft1+ft2+ft3+ft4+ft5+ft6+ft7+ft8;
double rhoinv = 1.0/rho;

double ux = rhoinv*(ft1+ft5+ft8-(ft3+ft6+ft7));
double uy = rhoinv*(ft2+ft5+ft6-(ft4+ft7+ft8));

// only write to memory when needed
if(save)
{

r[scalar_index(x,y)] = rho;
u[scalar_index(x,y)] = ux;
v[scalar_index(x,y)] = uy;

}

// now compute and relax to equilibrium
// note that
// feq_i = w_i rho [1 + 3(ci . u)
// +(9/2) (ci . u)^2 - (3/2) (u.u)]
// = w_i rho [1 - 3/2 (u.u)
// +(ci . 3u) + (1/2) (ci . 3u)^2]
// = w_i rho [1 - 3/2 (u.u)
// +(ci . 3u)(1 + (1/2) (ci . 3u))]

// temporary variables
double tw0r = tauinv*w0*rho; // w[0]*rho/tau
double twsr = tauinv*ws*rho; // w[1-4]*rho/tau
double twdr = tauinv*wd*rho; // w[5-8]*rho/tau

double omusq = 1.0-1.5*(ux*ux+uy*uy); // 1-(3/2)u.u

double tux = 3.0*ux;

13.3 Sequential Code 567

double tuy = 3.0*uy;

f0[field0_index(x,y)] = omtauinv*ft0 + tw0r*(omusq);

double cidot3u = tux;
f2[fieldn_index(x,y,1)] = omtauinv*ft1

+ twsr*(omusq + cidot3u*(1.0+0.5*cidot3u));
// ... similar expressions for directions 2-4

cidot3u = tux+tuy;
f2[fieldn_index(x,y,5)] = omtauinv*ft5

+ twdr*(omusq + cidot3u*(1.0+0.5*cidot3u));
// ... similar expressions for directions 6-8

}
}

}

Optimising the memory access pattern to improve cache utilisation has
a greater impact on performance than the memory, loop, and arithmetic
optimisations presented so far.

To understand why the use of cache can be improved, let us consider two
consecutive iterations of the innermostfor loop that updates the simulation domain
(Listing 13.15), which is the loop that iterates along the x direction. Figure 13.2
illustrates how the memory addresses that are read and written for the non-rest
populations are spread across the memory address space when the linear array
index of fd at the node with 2D coordinates x and y is NX*(NY*d+y)+x. In this
figure and those that follow for different memory layouts, each box represents the
memory occupied by one double precision value (8 bytes) and the symbols show
which direction’s population is stored in that location. The expression in the bottom
left corner gives the address of the first box that is shown in the diagram. Memory
addresses increase first from left to right then bottom to top. The offsets relative to
the location of the bottom left box are shown along the bottom and left sides of the
diagrams. Boxes shaded in light grey show the memory locations read/written for
the first node and those shown in dark grey are for the next node. The box with a
dashed outline shows the position of the data for the first node (at the coordinates
.x� 1; y/) and the box with a thicker outline shows the next node (located at .x; y/).

With the memory layout illustrated in Fig. 13.2, every double precision value
read from or written to memory is located immediately after the value that was
read/written for each population in the previous iteration of the loop. This memory
layout therefore allows good spatial and temporal locality of memory accesses, but
the locality is limited to the values for each direction. When each node is updated,
there is a good chance that the required memory locations were already loaded into
a cache line during the updating of a previous node. However, the value of f1, for

568 13 Implementation of LB Simulations

Fig. 13.2 Diagram showing the memory locations read (left) and written (right) during the
updating of two consecutive nodes when the populations fd.x; y/ are stored at the linear indices
NX*(NY*d+y)+x. The data for the node at .x � 1; y/ is outlined with a dashed line, and a thick
outline shows the data for the node at .x; y/

example, only remains in the cache until it is needed in the next iteration if the reads
of f2–9 and the writes of all populations did not cause too many accesses to addresses
with the same lowest bits. This is particularly problematic for the values that are
written because all the fi for one node are separated by 8*NX*NY bytes. When this
is a multiple of the cache block size (see Sect. 13.2.3), as happens when the number
of nodes in the domain is a sufficiently high power of two, all these writes use the
same line within a block and only a cache with high set associativity can retain
enough values to be useful. A thorough analysis of the conditions when the values
loaded into cache in one step survive until the next step is complex and depends on
the alignment of the allocated memory and the sizes, levels of set associativity, and
write modes of the caches that are available.

13.3 Sequential Code 569

For this memory layout, non-power-of-two domain sizes are beneficial, and a
131 � 128 domain, for example, can be updated faster than a 128 � 128 domain.
Padding, i.e. adding unused memory to prevent alignment of memory addresses, can
be used to alleviate this problem. To do this, one would allocate enough memory and
compute indexes as if the domain size were 131 � 128 but only use the values for a
128 � 128 domain.

Exercise 13.4 Edit the code so that it uses different variables, perhaps NX_MEM
and NY_MEM, for the domain dimensions in the allocation and indexing functions.
For a 128 � 128 domain, how does adding padding at the end of each row, i.e.
NX_MEM = NX + PAD_X where PAD_X is the number of additional doubles,
affect the simulation speed? What is the optimal amount of padding?

Before moving on to the best memory layout, let us consider briefly the worst,
which is illustrated in Fig. 13.3. In this layout, compared with the previous
(Fig. 13.2), the roles of x and y have been exchanged. Therefore the use of
this layout is equivalent to using the previous and exchanging the order of
the two for loops so that the inner loop iterates along the y direction. With
this worst memory access pattern, spatial and temporal locality of memory
accesses is lost. Values loaded into the cache can only be used if they survive
the completion of the entire inner for loop. The main message here is that
the memory layout must match the structure of the for loops.

Programmers who choose multidimensional arrays instead of linear arrays
should be aware of how they are organised. In C, C++, and Python, multidimen-
sional arrays are in row-major order, meaning that values in the same row (values
with the same first index) occupy consecutive locations in memory. Fortran and
MATLAB use column-major order, in which the values of a column (second index)
occupy consecutive memory locations. An easy way to remember the correct pairing
of memory layout and for loop order is that consecutive iterations of the innermost
loop should access consecutive locations in memory. Another alternative is to use
one for loop over all the nodes in the domain and compute the two-dimensional
coordinates from the linear index where needed.

Exercise 13.5 Re-write the main for loop that updates the simulation domain so
that it takes the form for(int k = 0; k < NX*NY; ++k). Compute the
linear indices of the adjacent lattice nodes, needed for streaming, from k. Does this
change improve performance? Do you think it enhances or worsens the readability
of the code?

Of the six possible ways to map a three-dimensional array with indices x, y,
and d to a linear index, the best method for the code in this section is shown
in Fig. 13.4. The different geometry of the figure compared to the previous two
quickly emphasises the difference in layout. In this layout, the populations for

570 13 Implementation of LB Simulations

Fig. 13.3 Diagram showing the memory locations read (left) and written (right) during the
updating of two consecutive nodes when the populations fd.x; y/ are stored at the linear indices
NY*(NX*d+x)+y. Notice how none of the data read or written for the second node is located
beside the data for the first node, which prevents use of cached data

each node are stored in consecutive locations in memory, and the populations
for the node with coordinates .x; y/ follow the populations for .x � 1; y/. This
is achieved by storing fd for the node with coordinates x and y at the linear

13.3 Sequential Code 571

Fig. 13.4 Diagram showing the memory locations read (top) and written (bottom) during the
updating of two consecutive nodes when the populations fd.x; y/ are stored at the linear indices
(ndir-1)*(NX*y+x)+(d-1)

array index (ndir-1)*(NX*y+x) + (d-1) where ndir is 9, the number
of directions in the D2Q9 velocity set. The benefit of the new layout on writing
performance is clear: the values are written in perfectly consecutive order from the
first direction’s population in the first node to the last direction’s population in the
last node.

The benefits for reading are more complex. As the domain is updated first along
x and then with increasing y, the reading of the three directions “.”, “#”, and “&”
causes loading of all the populations at the corresponding nodes into cache. Note
that for the 9 direction model with 8 non-zero directions, all 8 values fit in one 64
byte cache line (a typical size in current CPUs). Though alignment of the allocated
memory so that the address of the first (“!”) direction is a multiple of 64 bytes
is not guaranteed, in practice this occurs in the tests we present. It is therefore the
read of the “.” direction at (x+1,y+1) when updating the node at (x,y) that loads
the whole population (excluding the zero direction) at (x+1,y+1). If the cache can
hold the populations for three rows of the domain (the previous, the current, and
the next), this whole population will not need to be read again: the directions “.”,
“#”, and “&” of the nodes in row y are used to update row y-1, “!” and “ ” are
used for row y, and “%”, “"”, and “-” are used for row y+1. When the cache is
insufficient to hold a complete row of the domain, Fig. 13.4 shows that three new
reads of 8 doubles (64 bytes) are needed for every node (compared with only one
new read in the best case). Of the populations loaded, three (“.”, “ ”, and “-” in
column x+1) are used to update the node at (x,y), two (“"” and “#”) are used for
the node (x+1,y), and three (“%”, “!”, and “&”) are used for the node (x+2,y).
Thus, in the worst case, 8=24 D 1=3 of the doubles loaded in each step of the inner
for loop are used within a span of three iterations of this loop.

572 13 Implementation of LB Simulations

Overall, writing performance is excellent with the best memory layout, while
reading performance is good but depends on the characteristics of the available
caches. Note that the automatic caching of the written data in f2 is wasteful: we
do not need to first read the old populations, overwrite them, then write the data
back to memory. Furthermore, the caching of f2 occupies cache lines that would
be better to use for f1. Special writing instructions, called non-temporal stores, are
therefore useful here to bypass the caching mechanism and improve performance.
We leave this for interested readers to pursue (see also Sect. 13.3.4).

Exercise 13.6 Look up the characteristics of the caches in the processors you use.
What is the maximum domain size that can fit entirely in each cache level? What is
the largest domain width for which three rows will fit? How fast is the code when
all memory used can fit in each cache level? For reasonable timing precision, ensure
that you run enough time steps so that the runtime is about 10–30 seconds.

Exercise 13.7 Using the results of the previous exercise, write a code that breaks a
large simulation domain into subdomains that fit into one of the cache levels. Does
this division of the domain improve the speed of the simulation? Which cache level
is best to target? You may find it useful to reorganise the memory layout so that the
memory for each subdomain is in a contiguous block.

Exercise 13.8 The analysis of the use of cache memory in this section considered
only interior nodes away from the periodic boundaries. What happens at the
boundaries? Is any of the required data still located in adjacent memory addresses?

To assess the benefits of improving the memory layout, we first consider the
initial implementation and change only the memory layout. The same workstation
with an Intel Xeon W3550 processor was used as for the unoptimised version
(Sect. 13.3.1). This quad-core processor has one 32 KiB 4-way set associative L1
instruction cache per core, one 32 KiB 8-way set associative L1 data cache per core,
one 256 KiB 8-way set associative L2 cache per core, and one 8 MiB 16-way set
associative L3 cache shared by all four cores.

The simulation speeds using the unoptimised initial code for the three
memory layouts considered in this section and several domain sizes are shown
in Fig. 13.5a. Using the best layout approximately doubles the simulation
speed throughout the range of domain sizes considered. Note the significant
difference in speed between the worst and best layouts when the domain is
large: picking the right memory layout yields 15 times faster simulations
than choosing the worst layout!

The results for the optimised code, shown in Fig. 13.5b, reveal an inter-
esting difference in performance relative to the unoptimised code. For small
domain sizes, the speed with the best memory layout is roughly the same as
that for the unoptimised code. The major difference in these codes is their

(continued)

13.3 Sequential Code 573

memory use: the optimised code does not perform a separate streaming step
to avoid a pair of reads and writes of the populations. The similar performance
of the codes (in fact the optimised code runs slightly slower for the smallest
domain) suggests that when the simulation data can fit in the L2 cache,
the penalty of excess memory accesses is small. As the domain size is
increased, however, the optimised version maintains roughly the same
speed, while the unoptimised version and the worse memory layouts show
rapid degradation in performance.

As for the initial code, compiling without automatic optimisation is a bad choice.
As shown in Table 13.2, the optimised code performs about 4 times faster than the
previous code also compiled without optimisation (Table 13.1). This is not, however,
a practically useful comparison because enabling automatic optimisation increases
the speed about three times. Unlike the results with the initial code, the different

Fig. 13.5 Simulation speeds
with the three memory
layouts considered in this
section for several domain
sizes using (a) the initial code
and (b) the optimised code.
For all cases the code was
compiled with the
optimisation flag -Ofast.
The dashed vertical lines
show the sizes of the L2 and
L3 caches on the processor
that executed the code

574 13 Implementation of LB Simulations

Table 13.2 Performance of the optimised code for several domain sizes and compiled with
different optimisation options. Compare with the performance of the initial code in Table 13.1

Domain size Time steps Memory (MiB) Optimisation Speed (Mlups) Relative speed

32 � 32 100000 0:13 -O0 8:7 0.3

-O1 26:4 1

-O3 27:5 1.0

-Ofast 30:0 1.1

128 � 128 5000 2:1 -O0 8:7 0.3

-O1 26:5 1

-O3 27:5 1.0

-Ofast 29:8 1.1

512 � 512 500 34 -O0 8:5 0.3

-O1 25:5 1

-O3 25:8 1.0

-Ofast 28:4 1.1

2048 � 2048 25 544 -O0 8:5 0.4

-O1 24:6 1

-O3 24:9 1.0

-Ofast 27:4 1.1

levels of optimisation have a small effect on performance: the difference between the
first and third levels is minimal and -Ofast provides at most a 10% improvement.

13.3.3 Data Output and Post-Processing

Simulation codes often save the pressure (density) and velocity fields at regular
intervals during the simulation for further processing after the simulation ends. In
the example code accompanying the book, this data is written to files after initialisa-
tion and then every NSAVE timesteps. The relevant code from the main() function
is shown in Listing 13.16 and the save_scalar function is in Listing 13.17.

In this function, the specified data is written using a raw format, i.e. the data is
saved to the file in the same way that it is stored in memory. This choice offers
several advantages: it is fast, there is no loss of precision, and the file size is small
(compared with a text format with equivalent precision). Some disadvantages of the
raw format that is used here are that it is not “human-readable,” and it includes no
additional data that describes the simulation conditions or geometry.

One convenient way to save information about the simulation conditions together
with the output files is to create separate folders for each simulation run, display

13.3 Sequential Code 575

the simulation conditions in the code, and save the code’s output to a file.6 For
the previous benchmarks, the saving of density and velocity components both to
memory and to disk was disabled to avoid interference with the timing.

Listing 13.16 Code in the main for loop for saving simulation data at regular time intervals
for(unsigned int n = 0; n < NSTEPS; ++n)
{

bool save = (n+1)%NSAVE == 0;

stream_collide_save(f0,f1,f2,rho,ux,uy,save);

if(save)
{

save_scalar("rho",rho,n+1);
save_scalar("ux", ux, n+1);
save_scalar("uy", uy, n+1);

}

// ...

}

Listing 13.17 The save_scalar function that saves the contents of the supplied scalar field to
a file

void save_scalar(const char *name, double *scalar,
unsigned int n)

{
// assume reasonably-sized file names
char filename[128];
char format[16];

// compute maximum number of digits
int ndigits = floor(log10((double)NSTEPS)+1.0);

// generate format string
// file name format is name0000nnn.bin
sprintf(format,"%%s%%0%dd.bin",ndigits);
sprintf(filename,format,name,n);

// open file for writing
FILE *fout = fopen(filename,"wb+");

6On a command line, we can do this with output redirection. For example, ./sim > sim.out
on a Unix command line (or sim.exe > sim.out in Windows) runs the program sim and
saves its output to the text file sim.out. The output is not shown on the screen. To both display
and save the output we can use (on Unix systems) the tee command: ./sim | tee sim.out
where we have used a pipe, |, to send the output of one program to the input of another, in this
case tee.

576 13 Implementation of LB Simulations

// write data
fwrite(scalar,1,mem_size_scalar,fout);

// close file
fclose(fout);

}

The data produced by CFD simulations can be analysed in many ways to reveal
and present insights about the problems being studied. Below are listed some of the
tools commonly used to analyse and visualise simulation data. Some of the listed
software can directly use the output of the example code, while for others readers
will need to use libraries or write their own codes to save the data in the required
formats. Some popular software packages for data processing are:

• ParaView, an application for interactive visualisation that uses the Visualisation
Toolkit (VTK) libraries. Users can write code that exports their data in a VTK
format and then load it in ParaView.

• MATLAB, a platform for computation and data processing. The fread com-
mand can be used to load the output of the example code in this chapter.

• Spreadsheets. Text formats, such as comma separated value (csv) files are
convenient for small data sets, but are inefficient for large data sets, for which
binary files are preferable.

• Python and its many libraries that are available for performing computations (e.g.
SciPy) and generating graphics (e.g. matplotlib).

• Packages for LATEX such as TikZ, PGFPlots, and Asymptote. These packages are
often used to produce figures for publications, including many of the figures in
this book. Asymptote can also be used by itself outside of LATEX documents as a
general purpose language, like Python or MATLAB, and to generate vector and
3D graphics.

Simulations can easily produce very large datasets that become impractical to
analyse. Saving the whole simulation domain every time step is usually unnecessary,
and could quickly fill many hard drives. Some quantities of interest, however, can be
efficiently computed during the simulation, eliminating the need to save and process
data later.

In the example code, we are performing a convergence study and could compute
the error in the results by loading the output data. Instead, we compute the errors
in the solution as the simulation runs and the required data is still in memory.
Listing 13.18 shows the function that computes the kinetic energy in the flow and the
L2 errors in the density and velocity as compared with the analytical solution (we
re-use here the same function that computes the initial conditions). This function
simply iterates over the simulation domain, accumulating several sums. The four
computed values are then saved in an array. Though simple in this version, this
function will be used to demonstrate several concepts in parallel programming in
Sect. 13.4.

13.3 Sequential Code 577

Listing 13.18 The compute_flow_properties function that computes the kinetic energy
of the flow and the L2 errors between the computed and analytical quantities of density and velocity
components

void compute_flow_properties(unsigned int t, double *r,
double *u, double *v, double *prop)

{
// prop must point to space for 4 doubles:
// 0: energy
// 1: L2 error in rho
// 2: L2 error in ux
// 3: L2 error in uy

double E = 0.0;

double sumrhoe2 = 0.0;
double sumuxe2 = 0.0;
double sumuye2 = 0.0;

double sumrhoa2 = 0.0;
double sumuxa2 = 0.0;
double sumuya2 = 0.0;

for(unsigned int y = 0; y < NY; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

double rho = r[scalar_index(x,y)];
double ux = u[scalar_index(x,y)];
double uy = v[scalar_index(x,y)];
E += rho*(ux*ux + uy*uy);

double rhoa, uxa, uya;
taylor_green(t,x,y,&rhoa,&uxa,&uya);

sumrhoe2 += (rho-rhoa)*(rho-rhoa);
sumuxe2 += (ux-uxa)*(ux-uxa);
sumuye2 += (uy-uya)*(uy-uya);

sumrhoa2 += (rhoa-rho0)*(rhoa-rho0);
sumuxa2 += uxa*uxa;
sumuya2 += uya*uya;

}
}

prop[0] = E;
prop[1] = sqrt(sumrhoe2/sumrhoa2);
prop[2] = sqrt(sumuxe2/sumuxa2);
prop[3] = sqrt(sumuye2/sumuya2);

}

578 13 Implementation of LB Simulations

13.3.4 LBM Algorithm Optimisations

We present here as exercises two directions that readers can pursue to further
improve the efficiency of their LBM implementations. The first option is to enhance
the use of memory: by carefully updating the populations we can avoid keeping two
sets in memory. This is particularly useful for architectures with restricted memory
capacity, such as GPUs (see Sect. 13.4.3).

Exercise 13.9 Implement one or more of the single-lattice streaming methods as
reviewed in [5] and compare the speed with that of the code presented in this chapter.
Can you achieve comparable or better speed while using half the memory? The
article also considers the use of non-temporal stores, which are special instructions
that bypass the caches when writing data to memory. Does the use of non-temporal
stores improve the code in this chapter?

The second opimisation involves the special case of a relaxation time equal to
one. In this case, the post-collision populations are the equilibrium populations and
therefore do not depend on the populations in the previous time step. We therefore
only need to store the macroscopic variables and compute the populations only
where they are needed from the macroscopic quantities. This approach is discussed
in [6].

Exercise 13.10 Write an optimised code for the case of D 1. Store only the
density and velocity data at each node in memory. To perform streaming and
collision at each lattice node, read the densities and velocities at adjacent nodes,
compute the populations that propagate from these adjacent nodes to the current
node, and compute and store the new density and velocity at that node. How much
does performance improve over the un-optimised case? Can you reduce the number
of times that the density and velocity data for each node are read?

13.4 Parallel Computing

Parallel computing is the use of computational hardware that can perform multiple
operations simultaneously, and there are two main motives for using parallel
computing for simulations.

The strongest and perhaps most obvious motive is to finish simulations faster.
When the speed of simulations is increased, simulations of larger physical domains
(or higher resolutions for the same physical size) and more simulations at different
conditions become feasible to perform in a given amount of time. Furthermore,
additional physical phenomena can be modelled and functions can be evaluated
more accurately (for example by using more terms of a series).

The second motive for parallelisation is to overcome resource contraints in a
cost-effective manner. When the memory required by a simulation far exceeds the

13.4 Parallel Computing 579

capacity of typical computers, one could purchase or create a specialised system
with more memory. For some simulation algorithms, however, higher performance
can be achieved at a lower cost by instead connecting several low-capacity systems
with each other via a high speed network. This is the case for LBM simulations
because their performance is largely determined by the available memory bandwidth
(the rate at which memory can be read or written), which increases as more
processors with independent memory systems are added to the network.

The central challenge in parallel computing is determining how to allocate tasks
to available resources that can perform them simultaneouly. It is here that we can
see the differences between algorithms that are amenable to parallelisation and those
that are not. Ideally, an algorithm would finish n times faster or process n times more
data in a fixed time when n times more processors are used. However, if every step
in an algorithm uses the outcome of the previous step, this algorithm cannot make
use of additional resources and must run sequentially. Fortunately, this is the worst
case scenario and it is not encountered often.

In the LBM example we consider in this chapter, the task of updating each node
of the domain requires only one component of the distribution at each adjacent
node in the previous time step. Parallelisation of such LBM simulations is therefore
straightforward: the simulation domain is divided into several subdomains, and each
subdomain is updated independently. If needed, data for the directions that cross
subdomain boundaries are shared between the devices performing the computations
for each subdomain.

Parallel processing can be achieved in many different ways. Basic parallel
operations are incorporated into the individual CPU cores, such as vector arithmetic
instructions that perform the same operation on 4 quantities that form a vector. CPUs
can also simultaneously execute commands that require different circuits, for exam-
ple integer and floating point arithmetic. Use of such features is usually automatic,
handled during compilation of code or during the execution of instructions by the
CPU. Provided that they do not compete for access to external resources, the cores
within CPUs and the separate (multi-core) CPUs in computers can perform arbitrary
operations simultaneously. Some compilers and languages provide features that
automatically identify tasks that can execute in parallel and handle the allocation
of these tasks to available resources, but this automation is not yet complete and
programmers may need to provide information to guide and optimise the automatic
parallelisation.

The programming techniques and tools used to program parallel system depend
on how the processors and memories that make up a parallel computer are organised.
In shared memory systems, numerous cores share access to a single large memory.
The CPUs operate independently and communicate through variables in the shared
memory. A benefit of this arrangement is that communication is fast and all
processors can access the whole data set that is being processed. However, the
shared memory is organised in a hierarchy and cores can read and write some
portions of memory faster than others. For example, each CPU may have a direct
connection to a portion of the installed RAM chips. Access to data stored on these
chips is fast, while access to data on other chips is slower because it involves

580 13 Implementation of LB Simulations

memory controllers belonging to other CPUs. Since the number of cores usually
exceeds the number of memory access channels, limited total memory bandwidth
remains an obstable to high parallel efficiency (per core) of memory-intensive
algorithms. In general, shared memory systems are better for tasks that benefit from
the ability of each core to access the whole data set, eliminating the need for cores
to share large quantities of data between each other over a network.

In contrast, distributed memory systems consist of multiple computers with
independent memory systems that communicate via a network. The advantage of
such systems is their independent memories, making them beneficial for parallel
computing tasks that do not require significant communication of data between
processors. These systems are highly appropriate and useful for LBM simulations,
in which the updating of each subdomain requires only a small fraction of the data
from adjacent subdomains.

In addition to shared and distributed memory systems that combine conventional
processors, systems with specialised co-processors for parallel computing are also
available. These co-processors are controlled by a conventional CPU host system
and are optimised for performing a particular task. In this chapter, we will consider
GPUs, which have hundreds to thousands of arithmetic units that are limited to
performing the same operation simultaneously on different data. These devices also
have fast access to dedicated memories that are separate from their host system’s
memory.

Modern clusters combine often all three of these types of parallel processing:
They consist of thousands of networked servers each having several multi-core
CPUs and one or more GPUs. The sections that follow in this chapter describe
programming for the three situations, and readers can combine the techniques into
programs suitable for hybrid clusters. Section 13.4.1 introduces the use of OpenMP
to facilitate programming for a multi-core multi-CPU environment with shared
memory. Use of OpenMP will allow readers to take advantage of the multiple
cores that are most likely already available on their laptops, desktop workstations,
or servers. Programming for a cluster of servers with a high-speed network is
introduced in Sect. 13.4.2. The concepts and code presented in this section can be
used on high performance clusters with hundreds to hundreds of thousands of CPUs.
Finally, Sect. 13.4.3 introduces the use of GPUs.

13.4.1 Multithreading and OpenMP

On computers with one single-core CPU, multitasking operating systems provide
the illusion that several programs are executing simultaneously. Such operating
systems achieve this illusion by rapidly switching between programs many times
per second: they interrupt the running program, save the state of the CPU, load the
state of the CPU for another program, and then resume execution of that program.

On a system with one or more multi-core CPUs, the operating system schedules
programs to run truly simultaneously on the available processors. To utilise multiple

13.4 Parallel Computing 581

cores for computational tasks, one may run several programs that communicate
with each other. This approach, however, could be inefficient and introduces several
programming complexities because operating systems isolate programs to maintain
security and allocate resources. Many tasks that benefit from parallel execution,
including the computational tasks we are interested in, do not require this isolation
and are hampered by it.

Operating systems provide mechanisms for performing multitasking with less
overhead than full programs. Threads are units of code that, like a program,
are scheduled by the operating system to run simultaneously or share time
on the available processors. Unlike a full program, they inherit some of the
resources of their parent program, such as its memory address space. The
common address space is particularly important because it allows threads to
share pointers and easily access the same regions of memory.

To facilitate programming and hide the operating system-specific details of
setting up and managing multiple threads, the OpenMP Architecture Review Board
(ARB) publishes and maintains the specifications of a collection of tools called
OpenMP (Open MultiProcessing) for C, C++, and Fortran [7]. The specifications
describe a collection of special statements called directives, a library of functions,
and a set of environment variables that together describe how code execution is
split among threads and how data is shared between them. The OpenMP ARB
does not provide implementations of these tools. Instead, compiler authors choose
whether to support OpenMP directives and provide the required libraries. Support
for OpenMP is included in many compilers, both commercial and free, for a wide
range of operating systems and computer architectures. In this chapter, we consider
features that are available at least since version 3.1 of OpenMP [8]. At the time of
writing, a more recent version with additional features is also available [9].

13.4.1.1 OpenMP Directives

The OpenMP directives that are used to describe when and how threads are created
to execute blocks of code are structured as special pre-processor directives in C
and C++ and as comments in Fortran. In this section we consider only OpenMP
for C and C++. Pre-processor directives are special statements in code that are not
a part of the language but rather provide additional information to the compiler.
OpenMP directives begin with #pragma omp, which is followed by the name of
the directive and then a list of options that are called clauses. A long directive,
such as one with many clauses, can be split across several lines by using the line
continuation character \ at the end of each line that continues on the next line.

582 13 Implementation of LB Simulations

This and the following sections introduce the directives and clauses that are
essential to using OpenMP and those that are used in a sample parallel LBM code
(Sect. 13.4.1.4). Readers may consult the OpenMP specifications [8] or publications
about them for a full reference of all features. Many online tutorials, such as [10]
are also available.

The most important directive in OpenMP is the parallel directive that
indicates that the subsequent block of code is to be run by several threads.
Regions of sequential code, i.e. code that is outside a parallel block, are
executed by what is called the master thread.

Upon starting the parallel block, OpenMP creates additional threads to form
a team of threads, all of which execute that block of code. The threads are assigned
an identification number starting with zero for the master thread. Logic within
the parallel block can use the thread’s identification number, provided by the
function int omp_get_thread_num(), to perform a different task in each
thread. The number of threads that are executing the block can be obtained with the
int omp_get_num_threads() function. Listing 13.19 provides a minimal
example of the use of these functions and the parallel directive. Upon reaching
the end of the parallel section, the master thread by default waits until all threads
finish and then continues with the sequential code after the parallel block.

Listing 13.19 Example code showing the use of the parallel directive
// ...
// sequential code

#pragma omp parallel
{

// block of code to be executed by several threads

// get identification number of thread
int id = omp_get_thread_num();

// get number of threads executing block
int threadcount = omp_get_num_threads();

// determine task to perform
// based on id and threadcount

}

// sequential code
// ...

13.4 Parallel Computing 583

The number of threads used to execute a parallel section may be specified in
several ways. In order of precedence from highest to lowest, the methods are:

1. the num_threads clause of the parallel section,
2. the number specified by the most recent call to void omp_set_num_

threads(int),
3. the value of the OMP_NUM_THREADS environment variable, and finally
4. an implementation-specific default that is often the number of available proces-

sors.

Since it is unlikely that a specific number of threads is best for all systems that a
program may run on, the use of the num_threads clause is generally not advised.
It is more convenient to be able to specify the number of threads at the time the
code is executed either by using the environment variable OMP_NUM_THREADS or
through a configuration option of the program (perhaps a command line option or
an option in a configuration file) and a call to omp_set_num_threads(int).

A multithreaded version of the sequential LBM code (Sect. 13.3.2) could now
be implemented using only the parallel directive. For example, the for loops
that iterate over the nodes in the domain could be modified so that each thread
simultaneously updates a portion of the domain as determined by its identification
number. However, it is more convenient and elegant to use specialised directives to
achieve this task.

The parallel for directive, shown in Listing 13.20, automates the allo-
cation of iterations of for loops to different threads. The omp parallel
for directive is a shortcut for an omp for directive inside a parallel
block.

Listing 13.20 Example of OpenMP parallel for directive
#pragma omp parallel for
for(int n = 0; n < N_MAX; ++n)
{

// iterations executed by different threads
}

Like specifying the number of threads for a parallel block, clauses or
environment variables can be used to indicate the way that the iterations of the for
loop are split among the threads. With these options, programmers can ensure that
the threads are allocated an equal share of the work. When work is shared evenly,
processor time is not wasted waiting for some threads to finish. The clauses for the
three types of scheduling are:

• schedule(static,chunk) where static is the name of the scheduling
method (in this case the literal text static) while chunk must be an integer.

584 13 Implementation of LB Simulations

This must be an explicitly-written integer, not a variable. With static schedul-
ing, the threads are allocated chunk iterations in order by their identification
number. This allocation can be imagined to be the same as dealing cards: chunk
iterations are “dealt” to each thread until none remain. Naturally, the last set of
iterations dealt to a thread will be smaller than chunk if the total number of
iterations is not a multiple of chunk. If chunk is not specified, the iterations
are split as evenly as possible among the threads. This type of scheduling is
useful when the workload in each iteration is known to be equal, in which case
the threads can be expected to finish their work in the same amount of time when
given the same number of iterations to perform.

• schedule(dynamic,chunk) In dynamic scheduling, each thread first
performs the number of iterations specified by chunk. When a thread completes
its initial allocation, it is assigned the next set of chunk iterations until all have
been completed. The default value for chunk in this case is one. This type of
scheduling is useful when workload varies between iterations because it allows
threads that happen to be assigned quick iterations to perform more of them.

• schedule(guided,chunk) This type of scheduling is similar to dynamic
scheduling, but the number of iterations allocated to a thread that completes
its initial allocation decreases over time, staying proportional to the number of
iterations that remain to be performed. For this scheduling option, the parameter
chunk specifies the minimum number of iterations that can be allocated to a
thread and defaults to one.

Another possible clause, schedule(auto) defers selection of the iteration
allocation scheme to the compiler or OpenMP libraries. For our purposes,
static scheduling is sufficient because every iteration of the outermost for
loops that we will parallelise performs an equal amount of computations. If
the schedule(runtime) clause is used, the OMP_SCHEDULE environment
variable determines how the threads execute the iterations of the loop.
The format of the OMP_SCHEDULE variable is a string with the name
of the scheduling method optionally followed by a comma and the chunk
size. The third alternative for setting the scheduling method is the void
omp_set_schedule(omp_sched_t,int) function. As for setting the
number of threads, the clause has the highest precedence, followed by the function
call, and the environment variable has lowest precedence.

Now that we have seen how to designate blocks of code that will be executed in
parallel by several threads, we need to consider how the threads use the variables
that they share access to and how data is shared between parallel and sequential
sections of code. This is the topic of the next section, Sect. 13.4.1.2.

13.4.1.2 Data Sharing

The parallel and parallel for directives presented in Sect. 13.4.1.1 accept
clauses that specify how threads handle variables that all threads can access because

13.4 Parallel Computing 585

they are declared outside a parallel block. Wrong specifications are a common
reason for incorrect behaviour of a multithreaded OpenMP program, and therefore
this topic deserves special attention.

Each thread has its own copy of every variable that is declared inside a
parallel block. These variables cannot be accessed after the block ends, and
the data in them is lost. Two options are available for variables that are declared
before a parallel region and are used inside it: the threads may all share access
to the one copy of that variable that is used in the sequential regions of the code, or
they may each have their own copy. Variables are designated as being shared among
threads with the shared(variable_list) clause, where variable_list
is a comma separated list of variable names. When variables are shared, threads may
read or write to these variables at any time. Therefore care must be taken to ensure
that the memory accesses occur in the correct order.

Consider, for example, the statement x = x+1 as it is being executed by two
threads with x being a shared variable. The outcome is ill-defined. The two threads
might initially read the same value then both write the same result, or one thread
might read x after the other has already written it, causing the variable to be
incremented twice. To specify the intended outcome of such situations, OpenMP has
a #pragma omp critical directive that defines sections of code than can only
be executed by one thread at a time. Threads that reach a critical section while
another is executing it must wait until the executing thread finishes. An example that
shows the use of this directive is given in Listing 13.21.

Listing 13.21 Example showing the use of the critical directive. This code computes the sum
of the threads’ identification numbers.

int x = 0;
#pragma omp parallel shared(x)
{

int id = omp_get_thread_num();
#pragma omp critical
{

x = x+id;
}

}
printf("x = %d\n",x);

The private(variable_list) clause is the second option for
variables declared outside a parallel block. Threads have their own
versions of all variables in the variable_list, and all these variables
must be initialised in every thread. Alternatively, variables may be listed in a
firstprivate(variable_list) clause to request that the value in each
thread be automatically initialised with the value of the variable prior to entering
the parallel section. These private variables can be thought of as entirely
different variables that only happen to share the same name as a variable outside
the parallel block. Any data stored in private variables will not affect the
variable with the same name that exists outside the parallel block—this variable
is unchanged by the execution of the parallel block.

586 13 Implementation of LB Simulations

For convenience, one may also specify that variables not listed in other clauses
are by default shared using the clause default(shared). However, this is not
recommended because it may lead to an incorrect classification for an overlooked
variable. Instead, beginners are advised to use default(none) which requires
each variable used inside the parallel block to be explicitly listed in a data
sharing clause. If a variable is accidentally omitted, compilation will end with an
error, forcing the programmer to evaluate how that variable should be handled.

The data sharing clauses of parallel for directives are the same as those
for parallel directives together with two additional clauses. The first is the
lastprivate(variable_list) clause that indicates that variables will be
treated as private in all threads but the value computed in the final iteration of
the loop will be saved to the corresponding variable with the same name outside
the parallel for block. In other words, after execution of the for loop in
parallel, the variable has the same value as it would have if the loop had been
executed sequentially. Note that the final iteration is not necessarily the iteration
that is executed chronologically last by the threads: the thread that is allocated the
final iteration might finish earlier than other threads.

The second additional clause that is available in parallel for directives
simplifies the implementation of many algorithms. In a simulation, one might need
to compute perhaps the sum, product, or minimum/maximum of a quantity at every
node in the domain, thereby summarising or “reducing” the values at every node
to one value for the whole domain. Though one could write the required code
to perform this task with the previously-presented OpenMP concepts, use of the
reduction memory sharing method simplifies the task and helps avoid common
errors.

The syntax for this second clause is reduction(op:variable_list)
where op is one of the operators: +, *, -, &, |, ^, &&, ||, min, or max. The
meanings of these operators are the same as the corresponding C/C++ arithmetic,
bitwise, and logical operators. The latter two operators return the minimum or
maximum value, respectively. For each variable listed in variable_list, every
thread receives a private variable that is initialised appropriately for the chosen
reduction operator (0 for + and 1 for *; the required initialiser for each operator
is intuitive and readers may consult the OpenMP standard [8] for the details for
other operators). At the end of the execution of the parallel for section, the
value of the variable that can be used in the subsequent sequential code (like a
shared variable) is computed by applying the specified operator to the initial value
of the variable (before the start of the parallel for section) and all the private
variables of each thread. An example showing the computation of 1CP10

kD1 k and
2
Q10

kD1 k is shown in Listing 13.22. Note that reductions involving floating point
arithmetic that are performed in parallel will not necessarily provide exactly the
same result as a sequential reduction due to rounding error and the different order
of evaluation.

13.4 Parallel Computing 587

Listing 13.22 Example showing the use of reduction operations with OpenMP
int sum = 1;
int product = 2;

#pragma omp parallel for default(none) \
reduction(+:sum) reduction(*:product)

for(int y = 1; y <= 10; ++y)
{

sum = sum + y;
product = product*y;

}

printf("sum = %d\n",sum);
printf("product = %d\n",product);

13.4.1.3 Compiling and Running OpenMP Code

In GCC, support for OpenMP directives and linking with OpenMP libraries is
enabled with the -fopenmp compiler flag. To compile a program contained in
only one C++ source file, a possible command is

g++ -Ofast -fopenmp simulation.cpp -o sim

When the source code for a program is split among several files, all files that use
OpenMP directives must be compiled with the -fopenmp option and the command
that links the object files must also have -fopenmp to link with the OpenMP
libraries. For example, the commands

g++ -Ofast -fopenmp source_openmp.cpp -o source_openmp.o
g++ -Ofast source_no_openmp.cpp -o source_no_openmp.o
g++ -fopenmp source_openmp.o source_no_openmp.o -o sim

compile one C++ file with OpenMP directives (source_openmp.cpp) and
one without (source_no_openmp.cpp) then link the resulting object files and
OpenMP libraries to generate the executable sim.

As discussed in the preceding sections (Sect. 13.4.1.1 and Sect. 13.4.1.2), several
environment variables can be used to affect the behaviour of programs that use
OpenMP. For reference, these may be set on the command line or in a shell script
by using the command

export OMP_ENV_VAR=value

in the Bourne family of shells, which includes sh and bash, or the command

setenv OMP_ENV_VAR value

588 13 Implementation of LB Simulations

for C shells (csh and tcsh). In both these examples, OMP_ENV_VAR is the
name of an OpenMP environment variable such as OMP_NUM_THREADS or
OMP_SCHEDULE, and value is its new value. With the environment variables set
as desired, the program may then be run as usual:

./sim

OpenMP codes can also be run on clusters with many more cores than typical
workstations. For more information on using the scheduling software that manages
resources on such clusters and find out how to request resources and schedule
simulations for execution, see Sect. 13.4.2.6.

13.4.1.4 Multithreaded LBM Implementation

Modifying the previous simulation code (Sect. 13.3.2) to support multithreading
with OpenMP is reasonably straightforward. First, we #include the omp.h
header file that declares the OpenMP functions and variables. We then add some
informative output about the OpenMP runtime environment to the main function:

printf("OpenMP information\n");
printf(" maximum threads: %d\n", omp_get_max_threads());
printf(" processors: %d\n", omp_get_num_procs());
printf("\n");

Next, we indicate which for loops will be executed by several threads. The most
important loop to parallelise in this way is the loop that updates the populations fi
every time step in the stream_collide_save function:

void stream_collide_save(double *f0, double *f1, double *f2,
double *r, double *u, double *v,
bool save)

{
const double tauinv = 2.0/(6.0*nu+1.0); // 1/tau
const double omtauinv = 1.0-tauinv; // 1 - 1/tau

#pragma omp parallel for default(none) \
shared(f0,f1,f2,r,u,v,save) schedule(static)

for(unsigned int y = 0; y < NY; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

// same code as in serial version
}

}
}

All the pointers and the boolean variable have been specified as shared because
the same values need to be visible to all threads. Alternatively, these variables
could also have been declared as firstprivate because their values are never

13.4 Parallel Computing 589

changed. The performance implications of this choice are left to interested readers
to investigate. Static scheduling is selected because the time to complete of each
iteration of the loop is expected to be nearly the same though caching issues may
cause some variation between iterations. Note that the const variables tauinv
and omtauinv do not require a data sharing specification. Since they cannot be
written to, they are automatically treated as shared. Note also that because the
pointer variables themselves are not changed (only the memory at the location they
point to is altered) they could be declared const in the function declaration. With
this qualifier, the type of data sharing required for the pointer variables would not
need to be indicated.

With only a single OpenMP directive, you can parallelise the main domain
update loop of your simulation and make use of the multiple cores available
on most computers.

Exercise 13.11 Of the two nested for loops, which is better to parallelise and
why?

Exercise 13.12 Instead of allocating multiples of complete rows of the simulation
domain to each thread, write an OpenMP program in which each thread updates a
fraction of the domain in both dimensions (i.e. two dimensional domain decompo-
sition instead of one dimensional decomposition). Does this strategy increase the
speed of the simulation? Does your conclusion depend on the size of the simulation
domain and the number of cores and CPUs on your system?

Exercise 13.13 Try different scheduling methods for the threads and vary their
chunk sizes. Which method offers the best performance? How does performance
relate to cache use? Does synchronisation, i.e. #pragma omp barrier, at the
end of each row help prevent one core from getting too far ahead of others?

Though parallelisation of additional loops does not have a significant impact
on the performance of the whole program, we do so to illustrate several features.
The function that initialises the particle populations, init_equilibrium, runs
only once, and therefore decreasing its runtime provides a negligible improvement
in the total runtime of the program. Similarly, the functions that compute the
exact solution and the error in the numerical solution (taylor_green and
compute_flow_properties, respectively) run infrequently compared to
the main domain update function. The outer for loops in taylor_green
and init_equilibrium are parallelised identically to the for loop of
stream_collide_save: all variables are shared and the scheduling is static.

The parallelisation of the compute_flow_properties function illustrates
the use of reduction variables. For reference, the complete multithreaded version
of this function is shown in Listing 13.23. Seven variables in this function are used
to compute cumulative sums of quantities at every position in the domain. These

590 13 Implementation of LB Simulations

variables are therefore listed in a reduction clause with the + operator. Each
thread has a set of private variables, all automatically initialised to zero, that are used
to compute the required sums for the nodes handled by each thread. The remainder
of the function is the same as in the sequential case (c.f. Listing 13.18).

Listing 13.23 Multithreaded version of the compute_flow_properties function that
illustrates the use of reduction variables

void compute_flow_properties(unsigned int t,
double *r, double *u, double *v,
double *prop)

{
// prop must point to space for 4 doubles:
// 0: energy
// 1: L2 error in rho
// 2: L2 error in ux
// 3: L2 error in uy

double E = 0.0; // kinetic energy

double sumrhoe2 = 0.0; // sum of error squared in rho
double sumuxe2 = 0.0; // ux
double sumuye2 = 0.0; // uy

double sumrhoa2 = 0.0; // sum of analytical rho squared
double sumuxa2 = 0.0; // ux
double sumuya2 = 0.0; // uy

#pragma omp parallel for default(none) shared(t,r,u,v) \
reduction(+:E,sumrhoe2,sumuxe2,sumuye2, \

sumrhoa2,sumuxa2,sumuya2) \
schedule(static)

for(unsigned int y = 0; y < NY; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

double rho = r[scalar_index(x,y)];
double ux = u[scalar_index(x,y)];
double uy = v[scalar_index(x,y)];

E += rho*(ux*ux + uy*uy);

double rhoa, uxa, uya;
taylor_green(t,x,y,&rhoa,&uxa,&uya);

sumrhoe2 += (rho-rhoa)*(rho-rhoa);
sumuxe2 += (ux-uxa)*(ux-uxa);
sumuye2 += (uy-uya)*(uy-uya);

sumrhoa2 += (rhoa-rho0)*(rhoa-rho0);
sumuxa2 += uxa*uxa;
sumuya2 += uya*uya;

}

13.4 Parallel Computing 591

}

prop[0] = E;
prop[1] = sqrt(sumrhoe2/sumrhoa2);
prop[2] = sqrt(sumuxe2/sumuxa2);
prop[3] = sqrt(sumuye2/sumuya2);

}

13.4.1.5 Performance Results

Figure 13.6 presents the speed of the OpenMP version of the simulation code.
These simulations were run on the same quad-core Intel Xeon W3550 CPU that
was used for the single core benchmarks (Sect. 13.3.2). To avoid competition for
resources with other running programs, the system was first restarted and then only
the simulations were run. Representative results are shown for four domain sizes,
and each point is an average of three runs. For reference, a dashed line shows ideal
parallel performance for which the speed would be proportional to the number of
threads.

The actual improvement achieved by increasing the number of threads is lower
than in the ideal case. Understanding the performance of multithreaded code on
shared memory systems is complex because it depends on many system-specific
details such as:

• the number of CPUs present,
• the number of cores per CPU,
• cache sizes,
• the sharing of caches between cores,

Fig. 13.6 Speed of multithreaded simulations with several domain sizes using 1 to 4 threads
running on a quad-core Intel Xeon W3550 CPU

592 13 Implementation of LB Simulations

• the sharing of data between caches to avoid access to RAM,
• the number of memory channels between the CPUs and RAM, and
• how the operating system schedules the threads on the available cores and CPUs.

While the details of how performance depends on the domain size and number of
threads are architecture-dependent, a generalisation is possible for memory-intense
algorithms like LBM simulations: on typical contemporary systems, the available
memory bandwidth will be exhausted when simulating large domains before the
number of threads equals the number of cores.

In Fig. 13.6, we see that the speed increases nearly ideally for the two smaller
domain sizes, but for the two larger domain sizes, the use of four threads provides
only a minimal improvement over three threads. The loss of performance appears
to coincide with the domain size exceeding the capacity of the L3 cache, which
is shared by all cores on the CPU that was used. The lower speed of the smallest
domain (32�32) compared to the next smallest (128�128) suggests an inefficiency
in the sharing of data between the cores’ caches. For comparison, Fig. 13.7 presents
the speed of simulations run with 1 to 20 cores on a system with two 10-core
processors.

Exercise 13.14 On multi-core and multi-processor systems, operating systems may
allocate threads to run on different cores over time. Investigate how to force your
operating system to always schedule each thread on a particular core. Does this
improve performance? Why?

Exercise 13.15 Look up and compare the characteristics of the caches in the
processors used for Figs. 13.6 and 13.7. Determine the sizes of the caches and how
they are shared by the cores of each CPU. What roles do caches play in determining

Fig. 13.7 Speed of multithreaded simulations with several domain sizes using 1 to 20 threads
running on a system with two 10-core Intel Xeon E5-2660 v2 CPUs

13.4 Parallel Computing 593

how speed depends on domain size (memory transferred per domain update) in
multithreaded programs?

A detailed discussion of the reasons for the observed performance of the
multithreaded simulations is beyond the scope of this section. To reach higher
speeds, we require multiple CPUs that do not compete for memory bandwidth.
This is commonly achieved by connecting many otherwise independent computers,
such as small form factor server-type units, through a high-speed and low-latency
network. Programming such systems is the subject of Sect. 13.4.2.

13.4.2 Computing Clusters and MPI

Computing clusters can be conceptually understood as collections of many com-
puters, often called nodes,7 that communicate with each other but are otherwise
independent. The need for high data transfer rates and low latencies, which are
the delays in starting a data transfer, has led to the development of specialised
interconnect hardware that transfers data between the nodes of a cluster. The
most common choice of interconnect on contemporary supercomputers, InfiniBand,
provides data transfer rates exceeding 10 Gbps (1010 bits per second) and latencies
on the order of one microsecond. Since a variety of vendors provides InfiniBand and
other high-performance interconnects for clusters, programming such systems and
adapting code to run on different systems would be rather complex in the absence
of a standard programming interface.

The Message Passing Interface (MPI) standard describes a collection of pro-
tocols, data structures, and routines for the processes in a parallel program to
exchange data, called messages, with each other and synchronise their operations.
Developed by the MPI Forum [11], this standard describes methods for performing
these tasks that hide the details of the underlying hardware devices and operating
systems that actually carry them out. Code written using MPI is therefore highly
portable, and when written carefully, it can efficiently use the resources of an
individual shared memory machine, a small cluster of computers, or the world’s
largest supercomputing clusters [12].

Since the first version of MPI (MPI-1.0) was released in 1994, the standard has
undergone many revisions and updates to add new features that facilitate the efficient
use of continually advancing hardware capabilities. The most recent version is
MPI-3.1 (June 2015). In this section, however, we consider only features available
since MPI-1, specifically version MPI-1.3 [13] from 2008. Implementations of
this version are widely available, and it is sufficient for demonstrating the core
capabilities of MPI and the use of clusters for parallel computing.

7Where the term “node” is potentially ambiguous, we use the more specific terms “computing
node” and “lattice node” for clarity.

594 13 Implementation of LB Simulations

Many implementations of MPI are available from hardware and software vendors
as well as open source versions by several groups. This chapter uses only standard
MPI features, and the code that is presented has been tested with the open source
Open MPI implementation [14]. This chapter does not cover the installation and
configuration of clusters or MPI, and we assume readers have access to a working
cluster. Interested readers without access to a company or academic cluster can
try the code examples by purchasing resources from commercial cloud computing
providers, such as Amazon8.

In addition to the original reference documents from the MPI Forum [15],
documentation is available from Open MPI [16], many online tutorials (such
as [17]), and books (such as [18]).

13.4.2.1 MPI Concepts

When working with MPI, we write a single program that we then run numerous
times simultaneously on one or more computers. Each of the processes is assigned
an identification number called a rank, and it performs its own subset of the required
calculations and coordinates its work and shares data with other processes by
communicating with them over the interconnect. The MPI standard defines a set
of functions, constants, and data structures [13] that assist the development of such
a program. All names defined by MPI begin with MPI_. The functions perform
a wide variety of tasks and can be divided into two main categories: functions
for communication and functions for querying and modifying the state of MPI
systems. The communication functions are further divided into two subcategories,
point-to-point and collective communications, depending on how the processes that
communicate are connected with each other. Of these two types of communications
functions, point-to-point functions involve the sending and receiving of messages
between two processes. Collective communication operations involve data transfers
between a group of processes, such as sending data from one process to all others
or receiving data in one process from the others. A sketch of the two types
of communication methods is shown in Fig. 13.8, and concrete examples of the
communications functions will be presented in Sect. 13.4.2.2.

The MPI functions for communication between processes include a parameter
that selects the processes that will be involved in the data transfers. When an MPI
program is launched on a cluster, the MPI-capable executable is started by many
processes scattered across the cluster’s nodes. In MPI-1, the number of running
processes is constant and specified at launch time, while in later versions the number
of processes can change during execution. The processes running an MPI program
may be grouped to help manage work sharing and communication. For example,
a simulation domain could be split into a multi-level hierarchy of subdomains, and
some data might only need to be shared among the processes that handle a particular

8http://aws.amazon.com/hpc/

http://aws.amazon.com/hpc/

13.4 Parallel Computing 595

Fig. 13.8 Five processes, each identified by a unique rank, exchange information between each
other using point-to-point communications (solid arrows) and a collective communication (dashed
arrows). The arrows show the directions of the data transfers

subdomain. In this chapter we use a fixed number of processes and do not perform
any grouping of them. In the MPI communication functions, we must therefore
specify that we want communication to occur between all processes. The necessary
parameter is a reference to an MPI object called a communicator that manages
communications between the processes in a group. The required communicator for
our purposes is the built-in communicator named MPI_COMM_WORLD that requests
communication among all the processes in the program’s “world.”

The sections that follow present the MPI functions that are relevant to paral-
lelising the LBM code and related MPI functions that are also available. Most
MPI functions return error codes. Though useful for debugging, these values are
discarded in the example code.

13.4.2.2 MPI LBM Implementation

We now proceed to modify the sequential version of the Taylor-Green vortex decay
LBM code (Sect. 13.3.2) to create a parallel version using MPI.

The first step for implementing the MPI version of the LBM code is to add
#include<mpi.h> at the beginning of any source files that use MPI. This loads
the declarations for MPI functions and variables. Next, at the start of the main
function, we initialise the MPI library with MPI_Init (this must be matched by a
call to MPI_Finalize(void) in every process at the end of the program) and
then save both the rank of the process and the number of processes that are running
as follows:

int rank, nprocs;

// initialise MPI
MPI_Init(&argc,&argv);

// save rank of this process
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

// save number of processes
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);

596 13 Implementation of LB Simulations

Here MPI_COMM_WORLD refers to the communicator for the group of all running
processes (Sect. 13.4.2.1). We are therefore requesting the number of processes in
this group, and each running instance of the program requests its rank within this
group. These ranks range from 0 to nprocs-1. We next display the number of
processes being used:

if(rank == 0)
{

printf("Simulating Taylor-Green vortex decay\n");
// ...
printf("\n");
printf("MPI information\n");
printf(" processes: %d\n",nprocs);
printf("\n");

}

Without the initial conditional statement if(rank == 0) the output would be
unnecessarily repeated by each process. The MPI tools used to launch the processes
also manage their output, combining it so that users can see (or save to a file) the out-
put from all processes. We next synchronise all the processes with the function call

MPI_Barrier(MPI_COMM_WORLD);

In each process, this function does not return until all processes have called it. This
synchronisation can be thought of as a barrier because no process may proceed until
all processes reach this point in the code. The reason for the synchronisation here is
cosmetic. Without it, all processes with nonzero rank would skip the initial display
statements and continue, causing their output to appear in between the initial output
from rank 0.9

Next, we use each process’s rank and the total number of processes to calculate
which portion of the domain each process will handle. For simplicity, we consider
only one dimensional domain decomposition into subdomains consisting of several
complete rows of the domain along the x direction. Two variables keep track of the
allocated portion: rank_ny stores the number of rows and rank_ystart is the
y coordinate of the first row. The simulation domain is split as evenly as possible. If
the size of the domain in the y direction is not divisible by the number of processes,
each process with rank less than the remainder is assigned one additional row. An

9Depending on how the MPI implementation combines the output from the different processes, this
synchronisation might not have the desired effect. Later output from rank 1, for example, might
appear before any output from rank 0. If it is essential for the order of output to be synchronised,
the data to be output from all ranks can be sent to one rank that displays it all in the correct order.

13.4 Parallel Computing 597

Fig. 13.9 An example showing how a periodic domain of 12 � 12 nodes would be split among
five processes. Also shown is the point-to-point communication between “adjacent” processes (see
Sect. 13.4.2.3)

example of such a split is shown in Fig. 13.9. The code for computing rank_ny
and rank_ystart is:

if(rank < NY % nprocs) // ranks that are less than remainder
{

rank_ny = NY/nprocs+1;
rank_ystart = rank*rank_ny;

}
else
{

rank_ny = NY/nprocs;
rank_ystart = NY-(nprocs-rank)*rank_ny;

}
printf("Rank %d: %d nodes from y = %d to y = %d\n",

rank,rank_ny,rank_ystart,rank_ystart+rank_ny-1);

In this domain decomposition strategy, the processes are assigned consecutive
blocks of rows in order by their ranks. The final line of the code shows which rows
of the simulation domain were allocated to each rank. It is important to note that in
general the output will not appear in order by rank. Even on a cluster with identical
computational nodes, the processes may run at different speeds for various reasons
including the effects of other users’ tasks running simultaneously on the same node
or even the temperature of the system (CPUs may decrease their clock rates when
they heat up to avoid overheating).

With the number of rows for each rank determined, the amount of memory
required can now be calculated and allocated. Each process allocates two additional
rows, one below the assigned portion of the simulation domain, and one above. As

598 13 Implementation of LB Simulations

will be described later, these rows are used to share data between processes. The
memory required by the three types of variables (see Sect. 13.3.2) is therefore:

size_t mem_size_0dir = sizeof(double)*NX*rank_ny;
size_t mem_size_n0dir = sizeof(double)*NX*(rank_ny+2)

*(ndir-1);
size_t mem_size_scalar = sizeof(double)*NX*rank_ny;

Additional rows are not needed for the rest populations and the density and velocity
fields because they are not shared across subdomain boundaries. After allocating the
memory required for each array in the same way as for the serial code, we proceed
with initialisation.

The calculation of the initial flow and pressure fields requires knowledge about
the absolute location of each lattice node in the domain. Two additional parameters,
the y coordinate ystart of the first row in the subdomain and the total number of
rows ny, are therefore required in the function that initialises these scalars:

void taylor_green(unsigned int t,
double *r, double *u, double *v,
unsigned int ystart, unsigned int ny)

{
for(unsigned int y = 0; y < ny; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

taylor_green(t,x,ystart+y,
&r[scalar_index(x,y)],
&u[scalar_index(x,y)],
&v[scalar_index(x,y)]);

}
}

}

Comparing with Listing 13.10, the only differences are that the loop for y counts up
to the number of rows handled by each process and ystart is added to the value
of y that is passed to the function that calculates the Taylor-Green flow.

The populations fi for each lattice node can be computed from the corresponding
velocity and density values without knowledge of the absolute positions of the
nodes. Therefore only the number of rows handled by the process is added as a
parameter to the initialisation function:

void init_equilibrium(double *f0, double *f1,
double *r, double *u, double *v,
unsigned int ny)

{
for(unsigned int y = 0; y < ny; ++y)
{

// ... same code as in serial version
}

}

13.4 Parallel Computing 599

The omitted code is identical to that in Listing 13.11. However, a detail has been
hidden in this implementation. Due to the additional row below each process’s
subdomain, the memory indexes are computed with y+1 instead of y:

inline size_t fieldn_index(unsigned int x, int y,
unsigned int d)

{
return (ndir-1)*(NX*(y+1)+x)+(d-1);

}

With this function, the rows handled by each process run from 0 to rank_ny-1
and the ghost rows, used for communication, that are below and above the
internal rows are accessed with the indices -1 and rank_ny, respectively,
using fieldn_index(x,-1,d) andfieldn_index(x,rank_ny,d). One
could alternatively rewrite the for loop in the init_equilibrium function as

for(unsigned in y = 1; y < ny+1; ++y)
{

// ...
}

and leave fieldn_index unchanged. However, with the method we employ, the
same indices x and y can be used to refer to the same locations in the particle
population arrays as the density and velocity arrays. We leave optimisation of the
memory address calculations to the compiler, specifically the avoidance of an extra
addition operation to compute the address for each memory access.

With the arrays initialised, we turn our attention now to the main loop of the
simulation. Though the saving of the scalar fields and computation of the error are
also performed in this loop, we defer discussion of the implementation of these
features to Sects. 13.4.2.4 and 13.4.2.5 because they involve special MPI features.

13.4.2.3 Blocking and Non-blocking Communications

Each process can update the populations fi in rows y=1 to y=rank_ny-2 using
data that resides in its own memory. However, to update the populations in the
bottom (y=0) and top (y=rank_ny-1) rows, each process requires the incoming
populations from rows that are computed by different processes. More specifically,
to update its bottom row, each process requires data from the top row of the process
that handles the lower subdomain. In the domain decomposition strategy we use, the
lower subdomain is handled by the process with rank rank-1. Similarly, updating
the top row requires data from the bottom row of the process with rank rank+1.
Due to the periodic domain, the ranks of these adjacent processes must be computed
as

int rankp1 = (rank+1) % nprocs;
int rankm1 = (nprocs+rank-1) % nprocs;

600 13 Implementation of LB Simulations

The communication performed between adjacent processes (processes with ranks
that differ by one) is shown in Fig. 13.9.

The MPI specification describes two main classes of communication func-
tions. The first class, called blocking functions, consists of functions that
wait until after the transfer has been completed before allowing further
execution (i.e. further execution is temporarily blocked). Blocking functions
for sending data return only once it is safe to modify the memory containing
the data to be sent without affecting the transfer. Note that the transfer to the
recipient need not have been truly completed: the data may have been only
copied to a temporary buffer. On the receiving side, a blocking function that
receives data only returns once the transfer is truly finished and the memory
containing the received data may be read. Functions in the second class
of communication functions, called nonblocking functions, only initiate a
transfer and return, allowing execution to proceed before the transfer is
completed (i.e. further execution is not blocked).

Though slightly more complicated to use, nonblocking functions offer two
advantages. First, they allow calculations that do not depend on the transferred data
to be performed during the transfer. Second, programmers do not need to ensure that
one process receives while the other sends to avoid deadlock situations in which the
programs cannot proceed. These two advantages will be clarified once code that
uses the two types of communication functions has been presented.

The two standard blocking communication functions are MPI_Send and
MPI_Recv, which send and receive data:

int MPI_Send(const void *buf,
int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Recv(void *buf,
int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status *status)

In these functions, the first three parameters describe the nature of the transferred
data. The source and destination memory locations of the data are specified by buf,
the type of data transferred is given by datatype, and the number of elements of
this type is count. In MPI_Send, buf is a pointer to the first variable that will
be sent, while in MPI_Recv it is the address where the first received variable will
be stored. Among other options given in the MPI standard, common choices for
the data type are MPI_INT, MPI_UNSIGNED, MPI_FLOAT, and MPI_DOUBLE,
which respectively match the C data types int, unsigned int, float, and
double. In the code that follows, we transfer only doubles and therefore use
MPI_DOUBLE.

13.4 Parallel Computing 601

Fig. 13.10 Diagram showing the rows of data that need to be transferred across subdomain
boundaries between processes. Boxes with solid outlines denote the nodes of the subdomain
updated by each rank, while boxes with dotted outlines denote the extra rows used to store data
from adjacent subdomains that are handled by different ranks

In MPI_Send, the parameter count specifies the number of variables of the
specified type that are sent; in MPI_Recv it indicates the maximum number that
can be received. In the code we present, the two counts are equal.

The next three parameters in the blocking communications functions provide
additional information about the transfer. The parameters dest and source
indicate the ranks of the processes within the communicatorcomm to which the data
will be sent (dest for MPI_Send) and from which it will be received (source for
MPI_Recv). On the receiving side, the special source MPI_ANY_SOURCE allows
receiving data from any rank that is sending data to the receiving rank. In both
functions, tag may be used by programmers to identify the nature of the transfer:
a receive with a particular tag can only obtain data that was sent by a call to the
sending function with the same tag. Alternatively, the tag MPI_ANY_TAG allows a
function to receive data irrespective of the tag specified on the sending side. Finally,
in MPI_Recv, status is a pointer to an MPI_Status structure that the function
modifies to provide information about the transfer that was performed.

How can we use these two functions to perform the transfers required by the
LBM implementation? In each rank we need to: receive the bottom row from
rankp1, send the top row to rankp1, receive the top row from rankm1, and
send the bottom row to rankm1. Figure 13.10 illustrates the transfers that need to
be performed from the point of view of one process.

602 13 Implementation of LB Simulations

A first attempt to implement one pair of the required transfers might be written
as follows:

// receive from above, i.e. rank+1
MPI_Recv(recv_buffer, count, MPI_DOUBLE,

rankp1, tag, MPI_COMM_WORLD,
status);

// send below, i.e. rank-1
MPI_Send(send_buffer, count, MPI_DOUBLE,

rankm1, tag, MPI_COMM_WORLD);

However, if this code were run, each process would first attempt to receive data.
Since no process would be sending data, the result would be a deadlock because
none of the MPI_Recv function calls would return. Switching the order of the calls
to MPI_Recv and MPI_Send would also be problematic:

// send below, i.e. rank-1
MPI_Send(send_buffer, count, MPI_DOUBLE,

rankm1, tag, MPI_COMM_WORLD);
// receive from above, i.e. rank+1
MPI_Recv(recv_buffer, count, MPI_DOUBLE,

rankp1, tag, MPI_COMM_WORLD,
status);

Depending on details of the MPI implementation used, this version might succeed
provided that the size of each transfer is smaller than an internal MPI buffer. In this
case, each MPI_Send returns after copying its data to this temporary buffer. The
MPI_Recvs may then run and complete the transfers. If, however, the size of the
data to be sent exceeds the buffer size, the result is a deadlock: the MPI_Sends
cannot place all the data into a buffer and they therefore stall, waiting for data to be
removed from the buffers. The data is never removed from the buffers because the
receiving functions only start after the sending functions finish.

To avoid such deadlocks, we must ensure that some processes receive while
others send data. One way to achieve this is to have processes with even ranks first
call MPI_Send while processes with odd ranks call MPI_Recv. Then the roles are
reversed, and the even ranks receive data from the odd ranks. Neglecting the details
of specifying all parameters, sample code for achieving this is:

if(rank % 2 == 0) // even ranks send then receive
{

// send below, i.e. rank-1
MPI_Send(send_buffer, count, MPI_DOUBLE,

rankm1, tag, MPI_COMM_WORLD);
// receive from above, i.e. rank+1
MPI_Recv(recv_buffer, count, MPI_DOUBLE,

rankp1, tag, MPI_COMM_WORLD,
status);

}
else // odd ranks receive then send

13.4 Parallel Computing 603

{
// receive from above, i.e. rank+1
MPI_Recv(recv_buffer, count, MPI_DOUBLE,

rankp1, tag, MPI_COMM_WORLD,
status);

// send below, i.e. rank-1
MPI_Send(send_buffer, count, MPI_DOUBLE,

rankm1, tag, MPI_COMM_WORLD);
}

MPI provides a simpler way to carry out the required transfers. The
MPI_Sendrecv function combines a send and receive operation and is
implemented within the MPI library in a way that prevents deadlocks. This
function’s parameters are those of MPI_Send (excluding the communicator)
followed by those of MPI_Recv:

int MPI_Sendrecv(const void *sendbuf,
int sendcount, MPI_Datatype sendtype,
int dest, int sendtag,
void *recvbuf,
int recvcount, MPI_Datatype recvtype,
int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

Using this function, the body of the main simulation loop starts with

MPI_Sendrecv(&f1[fieldn_index(0,rank_ny-1,1)],
transfer_doubles,MPI_DOUBLE,
rankp1,rank,
&f1[fieldn_index(0,-1,1)],
transfer_doubles,MPI_DOUBLE,
rankm1,rankm1,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

MPI_Sendrecv(&f1[fieldn_index(0, 0,1)],
transfer_doubles,MPI_DOUBLE,
rankm1,rank,
&f1[fieldn_index(0,rank_ny,1)],
transfer_doubles,MPI_DOUBLE,
rankp1,rankp1,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

stream_collide_save(f0,f1,f2,rho,ux,uy,save,rank_ny);

In this code, transfer_doubles is the number of doubles that are sent and
received, which is initialised prior to the for loop as

size_t transfer_doubles = (ndir-1)*NX;

First each rank sends the top row of its subdomain “upward” to the process with rank
rankp1 and receives this row from rank rankm1, storing it in the row below the

604 13 Implementation of LB Simulations

subdomain (y=-1). Next the bottom row (y=0) is sent downward to rankm1 and
the bottom row fromrankp1 is received and stored in the row above the subdomain
(y=rank_ny). The tags for these transfers are the ranks of the sending processes.

Once these transfers have completed, the whole subdomain is updated. The only
changes required in stream_collide_save() are an the additional parameter
and a modified for loop, both changed exactly as for init_equilibrium
(Listing 13.4.2.2). Since the subdomains, unlike the whole domain, are not periodic,
the expressions for the row indices yp1 and ym1 are simplified to y+1 and y-1,
respectively.

Note that for simplicity we transfer more data than is necessary: only the popula-
tions whose directions cross subdomain boundaries actually need to be transferred.
One way to avoid the unnecessary transfers is to copy the required populations into
a temporary buffer, send this buffer, and then load the transferred populations into
their corresponding locations on the receiving side. We leave implementing this and
assessing the performance benefits as an exercise for interested readers.

The code that accompanies this book also includes an MPI version of the
simulation code that uses nonblocking communications functions. In this version,
we use the nonblocking alternatives to MPI_Send() and MPI_Recv(), which
are MPI_Isend() and MPI_Irecv():

// Start a nonblocking send
int MPI_Isend(const void *buf,

int count, MPI_Datatype datatype,
int dest, int tag,
MPI_Comm comm, MPI_Request *request)

// Start a nonblocking receive
int MPI_Irecv(void *buf,

int count, MPI_Datatype datatype,
int source, int tag,
MPI_Comm comm, MPI_Request *request)

The parameters are the same as those for the corresponding blocking versions, but
exclude a pointer to an MPI_Status structure and include a pointer request to
an MPI_Request structure that is used to identify initiated transfers, query their
status, and wait for their completion.

These nonblocking functions return as soon as they have completed whatever
tasks are needed to initiate the transfers and fill in the fields of the MPI_Request
structure. To use the nonblocking communication functions, we first create an
array of four MPI_Requests that are used to identify the four transfers that are
subsequently performed, and also an array of four MPI_Status objects for the
status of each transfer once it is completed:

MPI_Request reqs[4];
MPI_Status stats[4];

13.4 Parallel Computing 605

The nonblocking version of the simulation’s main for loop starts by initiating
the required transfers:

MPI_Isend(&f1[fieldn_index(0,rank_ny-1,1)],
transfer_doubles,MPI_DOUBLE,
rankp1,rank, MPI_COMM_WORLD,&reqs[0]);

MPI_Irecv(&f1[fieldn_index(0,-1,1)],
transfer_doubles,MPI_DOUBLE,
rankm1,rankm1,
MPI_COMM_WORLD,&reqs[1]);

MPI_Isend(&f1[fieldn_index(0,0,1)],
transfer_doubles,MPI_DOUBLE,
rankm1,rank,
MPI_COMM_WORLD,&reqs[2]);

MPI_Irecv(&f1[fieldn_index(0,rank_ny,1)],
transfer_doubles,MPI_DOUBLE,
rankp1,rankp1,
MPI_COMM_WORLD,&reqs[3]);

Each call uses its own MPI_Request structure in the array reqs. With non-
blocking functions unlike blocking functions, the order of the calls is irrelevant and
deadlocks do not occur if the order is changed.

We may now overlap computations with the these communication operations,
and update of the interior rows (y from 1 to rank_ny-2 inclusive):

stream_collide_save(f0,f1,f2,rho,ux,uy,save,1,rank_ny-1);

The stream_collide_save function in the nonblocking version differs
slightly from the one in the blocking version because the entire domain cannot
be updated at once. Therefore the nonblocking version has two extra parameters,
ystart and yend, that specify the range of rows to update as ystart to yend-1
inclusive:

void stream_collide_save(double *f0, double *f1, double *f2,
double *r, double *u, double *v,
bool save,
unsigned int ystart,
unsigned int yend)

{
for(unsigned int y = ystart; y < yend; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

// ...
}

}
}

606 13 Implementation of LB Simulations

Before updating rows 0 and rank_ny-1, we must ensure that the transfers
have finished. This can be achieved in several ways. The first is to use one call to
MPI_Wait for every transfer that was initiated. The declaration of this function is

int MPI_Wait(MPI_Request *request, MPI_Status *status)

This function returns when the transfer identified by request has been completed.
If the completed operation involved receiving data, the supplied MPI_Status
structure is updated accordingly.

Several variants of MPI_Wait are useful when working with multiple
pending transfers. These functions are MPI_Waitany, MPI_Waitsome,
and MPI_Waitall. Both MPI_Waitany and MPI_Waitsome wait until
at least one transfer has finished; the difference between them is that
MPI_Waitany provides status information for only one completed transfer, while
MPI_Waitsome provides information for all the completed transfers. The third
variant, MPI_Waitall, is the one we use:

int MPI_Waitall(int count,
MPI_Request *array_of_requests,
MPI_Status *array_of_statuses)

The parameter count indicates how many MPI_Requests have been supplied
by the pointer array_of_requests, and array_of_statuses is an array
of MPI_Statuses that must be able to hold at least count of them. This
variant waits until all the transfers complete and updates the MPI_Status array
accordingly. We use this function as follows:

MPI_Waitall(4,reqs,stats);

With the transfers completed, we finally update the bottom and top rows:

stream_collide_save(f0,f1,f2,rho,ux,uy,save,0,1);
stream_collide_save(f0,f1,f2,rho,ux,uy,save,rank_ny-1,rank_ny);

One subtle but important performance issue deserves particular attention here.
Although MPI_Isend and MPI_Irecv initiate the data transfers, MPI imple-
mentations do not necessarily continue the transfers concurrently with subsequent
computations. In implementations that do not perform the communications auto-
matically in the background (perhaps by the network hardware devices or a separate
thread), the communications delay is incurred when MPI_Waitall is called. In
this case, communications and computations do not truly overlap, eliminating any
possible speed up compared to the blocking version.

To ensure that nonblocking communications proceed in the background
while computations are performed, we must ensure that some MPI functions
are called in between computations to allow the communications to progress.
For this purpose we use the MPI_Testall function.

13.4 Parallel Computing 607

MPI_Testall performs a similar task as MPI_Waitall10: it checks the
status of the specified transfers. Unlike MPI_Waitall, it only indicates if all
transfers have been completed and does not wait for them to finish. This function is
declared as:

int MPI_Testall(int count,
MPI_Request *array of requests,
int *flag,
MPI_Status *array of statuses)

The parameters are the same as for MPI_Waitall except for flag, which the
function sets to 0 unless all transfers have been completed. If all the transfers are fin-
ished, flag is set to 1 and the MPI_status variables are set accordingly. We use
this function after every row is updated by modifying stream_collide_save
as follows:

void
stream_collide_save_test(double *f0, double *f1, double *f2,

double *r, double *u, double *v,
bool save,
unsigned int ystart,
unsigned int yend,
int nr,
MPI_Request *reqs,
MPI_Status *stats)

{
int com_finished = 0;
for(unsigned int y = ystart; y < yend; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

// ...
}
if(com_finished == 0)
{

MPI_Testall(nr,reqs,&com_finished,stats);
}

}
}

Here nr is the number of requests, reqs points to an array of MPI_Request
structures, and stats points to an array of MPI_Status structures. We
use this modified function stream_collide_save_test instead of
stream_collide_save after the calls to MPI_ISend and MPI_IRecv and
before MPI_Waitall. We still include MPI_Waitall in case the transfers are
not completed during the computations. The com_finished variable is used to

10MPI_Testall is a variant of MPI_Test. The variants of MPI_Test are analogous to those
of MPI_Wait: MPI_Testany, MPI_Testsome, and MPI_Testall.

608 13 Implementation of LB Simulations

avoid wasting time by calling MPI_Testall() after the communications have
already been completed.

In this code, the calls to MPI_Testall() appear to be superfluous. Their
purpose however, is not to check the status of the communications. Rather, it is
to ensure that the communications proceed as a side-effect of checking their status.
In some MPI implementations, this is not required, so programmers should consult
the documentation for the implementation they use and test their code.

13.4.2.4 Collective Communications

In addition to point-to-point communications functions (Sect. 13.4.2.3), MPI defines
a set of functions that facilitate efficient sharing of data between all processes
in a group. Some of these functions only transfer data between processes, while
others also compute a function of the data received from other processes. These
latter operations are called reductions (see also Sect. 13.4.1.2) and can be used, for
example, to compute the sum of a value at every point in a simulation domain that
has been split among the processes. In such an application of a reduction, each
process would compute the sum over the nodes it handles, and then perform a
reduction to compute the global sum of all the local sums.

Since the example MPI implementation of an LBM simulation does not use
collective operations that only perform communication, in this section we examine
what functions MPI defines for these features but do not consider the details of how
to use them.

Several types of transfers between the member processes of a group are possible.
A transfer of a dataset from one process to all others is called a broadcast, and it
is performed by the MPI_Bcast function. A scatter operation (MPI_Scatter)
is similar to a broadcast in that one process sends data to all others, but the data
sent to each process may be different. The inverse of a scatter, in which one
process receives data from each other process, is called a gather (MPI_Gather).
When every process requires the same set of data from each other process, the
MPI_Allgather function can be used to perform the same operation as gather,
but with every process receiving the combined data set. Finally, every process can
send different data to each other process through the use of the MPI_Alltoall
function. Several variants of these functions allow each process to send a different
amount of data to the recipients.

The example code uses reductions in two places. The first place is in the
computation of the total energy of the flow field and the error between the numerical
and exact solutions for the flow. For this purpose, we use the MPI_Allreduce
function that performs a reduction and provides the result to every process. Its
definition is:

int MPI_Allreduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

13.4 Parallel Computing 609

Except for the first two parameters, all processes must call the function with the
same parameter values. The parameter sendbuf points to the first of count
variables of type datatype. The communicator comm specifies which processes
participate in the reduction. In every process, the nth value of recvbuf receives the
result of the reduction applied to the nth values of sendbuf from every process.
Users may specify a custom reduction operation or use one of the predefined options
for MPI_Op op: MPI_SUM for a sum, MPI_PROD for a product, MPI_MIN
for the minimum, MPI_MAX for the maximum, and several others that perform
logical operations, bitwise operations, and minimum/maximum computations that
also provide the location of the extrema.

The MPI version of the compute_flow_properties function is shown
in Listing 13.24 (see Listing 13.18 for the sequential version). It requires several
additional parameters (the rank of the process as rank, the y coordinate of the first
row in the subdomain as ystart, and the number of rows in the subdomain as ny),
computes local sums, and then performs a reduction to obtain the global sums.

Listing 13.24 The MPI version of the compute_flow_properties function uses a reduc-
tion to compute the kinetic energy in the flow domain and the L2 errors of the density and velocity
fields

void compute_flow_properties(unsigned int t,
double *r, double *u, double *v,
double *prop,
int rank,
unsigned int ystart,
unsigned int ny)

{
// prop must point to space for 4 doubles:
// 0: energy
// 1: L2 error in rho
// 2: L2 error in ux
// 3: L2 error in uy

// sums over nodes belonging to this process
double local_sumdata[7];
// global sums
double global_sumdata[7];

// initialise local sum values
for(int i = 0; i < 7; ++i)

local_sumdata[i] = 0.0;

for(unsigned int y = 0; y < ny; ++y)
{

for(unsigned int x = 0; x < NX; ++x)
{

double rho = r[scalar_index(x,y)];
double ux = u[scalar_index(x,y)];
double uy = v[scalar_index(x,y)];

610 13 Implementation of LB Simulations

// add to local sum of energy
local_sumdata[0] += rho*(ux*ux + uy*uy);

// compute exact solution at this location
double rhoa, uxa, uya;
taylor_green(t,x,ystart+y,&rhoa,&uxa,&uya);

// add to local sums of errors
local_sumdata[1] += (rho-rhoa)*(rho-rhoa);
local_sumdata[2] += (ux-uxa)*(ux-uxa);
local_sumdata[3] += (uy-uya)*(uy-uya);

// add to local sums of exact solution
local_sumdata[4] += (rhoa-rho0)*(rhoa-rho0);
local_sumdata[5] += uxa*uxa;
local_sumdata[6] += uya*uya;

}
}

// compute global sums
MPI_Allreduce(local_sumdata,global_sumdata,

7,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);

// compute and store final values
prop[0] = global_sumdata[0];
prop[1] = sqrt(global_sumdata[1]/global_sumdata[4]);
prop[2] = sqrt(global_sumdata[2]/global_sumdata[5]);
prop[3] = sqrt(global_sumdata[3]/global_sumdata[6]);

}

The second use of a reduction is in the main function, where one is used
to compute the total memory allocated by all processes. In this case we use
MPI_Reduce:

int MPI_Reduce(void* sendbuf, void* recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

This function provides the result of the reduction in recvbuf only in the process
whose rank is specified by the parameter root. The other parameters are the same
as those for MPI_Allreduce. Prior to starting the main simulation loop, each
process computes the amount of memory it allocated:

double bytesPerGiB = 1024.0*1024.0*1024.0;
size_t total_mem_bytes = mem_size_0dir

+ 2*mem_size_n0dir
+ 3*mem_size_scalar;

13.4 Parallel Computing 611

After the main simulation loop ends, we use MPI_Reduce:

size_t global_total_mem_bytes = 0;
MPI_Reduce(&total_mem_bytes,&global_total_mem_bytes,

1,MPI_LONG_LONG_INT,MPI_SUM,0,MPI_COMM_WORLD);

if(rank == 0)
{

printf("memory allocated: %.1f (MiB)\n",
global_total_mem_bytes/bytesPerMiB);

}

Every process sends one MPI_LONG_LONG_INT11 to rank 0, which receives the
sum in the variable global_total_mem_bytes. Finally, rank 0 displays the
total memory allocated by all processes.

For completeness, we mention the two other reduction-type operations that are
available in MPI. These are MPI_Reduce_scatter that performs a reduction
and scatters the result to all processes and MPI_Scan that computes cumulative
reductions in which the value returned to rank n is the result of the reduction on the
values from ranks 0 to n inclusive.

13.4.2.5 I/O

When an MPI program runs, the output data it generates will be scattered across
many nodes. The processing of this data can be handled in several ways. Sometimes,
combining the data from all the nodes into one file is particularly useful and the
necessary data transfers are sufficiently small or infrequent the their impact on
performance is negligible. In these cases, the full data sets from every rank can
be sent to one rank that writes the data it receives to a single file.

One fairly obvious pitfall must be avoided when implementing this approach.
The writing process most often cannot allocate enough memory at once to store
the whole data set that is spread across all processes. Instead, the process should
allocate as much data as is needed for each process individually (to avoid multiple
allocations/deallocations, one may use a “maximum” reduction and allocate the
maximum memory required by any process), and write the data immediately once
it is received.

As an alternative to this approach, each process could sequentially write its data
to the same file. In this case, however, the data structures that represent an open
file on one process cannot be shared with other processes. Furthermore, special care
must be taken to synchronise the processes and ensure that each correctly adds its
data after the data from the previous process.

11This matches the size of size_t on the systems used for testing, but it is not portable and may
need to be changed for other systems.

612 13 Implementation of LB Simulations

For efficient performance, it is preferable to avoid unnecessary communi-
cation and synchronisation. In the code for this section, we take the simplest
approach to saving the data generated in each process: each process opens
its own files to which it saves its portion of the density and velocity fields
separately.

Though the density and velocity values could be stored together in one file
per process, keeping the data separate makes combining the results from all the
processes easier. To analyse the data after the simulation has run, one may write a
program that loads the results for each process and then computes desired values,
generates visualisations, or creates the input files required to perform these tasks
with other software. Instead of using a custom program to combine the data,
the “raw” data that the program saves can be combined with the common Unix
command cat, which stands for “concatenate,” as follows:

cat ux_010_r0.bin ux_010_r1.bin ux_010_r2.bin > ux_010.bin

This command combines the data from a hypothetical run of a program with three
processes and stores the result in ux_010.bin. The ux in the file names is used
to indicate that the files store the x component of the velocity field, the digits 010
indicate that the data is for the result of the 10th time step (or the 10th multiple of
the number of time steps taken until data is saved), and the digit after r indicates
the rank of the process that generated the data.

The MPI version of the function save_scalar that saves data differs mini-
mally from the serial version (see Listing 13.17). The differences are: the addition
of the process rank as a parameter, the inclusion of the process rank in the output
file’s name, the addition of a parameter for the number of bytes of memory to be
saved (since it is not necessarily the same in each process), and the cosmetic use of
MPI_Barrier at the end of the function to synchronise the text output from the
processes.

This approach for saving data from parallel programs, in which each process
saves its own file, has a special efficiency advantage. Each node of a cluster typically
has fast local filesystems and shared network filesystems. When one combined data
file is created for all processes, it must be saved in a slower shared filesystem that
every process can access. In comparison, writes to local filesystems are significantly
faster, and the local files could be examined during a simulation or after it finishes to
determine whether a transfer to a shared network filesystem is justified (for example
when the simulation was performed at the correct conditions for a phenomenon
to occur). Transfers to a network filesystem could also be entirely avoided if
postprocessing software can be run in a distributed fashion like the simulations are.

Though it is not the case for the code in this chapter, many simulations need
to read data from files during initialisation or execution. The processes can all

13.4 Parallel Computing 613

read from a common input file, or as for writing, the data for each process can
be split into separate files. When this is inconvenient, one rank can read the
required data and share it with other processes, using calls to MPI_Scatter or
MPI_Send/MPI_Isend.

As an alternative to the file access methods presented so far, MPI-2 includes
features for parallel reading and writing of shared files. The interface for using
these features, which we do not cover in further detail, is similar to the interface
for the communications functions described in this section. The interface provides,
for example, functions that allow each process to read from and write to different
locations in a file.

13.4.2.6 Compilation and Execution

MPI implementations and cluster administrators usually provide tools to assist the
compilation and parallel execution of MPI programs. The mpic++ program is
useful for the compilation of C++ code. For example, the MPI progam sim can
be generated from the source file sim_mpi.cpp using the command

mpic++ -O3 sim_mpi.cpp -o sim

This MPI compilation program is called a wrapper because it does not perform the
compilation itself but rather runs a compiler and passes it the required options for
finding header files and linking with the MPI libraries. To see which compiler is
invoked and all the options that would be used to compile the code, we can use the
option -showme. For example the command

mpic++ -showme -O3 sim_mpi.cpp -o sim

shows output that is similar to

g++ -O3 sim_mpi.cpp -o sim -I/path/to/include -pthread \
-L/path/to/lib -lmpi_cxx -lmpi

This shows which additional libraries are linked and the paths that are searched for
include and library files. Wrappers are also available for other languages, including
C (mpicc) and Fortran (mpif90).

The tasks that users must perform to run an MPI program on a cluster depend
on the configuration of the cluster and the software that is used to share the
computing resources with many users. Readers are therefore advised to consult
the documentation for their cluster or ask a system administrator. In general,
cluster users submit requests for computing resources to resource management and
job scheduling software that then run their program on a group of the cluster’s
nodes once the requested processing and memory resources are available. For

614 13 Implementation of LB Simulations

example, on systems that use TORQUE (Terascale Open-source Resource and
QUEue Manager) [19], the command

qsub -l nodes=32:ppn=2,pmem=2gb,walltime=12:00:00 \
./simulation_script.sh

requests two (ppn or processors per node) processors each on 32 nodes (nodes),
for a total of 64 processes, and 2 GiB of RAM per process (pmem) for a maximum
of 12 hours (walltime). The qsub command does not wait for the script to run
and only places it in a queue where it waits until the requested resources become
available. The scheduler runs the job script simulation_script.sh at a time
when these resources are available for the specified duration. If the script does not
finish within the chosen time limit, the scheduler terminates it.

A minimal job submission script is:

#!/bin/bash

go to directory from which the script was submitted
cd $PBS_O_WORKDIR

run MPI program
mpirun ./sim

The first command in this script switches the current directory to the one from which
the script was submitted. The path to this directory is available in the environment
variable PBS_O_WORKDIR, one of many variables set up by the job scheduling
system to provide information about the system’s configuration and the runtime
environment. The next command, mpirun12 sets up the execution environment for
the MPI program sim and starts it as many times as is needed. On many systems the
number of times is automatically determined from the options specified to qsub,
in our case the product of the nodes and ppn settings. On other systems, it is
necessary to explicitly specify the number of processes to start by using mpirun
-np N ./sim where N is the number of processes.

The requested resources can also be specified through the use of special
comments in the script file that start with PBS. For example, this job script requests
the same resources as the previous qsub command:

#!/bin/bash
#PBS -l nodes=32:ppn=2
#PBS -l pmem=2gb
#PBS -l walltime=12:00:00

go to directory from which the script was submitted
cd $PBS_O_WORKDIR

run MPI program
mpirun ./sim

12mpirun, mpiexec, and orterun are synonyms in Open MPI.

13.4 Parallel Computing 615

This script would be submitted for scheduling using the command qsub
simulation_script.sh. Options specified in the qsub command that
submits a script override those specified inside the script.

In both cases, the job script simulation_script.sh must be executable,
i.e. the user must have permission to execute the script file. This script file may be
created as any plain text file, and then given execution permission with the command

chmod u+x simulation_script.sh

Commands for setting up the simulation environment and postprocessing the results
can also be included in the job script.

In addition to requesting resources, job configuration settings allow users to
receive status updates about the job by email, such as when it starts and ends.
The output of the program (that would appear on screen when the program is run
interactively) is saved to default files or those specified in the qsub command or
job script.

13.4.2.7 Performance Results

We examine now the performance of the parallel code presented in this section.
The code was run on up to 32 nodes of a cluster with two 8-core Xeon E5-2670 or
E5-2680 processors per node, for a total of 16 cores on each node.

Two different methods were used for assigning processing cores to the simulation
to show the effects of this choice on performance. In the first method, each process
participating in the simulation ran on a different node. This choice can improve
performance by giving each process independent access to memory, but it slows
communication by requiring data transfers over the interconnect rather than within
the memory of a node. The other process distribution that was used had all processes
run on one node. While this choice reduces communication time, it can introduce
competition for memory bandwidth.

In practical cluster usage for simulations involving many more processes than the
number of cores that are available on any node, one will typically run simulations to
occupy all processing cores on each of as many nodes as are needed. Alternatively,
one can request the scheduler to pick any available processors no matter how they
are distributed across the cluster. The choice between these two options is not always
determined by performance. On a busy cluster, the simulation will likely start sooner
if the scheduler can allocate any unused cores instead of waiting for whole nodes
to become available. Users can therefore optimise in different ways to achieve the
shortest time to completion of a simulation.

Exercise 13.16 Test the MPI and OpenMP (Sect. 13.4.1) versions of the code on
the same system and varying numbers of processes. Which performs better? Why?

Exercise 13.17 Compare the performance of the MPI code when running it with
the same total number of processes and varying numbers of processes on each node.

616 13 Implementation of LB Simulations

What is the optimal number of active processes per node? To prevent competition for
memory bandwidth with other users’ programs running on the same nodes, reserve
whole nodes for the simulations and use only some of the available cores.

The benefits of parallelisation are typically assessed in two ways. When addi-
tional computing resources are used to reduce the computing time of a problem with
a fixed size, we are interested in what is called the strong scaling performance of the
code. In this case, we want to find out whether using n processes (or cores) reduces
the execution time by a factor of n. The second type of performance assessment
is called weak scaling and examines how execution time varies as the size of the
problem increases in proportion to the number of processes used. In other words,
we test whether n times as many processes can finish a problem that is n times
larger in the same amount of time.

Both types of parallel performance analyses can be relevant to CFD simulations
depending on the details of the problem being considered. For example, one might
be interested in how many processes could be used to reduce the simulation time for
a particular domain size to a practical value (strong scaling) or how much larger a
domain could be computed with more processes (weak scaling).

Figures 13.11 and 13.12 present the weak and strong scaling analysis results for
this section’s MPI code. For the weak scaling results, the domains had a width of
2048 and a height of 8 times the number of processes, i.e. each process handles a
2048�8 subdomain. For the strong scaling analysis, the domain size was 2048�256.
All simulations ran for 1000 time steps. Both figures present results for the two
processor allocation methods (all processes on one node and one process per node)
and MPI communication techniques (blocking and nonblocking).

Fig. 13.11 Weak scaling performance of the simulation code run with 2 to 32 processes. Dashed
lines show results for up to 16 processes on a single node, and solid lines show results for up to 32
processes all on separate nodes. The domains had a constant width of 2048 and a height that was
8 times the number of processes used. All values shown are averages of three runs. The speed for
one process was obtained with the sequential code from Sect. 13.3.2

13.4 Parallel Computing 617

Fig. 13.12 Strong scaling performance of the simulation code run with 2 to 32 processes. Dashed
lines show results for up to 16 processes on a single node, and solid lines show results for up to 32
processes all on separate nodes. The domain size was 2048 � 256 for all runs. The speed for one
process was obtained with the sequential code from Sect. 13.3.2

When all the processes are all on one node, the difference between blocking and
nonblocking communications is negligible because the time spent communicating,
in this case by copying data between different locations in memory, cannot be
hidden. The time lost to this copying is the same whether it is spent before updating
the simulation domain, in between computations, or after the internal rows are
updated. For up to four processes, running all processes on one node is fastest. For
larger numbers of processors, it is beneficial to split the processes among separate
nodes.

Overall, both the strong and weak scalings are nearly linear for up to 32 processes
and the simulation speed is slightly higher with nonblocking rather than blocking
communications. The parallel performance can be expected to remain good as
the number of processes increases provided that the time for communications
is reasonably less than the computing time. With 256 processes, each process
would handle only one row, and the simulation speed would be determined by the
communication speed rather than the processing speed.

Exercise 13.18 Optimise the MPI code presented in this section. One potential
improvement is to transfer only those populations that cross subdomain boundaries.
When implementing this improvement, avoid unnecessary copying of the useful
populations into or from a temporary array by using derived datatypes (Hint: the
functions MPI_Type_vector and MPI_Type_contiguous may be useful).
Another optimisation is to allow the first and last rows to be updated as soon as the
corresponding data transfers have completed instead of waiting for all to finish.

Exercise 13.19 Adapt the code to decompose the simulation domain in both
dimensions. Try to write the new code so that it can handle as general a tiling of
the simulation domain as possible. For example, add command line arguments that

618 13 Implementation of LB Simulations

Table 13.3 Comparison of the durations of tasks during one update of a 2048 � 64 domain with
8 processes. In one case MPI_Testall is called after every inner row is updated until the end of
communications is detected, while in the other case it is not used. Values listed for each case are
the averages of the times reported every 100 time steps by each rank during three runs of the code
on a cluster

Time without MPI_Testall Time with MPI_Testall

Task (ms) (ms)

MPI_Isend and MPI_Irecv 0.004 0.004

Update inner rows 0.390 0.453

MPI_Waitall 0.231 0.063

Update first and last rows 0.141 0.141

Total 0.766 0.661

specify the number of subdomains in each direction, or load parameters from a
configuration file. Note that in one dimension the data that needs to be transferred is
located in contiguous blocks of memory, while for the other dimension the data is
scattered. Use derived datatypes, for example the functions MPI_Type_vector
and MPI_Type_contiguous, to avoid copying this scattered data to/from a
contiguous temporary array before/after transferring it. Compare the performance of
the code with different subdomain geometries. What is the optimal decomposition
for a given domain size and number of processes?

Exercise 13.20 For several large domain sizes, calculate how many computing
nodes need to be used so that the memory required on each node fits in the
processor’s L3 cache. Compare performance with slightly fewer and slightly more
nodes than this number.

To examine the effectiveness of using calls to MPI_Testall to ensure
overlapping of communications and computations in the nonblocking version of
the MPI code, the code was modified to measure and report the durations of the
communication and computation steps during one update of the simulation domain
every 100 time steps. Table 13.3 shows the averages of the reported times for three
runs of a 2048 � 64 domain computed with 8 processes on separate nodes. For one
of the two sets of three simulations, the call to MPI_Testall was commented out.

Overall, the removal of the MPI_Testall calls decreased the simulation speed
from 198 to 171 Mlups. Comparing the two cases, the times to initiate nonblocking
communications (total time spent in calls to MPI_Isend and MPI_Irecv) and
update the first and last rows are the same, averaging 0.071 ms per row. Inner rows
are those rows that can be updated without information from adjacent subdomains
handled by different ranks, i.e. these are the second to the second to last rows of
each subdomain. The additional 0.063 ms taken to update the inner rows due to the
calls to MPI_Testall is offset by a reduction of 0.17 ms in the time taken by
MPI_Waitall, which waits for the completion of all communications.

The averages, however, do not tell the complete story. Figure 13.13 shows the
timing results reported by every rank during one simulation run with and without

13.4 Parallel Computing 619

Fig. 13.13 Timing of the communication and computation operations during one domain update
as measured on the 8 ranks participating in the simulations (a) without the use of MPI_Testall
during the updating of internal rows and (b) with the use of MPI_Testall

calls to MPI_Testall. Each of the eight ranks provided measurements ten times
during the simulations for a total of 80 measurements of each task. As expected, the
time taken to update the first and last rows is nearly constant over time and the same
for both cases. The time to initiate nonblocking communications is also equal and
effectively negligible at 4 �s.

The biggest difference between the two cases is the time taken by the calls to
MPI_Waitall. When MPI_Testall is used, nearly all these calls return in less
than 1 �s, indicating the the communications were completed before the call to
MPI_Waitall was reached; without MPI_Testall they take 0.1 ms or more.
In some cases, however, the calls to MPI_Waitall take as long in the case with
MPI_Testall as in the case without it. This suggests that occasionally a fast node
completes its update of inner rows and reaches MPI_Waitall before a slower
node is able to provide the information the faster node requires to proceed. Overall,
the whole simulation domain cannot be updated faster than the slowest process can
complete its subdomain. Over the 1000 time steps in the two simulations analysed in
Fig. 13.13, the use of MPI_Testall increased the average simulation speed from
177 to 227 Mlups.

Exercise 13.21 Find out what tools for profiling13 MPI programs are available on
a cluster you can use. These tools show the time taken by the most time-consuming
tasks in a program and are therefore useful for identifying performance bottlenecks.

13The analysis of how a program uses memory and computing resources is called profiling.
Automatic profiling software typically reports the time taken by the most time-consuming
functions in a program and is useful for optimisation.

620 13 Implementation of LB Simulations

How do the profiling results differ for the blocking and nonblocking (with and
without MPI_Testall) MPI codes?

Exercise 13.22 How frequently should MPI_Testall be called during the updat-
ing of the inner rows? Moving the call inside the loop over the x direction would
result in excessive time wasted checking the status of the communications. What is
ideal?

Exercise 13.23 As an alternative to using MPI_Testall to ensure progress of
communications during simultaneous computations, write a hybrid OpenMP and
MPI code that creates two threads: one only performs communications (blocking
form is acceptable in this case) while the second updates the internal nodes. Does
this hybrid approach improve performance? Hint: for the OpenMP version, the
parallel sections directive may be useful.

13.4.3 General Purpose Graphics Processing Units

Originally developed to accelerate the algorithms used to generate the graphics
shown on computer screens, graphics processing units (GPUs) are now found
in a wide range of devices from smart phones and tablets to workstations and
supercomputers where they are used for algorithms far beyond those related to
rendering graphics. In this section, we examine the use of GPUs for flow simulations
with the lattice Boltzmann method.

Early GPUs accelerated two-dimensional drawing algorithms, such as those for
drawing lines and filling polygons, performing these tasks faster than a CPU and
freeing the CPU to perform other tasks. GPUs were later developed to implement
algorithms for generating three-dimensional graphics: projecting the 3D coordinates
of mesh vertices to the 2D coordinates of an image, determining which portions
of a mesh are visible, and computing the colour of each pixel that is drawn
from the colour data stored with the mesh and the locations and characteristics
of light sources in the digital scene. In these two- and three-dimensional graphics
applications, the same computations must be performed on different input data,
such as the on-screen coordinates of the pixel being drawn or the three-dimensional
coordinates of the vertices of all the triangles in a mesh. The circuits in GPUs are
designed to efficiently perform such calculations in parallel to allow the content
of a screen to be updated several tens to hundreds of times per second, making
animations appear smooth.

Taking advantage of the fact that the same operation must be performed many
times, a larger fraction of the transistors in GPUs than CPUs is dedicated to
computational tasks. In contrast, CPUs use more transistors for control logic and
caches to ensure that any sequence of instructions can be executed quickly whether
or not it involves repetition of the same operation. To take advantage of the efficiency
of GPU architectures for executing computations in parallel, programmers devised
ways to map non-graphics algorithms to the capabilities of GPUs by assigning
different meanings to the graphics data they process and the images they generate.

13.4 Parallel Computing 621

In comparison to early computing on GPUs, the capabilities of modern GPUs and
software development tools greatly facilitate their use for general computational
tasks. Double precision floating point arithmetic is now supported, and libraries
with standard math functions, including the fast Fourier transform and common
linear algebra operations, are available.

Code for GPU platforms may be written with common languages, such as
C, C++, and Fortran, and compiled using vendor-specific interfaces from both
major vendors of GPU devices (NVIDIA and AMD) and non-vendor-specific
platforms, such as OpenCL [20]. While code written with the vendor-specific
interfaces can only run on the corresponding vendor’s devices, code written with
OpenCL is not tied to a particular architecture. Access to GPU-based computing
is also available in many high-level languages, such as Python, R, MATLAB, and
Java. In these languages, objects that reside in GPU memory can be created and
operations on these objects are performed on the GPU. Language extensions, such as
OpenACC [21], are also being developed to automate the sharing of computational
tasks between CPUs and GPUs in a hybrid computing environment.

In this section, we will study GPU programming with NVIDIA’s Compute
Unified Device Architecture (CUDA). There are two reasons for this choice. The
first reason is that NVIDIA devices are most common on current supercomputers
and research clusters. In the November 2015 list of the 500 highest-performance
supercomputers [12], 68 systems used NVIDIA chips and only three used AMD
devices. The number two ranked system, Titan in the United States, and the seventh,
Piz Daint in Switzerland, have 18688 and 5272 NVIDIA K20X GPUs, respectively.
These GPUs each have 6 GiB of memory, 2688 processing cores, a peak memory
bandwidth of 232 GiB/s, and can perform a maximum of 1.31 trillion floating point
operations per second (teraflops) in double precision. The second reason for using
NVIDIA CUDA is that learning a lower-level interface, instead of the GPU features
provided in a high-level language, requires readers to become more familiar with
GPU architecture and therefore its benefits and limitations.

At the time of writing, the most recent version of the CUDA toolkit was 7.5,
released in September 2015. CUDA programs can be run on a wide range of
NVIDIA devices marketed for computer gaming, professional workstations, and
high performance clusters. Though devices for gaming often have faster memory
and more cores, those used in scientific computing have additional features such
as better performance for double precision arithmetic and memory with automatic
detection and correction of errors (error-correcting code, or ECC, memory). The
features of GPUs have evolved rapidly in recent years, and the capability of
NVIDIA devices is specified by a version number (or “compute capability”). Early
devices are no longer supported in recent versions of the development tools, and we
therefore consider only devices with capability 2.0 and higher in this section.

This section provides an overview of the NVIDIA architecture and programming
interface, focussing on those features that are relevant to the LBM implementation
presented in Sect. 13.4.3.4. Readers may find more detailed information in the
documentation [22] and code samples [23, 24] from NVIDIA as well as a wide
range of reference materials online and in books [25].

622 13 Implementation of LB Simulations

13.4.3.1 NVIDIA GPU Architecture

Conventional CPUs are generally classified as Single Instruction, Single Data
(SISD) devices because the commands they execute each perform one operation on
one set of input data. Modern CPUs also have Single Instruction, Multiple Data
(SIMD) features: special commands that operate on multiple data elements, for
example performing elementwise addition of the four components of two vectors
in one step. NVIDIA describes their GPU-based parallel computing architecture as
Single Instruction, Multiple Thread (SIMT), which differs significantly from SISD
architecture and more subtly from SIMD.

In NVIDIA GPUs, several processing units called multiprocessors store the
state and manage the execution of a large number of threads, up to several
thousand. The host system uses the GPU device by supplying it with the code
that every thread will run and specifying how many threads will run this code.
The multiprocessor groups the threads it manages into warps,14 which on
current devices consist of 32 threads. The multiprocessor’s scheduling logic
iterates through the warps it manages, progressing them through the stages
of executing each instruction. Once the required data (in registers or off-chip
memory) and computational resources (e.g. arithmetic units) are available to
complete a warp’s next command, all threads in that warp simultaneously
execute the command.

This parallel execution of commands is the first main performance benefit of
GPUs. The second is that the latencies of executing instructions and accessing
memory, i.e. the time delays incurred in performing these tasks, are effectively
“hidden” as long as the multiprocessor is handling a sufficient number of threads
that one warp is always ready to execute its next command. Performance is therefore
best when an algorithm can be split among many threads.

The preceding presentation of thread execution has glossed over one important
topic, however: the handling of conditional statements. When the logic in several
threads diverges, which occurs when the value of the conditional expression differs
in these threads, the threads that do not need to follow the branch are marked
as inactive. When a warp is ready to execute an instruction in a branch, only
those threads that are active actually execute it. For efficient execution on GPUs,
algorithms need to be structured so that threads usually follow the same execution
paths. Otherwise, the benefits of parallel execution are lost.

14In textile weaving, a warp is a collection of parallel threads through which other thread, called
the weft, is interlaced.

13.4 Parallel Computing 623

Fig. 13.14 Diagram of the logical organisation of threads run on a GPU into a three-level
hierarchy. The threads in each level have access to different memory resources and communication
capabilities

To allocate GPU resources to threads, the threads used to perform a task on a
GPU are grouped into the three-level hierarchy illustrated in Fig. 13.14. This
hierarchy consists of threads arranged into blocks that are arranged in a grid.

624 13 Implementation of LB Simulations

The arrangement of threads in the grid often matches the dimensions of the
dataset that is being processed, and each thread handles one element of the dataset.
This is the approach used in the LBM code, in which each thread updates one lattice
node. All threads in the grid execute the same function, but each thread has two
variables that specify its position within its block and the position of the block in
the grid.

The threads and blocks in a grid have access to different resources, most impor-
tantly memory, and communication capabilities. When the host system submits the
function for the GPU to run along with the dimensions of the grid and blocks
that will run it, the execution of each thread block is assigned to the GPU’s
multiprocessors. The multiprocessor then manages the execution of the threads in
the block (grouped into warps).

Each thread has a private set of registers and on-chip local memory
that other threads cannot access. The threads in a block can all use the
multiprocessor’s fast but limited shared memory and communicate with
each other through it. Since an entire block must “fit” into one multiprocessor,
its dimensions are limited by the number of registers and the capacity of the
shared memory in the multiprocessor. When resources are sufficient, multiple
blocks can be processed simultaneously by one multiprocessor. The entire
grid of threads has access to what is called global memory, the largest
(several GiB) but slowest memory. Changes to global memory are also visible
to subsequent grids that the host launches.

The blocks in a grid must be able to execute independently because there are
no guarantees about which other blocks, if any, run simultaneously. GPUs with
more multiprocessors can run more blocks at a time and finish a whole grid faster,
provided that global memory bandwidth is sufficient. In principle, this means that
performance automatically improves when running the code on a device with more
multiprocessors. In practice, however, even if the memory bandwidth is sufficent,
the dimensions of the blocks may need to be adjusted to take advantage of available
resources and achieve optimal performance, especially when switching to a newer
GPU with more registers. The Tesla M2070, one of the GPUs on which we run
the LBM code, has 14 multiprocessors each with 32 cores for computations, for
a total of 448 cores. It has 5375 MiB of global memory (with ECC enabled),
48 KiB of shared memory, and 32768 registers available per block. The Tesla K20,
another GPU on which we test the code, has 13 multiprocessors with 192 cores
per multiprocessor (2496 total cores), 4800 MiB global memory, 48 KiB shared
memory, and 65536 registers per block.

13.4 Parallel Computing 625

13.4.3.2 Programming Model

In addition to providing many functions for performing special tasks on the host
system and GPU devices, CUDA uses several extensions to the C language to
specify whether functions will run on the host CPU or GPU and which variables will
reside in the CPU’s or GPU’s memory. CUDA C also introduces a special syntax
for launching the execution of a grid of threads.

The task that all the threads in a grid perform is described in a function
called a kernel. These functions do not return a value and have the qualifier
__global__. Within a kernel, the code may use several variables, similar
to ranks in MPI and thread identification numbers in OpenMP, to determine
the subset of data it will process. These variables are

• threadIdx: three-component integer vector (of type uint3, which has
three uint components x, y, and z) with the position of the thread within
its block

• blockIdx: three-componentuint3 vector with the position of the block
within its grid

• blockDim: three-component vector (of type dim3, which like uint3
has the uint components x, y, and z) with the dimensions of the block

• gridDim: three-component dim3 vector with the dimensions of the grid

A kernel can therefore be thought of as the inner block of code inside nested
for loops that iterate over the coordinates of each block in the grid and each
thread in every block. This conceptual understanding of kernels is presented
in Listing 13.25. The key feature of GPU programming, though, is that the
inner block is executed in parallel by many threads and not serially as the
pseudocode suggests.

Listing 13.25 Pseudocode presenting the organisation of threads into blocks that form a grid
// iterate over blocks in grid
for(int bz = 0; bz < gridDim.z; ++bz)
for(int by = 0; by < gridDim.y; ++by)
for(int bx = 0; bx < gridDim.x; ++bx)

// iterate over threads in block
for(int tz = 0; tz < blockDim.z; ++tz)
for(int ty = 0; ty < blockDim.y; ++ty)
for(int tx = 0; tx < blockDim.x; ++tx)
{ // executed in separate threads

dim3 blockIdx(bx,by,bz)
dim3 threadIdx(tx,ty,tz);

// run body of kernel
}

626 13 Implementation of LB Simulations

Simulation domains and the sizes of datasets are usually larger than the blocks
used to process them. To convert the thread and block coordinates into unique three-
dimensional indices i, j, and k for each thread, the expressions are:

int i = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.y * blockIdx.y + threadIdx.y;
int k = blockDim.z * blockIdx.z + threadIdx.z;

For data that is one or two dimensional, only the expressions for i or i and j are
needed.

When launching a kernel, the code running on the host CPU system must specify
the kernel to be launched, its arguments, the dimensions of the grid and its blocks,
and the amount of shared memory required. For this purpose, CUDA C defines a
triple angle bracket syntax:

kernel_name<<< gridDim, blockDim, sharedMem >>>(arg1, arg2);

where gridDim is a dim3 vector with the dimensions of the grid, blockDim
is a dim3 vector with the dimensions of the blocks, and size_t sharedMem
specifies the number of bytes of shared memory required by each block (default 0
when omitted). The dimensions of the grid and block may also be integers instead of
dim3 vectors when they are one-dimensional. A fourth optional argument is used
for features that are not required for this section.

Kernels may also be launched from within a kernel, but we do not cover this topic
here. This functionality is called dynamic parallelism and is available on devices
with compute capability 3.5 or higher. The launching of a kernel by the host system
is asynchronous: the launch command returns before execution is completed, freeing
the CPU to perform other tasks and launch subsequent kernels. Special functions are
available to wait for the completion of tasks on the GPU.

In addition to the __global__ function type qualifier used for kernels, CUDA
C defines two other qualifiers that specify whether functions will be used on the host
CPU or an attached GPU. The qualifier __host__ indicates that a function will
be used by, and must therefore be compiled for, the host CPU, while __device__
indicates that a function will be used on the GPU. Functions with the __device__
qualifer can be called either from a kernel or a __device__ function. Functions
without a qualifier are assumed to be __host__ functions. The __device__ and
__host__ qualifiers can be used together to indicate that a function will be used
on both the host and the GPU.

Arrays stored in shared memory are declared with the __shared__ qualifier
and can be used in __device__ functions and kernels (__global__ functions).
The amount of shared memory available to the threads in a block is specified when
the kernel is launched, and programmers must manage the use of shared memory
within the kernels themselves. In this section, we only use one shared array of
doubles whose location in memory is automatically initialised to be the start of
the available shared memory. For codes with multiple arrays potentially of different
types, we refer readers to NVIDIA’s documentation for the details of specifying the

13.4 Parallel Computing 627

starting address of each array and ensuring that alignment rules for these addresses
are satisfied.

Since the threads in a block can all read and modify the same shared and
global memory, it is necessary to ensure that threads reading from a location
that was written by a different thread “see” the correct value. This is achieved
with the void __syncthreads() function, which serves two purposes. When
executed, this function does not return until all threads in the block reach it.
Furthermore, once __syncthreads() returns, all modifications to global and
shared memory started before the synchronisation are visible to all other threads.

13.4.3.3 Code Compilation and Execution

We assume readers have access to a computer with an NVIDIA GPU and the
required drivers and development toolkit have been installed. The necessary down-
loads [26] and a quick start guide [27] are available online.

Code that uses CUDA-specific language features is stored in files with the .cu
extension and compiled with the nvcc program, which is provided in the CUDA
toolkit. This program automates the steps that generate the code that runs on the
host system and GPU device. These steps include separating the portions of code
that need to be compiled for the different architectures, combining code files from
different sources (as specified by #include directives), invoking compilers for the
separated code, and linking with libraries. The final binary executable file contains
both the instructions that run on the host and the binaries that will be loaded to run
on the GPU.

Usage of nvcc is fairly simple for the code presented in this section. The
command used in the compilation script provided with the code that accompanies
the book is:

nvcc -arch sm_20 -v --ptxas-options=-v -O3 main.cu -o sim

This command requests compilation of the source file main.cu with level 3
optimisation (-O3) to generate the executable named sim. Code that can run
on devices with compute capability 2.0 (such as the Tesla M2070) or higher is
generated by specifying the architecture option -arch sm_20. The two digits
following sm_ specify the major and minor numbers of the compute capability.
For the Tesla K20 with compute capability 3.5, it should be changed to sm_35.
We request verbose output for two steps in the compilation process with the options
-v --ptxas-options=-v. As will be discussed later, this provides detailed
information about how the kernels were compiled, including the number of registers
required by each kernel. After successful compilation, the generated program can
be run like any other program, in this case with the command ./sim. When run
on systems without a GPU device, the program will end with an error message
indicating the absence of an available device.

628 13 Implementation of LB Simulations

To run programs that use GPUs on a cluster, readers should consult the
documentation for the clusters they use to find out how to request GPU resources
for the jobs they submit. The job scripts may also need to load CUDA libraries
before starting the GPU-accelerated program. Clusters often have several dedicated
nodes on which users may interactively compile and run code outside of the job
scheduling and resource allocation system. Such nodes are useful for quick testing
and debugging of code, but one should be aware when interpreting performance
results that the resources may be used simultaneously by other cluster users.

13.4.3.4 GPU LBM Implementation

The organisation of the GPU version of the Taylor-Green vortex decay code is quite
similar to that of the CPU version. The main differences are the need to allocate and
free GPU memory, transfer data between the GPU device’s memory and its host’s
memory, and invoke kernels to perform the steps in the LBM algorithm.

The code is divided into three files: LBM.h contains primarily variable and
function declarations, LBM.cu contains the functions and kernels that implement
the LBM algorithm, and main.cu manages memory and has the main simulation
loop. LBM.cu is not compiled separately. Instead it is simply #included in
main.cu.

The presentation of the code that follows omits some details about error
checking. Interested readers may examine the full code that accompanies the book
and check the documentation provided by NVIDIA for details about the functions
used.

We start in main.cu by selecting a GPU device:

checkCudaErrors(cudaSetDevice(0));
int deviceId = 0;
checkCudaErrors(cudaGetDevice(&deviceId));

In this and the code that follows, checkCudaErrors is a macro15 defined in
LBM.cu that checks for errors and displays diagnostic information if one occurs.
If the code executes on a system without a GPU, the program will exit with
an error message. For the purpose of this chapter, this code does not perform a
useful task and is only meant to illustrate the use of these functions. On systems
with multiple GPU devices, the code could instead select a device with particular
characteristics, perhaps one with the most available memory. On such multi-GPU
systems, cudaSetDevice can be called throughout the code to specify which
device will execute subsequent kernel invocations and allocate/free memory.

15A macro is a compiler shortcut that allows programmers to conveniently use a fragment of code
in many places. When preparing code for compilation, the compiler system replaces the name of
the macro with the corresponding code fragment.

13.4 Parallel Computing 629

Next we obtain and display information about the selected device:

cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp,

deviceId));

size_t gpu_free_mem, gpu_total_mem;
checkCudaErrors(cudaMemGetInfo(&gpu_free_mem,

&gpu_total_mem));

printf("CUDA information\n");
printf(" using device: %d\n", deviceId);
printf(" name: %s\n",deviceProp.name);
printf(" multiprocessors: %d\n",

deviceProp.multiProcessorCount);
printf(" compute capability: %d.%d\n",

deviceProp.major,deviceProp.minor);
printf(" global memory: %.1f MiB\n",

deviceProp.totalGlobalMem/bytesPerMiB);
printf(" free memory: %.1f MiB\n",

gpu_free_mem/bytesPerMiB);
printf("\n");

The first function, cudaGetDeviceProperties, fills in the cudaDevice
Prop structure deviceProp with information about the device’s capabilities,
such as clock rates, maximum block and grid dimensions, and the available
capacities of different types of memory. Some of this information is then displayed.
Detailed information about available GPU devices on a system can also be obtained
with the deviceQuery utility program that is provided with the NVIDIA CUDA
development tools.

The next step is to allocate memory, both on the GPU and its host:

double *f0_gpu,*f1_gpu,*f2_gpu;
double *rho_gpu,*ux_gpu,*uy_gpu;
double *prop_gpu;
checkCudaErrors(cudaMalloc((void**)&f0_gpu,mem_size_0dir));
checkCudaErrors(cudaMalloc((void**)&f1_gpu,mem_size_n0dir));
checkCudaErrors(cudaMalloc((void**)&f2_gpu,mem_size_n0dir));
checkCudaErrors(cudaMalloc((void**)&rho_gpu,mem_size_scalar));
checkCudaErrors(cudaMalloc((void**)&ux_gpu,mem_size_scalar));
checkCudaErrors(cudaMalloc((void**)&uy_gpu,mem_size_scalar));
const size_t mem_size_props =

7*NX/nThreads*NY*sizeof(double);
checkCudaErrors(cudaMalloc((void**) &prop_gpu,

mem_size_props));

double *scalar_host = (double*) malloc(mem_size_scalar);

size_t total_mem_bytes = mem_size_0dir
+ 2*mem_size_n0dir
+ 3*mem_size_scalar
+ mem_size_props;

630 13 Implementation of LB Simulations

We follow the naming convention that pointers to memory on the GPU have
the suffix _gpu while pointers to host memory have the suffix _host. The
cudaError_t cudaMalloc(void**,size_t) function allocates memory
on the GPU. The first parameter is a pointer to the pointer variable that receives the
address of the start of the allocated memory, the second parameter is the requested
number of bytes, and like other CUDA functions, the function returns a status code.
Memory is organised in the same way as in the CPU code (Sect. 13.3.2): we have
one array for the rest populations (f0_gpu), two arrays for the eight other particle
populations (f1_gpu and f2_gpu), and one array each for the density (rho_gpu)
and velocity components (ux_gpu and uy_gpu). The sizes of these arrays are
defined in LBM.h as

const unsigned int ndir = 9;
const size_t mem_size_0dir = sizeof(double)*NX*NY;
const size_t mem_size_n0dir = sizeof(double)*NX*NY*(ndir-1);
const size_t mem_size_scalar = sizeof(double)*NX*NY;

One additional array, prop_gpu, is used for computing the energy and error of the
flow solution. The expression for its size, mem_size_props, will be explained
when we look at the gpu_compute_flow_properties kernel, which per-
forms the computations of these scalars. We only need to allocate one scalar array
on the host, for which we use the C function void* malloc(size_t). Finally,
the total allocated GPU memory (in bytes) is stored in total_mem_bytes for
future use.

Before initialising the GPU memory, we first create two event objects that will
be used to measure the execution time of the code:

cudaEvent_t start, stop;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));

The functions that initialise the simulation variables have the same names as their
CPU counterparts, but instead of directly performing their tasks, they invoke kernels
that carry out the required operations on the GPU. The purpose of organising the
code in this way is to hide the details of launching kernels from the main function.
Defined in LBM.cu, these functions are taylor_green(unsigned int t,
double *r, double *u, double *v), which computes the density

(stored in r) and velocity components (u and v) for a decaying Taylor-Green vortex
at any time t, and init_equilibrium(double *f0, double *f1,
double *r, double *u, double *v), which initialises the populations
(in f0 and f1) with the equilibrium populations for the supplied density (r) and
velocity components (u and v). The code for these functions, the GPU kernels

13.4 Parallel Computing 631

they use, and a supporting GPU function are shown in Listing 13.26. The two CPU
functions are effectively identical: they define the dimensions of the block and grid
used to run the kernel, launch the kernel, and then check for any errors in starting
the kernel.

It should be noted that kernel launches are asynchronous, meaning that the
CPU code is free to continue with other tasks while the GPU kernel executes. A
consequence of this, however, is that errors from previous kernel launches could be
caught in unexpected places, which should be kept in mind when debugging. Error
checking is performed with the getLastCudaError macro, which is defined in
LBM.cu. This macro allows the error message to include the line number at which
the error was found, which is useful for debugging. Errors in launching kernels
occur when the dimensions of the block or grid, the number of registers, or the
static memory required to satisfy the request exceed the device’s limits.

Exercise 13.24 Try launching a kernel while requesting many more threads in each
block than the maximum possible. First, compile a sample kernel and examine
the compilation output to determine how many registers the kernel requires. What
happens when this kernel is launched by a block with too many threads?

A simple block and grid geometry is used for all kernel launches in the GPU
code: blocks are one-dimensional with nThreads threads. The threads of a block
therefore update nodes with consecutive x coordinates; this has a significant impact
on the choice of memory layout, which will be described later. For simplicity we
assume the domain size in the x direction is a multiple of the number of threads in a
block. The dimensions of the grid are a width equal to the domain width divided by
the number of threads in a block and a height equal to the height of the domain. An
example of this is shown in Fig. 13.15. It follows that each thread updates the node
with the coordinates x and y determined as:

unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y;

Comparing with the CPU version (Sect. 13.3.1), we see that the majority of
the code has been moved into the kernels. for loops that iterate over the nodes’
coordinates are now absent: they have been replaced by the logical organisa-
tion of threads into a grid of blocks. In the kernel that computes the Taylor-
Green flow, gpu_taylor_green, we simply call the __device__ function
taylor_green_eval, passing it the time, the coordinates of the node being
updated, and the addresses to which it will store the density and velocity compo-
nents. These values are subsequently used when the gpu_init_equilibrium
kernel runs to compute the equilibrium populations. The code is the same as in the
CPU version and includes the optimisations presented in Listing 13.15.

632 13 Implementation of LB Simulations

Listing 13.26 CPU functions, GPU kernels, and GPU function used to calculate a Taylor-Green
vortex flow and initialise the populations

// forward declarations of kernels
__global__ void gpu_taylor_green(unsigned int,

double*,double*,double*);
__global__ void gpu_init_equilibrium(double*,double*,

double*,double*,double*);

__device__ void taylor_green_eval(unsigned int t,
unsigned int x, unsigned int y,
double *r, double *u, double *v)

{
double kx = 2.0*M_PI/NX;
double ky = 2.0*M_PI/NY;
double td = 1.0/(nu*(kx*kx+ky*ky));

double X = x+0.5;
double Y = y+0.5;
double ux = -u_max*sqrt(ky/kx)*cos(kx*X)*sin(ky*Y)

*exp(-1.0*t/td);
double uy = u_max*sqrt(kx/ky)*sin(kx*X)*cos(ky*Y)

*exp(-1.0*t/td);
double P = -0.25*rho0*u_max*u_max

*((ky/kx)*cos(2.0*kx*X)+(kx/ky)*cos(2.0*ky*Y))

*exp(-2.0*t/td);
double rho = rho0+3.0*P;

*r = rho;

*u = ux;

*v = uy;
}

__host__ void taylor_green(unsigned int t,
double *r, double *u, double *v)

{
// blocks in grid
dim3 grid(NX/nThreads, NY, 1);
// threads in block
dim3 threads(nThreads, 1, 1);

gpu_taylor_green<<< grid, threads >>>(t,r,u,v);
getLastCudaError("gpu_taylor_green kernel error");

}

__global__ void gpu_taylor_green(unsigned int t,
double *r, double *u, double *v)

{
unsigned int y = blockIdx.y;
unsigned int x = blockIdx.x*blockDim.x+threadIdx.x;

taylor_green_eval(t,x,y,
&r[gpu_scalar_index(x,y)],
&u[gpu_scalar_index(x,y)],

13.4 Parallel Computing 633

&v[gpu_scalar_index(x,y)]);
}

__host__ void init_equilibrium(double *f0, double *f1,
double *r, double *u, double *v)

{
// blocks in grid
dim3 grid(NX/nThreads, NY, 1);
// threads in block
dim3 threads(nThreads, 1, 1);

gpu_init_equilibrium<<< grid, threads >>>(f0,f1,r,u,v);
getLastCudaError("gpu_init_equilibrium kernel error");

}

__global__ void gpu_init_equilibrium(double *f0, double *f1,
double *r, double *u, double *v)

{
unsigned int y = blockIdx.y;
unsigned int x = blockIdx.x*blockDim.x+threadIdx.x;

double rho = r[gpu_scalar_index(x,y)];
double ux = u[gpu_scalar_index(x,y)];
double uy = v[gpu_scalar_index(x,y)];

// temporary variables
double w0r = w0*rho;
double wsr = ws*rho;
double wdr = wd*rho;
double omusq = 1.0 - 1.5*(ux*ux+uy*uy);

double tux = 3.0*ux;
double tuy = 3.0*uy;

f0[gpu_field0_index(x,y)] = w0r*(omusq);

double cidot3u = tux;
f1[gpu_fieldn_index(x,y,1)] =

wsr*(omusq + cidot3u*(1.0+0.5*cidot3u));
cidot3u = tuy;
f1[gpu_fieldn_index(x,y,2)] =

wsr*(omusq + cidot3u*(1.0+0.5*cidot3u));
// ... similar expressions for directions 2-4

cidot3u = tux+tuy;
f1[gpu_fieldn_index(x,y,5)] =

wdr*(omusq + cidot3u*(1.0+0.5*cidot3u));
// ... similar expressions for directions 6-8

}

In Listing 13.26, three functions are used to convert the two-dimensional
coordinates of nodes in the simulation domain to one-dimensional array indices.

634 13 Implementation of LB Simulations

Fig. 13.15 An example
showing a domain of 12� 12

nodes split up into a 2� 12

grid of blocks. Each block
contains 6 threads that each
update one node

These functions determine how memory is accessed as the domain is updated, and
therefore have a significant impact on performance.

For the sequential CPU code (Sect. 13.3.2), we ensured that consecutive memory
accesses were to consecutive locations in memory. For example, when updating any
given node, the population f3 is read after f2, and should therefore be stored adjacent
to it in memory. This pattern ensures that most memory accesses can be performed
with data already loaded into a cache by previous accesses.

On GPUs, the multiprocessors that execute threads combine the memory
accesses of each warp and only load the cache lines (Sect. 13.2.3) needed to
satisfy these requests. For example, if the 32 threads in a warp all access doubles
stored in consecutive locations, only two 128 byte transfers are needed (provided
that the address of the first double is a multiple of 128). To take advantage
of the enhanced performance due to this combining of memory accesses (also
called coalesced memory access), we ensure that consecutively numbered threads
access consecutive memory locations simultaneously.16 The populations fi for each
direction are therefore arranged in memory first by their x index, then their y index,
and then the direction number d. This arrangement matches the way that lattice
nodes in the simulation domain are allocated to threads: nodes with consecutive
positions in the x direction are handled by consecutively numbered threads.

The function for determining the linear index in the array of non-rest populations,
gpu_fieldn_index, is defined as:

16This strict ordering of memory accesses is not necessary in general. The memory accesses within
a warp are combined as long as they involve a contiguous block of memory regardless of the details
of which threads access which locations in memory.

13.4 Parallel Computing 635

__device__ __forceinline__
size_t gpu_fieldn_index(unsigned int x, unsigned int y,

unsigned int d)
{

return (NX*(NY*(d-1)+y)+x);
}

The functions for the rest populations (gpu_field0_index) and for scalar
variables (gpu_scalar_index) are the same, with the data first arranged along
x then y:

__device__ __forceinline__
size_t gpu_field0_index(unsigned int x, unsigned int y)
{

return NX*y+x;
}

__device__ __forceinline__
size_t gpu_scalar_index(unsigned int x, unsigned int y)
{

return NX*y+x;
}

These three functions have the __forceinline__ qualifier that specifies that
the compiler should expand their definitions wherever they are used rather than
generating an actual function. This allows the code to avoid the overhead of invoking
a separate function each time an array index needs to be calculated.

With initialisation completed, the initial data is saved using functions that will
be presented later, and we then proceed with the main loop of the simulation. The
main loop and the initialisation code that precedes it are shown in Listing 13.27.
Immediately before starting the main loop, we save the starting time of the loop
in two ways for the purpose of illustrating these methods: using the system clock
time and by recording an event on the GPU. The same tasks will be performed
after the loop ends to determine the time spent performing all the time steps of
the simulation. Inside the for loop, the update of the domain is performed in
the stream_collide_save function that combines the tasks of streaming,
collision, and moment computation. The remaining code provides output and swaps
the pointers for the populations with non-zero directions.

Listing 13.27 Initialisation and main loop of the simulation
taylor_green(0,rho_gpu,ux_gpu,uy_gpu);
init_equilibrium(f0_gpu,f1_gpu,rho_gpu,ux_gpu,uy_gpu);
save_scalar("rho",rho_gpu,scalar_host,0);
save_scalar("ux", ux_gpu, scalar_host,0);
save_scalar("uy", uy_gpu, scalar_host,0);
report_flow_properties(0,rho_gpu,ux_gpu,uy_gpu,

prop_gpu,scalar_host);

double begin = seconds();
checkCudaErrors(cudaEventRecord(start,0));

636 13 Implementation of LB Simulations

for(unsigned int n = 0; n < NSTEPS; ++n)
{

bool save = (n+1)%NSAVE == 0;

stream_collide_save(f0_gpu,f1_gpu,f2_gpu,
rho_gpu,ux_gpu,uy_gpu,save);

if(save)
{

save_scalar("rho",rho_gpu,scalar_host,n+1);
save_scalar("ux", ux_gpu, scalar_host,n+1);
save_scalar("uy", uy_gpu, scalar_host,n+1);

// note: scalar_host is big enough
// by a factor of nThreads/7
report_flow_properties(n+1,rho_gpu,ux_gpu,uy_gpu,

prop_gpu,scalar_host);
}

}

// swap pointers
double *temp = f1_gpu;
f1_gpu = f2_gpu;
f2_gpu = temp;

}

Like the other “wrapper” functions, stream_collide_save simply
launches a kernel, in this case gpu_stream_collide_save. This kernel
reads the populations from adjacent nodes, computes the local moments, performs
the collision operation, and saves the new populations. It only spends the memory
bandwidth to save the moments if the argument save is true. This approach,
in which streaming and collision are combined into one step, aims to minimise
memory bandwidth and was also used for the CPU code (Sect. 13.3.2).

Listing 13.28 CPU “wrapper” function and the GPU kernel that it calls to perform one update of
the simulation domain

void stream_collide_save(double *f0, double *f1, double *f2,
double *r, double *u, double *v,
bool save)

{
// blocks in grid
dim3 grid(NX/nThreads, NY, 1);
// threads in block
dim3 threads(nThreads, 1, 1);

gpu_stream_collide_save<<< grid, threads >>>(f0,f1,f2,
r,u,v,save);

getLastCudaError("gpu_stream_collide_save kernel error");
}

13.4 Parallel Computing 637

__global__ void gpu_stream_collide_save(double *f0,
double *f1, double *f2,
double *r, double *u, double *v,
bool save)

{
unsigned int y = blockIdx.y;
unsigned int x = blockIdx.x*blockDim.x+threadIdx.x;

unsigned int xp1 = (x+1)%NX;
unsigned int yp1 = (y+1)%NY;
unsigned int xm1 = (NX+x-1)%NX;
unsigned int ym1 = (NY+y-1)%NY;

// 6 2 5
// 3 0 1
// 7 4 8

double ft0 = f0[gpu_field0_index(x,y)];

double ft1 = f1[gpu_fieldn_index(xm1,y, 1)];
double ft2 = f1[gpu_fieldn_index(x, ym1,2)];
double ft3 = f1[gpu_fieldn_index(xp1,y, 3)];
double ft4 = f1[gpu_fieldn_index(x, yp1,4)];
double ft5 = f1[gpu_fieldn_index(xm1,ym1,5)];
double ft6 = f1[gpu_fieldn_index(xp1,ym1,6)];
double ft7 = f1[gpu_fieldn_index(xp1,yp1,7)];
double ft8 = f1[gpu_fieldn_index(xm1,yp1,8)];

double rho = ft0+ft1+ft2+ft3+ft4+ft5+ft6+ft7+ft8;
double rhoinv = 1.0/rho;

double ux = rhoinv*(ft1+ft5+ft8-(ft3+ft6+ft7));
double uy = rhoinv*(ft2+ft5+ft6-(ft4+ft7+ft8));

if(save)
{

r[gpu_scalar_index(x,y)] = rho;
u[gpu_scalar_index(x,y)] = ux;
v[gpu_scalar_index(x,y)] = uy;

}

// temporary variables
double tw0r = tauinv*w0*rho;
double twsr = tauinv*ws*rho;
double twdr = tauinv*wd*rho;
double omusq = 1.0 - 1.5*(ux*ux+uy*uy);

double tux = 3.0*ux;
double tuy = 3.0*uy;

f0[gpu_field0_index(x,y)] = omtauinv*ft0
+ tw0r*(omusq);

double cidot3u = tux;

638 13 Implementation of LB Simulations

f2[gpu_fieldn_index(x,y,1)] = omtauinv*ft1
+ twsr*(omusq + cidot3u*(1.0+0.5*cidot3u));

// ... similar expressions for directions 2-4

cidot3u = tux+tuy;
f2[gpu_fieldn_index(x,y,5)] = omtauinv*ft5

+ twdr*(omusq + cidot3u*(1.0+0.5*cidot3u));
// ... similar expressions for directions 6-8

}

Immediately after the end of the main for loop, we request the recording of an
event. This request is asynchronous, so we then wait for completion of all pending
tasks until the event is recorded. We may then compute the time elapsed between
the start and stop events:

checkCudaErrors(cudaEventRecord(stop,0));
checkCudaErrors(cudaEventSynchronize(stop));
float milliseconds = 0.0f;
checkCudaErrors(cudaEventElapsedTime(&milliseconds,

start,stop));
double end = seconds();
double runtime = end-begin;
double gpu_runtime = 0.001*milliseconds;

size_t doubles_read = ndir; // per node every time step
size_t doubles_written = ndir;
size_t doubles_saved = 3; // per node every NSAVE time steps

// note NX*NY overflows when NX=NY=65536
size_t nodes_updated = NSTEPS*size_t(NX*NY);
size_t nodes_saved = (NSTEPS/NSAVE)*size_t(NX*NY);
double speed = nodes_updated/(1e6*runtime);

double bandwidth = (nodes_updated*(doubles_read
+ doubles_written)

+ nodes_saved*(doubles_saved))

*sizeof(double)/(runtime*bytesPerGiB);

printf(" ----- performance information -----\n");
printf(" memory allocated (GPU): %.1f

(MiB)\n",total_mem_bytes/bytesPerMiB);
printf(" memory allocated (host): %.1f

(MiB)\n",mem_size_scalar/bytesPerMiB);
printf(" timesteps: %u\n",NSTEPS);
printf(" clock runtime: %.3f (s)\n",runtime);
printf(" gpu runtime: %.3f (s)\n",gpu_runtime);
printf(" speed: %.2f (Mlups)\n",speed);
printf(" bandwidth: %.1f (GiB/s)\n",bandwidth);

To compute the rate at which memory is accessed when the code runs, we count
the number of doubles read and written by the gpu_stream_collide_save
kernel: 9 populations are read and written every time step, and 3 additional values

13.4 Parallel Computing 639

(density and two velocity components) are written every NSAVE time steps. The
total amount of memory read and written is then divided by the runtime to determine
the value of bandwidth. In this accounting of the LBM implementation’s memory
transfers, we have neglected the transfers involved in computing the error in the
solution for simplicity because this task is performed infrequently, and it is disabled
for the performance assessment runs.

When saving simulation data, the data must first be transferred from the GPU’s
memory to the host’s memory before it can be written to a file. Listing 13.29 presents
the save_scalar function that is used to store the density and velocity fields
at regular intervals during the simulations. Other than the need for a GPU-to-host
memory transfer, the function is the same as the CPU version (Listing 13.17). In
addition to the name of the scalar (name) and the time step (n), this function takes
two pointer parameters: a pointer to the memory on the GPU and a pointer to host
memory where the data can be temporarily stored. The transfer between GPU and
host memory is performed with a call to the function

cudaError_t cudaMemcpy(void *dst, const void *src,
size_t count,
enum cudaMemcpyKind kind)

This function transfers count bytes from src to dst. The last parameter
specifies whether src and dst reside in GPU or host memory. Here, we use
cudaMemcpyDeviceToHost, which as its name suggests, specifies that the
transfer will occur from the GPU to the host. Though not used in the code
for this chapter, the other three options are: cudaMemcpyDeviceToDevice,
cudaMemcpyHostToDevice, and cudaMemcpyHostToHost.

Listing 13.29 Function for transferring memory from the GPU to its host and saving it to a file
void save_scalar(const char* name, double *scalar_gpu,

double *scalar_host, unsigned int n)
{

// assume reasonably-sized file names
char filename[128];
char format[16];

int ndigits = floor(log10((double)NSTEPS)+1.0);

// generate format string
sprintf(format,"%%s%%0%dd.bin",ndigits);
// generate file name
sprintf(filename,format,name,n);

// transfer memory from GPU to host
checkCudaErrors(cudaMemcpy(scalar_host,scalar_gpu,

mem_size_scalar,
cudaMemcpyDeviceToHost));

// open file, write to it, then close it
FILE *fout = fopen(filename,"wb+");

640 13 Implementation of LB Simulations

fwrite(scalar_host,1,mem_size_scalar,fout);

fclose(fout);
}

The computations of the kinetic energy of the flow and the error between
the numerical and exact solutions demonstrate the use of shared memory. For
each of these values, a sum over all nodes in the simulation domain needs to
be calculated, and shared memory is used to store temporary values. These
tasks are performed in the compute_flow_properties CPU function that
uses the kernel gpu_compute_flow_properties. The code for these
two functions is shown in Listing 13.30. In main.cu, these functions are
invoked through the function report_flow_properties, which first calls
compute_flow_properties and then displays the results.

The gpu_compute_flow_properties kernel computes seven values at
each node: the kinetic energy, the squares of the differences between the analytical
and numerical density and two velocity components, and the squares of the three
analytical values. The kernel starts by logically splitting its shared memory into
seven contiguous arrays, one for each quantity. The threads first call the function
taylor_green_eval, which was also used for initialisation, to compute the
analytical density and velocity, and then each thread stores its seven computed
values to the block’s shared memory space. The threads are then synchronised, and
the first thread of every block computes the sums of the values stored in shared
memory, saving these partial sums to an array in global memory (prop_gpu).
Within this global array, the seven values are stored in consecutive entries, with
one set for each block in the grid.

Listing 13.30 CPU function and GPU kernel used to compute the kinetic energy of the flow and
errors between the numerical and exact solutions

void compute_flow_properties(unsigned int t,
double *r, double *u, double *v,
double *prop,
double *prop_gpu,
double *prop_host)

{
// prop must point to space for 4 doubles:
// 0: energy
// 1: L2 error in rho
// 2: L2 error in ux
// 3: L2 error in uy

// blocks in grid
dim3 grid(NX/nThreads, NY, 1);
// threads in block
dim3 threads(nThreads, 1, 1);

gpu_compute_flow_properties<<< grid, threads,
7*threads.x*sizeof(double) >>>(t,r,u,v,prop_gpu);

13.4 Parallel Computing 641

getLastCudaError(
"gpu_compute_flow_properties kernel error");

// transfer block sums to host memory
size_t prop_size_bytes = 7*grid.x*grid.y*sizeof(double);
checkCudaErrors(cudaMemcpy(prop_host,prop_gpu,

prop_size_bytes,
cudaMemcpyDeviceToHost));

// initialise sums
double E = 0.0;

double sumrhoe2 = 0.0;
double sumuxe2 = 0.0;
double sumuye2 = 0.0;

double sumrhoa2 = 0.0;
double sumuxa2 = 0.0;
double sumuya2 = 0.0;

// finish summation with CPU
for(unsigned int i = 0; i < grid.x*grid.y; ++i)
{

E += prop_host[7*i];
sumrhoe2 += prop_host[7*i+1];
sumuxe2 += prop_host[7*i+2];
sumuye2 += prop_host[7*i+3];

sumrhoa2 += prop_host[7*i+4];
sumuxa2 += prop_host[7*i+5];
sumuya2 += prop_host[7*i+6];

}

// compute and return final values
prop[0] = E;
prop[1] = sqrt(sumrhoe2/sumrhoa2);
prop[2] = sqrt(sumuxe2/sumuxa2);
prop[3] = sqrt(sumuye2/sumuya2);

}

__global__ void gpu_compute_flow_properties(unsigned int t,
double *r, double *u, double *v,
double *prop_gpu)

{
unsigned int y = blockIdx.y;
unsigned int x = blockIdx.x*blockDim.x+threadIdx.x;

extern __shared__ double data[];

// set up arrays for each variable
// each array begins after the previous ends
double *E = data;
double *rhoe2 = data + blockDim.x;
double *uxe2 = data + 2*blockDim.x;

642 13 Implementation of LB Simulations

double *uye2 = data + 3*blockDim.x;
double *rhoa2 = data + 4*blockDim.x;
double *uxa2 = data + 5*blockDim.x;
double *uya2 = data + 6*blockDim.x;

// load density and velocity
double rho = r[gpu_scalar_index(x,y)];
double ux = u[gpu_scalar_index(x,y)];
double uy = v[gpu_scalar_index(x,y)];

// compute kinetic energy density
E[threadIdx.x] = rho*(ux*ux + uy*uy);

// compute analytical results
double rhoa, uxa, uya;
taylor_green_eval(t,x,y,&rhoa,&uxa,&uya);

// compute terms for L2 error
rhoe2[threadIdx.x] = (rho-rhoa)*(rho-rhoa);
uxe2[threadIdx.x] = (ux-uxa)*(ux-uxa);
uye2[threadIdx.x] = (uy-uya)*(uy-uya);

rhoa2[threadIdx.x] = (rhoa-rho0)*(rhoa-rho0);
uxa2[threadIdx.x] = uxa*uxa;
uya2[threadIdx.x] = uya*uya;

// synchronise data in shared memory
__syncthreads();

// only one thread proceeds
if(threadIdx.x == 0)
{

// compute linear index for this block within grid
size_t idx = 7*(gridDim.x*blockIdx.y+blockIdx.x);

// initialise partial sums in global memory
for(int n = 0; n < 7; ++n)

prop_gpu[idx+n] = 0.0;

// sum values for this block from shared memory
for(int i = 0; i < blockDim.x; ++i)
{

prop_gpu[idx] += E[i];
prop_gpu[idx+1] += rhoe2[i];
prop_gpu[idx+2] += uxe2[i];
prop_gpu[idx+3] += uye2[i];

prop_gpu[idx+4] += rhoa2[i];
prop_gpu[idx+5] += uxa2[i];
prop_gpu[idx+6] += uya2[i];

}
}

}

13.4 Parallel Computing 643

On the CPU side, the function compute_flow_properties first invokes
the gpu_compute_flow_properties kernel. For this kernel launch, we use
the third parameter in the triple angle bracket syntax that specifies the number of
bytes of shared memory required by each block. In this case, we require seven
times the number of thread in a block times the number of bytes in a double, i.e.
7*threads.x*sizeof(double). After the kernel is launched, we request a
transfer of the array prop_gpu, which was previously allocated to have space for
seven doubles for each block in the thread grid. This is why during initialisation the
size of this array was computed as 7*NX/nThreads*NY*sizeof(double).
The destination of the transfer is the CPU-side array scalar_host, which is
larger than required to hold prop_gpu by a factor of nThreads/7. The memory
transfer from GPU to CPU memory runs only after execution of the previous kernel
is completed. The CPU function then proceeds to finish the summation, and it stores
the final four values in the array prop.

Exercise 13.25 Improve the implementation of the reduction operations in
compute_flow_properties that compute the kinetic energy of the flow
and the error in the numerical solution. As a first step, implement the summation
currently performed on the CPU with a second kernel. Next, modify the first kernel
so that more threads participate in the summation within each block. For example,
half the threads could first compute one set of partial sums, then one quarter of
the threads compute the next partial sums, then one eighth of the threads compute
another partial sum, and so on until one thread computes the final value of the
sum. Are these summations limited by memory bandwidth or computation speed?
How close to the maximum theoretical performance do your kernels reach? Can
you eliminate the need for two kernels and efficiently complete the reduction with
only one block? For devices with Kepler or later architecture, try using warp shuffle
operations instead of shared memory. See the reduction example in the sample code
provided with CUDA [24] for a discussion of optimisation strategies.

Finally, we clean up and release resources at the end of the main function in
main.cu by

• destroying the event objects:

checkCudaErrors(cudaEventDestroy(start));
checkCudaErrors(cudaEventDestroy(stop));

• freeing all the memory allocated on the GPU and host:

checkCudaErrors(cudaFree(f0_gpu));
checkCudaErrors(cudaFree(f1_gpu));
checkCudaErrors(cudaFree(f2_gpu));
checkCudaErrors(cudaFree(rho_gpu));
checkCudaErrors(cudaFree(ux_gpu));
checkCudaErrors(cudaFree(uy_gpu));
checkCudaErrors(cudaFree(prop_gpu));
free(scalar_host);

644 13 Implementation of LB Simulations

• and releasing any resources associated with the GPU device:

cudaDeviceReset();

13.4.3.5 GPU Performance Optimisation and Results

To design and optimise code that takes advantage of the unique capabilities of GPUs,
the performance of programs and their kernels needs to be assessed carefully. We
summarise here the most important optimisations that are described in the CUDA C
Best Practices Guide [28].

Many of the possible optimisations that are unique to GPU architecture are fairly
intuitive to understand. Ideally, all the threads in a block, or at least within each
warp, would perform the same sequence of instructions. Otherwise, the benefits of
parallel execution are lost when threads must wait for other threads to finish their
divergent execution paths.

The other important optimisations deal with memory use. In general, one should
prefer to use faster memory wherever possible, i.e. shared memory instead of global
memory, and avoid unnecessary transfers between GPU and host memory. Since the
memory required by typically-sized LBM simulation domains exceeds the available
shared memory, use of global memory is unavoidable. As discussed earlier, access to
global memory should follow a pattern that allows the transfers requested by warps
to be coalesced, or merged, into a small number of large transactions. Though not
suitable for the data of the whole simulation domain, shared memory can be used
as fast temporary storage space and for pre-loading data that would otherwise have
to be accessed with a pattern that precludes coalescence. Furthermore, for some
algorithms, it may be beneficial to use a kernel for a particular task to avoid a slow
memory transfer even though a CPU might handle this task more efficiently.

In summary, avoid divergent execution paths in kernels, uncoalesced access
to global memory, and unnecessary transfers of memory between the GPU
and its host.

One way to assess the performance of a kernel is to consider the fraction of
available computational resources that is used while it executes. This is called
the occupancy, and it is the ratio of the maximum number of thread warps of a
particular kernel than can run simultaneously to the maximum number of warps
that a multiprocessor can handle. Calculation of the occupancy is complex due
to the specifics of how registers are allocated and the available resources on each
generation of devices. However, NVIDIA provides a spreadsheet and several API
functions to perform these calculations.

13.4 Parallel Computing 645

Table 13.4 Performance of the GPU code on the Tesla M2070 (compute capability 2.0) and Tesla
K20 (compute capability 3.5)

Tesla M2070 (2.0) Tesla K20 (3.5)

Domain size Time steps GPU memory (MiB) Speed (Mlups) Speed (Mlups)

32� 32 1638400 0.2 232 159

64� 64 409600 0.6 507 558

128� 128 102400 2.5 587 731

256� 256 25600 10 612 859

512� 512 6400 40 620 889

1024 � 1024 1600 162 635 897

2048 � 2048 400 647 669 895

4096 � 4096 100 2588 649 881

Using the verbose compilation output (Sect. 13.4.3.3), we find that the
gpu_stream_collide_save is compiled to use 37 registers. On devices with
compute capability 2.x, we have 32768 registers available for use by the threads in
each block. Clearly, we could not run this kernel using blocks with 1024 threads, as
this would require 37 � 1024 D 37888 registers in total.

When using 32 threads per block, we find that 8 blocks of this kernel, the
maximum possible for this compute capability, can execute simultaneously on a
multiprocessor. Therefore 8 warps (32 threads each) would be able to run on each
multiprocessor out of a maximum of 48 for compute capability 2.x, an occupancy
of only 16.6%. Though low, we find that the overall performance of the code, as
measured by the utilisation of available memory bandwidth, is good. We leave
studying the effects of changing the dimensions of the blocks used for launching
the kernels in this section to interested readers.

In some cases it is beneficial to force the compiler to avoid using too many reg-
isters to improve occupancy. For such cases, one may use the --maxrregcount
option of nvcc to force the compiler to ensure that kernels use fewer than the
specified maximum number of registers and instead use other types of (slower)
memory for temporary storage when needed.

The speed of the simulations in millions of lattice updates per second (Mlups)
running on Tesla M2070 (compute capability 2.0) and K20 (compute capability 3.5)
GPUs is listed in Table 13.4 for domain sizes from 32 � 32 to 4096 � 4096. For
these simulations, the saving of data was disabled to assess only the time needed
for computations. The error in the solution was calculated after the last time step
to prevent automatic optimisation from simplifying away the main simulation loop.
Comparing with the CPU performance data in Table 13.2, the simulations run more
than 20 times faster on the M2070 and 30 times faster on the K20 for domains larger
than 128 � 128. The number of timesteps was chosen so that the runtime of each
simulation was about 3 seconds. In all cases, the grids used to run the kernels were
one dimensional with 32 threads allocated along the x direction.

646 13 Implementation of LB Simulations

As for CPUs, an efficient memory access pattern is essential for achieving high
performance. The Tesla M2070 has a 1.5 GHz memory clock, a 384 bit memory
bus, and double data rate (DDR) memory, which means that two transfers can
be performed per clock cycle. The theoretical maximum memory transfer rate
(bandwidth) is therefore

1:5 � 109 clock cycles

s
� 2 transfers

clock cycle
�384 bits

transfer
�1 byte

8 bits
� 1 GiB

10243 bytes
D 134 GiB/s

The error detection and correction (ECC) system reduces memory bandwidth by
20% to 107 GiB/s. Since the updating of one node in a D2Q9 lattice requires
reading and writing 9 doubles, a total of 144 bytes must be transferred for each
node update. At a simulation speed of 669 Mlups, achieved for the 2048 � 2048
domain, memory is therefore transferred at a rate of 89.7 GiB/s, which is 84% of
the theoretical maximum. The code is therefore quite efficient at using the available
bandwidth.

If the layout of the memory is flipped (i.e. the two indices are exchanged
in the expression for the linear index so that consecutively numbered threads
no longer access consecutive memory locations), the speed of the 512 � 512
simulation, for example, falls by a factor just over 10 to 64.2 Mlups.

The Tesla K20 has a 2.6 GHz memory clock and 320 bit bus, for which
the maximum theoretical bandwidth is 194 GiB/s, about 45% more than that of
the M2070. The maximum simulation speed achieved with this device, listed in
Table 13.4, is 34% higher, slightly less than the increase in memory bandwidth.
Better performance on the K20 can be achieved by increasing the number of threads
in the blocks used to run the kernels. With 64 threads per block, the maximum
simulation speed increases to 1021 Mlups on the K20.

Exercise 13.26 Determine the occupancy of the gpu_stream_collide_save
kernel on the Tesla K20 or a GPU you can use. What is the highest possible
occupancy and how much does performance improve when using the best number
of threads per block?

More recent devices, for example the K40, have twice the memory capacity and
bandwidth of the M2070. Simulations that require more memory or speed can be
run on GPU clusters by using MPI as for CPU clusters (Sect. 13.4.2). The code
in this section can also run on unconventional GPU platforms. For example, it
runs on the NVIDIA Shield tablet, reaching up to 58 Mlups (57% of the available
13.8 GiB/s memory bandwidth without any tuning for this platform). This is
almost double the speed of the optimised single-thread CPU version (Sect. 13.3.2).
With upcoming generations of GPU devices expected to have memory bandwidths

13.4 Parallel Computing 647

exceeding 1 TB/s, the maximum theoretical performance of a single device will
reach 7 billion lattice updates per second for a D2Q9 lattice and 3 billion for D3Q19.

Due to the high performance they provide at relatively low cost, GPUs are
likely to remain competitive for large-scale LBM simulations.

13.4.3.6 Further Reading

Over the past decade, the use of GPUs for LBM simulations has grown together
with the performance and availability of these devices, and we provide here a brief
survey of the literature describing the advances.

In 2003, Li et al. [29] presented a pre-CUDA implementation of a D3Q19
LBM simulation in which the LBM variables were stored as textures and rendering
operations were used to implement the algorithm. The use of GPU clusters to
overcome memory limitations and achieve higher simulation speeds was quickly
recognised [30]. Soon after the release of CUDA in 2007, Tölke [31] reported a
CUDA implementation of 2D LBM simulations running on an NVIDIA 8800 Ultra
GPU (compute capability 1.0), which supported only single precision floating point
and was limited to 768 MB of memory. This implementation used shared memory
to assist propagation, and it reached 59% utilisation of the theoretical maximum
memory bandwidth. Tölke and Krafczyk [32] described a similar implementation of
a D3Q13 model and examined the drag on a sphere as a benchmark.

Mawson and Revell [33] provide a recent review of the developments in the use
of GPUs for LBM simulations. They also examined the possibility of accelerating
the LBM streaming operation by using new shuffle commands that allow quick
sharing of data between the threads in a warp. These commands, which were first
provided in the NVIDIA Kepler architecture (compute capability 3 and higher), did
not improve performance, and the simpler “pull” algorithm for streaming was better.
This is the approach shown in the code in this section, and it performs streaming
by reading the density values from adjacent nodes that point towards the node
being updated. In contrast, “pushing” performs streaming by saving the densities
computed at a node to their destinations in adjacent nodes.

On early GPU devices, the conditions for achieving coalesced memory access
were significantly more restrictive than they are now. Much of the early literature on
the use of GPUs for LBM simulations examined how to implement the algorithm
in a way that minimises performance losses due to non-coalesced memory access.
These early devices (compute capability 1.X) are no longer supported by NVIDIA’s
compilation tools, and we do not consider their limitations further. When comparing
performance results of their own codes and those reported in different papers,
readers should be aware that many authors use single precision computations and
devices without ECC memory, both of which increase processing speed.

648 13 Implementation of LB Simulations

GPUs are useful for multiphase flow simulations with lattice Boltzmann methods
(Chap. 9). For example, the free-energy method for binary liquid systems was
implemented on individual GPUs and multiple GPUs in a cluster to determine
the critical conditions for coalescence of droplets in shear [34, 35] as well as
the conditions for and characteristics of droplet breakup [36, 37]. GPUs on some
of the world’s largest supercomputers have been used to simulate a variety of
other multiphase flow problems such as flow around a sphere using 96 GPUs on
TSUBAME [38], multiphase flows in porous media on Mole-8.5 [39], and 4096
GPUs and 65536 CPUs together achieving over 200000 Mlups on Titan [40].
Several thousand of Titan’s GPUs were also used to simulate flows of complex
fluids with particles [41].

GPUs can also accelerate simulations of flows coupled with other physical
phenomena. Obrecht et al. [42] describe an MRT LBM flow solver coupled with a
finite-difference heat transfer solver running together on a GPU, and later extended
to multiple GPUs in one host system [43, 44]. These authors earlier showed [45]
that propagation can be efficiently performed directly in global memory without
using shared memory (as in an earlier implementation [46]). They also found that
the additional computations required for MRT collisions (in comparison to BGK
collisions) require little time compared to the time consumed by memory transfers.
This group has also worked on implementing thermal flow simulations with LBM
on GPU clusters using CUDA and MPI [47].

The efficient implementation of boundary conditions is important for high overall
performance especially for systems with large interfacial areas. In addition to
the previously mentioned simulations of porous media, authors have examined
optimisations for flows with free surfaces [48], curved boundaries [49], nonuniform
grids [50], and the implementation of linearly interpolated bounceback boundary
conditions [51]. As is generally the case for LB simulations, programmers need to
pay attention to memory access patterns. Lattice nodes can be classified as either
bulk (or fluid) nodes, at which a regular update is performed, and interfacial nodes,
some of whose incoming densities are specified by boundary conditions. When the
fraction of interfacial nodes is small, the speed of updating the bulk nodes should
not be adversely affected by conditional expressions that test whether the nodes are
bulk or interfacial nodes. For example, the kernel that updates the bulk nodes could
skip all interfacial nodes or update them as if they were bulk nodes. This avoids
divergent execution paths within thread blocks, and the interfacial nodes can then
be updated correctly with a separate kernel. When the fraction of interfacial nodes is
significant, as in porous media, the data describing the boundaries must be carefully
organised and accessed to minimise the impact on the speed at which the domain
is updated. Two strategies are often used [52]: an array that identifies the nature of
each node or a pre-computed list of the fluid nodes.

13.6 Summary 649

Fig. 13.16 Second-order convergence of the L2 error in ux for simulations of a decaying Taylor-
Green vortex flow in a square domain. The domain sizes range from 32�32 to 4096�4096 lattice
nodes. The L2 errors are reported at t=td D 1:93

13.5 Convergence Study

At the start of this chapter, we set out to perform a convergence study for the decay
of a Taylor-Green vortex flow (see Appendix A.3 for the definitions of the variables
used in this section). Figure 13.16 shows the result of this study for domain sizes
from `x � `y D 32 � 32 to 4096 � 4096 lattice nodes. As the grid is refined
successively by a factor of two, we decrease u0 by a factor of two (starting with
u0 D 0:04 for `x D 32) to keep Re` D u0`x=
 constant with
 D 1=6. The number
of time steps in each simulation was increased by a factor of 4 to simulate the same
physical time in each case. The computational expense of the simulations (the total
number of node updates) therefore increases by a factor of 16 for each doubling of
the resolution.

The simulations were performed on a Tesla M2070 GPU, and the simulation of
the largest domain completed 3 276 800 time steps in 23.5 hours, which corresponds
to 649 Mlups. We clearly see that the L2 error in the x velocity component exhibits
the expected second-order convergence.

13.6 Summary

In this chapter, we have looked at writing efficient implementations of LB simula-
tions. We examined the optimisation of arithmetic expressions and loops, automatic
optimisation during compilation, and careful selection of memory access patterns
to utilise memory caches correctly. We then turned our attention to parallel

650 13 Implementation of LB Simulations

programming, using OpenMP and MPI to develop codes for shared and distributed
memory systems and CUDA for GPUs.

To help readers, we summarise here some of the common reasons for errors
and inefficiency on each platform that was presented in this chapter.

To take advantage of memory caching, code for CPUs should access
consecutive memory locations in order and use data that has been recently
loaded as much as possible before moving on to other data. Data structures
and the for loops that iterate over the data should be designed accordingly.

When programming with OpenMP, the specifications for how data is
shared between sequential regions of code and parallel blocks are a common
source of errors. Beginners should disable automatic classification of
variables and explicitly specify how each variable should be handled.

Dependencies in MPI communications between processes can cause lock-
ups if they are structured incorrectly. Where possible, prefer non-blocking
communication methods over blocking methods and use the MPI library
functions to implement common communication patterns instead of writing
custom codes with lower-level functions.

The threads that run kernels on GPUs should access consecutive memory
locations simultaneously. The GPUs can then combine the threads’ requests
for memory so that fewer transfers need to be performed. Use blocks with
as many threads as possible; the maximum is determined by the number of
registers and the amount of shared memory that the kernel uses.

A recurring theme in this chapter was the significance of data transfer speeds.
This topic was encountered frequently because LB simulations are generally
memory-intensive rather than computing-intensive: more time is spent loading input
data and storing results than carrying out the computations once data has been
loaded. The dependence of LB simulation performance on memory transfer rates
has broad implications. For example, researchers need not necessarily hesitate to
use more computationally demanding algorithms such as TRT or MRT (Chap. 10)
due to concerns about increasing simulation times. When algorithms are limited
by the speed of memory access, additional computations can be “hidden” in the
time that would otherwise be spent only waiting for data to be transferred. When
implementing three dimensional simulations, the consequences of poor memory
designs become more significant due to the increased number of populations
stored at each node and the larger numbers of nodes required for high-resolution
simulations.

This chapter used a single phase transient flow to demonstrate the key ideas
behind writing efficient serial and parallel codes, and the concepts also apply to
more complex simulations. In multiphase and multicomponent flow simulations
(Chap. 9) as well as more general coupled flow and scalar transport simulations

References 651

(Chap. 8), two populations are often used. The data dependency arising from the
coupling between them must be handled carefully. For example, when computing
macroscopic variables and their gradients, care must be taken to reuse data as much
as possible and minimise the amount of memory transferred. In all simulations,
boundary conditions must be implemented efficiently and should not interfere with
quick updating of bulk nodes. Simulations of porous media, in which boundary
conditions must be applied at many nodes, require special treatment to ensure that
the memory describing the nature of each node (bulk or interface) is used effectively.
These situations can all be handled by applying the guidelines given in this chapter.

Advances in computing technology continue at a rapid pace, and researchers
will undoubtedly take advantage of them for LB simulations. With development
proceeding towards more parallel processing instead of faster individual cores, LBM
is attractive for CFD due to its amenenability to parallisation. Upcoming generations
of GPUs are expected to have terabyte (1012 bytes) per second memory bandwidths,
and the use of processors with many cores (50 or more in one package together with
inter-core communication systems) is increasing. With these and likely many other
new technologies, supercomputers with exascale performance (1018 floating point
operations per second) are expected to be available in the early 2020s. This chapter
has presented the key tools and concepts needed to prepare readers to tackle the
challenges of developing efficient codes for current and new platforms.

References

1. Institute of Electrical and Electronics Engineers. 754-2008 — IEEE standard for floating-point
arithmetic (2008). http://dx.doi.org/10.1109/IEEESTD.2008.4610935

2. H.S. Warren Jr., Hacker’s Delight, 2nd edn. (Addison-Wesley, Boston, 2013)
3. U. Drepper. What every programmer should know about memory (2007). https://www.akkadia.

org/drepper/cpumemory.pdf
4. S. Chellappa, F. Franchetti, M. Püschel, in Generative and Transformational Techniques in

Software Engineering II: International Summer School, GTTSE 2007, Braga, Portugal, July 2–
7, 2007. Revised Papers, ed. by R. Lämmel, J. Visser, J. Saraiva (Springer, Berlin, Heidelberg,
2008), pp. 196–259

5. M. Wittmann, T. Zeiser, G. Hager, G. Wellein, Comput. Math. Appl. 65, 924 (2013)
6. D.A. Bikulov, D.S. Senin, Vychisl. Metody Programm. 3, 370 (2013). This article is in Russian.
7. OpenMP Architecture Review Board. About the OpenMP ARB and OpenMP.org. http://

openmp.org/wp/about-openmp/
8. OpenMP Architecture Review Board. OpenMP application program interface (2011). http://

www.openmp.org/mp-documents/OpenMP3.1.pdf. Version 3.1
9. OpenMP Architecture Review Board. OpenMP application programming interface (2015).

http://www.openmp.org/mp-documents/openmp-4.5.pdf. Version 4.5
10. B. Barney. OpenMP. https://computing.llnl.gov/tutorials/openMP/
11. Message Passing Interface Forum. Message Passing Interface (MPI) Forum Home Page. http://

www.mpi-forum.org/
12. TOP500. November 2015 TOP500 supercomputer sites. http://www.top500.org/lists/2015/11/
13. Message Passing Interface Forum. MPI: A Message-Passing Interface standard (2008). http://

www.mpi-forum.org/docs/mpi-1.3/mpi-report-1.3-2008-05-30.pdf. Version 1.3

http://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://www.akkadia.org/drepper/cpumemory.pdf
https://www.akkadia.org/drepper/cpumemory.pdf
http://openmp.org/wp/about-openmp/
http://openmp.org/wp/about-openmp/
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf
https://computing.llnl.gov/tutorials/openMP/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.top500.org/lists/2015/11/
http://www.mpi-forum.org/docs/mpi-1.3/mpi-report-1.3-2008-05-30.pdf
http://www.mpi-forum.org/docs/mpi-1.3/mpi-report-1.3-2008-05-30.pdf

652 13 Implementation of LB Simulations

14. The Open MPI Project. Open MPI: Open Source High Performance Computing. https://www.
open-mpi.org/

15. Message Passing Interface Forum. MPI documents. http://www.mpi-forum.org/docs/docs.
html

16. The Open MPI Project. Open MPI documentation. https://www.open-mpi.org/doc/
17. B. Barney. Message Passing Interface (MPI). https://computing.llnl.gov/tutorials/mpi/
18. W. Gropp, E. Lusk, A. Skjellum, UsingMPI: Portable parallel programming with the Message-

Passing Interface, 3rd edn. (MIT Press, Cambridge, 2014)
19. Adaptive Computing, Inc. TORQUE resource manager. http://www.adaptivecomputing.com/

products/open-source/torque/
20. Khronos Group. OpenCL. https://www.khronos.org/opencl/
21. OpenACC. Directives for accelerators. http://www.openacc.org/
22. NVIDIA. CUDA toolkit documentation. http://docs.nvidia.com/cuda/
23. NVIDIA. CUDA code samples. https://developer.nvidia.com/cuda-code-samples
24. NVIDIA. CUDA toolkit documentation. http://docs.nvidia.com/cuda/cuda-samples/
25. J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General Purpose GPU

Programming (Addison-Wesley, Boston, 2010)
26. NVIDIA. CUDA downloads. https://developer.nvidia.com/cuda-downloads
27. NVIDIA. CUDA quick start guide. http://docs.nvidia.com/cuda/pdf/CUDA_Quick_Start_

Guide.pdf
28. NVIDIA. CUDA C best practices guide (2015). http://docs.nvidia.com/cuda/pdf/CUDA_C_

Best_Practices_Guide.pdf
29. W. Li, X. Wei, A. Kaufman, Visual Comput. 19, 444 (2003)
30. A. Kaufman, Z. Fan, K. Petkov, J. Stat. Mech. 2009, P06016 (2009)
31. J. Tölke, Comput. Visual. Sci. 13, 29 (2010)
32. J. Tölke, M. Krafczyk, Int. J. Comput. Fluid. D. 22, 443 (2008)
33. M.J. Mawson, A.J. Revell, Comput. Phys. Commun. 185, 2566 (2014)
34. O. Shardt, J.J. Derksen, S.K. Mitra, Langmuir 29, 6201 (2013)
35. O. Shardt, S.K. Mitra, J.J. Derksen, Langmuir 30, 14416 (2014)
36. A.E. Komrakova, O. Shardt, D. Eskin, J.J. Derksen, Int. J. Multiphase Flow 59, 24 (2014)
37. A.E. Komrakova, O. Shardt, D. Eskin, J.J. Derksen, Chem. Eng. Sci. 126, 150 (2015)
38. W. Xian, A. Takayuki, Parallel Comput. 37, 521 (2011)
39. X. Li, Y. Zhang, X. Wang, W. Ge, Chem. Eng. Sci. 102, 209 (2013)
40. J. McClure, H. Wang, J.F. Prins, C.T. Miller, W.C. Feng, in Parallel and Distributed Processing

Symposium, 2014 IEEE 28th International (2014), pp. 583–592
41. A. Gray, A. Hart, O. Henrich, K. Stratford, Int. J. High Perform. C. 29, 274 (2015)
42. C. Obrecht, F. Kuznik, B. Tourancheau, J.J. Roux, Comput. Fluids 54, 118 (2012)
43. C. Obrecht, F. Kuznik, B. Tourancheau, J.J. Roux, Comput. Math. Appl. 65, 252 (2013)
44. C. Obrecht, F. Kuznik, B. Tourancheau, J.J. Roux, Comput. Fluids 80, 269 (2013)
45. C. Obrecht, F. Kuznik, B. Tourancheau, J.J. Roux, Comput. Math. Appl. 61, 3628 (2011)
46. F. Kuznik, C. Obrecht, G. Rusaouen, J.J. Roux, Comput. Math. Appl. 59, 2380 (2010)
47. C. Obrecht, F. Kuznik, B. Tourancheau, J.J. Roux, Parallel Comput. 39, 259 (2013)
48. M. Schreiber, P. Neumann, S. Zimmer, H.J. Bungartz, Procedia Comput. Sci. 4, 984 (2011)
49. H. Zhou, G. Mo, F. Wu, J. Zhao, M. Rui, K. Cen, Comput. Methods Appl. Mech. Eng. 225–228,

984 (2011)
50. M. Schönherr, K. Kucher, M. Geier, M. Stiebler, S. Freudiger, M. Krafczyk, Comput. Math.

Appl. 61, 3730 (2011)
51. C. Obrecht, F. Kuznik, B. Tourancheau, J.J. Roux, Comput. Math. Appl. 65, 936 (2013)
52. H. Liu, Q. Kang, C.R. Leonardi, S. Schmieschek, A. Narváez, B.D. Jones, J.R. Williams, A.J.

Valocchi, J. Harting, Comput. Geosci. 20, 777 (2016)

https://www.open-mpi.org/
https://www.open-mpi.org/
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
https://www.open-mpi.org/doc/
https://computing.llnl.gov/tutorials/mpi/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
https://www.khronos.org/opencl/
http://www.openacc.org/
http://docs.nvidia.com/cuda/
https://developer.nvidia.com/cuda-code-samples
http://docs.nvidia.com/cuda/cuda-samples/
https://developer.nvidia.com/cuda-downloads
http://docs.nvidia.com/cuda/pdf/CUDA_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

Appendix

A.1 Index Notation

Many equations in physics deal with vector quantities which have both a magnitude
and an orientation in physical space. For instance, the simplified form of Newton’s
second law,

f D ma; (A.1)

connects the vector quantity of force f and the vector quantity of acceleration a,
both having the same orientation.

Equations such as this can also be expressed more explicitly as three scalar
equations, one for each spatial direction:

fx D max; fy D may; fz D maz: (A.2)

However, it is cumbersome to write all three equations in this way, especially when
their only difference is that their index changes between x, y, and z. Instead, we can
represent the same equation using only one generic index ˛ 2 fx; y; zg as

f˛ D ma˛: (A.3)

This style of notation, called index notation, retains the explicitness of the notation
in (A.2) while remaining as brief as (A.1).

With simple vector equations like this, the advantage of index notation might
not seem all that great. However, vectors are only first-order tensors (scalars being
zeroth-order tensors). We can also apply index notation to a second-order tensor
(or matrix) A by pointing to a generic element as A˛ˇ , ˛ and ˇ being two generic
indices that may or may not be different. Higher-order tensors are equally explicit:

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3

653

654 Appendix

a generic element of the third-order tensor R is R˛ˇ� . Indeed, this style of notation
lets us immediately see the order of the tensor from the number of unique indices.

Another strength of index notation is that it allows the use of the Einstein
summation conventionwhere repeating the same index twice in a single term implies
summation over all possible values of that index. Thus, the dot product of the vectors
a and b can be expressed as

a˛b˛ D
X

˛

a˛b˛ D axbx C ayby C azbz D a � b: (A.4)

The dot product can be expressed equally briefly in index and vector notation.
The dot product is expressed in index notation using only the Einstein summation

convention, while the vector notation uses a specific, dedicated symbol “�” to express
it. For the dyadic product,

A D a˝ b , A˛ˇ D a˛bˇ; (A.5)

the vector notation requires yet another specific, dedicated symbol “˝” while the
index notation is explicit and clear: the ˛ˇ-component of the second-order tensor A
equals the product of the ˛-component of the vector a and the ˇ-component of the
vector b.

We may also use index notation to generalise coordinate notation: a general
component of the spatial coordinate vector x D .x; y; z/ D .x1; x2; x3/ can be written
as x˛. In this way, we can also express, e.g., gradients in index notation:

r�.x/ , @�.x/
@x˛

, @˛�.x/: (A.6)

The third option is a common shorthand for derivatives, used throughout the
literature and this book. Similarly, the time derivative can be expressed using the
shorthand @�.t/=@t D @t�.t/.

Most common vector and tensor operations can be conveniently expressed in
index notation, as shown in Table A.1. One exception to this convenience is the
always inconvenient cross product, which must be expressed using the Levi-Civita
symbol

"˛ˇ� D

8
ˆ̂
<

ˆ̂
:

C1 if .˛; ˇ; �/ is .1; 2; 3/; .3; 1; 2/ or .2; 3; 1/;

�1 if .˛; ˇ; �/ is .3; 2; 1/; .1; 3; 2/ or .2; 1; 3/;

0 if ˛ D ˇ, ˇ D � , or � D ˛:
(A.7)

However, while the cross product is widely used in fields like electromagnetics, it is
far less used for the topics covered in this book.

A.2 Details in the Chapman-Enskog Analysis 655

Table A.1 Examples of common operations in vector and index notation, including an index
notation shorthand for derivatives

Operation Vector notation Index notation Shorthand

Vector dot product � D a � b � D a˛b˛
Vector outer product A D a ˝ b A˛ˇ D a˛bˇ
Vector cross product c D a � b c˛ D "˛ˇ�aˇb�
Tensor contraction � D A W B � D A˛ˇB˛ˇ
Gradient a D r � a˛ D @�=@x˛ a˛ D @˛�

Laplacian � D r2� � D @2�=.@x˛@x˛/ � D @˛@˛�

1st order tensor divergence � D r � a � D @a˛=@x˛ � D @˛a˛
2nd order tensor divergence a D r � A a˛ D @A˛ˇ=@xˇ a˛ D @ˇA˛ˇ
3rd order tensor divergence A D r � R A˛ˇ D @R˛ˇ�=@x� A˛ˇ D @�R˛ˇ�

In this book, we use Greek indices for the Cartesian indices x, y, and z. We also
use Roman indices such as i, j, and k for non-Cartesian indices; typically to index
discrete velocities as e.g. �i. Einstein’s summation convention is used only for the
Cartesian indices.

A.2 Details in the Chapman-Enskog Analysis

A.2.1 Higher-Order Terms in the Taylor-Expanded LBE

In (4.5) we found the Taylor expansion of the fi.xC ci�t; tC�t/� fi.x; t/ terms in
the LBE to be

1X

nD1

�tn

nŠ
.@t C ci˛@˛/

n : (A.8)

We neglected terms at third order and higher in the subsequent analysis. If we can
show that these terms are at least two orders higher in Kn than the lowest-order
terms, this neglection is justified. This is because the ansatz was that it is only
necessary to keep the two lowest orders in Kn. Let us take a closer look.

Recall that the Knudsen number is Kn D `mfp=`, where `mfp is the mean free
path and ` is a macroscopic length scale. Kn can be related to a similar ratio in
times instead of lengths using the speed of sound cs. As cs is on the order of the mean
particle speed in the gas [1], we find that the mean time between collisions is Tmfp D
O.`mfp=cs/. Additionally, we can define an acoustic time scale as Tcs D `=cs, this
being the time it takes for an acoustic disturbance to be felt across the length scale
`. Together, these two relations show that Kn D `mfp=` D O.Tmfp=Tcs/.

656 Appendix

Collisions are the mechanism by which the distribution function relaxes to
equilibrium, and relatively few collisions are required for this1, so D O.Tmfp/.
From the space and time discretisation of Sect. 3.5, we know that �t D O./:
=�t must be larger than 0:5 for reasons of linear stability, while we should avoid
choosing =�t
 1 for reasons of accuracy, explained in Sect. 4.5.

The acoustic time scale Tcs D `=cs is typically shorter than the advective time
scale Tu D `=u where u is a characteristic fluid velocity. Indeed, it can readily be
found that Tcs=Tu D u=cs D Ma. Therefore, Tmfp=Tcs D O.Kn/ and Tmfp=Tu D
O.Kn �Ma/; these two ratios scale at the same order in the Knudsen number.

With this said, we can now take another look at the terms in (4.5) and examine
their order in the Knudsen number, allowing the characteristic time scale to be either
advective or acoustic:

Advective: O.�t@tfi/ � O.=Tu/ � O.MaTmfp=Tcs/ � O.Ma � Kn/

Acoustic: O.�t@tfi/ � O.=Tcs/ � O.Tmfp=Tcs/ � O.Kn/

O.�tci˛@˛fi/ � O.cs=`/ � O.Tmfp=Tcs/ � O.Kn/
(A.9)

Consequently, we have that �tn.@t C ci˛@˛/nfi scales with Knn. Neglecting third-
and higher-order terms in (4.5) is therefore consistent with our ansatz of keeping
only terms of the two lowest orders in Kn.

A.2.2 The Moment Perturbation

To be able to find the macroscopic momentum equation through the Chapman-
Enskog analysis in Sect. 4.1, we must determine the moment ˘.1/

˛ˇ . This can be
found from (4.10c) as

˘
.1/

˛ˇ D �
�
@
.1/
t ˘

eq
˛ˇ C @.1/� ˘ eq

˛ˇ�

�
: (A.10)

From this we would like to find an explicit expression for ˘.1/

˛ˇ through the
macroscopic quantities � and u and their derivatives.

We already know the two equilibrium moments in (A.10) explicitly:

˘
eq
˛ˇ D �u˛uˇ C �c2sı˛ˇ; ˘

eq
˛ˇ� D �c2s

�
u˛ıˇ� C uˇı˛� C u� ı˛ˇ

�
: (A.11)

Since we would like the resulting momentum equation to be similar to the Euler and
Navier-Stokes equations, all time derivatives in ˘.1/

˛ˇ should be eliminated. We can

1We show in Sect. 12.1.1 that the quantity of viscous relaxation time vi is O./, and it is shown
elsewhere [2] that vi D O.Tmfp/.

A.2 Details in the Chapman-Enskog Analysis 657

do this by rewriting (4.10) more explicitly as

@
.1/
t � D �@.1/˛

�
�u˛

�
; @

.1/
t .�u˛/ D �@.1/ˇ

�
�u˛uˇ C �c2sı˛ˇ

�
: (A.12)

We also need to make use of a corollary of the product rule; if @� is a generic
derivative and a, b, and c are generic variables, then

@�.abc/ D a@�.bc/C b@�.ac/� ab@�c: (A.13)

The following derivation is simplified by our use of the isothermal equation
of state p D c2s� where the pressure and density are linearly related through
the constant c2s . In other cases, we would have to treat the pressure in a more
complicated fashion. For monatomic gases, for example, we would need to express
pressure changes using the conservation equation for translational energy [3].

We will now resolve the two equilibrium moment derivatives in (A.10) sepa-
rately, starting with the one which is the simplest to resolve:

@.1/� ˘
eq
˛ˇ� D @.1/�

�
�c2s

�
u˛ıˇ� C uˇı˛� C u� ı˛ˇ

	�

D c2s
�
@
.1/

ˇ �u˛ C @.1/˛ �uˇ
�
C c2sı˛ˇ@

.1/
� .�u�/:

(A.14)

The other equilibrium moment derivative is more complicated, and we will
resolve it in steps. First of all, we apply (A.13) and find

@
.1/
t ˘

eq
˛ˇ D @.1/t .�u˛uˇ C �c2sı˛ˇ/
D u˛@

.1/
t .�uˇ/C uˇ@

.1/
t .�u˛/ � u˛uˇ@

.1/
t �C c2sı˛ˇ@

.1/
t �:

(A.15a)

Then we apply (A.12) to replace the time derivatives and subsequently rearrange:

@
.1/
t ˘

eq
˛ˇ D �u˛@.1/�

�
�uˇu� C �c2sıˇ�

�
� uˇ@

.1/
�

�
�u˛u� C �c2sı˛�

�

C u˛uˇ@
.1/
� .�u�/� c2sı˛ˇ@

.1/
� .�u�/

D �
h
u˛@

.1/
� .�uˇu�/C uˇ@

.1/
� .�u˛u� /� u˛uˇ@

.1/
� .�u� /

i

� c2s
�
u˛@

.1/

ˇ �C uˇ@
.1/
˛ �

�
� c2sı˛ˇ@

.1/
� .�u� /:

(A.15b)

Finally, the bracketed terms can be simplified by using (A.12) in reverse, giving

@
.1/
t ˘

eq
˛ˇ D �@.1/�

�
�u˛uˇu�

��c2s
�
u˛@

.1/

ˇ �C uˇ@
.1/
˛ �

�
�c2s ı˛ˇ@.1/� .�u� /: (A.15c)

658 Appendix

Now that we have explicit forms of the two equilibrium moment derivative terms
in (A.14) and (A.15c), we insert them into (A.10). After using the product rule and
having some terms cancel, we end up with the explicit expression

˘
.1/

˛ˇ D �

�c2s
�
@
.1/

ˇ u˛ C @.1/˛ uˇ
�
� @.1/�

�
�u˛uˇu�

�
�

: (A.16)

The last term is an error term: it would have been entirely cancelled if ˘ eq
˛ˇ� in

(A.11) had contained the �u˛uˇu� term which it includes in the exact kinetic theory.
The reason why this term is missing is that we have truncated the equilibrium dis-
tribution f eq

i to O.u2/. This truncation allows using smaller velocity sets like D2Q9,
D3Q15, D3Q19, and D3Q27 without any undesirable anisotropy (cf. Sect. 4.2.1).

In other words, removing the O.u3/ error term in (A.16) would require an
extended lattice. This would slow down computations and make boundary condi-
tions more difficult to deal with. However, recent work suggests that this error term
can also be nearly cancelled by using a modified collision operator where depends
on u [4].

A.2.3 Chapman-Enskog Analysis for the MRT Collision
Operator

The Chapman-Enskog analysis in Sect. 4.1 assumes the use of the BGK collision
operator. However, it is not that much more difficult to perform the analysis for the
general multiple-relaxation-time (MRT) collision operator described in Chap. 10.
We will here show how its Chapman-Enskog analysis differs from that in Sect. 4.1.
(We will not give a full analysis here, only highlight the differences to the one given
previously.) While this description will be mainly tied to the D2Q9 MRT collision
operators presented in Sect. 10.4, we can use this approach for any MRT-based
collision operator. At the end of this section we will point out the minor differences
arising for the D3Q15 and D3Q19 results described in Sect. A.6.

The fundamental difference to the BGK analysis is that MRT collision operators
can have different moments. The analysis relies on the three collision operator
moments

X

i

˝i D 0;
X

i

ci˛˝i D 0;
X

i

ci˛ciˇ˝i: (A.17)

Of these moments, the first two are zero due to mass and momentum conser-
vation in collisions. For the BGK collision operator, the third moment becomes
�.�t=/˘ neq

˛ˇ , with ˘˛ˇ D P
i ci˛ciˇfi. As we shall see, the results of the

corresponding MRT analysis hinge on the differences in this moment.
We can find the second moment by left-multiplying an MRT collision operator

˝ D �M�1SM . f � f eq/ individually with the row vectors M˘xx , M˘yy and M˘xy

A.2 Details in the Chapman-Enskog Analysis 659

where M˘˛ˇ;i D ci˛ciˇ . (While it is feasible to find SM .f � f eq/ analytically,
M˘xxM

�1 etc. are best computed numerically.)
Thus, using the Hermite polynomial-based MRT approach from Sect. 10.4.1, we

find after some algebra that

X

i

ci˛ciˇ˝i D �!
˘ neq
˛ˇ �

!� � !

2

ı˛ˇ˘
neq
�� : (A.18)

Thus, only the relaxation rates !
 and !� affect the macroscopic momentum
equation at the Navier-Stokes level. If !
 D !� , this equation is equivalent with
that of the BGK collision operator with !
 D 1= .

Using the Gram-Schmidt approach in Sect. 10.4.2 instead, we find the same result
as in (A.18) with !� ! !e. Except for this tiny change in notation, the Chapman-
Enskog procedure for the Hermite and Gram-Schmidt approaches are therefore
identical.

Now, let us look at how the analysis itself differs from the previous BGK analysis.
Using a generic collision operator ˝i, the LBE after Taylor expansion and some
algebra becomes

�t .@t C ci˛@˛/ fi D ˝i ��t .@t C ci˛@˛/
�t

2
˝i (A.19)

instead of (4.7). Expanding fi and the derivatives, the different moments at different
orders in � of this equation become as in (4.10) and (4.12), except that two equations
have a few extra terms stemming from the ˘˛ˇ moment in (A.18):

@
.1/
t ˘

eq
˛ˇ C @.1/� ˘ eq

˛ˇ� D �!
˘.1/

˛ˇ �
!� � !

2
ı˛ˇ˘

.1/
�� ; (A.20a)

@
.2/
t .�u˛/ D �@ˇ

"�

1 � !
�t

2

�

˘
.1/

˛ˇ �
.!� � !
/�t

4
ı˛ˇ˘

.1/
��

#

:

(A.20b)

Using the same procedure as in Sect. A.2.2, we can find from (A.20a) that

˘
.1/

˛ˇ D �
�c2s
!

�
@˛uˇ C @ˇu˛

� � 1
2

�
!�

!

� 1

�

ı˛ˇ˘
.1/
�� ; (A.21)

having neglected the O.u3/ errors. We can make this more explicit by multiplying
with ı˛ˇ . As we are using the two-dimensional D2Q9 velocity set, ı˛ˇı˛ˇ D ı�� D
2, and after some rearranging we find

˘.1/
�� D �

2�c2s
!�

@�u� : (A.22)

660 Appendix

When re-assembling the different orders in � of the momentum equation, we find
that the resulting viscous stress tensor � 0̨

ˇ is given by the right-hand side of (A.20b).
After some algebra we find

� 0̨
ˇ D �

�

1 � !
�t

2

�

˘
.1/

˛ˇ C
.!� � !
/�t

4
ı˛ˇ˘

.1/
��

D �
�

@˛uˇ C @ˇu˛ � 2
3
ı˛ˇ@�u�

�

C �Bı˛ˇ@�u�

(A.23)

with the dynamic shear and bulk viscosities

� D �c2s
�
1

!

� �t

2

�

; �B D �c2s

1

!�
� �t

2

!

� �
3
: (A.24)

This result is valid for the Hermite and Gram-Schmidt D2Q9 MRT of Sect. 10.4,
with !� ! !e in the Gram-Schmidt approach. We can easily confirm this by
simulating a free sound wave as described in Sect. 12.1.3 and verifying that its
amplitude decay varies with � and �B as predicted. (Note that the amplitude
may ripple around the expected exponential decay if the wave is not initialised
perfectly [5].)

For the D3Q15 and D3Q19 MRT described in Sect. A.6, the analysis is the same
apart from two minor differences. First, the D3Q15 and D3Q19 moments are both
like in (A.18), except with a different coefficient .!e � !
/=3 in the last term.
Additionally, ı�� D 3 instead of 2. These differences end up changing the bulk
viscosity slightly, so that

� D �c2s
�
1

!

� �t

2

�

; �B D 2

3
�c2s

�
1

!e
� �t

2

�

: (A.25)

This result can be verified in the same way as the D2Q9 result.

A.3 Taylor-Green Vortex Flow

The decaying Taylor-Green vortex flow, shown in Fig. A.1, solves the incompress-
ible Navier-Stokes equations, (1.18). As this flow is known analytically, it is often
used as a benchmark test for Navier-Stokes solvers.

The Taylor-Green flow is unsteady and fully periodic in a domain of size `x � `y.
Formulated in two spatial dimensions its velocity and pressure fields read

u.x; t/ D u0

�pky=kx cos.kxx/ sin.kyy/p

kx=ky sin.kxx/ cos.kyy/

!

e�t=td (A.26)

A.3 Taylor-Green Vortex Flow 661

Fig. A.1 Structure of a
Taylor-Green vortex flow
with kx D ky D 2� in
Œ0; 1	 � Œ0; 1	. The flow
maintains the same structure
while decaying exponentially

and

p.x; t/ D p0 � �u
2
0

4

"
ky
kx

cos.2kxx/C kx
ky

cos.2kyy/

#

e�2t=td : (A.27)

Here, u0 is the initial velocity scale, kx;y D 2�=`x;y are the components of the wave
vector k and

td D 1

.k2x C k2y/
(A.28)

is the vortex decay time. The pressure average p0 is arbitrary and does not enter the
Navier-Stokes equations. The initial state is defined by u.x; 0/ and p.x; 0/.

Exercise A.1 Show that the velocity field in (A.26) leads to a deviatoric stress
tensor with components

�xx D 2�
u0
p
kxky sin.kxx/ sin.kyy/ e�t=td ;

�xy D �
u0
�q

k3x=ky �
q
k3y=kx

�

cos.kxx/ cos.kyy/ e�t=td ;

�yx D �xy;
�yy D ��xx:

(A.29)

In particular this means that the stress tensor is symmetric and traceless. Further-
more, �xy and �yx vanish if kx D ky, i.e. if `x D `y. This means that `x 6D `y should
be chosen if one wants to investigate the accuracy of the off-diagonal stress tensor
components.

662 Appendix

Exercise A.2 Show that the velocity and pressure in (A.26) and (A.27) solve the
incompressible Navier-Stokes equations. Which pairs of terms cancel each other?

A.4 Gauss-Hermite Quadrature

One of the most useful features of Hermite polynomials for numerical integration
is the Gauss-Hermite quadrature rule [6]: the integral of any 1D function f .x/
multiplied by the weight function !.x/ (cf. (3.22)) can be approximated by a finite
series of function values in certain points xi, also called abscissae:

Z 1

�1
!.x/f .x/ dx �

qX

iD1
wif .xi/: (A.30)

The accuracy of the integration depends on the values and number q of point values
xi. If one chooses xi as the n roots of the Hermite polynomials of order n, i.e.
H.n/.xi/ D 0 and q D n, then it is guaranteed that any polynomial P.N/.x/ of order
N D 2n� 1 can be integrated exactly:

Z 1

�1
!.x/P.N/.x/ dx D

nX

iD1
wiP

.N/.xi/: (A.31)

The weights can be found as [7]

wi D nŠ
�
nH.n�1/.xi/

�2 : (A.32)

The abscissae and weigths required to integrate polynomials up to fifth order (N D
5) are shown in Table A.2.

Example A.1 To integrate a third-order polynomial P.3/.x/, one needs n D 2, and
therefore the polynomial H.2/.x/ with two abscissae points at ˙1 (cf. Table A.2).

Table A.2 Abscissae xi and weights wi for exact integration of polynomials up to fifth order

Number of abscissae Polynomial degree Abscissae Weights

n N D 2n � 1 xi wi

1 1 0 1

2 3 ˙1 1=2

3 5 0 2=3

˙p
3 1=6

A.4 Gauss-Hermite Quadrature 663

Together with the weights w1;2 D 1=2 for H.2/, one obtains

Z 1

�1
!.x/P.3/.x/ dx D 1

2
P.3/.C1/C 1

2
P.3/.�1/: (A.33)

Those abscissae allow us to obtain the most common lattices for the LBM as we
will describe below. More elaborate examples and advanced lattices can be found in
the seminal work of Shan et al. [8] or in [9].

The extension to multiple dimensions is straightforward. Any real polynomial of
order N in d-dimensional space can be written in the form

P.N/.x/ D
X

N1C:::CNd
N

aN1:::Ndx
N1
1 � � � xNd

d (A.34)

where the aN1:::Nd are real coefficients and fN1; : : : ;Ndg are integers. A well-known
example of a second-order polynomial in two dimensions is P.2/.x/ D x � x D
x21 C x22 C x23. Here, the mixed coefficients a12, a23 etc. all vanish and a11 D a22 D
a33 D 1. The integral of such a polynomial multiplied by the multidimensional
weight function !.x/ can be written as sum of integrals with 1D weight functions
!.x/:

Z

!.x/P.N/.x/ ddx D
Z

!.x/
X

aN1:::Ndx
N1
1 � � � xNd

d ddx

D
X

aN1:::Nd

dY

jD1

Z

!.xj/x
Nj

j dxj;

(A.35)

where we have used !.x/ D Qd
jD1 !.xj/. Each of the 1D integrals can now be

decomposed using the Gauss-Hermite quadrature rule from (A.31):

X
aN1:::Nd

dY

jD1

Z

!.xj/x
Nj

j dxj D
X

aN1:::Nd

dY

jD1

njX

iD1
wi;jx

Nj

i;j : (A.36)

Here, xi;j is the j-component of the i-th abscissa.
Let us assume that all 1D integrals are discretised using the same Hermite

polynomial, i.e. n1 D : : : D nd D n, xi;1 D : : : D xi;d D xi and wi;1 D : : : D
wi;d D wi. In this case, we can rewrite the product of sums:

dY

jD1

njX

iD1
wi;jx

Nj

i;j D
nX

i1D1
� � �

nX

idD1
wi1 � � �wid x

N1
i1
� � � xNd

id
: (A.37)

664 Appendix

Introducing new multi-dimensional abscissae xi D .xi1 ; : : : ; xiD/ and weights wi D
wi1 � � �wiD allows us to obtain the multi-dimensional Gauss-Hermite quadrature rule:

Z

!.x/P.N/.x/ ddx D
ndX

iD1
wiP

.N/.xi/: (A.38)

Example A.2 We demonstrate the multi-dimensional Gauss-Hermite quadrature
rule by integrating the polynomial P.3/.x/ D x2y in 2D (we write x and y instead of
x1 and x2). Since N D 3, we need two abscissae (n D 2) for each dimension, i.e.
nd D 22 D 4 in total. First we note that, for a 1D polynomial of third order, we get

Z

w.x/xN dx D w1x
N
1 C w2x

N
2 D

1

2
.�1/N C 1

2
1N (A.39)

for N � 3. In the last step we have used the known weights and abscissae from
Table A.2. It follows that
Z

1

2�
e�.x2Cy2/=2x2y dx dy D

Z
1p
2�

e�x2=2x2 dx
Z

1p
2�

e�y2=2y dy

D
�
w1x

2
1 C w2x

2
2

�
.w1y1 C w2y2/ :

(A.40)

Using w1 D w2 D 1
2
, x1 D y1 D �1 and x2 D y2 D 1, it is straightforward to show

that the result is zero.

We have seen in Sect. 3.4 that one needs to integrate fifth-order polynomials in
order to obtain Navier-Stokes behaviour. This implies N D 5 and n D 3. From
Table A.2 we find that n D 3 leads to the abscissae 0 and ˙p3. After rescaling the
velocities to get rid of the factor

p
3 (cf. Sect. 3.4.5) one obtains the D1Q3 lattice in

Table 3.2.
It is now straightforward to build the corresponding 2D and 3D lattices via

(A.37). In 2D and 3D we require q D nd D 32 D 9 and q D nd D 33 D 27

abscissae, respectively. As a result, we obtain the D2Q9 (cf. Table 3.3) and the
D3Q27 (cf. Table 3.6) lattices [10].

Based on symmetry considerations, one can construct other lattices than D2Q9
and D3Q27. First of all, any integral of the form in (A.31) vanishes if the polynomial
P.N/.x/ contains only odd orders, e.g. P.5/.x/ D 2x5�x3Cx. This can be generalised:
if all monomials of a multi-dimensional polynomial contain at least one odd-order
term, e.g. xy2z2 (which is odd in x) or x5y3z2 (which is odd in x and y), the integral
vanishes. This means that we can directly abandon all of those monomials since
they do not contribute to the integral anyway. As a result, we keep only monomials
of the form x2ay2bz2c where a, b and c are non-negative integers. Examples are x2y2

(a D 1, b D 1, c D 0) or x2y4z2 (a D 1, b D 2, c D 1). Additionally, if our scope
is limited to Navier-Stokes simulations we have to care about polynomials up to the
fifth order only. The lowest-order even monomial containing x, y and z, however, is

A.5 Integration Along Characteristics for the BGK Operator 665

Table A.3 Abscissae and weights for exact integration of 2D polynomials of up to fifth order

Number of abscissae Abscissae Weights

q xi wi

7 .0; 0/ 1=2

2
�

cos m�
3
; sin m�

3

�
1=12 m D 1; : : : ; 6

9 .0; 0/ 4=9�
0;˙p

3
�

,
�
˙p

3; 0
�

1=9
�
˙p

3;˙p
3
�

1=36

x2y2z2 and therefore already of sixth order. It is therefore possible to devise a lattice
without the .˙1;˙1;˙1/-velocities: D3Q19 in Table 3.5.

We are able to obtain different lattices with even fewer abscissae with other
methods than symmetry arguments. For example, by using the abscissae of integrals
with another weight function, one can construct D2Q7 (which is not on a square but
on a hexagonal lattice) and D3Q13. These are the smallest possible sets in 2D and
3D that can still be used to solve the NSE. We skip the mathematical details and
refer to [8, 9] instead.

Tables A.3 and A.4 contain the multi-dimensional abscissae and weights
for the most common discretisations in 2D and 3D. All of these are suitable
for LB simulations of the NSE after an appropriate renormalisation to obtain
integer lattice velocity components (cf. Sect. 3.4.7).

A.5 Integration Along Characteristics for the BGK Operator

In Sect. 3.5.1, we presented a rather general scheme for the integration along
characteristics where the collision operator was not yet specified. Here we will take
a closer look ath the integration along characteristics with the BGK operator.

With the BGK collision operator it is possible to partially solve the continuous
Boltzmann equation of the form

@fi
@t
C ci˛

@fi
@x˛
D � fi � f eq

i

: (A.41)

666 Appendix

Table A.4 Abscissae and weights for exact integration of 3D polynomials of up to fifth order

Number of abscissae Abscissae Weights

q xi wi

13 .0; 0; 0/ 2=5

.˙r;˙s; 0/ 1=20 r2 D .5C p
5/=2

.0;˙r;˙s/ 1=20 s2 D .5� p
5/=2

.˙s; 0;˙r/ 1=20

15 .0; 0; 0/ 2=9

.˙p
3; 0; 0/, .0;˙p

3; 0/,
.0; 0;˙p

3/

1=9

.˙p
3;˙p

3;˙p
3/ 1=72

19 .0; 0; 0/ 1=3

.˙p
3; 0; 0/, .0;˙p

3; 0/,
.0; 0;˙p

3/

1=18

.˙p
3;˙p

3; 0/, .˙p
3; 0;˙p

3/,
.0;˙p

3;˙p
3/

1=36

27 .0; 0; 0/ 8=27

.˙p
3; 0; 0/, .0;˙p

3; 0/,
.0; 0;˙p

3/

2=27

.˙p
3;˙p

3; 0/, .˙p
3; 0;˙p

3/,
.0;˙p

3;˙p
3/

1=54

.˙p
3;˙p

3;˙p
3/ 1=216

To find the solution for fi, we need to solve the following system in terms of the
newly introduced variable �:

dfi
d�
D @fi
@t

dt

d�
C @fi
@x˛

dx˛
d�
D � fi.�/ � f eq

i .�/

(A.42)

with

dt

d�
D 1; dx˛

d�
D ci˛: (A.43)

The dependence of f eq
i on � enters through f eq

i .�.�/;u.�// with the parametrisations
�.�/ D �.x.�/; t.�// and u.�/ D u.x.�/; t.�//.

We can easily integrate equation (A.43) to obtain the characteristics equation:

t D � C t0; x D ci� C x0 (A.44)

with t0 D t.� D 0/ and x0 D x.� D 0/.
To integrate equation (A.42), we consider the ODE

dy.�/

d�
D g.�/y.�/C h.�/ (A.45)

A.5 Integration Along Characteristics for the BGK Operator 667

for y.�/with given coefficient functions g.�/ and h.�/. The solution can be obtained
following the well-known variation of constants:

y.�/ D eG.�/
"

CC
Z �

�0

e�G.�0/h.� 0/ d� 0
#

(A.46)

with

G.�/ D
Z �

�0

g.� 0/ d� 0 (A.47)

and integration constants C and �0.

Exercise A.3 Show that (A.46) solves (A.45).

We can recast (A.42) into the form of (A.45):

dfi.�/

d�
D �1

fi.�/C f eq

i

: (A.48)

Now we identify fi.�/ with y.�/, �1= with g.�/ and f eq
i .�/= with h.�/. This leads

to G.�/ D �.� � �0/= .
Using the integration limits �0 and � D �0 C �t, i.e. integrating over one time

step, we first obtain

fi.�0 C�t/ D e��t=

"

CC 1

Z �0C�t

�0

e�
0= f eq

i .�
0/ d� 0

#

: (A.49)

We write C D fi.�0/ and replace the �-dependence by introducing x and t again.
Furthermore, we drop the index 0 from x0 and t0 as these integration constants can
be chosen arbitrarily:

fi.xC ci�t; tC�t/ D e��t=

"

fi.x; t/C 1

Z tC�t

t
e.t

0�t/= f eq
i .xC ci.t0 � t/; t0/ dt0

#

:

(A.50)

This is the integral-form solution of the LBGK equation.
Now we want to discretise the integral in equation (A.50) to make it applicable

in computer simulations. We have several options to achieve this discretisation, for
instance forward Euler (first-order accurate) or the trapezoidal rule (second-order
accurate).

668 Appendix

If we choose a first-order approximation, we replace an integral of the form
R tC�t
t g.t0/ dt0 by g.t/�t. This results in

fi.xC ci�t; tC�t/ D e��t= fi.x; t/C e��t=

f eq
i .x; t/�t: (A.51)

Expanding the exponentials and keeping only terms up to first order in�t gives

fi.xC ci�t; tC�t/ D
�

1 � �t

�

fi.x; t/C �t

f eq
i .x; t/C O.�t2/: (A.52)

This is exactly the standard discretised LBGK equation, but it is only first-order
accurate in time.

To achieve a second-order discretisation, we can approximate the integral with
the trapezoidal rule:

R tC�t
t g.t0/ dt0 � Œg.t/C g.tC�t/	�t=2. Therefore we have

fi.xC ci�t; tC�t/ D e��t= fi.x; t/

C e��t=�t

2

�
e�t= f eq

i .xC ci�t; tC�t/C f eq
i .x; t/

�
:

(A.53)

Again, we expand the exponentials, but this time we keep all terms up to second
order in �t:

fi.xC ci�t; tC�t/ D

1 � �t

C �t2

22

!

fi.x; t/

C �t

2

"

f eq
i .xC ci�t; tC�t/C

�

1� �t

�

f eq
i .x; t/

#

C O.�t3/:

(A.54)

Our aim is to find a suitable transformation fi ! Nfi to bring (A.54) into the form
of (3.76) with the BGK collision operator˝i D �. fi�f eq

i /= . In fact, this is possible
by introducing the new population

Nfi D fi � ˝i�t

2
D fi C

�
fi � f eq

i

�
�t

2
: (A.55)

As˝i conserves mass and momentum, this new population Nfi has the same mass and
momentum moments as fi,

X

i

Nfi D
X

i

fi �
X

i

˝i�t

2
D
X

i

fi D �;

X

i

Nfici D
X

i

fici �
X

i

˝ici�t

2
D
X

i

fici D �u:

(A.56)

A.6 MRT for D3Q15, D3Q19, and D3Q27 Velocity Sets 669

After a series of algebraic manipulations [11] we arrive at

Nfi.xC c�t; tC�t/ D Nfi.x; t/ �
Nfi.x; t/ � f eq

i .x; t/
N C O.�t3/ (A.57)

with a modified relaxation time

N D C �t

2
: (A.58)

A.6 MRT for D3Q15, D3Q19, and D3Q27 Velocity Sets

We provide the matrices M, the equilibrium moments meq
k and the collision rates

!k for the most widespread 3D MRT models. The D3Q15 and D3Q19 models are
based on the Gram-Schmidt procedure [12]. We only provide references for D3Q27
as it is not often used.

Note that the matrices presented here assume that the velocity sets are ordered
as in Sect. 3.4.7. Different choices of velocity order would lead to matrices with
differently ordered columns.

A.6.1 D3Q15

The D3Q15 Gram-Schmidt moments are

Gm D .�; e; �; jx; qx; jy; qy; jz; qz; pxx; pww; pxy; pyz; pzx;mxyz/
>: (A.59)

These correspond to density, energy, energy squared, momentum, heat flux and
momentum flux. The relaxation rates are

GS D diag.0; !e; !�; 0; !q; 0; !q; 0; !q; !
; !
; !
; !
; !
; !m/ (A.60)

where collision rates of 0 are specified for the four conserved moments, i.e. density
and momentum. (Note that collision rates of 0 for momentum are not suitable for
simulating a force density F in the Navier-Stokes equation [13].)

The moment vectors are

GM�;i D 1; GMe;i D c2ix C c2iy C c2iz � 2;
GM�;i D 1

2
.15.c2ix C c2iy C c2iz/

2 � 55.c2ix C c2iy C c2iz/C 32/;

670 Appendix

GMjx;i D cix;
GMqx;i D

1

2
.5.c2ix C c2iy C c2iz/� 13/cix;

GMjy;i D ciy;
GMqy;i D

1

2
.5.c2ix C c2iy C c2iz/� 13/ciy; (A.61)

GMjz;i D ciz;
GMqz ;i D

1

2
.5.c2ix C c2iy C c2iz/� 13/ciz;

GMpxx;i D 3c2ix � .c2ix C c2iy C c2iz/;
GMpww;i D c2iy � c2iz;

GMpxy;i D cixciy;
GMpyz;i D ciyciz;

GMpxz ;i D cixciz;

GMmxyz;i D cixciyciz:

They form the transformation matrix

GM D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

�2 �1 �1 �1 �1 �1 �1 1 1 1 1 1 1 1 1

16 �4 �4 �4 �4 �4 �4 1 1 1 1 1 1 1 1

0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 �1 1

0 �4 4 0 0 0 0 1 �1 1 �1 1 �1 �1 1

0 0 0 1 �1 0 0 1 �1 1 �1 �1 1 1 �1
0 0 0 �4 4 0 0 1 �1 1 �1 �1 1 1 �1
0 0 0 0 0 1 �1 1 �1 �1 1 1 �1 1 �1
0 0 0 0 0 �4 4 1 �1 �1 1 1 �1 1 �1
0 2 2 �1 �1 �1 �1 0 0 0 0 0 0 0 0

0 0 0 1 1 �1 �1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 �1 �1 �1 �1
0 0 0 0 0 0 0 1 1 �1 �1 �1 �1 1 1

0 0 0 0 0 0 0 1 1 �1 �1 1 1 �1 �1
0 0 0 0 0 0 0 1 �1 �1 1 �1 1 �1 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: (A.62)

The inverse matrix GM�1 can be found using a computer program.
The corresponding equilibrium moments Gmeq

k are

eeq D ��C �.u2x C u2y C u2z /; �eq D � � 5�.u2x C u2y C u2z /;

qeq
x D �

7

3
�ux; qeq

y D �
7

3
�uy; qeq

z D �
7

3
�uz;

peq
xx D 2�u2x � �.u2y C u2z /; peq

ww D �.u2y � u2z /;

peq
xy D �uxuy; peq

yz D �uyuz; peq
xz D �uxuz;

meq
xyz D 0:

(A.63)

A.6 MRT for D3Q15, D3Q19, and D3Q27 Velocity Sets 671

Note that the equilibrium moment �eq is not uniquely defined and can be tuned [12].
The resulting macroscopic stress tensor and viscosity are given in Sect. A.2.3.

Exercise A.4 Show that the equilibrium moments can be calculated as Gmeq
k D

GMkif
eq
i with f eq

i from (3.54).

A.6.2 D3Q19

The D3Q19 Gram-Schmidt moments are

Gm D .�; e; �; jx; qx; jy; qy; jz; qz; pxx; �xx; pww; �ww; pxy; pyz; pxz;mx;my;mz/
>:

(A.64)

There are additional moments compared to the D3Q15 model in Sect. A.6.1. They
correspond to third-order (mx, my, mz) and fourth-order polynomials (�xx, �ww). The
relaxation matrix reads

GS D diag.0; !e; !�; 0; !q; 0; !q; 0; !q; !
; !�; !
; !�; !
; !
; !
; !m; !m; !m/:

(A.65)

The moment vectors are

GM�;i D 1; GMe;i D 19.c2ix C c2iy C c2iz/� 30;
GM�;i D

�
21.c2ix C c2iy C c2iz/

2 � 53.c2ix C c2iy C c2iz/C 24
�
=2;

GMjx;i D cix;
GMqx;i D

�
5.c2ix C c2iy C c2iz/� 9

�
cix;

GMjy;i D ciy;
GMqy;i D

�
5.c2ix C c2iy C c2iz/� 9

�
ciy;

GMjz;i D ciz;
GMqz ;i D

�
5.c2ix C c2iy C c2iz/ � 9

�
ciz;

GMpxx;i D 3c2ix � .c2ix C c2iy C c2iz/; (A.66)

GM�xx;i D
�
3.c2ix C c2iy C c2iz/� 5

��
3c2ix � .c2ix C c2iy C c2iz/

�
;

GMpww ;i D c2iy � c2iz;
GM�ww;i D

�
3.c2ix C c2iy C c2iz/� 5

��
c2iy � c2iz

�
;

GMpxy;i D cixciy;
GMpyz ;i D ciyciz;

GMpxz;i D cixciz

GMmx;i D .c2iy � c2iz/cix;
GMmy;i D .c2iz � c2ix/ciy;

GMmz;i D .c2ix � c2iy/ciz:

672 Appendix

They define the transformation matrix

GM D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

�30 �11 �11 �11 �11 �11 �11 8 8 8 8 8 8 8 8 8 8 8 8

12 �4 �4 �4 �4 �4 �4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 �1 0 0 0 0 1 �1 1 �1 0 0 1 �1 1 �1 0 0

0 �4 4 0 0 0 0 1 �1 1 �1 0 0 1 �1 1 �1 0 0

0 0 0 1 �1 0 0 1 �1 0 0 1 �1 �1 1 0 0 1 �1
0 0 0 �4 4 0 0 1 �1 0 0 1 �1 �1 1 0 0 1 �1
0 0 0 0 0 1 �1 0 0 1 �1 1 �1 0 0 �1 1 �1 1

0 0 0 0 0 �4 4 0 0 1 �1 1 �1 0 0 �1 1 �1 1

0 2 2 �1 �1 �1 �1 1 1 1 1 �2 �2 1 1 1 1 �2 �2
0 �4 �4 2 2 2 2 1 1 1 1 �2 �2 1 1 1 1 �2 �2
0 0 0 1 1 �1 �1 1 1 �1 �1 0 0 1 1 �1 �1 0 0

0 0 0 �2 �2 2 2 1 1 �1 �1 0 0 1 1 �1 �1 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 �1 �1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 �1 �1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 �1 �1 0 0

0 0 0 0 0 0 0 1 �1 �1 1 0 0 1 �1 �1 1 0 0

0 0 0 0 0 0 0 �1 1 0 0 1 �1 1 �1 0 0 1 �1
0 0 0 0 0 0 0 0 0 1 �1 �1 1 0 0 �1 1 1 �1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

(A.67)

Also in this case, the inverse GM�1 can be found using a computer program.
The equilibrium moments are

eeq D �11�C 19�.u2x C u2y C u2z /; �eq D 3� � 11
2
�.u2x C u2y C u2z /;

qeq
x D �

2

3
�ux; qeq

y D �
2

3
�uy; qeq

z D �
2

3
�uz;

peq
xx D 2�u2x � �.u2y C u2z /; �eq

xx D �
1

2

�
2�u2x � �.u2y C u2z /

�
;

peq
ww D �.u2y � u2z /; �eq

ww D �
1

2
�.u2y � u2z /;

peq
xy D �uxuy; peq

yz D �uyuz; peq
xz D �uxuz;

meq
x D 0; meq

y D 0; meq
z D 0:

(A.68)

The resulting macroscopic stress tensor and viscosity are provided in Sect. A.2.3.

A.7 Planar Interface for the Free Energy Gas-Liquid Model 673

A.6.3 D3Q27

The D3Q27 model has the largest memory footprint among the common 3D models,
and it is the most computationally demanding. The MRT formulation of the collision
operator leads to additional computational overhead. Thus, although D3Q27 has
the best isotropy properties, its MRT counterpart is not commonly used. One can
construct the D3Q27 MRT model from velocity polynomials [14] and the Gram-
Schmidt approach [15] that we have discussed in Sect. 10.2. Another alternative
is to use a variation of the D3Q27 MRT model for the so-called cascaded lattice
Boltzmann model [16, 17].

A.7 Planar Interface for the Free Energy Gas-Liquid Model

We show that the free energy multiphase model satisfies the Maxwell construction
rule. To do this, let us examine the planar density profile. The stationary interface
between gas and liquid phases is assumed at x D 0, and the density changes along
the x-axis. Thus, we search the density profile in the form � D �.x/. Far away from
the interface, we expect the fluid to assume the gas density �g D �.�1/ and the
liquid density �l D �.C1/.

Since the interface is stationary, the momentum flux Pxx (cf. (9.30)) must be
constant along the x-axis, i.e. dPxx=dx D 0. Its value equals the bulk pressure p0
far away from the interface where all density gradients are zero. These constraints
result in

p0 D pb.�/C k

2
�02 � k��00; (A.69a)

p0 D pb.�g/ D pb.�l/; (A.69b)

where the prime denotes the derivative with respect to x. Our aim is to solve this
system of equations to find the values of the liquid and gas densities, �l and �g.

Exercise A.5 To find the density profile as function of the spatial coordinate x from
(A.69a), we can introduce a substitution z D �02. This substitution is widely used
when in a second-order ODE there is no explicit involvement of the independent
variable, i.e. x. Show that the second derivative of the density obeys �00 D Pz=2,
where the dot denotes the derivative with respect to density �.

After the introduction of z D �02, changing the independent variable x to �, and
performing some calculations, the ODE for the density profile becomes

Pz� z

�
D 2

k�
.pb.�/� p0/: (A.70)

674 Appendix

This equation is of the form PzC f .�/z D g.�/ that has the solution

z.�/ D e� R � f . Q�/ d Q�
�Z �

g. Q�/e
R

Q� f . QQ�/ d QQ� d Q�C C

�

(A.71)

where C has to be found from the boundary conditions.
In our case, we identify f .�/ D �1=� and g.�/ D 2

k� .pb.�/� p0/ and therefore

z.�/ D �
�Z � 2

k Q�2
�
pb. Q�/� p0

�
d Q�C C

�

: (A.72)

The boundary conditions are z D �02 D 0 far away from the interface where there
are no density gradients, i.e. z.�g/ D 0 and z.�l/ D 0. This is only possible if z has
the solution

z.�/ D 2�

k

Z �

�g

.pb. Q�/ � p0/
d Q�
Q�2 : (A.73)

The boundary condition z.�l/ D z.�g/ D 0 results is nothing else than the
Maxwell area construction rule for gas-liquid systems:

Z �l

�g

.pb. Q�/ � p0/
d Q�
Q�2 D 0: (A.74)

This is consistent as the gas-liquid model with the pressure tensor from
(9.30) is obtained from the free-energy functional based on principles of
thermodynamics.

If we want to find an expression for the density profile �.x/, we can use z D
.d�=dx/2 and solve the implicit integral equation assuming that the interface lies
right in the middle between phases, i.e. N� D �.x D 0/ D .�g C �l/=2:

x D
Z �

N�
d Q�

p
z. Q�/ : (A.75)

If the equation of state pb.�/ includes a double-well potential as in (9.31), then the
density profile will be of tanh-form as in (9.70).

A.8 Planar Interface for the Shan-Chen Liquid-Vapour Model 675

A.8 Planar Interface for the Shan-Chen Liquid-Vapour
Model

Appendix A.7 contains the free-energy calculations for the planar interface in a
liquid-vapour system. Here we repeat these calculations in the context of the Shan-
Chen (SC) model.

The SC pressure tensor from (9.112) reads (again setting �t D 1 for simplicity)

PSC
˛ˇ D

c2s�C
c2sG

2
 2 C c4sG

4
.r /2 C c4sG

2
 �

!

ı˛ˇ � c4sG

2
.@˛ /.@ˇ /:

(A.76)

We can distinguish between the equation of state pb.�/ D c2s�C.c2sG=2/ 2.�/ from
(9.111) that dictates the bulk behaviour and the other terms that contain derivatives
of and therefore are important near the interface between phases.

As in Appendix A.7, we consider a planar interface at x D 0. In mechanical
equilibrium, the component PSC

xx must be constant across the interface. This allows
us to compute the density profile �.x/.

We can rewrite PSC
xx as

PSC
xx D c2s�C

c2sG

2
 2.�/� c4sG

4

� P .�/�0
�2 C c4sG

2
 .�/

� R .�/�0 C P .�/�00
�
:

(A.77)

The prime denotes the derivative with respect to x, the dot the derivative with respect
to the density �. Far away from the interface, both in the gas (g) and liquid (l) phases,
gradients vanish and we find the bulk pressure

p0 D pb.�g/ D c2s�g C c2sG

2
 2.�g/ D pb.�l/ D c2s�l C c2sG

2
 2.�l/: (A.78)

Now we introduce z D �02 and perform steps similar to those detailed in
Appendix A.7. This leads to

z.�/ D 4

c4sG

 .�/

P 2.�/
Z �

�g

p0 � c2s Q� �
c2sG

2
 2. Q�/

! P . Q�/
 2. Q�/d Q�: (A.79)

To satisfy the boundary conditions z.�g/ D 0 and z.�l/ D 0 we need

Z �l

�g

p0 � c2s Q� �
c2sG

2
 2. Q�/

! P . Q�/
 2. Q�/d Q� D 0: (A.80)

676 Appendix

We compare this expression with the Maxwell area construction rule:

Z �l

�g

p0 � c2s Q� �
c2sG

2
 2. Q�/

!
d Q�
Q�2 D 0: (A.81)

Obviously, the SC model can only reproduce thermodynamic consistency for

P . Q�/
 2. Q�/ D

1

Q�2 (A.82)

which is solved by .�/ D �.
The final step is to find the density profile across the planar interface by solving

the ordinary differential equation �0 D pz for � D �.x/:

x.�/ D
Z �

N�
d Q�

p
z. Q�/ : (A.83)

Here we have defined the x-axis in such a way that the interface location at x D 0

coincides with the average N� D .�lC�g/=2. In practise, however, obtaining a closed
form for (A.83) is usually not possible.

A.9 Programming Reference

To assist readers who are unfamiliar with programming in C or C++, this appendix
reviews the main features of these languages that are used in the code presented
in Chap. 13 and accompanying the book. The code is written in standard C++
(1998). It uses only several features of C++ for convenience, such as function
overloading (which allows functions to have the same name provided they have
different parameters), and could be converted easily to a C code.

The text that constitutes a program, or a portion of one, is called source code.
Source code for C and C++ does not need to follow strict formatting rules, and
whitespace (spaces, tabs, and new lines) can be freely used to assist interpretation
of the code.

Source code consists of a set of declarations that describe the units of the program
and the tasks they perform. The source code for programs is often split among
different files to separate it into portions that perform related tasks and to allow
these portions of code to be used in different programs. The separate source files are
combined into one complete program during compilation and linking (Sect. A.9.15).

One of the most important declarations in the source code of a program is for the
main() function: this is where the program starts when the operating system runs
it. In general, functions are named sequences of statements. They are used to group
together the statements that accomplish a specific task and should have a descriptive

A.9 Programming Reference 677

name that describes what they do. Functions also allow programmers to repeat a
task in different parts of a program without having to write out the same statements.

Simple statements end with a semicolon, while compound statements are
sequences of simple statements enclosed in braces, { and }. Statements can involve
variable declarations, evaluation of an expression and storage of the result to a
variable through the use of the assignment operator =, or function calls. The various
types of statements are explained in the sections that follow.

A.9.1 Comments

Comments are blocks of text that are ignored by the compiler but are useful for
anyone who is reading the code. They are used to document the behaviour of code
and describe design decisions. Double slashes, //, indicate the start of a comment
that extends to the end of the current line. Comments can also be enclosed between
/* and */. Such comments may span multiple lines.

A.9.2 Expressions and Operators

Expressions can involve a variety of operators. The assignment operator = is used to
save the result of evaluating its right hand side to the variable on the left hand side,
as in x = y + 5.

The arithmetic operators are +, -, *, /, %, for addition, subtraction, multiplica-
tion, division, and remainder upon division, respectively, as well as the increment
(++) and decrement (--) operators. These latter two operators have different effects
when they appear before or after the variable they are applied to. When appearing
before a variable, as in b = ++a or b = --a, they return the value in the variable
after the operation is performed on it. In other words, b = ++a is equivalent
to a = a+1; b = a; and b = --a is equivalent to a = a-1; b = a;.
In contrast, when the operators appear after the variable, they return the value
of that variable before it is modified. In this case, b = a++ is equivalent to
b = a; a = a+1; and b = a-- is equivalent to b = a; a = a-1;. The
pre- and post-increment/decrement operators are a common source of confusion,
and code should be written so that the task it performs is clear. These operators
can also be used without assignment, for example a++; by itself is equivalent to
a = a+1.

Relational operators are used to compare values, and they are == (equal), != (not
equal), < (less than), > (greater than), <= (less than or equal), >= (greater than or
equal). The difference between the assignment and equality operators is particularly
important because assignment can be used in a conditional expression and returns
the value that was assigned.

The logical operators are || (or), && (and), and ! (not). The last of these is used
before the expression it modifies, for example !(a || b) is logically equivalent

678 Appendix

to !a && !b. Readers may consult standard references about the precedence rules
for these operators. Parentheses can be used to specify the order of subexpression
evaluation.

A.9.3 Data Types

The type of data stored in each variable must be explicitly stated before the
variable is used in another statement. The names of all variables and functions
are case sensitive. The main data types used in the code in this chapter are int,
unsigned int, and double, which on the architectures we use correspond to a
32 bit signed integer (positive and negative values allowed), 32 bit unsigned (non-
negative) integer, and 64 bit (double precision) floating point value, respectively.
Text characters (or small numbers) are stored in char variables, which occupy one
byte (8 bits). In special circumstances the unsigned integer type size_t is used,
for example, to store the sizes of memory regions in bytes. On common 64 bit x86
architectures, size_t is a 64 bit unsigned integer. Variables that store text are
arrays of chars (see Sect. A.9.8).

The statements int i; and double d; declare integer variables i and d
to be an int and a double, respectively. Variables should not be used until
they are given an initial value. Variables can be initialised when they are declared:
int x = 5; is effectively shorthand for int x; x = 5;.

Variables declared with the const keywords are read-only variables.
After they are initialised, they cannot be modified. Compilation of
const int five = 5; five = 6; will stop with an error message.

A.9.4 Composite Data Types

Structures are composite data types that group several variables together. The
components of a structure can be used in expressions or modified by writing the
name of the structure variable followed by a dot and then the name of the variable
within the structure. For example, to describe a vector structure containing two
variables x and y we write:

struct vect {
double x; double y;

};

We can then create one of these vectors, initialise it, and compute its norm:

vect v;
v.x = 5.0;
v.y = 0.1;
double norm = sqrt(v.x*v.x + v.y*v.y);

A.9 Programming Reference 679

A.9.5 Variable Scope

Variables declared within a block of code or a function, i.e. between { and },
can only be used inside that block/function. The memory for these variables is
automatically managed: space is set aside for the variables before entering the
block/function and it is released at the end.

Global variables are declared outside of any function and can be used anywhere
in the code (after they have been declared).

A.9.6 Pointers

An important feature of C and C++ is pointer variables. These are special variables
that “refer” or “point” to another variable rather than holding a value. Such variables
instead store the location of the variable they “point” to, i.e. their address in the
system’s memory.

The syntax for declaring a pointer is type *v, which declares that v is a
variable that contains the location in memory of a variable of type type. Supposing
we have declared int *i;, it is incorrect to write i = 5; because one would be
using an integer value (5) where a valid memory address is needed (one that the
program is permitted to access). To use i correctly, we must ensure that i points
to a location in memory that has been reserved for an int. This can be done by
explicitly allocating memory (see Sect. A.9.7) for an integer or by assigning the
pointer the address of an integer variable.

To assign a pointer variable the address of another variable, we use the “address
of” operator &. For example, we can write int a = 10; int *i = &a; to
create a pointer i that refers to the variable a. We can then either directly change
a, using a = 2;, or change it through the pointer i by using *i = 2;. Here, *
is the pointer dereferencing operator, which indicates that we want to work with the
value the pointer refers to rather than the location of that value in the computer’s
memory. Informally, we can say that i is the pointer, and *i is the value that the
pointer refers to.

Pointer Arithmetic

When pointers refer to elements in an array (cf. Sect. A.9.8), arithmetic expressions
involving the pointer variable can be used to access other elements in that array.
For example, when p points to a double, p+1 points to the next double, and
p-1 points to the previous double. Parentheses are essential for pointer arithmetic:
*(p+1) refers to the contents of the double after the one at p, while *p+1 is the
result of adding 1 to the value pointed to by p.

680 Appendix

Pointers must not be used to refer to memory that has not been reserved for use
by the program (Sect. A.9.7), i.e. that is outside the bounds of an allocated array
(Sect. A.9.8 and Sect. A.9.7). In such cases, behaviour is undefined and can cause
the operating system to terminate the program.

A.9.7 Dynamic Memory Allocation

When the amount of memory that needs to be reserved for a variable is not known
at compilation time or the required amount of memory is too large to reside in
the space that is managed automatically (called the stack), programmers need to
explicitly reserve regions of memory in what is called the “heap” for these variables.
The allocation of memory for variables during the execution of a program is called
dynamic memory allocation.

In C, the function void* malloc(size_t size) requests size
bytes of memory and returns the address of the first reserved byte or a null
pointer (value of zero) if the request could not be satisfied due to insufficient
memory being available. Since the return type is a pointer to void it must be
converted to a pointer to the correct type of variable. For example, the state-
ment double *data = (double*) malloc(100*sizeof(double))
requests space for 100 doubles. Note that malloc knows nothing about the type
of variable being allocated: the size specified in malloc is the number of bytes
required, not the number of variables of the desired type. We therefore use the
sizeof operator to determine the number of bytes that a double occupies, since
the number of bytes used for different variable types can vary across platforms.

The memory reserved bymalloc is not initialised: it contains whatever was held
at those memory addresses previously. This memory remains reserved until a later
call to void free(void *ptr). This function releases the memory, allowing
it to be reserved by subsequent calls to malloc. Repeated use of malloc without
matching calls to free will cause a program to use more and more memory over
time. This is called a memory leak and must be avoided because it can interfere with
other programs running on a system and will eventually lead to a call to malloc
failing due to a lack of available memory.

In C++, the operators new, delete, and delete[] are used to allocate
memory, free individual variables, and free arrays of variables, respectively. These
operators are useful when working with the object oriented features in C++. The C
functions malloc and free may still be used in C++ and they are sufficient for
the simple data types we employ in the code.

A.9 Programming Reference 681

A.9.8 Arrays

Many algorithms use sets of data that are conveniently stored in arrays. Arrays are
sequences of variables of the same type that occupy contiguous blocks of memory.
The values in arrays are accessed through their index (location) within the array.
The syntax for declaring an array is

type varname[N];

where N is an integer constant that specifies the number of elements of type type
that are available in the array with name varname. When the initial content of the
array is known, the array can be initialised when it is declared, for example as

int integers[] = {1,2,3,4,5};

for an array of five integers. In this case, the number of elements in the array does
not need to be specified and is inferred from the initialising list of values. If initial
values are not provided, no assumptions can be made about the contents of the
array; it does not contain zeroes by default, and its initial contents must be specified
in subsequent code.

Elements of an array can be read or modified by using the array subscript
operator that consists of an integer expression in between brackets. For exam-
ple, the third element of the integers array could be modified by writing
integers[2] = 10;. The syntax is the same when an element of an array
is used in an expression, such as x = integers[2]+5;, which adds 5 to the
third element in integers and stores the result to a variable x. Note that the first
element of an array has index 0, and the index of the last element in an array with
N elements is N � 1. Programmers must ensure that index expressions are bounded
between these limits; it is an error to access memory outside the limits, and can
cause the operating system to terminate the program.

Dynamically allocated arrays are used for the large data sets that store the
populations for the LBM simulations, as described in Sect. 13.3.1. When a pointer
is known to refer to a section of memory that is occupied by an array, the array
subscript operator can be used with the pointer. For example, if double *p points
to the start of an array of 10 doubles, one may use p[0], p[1], up to p[9] to
read or modify the elements of this array. Array indexing expressions with pointers
are equivalent to applying an offset to the pointer, for example p[5] is equivalent
to *(p+5).

Text is stored and manipulated using arrays of chars. Such variables
can be initialised using text entered in between double quotes, for example
"sample text". The first element of the resulting array is the letter ’s’.
Backslashes, \, followed by one letter can be used to include special characters in
literal text: among others, \n is replaced with a new line character, \t represents a
tab character, and \\ is replaced with a single backslash.

682 Appendix

A.9.9 If Statement

Several special statements are used to selectively execute and repeat sequences of
statements, the first of which is an if statement:

if(conditional_expression)
{

// statements executed if conditional_expression is true
}
else
{

// statements executed if conditional_expression is false
}

If the conditional_expression evaluates to a logical value that is considered
true, the first block of statements (enclosed between { and }) is executed.
Otherwise the block following else is executed. When blocks contain only a single
statement, the braces are often omitted. Such unneeded braces are usually omitted
when a chain of if statements is used to test which one of several conditions holds.
For example, it is common to write

if(case_1)
{

// statements for case 1
}
else if(case_2)
{

// statements for case 2
}
else if(case_3)
{

// statements for case 3
}
else
{

// for when none of the previous cases hold
}

This is much easier to read than code that includes additional braces around each
nested if statement.

A.9.10 While Loop

A while loop is written as:

while(conditional_expression)
{

// statements executed while conditional_expression is true
}

When this loop is executed, the conditional expression is evaluated and the body is
executed if the result is true. Evaluation of the conditional and execution of the

A.9 Programming Reference 683

inner block continue indefinitely until the conditional evaluates as false. When
the conditional is false, execution continues with the statements that follow after
the while loop.

A.9.11 For Loop

The second common type of loop is a for loop that is commonly used when an
index variable is needed to keep track of the iterations of the loop. This loop has the
structure

for(init; condition; post_loop)
{

// body of for loop
}

and it is effectively equivalent to the code

{
init;
while(condition)
{

// body of for loop

post_loop;
}

}

This shows that a for loop consists of four elements: an initialisation statement
init that is executed before the loop starts, a conditional expression condition,
a body that is repeated as long as the conditional expression is true, and an update
statement post_loop that is executed after each repetition of the loop body.

for loops are useful when repeating a task a particular number of times and
using the iteration number within the body. For example, one might compute a sum
as follows:

double sum = 0.0;
for(int n = 1; n < 5; ++n)
{

sum = sum + 1.0/n;
}

The initialisation statement declares an integer variable n and initialises it to 0.
The update statement increments this integer, and the conditional expression allows
terms to be added to the sum as long as n is less than 5 (i.e. up to and including 4).
Variables declared in the initialisation statement can only be used within the for
loop.

684 Appendix

A.9.12 Functions

Functions are defined as follows:

return_type function_name(type1 param1, type2 param2)
{

// body of function
return return_value;

}

This creates a function with the name function_name whose body consists of a
sequence of statements that uses the data supplied in the parameters to generate an
output. The output value is return_value, a variable of type return_type.

The parameters of the function (param1 and param2 or more as needed) are
variables that can only be used within the body of the function. The result (or output)
of the function is specified with a return statement that ends execution of the
function, allowing execution to continue in whichever function called this function.
The use of void as the return type indicates that the function does not return a
value. In this case, return_value is omitted from the return statement, which
then becomes return;. If no return; statement is used in a void function, the
function automatically returns when the end of the its body is reached.

Functions are invoked (or called) using their name and a list of the values
(called arguments) to be used for each parameter. The values of the arguments
are copied into temporary variables that are then used within the function. Func-
tions that return a value can be used within expressions, such as when using
mathematical functions: y = sin(2*x)+1.5;. Functions that do not return
a value (void functions) are used as a statement by themselves, for example
perform_task(value1,value2);. Non-void functions can also be used in
this way when their return value is not needed, such as finish_task(); instead
of status = finish_task(); when status is not used subsequently.

When function parameters are pointers, the function body can modify the data
they point to unless a const keyword is used to disallow modification.

A.9.13 Screen and File Output

The code accompanying this book uses the standard C functions for displaying text
and writing data to files. The complete details about the functions mentioned below
can be found in many references about the C language.

The void printf(const char* format_string,...) function is
used to display text and convert other variables, such as integers and floating point
numbers, to text. This conversion is performed by scanning format_string for
special character sequences, called format specifiers, that start with a percent sign,
%. The ellipsis in the function definition indicates a list of variables that is matched
(in order) with each format specifier in format_string. The characters after the
percent sign in the format specifiers indicate how the variables in the variable list

A.9 Programming Reference 685

should be interpreted and displayed as text. For example, %d is used to show signed
integers in decimal notation, and %e, %f, or %g are used for displaying floating
point numbers in different ways. Format specifiers can also include numbers and
other special characters to further describe how the variables will be represented as
text.

Binary data is written to files using the fopen, fwrite, and fclose functions
as demonstrated in Sect. 13.3.3.

A.9.14 Header Files

When a source code file is compiled, the compiler does not need to know all the
details about the functions and variables that are used in that file. The compiler only
needs to know enough to set up function calls, allocate memory correctly, and check
whether expressions involving the variables/function are permitted. The compiler
assumes that the details of what functions do will be supplied later (during linking;
see Sect. A.9.15). The declarations of functions (their names, parameters, and return
types2) and their definitions (what the function does) can therefore be separated into
different files. This helps organise the source code for long programs.

Files that contain the declarations of functions and variables that are used in
other files are called header files, and their names end in the extension .h. Source
files that make use of the functions and variables declared in header files must
indicate that these files should be loaded before continuing with compilation. This
is done with the preprocessor directive3 #include. This directive has two forms:
#include <filename> and #include "filename". The first form is
used to load header files for standard functions, such as stdio.h and math.h,
and other libraries installed in system-specific directories. The second form is used
to load header files that are stored together with the source code. The preprocessor
searches for these header files in the directory that contains the source file being
compiled.

A.9.15 Compilation and Linking

Compilers are programs that translate source code into binary files that contain the
instructions that a processor will perform when running the program. The process of
converting source code into machine instructions is called compilation. Compilation

2The declarations of functions are effectively the definitions of the functions with the body removed
and replaced with a semicolon to indicate the end of the declaration.
3This is a special statement that is handled by the preprocessor, a program that performs several
pre-compilation tasks that include inserting the contents of any files specified with #include
into the source code that is then passed along to the compiler.

686 Appendix

of a source code file produces an object file with machine instructions together with
information about the functions and data structures it contains. Object files do not
necessarily contain all the functions and data structures needed to form a complete
program. A process called linking combines all the object files that are needed to
generate a particular program. Linking creates the binary executable file that can
then be run by an operating system.

In the GNU Compiler Collection, the compiler for C code is gcc and the
compiler for C++ code is g++. To use g++ to compile code for this book, a sample
command is

g++ -c -O3 source1.cpp -o source1.o

This compiles the source code file source1.cpp with level 3 optimisation to
generate the object file source1.o. The -c option indicates that we are only
compiling the source file into an object file, linking should not yet be performed,
and the output is not a full program.

To link several object files (and optionally first compile a source code file as
well), the command is:

g++ -O3 source1.o source2.o main.cpp -o program

This compiles main.cpp and links the result with source1.o and source2.o
to generate the program named program. The same commandg++ is used for both
compilation and linking here. g++ invokes other programs to carry out different
steps in the compilation process, such as ld, which is the “linker” used for linking.
g++ determines what task to perform from the options that are used (such as -c)
and the extensions of the files that are specified (.cpp or .cc for C++ source code
and .o for object files).

A shortcut for quickly compiling and linking several source files directly to an
executable is available:

g++ -O3 source1.cpp source2.cpp main.cpp -o program

This generates the executable file program from the source code files
source1.cpp, source2.cpp, and main.cpp. On Windows, the file name of
the output executable requires the extension .exe. After compilation, one can run
the generated program on the command line by using the command ./program
on Unix systems and program.exe in Windows.

References

1. P.A. Thompson, Compressible-Fluid Dynamics (McGraw-Hill, New York, 1972)
2. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 4th edn.

(Wiley, New York, 2000)
3. P.J. Dellar, Phys. Rev. E 64(3) (2001)
4. P.J. Dellar, J. Comput. Phys. 259, 270 (2014)
5. E.M. Viggen, The lattice Boltzmann method: Fundamentals and acoustics. Ph.D. thesis,

Norwegian University of Science and Technology (NTNU), Trondheim (2014)

References 687

6. T. Shao, T. Chen, R. Frank, Math. Comp. 18, 598 (1964)
7. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables (U.S. Government Printing Office, Washington, D.C., 1964)
8. X. Shan, X.F. Yuan, H. Chen, J. Fluid Mech. 550, 413 (2006)
9. W.P. Yudistiawan, S.K. Kwak, D.V. Patil, S. Ansumali, Phys. Rev. E 82(4), 046701 (2010)

10. X. He, L.S. Luo, Phys. Rev. E 56(6), 6811 (1997)
11. S. Ubertini, P. Asinari, S. Succi, Phys. Rev. E 81(1), 016311 (2010)
12. D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Phil. Trans. R. Soc. Lond.

A 360, 437 (2002)
13. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)
14. R. Rubinstein, L.S. Luo, Phys. Rev. E 77(036709), 1 (2008)
15. K. Suga, Y. Kuwata, K. Takashima, R. Chikasue, Comput. Math. Appl. 69(6), 518 (2015)
16. M. Geier, A. Greiner, J. Korvink, Phys. Rev. E 73(066705), 1 (2006)
17. K. Premnath, S. Banerjee, J. Stat. Phys. 143, 747 (2011)

Index

accuracy, 136, 149, 275, 276, 311, 511
order, 32, 136, 139, 141, 146

acoustic viscosity number, 500, 501, 510, 527
advection-diffusion equation, 225, 297, 300,

316

block, 625
Boltzmann equation, 21, 26, 55, 61, 70, 106

discrete-velocity, 83, 94, 108, 237, 506
Bond number, 290
boundary condition

wetting for multicomponent free energy
model, 361

deformable, 435, 446, 464, 465, 473, 483,
485

Dirichlet, 158, 318, 319, 321, 327
free-slip, 206, 208
moving, 434, 440, 443, 446, 450–452, 463,

464, 475
Neumann, 158, 317, 320, 321, 327
no-slip, 156, 466
non-reflecting, 519, 526
Robin, 158
symmetric, 206, 208, 327

boundary conditon
wetting for multiphase free energy model,

358
boundary scheme

anti-bounce-back, 200, 318, 324
at corners, 201, 205
bounce-back, 156, 199, 200, 250, 251, 435,

455
ghost methods, 455, 463
immersed boundary method, see immersed

boundary method

Inamuro, 199, 319, 320, 324
interpolated bounce-back, 443, 447
link-wise, 155
multireflection, 446, 487
non-equilibrium bounce-back, 196, 251,

254
partially saturated bounce-back, 447, 451
wet-node, 155, 156, 200, 201
with forces, 249, 261

Boussinesq approximation, 298, 313, 316
Brownian motion, 299, 440
Buckingham � theorem, 267, 287, 294
bulk density, 333
bulk phase, 333
buoyancy, 232, 298, 313, 317

Cahn-Hilliard equation, 364
Cassie-Baxter state, 400
Cauchy equation, see momentum equation
Chapman-Enskog analysis, 26, 106, 122, 127,

168, 208, 212, 217, 244, 248, 250,
306, 309, 655, 660

characteristics, 95, 522
method of, 94, 96, 237, 665, 669

checkerboard instability, 36, 37, 40, 42, 53, 87
cluster, 537, 593
code examples, 533, 557, 578, 580, 648
collision, 12, 13, 15, 16, 19–22, 26, 28, 44, 45,

55, 66, 67, 70, 101, 103, 224, 411,
414

collision operator, 21, 22, 28, 44, 64
BGK, 22, 64, 65, 98, 99, 101, 130, 133,

135, 143, 303, 323, 407, 425, 428
cascaded, 409

© Springer International Publishing Switzerland 2017
T. Krüger et al., The Lattice Boltzmann Method, Graduate Texts in Physics,
DOI 10.1007/978-3-319-44649-3

689

690 Index

cumulant, 409
entropic, 409
MRT, 112, 133, 135, 143, 147, 225, 408,

410, 411, 413, 423, 429, 658, 660,
669, 673

regularised, 409
TRT, 133, 135, 143, 147, 323, 408, 424,

427, 428
compiler, 535, 545

automatic optimisation, 545
compressibility

strong, 56, 111
weak, 54, 111, 126, 144, 149, 243

conservation
energy, 20, 21, 38, 48, 50, 51, 73, 74
mass, 4, 20, 21, 24, 38, 39, 41, 48, 50–52,

55, 73, 74, 99, 107, 434, 447
momentum, 5, 20, 21, 38, 39, 41, 48,

50–52, 73, 74, 99, 107, 434
conservation equation, 5, 23, 27, 38

conservation form, 5
material derivative form, 5

consistency
thermodynamic, 336

contact angle, 338
continuity equation, 4, 5, 23, 24, 32, 112, 117,

122, 124, 513
incompressible, 7, 10, 32, 314, 527

continuum, 3, 4, 11
convergence, 649
conversion factor, 266, 274, 283, 285

basic, 268
derived, 268

Couette flow, see flow
Courant number, 128
CPU

core, 541
critical point, 375
CUDA, 621

compilation, 627

DdQq, 63, 84
density

bulk, 333
energy, 17, 18, 314, 316
entropy, 27, 28
mass, 4, 17, 63, 83, 233, 239, 268, 271,

273, 280
mass flux, 4
momentum, 4, 17, 63, 83, 233, 239
momentum flux, 6, 24, 239

diffuse interface model, 339
diffusion flux, 300, 318, 321

diffusivity, 298, 300, 303
anisotropic, 300, 306, 310
thermal, 26, 36, 301

direct simulation Monte Carlo, 48, 51, 52
dissipative particle dynamics, 47, 48

energy equation, 9, 25, 32, 314, 316
Euler, 25

entropy, 9, 10, 27, 409, 519
equation of state, 8, 9, 11, 32, 124, 126, 334,

495
ideal gas, 9, 19
isentropic, 10, 11
isothermal, 10, 11, 82, 124
multicomponent free energy, 364
multicomponent Shan-Chen, 385
multiphase free energy, 348
multiphase Shan-Chen, 373

equilibrium, 25, 69, 222
distribution, 19, 21, 64, 69, 72, 77, 82, 92,

114, 120, 127, 298, 303, 306
moments, see moment
relaxation towards, 64, 99–101, 112

error
u3, 111, 114, 119, 122, 143, 149, 658
compressibility, 144, 275
discretisation, 140, 275, 506
forcing, 247, 248
initialisation, 221, 224, 226, 228
iterative, 140
modelling, 143, 145
round-off, 139
truncation, 32, 136, 140, 142, 275

error norm, 138
Euler equation, see momentum equation
Euler scheme, 32, 33, 36, 96, 471, 525,

667
Eulerian system, 465. see also Lagrangian

system, 466
exascale, 651

finite difference, 34, 38, 53, 136, 302
backward difference, 35, 36
central difference, 35, 36, 137
forward difference, 33, 35, 36, 136

finite element, 34, 41, 42, 53, 94
finite volume, 34, 38, 41, 53, 94

lattice Boltzmann method, 96
floating point, 538, 539, 543, 548, 550

double precision, 538
IEEE 754, 538
optimisation, 548, 550

Index 691

flow
Couette, 7, 8, 136
incompressible, 7, 13, 123, 186, 268
linear, 121, 123
multicomponent, 332
multiphase, 332
Poiseuille, 8, 115, 254, 261, 283, 286, 326,

476
Rayleigh-Bénard convection, 311, 312
relativistic, 127
shallow water, 127
steady, 116, 117, 139, 142, 221
Stokes, 123, 278
Taylor-Green vortex, 221, 226, 539, 660,

662
thermal, 311, 317
unsteady, 221
Womersley, 221, 287, 289

fluid
immiscible, 333
miscible, 333

fluid model
Burnett, 26, 71
Euler, 26, 522
Navier-Stokes-Fourier, 26, 71, 84

force
Shan-Chen, 370

force spreading, 466–468, 470, 480
forcing scheme, 233, 236, 240, 244, 423, 424
fresh node, 446, 450–452

Galilean invariance, xxii, 49, 143, 408
gas constant

specific, 9, 316
GPU, 620

bandwidth, 624
block, 623, 624, 626, 644
grid, 623, 624, 626
kernel, 625
memory, 624, 634
multiprocessor, 622, 624, 644
thread, 622–624, 626, 644
warp, 622, 624, 644

graphics processing units, 620, 648
gravity, 232, 290, 312, 313, 316
Green’s function, 503, 505, 514, 517
grid, 625

H-theorem, 27, 28, 50, 409
heat capacity, 9, 19
heat equation, 36, 301
heat flux, 25, 26

Helmholtz equation, 41, 501
Hermite expansion, 71, 74, 77, 80–82, 119,

234, 236
Hermite polynomials, 71, 74, 77, 80, 119, 235,

412, 415, 416, 662, 665
high performance computing, 537
hydrophilic surface, 338
hydrophobic surface, 338

ideal gas, see equation of state
immersed boundary method, 463, 487

deformable boundaries, 483, 485
direct-forcing, 478, 483
explicit feedback, 474, 478
implicit velocity correction-based, 480, 481
multi-direct forcing, 482, 483

immiscible fluids, 333
index notation, 653, 655
initialisation, 67, 68, 154, 157, 220, 228, 249
interface model

diffuse, 339
sharp, 339

interface width, 339
interpreter, 535
isothermal fluid, see equation of state
isotropy

lattice, 44, 46, 85, 87, 298, 306

kernel, 625, 626, 644
Knudsen number, 14, 26, 51, 106, 108–110,

280, 500, 655, 656

Lagrangian system, 465. see also Eulerian
system, 466

Laplace pressure, 337
Laplace test, 342
lattice

extended, 86, 124, 658
isotropy, see isotropy
projection, 85, 89
pruning, 91
reduced, 306
vector, 86, 306

lattice Boltzmann equation, 64, 65, 97, 108,
239

lattice gas, 43, 47, 54, 62, 89
law of similarity, 14, 63, 265, 268, 279, 285
loop

combining, 545
optimisation, 543

692 Index

peeling, 544
unrolling, 543

lotus effect, 400
lyophilic surface, 338
lyophobic surface, 338

Mach number, 13, 54, 111, 117, 123, 126, 144,
279

expansion, 71
machine epsilon, 538
macroscopic scale, 4, 12, 15
magic parameter, 134, 147, 322, 426
mass equation, see continuity equation
Maxwell area construction rule, 335
memory

access pattern, 567
bandwidth, 537, 551, 579, 592, 593, 624,

646
cache, 540, 551, 556, 567, 568, 572
cache line, 552
coalesced access (GPU), 634
distributed, 580
global (GPU), 624, 627, 644
local (GPU), 624
RAM, 540
register, 540
set associative cache, 553
shared, 579, 591
shared (GPU), 624, 627, 644

mesoscopic scale, 12, 15, 54
microscopic scale, 12, 15, 54
minimal surface, 337
miscible fluids, 333
Mlups, 563
molecular dynamics, 42, 43, 47
moment, 17, 19, 22, 23, 63, 70, 78, 83, 109,

113, 114, 410, 411
equilibrium, 93, 110, 113, 122, 124, 125,

307, 414, 415, 417, 421, 422, 670,
672

moment space, 409, 410, 413, 414
momentum density, see density
momentum equation

Cauchy, 6, 24
Euler, 6, 25, 106, 107, 110, 522
incompressible Navier-Stokes, 7, 10, 32,

34, 53, 55, 124, 139, 316, 496
Navier-Stokes, 5, 8, 14, 32, 54, 65, 107,

112, 117, 122, 247, 298, 418, 422
momentum exchange algorithm, 215, 218, 437,

459
monatomic gas, 16, 19, 21, 112, 657

MPI, 593, 620
blocking, 600
communication, 594, 600
compilation, 613
nonblocking, 600
rank, 594
reduction, 608

multi-particle collision dynamics, 48, 50
multicomponent flow, 332
multicomponent free energy

Bulk thermodynamics, 360
Chemical potential, 360
Equation of state, 364
Interfacial profile, 361
Lattice Boltzmann implementation, 364
Pressure tensor, 363
Surface tension, 361
Surface thermodynamics, 361
Wetting boundary condition, 361

multiphase
bottom-up, 341
top-down, 341

multiphase flow, 332
multiphase free energy

Bulk thermodynamics, 345
Chemical potential, 346
Equation of state, 348
Galilean invariance, 352
Interfacial profile, 346
Lattice Boltzmann implementation, 348
potential form, 351
pressure form, 351
Pressure tensor, 347
Surface tension, 347
Surface thermodynamics, 354
Wetting boundary conditon, 358

multiprocessor, 624
multirange force, 388

Navier-Stokes equation, see momentum
equation

non-dimensionalisation, 14, 71, 73, 265, 271,
313, 314

non-equilibrium, 26, 65, 106, 119, 222, 224
distribution, 118, 119

OpenCL, 621
OpenMP, 580, 581, 593

clause, 581
compilation, 587

Index 693

directive, 581
parallel block, 583
private variables, 585
reduction, 586
shared variables, 585

order parameter, 332

Péclet number, 301, 322, 325, 327
parallel computing, 578

strong scaling, 616
weak scaling, 616

parasitic currents, 387
pointer, 547, 548, 679
Poiseuille flow, see flow
Poisson equation, 34, 55, 127, 222
polyatomic gas, 16, 18, 502
polynomial evaluation, 542
population space, 409–411, 414
post-processing, 576
Prandtl number, 22, 301, 315, 502
pressure, 5, 11, 18, 53, 125, 222, 232, 273

Laplace, 337
pressure tensor, 340, 342

multicomponent free energy, 363
multiphase free energy, 347

processor
core, 541, 580
multi-core, 541, 580

profiling, 541
timing, 556

programming language
assembly language, 549
C, 536, 548
C++, 536, 548
compiled, 535–537
Fortran, 536, 548
interpreted, 535, 536
MATLAB, 535
Python, 535

pseudopotential, 369

quadrature
Gauss-Hermite, 80, 81, 83, 84, 662, 665

Rayleigh number, 312
relaxation matrix, 411, 418, 421, 423
relaxation rate, 408, 411, 425
relaxation time, 22, 99, 112, 143, 271, 408, 669

viscous, 496
rest velocity, 84, 306

Reynolds number, 13, 14, 128, 134, 269, 278,
281, 282, 407, 418

grid, 277, 278

scaling
acoustic, 276, 279
diffusive, 119, 145, 275, 278

Schmidt number, 301
Shan-Chen force, 370
Shan-Chen model, 368
sharp interface model, 339
smallness parameter, 26, 107, 114, 116
smoothed-particle hydrodynamics, 47, 52, 53
solvability conditions, 107, 115, 117, 245, 307
sound

absorption, 502, 503
attenuation, 494, 498, 500, 502, 503, 506,

507, 510
dispersion, 498, 500, 506, 507, 509, 510
generation, 512, 515
speed, 11, 13, 64, 84, 92, 125, 272, 276,

496, 500
sound wave

complex notation, 497, 498
cylindrical, 504
forced, 499, 509
free, 499, 507, 510
impedance, 503, 521
multipole, 505, 515, 518
non-linear, 506
plane, 497, 498, 504, 506
spherical, 504

speed of sound, see sound
spurious currents, 387
stability, 85, 86, 96, 97, 100, 101, 112, 127,

136, 276, 277, 310
stability condition

necessary, 129
optimal, 129, 131
sufficient, 129, 130

stability map, 128, 131–133
staircase approximation, 164, 181, 201, 436
steady flow, see flow
streaming, 45, 66–68, 101, 103, 224
stress

normal, 6
shear, 6, 215, 217, 453, 455

stress tensor, 6, 7, 24, 215, 274, 453
Lighthill, 514
viscous, 6, 26, 65, 67, 107, 111, 224, 233,

495
Strouhal number, 288
supercomputer, 593

694 Index

supercomputers, 621
superhydrophobic, 400
superhydrophobic surface, 339
surface

minimal, 337
surface tension, 336, 342

multicomponent free energy, 361
multiphase free energy, 347
multiphase Shan-Chen, 375

surfactants, 393

thermal diffusivity, see diffusivity
thermal flow, see flow
thermal fluctuations, 46, 48, 50, 56, 312, 440
thermodynamic consistency, 336
thread, 580–582, 593, 625
time scale

acoustic, 13, 288, 656
advective, 13, 288, 656
between collisions, 13, 15
diffusive, 13, 288

traction, 158, 215, 453
transformation matrix, 410, 412, 414, 417, 420,

421

units
conversion, 265
lattice, 63, 265, 266, 270–272, 274, 416,

500

physical, 63, 270, 271, 274
upwind scheme, 36, 40

velocity
barycentric, 382

velocity interpolation, 466–468, 471, 473, 480
velocity set, 63, 64, 84, 93, 113, 664, 665
viscosity, 6, 143, 272, 273, 303

bulk, 7, 65, 112, 126, 418, 422, 423, 500
shear, 7, 65, 112, 418, 422, 427, 500

visualisation, 576
von Neumann analysis, 128, 132, 429

warp, 634
wave equation

ideal, 496
time-harmonic, see Helmholtz equation
viscous, 496

weight function, 71, 74, 78, 80, 662
Wenzel state, 401
wet-node, see boundary scheme
Womersley number, 287

Young-Laplace test, 342, 379

Zou-He scheme, see boundary scheme !
non-equilibrium bounce-back

	Preface
	How to Read This Book
	Acknowledgements

	Contents
	Acronyms
	Frequently Asked Questions
	Getting Started
	Capabilities of the LBM
	Boundary Conditions
	Pressure and Compressibility
	Advanced Questions

	Part I Background
	1 Basics of Hydrodynamics and Kinetic Theory
	1.1 Navier-Stokes and Continuum Theory
	1.1.1 Continuity Equation
	1.1.2 Navier-Stokes Equation
	1.1.3 Equations of State

	1.2 Relevant Scales
	1.3 Kinetic Theory
	1.3.1 Introduction
	1.3.2 The Distribution Function and Its Moments
	1.3.3 The Equilibrium Distribution Function
	1.3.4 The Boltzmann Equation and the Collision Operator
	1.3.5 Macroscopic Conservation Equations
	1.3.5.1 Mass Conservation Equation
	1.3.5.2 Momentum Conservation Equation
	1.3.5.3 Energy Conservation Equation
	1.3.5.4 Discussion

	1.3.6 Boltzmann's H-Theorem

	References

	2 Numerical Methods for Fluids
	2.1 Conventional Navier-Stokes Solvers
	2.1.1 Finite Difference Method
	2.1.1.1 Finite Difference Approximations of Derivatives
	2.1.1.2 Finite Difference Methods for CFD
	2.1.1.3 Advantages and Disadvantages

	2.1.2 Finite Volume Method
	2.1.2.1 Finite Volume Approximation of Conservation Equations
	2.1.2.2 Finite Volume Methods for CFD
	2.1.2.3 Advantages and Disadvantages

	2.1.3 Finite Element Methods

	2.2 Particle-Based Solvers
	2.2.1 Molecular Dynamics
	2.2.2 Lattice Gas Models
	2.2.2.1 Algorithm
	2.2.2.2 Advantages and Disadvantages

	2.2.3 Dissipative Particle Dynamics
	2.2.4 Multi-particle Collision Dynamics
	2.2.4.1 Algorithm
	2.2.4.2 Advantages and Disadvantages

	2.2.5 Direct Simulation Monte Carlo
	2.2.6 Smoothed-Particle Hydrodynamics

	2.3 Summary
	2.4 Outlook: Why Lattice Boltzmann?
	References

	Part II Lattice Boltzmann Fundamentals
	3 The Lattice Boltzmann Equation
	3.1 Introduction
	3.2 The Lattice Boltzmann Equation in a Nutshell
	3.2.1 Overview
	3.2.2 The Time Step: Collision and Streaming

	3.3 Implementation of the Lattice Boltzmann Methodin a Nutshell
	3.3.1 Initialisation
	3.3.2 Time Step Algorithm
	3.3.3 Notes on Memory Layout and Coding Hints
	3.3.3.1 Initialisation
	3.3.3.2 Streaming
	3.3.3.3 Updating Macroscopic Variables
	3.3.3.4 Equilibrium
	3.3.3.5 Collision

	3.4 Discretisation in Velocity Space
	3.4.1 Non-dimensionalisation
	3.4.2 Conservation Laws
	3.4.3 Hermite Polynomials
	3.4.3.1 Definition and Construction of Hermite Polynomials
	3.4.3.2 Orthogonality and Series Expansion

	3.4.4 Hermite Series Expansion of the Equilibrium Distribution
	3.4.5 Discretisation of the EquilibriumDistribution Function
	3.4.6 Discretisation of the Particle Distribution Function
	3.4.7 Velocity Sets
	3.4.7.1 General Comments and Definitions
	3.4.7.2 Construction and Requirements of Velocity Sets
	3.4.7.3 Common Velocity Sets for Hydrodynamics
	3.4.7.4 Velocity Set Relations
	3.4.7.5 Equilibrium Distributions
	3.4.7.6 Macroscopic Moments

	3.5 Discretisation in Space and Time
	3.5.1 Method of Characteristics
	3.5.2 First- and Second-Order Discretisation
	3.5.2.1 First-Order Discretisation
	3.5.2.2 Second-Order Discretisation

	3.5.3 BGK Collision Operator
	3.5.3.1 Under-, Full and Over-Relaxation

	3.5.4 Streaming and Collision

	References

	4 Analysis of the Lattice Boltzmann Equation
	4.1 The Chapman-Enskog Analysis
	4.1.1 The Perturbation Expansion
	4.1.2 Taylor Expansion, Perturbation, and Separation
	4.1.3 Moments and Recombination
	4.1.4 Macroscopic Equations

	4.2 Discussion of the Chapman-Enskog Analysis
	4.2.1 Dependence of Velocity Moments
	4.2.2 The Time Scale Interpretation
	4.2.3 Chapman-Enskog Analysis for Steady Flow
	4.2.4 The Explicit Distribution Perturbation
	4.2.5 Alternative Multi-scale Methods

	4.3 Alternative Equilibrium Models
	4.3.1 Linear Fluid Flow
	4.3.2 Incompressible Flow
	4.3.3 Alternative Equations of State
	4.3.4 Other Models

	4.4 Stability
	4.4.1 Stability Analysis
	4.4.2 BGK Stability
	4.4.3 Stability for Advanced Collision Operators
	4.4.4 Stability Guidelines

	4.5 Accuracy
	4.5.1 Formal Order of Accuracy
	4.5.2 Accuracy Measure
	4.5.3 Numerical Errors
	4.5.3.1 Round-Off Error
	4.5.3.2 Iterative (Steady-State) Error
	4.5.3.3 Discretisation Error

	4.5.4 Modelling Errors
	4.5.5 Lattice Boltzmann Accuracy
	4.5.6 Accuracy Guidelines

	4.6 Summary
	References

	5 Boundary and Initial Conditions
	5.1 Boundary and Initial Conditions in LBM in a Nutshell
	5.1.1 Boundary Conditions
	5.1.2 Initial Conditions

	5.2 Fundamentals
	5.2.1 Concepts in Continuum Fluid Dynamics
	5.2.2 Initial Conditions in Discrete Numerical Methods
	5.2.3 Boundary Conditions in Discrete Numerical Methods
	5.2.4 Boundary Conditions for LBM: IntroductoryConcepts
	5.2.4.1 Which Lattice Sites Should Be Subjected to Boundary Conditions?
	5.2.4.2 What Differentiates Boundary Conditions in LBM from Other more Traditional Numerical Methods in Fluid Dynamics?
	5.2.4.3 How Can Boundary Conditions Be Formulated for LBM?
	5.2.4.4 What Determines the Numerical Accuracy of LB Boundary Conditions?

	5.3 Boundary Condition Methods
	5.3.1 Periodic Boundary Conditions
	5.3.2 Periodic Boundary Conditions with PressureVariations
	5.3.3 Solid Boundaries: Bounce-Back Approach
	5.3.3.1 Principle of the Bounce-Back Method
	5.3.3.2 Fullway Versus Halfway Bounce-Back Method
	5.3.3.3 Resting Walls
	5.3.3.4 Moving Walls
	5.3.3.5 Advantages and Disadvantages
	5.3.3.6 Numerical Evaluation of the Accuracy of the Bounce-Back Method
	First-order analysis
	Second-order analysis

	5.3.4 Solid Boundaries: Wet-Node Approach
	5.3.4.1 Finding the Density on Boundaries
	5.3.4.2 Equilibrium Scheme
	Accuracy benchmark of the equilibrium scheme

	5.3.4.3 Non-equilibrium Extrapolation Method
	Accuracy benchmark of the non-equilibrium extrapolation method

	5.3.4.4 Non-equilibrium Bounce-Back Method

	5.3.5 Open Boundaries
	5.3.5.1 Velocity Boundary Conditions: Bounce-Back Approach
	5.3.5.2 Pressure Boundary Conditions: Anti-bounce-Back Approach
	5.3.5.3 Velocity Boundary Conditions: Wet-Node Approach
	5.3.5.4 Pressure Boundary Conditions: Wet-Node Approach

	5.3.6 Corners
	5.3.6.1 Corners and the Bounce-Back Rule
	5.3.6.2 Corners and the NEBB Method

	5.3.7 Symmetry and Free-Slip Boundaries

	5.4 Further Topics on Boundary Conditions
	5.4.1 The Chapman-Enskog Analysis for Boundary Conditions
	5.4.1.1 Bounce-Back Method
	5.4.1.2 Non-equilibrium Bounce-Back Method

	5.4.2 Mass Conservation at Solid Boundaries
	5.4.2.1 Link-Wise Approach: Bounce-Back
	5.4.2.2 Wet-Node Approach: Non-equilibrium Bounce-Back

	5.4.3 Momentum Exchange at Solid Boundaries
	5.4.3.1 Momentum Exchange in the Bounce-Back Method
	5.4.3.2 Accuracy of the Momentum Exchange Method

	5.4.4 Boundary Conditions in 3D

	5.5 Initial Conditions
	5.5.1 Steady and Unsteady Situations
	5.5.2 Initial Conditions in LB Simulations
	5.5.2.1 Role of Populations and Macroscopic Fields
	5.5.2.2 Chicken or Egg? Order of Collision and Propagation
	5.5.2.3 Consistent Initialisation via a Modified LB Scheme

	5.5.3 Example: Decaying Taylor-Green Vortex Flow

	References

	6 Forces
	6.1 Motivation and Background
	6.2 LBM with Forces in a Nutshell
	6.3 Discretisation
	6.3.1 Discretisation in Velocity Space
	6.3.2 Discretisation in Space and Time
	6.3.2.1 First-Order Integration
	6.3.2.2 Second-Order Integration

	6.4 Alternative Forcing Schemes
	6.4.1 General Observations
	6.4.2 Forcing Schemes
	6.4.2.1 Guo et al. (2002)
	6.4.2.2 Shan and Chen (1993, 1994)
	6.4.2.3 He et al. (1998)
	6.4.2.4 Kupershtokh (2004)
	6.4.2.5 Other, Less Accurate Approaches

	6.5 Chapman-Enskog and Error Analysis in the Presenceof Forces
	6.5.1 Chapman-Enskog Analysis with Forces
	6.5.2 Errors Caused by an Incorrect Force Model
	6.5.2.1 Discretisation of Velocity Space: The Issue of Unsteady and Steady Cases
	6.5.2.2 Discretisation of Space and Time: The Issue of Discrete Lattice Effects

	6.6 Boundary and Initial Conditions with Forces
	6.6.1 Initial Conditions
	6.6.2 Boundary Conditions
	6.6.2.1 Bounce-Back
	6.6.2.2 Non-equilibrium Bounce-Back

	6.7 Benchmark Problems
	6.7.1 Problem Description
	6.7.2 Numerical Procedure
	6.7.3 Constant Force
	6.7.3.1 Bounce-Back
	6.7.3.2 Non-equilibrium Bounce-Back

	6.7.4 Constant Force and Pressure Gradient
	6.7.4.1 Bounce-Back
	6.7.4.2 Non-equilibrium Bounce-Back

	6.7.5 Linear Force and Pressure Gradient
	6.7.5.1 Bounce-Back
	6.7.5.2 Non-equilibrium Bounce-Back

	6.7.6 Role of Compressibility
	6.7.6.1 Constant Force
	6.7.6.2 Constant Force and Pressure Gradient
	6.7.6.3 Linear Force and Pressure Gradient

	References

	7 Non-dimensionalisation and Choice of Simulation Parameters
	7.1 Non-dimensionalisation
	7.1.1 Unit Scales and Conversion Factors
	7.1.2 Law of Similarity and Derived Conversion Factors

	7.2 Parameter Selection
	7.2.1 Parameters in the Lattice Boltzmann Method
	7.2.1.1 Viscosity
	7.2.1.2 Pressure, Stress and Force

	7.2.2 Accuracy, Stability and Efficiency
	7.2.2.1 Accuracy and Parameter Scaling
	7.2.2.2 Stability
	7.2.2.3 Efficiency

	7.2.3 Strategies for Parameter Selection
	7.2.3.1 Mapping of Dimensionless Physical Parameters
	7.2.3.2 Parameter Selection Strategies
	7.2.3.3 Small Reynolds Numbers

	7.3 Examples
	7.3.1 Poiseuille Flow I
	7.3.2 Poiseuille Flow II
	7.3.3 Poiseuille Flow III
	7.3.4 Womersley Flow
	7.3.5 Surface Tension and Gravity

	7.4 Summary
	References

	Part III Lattice Boltzmann Extensions, Improvements, and Details
	8 Lattice Boltzmann for Advection-Diffusion Problems
	8.1 Lattice Boltzmann Advection-Diffusion in a Nutshell
	8.2 Advection-Diffusion Problems
	8.3 Lattice Boltzmann for Advection-Diffusion
	8.3.1 Similarities of Advection-Diffusionand Navier-Stokes
	8.3.2 Equilibrium Distribution
	8.3.3 Lattice Vectors
	8.3.4 Chapman-Enskog Analysis
	8.3.4.1 Analysis Procedure
	8.3.4.2 Error Term

	8.3.5 Model Extensions
	8.3.5.1 Source Term
	8.3.5.2 Advanced Physical Models
	8.3.5.3 Stability Improvements and Advanced Collision Operators

	8.4 Thermal Flows
	8.4.1 Boussinesq Approximation and Rayleigh-Bénard Convection
	8.4.2 Non-dimensionalisation of the Temperature Field
	8.4.3 LBM for Thermal Flows with Energy Conservation
	8.4.3.1 Single-Population Model
	8.4.3.2 Two-Population Model

	8.4.4 LBM for Thermal Flows Without EnergyConservation

	8.5 Boundary Conditions
	8.5.1 Normal and Tangential Conditions
	8.5.2 Dirichlet Boundary Conditions
	8.5.2.1 Anti-Bounce-Back Scheme
	8.5.2.2 Inamuro's Boundary Condition

	8.5.3 Neumann Boundary Conditions
	8.5.3.1 Inamuro's Flux Boundary Condition
	8.5.3.2 Transformation of Neumann into Dirichlet Boundary Condition

	8.6 Benchmark Problems
	8.6.1 Advection-Diffusion of a Gaussian Hill
	8.6.2 Diffusion from Cylinder Without Flow
	8.6.3 Diffusion from Plate in Uniform Flow
	8.6.4 Diffusion in Poiseuille Flow

	References

	9 Multiphase and Multicomponent Flows
	9.1 Introduction
	9.1.1 Liquid-Gas Coexistence and Maxwell Area Construction Rule
	9.1.2 Surface Tension and Contact Angle
	9.1.3 Sharp and Diffuse Interface Models
	9.1.4 Surface Tension and Young-Laplace Test

	9.2 Free-Energy Lattice Boltzmann Model
	9.2.1 Liquid-Gas Model
	9.2.1.1 Bulk Thermodynamics
	9.2.1.2 Equations of Motion
	9.2.1.3 The Lattice Boltzmann Algorithm
	9.2.1.4 Galilean Invariance
	9.2.1.5 A Practical Guide to Simulation Parameters
	9.2.1.6 Surface Thermodynamics
	9.2.1.7 Wetting Boundary Condition

	9.2.2 Binary Fluid Model
	9.2.2.1 Bulk Thermodynamics
	9.2.2.2 Surface Thermodynamics
	9.2.2.3 Equations of Motion
	9.2.2.4 The Lattice Boltzmann Algorithm
	9.2.2.5 A Practical Guide to Simulation Parameters

	9.3 Shan-Chen Pseudopotential Method
	9.3.1 General Considerations
	9.3.2 Multiphase Model for Single Component
	9.3.2.1 Physical Interpretation and Equation of State
	9.3.2.2 Planar Interface and Thermodynamic Consistency
	9.3.2.3 Boundary Conditions and Contact Angle
	9.3.2.4 Algorithm and Forcing Schemes
	9.3.2.5 Example: Young-Laplace Test

	9.3.3 Multicomponent Method Without Phase Change
	9.3.3.1 Shan-Chen Force and Algorithmic Implications
	9.3.3.2 Fluid Velocity in the Multicomponent Model
	9.3.3.3 Component Forces
	9.3.3.4 Immiscible and (Partially) Miscible Fluids, Surface Tension
	9.3.3.5 Boundary Conditions and Contact Angle

	9.4 Limitations and Extensions
	9.4.1 Spurious Currents and Multirange Forces
	9.4.1.1 Shan-Chen Model
	9.4.1.2 Free-Energy Model

	9.4.2 Equation of State and Liquid-Gas Density Ratio
	9.4.3 Restrictions on the Surface Tension
	9.4.4 Viscosity Ratio and Collision Operator
	9.4.5 What Else Can Be Done with These Models?

	9.5 Showcases
	9.5.1 Droplet Collisions
	9.5.2 Wetting on Structured Surfaces
	9.5.2.1 Chemical Patterning
	9.5.2.2 Topographical Patterning: Superhydrophobic Surfaces

	References

	10 MRT and TRT Collision Operators
	10.1 Introduction
	10.2 Moment Space and Transformations
	10.3 General MRT Algorithm
	10.4 MRT for the D2Q9 Velocity Set
	10.4.1 Hermite Polynomials
	10.4.2 Gram-Schmidt Procedure
	10.4.3 Discussion of MRT Approaches

	10.5 Inclusion of Forces
	10.6 TRT Collision Operator
	10.6.1 Introduction
	10.6.2 Implementation

	10.7 Overview: Choice of Collision Models and Relaxation Rates
	10.7.1 BGK Model
	10.7.2 TRT Model
	10.7.3 MRT Model

	References

	11 Boundary Conditions for Fluid-Structure Interaction
	11.1 Motivation
	11.2 Bounce-Back Methods
	11.2.1 Simple Bounce-Back and Staircase Approximation
	11.2.1.1 Revision of the Halfway Bounce-Back Method
	11.2.1.2 Stationary Boundaries
	11.2.1.3 Rigid Moving Particles

	11.2.2 Interpolated Bounce-Back
	11.2.2.1 Basic Algorithm
	11.2.2.2 Moving Boundaries
	11.2.2.3 Extended and Alternative Methods

	11.2.3 Partially Saturated Bounce-Back
	11.2.3.1 Basic Algorithm
	11.2.3.2 Advantages and Limitations

	11.2.4 Destruction and Creation of Fluid Nodes
	11.2.5 Wall Shear Stress

	11.3 Ghost Methods
	11.3.1 Definitions
	11.3.2 Filippova-Hänel (FH) and Mei-Luo-Shyy (MLS) Methods
	11.3.2.1 Original Method by Filippova and Hänel (FH)
	11.3.2.2 Improvements by Mei, Luo and Shyy (MLS)

	11.3.3 Guo-Zheng-Shi (GZS) Method
	11.3.4 Image-Based Ghost Methods

	11.4 Immersed Boundary Methods
	11.4.1 Introduction
	11.4.2 Mathematical Basis
	11.4.2.1 Eulerian and Lagrangian Systems
	11.4.2.2 Continuous Governing Equations
	11.4.2.3 Discretised Governing Equations
	11.4.2.4 Kernel Functions
	11.4.2.5 General IB-LBM Algorithm
	11.4.2.6 Implications of the Combination of IBM and LBM
	11.4.2.7 Distribution of Markers in Space
	11.4.2.8 Accuracy and Convergence

	11.4.3 Explicit Feedback IBM for Rigid Boundaries
	11.4.3.1 Algorithm
	11.4.3.2 Stationary Boundary: Poiseuille Flow

	11.4.4 Direct-Forcing IB-LBM for Rigid Boundaries
	11.4.4.1 Background
	11.4.4.2 Implicit IB-LBM
	11.4.4.3 Multi Direct-Forcing IB-LBM
	11.4.4.4 Explicit, Non-iterative Direct-Forcing IB-LBM

	11.4.5 Explicit IBM for Deformable Boundaries
	11.4.5.1 Constitutive Models

	11.4.6 Additional Variants and Similar BoundaryTreatments

	11.5 Concluding Remarks
	References

	12 Sound Waves
	12.1 Background: Sound in Viscous Fluids
	12.1.1 The Viscous Wave Equation
	12.1.2 The Complex-Valued Representation of Waves
	12.1.3 Simple One-Dimensional Solutions: Free and Forced Waves
	12.1.4 Time-Harmonic Waves: The Helmholtz Equation
	12.1.5 Other Attenuation and Absorption Mechanisms
	12.1.6 Simple Multidimensional Waves: The Green'sFunction

	12.2 Sound Propagation in LB Simulations
	12.2.1 Linearisation Method
	12.2.2 Linearisation Results
	12.2.2.1 Forced Waves
	12.2.2.2 Free Waves
	12.2.2.3 Discussion

	12.3 Sources of Sound
	12.3.1 Example: The Pulsating Sphere
	12.3.2 The Inhomogeneous Wave Equation
	12.3.3 Point Source Monopoles in LB Simulations

	12.4 Non-reflecting Boundary Conditions
	12.4.1 Reflecting Boundary Conditions
	12.4.2 Characteristic Boundary Conditions
	12.4.3 Absorbing Layers

	12.5 Summary
	References

	Part IV Numerical Implementation of the Lattice Boltzmann Method
	13 Implementation of LB Simulations
	13.1 Introduction
	13.1.1 Programming Languages and Development Tools
	13.1.2 Floating Point Arithmetic
	13.1.3 Taylor-Green Vortex Decay

	13.2 Optimisation
	13.2.1 Basic Optimisation
	13.2.2 Automatic Optimisation During Compilation
	13.2.3 Memory Caches
	13.2.4 Measuring Performance

	13.3 Sequential Code
	13.3.1 Introductory Code
	13.3.2 Optimising the Introductory Code
	13.3.3 Data Output and Post-Processing
	13.3.4 LBM Algorithm Optimisations

	13.4 Parallel Computing
	13.4.1 Multithreading and OpenMP
	13.4.1.1 OpenMP Directives
	13.4.1.2 Data Sharing
	13.4.1.3 Compiling and Running OpenMP Code
	13.4.1.4 Multithreaded LBM Implementation
	13.4.1.5 Performance Results

	13.4.2 Computing Clusters and MPI
	13.4.2.1 MPI Concepts
	13.4.2.2 MPI LBM Implementation
	13.4.2.3 Blocking and Non-blocking Communications
	13.4.2.4 Collective Communications
	13.4.2.5 I/O
	13.4.2.6 Compilation and Execution
	13.4.2.7 Performance Results

	13.4.3 General Purpose Graphics Processing Units
	13.4.3.1 NVIDIA GPU Architecture
	13.4.3.2 Programming Model
	13.4.3.3 Code Compilation and Execution
	13.4.3.4 GPU LBM Implementation
	13.4.3.5 GPU Performance Optimisation and Results
	13.4.3.6 Further Reading

	13.5 Convergence Study
	13.6 Summary
	References

	Appendix
	A.1 Index Notation
	A.2 Details in the Chapman-Enskog Analysis
	A.2.1 Higher-Order Terms in the Taylor-Expanded LBE
	A.2.2 The Moment Perturbation
	A.2.3 Chapman-Enskog Analysis for the MRT Collision Operator

	A.3 Taylor-Green Vortex Flow
	A.4 Gauss-Hermite Quadrature
	A.5 Integration Along Characteristics for the BGK Operator
	A.6 MRT for D3Q15, D3Q19, and D3Q27 Velocity Sets
	A.6.1 D3Q15
	A.6.2 D3Q19
	A.6.3 D3Q27

	A.7 Planar Interface for the Free Energy Gas-Liquid Model
	A.8 Planar Interface for the Shan-Chen Liquid-Vapour Model
	A.9 Programming Reference
	A.9.1 Comments
	A.9.2 Expressions and Operators
	A.9.3 Data Types
	A.9.4 Composite Data Types
	A.9.5 Variable Scope
	A.9.6 Pointers
	A.9.7 Dynamic Memory Allocation
	A.9.8 Arrays
	A.9.9 If Statement
	A.9.10 While Loop
	A.9.11 For Loop
	A.9.12 Functions
	A.9.13 Screen and File Output
	A.9.14 Header Files
	A.9.15 Compilation and Linking

	References

	Index

