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José Carlos R. Alcantud(B)

BORDA Research Unit and Multidisciplinary Institute of Enterprise (IME),
University of Salamanca, Salamanca, Spain

jcr@usal.es

http://diarium.usal.es/jcr

Abstract. We do two things in relation with fuzzy soft set decision
making in this paper. Both in the score-based and fuzzy choice values
approaches to decision making, the modifications that account for the
model with positive and negative attributes are put forward and dis-
cussed for the most common fuzzy negation. We also provide a reinter-
pretation of the fuzzy choice values solution in terms of choice values
associated with fuzzy opportunity costs.
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1 Introduction

Since the introduction of fuzzy sets by Zadeh [1], a huge literature on their prop-
erties and applications to decision making has been produced. However in some
practical problems, imprecise individual or group knowledge cannot be suitably
represented by fuzzy sets (FSs): cf., Bustince et al. [2,3]. To name but a few
models, Atanassov [4,5] proposes the concept of intuitionistic fuzzy set, which
coincides with the notion of vague set (Bustince and Burillo [6]). Preference
structures in group decision making problems under uncertainty appear in the
form of the fuzzy preference relation (cf., Castro et al. [7], which provides an
application to consensus-driven group recommender systems; see Alcantud et al.
[8] for a different approach to consensus analysis, also Alcantud and de Andrés
[9] for a fuzzy viewpoint).

Within the fuzzy framework there are also cases where the practitioner cannot
proceed with a unique membership degree because she receives a set of possible
input values (e.g., when several experts supply their own membership degrees).
To model these situations, Torra [10] introduces hesitant fuzzy sets (HFSs) which
incorporate many-valued sets of memberships (cf., Herrera et al. [11], Rodŕıguez
et al. [12], and Xu [13]). Alcantud et al. [14] give real applications that validate
the model by hesitant fuzzy sets. Alcantud and de Andrés [15] propose a segment-
based approach to evaluate HFSs. Zhan and Zhu [16] give a summary of decision
making methods based on (fuzzy) soft sets and rough soft sets.
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Molodtsov [17] initiates the theory of soft sets. His results are complemented
e.g., by Aktaş and Çağman [18], Alcantud [19] (who proves formal relationships
among soft sets, fuzzy sets, and their extensions) and Maji et al. [20].

Among the most successful extensions of the soft set model we can cite fuzzy
soft sets (Maji et al. [21], also Alcantud et al. [22], Li et al. [23] and Tang [24]
for applications to decision making for medical diagnosis) and incomplete soft
sets (Alcantud and Santos-Garćıa [25], Han et al. [26], Zou and Xiao [27]).

Subsection 2.2 below reviews fundamental approaches to fuzzy soft set deci-
sion making. Then we analyze this problem with desirable and undesirable para-
meters, both in the cases of Roy and Maji [28] and Alcantud [29]. To normalize
the information, the complement of the fuzzy set associated with each non-
desirable attribute may be used, although the choice of the complement is not
evident (cf., Klir and Yuan [30, Sect. 3.2]). In this paper we explore the deci-
sion making situation under Zadeh’s fuzzy negation c(x) = 1 − x. Finally, we
reinterpret the notion that provides the solution in Kong et al. [31].

This paper is organized as follows. Section 2 recalls some terminology and
definitions. Section 3 contains our results. We conclude in Sect. 4.

2 Basic Definitions: Soft Sets, Fuzzy Soft Sets

We adopt the usual description and terminology for soft sets and fuzzy soft sets.
U denotes a universe of objects and E denotes a universal set of parameters.

2.1 Soft Sets and Fuzzy Soft Sets

Definition 1 (Molodtsov [17]). A pair (F,A) is a soft set over U when A ⊆ E
and F : A −→ P(U), where P(U) denotes the power set of U .

A soft set over U is interpreted as a parameterized family of subsets of U ,
and A represents a set of parameters. Then for any e ∈ A, we say that F (e) is
the subset of U approximated by the parameter e or the set of e-approximate
elements of the soft set. To put an example, if U = {f1, f2, f3, f4} is a universe
of films and A contains the parameter e that describes “3D image” and the
parameter e′ that describes “suitable for children aged under 7” then F (e) =
{f2} means that the only 3D film is f2 and F (e′) = {f1, f3} means that the only
suitable for children aged under 7 films are f1 and f3. For soft set based decision
making, the reader may consult Maji et al. [32], Çağman and Enginoğlu’s [33]
and Feng and Zhou [34].

The following notion is a natural extension of the concept of soft set:

Definition 2 (Maji et al. [21]). A pair (F,A) is a fuzzy soft set over U when
A ⊆ E and F : A −→ FS(U), where FS(U) denotes the set of all fuzzy sets on U .

Any soft set can be considered as a fuzzy soft set with the natural identifi-
cation of subsets of U with FSs of U . Following with our film example above,
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fuzzy soft sets permit to deal with other properties like “funny” or “scary” for
which partial memberships are almost compulsory.

Henceforth we assume that there are k options and n properties. In that case
a soft set or fuzzy soft set can be represented both by a matrix T = (tij)k×n and
in tabular form. Rows correspond to the k objects in U , and columns correspond
to the n parameters in A (see Examples 1 and 2 below). In the case of a soft set,
all cells are either 0 or 1 (this is to say, its representation is binary).

2.2 Fuzzy Soft Sets and Decision Making

The most distinctive approaches to fuzzy soft set based decision making are
probably Roy and Maji [28], Kong et al. [31], Feng et al. [35] and Alcantud [29].

Roy and Maji [28] pioneered this research. Alcantud [29] is closely related to
their successful proposal. This article develops and discusses a novel algorithm
for fuzzy soft set based decision making from multiobserver input parameter data
set. It improves the performance of Roy and Maji’s algorithm at the two stages
of their proposal. The following comparison between both approaches helps to
introduce their structure:

Stage 1. Roy and Maji [28] propose to begin with an aggregation procedure that
yields a single resultant fuzzy soft set from preliminary multi-source information.
Alcantud [29] shows that their approach very often results into a large loss of
information and henceforth generates uncertainty. Accordingly, [29] develops an
alternative proposal that avoids such situation to a great extent.

Stage 2. In order to evaluate the alternatives from the information in the resul-
tant fuzzy soft set, Roy and Maji [28] propose to construct a Comparison matrix
that permits to compute scores for the alternatives. In [29] it is argued that a
new relative Comparison matrix improves the performance of the algorithm of
solution, because it contributes both to ensure a higher power of discrimination
and to produce a well-determined solution.

As a result of these innovations the procedure in Alcantud [29] is considerably
less inconclusive than existing solutions which produce ties on a regular basis
(as shown in [29] both by arguments and many examples from the literature).

Remark 1. Kong et al. [31] propose a different procedure at Stage 2 without
examining Stage 1. Feng et al. [35] explain that the difference between [31] and
[28] is whether the criterion for making a decision should use scores (see definition
in Sect. 3.1) or fuzzy choice values (that is, the sum of all membership values
across attributes) attached with each option. We concur with their argument
that the redesigned approach by scores in Roy and Maji [28], and afterwards in
Alcantud [29], is more suitable for making decisions in an imprecise environment
than fuzzy choice values. We return to the discussion about [31] in Sect. 3.2.

Concerning their own contribution, Feng et al. [35] introduce an adjustable
method based on level soft sets at Stage 2. In their flexible decision mechanism
the optimal choice is dependent upon the selected level soft sets.
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3 Results

3.1 Comments on Score-Based Solutions

Roy and Maji [28] and Alcantud [29] share the spirit that scores are a better
tool than fuzzy choice values in order to evaluate options characterized by fuzzy
soft sets, and also that a resultant fuzzy soft set can be produced from more
primitive data at an earlier stage.

It is worth insisting that in both cases it is implicitly assumed that the
attributes that are being examined are desirable or not negative. The reason is
that in the comparisons that produce the scores in both models, it is always
better to have higher amounts. In order to fully grasp the importance of this
overtone, henceforth we analyze the following situation:

Example 1. Let U ′ = {o1, o2} be a universe of two cars, and A =
{e1, e2, e3, e4, e5}. The tabular representation of the fuzzy soft set that describes
the options in terms of the parameters is given by Table 1.

Alcantud [29, Example 7] shows that both the algorithms proposed in [29]
and [28] suggest that option o2 should be selected.

However if the parameters are some positive and some negative, this conclu-
sion could be challenged even when the choice procedure has been fixed.

Table 1. Tabular representation of the fuzzy soft set in Example 1.

e1 e2 e3 e4 e5

o1 0.9 0.1 0.2 0.1 0.3

o2 0.19 0.3 0.4 0.3 0.4

We proceed to discuss the latter statement with an attention to the two fun-
damental score-based approaches [29] and [28] (v., Sect. 3.2 below for the fuzzy
choice values approach). Henceforth we suppose that in Example 1, the para-
meters {e4, e5} are ‘negative’, e.g., describe attributes like “being expensive”
or “pollutes above legal limits”. At the same time, parameters {e1, e2, e3} are
‘desirable’, e.g., describe attributes like “security appliances”, “efficient fuel con-
sumption” or “fashionably designed”. For simplicity this general case is labelled
mixed properties henceforth.

In order to normalize the information in a fuzzy soft set representation, it
seems only natural that the complement of the fuzzy set associated with each
non-desirable attribute should be used. However in operational terms this is not
as direct as apparent, since there is not a unique fuzzy complement or negation
(cf., Klir and Yuan [30, Sect. 3.2]). In this paper we explore the case when we
fix c(x) = 1 − x as the fuzzy complement. Then one needs to subtract from 1
the membership values when the attributes are undesirable. In this fashion we
produce the normalized matrix or tabular form of the fuzzy soft set, to which the
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Table 2. Normalized tabular representation of the fuzzy soft set in Example 1. The
fuzzy complement c(x) = 1− x is applied.

e1 e2 e3 e′
4 e′

5

o1 0.9 0.1 0.2 0.9 0.7

o2 0.19 0.3 0.4 0.7 0.6

standard versions of the algorithms can be applied. Hence in Example 1, Table 2
should replace Table 1 before implementing any solution.

Let us now discuss what adjustments the aforementioned consideration intro-
duces in the Algorithms by [29] and [28] under mixed properties, when they are
applied to the original sources of information (in our example, to Table 1).

Comments on Roy and Maji’s Score-Based Solution. After normaliz-
ing the fuzzy soft set representation of Example 1 (cf., Table 2) with our selected
fuzzy complement c(x), Roy and Maji’s standard algorithm computes a Compar-
ison table (cf., Table 3) in a way that echoes the classical aggregation procedure
due to Marquis de Condorcet.We recall that to produce cell 1, 2 in Table 3 we
count for how many characteristics option o1 performs at least as well as o2
(especifically, {e1, e4, e5}),and in its cell 2, 1 we count for how many charac-
teristics option o2 performs at least as well as o1 (especifically, {e2, e3}). Also,
Ri is row i’s sum, and Ti is column i’s sum, for each i. We are lead to con-
clude that o1 is a better option because the scores associated with Table 2 are
S1 = R1 − T1 = 3 − 2 = 1 and S2 = R2 − T2 = 2 − 3 = −1.

Table 3. Comparison table for the application of [28] in Example 1, when attributes
e4, e5 are undesirable while the others are desirable.

o1 o2 Ri

o1 0 3 3

o2 2 0 2

Ti 2 3

In order to apply a Roy and Maji’s inspired algorithm to the original Table 1
directly, the only caution we must make is that the Comparison table that cap-
tures their idea should be Table 3. Hence when we count for how many properties
an option performs at least as well as another one and there are mixed proper-
ties as in Table 1, we must distinguish the case where the property is undesirable
(and in all such cases inequalities are reversed: the smaller a membership value
the better).

This is a universal feature of our framework which ensures that the conclu-
sion by our alternative Roy-and-Maji’s-type solution coincides with the solution
through complements implemented above.
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Comments on Alcantud’s Score-Based Solution. We have identified what
simple modification in Roy and Maji’s [28] algorithm is needed under mixed
properties in order to comply with their spirit and at the same time, coincide
with the simple solution that applies [28] to normalized information. Here we
replicate the analysis with solution [29]. The following algorithm is needed:

Algorithm 1 - Alcantud [29] modified for mixed properties.

Input: a general fuzzy soft set represented by a matrix T = (tij)k×n.
Without loss of generality we reorder the n properties so that the first q

properties are desirable whereas the remaining n − q are not.

1. For j = 1, . . . , n, let Mj be the maximum membership value of any object,
i.e., Mj = maxi=1,...,k tij . For j = q + 1, . . . , n, let mj be the minimum
membership value of any object, i.e., mj = mini=1,...,k tij .
Now construct a k × k Comparison matrix A′ = (a′

ij)k×k where for each i, j,
we let a′

ij be the sum of the non-negative values in the finite sequence

ti1 − tj1
M1

,
ti2 − tj2

M2
, . . . ,

tiq − tjq

Mq
,
tjq+1 − tiq+1

1 − mq+1
, . . . ,

tjn+1 − tin+1

1 − mn+1
.

2. Continue exactly as in [29].

Observe that in addition to changing the sign of the comparison between
membership values for the non-positive properties as in the adapted Roy and
Maji’s algorithm, the denominator at the quotient has been changed: the relative
Comparison matrix A = (aij)k×k in [29] is computed by summing up the non-
negative values in the sequence

ti1 − tj1
M1

,
ti2 − tj2

M2
, ......,

tin − tjn

Mn

in order to obtain cell aij . Here is the reason for our modified algorithm:

Proposition 1. The ranking solution in Algorithm 1 coincides with the appli-
cation of the original algorithm in [29] to the normalized tabular or matrix rep-
resentation of the fuzzy soft set through the fuzzy complement c(x) = 1 − x.

Proof. Let T = (tij)k×n be the k × n matrix representation of a fuzzy soft set
for which the first q properties are desirable whereas the remaining n − q are
not. Therefore the normalized matrix representation of the fuzzy soft set is

T ′ =

⎛
⎜⎝

t11 . . . t1q 1 − t1q+1 . . . 1 − t1n

...
...

...
...

tk1 . . . tkq 1 − tkq+1 . . . 1 − tkn

⎞
⎟⎠
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We proceed to check that in both the procedures explained in the statement,
the relative Comparison matrix is the same. In the second procedure, for each
i, j ∈ {1, . . . , k}, a′

ij is the sum of the non-negative values in

ti1 − tj1
M1

, . . . ,
tiq − tjq

Mq
,
tjq+1 − tiq+1

1 − mq+1
, . . . ,

tjn+1 − tin+1

1 − mn+1

This sequence coincides with

ti1 − tj1
M1

, . . . ,
tiq − tjq

Mq
,
(1 − tiq+1) − (1 − tjq+1)

M ′
q+1

, . . . ,
(1 − tin+1) − (1 − tjn+1)

M ′
n+1

where M ′
j = maxi=1,...,k t′ij = maxi=1,...,k(1 − tij) = 1 − mini=1,...,k tij for each

j = q + 1, . . . , n. Hence a′
ij = aij where A = (aij)k×k is the relative Comparison

matrix that arised from the application of [29] to T ′. Now both procedures
continue in exactly the same fashion. �

3.2 A Comment on Kong et al.’s Solution

In this section we provide a different interpretation of the proposal in Kong
et al. [31] (which has been criticized e.g., in Feng et al. [35] or Alcantud [29]). It
relies on the economic concept of “opportunity cost”.

In the context of decision under uncertainty, Savage early introduced the
“minimax regret” criterion that produces an associated loss table. In this table
every original value is subtracted to the maximum value that any object achieves
under the property that it is linked to. Operationally: for each column, we first
compute the maximum value in the original decision table and then every value
at that column is replaced by such maximum minus it.

By the recourse to this new opportunity cost table we are measuring for each
option and attribute, how much we are losing by not choosing the option with
highest membership value for the attribute. Let us give an example:

Example 2. Kong et al. [31] used the fuzzy soft set (S, P ) represented by Table 4
as an example that shows the disparity of conclusions when choice values (i.e.,
row sums) are used instead of scores (cf., Roy and Maji [28]).

As they explain, in such example the algorithm in Roy and Maji [28] shows
that option o3 should be selected because when their scores si are computed,
one obtains s3 > s2 > s5 > s1 > s6 > s4. However a fuzzy-choice-value-based
decision produces a different ranking and optimal selection, because c6 > c2 >
c3 > c1 = c4 = c5 and therefore o6 is the suggested alternative.

If we compute the opportunity cost table associated with the fuzzy soft set
(S, P ) we obtain the data in Table 5. Since opportunity costs are negative, the
comparisons Op6 < Op2 < Op3 < Op1 = Op4 = Op5 permit us to observe
that the ranking of alternatives is identical to Kong et al.’s conclusion, i.e., o6 �
o2 � o3 � o1 ∼ o4 ∼ o5. In Proposition 2 below we prove that the coincidence
observed in Example 2 holds in general.
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Table 4. Tabular representation of the fuzzy soft set (S, P ) in Kong et al. [31, Table 1].
The input at i, j is tij , ci is the sum of the amounts in row i (fuzzy choice value).

p1 p2 p3 p4 p5 Fuzzy choice value

o1 0.1 0.5 0.3 0.4 0.3 c1 = 1.6

o2 0.3 0.5 0.2 0.3 0.6 c2 = 1.9

o3 0.1 0.7 0.4 0.5 0.1 c3 = 1.8

o4 0.7 0.2 0.2 0.2 0.3 c4 = 1.6

o5 0.2 0.6 0.3 0.2 0.3 c5 = 1.6

o6 0.9 0.2 0.1 0.1 0.8 c6 = 2.1

Table 5. Opportunity cost table associated with Table 4: at each cell i, j we introduce
Mj − tij . Opi is the sum of the amounts in row i (opportunity cost values).

p1 p2 p3 p4 p5 Opportunity cost value

o1 0.8 0.2 0.1 0.1 0.5 Op1 = 1.7

o2 0.6 0.2 0.2 0.2 0.2 Op2 = 1.4

o3 0.8 0 0 0 0.7 Op3 = 1.5

o4 0.2 0.5 0.2 0.3 0.5 Op4 = 1.7

o5 0.7 0.1 0.1 0.3 0.5 Op5 = 1.7

o6 0 0.5 0.3 0.4 0 Op6 = 1.2

Mi 0.9 0.7 0.4 0.5 0.8

Proposition 2. The ranking solution in Kong et al. [31] does not change if we
use opportunity cost tables instead of fuzzy soft set representations.

Proof. Let T = (tij)k×n be the k × n matrix representation of a fuzzy soft
set (F,A) over U . For each column i we define Mi = max{t1i, . . . , tki}. Then
the opportunity cost table associated with (F,A) is TO = (Mj − tij)k×n. Kong
et al.’s fuzzy choice values are ci = ti1 + ti2 + . . . + tin for each i = 1, . . . , k.

The fuzzy choice value associated with option i and the opportunity cost table
is Op(oi) = M1−ti1+M2−ti2+. . .+Mn−tin hence if we let M = M1+. . .+Mn

then Op(oi) = M −(ti1+ ti2+ . . .+ tin) = M −ci. This justifies that a ranking of
the alternatives by non-increasing fuzzy choice values coincides with a ranking
of the alternatives by non-decreasing opportunity cost fuzzy values. �

Remark 2. Kong et al. [31] implicitly assume that the attributes are positive,
because the fuzzy choice value sums up all amounts. Therefore the practitioner
should exercise the same cautions as in Sect. 3.1 before applying their criterion.

4 Concluding Remarks

The attributes in a fuzzy soft set decision making analysis must be carefully
examined to check if they are all positive or not. When there are both desirable
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and undesirable attributes, fuzzy complements or negations should be applied to
one of the cases (typically, negative attributes). We discuss which modifications
to the standard version of the decision algorithms in Roy and Maji [28] and
Alcantud [29] permit to implement that feature when c(x) = 1 − x is the fuzzy
complement. A possibility for future research is the investigation when other
fuzzy complements like the Sugeno class sλ(x) = 1−x

1+λx , λ ∈ (−1,+∞), or the

Yager class cω(x) = (1 − xω)
1
ω , ω ∈ (0,+∞), are preferred.

We have also provided a reinterpretation of the controversial solution by Kong
et al. [31] stated in terms of choice values associated with fuzzy opportunity costs.
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