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Abstract. The study of program obfuscation is seeing great progress in
recent years, which is crucially attributed to the introduction of graded
encoding schemes by Garg, Gentry and Halevi [20]. In such schemes, ele-
ments of a ring can be encoded such that the content of the encoding is
hidden, but restricted algebraic manipulations, followed by zero-testing,
can be performed publicly. This primitive currently underlies all known
constructions of general-purpose obfuscators.

However, the security properties of the current candidate graded
encoding schemes are not well understood, and new attacks frequently
introduced. It is therefore important to assume as little as possible about
the security of the graded encoding scheme, and use as conservative secu-
rity models as possible. This often comes at a cost of reducing the effi-
ciency or the functionality of the obfuscator.

In this work, we present a candidate obfuscator, based on composite-
order graded encoding schemes, which obfuscates circuits directly a
la Zimmerman [34] and Applebaum-Brakerski [2]. Our construction
requires a graded encoding scheme with only 3 “plaintext slots” (= sub-
rings of the underlying ring), which is directly related to the size and
complexity of the obfuscated program. We prove that our obfuscator is
superior to previous works in two different security models.
1. We prove that our obfuscator is indistinguishability-secure (iO) in

the Unique Representation Generic Graded Encoding model. Previ-
ous works either required a composite-order scheme with polynomi-
ally many slots, or were provable in a milder security model. This
immediately translates to a polynomial improvement in efficiency,
and shows that improved security does not come at the cost of effi-
ciency in this case.

2. Following Badrinarayanan et al. [3], we consider a model where find-
ing any “non-trivial” encoding of zero breaks the security of the
encoding scheme. We show that, perhaps surprisingly, secure obfus-
cation is possible in this model even for some classes of non-evasive
functions (for example, any class of conjunctions). We define the
property required of the function class, formulate an appropriate
(generic) security model, and prove that our aforementioned obfus-
cator is virtual-black-box (VBB) secure in this model.
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1 Introduction

A program obfuscator is a compiler that takes a program as input, and outputs a
functionally equivalent program that is hard to reverse engineer. Early works by
Hada [24] and Barak et al. [6] provided rigorous definitional treatment of obfus-
cation, but also showed the impossibility of achieving strong security notions for
general circuits. In particular Virtual Black-Box (VBB) security, where interac-
tion with the obfuscated program can be simulated using only black-box access
to the obfuscated program, was proven impossible in general.

Constructing secure obfuscators, even heuristically, is a very challenging task.
Indeed, until recently, candidate obfuscators were only known to exist for a few
simple function classes. The game changer in this field had been the introduction
of graded encoding schemes (GES) by Garg, Gentry and Halevi [20] and follow-
up constructions by Coron, Lepoint and Tibouchi [18,19]. GES allow to encode
ring elements (from some underlying ring) in a way that hides the identity of the
ring element, but still allows algebraic manipulation on the encoding (addition
and multiplication). Each encoding is associated with a level, which is a positive
integer (or more generally an integer vector). Addition is only allowed within a
level, and in multiplication the level of the output is the sum of the levels of the
inputs. A GES allows to test if the contents of an encoding is the zero element,
but only at a predetermined “zero-test level”, and not beyond. Thus GES allows
arithmetic operations of bounded degree.

Garg et al. [21] presented a candidate obfuscator for general circuits based on
GES. They conjectured, with some supporting evidence, that their obfuscator is
a secure indistinguishability obfuscator (iO). Indistinguishability obfuscation is a
weak security notion and it first glance it may seem useless. However, Sahai and
Waters [32] showed that iO is actually sufficient for a wide variety of applications.
Numerous follow-up works showed how to use iO to construct many desirable
cryptographic primitives, thus establishing iO itself as one of the most impor-
tant cryptographic primitives. The goal of formally establishing the security of
obfuscation candidates had since been central in cryptographic research.

Brakerski and Rothblum [12] presented a similar obfuscator candidate, and
proved its security in the generic GES model. This model addresses adversaries
that are restricted to algebraic attacks on the encoding scheme, i.e. generate
encodings, perform algebraic manipulations and test for zero, while being obliv-
ious to the representation of the element. This is modeled by representing the
encodings using random strings, thus making them completely opaque. The
algebraic functionality is provided as oracle. Other candidate obfuscators with
generic proofs followed [1,5,28]. Pass, Seth and Telang [31] replaced the generic
model with a strong notion of “uber-assumption”.

The constructions mentioned so far were all based on converting the obfus-
cated program into a branching program, thus having computational cost which
scaled with the formula size of the program to be obfuscated.1 This was improved

1 An additional “bootstrapping” step established that obfuscating polynomial-size
formulae is sufficient in order to obfuscate general circuits.
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by newer constructions that used composite order GES (where the underlying
ring is isomorphic to ZN for a composite N). In a nutshell, composite order rings
allow for “slotted” representation of elements via the Chinese Remainder Theo-
rem, so that each ring element is viewed as a tuple of slots, and algebraic oper-
ations are performed slot-wise. In particular, Zimmerman [34] and Applebaum
and Brakerski [2] presented obfuscators whose overhead relates to the circuit
size of the program and not its formula size. However, using known candidate
GES, the underlying encodings again incorporated overhead that depends on the
formula size. Nonetheless, these constructions carry the promise that given more
efficient GES candidates, the dependence on the formula size can be completely
removed. Proofs in generic models were provided.

Since the generic model restricts the adversary beyond its actual attack capa-
bilities, such proofs should be taken only as evidence in lieu of standard model
proofs. In order for the evidence to carry more weight, we should be prudent
and use models that pose as few restrictions as possible on the adversary.

For example, [2,5,34] consider a model where one assumes that not only
encodings of different elements appear to the adversary as independent uniform
strings, but also if the same element is computed in two different ways then it will
have two independent-looking representations. This is a fairly strong assumption
and in particular one that does not hold in cryptographic multilinear-maps, if
such exist [7]. It is shown in [2] that the suggested obfuscation scheme actu-
ally breaks if one is allowed to even test for zero at levels below the zero-test
level. They therefore proposed a more robust obfuscator that is secure in the
unique representation model of [10–12], in which each ring element has a unique
representation. Unfortunately, this added security came at a cost of reducing effi-
ciency, specifically the number of “input slots” goes up from 2 to n + 2 (where
n is the input length). This directly translates to an efficiency loss in the con-
struction.2 Boneh, Wu and Zimmerman [8] proposed a way to immunize GES so
that zero encodings cannot be created below the zero-test level.

A notable progress in the study of secure obfuscation had been made recently
by Gentry, Lewko, Sahai and Waters [22]. They showed an obfuscator whose secu-
rity is based on an assumption in the standard model. It is yet unclear whether
their hardness assumption holds true in known candidate GES (recent attacks
[16,30] suggest it might not). It should further be noted that this construction
again requires a large number of input slots (essentially proportional to the for-
mula size of the obfuscated circuit).3

We see that the attempts to come up with a more realistic security model
comes at the cost of increasing the number of required slots, and therefore reduc-
ing the efficiency. It is not clear whether this trade-off is necessary.

Does a stronger security model come at the cost of efficiency?

2 Miles, Sahai and Weiss [28] suggested constraining the model in a different, orthog-
onal manner. Their model is less relevant for this work.

3 They also suggest a construction using a single-slot GES, however the efficiency cost
was even greater.
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In this work, we show that at least in the generic model, one does not need
to pay in efficiency to achieve better security.

We proceed to consider an even more conservative security model, one where
even finding a non-trivial encoding of the zero element is assumed to obliterate
security completely.4 This model is motivated by new attacks on the security
of all known proposed GES candidates [15–17,20,25,30], showing that having
access to encodings of the ring’s zero element results, in some cases, in a complete
security breach. Indeed, current attacks do not work with just any non-trivial
zero encoding, however they do raise concern that having an adversary access an
encoding of zero might be a vulnerability. This concern had been significantly
heightened recently as Miles, Sahai and Zhandry [29] presented an attack on
obfuscators that are based on the [20] GES candidate. This new attack again
makes crucial use of top-level encodings of zero (but does not require “low-level”
zero encodings like some prior attacks).

To hedge against these risks, Badrinarayanan, Miles, Sahai and Zhandry [3]
proposed to avoid zeros completely. Namely, to construct an obfuscator in such
a way that the adversary is unable to generate such encodings altogether. How-
ever, this seems to defeat the purpose, since zero-testing is the way to extract
information out of an encoding for functionality purposes. They get around this
barrier in a creative way, by only obfuscating evasive functions, where finding an
accepting input using oracle access is (unconditionally) hard.5 Classes of evasive
functions have played an important role in the study of obfuscation, since many
classes that are desirable to obfuscate are evasive (e.g. various variants of point
functions, starting with the work of Canetti [14]) and one could hope that they
can even be obfuscatable in the strong VBB setting. (See [4] for more informa-
tion and the state of the art about evasive functions.) Badrinarayanan et al.
show that when their obfuscator is applied to an evasive function, the adversary
is unable to find an encoding of zero. The proof here is in the generic model as
well. The restriction to evasive functions, however, excludes interesting function
classes such as conjunctions [10,13]. We therefore address the following question.

Can we obfuscate non-evasive functions in the zero-sensitive model?

Perhaps surprisingly, we answer this question in the affirmative, and show that
our obfuscator (the same as above) is secure in a zero-sensitivemodel, even for some
non-evasive function classes, and in particular for worst-case conjunctions.

1.1 Our Results

A More Efficient Circuit Obfuscator. We present a new direct circuit obfuscator,
i.e. one that does not go through branching programs. Our construction is inspired
4 A “trivial” zero is, for example, the result of subtracting an encoding from itself, or

of similar computations that nullify based on the syntax of the equation rather than
the encoded values.

5 We note that if the [3] obfuscator is applied to non evasive functions, and top-level
zeros can occur, then the [29] attack applies. This highlights the significance of
completely avoiding zeros.
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by the “robust obfuscator” RobustObf of [2]. However, whereas RobustObf works
over a composite order graded encoding scheme with (n + 2) message slots, our
obfuscator only requires 3 slots.Our obfuscator provides equivalent level of security
to RobustObf in the unique representation generic GES model (see details below).
This improvement translates directly to a factor n improvement in the size of the
encodings, and a poly(n)-factor improvement in the computational complexity of
generating and evaluating the obfuscated program.6 We therefore show that at
least in the generic model, there is no real efficiency gain to working in a less secure
model. We hope that our techniques can be translated to reduce the number of
required slots in the non-generic setting as well, in particular in the [22] scheme.

We prove that the resulting obfuscator is indistinguishability secure in the
unique representation graded encoding model. The proof outline is similar in
spirit to that of the robust obfuscator of [2], while incorporating some proof
techniques from [34]. In particular, we rely on the sub-exponential hardness of
factoring the order of the underlying ring, in addition to the security of the
generic model. In contrast, [2] work in a model where the order of the ring is
hidden so that factoring it is information theoretically hard.

We note that one can consider many variants of the generic model: known
modulus, unknown modulus and information theoretic hardness, computational
hardness. Furthermore, [34] also shows how to prove VBB security at the cost of
increasing the size of the obfuscator by additional n2 encodings. Our improve-
ment can be applied to all of these variants, transforming them to the unique
representation model while preserving the number of slots as constant. For the
sake of concreteness, we chose to prove in a setting that we found interesting.

The Zero-Sensitive Oracle and All-or-Nothing Functions. We show that the [3]
approach discussed above can be extended even beyond evasive functions. This
may come as a surprise since applying our obfuscator to non-evasive functions
gives the adversary access to zero encodings. As a motivating example, consider
the class of conjunctions that had been studied in [10]. One can think of a
conjunction as string-matching with wildcards. Namely, the function is defined
by a string v ∈ {0, 1, �}n, and fv(x) = 1 if and only if for all i, either v[i] = x[i]
or v[i] = �. Indeed, some distributions on this class of functions are evasive, but
what if we want to obfuscate it in the worst case?

Naturally, in the worst case there could be an adversary that can find an
accepting input (more generally, no function class is evasive in the worst case
except the zero function). However, the critical observation is that this does
not necessarily hinder security, since given an accepting input, one can learn
the entire function. In the case of conjunctions this is easy to do by taking an
accepting x and flipping each of its bits in turn to see if this bit is a wildcard
(and switching it back afterwards). Therefore, if we find an accepting input, we
should not expect the obfuscator to hide anything anyway!

6 See e.g. [23, Appendix B] for suggested trade-offs between the number of input slots
and the size of the encoding.
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We generalize this property and define All-or-Nothing (AoN) function classes
to be ones where if an adversary finds an accepting input, then it can recover the
function in its entirety (a formal definition is provided). We would like to show
that indeed such function classes can be securely obfuscated even in a setting
where a non-trivial zero encoding implies that the GES is insecure.

In the proof of [3] for evasive functions, proving security was split into two
tasks: presenting a simulator, and showing that the adversary cannot compute
encodings of zero. Our notion of security, however, requires additional defini-
tional treatment, since we would like successful simulation even in the case where
an accepting input had been found, and we cannot tell in advance whether such
an input will be found or not. We therefore define a new generic model where
the GES oracle keeps track of the encodings that the adversary generates, and
if one of those is a non-trivial zero, then the adversary gets access to a decoding
oracle that allows to decode any given encoding to obtain the plaintext. This is
how we model the risk in non-trivial zeros.

Finally, we prove that our obfuscator is indeed a secure VBB obfuscator for
AoN functions in our new zero-sensitive model. Interestingly, we don’t need to
use complexity leveraging here and we can prove VBB security without increas-
ing the number of encodings. We view this as evidence that AoN functions may
be strictly easier to obfuscate than general functions, and are perhaps a good
candidate for VBB obfuscation in the standard model.

What GES Candidate To Use? We stress that our work is completely abstract
and not directly related to any specific GES candidate, but naturally it would be
more convincing if it could be instantiated with one. To date, the only candidate
composite order GES is that of [18,19], and indeed this candidate can be used
with our scheme. We stress that the only known attacks on this candidate uses
encodings of zero, and there are no known attacks in the zero evading model
(this is also true for the [20] candidate). In fact, even in the “standard” model,
the attacks of [17,29] do not seem to apply to our obfuscator when instanti-
ated with [18,19]. However, these attacks suggest that obfuscators such as ours
might be vulnerable to future attacks. The goal of finding secure instantiations
of composite order candidate GES is a very important one, but orthogonal to
the contributions of this paper.

1.2 Our Techniques

Our Obfuscator. Our building block is a graded encoding scheme whose plaintexts
are elements in a composite order ring. We denote the encoding of the element a
by [a]. Encodings can be added, subtracted, multiplied and tested for zero (sub-
ject to constraints imposed by the levels, which we will ignore in this outline since
they are similar to previous works). We think of a itself as a tuple of elements via
the Chinese Remainder Theorem. Each sub-ring is of high cardinality and it is
assumed that “isolating” the components of an encoded element is computation-
ally hard (in the generic model this relates to the hardness of factoring the order
of the ring). The [2] obfuscator (following [10–12]) adds an additional layer on top
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of this encoding and rather than encoding [a] itself, it produces a pair of encod-
ings [r] and [r · a], for a random r, i.e. the plaintext value is the ratio between the
values in the two encodings. This “rational encoding” plays an important role in
both functionality and security. For the purpose of this outline only, we use [a]♦ as
shorthand notation for the pair [r], [r · a]. It can be shown that rational encodings
can be added and multiplied, subject to constraints as in previous works.

The starting point of our construction is the “robust obfuscator” from [2].
This obfuscator, in turn, is derived from a simpler solution [2,34] that applies in
a more forgiving generic model. In the “simple obfuscator”, for each input bit i,
two encodings are given as a part of the obfuscator. These encodings are of the
form [(yi, b)]♦, for b ∈ {0, 1}, where yi is a random value that is the same whether
b = 0 or 1. The weakness of this scheme stems from the ability to subtract the
two encodings that correspond to the same i, and cancel out the yi value to
obtain an encoding of the form [(0, 1)]♦, which in turn allows to test whether the
second slot of a given encoding is zero or not (via multiplying by [(0, 1)]♦ and
zero-testing). In the less restrictive multiple representation generic model, this
attack is prevented by disallowing to test for zero in some situations. However,
this cannot be avoided in a model where each element has a unique representation
since one can always test for zero by comparing to a known encoding of zero.

The robust obfuscator from [2] prevents this problem by adding n additional
slots to the encodings, and publishing, for each input bit of the obfuscated func-
tion, the values [wi,b]♦, for b ∈ {0, 1}, where wi,b = (yi, b, ρ1,b, . . . , ρn,b). The ρ
values are uniform and independent, and therefore subtracting [wi,1]♦ − [wi,0]♦

here will not cancel out the ρ values. The ρ values should be eliminated in the
end of the computation, and this is done by providing additional encodings of a
special form ŵi,b = (ŷi, βi,b, ρ̂1,b, . . . , ρ̂i−1,b, 0, ρ̂i+1,b, . . . , ρ̂n,b). Namely, encodings
that zero out the ith ρ value. In the evaluation, the value

∏
i ŵi,xi

is computed and
multiplied with the result of the computation so far, thus zeroing out the last n
slots. Note that even though the ρ values can be zeroed out, this does not enable
the previous attack. This is due to the level constraints that impose structural
limitations. In particular, [ŵi,0]♦ and [wi,1]♦ cannot be used in the same compu-
tation, which is in contrast to [wi,0]♦ and [wi,1]♦ that cannot be prevented from
interacting (at a high level, this is because each input bit can be used many times
in the circuit, but the ŵ values are designed to only be used once).

Our modification to this scheme is quite simple. We observe that the use of
n different ρ slots is only due to the cancellation step via ŵ, where we need to
enforce that an adversary must use a [ŵi,b]♦ value for each and every i. The
reason is that this use prevents the dangerous mix-and-match of [wi,0]♦ and
[wi,1]♦. We notice, however, that since rational encodings can be added and not
just multiplied, one could enforce that an ŵi,b is used for every i using a sum
rather than a product. We set ŵi,b = (ŷi, βi,b, ρ̂i), thus reducing the number of
sub-rings to only 3. We choose the ρ̂i values at random, subject to the constraint
that

∑
i ρ̂i = 0. This means that in order to zero-out the ρ̂ coordinate, an

adversary needs to use a [ŵi,b]♦ element for every i. As before, we must prevent
[ŵi,0]♦ and [ŵi,1]♦ from interacting, since taking their difference zeros out the
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ρ̂ coordinate and is therefore dangerous, but this is done in the same way as
previous works.

Proving Security. As has been shown in a number of previous works, in the
generic model, the adversary is limited to applying arithmetic circuits over the
encodings received as input, and testing the output for zero. The simulator,
therefore, generates a collection of random strings to play the role of the encod-
ings in the obfuscated program, and then to answer queries of the form of an
arithmetic circuit, determining whether applying this circuit to the encodings
at hand evaluates to zero.7 The problem is that the simulator needs to do this
with only oracle access to the obfuscated circuit. Namely, it does not fully know
what is the plaintext in the encoding that it generated.

We use a proof practice that started with [10]. They notice that if we use
rational encoding as described above, then the polynomial computed by an
arithmetic circuit can be decomposed into a sum of terms that we call semi-
monomials. A semi-monomial is a polynomial of the form M(�r)Q(�w), where
M(�r) is a product of “randomizing” variables, and Q(�w) is a polynomial in
the “content” variables. Since the randomizer variables are random and inde-
pendent, the task of testing the polynomial for zero is identical to the task of
finding whether there exists a non-zero semi-monomial.

We distinguish between semi-monomials that are “valid”, in the sense that
they represent a legal evaluation of the circuit on an input, and ones that are
“invalid”. We show how to test if a semi-monomial is valid or not, and that
an invalid semi-monomial cannot zero-out, regardless which circuit had been
obfuscated, assuming the hardness of factoring the ring order. We show that
“valid” monomials zero-out if and only if the obfuscated circuit accepts their
associated input x.

Therefore, our proof strategy is straightforward. We extract semi-monomials
from the circuit one after the other.8 For each semi-monomial, we check whether
it is invalid, in which case we can immediately return that the arithmetic circuit
computes a non-zero. If the semi-monomial is valid for some input x, we query
the obfuscated circuit oracle on x. If it rejects, then the answer is again non-zero,
but if it accepts, then the answer is still undetermined and we need to proceed
to the next semi-monomial.

This process takes 2n time in the worst case, since there can be at most 2n

valid semi-monomials. Thus the running time of our iO simulator is exponential
in the input length. However, in the case of AoN functions, the situation is much
simpler and in fact only one semi-monomial needs to be inspected. The reason
is that if the extracted x is an accepting input for the circuit, then we don’t need
to proceed at all, since for AoN functions, we can efficiently learn the code of
the circuit, which allows us to continue the simulation trivially by just assigning
the right values to the �w variables. This completes the proof.
7 It may seem that the simulator needs to do much more than that, but it can be

shown that all other functionalities reduce to this problem.
8 In fact, our extraction procedure might output terms with a few semi-monomials,

but in such case one of them must be invalid, which will be detected in the next step.
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1.3 Paper Organization

In Sect. 2 we present our new generic model as well as our new zero-sensitive
model, which is a new contribution. Section 3 features the specifics of our obfus-
cator, and security is proven in Sect. 4, where we also define the class of AoN
functions. Due to space constraints, much of the technical content is deferred to
the full version [9].

2 The Generic GES Model and Our New Zero-Sensitive
Variant

We would like to prove the security of our construction against generic adver-
saries. To this end, we will use the generic graded encoding scheme model,
adapted from [5,10–12], which is analogous to the generic group model (see
Shoup [33] and Maurer [27]).

There are various flavors of generic models suggested in the literature. In
this work, we follow [2,10] and use the unique-representation model, where each
element in the underlying ring, at each level, has a unique representation. This is
in contrast to the multiple-representation model [2,5,34] which (roughly) states
that if the same element is being computed via different computational paths,
then each path will lead to a different and independent representation of that
element. While the latter model makes the task of proving security easier, it
is inadequate in some situations, as we described in the introduction. We note
that a proof in the unique representation model immediately carries over to
the multiple representation model, but not the other way around. We provide a
definition of this model in Sect. 2.1 below.

We then introduce our zero-sensitive model. This model is motivated by
recent attacks that leverage non-trivial encodings of zero. In this model we treat
a non-trivial encoding of zero at any level as perilous. In particular, once such an
encoding had been generated, the GES oracle will no longer keep any secret, and
surrender the plaintexts of all encodings to the adversary. As we explained above,
we can prove security of all-or-nothing functions in this model. See Sect. 2.2 for
details.

Lastly, in Sect. 2.3, we define indistinguishability and virtual black-box obfus-
cation in the presence of our oracles.

2.1 The Ideal GES Oracle

We present the “online” variant of the unique representation model. As shown in
previous works, this variant is equivalent to the “offline” variant up to negligible
statistical distance. See [2,10] for more details. We model the GES using an oracle
RG which implements the functionality of a GES in which the representations
of elements are uniform and independent random strings.
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The Online RG Oracle. The online RG oracle is implemented by an online poly-
nomial time process, which samples representations for ring elements on-the-fly.
Specifically, the oracle will maintain a table of entries of the form (v, a, labelv,a),
where labelv,a ∈ {0, 1}t is the representation of [a]v in RG, and F is either a for-
mal variable or an arithmetic circuit over formal variables. The table is initially
empty and is filled as described below.

– Whenever a sampling query is made, RG generates an element a from R (or
the appropriate sub-ring), and a uniform length t label. It then stores the
tuple (0, a, label0,a) in its table.

– For encoding and arithmetic operations, the oracle takes the input labels and
finds appropriate entries in the table that correspond to these labels. If such
don’t exist then ⊥ is returned. Otherwise, the oracle retrieves the appropriate
(v, a) values to perform the operation. It then checks that the level values are
appropriate (e.g. encRand can only be applied to level zero encodings, addition
can only take two operands of the same level), and computes the output of
the operation. It then performs the computation on the ring elements. Finally,
the oracle needs to return an encoding of an element of the form (v′, a′). To
do this, the oracle checks whether (v′, a′) is already in the table, and if so
returns the appropriate labelv′,a′ . Otherwise it samples a new uniform label,
and inserts a new entry into the table. Otherwise it samples a new uniform
label, and inserts a new entry into the table.

– Extraction is trivial in our representation, one can just use labelv′,a′ as the
extracted value for [a]v.

– Zero testing is performed by finding the appropriate entry in the table and
checking whether the respective ring element is indeed 0.

2.2 The Zero-Sensitive Generic Model

We propose a new generic model that incorporates the zero-evading requirement
of [3] into the generic GES model. Whereas our oracle is a modification of the
unique representation generic model presented above, similar modifications can
be made to other generic models in the literature.

We propose a generic model with an additional decoding functionality which
will allow the adversary to retrieve the plaintext of any encoding of its choosing,
once an encoding of zero had been generated. Some care needs to be taken, since
it is easy to produce “syntactic zeros” which are harmless. E.g. subtracting an
encoding from itself will produce such a zero encoding, or less trivially, computing
an expression of the form (A + B) ∗ C − (C ∗ A + C ∗ B). These expressions will
evaluate to zero regardless of the values that are actually encoded in A,B,C
and we refer to them as “trivial” or “syntactic” zeros. Such encodings of zero
are unavoidable, but they are not dangerous. (Indeed, in known instantiations
of GES [18–20], syntactic zeros are always encoded by the all-zero string and
thus provide no meaningful information.) We design an oracle that whenever a
non-syntactic zero is created (or rather, when it could potentially be created),
enables the decoding feature.
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We consider the encodings that are generated by the encRand function as
atomic variables, and for every encoding generated by the adversary throughout
the computation, we maintain its representation as an algebraic circuit over these
variables. Whenever two syntactically different such arithmetic circuits evaluate
to the same value, we enable the decoding feature. Details follow.

The RGZ Oracle. The new oracle is based on the functionality of the oracle RG
defined in Sect. 2.1. It will maintain a table similarly to RG, but in addition each
entry in the table will contain an additional value in the form of an arithmetic
circuit over the formal variables X1,X2, . . .. Elements encoded at level 0 will
not have a circuit associated with them, but whenever encRand is executed, the
resulting element will be stored in the table together with a new variable Xi. It
will also maintain a global binary state decode which is initialized to false.

When the arithmetic functionality of RGZ is called, say on operands A1, A2

whose table entries are (v1, a1, A1, C1), (v1, a2, A2, C2), it performs exactly as
RG and computes the values (v′, a′) corresponding to the level and value of the
result. In addition RGZ also defines C ′ = C1opC2, where op is the arithmetic
operation to be performed (e.g. C ′ = C1+C2 or C ′ = C1×C2). Then, just like in
RG, we search the table to find whether (v′, a′) already appears. If it does not,
then a new label A′ is generated, (v′, a′, A′, C ′) is stored in the table, and A′ is
returned. However, if there already exists (v′, a′, A′′, C ′′) in the table, then there
is potential for a non-trivial zero in the case where C ′ �≡ C ′′. This equivalence
is easy to check (even in polynomial time using Schwartz-Zippel). If the circuits
are equivalent: C ′ ≡ C ′′, then there is no risk, the table entry does not change
and A′′ is returned. However, if indeed C ′ �≡ C ′′, then the adversary can create a
non-trivial zero (since he generated the element a′ in two syntactically different
ways). Therefore, in this event, RGZ sets decode = true.

As explained above, RGZ also provides an additional decoding functionality:
Decode(A). This function, upon receiving an encoding A as input, first checks
the decode variable. If decode = false then it returns ⊥. Otherwise, it searches the
table for and entry whose label is A, and returns the corresponding “plaintext”
value a.

Non-trivial Zeros in the Unique Representation Model. Our zero evad-
ing model has unique representations, in the sense that the oracle assigns a single
string to each ring element. This state of affairs may be confusing, since if there
is only one representation for each element (in particular, the zero element), it
may seem that the distinction between trivial and non-trivial zeros is meaning-
less. While this intuition is true in the standard model, in a generic model the
RG oracle can judge whether an encoding of zero is trivial or not even though
they are represented by the same string, since it can keep track of the path the
adversary took in generating said encoding. In fact, security in our model is
stronger than in a model that allows multiple representations. Details follow.
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We note that unique representation GES (call it uGES for short) is effectively
equivalent to multiple representations GES (mGES) in which zero-testing can be
performed anywhere below level vzt and not just at vzt itself. This is because the
adversary can always think about the first representation of a specific element
as the “real” one. Whenever it sees a new encoding, it can subtract it from all
previous ones that it saw in the same level, and test for zero, thus discovering
if two different encodings in fact refer to the same element. Therefore, by using
uGES we only give the adversary extra power. Another advantage of using uGES
is that the extraction procedure becomes trivially defined and does not need
additional machinery. One can thus think of our use of uGES as a formalism
that allows us to seamlessly handle cases such as mGES with low-level zero-
testing (and extraction).

2.3 Obfuscation in the Generic GES Model

These definitions are fairly standard and originate from [10]. We start with
correctness, which should hold with respect to an arbitrary GES implementation.

Definition 2.1 (Preserving Functionality). A GES-based obfuscation
scheme (Obf,Eval) for C is functionality preserving if for every instantiation G of
GES, every n ∈ N, every CK ∈ C where K ∈ {0, 1}m(n), and every x ∈ {0, 1}n,
with all but negl(λ) probability over the coins of Obf,Eval and the GES oracle G
it holds that:

EvalG(1n, 1λ, Ĉ, x) = CK(x), where Ĉ
$← ObfG(1n, 1λ,K).

We define Indistinguishability Obfuscator with respect to some (possibly inef-
ficient) GES instantiation. Our definition is formulated in terms of unbounded
simulation which is equivalent to the more standard indistinguishability-based
definition (cf. [12]).

Definition 2.2 (Indistinguishability/VBB Security [6]). A GES-based
obfuscation scheme (Obf,Eval) for C is called an Indistinguishability Obfuscator
(iO) with respect to some GES instantiation G (which possibly contains a decode
function) if for every polynomial size adversary A, there exists a (computation-
ally unbounded) simulator S, such that for every n ∈ N and for every CK ∈ C
where K ∈ {0, 1}m(n):

∣∣ Pr[AG(1λ, Ĉ) = 1] − Pr[SCK (1|K|, 1n, 1λ) = 1]
∣∣ = negl(λ),

where Ĉ
$← ObfG(1n, 1λ,K). If the simulator can be implemented by polynomial

size circuits than the obfuscator is Virtually Black-Box (VBB) secure.

3 Description of Our Obfuscator and Its Correctness

3.1 Setting and Definitions

We define C = {CK}K∈{0,1}∗ to be a family of efficiently computable functions
with n-bit inputs, representation size m = m(n) and universal evaluator U .
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And we let Û be the arithmetized version of U . That is, an arithmetic circuits
with {+,×} gates such that for any field F if (x,K) ∈ {0, 1}n+m ⊆ F

n+m, then
Û(x,K) = CK(x). We also denote by DÛ the degree of the polynomial computed
by Û .

Wedefine themultiplicity of inputwire i as follows.We consider an enumeration
of the wires of Û in topological order, such that the first n + m wires refer to the
wires of the x,C inputs. For each wire i we define a vector si ∈ Z

n+m as follows. If
i ≤ n + m, then si = ei (the ith indicator vector). For a wire i which is the output
wire of a gate whose input wires are j1, j2, we define si = sj1 +sj2 . The multiplicity
is defined to be Mi = sout [i], where “out” is the output wire of Û .

3.2 The Obfuscator Obf

For all i ∈ [n], b ∈ {0, 1} we define vi,b ∈ Z
(n+m+1)×4 as vi,b = ei⊗ [b, 1, 1 − b, 0].

We further define v̂i,b = ei ⊗ [(1 − b) · M [i] , 0, b · M [i] , 1].
For all i ∈ {n + 1, . . . , n + m} we define vi = ei ⊗ [1, 1, 1, 0]. We define

v0 = en+m+1 ⊗ [1, 1, 1, 0] and v∗ = en+m+1 ⊗ [0, 0, 0, 1]. Lastly, we define: vzt =
(sout + en+m+1) ⊗ [1, 1, 1, 0] +

(∑n+m
i=1 ei

)
⊗ [0, 0, 0, 1] + D · v∗ ∈ Z

(n+m+1)×4,

where D = DÛ + n. We note that for all x ∈ {0, 1}n it holds that vzt =
v0 +

∑n
i=1 (M [i] · vi,xi

+ v̂i,xi
) +

∑n+m
i=n+1 M [i] · vi + D · v∗. We illustrate the

various level vectors in Fig. 1.

vi,0 =

⎡
⎢⎢⎣
0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0

⎤
⎥⎥⎦ , vi,1 =

⎡
⎢⎢⎣
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0

⎤
⎥⎥⎦ , vi =

⎡
⎢⎢⎣
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0

⎤
⎥⎥⎦

v̂i,0 =

⎡
⎢⎢⎣
0 · · · M[i] · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0

⎤
⎥⎥⎦ , v̂i,1 =

⎡
⎢⎢⎣
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · M[i] · · · 0 0
0 · · · 1 · · · 0 0

⎤
⎥⎥⎦ , v0 =

⎡
⎢⎢⎣
0 · · · 0 1
0 · · · 0 1
0 · · · 0 1
0 · · · 0 0

⎤
⎥⎥⎦ , v∗ =

⎡
⎢⎢⎣
0 · · · 0 0
0 · · · 0 0
0 · · · 0 0
0 · · · 0 1

⎤
⎥⎥⎦

vzt =

⎡
⎢⎢⎣
M[1] · · · M[n] M[n + 1] · · · M[n + m] 1
M[1] · · · M[n] M[n + 1] · · · M[n + m] 1
M[1] · · · M[n] M[n + 1] · · · M[n + m] 1

1 · · · 1 0 · · · 0 D

⎤
⎥⎥⎦

Fig. 1. The level vectors for the obfuscator.

The Obfuscator Obf:

– Input: Circuit identifier K ∈ {0, 1}m where CK ∈ C and a security
parameter λ.

– Output: Obfuscated program with the same functionality as CK .
– Algorithm:
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1. Instantiate a 3-composite graded encoding scheme

(params, evparams) = InstGen(1λ+log ‖vzt‖1 , 13,vzt).

2. For all i ∈ [n], compute random encodings Ri,b = [ri,b]vi,b
as well as

encodings of Zi,b = [ri,b · wi,b]vi,b+v∗ , where wi,b = (yi, b, ρi,b) and yi, ρi,b

are uniform.
3. For all i ∈ [i], compute random encodings: R̂i,b = [r̂i,b]v̂i,b

as well

as encodings of Ẑi,b = [r̂i,b · ŵi,b]v̂i,b+v∗ , where ŵi = (ŷi, β̂i, ρ̂i), where

ŷi, β̂i, {ρ̂i}i�=n are all uniform but ρ̂n = −∑n−1
i=1 ρ̂i.

4. For all i ∈ {n + 1, . . . , n + m}, compute random encodings Ri = [ri]vi
as

well as encodings of Zi = [ri · wi]vi+v∗ , where wi = (yi,Ki−n, ρi), where
Ki is the ith bit of the circuit description and yj , ρi are uniform.

5. Compute random encoding R0 = [r0]v0
and Z0 = [r0 · w0]v0+Dv∗ , where

w0 =
(∑

i∈[n] ŵi

)
· (y0, 1, 0) and y0 = Û(y1, . . . , yn+m).

6. The obfuscated program will contain the following:
• The evaluation parameters evparams.
• For all i ∈ [n], b ∈ {0, 1} the elements Ri,b, Zi,b, R̂i,b, Ẑi,b.
• For all i ∈ {n + 1, . . . , n + m} the elements Ri, Zi.
• The elements R0, Z0.

We denote by Dλ(n,K) the distribution over the encoded ring elements the
obfuscator outputs according to the construction. Evaluating an obfuscated pro-
gram is done in a straightforward manner, similarly to previous works. See full
version [9] for details.

4 Security

This section contains security proofs for Obf for all-or-nothing functions (defined
in Sect. 4.1) in the zero-sensitive RGZ model (Sect. 4.2).

Due to space limitations we are only able to present the outline of the security
analysis. The proof in the classical generic model follows fairly similar lines and
is outline in the end of Sect. 4.2. Many details are missing in this high level
presentation and we encourage the reader who wishes to see the entire analysis
in context to refer to the full version [9].

4.1 All-or-Nothing (AoN) Functions

We define a category of “all or nothing” functions. These are functions such that
are either evasive or perfectly learnable, namely, finding an accepting input for a
function in the class implies that the code of the function can be retrieved. This
class is an extension of the class of evasive functions. For simplicity we provide
the definition in the standalone setting, but it can be extended to the auxiliary
input setting as well.
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Definition 4.1. An ensemble of functions C = {Cn} is AoN if for any ppt
algorithm A, there exists a ppt algorithm B such that for all C ∈ Cn,

Pr
r

[(
C

(AC (1n; r)
)

= 1
) ∧ (BC(1n; r) �= C

)]
= negl(λ) ,

that is A,B use the same random tape r.

We can also define an average-case analogue:

Definition 4.2. An ensemble of functions C = {Cn} together with distributions
{Dn} over C is average-case AoN if for any ppt algorithm A, there exists a ppt
algorithm B such that:

Pr
r, C←Dn

[(
C

(AC (1n; r)
)

= 1
) ∧ (BC(1n; r) �= C

)]
= negl(λ) ,

that is A,B use the same random tape r.

Note that we ask that B outputs the exact code of C, given only black
box access. Therefore, AoN function classes which are not evasive need to have
programs with unique representations. This indeed holds for classes such as
conjunctions.

4.2 Zero-Sensitive Security for All-or-Nothing Functions

The following theorem states the VBB security of Obf for any class of AoN
functions. We note that while we provide a proof for worst-case AoN, the average
case setting follows by a similar proof (note that there could exist function classes
that are average case AoN but not worst case AoN).

Theorem 4.3. Assuming factoring is hard then if C is a family of AoN func-
tions, then Obf is VBB-secure with respect to the oracle RGZ .

Proof. In order to prove VBB security, we want to define an efficient simulator
S that will simulate the view of the adversary using only an oracle access to CK .

Similarly to the definition of the RGZ oracle in Sect. 2.2, the simulator S will
need to act differently when a non-trivial encoding of zero is encountered (that
is, simulate the performance of RGZ when decode = true). The simulator will
maintain a variable decode that upon initialization will be set to false and only
when we encounter a non-trivial encoding of zero it will be set to true. As long as
decode = false, we use the hardness of factorization in order to show that finding
non-trivial zero using invalid monomials is unlikely, therefore up to the point
where such encoding is found, the simulator will not use the factorization of the
ring at all. The factorization will only be used afterwards in order to continue
the simulation after decode was set to true.
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Initialization: The simulator generate a number N which it knows how to factor
into three factors p1, p2, p3 (which have gcd(pi, pj) = 1 for i �= j, but does not
have to be primes). In similar with the RGZ oracle, the simulator will also create
a table L. For each encoding the obfuscator outputs, S will create a row in the
table associating random label string with the formal variable represented by the
encoding and the appropriate level of the encoding. S, just like the obfuscator,
will output a list of label strings for each of the obfuscated encodings and give
them to the adversary. The only difference between the simulator and the oracle
here is that the ring element is not stored in the table at this point.

S.Add(enc1, enc2),S.Mult(enc1, enc2),S.Negate(enc): Given an arithmetic oper-
ation (Add, Mult, Negate), the simulator will construct an arithmetic-circuit
Ares = Aenc1 op Aenc2 (where Aenc1 and Aenc2 are the arithmetic-circuits asso-
ciated with enc1 and enc2 respectively) and check if it is equivalent to one of
the other elements in the table with the same level. It can easily be done by
subtracting Ares from the arithmetic-circuit in the table and using isZero pro-
cedure. If they are equivalent, the simulator will response with the same label.
Otherwise, the simulator will create a new row in L containing a new label, Ares

and the new level. Outputs the label to the adversary.

S.isZero(enc): The isZero algorithm works differently when decode is set to true
or false.

The Case Where decode = false: The simulator will check if enc is in L. If not
it will output ⊥, otherwise the simulator use the following algorithm:

1. Use the AoNZero algorithm from Lemma 4.5 on the arithmetic-circuit associ-
ated with enc in order to determine whether it evaluates to zero or in order
to find an accepting input. If the algorithm output a decision regarding the
evaluation of the arithmetic-circuit output it.

2. Otherwise, we note that the adversary together with the simulator up to
this point is an efficient algorithm that finds an accepting input. From the
definition of the function class (Definition 4.1) we can use the B algorithm
associated with this combined algorithm in order to find the code of the
obfuscated circuit C.

3. Generate values to all the formal variables given in the initialization step
using the known factorization of the ring. And store the values for future use.
We note that when we choose random variables, we could have broken con-
sistency with previous queries, as it could have been that using these values
previous isZero calls would have response with true. But note that such incon-
sistency can only occur with negligible probability.

4. Set decode = true and run S.isZero(enc) again.

Remark 4.4. The isZero algorithm this case can only return that the value is
indeed “zero” if the encoded element is a trivial zero. In any other case we either
output “non-zero” or we change to the case where decode = true.

The Case Where decode = true: In this case, the simulator has already assigned
values to each of the formal variables in the table L, and therefore it can easily
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evaluate the result of the arithmetic-circuit associated with enc and reply to the
isZero accordingly.

S.Decode(enc): If decode = false simply return ⊥ as this is what the simulator
will do. We note that in every arithmetic operation that the adversary does,
we initiate isZero on all the elements at the same level. Therefore, if the adver-
sary succeeded in finding a non-trivial zero or received the same element in two
different ways, the simulator will change decode to be true. Thus in that case,
the simulator has already assigned values to all the formal variables used in the
arithmetic-circuit associated with enc. By substituting those variables into this
arithmetic-circuit results the decoded value of enc which we can output to the
adversary.

Correctness: We want to show the correctness of the S.isZero procedure in both
cases. We note that if decode = true, the simulator already knows the function
evaluated and it have assignments to all the formal variables that are in use,
therefore, it is clear that substituting this values in the arithmetic-circuit asso-
ciated with the encoding the adversary wish to zero test will yield a correct
answer.

On the other hand, while decode = false, the correctness is immediate from
the correctness of Lemma 4.5 together with the definition of the AoN class and
the hardness of factoring. But using the hardness of factoring is delicate since
S knows factors of N , therefore we cannot simply solve factoring using the
simulator, because in order to construct the simulator those factors are needed
to be known in advanced. We note that once decode = true the hardness of
factoring doesn’t play a role in the correctness of the simulator.

Because we only care when decode = false, we can construct a new simulator
S1 that will abort when decode = true. It is clear that if AoNZero in S broke
factoring while decode = false so it must during S1. Now, we introduce the
simulator S2 which is similar to S1 only that S2 does not know any proper
factors of N . We notice that those factors are only being used when we set
decode = true, and since S1 aborts when decode is set to true the behavior of S1

and S2 is the same, and therefore the behavior of S2 and S is the same as long
as decode = false.

Now, we want to bound the probability that AoNZero, when being used in the
S during the time decode = true, will output a factor or fail (which occurs only
in negligible probability as explained in Lemma4.5). We note that in simulator
S2 the probability to either of those event is negligible since factoring is hard.
Thus, because the behavior of S and S2 is the same as long as decode = false,
the probability will have to be negligible in S.

Lemma 4.5. Let C be from a family of AoN functions. There exists an algo-
rithm AoNZeroC that when given an arithmetic circuit A either determines
whether it evaluates to zero, outputs an accepting input for C or output a
non-trivial factor of N .



568 Z. Brakerski and O. Dagmi

4.3 Indistinguishability Obfuscation in the Classic Generic Model

In a nutshell, the proof in the classic generic model is simpler since the detection
of non-trivial zeros and the decode oracle are not required. However, we cannot
rely on recovering the code of the circuit when an accepting input is encountered.
Therefore, we have to go over all semi-monomials, and only if all of them are
valid and correspond to an accepting input, we declare that the result is zero.
This requires computation that scales with 2n and therefore we must take are
parameters large enough to make factoring hard even for such algorithms. See
details in the full version [9].
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