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Abstract. At Crypto 2015 Fuchsbauer, Hanser and Slamanig (FHS)
presented the first standard-model construction of efficient round-
optimal blind signatures that does not require complexity leveraging. It
is conceptually simple and builds on the primitive of structure-preserving
signatures on equivalence classes (SPS-EQ). FHS prove the unforgeabil-
ity of their scheme assuming EUF-CMA security of the SPS-EQ scheme
and hardness of a version of the DH inversion problem. Blindness under
adversarially chosen keys is proven under an interactive variant of the
DDH assumption.

We propose a variant of their scheme whose blindness can be proven
under a non-interactive assumption, namely a variant of the bilinear
DDH assumption. We moreover prove its unforgeability assuming only
unforgeability of the underlying SPS-EQ but no additional assumptions
as needed for the FHS scheme.

1 Introduction

Blind signatures allow a user (or obtainer) to obtain a signature from a signer
(or issuer) without the latter learning the message that is actually signed. They
are an important building block for various privacy and anonymity related appli-
cations including e-cash, e-voting, anonymous credentials and ticketing. Since
their invention by Chaum [18], research has led to numerous blind signature
schemes in various settings and models [2,15,16,39]. The most appealing setting
is that of (i) round-optimal schemes, i.e., schemes that require only two moves
(and are thus automatically concurrently secure), that (ii) do not require any
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heuristic assumptions (such as random oracles) nor (iii) a setup assumption,
such as common reference strings or honestly generated keys.

Blindness is formalized by a game between a malicious signer and a challenger
who asks for two blind signatures on messages of the signer’s choice, but in
random order. If both signature issuings succeed, the signer is given the resulting
signatures and should not be able to tell in which order they were signed. It is
natural to let the malicious signer choose its own key pair (rather than having
the challenger create it), in which case we speak of the malicious-key model.

There are well known efficient round-optimal constructions in the honest-
key model with security proofs in the random oracle model [11,15,19]; and
there are various constructions without random oracles and in the malicious-
key model, but relying on a trusted setup, such as a common reference string
(CRS). Among those are constructions using structure-preserving signatures [4]
and Groth-Sahai (GS) proofs [31] instantiating the framework of Fischlin [21],
as well as other approaches in the bilinear group setting [12–14,43]. There is
also a very recent construction [33] without a CRS but relying on non-falsifiable
“knowledge” assumptions with security in the honest-key model. Some construc-
tions [16,30] require both a CRS and honestly generated keys.

Round-Optimal Schemes in the Plain Model. Until now, only very few
schemes [26–28] were proposed that are round-optimal and require neither ran-
dom oracles nor setup assumptions, that is, satisfying (i)–(iii). Due to known
impossibility results, such constructions are indeed hard to find. Lindell [38]
showed that concurrently secure blind signatures are impossible in the stan-
dard model when relying on simulation-based security notions. Later, Fischlin
and Schröder [23] proved that black-box reductions from unforgeability to non-
interactive assumptions in the standard model are impossible for blind signature
schemes satisfying certain conditions.

Known constructions bypass these impossibility results in several ways: All
rely on game-based security definitions [42] instead of simulation-based ones.
The constructions due to Garg et al. [28] as well as Garg and Gupta [27] make
use of complexity leveraging in their proofs and thus do not use black-box reduc-
tions. The first scheme [28] can only be considered a feasibility result and the
second [27] is still too inefficient for practical applications. In contrast, the most
recent construction by Fuchsbauer et al. [26], whose signatures consist of 5 ele-
ments from a bilinear group, can be considered practical. It is based on the
recent concept of structure-preserving signature schemes on equivalence classes
(SPS-EQ) [25,32], whose unforgeability is proven in the generic group model, and
commitments. A drawback of the scheme is that blindness (in the malicious-key
model) is proven under an interactive assumption.

The FHS Construction. Before looking at the ideas underlying the FHS con-
struction, let us recall SPS-EQ. Defined over groups equipped with a bilinear
map e : G1 × G2 → GT , structure-preserving signatures [4] are schemes whose
verification keys, signatures and messages all consist of elements from the base
groups G1 and G2 and signatures are verified by evaluating the bilinear map
on these elements. In SPS-EQ the message space, typically G

�
1 for some � > 1,
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is partitioned into equivalence classes, where all multiples of a vector belong to
one class. These classes should be indistinguishable, that is, it should be hard to
tell whether two messages belong to the same class or not (which follows from
DDH in G1).

Given an SPS-EQ signature on a message, anyone can publicly adapt the
signature to a different representative of the same class. Unforgeability is there-
fore defined w.r.t. equivalence classes, that is, after being given signatures on
messages of its choice, no adversary should be able to compute a signature on a
message from a different class. SPS-EQ moreover guarantees that after signing
a message, not even the signer is able to distinguish an adaptation of the sig-
nature to another representative of the same class from a fresh signature on a
completely random message.

The FHS blind-signature scheme [26] works as follows: the obtainer assembles
a representative of an equivalence class as a vector containing a commitment
to the message and a normalization element (the group generator). She then
blinds this message by changing it to another representative and sends it to
the signer. The signer signs the representative and sends the signature to the
obtainer. Given this signature, the obtainer adapts it to a signature on the
original representative. (Due to the normalization element, the obtainer can
only switch back to the original representative.) The blind signature is then
the rerandomized (unlinkable) signature for the original representative, which
contains a commitment to the message, plus an opening of the commitment.

The FHS scheme uses a variant of Pedersen commitments that are perfectly
hiding and computationally binding under the co-DHI∗1 assumption (cf. Sect. 3.1
for a more detailed discussion). The commitment key is part of the signer’s public
key, which guarantees that the obtainer cannot open commitments to different
messages (and thereby break unforgeability). Consequently, unforgeability relies
on the co-DHI∗1 assumption in addition to EUF-CMA security of the SPS-EQ
scheme. To prove blindness in the malicious-key model (where the reduction has
no access to the adversarially generated signing key), FHS argue that during the
blindness game the adversary must always produce valid SPS-EQ signatures,
as otherwise the challenger does not send any blind signatures in the end, in
which case the adversary cannot win the game as all it sees are perfectly hiding
commitments.

Intuitively, blindness follows, since under the DDH assumption the random-
ization of the representative containing the commitment during signature issuing
can be replaced by a random representative of a random class. In the latter case,
the order in which the messages are signed is perfectly hidden and thus the adver-
sary cannot win. However, since the commitment key is chosen by the adversary,
to actually make this replacement, FHS need an interactive assumption. More-
over, this replacement is only indistinguishable to a simulator that does not
know the randomization of the representative used. This however means that
the simulator cannot later adapt back the signer’s SPS-EQ signatures in order
to produce the blind signatures. FHS overcome this by relying on SPS-EQ secu-
rity, which guarantees that adapted signatures look like fresh ones. Thus, if the
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reduction knew the signing key (which is the case in the honest-key model) then
it could simply produce the final blind signatures by itself. In the malicious-key
model, the reduction computes the fresh signatures by using the adversary as a
signing oracle: it runs the adversary to obtain these signatures and then rewinds
it. In the second (and actual) run, it embeds an (interactive) DDH instance and
uses the signatures from the first run.

Open Questions. As the FHS scheme is the most efficient scheme having all
the discussed properties, it would be desirable to base its security (or that of
a related scheme) on weaker assumptions. The first question we ask is whether
one can relate the unforgeability of a blind signature scheme based on SPS-EQ
directly to the EUF-CMA security of the latter without necessitating any further
assumptions. Even more interesting would be whether it is possible to remove
the requirement for an interactive assumption for blindness. To address the first
question, instead of the perfectly hiding commitment, one could use a perfectly
binding one, as then each SPS-EQ signature from the signer can only be opened
in one way, meaning that SPS-EQ unforgeability would directly imply blind-
signature unforgeability. This however means that the commitment key cannot
be chosen by the signer anymore, as knowing the underlying randomness could
allow the signer to break hiding of the commitment and thus blindness of the
scheme. But even if we let the user choose the commitment key, the information-
theoretic argument by FHS that a signer must send valid SPS-EQ signatures does
not apply anymore: even when not seeing the final blind signatures, the signer
still obtains information on which message corresponds to which issuing, as the
commitments are only computationally hiding.

Our Contribution. We answer the two above questions in the affirmative and
reduce the strength of the required assumptions for both security notions. We
construct a variant of the FHS blind signature scheme and prove unforgeability
solely under the EUF-CMA security of the underlying SPS-EQ scheme. More
importantly, we show that our scheme is blind in the malicious-key model under
a non-interactive (and non-“q-type”) assumption, namely an extension of the
bilinear DDH assumption in asymmetric bilinear groups.

Our scheme replaces the perfectly hiding commitments in FHS by perfectly
binding ones, which means unforgeability follows directly from SPS-EQ unforge-
ability. As there are no trusted parameters, we let the user choose the commit-
ment key during signature issuing and include it in the final signature. Straight-
forward implementation of this approach however turns out not to result in a
blind scheme. We therefore “distribute” the commitment key over several group
elements, which enables us to show blindness.

Our blindness proof follows FHS’s idea of rewinding the signer in order to use
it as a signing oracle for signatures which the simulator cannot adapt on its own.
The proof is however much more involved, since we need to consider adversaries
that might return invalid SPS-EQ signatures but still break blindness. Our proof
works by rewinding the blindness adversary numerous times to increase the
success probability of the reduction noticeably beyond one half. We moreover
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show in the full version that these multiple rewinds are necessary by giving a
counterexample for the case of only rewinding once.

Organization. Sect. 2 discusses preliminaries including signature schemes on
equivalence classes (SPS-EQ). Section 3 discusses blind signatures, the FHS con-
struction and presents our construction of round-optimal blind signatures and
the extension to partially blind signatures.

2 Preliminaries

A function ε : N → R
+ is called negligible if for all c > 0 there is a k0 such

that ε(k) < 1/kc for all k > k0. By a ←R S, we denote that a is chosen uniformly
at random from a set S. Furthermore, we write A(a1, . . . , an; r) if we want to
make the randomness r used by a probabilistic algorithm A(a1, . . . , an) explicit
and denote by [A(a1, . . . , an)] the set of points with positive probability of being
output by A. For an (additive) group G we use G

∗ to denote G \ {0G}.

Definition 1 (Bilinear Map). Let G1, G2 and GT be cyclic groups of prime
order p, where G1 and G2 are additive and GT is multiplicative. Let P and P̂
be generators of G1 and G2, resp. We call e : G1 × G2 → GT a bilinear map or
pairing if it is efficiently computable and it is:

Bilinear: e(aP, bP̂ ) = e(P, P̂ )ab = e(bP, aP̂ ) ∀ a, b ∈ Zp,
Non-degenerate: e(P, P̂ ) �= 1GT

, i.e., e(P, P̂ ) generates GT .

If G1 = G2 then e is symmetric (Type-1) and asymmetric (Type-2 or 3)
otherwise. For Type-2 pairings there is an efficiently computable isomorphism
Ψ : G2 → G1; for Type-3 pairings no such isomorphism is known. Type-3 pair-
ings are currently the optimal choice in terms of efficiency for a given security
level [17].

Definition 2 (Bilinear-Group Generator). A bilinear-group generator
BGGen is a (possibly probabilistic1) polynomial-time algorithm that takes
a security parameter 1κ and outputs a bilinear group description BG =
(p,G1,G2,GT , e, P, P̂ ) consisting of groups G1 = 〈P 〉, G2 = 〈P̂ 〉 and GT of
prime order p with log2 p = 	κ
 and an asymmetric pairing e : G1 × G2 → GT .

Definition 3 (DDH). Let BGGen be a bilinear-group generator that outputs
BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ). For i ∈ {1, 2} the decisional Diffie-
Hellman assumption holds in Gi for BGGen if for all PPT adversaries A there is
a negligible function ε(·) such that

Pr
[

b ←R {0, 1}, BG ←R BGGen(1κ), r, s, t ←R Zp

b∗ ←R A(BG, rPi, sPi, ((1 − b) · t + b · rs)Pi)
: b∗ = b

]
− 1

2
≤ ε(κ).

1 For BN-curves [9], the most common choice for Type-3 pairings, group generation is
deterministic.
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The next assumption is in the spirit of the bilinear Diffie-Hellman assumption
(BDDH) [35], which in symmetric bilinear groups states that given rP, uP, vP ,
the element ruvP looks random. In asymmetric groups, we can additionally give
uvP , uP̂ and vP̂ . We therefore call the assumption ABDDH+.

Definition 4 (ABDDH+). Let BGGen be a bilinear-group generator that out-
puts BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ). The ABDDH+ assumption holds
for BGGen if for all PPT algorithms A there is a negligible function ε(·) such
that

Pr

[
b ←R {0, 1}, BG ←R BGGen(1κ), r, u, v, t ←R Zp

b∗←R A(BG, rP, uP, uvP, uP̂ , vP̂ , ((1−b)·t + b·ruv)P
) : b∗ = b

]
− 1

2
≤ ε(κ).

In the generic group model, in order to distinguish ruvP from random, one
basically needs to construct this element in the target group. It is easily seen
that this cannot be done from the remaining elements, which we now make
formal:

Proposition 1. The assumption in Definition 4 holds in generic groups and
reaches the optimal, quadratic simulation error bound.

We prove the above proposition in the full version. Moreover, note that given an
ABDDH+ instance (BG, R, U,W, Û , V̂ , T ), we could use a DDH oracle to decide
it: simply query (BG, R,W, T ) to the oracle and return the result. We thus have:

Lemma 1. If ABDDH+ holds for a bilinear-group generator BGGen then DDH
in G1 also holds for it.

2.1 SPS on Equivalence Classes

Structure-preserving signatures (SPS) [3–8,10,24,29,37] canhandlemessages that
are elements of a bilinear group, without requiring any prior encoding. In such a
scheme public keys, messages and signatures consist only of group elements and
the verification algorithm evaluates a signature by deciding group membership of
signature elements and by evaluating pairing-product equations (PPEs).

The notion of SPS on equivalence classes (SPS-EQ) was introduced by Hanser
and Slamanig [32]. Their initial instantiation was only secure against random-
message attacks, but together with Fuchsbauer [25] they subsequently presented
a scheme that they proved EUF-CMA-secure in the generic group model.

The idea is as follows. For a prime p, Z�
p is a vector space. Thus, if � > 1

we can define a projective equivalence relation on it, which propagates to G
�
i

and partitions G
�
i into equivalence classes. Let ∼R be this relation, i.e., for

M,N ∈ G
�
i we have M ∼R N ⇔ ∃ s ∈ Z

∗
p : M = sN . An SPS-EQ scheme signs

an equivalence class [M ]R for M ∈ (G∗
i )

� by actually signing a representative
M of [M ]R. It then allows to switch to other representatives of [M ]R and to
update the corresponding signature without having access to the secret key. If
the DDH assumption holds on the message space, then a random representative
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of a given class [M ]R is indistinguishable from a message vector outside of [M ]R.
Moreover, the malicious-key perfect adaptation property (defined in Definition 9)
guarantees that updated signatures are random elements in the corresponding
space of signatures. The combination of both properties implies the unlinkability
of message-signature pairs (under the same pk) corresponding to the same class.

The Abstract Signature Scheme. Here, we discuss the abstract model, the
security model of such a signature scheme [25,26,32] and a concrete construction,
as presented in [25].

Definition 5 (SPS-EQ). A structure-preserving signature scheme for equiva-
lence relation R over Gi with i ∈ {1, 2} is a tuple SPS-EQ of the following PPT
algorithms:

BGGenR(1κ) is a (probabilistic) bilinear-group generation algorithm which on
input a security parameter 1κ outputs a prime-order bilinear group BG.

KeyGenR(BG, 1�) is a probabilistic algorithm which on input a bilinear group
BG and a vector length � > 1 (in unary) outputs a key pair (sk, pk).

SignR(M, sk) is a probabilistic algorithm which on input a representative M ∈
(G∗

i )
� of an equivalence class [M ]R and a secret key sk outputs a signature σ

for the equivalence class [M ]R.
ChgRepR(M,σ, μ, pk) is a probabilistic algorithm, which on input a representa-

tive M ∈ (G∗
i )

� of an equivalence class [M ]R, a signature σ for M , a scalar
μ and a public key pk returns an updated message-signature pair (M ′, σ′),
where M ′ = μ · M is the new representative and σ′ its updated signature.

VerifyR(M,σ, pk) is a deterministic algorithm which given a representative M ∈
(G∗

i )
�, a signature σ and a public key pk outputs 1 if σ is valid for M

VKeyR(sk, pk) is a deterministic algorithm which given a secret key sk and
a public key pk checks their consistency and returns 1 on success and 0
otherwise.

An SPS-EQ scheme SPS-EQ defined on message-space Gi is secure if the DDH
assumption holds in Gi, if SPS-EQ is correct, EUF-CMA secure and if it perfectly
adapts signatures.

Definition 6 (Correctness). An SPS-EQ scheme SPS-EQ over Gi with i ∈
{1, 2} is correct if for all security parameters κ ∈ N, for all � > 1, all bilinear
groups BG = (p,G1,G2,GT , e, P, P̂ ) ∈ [BGGenR(1κ)], all key pairs (sk, pk) ∈
[KeyGenR(BG, 1�)], all messages M ∈ (G∗

i )
� and all scalars μ ∈ Zp

∗ we have:

VKeyR(sk, pk) = 1 and

Pr
[
VerifyR(M,SignR(M, sk), pk) = 1

]
= 1 and

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), μ, pk), pk) = 1

]
= 1.

In contrast to the standard unforgeability definition for signatures, EUF-CMA
security for SPS-EQ is defined with respect to equivalence classes, i.e., a forgery
is a signature on a message from an equivalence class from which the adversary
has not asked any messages to be signed.
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Definition 7 (EUF-CMA). An SPS-EQ scheme SPS-EQ over Gi with i ∈
{1, 2} is existentially unforgeable under adaptive chosen-message attacks if for
all � > 1 and all PPT algorithms A having access to a signing oracle SignR(·, sk),
there is a negligible function ε(·) such that:

Pr

⎡
⎣BG ←R BGGenR(1κ),

(sk, pk) ←R KeyGenR(BG, 1�),
(M∗, σ∗) ←R ASignR(·,sk)(pk)

:
[M∗]R �= [M ]R ∀M ∈ Q ∧

VerifyR(M∗, σ∗, pk) = 1

⎤
⎦ ≤ ε(κ) ,

where Q is the set of queries that A has issued to the signing oracle.

The next two definitions were introduced in [26]. They formalize the notion that
signatures output by ChgRepR are distributed like fresh signatures on the new
representative.

Definition 8 (Signature Adaptation). Let � > 1. An SPS-EQ scheme
SPS − EQ on (G∗

i )
� with i ∈ {1, 2} perfectly adapts signatures if for all tuples

(sk, pk,M, σ, μ) with

VKeyR(sk, pk) = 1 VerifyR(M,σ, pk) = 1 M ∈ (G∗
i )

� μ ∈ Zp
∗

ChgRepR(M,σ, μ, pk) and (μM,SignR(μM, sk)) are identically distributed.

The following definition demands that this even holds for maliciously gener-
ated verification keys. As for such keys there might not even exist a corresponding
secret key, we require that adapted signatures are random elements in the space
of valid signatures.

Definition 9 (Signature Adaptation Under Malicious Keys). Let � > 1.
An SPS-EQ scheme SPS − EQ on (G∗

i )
� with i ∈ {1, 2} perfectly adapts signa-

tures under malicious keys if for all tuples (pk,M, σ, μ) with

VerifyR(M,σ, pk) = 1 M ∈ (G∗
i )

� μ ∈ Zp
∗ (1)

we have that ChgRepR(M,σ, μ, pk) outputs (μM, σ′) such that σ′ is uniformly
random in the space of signatures, conditioned on VerifyR(μM, σ′, pk) = 1.

In Fig. 1, we restate the SPS-EQ construction from [25]. It is EUF-CMA
secure in the generic group model and satisfies Definitions 8 and 9.

3 Blind Signatures

Before we discuss the construction from [26] and then present our new blind
signature construction, we give the abstract model and the security properties
of blind signature schemes. These are correctness, unforgeability and blindness
and were initially studied in [36,41] and later on rigorously treated in [22,42].

Definition 10 (Blind Signature Scheme). A blind signature scheme BS con-
sists of the following PPT algorithms:
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BGGenR(1κ): On input a security parameter 1κ, output BG ←R BGGen(1κ).

KeyGenR(BG, 1 ): On input a bilinear-group description BG and vector
length 1 (in unary), choose (xi)i∈[ ] ←R (Zp

∗) , set secret key sk ←
(xi)i∈[ ], compute public key pk ← (X̂i)i∈[ ] = (xiP̂ )i∈[ ] and output
(sk, pk).

SignR(M, sk): On input a representative M = (Mi)i∈[ ] ∈ (G∗
1) of equiva-

lence class [M ]R and a secret key sk = (xi)i∈[ ] ∈ (Zp
∗) , choose y ←R Zp

∗

and output σ ← (Z, Y, Ŷ ) with

Z ← y
i∈[ ]

xiMi Y ← 1
yP Ŷ ← 1

y P̂ .

VerifyR(M, σ, pk): On input a representative M = (Mi)i∈[ ] ∈ (G∗
1) of

equivalence class [M ]R, a signature σ = (Z, Y, Ŷ ) ∈ G1 × G
∗
1 × G

∗
2

and public key pk = (X̂i)i∈[ ] ∈ (G∗
2) , check whether

i∈[ ]

e(Mi, X̂i) = e(Z, Ŷ ) ∧ e(Y, P̂ ) = e(P, Ŷ )

and if this holds output 1 and 0 otherwise.

ChgRepR(M, σ, μ, pk): On input a representative M = (Mi)i∈[ ] ∈ (G∗
1) of

equivalence class [M ]R, a signature σ = (Z, Y, Ŷ ), μ ∈ Zp
∗ and public

key pk, return ⊥ if VerifyR(M, σ, pk) = 0. Otherwise pick ψ ←R Zp
∗ and

return (μ · M, σ ) with σ ← (ψμZ, 1
ψ Y, 1

ψ Ŷ ).

VKeyR(sk, pk): On input sk = (xi)i∈[ ] ∈ (Zp
∗) and pk = (X̂i)i∈[ ] ∈ (G∗

2) ,
output 1 if xiP̂ = X̂i ∀i ∈ [ ] and 0 otherwise.

Fig. 1. Scheme 1, an EUF-CMA secure SPS-EQ scheme

KeyGenBS(1κ), on input κ, returns a key pair (sk, pk). The security parameter κ
is also an (implicit) input to the following algorithms.

(UBS(m, pk),SBS(sk)) are run by a user and a signer, who interact during exe-
cution. UBS gets input a message m and a public key pk and SBS has input
a secret key sk. At the end UBS outputs σ, a signature on m, or ⊥ if the
interaction was not successful.

VerifyBS(m,σ, pk) is deterministic and given a message-signature pair (m,σ) and
a public key pk outputs 1 if σ is valid on m under pk and 0 otherwise.

A blind signature scheme BS is secure if it is correct, unforgeable and blind.
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Definition 11 (Correctness). A blind signature scheme BS is correct if for all
security parameters κ ∈ N, all key pairs (sk, pk) ∈ [KeyGenBS(1κ)], all messages m
and all signatures σ ∈ [(UBS(m, pk),SBS(sk))] it holds that VerifyBS(m,σ, pk) = 1.

Definition 12 (Unforgeability). BS is unforgeable if for all PPT algorithms
A having access to a signer oracle, there is a negligible function ε(·) such that:

Pr
[
(sk, pk) ← KeyGenBS(1κ),
(m∗

i , σ
∗
i )k+1

i=1 ←A(·,SBS(sk))(pk)
:

m∗
i �= m∗

j ∀i, j ∈ [k+1], i �= j ∧
VerifyBS(m∗

i , σ
∗
i , pk)=1 ∀i ∈ [k+1]

]
≤ ε(κ),

where k is the number of completed interactions with the oracle.

There are several different kinds of blindness, where the strongest (and
arguably most natural) definition is blindness in the malicious-key model [1,40].
In this case, the public key is generated by the adversary, whereas in the weaker
honest-key model the key pair is initially set up by the environment, i.e., it
requires a trusted setup. We use the stronger notion to prove the blindness of
our construction—as also done by other existing round-optimal standard-model
constructions [26–28]:

Definition 13 (Blindness). A blind signature scheme BS is called blind in the
malicious-key model if for all PPT algorithms A having one-time access to two
user oracles, there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎢⎢⎣

b ←R {0, 1}, (pk,m0,m1, st) ←R A(1κ),
st ←R A(UBS(mb,pk),·)1,(UBS(m1−b,pk),·)1(st),
Let σb and σ1−b be the resp. outputs of UBS,
If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1) ← (⊥,⊥),
b∗ ←R A(st, σ0, σ1)

: b∗ = b

⎤
⎥⎥⎥⎥⎦ − 1

2
≤ ε(κ).

3.1 The FHS Construction

The construction in [26] uses unconditionally hiding commitments to the mes-
sages and SPS-EQ to sign these commitments. The latter allows for blinding
and unblinding, as it implies the ability to derive a signature for arbitrary rep-
resentatives of this class (without knowing the private signing key). The con-
struction is unforgeable under the EUF-CMA security of the SPS-EQ and an
asymmetric-group variant of the Diffie-Hellman inversion assumption. It is blind
under an interactive DDH variant in the malicious-key model without requiring
any trusted setup. Its design principle is as follows.

A signer public key consists of an SPS-EQ verification key pk and two ele-
ments (Q = qP, Q̂ = qP̂ ) for some random q ∈ Zp

∗. When asking for a signa-
ture on a message m, the user picks r ←R Zp

∗ and creates a Pedersen commitment
C = mP +rQ and forms a vector (C,P ), which is a representative of equivalence
class [(C,P )]R. Then she chooses a randomizer s ←R Zp

∗ and uses it to random-
ize (C,P ) to another representative (sC, sP ), thereby blinding the vector, and
sends (sC, sP ) to the signer. When the signer returns an SPS-EQ signature on
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(sC, sP ), the user is able to derive a signature for the unblinded (original) mes-
sage (C,P ), using SPS-EQ’s changing of representatives. Verification of the blind
signature will only accept messages whose second component is P . Together with
SPS-EQ unforgeability, this means that the only such message for which the user
can derive a signature is (C,P ).

The Pedersen commitment C = mP + rQ has a tweaked opening, which is
(m, rP ) instead of (m, r), and which lets one check the well-formedness of C via
the pairing equation e(C−mP, P̂ ) = e(rP, Q̂). This can be thought of as showing
knowledge of the discrete logarithm r without revealing it (revealing r would lead
to attacks against blindness). Under the co-DHI∗1 assumption commitments with
opening of this form are binding, meaning the user can open a commitment only
to one message, which is required for blind-signature unforgeability. The user
includes the values T ← C − mP and R ← rP in the blind signature to allow
the verification of the opening.

Blindness intuitively follows from the fact that the message (sC, sP ) =
(smP + srQ, sP ) that the signer sees during issuing looks unrelated to the mes-
sage m and the resulting blind signature (which contains rP ): under DDH, given
sP and rP , the element srP looks random. However, the blinding factor in the
randomized commitment is not srP but srQ, with Q chosen by the signer. This is
what forced FHS to introduce an interactive variant of DDH, where the adver-
sary chooses Q and Q̂ and then gets an instance rP, rQ, sP, tQ and needs to
decide whether t = rs.

3.2 Construction

In previous round-optimal blind-signature schemes (using a related approach
involving commitments) the commitment is done w.r.t. a commitment key con-
tained in the CRS. Since we aim at constructing a scheme in the standard model
where there is no CRS, we could add the commitment key to the signer’s public
key—as done in [26]. In this case the commitment must be perfectly hiding and
can thus only be computationally binding. (Binding protects the signer from
a user generating signatures on more messages than signatures issued by the
signer.) We choose a different approach, namely to let the user choose the com-
mitment key. To prevent forgeries, the commitment now needs to be perfectly
binding, which we achieve by using an encryption scheme. We then show that,
together with the properties of the used SPS-EQ scheme, computational hiding
of the commitment implies blindness of our construction.

In our signing protocol the user chooses a public key Q for ElGamal encryp-
tion and then commits to the message m by encrypting mP as (C,R) =
(mP + rQ, rP ). The user then forms a vector (C,R,Q, P ), consisting of the
ciphertext, the public key and the group generator P . (Note that this vector
uniquely defines m.) Next, to blind the message, the user transforms this tuple
to a random element of the equivalence class [(C,R,Q, P )]R: she picks s ←R Zp

∗,
computes M ← (sC, sR, sQ, sP ), and sends M to the signer. When the signer
returns an SPS-EQ signature on (sC, sR, sQ, sP ), the user derives a signature for
the unblinded (original) message (C,R,Q, P ). For unforgeability, this unblinding
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must be unambiguous, which is why verification only accepts tuples whose last
component is P .

Finally, the user needs to “open” (C,R,Q = qP ) to the actual message m.
This could be done by publishing Z = rQ and Q̂ = qP̂ : then for a message m
we could check whether the signature is valid on (mP +Z,R,Q, P ) and whether
Z is of the correct form, by checking e(Q, P̂ ) = e(P, Q̂) and

e(Z, P̂ ) = e(R, Q̂). (2)

This is basically the opening thatFHSuse (where Q̂ is part of the commitment key).
In their scheme R is only given in the final signature; here however, the signer also
sees sR, which leads to the following attack: The signer can check whether M =
(sC, sR, sQ, sP ) received during the signing protocol corresponds to a particular
m, by testing e(M1 − mM4, P̂ ) = e(M2, Q̂), since this corresponds to the pairing
equation e(srQ, P̂ ) = e(srP, Q̂).

To prevent this attack, we “split” the logarithm of Q and define Q = uvP .
Instead of publishing Q̂, we publish X = ruP and V̂ = vP̂ and replace the RHS
of (2) with e(X, V̂ ) = e(r · uvP, P̂ ). Now we additionally need to enable a check
that X and V̂ are correctly formed, which we do by publishing U = uP and
Û = uP̂ . As in [25,26], we assume the bilinear group generation algorithm of
the SPS-EQ scheme to be deterministic and to produce one bilinear group per
security parameter. We then show that assuming ABDDH+ for such a group
generation algorithm, our scheme satisfies malicious-key blindness. Our blind-
signature scheme is detailed in Fig. 2.

3.3 Security

The correctness of the scheme in Fig. 2 follows by inspection.

Theorem 1. If the underlying SPS-EQ scheme is EUF-CMA secure, then the
scheme in Fig. 2 is unforgeable.

Unforgeability of the SPS-EQ scheme guarantees that after k signing queries
the adversary possesses only signatures on k tuples of the form (Ci, Ri, Qi, P ).
(Since the last component fixes each equivalence class to one representative.) It
remains to show that each such tuple can only be opened to one message m: let
(C,R,Q, P ) and σ be such a valid message-signature pair. Then we show that
any choice of (Y,U,X, Û , V̂ ) that satisfies verification together with (σ,Q,R)
leads to the same m. Let u, v be such that Û = uP̂ and V̂ = vP̂ . Then by
(3.2), the 2nd equation in (3): Q = uvP ; and (4.1) implies U = uP . With r s.t.
R = rP , we have X = ruP by (4.2) and Y = ruv = rQ by (4.3). This means
that R and Q uniquely determine Y , which together with C = mP +Y uniquely
determines m.

The formal proof is given in the full version. The reduction has a natural
security loss determined by the number of signing queries by the adversary,
since the reduction has to guess which of the k+1 valid signatures is the forgery.
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KeyGenBS(1κ): Given a security parameter κ > 0 (in unary), compute BG ←
BGGenR(1κ); compute (sk, pk) ←R KeyGenR(BG, 14) and output (sk, pk).

U (1)
BS (m, pk): Given pk and a message m ∈ Zp, compute BG ← BGGenR(1κ);

choose r, s, u, v ←R Zp
∗ s.t. m + ruv = 0 and output

M ← (s(mP + ruvP ), srP, suvP, sP ) st ← (pk, M, r, s, u, v)

SBS(M, sk): Given M ∈ (G∗
1)

4 and a secret key sk, output π ←R SignR(M, sk).

U (2)
BS (st, π): Parse st as (pk, M, r, s, u, v). If VerifyR(M, π, pk) = 0, return ⊥.

Else run ((mP + ruvP, rP, uvP, P ), σ) ←R ChgRepR(M, π, 1
s , pk);

output τ ← (σ, Y = ruvP, Q = uvP, R = rP, U = uP, X = ruP,
Û = uP̂ , V̂ = vP̂ ).

VerifyBS(m, τ, pk): Given message m ∈ Zp, blind signature τ = (σ, Y, Q,

R, U, X, Û, V̂ ) and public key pk, output 1 if the following holds and
0 otherwise.

VerifyR((mP + Y, R, Q, P ), σ, pk) = 1 e(Q, P̂ ) = e(U, V̂ ) (3)

e(U, P̂ ) = e(P, Û) e(X, P̂ ) = e(R, Û) e(Y, P̂ ) = e(X, V̂ ) (4)

Fig. 2. A blind signature scheme from SPS-EQ.

Blindness. In the full version, we first show that ABDDH+ (Definition 4) implies
that when given rQ,Q,R,U,X, Û , V̂ (the elements which the signer sees in the
final signature), the elements srQ (the blinding factor of the message in the
issuing protocol), and sQ, srP and sP (the remaining components seen during
issuing) are indistinguishable from random. This intuitively means that what
the adversary sees during issuing looks unrelated to the derived blind signature.

We start with the basic idea to prove blindness. Given an instance of the
decision problem just described (BG, R, S = sP, U = uP,X = uR,Q = uvP, Y =
rQ, Û = uP̂ , V̂ = vP̂ , T,W,Z), where either (a) T = sR, W = sQ and Z = sY
or (b) T , W and Z are random, in the blindness game the challenger could
compute the message sent to the signer during issuing as

M ← (m · S + Z, T,W, S), (3)

which is correctly distributed in case (a) but independent of m (and the resulting
blind signature) in case (b). In the blindness game, the challenger next receives
an SPS-EQ signature on M , which it needs to adapt to the unblinded message
in order to construct a blind signature.
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Overall, we distinguish two behaviors of blindness adversaries. Type I does
not return correct SPS-EQ signatures during issuing. As in this case the adver-
sary does not obtain blind signatures at the end, the above simulation already
works and we are done.

However, if the adversary returns valid signatures (Type II) then the simula-
tor, after embedding the instance when creating M as in (3), does not know the
blinding factor s, meaning the simulator cannot adapt the SPS-EQ signature
to the unblinded message. By perfect adaptation however, the distribution of
an adapted signature is the same as that of a fresh signature on the unblinded
message. In the honest-key model, where the simulator knows the signing key,
it could therefore compute a signature σ on (m · P + Z,R,Q, P ) and return the
blind signature (σ, Y,Q,R,U,X, Û , V̂ ). Blindness follows, since during issuing
the signer obtained a random quadruple; thus the game is independent of bit b.

For blindness in the malicious-key model, we do not have access to the adver-
sarially generated signing key, meaning we cannot recompute the signature on
the unblinded message. Instead, we use the adversary A as a signing oracle by
rewinding it. (This is similar to Coron’s [20] meta-reduction strategy, which was
extended to randomizable signatures by Hofheinz et al. [34].) The idea is to
first run the adversary to obtain a signature on (s′(mP +Y ), s′R, s′Q, s′P ) for a
known s′, which we can therefore transform into a signature on (mP+Y,R,Q, P ).
We then rewind the adversary to the point after it output the public key and the
messages, and then run it again (using a new random bit b), this time setting M
as in (3), thus not knowing s. In the second run we are not able to transform the
signature, but we can use the signature from the first run, which is distributed
identically, thanks to the property of the SPS-EQ scheme.

Making this approach actually work turns out quite tricky. In the proof in
[26] it is argued that an adversary must always output two valid signatures, as
otherwise the bit b is perfectly hidden due to the perfectly hiding commitments.
For such adversaries if the original blindness game is won with some probability
then the game that rewinds the adversary will yield valid signatures in the first
run and in the second run the adversary wins with the same probability as in
the original (non-rewinding) game.

This is not true anymore for our scheme, as an aborting adversary (one that
returns invalid SPS-EQ signatures) can still win the game. In particular, we
show in the full version that rewinding once is not enough by giving an example
of an adversary’s coin distribution (before and after the point of rewinding) that
leads to the original blindness game being won with non-negligible probability,
while the game with rewinding (which outputs a random bit if it receives invalid
signatures in the first run) is won with probability less than one half.

However, if we rewind more than once then it suffices to obtain valid
signatures in at least one of the rewinds. We therefore consider a game where
we rewind the adversary λ times and abort if all runs yield invalid signatures
(outputting a random bit); otherwise, we run the adversary a final time and
check if it wins or not.
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In the full version we show the following: suppose the adversary wins the
blindness game with non-negligible advantage, that is, for some polynomial p
and infinitely many security-parameter values κ, the probability of winning the
blindness game is greater than 1

2 + 1
p(κ) . Then if we rewind the adversary λ =

κ ·p(κ) times, the probability that at least one of the λ runs yields valid SPS-EQ
signatures and the adversary wins the final run is greater than 1

2 + 1
2·p(κ) for

infinitely many κ’s. We make this formal in the following theorem.

Theorem 2. If the underlying SPS-EQ scheme has perfect adaptation of signa-
tures under malicious keys and ABDDH+ holds for BGGen then the scheme in
Fig. 2 satisfies blindness in the malicious-key model.

Efficiency of the Construction. When instantiating our blind signature con-
struction with the SPS-EQ scheme from [25], we obtain a public key size of 4G2,
a communication complexity of 6G1 + 1G2 and a signature size of 7G1 + 3G2

elements. We will now contrast this to the FHS construction [26] and to the
DLIN construction from [27].

Instantiating the FHS construction with the SPS-EQ scheme from [25] yields
a blind signature scheme having a public key size of 1G1+3G2, a communication
complexity of 4G1 + 1G2 and a signature size of 4G1 + 1G2 elements. While
being more efficient, we recall that blindness of the FHS construction is based
on an interactive and, thus, much stronger assumption.

Ignoring the increase of the security parameter due to complexity leveraging
for the construction from [27], it has a public key size of 43G1 elements, a
communication complexity of 18 log2 q + 41G1 elements (where, for instance,
we have log2 q = 155 when assuming that the adversary runs in at most 280

steps) and a signature size of 183G1 elements.

Extension to Partially Blind Signatures. We note that analogously to the
extension of the round-optimal blind signature construction in [26], it is possible
to derive a partially blind signature scheme from the scheme in Fig. 2. To include
a common information γ ∈ Zp

∗, the underlying SPS-EQ scheme is set up for � = 5
(instead of � = 4) and the additional vector component is being used to include
γ. In contrast to the blind signature scheme in Fig. 2, the signer on receiving
M ← (s(mP + ruvP ), srP, suvP, sP ) computes an SPS-EQ signature for vector
(s(mP + ruvP ), srP, suvP, γ(sP ), sP ). In the verification of the partially blind
signature, the SPS-EQ signature is verified on (mP + Y,R,Q, γP, P ).

References

1. Abdalla, M., Namprempre, C., Neven, G.: On the (im)possibility of blind message
authentication codes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860,
pp. 262–279. Springer, Heidelberg (2006)

2. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151.
Springer, Heidelberg (2001)



406 G. Fuchsbauer et al.

3. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012)

4. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

5. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

6. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures
from Type II pairings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 390–407. Springer, Heidelberg (2014)

7. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

8. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups
for modular protocol design. Cryptology ePrint Archive, Report 2010/133 (2010).
http://eprint.iacr.org/2010/133

9. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

10. Barthe, G., Fagerholm, E., Fiore, D., Scedrov, A., Schmidt, B., Tibouchi, M.:
Strongly-optimal structure preserving signatures from Type II pairings: synthesis
and lower bounds. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 355–376.
Springer, Heidelberg (2015)

11. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

12. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomiz-
able ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011)

13. Blazy, O., Pointcheval, D., Vergnaud, D.: Compact round-optimal partially-blind
signatures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp.
95–112. Springer, Heidelberg (2012)

14. Blazy, O., Pointcheval, D., Vergnaud, D.: Round-optimal privacy-preserving proto-
cols with smooth projective hash functions. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 94–111. Springer, Heidelberg (2012)

15. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

16. Camenisch, J.L., Koprowski, M., Warinschi, B.: Efficient blind signatures without
random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp.
134–148. Springer, Heidelberg (2005)

17. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of ψ revisited. Discret. Appl. Math. 159(13), 1311–1322 (2011)

18. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum Press, New York
(1982)

19. Chaum, D.: Blind signature system. In: Chaum, D. (ed.) CRYPTO 1983, p. 153.
Plenum Press, New York (1984)

http://eprint.iacr.org/2010/133


Practical Round-Optimal Blind Signatures in the Standard Model 407

20. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002)

21. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006)
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