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Abstract. We describe two constructions of non-zero inner product
encryption (NIPE) systems in the public index setting, both having
ciphertexts and secret keys of constant size. Both schemes are obtained
by tweaking the Boneh-Gentry-Waters broadcast encryption system
(Crypto 2005) and are proved selectively secure under previously con-
sidered assumptions in groups with a bilinear map. Our first realization
builds on prime-order bilinear groups and is proved secure under the
Decisional Bilinear Diffie-Hellman Exponent assumption, which is para-
meterized by the length n of vectors over which the inner product is
defined. By moving to composite order bilinear groups, we are able to
obtain security under static subgroup decision assumptions following the
Déjà Q framework of Chase and Meiklejohn (Eurocrypt 2014) and its
extension by Wee (TCC 2016). Our schemes are the first NIPE systems
to achieve such parameters, even in the selective security setting. More-
over, they are the first proposals to feature optimally short private keys,
which only consist of one group element. Our prime-order-group realiza-
tion is also the first one with a deterministic key generation mechanism.

Keywords: Functional encryption · Non-zero inner products ·
(Identity-based) revocation

1 Introduction

Attribute-based encryption (ABE) [20,35] allows fine-grained access control to
encrypted data. In an ABE system, a ciphertext has an associated attribute x
and a secret key for a user associated to some attribute y can successfully decrypt
iff some relation R on x,y holds true i.e., R(x,y) = 1. An ABE scheme is said
to be secure if a collusion attack by a group of users does not compromise the
security of a ciphertext they are not allowed to decrypt. In this work, we consider
attributes belonging to some inner product space V and the relation is given by
R(x,y) = 1 iff 〈x,y〉 �= 0, for x,y ∈ V . Such an ABE (referred to as non-zero
inner product encryption scheme or NIPE) is known to imply identity-based
revocation, an important cryptographic primitive in its own right.
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Identity-based revocation (IBR) allows a sender to encrypt and broadcast
a message to a number of identities, given a set of revoked users R, so that
only secret keys associated with identities outside of R can decrypt the message.
NIPE systems are known to imply IBR – the attribute associated with the
ciphertext (of length n) is nothing but the vector of coefficients of the polynomial
pR(Z) =

∏
idi∈R(Z − idi) where |R| ≤ n and the secret key for an identity id

corresponds to the vector (1, id, . . . , idn). The inner product is non-zero if and
only if pR(id) �= 0 or equivalently id /∈ R, in which case decryption succeeds.

In this paper, our main goal is to design NIPE (and thus revocation) schemes
that simultaneously provide short ciphertexts and private keys. We will also seek
to prove security under well-studied hardness assumptions.

Our Contribution. We first present a NIPE system employing prime-order bilin-
ear groups where ciphertexts and secret keys both have constant1 size. Our
scheme is the first one where both sizes can be constant. Indeed, all earlier real-
izations [4,5,34] providing O(1)-size ciphertexts (resp. O(1)-size private keys)
indeed required O(n) group elements in private keys (resp. in ciphertexts), where
n denotes the dimension of the inner product space which is fixed at setup time.
Even in the selective model [4,5], all previous constructions thus had linear com-
plexities in the size of ciphertexts or private keys.

The scheme is also the first NIPE realization to feature optimally short
private keys – which only consist of one group element – via a deterministic
private key extraction algorithm. In particular, our NIPE scheme implies the
first (identity-based) revocation system that simultaneously provides O(1)-size
ciphertexts and private keys. It thus performs in the same way as the Boneh-
Gentry-Waters (BGW) broadcast encryption [12] system and relies on the same
assumption. Like earlier NIPE proposals, our scheme requires O(n) group ele-
ments in the public parameters. In the revocation setting, this translates into a
linear public key size in the maximal number of revoked users per ciphertext,
which is on par with solutions [29,38] based on the Naor-Pinkas technique [29].

The security of our scheme is proved against selective adversaries under the
n-Decisional Bilinear Diffie-Hellman (n-DBDHE) assumption, the strength of
which depends on the dimension n of handled vectors. While relying on such a
parameterized assumption is certainly a caveat [17], our scheme can be modified
so as to dispense with variable-size assumptions.

Our second contribution is a NIPE system based on composite order pairing
groups with security under constant-size subgroup decision assumptions. The
proof follows the Déjà Q framework of [16,40]. Even in the restrictive selective
model of security, our scheme is the first one to achieve constant size ciphertexts
and keys under static assumptions.
1 One may object saying the linear-length vector x still has to be appended to the

ciphertext. Nevertheless, in many applications the description of x can be very short.
For example, in an ordinary (i.e., non-identity-based) broadcast encryption scheme
for n users, x is uniquely determined by the n-bit word that specifies which users are
in the revoked set. In this case, our ciphertexts reduce the communication overhead
from O(nλ) to O(n + λ) bits if λ is the security parameter.
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In the context of revocation, not only do we provide the first identity-based
revocation systems with constant-size ciphertexts and keys, but we also give a
solution based on fairly well-studied subgroup assumptions in composite order
groups. It remains a challenging open problem (at least without using a com-
plexity leveraging argument [8] entailing an exponential security loss) to achieve
similar efficiency tradeoffs while proving security against adaptive adversaries.

Outline of the Constructions and Proofs. We begin with the first construction
based on an asymmetric prime-order pairing e : G × Ĝ → GT with group order
p. The public key consists of gαi

, ĝαi

for i ∈ [1, 2n]\{n+1} along with gγ where
g and α, γ are sampled at random from G and Zp, respectively. In addition the
element e(g, ĝ)αn+1

is provided. A ciphertext for an attribute vector x ∈ Z
n
p and

message m consists of (m ·e(g, ĝ)αn+1s, gs, (v ·g
∑n

i=1 αixi)s). Secret key associated
with a vector y is computed deterministically as ĝγ

∑n
i=1 αn−i+1yi . The structure

is reminiscent of the Boneh-Gentry-Waters broadcast encryption scheme [12].
The proof of security is a reduction from the hardness of the n-DBDHE problem
– an instance consists of gαi

, ĝαi

for i ∈ [1, 2n] \ {n + 1}, gs ∈ G, T ∈ GT and
asks to decide whether T = e(g, ĝ)αn+1s or T R← GT . The attacker declares a
target vector x∗ which is used to program γ =

∑n
i=1 αix∗

i . For any y ∈ Z
n
p

with 〈x∗,y〉 = 0, secret key dy can be simulated using the elements provided
in the instance because for dy, the coefficient of αn+1 in the exponent of ĝ
would be 〈x∗,y〉 = 0. The attacker then provides two messages m0,m1 to which
the challenger responds with the ciphertext (mβ · T, gs, (v · g

∑n
i=1 αixi)s) for a

randomly chosen bit β. An adversary’s ability to determine whether the message
encrypted in the challenge ciphertext is real or random can be leveraged to solve
the given instance of the decision problem.

We then consider a variant in the setting of a composite-order symmet-
ric pairing e : G × G → GT of common group order N = p1p2p3, similar to
Wee’s composite-order variant [40] of the broadcast encryption in [12]. (Let Gq

denote the subgroup of G of order q where q would be of the form pe1
1 pe2

2 pe3
3 for

e1, e2, e3 ∈ {0, 1}). The public key is composed of v = gγ , (gαi

)n
i=1, Uj = uαj

,
j ∈ [1, 2n] \ {n + 1} for some g, u R← G and α, γ ∈ ZN along with a pairwise-
independent hash function H : GT → {0, 1}λ. Decryption key for a vector y is
defined as uγ

∑n
i=1 αn−i+1yi and the ciphertext for attribute x and message M is

defined as (M ⊕ H(e(g, u)αn+1s), gs, (v · g
∑n

i=1 αixi)s). In addition, the parame-
ters Uj and secret keys are randomized with Gp3 -components. The security is
reduced to two standard subgroup decision assumptions, denoted (p1 → p1p2)
and (p1p3 → p1p2p3), where (q1 → q2) subgroup decision problem asks to dis-
tinguish between random elements of Gq1 from random elements of Gq2 . The
reduction gradually adds Gp2-components to the challenge ciphertext as well as
elements (Uj)2n

j=1 so that at the end, each Uj has in its exponent a pseudorandom
function RF : [1, 2n] → Zp2 evaluated at j. The element v = gγ is programmed
based on the challenge attribute x∗ in a manner similar to the reduction in
the prime-order case. Additionally, this ensures that the challenge ciphertext
components are independent of α mod p2. Given this and the fact that keys are
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generated only for vectors y with 〈x∗,y〉 = 0, αn+1 does not appear in the
exponent of u in any of the keys. On the other hand, the message is masked by
the hash of an element of GT determined by RF (n + 1). Since all information
provided to the attacker is independent of RF (n + 1), we use the left over hash
lemma to argue that the mask on the message is uniformly distributed and hence
statistically hides the message from the attacker.

Related Work. The inner product functionality was first considered by Katz et al.
[22] in the design of predicate encryption systems (i.e., ABE schemes in the private
index setting). Their construction [22] initiated a large body of work [2,24,30–
34,36] which considered hierarchical extensions [30,33], additional properties in
the secret-key setting [36] and adaptively secure realizations [24,31–34].

In the public-index setting, inner products also proved useful [4] to build
adaptively secure identity-based broadcast encryption (IBBE) and revocation
schemes with short ciphertexts under simple assumptions. The first construc-
tion of non-zero IPE appeared in [4] with security in the co-selective model
under the Decision Linear [9] and Decisional Bilinear Diffie-Hellman assump-
tions. Co-selective security requires an adversary to commit to the attributes
corresponding to private key queries before seeing the public parameters of the
scheme, as opposed to target attribute set in the selective model. It is slightly
stronger than the selective model but weaker than the adaptive model. The
scheme has constant-size ciphertexts whereas its public parameters and keys
are of size linear in n. More efficient realizations (but with asymptotically sim-
ilar parameters) were put forth by Attrapadung et al. [5] and Yamada et al.
[41] under the n-DBDHE assumption. While some of the NIPE constructions of
[5,41] have exactly the same ciphertext length (resp. private key length) as our
scheme, they require O(n)-size private keys (resp. O(n)-size ciphertexts). We
thus prove security under the same assumption as [5,41] with only one group
element per private key and 3 group elements per ciphertext.

The first adaptively secure NIPE scheme was proposed in [34] with O(n)
group elements in the public parameters and either O(1)-size ciphertexts or
O(1)-size keys with a security reduction to the Decision Linear assumption. A
more efficient construction was provided in [15] via an instantiation of predicate
encodings [39] in prime-order groups. On the other hand, either ciphertexts or
secret keys had size linear in n. Previously known constructions did not consider
simultaneously achieving constant size ciphertexts and secret keys.

More recently, Abdalla et al. [1] suggested a different inner product func-
tionality which evaluates linear functions of encrypted data (i.e., their inner
product with a vector associated with the private key), instead of only test-
ing if they evaluate to 0 as in [22,24,31–34]. Under simple assumptions, they
obtained practical solutions based on the standard Decision Diffie-Hellman and
Learning-With-Errors assumptions. Their results were extended to handle adap-
tive adversaries [3] and function-privacy in the secret-key setting [6].

In the context of IBBE scheme, Delerablée [18] suggested a selectively secure
construction with constant-size ciphertexts and private keys based on strong
q-type assumptions. Her construction actually remains the most efficient IBBE
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in the literature to date. The IBR system implied by our first NIPE construction
can be seen as the revocation analogue of Delerablée’s IBBE as it simultaneously
provides O(1)-size ciphertexts and keys (the public parameters also have linear
length in the maximal number of receivers per ciphertext in [18]). Unlike our
IBR system, however, [18] is not known to have a counterpart based on simple
assumptions in composite order groups. In the identity-based revocation setting,
the constructions of Lewko et al. [23] feature constant-size private keys and pub-
lic parameters, but their ciphertext size is linear in the number of revoked users.
While their first construction has very short private keys and public parame-
ters (made of 3 and 4 group elements, respectively), its underlying complexity
assumption is very ad hoc and even stronger than n-DBDHE.

The Déjà Q framework, introduced by Chase and Meiklejohn [16], allows reduc-
ing well-studied fixed-size assumptions, such as the Subgroup Decision assumption
[11] to some families of parameterized assumptions in composite-order groups. As
a result, some well-known constructions such as Dodis-Yampolskiy PRF [19] and
Boneh-Boyen signatures [7], when instantiated in composite order groups, could be
shown secure under subgroup decision assumptions. Wee [40] further advanced the
framework to cover certain encryption primitives as well, in addition to removing
the restriction to work with asymmetric composite order groups. The primitives
include adaptively secure identity-based encryption and selectively secure broad-
cast encryption. Recently, Libert et al. [26] applied Wee’s framework to obtain
functional commitment schemes for linear functions and accumulators from simple
assumptions.

2 Background

2.1 Bilinear Maps and Complexity Assumptions

Assumptions in prime order groups. Let (G, Ĝ,GT ) be groups of prime
order p with a bilinear map e : G × Ĝ → GT . We rely on a parameterized
assumption introduced by Boneh et al. [12]. While this assumption was defined
using symmetric pairings [10,12], we consider a natural extension to asymmetric
pairings, which will enable our most efficient construction.

Definition 1. Let (G, Ĝ,GT ) be bilinear groups of prime order p. The n-
Decision Bilinear Diffie-Hellman Exponent (n-DBDHE) problem is,
given a tuple (g, gα, g(α

2), . . . , g(α
n), g(α

n+2), . . . , g(α
2n), h, ĝ, ĝα, ĝ(α

2), . . . , ĝ(α
n),

ĝ(α
n+2), T ) where g, h R← G, ĝ R← Ĝ, α R← Zp and T ∈R GT , to decide if

T = e(h, ĝ)(α
n+1) or if T is a random element of GT .

Assumptions in composite order groups.We use groups (G,GT ) of com-
posite order N = p1p2p3 endowed with an efficiently computable map (a.k.a.
pairing) e : G×G → GT such that: (1) e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G

and a, b ∈ Z; (2) if e(g, h) = 1GT
for each h ∈ G, then g = 1G. An important

property of composite order groups is that pairing two elements of order pi and
pj , with i �= j, always gives the identity element 1GT

.
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In the following, for each i ∈ {1, 2, 3}, we denote by Gpi
the subgroup of

order pi. For all distinct i, j ∈ {1, 2, 3}, we call Gpipj
the subgroup of order pipj .

In this setting, we rely on the following assumptions introduced in [25].

Assumption 1. Given a description of (G,GT , e) as well as g R← Gp1 , g3
R← Gp3

and T ∈ G, it is infeasible to efficiently decide if T ∈ Gp1p2 or T ∈ Gp1 .
Assumption 2. Let g,X1

R← Gp1 ,X2, Y2
R← Gp2 , g3, Y3

R← Gp3 . Given a descrip-
tion of (G,GT , e), a set of group elements (g,X1X2, g3, Y2Y3) and T , it is
hard to decide if T ∈R Gp1p3 or T ∈R G.

These assumptions are non-interactive and falsifiable [28]. Moreover, in both of
them, the number of input elements is constant (i.e., independent of the number
of adversarial queries).

2.2 Non-zero Inner Product Encryption (IPE)

Definition 2 (NIPE). Let V denote an inner product space of dimension n
and M denote the message space. A non-zero inner product encryption (NIPE)
scheme for inner products over V , is defined by four probabilistic algorithms –
Setup, Encrypt, KeyGen and Decrypt.

Setup(λ, n): Takes as input a security parameter λ and the dimension of V . It
outputs the public parameters mpk and the master secret msk.

KeyGen(msk,y): On input a vector y∈V and the master secret msk; this algo-
rithm outputs a secret key dy for y.

Encrypt(mpk,m,x): Takes as input a message m and an attribute vector x∈V
and outputs a ciphertext C.

Decrypt(mpk, C, dy): If 〈x,y〉 �= 0, this algorithm returns the message m and ⊥
otherwise.

Correctness. A NIPE scheme satisfies the correctness condition if for all vectors
x,y ∈ V with 〈x,y〉 �= 0 and for any message m ∈ M, any keys (mpk,msk) ←
Setup(λ, n), dy ← KeyGen(msk,y) and any ciphertext C ← Encrypt(mpk,m,x),
then Pr[m = Decrypt(mpk, C, dy)] = 1.

Definition 3 (Selective Security). Selective security of a non-zero inner
product encryption scheme is formalized in terms of the following game between
an adversary A and a challenger.

Initialization: The adversary A declares a challenge vector x�.

Setup: The challenger runs the Setup algorithm of the NIPE and gives the public
parameters to the adversary A.

Key Extraction Phase 1: The adversary makes a number of key extraction
queries adaptively. For a query on a vector y with the restriction that 〈x�,y〉 = 0,
the challenger responds with a key dy.
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Challenge: The adversary A provides two equal-length messages M0,M1. The
challenger chooses a bit β uniformly at random from {0, 1}, encrypts Mβ to x�

and returns the resulting ciphertext C� to A.

Key Extraction Phase 2: A makes more key extraction queries under the
same restriction that it can only query keys for vectors y with 〈x�,y〉 = 0.

Guess: A outputs a bit β′.
If β = β′, then A wins the game. The advantage of A in winning the above

game is defined as

AdvNIPE,A(λ) =
∣
∣
∣
∣Pr[β = β′] − 1

2

∣
∣
∣
∣ .

The NIPE scheme is said to be secure if every PPT adversary has negligible
advantage in winning the above game.

3 A Construction for Non-zero Inner Products
with Constant-Size Ciphertexts and Private Keys

Our scheme builds on the Boneh-Gentry-Waters broadcast encryption [12] and
inherits its efficiency. In particular, the public parameters are exactly those of
the BGW construction. In order to adapt it in the context of non-zero inner
product encryption, we extend earlier observations which leveraged the BGW
technique in the design of accumulators [13] and vector commitments [21,27].

It was shown in [21] that a public key of the form

{(gi = g(α
i), ĝi = ĝ(α

i))}i∈[1,2n]\{n+1}

allows committing to a vector x = (x1, . . . , xn) in such a way that the com-
mitment string C = gγ · ∏n

j=1 g
xj

j makes it possible to convincingly reveal the
partial information z = 〈x,y〉 about the committed message x. Namely, a single
group element

Wz =
n∏

i=1,i �=j

(ĝγ
n+1−i

n∏

j=1

ĝ
xj

n+1+j−i)
yi ∈ Ĝ (1)

can serve as a witness that z = 〈x,y〉, for public x ∈ Z
n
p and z ∈ Zp, and the

verifier accepts (z,Wz) if and only if the following relation holds:

e(C,

n∏

j=1

ĝ
yj

n+1−j) = e(g1, ĝn)z · e(g,Wz) (2)

The binding property of the commitment scheme relies on the fact that neither
gn+1 = g(α

n+1) nor ĝn+1 = ĝ(α
n+1) is publicly available.

Our non-zero IPE scheme proceeds by randomizing both members of (2) –
by raising them to a random power s ∈ Zp – so that the randomized C can be
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embedded in the ciphertext (together with gs) while Wz serves as a decryption
token. The decryption operation then computes e(g1, ĝn)s·〈x,y〉, which uncovers
e(g1, ĝn)s whenever 〈x,y〉 �= 0.

Our ciphertexts are of the form
(
M · e(g1, ĝn)s, gs, (gγ · ∏n

j=1 g
xj

j )s
)

and the
challenge is thus to associate each vector y ∈ Zp with a short private key dy so
as to enable decryption. To achieve this, we observe that (1) can be re-written

Wz = (
∏

i=1

ĝyi

n+1−i)
γ ·

n∏

i=1,i �=j

n∏

j=1

ĝ
xjyi

n+1+j−i ∈ Ĝ,

where the second term is publicly computable as it does not depend on ĝn+1 =
ĝ(α

n+1). This implies that, if γ ∈ Zp is the master secret key, the private key for
a vector y can only consist of a single group element dy = (

∏n
j=1 ĝ

yj

n+1−j)
γ ∈ Ĝ.

Somewhat surprisingly, private keys are generated in a deterministic man-
ner and, at first glance, their shape seems at odds with the collusion-resistance
requirement: if dy1 is a private key for y1 ∈ Zp and dy2 is a private key for
y2 ∈ Zp, the product dy1 · dy2 is a valid private key for y1 + y2. However, this
does not affect the functionality since any ciphertext that neither dy1 nor dy2

can decrypt must be labeled with a vector x such that 〈x,y1〉 = 〈x,y2〉 = 0,
which implies 〈x,y1 +y2〉 = 0. Said otherwise, combining several keys that can-
not decrypt a given ciphertext only yields another key that remains unable to
decrypt.

Setup(λ, n): Choose bilinear groups (G, Ĝ,GT ) of prime order p > 2λ and define
the bilinear map e. Choose g R← G, ĝ R← Ĝ, α, γ R← Zp at random in order to
define v = gγ ∈ G and

g1 = gα, . . . gn = g(α
n)

gn+2 = g(α
n+2), . . . g2n = g(α

2n)

and
ĝ1 = ĝα, . . . ĝn = ĝ(α

n)

ĝn+2 = ĝ(α
n+2), . . . ĝ2n = ĝ(α

2n)

Define the master public key to consist of

mpk :=
(
(G, Ĝ,GT , e), g, ĝ, v, {(gj , ĝj)}j∈[1,2n]\{n+1}

)
.

The master secret key is msk := γ.
KeyGen(msk,y): To generate a key for the vector y = (y1, . . . , yn) ∈ Z

n
p , com-

pute and output dy =
( ∏n

i=1 ĝyi

n+1−i

)γ ∈ Ĝ.
Encrypt(mpk,x,M): To encrypt M ∈ GT under x = (x1, . . . , xn) ∈ Z

n
p , choose

s R← Zp in order to compute and output

C = (C0, C1, C2) =
(
M · e(g1, ĝn)s, gs, (v ·

n∏

j=1

g
xj

j )s
)
.
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Decrypt(mpk, C,x, dy,y): Given a ciphertext C labeled with x = (x1, . . . , xn) ∈
Z

n
p and a private key dy associated with the vector y = (y1, . . . , yn) ∈ Z

n
p ,

return ⊥ if 〈x,y〉 = 0. Otherwise, conduct the following steps.
1. Compute

Âi =
n∏

j=1,j �=i

ĝ
xj

n+1+j−i ∀i ∈ {1, . . . , n}. (3)

2. Compute and output

M = C0 ·
(e(C1, dy · ∏n

i=1 Âyi

i )
e(C2,

∏n
i=1 ĝyi

n+1−i)

)1/〈x,y〉
. (4)

The correctness of the scheme is easily verified by observing that

e
(
g, (

∏n
i=1 ĝyi

n+1−i)
γ · ∏n

i=1

∏n
j=1,j �=i ĝ

xjyi

n+1−i+j

)

e
(
gγ · ∏n

j=1 g
xj

j ,
∏n

i=1 ĝyi

n+1−i)

=
e
(
g, (

∏n
i=1 ĝyi

n+1−i)
γ · ∏n

i=1

∏n
j=1,j �=i ĝ

xjyi

n+1−i+j

)

e(gγ · ∏n
j=1 ĝyi

n+1−i) · e
(
g,

∏n
i=1

∏n
j=1 g

xjyi

n+1−i+j)
= e(g, ĝn+1)−∑n

i=1 xiyi . (5)

By raising both members of (5) to the power s ∈ Zp and using (3), we obtain
the equality

e(C1, dy ·
n∏

i=1

Âyi

i )/e(C2,

n∏

i=1

ĝyi

n+1−i) = e(g1, ĝn)−s·〈x,y〉,

which explains why M can be computed as per (4) whenever 〈x,y〉 �= 0.
From an efficiency point of view, the receiver has to compute a product of

only two pairings (which is faster than two individual pairing evaluations) while
the encryption and decryption algorithms both require at most O(n) exponenti-
ations. Indeed, the value dy ·∏n

i=1 Âyi

i is computable via a multi-exponentiation
involving 2n − 1 base elements (rather than n2 in a naive computation).

Theorem 1. The scheme is selectively secure under the n-DBDHE assumption.

Proof. Towards a contradiction, let A be a PPT adversary with non-negligible
advantage ε in the selective security game. We build a reduction algorithm that
takes as input ((G, Ĝ,GT , e), g, h, {(gi, ĝi) = (g(α

i), ĝ(α
i))}i∈[1,2n]\{n+1}, T ) and

uses A to decide if T = e(h, ĝ)(α
n+1) or T ∈R GT .

The adversary A first chooses a target vector x� = (x�
1, . . . , x

�
n) ∈ Z

n
p . To

construct the master public key mpk, B chooses γ̃ R← Zp and computes

v = gγ̃ ·
n∏

j=1

g
−x�

j

j ∈ G,
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which implicitly defines the master secret key msk to be γ = γ̃ − ∑n
j=1 xj · αj .

The adversary A is run on input of

mpk :=
(
g, ĝ, v, {(gi, ĝi) = (g(α

i), ĝ(α
i))}i∈[1,2n]\{n+1}

)
.

Observe that mpk is distributed as in the real scheme as v is uniformly distributed
over G. At any time, A can request a private key dy for any vector y ∈ Z

N
p such

that 〈x,y〉 = 0. To generate the private key dy =
(∏n

i=1 ĝyi

n+1−i

)γ ∈ Ĝ, algorithm
B can exploit the fact that, in the product,

( n∑

i=1

yi · αn+1−i
) · ( n∑

j=1

x�
j · αj

)
=

n∑

i=1

n∑

j=1

x�
j · yi · αn+1−i+j ,

the coefficient of αn+1 is exactly 〈x�,y〉, which must be zero in any legal private
key query y ∈ Z

n
p . Specifically, B can compute

dy =
( n∏

i=1

ĝyi

n+1−i

)γ̃
/

n∏

i=1

n∏

j=1,j �=i

ĝ
x�

j ·yi

n+1−i+j . (6)

For any vector y ∈ Z
n
p such that 〈x�,y〉 = 0, B can thus compute the private

key dy as per (6).
In the challenge phase, A chooses messages M0,M1 ∈ GT and expects to

receive an encryption of one of these. At this point, B flips a fair coin β R← {0, 1}
and computes

C = (C0, C1, C2) =
(
Mβ · T, h, hγ̃

)
,

which is returned as a challenge to B. It is easy to see that, if T = e(h, ĝ)(α
n+1),

then C is a valid encryption of Mβ for the vector x� = (x�
1, . . . , x

�
n) and the

encryption exponent s = logg(h). In contrast, if T ∈R GT , the ciphertext carries
no information about β ∈ {0, 1}.

When A halts, it outputs a bit β′ ∈ {0, 1}. If β′ = β, the reduction B outputs
1 (meaning that T = e(h, ĝ)(α

n+1)). Otherwise, it outputs 0. �


4 NIPE from Constant-Size Subgroup Assumptions

In this section, we present a non-zero inner-product encryption (NIPE) scheme
based on composite order pairings e : G × G → GT of common group order
N = p1p2p3, with security under the subgroup decision assumptions. For inner
products over length-n vectors in ZN , the public parameter size is linear in n
while ciphertexts and keys have constant size (independent of n). The result-
ing scheme is the first to achieve such parameters with selective security under
constant size assumptions.

Similar to the prime-order case, it seems possible to derive this construction
from a functional commitment scheme for linear functions [26] by randomizing
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commitments and the verification equation. However, the transformation is not
generic. A commitment C to x ∈ Z

n
N in [26] is computed as C = gγ · g

∑n
i=1 αi·xi .

Elements
(
gγ , {gαi}n

i=1

)
are made available in the public parameters along with

elements Uj = uαj · R3,j for j ∈ [1, 2n] \ {n + 1} with R3,j being randomly
distributed in Gp3 . The Uj ’s allow creating a short witness Wz for the statement
z = 〈x,y〉 (for some y ∈ Z

n
N ) using the secret random exponent γ.

Wz =
n∏

i=1

W yi

i , where Wi = Uγ
n−i+1

n∏

j=1,j �=i

Un+1+j−i.

Consolidating all the terms that depend on γ into Wz,1, write Wz = Wz,1 ·Wz,2.
More precisely, we have

Wz,1 =
n∏

i=1

Uγ
n−i+1 and Wz,2 =

n∏

i=1

⎛

⎝
n∏

j=1,j �=i

Un+1+j−i

⎞

⎠

yi

.

Observe that the computation of Wz,2 is solely based on information available in
the public parameters and Wz,1 is independent of x. One can verify the validity
of the witness Wz by simply checking whether the following equation holds.

e(C,

n∏

i=1

Uyi

i ) = e(gα, Un)z · e(g,Wz).

Randomizing both sides of the above equation with s ∈ ZN in the exponent
leads us to the non-zero IPE. Namely, a ciphertext for a vector x and a message
M ∈ {0, 1}λ would consist of Cs, gs and M ⊕ H

(
e(gα, Un)s

)
, where H : GT →

{0, 1}λ is a pairwise-independent hash function. The decryption key for a vector
y is nothing but Wz,1. For a valid key, the fact that z = 〈x,y〉 �= 0 enables us
to recover the blinding factor on the message from e(gα, Un)zs.

Setup(λ, n): Takes as input n, the dimension of the inner product space. Choose
bilinear groups (G,GT ) of composite order N = p1p2p3, where pi > 2l(λ) for
each i ∈ {1, 2, 3}, for a suitable polynomial l : N → N. Define the bilinear
map e : G × G → GT . We consider inner products defined over Z

n
N . Choose

g, u R← Gp1 , R3
R← Gp3 and α, γ R← ZN at random in order to define

G1 = gα, G2 = g(α
2), . . . , Gn = g(α

n)

and

U1 = uα · R3,1, U2 = u(α2) · R3,2, . . . , Un = u(αn) · R3,n

Un+2 = u(αn+2) · R3,n+2, . . . , U2n = u(α2n) · R3,2n,

where R3,j
R← Gp3 for each j ∈ [1, 2n]\{n + 1}. Define the public parameters

to consist of
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mpk :=
(
(G,GT , e), g, gγ , {Gj}n

j=1, {Uj}j∈[1,2n]\{n+1}, H
)
,

where H : GT → {0, 1}λ is a pairwise-independent hash function. The master
secret key is given by msk := (u,R3, γ, α).

Encrypt(mpk,M,x = (x1, . . . , xn)): To encrypt M ∈ {0, 1}λ under x ∈ Z
n
N ,

choose s R← ZN and define the ciphertext C to consist of three components –
one from GT and two from G given by

C0 = M ⊕ H(e(g, u)αn+1s), C1 = gs, C2 = gs·(γ+∑n
i=1 αi·xi),

where C0 and C2 are computed as M ⊕ H
(
e(G1, Un)s

)
and (gγ · ∏n

i=1 Gxi
i )s

respectively. The algorithm outputs C = (C0, C1, C2).
KeyGen(msk,y): The secret key for y = (y1, . . . , yn) ∈ Z

n
N is given by

dy =

(
n∏

i=1

uαi·yi

)γ

· X3,

where X3
R← Gp3 is sampled using R3.

Decrypt(C,x,y, dy): Let z = 〈x,y〉 mod N . If z �= 0 the algorithm computes
Ai =

∏n
j=1,j �=i U

xj

n+1+j−i for all i ∈ [1, n], and recovers M ∈ {0, 1}λ as

M = C0 ⊕ H

((
e(C1, dy · ∏n

i=1 Ayi

i )
e(C2,

∏n
i=1 Uyi

n−i+1)

)1/z
)

.

Correctness. Correctness follows from the observation that

e(C2, Un−i+1) = e
(
gs·(γ+∑n

i=1 αixi), u(αn−i+1) · R3,n+2

)

= e

(

gγ ·
n∏

i=1

gαi·xi , u(αn−i+1)

)s

= e(g, u)αn+1·s·xi · e

⎛

⎝g, uγ
n−i+1 ·

n∏

j=1,j �=i

uαn+1+j−i·xj

⎞

⎠

s

= e(g, u)αn+1·s·xi · e
(
g, uγ

n−i+1 · Ai

)s
.

Raising both sides of the above equality to yi and taking a product over all
i ∈ [1, n] gives us

e

(

C2,

n∏

i=1

Uyi

n−i+1

)

=
n∏

i=1

e(g, u)αn+1·s·xi·yi ·
n∏

i=1

e
(
g, u(αn−i+1)·γ · Ai

)s·yi

= e(g, u)αn+1·s·〈x,y〉 · e

(

gs,

n∏

i=1

u(αn−i+1)·γ·yi · Ayi

i

)

= e(g, u)αn+1·s·z · e

(

C1, dy ·
n∏

i=1

Ayi

i

)

,
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as required. Note that in the last step, we replaced
∏n

i=1 u(αn−i+1)·γ·yi by dy as
the Gp3 component vanishes upon pairing.

Theorem 2. The NIPE construction is selectively secure if Assumption 1 and
Assumption 2 hold.

Proof. The proof relies on a series of modifications to the distribution of public
parameters. To define these alternative distributions, we use a family of functions

{Fk : [1, 2n] → Zp2}2n
k=0

such that for all j ∈ [1, 2n],

Fk(j) =
{

0 if k = 0
∑k

i=1 rj · αj
i mod p2 if k ∈ [1, 2n]

where r1, . . . , r2n, α1, . . . , α2n are randomly distributed in Zp2 . The modified
distributions are defined on the parameters {Uj}2n

j=1.

Type k parameters (0 ≤ k ≤ 2n): are parameters where elements {Ui}i∈[1,2n]

have a Gp2 component determined by the function Fk(.): namely,

Ui = u(αi) · g
Fk(i)
2 · R3,i ∀i ∈ [1, 2n].

The proof proceeds through a sequence of 2n + 4 games denoted G0, G1, G2,
G3,1, . . . , G3,2n, G4 as defined below. Let win� denote the event that the adver-
sary A wins in game G�.

Game G0: is the real attack game (described in Sect. 2.2).
Game G1: This game is similar to G0 except for the following changes. At

the beginning of the game, the challenger chooses γ̃ R← ZN and sets γ =
γ̃ − ∑n

i=1 αix�
i where x� = (x�

1, . . . , x
�
n) is the challenge vector. The public

parameter gγ is generated as gγ̃ · ∏n
i=1 G

−x�
i

i . The challenge ciphertext is
computed as:

C1
R← Gp1 , C2 = C γ̃

1 , C0 = Mβ ⊕ H
(
e(C1, Un+1)

)
.

Since γ is known to the challenger, secret key queries can be answered by
running the KeyGen algorithm. The change is only conceptual and hence
Pr[win0] = Pr[win1].

Game G2: In this game, we start modifying the distribution of the challenge
ciphertext. Namely, the challenger now picks C1 uniformly at random in
Gp1p2 instead of Gp1 . The adversary’s ability to distinguish between games
G1 and G2 can be leveraged to break Assumption 1 as formalized in the
following lemma.

Lemma 1. If Assumption 1 holds, then |Pr[win1] − Pr[win2]| is negligible.
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Game G3,k for k = 1, . . . , 2n: We let game G3,0 be identical to G2 for notational
convenience. In game G3,k the adversary is given Type k parameters. We
argue that the adversary can detect this change with negligible probability
if Assumption 2 holds.

Lemma 2. If Assumption 2 holds, then |Pr[win3,k−1] − Pr[win3,k]| is negligible
for each k ∈ [1, 2n].

In game G3,2n the parameters Uj have their Gp2 components defined by
F2n(j), which is a 2n-wise independent function from [1, 2n] to Zp2 . The adver-
sary’s view thus remains identical if we replace the function F2n by a truly
random function RF : [1, 2n] → Zp2 which allows defining the Gp2 component
of Uj as g

RF (j)
2 for each j ∈ [1, 2n].

Game G4: This game is identical to game G3,2n with the difference that, in
the challenge ciphertext, C0 is chosen as a random string in {0, 1}λ. We
argue that any legitimate adversary’s view remains statistically close to that
of game G3,2n. To see this, we first note that the Gp2 components of the
secret keys contain linear combinations of RF (j) in the exponent excluding
RF (n+1). Indeed, recall that the adversary can only make private key queries
on vectors y such that 〈y,x�〉 = 0. Programming γ as γ = γ̃ − ∑n

i=1 αi · x�
i

requires the creation of a Gp1 component with the exponent
(

n∑

i=1

yi · αn−i+1

)

·
(

γ̃ −
n∑

i=1

αi · x�
i

)

,

in order to generate a secret key for y. Note that the coefficient of αn+1 is
〈y,x�〉 which is 0 for all legal private key queries. Hence, the private key
dy can be computed without using Un+1, ensuring that RF (n + 1) remains
completely independent of any information revealed to A. As a result, the
distribution of

H
(
e(C1, Un+1)

)
= H

(
e(C1, u

αn+1
) · e(C1, g

RF (n+1)
2 )

)

is statistically uniform over {0, 1}λ as long as C1 as a non-trivial Gp2 com-
ponent (which occurs with probability 1 − 1/p2). This follows from the fact
that, if e(C1, g2) �= 1GT

, the Gp2 component of e(C1, g
RF (n+1)
2 ) has log(p2)

bits of min-entropy. Since H : GT → {0, 1}λ is a pairwise-independent hash
function, the Leftover Hash Lemma ensures that, conditionally on the adver-
sary’s view, the distribution of H

(
e(C1, u

αn+1
) · e(C1, g

RF (n+1)
2 )

)
is within

distance 2−λ from the uniform distribution over {0, 1}λ. This implies that
|Pr[win3,2n] − Pr[win4]| ≤ 1/p2 + 1/2λ, which is statistically negligible as
claimed. Since β ∈ {0, 1} is perfectly hidden from the adversary in G4, we
have Pr[win4] = 1/2.

Combining the above, we find

AdvNIPE,A(λ) = |Pr[win0] − Pr[win4]| ≤ Adv1G,B(λ) + 2n · Adv2G,B(λ) +
1
p2

+
1
2λ
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which is negligible in the security parameter λ provided Assumption 1 and
Assumption 2 both hold in (G,GT ). �

Proof (of Lemma 1). Let (g, g3, T ) be an instance of Assumption 1. We show
how B simulates the different stages of the security game.

Initialize: A commits to the challenge vector x� = (x�
1, . . . , x

�
n).

Setup: Pick u R← Gp1 , α R← ZN and compute Gj = gαj

for j = 1, . . . , n,
Uj = uαj · R3,j for j ∈ [1, 2n] where R3,j ’s are sampled from Gp3 using g3.
Choose γ̃ R← ZN and set γ = γ̃ − ∑n

i=1 αi · x�
i . The adversary is given the

following public parameters

mpk :=
(
g, gγ , {Gj}n

j=1, {Uj}j∈[1,2n]\{n+1}, H
)
.

Key Extraction: Upon a query on vector y ∈ Z
n
N , the adversary is given

dy =
(
u
∑n

i=1 αn−i+1·yi

)γ

· X3, where X3
R← Gp3 .

Challenge: A provides two messages M0,M1. B picks β R← {0, 1} and computes
the ciphertext C� = (C0, C1, C2), where,

C1 = T, C2 = T γ̃ , C0 = Mβ ⊕ H
(
e(C1, Un+1)

)
.

Guess: A returns a bit β′. B returns 1 if β = β′ and 0 otherwise.

If T R← Gp1 , then C� is distributed as in G1. Otherwise, T R← Gp1p2 and B
simulates G2. We have

|Pr[win1] − Pr[win2]| = |Pr[β = β′|T R← Gp1 ] − Pr[β = β′|T R← Gp1p2 ]|
= |Pr[B returns 1|T R← Gp1 ] − Pr[B returns 1|T R← Gp1p2 ]|
= Adv1G,B(λ) ,

which is negligible under Assumption 1. �

Proof (of Lemma 2). Using A show how to construct an algorithm B that breaks
Assumption 2. B receives an instance (g,X1X2, g3, Y2Y3, T ) of the problem and
simulates the game as follows. Suppose that T = u · gr2

2 · gr3
3 where either r2 = 0

or r2
R← Zp2 .

Initialize: A commits to the challenge vector x� = (x�
1, . . . , x

�
n).

Setup: Pick α R← ZN , r′
1, . . . , r

′
k−1

R← ZN and compute Gj = gαj

for j = 1, . . . , n
and

Uj = Tαj · (Y2Y3)
∑k−1

i=1 r′
i·αj

i · R′
3,j

for j ∈ [1, 2n] where R′
3,j

R← Gp3 . Choose γ̃ R← ZN and set γ = γ̃−∑n
i=1 αix�

i .
The adversary is given the following public parameters

mpk :=
(
g, gγ , {Gj}n

j=1, {Uj}j∈[1,2n]\{n+1}, H
)
.
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Key Extraction: Upon a query on vector y ∈ Z
n
N , the adversary is given

dy =
(∏n

i=1 Uyi

n−i+1

)γ · X ′
3, where X ′

3
R← Gp3 .

Challenge: A provides two messages M0,M1. B picks β R← {0, 1} and computes
the ciphertext C� = (C0, C1, C2), where,

C1 = X1X2, C2 = (X1X2)γ̃ , C0 = Mβ ⊕ H
(
e(C1, Un+1)

)
.

Guess: A returns a bit β′. B returns 1 if β = β′ and 0 otherwise.

If r2 = 0, then the parameters have the Type k − 1 distribution. Otherwise,
r2

R← Zp2 and the parameters have the Type k distribution for reasons explained
next. The Gp2-components of Uj (for j ∈ [1, 2n]) would be given by

gr2·αj

2 · Y
∑k−1

i=1 ri·αj
i

2 . (7)

All the information provided to A is independent of α mod p2 (by the Chinese
Remainder Theorem) and hence we can substitute α mod p2 with a uniformly
random αk ∈ Zp2 . The Gp2 component of Uj in (7) can thus be replaced by

g
∑k

i=1 ri·αj
i

2 .

as required. Moreover, the Gp3 component of Uj is uniformly distributed since
we randomize it by R′

3,j . We thus have

|Pr[win3,k−1] − Pr[win3,k]| ≤ Adv2G,B(λ),

which is negligible under Assumption 2. �
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