
Vassilis Zikas
Roberto De Prisco (Eds.)

 123

LN
CS

 9
84

1

10th International Conference, SCN 2016
Amalfi, Italy, August 31 – September 2, 2016
Proceedings

Security and Cryptography
for Networks

Lecture Notes in Computer Science 9841

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Vassilis Zikas • Roberto De Prisco (Eds.)

Security and Cryptography
for Networks
10th International Conference, SCN 2016
Amalfi, Italy, August 31 – September 2, 2016
Proceedings

123

Editors
Vassilis Zikas
Rensselaer Polytechnic Institute
Troy, NY
USA

Roberto De Prisco
University of Salerno
Fisciano
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-44617-2 ISBN 978-3-319-44618-9 (eBook)
DOI 10.1007/978-3-319-44618-9

Library of Congress Control Number: 2016947481

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The 10th Conference on Security and Cryptography for Networks (SCN 2016) was
held in Amalfi, Italy, from August 31 to September 2, 2016. The conference has
traditionally been held in Amalfi, with the exception of the fifth edition that was held in
the nearby Maiori. The first three editions of the conference were held in 1996, 1999,
and 2002. Since 2002, the conference has been held biannually.

Modern communication is achieved mostly through the use of computer networks.
Computer networks bring many advantages, such as easy access to information and fast
communication. However guaranteeing security of distributed transactions is a chal-
lenging task. The SCN conference is an international meeting whose goal is to bring
together researchers, practitioners, and developers interested in the security of com-
munication networks, in order to foster cooperation, facilitate exchange of ideas, and
disseminate research results.

The conference received 67 submissions in a broad range of cryptography and
security areas. The Program Committee has selected, among the many high-quality
submissions, 30 technical papers for publication in these proceedings. The selection
took into account quality, originality, and relevance to the conference’s scope. In
addition, this year we received a crypto-lyrics paper titled “Zero-Knowledge Made
Easy So It Won’t Make You Dizzy” that the Program Committee found to be of great
quality and therefore decided to grant it a special slot in the proceedings. It is our hope
that this can motivate more of these high-quality creative and entertaining types of
submissions in the future.

The international Program Committee (PC) consisted of 32 members who are top
experts in the conference fields. At least three PC members reviewed each submitted
paper, while submissions co-authored by a PC member were subjected to the more
stringent evaluation of four PC members. In addition to the PC members, many external
reviewers joined the review process in their particular areas of expertise. We were
fortunate to have this knowledgeable and energetic team of experts, and are deeply
grateful to all of them for their hard and thorough work, which included a very active
discussion phase. Special thanks to Jeremiah Blocki, Alessandra Scafuro, Susumu
Kiyoshima, Dimitris Papadopoulos, Juan Garay, and Sanjam Garg, for their extra work
as shepherds.

The program was further enriched by the invited talks of Aggelos Kiayias
(University of Edinburgh, UK) and Rafael Pass (Cornell University and Cornell NYC
Tech, USA).

SCN 2016 was organized in cooperation with the International Association for
Cryptologic Research (IACR). The paper submission, review, and discussion processes
were effectively and efficiently made possible by the IACR Web-Submission-and-
Review software, written by Shai Halevi. Many thanks to Shai for his assistance with the
system’s various features and constant availability.

We thank all the authors who submitted papers to this conference, the Organizing
Committee members, colleagues, and student helpers for their valuable time and effort,
and all the conference attendees who made this event truly intellectually stimulating
through their active participation.

We finally thank the Dipartimento di Informatica of the Università degli Studi di
Salerno, InfoCert, and the Università degli Studi di Salerno for their financial support.

September 2016 Vassilis Zikas
Roberto De Prisco

VI Preface

SCN 2016

The 10th Conference on
Security and Cryptography for Networks

Amalfi, Italy
August 31 to September 2, 2016

Organized by
Dipartimento di Informatica

Università di Salerno

In Cooperation with
The International Association for Cryptologic Research (IACR)

Program Chair

Vassilis Zikas Rensselaer Polytechnic Institute (RPI), USA

General Chair

Roberto De Prisco Università di Salerno, Italy

Organizing Committee

Carlo Blundo Università di Salerno, Italy
Aniello Castiglione Università di Salerno, Italy
Luigi Catuogno Università di Salerno, Italy
Paolo D’Arco Università di Salerno, Italy

Steering Committee

Alfredo De Santis Università di Salerno, Italy
Ueli Maurer ETH Zürich, Switzerland
Rafail Ostrovsky University of California - Los Angeles, USA
Giuseppe Persiano Università di Salerno, Italy
Jacques Stern ENS, France
Douglas Stinson University of Waterloo, Canada
Gene Tsudik University of California - Irvine, USA
Moti Yung Snapchat and Columbia University, USA

Program Committee

Divesh Aggarwal EPFL, Switzerland
Shweta Agrawal Indian Institute of Technology, India
Joël Alwen IST, Austria

Gilad Asharov The Hebrew University of Jerusalem, Israel
Foteini Baldimtsi Boston University, USA and University of Athens,

Greece
Jeremiah Blocki Microsoft Research, USA
David Cash Rutgers University, USA
Nishanth Chandran Microsoft Research, India
Karim El Defrawy HRL Labs, USA
Sebastian Faust Ruhr-Universität Bochum, Germany
Juan Garay Yahoo Labs, USA
Sanjam Garg UC Berkeley, USA
Shafi Goldwasser MIT, USA
Stanislaw Jarecki UC Irvine, USA
Iordanis Kerenidis University of Paris Diderot 7, France
Ranjit Kumaresan MIT, USA
Steve Lu Stealth Software Technologies Inc., USA
Ueli Maurer ETH Zurich, Switzerland
Charalampos Papamanthou University of Maryland, USA
Anat Paskin-Cherniavsky Ariel University, Israel
Rafael Pass Cornell University and Cornell NYC Tech., USA
Kenny Paterson Royal Holloway, University of London, UK
Christian Rechberger DTU, Denmark
Raphael Reischuk ETH Zurich, Switzerland
Alessandra Scafuro Boston University and Northeastern University, USA
Peter Schwabe Radboud University, The Netherlands
Damien Stehl ENS de Lyon, France
Marc Stevens CWI, The Netherlands
Vanessa Teague University of Melbourne, Australia
Stefano Tessaro UC Santa Barbara, USA
Hong-Sheng Zhou Virginia Commonwealth University, USA
Vassilis Zikas RPI, USA

External Reviewers

Shashank Agrawal
Daniel Apon
Christian Badertscher
Saikrishna Badrinarayan
Iddo Bentov
Alexandra Berkoff
Florian Bourse
Christina Brzuska
Jie Chen
Alain Couvreur

Chris Culnane
Joan Daemen
Wei Dai
Angelo De Caro
Akshay Degwekar
David Derler
Julien Devigne
Lo Ducas
Lisa Eckey
Xiong Fan

Carmit Hazay
Brett Hemenway
Aayush Jain
Charanjit Jutla
Chethan Kamath
Handan Kilinc
Susumu Kiyoshima
Karen Klein
Ahmed Kosba
Luke Kowalczyk

VIII SCN 2016

Eyal Kushilevitz
Kim Laine
Joshua Lampkins
Adeline Langlois
Enrique Larraia
Tancrede Lepoint
Satyanarayana Lokam
Bernardo Machado David
Rusydi Makarim
Antonio Marcedone
Nico Marcel Döttling
Alexander May
Sebastian Meiser
Peihan Miao
Sonia Mihaela Bogos
Katerina Mitrokotsa
Pratyay Mukherjee

Kartik Nayak
Dimitris Papadopoulos
Kostas Papagiannopoulos
Alain Passelgue
Antigoni Polychroniadou
Ishaan Preet Singh
Srinivasan Raghuraman
Somindu Ramanna
Kim Ramchen
Vanishree Rao
Tom Ristenpart
Abhi shelat
Katerina Samari
Daniel Slamanig
Nigel Smart
Pratik Soni
Akshayaram Srinivasan

Douglas Stebila
Bjoern Tackmann
Qiang Tang
Alin Tomescu
Roberto Trifiletti
Daniel Tschudi
Daniele Venturi
Frederik Vercauteren
Ivan Visconti
Michael Walter
Xiao Wang
Udi Weinsberg
Sophia Yabukov
Yupeng Zhang
Joe Zimmerman

Sponsoring Institutions

Dipartimento di Informatica, Università di Salerno, Italy

InfoCert, Rome, Italy

Università di Salerno, Italy

SCN 2016 IX

Abstracts of Invited Talks

Foundations of Blockchain Protocols

Aggelos Kiayias

School of Informatics, University of Edinburgh, 10 Crichton St.,
Edinburgh EH8 6AB, UK

Aggelos.Kiayias@ed.ac.uk

Abstract. The bitcoin system is a remarkable solution. But to what problem?
The rise of bitcoin and other cryptocurrencies puts forth a wealth of interesting
questions in distributed systems and cryptography that relate to building
decentralized systems. We initiate a formal investigation of this class of pro-
tocols and of their basic properties.
The core of the bitcoin protocol can be abstracted in a simple algorithmic

form that has been termed the bitcoin backbone in [1]. This work also provided a
synchronous model for the analysis of the protocol. This algorithmic abstraction
and modeling enabled the expression of simple provable properties about the
blockchain data structure maintained by the protocol called chain quality,
common prefix and chain growth. In this model, the concept of a robust
transaction ledger can also be defined and analyzed as captured by its two basic
properties, persistence and liveness. Given the above we show how a robust
transaction ledger can be reduced to a blockchain protocol that satisfies these
simple properties, cf. [2]. Alternative proof strategies are possible and will be
also examined.
Given our formal definition of the robust transaction ledger problem, one can

ask next whether the bitcoin backbone is the optimal solution. One important
aspect of efficiency is the overhead to confirm transactions in the presence of an
adversary, cf. [3], which is intimately related to the liveness of the ledger.
Alternative designs such as GHOST used in the Ethereum system, are possible
and will be analyzed and compared within the model with respect to their
security and efficiency characteristics.
Finally, the relation of a robust transaction ledger to the consensus problem

will be also examined and we will consider a number of model extensions that
include rational players and dynamically changing user sets.

References

1. Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 281–310. Springer, Berlin

A. Kiayias—Most of the work reported performed while at the National and Kapodistrian University
of Athens. Research was supported by ERC project CODAMODA # 259152.

2. Kiayias, A., Panagiotakos, G.: Speed-Security Tradeoffs in Blockchain Protocols. IACR
Cryptology ePrint Archive 2015: 1019 (2015)

3. Kiayias, A., Panagiotakos, G.: On Trees, Chains and Fast Transactions in the Blockchain.
IACR Cryptology ePrint Archive 2016: 545 (2016)

XIV A. Kiayias

Cryptography and Game Theory

Rafael Pass

Cornell Tech, New York, USA
rafael@cs.cornell.edu

Abstract. Cryptographic notions of knowledge consider the knowledge
obtained, or possessed, by computationally-bounded agents under adversarial
conditions. In this talk, we will survey some recent cryptographically-inspired
approaches for reasoning about agents in the context of game-theory and
mechanism design (where agents typically are modelled as computationally
unbounded).

R. Pass—Supported in part by NSF Award CNS-1217821, NSF Award TWC-1561209, AFOSR
Award FA9550-15-1-0262, a Microsoft Faculty Fellowship, and a Google Faculty Research Award.

Contents

Encryption

A Tag Based Encoding: An Efficient Encoding for Predicate Encryption in
Prime Order Groups . 3

Jongkil Kim, Willy Susilo, Fuchun Guo, and Man Ho Au

Non-zero Inner Product Encryption with Short Ciphertexts
and Private Keys. 23

Jie Chen, Benoît Libert, and Somindu C. Ramanna

Attribute-Based Encryption for Range Attributes . 42
Nuttapong Attrapadung, Goichiro Hanaoka, Kazuto Ogawa, Go Ohtake,
Hajime Watanabe, and Shota Yamada

Naor-Yung Paradigm with Shared Randomness and Applications 62
Silvio Biagioni, Daniel Masny, and Daniele Venturi

Memory Protection

Provably-Secure Remote Memory Attestation for Heap
Overflow Protection . 83

Alexandra Boldyreva, Taesoo Kim, Richard Lipton,
and Bogdan Warinschi

Memory Erasability Amplification. 104
Jan Camenisch, Robert R. Enderlein, and Ueli Maurer

Multi-party Computation

On Adaptively Secure Multiparty Computation with a Short CRS 129
Ran Cohen and Chris Peikert

Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing. 147
Ashish Choudhury, Emmanuela Orsini, Arpita Patra, and Nigel P. Smart

High-Precision Secure Computation of Satellite Collision Probabilities. 169
Brett Hemenway, Steve Lu, Rafail Ostrovsky, and William Welser IV

http://dx.doi.org/10.1007/978-3-319-44618-9_1
http://dx.doi.org/10.1007/978-3-319-44618-9_1
http://dx.doi.org/10.1007/978-3-319-44618-9_2
http://dx.doi.org/10.1007/978-3-319-44618-9_2
http://dx.doi.org/10.1007/978-3-319-44618-9_3
http://dx.doi.org/10.1007/978-3-319-44618-9_4
http://dx.doi.org/10.1007/978-3-319-44618-9_5
http://dx.doi.org/10.1007/978-3-319-44618-9_5
http://dx.doi.org/10.1007/978-3-319-44618-9_6
http://dx.doi.org/10.1007/978-3-319-44618-9_7
http://dx.doi.org/10.1007/978-3-319-44618-9_8
http://dx.doi.org/10.1007/978-3-319-44618-9_9

Zero-Knowledge Proofs

Zero-Knowledge Made Easy so It Won’t Make You Dizzy (A Tale of
Transaction Put in Verse About an Illicit Kind of Commerce) 191

Trotta Gnam

Fiat–Shamir for Highly Sound Protocols Is Instantiable 198
Arno Mittelbach and Daniele Venturi

Verifiable Zero-Knowledge Order Queries and Updates for Fully Dynamic
Lists and Trees . 216

Esha Ghosh, Michael T. Goodrich, Olga Ohrimenko,
and Roberto Tamassia

On the Implausibility of Constant-Round Public-Coin Zero-Knowledge
Proofs . 237

Yi Deng, Juan Garay, San Ling, Huaxiong Wang,
and Moti Yung

Efficient Protocols

Improving Practical UC-Secure Commitments Based on the DDH
Assumption . 257

Eiichiro Fujisaki

The Whole is Less Than the Sum of Its Parts: Constructing More Efficient
Lattice-Based AKEs . 273

Rafael del Pino, Vadim Lyubashevsky, and David Pointcheval

Efficient Asynchronous Accumulators for Distributed PKI 292
Leonid Reyzin and Sophia Yakoubov

Outsourcing Computation

The Feasibility of Outsourced Database Search in the Plain Model 313
Carmit Hazay and Hila Zarosim

Verifiable Pattern Matching on Outsourced Texts . 333
Dario Catalano, Mario Di Raimondo, and Simone Faro

Digital Signatures

Virtual Smart Cards: How to Sign with a Password and a Server 353
Jan Camenisch, Anja Lehmann, Gregory Neven, and Kai Samelin

Signatures Resilient to Uninvertible Leakage . 372
Yuyu Wang, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-44618-9_10
http://dx.doi.org/10.1007/978-3-319-44618-9_10
http://dx.doi.org/10.1007/978-3-319-44618-9_11
http://dx.doi.org/10.1007/978-3-319-44618-9_12
http://dx.doi.org/10.1007/978-3-319-44618-9_12
http://dx.doi.org/10.1007/978-3-319-44618-9_13
http://dx.doi.org/10.1007/978-3-319-44618-9_13
http://dx.doi.org/10.1007/978-3-319-44618-9_14
http://dx.doi.org/10.1007/978-3-319-44618-9_14
http://dx.doi.org/10.1007/978-3-319-44618-9_15
http://dx.doi.org/10.1007/978-3-319-44618-9_15
http://dx.doi.org/10.1007/978-3-319-44618-9_16
http://dx.doi.org/10.1007/978-3-319-44618-9_17
http://dx.doi.org/10.1007/978-3-319-44618-9_18
http://dx.doi.org/10.1007/978-3-319-44618-9_19
http://dx.doi.org/10.1007/978-3-319-44618-9_20

Practical Round-Optimal Blind Signatures in the Standard Model from
Weaker Assumptions . 391

Georg Fuchsbauer, Christian Hanser, Chethan Kamath,
and Daniel Slamanig

Cryptanalysis

How (Not) to Instantiate Ring-LWE . 411
Chris Peikert

Pen and Paper Arguments for SIMON and SIMON-like Designs 431
Christof Beierle

Two-party Computation

Bounded Size-Hiding Private Set Intersection . 449
Tatiana Bradley, Sky Faber, and Gene Tsudik

On Garbling Schemes with and Without Privacy. 468
Carsten Baum

What Security Can We Achieve Within 4 Rounds? 486
Carmit Hazay and Muthuramakrishnan Venkitasubramaniam

Secret Sharing

Secret Sharing Schemes for Dense Forbidden Graphs 509
Amos Beimel, Oriol Farràs, and Naty Peter

Proactive Secret Sharing with a Dishonest Majority. 529
Shlomi Dolev, Karim ElDefrawy, Joshua Lampkins, Rafail Ostrovsky,
and Moti Yung

Obfuscation

Shorter Circuit Obfuscation in Challenging Security Models. 551
Zvika Brakerski and Or Dagmi

Bounded KDM Security from iO and OWF . 571
Antonio Marcedone, Rafael Pass, and Abhi Shelat

A Unified Approach to Idealized Model Separations via Indistinguishability
Obfuscation . 587

Matthew D. Green, Jonathan Katz, Alex J. Malozemoff,
and Hong-Sheng Zhou

Author Index . 605

Contents XIX

http://dx.doi.org/10.1007/978-3-319-44618-9_21
http://dx.doi.org/10.1007/978-3-319-44618-9_21
http://dx.doi.org/10.1007/978-3-319-44618-9_22
http://dx.doi.org/10.1007/978-3-319-44618-9_23
http://dx.doi.org/10.1007/978-3-319-44618-9_24
http://dx.doi.org/10.1007/978-3-319-44618-9_25
http://dx.doi.org/10.1007/978-3-319-44618-9_26
http://dx.doi.org/10.1007/978-3-319-44618-9_27
http://dx.doi.org/10.1007/978-3-319-44618-9_28
http://dx.doi.org/10.1007/978-3-319-44618-9_29
http://dx.doi.org/10.1007/978-3-319-44618-9_30
http://dx.doi.org/10.1007/978-3-319-44618-9_31
http://dx.doi.org/10.1007/978-3-319-44618-9_31

Encryption

A Tag Based Encoding:
An Efficient Encoding for Predicate Encryption

in Prime Order Groups

Jongkil Kim1(B), Willy Susilo1, Fuchun Guo1, and Man Ho Au2

1 Centre of Computer and Information Security Research,
School of Computing and Information Technology, University of Wollongong,

Wollongong, Australia
{jk057,wsusilo,fuchun}@uow.edu.au

2 The Hong Kong Polytechnic University, Hung Hom, Hong Kong
csallen@comp.polyu.edu.hk

Abstract. We introduce a tag based encoding, a new generic frame-
work for modular design of Predicate Encryption (PE) schemes in prime
order groups. Our framework is equipped with a compiler which is adap-
tively secure in prime order groups under the standard Decisional Linear
Assumption (DLIN). Compared with prior encoding frameworks in prime
order groups which require multiple group elements to interpret a tuple
of an encoding in a real scheme, our framework has a distinctive feature
which is that each element of an encoding can be represented with only a
group element and an integer. This difference allows us to construct a more
efficient encryption scheme. In the current literature, the most efficient
compiler was proposed by Chen, Gay and Wee (CGW) in Eurocrypt’15.
It features one tuple of an encoding into two group elements under the
Symmetric External Diffie-Hellman assumption (SXDH). Compared with
their compiler, our encoding construction saves the size of either private
keys or ciphertexts up-to 25 % and reduces decryption time and the size
of public key up-to 50 % in 128 security level. Several new schemes such
as inner product encryption with short keys, dual spatial encryption with
short keys and hierarchical identity based encryption with short cipher-
texts are also introduced as instances of our encoding.

Keywords: Encodings · Prime order groups · Inner product
encryption · Spatial encryption · Predicate encryption

1 Introduction

Predicate Encryption (PE) is a public key cryptographic system supporting a
fine-grained access control. PE schemes have been proposed to support various
types of predicates, but many of them share similar features in their construc-
tions and security proofs. Two independent works [2,30] have been presented by
observing the coupling of PE. They formalized common features of PE schemes in

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 3–22, 2016.
DOI: 10.1007/978-3-319-44618-9 1

4 J. Kim et al.

composite order groups by encoding predicate parts of the schemes. Those encod-
ing frameworks provide a new direction of proving security since one can show
security of a PE scheme by only proving that an encoding satisfies the syntax
required in the framework. Therefore, the encoding frameworks provide a new
insight of properties leading to adaptive security.

Despite the advantage, the usage of encoding frameworks [2,30] were limited
since they were introduced only in composite order groups. It is well known that
composite order groups significantly harm the efficiency of encryption systems
[13,14,21]. According to Guillevic [14], to achieve 128 bits security level, the
minimum group orders for prime order and composite order bilinear group are
256 and 2,644 bits, resp. Moreover, a pairing computation in composite order
groups is about 254 times slower than that of prime order bilinear groups. Hence,
constructing adaptively secure PE schemes in prime order groups is desirable to
ensure that they are adoptable in practice.

Recently, Chen, Gay and Wee (CGW) presented a dual system attribute
based encryption [8] which can be considered as a new compiler in prime order
groups for the predicate encoding [30]. They introduced compilers in prime order
groups by adopting Dual System Groups (DSG) [9]. In the most efficient compiler
of theirs, one composite order group element [30] is represented by two prime
order group elements. Independently, Attrapadung [3] and Agrawal and Chase
[1] also proposed other compilers in prime order groups, but they showed similar
results from an efficiency perspective1. All existing compilers show a similar
behavior from an efficiency perspective. Specifically, the number of parameters
and computation of the resulting scheme in the prime order group is always
bounded below by a multiplicative factor, say n, of their counterparts in the
composite order groups. The best compiler achieves a factor of n = 2 under
SXDH assumption in [1,8]. Moreover, in [1,3,8] n = 3 is achieved under the
DLIN assumption which is weaker than the SXDH assumption. This appears
to be the lower bound of the techniques of dual system groups with orthogonal
vectors since the size of vectors must be at least 2 to “simulate” the properties of
a composite order group. Therefore, it remains an interesting research problem
to achieve PE schemes in prime order groups without using vector properties
since it may imply more efficient schemes.

1.1 Our Contribution

We introduce a tag based encoding, a new generic framework for PE schemes in
prime order groups. Compared with prior encoding frameworks in prime order
groups, our framework improves the efficiency of prior encodings when the size of
an encoding scheme is large. Our encoding framework does not use DPVS, DSG
or composite order groups. Instead, we utilize tags to construct adaptively secure

1 Attrapadung’s compiler [3] needs three group elements for a tuple of an encoding
under the DLIN assumption. Agrawal and Chase’s compiler [1] requires two group
elements under the SXDH assumption and three group elements under the DLIN
assumption.

A Tag Based Encoding 5

Predicates and functions Encodings Compiler Schemes
Setup

(x, y) ∈ X × Y → kE(x, ·) → KeyGen → PE
R : X × Y → {0, 1} cE(y, ·) Encryption (IBE, HIBE, IPE, ...)

Decryption

Fig. 1. Encoding frameworks for PE

Table 1. An efficiency comparison between our and CGW’s compilers [8].

Assump. PK SK CT

CGW [8] SXDH (2 +3)|G1| + |GT | 2(mk+1)|G2| 2(mc+1)|G1| + |GT |
DLIN (6 +8)|G1| + 2|GT | 3(mk+1)|G2| 3(mc+1)|G1| + |GT |

Ours DLIN (+ 11)|G1| + |GT | (mk+7)|G2| + mk|Zp| (mc+8)|G1| + mc|Zp| + |GT |
Assump. PK (by bits) SK (by bits) CT (by bits) Decryption

CGW [8] SXDH 3840 + 512 1024 + 1024 mk 3584 + 512 mc 4P + 2 E
DLIN 8192 + 1536 1536 + 1536 mk 3840 + 768 mc 6P + 3 E

Ours DLIN 5888 + 256 3584+ 768 mk 5120 + 512mc 8P+ E

�: a predicate size (the size of common values in an encoding),
mk and mc: the size of encoding schemes used for keys and ciphertexts,
For 128 bits security level [14], we use |G1| = |Zp| = 256 bits, |G2| = 512 bits,
|GT | = 3072 bits.

PE schemes. We observe common properties of PE schemes as other encoding
frameworks, but generalize them as a new encoding framework using tag. The
generic construction of our encoding is adaptively secure under the Decisional
Linear assumption.

Tag Based Encoding. We introduce a tag based encoding. For a predicate R
with input domains X and Y, R : X × Y → {0, 1}, a tag based encoding for R
comprises two algorithms, namely, kE and cE, together with a field Z

�
p where

p is a prime number and � is a value allocated for each function R such as the
size of predicate vectors for Inner Product Encryption. We let kE(x,h) and
cE(y,h) denote the outputs of kE taking as inputs x ∈ X and h ∈ Z

�
p and cE

taking as inputs y ∈ Y and h ∈ Z
�
p, respectively. The tag based encoding must

satisfy three essential properties, namely Reconstruction, Linearity and h-hiding.
Instances of our encoding are interpreted as PE schemes via our constructions.
These constructions are often called compilers since they compile encodings to
form PE schemes (Fig. 1).

An Improved Efficiency. Prior to our work, the most efficient compiler in
prime order groups was proposed by Chen et al. [8], which is subsequently
referred as CGW in this work. The compiler was proposed for the predicate
encoding [30]. Multiple compilers under the generalized k-linear assumption [12]
were also included in the CGW’s framework. The number of group elements that
a compiler in the CGW’s framework uses to represent a tuple of an encoding

6 J. Kim et al.

(e.g. kE and cE) depends on computational assumptions of which the compiler
is based on. More concretely, each tuple of an encoding scheme is represented by
k +1 group elements in private keys and ciphertexts. Also, k(k +1) elements are
required for each coordinate of h in public keys where h is a shared input of kE
and cE. The most efficient compiler is under the SXDH assumption (i.e. when
k is equal to 1). Two group elements are used for a tuple of an encoding in this
compiler. Other encoding frameworks [1,3] were also proposed independently,
but they are similar to the CGW’s framework from the efficiency perspective.
Hence, without losing generality, we compare our compiler with CGW’s compiler
to highlight our contribution.

In our compiler, only one group element is required for each entity of h in
public keys. Hence, if the size of h is large, our compiler reduces the size of public
key to 50 % compared with the CGW’s compiler. Also, it reduces decryption time
by 50 % under the same condition. For the other parameters such as private keys
and ciphertexts, our compiler needs a group element and an integer for one tuple
of an encoding scheme. The size of the integer in our compiler is the same as
the group order of the underlying bilinear group. In other words, it is as small
as the size of a group element of G1 but much less than that of G2 due to
embedding degree of asymmetric bilinear maps. Thus, our compiler reduces the
size of either private keys or ciphertexts depending on where G2 is used for. For
example, in 128 bits security level, G2 requires at least 512 bits. It is twice of
the size of Zp [14]. It means that only 768 bits are required to represent a tuple
in our compiler. This outperforms CGW’s approach which requires 1024 bits for
a tuple. Therefore, our compiler saves the size of private keys or ciphertexts by
25 % compared to their compiler under the SXDH assumption when the size of
an encoding is large.

Moreover, the CGW’s framework is also realized under the weaker assump-
tion, namely the DLIN assumption, in comparison to ours2. It should be noted
that in this setting, 6 group elements are required for public keys for their com-
piler. It implies that our compiler outperforms their compiler as well in this
setting. More concretely, under the same assumption at a 128 bits security level,
our compiler saves 83 % in a public key, 50 % in private keys, 33 % in ciphertexts
and 66 % in decryption time if the size of encodings and their shared input is
large. We provide Table 1 for the details. To compare the efficiency in practice,
we compare our inner product encryption with short keys and public attribute
inner product encryption to those of other encodings. The instance of Public
Attribute Inner Product Encryption (PAIPE) which is taken from [4] is intro-
duced in the full version of this paper. It should be noted that encodings for
our IPE schemes are slightly different from those of CGW [8] and Wee [30]. Our
instances require one or two fewer elements.

2 The DLIN assumption with asymmetric bilinear maps can be featured in various
forms since it expanded from the DLIN assumption originally equipped with sym-
metric pairing. The DLIN assumption of the CGW’s compiler is slightly different
from our assumption. In particular, it has two fewer group elements in G2.

A Tag Based Encoding 7

Table 2. Efficiency comparison of inner product encryption (IPE) between encodings.

Scheme Assumption PK SK CT Decryption

Wee [30] SDs �|GN | +|GN,T | 2|GN | (� + 1)|GN | + |GN,T | 2P + �E

CGW [8] SXDH (2� + 4)|G1| +|GT | 4|G2| 2(� + 1)|G1| + |GT | 4P + 2�E

DLIN (6� + 8)|G1| +2|GT | 6|G2| 3(� + 1)|G1| + |GT | 6P + 3�E

Ours DLIN (11 + �)|G1| +|GT | 8|G2| + |Zp| (7 + �)|G1| + (� − 1)|Zp| + |GT | 8P + �E

�: the size of a predicate vector (the length of common parameter in the encoding),

P : Pairing computation, E: Exponentiations over a group element,

GN and GN,T : group elements of a composite order N ,

G1, G2 and GT : Group elements of order p of e : G1 × G2 → GT

Table 3. Efficiency comparison of public attribute IPE between encodings.

Scheme Assumption PK SK CT Decryption

CGW [8] SXDH (2� + 4)|G1| +|GT | (2� + 4)|G2| 4|G1| + |GT | 4P + 2�E

DLIN (6� + 8)|G1| +2|GT | (3� + 6)|G2| 6|G1| + |GT | 6P + 3�E

Ours, AL [4] DLIN (11 + �)|G1| +|GT | (6 + �)|G2|
+ (� − 1)|Zp|

9|G1| + |Zp| + |GT | 8P + �E

�: the size of a predicate vector (the length of common parameter in the encoding),

P : Pairing computation, E: Exponentiation over a group element,

G1, G2 and GT : Group elements of order p of e : G1 × G2 → GT

A Compiler with Symmetric Bilinear Maps. We also provide a new com-
piler with symmetric bilinear maps in the full version of this paper. Prior to our
works, with symmetric bilinear maps, all encodings [2,8,30] are secure only in
composite order groups. It is because all prior encodings [1,3,8] in prime order
groups are based on dual system groups [9] which requires asymmetric pairings
to feature different properties of left-hand groups and right-hand groups in pair-
ings. To the best of our knowledge, our construction is the only compiler that
provides adaptive security for encodings with symmetric pairings in prime order
groups. This gives our framework an additional flexibility when the encryption
scheme is implemented under a special requirement of the pairing type (Tables 2
and 3).

New Schemes. We introduce a number of new schemes as instances, namely:
Inner Product Encryption with short keys, Dual Spatial Encryption with short
keys and Hierarchical Identity Based Encryption with short ciphertexts. Partic-
ularly, dual spatial encryption is a new primitive. It is a symmetric conversion of
a spatial encryption [15]. In this primitive, an affine space and an affine vector
are taken to generate ciphertexts and keys, respectively. Moreover, in the full
version of this paper, we describe as encodings a number of existing schemes such
as IBE [29], (Public Attribute) Inner Product Encryption [4], Spatial Encryption
and Doubly Spatial Encryption [7] to show the versatility of our framework.

1.2 Our Technique

Our encoding framework generalizes Waters’ dual system encryption methodol-
ogy [29] which is widely used to analyze PE schemes. In Waters’ dual system

8 J. Kim et al.

encryption, private keys and ciphertexts are changed into auxiliary types, namely
semi-functional keys and semi-functional ciphertexts in the security analysis.
After converting all keys and the challenge ciphertext to semi-functional type,
proving security becomes much easier in their methodology since semi-functional
keys cannot decrypt semi-functional ciphertexts. Prior encodings [2,30] in com-
posite order groups and their compilers [1,3,8] in prime order groups also gener-
alized and utilized the dual system encryption methodology. The most distinctive
feature of our encoding compared to theirs is our compiler. Our compiler is con-
structed for tag based compiler by utilizing and expanding Waters’ IBE [29].
Therefore, our compiler is adaptively secure in prime order groups under the
standard DLIN assumption (which is the same as Water’s IBE).

The critical part of the dual system encryption is proving semi-functional key
invariance. In this proof, it is shown that a normal key and a semi-functional
key are indistinguishable when the challenge ciphertext is already fixed as semi-
functional. Therefore, the key becomes a valid key into an invalid key against
the challenge ciphertext since the semi-functional challenge ciphertext can be
decrypted only by a normal key. In Waters’ IBE, tags are used to hide the type
of the challenge key against not only the adversary but also the simulator. The
simulator can try to distinguish the type of the challenge key by generating
a valid semi-functional ciphertext to be decrypted only if the key is normal.
This trial must be hindered in the analysis. Tags take an important role to
restrict the simulator’s trial. In Waters’ IBE, tags in the challenge key and the
challenge ciphertext are enforced to share the same values. In particular, they
become h1 · IDkey + h2 and h1 · IDct + h2 where h1 and h2 are values which
are initially information theoretically hidden to the adversary. Therefore, if the
simulator generates a ciphertext to test the challenge key, the simulator can only
simulate the challenge key with the same tag as the ciphertext, such that the self-
decryption cannot be used to distinguish the challenge key because decryption
requires two distinct tags. At the same time, since the values of h1 and h2 are
hidden to the adversary, the correlation between tags in the challenge ciphertext
and the challenge key is also hidden since they are pairwise independent. In other
words, tags are randomly distributed to the adversary.

In our framework, tags have structures. We reveal the structures of tags, but
they take as inputs random values (e.g. h1 and h2 in Waters’ IBE). In more
detail, in our compiler, tags are constructed by the encodings kE and cE but
take random inputs instead of public parameters. Formally, tags in our compiler
are generated as kE(x,h′) and cE(y,h′′) where x and y are predicates and h′

and h′′ are random values. Therefore, our tags are not random but they retain
structures. This approach is actually beneficial for our encoding since we describe
tags more formally, but it still works for the dual system encryption methodology.
Particularly, in the key invariance proof, those tags must share the same random
values (i.e. h′ = h′′). This enforces the simulator’s trial to fail as in the Waters’
IBE system during the decryption process. Also, sharing inputs of encodings can
be hidden by utilizing the independence argument such as pairwise independence
for IBE. Requiring independence between tags may be a bit more strict than the

A Tag Based Encoding 9

similar property of the previous encodings. For example, we do not know how
linear secret sharing scheme [6] can be utilized into our encoding, but it provides
efficiency benefits for PE and still flexible to capture a number of PE schemes.

Duality. Another distinct feature of our encodings is that required properties for
kE and cE are identical. This is useful since without any conversion technique or
efficiency loss, one encoding scheme realizes two encryption schemes; one scheme
uses kE for a key and cE for a ciphertext and the other scheme uses cE for a key
and kE for a ciphertext. The previous encodings require a new variable incurring
efficiency loss for symmetric conversion [5]. We introduce several new schemes
as instances of our encoding. Some of them are generated as the symmetric
conversions of existing schemes (e.g. Dual spatial encryption as the symmetric
conversion of spatial encryption [7]).

2 Related Works

Dual system encryption [29] provides a break-through technique of proving the
security of PE. It implements auxiliary types of keys and ciphertexts, namely
semi-functional keys and semi-functional ciphertexts, appearing only in the secu-
rity proof. Subsequently, it shows that a security game consisting of semi-
functional keys and semi-functional ciphertexts is indistinguishable from the
original security game. Since semi-functional keys cannot decrypt semi-functional
ciphertexts, the security proof for the transformed game becomes much easier
than that of the original game. Waters showed that dual system encryption is a
powerful tool in public key encryptions and signatures by introducing a number
of adaptive encryption schemes.

Several encryption systems [4,7,11] have been introduced in prime order
groups under standard assumption. In particular, all of them share similar con-
structions and security proofs. Interestingly, their techniques are quite different
from those of dual system groups. They are more similar to Waters’ IBE [29],
but provide different predicates for their own purposes. Compared with simi-
lar constructions in composite order groups [4,17,30], they are considered to be
efficient and secure since they are constructed in prime order groups and their
security depends only on standard assumption.

Encoding frameworks [2,30] well formalize the core properties that the dual
system encryption requires. The frameworks consist of syntax and a compiler
of encodings. PE schemes were simply written by encoding instances in the
frameworks. Then, the compiler is applied to instances of encodings to result in
encryption schemes. Those outputs are also adaptively secure since the adaptive
security of the compiler is already proved using properties defined in the syntax.
Initially, they [2,30] were suggested only in composite order groups. Several
techniques [13,16,18,21,28] to convert encryption systems in composite order to
those in prime order have also been proposed. Nevertheless, the techniques in
[13,16,28] are not applicable to dual system encryption since they do not hide
parameters. It means that it is not applicable to encoding frameworks.

10 J. Kim et al.

Dual Pairing Vector Spaces (DPVS) [22–24] have been widely used as a tool
that overcomes the inefficiency of composite order groups. In DPVS, core prop-
erties which are accomplished by subgroups of composite order groups for adap-
tive security are featured by orthogonal vectors in prime order groups. DPVS
has been used not only to achieve PE schemes directly [19,22,23,25], but also to
convert schemes from composite order groups to prime order groups [8,18,21].
Lewko and Waters suggest a generic technique in [18] to transform a construc-
tion in composite order groups into prime order groups by utilizing DPVS, but
it still incurs a loss in efficiency caused by the size of vectors. The technique
suggested by [18] requires the size of vectors to increase linearly with a size of
predicates when DPVS is used to convert a PE scheme in composite order groups
into prime order groups.

Recently, adaptively secure IPE which has a good efficiency was introduced
from Ramanna [26]. It is adaptively secure with a short ciphertext in prime order
groups. Interestingly, their construction also uses tags as ours although their
scheme is not a generic construction as ours. Also, their scheme has shorter fixed
parameters in both keys and ciphertexts compared to our general construction,
but their scheme relies on the SXDH assumption which is stronger than DLIN
assumption in our construction. Therefore, one may think that their scheme is a
trade-off between security and efficiency compared to IPE scheme in our works.

There exist variants of Waters’ IBE from Ramanna et al. [27] and Lewko
and Waters [20]. Since our encoding framework generalize Water’s IBE, These
variants may be also applicable to our generic construction. Using those vari-
ants one may achieve PE schemes which have fewer fixed elements in keys and
ciphertexts, but under stronger assumptions as those in Ramanna [26].

3 Background

3.1 Bilinear Maps

We let G1, G2 and GT denote three multiplicative cyclic groups of prime order
p. Also, we let g1 and g2 be generators of G1 and G2, resp., and e be a bilinear
map, e : G1 × G2 → GT . The bilinear map e has the following properties:

1. Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g1, g2) �= 1.

We say that G1 and G2 are bilinear groups if the group operation in G1

and G2 and the bilinear map e : G1 × G2 → GT are efficiently computable. If
G1 �= G2, the map e is an asymmetric bilinear map. Otherwise, we can simply
denote G1 and G2 as G and call e : G × G → GT a symmetric bilinear map.

3.2 Complexity Assumptions

We expand both the DLIN and the DBDH into asymmetric bilinear maps. Hence,
we let G1, G2, and GT be prime order groups of order p such that e : G1 ×G2 →

A Tag Based Encoding 11

GT where e is an asymmetric bilinear map. We use subscripts to denote the type
of groups. For example, g1 denotes a generator of G1, and g2 denotes a generator
of G2.

(Asymmetric) Decisional Bilinear Diffie-Hellman (DBDH) Assump-
tion. Let g1 and g2 be a generator of G1 and of G2, respectively. Let c1, c2 and
c3 be selected randomly from Zp. Given {g1, g

c2
1 , gc3

1 ∈ G1, g2, g
c1
2 , gc2

2 ∈ G2, T ∈
GT }, there is no PPT algorithm that can distinguish whether T is e(g1, g2)c1c2c3

or a random from GT with a non-negligible advantage.

(Asymmetric) Decisional Linear (DLIN) Assumption. Let g1 and g2
be random generators of G1 and G2, respectively. Let yf , yν , c1, c2 be selected
randomly from Zp set f1 = g

yf

1 , ν1 = gyν

1 , f2 = g
yf

2 and ν2 = gyν

2 . Given
{g1, f1, ν1, g

c1
1 , fc2

1 , T ∈ G1, g2, f2, ν2 ∈ G2}, there is no PPT algorithm can
distinguish whether T is νc1+c2

1 or a random from G1 with a non-negligible
advantage.

It is worth noting that (Asymmetric) DBDH assumption also reduced to
(Asymmetric) DLIN assumption.

Proposition 1. Suppose that there exists an algorithm A which breaking
(Asymmetric) DBDH with non-negligible advantage ε. Then, we can build an
algorithm B which breaks (Asymmetric) DLIN assumption with advantage ε.

Proof. B takes {g1, f1, ν1, g
c1
1 , fc2

1 , T, g2, f2, ν2} as an instance from (Asymmet-
ric) DLIN assumption. B will simulate (Asymmetric) DBDH from the instance
using A who breaks (Asymmetric) DLIN assumption with non-negligible advan-
tage.

If A requests a instance of (Asymmetric) DBDH {g̃1, g̃
c̃2
1 , g̃c̃3

1 , g̃2, g̃
c̃1
2 , g̃c̃2

2 , T̃}
to break (Asymmetric) DLIN, the algorithm sets

g̃1 = g1, g̃
c̃2
1 = f1, g̃

c̃3
1 = g1

c̃1 , g̃2 = g2, g̃
c̃1
2 = ν2, g̃

c̃2
2 = f2, T̃ = e(T, f2)/e(fc2

1 , ν2).

This implicitly sets c̃1 = yν , c̃2 = yf and c̃3 = c1 where yν and yf are the discrete
logarithms of ν1 and f1 to the base g1 modulo p, respectively. If T is νc1+c2

1 , then
T̃ = e(T, f2)/e(fc2

1 , ν2) = e(ν1, f2)c1 = e(g̃c̃1
1 , g̃c̃2

2)c̃3 = e(g̃1, g̃2)c̃1c̃2c̃3 . Otherwise,
if T is a random element from G1, T̃ is randomized by T .

3.3 Predicate Encryption

PE definition and its adaptive security are adopted from [2,30].

Definition of Predicate Encryption. For a predicate R : X × Y → {0, 1},
our PE consists of Setup, Encrypt, KeyGen and Decrypt as follows:

Setup(1λ, �) → (PK,MSK): takes as input a security parameter 1λ and an
integer � allocated to a predicate. The output is a public parameter PK and
a master secret key MSK.

KeyGen(x,MSK,PK) → SK: takes as input a predicate x ∈ X , a master secret
key MSK and a public parameter PK. The output is a private key SK.

12 J. Kim et al.

Encrypt(y,M,PK) → CT : takes as input a description y ∈ Y, a public parameter
PK and a plaintext M . The output is a ciphertext CT .

Decrypt(x, y, SK,CT) → M : takes as input a secret key SK for x and a cipher-
text CT for y. If R(x, y) = 1, the output is M . Otherwise, ⊥.

Correctness. For all M,x ∈ X , y ∈ Y such that R(x, y) = 1, if SK is the
output of KeyGen(x, MSK, PK) and CT is the output of Encrypt(y,M,PK)
where PK and MSK are the outputs of Setup(1λ, �), then Decrypt(x, y, SK,CT)
outputs M .

Definition of Adaptive Security of Predicate Encryption [2]. With qt

private key queries where qt is polynomial, a PE scheme for a predicate R is
adaptively secure if there is no PPT adversary A which has a non-negligible
advantage in the game between A and the challenger C defined below.

Setup: The challenger runs Setup(1λ, �) to create (PK, MSK). PK is sent to A.
Phase 1: The adversary requests a private key for xi ∈ X for i ∈ [1, q1]. For each

xi, the challenger returns SKi created by running KeyGen(xi,MSK,PK).
Challenge: When the adversary requests the challenge ciphertext for y ∈ Y such

that R(xi, y) = 0 ∀i ∈ [1, q1], and submits equal-length messages M0 and
M1, the challenger randomly selects b from {0, 1} and returns the challenge
ciphertext CT created by running Encrypt(y,Mb, PK).

Phase 2: This is identical to Phase 1 except the additional restriction that xi ∈ X
for i ∈ [q1 + 1, qt] such that R(xi, y) = 0;∀i ∈ [q1 + 1, qt].

Guess: The adversary outputs b′ ∈ {0, 1}. If b = b′, then the adversary wins.

We define the advantage of the adversary against a predicate encryption as

AdvPE
A (λ) := |Pr[b = b′] − 1/2|.

3.4 Notations

Throughout the paper, we use bold font to denote vectors. Furthermore, vector
exponentiations of group elements imply vector group elements. For example,
we let a = (a1, a2) where a = (a1, a2) ∈ Z

2
p. For a group element g, ga is equal to

(ga1 , ga2). In addition, multiplication of vectors in exponents implies component-
wise product of two vectors. For example, gab is equal to (ga1b1 , ga2b2) where
b = (b1, b2) ∈ Z

2
p. Similarly, a scalar exponentiation to a vector of group elements

means a scalar multiplication to a vector in exponent. For example, (g(a1,a2))r =
(g(ra1,ra2)) where r ∈ Zp. Also, a multiplication of vector groups implies an
addition of vectors in their exponents (e.g. gagb = ga+b). It should be noted
that this multiplication is possible only if |a| = |b|. When it comes to a pairing
operation, a pairing with vectors implies multiple pairing computations, that is,
e(g, ga) requires two pairing computations e(g, ga1)e(g, ga2) where a = (a1, a2) ∈
Z
2
p, but the same result is achieved only by one pairing since e(g, ga1ga2) =

e(g, ga1)e(g, ga2).

A Tag Based Encoding 13

4 Tag Based Encoding

For a predicate R : X × Y → {0, 1}, tag based encoding TE(R) is a tuple of
(�, kE, cE). In an encoding (�, kE, cE), � is an integer allocated for a predicate R
(e.g. the size of a universe of attributes in ABE, the dimension of an affine space
in spatial encryption) and used to generate common parameter h ∈ Z

�
p. Also,

kE(x,h) and cE(y,h) are two deterministic algorithms which take as inputs
x ∈ X and y ∈ Y, resp. together with h.

We let �k and �c denote the sizes of kE(x,h) and cE(y,h) (i.e. �k = |kE(x,h)|
and �c = |cE(y,h′)|), resp. Then, tag based encodings satisfy following proper-
ties:

Property 1. (Reconstruction) For all (x, y) such that R(x, y) = 1, there
exists an efficient algorithm to compute non-zero vectors mx ∈ Z

�k
p and my ∈ Z

�c
p

such that
mxkE(x,h) = mycE(y,h), ∀h ∈ Z

�
p.

Property 2. (Linearity) For all (x, y,h′,h′′) ∈ X × Y × Z
�
p × Z

�
p,

kE(x,h′) + kE(x,h′′) = kE(x,h′ + h′′) and

cE(y,h′) + cE(y,h′′) = cE(y,h′ + h′′).

Property 3. (h-hiding) For all (x, y) ∈ X × Y such that R(x, y) = 0,

(x, y,kE(x,h), cE(y,h)) and (x, y,kE(x,h), cE(y,h′))

are statistically indistinguishable where h and h′ are randomly selected from Z
�
p,

Remark 1. Reconstruction is necessary for the correctness of our construction.
In our construction, kE(x,h) and cE(y,h) cancel each other out. Hence, the
property implies that there exists an efficient algorithm to make both tuples
identical.

An Example of Tag Based Encodings. We provide a simple IBE scheme as
an instance of our encoding from Waters’ IBE [29]. This encoding results in an
adaptively secure IBE scheme via our compiler introduced in the next section.
Let X = Y := Zp. For all ID ∈ X and ID′ ∈ Y, R(ID, ID′) = 1 iff ID = ID′.

• � = 2 and h = (yu, yh) ∈ Z
2
p• kE(ID, (yu, yh)) := (yuID + yh) ∈ Zp

• cE(ID′, (yu, yh)) := (yuID′ + yh) ∈ Zp

• Reconstruction: This is an exact cancellation. Therefore, mx = my = 1.
• Linearity: For all h′ = (y′

u, y′
h),

kE(ID, (y′
u, y′

h)) + kE(ID, (ỹu, ỹh)) = y′
uID + y′

h + ỹuID + ỹh

= kE(ID, (y′
u + ỹu, y′

h + ỹh))

The linearity of cE(ID′, (y′
u, y′

h)) is identical showed with kE(ID, (y′
u, y′

h)).
• h-hiding: Given an instance (ID, ID′, kE(ID, (yu, yh)), cE(ID′, (yu, yh))),

because kE and cE are pairwise independence functions and the values of
yu and yh are hidden. If ID �= ID′, they do not correlate to each other.
Therefore, sharing yu and yh between kE and cE are statistically hidden.

14 J. Kim et al.

5 Our Compiler

Our compiler is similar to those of Waters’ IBE [29]. The main differences
between Waters’ IBE and ours are the way of generating tags in KeyGen and
Encrypt and the types of bilinear maps which are equipped with. In particular,
tags in our construction have structures although tags of Waters’ IBE are created
randomly.

5.1 The Construction

For a tag based encoding TE(R) for a predicate R where R : X × Y → {0, 1},
with � which is an integer to associated with R, PEA(TE(R)) is constructed as
follows.

• Setup(1λ, �): The algorithm takes � of the encoding as an input. Then, it
randomly generates three groups G1, G2 and GT from G(λ, p). Next, it gen-
erates g1 ∈ G1 and g2 ∈ G2 and exponents α, yu, yv, y′

v, yw, a1, a2, b, h1, . . .,
h� ∈ Zp. Let τ1 = gyu+a1·yv

1 , τ ′
1 = g

yu+a2·y′
v

1 and h = (h1, ..., h�). The MSK
consists of (g2, gα

2 , gα·a1
2 , gb

2, u2 = gyu

2 , v2 = gyv

2 , v′
2 = g

y′
v

2 , w2 = gyw

2 , gh2). It
publishes the public parameters PK as follows

g1, g
b
1, g

a1
1 , ga2

1 , gb·a1
1 , gb·a2

1 , τ1, τ
′
1, τ

b
1 , τ ′

1
b
, w1 = gyw

1 , gh1 , e(g1, g2)α·a1·b

• Keygen(MSK, PK, x): The algorithm chooses randomly r1, r2, z1, z2, h
′
1, ...,

h′
� ∈ Zp and sets r = r1 + r2 and Tagk = kE(x,h′) where h′ is equal to

(h′
1, ..., h

′
�). Then, it sets

D1 = gα·a1
2 ur

2,D2 = g−α
2 vr

2g
z1
2 ,D3 = (gb

2)
−z1 ,D4 = v′

2
r
gz2
2 ,D5 = (gb

2)
−z2 ,

D6 = (gb
2)

r2 ,D7 = gr1
2 ,K = (gkE(x,h)

2 w
Tagk
2)r1 .

It outputs SK = (D1, ...,D7,K,Tagk).
• Encrypt(PK, M , y): The algorithm randomly selects s1, s2, t, h′′

1 , ..., h′′
� ∈ Zp

and set s = s1 + s2, and Tagc = cE(y,h′′) where h′′ is equal to (h′′
1 , ..., h′′

�).
It sets

C = M · (e(g1, g2)αa1·b)s2 , C1 = (gb
1)

s, C2 = (gb·a1
1)s1 , C3 = (ga1

1)s1 ,

C4 = (gb·a2
1)s2 , C5 = (ga2

1)s2 , C6 = τs1
1 τ ′

1
s2 , C7 = (τ b

1)s1(τ ′
1
b)s2w−t

1 ,

C8 = gt
1,E = (gcE(y,h)

1 w
Tagc
1)t.

It outputs CT = (C,C1, ..., C8,E,Tagc)3.

3 Linearity of kE(x,h) and cE(x,h) implies that kE and cE are linear functions
over h when x and y are given. Therefore, gkE(x,h) and gcE(y,h) can be efficiently
computed from gh if x and y are given.

A Tag Based Encoding 15

• Decrypt(x, y, SK, CT , PK): First, the algorithm calculates

A1 = e(C1,D1)e(C2,D2)e(C3,D3)e(C4,D4)e(C5,D5),

A2 = e(C6,D6)e(C7,D7).

Since R(x, y) = 1, there exist reconstruction vectors mx and my s.t.
mxkE(x,h) = mycE(y,h) (by Property 1). If mxTagk − myTagc is 0, it
aborts. Otherwise,

A3 = e(C8,Kmx)/e(Emy ,D7) = e(g1, g2)ywr1t(mxTagk−myTagc).

Therefore, M = C · A2/(A1 · A
1/(mxTagk−myTagc)
3).

Correctness. Calculating A1/A2 is trivial and can be found in [29]. We only
point out that A1/A2 = e(g1, g2)αa1·bs2e(g1, w2)−r1t. For mx and my such that
mxkE(x,h) = mycE(y,h), the correctness of A3 is calculated as follows

A3 =
e(C8,Kmx)
e(Emy ,D7)

=
e(gt

1, (g
kE(x,h)
2 w

Tagk
2)r1·mx)

e((gcE(y,h)
1 w

Tagc
1)t·my , gr1

2)

=
e(g1, g2)r1·t·mxkE(x,h)e(g1, w2)r1·t·mxTagk

e(g1, g2)r1·t·my·cE(y,h)e(g1, w2)r1·t·my·Tagc

= e(g1, w2)r1t·(mxTagk−myTagc).

Therefore, M = C · A2/(A1 · A
1/(mxTagk−myTagc)
3).

Remark 2. Alternatively, to reduce the number of pairing computations, we
sets m′

x = mx/(mxTagk − myTagc) and m′
y = my/(mxTagk − myTagc).

Then, the decryption can be done by calculating

A′
1 := e(C1,D1)e(C2,D2)e(C3,D3)e(C4,D4)e(C5,D5)/e(C6,D6),

A′
2 := e(C8,Km′

x/a1)/e(Ẽ,D7).

where Ẽ := (C7,Em′
y). Finally, M is retrieved since M = C/(A′

1 · A′
2).

Theorem 1. Suppose there exists a tag based encoding TE, then our PEA(TE)
is adaptively secure under the (Asymmetric) DLIN assumption.

Proof. This is proved by Lemmas 1 to 3.

16 J. Kim et al.

6 Security Analysis

Semi-functional Ciphertext. By running Encrypt algorithm for a message
M and an input y, the algorithm generates a normal ciphertext CT =
(C ′, C ′

1, ..., C
′
8,E

′,Tag′
c). Then, it randomly selects κ ∈ Zp and sets

C = C ′, C1 = C ′
1, C2 = C ′

2, C3 = C ′
3, C4 = C ′

4g
ba2κ
1 ,

C5 = C ′
5g

a2κ
1 , C6 = C ′

6v
′
1
a2κ

, C7 = C ′
7v

′
1
a2bκ

, C8 = C ′
8, E = E′, Tagc = Tag′

c.

Semi-functional Key. The algorithm generates a normal key SK = (D′
1, . . .,

D′
7, K′, Tag′

k) by running Keygen algorithm for an input x. Then, it sets

D1 = D′
1g

−a1a2γ
2 , D2 = D′

2g
a2γ
2 , D3 = D′

3, D4 = D′
4g

a1γ
2

D5 = D′
5, D6 = D′

6, D7 = D′
7, K = K′, Tagk = Tag′

k.

It should be noted that e(g1, g2)a1a2bκγ will be added to the message to be
encrypted if the semi-functional key is used to decrypt the semi-functional cipher-
text.
Security Games.

Gamereal: This game is a real game. It is identical to the adaptive security model.
Gamei: This game is identical to Gamereal except the challenge ciphertext and

the first i keys. In this game, the challenge ciphertext and the first i keys are
semi-functional.

Gamefinal: This game is identical to Gameqt
except the challenge ciphertext where

qt is the total number of key queries. In this game, the challenge ciphertext
is still semi-functional, but it is an encryption of a random message.

First, we prove that Gamereal and Game0 are indistinguishable (semi-
functional ciphertext invariance) in Lemma 1. Then, we show that Gamek−1 is
also indistinguishable from Gamek (semi-functional key invariance) in Lemma 2.
Finally, in Lemma 3, we prove the invariance between Gameqt

and Gamefinal

(semi-functional security). This completes the security analysis since no attacker
has a non-negligible advantage in Gamefinal. Lemmas 1 and 3 are provided in
the full version of this paper.

Lemma 2 (Semi-functional Key Invariance). Suppose that there exists an
algorithm A which distinguishes Gamek−1 and Gamek with a non-negligible
advantage ε. Then, we can build an algorithm B which breaks (Asymmetric)
DLIN assumption with ε.

Proof. G1 and G2 of (Asymmetric) DLIN are reversed. Therefore, B takes
{g1, f1, ν1, g2, f2, ν2, g

c1
2 , fc2

2 , T} as an instance from (Asymmetric) DLIN
assumption. Depending on the value of T , B will simulate Gamek−1 or Gamek

to take an advantage from A which can distinguish. It should be noted that T
is in G2 in the reversed assumption.

A Tag Based Encoding 17

Setup. B chooses α, a1, a2, yv, y′
v, yw, h′

1, ...h
′
�, h̃1, ...h̃�, randomly from Zp. It sets

e(g1, g2)α·a1b = e(f1, g2)α·a1 , g1 = g1, g
b
1 = f1, g

b·a1
1 = fa1

1 , gb·a2
1 = fa2

1 ,

u1 = ν−a1a2
1 , v1 = νa2

1 ·gyv

1 , v′
1 = νa1

1 ·gy′
v

1 , τ1 = u1v
a1
1 = gyva1

1 , τ ′
1 = u1v

′a2
1 = g

y′
va2

1 ,

τ b
1 = f

yv1a1

1 , τ ′
1
b = f

y′
va2

1 , w1 = f1g
yw

1 , {ghi
1 = f

−h′
i

1 gh̃i
1 ;∀i ∈ [1, �]}

Then, it publishes the public parameters

g1, g
b
1, g

a1
1 , ga2

1 , gb·a1
1 , gb·a2

1 , τ1, τ
′
1, τ

b
1 , τ ′

1
b
, w1, g

h
1 , e(g1, g2)α·a1·b

where h = (h1, ..., h�). B sets MSK = {g2, g
α
2 , gα·a1

2 , gb
2 = f2, u2 = ν−a1a2

2 , v2 =
νa2
2 gyv

2 , v′
2 = νa1

2 g
y′

v
2 , w2 = f2g

yw

2 , {ghi
2 = f

−h′
i

2 gh̃i
2 ;∀i ∈ [1, �]}}.

In the setting, h is implicitly set by h̃ − yfh′ where h′ = (h′
1, ...h

′
�) and

h̃ = (h̃1, ...h̃�) if we write f1 = g
yf

1 . B calculates gh1 because it knows g1, f1, h̃,h′.
It should be noted that the values of {h′

i;∀i ∈ [1, �]} are not revealed. It means
that they are initially information theoretically hidden because, for all i ∈ [1, �],
h̃i is uniquely added where h′

i appears.

Phase I and II. For the first k − 1 semi-functional keys, B generates a normal
key and selects γ randomly from Zp. It then adds semi-functional parts to the
normal key. This is possible because B knows a1, a2 and MSK. Similarly, for
the rest keys except kth key (i > k), B can generate normal keys using the key
generation algorithm, KeyGen, for the same reason.

For the kth key, B sets Tag′
k = kE(x,h′). Then, with Tag′

k, it generates a
normal key SK ′ = (D′

1, ...,D
′
7, K′,Tag′

k) using the key generation algorithm.
Then, it reuses Tag′

k in the kth key (i.e. Tagk = Tag′
k) and sets the other

elements as follows

D1 = D′
1T

−a1a2 , D2 = D′
2T

a2(gc1
2)yv , D3 = D′

3(f
c2
2)yv , D4 = D′

4T
a1(gc1

2)y′
v ,

D5 = D′
5(f

c2
2)y′

v ,D6 = D′
6f

c2
2 ,D7 = D′

7(g
c1
2),K = K′(gc1

2)kE(x,h̃+ywh′).

We let r′
1, r

′
2, z

′
1, z

′
2 denote the random exponents of SK ′. Then, it implicitly

sets z1 = z′
1 − yvc2 and z2 = z′

2 − y′
vc2. Also, by linearity property,

g
kE(x,h)
2 = g

kE(x,−yfh
′+h̃)

2 = g
kE(x,−yfh

′)
2 g

kE(x,h̃)
2 = f

−kE(x,h′)
2 g

kE(x,h̃)
2

Therefore, the value of K′ can be represented as follows:

K′ = (f−kE(x,h′)
2 g

kE(x,h̃)
2 (f2g

yw

2)kE(x,h′))r′
1 = (gkE(x,h̃+ywh′)

2)r′
1 .

This implies that K = K′(gc1
2)kE(x,h̃+ywh′) = (gkE(x,h̃+ywh′)

2)r′
1+c1 .

If T is equal to νc1+c2
2 , then the kth key is a normal key with r1 = r′

1+c1 and
r2 = r′

2 + c2. Otherwise, if T is νc1+c2
2 gγ

2 , which means a random group element,
then, the kth key is a properly distributed semi-functional key.

18 J. Kim et al.

Challenge Ciphertext. When the adversary requests the challenge ciphertext
for y∗ with messages M0,M1, B randomly selects β from {0, 1}. With Tag′

c =
cE(y∗,h′), B runs the encryption algorithm to generate a normal ciphertext
CT ′ = (C ′, C ′

1, ..., C ′
8, E′, Tag′

c) for y∗ and Mβ . We let s′
1, s

′
2, t

′ denote the
random exponents of CT ′. To make the semi-functional challenge ciphertext,
it randomly selects κ ∈ Zp and sets C = C ′, C1 = C ′

1, C2 = C ′
2, C3 = C ′

3.
Additionally, it sets

C4 = C ′
4f

a2·κ
1 , C5 = C ′

5 · ga2·κ
1 , C6 = C ′

6 · v′
1
a2κ

, C7 = C ′
7 · f

y′
v·κ·a2

1 ν−a1·κ·yw·a2
1

C8 = gt′
1 · νa1a2κ

1 , E = E′ · (νcE(y∗,h̃+ywh′)
1)a1a2κ, Tagc = Tag′

c

This implicitly sets gt
1 = gt′

1 · νa1a2κ
1 . Also, ν1

a1a2bκ of v′
1
a2bκ is cancelled out by

w−t
1 in C7.

The fact that Tagc and Tagk share the same vector h′ is hidden to the adver-
sary by h-hiding property since R(x, y∗) = 0. Therefore, Tagc with correlated
h′ can be switched to Tagc with a random vector from Z

�. Also, E is valid since

E′ = (f−cE(y∗,h′)
1 g

cE(y∗,h̃)
1 (f1g

yw

1)cE(y∗,h′))t′
= (gcE(y∗,h̃+ywh′)

1)t′
.

The second equality of the above equation holds by linearity property.
B cannot test whether the kth key is normal or semi-functional by creating

a ciphertext which can be decrypted only by a normal key because Tagk and
Tagc share h′. It means that mxTagk − my∗Tagc is equal to 0 if the simulator
creates a semi-functional ciphertext such that R(x, y) = 1. Hence, the decryption
algorithm will abort.

7 New Schemes

We provide instances for our encoding to achieve new PE schemes. The instances
of Inner Product Encryption (IPE) with short keys, Dual Spatial Encryption
(Dual SE) with short keys and HIBE with short ciphertexts will be presented.
Inner Product Encryption (IPE) with short keys and Dual Spatial Encryption
(Dual SE) are new instances. HIBE with short ciphertexts is also found in [10,
30], but applying this instance to our compilers results in new schemes both
in asymmetric and symmetric bilinear maps. It should be noted that security
analysis of each scheme is replaced by showing that the corresponding instance
satisfies the properties that tag based encoding requires.

Inner Product Encryption with Short Keys. Let define X = Y := Z
�
p. For

all, x ∈ X and y ∈ Y, R(x, y) = 1 iff 〈x,y〉 = 0.

• � is the size of a predicate and h ∈ Z
�
p.

• kE(x,h) := 〈h,x〉 ∈ Zp

• cE(y,h) := (−h1(y2/y1) + h2, ...,−h1(y�/y1) + h�) ∈ Z
�−1
p

• Reconstruction: mx = 1 and my = (x2, ..., x�).

A Tag Based Encoding 19

• Linearity: Firstly, the linearity of kE holds trivially since 〈h,x〉 + 〈h′,x〉 =
〈h+h′,x〉. Also, cE(y,h)+cE(y,h′) = cE(y,h+h′) since, for all i ∈ [1, �−1],
−h1(yi+1/y1)+hi+1−h′

1(yi+1/y1)+h′
i+1 = −(h1+h′

1)(yi+1/y1)+hi+1+h′
i+1.

• h-hiding: In the following equation, the first � − 1 coordinates of the right
hand vector in the above equation are independent from the last coordinate
by �-wise independence [4]. Hence, sharing h between kE, cE is hidden to the
adversary.

⎛
⎜⎜⎜⎝

−y2/y1 1
...

. . .
−y�/y1 1

x1 x2 x3 · · · x�

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

h1

...
h�−1

h�

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−h1(y2/y1) + h2

...
−h1(y�/y1) + h�

〈h,x〉

⎞
⎟⎟⎟⎟⎟⎠

Dual Spatial Encryption with Short Keys. For a matrix M ∈ Z
(�−1)×d
p

and a vector c ∈ Z
�−1
p , it defines the affine space Aff(M, c) = {Mw+c|w ∈ Z

d
p}.

Then, R(x,Aff(M, c)) = 1 iff there exists w ∈ Z
d
p such that Mw + c = x.

• � is the number of rows of an affine matrix (+1) and h = (u0,u) ∈ Z
�
p.

• kE(x,h) := u0 + xᵀu ∈ Zp.
• cE(Aff(M, c),h) := (u0 + cᵀu,Mᵀu) ∈ Z

d+1
p

• Reconstruction: mx = 1 and my = (1, w̃ᵀ) where w̃ ∈ Z
d
p s.t. Mw̃+c = x.

• Linearity: All coordinates of kE(x,h) and cE(Aff(M, c),h) are linear over h.
• h-hiding: In the following equation, for x ∈ X , there is no w such that

Mw + c = y since R(x,Aff(M, c)) = 0. Hence, the last row of the matrix on
the left is linearly independent from the other rows. Hence, it is hidden that
they share u0 and u.

⎛
⎝

1 cᵀ

0 Mᵀ

1 xᵀ

⎞
⎠

(
u0

u

)
=

⎛
⎝

u0 + cᵀu
Mᵀu

u0 + xᵀu

⎞
⎠

HIBE with Short Ciphertexts [10,30]. For a vector IDd := (id1, ..., idd) ∈ Z
d
p

and a vector ID′
d′ := (id′

1, ..., id
′
d′) ∈ Z

d′
p , R(IDd, ID′

d′) = 1 iff d ≤ d′ and idi =
id′

i ∀i ∈ [1, d].

• � is the maximum depth of an identity (+1) and h = (h0, ..., h�) ∈ Z
�
p.

• kE(IDd,h) := (h0 + h1(id1) + ... + hd(idd), hd+1, ..., h�) ∈ Z
�−d
p

• cE(ID′
d′ ,h) := h0 + h1(id′

1) + ... + hd′(id′
d′) ∈ Zp

• Reconstruction: mx = (1, id′
d+1, ..., id

′
d′ , 0, ..., 0) ∈ Z

�−d
p and my = 1.

• Linearity: All coordinates of kE(IDd,h) and cE(ID′
d,h) are linear over h.

• h-hiding: In the following equation, the first � − d + 1 rows are linearly
independent with the last row of matrix on the left since idd �= id′

d and
h0, ..., h� appear at most twice. Therefore, the sharing h between the first

20 J. Kim et al.

�+1 coordinates of the vector of the right hand of the equation with the last
coordinate of the vector is hidden.

⎛
⎜⎜⎜⎜⎜⎝

1 id1 · · · idd

1
. . .

1
1 id′

1 · · · id′
d · · · id′

d′

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

h0

...
h�−1

h�

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

h0 + h1(id1) + ... + hd(idd)
hd+1

...
h�

h0 + h1(id′
1) + ... + hd′(id′

d′)

⎞
⎟⎟⎟⎟⎟⎠

8 Conclusion

In this paper, we proposed a new encoding framework for PE schemes. Our
framework provides an encryption scheme having a better efficiency when the
size of their encoding is large compared with prior encoding frameworks. We
provided two generic constructions for our framework as compilers of encodings.
They are adaptively secure under the standard assumption. Consequently, we
showed that our encoding is versatile by proposing a number of new instances
that are applicable to our encodings.

References

1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9563, pp.
259–288. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 10

2. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014)

3. Attrapadung, N.: Dual system encryption framework in prime-order groups. IACR
Cryptology ePrint Archive, 2015:390 (2015)

4. Attrapadung, N., Libert, B.: Functional encryption for public-attribute inner prod-
ucts: achieving constant-size ciphertexts with adaptive security or support for nega-
tion. J. Math. Cryptol. 5(2), 115–158 (2012)

5. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg,
K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Heidelberg (2015)

6. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

7. Chen, C., Zhang, Z., Feng, D.: Fully secure doubly-spatial encryption under simple
assumptions. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y. (eds.) ProvSec
2012. LNCS, vol. 7496, pp. 253–263. Springer, Heidelberg (2012)

8. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015)

9. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
435–460. Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-662-49099-0_10

A Tag Based Encoding 21

10. Chen, J., Wee, H.: Dual system groups and its applications - compact HIBE and
more. IACR Cryptology ePrint Archive, 2014:265 (2014)

11. Datta, P., Dutta, R., Mukhopadhyay, S.: Fully secure self-updatable encryption in
prime order bilinear groups. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu,
S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 1–18. Springer, Heidelberg (2014)

12. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

13. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

14. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R.
(eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013)

15. Hamburg, M.: Spatial encryption. IACR Cryptology ePrint Archive, 2011:389
(2011)

16. Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces: a new
framework for composite-to-prime-order transformations. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 261–279. Springer,
Heidelberg (2014)

17. Lee, K., Choi, S.G., Lee, D.H., Park, J.H., Yung, M.: Self-updatable encryption:
time constrained access control with hidden attributes and better efficiency. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 235–
254. Springer, Heidelberg (2013)

18. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

19. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

20. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: IACR Cryptology ePrint Archive, 2009:482
(2009)

21. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

22. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

23. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

24. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg (2011)

25. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012)

22 J. Kim et al.

26. Ramanna, S.C.: More efficient constructions for inner-product encryption. In:
Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696,
pp. 231–248. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39555-5 13

27. Ramanna, S.C., Chatterjee, S., Sarkar, P.: Variants of waters’ dual system primi-
tives using asymmetric pairings. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 298–315. Springer, Heidelberg (2012)

28. Seo, J.H.: On the (Im)possibility of projecting property in prime-order setting.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 61–79.
Springer, Heidelberg (2012)

29. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009)

30. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-319-39555-5_13

Non-zero Inner Product Encryption with Short
Ciphertexts and Private Keys

Jie Chen1,2(B), Benôıt Libert1(B), and Somindu C. Ramanna1(B)

1 Laboratoire LIP, École Normale Supérieure de Lyon, Lyon, France
{benoit.libert,somindu.ramanna}@ens-lyon.fr
2 East China Normal University, Shanghai, China

s080001@e.ntu.edu.sg

Abstract. We describe two constructions of non-zero inner product
encryption (NIPE) systems in the public index setting, both having
ciphertexts and secret keys of constant size. Both schemes are obtained
by tweaking the Boneh-Gentry-Waters broadcast encryption system
(Crypto 2005) and are proved selectively secure under previously con-
sidered assumptions in groups with a bilinear map. Our first realization
builds on prime-order bilinear groups and is proved secure under the
Decisional Bilinear Diffie-Hellman Exponent assumption, which is para-
meterized by the length n of vectors over which the inner product is
defined. By moving to composite order bilinear groups, we are able to
obtain security under static subgroup decision assumptions following the
Déjà Q framework of Chase and Meiklejohn (Eurocrypt 2014) and its
extension by Wee (TCC 2016). Our schemes are the first NIPE systems
to achieve such parameters, even in the selective security setting. More-
over, they are the first proposals to feature optimally short private keys,
which only consist of one group element. Our prime-order-group realiza-
tion is also the first one with a deterministic key generation mechanism.

Keywords: Functional encryption · Non-zero inner products ·
(Identity-based) revocation

1 Introduction

Attribute-based encryption (ABE) [20,35] allows fine-grained access control to
encrypted data. In an ABE system, a ciphertext has an associated attribute x
and a secret key for a user associated to some attribute y can successfully decrypt
iff some relation R on x,y holds true i.e., R(x,y) = 1. An ABE scheme is said
to be secure if a collusion attack by a group of users does not compromise the
security of a ciphertext they are not allowed to decrypt. In this work, we consider
attributes belonging to some inner product space V and the relation is given by
R(x,y) = 1 iff 〈x,y〉 �= 0, for x,y ∈ V . Such an ABE (referred to as non-zero
inner product encryption scheme or NIPE) is known to imply identity-based
revocation, an important cryptographic primitive in its own right.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 23–41, 2016.
DOI: 10.1007/978-3-319-44618-9 2

24 J. Chen et al.

Identity-based revocation (IBR) allows a sender to encrypt and broadcast
a message to a number of identities, given a set of revoked users R, so that
only secret keys associated with identities outside of R can decrypt the message.
NIPE systems are known to imply IBR – the attribute associated with the
ciphertext (of length n) is nothing but the vector of coefficients of the polynomial
pR(Z) =

∏
idi∈R(Z − idi) where |R| ≤ n and the secret key for an identity id

corresponds to the vector (1, id, . . . , idn). The inner product is non-zero if and
only if pR(id) �= 0 or equivalently id /∈ R, in which case decryption succeeds.

In this paper, our main goal is to design NIPE (and thus revocation) schemes
that simultaneously provide short ciphertexts and private keys. We will also seek
to prove security under well-studied hardness assumptions.

Our Contribution. We first present a NIPE system employing prime-order bilin-
ear groups where ciphertexts and secret keys both have constant1 size. Our
scheme is the first one where both sizes can be constant. Indeed, all earlier real-
izations [4,5,34] providing O(1)-size ciphertexts (resp. O(1)-size private keys)
indeed required O(n) group elements in private keys (resp. in ciphertexts), where
n denotes the dimension of the inner product space which is fixed at setup time.
Even in the selective model [4,5], all previous constructions thus had linear com-
plexities in the size of ciphertexts or private keys.

The scheme is also the first NIPE realization to feature optimally short
private keys – which only consist of one group element – via a deterministic
private key extraction algorithm. In particular, our NIPE scheme implies the
first (identity-based) revocation system that simultaneously provides O(1)-size
ciphertexts and private keys. It thus performs in the same way as the Boneh-
Gentry-Waters (BGW) broadcast encryption [12] system and relies on the same
assumption. Like earlier NIPE proposals, our scheme requires O(n) group ele-
ments in the public parameters. In the revocation setting, this translates into a
linear public key size in the maximal number of revoked users per ciphertext,
which is on par with solutions [29,38] based on the Naor-Pinkas technique [29].

The security of our scheme is proved against selective adversaries under the
n-Decisional Bilinear Diffie-Hellman (n-DBDHE) assumption, the strength of
which depends on the dimension n of handled vectors. While relying on such a
parameterized assumption is certainly a caveat [17], our scheme can be modified
so as to dispense with variable-size assumptions.

Our second contribution is a NIPE system based on composite order pairing
groups with security under constant-size subgroup decision assumptions. The
proof follows the Déjà Q framework of [16,40]. Even in the restrictive selective
model of security, our scheme is the first one to achieve constant size ciphertexts
and keys under static assumptions.
1 One may object saying the linear-length vector x still has to be appended to the

ciphertext. Nevertheless, in many applications the description of x can be very short.
For example, in an ordinary (i.e., non-identity-based) broadcast encryption scheme
for n users, x is uniquely determined by the n-bit word that specifies which users are
in the revoked set. In this case, our ciphertexts reduce the communication overhead
from O(nλ) to O(n + λ) bits if λ is the security parameter.

Non-zero Inner Product Encryption with Short Ciphertexts 25

In the context of revocation, not only do we provide the first identity-based
revocation systems with constant-size ciphertexts and keys, but we also give a
solution based on fairly well-studied subgroup assumptions in composite order
groups. It remains a challenging open problem (at least without using a com-
plexity leveraging argument [8] entailing an exponential security loss) to achieve
similar efficiency tradeoffs while proving security against adaptive adversaries.

Outline of the Constructions and Proofs. We begin with the first construction
based on an asymmetric prime-order pairing e : G × Ĝ → GT with group order
p. The public key consists of gαi

, ĝαi

for i ∈ [1, 2n]\{n+1} along with gγ where
g and α, γ are sampled at random from G and Zp, respectively. In addition the
element e(g, ĝ)αn+1

is provided. A ciphertext for an attribute vector x ∈ Z
n
p and

message m consists of (m ·e(g, ĝ)αn+1s, gs, (v ·g
∑n

i=1 αixi)s). Secret key associated
with a vector y is computed deterministically as ĝγ

∑n
i=1 αn−i+1yi . The structure

is reminiscent of the Boneh-Gentry-Waters broadcast encryption scheme [12].
The proof of security is a reduction from the hardness of the n-DBDHE problem
– an instance consists of gαi

, ĝαi

for i ∈ [1, 2n] \ {n + 1}, gs ∈ G, T ∈ GT and
asks to decide whether T = e(g, ĝ)αn+1s or T R← GT . The attacker declares a
target vector x∗ which is used to program γ =

∑n
i=1 αix∗

i . For any y ∈ Z
n
p

with 〈x∗,y〉 = 0, secret key dy can be simulated using the elements provided
in the instance because for dy, the coefficient of αn+1 in the exponent of ĝ
would be 〈x∗,y〉 = 0. The attacker then provides two messages m0,m1 to which
the challenger responds with the ciphertext (mβ · T, gs, (v · g

∑n
i=1 αixi)s) for a

randomly chosen bit β. An adversary’s ability to determine whether the message
encrypted in the challenge ciphertext is real or random can be leveraged to solve
the given instance of the decision problem.

We then consider a variant in the setting of a composite-order symmet-
ric pairing e : G × G → GT of common group order N = p1p2p3, similar to
Wee’s composite-order variant [40] of the broadcast encryption in [12]. (Let Gq

denote the subgroup of G of order q where q would be of the form pe1
1 pe2

2 pe3
3 for

e1, e2, e3 ∈ {0, 1}). The public key is composed of v = gγ , (gαi

)n
i=1, Uj = uαj

,
j ∈ [1, 2n] \ {n + 1} for some g, u R← G and α, γ ∈ ZN along with a pairwise-
independent hash function H : GT → {0, 1}λ. Decryption key for a vector y is
defined as uγ

∑n
i=1 αn−i+1yi and the ciphertext for attribute x and message M is

defined as (M ⊕ H(e(g, u)αn+1s), gs, (v · g
∑n

i=1 αixi)s). In addition, the parame-
ters Uj and secret keys are randomized with Gp3 -components. The security is
reduced to two standard subgroup decision assumptions, denoted (p1 → p1p2)
and (p1p3 → p1p2p3), where (q1 → q2) subgroup decision problem asks to dis-
tinguish between random elements of Gq1 from random elements of Gq2 . The
reduction gradually adds Gp2-components to the challenge ciphertext as well as
elements (Uj)2n

j=1 so that at the end, each Uj has in its exponent a pseudorandom
function RF : [1, 2n] → Zp2 evaluated at j. The element v = gγ is programmed
based on the challenge attribute x∗ in a manner similar to the reduction in
the prime-order case. Additionally, this ensures that the challenge ciphertext
components are independent of α mod p2. Given this and the fact that keys are

26 J. Chen et al.

generated only for vectors y with 〈x∗,y〉 = 0, αn+1 does not appear in the
exponent of u in any of the keys. On the other hand, the message is masked by
the hash of an element of GT determined by RF (n + 1). Since all information
provided to the attacker is independent of RF (n + 1), we use the left over hash
lemma to argue that the mask on the message is uniformly distributed and hence
statistically hides the message from the attacker.

Related Work. The inner product functionality was first considered by Katz et al.
[22] in the design of predicate encryption systems (i.e., ABE schemes in the private
index setting). Their construction [22] initiated a large body of work [2,24,30–
34,36] which considered hierarchical extensions [30,33], additional properties in
the secret-key setting [36] and adaptively secure realizations [24,31–34].

In the public-index setting, inner products also proved useful [4] to build
adaptively secure identity-based broadcast encryption (IBBE) and revocation
schemes with short ciphertexts under simple assumptions. The first construc-
tion of non-zero IPE appeared in [4] with security in the co-selective model
under the Decision Linear [9] and Decisional Bilinear Diffie-Hellman assump-
tions. Co-selective security requires an adversary to commit to the attributes
corresponding to private key queries before seeing the public parameters of the
scheme, as opposed to target attribute set in the selective model. It is slightly
stronger than the selective model but weaker than the adaptive model. The
scheme has constant-size ciphertexts whereas its public parameters and keys
are of size linear in n. More efficient realizations (but with asymptotically sim-
ilar parameters) were put forth by Attrapadung et al. [5] and Yamada et al.
[41] under the n-DBDHE assumption. While some of the NIPE constructions of
[5,41] have exactly the same ciphertext length (resp. private key length) as our
scheme, they require O(n)-size private keys (resp. O(n)-size ciphertexts). We
thus prove security under the same assumption as [5,41] with only one group
element per private key and 3 group elements per ciphertext.

The first adaptively secure NIPE scheme was proposed in [34] with O(n)
group elements in the public parameters and either O(1)-size ciphertexts or
O(1)-size keys with a security reduction to the Decision Linear assumption. A
more efficient construction was provided in [15] via an instantiation of predicate
encodings [39] in prime-order groups. On the other hand, either ciphertexts or
secret keys had size linear in n. Previously known constructions did not consider
simultaneously achieving constant size ciphertexts and secret keys.

More recently, Abdalla et al. [1] suggested a different inner product func-
tionality which evaluates linear functions of encrypted data (i.e., their inner
product with a vector associated with the private key), instead of only test-
ing if they evaluate to 0 as in [22,24,31–34]. Under simple assumptions, they
obtained practical solutions based on the standard Decision Diffie-Hellman and
Learning-With-Errors assumptions. Their results were extended to handle adap-
tive adversaries [3] and function-privacy in the secret-key setting [6].

In the context of IBBE scheme, Delerablée [18] suggested a selectively secure
construction with constant-size ciphertexts and private keys based on strong
q-type assumptions. Her construction actually remains the most efficient IBBE

Non-zero Inner Product Encryption with Short Ciphertexts 27

in the literature to date. The IBR system implied by our first NIPE construction
can be seen as the revocation analogue of Delerablée’s IBBE as it simultaneously
provides O(1)-size ciphertexts and keys (the public parameters also have linear
length in the maximal number of receivers per ciphertext in [18]). Unlike our
IBR system, however, [18] is not known to have a counterpart based on simple
assumptions in composite order groups. In the identity-based revocation setting,
the constructions of Lewko et al. [23] feature constant-size private keys and pub-
lic parameters, but their ciphertext size is linear in the number of revoked users.
While their first construction has very short private keys and public parame-
ters (made of 3 and 4 group elements, respectively), its underlying complexity
assumption is very ad hoc and even stronger than n-DBDHE.

The Déjà Q framework, introduced by Chase and Meiklejohn [16], allows reduc-
ing well-studied fixed-size assumptions, such as the Subgroup Decision assumption
[11] to some families of parameterized assumptions in composite-order groups. As
a result, some well-known constructions such as Dodis-Yampolskiy PRF [19] and
Boneh-Boyen signatures [7], when instantiated in composite order groups, could be
shown secure under subgroup decision assumptions. Wee [40] further advanced the
framework to cover certain encryption primitives as well, in addition to removing
the restriction to work with asymmetric composite order groups. The primitives
include adaptively secure identity-based encryption and selectively secure broad-
cast encryption. Recently, Libert et al. [26] applied Wee’s framework to obtain
functional commitment schemes for linear functions and accumulators from simple
assumptions.

2 Background

2.1 Bilinear Maps and Complexity Assumptions

Assumptions in prime order groups. Let (G, Ĝ,GT) be groups of prime
order p with a bilinear map e : G × Ĝ → GT . We rely on a parameterized
assumption introduced by Boneh et al. [12]. While this assumption was defined
using symmetric pairings [10,12], we consider a natural extension to asymmetric
pairings, which will enable our most efficient construction.

Definition 1. Let (G, Ĝ,GT) be bilinear groups of prime order p. The n-
Decision Bilinear Diffie-Hellman Exponent (n-DBDHE) problem is,
given a tuple (g, gα, g(α

2), . . . , g(α
n), g(α

n+2), . . . , g(α
2n), h, ĝ, ĝα, ĝ(α

2), . . . , ĝ(α
n),

ĝ(α
n+2), T) where g, h R← G, ĝ R← Ĝ, α R← Zp and T ∈R GT , to decide if

T = e(h, ĝ)(α
n+1) or if T is a random element of GT .

Assumptions in composite order groups.We use groups (G,GT) of com-
posite order N = p1p2p3 endowed with an efficiently computable map (a.k.a.
pairing) e : G×G → GT such that: (1) e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G

and a, b ∈ Z; (2) if e(g, h) = 1GT
for each h ∈ G, then g = 1G. An important

property of composite order groups is that pairing two elements of order pi and
pj , with i �= j, always gives the identity element 1GT

.

28 J. Chen et al.

In the following, for each i ∈ {1, 2, 3}, we denote by Gpi
the subgroup of

order pi. For all distinct i, j ∈ {1, 2, 3}, we call Gpipj
the subgroup of order pipj .

In this setting, we rely on the following assumptions introduced in [25].

Assumption 1. Given a description of (G,GT , e) as well as g R← Gp1 , g3
R← Gp3

and T ∈ G, it is infeasible to efficiently decide if T ∈ Gp1p2 or T ∈ Gp1 .
Assumption 2. Let g,X1

R← Gp1 ,X2, Y2
R← Gp2 , g3, Y3

R← Gp3 . Given a descrip-
tion of (G,GT , e), a set of group elements (g,X1X2, g3, Y2Y3) and T , it is
hard to decide if T ∈R Gp1p3 or T ∈R G.

These assumptions are non-interactive and falsifiable [28]. Moreover, in both of
them, the number of input elements is constant (i.e., independent of the number
of adversarial queries).

2.2 Non-zero Inner Product Encryption (IPE)

Definition 2 (NIPE). Let V denote an inner product space of dimension n
and M denote the message space. A non-zero inner product encryption (NIPE)
scheme for inner products over V , is defined by four probabilistic algorithms –
Setup, Encrypt, KeyGen and Decrypt.

Setup(λ, n): Takes as input a security parameter λ and the dimension of V . It
outputs the public parameters mpk and the master secret msk.

KeyGen(msk,y): On input a vector y∈V and the master secret msk; this algo-
rithm outputs a secret key dy for y.

Encrypt(mpk,m,x): Takes as input a message m and an attribute vector x∈V
and outputs a ciphertext C.

Decrypt(mpk, C, dy): If 〈x,y〉 �= 0, this algorithm returns the message m and ⊥
otherwise.

Correctness. A NIPE scheme satisfies the correctness condition if for all vectors
x,y ∈ V with 〈x,y〉 �= 0 and for any message m ∈ M, any keys (mpk,msk) ←
Setup(λ, n), dy ← KeyGen(msk,y) and any ciphertext C ← Encrypt(mpk,m,x),
then Pr[m = Decrypt(mpk, C, dy)] = 1.

Definition 3 (Selective Security). Selective security of a non-zero inner
product encryption scheme is formalized in terms of the following game between
an adversary A and a challenger.

Initialization: The adversary A declares a challenge vector x�.

Setup: The challenger runs the Setup algorithm of the NIPE and gives the public
parameters to the adversary A.

Key Extraction Phase 1: The adversary makes a number of key extraction
queries adaptively. For a query on a vector y with the restriction that 〈x�,y〉 = 0,
the challenger responds with a key dy.

Non-zero Inner Product Encryption with Short Ciphertexts 29

Challenge: The adversary A provides two equal-length messages M0,M1. The
challenger chooses a bit β uniformly at random from {0, 1}, encrypts Mβ to x�

and returns the resulting ciphertext C� to A.

Key Extraction Phase 2: A makes more key extraction queries under the
same restriction that it can only query keys for vectors y with 〈x�,y〉 = 0.

Guess: A outputs a bit β′.
If β = β′, then A wins the game. The advantage of A in winning the above

game is defined as

AdvNIPE,A(λ) =
∣∣∣∣Pr[β = β′] − 1

2

∣∣∣∣ .

The NIPE scheme is said to be secure if every PPT adversary has negligible
advantage in winning the above game.

3 A Construction for Non-zero Inner Products
with Constant-Size Ciphertexts and Private Keys

Our scheme builds on the Boneh-Gentry-Waters broadcast encryption [12] and
inherits its efficiency. In particular, the public parameters are exactly those of
the BGW construction. In order to adapt it in the context of non-zero inner
product encryption, we extend earlier observations which leveraged the BGW
technique in the design of accumulators [13] and vector commitments [21,27].

It was shown in [21] that a public key of the form

{(gi = g(α
i), ĝi = ĝ(α

i))}i∈[1,2n]\{n+1}

allows committing to a vector x = (x1, . . . , xn) in such a way that the com-
mitment string C = gγ · ∏n

j=1 g
xj

j makes it possible to convincingly reveal the
partial information z = 〈x,y〉 about the committed message x. Namely, a single
group element

Wz =
n∏

i=1,i �=j

(ĝγ
n+1−i

n∏
j=1

ĝ
xj

n+1+j−i)
yi ∈ Ĝ (1)

can serve as a witness that z = 〈x,y〉, for public x ∈ Z
n
p and z ∈ Zp, and the

verifier accepts (z,Wz) if and only if the following relation holds:

e(C,

n∏
j=1

ĝ
yj

n+1−j) = e(g1, ĝn)z · e(g,Wz) (2)

The binding property of the commitment scheme relies on the fact that neither
gn+1 = g(α

n+1) nor ĝn+1 = ĝ(α
n+1) is publicly available.

Our non-zero IPE scheme proceeds by randomizing both members of (2) –
by raising them to a random power s ∈ Zp – so that the randomized C can be

30 J. Chen et al.

embedded in the ciphertext (together with gs) while Wz serves as a decryption
token. The decryption operation then computes e(g1, ĝn)s·〈x,y〉, which uncovers
e(g1, ĝn)s whenever 〈x,y〉 �= 0.

Our ciphertexts are of the form
(
M · e(g1, ĝn)s, gs, (gγ · ∏n

j=1 g
xj

j)s
)

and the
challenge is thus to associate each vector y ∈ Zp with a short private key dy so
as to enable decryption. To achieve this, we observe that (1) can be re-written

Wz = (
∏
i=1

ĝyi

n+1−i)
γ ·

n∏
i=1,i �=j

n∏
j=1

ĝ
xjyi

n+1+j−i ∈ Ĝ,

where the second term is publicly computable as it does not depend on ĝn+1 =
ĝ(α

n+1). This implies that, if γ ∈ Zp is the master secret key, the private key for
a vector y can only consist of a single group element dy = (

∏n
j=1 ĝ

yj

n+1−j)
γ ∈ Ĝ.

Somewhat surprisingly, private keys are generated in a deterministic man-
ner and, at first glance, their shape seems at odds with the collusion-resistance
requirement: if dy1 is a private key for y1 ∈ Zp and dy2 is a private key for
y2 ∈ Zp, the product dy1 · dy2 is a valid private key for y1 + y2. However, this
does not affect the functionality since any ciphertext that neither dy1 nor dy2

can decrypt must be labeled with a vector x such that 〈x,y1〉 = 〈x,y2〉 = 0,
which implies 〈x,y1 +y2〉 = 0. Said otherwise, combining several keys that can-
not decrypt a given ciphertext only yields another key that remains unable to
decrypt.

Setup(λ, n): Choose bilinear groups (G, Ĝ,GT) of prime order p > 2λ and define
the bilinear map e. Choose g R← G, ĝ R← Ĝ, α, γ R← Zp at random in order to
define v = gγ ∈ G and

g1 = gα, . . . gn = g(α
n)

gn+2 = g(α
n+2), . . . g2n = g(α

2n)

and
ĝ1 = ĝα, . . . ĝn = ĝ(α

n)

ĝn+2 = ĝ(α
n+2), . . . ĝ2n = ĝ(α

2n)

Define the master public key to consist of

mpk :=
(
(G, Ĝ,GT , e), g, ĝ, v, {(gj , ĝj)}j∈[1,2n]\{n+1}

)
.

The master secret key is msk := γ.
KeyGen(msk,y): To generate a key for the vector y = (y1, . . . , yn) ∈ Z

n
p , com-

pute and output dy =
(∏n

i=1 ĝyi

n+1−i

)γ ∈ Ĝ.
Encrypt(mpk,x,M): To encrypt M ∈ GT under x = (x1, . . . , xn) ∈ Z

n
p , choose

s R← Zp in order to compute and output

C = (C0, C1, C2) =
(
M · e(g1, ĝn)s, gs, (v ·

n∏
j=1

g
xj

j)s
)
.

Non-zero Inner Product Encryption with Short Ciphertexts 31

Decrypt(mpk, C,x, dy,y): Given a ciphertext C labeled with x = (x1, . . . , xn) ∈
Z

n
p and a private key dy associated with the vector y = (y1, . . . , yn) ∈ Z

n
p ,

return ⊥ if 〈x,y〉 = 0. Otherwise, conduct the following steps.
1. Compute

Âi =
n∏

j=1,j �=i

ĝ
xj

n+1+j−i ∀i ∈ {1, . . . , n}. (3)

2. Compute and output

M = C0 ·
(e(C1, dy · ∏n

i=1 Âyi

i)
e(C2,

∏n
i=1 ĝyi

n+1−i)

)1/〈x,y〉
. (4)

The correctness of the scheme is easily verified by observing that

e
(
g, (

∏n
i=1 ĝyi

n+1−i)
γ · ∏n

i=1

∏n
j=1,j �=i ĝ

xjyi

n+1−i+j

)

e
(
gγ · ∏n

j=1 g
xj

j ,
∏n

i=1 ĝyi

n+1−i)

=
e
(
g, (

∏n
i=1 ĝyi

n+1−i)
γ · ∏n

i=1

∏n
j=1,j �=i ĝ

xjyi

n+1−i+j

)

e(gγ · ∏n
j=1 ĝyi

n+1−i) · e
(
g,

∏n
i=1

∏n
j=1 g

xjyi

n+1−i+j)
= e(g, ĝn+1)−∑n

i=1 xiyi . (5)

By raising both members of (5) to the power s ∈ Zp and using (3), we obtain
the equality

e(C1, dy ·
n∏

i=1

Âyi

i)/e(C2,

n∏
i=1

ĝyi

n+1−i) = e(g1, ĝn)−s·〈x,y〉,

which explains why M can be computed as per (4) whenever 〈x,y〉 �= 0.
From an efficiency point of view, the receiver has to compute a product of

only two pairings (which is faster than two individual pairing evaluations) while
the encryption and decryption algorithms both require at most O(n) exponenti-
ations. Indeed, the value dy ·∏n

i=1 Âyi

i is computable via a multi-exponentiation
involving 2n − 1 base elements (rather than n2 in a naive computation).

Theorem 1. The scheme is selectively secure under the n-DBDHE assumption.

Proof. Towards a contradiction, let A be a PPT adversary with non-negligible
advantage ε in the selective security game. We build a reduction algorithm that
takes as input ((G, Ĝ,GT , e), g, h, {(gi, ĝi) = (g(α

i), ĝ(α
i))}i∈[1,2n]\{n+1}, T) and

uses A to decide if T = e(h, ĝ)(α
n+1) or T ∈R GT .

The adversary A first chooses a target vector x� = (x�
1, . . . , x

�
n) ∈ Z

n
p . To

construct the master public key mpk, B chooses γ̃ R← Zp and computes

v = gγ̃ ·
n∏

j=1

g
−x�

j

j ∈ G,

32 J. Chen et al.

which implicitly defines the master secret key msk to be γ = γ̃ − ∑n
j=1 xj · αj .

The adversary A is run on input of

mpk :=
(
g, ĝ, v, {(gi, ĝi) = (g(α

i), ĝ(α
i))}i∈[1,2n]\{n+1}

)
.

Observe that mpk is distributed as in the real scheme as v is uniformly distributed
over G. At any time, A can request a private key dy for any vector y ∈ Z

N
p such

that 〈x,y〉 = 0. To generate the private key dy =
(∏n

i=1 ĝyi

n+1−i

)γ ∈ Ĝ, algorithm
B can exploit the fact that, in the product,

(n∑
i=1

yi · αn+1−i
) · (n∑

j=1

x�
j · αj

)
=

n∑
i=1

n∑
j=1

x�
j · yi · αn+1−i+j ,

the coefficient of αn+1 is exactly 〈x�,y〉, which must be zero in any legal private
key query y ∈ Z

n
p . Specifically, B can compute

dy =
(n∏
i=1

ĝyi

n+1−i

)γ̃
/

n∏
i=1

n∏
j=1,j �=i

ĝ
x�

j ·yi

n+1−i+j . (6)

For any vector y ∈ Z
n
p such that 〈x�,y〉 = 0, B can thus compute the private

key dy as per (6).
In the challenge phase, A chooses messages M0,M1 ∈ GT and expects to

receive an encryption of one of these. At this point, B flips a fair coin β R← {0, 1}
and computes

C = (C0, C1, C2) =
(
Mβ · T, h, hγ̃

)
,

which is returned as a challenge to B. It is easy to see that, if T = e(h, ĝ)(α
n+1),

then C is a valid encryption of Mβ for the vector x� = (x�
1, . . . , x

�
n) and the

encryption exponent s = logg(h). In contrast, if T ∈R GT , the ciphertext carries
no information about β ∈ {0, 1}.

When A halts, it outputs a bit β′ ∈ {0, 1}. If β′ = β, the reduction B outputs
1 (meaning that T = e(h, ĝ)(α

n+1)). Otherwise, it outputs 0. �

4 NIPE from Constant-Size Subgroup Assumptions

In this section, we present a non-zero inner-product encryption (NIPE) scheme
based on composite order pairings e : G × G → GT of common group order
N = p1p2p3, with security under the subgroup decision assumptions. For inner
products over length-n vectors in ZN , the public parameter size is linear in n
while ciphertexts and keys have constant size (independent of n). The result-
ing scheme is the first to achieve such parameters with selective security under
constant size assumptions.

Similar to the prime-order case, it seems possible to derive this construction
from a functional commitment scheme for linear functions [26] by randomizing

Non-zero Inner Product Encryption with Short Ciphertexts 33

commitments and the verification equation. However, the transformation is not
generic. A commitment C to x ∈ Z

n
N in [26] is computed as C = gγ · g

∑n
i=1 αi·xi .

Elements
(
gγ , {gαi}n

i=1

)
are made available in the public parameters along with

elements Uj = uαj · R3,j for j ∈ [1, 2n] \ {n + 1} with R3,j being randomly
distributed in Gp3 . The Uj ’s allow creating a short witness Wz for the statement
z = 〈x,y〉 (for some y ∈ Z

n
N) using the secret random exponent γ.

Wz =
n∏

i=1

W yi

i , where Wi = Uγ
n−i+1

n∏
j=1,j �=i

Un+1+j−i.

Consolidating all the terms that depend on γ into Wz,1, write Wz = Wz,1 ·Wz,2.
More precisely, we have

Wz,1 =
n∏

i=1

Uγ
n−i+1 and Wz,2 =

n∏
i=1

⎛
⎝

n∏
j=1,j �=i

Un+1+j−i

⎞
⎠

yi

.

Observe that the computation of Wz,2 is solely based on information available in
the public parameters and Wz,1 is independent of x. One can verify the validity
of the witness Wz by simply checking whether the following equation holds.

e(C,

n∏
i=1

Uyi

i) = e(gα, Un)z · e(g,Wz).

Randomizing both sides of the above equation with s ∈ ZN in the exponent
leads us to the non-zero IPE. Namely, a ciphertext for a vector x and a message
M ∈ {0, 1}λ would consist of Cs, gs and M ⊕ H

(
e(gα, Un)s

)
, where H : GT →

{0, 1}λ is a pairwise-independent hash function. The decryption key for a vector
y is nothing but Wz,1. For a valid key, the fact that z = 〈x,y〉 �= 0 enables us
to recover the blinding factor on the message from e(gα, Un)zs.

Setup(λ, n): Takes as input n, the dimension of the inner product space. Choose
bilinear groups (G,GT) of composite order N = p1p2p3, where pi > 2l(λ) for
each i ∈ {1, 2, 3}, for a suitable polynomial l : N → N. Define the bilinear
map e : G × G → GT . We consider inner products defined over Z

n
N . Choose

g, u R← Gp1 , R3
R← Gp3 and α, γ R← ZN at random in order to define

G1 = gα, G2 = g(α
2), . . . , Gn = g(α

n)

and

U1 = uα · R3,1, U2 = u(α2) · R3,2, . . . , Un = u(αn) · R3,n

Un+2 = u(αn+2) · R3,n+2, . . . , U2n = u(α2n) · R3,2n,

where R3,j
R← Gp3 for each j ∈ [1, 2n]\{n + 1}. Define the public parameters

to consist of

34 J. Chen et al.

mpk :=
(
(G,GT , e), g, gγ , {Gj}n

j=1, {Uj}j∈[1,2n]\{n+1}, H
)
,

where H : GT → {0, 1}λ is a pairwise-independent hash function. The master
secret key is given by msk := (u,R3, γ, α).

Encrypt(mpk,M,x = (x1, . . . , xn)): To encrypt M ∈ {0, 1}λ under x ∈ Z
n
N ,

choose s R← ZN and define the ciphertext C to consist of three components –
one from GT and two from G given by

C0 = M ⊕ H(e(g, u)αn+1s), C1 = gs, C2 = gs·(γ+∑n
i=1 αi·xi),

where C0 and C2 are computed as M ⊕ H
(
e(G1, Un)s

)
and (gγ · ∏n

i=1 Gxi
i)s

respectively. The algorithm outputs C = (C0, C1, C2).
KeyGen(msk,y): The secret key for y = (y1, . . . , yn) ∈ Z

n
N is given by

dy =

(
n∏

i=1

uαi·yi

)γ

· X3,

where X3
R← Gp3 is sampled using R3.

Decrypt(C,x,y, dy): Let z = 〈x,y〉 mod N . If z �= 0 the algorithm computes
Ai =

∏n
j=1,j �=i U

xj

n+1+j−i for all i ∈ [1, n], and recovers M ∈ {0, 1}λ as

M = C0 ⊕ H

((
e(C1, dy · ∏n

i=1 Ayi

i)
e(C2,

∏n
i=1 Uyi

n−i+1)

)1/z
)

.

Correctness. Correctness follows from the observation that

e(C2, Un−i+1) = e
(
gs·(γ+∑n

i=1 αixi), u(αn−i+1) · R3,n+2

)

= e

(
gγ ·

n∏
i=1

gαi·xi , u(αn−i+1)

)s

= e(g, u)αn+1·s·xi · e

⎛
⎝g, uγ

n−i+1 ·
n∏

j=1,j �=i

uαn+1+j−i·xj

⎞
⎠

s

= e(g, u)αn+1·s·xi · e
(
g, uγ

n−i+1 · Ai

)s
.

Raising both sides of the above equality to yi and taking a product over all
i ∈ [1, n] gives us

e

(
C2,

n∏
i=1

Uyi

n−i+1

)
=

n∏
i=1

e(g, u)αn+1·s·xi·yi ·
n∏

i=1

e
(
g, u(αn−i+1)·γ · Ai

)s·yi

= e(g, u)αn+1·s·〈x,y〉 · e

(
gs,

n∏
i=1

u(αn−i+1)·γ·yi · Ayi

i

)

= e(g, u)αn+1·s·z · e

(
C1, dy ·

n∏
i=1

Ayi

i

)
,

Non-zero Inner Product Encryption with Short Ciphertexts 35

as required. Note that in the last step, we replaced
∏n

i=1 u(αn−i+1)·γ·yi by dy as
the Gp3 component vanishes upon pairing.

Theorem 2. The NIPE construction is selectively secure if Assumption 1 and
Assumption 2 hold.

Proof. The proof relies on a series of modifications to the distribution of public
parameters. To define these alternative distributions, we use a family of functions

{Fk : [1, 2n] → Zp2}2n
k=0

such that for all j ∈ [1, 2n],

Fk(j) =
{

0 if k = 0∑k
i=1 rj · αj

i mod p2 if k ∈ [1, 2n]

where r1, . . . , r2n, α1, . . . , α2n are randomly distributed in Zp2 . The modified
distributions are defined on the parameters {Uj}2n

j=1.

Type k parameters (0 ≤ k ≤ 2n): are parameters where elements {Ui}i∈[1,2n]

have a Gp2 component determined by the function Fk(.): namely,

Ui = u(αi) · g
Fk(i)
2 · R3,i ∀i ∈ [1, 2n].

The proof proceeds through a sequence of 2n + 4 games denoted G0, G1, G2,
G3,1, . . . , G3,2n, G4 as defined below. Let win� denote the event that the adver-
sary A wins in game G�.

Game G0: is the real attack game (described in Sect. 2.2).
Game G1: This game is similar to G0 except for the following changes. At

the beginning of the game, the challenger chooses γ̃ R← ZN and sets γ =
γ̃ − ∑n

i=1 αix�
i where x� = (x�

1, . . . , x
�
n) is the challenge vector. The public

parameter gγ is generated as gγ̃ · ∏n
i=1 G

−x�
i

i . The challenge ciphertext is
computed as:

C1
R← Gp1 , C2 = C γ̃

1 , C0 = Mβ ⊕ H
(
e(C1, Un+1)

)
.

Since γ is known to the challenger, secret key queries can be answered by
running the KeyGen algorithm. The change is only conceptual and hence
Pr[win0] = Pr[win1].

Game G2: In this game, we start modifying the distribution of the challenge
ciphertext. Namely, the challenger now picks C1 uniformly at random in
Gp1p2 instead of Gp1 . The adversary’s ability to distinguish between games
G1 and G2 can be leveraged to break Assumption 1 as formalized in the
following lemma.

Lemma 1. If Assumption 1 holds, then |Pr[win1] − Pr[win2]| is negligible.

36 J. Chen et al.

Game G3,k for k = 1, . . . , 2n: We let game G3,0 be identical to G2 for notational
convenience. In game G3,k the adversary is given Type k parameters. We
argue that the adversary can detect this change with negligible probability
if Assumption 2 holds.

Lemma 2. If Assumption 2 holds, then |Pr[win3,k−1] − Pr[win3,k]| is negligible
for each k ∈ [1, 2n].

In game G3,2n the parameters Uj have their Gp2 components defined by
F2n(j), which is a 2n-wise independent function from [1, 2n] to Zp2 . The adver-
sary’s view thus remains identical if we replace the function F2n by a truly
random function RF : [1, 2n] → Zp2 which allows defining the Gp2 component
of Uj as g

RF (j)
2 for each j ∈ [1, 2n].

Game G4: This game is identical to game G3,2n with the difference that, in
the challenge ciphertext, C0 is chosen as a random string in {0, 1}λ. We
argue that any legitimate adversary’s view remains statistically close to that
of game G3,2n. To see this, we first note that the Gp2 components of the
secret keys contain linear combinations of RF (j) in the exponent excluding
RF (n+1). Indeed, recall that the adversary can only make private key queries
on vectors y such that 〈y,x�〉 = 0. Programming γ as γ = γ̃ − ∑n

i=1 αi · x�
i

requires the creation of a Gp1 component with the exponent
(

n∑
i=1

yi · αn−i+1

)
·
(

γ̃ −
n∑

i=1

αi · x�
i

)
,

in order to generate a secret key for y. Note that the coefficient of αn+1 is
〈y,x�〉 which is 0 for all legal private key queries. Hence, the private key
dy can be computed without using Un+1, ensuring that RF (n + 1) remains
completely independent of any information revealed to A. As a result, the
distribution of

H
(
e(C1, Un+1)

)
= H

(
e(C1, u

αn+1
) · e(C1, g

RF (n+1)
2)

)

is statistically uniform over {0, 1}λ as long as C1 as a non-trivial Gp2 com-
ponent (which occurs with probability 1 − 1/p2). This follows from the fact
that, if e(C1, g2) �= 1GT

, the Gp2 component of e(C1, g
RF (n+1)
2) has log(p2)

bits of min-entropy. Since H : GT → {0, 1}λ is a pairwise-independent hash
function, the Leftover Hash Lemma ensures that, conditionally on the adver-
sary’s view, the distribution of H

(
e(C1, u

αn+1
) · e(C1, g

RF (n+1)
2)

)
is within

distance 2−λ from the uniform distribution over {0, 1}λ. This implies that
|Pr[win3,2n] − Pr[win4]| ≤ 1/p2 + 1/2λ, which is statistically negligible as
claimed. Since β ∈ {0, 1} is perfectly hidden from the adversary in G4, we
have Pr[win4] = 1/2.

Combining the above, we find

AdvNIPE,A(λ) = |Pr[win0] − Pr[win4]| ≤ Adv1G,B(λ) + 2n · Adv2G,B(λ) +
1
p2

+
1
2λ

Non-zero Inner Product Encryption with Short Ciphertexts 37

which is negligible in the security parameter λ provided Assumption 1 and
Assumption 2 both hold in (G,GT). �
Proof (of Lemma 1). Let (g, g3, T) be an instance of Assumption 1. We show
how B simulates the different stages of the security game.

Initialize: A commits to the challenge vector x� = (x�
1, . . . , x

�
n).

Setup: Pick u R← Gp1 , α R← ZN and compute Gj = gαj

for j = 1, . . . , n,
Uj = uαj · R3,j for j ∈ [1, 2n] where R3,j ’s are sampled from Gp3 using g3.
Choose γ̃ R← ZN and set γ = γ̃ − ∑n

i=1 αi · x�
i . The adversary is given the

following public parameters

mpk :=
(
g, gγ , {Gj}n

j=1, {Uj}j∈[1,2n]\{n+1}, H
)
.

Key Extraction: Upon a query on vector y ∈ Z
n
N , the adversary is given

dy =
(
u
∑n

i=1 αn−i+1·yi

)γ

· X3, where X3
R← Gp3 .

Challenge: A provides two messages M0,M1. B picks β R← {0, 1} and computes
the ciphertext C� = (C0, C1, C2), where,

C1 = T, C2 = T γ̃ , C0 = Mβ ⊕ H
(
e(C1, Un+1)

)
.

Guess: A returns a bit β′. B returns 1 if β = β′ and 0 otherwise.

If T R← Gp1 , then C� is distributed as in G1. Otherwise, T R← Gp1p2 and B
simulates G2. We have

|Pr[win1] − Pr[win2]| = |Pr[β = β′|T R← Gp1] − Pr[β = β′|T R← Gp1p2]|
= |Pr[B returns 1|T R← Gp1] − Pr[B returns 1|T R← Gp1p2]|
= Adv1G,B(λ) ,

which is negligible under Assumption 1. �
Proof (of Lemma 2). Using A show how to construct an algorithm B that breaks
Assumption 2. B receives an instance (g,X1X2, g3, Y2Y3, T) of the problem and
simulates the game as follows. Suppose that T = u · gr2

2 · gr3
3 where either r2 = 0

or r2
R← Zp2 .

Initialize: A commits to the challenge vector x� = (x�
1, . . . , x

�
n).

Setup: Pick α R← ZN , r′
1, . . . , r

′
k−1

R← ZN and compute Gj = gαj

for j = 1, . . . , n
and

Uj = Tαj · (Y2Y3)
∑k−1

i=1 r′
i·αj

i · R′
3,j

for j ∈ [1, 2n] where R′
3,j

R← Gp3 . Choose γ̃ R← ZN and set γ = γ̃−∑n
i=1 αix�

i .
The adversary is given the following public parameters

mpk :=
(
g, gγ , {Gj}n

j=1, {Uj}j∈[1,2n]\{n+1}, H
)
.

38 J. Chen et al.

Key Extraction: Upon a query on vector y ∈ Z
n
N , the adversary is given

dy =
(∏n

i=1 Uyi

n−i+1

)γ · X ′
3, where X ′

3
R← Gp3 .

Challenge: A provides two messages M0,M1. B picks β R← {0, 1} and computes
the ciphertext C� = (C0, C1, C2), where,

C1 = X1X2, C2 = (X1X2)γ̃ , C0 = Mβ ⊕ H
(
e(C1, Un+1)

)
.

Guess: A returns a bit β′. B returns 1 if β = β′ and 0 otherwise.

If r2 = 0, then the parameters have the Type k − 1 distribution. Otherwise,
r2

R← Zp2 and the parameters have the Type k distribution for reasons explained
next. The Gp2-components of Uj (for j ∈ [1, 2n]) would be given by

gr2·αj

2 · Y
∑k−1

i=1 ri·αj
i

2 . (7)

All the information provided to A is independent of α mod p2 (by the Chinese
Remainder Theorem) and hence we can substitute α mod p2 with a uniformly
random αk ∈ Zp2 . The Gp2 component of Uj in (7) can thus be replaced by

g
∑k

i=1 ri·αj
i

2 .

as required. Moreover, the Gp3 component of Uj is uniformly distributed since
we randomize it by R′

3,j . We thus have

|Pr[win3,k−1] − Pr[win3,k]| ≤ Adv2G,B(λ),

which is negligible under Assumption 2. �

Acknowledgements. The authors were funded by the “Programme Avenir Lyon
Saint-Etienne de l’Université de Lyon” in the framework of the programme “Investisse-
ments d’Avenir” (ANR-11-IDEX-0007). Jie Chen was also supported in part by the
National Natural Science Foundation of China (Grant No. 61472142).

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015)

2. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

3. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53015-3 12. Cryptology ePrint Archive: Report 2015/608

4. Attrapadung, N., Libert, B.: Functional encryption for inner product: achiev-
ing constant-size ciphertexts with adaptive security or support for negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/978-3-662-53015-3_12
http://dx.doi.org/10.1007/978-3-662-53015-3_12

Non-zero Inner Product Encryption with Short Ciphertexts 39

5. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011)

6. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48797-6 20

7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

8. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

9. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

10. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

11. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

12. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005)

13. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on Bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

14. Catalano, D., Fiore, D.: Concise vector commitments and their applications to zero-
knowledge elementary databases. In: Cryptology ePrint Archive: Report 2011/495
(2011)

15. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015)

16. Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assump-
tions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 622–639. Springer, Heidelberg (2014)

17. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Hei-
delberg (2006)

18. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007)

19. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005)

20. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)

21. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-
interactive anonymous credentials with efficient attributes. In: Chen, L. (ed.)
IMACC 2011. LNCS, vol. 7089, pp. 431–450. Springer, Heidelberg (2011)

http://dx.doi.org/10.1007/978-3-662-48797-6_20

40 J. Chen et al.

22. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

23. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: IEEE Symposium on Security and Privacy 2010, pp. 273–285. IEEE Computer
Society (2010)

24. Lewko,A.,Okamoto,T., Sahai,A.,Takashima,K.,Waters,B.:Fully secure functional
encryption: attribute-based encryption and (Hierarchical) inner product encryption.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer,
Heidelberg (2010)

25. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

26. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from poly-
nomial commitments to pairing-based accumulators from simple assumptions. In:
ICALP 2016 (2016, to appear)

27. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-
knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 499–517. Springer, Heidelberg (2010)

28. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

29. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

30. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

31. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

32. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (Hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)

33. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012)

34. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. Des. Codes Crypt. 77(2–3),
725–771 (2015)

35. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

36. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

37. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

38. Wee, H.: Threshold and revocation cryptosystems via extractable hash proofs. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 589–609. Springer,
Heidelberg (2011)

39. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

Non-zero Inner Product Encryption with Short Ciphertexts 41

40. Wee, H.: Déjà Q: encore! Un Petit IBE. In: Kushilevitz, E., et al. (eds.) TCC
2016-A. LNCS, vol. 9563, pp. 237–258. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49099-0 9

41. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and com-
pact constructions for non-monotonic attribute-based encryption. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-662-49099-0_9
http://dx.doi.org/10.1007/978-3-662-49099-0_9

Attribute-Based Encryption for Range
Attributes

Nuttapong Attrapadung1(B), Goichiro Hanaoka1, Kazuto Ogawa2,
Go Ohtake2, Hajime Watanabe1, and Shota Yamada1

1 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{n.attrapadung,hanaoka-goichiro,h-watanabe,yamada-shota}@aist.go.jp
2 Japan Broadcasting Corporation (NHK), Tokyo, Japan

{ogawa.k-cm,ohtake.g-fw}@nhk.or.jp

Abstract. Attribute-Based Encryption (ABE) is an advanced form
of public-key encryption where access control mechanisms based on
attributes and policies are possible. In conventional ABE, attributes are
specified as strings. However, there are certain applications where it is
useful to specify attributes as numerical values and consider a predicate
that determines if a certain numerical range would include a certain
value. Examples of these types of attributes include time, position coor-
dinate, person’s age, rank, identity, and so on. In this paper, we intro-
duce ABE for boolean formulae over Range Membership (ABE-RM).
We show generic methods to convert conventional ABE to ABE-RM.
Our generic conversions are efficient as they introduce only logarithmic
overheads (in key and ciphertext sizes), as opposed to trivial methods,
which would pose linear overheads. By applying our conversion to pre-
vious ABE schemes, we obtain new efficient and expressive ABE-RM
schemes. Previous works that considered ABE with range attributes are
specific and can only deal with either a single relation of range member-
ship (Paterson and Quaglia at SCN 2010, and Kasamatsu et al. at SCN
2012), or limited classes of policies, namely, only AND-gates of range
attributes (Shi et al. at IEEE S&P 2007, and some subsequent work).
Our schemes are generic and can deal with expressive boolean formulae.

1 Introduction

Attribute-Based Encryption (ABE) is an advanced form of public-key encryption
where access control mechanisms based on attributes and policies are possible.
ABE is typically categorized into two types: key-policy (KP) or ciphertext-policy
(CP). In KP-ABE [22], a secret key associated with a policy is distributed to
each user and data is encrypted with a set of attributes. In CP-ABE [14], a
secret key associated with a set of attributes is distributed to each user, and
data is encrypted with a policy. The decryption should be possible iff the set of
attributes satisfies the policy. ABE can be used in a variety of situations, such
as file-sharing and content distribution, where there are many users who decrypt
one ciphertext.
c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 42–61, 2016.
DOI: 10.1007/978-3-319-44618-9 3

Attribute-Based Encryption for Range Attributes 43

In conventional ABE, attributes are specified as strings. However, there are
certain applications where it is useful to specify attributes as numerical values
and consider a predicate that determines if a certain numerical range would
include a certain value. Examples of these types of attributes include time,
position coordinate, person’s age, rank, identity, and so on. We consider the
following KP-ABE system for paid-content distribution as an example applica-
tion. An encrypted content is associated with an assignment of attributes, such
as (‘genre’ =music), (‘day’ = 20160515), (‘hour’ = 22), among others attributes
(such as title, language, and so on). In such a system, many attributes are numer-
ical data, and hence it is useful to allow users to specify ranges of attribute values.
For example, a user may subscribe to the system with a policy:

(
(‘genre’ = sport ∨ ‘genre’ = music) ∧ ‘day’ ∈ [20160501, 20160525]

)

∨ ‘hour’ ∈ [0, 6]. (1)

To enforce this access control policy, we can use conventional ABE in a triv-
ial manner by specifying ranges as disjunctions of values in the ranges. In our
example, this will be

(
(‘genre’ = sport ∨ ‘genre’ = music) ∧ (‘day’ = 20160501 ∨ · · ·

∨ ‘day’ = 20160525)
)

∨ ‘hour’ = 0 ∨ · · · ∨ ‘hour’ = 6. (2)

However, this would result in a very large size of policy; more precisely, the size
expansion overhead of linear complexity would be required, and hence resulting
in inefficient systems. More importantly, it cannot deal with ranges of exponen-
tial size (in the security parameter).

Previous ABE schemes that can deal with range attributes and have sub-
linear complexity have been proposed; however, they can deal with only limited
classes of policies (over these range attributes), namely, only single range mem-
bership relation [24,34], or policies with only AND gates [20,25,36]. To the best
of our knowledge, constructing ABE for range attributes with sub-linear com-
plexity that can deal with expressive policies has remained an open problem.

1.1 Our Contributions

In this paper, we affirmatively solve the above problem by proposing ABE over
Ranges Membership (ABE-RM). Our schemes have sub-linear complexity as the
overheads regarding ranges for key and ciphertext sizes are O(log n), where n
denotes the maximum size of ranges. Hence, they can deal with n of exponential
size. They can deal with expressive policies, namely, the class of span programs,
which is known to imply any boolean formulae [12,22]. Our result is generic as we
show a generic conversion from any ABE for span programs to ABE-RM. This
is in contrast with previous ABE for range attributes [20,24,25,34,36], which
are specific constructions (besides being able to deal with only limited classes,
as mentioned above). We compare these ABE schemes for ranges in Table 1.

44 N. Attrapadung et al.

Table 1. Comparison among all available (non-trivial) ABE for ranges

Scheme Allowed policies Type (in our terminology)

PQ10 [34], KME+12 [24] no conjunction allowed CP-ABE Type 1

SBC+07 [36], GMW15 [20] only AND KP-ABE Type 1

KMHI12 [25] only AND CP-ABE Type 1

This work any Boolean formula KP-ABE, CP-ABE, Type 1,2

Our conversions work for both KP-ABE and CP-ABE. Moreover, for the
sake of generality, we further consider two types of ABE-RM, regarding where
ranges are specified. The first type is when ranges are specified in (literals of)
policies, while values to be checked if it is in ranges is specified in attribute sets.
This corresponds to the example above. The second type is vice versa: a point
is specified in policies while a range is specified in attribute sets.1

Our Approach. In order to achieve sub-linear complexity, we use the classi-
cal segment tree method [13]. This method allows us to represent any range
by a set of size O(log n) and any value by also a set of size O(log n), and has
the following useful property: a value is in a range if and only if their corre-
sponding representation sets are intersected. Therefore, our goal of constructing
ABE-RM reduces to construct ABE that can deal with set intersection in each
of literals in a policy. We call this intermediate scheme as ABE for Set Inter-
section (ABE-SI). Intuitively, taking the above example (KP-ABE Type 1) for
concreteness, we consider a policy of which one of its literal is of the form:
(‘day’∩S[20160501,20160525] �= ∅), while an assignment of attributes is of the form:
(‘day’ = T20160515), where SR, Tx are the representation sets for a range R and
a value x via the segment tree method, respectively. However, again, conven-
tional ABE does not directly deal with set intersections in the first place. To
this end, our idea to implement ABE-SI is to treat each element in the repre-
sentation sets SR, Tx as separate attributes. But a problem arises again as we
cannot simply let the attribute assignment contain distinct specifications of the
same attribute, namely, we cannot define assignment (‘day’ = y), (‘day’ = y′) for
some value y �= y′, as it contradicts each other. Nevertheless, this can be simply
solved by hashing H(‘day’, y) and treat it as an attribute. Intuitively, a literal in
a policy then becomes:

∨
w∈S[20160501,20160525]

H(‘day’, w), while an attribute set
becomes: { H(‘day’, y) | y ∈ T20160515 }, and we can use conventional ABE for
them. This causes a linear expansion as in the trivial scheme; however, now we
have |SR|, |Tx| bounded by O(log n) thanks to the segment tree method, hence
the resulting scheme is efficient.2

1 For example, an attribute set may look like: (‘genre’ = music), (‘day’ =
[20160501, 20160525]), (‘hour’ = [0, 6]), while a policy may look like:

(
(‘genre’ =

sport ∨ ‘genre’ = music) ∧ 20160515 ∈ ‘day’
) ∨ 22 ∈ ‘hour’.

2 Although we explain our idea via ABE for Boolean formula here, for generality we
will work on ABE for span programs in the main body, which is well-known to imply
the former.

Attribute-Based Encryption for Range Attributes 45

Our Alternative Approach. Our above approach requires expansions in
both policies and attribute sets, resulting in possible expansion in both keys
and ciphertexts. We propose an alternative way for constructing ABE-SI that
requires an expansion for only policies. Hence, it has an advantage in that cipher-
text sizes will be preserved in the KP case (and key sizes in the CP case). This
conversion, however, has to start from more expressive ABE called KP-DSE
(Key-policy over Doubly Spatial Encryption), introduced in [2]. Roughly speak-
ing, KP-DSE allows to specify an affine space as an attribute, and a literal eval-
uates to true if the affine spaces are intersected. (See more details in Sect. 2.2.)
We first identify that the set membership relation can be embedded in the affine
space intersection. We then embed the whole representation set Tx at once using
one affine space, and hence need not expand Tx as in the previous method.

Outline of the Paper. After preliminaries in Sect. 2, we provide the defini-
tions of ABE-RM, ABE-SI in Sect. 3. Our conversions are given in Sect. 4, as
outlined in Fig. 1. Efficiency comparisons are given in Sect. 5. Some extensions
(see below) are briefly described in Sect. 6, where the details are deferred to the
full version [7].

XP-ABE-SI

XP-ABE

XP-DSE

XP-ABE-RM1

XP-ABE-RM2

XP-ABE-RI

Non-mono XP-ABE-RM1

§4.1

§4.3

§4.2

(full)

(full)

(full)

Fig. 1. Our conversions. XP stands for either KP or CP.

Extensions. Beside range membership, we also consider ABE over Range Inter-
section (ABE-RI). We show how this can be converted from ABE-SI in Sect. 6.
Also, in the main body, for simplicity we consider policies being monotone span
programs, which is known to imply monotone Boolean formulae. We describe how
to extend this to non-monotone span programs, which can deal with the range
non-membership relation, in Sect. 6. The details are given in the full version.

1.2 Related Work

The concept of ABE was first proposed by Sahai and Waters [37] in the con-
text of fuzzy IBE, which consider threshold access structures. Goyal et al. [22]
proposed the first KP-ABE for monotone Boolean formulae, and monotone
span programs (the latter in the equivalent terminology of linear secret shar-
ing). The two predicates are related via the result of Beimel [12]. Bethencourt
et al. proposed the first CP-ABE. Subsequently, many ABE schemes featuring
better efficiency, more expressive policy, or improved security, are proposed in
[1–6,9,11,19,21,23,27–33,35,38–40], to name just a few.

46 N. Attrapadung et al.

ABE for Range. There have been several studies on ABE for ranges. Shi
et al. [36] proposed a predicate encryption scheme where a coordinate point
is associated to a ciphertext and a multi-dimensional range is associated to a
key, and the decryption works if the point is in the range. In our terminology,
it is KP-ABE-RM of Type 1 supporting AND-gates, albeit with an additional
feature called attribute-hiding. Paterson and Quaglia [34] proposed the concept
of time-specific encryption (TSE) and showed efficient constructions, which were
later improved by [24]. In TSE, a ciphertext can be decrypted only when the
time associated with a secret key is within the time interval specified in the
encryption algorithm. TSE can be viewed as CP-ABE-RM Type 1, albeit with
no conjunction allowed in a policy. Kasamatsu et al. [25] later improved it to
support AND-gates. Gay et al. [20] recently described a lattice-based variant of
the Shi et al. scheme.

In the original CP-ABE paper [14] by Bethencourt et al., an example of CP-
ABE for ranges was already sketched (See Sect. 4.3 in [14]). Their idea was to
represent a range as a policy of some pre-defined attributes using AND, OR.
However, the method of representing range was not described in general. Con-
trastingly, we describe a general method for converting ABE to ABE-RM.

2 Preliminaries

Notation. For a, b ∈ Z such that a ≤ b, we denote [a, b] := { a, a + 1, . . . , b }.
For a set V of vectors, we denote span(V) as its span: the set of all linear
combinations of vectors in V .

2.1 Definitions for General ABE

Predicate Family. Let R = { Rκ : Xκ × Yκ → {0, 1} | κ ∈ K } be a predicate
family where Xκ and Yκ denote “key attribute” and “ciphertext attribute”
spaces. The index κ or “parameter” denotes a list of some parameters such as
the universes of attributes, and/or bounds on some quantities, hence its domain
K will depend on that predicate. We will often omit κ when the context is clear.

General ABE Syntax. Let M be a message space. An ABE scheme3 for pred-
icate family R is defined by the following algorithms:

• Setup(1λ, κ) → (PK,MSK): takes as input a security parameter 1λ and a
parameter κ of predicate family R, and outputs a master public key PK and
a master secret key MSK.

• Encrypt(Y,M,PK) → CT: takes as input a ciphertext attribute Y ∈ Yκ, a
message M ∈ M, and public key PK. It outputs a ciphertext CT. We assume
that Y is implicit in CT.

• KeyGen(X,MSK,PK) → SK: takes as input a key attribute X ∈ Xκ and the
master key MSK. It outputs a secret key SK.

3 It is also called public-index predicate encryption, classified in the definition of Func-
tional Encryption [18].

Attribute-Based Encryption for Range Attributes 47

• Decrypt(CT,SK) → M : given a ciphertext CT with its attribute Y and the
decryption key SK with its attribute X, it outputs a message M or ⊥.

Correctness. Consider all parameters κ, all M ∈ M, X ∈ Xκ, Y ∈ Yκ such
that Rκ(X,Y) = 1. If Encrypt(Y,M,PK) → CT and KeyGen(X,MSK,PK) → SK
where (PK,MSK) is generated from Setup(1λ, κ), then Decrypt(CT,SK) → M .

Security. The standard notion for ABE is called full security. We refer its def-
inition to the full version, as we do not work directly on it but rather use the
embedding lemma for implications (Lemma 1).

Duality of ABE. For a predicate R : X × Y → {0, 1}, we define its dual
as R̄ : Y × X → {0, 1} by setting R̄(Y,X) = R(X,Y). In particular, if R is
considered as key-policy type, then its dual, R̄, is the corresponding ciphertext-
policy type. Hence, wlog, throughout the paper, we will give the definitions of
predicates for only the KP type.

2.2 Definitions for Some Previous Predicates

ABE for Monotone Span Program. We recapture the predicate definition
for KP-ABE for monotone span program [22]. If not stated otherwise, we will
refer to ABE for monotone span program as “normal ABE” throughout the
paper. It is well known that such an ABE scheme implies ABE for monotone
Boolean formulae [12,22] (cf. see a concise explanation in Sect. C of [29]).

• Parameter. It is specified by a positive integer N (which specifies ZN) and an
attribute universe U. If U = {0, 1}∗, or equivalently4 |U| is super-polynomial
size in λ, then it is called large universe [22,35]; otherwise, it is called small
universe. Some schemes also require optional parameters m̄, k̄, �̄ that specify
maximum bounds for m, k, |S| described below.

• Key Attribute. It is specified by a pair A = (A, π) where A is a matrix in
Z

m×k
N for some m, k ∈ N, and π is a row labelling map π : [1,m] → U. The

pair A is also called a monotone span program (over U).
• Ciphertext Attribute. It is specified by an attribute set S ⊆ U.
• Evaluation. For a set S ⊆ U, let A|S be the sub-matrix of A that takes all

the rows j such that π(j) ∈ S. We say that (A, π) accepts S if the fixed vector
1 := (1, 0, . . . , 0) is in the row span of A|S . Denote Ai as the row i of A. That
is, we define

RKP-ABE((A, π), S) = 1 ⇐⇒ 1 ∈ span { Ai | π(i) ∈ S } . (3)

We will also present an implication of ABE for ranges from a primitive called
KP-DSE [2]. We briefly review it here, starting from the notion for affine spaces.

Notion for Affine Spaces. Let N, d,w ∈ N where 0 ≤ w ≤ d. Let t� be
a vertical vector in Z

d
N . Let M ∈ Z

d×w
N be a matrix whose columns are all

4 The latter implies the former via applying any collision-resistant hash H : {0, 1}∗ →
U, as done in [15,22].

48 N. Attrapadung et al.

linearly independent. An affine space in Z
d
N specified by a pair (t,M) is defined

as t� + cspan(M), where cspan() denotes the column span; more precisely, it is

t� + cspan(M) =
{
t� + Mv� ∣∣ v ∈ Z

w
N

}
.

We also define AffSp(Zd
N) as the set of all affine spaces in Z

d
N .

Key-Policy over Doubly Spatial Encryption (KP-DSE). The predicate
is defined as follows.

• Parameter. It is specified by (N, d) ∈ N
2. Optionally, we can specify some

bounds m̄, k̄, �̄ for m, k, |T | described below.
• Key Attribute. It is specified by A = (A, π) where A is a matrix in Z

m×k
N

for some m, k ∈ N, and π is a labelling that maps each row in [1,m] to an
affine space in Z

d
N .

• Ciphertext Attribute. It is specified by a set T of affine spaces in Z
d
N .

• Evaluation. Let A|T be the sub-matrix of A that takes all the rows i such
that there exists an affine space Y ∈ T that intersects with the affine space
π(i). We say that (A, π) accepts S if the fixed vector 1 := (1, 0, . . . , 0) is in
the row span of A|T . That is,

RKP-DSE
(
(A, π), T

)
= 1 ⇐⇒ 1 ∈ span { Ai | ∃Y ∈ T s.t. π(i) ∩ Y �= ∅ } .

2.3 Embedding Lemma

The following useful lemma from [5,17] describes a sufficient criterion for impli-
cation from ABE for a given predicate to ABE for another predicate. The
lemma considers two arbitrary predicate families: RF

κ : Xκ × Yκ → {0, 1}, and
RF′

κ′ : X′
κ′ × Y

′
κ′ → {0, 1}, which are parametrized by κ ∈ K and κ′ ∈ K′ respec-

tively. Suppose that there exists three efficient mappings

fp : K′ → K fe : X′
κ′ → Xfp(κ′) fk : Y′

κ′ → Yfp(κ′)

which map parameters, ciphertext attributes, and key attributes, respectively,
such that for all X ′ ∈ X

′
κ′ , Y ′ ∈ Y

′
κ′ , we have the “embedding” relation:

RF′
κ′(X ′, Y ′) = 1 ⇔ RF

fp(κ′)(fe(X
′), fk(Y ′)) = 1. (4)

We can then construct an ABE scheme Π ′ for predicate RF′
κ′ from an ABE scheme

Π for predicate RF
κ by setting Π ′.Setup(1λ, κ′) = Π.Setup(1λ, fp(κ′)) and

Π ′.Encrypt(PK,M,X ′) = Π.Encrypt(PK,M, fe(X ′)),
Π ′.KeyGen(MSK,PK, Y ′) = Π.KeyGen(MSK,PK, fk(Y ′)),

and Π ′.Decrypt(CTX′ ,SKY ′) = Π.Decrypt(CTfe(X′),SKfk(Y ′)).

Lemma 1 (Embedding Lemma [5,17]). If Π is correct and secure, then so
is Π ′. This holds for both the cases of selective security and full security.

Attribute-Based Encryption for Range Attributes 49

Remark 1. We observe that the embedding relation (4) between RF and RF′
via

maps (fp, fc, fk) is equivalent to that between their respective duals, i.e., RF

and RF′ , via maps (fp, fk, fc). (That is, we swap maps for key and ciphertext
attributes for its dual predicate.) This observation ensures that it is sufficient
to prove the embedding relation only for the KP case, so that the embedding
relation for its dual, the CP case, will be automatically obtained. Wlog, we will
deal with only the KP case throughout the paper.

2.4 Efficient Encoding for Range Membership

We use the classical segment tree method, rooted back in 1977 [13], that allows
us to express ranges efficiently.5 It was first applied to the context of ABE by
Shi et al. [36] (where an ABE scheme for AND gates was presented). We first
describe some notations. Let Tn be the complete binary tree that has leaves
corresponding to each index in [1, n]. Let Sn be the set of all nodes in Tn that
are labeled in a systematic way. Let Dn := { [u, v] | 1 ≤ u ≤ v ≤ n }. For a node
w ∈ Sn, let parent(w) denote its parent node in Tn. Consider node w, y, z ∈ Sn;
z is an ancestor of w if z is on the path from w to the root (including w);
y is a descendant of w if y is on a path from w moving away from the root
(including w). For any range R ∈ Dn, a node w ∈ Sn is called a cover node of R,
and we write w ∈ cover(R), if all the leaves that are descendants of w are in R.
Let 2Sn be the collection of all subsets of Sn. We define two encoding functions:

• Range Encoding rangeEnc : Dn → 2Sn . For R ∈ Dn, define

rangeEnc(R) := { w ∈ Sn | w ∈ cover(R), parent(w) �∈ cover(R) } .

• Point Encoding pointEnc : [1, n] → 2Sn . For x ∈ [1, n], define pointEnc(x) as
the set of all ancestors of x in Tn.

Lemma 2 [13,36]. For x ∈ [1, n], R ∈ Dn,

|rangeEnc(R) ∩ pointEnc(x)| =

{
1 if x ∈ R

0 if x �∈ R
.

Furthermore, there exists an efficient algorithm which takes x,R where x ∈ R
as input and outputs the intersection node z ∈ rangeEnc(R) ∩ pointEnc(x).

Lemma 3 [13,36]. For any R ∈ Dn, we have |rangeEnc(R)| ≤ 2 log n − 2. For
any x ∈ [1, n], we have |pointEnc(x)| = log n + 1.

Figures 2 and 3 illustrate examples when n = 8. Since 6 ∈ [2, 8], we have
that rangeEnc([2, 8]) ∩ pointEnc(6) is not empty: the node number 14 is in the
intersection.
5 We remark that our segment tree method here should not be confused with another

completely different tree-based method for the original ABE of Goyal et al. [22],
which was used for expressing boolean formulae.

50 N. Attrapadung et al.

15

13

9

1 2

10

3 4

14

11

5 6

12

7 8

rangeEnc ([2, 8]) = {2, 10, 14}

Fig. 2. Example of range encoding

15

13

9

1 2

10

3 4

14

11

5 6

12

7 8

pointEnc (6) = {6, 11, 14, 15}

Fig. 3. Example of point encoding

3 Definitions for New Predicates

KP-ABE for Monotone Span Program over Set Intersection (ABE-SI).
Let A be the universe of attribute names. For each attribute name a ∈ A, let Ua

be the universe of attribute values that can be associated to the attribute name a.
Let the collection of all name-value pairs be X := { (a, x) | a ∈ A, x ∈ Ua }.

We will also associate a set of values to attribute where we bound its size
to a parameter t. We call a pair of an attribute name and a set of its val-
ues a name-set pair : it is of the form (a, S), where a ∈ A and S ∈ (

Ua

≤t

)
:=

{ U | U ⊆ Ua, |U | ≤ t }. The collection P (resp., Pa) of all name-set pairs (resp.,
of all name-set pairs with attribute name a) is denoted by

P :=
{

(a, S)
∣∣∣ a ∈ A, S ∈

(
Ua

≤ t

) }
, Pa :=

{
(a, S)

∣∣∣ S ∈
(
Ua

≤ t

) }
.

• Parameter. It is specified by an integer N , the collection X of all name-value
pairs, and the bound t. Optionally, we can specify some bounds m̄, k̄, �̄ for
m, k, |T | described below.

• Key Attribute. It is specified by a monotone span program A = (A, π) where
A is a matrix in Z

m×k
N for some m, k ∈ N, and π is a map π : [1,m] → P. We

write π(i) = (πname(i), πset(i)).
• Ciphertext Attribute. It is specified by a set of name-set pairs with all

distinct names: it is of the form T = { (ai, Si) ∈ Pai
| i ∈ [1, �] } for some

� ∈ N and distinct a1, . . . , a� ∈ A.
• Evaluation. We say that (A, π) accepts T if 1 := (1, 0, . . . , 0) is in the row

span of a submatrix A|T of A, where A|T is formed by taking all the rows i
as follows. Parse the name-set pair π(i) = (a, S). Then, find a pair (a, S̃) in T
such that S ∩ S̃ �= ∅. If a pair exists, we include the row i to A|T . That is,

RKP-ABE-SI((A, π), T) = 1 ⇐⇒
1 ∈ span

{
Ai

∣∣∣ ∃(πname(i), S̃) ∈ T s.t. πset(i) ∩ S̃ �= ∅
}

.

KP-ABE for Monotone Span Program over Range Membership (ABE-
RM). Let A be the universe of attribute names. For each a ∈ A, let

Attribute-Based Encryption for Range Attributes 51

mina,maxa ∈ Z specify the minimum and maximum values that can
be associated to the attribute name a. Its range universe is thus Wa :=
{ [u, v] | mina ≤ u ≤ v ≤ maxa }. The collectionR of all name-range pairs and the
collection V of all name-value pairs are

R := { (a,R) | a ∈ A, R ∈ Wa } , V := { (a, x) | a ∈ A, x ∈ [mina,maxa] }

respectively. Let Ra := { (a,R) | R ∈ Wa }; Va := { (a, x) | x ∈ [mina,maxa] }.
For simplicity and wlog, we assume mina = 1 for all a ∈ A (this can be done

by simply offsetting all the values).
We can define two types of ABE-RM. For the first type, we have ranges

specified in a policy (for a key attribute), while points (values) are specified in
an attribute set (for a ciphertext attribute). For the second type, the roles of
ranges and values are swapped. We describe the details of the first type here and
defer the second one, which can be defined analogously, to the full version.

(KP-ABE-RM Type 1: Range at Policy, Value at Attribute)

• Parameter. It is specified by an integer N , and the collection V of all
name-value pairs. Optionally, as usual, we can specify some bounds m̄, k̄, �̄
for m, k, |T | described below.

• Key Attribute. It is specified by a monotone span program A = (A, π) where
A is a matrix in Z

m×k
N for some m, k ∈ N, and π is a map π : [1,m] → R. We

write π(i) = (πname(i), πrange(i)).
• Ciphertext Attribute. It is specified by a set of name-value pairs with all

distinct names: it is of the form T = { (ai, xi) ∈ Vai
| i ∈ [1, �] } for some � ∈ N

and distinct a1, . . . , a� ∈ A.
• Evaluation. We say that (A, π) accepts T if 1 := (1, 0, . . . , 0) is in the row

span of a submatrix A|T of A, where A|T is formed by taking all the rows i as
follows. Parse the name-range pair π(i) = (a,R). Then, find a pair (a, x) in T
such that x ∈ R. If such a pair exists, we include the row i to A|T . That is,

RKP-ABE-RM1((A, π), T) = 1 ⇐⇒
1 ∈ span { Ai | ∃(πname(i), x) ∈ T s.t. x ∈ πrange(i) } .

4 Generic Constructions

4.1 From ABE to ABE-SI

In this section, we show that normal KP-ABE implies KP-ABE-SI. The conver-
sion is as follows.

• Mapping Parameters. For the name-value universe X of KP-ABE-SI, let U
be a universe of KP-ABE such that there exists an efficiently computable injec-
tive function H : X → U. We map fp : (N,X, t, m̄, k̄, �̄) �→ (N,U, m̄′, k̄′, �̄′),
where we defer how to determine them below.

52 N. Attrapadung et al.

• Mapping Key Attributes. Consider a monotone span program A = (A, π)
for KP-ABE-SI, where A ∈ Z

m×k
N and π : [1,m] → P. We map

fk : A = (A, π) �→ A
′ = (A′, π′)

where A′ is a matrix in Z
m′×k
N and π′ is a map π′ : [1,m′] → U, defined as

follows.
1. For each i ∈ [1,m], parse the name-set pair π(i) = (πname(i), πset(i)), and

parse the set πset(i) = {xi,1, . . . , xi,ki
} in some lexicographical order, where

we denote ki := |πset(i)|.
2. We index the rows of A′ by a pair of indexes (i, j), ranging as

(1, 1), . . . , (1, k1), . . . , (m, 1), . . . , (m, km).

Hence, the number of rows of A′ is m′ = k1 + · · · + km and the row index
(i, j) corresponds to the row number num(i, j) := k1 + · · · + ki−1 + j.

3. For each i ∈ [1,m], and each j ∈ [1, ki], we define

A′
num(i,j) = Ai, π′(num(i, j)

)
= H

(
πname(i), xi,j

)
. (5)

In particular, we define the row num(i, j) of A′ to be simply Ai, the same
for all j ∈ [1, ki].6

• Mapping Ciphertext Attributes. Consider a set of name-set pairs for KP-
ABE-SI, T = { (az, Sz) ∈ Paz

| z ∈ [1, �] }. We map

fc : T = { (az, Sz) ∈ Paz | z ∈ [1, �] } �→ S′ = { H(az, x) | z ∈ [1, �], x ∈ Sz } .
(6)

Justifying Parameters. We now justify how to relate parameters U, m̄′, k̄′, �̄′

of ABE, so that constructing ABE-SI with parameters X, t, m̄, k̄, �̄ from such
ABE is possible.

• If we allow U = {0, 1}∗ (large-universe ABE), then we can deal with any X,
since for any X we have that an injective function H : X → U trivially exists.

• If we allow only polynomial-size U (small-universe ABE), then we also require
A (the attribute name universe), Ua for each a ∈ A (the attribute value
universe) to be polynomial-size, so that |X|, which is at most |A| ·maxa∈A |Ua|
by definition, is polynomial-size. We then pick U of exactly this size, so that
an injective function H : X → U trivially exists.

6 Intuitively, making a copy of Ai to all the rows with indexes from (i, 1) to (i, ki) cor-
responds to implementing the OR literal, namely,

∨
w H(‘day’, w) as in our example

in Sect. 1.1. This is since any row from (i, 1) to (i, ki) will contribute the same vector
Ai in the span when we evaluate the span program, as in Eq. (3). In other words,
any of attributes in these rows acts the same when evaluating the policy: this exactly
represents the OR functionality.

Attribute-Based Encryption for Range Attributes 53

• By inspection, the bounds m̄′, k̄′, �̄′ of ABE relate to the bounds t, m̄, k̄, �̄ of
ABE-SI as follows.

m̄′ ≥ tm̄, k̄′ ≥ k̄, �̄′ ≥ t�̄, (7)

Indeed, if we allow ABE with unbounded parameters in either m̄′, k̄′, �̄′, then
the corresponding parameters of ABE-SI on the right hand-side of the inequal-
ities do not have to be bounded.

Implication. We now show the following lemma for the above conversion. The
implication from KP-ABE to KP-ABE-SI will then follow from the embedding
lemma.

Lemma 4. For any monotone span program A = (A, π) and a set of name-set
pairs T for KP-ABE-SI, we have

RKP-ABE-SI
κ (A, T) = 1 ⇐⇒ RKP-ABE

fp(κ)
(fk(A), fc(T)) = 1.

Proof. Consider the submatrices that define evaluations in KP-ABE-SI and KP-
ABE:

A|T =
{

Ai

∣∣∣ ∃(πname(i), S̃) ∈ T s.t. πset(i) ∩ S̃ �= ∅
}

, A
′|S′ = { A′

ι | π′(ι) ∈ S′ }
respectively, where here we set (A′, π′) = fk(A, π) and S′ = fc(T) from the
conversion. To prove the statement of the theorem, it suffices to prove that:
A|T = A

′|S′ .

Forward Direction (Proving A|T ⊆ A
′|S′). Suppose Ai ∈ A|T . Hence, there

exists (πname(i), S̃) ∈ T such that πset(i) ∩ S̃ �= ∅. Let z� be the index of such
a name-set pair in T , and let xi,j� be an element in the latter intersection;
namely, we have

(
πname(i), S̃

)
= (az� , Sz�) and xi,j� ∈ πset(i) ∩ S̃. We then

consider the row ι� := num(i, j�) of A′. By Eq. (5), we have A′
ι� = Ai and

π′(ι�) = H
(
πname(i), xi,j�

)
= H(az� , xi,j�). But since xi,j� ∈ S̃ = Sz� , and from

Eq. (6) we have that π′(ι�) ∈ S′. Hence, from the definition of A
′|S′ , we have

A′
ι� = Ai ∈ A

′|S′ . This concludes the proof for the forward part.

Backward Direction (Proving A
′|S′ ⊆ A|T). Suppose A′

ι ∈ A
′|S′ . Hence,

π′(ι) ∈ S′. Parse i, j such that num(i, j) = ι (this is uniquely determined since
num is bijective). By Eq. (5), we have A′

ι = Ai and π′(ι) = H
(
πname(i), xi,j

)
.

From π′(ι) ∈ S′, together with the fact that H is injective, and Eq. (6), we have
that there exists z� ∈ [1, �] where πname(i) = az� , xi,j ∈ Sz� , and (az� , Sz�) ∈ T .
Since xi,j ∈ πset(i) by notation, we have xi,j ∈ πset(i) ∩ Sz� . In other words,
there exists (πname(i), Sz�) ∈ T where πset(i) ∩ Sz� �= ∅. But this is exactly the
condition in defining Ai ∈ A|T . Thus, Ai = A′

ι ∈ A|T . This concludes the proof.

4.2 From ABE-SI to ABE-RM1

In this section, we show that KP-ABE-SI implies KP-ABE-RM. We will show
the conversion for ABE-RM Type 1 here and defer that of Type 2, which can be
described analogously, to the full version. The ABE-SI-to-ABE-RM1 conversion
is as follows.

54 N. Attrapadung et al.

• Mapping Parameters. We map parameters of ABE-RM to those of ABE-SI
via fp : (N,V, m̄, k̄, �̄) �→ (N,X, t, m̄, k̄, �̄), defined as follows. Parse the name
universe A from the name-value universe V. For each a ∈ A, parse maxa also
from V.7 Let na be a power of 2 such that na/2 < maxa ≤ na, so that the
complete binary tree with na leaves, namely, Tna

, can contain [1,maxa] as its
leaves. We set Ua (for ABE-SI) as the set of all nodes in the tree, namely, Sna

.
Note that A and {Ua}a∈A completely defines the name-value universe X of
ABE-SI. We justify t later below.

• Mapping Key Attributes. Consider a monotone span program A = (A, π)
for KP-ABE-RM1, where A ∈ Z

m×k
N and π : [1,m] → R. Recall that π(i) is a

name-range pair, where we write π(i) = (πname(i), πrange(i)). We map

fk : A = (A, π) �→ A
′ = (A, π′)

where we define π′ : [1,m] → P which maps

π′ : i �→ (
πname(i), rangeEnc(πrange(i))

)
, (8)

where, here, rangeEnc : Dna
→ 2Sna is the range encoding in the tree Tna

,
where a = πname(i).

• Mapping Ciphertext Attributes. Consider a set of name-value pairs for
KP-ABE-RM1, T = { (az, xz) ∈ Vaz

| z ∈ [1, �] }. We map

fc : T = { (az, xz) ∈ Vaz
| z ∈ [1, �] } �→
T ′ =

{ (
az, pointEnc(xz)

) ∈ Paz

∣∣ z ∈ [1, �]
}

. (9)

where, here, pointEnc : [1, naz
] → 2Snaz is the point encoding in the tree Tnaz

.

Justifying Parameter. We require t to be at least the maximum size of the
sets in any name-set pairs appearing in either key or ciphertext attributes. That
is, let n := maxa∈A na, we require

t ≥ max { 2 log n − 2, log n + 1 } , (10)

since, from Lemma 3, the maximum size of rangeEnc(R) for any range R in the
tree Tn is 2 log n−2, and the size of pointEnc(x) for any leaf x is always log n+1.

Implication. We now show the following lemma for the above conversion. The
implication from KP-ABE-SI to KP-ABE-RM will then follow from the embed-
ding lemma.

Lemma 5. For any monotone span program A = (A, π) and a set of name-value
pairs T for KP-ABE-RM1, we have

RKP-ABE-RM1
κ (A, T) = 1 ⇐⇒ RKP-ABE-SI

fp(κ)
(fk(A), fc(T)) = 1.

7 Recall that on the other hand, for simplicity and wlog, we let mina = 1.

Attribute-Based Encryption for Range Attributes 55

Proof. Consider the submatrices that define evaluations in KP-ABE-RM and
KP-ABE-SI:

A|T = { Ai | ∃(πname(i), x) ∈ T s.t. x ∈ πrange(i) } ,

A
′|T ′ =

{
Ai

∣∣∣ ∃(π′
name(i), S̃) ∈ T ′ s.t. π′

set(i) ∩ S̃ �= ∅
}

,

respectively, where here we set (A, π′) = fk(A, π) and T ′ = fc(T) from the
conversion. To prove the statement of the theorem, it suffices to prove that:
A|T = A

′|T ′ . But this holds since

A|T = { Ai | ∃(πname(i), x) ∈ T s.t. x ∈ πrange(i)}
= { Ai | ∃(πname(i), x) ∈ T s.t. rangeEnc(πrange(i)) ∩ pointEnc(x) �= ∅} (11)
= { Ai | ∃(πname(i), pointEnc(x)) ∈ T ′

s.t. rangeEnc(πrange(i)) ∩ pointEnc(x) �= ∅} (12)

=
{

Ai | ∃(πname(i), S̃) ∈ T ′ s.t. rangeEnc(πrange(i)) ∩ S̃ �= ∅
}

(13)

=
{

Ai | ∃(π′
name(i), S̃) ∈ T ′ s.t. π′

set(i) ∩ S̃ �= ∅
}

= A
′|T ′ , (14)

where Eq. (11) holds due to the property of the Range/Point Encodings
(Lemma 2), while Eq. (12) is from the definition of T ′ (Eq. (9)), Eq. (13) is simply
a renaming of variable pointEnc(x) as S̃, and Eq. (14) is due to the definition of
π′ (Eq. (8)).

4.3 From KP-DSE to ABE-SI

In this section, we show that KP-DSE implies KP-ABE-SI. We will use the
following value/set encodings as building blocks. They are also implicitly used
previously in [2].

• Value Encoding valueEnc : ZN → AffSp(Zt+1
N). For a value x ∈ ZN , define

valueEnc(x) := cspan

⎛
⎜⎝

−x −x2 ··· −xt

1
1

. . .
1

⎞
⎟⎠ .

• Set Encoding setEnc :
(
ZN

≤t

) → AffSp(Zt+1
N). For a set S ⊆ ZN of size at most

t, define setEnc(S) as a 0-dimensional affine space (an affine space with only
one fixed point) as

setEnc(S) :=
{

(c0, c1, . . . , ct)� }
,

where cι is the coefficient of zι in a polynomial pS(z) :=
∏

y∈S(z − y) =
c0 + c1z + · · · + ctz

t.

Lemma 6. We have x ∈ S ⇐⇒ setEnc(S) ∩ valueEnc(x) �= ∅.

56 N. Attrapadung et al.

The proof for this lemma is deferred to the full version. We are ready to describe
the conversion.

• Mapping Parameters. For the name-value universe X of KP-ABE-SI, let
H : X → ZN be an efficiently computable injective function. We map fp :
(N,X, t, m̄, k̄, �̄) �→ (N, t + 1, m̄′, k̄′, �̄′). That is, we set d = t + 1 for KP-DSE.
The remaining parameters will be specified later below.

• Mapping Key Attributes. Consider a monotone span program A = (A, π)
for KP-ABE-SI, where A ∈ Z

m×k
N and π : [1,m] → P. We map

fk : A = (A, π) �→ A
′ = (A′, π′)

where A′ ∈ Z
m′×k
N and π′ that maps each row in [1,m′] to an affine space in

Z
t+1
N are defined as follows. We proceed to define the row number num(i, j) in

exactly the same way as Procedure 1,2 in Mapping key attributes in Sect. 4.1.
Then, for i ∈ [1,m], j ∈ [1, ki], we define

A′
num(i,j) = Ai, π′(num(i, j)

)
= valueEnc

(
H

(
πname(i), xi,j

))
. (15)

• Mapping Ciphertext Attributes. Consider a set of name-set pairs for KP-
ABE-SI, T = { (az, Sz) ∈ Paz

| z ∈ [1, �] }. Let S′
z := { H(az, x) | x ∈ Sz }, for

z ∈ [1, �]. We map

fc : T = { (a1, S1), . . . , (a�, S�) } �→ T ′ = { setEnc(S′
1), . . . , setEnc(S′

�) } .
(16)

Justifying Parameters. By inspection, the remaining bounds m̄′, k̄′, �̄′ of KP-
DSE can be related to the bounds t, m̄, k̄, �̄ of ABE-SI as follows.

m̄′ ≥ tm̄, k̄′ ≥ k̄, �̄′ ≥ �̄. (17)

In particular, if we allow ABE with unbounded parameters in either m̄′, k̄′, �̄′,
the corresponding parameters of ABE-SI on the right hand-side of the above
inequalities do not have to be bounded.

Lemma 7. For any monotone span program A = (A, π) and a set of name-set
pairs T for KP-ABE-SI, we have

RKP-ABE-SI
κ (A, T) = 1 ⇐⇒ RKP-DSE

fp(κ)
(fk(A), fc(T)) = 1.

The proof, deferred to the full version, proceeds similarly to that of Lemma 4
(converting ABE to ABE-SI). Intuitively, this is since we replace values and sets
via their value/set encodings, but their relation is still preserved via Lemma 6.

5 Instantiations and Performances

In this section, we describe the performances of new ABE-RM schemes obtained
via applying our generic constructions to existing schemes in the literature.

Attribute-Based Encryption for Range Attributes 57

Schemes via the ABE-to-ABE-RM Conversion (Sects. 4.1 + 4.2). We
first give a general observation for the performance of the converted ABE-
RM scheme compared to its original ABE scheme as follows. Assume that the
sizes (|PK|, |C|, |SK|) of an ABE scheme can be written as a function F (|A|,
m, m̄, k, k̄, �, �̄), where we recall that m, k are the sizes of a monotone span pro-
gram, � is the size of an attribute set, and the barred elements are their allowed
maximums, if any. Then, the converted ABE-RM with maximum range size n
has the sizes

(|PK|, |C|, |SK|) = F
(
|A|n,O(m log n), O(m̄ log n), k, k̄, O(� log n), O(�̄ log n)

)
.

This can be seen by inspection from our generic conversions and the range/point
encoding; particularly, they follow from Eqs. (7) and (10). Our conversion intro-
duces only O(log n) factor, compared to the factor O(n) for the trivial scheme.

By applying the above observation to ABE schemes in the literature, we show
the performances of their ABE-RM counterparts obtained via our conversions
in Tables 2 and 3 for key-policy and ciphertext-policy variants, respectively. We
compare them to trivial ABE-RM schemes obtained from ABE via the trivial
conversion as explained in Sect. 1. As expected, almost all the ABE-RM schemes
obtained from our conversions require only O(log n) overhead (for both key and
ciphertext sizes). Only the two resulting KP-ABE-RM schemes with O(1)-size
ciphertext require O(log2 n) overhead (only for key sizes), and only the resulting
CP-ABE-RM scheme with O(1)-size key requires O(log2 n) overhead (only for
ciphertext sizes). In contrast, the ABE-RM schemes obtained from the trivial
conversion requires O(n) overhead in either the key or ciphertext sizes (in some
case, also the public key sizes), depending on its type of ABE-RM being type 1
or 2, respectively.

Schemes via the KP-DSE-to-ABE-RM Conversion (Sects. 4.3 + 4.2).
Let F ′(d,m, m̄, k, k̄, �, �̄) be the size function analogously to F in the above
discussion, albeit here we consider KP-DSE schemes and have the first input as
d (the full dimension of affine spaces). From Eqs. (17) and (10), we have that the
ABE-RM scheme via this conversion has the sizes

(|PK|, |C|, |SK|) = F ′
(
O(log n), O(m log n), O(m̄ log n), k, k̄, �, �̄

)
,

where we notice that there is no overhead expansion for �, �̄. We then apply the
conversion to available KP-DSE of [2,3] and CP-DSE of [3,4] and obtain the
efficiency shown in the last line of Tables 2 and 3, respectively. The resulting
KP-ABE-RM has key size O(m log2 n) due to the fact that the KP-DSE of [2,3]
requires d = O(log n) group elements per each affine space (and there are m′ =
O(m log n) spaces) in a key. In contrast, the ciphertext size is only O(�), which
is independent of n. This is since the KP-DSE of [2,3] requires O(1) group
elements per each affine space (and there are � spaces) in a ciphertext. The case
for CP-ABE-RM, constructed from CP-DSE of [3,4], is analogous.

58 N. Attrapadung et al.

Table 2. Instantiations and performances of KP-ABE-RM schemes

Scheme Type |PK| |C| |SK| Security Assumption

GPSW [22]+ trivial 1 O(�̄) O(�) O(mn) Selective DBDH

GPSW [22]+ trivial 2 O(�̄n) O(�n) O(m) Selective DBDH

GPSW [22]+ our Sects. 4.1 and 4.2 1, 2 O(�̄ log n) O(� log n) O(m log n) Selective DBDH

LOSTW [27]+ trivial 1 O(|A|n) O(�) O(mn) Full Subgrp-Deci.

LOSTW [27]+ trivial 2 O(|A|n) O(�n) O(m) Full Subgrp-Deci.

LOSTW [27]+ our Sects. 4.1 and 4.2 1, 2 O(|A|n) O(� log n) O(m log n) Full Subgrp-Deci.

ALP [11]+ trivial 1 O(�̄) O(1) O(m�̄n) Selective DBDHE

ALP [11]+ trivial 2 O(�̄n) O(1) O(m�̄n) Selective DBDHE

ALP [11]+ our Sects. 4.1 and 4.2 1,2 O(�̄ log n) O(1) O(m�̄ log2 n) Selective DBDHE

Att1 [2,3]+ trivial 1 O(�̄) O(1) O(m�̄n) Full EDHE-3,4

Att1 [2,3]+ trivial 2 O(�̄n) O(1) O(m�̄n) Full EDHE-3,4

Att1 [2] + our Sects. 4.1 and 4.2 1, 2 O(�̄ log n) O(1) O(m�̄ log2 n) Full EDHE-3,4

RW [35]+ trivial 1 O(1) O(�) O(mn) Selective RW-2

RW [35]+ trivial 2 O(1) O(�n) O(m) Selective RW-2

RW [35]+ our Sects. 4.1 and 4.2 1, 2 O(1) O(� log n) O(m log n) Selective RW-2

Att2 [2,3]+ trivial 1 O(1) O(�) O(mn) Full EDHE-3,4

Att2 [2,3]+ trivial 2 O(1) O(�n) O(m) Full EDHE-3,4

Att2 [2,3]+ our Sects. 4.1 and 4.2 1, 2 O(1) O(� log n) O(m log n) Full EDHE-3,4

Att3 [2,3]+ our Sects. 4.3 and 4.2 1, 2 O(log n) O(�) O(m log2 n) Full EDHE-3,4

Table 3. Instantiations and performances of CP-ABE-RM schemes

Scheme Type |PK| |C| |SK| Security Assumption

BSW [14]+ trivial 1 O(1) O(mn) O(�) Selective Generic group

BSW [14]+ trivial 2 O(1) O(m) O(�n) Selective Generic group

BSW[14]+ our Sects. 4.1 and 4.2 1,2 O(1) O(m log n) O(� log n) Selective Generic group

Wat [38]+ trivial 1 O(|A|n) O(mn) O(�) Selective Para-DBDHE

Wat [38]+ trivial 2 O(|A|n) O(m) O(�n) Selective Para-DBDHE

Wat [38]+ our Sects. 4.1 and 4.2 1,2 O(|A|n) O(m log n) O(� log n) Selective Para-DBDHE

RW [35]+ trivial 1 O(1) O(mn) O(�) Selective RW-1

RW [35]+ trivial 2 O(1) O(m) O(�n) Selective RW-1

RW [35]+ our Sects. 4.1 and 4.2 1, 2 O(1) O(m log n) O(� log n) Selective RW-1

LOSTW [27]+ trivial 1 O(|A|n) O(mn) O(�) Full Subgrp-Deci.

LOSTW [27]+ trivial 2 O(|A|n) O(m) O(�n) Full Subgrp-Deci.

LOSTW [27]+ our Sects. 4.1 and 4.2 1, 2 O(|A|n) O(m log n) O(� log n) Full Subgrp-Deci.

AY1 [3,4]+ trivial 1 O(�̄) O(m�̄n) O(1) Full EDHE-3,4

AY1 [3,4]+ trivial 2 O(�̄n) O(m�̄n) O(1) Full EDHE-3,4

AY1 [3,4]+ our Sects. 4.1 and 4.2 1, 2 O(�̄ log n) O(m�̄ log2 n) O(1) Full EDHE-3,4

AY2 [3,4]+ trivial 1 O(1) O(mn) O(�) Full EDHE-3,4

AY2 [3,4]+ trivial 2 O(1) O(m) O(�n) Full EDHE-3,4

AY2 [3,4]+ our Sects. 4.1 and 4.2 1, 2 O(1) O(m log n) O(� log n) Full EDHE-3,4

AY3 [3,4]+ our Sects. 4.3 and 4.2 1, 2 O(log n) O(m log2 n) O(�) Full EDHE-3,4

6 Extensions

ABE over Range Intersection (ABE-RI). We can define a useful extension
called ABE over Range Intersection (ABE-RI). It is defined in exactly the same
manner as ABE over Set Intersection (ABE-SI) except that all the attribute value

Attribute-Based Encryption for Range Attributes 59

sets will be confined to only ranges. The predicate evaluation amounts to see if
ranges are intersected. We give its definition in the full version. We illustrate
its application as follows. We can use policies with ranges as in Sect. 1. Now,
not only the policy for user but also the content attribute can be specified with
ranges; for example, a content with attributes such as (‘genre’ = music), (‘day’ =
[20160517, 20160529]), (‘hour’ = [22, 23]). The key for the policy (1) mentioned
in Sect. 1 can be used to decrypt this content in the ABE-RI system since the
ranges for attribute ‘day’ are intersected (and the rest is satisfied).

We can construct ABE-RI from ABE-RM as follows. Consider two ranges
[u, v] and [c, d]. We observe that they intersect if and only if c ∈ [u, v], d ∈ [u, v],
or u ∈ [c, d]. In other words, range intersection can be expressed as a disjunction
of three instances of range membership. The full construction will use ABE-SI
(instead of using ABE-RM directly), and is deferred to the full version.

ABE for Non-monotone Span Programs over Range Membership. Our
scheme can be extended to also deal with range non-membership relations. This
is captured as Non-monotonic ABE-RM, where we deferred its definition to
the full version. Intuitively, we implement non-monotonic ABE-RM simply by
observing that x �∈ [u, v] if and only if x ∈ [1, u − 1] or x ∈ [v + 1, n]. Hence,
it can be expressed as a disjunction of two instances of range membership. The
full construction will use ABE-SI (instead of using ABE-RM directly), and is
deferred to the full version.

References

1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9563, pp.
259–288. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 10

2. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014)

3. Attrapadung, N.: Dual system encryption framework in prime-order groups. IACR
Cryptology ePrint Archive, 2015:390 (2015)

4. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg,
K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Heidelberg (2015)

5. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of
predicate encryption and applications to ABE with various compactness trade-
offs. In: Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 574–601.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 24

6. Attrapadung, N., Hanaoka, G., Matsumoto, T., Teruya, T., Yamada, S.: Attribute
based encryption with direct efficiency tradeoff. In: Manulis, M., Sadeghi, A.-R.,
Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 249–266. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-39555-5 14

7. Attrapadung, N., Hanaoka, G., Ogawa, K., Ohtake, G., Watanabe, H., Yamada,
S.: Attribute-based encryption for range attributes. Full version of this paper, to
be posted on IACR Cryptology ePrint Archive (2016)

http://dx.doi.org/10.1007/978-3-662-49099-0_10
http://dx.doi.org/10.1007/978-3-662-48797-6_24
http://dx.doi.org/10.1007/978-3-319-39555-5_14

60 N. Attrapadung et al.

8. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., Panafieu, E., Rafols, C.:
Attribute-based encryption schemes with constant-size ciphertexts. Theor. Com-
put. Sci. 422, 15–38 (2012)

9. Attrapadung, N., Imai, H.: Dual-policy attribute based encryption. In: Abdalla,
M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol.
5536, pp. 168–185. Springer, Heidelberg (2009)

10. Attrapadung, N., Libert, B.: Functional encryption for inner product: achiev-
ing constant-size ciphertexts with adaptive security or support for negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010)

11. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011)

12. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

13. Bentley, J.L.: Solutions to Klee’s rectangle problems’. Technical report,
Carnegie-Mellon University (1977)

14. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of 2007 IEEE Symposium on Security and Privacy, pp. 321–
334 (2007)

15. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

16. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005)

17. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

18. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

19. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015)

20. Gay, R., Méaux, P., Wee, H.: Predicate encryption for multi-dimensional range
queries from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 752–776.
Springer, Heidelberg (2015)

21. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

22. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of ACM-CCS 2006, pp.
89–98 (2006)

23. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Hanaoka, G., Kurosawa, K. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013)

Attribute-Based Encryption for Range Attributes 61

24. Kasamatsu, K., Matsuda, T., Emura, K., Attrapadung, N., Hanaoka, G.,
Imai, H.: Time-specific encryption from forward-secure encryption. In: Visconti, I.,
De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 184–204. Springer, Heidelberg
(2012)

25. Kasamatsu, K., Matsuda, T., Hanaoka, G., Imai, H.: Ciphertext policy multi-
dimensional range encryption. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC
2012. LNCS, vol. 7839, pp. 247–261. Springer, Heidelberg (2013)

26. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

27. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

28. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: Proceedings of IEEE Symposium on Security and Privacy, pp. 273–285 (2010)

29. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

30. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

31. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of ACM-CCS 2007, pp. 195–203
(2007)

32. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

33. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012)

34. Paterson, K.G., Quaglia, E.A.: Time-specific encryption. In: Garay, J.A., De Prisco,
R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010)

35. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: Proceedings of ACM-CCS 2013, pp.
463–474 (2013)

36. Shi, E., Bethencourt, J., Chan, H., Song, D., Perrig, A.: Multi-dimensional range
query over encrypted data. In: Proceedings of 2007 IEEE Symposium on Security
and Privacy, pp. 350–364 (2007)

37. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

38. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

39. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

40. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and com-
pact constructions for non-monotonic attribute-based encryption. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014)

Naor-Yung Paradigm with Shared Randomness
and Applications

Silvio Biagioni1(B), Daniel Masny2, and Daniele Venturi3

1 Department of Information Engineering, Sapienza University of Rome,
Rome, Italy

sil.biagioni@yahoo.it
2 Horst-Görtz Institute for IT Security, Ruhr-Universität Bochum,

Bochum, Germany
3 Department of Information Engineering and Computer Science,

University of Trento, Trento, Italy

Abstract. The Naor-Yung paradigm (Naor and Yung, STOC ’90)
allows to generically boost security under chosen-plaintext attacks (CPA)
to security against chosen-ciphertext attacks (CCA) for public-key
encryption (PKE) schemes. The main idea is to encrypt the plaintext
twice (under independent public keys), and to append a non-interactive
zero-knowledge (NIZK) proof that the two ciphertexts indeed encrypt
the same message. Later work by Camenisch, Chandran, and Shoup
(Eurocrypt ’09) and Naor and Segev (Crypto ’09 and SIAM J. Com-
put. ’12) established that the very same techniques can also be used in
the settings of key-dependent message (KDM) and key-leakage attacks
(respectively).

In this paper we study the conditions under which the two cipher-
texts in the Naor-Yung construction can share the same random coins.
We find that this is possible, provided that the underlying PKE scheme
meets an additional simple property. The motivation for re-using the
same random coins is that this allows to design much more efficient
NIZK proofs. We showcase such an improvement in the random ora-
cle model, under standard complexity assumptions including Decisional
Diffie-Hellman, Quadratic Residuosity, and Subset Sum. The length of
the resulting ciphertexts is reduced by 50 %, yielding truly efficient PKE
schemes achieving CCA security under KDM and key-leakage attacks.

As an additional contribution, we design the first PKE scheme whose
CPA security under KDM attacks can be directly reduced to (low-density
instances of) the Subset Sum assumption. The scheme supports key-
dependent messages computed via any affine function of the secret key.

1 Introduction

Forty years ago, in their seminal paper [25], Diffie and Hellman put forward the
concept of public-key cryptography. Since then, the field has experienced huge
advances, making public-key encryption (PKE) one of the most fundamental and
deployed cryptographic applications. Intuitively, PKE allows a sender to encrypt
c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 62–80, 2016.
DOI: 10.1007/978-3-319-44618-9 4

Naor-Yung Paradigm with Shared Randomness and Applications 63

a message under a receiver’s public key; the receiver, holding the corresponding
secret key, is the only one able to decrypt the resulting ciphertext and thus
recover the transmitted message. In order for the above idea to work we need a
mechanism to certify users’ public keys, which is typically achieved using digital
signatures within a public-key infrastructure.

1.1 Motivation

It is of fundamental importance to understand what type of security properties
a PKE scheme should satisfy, in order to be used effectively in applications.
The most basic requirement is to say that it should be unfeasible to recover
the plaintext behind a given ciphertext. This is, however, not sufficient in many
applications, as it does not exclude, e.g., the possibility that one is able to recover
partial information on the encrypted message.

Seminal work on the subject [38,47,60] established the equivalence of dif-
ferent formulations leading to the following minimal requirement: No efficient
adversary, given a target public key, should be able to distinguish the encryp-
tion of two chosen messages. This notion is often known under the name of
indistinguishability under chosen-plaintext attacks (CPA), and it is by far the
most basic security requirement a PKE scheme should meet. Yet, CPA security
is insufficient in many applications. For instance, in some case, we might require
ciphertexts to be non-malleable, meaning that it should be hard, given a cipher-
text encrypting some message, to create a valid ciphertext encrypting a related
message; non-malleable PKE [8,21,27,52] is important in many contexts, e.g.,
for online auctions.

The de-facto standard notion of security for PKE is called indistinguishability
under chosen-ciphertext attacks (CCA) which requires that CPA security should
hold even in the presence of decryption queries (i.e., the adversary is allowed to
ask for the decryption of arbitrary messages but the challenge ciphertext). It is
important to note that CCA security is not a theoretical concern, as emphasized
by the celebrated Bleichenbacher attack on PKCS #1 [14]. However, there are
specific settings in which even CCA security is not enough. We review two such
settings below.

KDM Attacks. An adversary might be able to see ciphertexts encrypting mes-
sages related to the secret key. This is the case, e.g., in disk encryption soft-
ware (including Windows Vista’s BitLocker utility) and in certain anonymous
credential systems [20], or could be due to careless key management. Such key-
dependent message (KDM) attacks are captured within the notions of CPA/CCA
security by requiring that encryptions of messages depending on the secret key
(via adversarial functions) are indistinguishable from encryptions of a fixed
string [13,20].

Several PKE schemes with CPA/CCA-KDM security exist, under different
complexity assumptions including Learning with Errors [6,18], Decisional Diffie-
Hellman [15,18,40,59], Quadratic Residuosity [17,40,59], and Learning Parity
with Noise [28].

64 S. Biagioni et al.

Key-Leakage Attacks. An adversary might be able to learn partial information
on the secret key by means of so-called side-channel attacks, exploiting physical
phenomena such as timing [44], power consumption [45], and electronic emis-
sion [53]. Such bounded key-leakage attacks are captured within the notions
of CPA/CCA security by empowering the adversary with access to a so-called
Λ-leakage oracle: Upon input an efficiently computable function, the oracle
returns the result of the function applied to the secret key, for a total of at
most Λ bits.

Several PKE schemes with CPA/CCA security under bounded key-leakage
attacks exist, under different complexity assumptions including Learning with
Errors [1], Decisional Diffie-Hellman [26,48,49], and Quadratic Residuosity [17].

1.2 Our Contributions

The Naor-Yung paradigm is a method to generically transform a CPA-secure
PKE scheme into a CCA-secure one, in a non-black-box way. Specifically, to
encrypt a given message m, one samples two independent public keys pk and
pk ′ for the underlying CPA-secure PKE, encrypts the message m twice yielding
ciphertexts c and c′ (the first one under pk and the second one under pk ′),
and finally gives a non-interactive proof π that the ciphertexts indeed encrypt
the same message. One can show that if the non-interactive proof satisfies zero-
knowledge, and moreover it is simulation-sound [57], the resulting PKE meets
CCA security.

Later work by Camenisch et al. [19], and by Naor and Segev [48,49], showed
that the original Naor-Yung paradigm also works in the more generic settings
of KDM attacks and key-leakage attacks. However, the resulting PKE scheme is
not very efficient in the standard model due to the cost of simulation-sound non-
interactive zero-knowledge (NIZK) proof systems. The efficiency of the Naor-Yung
paradigm is very competitive, instead, in the random oracle model of Bellare and
Rogaway [9], where each party (including the adversary) is given access to a ran-
dom hash function. As proven by Faust et al. [33], the Fiat-Shamir heuristic [35] is
sufficient for instantiating the NIZK in the Naor-Yung construction (in the ROM),
leading the most efficient instantiations of PKE schemes with CCA security under
KDM and key-leakage attacks known today.

A Twist of Naor-Yung. In this work we analyze a slight modification of the orig-
inal Naor-Yung paradigm. The main idea is to have the two ciphertexts c and c′

share the same random coins. As we will see, this allows for a substantial efficiency
improvement in the design of the NIZK, yielding beyond state-of-the-art PKE
schemes with CCA security under KDM and key-leakage attacks (in the ROM).

Our analysis (see Sect. 3) shows that the above idea indeed works, provided
that the underlying CPA-secure PKE scheme meets an additional property that
we dub “randomness fusion”: Given two ciphertexts c and c′ of messages m
and m′ respectively (computed under independent public keys pk and pk ′) it is
possible to re-randomize (c, c′) into a new pair (c̃, c̃′) such that the distribution of
(c̃, c̃′) is statistically close to the distribution of (ĉ, ĉ′) where (ĉ, ĉ′) are computed
using the normal encryption with the same (uniform) randomness r∗.

Naor-Yung Paradigm with Shared Randomness and Applications 65

A similar requirement has been put forward by Bellare et al. [7] in their
study of randomness re-use in multi-recipient PKE. Our requirement is however
weaker than the one in [7], and, as we show, it is sufficient for our application.

KDM Security from Subset Sum. As a contribution of independent interest, in
Sect. 4, we design the first PKE scheme whose KDM-CPA security can be based
directly on low-density instances of the Subset Sum problem. Such an assumption
is particularly interesting given its robustness to quantum attacks [12]. The set of
supported KDM functions consists of all possible (efficiently computable) affine
modifications of the secret key; a result of Applebaum [5] allows to generically
boost this form of KDM security to security against all functions that can be
computed in some fixed polynomial time.

Our construction borrows ideas from [6], that we needed to carefully adapt
to the case of Subset Sum. The PKE scheme we design can be effectively used in
our framework (as we argue below), yielding a truly efficient PKE scheme with
CCA-KDM security from the Subset Sum assumption (in the ROM).

Comparison. Finally, we instantiate our twist of the Naor-Yung construction
under three complexity assumptions: Decisional Diffie-Hellman, Quadratic
Residuosity, and Subset Sum. As our analysis shows (see Sect. 5), ciphertexts
computed via our approach are shorter by a factor of roughly 50 % compared to
those one would obtain via the original Naor-Yung paradigm.

The reason behind such an efficiency improvement is best understood using
an example. Consider the ElGamal PKE scheme [30], whose CPA-security can
be based on the Decisional Diffie-Hellman assumption. A public key consists of
a single element h, within a cyclic group G of prime order q (with generator g);
an encryption of m ∈ G under h equals c := (c1, c2) = (gr, hr · m), for uniform
randomness r ∈ Zq. The PKE scheme is easily seen to meet the randomness
fusion property.1

When using the above PKE scheme in the original Naor-Yung construction
one samples two independent public keys h, h′ ∈ G, and computes a “double
encryption” of message m by defining c := (c1, c2) = (gr, hr · m) and c′ :=
(c′

1, c
′
2) = (gr′

, (h′)r′ · m), for independent randomness r, r′ ∈ Zq. Finally, one
needs to compute a (simulation-sound) NIZK proof π for the fact that c and c′

are well-distributed ciphertexts encrypting the same messages; this is equivalent
to showing knowledge of r, r′ such that c1 = gr, c′

1 = gr′
, and c2/c′

2 = hr/(h′)r′
.

We refer to the pair x := (r, r′) as the witness, and to y := (h, (c1, c2), h′, (c′
1, c

′
2))

as the statement to be proven.
The standard way to compute π (in the ROM) is by applying the Fiat-Shamir

heuristic [35] to a so-called Sigma-protocol for the above considered language.2

In the case of ElGamal (see [33, Section 5]) π := (α, γ), where α := (α1, α2, α3) =

1 In fact, it satisfies the reproducibility test of Bellare et al. [7] which implies the
randomness fusion property.

2 A Sigma-protocol is a public-coin interactive protocol consisting of three messages
(α, β, γ), satisfying certain properties; see Sect. 5 for a more precise definition.

66 S. Biagioni et al.

(gs, gs′
, hs · (h′)s′

) and γ := (γ1, γ2) = (s − βr, s′ + βr′), with random s, s′ ∈ Zq

and β implicitly defined as β := H(y||α) through the application of the random
oracle H.

This way, a ciphertext consists of 9 group elements. Using our twist of the
Naor-Yung construction one can completely drop α2 and γ2, thus saving 3 group
elements (note that c1 = c′

1). Hence, a ciphertext consists of 6 group elements
yielding a 33 % gain in ciphertext size. While the above instantiation is not
interesting on its own right (as one can obtain CCA security in the standard
model under the same complexity assumption, with even shorter ciphertexts [22])
it contains the crux of our method, and moreover it constitutes the base for
understanding our concrete instantiations in Sect. 5.

1.3 Related Work

The first PKE scheme with CPA security directly based on Subset Sum has been
constructed by Lyubashevsky et al. [46]; their work has recently been extended
to the setting of CCA security by Faust et al. [34]. Subset Sum also found
application in the context of outsourced pattern matching [32].

While we focused on public-key encryption, KDM security can also be defined
in the secret-key setting. See, among others, [6,13]. Sometimes KDM security is
defined in a multi-key variant, where there are polynomially many public/secret
key pairs and the key-dependent message is chosen as a function of all the keys.
Although our twist of the Naor-Yung paradigm works even in the multi-user
setting, our Subset Sum based PKE scheme is only proven secure in the single-
key setting.

Many definitions for security under key-leakage attacks exist in the literature,
beyond the setting of bounded leakage considered in this paper. We refer the
reader directly to the literature (e.g., [3,58]) for a more in-depth discussion on the
relevance of each definition. We also dispose of many leakage-resilient primitives
beyond public-key encryption, see, among many others, [2,16,24,29,31,42,51].

Rackoff and Simon [54] considered a variation of the Naor-Yung paradigm
in which the sender encrypts the message only once, and then it proves in zero-
knowledge that it knows the plaintext corresponding to the transmitted cipher-
text. In order for this to work, the NIZK proof system needs to satisfy a stronger
version of soundness known as simulation extractability. Unfortunately, this par-
adigm does not lead to very efficient instantiations in the ROM due to the fact
that Fiat-Shamir NIZK are not known to be simulation extractable. (See [10,11]
for negative indications on this matter.) An alternative (always in the ROM)
is to use Fischlin’s transformation [36], but the price to instantiate the NIZK
might be higher [23].

An alternative construction to generically boost CPA security to CCA secu-
rity for PKE in the random oracle model is due to Fujisaki and Okamoto [37].
The security of this construction under KDM attacks has been recently analyzed
in [43].

Naor-Yung Paradigm with Shared Randomness and Applications 67

2 Preliminaries

2.1 Notation

We write λ ∈ N for the security parameter. We say that a function ν is negligible
in λ, if it is asymptotically smaller than the inverse of any polynomial in λ, i.e.
ν(λ) = λ−ω(1). An algorithm A is probabilistic polynomial-time (PPT) if A is
randomized, and for any input x, r ∈ {0, 1}∗ the computation of A(x; r) (i.e., A
with input x and random coins r) terminates in at most poly(|x|) steps. When
the coins are left implicit, we write y ←$ A(x) to denote the output of A(x; r)
with uniform randomness. If X is a set, then x ←$ X denotes that x is sampled
uniformly at random from X .

For a distribution D, we denote with x ←$ D that x is sampled according
to the distribution D. For two distributions D and D′ over a shared domain
D we write D(x) for the probability assigned to x ∈ D and Δ (D,D′) :=
1
2

∑
x∈D |D(x) − D′(x)| for the statistical distance between D and D′. When-

ever the statistical distance is negligible, we write D ≈s D′. Similarly, given two
ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≈c Y to denote that
the two ensembles are computationally indistinguishable.

Vectors and matrices are denoted in boldface. For two vectors u,v, with
u = (u1, . . . , un) and v = (v1, . . . , vn), the inner product between u and v is
defined as 〈u,v〉 :=

∑n
i=1 ui · vi. We represent elements in Zp as values in the

range [−(p − 1)/2, (p − 1)/2], where p > 2 is a prime number. The absolute
value of v ∈ Zp, denoted |v|, is the absolute value of the corresponding value in
[−(p − 1)/2, (p − 1)/2], and the infinity norm of a vector v := (v1, . . . , vn) ∈ Z

n
p

is ‖v‖∞ := maxi∈[n] |vi|. We will also use the following rounding functions:
�·	 : R → Z which maps a real number to its closest integer, �·� : R → Z

which maps a real number to its closest smaller integer, and �·	 : R → Z which
maps a real number to its closest larger integer. For any q, p ∈ N, we denote by
�x	p : Zq → Zp the rounding function �x	p := �p

q · x	; in case v is a vector, we
write �v	p for the application of �·	p component wise.

2.2 Public-Key Encryption

A Public-Key Encryption (PKE) scheme is a tuple of algorithms Π = (Gen,Enc,
Dec) defined as follows. (1) Algorithm Gen takes as input the security parameter
and outputs a public/secret key pair (pk , sk); for a given value of the security
parameter λ ∈ N, the set of all secret keys is denoted by SKλ and the set of
all public keys by PKλ. (2) The randomized algorithm Enc takes as input the
public key pk , a message m ∈ M, and implicit randomness r ∈ R, and outputs
a ciphertext c = Enc(pk ,m; r); the set of all ciphertexts is denoted by C and
we sometimes write μ ∈ N for the bit-length of a plaintext m ∈ M. (3) The
deterministic algorithm Dec takes as input the secret key sk and a ciphertext
c ∈ C and outputs m = Dec(sk , c) which is either equal to some message m ∈ M
or to an error symbol ⊥.

68 S. Biagioni et al.

Experiment Expkdm-cca
Π,A (λ, F):

(pk , sk) ←$ Gen(1λ); b ←$ {0, 1}
Qdec, Qkdm ← ∅
b ← AOdec

sk (·),Okdm
sk,b (·)(pk)

Return (b = b) ∧ (Qdec ∩ Qkdm = ∅)

Oracle Okdm
sk ,b (f):

If b = 0
Return c ←$ Enc(pk , 0μ)

Else
Return c ←$ Enc(pk , f(sk))

Qkdm ← Qkdm ∪ {c}

Oracle Odec
sk (c):

Return Dec(sk , c)
Qdec ← Qdec ∪ {c}

Fig. 1. Experiment defining KDM security of a PKE scheme.

Correctness. We say that Π satisfies correctness if for all (pk , sk) ←$ Gen(1λ)
there exists a negligible function ν : N → [0, 1] such that that P[Dec(sk ,Enc(pk ,
m)) = m] ≥ 1−ν(λ) (where the randomness is taken over the internal coin tosses
of algorithm Enc).

KDM Security. We now turn to defining key-dependent message (KDM) secu-
rity for PKE, both in the case of chosen-plaintext attacks (CPA) and chosen-
ciphertext attacks (CCA).

Definition 1 (KDM security). Let Π = (Gen,Enc,Dec) be a PKE scheme
with message space M and secret-key space SKλ (for security parameter λ ∈ N),
and let F : SKλ → M be a set of efficiently computable functions. We say
that Π has F-key-dependent message security under chosen-ciphertext attacks
(F-KDM-CCA for short), if for all PPT adversaries A there exists a negligible
function ν : N → [0, 1] such that

∣∣∣∣P
[
Expkdm-cca

Π,A (λ,F) = 1
]

− 1
2

∣∣∣∣ ≤ ν(λ),

where the experiment Expkdm-cca
Π,A (λ,F) is defined in Fig. 1.

Moreover, we say that Π has F-KDM-CPA security if the above holds for all
PPT adversaries that are not allowed any query to oracle Odec

sk (·); in this case
we denote by Expkdm-cpa

Π,A (λ,F) the corresponding experiment.

We remark that F-KDM-CPA security implies standard CPA security by
considering the set F of all constant functions that output a given (hard-coded)
plaintext in the message space, i.e. Fmsg := {fm : fm(·) = m}m∈M.

2.3 Non-Interactive Zero-Knowledge

A decision problem related to a language L ⊆ {0, 1}∗ requires to determine
if a given string y is in L or not. We can associate to any NP -language L a
polynomial-time recognizable relation R ⊆ {0, 1}∗ × {0, 1}∗ defining L itself, i.e.
L = {y : ∃x s.t. (y, x) ∈ R} for |x| ≤ poly(|y|). The string x is called a witness
for membership of y ∈ L.

Naor-Yung Paradigm with Shared Randomness and Applications 69

Let L be an NP -language. We now recall the definition of a non-interactive
zero-knowledge (NIZK) argument system for L, in the random oracle model
(ROM). Let H be a hash function (modeled as a random oracle). A non-
interactive argument system for L is a pair of PPT algorithms (PH ,VH) specified
as follows. (1) Algorithm PH takes as input a pair (y, x) such that (y, x) ∈ R,
and returns a proof π. (2) Algorithm VH takes as input a pair (y, π) and returns
a decision bit. We write PH , VH , to specify that both algorithms are allowed
random oracle queries.

By correctness, we mean that VH(y, π) = 1 whenever π ←$ PH(y, x) and
(y, x) ∈ R Below we define two further properties of non-interactive argu-
ments, namely zero-knowledge and simulation soundness. The definitions are
taken from [33].

Zero-Knowledge. The zero-knowledge property captures the intuition that a non-
interactive proof π for a given statement y does not reveal anything beyond the
fact that y ∈ L. This intuition is formalized by the existence of an efficient sim-
ulator S that is able to simulate π without knowing a witness. The simulator is
allowed to fully control the random oracle, as we make explicit in the definition
below.

Definition 2 (NIZK). Let L be an NP-language, and let H be a hash func-
tion (modeled as a random oracle). Denote by S1,S2 the oracles such that S1(·)
returns the first output of (h, τ) ←$ S(1, τ, ·) and S2(y, x) returns the first output
of (π, τ) ←$ S(2, τ, y) if (y, x) ∈ R. We say that (PH ,VH) is a NIZK for L in the
random oracle model, if there exists a PPT simulator S such that for all PPT
distinguishers D there is a negligible function ν : N → [0, 1] for which

∣∣∣P
[
DH(·),PH(·,·)(1λ) = 1

]
− P

[
DS1(·),S2(·,·)(1λ) = 1

]∣∣∣ ≤ ν(λ),

where both oracles P and S2 return ⊥ in case (y, x) �∈ R.

Simulation Soundness. The simulation soundness property captures the intu-
ition that it should be hard to find an accepting proof π for a false statement
y �∈ L, even after seeing polynomially many simulated proofs of possibly false
statements.

Definition 3 (Simulation soundness). Let L be an NP-language, and let H
be a hash function (modeled as a random oracle). Consider a NIZK (PH ,VH)
for L, with zero-knowledge simulator S. Denote by S1,S

′
2 the oracles such that

S1(·) returns the first output of (h, τ) ←$ S(1, τ, ·) and S′
2(y) returns the first

output of (π, τ) ←$ S(2, τ, y). We say that (PH ,VH) is simulation sound in the
random oracle model, if for all PPT adversaries A there is a negligible function
ν : N → [0, 1] such that

P

[
VS1(y∗, π∗) = 1 ∧ y∗ �∈ L ∧ (y∗, π∗) �∈ Q : (y∗, π∗) ←$ AS1(·),S′

2(·)(1λ)
]

≤ ν(λ),

where Q contains the list of pairs (yi, πi) such that yi was asked to S′
2 yielding

answer πi.

70 S. Biagioni et al.

3 Naor-Yung Paradigm with Shared Randomness

We start by describing a twist of the Naor-Yung paradigm, in Sect. 3.1, where
the same random string is used to generate both ciphertexts in the Naor-Yung
construction. Then, in Sect. 3.2, we put forward a simple property of a PKE
scheme which will be useful for proving security of the modified Naor-Yung
paradigm. Our main theorem, and its proof, can be found in Sect. 3.3. Finally,
Sect. 3.4 discusses a few generalizations of our result.

3.1 A Twist of Naor-Yung

The original Naor-Yung paradigm combines two CPA-secure PKE schemes Π
and Π ′ into a new PKE scheme Π∗ that achieves CCA security [50]. A ciphertext
in Π∗ consists of two independent encryptions of the same message (using fresh
randomness), together with a non-interactive proof that the two ciphertexts
indeed encrypt the same message. This paradigm was later extended to the
setting of KDM security by Camenisch et al. [19], and to the setting of key-
leakage by Naor and Segev [48,49].

Below, we present a twist of the Naor-Yung construction in which the two
encryptions share the same random coins. As we will see in the sequel (cf. Sect. 5)
this allows for significant efficiency improvements in the size of the resulting non-
interactive proofs. Although our construction works for any pair of PKE schemes
with shared message and randomness space, for simplicity we consider the special
case in which Π ′ = Π.

Let Π = (Gen,Enc,Dec) be a PKE scheme with message space M and ran-
domness space R, and let let (PH ,VH) be a NIZK in the ROM for the following
NP -language

LΠ
NY :=

{
(pk , pk ′, c, c′) : ∃m, r∗ s.t.

c = Enc(pk ,m; r∗)
c′ = Enc(pk ′,m; r∗)

}
. (1)

The modified PKE scheme Π∗ = (Gen∗,Enc∗,Dec∗) is described in Fig. 2.

3.2 Randomness Fusion

We now put forward a simple property of a PKE scheme Π which will be use-
ful for proving security of the modified Naor-Yung construction. Informally, the
property says that given two ciphertexts c and c′ of messages m and m′ respec-
tively (computed under independent public keys pk and pk ′) it is possible to
re-randomize (c, c′) into a new pair (c̃, c̃′) such that the distribution of (c̃, c̃′) is
statistically close to the distribution of (ĉ, ĉ′) where (ĉ, ĉ′) are computed using
Enc with the same (uniform) random input r∗.

Definition 4 (Randomness fusion). Let Π = (Gen,Enc,Dec) be a PKE
scheme. There exists a PPT algorithm Rand such that for all m,m′ ∈ M it holds

Naor-Yung Paradigm with Shared Randomness and Applications 71

Naor-Yung Paradigm with Shared Randomness

Consider the following PKE scheme Π∗ = (Gen∗,Enc∗,Dec∗) based on an auxiliary
PKE scheme Π = (Gen,Enc,Dec) and on a non-interactive argument system for the
language LΠ

NY of Eq. (1).
Key generation: Given as input the security parameter λ, algorithm Gen∗ runs Gen
twice obtaining (pk , sk) ←$ Gen(1λ) and (pk , sk) ←$ Gen(1λ). Hence, it outputs pk∗ =
(pk , pk) and sk∗ = sk (the key sk is erased).
Encryption: Given as input a message m ∈ M, algorithm Enc∗ samples random
coins r∗ ←$ R, computes c = Enc(pk , m; r∗) and c = Enc(pk , m; r∗), and obtains a
proof π ←$ PH((pk , pk , c, c), (m, r∗)) for membership of (pk , pk , c, c) ∈ LΠ

NY. Hence,
it outputs the ciphertext c∗ = (c, c , π).
Decryption: Given as input a ciphertext c∗ = (c, c , π), algorithm Dec∗ first runs
VH((pk , pk , c, c), π); if the output is zero Dec∗ outputs ⊥ and stops. Otherwise, it
outputs the same as Dec(sk , c).

Fig. 2. Modified Naor-Yung construction

that Dm,m′ ≈s D̃m,m′ , where the distributions Dm,m′ and D̃m,m′ are defined
as follows:

Dm,m′ :=
{

(ĉ, ĉ′) : (pk , sk) ←$ Gen(1λ); (pk ′, sk ′) ←$ Gen(1λ); r∗ ←$ R
ĉ = Enc(pk ,m; r∗); ĉ′ = Enc(pk ′,m′; r∗)

}
(2)

D̃m,m′ :=

⎧⎪⎪⎨
⎪⎪⎩

(c̃, c̃′) :

(pk , sk) ←$ Gen(1λ); (pk ′, sk ′) ←$ Gen(1λ)
r, r′ ←$ R; c = Enc(pk ,m; r); c′ = Enc(pk ′,m′; r′)

aux := (pk , pk ′, sk ′, r′,m′)
(c̃, c̃′) ←$ Rand((c, c′), aux)

⎫⎪⎪⎬
⎪⎪⎭

. (3)

Alternative Formulations. A particular case is the one where the distribution
of ciphertexts using independent randomness or shared randomness are directly
statistically close. Such a requirement is more stringent, and can be cast in
Definition 4 by requiring that Rand simply outputs the pair (c, c′).

Yet another variation of the above property has been considered by Bel-
lare et al. [7] in their study of randomness re-use in multi-recipient PKE. The
reproducibility test of [7] can be cast in Definition 4 by requiring that Dm,m′

and D̃m,m′ are identically distributed, and moreover Rand can produce the pair
(c̃, c̃′) without knowing the randomness r′ (corresponding to ciphertext c′).

Our choice to go for the formulation above is due to the fact that Definition 4
is a weaker requirement, yet it is sufficient to prove security of our twist of the
Naor-Yung paradigm.

3.3 Main Theorem

We now turn to state our main theorem, which quantifies the security of our
twist of the Naor-Yung paradigm. The proof can be found in the full version.

72 S. Biagioni et al.

Theorem 1 (Main theorem, KDM security). Let Π be a PKE scheme
satisfying F-KDM-CPA security and with the randomness fusion property (cf.
Definition 4), and let (PH ,VH) be a simulation-sound NIZK for the language
LΠ

NY of Eq. (1). Then, the PKE scheme Π∗ described in Fig. 2 satisfies F-KDM-
CCA security in the random oracle model.

3.4 Extensions

We mention two generalizations of Theorem 1, beyond the setting of key-
dependent message security considered in this section.

First, it is easy to see that Theorem 1 holds also if we start with a CPA-
secure PKE scheme; in this case, of course, we simply obtain a PKE scheme
satisfying CCA security. Second, it is possible to show that a similar result as
the one in Theorem 1 applies to the setting of bounded key-leakage attacks
(see, e.g., [26,48]). Informally a PKE scheme is CPA-secure under Λ-key-leakage
attacks if it remains CPA-secure even given Λ bits of (adaptive) leakage on the
secret key. CCA security under Λ-key-leakage attacks is defined similarly, but
now the adversary can additionally ask for decryption queries.

As proven in [33,48] the classical Naor-Yung paradigm allows to boost
CPA security under Λ-key-leakage attacks to CCA security under Λ-key-leakage
attacks. A similar result holds for our twist of the Naor-Yung construction,
assuming the underlying PKE scheme meets the randomness fusion property.
As the security proof under key-dependent message and key-leakage attacks are
very similar, we omit the proof for the leakage case here.

4 KDM Security from Subset Sum

We start by recalling the Subset Sum assumption in Sect. 4.1. Our new Subset-
Sum based PKE scheme is described in Sect. 4.2, and its correctness and security
are showed in Sects. 4.3 and 4.4, respectively.

4.1 The Subset Sum Problem

In its simplest form, the search version of the Subset Sum problem—denoted
SS(n, q) and parametrized by values n(λ), q(λ) ∈ N—asks to compute a secret
vector s given (a, t) such that t := 〈a, s〉 mod q, where both a ∈ Z

n
q and s ∈

{0, 1}n are randomly chosen. The decisional version of the problem, instead,
asks to distinguish (a, t) from (a, u) where u is uniform in Zq. The equivalence
between the search and the decisional version of the Subset Sum problem has
been established in a seminal paper by Impagliazzo and Naor [41].

Below, we recall a variant of the Subset Sum problem which was considered
for the first time by Lyubashevsky et al. [46]. Here the modulus q is a power of
an odd number; in our case we will set q := pm, for some m ∈ N. Such a variant
of the problem helps interpreting the Subset Sum problem as an instance of the
Learning with Errors [55,56] (LWE) problem with “deterministic noise”, as we
recall below.

Naor-Yung Paradigm with Shared Randomness and Applications 73

Definition 5 (Subset Sum assumption). For security parameter λ ∈ N,
and parameters n(λ), p(λ), m(λ) ∈ N, consider the following distribution
DSS(λ, n, p,m):

– Sample A ←$ Z
m×n
p and s ←$ {0, 1}n.

– Parse A := (a1,1, . . . , am,n), s := (s1, . . . , sn), compute A · s ∈ Z
n
p , and let

e1(A, s) := 0. For all j ∈ [m], j �= 1, compute

ej(A, s) :=
⌊

ej−1(A, s) +
∑n

i=1 aj−1,i

p

⌋
mod p.

– Set e(A, s) := (em(A, s), . . . , e1(A, s))T and t := A · s + e(A, s). Output
(A, t, s).

We say that the decisional Subset Sum assumption SS(n, pm) holds, if for all
PPT distinguishers D there exists a negligible function ν : N → [0, 1] such that

∣∣P [D(A, t) = 1 : (A, t, s) ←$ DSS(λ, n, p,m)]

− P
[
D(A,u) = 1 : (A,u) ←$ Z

m×n
p × Z

m
p

]∣∣ ≤ ν(λ).

Once again, it can be shown that the above decisional version of Subset Sum
is equivalent to the search version (i.e., to finding s). In fact, [46] showed
that the representation (A, t) ∈ Z

m×n
p × Z

m
p of Subset Sum is equivalent

to the original representation (a, t) ∈ Z
n
q × Zq, whenever q = pm and p ≥

2
√

n log n + 3. In particular, given a := (a1, . . . , an) and s := (s1, . . . , sn), the
matrix A := (a1,1, . . . , am,n) can be defined as follows. For i ∈ [n] and j ∈ [m],
let aj,i := � ai

pj−1 � mod p, and interpret the vector e(A, s) as the vector of carries
in the computation of t :=

∑n
i=1 si · ai mod pm. This way, the value t directly

corresponds to ⎛
⎜⎝

n∑
i=1

si

⎛
⎜⎝

am,i

...
a1,i

⎞
⎟⎠

⎞
⎟⎠ +

⎛
⎜⎝

em(A, s)
...

e0(A, s)

⎞
⎟⎠ = t,

as desired.
Therefore, Subset Sum can be seen as LWE with deterministic noise e(A, s)

which only depends on A and s. An important difference between Subset Sum
and LWE is that for LWE the value m can be arbitrarily large as long as
it remains polynomial. Instead, for Subset Sum the density δ := n/ log q =
n/(m log p) decreases with the size of m; this implies that Subset Sum can be
solved efficiently for m ≈ n2. However, the problem is considered to be hard
whenever δ ∈ O(1/ log n).

The following lemma, which can be easily derived from [46, Lemma 3.4],
states that the deterministic noise e(A, s) is small, and additionally it remains
small when multiplied by a matrix R with components of bounded size.

Lemma 1 [46] For security parameter λ ∈ N, and parameters n(λ), p(λ), m(λ),
(λ) ∈ N, let ,m ∈ poly(λ) and p be a prime such that p ≥ 2

√
n log n + 3.

74 S. Biagioni et al.

Let (A, t, s) ←$ DSS(λ, n, p,m) and R ←$ [−�√p/2�, �√p/2�]�×m. There exist
negligible functions ν, ν′ : N → [0, 1] such that

P
[‖e(A, s)‖∞ <

√
n log n + 1

] ≥ 1 − ν(λ)

P
[‖R · e(A, s)‖∞ <

√
pmn log2 n + n

√
p
] ≥ 1 − ν′(λ). (4)

Leftover Hash Lemma. Let H := {h : D → I} be a family of hash functions
with domain D and image I. Recall that H is called universal if for any x ∈ D
and x′ ∈ D the following holds:

P
h ←$ H

[h(x) = h(x′)] =
1

|I| .

The celebrated leftover hash lemma [4,39] states that, over the random choice
of h ←$ H, x ←$ D, and u ←$ I, the statistical distance between (h, h(x)) and
(h, u) is smaller than 1/2

√|I|/|D|.
It is easy to show that matrices in Z

m×n
p are a family of universal hash

functions for prime p and any domain D ⊆ Z
m
p . As a consequence, we obtain

the following lemma which will be important for showing security of our PKE
scheme.

Lemma 2. For prime p and values n,m, ∈ N, let A ←$ Z
m×n
p ,u1,u2 ←$ Z

m
p ,

R ←$ [−�√p/2�, �√p/2�]�×m, and B ←$ Z
�×(n+2)
p . Then,

Δ ((A,u1,u2,RA,Ru1,Ru2); (A,u1,u2,B)) ≤

2
4
√

22(n+2) log p−m log(p−2).

Proof. Since H := Z
m×n
p is a family of universal hash functions with D :=

[−�√p/2�, �√p/2�]�×m and I := Z
m
p , the statement follows directly by the left-

over hash lemma and the triangle inequality (via a standard hybrid argument).

4.2 Scheme Description

We now describe a PKE scheme Π = (Gen,Enc,Dec), with message space M =
{0, 1}� for an arbitrary polynomial (·). The scheme depends on the Subset Sum
distribution of Definition 5, with parameters n, p, m ∈ N.

Key Generation: Upon input the security parameter λ ∈ N, the randomized
key generation algorithm Gen samples (A, t, s) ←$ DSS(λ, n, p,m) and defines
pk := (A, t) and sk := s.

Encryption: Upon input a plaintext M ∈ {0, 1}� and the public key pk :=
(A, t), the randomized encryption algorithm Enc picks a random matrix
R ←$ [−�√p/2�, �√p/2�]�×m and returns C := (A′, t′ + m · �p

2�) such that
A′ := R · A, t′ := R · t, and m ∈ Z

�
2 is the vector representation of the

plaintext M ∈ {0, 1}�.
Decryption: Upon input the secret key sk := s and a ciphertext C := (C1, c2),

the deterministic decryption algorithm Dec returns �c2 − C1 · s	2 ∈ {0, 1}�.

Naor-Yung Paradigm with Shared Randomness and Applications 75

4.3 Proof of Correctness

The theorem below states that the above defined PKE scheme meets the cor-
rectness requirement, i.e. decryption of honestly computed ciphertexts yields the
corresponding plaintext. The proof can be found in the full version.

Theorem 2 (Correctness of PKE scheme). Let n, p, q ∈ N be parameters
such that p is a prime, p ≥ 25mn log4 n, n ≥ 10, m ∈ Θ(n), and ∈ O(nk) for
some constant k ∈ N. Then, the PKE scheme of Sect. 4.2 satisfies correctness.

Further, correctness holds for ciphertexts of the form C := (A′, t′+m◦�ξ/2�),
for any vector ξ ∈ [p − n − 1, p]�, and where ◦ denotes the Hadamard product.

4.4 Proof of Security

We now prove that our PKE scheme satisfies a form of KDM security, as for-
malized in the theorem below. The set of manipulations tolerated by the scheme
consists of the set of all affine functions of the form

Faff := {f : f(s) := F · s + f}F∈Z
�×n
2 ,f∈Z

�
2
.

We remark that a generic amplification theorem by Applebaum [5] allows to
boost Faff -KDM-CPA security to G-KDM-CPA security, where G consists of the
family of functions that can computed in some fixed polynomial time (or the
set of all polynomial-size circuits whose size grows with their input and output
lengths via a fixed polynomial rate).

For technical reasons, we need that when encrypting a function of the secret
key, the ciphertext has a slightly different form. Namely, c′

2 := t′ +
(
F · ⌊

p
2

⌋) ·
s + �p

2� · f instead of c2 := t′ + (F · s + f)�p
2�. This can be easily done by the

encryption algorithm whenever F, f and s is known. Furthermore, c′
2 and c2

decrypt to the same value. This can be seen by noticing that �p
2� = p−1

2 , the
multiplication with s and addition with f is for each component the sum of
at most n + 1 values p−1

2 modulo p, and hence c′
2 is a ciphertext of the form

c′
2 = t′ + �ξ

2� ◦ m for some ξ ∈ [p − n − 1, p]� (cf. Theorem 2).
The reason for this obstacle is that we need to map the function f , which lives

in Z2, into Zp. Since p is prime, it does not have a subgroup of size 2 to which
we could map the components of F and f . Therefore we need to map them to
either p−1

2 (when 1) or to 0 (when 0). Since we do not map them to a subgroup,
the output of f will also not be in a subgroup, but within range [p − n − 1, p]
(when 1) or [−n − 1, 0] (when 0). One could resolve this obstacle by choosing
p even, but then the leftover-hash lemma does only apply for a matrix R with
components in {0, 1}, such that m needs to be larger. This would decrease the
density of the underlying Subset Sum instance to 1/ log2(n). Therefore, we prefer
our approach.

We obtain the following result, whose proof appears in the full version.

Theorem 3 (KDM security of PKE scheme). Let n, p, q ∈ N be parameters
such that p is a prime, p ≥ 25mn log4 n, m ∈ Θ(n), and ∈ O(nk) for some

76 S. Biagioni et al.

constant k ∈ N. If the SS(n, pm) assumption holds (achieved with density δ ∈
Θ(1/ log n)), then the PKE scheme Π from Sect. 4.2 satisfies Faff-KDM-CPA
security.

5 Concrete Instantiations and Comparisons

As shown in [33], a large class of Sigma-protocols yields a simulation-sound NIZK
in the random oracle model through the Fiat-Shamir heuristic [35]. Hence, in
order to instantiate our twist of the Naor-Yung paradigm it suffices to take any
PKE scheme satisfying the randomness fusion property, together with a Sigma-
protocol for the language defined in Eq. (1).

Table 1 compares two instantiations of our scheme w.r.t. the original Naor-
Yung paradigm, based on two different complexity assumptions: Decisional
Diffie-Hellman (DDH) and Quadratic Residuosity (QR). We make the compar-
ison for both cases of CCA security under key-dependent message and key-
leakage attacks. For space reasons, the description of the corresponding PKE
schemes and Sigma-protocols are deferred to the full version, where we addition-
ally describe an instantiation based on Subset Sum using our PKE scheme from
Sect. 4.

Table 1. Comparing two instantiations of our twist of the Naor-Yung paradigm under
the DDH and QR assumptions. KDM and LKG stand for CCA security under key-
dependent message and key-leakage attacks, respectively. The third and forth columns
contain the ciphertext size expressed in group elements or exponents, for the standard
Naor-Yung construction and our modified version (respectively). All instantiations are
in the random oracle model.

PKE scheme Security Standard NY Ours Assumption

BHHO08 [15] KDM/LKG 4� + 5 2� + 4 DDH

BG10 [17] KDM/LKG 4� + 5 2� + 4 QR

6 Conclusion and Open Problems

We have studied a twist of the classical Naor-Yung paradigm [50] to boost CPA
security to CCA security, both under key-dependent message and key-leakage
attacks. The twist consists in having the two ciphertexts in the Naor-Yung PKE
scheme share the same randomness.

In order to prove security, we require the underlying CPA-secure PKE scheme
to satisfy an additional property. The main benefit of our approach is that one
can instantiate the NIZK in the Naor-Yung PKE more efficiently, as we have
explored in the random oracle model. We have also constructed a new PKE
scheme with KDM-CPA security under the Subset Sum assumption, and showed
that such a scheme can be used within our paradigm.

Naor-Yung Paradigm with Shared Randomness and Applications 77

Open problems include to construct a PKE scheme with CPA security under
key-leakage attacks directly based on Subset Sum, or alternatively to show that
our construction additionally satisfies this property.3 Also, it would be inter-
esting to analyze KDM security of our scheme with multiple keys, and to con-
struct a PKE scheme with KDM-CCA security directly based on the Subset Sum
assumption in the standard model, without relying on NIZK.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 36–54. Springer, Heidelberg (2009)

3. Alwen, J., Dodis, Y., Wichs, D.: Survey: leakage resilience and the bounded
retrieval model. In: Kurosawa, K. (ed.) ICITS 2009. LNCS, vol. 5973, pp. 1–18.
Springer, Heidelberg (2010)

4. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theor.
Comput. Syst. 48(3), 535–553 (2011)

5. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. J. Cryptol. 27(3), 429–451 (2014)

6. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

7. Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient
encryption schemeas. In: PKC, pp. 85–99 (2003)

8. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS, pp. 62–73 (1993)

10. Bernhard, D., Fischlin, M., Warinschi, B.: Adaptive proofs of knowledge in the
random oracle model. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 629–649.
Springer, Heidelberg (2015)

11. Bernhard, D., Fischlin, M., Warinschi, B.: On the hardness of proving CCA-security
of signed ElGamal. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 47–69. Springer, Heidelberg (2016)

12. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the
subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932,
pp. 16–33. Springer, Heidelberg (2013)

13. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol.
2595, pp. 62–75. Springer, Heidelberg (2002)

14. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998)

3 The PKE scheme of [46] only achieves a weak for of leakage resilience, where the
leakage cannot depend on the public key.

78 S. Biagioni et al.

15. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008)

16. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. J. Cryptol. 26(3),
513–558 (2013)

17. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. Cryptology ePrint Archive, Report 2010/226
(2010)

18. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption
beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–
218. Springer, Heidelberg (2011)

19. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009)

20. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

21. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: sim-
pler, shorter, stronger. In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol.
9562, pp. 306–335. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 13

22. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

23. Dagdelen, Ö., Venturi, D.: A second look at Fischlin’s transformation. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp.
356–376. Springer, Heidelberg (2014)

24. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010)

25. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

26. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

27. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: ACM STOC, pp. 542–552 (1991)

28. Döttling, N.: Low noise LPN: KDM secure public key encryption and sample ampli-
fication. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 604–626. Springer,
Heidelberg (2015)

29. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE FOCS,
pp. 293–302 (2008)

30. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

31. Faonio, A., Nielsen, J.B., Venturi, D.: Mind your coins: fully leakage-resilient sig-
natures with graceful degradation. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 456–468. Springer,
Heidelberg (2015)

32. Faust, S., Hazay, C., Venturi, D.: Outsourced pattern matching. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol.
7966, pp. 545–556. Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-662-49096-9_13

Naor-Yung Paradigm with Shared Randomness and Applications 79

33. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012)

34. Faust, S., Masny, D., Venturi, D.: Chosen-ciphertext security from subset sum. In:
Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS,
vol. 9614, pp. 35–46. Springer, Heidelberg (2016)

35. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

36. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005)

37. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Fujisaki, E., Okamoto, T. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 53–68. Springer, Heidelberg (1999)

38. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

39. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

40. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
520–536. Springer, Heidelberg (2013)

41. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum. J. Cryptol. 9(4), 199–216 (1996)

42. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

43. Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: On the key dependent mes-
sage security of the Fujisaki-Okamoto constructions. In: Cheng, C.-M., Chung,
K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 99–129.
Springer, Heidelberg (2016)

44. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

45. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

46. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives
provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 382–400. Springer, Heidelberg (2010)

47. Micali, S., Rackoff, C., Sloan, B.: The notion of security for probabilistic cryptosys-
tems. SIAM J. Comput. 17(2), 412–426 (1988)

48. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

49. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM J.
Comput. 41(4), 772–814 (2012)

50. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: ACM STOC, pp. 427–437 (1990)

51. Nielsen, J.B., Venturi, D., Zottarel, A.: Leakage-resilient signatures with graceful
degradation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 362–379.
Springer, Heidelberg (2014)

80 S. Biagioni et al.

52. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations among notions of non-
malleability for encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol.
4833, pp. 519–535. Springer, Heidelberg (2007)

53. Quisquater, J., Samyde, D.: Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

54. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

55. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: ACM STOC, pp. 84–93 (2005)

56. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009)

57. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: IEEE FOCS, pp. 543–553 (1999)

58. Standaert, F., Pereira, O., Yu, Y., Quisquater, J., Yung, M., Oswald, E.: Leakage
resilient cryptography in practice. In: Sadeghi, A.-R., Naccache, D. (eds.) Towards
Hardware-Intrinsic Security - Foundations and Practice, pp. 99–134. Springer,
Heidelberg (2010)

59. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615,
pp. 159–179. Springer, Heidelberg (2016)

60. Yao, A.C.: Theory and applications of trapdoor functions (extended abstract). In:
IEEE FOCS, pp. 80–91 (1982)

Memory Protection

Provably-Secure Remote Memory Attestation
for Heap Overflow Protection

Alexandra Boldyreva1(B), Taesoo Kim1, Richard Lipton1,
and Bogdan Warinschi2

1 Georgia Institute of Technology, Atlanta, USA
sasha@gatech.edu

2 University of Bristol, Bristol, UK

Abstract. Memory corruption attacks may lead to complete takeover
of systems. There are numerous works offering protection mechanisms
for this important problem. But the security guarantees that are offered
by most works are only heuristic and, furthermore, most solutions are
designed for protecting the local memory. In this paper we initiate the
study of provably secure remote memory attestation; we concentrate on
provably detecting heap-based overflow attacks and consider the setting
where we aim to protect the memory in a remote system. We present
two protocols offering various efficiency and security trade-offs (but all
solutions are efficient enough for practical use as our implementation
shows) that detect the presence of injected malicious code or data in
remotely-stored heap memory. While our solutions offer protection only
against a specific class of attacks, our novel formalization of threat models
is general enough to cover a wide range of attacks and settings.

1 Introduction

Memory corruption attacks are among the most common techniques used to
take control of arbitrary programs. These attacks allow an adversary to exploit
running programs either by injecting their own code or diverting program’s exe-
cution, often giving the adversary complete control over the compromised pro-
gram. While this class of exploits is classically embodied in the buffer overflow
attack, many other instantiations exist, including use-after-free vulnerabilities
and heap overflow. The latter is the focus of our work. Without question, this
problem is of great importance and has been extensively studied by the security
community.

Existing solutions (such as Stack and heap canaries [14,17,19,31] or address
space layout randomization (ASLR) [27,37], etc.) vary greatly in terms of secu-
rity guarantees, performance, utilized resources (software or hardware-based),
etc. While these techniques are implemented and deployed in many systems to
prevent a number of attacks in practice, their constructions are only appropriate
in the context of local systems: for example, an authority checking the integrity
of heap canaries, has to monitor every single step of the program’s execution.
However, this requirement is making the existing heap-based protection schemes
c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 83–103, 2016.
DOI: 10.1007/978-3-319-44618-9 5

84 A. Boldyreva et al.

hardly applicable to remote memory attestation where the authority might reside
outside of a local machine. For example, a straight-forward construction to keep
track of all locations of heap canaries and validate their integrity upon request
not only incurs noticeable performance overheads, but also requires a trusted
communication channel between the program and a remote verifier.

More critically, none of the prior works targeting heap overflow attacks pro-
vided provable security guarantees. Without a clear adversarial model it is hard
to judge the scope of the protection, and often the attackers, who are getting
more and more sophisticated, are still able to bypass many such mitigation
techniques.

Proving that a given protocol can resist all possible attacks within a cer-
tain well-defined class is the gold standard in modern cryptography. However,
protocols that are provably secure are rather rarely used in real systems either
because they commonly target extremely strong security definitions and hence
are too slow for practical use, or they rely on impractical assumptions about
attackers. Our work tries to bridge this gap in the context of remote attestation
by designing practical protocols with provable security guarantees against realis-
tic threats and satisfying practical system requirements. Our treatment utilizes
the formal provable-security approach of modern cryptography that works hand
in hand with applied systems expertise.

In this paper, we realized our theoretical findings as a working prototype
system that can mitigate, (still limited), heap overflow attacks in applications
running remotely outside of user’s local computer. Although the current imple-
mentation therefore focuses on protecting user’s programs running on the cloud
environment or firmware running outside of the main CPU, the proposed security
model is general enough to be useful for future works addressing other classes of
adversaries. We now discuss our focus and contributions in more detail.

Our Focus. Our focus is on the remote verification setting, motivated by the
widespread use of cloud computing. In our setting, two entities participate in
the protocol; a program that is potentially vulnerable, and a remote verifier who
attests the state of the program’s memory (e.g., heap). This setting is particularly
useful for verifying the integrity of software that is deployed and runs outside
of a local machine: a deployed program on the cloud is one example, and a
firmware running outside of the main CPU is another example. Note that if the
cloud is completely untrusted, we cannot guarantee security without relying on
secure hardware (and our focus is software-based solution only). Hence we need
to trust the cloud to a certain degree, but at the same time we want to avoid
changing the operating system there. Since we do not trust the program which
is potentially malicious, we create another entity, a wrapper, that is not directly
affected by the program, unless an adversary bypasses the protection boundary
provided by an operating system.

In practice, system software (e.g., browser or operating system) is vulner-
able to memory corruptions because it heavily relies on unsafe low-level pro-
gramming languages like C for either performance or compatibility reasons.
As we mentioned, we do not attempt to prevent entire classes of memory

Provably-Secure Remote Memory Attestation for Heap Overflow Protection 85

corruption attacks (e.g., use-after-free or bad-casting) nor exploitation techniques
(e.g., return-oriented programming (ROP)) with one system. We only consider
one particular type of memory corruption attack that overwrites a consecutive
region of memory (e.g., buffer) to compromise a control-sensitive data structure
(e.g., function pointer or virtual function table). However, we believe such mem-
ory corruptions are still very common (e.g., the recent GHOST vulnerability in
GLibc [4]), and become more important in the cloud setting where we have to
rely on the cloud provider.

Within this scope, our goal is to find solutions that (1) provide provable
security guarantees and (2) are practically efficient.

RMA Security Definition. Providing security guarantees is not possible
without having a well-defined security model. We start with defining a remote
memory attestation (RMA) protocol, whose goal is protecting the integrity of
a program’s data memory (e.g., heap). It is basically an interactive challenge-
response protocol between a prover and a verifier, which is initialized by a setup
algorithm that embeds a secret known to the verifier into a program’s memory.
The goal of the verifier is to detect memory corruptions.

Next we propose the first security model for RMA protocols. The defini-
tion is one of our main contributions. Our model captures various adversarial
capabilities (what attackers know and can do), reflecting real security threats.
We assume that an attacker can have some a-priori knowledge of the memory’s
contents (e.g., binary itself) and can learn parts of it, adaptively, over time.

Since we target a setting where the communication between the prover and
the verifier is over untrusted channels, we let the adversary observe the legit-
imate communication between the prover and the verifier. Moreover, we let it
impersonate either party and assume it can modify or substitute their messages
with those of its choice. To model malicious writes to the memory we allow the
attacker to tamper the memory. The goal of the attacker is to make the verifier
accept at a point where the memory is corrupted.

We note that on the one hand no security may be possible if an attacker’s
queries are unrestricted and on the other we would like to avoid hardwiring
in the model a particular set of restrictions on these queries. Accordingly we
state security with respect to abstract classes of functions that model the read
and write capabilities of the attackers. This allows us to keep the definition
very general. We leave it for the theorem statements that state the security of
particular protocols to specify these classes, and thus define the scope of attacks
the protocol defends against.

To prevent against the aforementioned GHOST attack [4] where a read (e.g.,
information leak) follows by write to the same location and leaves the key intact,
any solution in our setting needs to perform a periodic key refresh. Our protocol
definition and the security model take this into account. But of course, we do
not guarantee security if the attack happens within a refresh time window. This
is a common caveat with preventing timing attacks.

An RMA protocol proven to satisfy our security definition for spe-
cific read and write capabilities classes would guaranty security against any

86 A. Boldyreva et al.

efficient attacker with such practical restrictions, under reasonable computa-
tional assumptions. This is in contrast to previous schemes, which were only
argued to protect against certain specific attacks, informally.

Provably-Secure RMA Constructions. The idea underlying our solutions
is simple and resembles the one behind stack or heap canaries. We embed secrets
throughout the memory and, for attestation, we verify that they are intact. This
is similar to how canaries are used, but for the setting where the verifier is remote
the ideas need to be adapted. A simple but illustrative example is the protocol
where the prover simply sends to the verifier the hash of all of the (concatenated)
canaries. Here, the attacker can replay this value after modifying the memory.
The following discussion illustrates further potential weaknesses of this protocol
uncovered when trying to derive provable security guarantees.

For clarity, instead of calling the secrets canaries, let us refer to the secrets
we embed in the memory as shares, i.e., we split a secret into multiple shares and
spread them out in memory. For now, let’s assume for simplicity that the shares
are embedded at equal intervals. Then an adversary who injects malicious code,
and hence writes a string that is at least one-block long, will over-write at least
one share, even if it knows the shares’ locations. Verification just checks whether
the original secret can be reconstructed and used in a simple challenge-response
protocol that prevents re-plays. For example, the verifier could send a random
challenge, and the prover would reply with the hash of the reconstructed secret
and the challenge. Note that the prover will run in a totally separate memory
space so the secrecy of the reconstructed key at time of verification is not an
issue.

We note that our solution does not readily apply for the stack because the
stack doesn’t have explicit unit or boundaries to statically place secret shares),
unlike the heap that has a unit (a page) of allocation that makes the key place-
ment efficient and easy.

The standard security of an n-out-of-n secret sharing scheme ensures that
unless the attacker reads all memory (and in this case no security can be ensured
anyway), the key is information-theoretically hidden. However, the adversary
could read and then tamper the memory while leaving the share intact. To
mitigate this, the periodic updates could re-randomize all shares, while keeping
the same secret. The size of the blocks and the frequency of the updates are the
parameters that particular applications could choose for the required tradeoff
between security and efficiency. In the ideal setting, we would refresh the shares
whenever the leakage of a share happens. However, since the occurrence of such
events is not always clear, the alternative solution of refreshing “often” enough
may lead to unreasonable overheads. In our current implementation, we keep the
frequency of updates a parameter and developers can simply incorporate timing
that reflect realistic assumptions on the adversary in our implementation.

Although the solution approach seems simple and sound, it turns out that
assessing its security and practicality raises numerous subtleties and complica-
tions, both from the systems and cryptographic points of view. For example,
our system can not fix the size of memory object, which naturally underutilizes

Provably-Secure Remote Memory Attestation for Heap Overflow Protection 87

the memory space (e.g., de-fragmentation). In our system, we support various
memory slots for allocation, from the smallest 8 byte objects incrementally to
over 100 MB, depending on the user’s configuration.

The obvious choice for producing the secrets to be embedded in the mem-
ory is to use an n-out-of-n secret sharing scheme as a building block for our
constructions. It turns out however, that the standard security of secret sharing
schemes is not sufficient to guarantee the security of the protocol. First, we have
to extend the security definition to take into account key updates. The attacker
should be able to access the whole memory as long as it does not do it in between
consecutive updates. The extended notion is known as proactive secret sharing
[20]. Also, for the proof we need the additional properties that modifying at least
one share implies changing a secret, and one extra property we discuss later. For-
tunately, all these properties are satisfied by a simple XOR-based secret sharing
scheme.

We show that combing the simple XOR-based secret sharing scheme (or any
generic secret sharing scheme with some extra properties we define) and the hash-
based challenge-response protocol yields a secure and efficient RMA protocol, for
attackers with restricted, but quite reasonable abilities to read and tamper the
memory. The proof we provide relies on the random oracle (RO) model [8]. Since
the RO is unsound [12] for security-critical applications it may be desirable to
have protocols which provably provide guarantees in the standard (RO devoid)
model.

An intuitively appealing solution is to employ some symmetric-key identi-
fication protocol, e.g., replying with a message authentication code (MAC) of
the random challenge, where the MAC is keyed with the reconstructed secret.
However, given the capabilities that we ascribe to realistic adversaries, a formal
proof would require a MAC secure in the presence of some leakage on and tam-
pering of the secret key. The latter property is also known as security against
related key attacks (RKA) [6]. Unfortunately, there are no suitable leakage and
tamper-resilient MACs for a wide class of leakage and tampering functions, as
the existing solutions, e.g. [5,10], only address specific algebraic classes of tam-
pering functions and are rather inefficient.

Perhaps unexpectedly, we consider a challenge response protocol based on
a public key encryption scheme – the verifier sends a random challenge and
expects an encryption of the challenge together with the (reconstructed) secret.
This solution requires that the public key of the verifier is stored so that it is
accessible by the prover, and cannot be tampered (otherwise we would need a
public-key scheme secure with respect to related public key attacks, and similarly
to the symmetric setting, there are no provably secure schemes wrt this property,
except for few works addressing a narrow class of tamper functions [7,38]).

To ensure non-malleability of the public key, our system separates the mem-
ory space of a potentially malicious program from its prover (e.g., different
processes), and store its public key in the prover’s memory space. Since the ver-
ification procedure is unidirectional (e.g., a prover accesses the program’s mem-
ory), our system can guarantee the non-malleability of the public key in practice

88 A. Boldyreva et al.

(e.g., unless no remote memory overwriting or privilege escalation). This level of
security is afforded by deployed computational platforms (e.g. MMU commodity
processors).

It is natural to expect some form of non-malleability from the encryption
scheme. Otherwise, the attacker could modify a legitimate response for one chal-
lenge into another valid one for the same key and a new challenge. An IND-CCA
secure encryption such as Cramer Shoup [15] could work for us. We note how-
ever that IND-CCA secure is an overkill for our application since we do not need
to protect against arbitrary maulings of the ciphertext; instead, the attacker
only needs to produce a valid ciphertext for a particular message, known to
the verifier. We show that an encryption scheme secure against a weaker notion
of plaintext-checking attacks [32] is sufficient for us. Accordingly, we use the
“Short” Cramer-Shoup (SCS) scheme proposed and analyzed very recently by
Abdalla et al. [1]. This allows us to save communication one group element com-
pared to regular Cramer Shoup. We discuss that one can optimize further and
save an additional group element in the communication by slightly increasing
computation.

Implementation Results. To demonstrate the feasibility of RMA, we imple-
mented a prototype system that supports arbitrary programs without any modi-
fication (e.g., tested with popular software with a large codebase, such as Firefox,
Thunderbird and SPEC Benchmark). Our evaluation shows that the prototype
incurs very small performance overheads and detects heap-based memory cor-
ruptions with the remote verifier.

In a bit more detail, we implemented both, the hash- and encryption-based,
protocols. Interestingly, both protocols showed similar performance, despite the
latter one relying on public key operations, which are much slower than a hash
computation. This is because the significant part of the performance overhead
comes from the implementation of the custom memory allocator, side-effects of
memory fragmentation and network bandwidth, which all make the differences
in times of crypto operations insignificant.

Related Work. The works that is perhaps closest in spirit and application
domain to ours is by Francillon et al. [18] who address the problem of remote
device attestation. Their approach is also based on provable security, but consider
a significantly weaker model where the adversary not tamper or read parts of
the internal memory of the device. These are key features of the adversary that
we aim to defend against.

Canaries are random values placed throughout a stack or heap, which are
later checked by the kernel. Canary-based protection has been adopted to pre-
vent stack smashing [2]: e.g., ProPolice [17], StackGuard [14], StackGhost [19].
Similarly, canaries (or guard as a general form) have been used for heap protec-
tion, in particular metadata of heap [33,39] (e.g., double free): HeapShield [9] or
AddressSanitizer [34]. These solutions do not immediately work in our setting.
This is mainly because all canaries need to be sent and checked by the remote
verifier without leaking or without being compromised by an adversary. While
heavy solutions like employing secure channels (e.g. TLS) would help mitigate

Provably-Secure Remote Memory Attestation for Heap Overflow Protection 89

this problem, the resulting system would need to transfer large quantities of
data, making it unsuitable for practical use.

Our solutions could be viewed as a novel variant of “compact” cryptographic
canaries, suitable for remote setting and providing provable security guarantees
under precisely defined threat models.

Software-based attestation has been explored in various contexts: peripheral
firmware [16,23,25], embedded devices [13,24,36], or legacy software [35]. That
line of work, which falls under the generic idea of software based attestation is
different from ours in two main differences. First, the setting of firmware attes-
tation uses a different adversarial model. There, an adversary aims to tamper
with the firmware on a peripheral and still wants to convince an external verifier
that the firmware has not been tampered with. In its attack, the adversary has
complete access to the device prior to the execution of the attestation protocol;
the protocol is executed however without adversarial interference. Our model
considers an adversary who can glean only partial information on the state of
the memory prior to its attack, but who acts as man-in-the-middle during the
attestation protocol.

Challenge-response protocols are natural solutions in both situations. Since
we aim for solutions that admit rigorous security proofs we rely on primitives
with cryptographic guarantees. In contrast due to constraints imposed by the
application domain solutions employed peripheral attestation cannot afford to
rely on cryptographic primitives. Instead, constructions employ carefully crafted
check-sum functions where unforgeability heuristically relies on timing assump-
tions and lack of storage space on the device. Jacobsson and Johansson [22] show
that such assumptions can be grounded in the assumptions that RAM access is
faster than access to the secondary storage [22]. Our work is similar in its goals
with that of Armknecht et al. [3] who provide formal foundations for the area of
software attestation.

More recently, a handful of hardware-based (e.g., coprocessor or trusted chip)
attestation has been proposed as well: Flicker [29] and TrustVisor [28] using TPM,
and Haven using Intel SGX [21,30]. Our work differs in that we do not explicitly
rely on hardware assumptions and provides provable security guarantee.

Finally, a recent paper [26] addresses the problem of a virus detection from a
provable security perspective. The authors introduce the virus detection scheme
primitive that can be used to check if computer program has been infected with
a virus injecting malicious code. They describe a compiler, which outputs a pro-
tected version of the program that can run natively on the same machine. The
verification is triggered by an external verifier. Even though the considered prob-
lems and the basic idea of spreading the secret shares are similar, the treatment
and the results in [26] are quite different from ours. The major difference is that
the attacker in the security model of [26] is not allowed to learn any partial infor-
mation about the secret shares. Our security definition, in turn, does take partial
leakage of the secret into account. Their security definition, however, allows the
attacker to learn the contents of the registers during the attack. This is not a
threat in our setting since the computations happen within the trusted wrapper.

90 A. Boldyreva et al.

Also, their solutions do not rely on the PKI, which is a plus. The other important
difference is that the proposal in [26] is mostly of theoretical interest (as they
rely on leakage-resilient encryption for which there are no efficient implementa-
tions), while our solution is quite efficient. The work [26] has additional results
about protection against tiny overwrites but that requires CPU modifications.

2 Notation

X
$← S denotes that X is selected uniformly at random from S. If A is a ran-

domized algorithm, then the notation X
$← A denotes that X is assigned the

outcome of the experiment of running A, possibly on some inputs. If A is deter-
ministic, we drop the dollar sign above the arrow. If X,Y are strings, then X‖Y
denotes the concatenation of X and Y . We write L :: a for the list obtained by
appending a to the list L and L[i, . . . , j] for the sublist of L between indexes i
and j. We write id for the identity function (the domain is usually clear from the
context) and write US for the uniform distribution on set S. If n is an integer
we write [n] for the set 1, 2, . . . , n. For an integer k, and a bit b, bk denotes the
string consisting of k consecutive “b” bits.

3 Remote Memory Attestation

Syntax. We start with defining the abstract functionality of remote memory
attestation (RMA) protocol.

Definition 1 (RMA Protocol). A remote memory attestation protocol is
defined by a tuple of algorithms (SS, Init, (MA,MV), Update, Extract) where:

– The setup algorithm SS takes as input a security parameter 1κ and outputs a
pair of public/secret keys (pk , sk). (SS is run by the verifier.) This output is
optional.

– The initialization algorithm Init takes as input a bitstring M (representing the
memory to be protected), a public key pk and the secret key sk and outputs a
bitstring Ms (that represents the protected memory), and a bitstring s (secret
information that one can use to certify the state of the memory).

– The pair of interactive algorithms (MA,MV), run by the prover and verifier
resp., form the attestation protocol. Algorithm MA takes as inputs the public
key pk and a bitstring Ms and the verifier takes as inputs the secret key sk
and secret s. The verifier outputs a bit, where 1 indicates acceptance, and 0
– rejection.

– The update algorithm Update takes as input a bitstring Ms and outputs a
bitstring Ms

′ (this is a “refreshed” protected memory). It can be ran by the
prover at any point in the execution.

– The Extract algorithm takes as input a bitstring Ms (representing a protected
memory) and outputs a bitstring M (represented the real memory protected
in Ms) and secret s. This is used in the analysis mostly, but also models how
the OS can read the memory.

Provably-Secure Remote Memory Attestation for Heap Overflow Protection 91

The correctness condition requires that for every (pk , sk) output by SS, every
M ∈ {0, 1}∗, and every (Ms , s) output by Init(M, pk , sk), the second party
in (MA(pk ,Ms), MV(sk , s)) returns 1 with probability 1. Also, Extract(Ms) =
(M, s′) for some s′ with probability 1. These conditions should hold even for an
arbitrary number of runs of Update protocol.

In practice the remote verifier initializes the wrapper with the secret before
being sent to the cloud. The wrapper later acts as the local prover to the remote
verifier. In practice the wrapper is a separate process that gets memory access
via ptrace mechanism.

RMA Security. We now formally define the security model for an RMA pro-
tocol, which is part of our main contributions.

We consider an attacker who can read the public key (if any), and can observe
the interactions between the prover and the verifier. The attacker works in two
stages. In the first stage of its attack, it can read arbitrary parts of the memory
and can over-write a part of the memory by injecting data of its choosing. In this
phase, the adversary can observe and interfere with the interaction between the
prover and the verifier. This is captured by giving the adversary access to the
oracles that execute the interactive RMA protocol; in particular, the adversary
can chose to observe a legitimate execution of the protocol by simply forwarding
the answers of one oracle to the other. Of course, the adversary can choose to
manipulate the conversation, or even supply inputs of its own choosing. We only
model a single session of the protocol as we do not expect parallel sessions to
be run in practice. Also, at any point, the attacker can request that the shares
of the secret get updated. In the second stage the adversary specifies how it
wants to alter the memory (where and what data it wants to over-write). The
memory is modified, one extra update is performed, and then the attacker can
continue its actions allowed in the first stage, with the exception that it is not
given the ability to read the memory anymore, and this is the reason we consider
two stages of the attacker. This captures the fact noted in the Introduction, that
security is only possible if the memory update procedure is performed in between
the read and write, which can be arbitrary and thus leave the secret intact (by
reading and over-writing it).

We say that the adversary wins if it makes the verifier accept in the second
stage, despite the memory being modified by the attacker. This captures the
idea that the verifier does not notice that the memory has been corrupted.

We observe that it is necessary to restrict the adversary’s abilities, for a
couple of reasons. First, as we mentioned in the Introduction, no security may
be possible if an attacker’s queries are unrestricted. For instance, the adversary
may read the whole memory in between the secret updates or it could read
a block and immediately over-write it maintaining intact the associated secret
share. Moreover, note that an adversary who can over-write memory bit by bit,
could eventually learn the whole secret by fixing each bit for both possible values,
one by one and then observing the outcome of the interaction between the prover
and the verifier. In short, no security is possible if we do not impose (reasonable)
restrictions on the adversary.

92 A. Boldyreva et al.

Second, it seems unlikely that a unique solution suffices to protect against
a wide class of attacks and that different solutions would work for different
applications and classes of attacks. Yet, we would want to avoid providing a
diffrent security definition for each individual scenario.

Accordingly, we state security with respect to abstract classes of functions
that parametrize the read and write queries that model the legitimate read and
tamper requests the attacker can do. This allows our definition to be quite gen-
eral; we leave it to the theorem statements for particular protocols and applica-
tions to specify these classes and hence clarify the scope of attacks the protocol
prevents against.

Exp
rma-(L,T)
A,Π :

(pk , sk) ← SS

M ← A(pk)

(Ms , s) ← Init(M, pk , sk)

g ← ARead(·),Tamper(·),MA(pk,Ms),MV(sk,s),Update

If g return ⊥
Ms ← Update(Ms)

Ms ← g (Ms)

ATamper(·),MA(pk ,Ms),MV(sk ,s)

Output 1 iff MV accepts in the 2nd stage
and at that point the first part of Extract(Ms) is not M .

Oracle Read(f):

if f return ⊥
otherwise return f(Ms)

Oracle Tamper(g):

if g return ⊥
Ms ← g(Ms)

Fig. 1. Game defining the security of the memory attestation scheme Π =
(SS, Init, (MA,MV),Update,Extract).

Definition 2 (RMA Scheme Security). Let L and T be two classes
of leakage and tampering functions. Consider an RMA protocol Π =
(SS, Init, (MA,MV),Update,Extract). We define its security via the experiment
Exprma-(L,T)

A,Π involving the adversary A which we present in Fig. 1.
We call Π secure wrt L and T if for every (possibly restricted) efficient adver-

sary A the probability that Exprma-(L,T)
A,Π returns 1 is negligible in the security

parameter.

The design of the above model is influenced directly by studying the practical
threats. In particular, reading memory to leak information has been a prerequi-
site pretty much to all attacks from ten years back. Taking the man-in-the-middle
attacks into account is motivated by the observation that even though we trust
the cloud provider, we do not necessarily trust the path between the provider and
the client, e.g., when using a cafe’s WiFi. We demand that the secure attestation
be done without employing secure channels.

Provably-Secure Remote Memory Attestation for Heap Overflow Protection 93

Remark. Turns out that the practical classes of read and write functions may
not describe the necessary restrictions by themselves. Thus one can further
restrict the adversaries, but again, this is done in the security statements. For
instance, security of our constructions will tolerate any attacker who can read
all but one “block” of the memory and can over-write any arbitrary part of the
memory as long as that part is longer than some minimum number of bits.

4 Building Blocks

Refreshable Secret Sharing Scheme. Our schemes rely on an n-out-of-n
secret sharing scheme where one needs all of the shares to reconstruct the secret;
any subset of n − 1 shares is independent from the secret. In addition to the stan-
dard property, we also require that it is possible to refresh shares in such a way that
all subsets of n − 1 shares, each obtained in between updates, are independent of
the secret. This property is known as proactive secret sharing [20]. In addition, we
require two more security properties which we describe later in this section.

Syntax. We first provide the syntax of the secret sharing schemes that we
consider.

Definition 3. A refreshable n-out-of-n secret sharing scheme is defined by algo-
rithms (KS,KR,SU) for sharing and reconstructing a secret, and for refreshing
the shares1. For simplicity we assume that the domain of secrets is {0, 1}κ (where
κ is the security parameter). The sharing algorithm KS takes a secret s and out-
puts a set (s1, s2, . . . , sn) of shares2. The reconstruction algorithm KR takes as
input a set of shares s1, s2, . . . , sn and returns a secret s. The update algorithm
SU takes as input a set of shares (s1, s2, . . . , sn) and returns the updated set
(s′

1, s
′
2, . . . , s

′
n), a new re-sharing of the same secret.

For correctness we demand that for any s ∈ {0, 1}κ and any (s1, s2, . . . , sn)
obtained via (s1, s2, . . . , sn) $← KS(s) it holds that KR((s1, s2, . . . , sn)) = s
and KR(SUi((s1, s2, . . . , sn)) = s with probability 1 for any integer i ≥
1, where SUi((s1, s2, . . . , sn)) denotes i consecutive invocations of SU as
SU(SU(. . . SU((s1, s2, . . . , sn)) . . .)).

Security. We require that the secret sharing scheme that we use satisfies three
security properties.

Secret Privacy. The most basic one, secret privacy for refreshable secret
sharing scheme (aka proactive secret sharing) guarantees that n − 1 shares do
not give the adversary any information about the secret, and this holds even for

1 We use the mnemonics KS,KR to indicate that we think of the secret as being some
cryptographic key.

2 We do not use the set notation for simplicity.

94 A. Boldyreva et al.

an arbitrary number of updates to each set of shares. The formal definition is in
the full version [11].

Oblivious Reconstruction. We also require that the scheme enjoys oblivious
reconstruction. Intuitively, this demands that given an adversary who can read
and replace some of the shares, it is possible to determine at any point if the
value encoded in the shares is the same as the original value or not. This property
is related but is different from Verifiable Secret Sharing: the ability to tell that
the shares are consistent with some secret does not necessarily mean that one
can tell if transforming a set of shares to another (valid) one has changed or not
the underlying secret.

More formally, fix a secret s ∈ {0, 1}κ and let (s1, s2, . . . , sn) $← KS(s). Con-
sider an adversary who can intermitently issue two types of querries. On a query
i ∈ {1, . . . , n} the adversary receives si; on a query (i, v) ∈ ({1, 2, . . . , n}×{0, 1}κ

the value of si is set to v.
We require that there exists a “secret changed?” algorithm SC, formalized

in Fig. 2, which given the queries made by A and the answers it receives can
efficiently decide (with overwhelming probability) if the value of the secret that
is encoded is equal to the value of the original secret.

Exprec
A,Π :

s
$← A;L ← []

{s1, s2, . . . , sn} ← KS(s)

AShareInfo(·)

b ← SC(L)

s ← KR(s1, s2, . . . , sn)

return 1 iff
(b = 1 and s = s) or (b = 0 and s = s)

Oracle ShareInfo(·):
On input i ∈ {1, . . . , n}
L ← L :: (i, si)

return si

On input (i, v) ∈ {1, 2, . . . , n} × {0, 1}κ

L ← L :: (i, v)

si ← v

Fig. 2. Experiment defining the oblivious reconstruction property for secret sharing.

Share unpredictability. This property demands that for any secret (chosen
by the adversary) and any sharing of the secret, following an Update an adversary
cannot tamper (in any meaningful way) with any of the resulting fresh shares
in a way that does not alter the secret. This intuition is formalized using the
game Expunpred

A,Π in Fig. 3. First,the experiment samples a random secret. After
the adversary learns some (but not all) of the shares, the shares are refreshed,
and the adversary needs to tamper with at least one share. The adversary wins
if the secret that is shared stayed unchanged through the process. We say that
Π satisfies share unpredictability if for any adversary which calls the Read oracle
at most n − 1 times and the Tamper oracle at least once, the probability that
the experiment returns 1 is negligible.

Provably-Secure Remote Memory Attestation for Heap Overflow Protection 95

Expunpred
A,Π :

s ← {0, 1}κ

ARead(·)

(s1, s2, . . . , sn) ← SU(s1, s2, . . . , sn)

ATamper(·)

return s
?
= KS(s1, s2, . . . , sn)

Oracle Read(i)

return si

Oracle Tamper(i, v)

si ← v

Fig. 3. Game defining share unpredictability for for secret sharing. We demand that
A queries his Tamper at least once.

Secure Construction. Here we present a very simple n-out-of-n refreshable
secret-sharing scheme with oblivious reconstructability and argue its security.

Construction 41 (Refreshable Secret Sharing). We define the scheme
(KS,KR,SU) as follows.

– KS takes secret s ∈ {0, 1}κ, picks si
$← {0, 1}κ for 1 ≤ i ≤ n − 1, computes

sn ← s ⊕ s1 ⊕ . . . ⊕ sn−1

– KR on input (s1, . . . , sn) returns s1 ⊕ . . . ⊕ sn

– SU takes (s1, . . . , sn) and for 1 ≤ i ≤ n−1, computes ri
$← {0, 1}κ, si

$← si⊕ri.
Finally, sn ← sn ⊕ r1 ⊕ . . . ⊕ rn−1, and SU returns (s1, . . . , sn).

It is immediate to see that the above scheme is correct. The following theorem
states (information-theoretic) security. The proof is in the full version [11].

Theorem 1. The scheme ofConstruction 41 is a refreshable secret sharing scheme
with secret privacy, oblivious reconstructability and share unpredictability.

IND-PCA Secure Encryption. Our second construction uses a (labeled)
encryption scheme that satisfies indistinguishability under plaintext-checking
attacks (IND-PCA) [32]. One concrete scheme which satisfies IND-PCA security
is the “Short” Cramer-Shoup (SCS) scheme proposed by Abdalla et al. [1]. We
recall the primitive and the scheme in the full version [11]. The following result
about IND-PCA security of the SCS scheme is by Abdalla et al. [1].

Theorem 2. Under the DDH assumption on G and assuming that H is a tar-
get collision resistant hash function, the SCS scheme by Abdalla et al. [1] is
IND-PCA.

5 RMA Constructions

We are now ready to present two constructions of an RMA protocol for a lim-
ited, but quite practical class of attacks. The first construction combines a secret
sharing scheme with a hash function, and does not rely on public key cryptogra-
phy. The scheme is quite efficient and is secure in the random oracle model; the

96 A. Boldyreva et al.

second construction uses a public key encryption scheme secure under plaintext
checking attacks.

Both construction share the same underlying idea. A secret is shared and the
resulting shares are placed in the memory. In our construction we assume that
shares are at equal distance – other options are possible provided that this place-
ment ensures that tampering with the memory (using the tampering functions
provided to the RMA adversary) does tamper with these protective shares. The
attestation protocol is challenge response: the verifier selects a random nonce and
sends it to the prover. Upon receiving the nonce, the prover collects the shares,
reconstructs the secret and uses it in a cryptographic operation; the verifier then
confirms that the secret used is the same that he holds.

In the first scheme, which we present below, the prover hashes the secret
together with the nonce and sends it to the verifier who checks consistency with
his locally stored secret by and the nonce he has sent.

5.1 Hash-Based RMA

Construction 51 (Hash-Based RMA). Fix a refreshable n-out-of-n secret
sharing scheme SSh = (KS,KR,SU). Let Divide be any function that on input
a bitstring of size greater than n breaks M into n consecutive substrings
(M1, . . . ,Mn). Let H : {0, 1}∗ → {0, 1}h be a hash function. These scheme
does not use asymmetric keys for the parties so below we omit them from the
description of the algorithms. We define the RMA protocol hash2rma(H) by the
algorithms (SS, Init, (MA,MV),Update, Extract) below:

– SS(1k) returns ε.
– Init on input M does

• s
$← {0, 1}κ

• (s1, . . . , sn) ← KS(n, s)
• (M1, . . . ,Mn) ← Divide(M)
• Return (M1‖s1‖ . . . ‖Mn‖sn, s).

– Extract on input Ms parses Ms as M1‖s1‖ . . . ‖Mn‖sn, runs s ← KR(s1, . . . ,
sn) and returns (M, s).

– MV on input s picks l
$← {0, 1}l(κ) and sends l to MA

– MA on input Ms gets l from MV, calculates (M, s) ← Extract(Ms), and sends
back t = H(s||l).

– MV gets t from MA returns the result of the comparison t = H(s||l).
– Update on input Ms Ms as M1‖s1‖ . . . ‖Mn‖sn and returns SU(s1, . . . , sn).

The following theorem states the security guarantees the above construction
provides – the details of the proof are in the full version of the paper [11].

Theorem 3. Let SSh = (KS,KR,SU) be an n-out-of-n refreshable secret shar-
ing scheme. Let Divide be any function that on input a bitstring M , which
for simplicity we assume is nm bits, breaks M into n consecutive substrings
(M1, . . . ,Mn). Let hash2rma(H) = (SS, Init, (MA,MV), Update, Extract) be the
hash-based RMA protocol as per Construction 51.

Provably-Secure Remote Memory Attestation for Heap Overflow Protection 97

Let L be the class of functions that on inputs integers a, b such that 1 ≤ a <
b ≤ m, returns Ms [a . . . b]. Let T be the class of functions that on inputs an index
1 ≤ i ≤ n and bitstring c of size m + k returns Ms with its ith block changed
to c.

Let us call the adversary restricted if during all its queries to Read and Tamper
oracles between the Update queries, there is a substring of Ms of length at least
n, which has not been read, i.e., not returned by Read.

Then if SSh has secret privacy, oblivious reconstructability and share unpre-
dictability then hash2rma(H) is secure wrt L and T and the adversaries restricted
as above, in the random oracle model.

We remark that while our protocol descriptions and treatment assume that
the shares are embedded into the memory over equal intervals for simplicity, our
implementations use blocks of increasing size, for systems functionality purposes.
Our security analyses still apply though. This is because it is clear how the read
and tamper queries correspond to reading and tampering the shares, and in
addition, any tampering query to a memory part that has not been read must
change the secret.

We justify the restrictions in the security statement from the systems point of
view. We require that an attacker does not read the whole memory. This is rea-
sonable, as reading incorrect memory address results in segmentation fault (e.g.,
termination of the process). Given that 64-bit address of modern processors, it’s
unlikely that attackers infer the whole memory space.

Since our threat model is not arbitrary memory write: rather a consecutive
memory overrun like buffer overflow, it is natural to assume in this threat model
an attacker needs to over-write the boundary between the blocks.

Given that the memory randomization is a common defense (outside of our
model though), attackers should correctly identify the location of shares to over-
write (which is randomized), hence we do not model completely arbitrary writes.

5.2 Encryption-Based RMA

The construction is based on a similar idea as that underlying the hash-based
RMA protocol above. The difference is in the attestation and verification algo-
rithms. Instead of the hash, the prover computes and sends the encryption of
the secret currently encoded in the memory with the nonce sent by the verifier
as label.

Construction 52 (Encryption-Based RMA). Let SSh = (KS,KR,SU) and
Divide be as in Construction 51. Let Π = (KeyGen, Enc,Dec) be a labeled asym-
metric encryption scheme. The RMA scheme enc2rma(Π) is defined by

– SS(1κ) runs (pk , sk) $← KeyGen(1κ) and returns (pk , sk)
– Init is as in Construction 51.
– Extract on input Ms parses Ms as M1‖s1‖ . . . ‖Mn‖sn, runs s ←

KR(s1, . . . , sn) and returns (M, s).
– MV on input s picks l

$← {0, 1}l(κ) and sends l to MA

98 A. Boldyreva et al.

– MA on input Ms gets l from MV and does
• (M, s1, . . . , sn) ← Extract(Ms),
• C

$← Encl(s) and
• send C to the verifier.

– MV on input C calculates s′ ← Decl(C) and returns the result of s
?= s′.

– The Update algorithm is as in Construction 51.

The intuition behind security of the construction is as follows. The prover
sends the encrypted secret (for some label chosen by the verifier) to the veri-
fier; the goal of the adversary is to (eventually) create a new ciphertext of the
same secret under a new label received from the verifier. If this is possible, a
plaintext-checking oracle would allow to distinguish such an encryption from
the encryption of a different secret. The following proposition establishes the
security of the above construction. The proof is in [11].

Theorem 4. If SSh is a refreshable secret sharing scheme with secret
privacy, oblivious reconstructability and share unpredictability and Π =
(KeyGen, Enc,Dec) is an IND-PCA secure then enc2rma(Π) defined by Con-
struction 52 is a secure RMA scheme with respect to L, T and any efficient but
restricted adversary defined in Theorem 3.

Optimization. The above theorem establishes that we can instantiate an RMA
scheme using the SCS scheme that we presented in Sect. 4. It turns out that
we can further optimize the communication complexity of that protocol (where
each interaction requires the prover to send three group elements) by observing
that the verifier already has the plaintext that the ciphertext it receives should
contain. In this case, the prover does not have to send the second component
of the ciphertext (as this component can actually be recomputed by the verifier
using its secret key). For completeness, we give below the relevant algorithms of
the optimized scheme.

Construction 53 (SCS-Based RMA).

– SS(1κ) obtains G and (h, c, d), (x, a, b, a′, b′) by running KeyGenSCS(1κ).
– MV on input s picks l

$← {0, 1}l(κ) and sends l to MA
– MA on input Ms and (h, c, d) gets l from MV, obtains the shares of the secret

via (M, s1, . . . , sn) ← Extract(Ms), and samples random coins r ∈ [|G|] and
computes (u = gr, e = hr · m, v = (c · dα)r), where α = H(l, u, e). It sends
(u, v) to the server.

– MV on input its secret key (x, a, b, a′, b′) the challenge l and secret s oper-
ates as follows on input (u, v) from the prover and returns the result of the
comparison v = ua+αa′ · (ux)b+αb′

, where α = H(l, u, ux · s).

The following security statement follows directly from Theorems 4 and 2.

Theorem 5. If SSh is a refreshable secret sharing scheme with secret
privacy, oblivious reconstructability and share unpredictability, and Π =

Provably-Secure Remote Memory Attestation for Heap Overflow Protection 99

(KeyGen, Enc,Dec) is as per Construction 52 then the RMA protocol defined
by Construction 53 is a secure RMA scheme with respect to L, T and any effi-
cient but restricted adversary defined in Theorem 3, assuming the DDH problem
is hard in the underlying group and the hash is target collision-resistant.

6 Implementation and Evaluation

Our prototype can seamlessly enable the remote memory attestation in any
applications that are using standard libraries. At runtime, the prototype imple-
mentation interposes all memory allocations (malloc()) and deallocations
(free()) by incorporating LD PRELOAD when the application starts executing.
Before the application runs, our custom runtime pre-allocates memory regions
with varying sizes, and carefully insert key shares between the memory objects.

Specifically, we provide a simple wrapper program (called prover) which end
users use to perform all these operations. When requested, the prover launches
the program, and then inserts our custom library for memory allocations of the
target application. Before the program starts, the prover pre-allocates a list of
chuncked memory, starting from 8 bytes object to a few mega bytes (128 MB
by default) incrementally. In our current prototype, we pre-allocate N blocks
(configurable, 10 by default) per size (e.g., N 8-byte blocks up to 128 MB).

For attestation, the prover initiates the secrets with the public key provided,
performs the memory attestation of the program it launched, and communicates
with the remote verifier. To access the memory of a remote program, it attaches
to the program via ptrace interface in UNIX-like operating system, and runs
the protocol.

We evaluate a prototype of RMA in three aspects: (1) runtime overheads of
computation-oriented tasks such as SPEC benchmark; (2) worst case overheads
(e.g., launching an application) that end-user might be facing when using RMA;
(3) break-down of performance overheads and data transferred on the course of
remote attestation by using our prototype. We performed all experiments with
the prototype implementation of the encryption-based RMA. As we mentioned in
the Introduction, this protocol is not as efficient (in terms of crypto operations)
as the hash-based one, but it provides stronger security (no reliance on the

Component Lines of code

Verifier 298 lines of C

Prover 638 lines of C

Memory allocator 343 lines of C

Total 1,279 lines of code

Fig. 4. The complexity of RMA in terms of lines of code of each components, including
verifier, launcher and memory allocator.

100 A. Boldyreva et al.

random oracle model), and performs equally well in the presence of system-
dependent overheads.

Micro-Benchmark. We evaluate a prototype of RMA by running the standard
SPEC CPU2006 integer benchmark suite. All benchmarks were run on Intel
Xeon CPU E7-4820 @2.00 GHz machine with 128 GB RAM, and the baseline
benchmark ran with standard libraries provided by Ubuntu 15.04 with Linux
3.19.0-16. As shown in Fig. 5, due to the simplicity of the implementation, RMA
incurs negligible performance overheads to SPEC benchmark programs: 3.1 % on
average, ranging from 0.0 % to 4.8 % depending on a SEPC benchmark program.
During the experiments, we found out that the significant part of performance
overheads comes from the implementation of the custom memory allocator and
the side-effects of memory fragmentation, thereby diluting the overheads related
to crypto operations. We believe that different types of applications requiring
frequent validation or updates of share keys might need better optimization of
crypto-related software stack. It is worth noting that our prototype never focuses
on optimization in any sort (e.g., using a coarse-grained, global lock to support
multi-threading) and the overall performance can be dramatically improved if
necessary.

Programs Baseline (s) RMA (s) Overhead (%)

400.perlbench 545 566 3.9%
401.bzip2 749 770 2.8%
403.gcc 521 537 3.1%
429.mcf 385 395 2.6%
445.gobmk 691 691 0.0%
456.hmmer 638 665 4.2%
458.sjeng 779 805 3.3%
462.libquantu 1,453 1,514 4.2%
464.h264ref 917 950 3.6%
471.omnetpp 540 547 1.3%
473.astar 606 635 4.8%
483.xalancbmk 361 373 3.3%

Fig. 5. Runtime overheads of SPEC benchmark programs with RMA.

Macro-Benchmark. To measure performance overhands that end-user might
be encountering when using RMA, we construct a macro-benchmark with three
applications for four different tasks; launching a web browser (Firefox), an email
client (Thunderbird), compressing and decompressing files (Tar). All experi-
ments were conducted on a laptop running Ubuntu 12.04 with standard glibc

Provably-Secure Remote Memory Attestation for Heap Overflow Protection 101

library (Ubuntu/Linaro 4.6.3-1ubuntu5), and we measured each benchmark ten
times, we provide the summary in [11]. i Note that launching application is the
worst-case scenario to RMA because it has to allocate memory space at pro-
gram’s startup and initiate all key shares before executing the program. Accord-
ing to our benchmark, it incurs acceptable performance overheads even in the
worst-cast construction, but we believe the latency that users actually feel is
minimal: 0.023 s in Firefox and 0.199 s in Thunderbird.

Performance Break-down. We also measured how long it takes to proceed
each stage of the RMA protocol with our prototype implementation. We mea-
sured the amount of data that needs to be transferred as well. In short, it is
feasible to implement the proposed RMA protocol in practice: our unoptimized
system incurs negligible performance overheads (the details are in [11]) and the
amount of messages between the prover and the verifier is minimal (e.g., 12 bytes
up to 396 bytes). According to our evaluation, we believe our RMA protocol can
be utilized in an efficient manner in practice.

Acknowledgements. The first author was supported in part by the NSF award CNS-
1422794. The fourth author was supported in part by European Union Seventh Frame-
work Programme (FP7/2007–2013) grant agreement 609611 (PRACTICE). We thank
Sangmin Lee for great help with implementations. We thank Tom Conte and Milos
Prvulovic for useful discussions and Rafail Ostrovsky and Vassilis Zikas for clarifica-
tions on [26].

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistin-
guishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 332–352. Springer, Heidelberg (2015)

2. One, A.: Smashing the stack for fun and profit. Phrack 7(49), 14–16 (1996)
3. Armknecht, F., Sadeghi, A.-R., Schulz, S., Wachsmann, C.: A security framework

for the analysis and design of software attestation. In: Proceedings of 2013 ACM
SIGSAC Conference on Computer & Communications Security, pp. 1–12. ACM
(2013)

4. Barnett, R.: GHOST gethostbyname() heap overflow in glibc (CVE-2015-0235).
https://www.trustwave.com/Resources/SpiderLabs-Blog/GHOST-gethostbyname
()-heap-overflow-in-glibc-(CVE-2015-0235)

5. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 486–503. Springer, Heidelberg (2011)

6. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer, Heidelberg (2003)

7. Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier:
IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012)

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: Proceedings of 1st ACM Conference on Computer and
Communications Security, pp. 62–73. ACM (1993)

https://www.trustwave.com/Resources/SpiderLabs-Blog/GHOST-gethostbyname()-heap-overflow-in-glibc-(CVE-2015-0235)
https://www.trustwave.com/Resources/SpiderLabs-Blog/GHOST-gethostbyname()-heap-overflow-in-glibc-(CVE-2015-0235)

102 A. Boldyreva et al.

9. Berger, E.D.: HeapShield: library-based heap overflow protection for free. Univer-
sity of Massachusetts Amherst, TR 06–28 (2006)

10. Bhattacharyya, R., Roy, A.: Secure message authentication against related-key
attack. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 305–324. Springer,
Heidelberg (2014)

11. Boldyreva, A., Kim, T., Lipton, R., Warinschi, B.: Provably-secure remote memory
attestation to prevent heap overflow attacks. Cryptology ePrint Archive, Report
2015/729 (2015). Full version of this paper http://eprint.iacr.org/2015/729

12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM (JACM) 51(4), 557–594 (2004)

13. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of
software-based attestation of embedded devices. In: Proceedings of 16th ACM Con-
ference on Computer and Communications Security, CCS 2009 (2009)

14. Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: StackGuard: automatic adaptive detection and pre-
vention of buffer-overflow attacks. In: Proceedings of 7th Conference on USENIX
Security Symposium, SSYM 1998, vol. 7 (1998)

15. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

16. Duflot, L., Perez, Y.-A., Morin, B.: What if you can’t trust your network card?
In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp.
378–397. Springer, Heidelberg (2011)

17. Etoh, H.: GCC extension for protecting applications from stack-smashing attacks
(ProPolice) (2003). http://www.trl.ibm.com/projects/security/ssp/

18. Francillon, A., Nguyen, Q., Rasmussen, K.B., Tsudik, G.: A minimalist approach
to remote attestation. In: Design, Automation and Test in Europe Conference and
Exhibition, DATE 2014, pp. 1–6 (2014)

19. Frantzen, M., Shuey, M.: StackGhost: hardware facilitated stack protection. In:
Proceedings of 10th Usenix Security Symposium, pp. 55–66 (2001)

20. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995)

21. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., Del Cuvillo, J.: Using innov-
ative instructions to create trustworthy software solutions. In: Proceedings of 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy (HASP) (2013)

22. Jakobsson, M., Johansson, K.-A.: Practical and secure software-based attestation.
In: 2011 Workshop on Lightweight Security and Privacy: Devices, Protocols and
Applications (LightSec), pp. 1–9. IEEE (2011)

23. Kovah, X., Kallenberg, C., Weathers, C., Herzog, A., Albin, M., Butterworth, J.:
New results for timing-based attestation. In: 2012 IEEE Symposium on Security
and Privacy (SP), pp. 239–253. IEEE (2012)

24. Li, Y., McCune, J.M., Perrig, A.: SBAP: software-based attestation for peripherals.
In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101,
pp. 16–29. Springer, Heidelberg (2010)

25. Li, Y., McCune, J.M., Perrig, A.: Viper: verifying the integrity of peripherals’
firmware. In: Proceedings of 18th ACM Conference on Computer and Communi-
cations Security, pp. 3–16. ACM (2011)

http://eprint.iacr.org/2015/729
http://www.trl.ibm.com/projects/security/ssp/

Provably-Secure Remote Memory Attestation for Heap Overflow Protection 103

26. Lipton, R.J., Ostrovsky, R., Zikas, V.: Provable virus detection: using the uncer-
tainty principle to protect against Malware. Cryptology ePrint Archive, Report
2015/728 (2015). http://eprint.iacr.org/

27. Lu, K., Song, C., Lee, B., Chung, S.P., Kim, T., Lee, W.: ASLR-guard: stopping
address space leakage for code reuse attacks. In: Proceedings of 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS 2015 (2015)

28. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: Trustvi-
sor: efficient TCB reduction and attestation. In: Proceedings of 2010 IEEE Sym-
posium on Security and Privacy, SP 2010, pp. 143–158 (2010)

29. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An
execution infrastructure for TCB minimization. In: Proceedings of 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008, Eurosys 2008
(2008)

30. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: Proceedings of 2nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy (HASP) (2013)

31. Nikiforakis, N., Piessens, F., Joosen, W.: HeapSentry: kernel-assisted protection
against heap overflows. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA 2013.
LNCS, vol. 7967, pp. 177–196. Springer, Heidelberg (2013)

32. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–175. Springer, Heidelberg (2001)

33. Robertson, W., Kruegel, C., Mutz, D., Valeur, F.: Run-time detection of heap-
based overflows. In: Proceedings of 17th USENIX Conference on System Admin-
istration, LISA 2003 (2003)

34. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: a fast
address sanity checker. In: Proceedings of 2012 USENIX Conference on Annual
Technical Conference, USENIX ATC 2012 (2012)

35. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer: ver-
ifying code integrity and enforcing untampered code execution on legacy systems.
In: Proceedings of 20th ACM Symposium on Operating Systems Principles, SOSP
2005 (2005)

36. Seshadri, A., Perrig, A., Van Doorn, L., Khosla, P.: SWATT: software-based attes-
tation for embedded devices. In: 2004 IEEE Symposium on Security and Privacy,
Proceedings, pp. 272–282. IEEE (2004)

37. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of 11th ACM Con-
ference on Computer and Communications Security, CCS 2004 (2004)

38. Wee, H.: Public key encryption against related key attacks. In: Public Key Cryp-
tography - PKC 2012–15th International Conference on Practice and Theory in
Public Key Cryptography Proceedings, pp. 262–279 (2012)

39. Younan, Y., Joosen, W., Piessens, F.: Efficient protection against heap-based buffer
overflows without resorting to magic. In: Ning, P., Qing, S., Li, N. (eds.) ICICS
2006. LNCS, vol. 4307, pp. 379–398. Springer, Heidelberg (2006)

http://eprint.iacr.org/

Memory Erasability Amplification

Jan Camenisch1(B), Robert R. Enderlein1,2(B), and Ueli Maurer2(B)

1 IBM Research - Zurich, Rueschlikon, Switzerland
jca@zurich.ibm.com, scn2016@e7n.ch

2 Department of Computer Science, ETH Zürich, Zurich, Switzerland
maurer@inf.ethz.ch

Abstract. Erasable memory is an important resource for design-
ing practical cryptographic protocols that are secure against adaptive
attacks. Many practical memory devices such as solid state drives, hard
disks, or file systems are not perfectly erasable because a deletion oper-
ation leaves traces of the deleted data in the system. A number of meth-
ods for constructing a large erasable memory from a small one, e.g.,
using encryption, have been proposed. Despite the importance of erasable
memory in cryptography, no formal model has been proposed that allows
one to formally analyse such memory constructions or cryptographic pro-
tocols relying on erasable memory.

The contribution of this paper is three-fold. First, we provide a for-
mal model of erasable memory. A memory device allows a user to store,
retrieve, and delete data, and it is characterised by a leakage function
defining the extent to which erased data is still accessible to an adver-
sary.

Second, we investigate how the erasability of such memories can
be amplified. We provide a number of constructions of memories with
strong erasability guarantees from memories with weaker guarantees.
One of these constructions of perfectly erasable memories from imper-
fectly erasable ones can be considered as the prototypical application
of Canetti et al.’s All-or-Nothing Transform (AoNT). Motivated by this
construction, we propose some new and better AoNTs that are either
perfectly or computationally secure. These AoNTs are of possible inde-
pendent interest.

Third, we show (in the constructive cryptography framework) how the
construction of erasable memory and its use in cryptographic protocols
(for example to achieve adaptive security) can naturally be composed to
obtain provable security of the overall protocol.

Keywords: Secure memory erasure · Secure deletion · Adaptive
corruption · Constructive cryptography · All-or-nothing-transforms
(AoNT)

The first and second author were supported by the European Commission through
the Seventh Framework Programme under the ERC grant #321310 (PERCY) and
the third author was supported by the Zurich Information Security & Privacy Center
(ZISC).

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 104–125, 2016.
DOI: 10.1007/978-3-319-44618-9 6

Memory Erasability Amplification 105

1 Introduction

Persistent and erasable memory is a crucial ingredient of many practical cryp-
tographic protocols that are secure against adaptive adversaries. However, for
storage devices such as solid state disks, hard disks, and tapes it is rather difficult
to truly erase information written on them. Therefore, constructions have been
proposed that use a small amount of memory that is easier to erase (or at least
harder for an attacker to tap into), such as smart cards and processor registers,
to store a cryptographic key, and then to encrypt the data to be stored so that
it no longer matters whether or not the ciphertext can be erased [9,11,17–21].
This approach is sometimes referred to as crypto paging. Surprisingly, no formal
model of erasable memory has been proposed to date, despite of the importance
of erasable memory for cryptographic protocol design and the cryptographic
constructions for it.

1.1 Contributions of This Paper

In this paper we rectify this and first model erasable memory as a general
resource in the constructive cryptography framework [14,15]. Our memory
resource defines how a user, an adversary, and the environment can interact
with the resource and to what extent stored data can be erased. In particu-
lar, different memory resources are characterized by what information about the
stored data an adversary will be able to obtain when the environment allows it
access to the memory resource. As we discuss, this allows one to model many
different types of memory such as hard disks, solid state drives, RAM, and
smart cards. Next, we study different constructions of erasable memory from
one with weaker erasability properties or, in other words, constructions that
amplify erasability. These constructions also show how memory resources can
be used in protocol design and analysis. We then study the approach of crypto
paging in our setting, i.e., constructions of a large erasable memory from a small
one and a non-erasable memory. As it turns out, achieving the strongest possible
type of erasable memory with this approach requires non-committing encryption
and hence is only possible in the random oracle model (or requires additional
communication between sender and receiver, which is not applicable here). We
also show what kind of erasable memory can be achieved with this approach in
the standard model.

One of our memory constructions employs All-or-Nothing Transforms
(AoNT) [3] to obtain a perfectly erasable memory from one that leaks a con-
stant fraction of the erased data. Motivated by this protocol, we study AoNTs
and propose several new transforms that enjoy better parameters than previ-
ously known ones, a result that may be of independent interest. For example,
we improve the standard construction of a perfectly-secure AoNT from a Linear
Block Code (LBC), by observing that an LBC with a large minimum distance
does not yield an AoNT with optimal privacy threshold. We propose the metric
of ramp minimum distance and show that LBCs optimized for this metric yield
perfectly secure AoNTs with better parameters than what can be achieved with

106 J. Camenisch et al.

the standard construction. We further propose a computationally secure AoNT
that operates over a large alphabet (large enough for one symbol to encode a
cryptographic key) and that is optimal: the encoded data is just one symbol
longer than the original data, and the transform is secure even if all but one
of the symbols of the encoded data leak. We show that such an AoNT can be
realized from a pseudo-random generator (PRG) with some specific properties.

1.2 Related Work

In most security frameworks, unlimited and perfectly erasable memory is avail-
able to protocols as part of the framework, with the exception of protocols that
are proven to be adaptively secure in the non-erasure model, where no erasable
memory is available. However, as mentioned already, no security framework
explicitly models memory and consequently security proofs treat the adversary’s
access to the memory of a compromised party informally only. The only excep-
tion to this is the work by Canetti et al. and Lim [4,13], who model memory as
special tapes of the parties’ Turing machines and define how an adversary can
access these special tapes. This very specific modelling therefore changes the
machine model underlying the UC framework.

Hazay et al. [10] follow a different approach. They introduce the concept of
adaptive security with partial erasures, where security holds if at least one party
of a given protocol can successfully erase. Their model requires a special protocol
design and has some restrictions regarding composition.

Both these approaches are rather limited. Indeed, if one wanted to consider
different types of memory, one would have to change the modelling framework
each time and potentially have to prove all composition theorems all over again.
Moreover, these approaches do not allow one to analyse protocols that construct
one type of memory from another type of memory, as we do in this paper. Indeed,
one cannot analyse the security of protocols such as Yee’s crypto-paging tech-
nique [20,21] and the constructions of Di Crescenzo et al. [6]. In contrast, we
model memory as a resource (or ideal functionality) within the security frame-
work (the constructive cryptography framework in our case) and thus do not
suffer from these limitations.

2 Preliminaries

This section defines the notation used throughout this paper, presents the con-
structive cryptography model, and recalls various cryptographic building blocks
and their security properties.

2.1 Notation

Let GF(q) denote the Galois field of q elements, where q is a prime power. If u is
a vector or a list, let ui or u[i] denote the ith element of u. If u = (u1, . . . , un) and
v = (v1, . . . , vm) are lists, then (u, e) denotes the list (u1, . . . , un, e) and (u, v)

Memory Erasability Amplification 107

denotes the list (u1, . . . , un, v1, . . . , vn); we write e ∈ u to denote (∃i : e = ui);
we write v = (u, ·) to denote that (∀i ∈ {1, . . . , n} : ui = vi). If L is a set of
positive integers, let [u]L denote the subvector of u taken at all positions in L.
If S is a set, then 2S denotes the powerset of S (the set of all subsets of S). Let
I r denote the identity matrix of size r × r, and let 0 denote the zero matrix of
appropriate size.

If A is a deterministic polynomial-time algorithm, then y ← A(x) denotes the
assignment of variable y to the output of A(x). If A is a probabilistic polynomial-
time (PPT) algorithm, then y ←$ A(x) denotes the assignment of y to the output
of A(x) when run with fresh random coins on input x. For a set A: x ←$

A

denotes the assignment of x to a value chosen uniformly at random from A.
For a distribution A(x), we denote the ensemble {A(x)}x∈{1η|η∈N,η>η0} by the
shorthand {A}1η .

Throughout this paper we denote the security parameter by η ∈ N. Let 1η

denote the string consisting of η ones. Unless otherwise noted, all algorithms in
this paper are PPT and take 1η as extra (often implicit) input.

2.2 Constructive Cryptography

We present our results in the Constructive Cryptography framework [14,15]. The
framework argues about resources and how to securely construct a resource from
other resources using a protocol which consists of a set of converters. Resources
and converters are systems that have a set of interfaces. Resources have an
interface for each party considered (e.g., Alice), one for the adversary (the Eve
interface), and one for the distinguisher (the World interface). The latter is an
example of what Gaži et al. [8] introduce as a free interface and allows one to
model the influence of the distinguisher (environment) on a resource, e.g., to
define when a memory becomes readable by the adversary or to model adaptive
adversarial behaviour. Converters have only two interfaces, an inner interface
that connects to a party interface of a resource and an outer interface to which
a party can connect. A simulator is a converter that attaches to the adversary
interface of a resource. In this paper we consider only resources that have a single
party interface, i.e., Alice. The security condition of Constructive Cryptography
is as follows (we do not consider the availability condition in this paper) [15].

Definition 2.1. A protocol (converter) π constructs resource S from resource R
with respect to simulator σ, within ε, denoted

R
π,σ,ε

S,

if for all distinguishers D we have ΔD(πAliceR, σEveS) ≤ ε(D), where ΔD is the
advantage of D in distinguishing the two systems [15].

The distinguisher D is a system itself and has access to all external interfaces
of the composition of the resources and converters (cf. Fig. 1). With πAliceR we
denote the system obtained by attaching the inner interface of π to the interface
Alice of resource R, and likewise for σEve. In this definition, ε is a function map-
ping distinguishers to positive real numbers. Informally, computational security

108 J. Camenisch et al.

corresponds to π and σ being efficiently implementable and ε(D) being negli-
gible for all efficiently implementable D. Constructions are composable, i.e., if

R
π1,σ1,ε1

S and S
π2,σ2,ε2

T, then R
π2π1,σ1σ2,ε2+ε1

T.

2.3 Cryptographic Building Blocks

Rπ ≈ S
Alice

interface
interface

Eve
σ

interfaceWorld

Fig. 1. The constructive statement for a
resource with interfaces Alice, Eve, and World.
Protocol π constructs S from R if there is a
simulator σ such that R with π attached to
its Alice-interface is indistinguishable from the
resource S with σ attached to its Eve-interface
(cf. Defintion 2.1).

For our constructions, we require
pseudo-random generators and
exposure-resilient functions, the
definitions of which we recall here
for convenience.

Definition 2.2. An �-pseudo-
random generator (PRG), i.e.,
prg : {0, 1}η �→ {0, 1}�(η), is
secure if these ensembles are
computationally indistinguishable:
{b}1η for b ←$ {0, 1}�(η); and
{prg(a)}1η for a ←$ {0, 1}η [12].

Definition 2.3. A d-exposure-
resilient function (ERF) erf :
Φn �→ Φk, also denoted (Φ, n, d, k)-
ERF, is ε-secure if for any set
L ⊂ {1, . . . n} of size at most d,
these distributions are ε-indistinguishable: ([b]L,x0) for b ←$ Φn,x0 ← erf(b);
and ([b]L,x1) for b ←$ Φn,x1 ←$ Φk [3].

2.4 All-or-Nothing Transform (AoNT)

An all-or-nothing transform (AoNT) [3] is similar to a secret-sharing scheme that
requires all shares in order to reconstruct the secret. It consists of two algorithms
aenc and adec.

Definition 2.4. A d-AoNT with aenc : Φk $�→ Φn and adec : Φn �→ Φk, also
denoted (Φ, n, d, k)-AoNT, is ε-secure if: (Completeness) For all messages a ∈
Φk, a = adec(aenc(a)). (Privacy) For any set L ⊂ {1, . . . n} of size at most
d, and for any two messages a0,a1 ∈ Φk the following two distributions are
ε-indistinguishable: (a0,a1, [aenc(a0)]L) and (a0,a1, [aenc(a1)]L) [3].

Computational Security. In the context of computational security, the two func-
tions aenc and adec take as additional input a (usually implicit) security para-
meter; Φ, n, k, and d may depend on that security parameter. For the privacy
condition, it is required that the ensembles {(a0,a1, [aenc(1η,a0)]L)}1η and
{(a0,a1, [aenc(1η,a1)]L)}1η be indistinguishable. In the sequel we also denote
such computationally secure AoNTs as (Φ, n, d, k)-AoNTs, where the security
parameter is implicit.

Memory Erasability Amplification 109

AoNT with Public Part. A (Φ, n + ν, d, k)-AoNT has a ν-public part, if in the
privacy condition above the last ν symbols of aenc(a) are output in addition to
[aenc(a)]L.

Realization from a Secret Sharing Scheme. It is easy to realize a perfect
(Φ, n, d, k)-AoNT from any secret sharing scheme over alphabet Φ that outputs
m shares, has a reconstruction threshold of n, a privacy threshold of d, and that
encodes messages of size k shares, by simply ignoring all shares after the first n
ones. This technique also works in the statistical and computational case.

Realization from an ERF. It is easy to realize an ε-secure (Φ, n + k, d, k)-AoNT

with a k-public part from any ε-secure (Φ, n, d, k)-ERF: aenc(a) $�→ b||(erf(b)+a)
where b ←$ Φn; and adec(b||x) �→ x − erf(b) [3]. This technique also works in
the computational case.

3 Modelling Imperfectly Erasable Memory

We now present our erasable memory resource. Recall that we aim to model
memory that is used for persistent storage (such as hard disks, solid state drives,
RAM, and smart cards), and not processor registers that store temporary values
during computations. To this end, we define how the resource behaves upon
inputs on the user (Alice), the adversary, and the world interfaces. It allows a
user Alice to store a single data item once, retrieve it (many times), and erase
it. The adversary can get access to the data only if such access is enabled on the
World-interface. That is, the data stored is not initially available to her. Then,
once access is enabled via a weaken input on the World-interface, the adversary
can either read the data item stored (if the user has not yet deleted it) or leak
the data, meaning that she will obtain as answer a function of the once stored
data. This function determines the information that is still leaked although the
data has been deleted. The adversary can influence the leakage by providing an
additional input to the function (e.g., specify some bits that are leaked).

In reality, there might be many different reason why an adversary gains
access to the contents of a memory. This might be because the memory device
is lost, the adversary controlling some malware on the computer that uses the
memory, or the adversary running a cache-timing attack [1] on the computer, etc.
Offering a World-interface via which it is determined what access is given to the
adversary by the memory resource, models any such event. The UC and GNUC
frameworks use a similar mechanism for corrupting parties, except that they
(ab)use the party interfaces to do so. In UC, it is the adversary who corrupts and
the environment is informed of the corruption through the party interfaces. In
GNUC, the environment corrupts parties and the adversary is informed thereof.

There seem to be two natural extensions to our erasable memory resource
which for simplicity we chose not to consider. First, we assume that inputs at
the World-interface do not impact the user’s ability to access the data, which
might often not be the case. Although this would not be hard to model, it is not

110 J. Camenisch et al.

Fig. 2. The general (imperfectly) erasable memory resource M〈·〉.

important for the scope of this paper. Second, the user cannot change the stored
data or store many different data items. Again, while it would not be hard to
extend the resource to allow for that, we choose not to do that for simplicity.
Also, this is not a serious restrictions as such requirements can also be addressed
by using several instances of our memory resources.

3.1 Specification of the General Imperfectly Erasable Memory
Resource M〈·〉

We now present our formal specification of the general resource for imperfectly
erasable memory M〈Σ,ψ, ρ, κ〉 that is given in Fig. 2 and then discuss in the
next subsection a few instantiations of this general resource that match different
types of memory. The resource maintains three variables data, ldat, and hist.
The first one stores the data provided by the user, the second the data that
can potentially be leaked to the adversary, and the third one logs the history
of events, namely the erasure event, the parameter of each call on the World
interface, and the input arguments of each successful leakage query. The resource
is parametrized by an alphabet Σ, a conditional probability distribution ψ, and
two predicates ρ and κ. The alphabet Σ is the set of possible values that can
be stored. The conditional distribution ψ operates on the data and determines
what information could potentially leak to the adversary by outputting ldat.
This models the extent to which the resource is able to erase the data. The
predicate ρ takes as input the history of the resource and determines whether or
not the adversary is allowed to read the memory. Finally, the predicate κ takes as
input the history of the resource and the deterministic function ξ submitted by
the adversary and determines whether or not the adversary obtains the leakage
ξ(ldat).

Most of the commands that can be submitted to the resource and its behav-
iour should now be clear from Fig. 2, however, a few details merit explanation.
First, the data that is potentially leaked, ldat, is determined using ψ already
when the data is stored in the resource. This is without loss of generalty but is

Memory Erasability Amplification 111

here useful because, depending on the predicate κ, the adversary may query the
resource multiple times with the leak command and the answers to these com-
mands need to be consistent. Second, when the adversary queries the resource
with a leak command, she can input a parameter ξ that may influence the leak-
age she obtains. This models the process of an adversary reading the erased data
from a memory device, e.g., an adversary might try to read the data bit by bit,
each time influencing the remaining bits in the memory. Third, the adversary is
allowed to obtain the history from the resource at any time. This is necessary
so that a simulator has enough information to properly simulate a construction.
Finally, the World-interface accepts any value w for an external event, because
these depend on the particular resource that is modelled and possibly on how
it is constructed. This will become clear later when we discuss constructions of
one type of memory from other types in Sect. 4.

3.2 Instantiations of M〈Σ, ψ, ρ, κ〉
We now describe special cases of the M〈Σ,ψ, ρ, κ〉 resource that correspond to
memory devices appearing in the real world. We start by describing non-erasable
memory, i.e., memory that becomes readable by the adversary once access is
enabled by the World-interface. This models what happens in a typical file sys-
tem: files that are unlinked are not actually erased and can often be completely
recovered with specialized tools (at least until the blocks are re-used). We then
describe perfectly erasable memory. Such a memory could be implemented by
specialized hardware, such as smartcards, but often will have only limited capac-
ity. Large perfectly erasable memories are often not directly available in reality.
We are thus interested in the construction of such memories from resources with
lesser guarantees. Each of the latter can be influenced through World-events sep-
arately, hence we will describe both a variant of the perfectly erasable memory
that accepts a single type of World-event (easier to describe) and a variant that
accepts an arbitrary number of events. Finally we describe imperfectly erasable
memories, i.e., memories with security guarantees between the two extremes just
discussed. Such memories leak partial information if the adversary is granted
access by World after an erasure. In reality, often not all the data is actually
removed during an erasure: on magnetic storage, overwritten data can still be
partially recovered with specialized equipment [9]. Similarly, often parts of the
data were copied to a different medium (swap space, backup, file system journal,
etc.) before the erasure and the copies were not fully erased themselves. One
can thus easily imagine that the adversary can deduce a constant number of bits
that were stored, or obtains a noisy version of the data that was stored. For
simplicity, we consider imperfectly erasable memories which ignore the parame-
ter of weaken (only a single World-event can be modelled), and only leak once
(no adaptive leakage). We now describe these categories of memory in detail.
Table 1 provides an overview of these and further specialization of them that we
consider in the following sections.

112 J. Camenisch et al.

Table 1. Different specializations of M〈Σ, ψ, ρ, κ〉 that allow one to erase data.

Perfectly erasable memory Influence of the World interface

PM〈Σ〉 single world event makes memory readable by
adversary

PMW〈Σ〉 multiple world events are modelled

PMWa〈Σ〉 specific version of PMW〈Σ〉 (Fig. 4)

PMWb〈Σ〉 specific version of PMW〈Σ〉 (Fig. 4)

PMWc〈Σ〉 specific version of PMW〈Σ〉 (Fig. 4)

Imperfectly erasable memory Information adversary obtains on deleted data

IM〈Σ, ψ, Ξ〉 reveals ξ(ldat) if Ξ(ξ) = 1

IMD〈Φ, n, d〉 reveals d symbols to adversary

IMDP〈Φ, s1, s2, d〉 reveals d symbols of first part, all symbols of second
part

IMI〈Φ, n, d〉 each symbol revealed independently with probability
p

IMN〈Φ, n, d〉 reveals through noisy channel

IML〈Σ, v〉 reveals through a length shrinking function

IMLP〈Φ, n, a + k, v〉 reveals a length shrinking function on first part, full
second part

Non-erasable Memory. To model non-erasable memory, we let ρ return true
if weaken was called irrespective of erase. (In fact, the erase command could
be dropped entirely.) The memory does not leak, hence κ always returns false
and ψ is irrelevant. The only relevant parameter is the alphabet Σ and thus we
denote this resource by NM〈Σ〉.

Perfectly Erasable Memory. To model perfectly erasable memory, we let
ρ return true only if weaken was called (perhaps multiple times with specific
parameters) before erase was called.1 This memory does not leak, hence κ
always returns false and ψ is irrelevant. We describe two versions of the resource:
PM〈Σ〉 fixes ρ to return true if weaken appears in the history earlier than or
without erase, hence only a single World-event can be modelled. PMW〈Σ, ρ〉 lets
one specify a custom ρ, allowing the modelling of many World-events. Figure 4
in the next section shows examples of ρ in the case where there are two relevant
World-events.

1 In this paper, we chose to consider monotone ρ’s. We chose to model the memory
resource in such a way that it only responds on the same interface it was activated,
hence it is not possible for the adversary to be notified of an event that causes the
memory to become readable. To simplify the modelling of simulators, we consider
the adversary to be eager and trying to read the memory as soon as possible and
then placing the resulting data in an “intermediate buffer” that can then be collected
through the Eve-interface at a later point.

Memory Erasability Amplification 113

Imperfectly Erasable Memory. To model imperfectly erasable memory, we
fix ρ and split κ into two predicates, a fixed predicate that checks only the history
and a freely specifiable predicate Ξ that checks only the adversary’s choice ξ. The
other parameters Σ and ψ can be freely specified. We denote this resource by
IM〈Σ,ψ,Ξ〉. We consider only resources allowing for a single World-event. The
predicate ρ returns true only if the first recorded event in the history is a weaken
command (as opposed to an erase command). The fixed predicate returns true
if the first two recorded events in the history are an erase command followed by
a weaken command (if weaken was called first, the adversary should call read
and not leak), and no leak query succeeded previously. Thus, we consider only
resources allowing for a single World-event. The predicate κ returns true if the
fixed predicate does so and Ξ accepts ξ. In the next section, when we discuss
erasability amplification, we further specialize this resource.

4 Constructing Better Memory Resources

In this section we consider constructions of memory resources with stronger secu-
rity properties from memory resources with weaker ones. We start by showing
how to use our memory resources in protocol constructions and then explain the
issues that arise when doing so. Thereafter, we describe several specializations of
the imperfectly erasable memory resource IM〈·〉 presented in the previous section
and then show how to construct memory resources with stronger properties from
ones with weaker properties. For example, we show how to construct perfectly
erasable memories from memories that leak a certain number of bits. Finally, we
consider the construction of a large perfectly erasable memory from a small one
plus a large non-erasable memory.

4.1 Admissible Converters for Constructions Using Erasable
Memory

As stated previously, one of our reasons to model memory is to be able to analyse
cryptographic protocols where the adversary at some point obtains access to
the memory. This means that one needs to restrict converters to use only our
memory resources for storage. Assuming that an adversary in a real environment
may typically not be able to get access to processor registers, we still allow a
converter to store temporary values locally and use a memory resource only for
persistent storage. Let us now formalize the distinction between persistent and
temporary storage and the restrictions we put on converters.

The computation done by a converter is divided in computation phases. A
phase starts when a converter is activated outside of a computation phase. Infor-
mally, a phase ends as soon as the converter responds to that activation or makes
a request that is not guaranteed to be answered immediately, i.e., where there
is a chance that the adversary is activated before the request completes. For
example, a computation phase ends if the converter makes a request that goes

114 J. Camenisch et al.

over an unreliable communication network, but does not end if the converter
asks to store or retrieve data from a memory resource.

In this paper, all our resources always respond on the same interface they
were activated. It is then easy to define a computation phase of a converter: the
phase starts as soon as the converter’s outer interface is activated, and stops as
soon as the converter writes on its outer interface. That is, activations of the
inner interface do not interrupt the phase. However, in a more general setting,
resources may respond on a different interface than the one they were activated
on, and thereby activate a different party or the adversary. The definition of
computation phase of converters must therefore be adjusted to take this into
account.

State that is discarded at the end of a computation phase is temporary.
State that must persist between two or more computation phases is persistent.
(Converters must keep all persistent state in memory resources.) This distinction
ensures that whenever the adversary has control, the entire internal state of a
protocol is inside memory resources, and thus subject to attack.

Discussion. Other models, notably Canetti et al. and Lim [4,13], also make a
distinction between storage needed during computation and persistent storage.
However they do it in a way that does not cleanly separate the various layers
of abstraction: they assume the existence of a constant number of “processor
registers” that are perfectly erasable and place no restriction on the amount of
time that data can remain in such a register. For example, their model therefore
does not exclude reserving a part of the CPU registers to permanently store a
cryptographic key, and use a crypto paging technique [20,21] to have as much
(computationally secure) perfectly erasable memory as required. Thus, to ensure
a meaningful analysis, a similar restriction would have to be used in their app-
roach.

4.2 Memory Erasability Amplification

We now describe several variants of imperfectly erasable memory that are rele-
vant for practice, namely memory that leaks a constant number of bits, memory
that leaks bits with a certain probability, memory that leaks a noisy version of
the data, and memory that leaks the output of a length-shrinking function of the
data. We then show how to construct memories which leak less information from
each of these variants, in other words, we show how to amplify the erasability of
each variant.

4.2.1 Amplifying Memory Leaking Exactly d Symbols
On many file systems, unlinked files are not necessarily immediately erased in
their entirety. For instance, on most SSDs, deleted data persists until the flash
translation layer flashes the corresponding erase block. Furthermore, data may
survive erasure if it was copied to another medium, such as a cache, the swap
space or backups. An adversary could therefore potentially recover parts of data

Memory Erasability Amplification 115

that were believed to be erased. In full generality, the adversary may not obtain
the entire data but still have an influence on which parts of the data she obtains
in an attack, e.g., because she can steal just one backup tape, because of the
cost of the attack or time constrains forcing her to choose the most juicy parts
of the data, or because the adversary could influence the system beforehand
to some degree and ensure that the parts of the data she is interested in were
backed-up/swapped/cached.

To model such a scenario, we define the memory resource IMD〈Φ, n, d〉 storing
n symbols of an alphabet Φ, and where the adversary can obtain exactly d
symbols of his choice when the memory leaks. This resource is a specialization
of IM〈Σ,ψ,Ξ〉, where Σ = Φn, ψ is the identity function, and Ξ accepts any
function that reads at most d symbols from ldat.

In a real setting, and depending on the nature of the attack, the adversary
may obtain less than d symbols or might not have full control over which symbols
she obtains. A memory resource in such a setting can be perfectly constructed
from IMD〈Φ, n, d〉 with the identity converter. (A memory resource where the
adversary can obtain more than d symbols with a small probability ε can also be
constructed from IMD〈Φ, n, d〉, albeit with an error probability equal to ε; see,
e.g., Sect. 4.2.2.)

The converter I2P shown in Fig. 3 constructs PM〈Φk〉 from IMD〈Φ, n, d〉. This
converter is parametrized by an AoNT (cf. Sect. 2.4). In a nutshell, I2P just
applies the AoNT encoding algorithm aenc(·) to the incoming data before stor-
ing it in IMD〈·〉; and decodes the encoded data stored in IMD〈·〉 using adec(·)
before outputting it. The erasure command is transmitted to IMD〈·〉 directly.
The privacy property of the AoNT guarantees that if the adversary obtains d
symbols of the encoded data, she obtains no meaningful information about the
original data. Thus, we obtain the following theorem.

Fig. 3. The converter I2P constructing PM〈Φk〉 from IMD〈Φ, n, d〉. The converter is
parametrized by a (Φ, n, d, k)-AoNT (aenc, adec).

Theorem 4.1. If (aenc, adec) is an ε-secure (Φ, n, d, k)-AoNT, then

IMD〈Φ, n, d〉 π,σ,ε
PM〈Φk〉,

where π = I2P〈Φ, k, aenc, adec〉 and σ is the simulator provided in the proof.

The proof this theorem is found in the full version of this paper. A similar
theorem can be stated for the computational case.

116 J. Camenisch et al.

Multi-part Leakage. It is sometimes the case that the memory is segmented
into multiple independent parts, e.g., over two different file systems on different
partitions of the same physical disc and that each part reacts differently to an
attack.

We define a multi-part memory resource IMDP〈Φ, s1, s2, d〉 storing data in
Φs1+s2 . The memory is divided in two parts, the first part consisting of the first
s1 symbols and the second of the other s2 symbols. The first part of the memory
leaks similarly to IMD〈Φ, s1, d〉, while the second one leaks the entire data. When
attacking the memory, the adversary must submit the choice of leakage for the
first part before obtaining the leakage of the second part. We get the following
theorem, the proof of which is similar to the one of Theorem 4.1 and is omitted.

Theorem 4.2. If (aenc, adec) is an ε-secure (Φ, n + ν, d, k)-AoNT with public
part ν, then

IMDP〈Φ, n, ν, d〉 π,σ,ε
PM〈Φk〉,

where π = I2P〈Φ, k, aenc, adec〉 and σ is the simulator provided in the proof.

A similar theorem can be stated for the computational case.

Choice of Alphabet. The most suitable choice of Φ depends on the application.
Possible values are GF(2) when bits can be leaked independently, e.g., because
the adversary must read them one by one from the surface of a disc; GF(2512·8)
to GF(24096·8) when the smallest leakable unit is a file system block; or even
GF(2128·1024·8) to GF(28192·1024·8) when the smallest leakable unit is an erase
blocks of an SSD. In the latter two cases, it is also possible to design the system
in such a way that only parts of a block are written to before proceeding with
the next one, thereby reducing the alphabet size and limiting the amount of
exposure per leaked block.

4.2.2 Amplifying Memory Leaking Symbols with Probability p

Above, we modelled an adversary who chooses which symbols leak from the
imperfect memory. In practice, the adversary may not have this much power: for
example, some parts of a deleted file might still be present in the journal, but the
adversary has no control over which ones. To model this, let us now consider an
adversary who obtains each symbol of the data uniformly and independently at
random with a certain probability p during a leakage. We denote a memory with
such a behaviour by IMI〈Φ, n, d〉. This resource is a specialization of IM〈Σ,ψ,Ξ〉
where Σ = Φn, ψ acts like an erasure channel with erasure probability (1 − p)
(i.e., each symbol of the data is transmitted correctly with probability p and
otherwise is replaced with “⊥”), and Ξ accepts only the identity function.

One can treat IMI〈·〉 similarly to IMD〈·〉 in constructions with just a small
statistical error, as the following observation shows. Constructing PM〈Φk〉 from
IMI〈Φ, n, p〉 directly without first constructing IMD〈Φ, n, d〉 might be more effi-
cient (better parameters, less statistical error), but such a direct construction is

Memory Erasability Amplification 117

out of the scope of this paper. The proof of the following observation is found
in the full version of this paper.

Observation 4.3. For all (n, d) ∈ N
2, p ∈ [0, 1], and fields Φ we have that

IMI〈Φ, n, p〉 id,σ,ε
IMD〈Φ, n, d〉, where id is the identity converter, σ is the simu-

lator provided in the proof, and ε = (1−BinomialCDF(d;n, p)) =
∑n

i=d+1

(
n
i

)
pi ·

(1 − p)n−i.

4.2.3 Amplifying Memory with Noisy Leakage
Another possible setting is that the data is written to and erased from magnetic
storage, and the adversary, who has physical access to the storage medium, must
make an educated guess for each bit of the data [9]. One can model this as if
the data was transmitted through a noisy binary symmetric channel. We denote
such a memory by IMN〈Φ, n, d〉. This resource is a specialization of IM〈Σ,ψ,Ξ〉
where Σ = Φn, ψ acts like a noisy |Φ|-ary channel with crossover probability
(1−p)/|Φ| (i.e., each symbol of the data is transmitted correctly with probability
p and otherwise is replaced with a symbol drawn uniformly at random from Φ),
and Ξ accepts only the identity function.

Observation 4.4. For all (n, d) ∈ N
2, p ∈ [0, 1], and fields Φ we have that

IMN〈Φ, n, p〉 π,σ,0
IMI〈Φ, n, p〉, where π = id is the identity converter and σ is

the simulator that replaces all erased symbols in the leakage by random symbols.

4.2.4 Amplifying Memory with Limited Leakage Output Domain
Another possible setting is that the adversary does not obtain individual symbols
of the data but rather a function of the data. For example, with a cache-timing
attack [1], she might deduce some information about the data without recovering
it completely. In general, one can consider an adversary that obtains any length-
shrinking function of the contents of the memory. We denote such a memory
by IML〈Σ, v〉. This resource is a specialization of IM〈Σ,ψ,Ξ〉, where ψ is the
identity function and Ξ accepts only functions that have at most v different
output values.

For any non-trivial parameters, it is not possible to construct a perfectly
erasable memory from IML〈·〉, because the adversary can submit a leakage func-
tion ξ ∈ Ξ that runs the decoding logic of the converter. The reason for this is
as follows. Let v ≥ 2, |Σ′| ≥ 2, |Σ| ≥ 2, and let π be a converter that constructs
PM〈Σ′〉 from IML〈Σ, v〉. We now show that this construction has a statistical
error of at least 1

2 . The distinguisher chooses two distinct messages a0, a1 ∈ Σ′,
flips a coin b ←$ {0, 1}, and stores ab. He then makes the memory weak by setting
the relevant flags on the World-interface and submits a leakage function ξ that
returns 0 iff a0 was encoded in IML〈·〉 by using the decoding logic of π—recall
that the distinguisher may depend on π. The distinguisher then outputs 1 iff
ξ outputs b. No simulator will be able to properly simulate that scenario with
probability more than 1

2 as it does not know if the distinguisher stored a0 or a1.

118 J. Camenisch et al.

Fig. 4. Several variants of a perfectly erasable memory resource with two World-flags.
The prefix decision trees visualize whether the adversary has read access to the memory
depending on the event history hist. A branch labelled “e” represents an erasure
event, and branches labelled “K” (key) or “C” (ciphertext) represent the setting of the
corresponding flags on the World-interface. An “R” node means that the memory is
readable (and allows the adversary to collect the data at any time from then on), and
an “s” (secure) node means that it does not.

Fig. 5. The converter XPM constructing a large perfectly erasable memory
PMWa〈GF(2�(η))〉 or PMWc〈GF(2�(η))〉 using a small perfectly erasable memory
PM〈GF(2η)〉 and a large non-erasable memory NM〈GF(2�(η))〉. The converter is para-
metrized by an �-PRG prg, and the implicit security parameter η.

However, one can obtain a meaningful construction by starting from a mem-
ory resource with multi-part leakage. Let IMLP〈Φ, s1, s2, v〉 be analogous to
IMDP〈Φ, s1, s2, d〉 defined previously, except that the first part leaks similarly
to IML〈Φs1 , v〉. Here it is crucial to note that the function ξ submitted by the
adversary can read only the first part of the memory. In particular, given a uni-
versal hash function h : Φa × Φn �→ Φk, one can construct the resource PM〈Φk〉
from IMLP〈Φ, n, a+ k, v〉, by using I2P with an AoNT obtained from a universal
hash function (see full paper for details). The construction is (2v2(k−n)/2)-secure
[3,5]. This construction is essentially the one proposed by Canetti et al. [4] and
Lim [13].

Memory Erasability Amplification 119

4.3 Constructing a Large Perfectly Erasable Memory from a Small
One

We now discuss how a small perfectly erasable memory can be used together with
a large, possibly non-erasable memory to construct a large perfectly erasable
memory. The basic idea underlying this construction is that of Yee et al.’s
crypto paging [20,21]: one stores a cryptographic key in the small perfectly
erasable memory, encrypts the data with that key, and stores the resulting
ciphertext in the large, possibly non-erasable memory. The resulting resource
PMWa〈GF(2�(η))〉 will allow the adversary to read the stored data if the resource
is weakened by the environment before the user erases the key. The specification
of this resource is given in Fig. 4a and the protocol XPM for the construction is
provided in Fig. 5.

The resource just constructed allows the adversary to read the stored data if
either the small erasable or the large non-erasable memory become weak before
the user erases the key. Thus, this resource is weaker than what one would
expect, i.e., it should be the case that the adversary can only read the data if
both underlying resources become weak before the user erases the key. The cor-
responding resource PMWb〈GF(2�(η))〉 is depicted in Fig. 4b. Unfortunately, the
realization of this resource would require a non-committing and non-interactive
encryption scheme, which can only be constructed in the random oracle model
but not in the standard model.

However, it is possible to construct the somewhat better resource
PMWc〈GF(2�(η))〉, shown in Fig. 4c. Here the adversary can read the stored
data if the memory storing the ciphertext becomes weak before the user calls
delete. It is not hard to see that PMWc〈GF(2�(η))〉 implies PMWa〈GF(2�(η))〉,
essentially the simulator attached to the Eve interface of PMWa〈GF(2�(η))〉 has
to hold back the leaked data until the non-erasable memory becomes leakable.
In summary, we get the following theorem, the proof of which is found in the
full paper.

Theorem 4.5. If prg is a secure �-PRG, then
[
PM〈GF(2η)〉,NM〈GF(2�(η))〉] π,σ,ε

PMWc〈GF(2�(η))〉,

where π = XPM〈�, prg〉, σ is given in the full version, and ε is a negligible
function.

As stated above, XPM also constructs PMWa〈GF(2�(η))〉 from the same
resources. Furthermore, in the random oracle model, a protocol that is iden-
tical to XPM except that calls to prg are replaced by calls to the random oracle,
constructs PMWb〈GF(2�(η))〉 from the same resources.

Let us discuss our the memory resources just discussed in light of some secure
memory constructions in the literature. As mentioned, Yee et al. introduce crypto
paging [20,21] to let a secure co-processor encrypt its virtual memory before
paging it out to its host’s physical memory or hard disk. Translated to our

120 J. Camenisch et al.

setting, this means that the non-erasable memory is weak from the beginning.
Therefore, to get meaningful guarantees, only the resource PMWb〈GF(2�(η))〉
can be used in their setting, the other two would allow the adversary to always
read the data. Thus, to realize their system, Yee et al. require a non-committing
and non-interactive encryption scheme (and hence random oracles).

Di Crescenzo et al. [6] consider a memory resource that allows one to update
the stored data such that when the resource becomes weak the adversary can
only read the data stored last. They then provide a construction for a large such
resource from a small one and a large non-erasable memory. Again they assume
that for both resources the data can be updated and that the non-erasable one
leaks all data ever stored in it. None of our resources does allow for such updates
but, as already discussed, resources that allow this can be constructed by using
several of our respective resources in parallel. Thus, their security definition and
construction can be indeed modelled and analysed with the memory resources
we define, however, doing this is out of scope of this extended abstract.

5 New Realizations of All-or-Nothing Transforms

In Sect. 4 we saw the importance of AoNTs for constructing perfectly erasable
memory from certain types of imperfectly erasable ones. In this section we
present several novel AoNTs. We start by showing the dual of the I2P protocol:
any protocol that constructs PM〈Φk〉 from IMD〈Φ, n, d〉 can be used to realize a
(Φ, n, k, d)-AoNT. We then present a perfect AoNT with better parameters than
what is found in the literature, based on the novel concept of ramp minimum
distance of a matrix. We then show that one can combine several AoNTs to
achieve an AoNT over a small field but with a large message space and a good
privacy threshold d. Finally, we provide a computationally-secure AoNT over a
large field that has a very large privacy threshold.

5.1 AoNT from a Protocol that Constructs PM〈Φk〉 from
IMD〈Φ, n, d〉

Sect. 4.2.1 described the protocol I2P, parametrized by an AoNT, that con-
structs a perfectly erasable memory PM〈Φk〉 from an imperfectly erasable one
IMD〈Φ, n, d〉. As the following theorem states, any protocol π (not necessarily
one based on an AoNT) that constructs PM〈Φk〉 from IMD〈Φ, n, d〉 can be used
to construct an AoNT using the algorithm C2A (given in Fig. 6), albeit one
where adec is a probabilistic algorithm and where decoding might fail with a
small probability.

Theorem 5.1. If (π, σ, ε) are such that IMD〈Φ, n, d〉 π,σ,ε
PM〈Φk〉, then the

algorithm C2A〈Φ, n, k, π〉 is a 6ε-secure (Φ, n, d, k)-AoNT with a probabilistic
adec and where decoding may fail with probability less than 2ε.

The proof of this theorem is found in the full version of this paper. One can
make an analogous statement in the computational case.

Memory Erasability Amplification 121

Fig. 6. The algorithm C2A that realizes a (Φ, n, d, k)-AoNT from a converter π, where
π constructs PM〈Φk〉 from IMD〈Φ, n, d〉.

5.2 Perfectly Secure AoNT Based on Matrices with Ramp
Minimum Distance

This subsection shows how one can improve the standard realization of AoNTs
based on linear block codes of Canetti et al. [3] by using our novel concept of
ramp minimum distance.

The Standard Realization. Let G be the k × n generator matrix with elements
in GF(q) of a linear block code with minimum distance d. The encoding function
of the perfectly secure (GF(q), (n + k), d, k)-AoNT is as follows:

aenc(a ∈ GF(q)k) : b ←$ GF(q)n;y ←
[
I n 0
G I k

] [
b
a

]
; return y .

Further details are given in the full paper.
Let us now show how to use the concept of ramp minimal distance to con-

struct better AoNTs.

Definition 5.2. A k ×n matrix G with elements in GF(q) has ramp minimum
distance d if for every r ∈ {1, . . . , k}, every r × (n− (d− r)) submatrix of G has
rank r.

Note that the concept of (regular) minimum distance comes from coding theory,
and requires that all k × (n − (d − 1)) sub-matrices of G have rank k (which
is equivalent to saying that for every r ∈ {1, . . . , k}, all r × (n − (d − 1)) sub-
matrices of G have rank r), where G is the generator matrix of a linear block
code. A matrix with minimum distance d also has a ramp minimum distance d
(the converse is obviously not true).

122 J. Camenisch et al.

Now for the generator matrix with ramp minimum distance, we can construct
an AoNT and thus obtain the following theorem, the proof of which is found in
the full version of this paper.

Theorem 5.3. The standard realization of an AoNT (sketched above and
detailed in the full paper), parametrized by a k × n matrix G with elements in
GF(q) with ramp (instead of regular) minimum distance d, is a perfectly secure
(GF(q), (n + k), d, k)-AoNT.

It remains to find a matrix with a desired ramp minimum distance. One way
is to chose a random matrix, as shown by the following theorem that we prove
in the full paper.

Theorem 5.4. For all (n, k, d) ∈ N
3, and all prime powers q, a k × n matrix

where all elements were chosen independently and uniformly at random over
GF(q), has ramp minimum distance d with probability at least

1 −
k∑

i=1

(
k

i

)
(q − 1)iq(Hq(d−i

n)−1)n,

where Hq (x) :=
{

0 if x = 0 or x = 1;
x logq(q−1) − x logq(x) − (1−x) logq(1−x) if 0<x<1.

Unfortunately, we do not know of any efficient method to check whether a ran-
dom matrix has a given ramp minimum distance. For practical parameters, how-
ever, it is feasible to generate and test such matrices with small values of k and
d (e.g., less than 20).

Better AoNTs Using our Realization. Given a fixed size, it is sometimes possible
to find matrices with a given ramp minimum distance but no matrix with the
same (regular) minimum distance. Hence AoNTs based on matrices with a ramp
minimum distance can achieve better parameters than previously known real-
izations. We now illustrate this fact with a numerical example. Let us determine
the best message length k that a perfect AoNT with fixed parameters n = 30,
d = 12, and q = 2 can achieve with both our realization and the standard real-
ization. Both realizations will require a matrix with (30 − k) rows and (ramp
or regular, respectively) minimum distance d = 12. First, observe that there
exists a 6 × 24 matrix over GF(2) with ramp minimum distance 12 (see the full
paper). Hence using our realization, we can achieve k = 6. Plotkin [16] showed
that a binary code with block length 2d and distance d can have at most 4d
codewords. Hence there cannot exist a 6 × 24 matrix with (regular) minimum
distance d = 12 (as it would generate a code with 26 = 64 codewords, which
is more than 4d = 48). The best AoNT one can hope for using the standard
realization thus has k = 5.

Statistical Security. Theorem 5.4 stated that by choosing a random generator
matrix, one can achieve a certain ramp minimum distance with a certain prob-
ability (1 − ε). If one uses our realization, but without checking that the matrix

Memory Erasability Amplification 123

actually has the required ramp minimum distance, then the resulting AoNT will
be perfectly secure with probability (1 − ε). (Note that this is different from
saying that the AoNT is ε-secure, as the randomness used to generate the AoNT
is not part of the distinguishing experiment.) In practice, one can make ε very
small, e.g., ε < 2−η, and it might be acceptable to chose a random matrix and
not check its properties to realize an AoNT.

5.3 Realizing a Perfectly Secure AoNT over a Small Field by
Combining AoNTs

Designing perfectly-secure AoNTs over very small fields, e.g., GF(2), is hard.
The previous realization does not scale well to large message lengths k and large
privacy thresholds d; and realizations based on Shamir’s secret sharing scheme
are always over large fields—using such a (GF(2a), n, d, k)-AoNT unmodified
over GF(2) instead would result in a (GF(2), an, d, ak)-AoNT with a poor pri-
vacy threshold d. The leakage of any GF(2) element means that the entire orig-
inal GF(2a) element is compromised. We now show how to combine the two
approaches to realize a perfectly secure AoNT over a small field but with large
k and d.

Our realization requires two AoNTs, a “fine-grained” one and a “coarse-
grained” one, operating over a small field S and a large field L, respectively.
We require that the number of elements of L be a power of that of S and that
ks = log(|L|)/ log(|S|) be true. We need to interpret a string of k�ks elements
from S as a string of k� elements of L, an operation we denote by S�L. The
converse operation is denoted L�S.

The encoding function of our combined AoNT then works as follows. One
first applies the coarse-grained AoNT to the whole data vector and then applies
the fine-grained AoNT to each element of the result:

aenc(a ∈ Sksk�

) :

x ←$ aenc�(S�L(a));∀j ∈ {1, . . . , n�} : b[j] ←$ aencs(L�S(x [j])); return b.

It’s easy to see how the decoding function adec of the combined AoNT works
and it is thus omitted. We have the following theorem, the proof of which is
found in the full version of this paper.

Theorem 5.5. Given a perfectly secure (S, ns, ds, ks)-AoNT (aencs, adecs)
and a perfectly secure (L, n�, d�, k�)-AoNT (aenc�, adec�) such that ks =
log(|L|)/ log(|S|), the AoNT (aenc, adec) described above is a perfectly secure
(S, nsn�, (ds + 1)(d� + 1) − 1, ksk�)-AoNT.

Numerical Example. Let us suppose that we are interested in a perfect AoNT
that operates over S = GF(2) and that can store a cryptographic key of size
k = 256 bits using at most n = 8192 bits (a kilobyte) of memory.

If we use a (GF(210), 819, 793, 26)-AoNT built according to Franklin and
Yung [7] unmodified over the field GF(2), we get a (GF(2), 8190, 793, 260)-AoNT.
This AoNT has a privacy threshold d of only 793 bits.

124 J. Camenisch et al.

By combining a (GF(2), 32, 11, 8)-AoNT (which can be found by exhaus-
tive search) with a (GF(28), 255, 223, 32)-AoNT built according to Franklin and
Yung [7], one gets a (GF(2), 8160, 2687, 256)-AoNT. This AoNT has a much bet-
ter privacy threshold d of 2687, i.e., 2687 arbitrary bits may leak to the adversary.

5.4 Computationally Secure AoNT over a Large Field from a PRG

We now present a realization of a computationally secure AoNTs over a large
field GF(2η), where η is the security parameter. Our realization is optimal in
the sense that it achieves both an optimal message length k = n − 1 (thus an
optimal rate (n−1)/n) and an optimal privacy threshold d = n−1. That is, the
AoNT needs just a single additional element to encode a message and remains
private even if the adversary obtains all but any one element.

Definition 5.6. An �-PRG where the output length is a multiple of the input
length, i.e., prg : GF(2η) �→ GF(2η)�(η)/η, is KD-secure, if for all i =
1, . . . , �(η)/η, these ensembles are computationally indistinguishable:

– {(x1, . . . , xi−1, x
′
i, xi+1, . . . , x�(η)/η)}1η where sk ←$ GF(2η), x ← prg(sk), and

x′
i ← xi + sk.

– {x}1η where x ←$ GF(2η)�(η)/η.

Note that this property is somewhat reminiscent of the KDM-CCA2 security of
encryption functions [2].

Our realization, somewhat reminiscent of the OAEP realization of Canetti
et al. [3], is as follows:

aenc(m ∈ GF(2η)�(η)/η) : sk ←$ GF(2η);x ← prg(sk); y ← x + m ;
return y ||(sk +

∑�(η)/η
i=1 yi

)
.

adec(y ||z) : return y − prg(z − ∑�(η)/η
i=1 yi).

Theorem 5.7. Given an �-PRG that is both secure and KD-secure, the realiza-
tion above yields a secure (GF(2η), 1 + �(η)/η, �(η)/η, �(η)/η)-AoNT.

The proof of this theorem is found in the full version of this paper. There we
further observe that Canetti et al.’s [3] computationally-secure AoNT built by
combining an exposure resilient function (ERF) with a pseudo-random generator
(PRG) can have an essentially arbitrarily high message length k and message
rate k/n, but cannot achieve a very high privacy threshold d.

References

1. Bernstein, D.J.: Cache-timing attacks on AES. Manuscript, April 2005. https://
cr.yp.to/antiforgery/cachetiming-20050414.pdf

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

Memory Erasability Amplification 125

2. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009)

3. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000)

4. Canetti, R., Eiger, D., Goldwasser, S., Lim, D.-Y.: How to protect yourself without
perfect shredding. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
511–523. Springer, Heidelberg (2008)

5. Canetti, R., Eiger, D., Goldwasser, S., Lim, D.-Y.: How to protect yourself without
perfect shredding. Cryptology ePrint Archive, Report 2008/291 (2008)

6. Di Crescenzo, G., Ferguson, N., Impagliazzo, R., Jakobsson, M.: How to forget a
secret. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 500–509.
Springer, Heidelberg (1999)

7. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: 24th ACM STOC, pp. 699–710. ACM Press, May 1992

8. Gaži, P., Maurer, U., Tackmann, B.: Manuscript. (available from the authors)
9. Gutmann, P.: Secure deletion of data from magnetic and solid-state memory. In:

Proceedings of the Sixth USENIX Security Symposium, vol. 14, San Jose, CA
(1996)

10. Hazay, C., Lindell, Y., Patra, A.: Adaptively secure computation with partial era-
sures. Cryptology ePrint Archive, Report 2015/450 (2015)

11. Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: intro-
ducing concurrency, removing erasures (extended abstract). In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000)

12. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2015)

13. Lim, D.-Y.: The paradigm of partial erasures. Ph.D. thesis, Massachusetts Institute
of Technology (2008)

14. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol.
6993, pp. 33–56. Springer, Heidelberg (2012)

15. Maurer, U., Renner, R.: Abstract cryptography. In: ICS 2011, pp. 1–21. Tsinghua
University Press, January 2011

16. Plotkin, M.: Binary codes with specified minimum distance. IRE Trans. Inf. Theor.
6(4), 445–450 (1960)

17. Reardon, J., Basin, D.A., Capkun, S.: SoK: secure data deletion. In: 2013 IEEE
Symposium on Security and Privacy, pp. 301–315. IEEE Computer Society Press,
May 2013

18. Reardon, J., Capkun, S., Basin, D.: Data node encrypted file system: efficient
secure deletion for flashmemory. In: Proceedings of the 21st USENIX Conference
on Security Symposium, pp. 17–17. USENIX Association (2012)

19. Reardon, J., Ritzdorf, H., Basin, D.A., Capkun, S.: Secure data deletion from
persistent media. In: ACM CCS 2013, pp. 271–284. ACM Press, November 2013

20. Yee, B.: Using secure coprocessors. Ph.D. thesis, CMU (1994)
21. Yee, B., Tygar, J.D.: Secure coprocessors in electronic commerce applications. In:

Proceedings of The First USENIX Workshop on Electronic Commerce, New York
(1995)

Multi-party Computation

On Adaptively Secure Multiparty Computation
with a Short CRS

Ran Cohen1(B) and Chris Peikert2

1 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
cohenrb@cs.biu.ac.il

2 Computer Science and Engineering, University of Michigan, Ann Arbor, USA
cpeikert@umich.edu

Abstract. In the setting of multiparty computation, a set of mutually
distrusting parties wish to securely compute a joint function of their
private inputs. A protocol is adaptively secure if honest parties might
get corrupted after the protocol has started. Recently (TCC 2015) three
constant-round adaptively secure protocols were presented [10,11,15]. All
three constructions assume that the parties have access to a common ref-
erence string (CRS) whose size depends on the function to compute, even
when facing semi-honest adversaries. It is unknown whether constant-
round adaptively secure protocols exist, without assuming access to such
a CRS.

In this work, we study adaptively secure protocols which only rely on
a short CRS that is independent on the function to compute.

– First, we raise a subtle issue relating to the usage of non-interactive
non-committing encryption within security proofs in the UC frame-
work, and explain how to overcome it. We demonstrate the problem
in the security proof of the adaptively secure oblivious-transfer pro-
tocol from [8] and provide a complete proof of this protocol.

– Next, we consider the two-party setting where one of the parties has
a polynomial-size input domain, yet the other has no constraints on
its input. We show that assuming the existence of adaptively secure
oblivious transfer, every deterministic functionality can be computed
with adaptive security in a constant number of rounds.

– Finally, we present a new primitive called non-committing indistin-
guishability obfuscation, and show that this primitive is complete
for constructing adaptively secure protocols with round complexity
independent of the function.

R. Cohen—Work supported by the European Research Council under the ERC con-
solidators grant agreement n. 615172 (HIPS), by a grant from the Israel Ministry of
Science, Technology and Space (grant 3-10883) and by the National Cyber Bureau
of Israel.
C. Peikert—This material is based upon work supported by the National Science
Foundation under CAREER Award CCF-1054495 and CNS-1606362, the Alfred P.
Sloan Foundation, and by a Google Research Award. The views expressed are those
of the authors and do not necessarily reflect the official policy or position of the
National Science Foundation, the Sloan Foundation, or Google.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 129–146, 2016.
DOI: 10.1007/978-3-319-44618-9 7

130 R. Cohen and C. Peikert

1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of mutually distrusting
parties wish to jointly compute a function on their private inputs in a secure
manner. Loosely speaking, the security requirements ensure that even if a sub-
set of dishonest parties collude, nothing is learned from the protocol other than
the output (privacy), and the output is distributed according to the prescribed
functionality (correctness). This threat is normally modeled by a central adver-
sarial entity, that might corrupt a subset of the parties and control them. A
protocol is considered secure if whatever an adversary can achieve when attack-
ing an execution of the protocol, can be emulated in an ideal world, where an
incorruptible trusted party helps the parties to compute the function.

Initial constructions of secure protocols were designed under the assumption
that the adversary is static, meaning that the set of corrupted parties is deter-
mined prior to the beginning of the protocol’s execution [20,31]. Starting from
the work of Beaver and Haber [2] and of Canetti et al. [7], protocols that remain
secure facing adaptive adversaries were considered. In this setting, the adversary
can decide which parties to corrupt during the course of the protocol and based
on its dynamic view. Adaptive security forms a greater challenge compare to
static security, in particular because the adversary can corrupt honest parties
after the protocol has completed. Furthermore, it can corrupt all the parties,
thus learning all the randomness that was used in the protocol.1

The first adaptively secure protocol, which remains secure facing an arbi-
trary number of corrupted parties, was presented by Canetti et al. [8]. They
showed that under some standard cryptographic assumptions, any adaptively
well-formed functionality2 can be securely computed facing adaptive malicious
adversaries. This result follows the GMW paradigm [20], and consists of two
stages: First, a protocol secure against adaptive semi-honest adversaries was
constructed. This protocol is secure in the plain model, where no setup assump-
tions are needed; however, the number of communication rounds in this protocol
depends on the circuit-depth of the underlying functionality. In the second stage,
the protocol was compiled into a protocol secure against adaptive malicious
adversaries; the semi-honest to malicious compiler, presented in [8], maintains
the round complexity, and is secure assuming that all parties have access to a
common reference string (CRS).3

Recently, three adaptively secure protocols that run in a constant num-
ber of rounds were independently presented by Canetti et al. [10], Dachman-

1 In this work we do not assume the existence secure erasures, meaning that we do
not rely on the ability of an honest party to erase specific parts of its memory.

2 An adaptively well-formed functionality is a functionality that reveals its random
input in case all parties are corrupted [8].

3 Since the protocol of [8] is designed in the UC framework of Canetti [5], security
against malicious adversaries requires some form of a trusted-setup assumption,
see [6,9,27].

On Adaptively Secure Multiparty Computation with a Short CRS 131

Soled et al. [11] and Garg and Polychroniadou [15]. All three protocols are
designed in the CRS model and share the idea of embedding inside the CRS
an obfuscated program that receives the circuit to compute as one of its input
variables. It follows that the size of the CRS depends of the size of the circuit,
and moreover, the CRS is needed even when considering merely semi-honest
adversaries. Dachman-Soled et al. [11] and Garg and Polychroniadou [15] raised
the question of whether these requirements are necessary.

1.2 Our Contribution

In this work we consider adaptive security with a short CRS. By this we mean
two security notions: adaptive security facing semi-honest adversaries in the plain
model (i.e., without a CRS) and adaptive security facing malicious adversaries
in the CRS model, where the CRS does not depend on the size of the circuit to
compute.

Non-interactive Non-committing Encryption in the UC Framework. A non-
interactive non-committing encryption scheme is a public-key encryption scheme
augmented with the ability to generate a fake public key and a fake ciphertext
that can later be explained as an encryption of any message. This primitive
serves as a building block for several cryptographic constructions, e.g., instanti-
ating adaptively secure communication channels [7], adaptively secure oblivious
transfer (OT) [8] and leakage-resilient protocols [3].

Although (interactive) non-committing encryption (NCE) was introduced
well before the standard security models for adaptive security have been for-
malized, mainly the sequential-composition framework of [4] and the universal-
composability (UC) framework of [5], it has been a folklore belief that non-
interactive NCE is secure in these frameworks. We revisit the security of non-
interactive NCE and show that although it is straightforward to prove the secu-
rity in the framework of sequential composition, it is not as obvious in the UC
framework. The reason lies in a subtle difference between the two frameworks:
in the framework of [4], all the parties are initialized with their inputs prior to
the beginning of the protocol, whereas in the UC framework, the environment
can adaptively provide inputs to the parties after the protocol has started.

This may lead to the following attack. The environment first activates the
receiver that generates a public key. This is simulated by generating the (fake)
non-committing public key and ciphertext. Next, the adversary corrupts the
receiver and learns its random coins (before the sender has been activated with
input). At this point, the simulator must explain the key generation before the
plaintext has been determined. Finally, the environment activates the sender
with a random message. The problem is that once the random coins for the
key generation have been fixed, the ciphertext becomes committing, and with a
non-negligible probability will fail to decrypt to the random plaintext.

Not realizing these subtleties may lead to incomplete security proofs when
using non-interactive NCE as a building block for protocols in the UC framework.
We show that the simulator can in fact cater for such form of attacks, without any

132 R. Cohen and C. Peikert

adjustments to the protocols, by carefully combining between non-committing
ciphertexts and committing ciphertexts during the simulation. We thus prove
that the definition of non-interactive NCE is valid in the UC framework. We
further show that the proof of security of the adaptively secure OT in Canetti
et al. [8] is incomplete and explain how to rectify it. We emphasize that the
results in [8] are valid, and merely the proof is incomplete.

Functionalities with One-Sided Polynomial-Size Domain. We next consider
deterministic two-party functionalities f(x1, x2), where the input domain of P1,
denoted D1, is of polynomial-size. We observe that in this situation, P2 can
locally compute f on its input x2 and every possible input of P1 and obtain
all possible outputs. All that P1 needs to do now is to select the output corre-
sponding to its input x1. Therefore, the computation of such functionalities boils
down to the ability to compute 1-out-of-|D1| adaptively secure oblivious transfer.
Using the adaptively secure OT from [8], we conclude that for every such func-
tionality there exists a three-message protocol that is secure in the presence of
adaptive semi-honest adversaries. Security against malicious adversaries follows
using the CLOS compiler.

This result can be interpreted in two ways. On the one hand, it shows that
restricting the domain of one of the parties yields a constant-round adaptively
secure protocol. On the other hand, it shows that in order to try and prove
a lower bound for constant-round adaptively secure protocols in general, one
must consider either functionalities with super-polynomial input domains, or
probabilistic functionalities.

Non-committing Indistinguishability Obfuscation. An indistinguishability obfus-
cator iO [1] is a machine that given a circuit, creates an “unintelligible” version
of it, while maintaining its functionality. “Unintelligible” means, in this case,
that given two circuits of the same length that compute exactly the same func-
tion, it is infeasible to distinguish between an obfuscation of the first circuit from
an obfuscation of the second. This primitive has been shown to be useful for a
vast amount of applications, and recently led to a construction of constant-round
adaptively secure protocols in the CRS model [10,11,15].

All three protocols [10,11,15] share a clever idea of embedding an obfuscated
program inside the CRS, such that a certain amount of the randomness that is
used in the execution of the protocol is kept hidden, even if all parties are even-
tually corrupted. In this section we explore a different approach to this problem,
inspired by the concept of NCE. We present an adaptive analogue for iO called
non-committing indistinguishability obfuscator, which essentially allows the sim-
ulator to produce an obfuscated circuit for some circuit class, and later, given
any circuit in the class, produce appropriate random coins explaining the obfus-
cation process. We then show that assuming the existence of non-committing
iO, every adaptively well-formed functionality can be computed with adaptive
security and round complexity that is independent of the functionality.

On Adaptively Secure Multiparty Computation with a Short CRS 133

We emphasize that currently we do not know how to construct non-
committing iO, or even if such a construction is possible. Rather, this result
serves as a reduction from the problem of constructing adaptively secure pro-
tocols with round complexity independent of the function to the problem of
constructing non-committing iO. We note that the cryptographic literature has
previously considered several complete primitives that cannot be instantiated
in the plain model, e.g., “simultaneous broadcast” which is complete for par-
tial fairness [24] and “fair reconstruction” which is complete for complete fair-
ness [21]. In contrast, no such lower bound is known for the complete primitive
presented in this work. We leave it as an interesting open question to deter-
mine whether non-committing iO can be instantiated in the plain model under
standard assumptions or not.

By a non-committing indistinguishability obfuscator for some class of equiv-
alent circuits (i.e., circuits that compute the same function), we mean an iO
scheme for this class, augmented with a simulation algorithm that generates an
obfuscated circuit C̃, such that later, given any circuit C from the class, it is
possible to generate random coins that explain the obfuscated circuit C̃ as an
obfuscation of the circuit C. It is not hard to see that if non-committing iO
schemes exist in general, then the polynomial hierarchy collapses (see Sect. 5).
In order to overcome this barrier, we consider a limited set of circuit classes,
which turns out to be sufficient for our needs. In particular, we consider classes
of equivalent “constant circuits”, i.e., all circuits in the class are of the same size,
receive no input and output the same value.

We next explain how to use non-committing iO in order to construct a pro-
tocol for any two-party functionality f , where the round complexity depends on
the obfuscator rather than on f (this idea extends in a straightforward way to
the multiparty setting). First, the parties use any adaptively secure protocol,
e.g., the protocol from [8], to compute an intermediate functionality that given
the parties’ inputs and a circuit to compute f , hard-wires the input values to
the input wires of the circuit. This way the intermediate functionality generates
a “constant circuit” computing the desired output. Next, the intermediate func-
tionality obfuscates this “constant circuit” using random coins provided by the
parties and outputs to each party an obfuscated constant circuit. Finally, each
party locally computes the output of the obfuscated constant circuit.

The underlying idea is that upon the first corruption request, the ideal-
process adversary learns both the input and the output of the corrupted party,
and so can prepare a simulated obfuscated constant circuit that outputs the
correct value. Upon the second corruption request, the ideal-process adversary
learns the input of the second party and can prepare the constant circuit as gen-
erated by the intermediate functionality. Using the non-committing properties
of the obfuscation, the random coins explaining the obfuscated circuit can be
computed at this point, and so the ideal-process adversary can correctly adjust
the random coins that are used for the obfuscation.

134 R. Cohen and C. Peikert

1.3 Additional Related Work

Constant-round protocols that are secure facing adaptive adversaries corrupting
an arbitrary number of parties that rely on a short CRS are not known to exist
in general. Nonetheless, positive results have been achieved in weaker models.

In a model where the CRS can depend on the function, Canetti et al. [10],
Dachman-Soled et al. [11] and Garg and Polychroniadou [15] have independently
presented constant-round protocols that are adaptively secure facing an arbitrary
number of corrupted parties. Garg and Sahai [16] showed that in the plain model
(without assuming a CRS) constant-round protocols that are adaptively secure
facing malicious adversaries, cannot be proven secure using a black-box simu-
lator. The authors further showed that using non-black-box techniques, there
exists a constant-round adaptively secure multiparty protocol, resilient to cor-
ruptions of all but one of the parties.

In case the adaptive adversary cannot corrupt all the parties, i.e., at least
one party remains honest, there exist several constant-round protocols. Katz
and Ostrovsky [25] showed that any statically secure constant-round two-party
protocol can be transformed into an adaptive protocol with a single corruption by
wrapping the communication with non-committing encryption. Hazay and Patra
[22] achieved better efficiency using one-sided secure primitives. In the multiparty
case, Damg̊ard and Ishai [12] constructed a constant-round adaptively secure
protocol assuming an honest majority. Compiling this protocol with the IPS
compiler from Ishai et al. [23] yields a constant-round adaptively secure protocol
that tolerates corruptions of all but one of the parties. Damg̊ard et al. [14] used
equivocal FHE to get better concrete constants for the round complexity.

Assuming the existence of secure erasures, Lindell [28] constructed a
constant-round protocol that UC-realizes any two-party functionality facing
adaptive semi-honest adversaries.

Organization of the Paper
In Sect. 2 we discuss the subtleties relating to non-interactive NCE and in
Sect. 3, the implications to the security proof of the adaptive OT protocol
from [8]. In Sect. 4 we construct a constant-round two-party protocol for one-
sided polynomial-size domain. In Sect. 5 we define the notion of non-committing
iO and show that this is a complete primitive for adaptively secure protocols
with round complexity independent of the function.

2 Universally Composable Non-Interactive NCE

Non-committing encryption (NCE) is a cryptographic tool, used mainly for con-
structing adaptively secure multiparty protocols. This notion was first intro-
duced by Canetti et al. [7] as an analogue in the adaptive setting to the instanti-
ation of statically secure communication channels (using “standard” public-key
encryption schemes). Since the introduction of NCE, further applications have
been based on this primitive, for example, adaptively secure oblivious transfer [8]
and leakage-resilient protocols [3].

On Adaptively Secure Multiparty Computation with a Short CRS 135

When constructing adaptively secure protocols, two security models are nor-
mally considered: the framework of [4] which provides sequential composition
and the universal-composability (UC) framework of [5]. The definition of NCE
has evolved over the years, starting from a multiparty protocol instantiating the
secure message transmission functionality and stabilizing on a non-interactive
definition, which is an extension of standard public-key encryption schemes.
Although it is fairly easy to verify that the various definitions are equivalent
in the framework of [4], certain subtleties arise when considering non-interactive
NCE in the UC framework. Not realizing these subtleties may lead to incomplete
security proofs when using non-interactive NCE as a building block for UC-secure
protocols. In this section, we prove that the definition of non-interactive NCE is
valid in the UC framework.

2.1 Non-Committing Encryption

Canetti et al. [7] introduced the notion of NCE as an analogue to the way that
public-key encryption is used to instantiate secure channels in the static setting.
That is, NCE is defined as a multiparty protocol realizing the n-party function-
ality fSMT(μ, λ, . . . , λ) = (λ, μ, λ, . . . , λ),4 for μ ∈ {0, 1}∗, that is secure in the
presence of adaptive semi-honest adversaries that can corrupt a subset of the
parties. The authors constructed an n-party protocol that is an (n − 1)-resilient
NCE scheme assuming the existence of a common-domain trapdoor system, and
observed that basing the protocol on specific number-theoretic assumptions, such
as RSA or CDH, yields two-party protocols of two rounds.

The definition above encounters several weaknesses. It considers a multiparty
protocol in order to compute essentially a functionality involving two parties. In
addition, the definition allows a subset of the parties to remain uncorrupted,
which is undesirable in order to achieve composition of protocols in the adaptive
setting. Furthermore, the adversary is limited to be semi-honest, and finally, the
security model of [7] is somewhat weak as it does not even allow for sequential
composition. Following these observations, Damg̊ard and Nielsen [13] introduced
a stronger definition of NCE as a two-party protocol for the two-party secure
message transmission functionality fSMT, in the presence of adaptive malicious
adversaries, in the framework of Canetti [4].

Definition 1 (Strong NCE). A strong non-committing encryption is a two-
party protocol that securely computes the two-party functionality fSMT(μ, λ) =
(λ, μ), for μ ∈ {0, 1}∗, in the presence of adaptive malicious adversaries that
can corrupt an arbitrary number of parties.

The definition above does not require non-interactiveness, and indeed the authors
proposed an interactive strong NCE protocol, assuming the existence of simu-
latable public-key encryption schemes.

4 The input of P1 is μ, the output of P2 is μ, and all other parties have no input nor
output.

136 R. Cohen and C. Peikert

Non-interactive NCE can be defined by extending Definition 1 and requir-
ing that the protocol will consist of 2 rounds. However, proving that a proto-
col is adaptively secure is quite a tedious task. A simpler definition that cap-
tures the non-interactive property of non-committing encryption is given by
Canetti et al. [8]. According to this definition, an NCE scheme is a public-key
encryption scheme in which public keys and ciphertexts can be simulated and
later be explained for any message.

Definition 2 (Non-interactive NCE). A non-interactive non-committing
(bit) encryption scheme consists of four algorithms (Gen,Enc,Dec,Sim) such that
the following properties hold:

– The triplet (Gen,Enc,Dec) forms a public-key encryption scheme.
– Sim is a simulation algorithm that on input 1κ, outputs (pk, c, ρ0G, ρ0E , ρ1G, ρ1E),

such that for any μ ∈ {0, 1} the following distributions are computationally
indistinguishable:

• the joint view of an honest sender and an honest receiver in a normal
encryption of μ

{(pk, c, rG, rE) | (sk, pk) = Gen(1κ; rG), c = Enc(pk, μ; rE)} ,

• the simulated view of an encryption of μ

{
(pk, c, ρμ

G, ρμ
E) | (pk, c, ρ0G, ρ0E , ρ1G, ρ1E) ← Sim(1κ)

}
.

It is easy to verify that in the framework of [4], non-interactive NCE as in
Defnition 2 implies strong NCE. This follows since upon a corruption of either
party, the simulator learns the message μ and can provide the appropriate ran-
domness.

2.2 Non-Interactive NCE in the UC Framework

The definition of strong NCE can be easily adjusted to the UC framework,
by considering protocols that UC-realize the secure message transmission ideal
functionality F l

SMT (see the full version). It is also not hard to see that the
(interactive) protocol presented in [13] is UC-secure. However, when trying to
use non-interactive NCE in the UC framework, things are not as immediate.
Consider the standard protocol for realizing F l

SMT using non-interactive NCE,
as presented in Protocol 1.

The difficulty arises from a subtle difference between the framework of [4] and
the UC framework. In the former, the parties are set with their inputs before
the protocol begins, whereas in the later, the environment can adaptively set
the inputs of the parties, meaning that parties may be set with inputs after the
protocol has started. This may lead into a potential attack on Protocol 1 in the
UC framework. The environment first activates the receiver P2 (without input).
The adversary waits for the public key pk to be sent from P2 to P1, and corrupts
P2 after it is sent. At this point, the internal state of P2, which consists of the
random coins rG, used to generate (sk, pk), is revealed to the adversary which

On Adaptively Secure Multiparty Computation with a Short CRS 137

Protocol 1 (Non-Interactive NCE).

Let (Gen, Enc, Dec, Sim) be a non-interactive NCE scheme.

– Upon the first activation with sid, the receiver P2 computes (sk, pk) ←
Gen(1κ) and sends (sid, pk) to P1.

– Upon receiving (send, sid, μ) from Z and having received (sid, pk) from P2,
party P1 encrypts the message c ← Encpk(μ) and sends (sid, c) to P2.

– Having received (sid, c) from P1, party P2 decrypts μ′ = Decsk(c) and
outputs (sent, sid, μ′).

The secure message transmission protocol

can pass it to the environment. Next, the environment activates the sender P1

with a uniformly chosen bit μ ∈R {0, 1}, and the protocol resumes: P1 encrypts
c ← Encpk(μ) and sends the ciphertext c to P2. Once the adversary receives c,
it sends it to the environment. The environment now has possession of rG and
c, and can verify that c decrypts to μ.

The ideal-process adversary cannot use committing public key and cipher-
text, generated by Gen and Enc, during the simulation, since he must be able
to explain the transcript upon a late corruption of the parties (after the bit μ
has been provided by the environment). However, if the ideal-process adversary
simulates this scenario using non-committing public key and ciphertext, gener-
ated as (pk, c, ρ0G, ρ0E , ρ1G, ρ1E) ← Sim(1κ), it needs to guess whether to reveal ρ0G
or ρ1G as the random coins of P1 upon the first corruption, and the ciphertext c
will fail to decrypt to μ with probability 1/2.

Fortunately, there is a solution to this issue. The key observation is that
although for any simulated public key pk there exists a ciphertext c such that
the pair (pk, c) is equivocal, the public key pk can still be used to encrypt other
messages, albeit in a committing way. Therefore, if the ideal-process adversary
S generates (pk, c, ρ0G, ρ0E , ρ1G, ρ1E) ← Sim(1κ) and receives a corruption request
of the receiver P2 after the first message pk has been simulated and before the
sender P1 has been activated with an input, S can choose the random coins
for P2 arbitrarily between ρ0G and ρ1G. Say S sets ρ0G as the random coins, this
means that c is now a committing encryption of 0, however, it will no longer
be used. Next, once the environment activates P1 with some bit μ, S receives μ
from F l

SMT and can use the public key pk with fresh random coins rE in order
to encrypt μ as c′ = Encpk(μ; rE). The second message is now simulated using
c′ rather than c. Upon a late corruption of P1, S sets the random coins to be
rE . Indistinguishability from the view of A in the real execution follows since
otherwise the simulated public key generated using Sim can be distinguished
from a public key generated using Gen.

Theorem 2. If (Gen,Enc,Dec,Sim) is a non-interactive non-committing
encryption scheme then Protocol 1 UC-realizes F l

SMT, in the presence of adaptive
malicious adversaries.

The proof of Theorem 2 can be found in the full version of this paper.

138 R. Cohen and C. Peikert

3 Proof of the Adaptively Secure OT from CLOS

In this section we show that the proof of security of the adaptively secure OT
in [8] (see also Lindell [27]) is incomplete and explain how to rectify it. We
emphasize that the results in [8] are valid, and merely the proof is incomplete.

Canetti et al. [8] used an augmented version of non-interactive NCE in
order to construct a protocol instantiating the adaptively secure 1-out-of-�
oblivious-transfer functionality F�

OT (see the full version). They considered a
non-interactive NCE scheme with the additional algorithm OGen which allows
to obliviously sample public keys without knowing their secret keys.

Definition 3 (Augmented Non-interactive NCE). An augmented non-
interactive non-committing encryption scheme is a non-interactive NCE scheme
(Gen,Enc,Dec,Sim) augmented with an oblivious-sampling algorithm for public
keys pk ← OGen(1κ). We require that the distribution of a public key gener-
ated by Gen is computationally indistinguishable from a public key generated by
OGen, i.e.,

{pk | (sk, pk) ← Gen(1κ)} c≡ {pk | pk ← OGen(1κ)} .

Furthermore, the algorithm OGen has invertible sampling, meaning that there
exists an algorithm IOGen such that the following distributions are computation-
ally indistinguishable

{(1κ, pk, r) | pk=OGen(1κ; r)} c≡ {(1κ, pk, IOGen(1κ, pk)) | (sk, pk)←Gen(1κ)} .

Protocol 3 describes the adaptive OT protocol from [8]. The idea behind
this construction is for the receiver to generate � public keys such that it knows
the secret key only to the ith one. The sender encrypts every message using
the corresponding public key and sends all the ciphertexts to the receiver. The
receiver can decrypt only the ith ciphertext and thus obtain only xi.

Protocol 3 (Adaptive OT).

Let (Gen, OGen, Enc, Dec, Sim) be a augmented non-interactive NCE scheme.

– Given input (receiver, sid, i), the receiver R computes (sk, pki) ← Gen(1κ)
and runs � − 1 times pkj ← OGen(1κ) for j ∈ [�] \ {i}. Then R sends
(sid, pk1, . . . , pk�) to T .

– Given input (sender, sid, x1, . . . , x�), and having received (sid, pk1, . . . , pk�)
from R, sender T computes cj ← Encpkj (xj) for j ∈ [�], and sends
(sid, c1, . . . , c�) to R.

– Having received (sid, c1, . . . , c�) from T , receiver R computes xi =
Decsk(ci) and outputs (sid, xi).

The adaptive, semi-honest oblivious transfer protocol [8]

Canetti et al. [8, Claim 4.2] proved that assuming (Gen,OGen,Enc,Dec,Sim)
is an augmented non-interactive NCE scheme, then Protocol 3 UC-realizes F�

OT

On Adaptively Secure Multiparty Computation with a Short CRS 139

in the presence of adaptive semi-honest adversaries. The idea behind the proof is
for S to produce a non-committing transcript, i.e., for every j ∈ [�], to generate
(pkj , cj , ρ

0
G,j , ρ

0
E,j , ρ

1
G,j , ρ

1
E,j) ← Sim(1κ). Next, the first message is simulated

as (sid, pk1, . . . , pk�) whereas the second message is simulated as (sid, c1, . . . , c�).
Upon a corruption of the ideal sender, S learns its input (sender, sid, x1, . . . , x�)
and sets the virtual sender’s random coins to be (ρx1

E,1, . . . , ρ
x�

E,�). Upon a
corruption of the ideal receiver, S learns its input (receiver, sid, i) and out-
put (sid, xi) and for every j ∈ [�] \ {i} it computes the invertible sampling
ρj

G ← IOGen(1κ, pkj), denotes ρi
G = ρxi

G and finally sets the virtual receiver’s
random coins to be (ρ1G, . . . , ρ�

G).
However, during the security proof of the protocol, it is assumed that upon a

corruption of the ideal receiver, the ideal-process adversary knows its output xi

and so can denote ρi
G = ρxi

G . As we discussed, although valid in the framework
of [4], such an assumption cannot be made in the UC framework. Hence, the
security proof should be adjusted to cater for the corruption strategy in which
the environment activates the receiver and the adversary corrupts the receiver
immediately after the first message is sent from R to T and before the sender is
activated with its input.

Proposition 1. If (Gen,OGen,Enc,Dec,Sim) is an augmented non-interactive
non-committing encryption scheme then Protocol 3 UC-realizes F�

OT, in the pres-
ence of adaptive semi-honest adversaries.

The proof of Proposition 1 can be found in the full version of this paper. We
note that adding initialization messages, such that a party sends OK once it is
activated and the protocol begins only after both parties have been initialized,
does not solve the problem. Consider an environment that activates the receiver
R with input; R then sends OK to the sender. Next, the adversary corrupts R
(before the sender is activated with input). The random tape of R should contain
now the key generation random coins that will be used to generate (sk, pki) using
Gen and pkj using OGen for j ∈ [�]\{i}. This means that although the message
(sid, pk1, . . . , pk�) has not been transmitted, it is essentially determined because
the random coins that will generate it have been fixed.

4 Functionalities with One-Sided Poly-Size Domain

In this section, we focus on two-party deterministic functionalities for which
the size of the input domain of one of the parties is polynomial in the security
parameter, there are no restrictions on the input domain of the other party. More
specifically, we consider functionalities of the form

f : D1 × {0, 1}l2 → {0, 1}m1 × {0, 1}m2 ,

where D1 ⊆ {0, 1}l1 and |D1| = O(poly(κ)).5 The reason we consider D1 to be a
subset of {0, 1}l1 , rather than requiring that l1 = O(log(poly(κ))), is that we do
5 The idea of using OT over domain which is of polynomial size first appeared in

Poupard and Stern [30].

140 R. Cohen and C. Peikert

not limit the functionality to receive short inputs. The input of P1 may consists
of l1 bits, however there are polynomially many inputs.

In this situation, since P2 knows the input domain of P1, it can locally com-
pute all possible values (y1

x, y2
x) = f(x, x2), for every x ∈ D1. P1 should retrieve

only y1
x1

, i.e., the output corresponding to its input x1. This is exactly the require-
ment of oblivious transfer, therefore using adaptively secure OT, P1 obtains y1

x1

and nothing else whereas P2 does not learn anything about x1.
If P2 also receives an output, then it may learn something about P1’s input,

in particular, P2 learns that the input of P1 lies in the preimage of its output
y2

x1
under the function f2(·, x2). However, this is valid in the setting of secure

function evaluation, because this information is leaked from the output of the
functionality, and therefore can also be learned in the ideal process. In order for
P2 to get its output y2

x1
without revealing it to P1, P2 masks every output it

computes with a random string u. Now, during the OT, P1 receives y2
x1

⊕ u in
addition to y1

x1
and returns it to P2 that can remove the mask.

Protocol 4 (Computing Ff
SFE in the F�

OT-hybrid model).

Common input: A description of a two-party function f : D1 × {0, 1}l2 →
{0, 1}m1 × {0, 1}m2 and of the domain D1 of P1.

– Upon receiving (input, sid, x1) from Z, party P1 sends (receiver, sid, x1) to
F�

OT.
– Upon receiving (input, sid, x2) from Z, party P2 operates as follows:

1. Sample a random string u ∈ {0, 1}m2 .
2. For every x ∈ D1, compute (y1

x, y2
x) = f(x, x2).

3. Denote by Y the ordered tuple (y1
x, y2

x ⊕ u) for every x ∈ D1.
4. Send to F�

OT the message (sender, sid, Y).
– Upon receiving (sid, (w1, w2)) from F�

OT, party P1 sends (sid, w2) to P2

and outputs (output, sid, w1).
– Upon receiving (sid, w2) from P1, party P2 outputs (output, sid, w2 ⊕ u).

The adaptive, semi-honest two-party protocol computing Ff
SFE

Theorem 5. Let f be a deterministic two-party functionality where the car-
dinality of the domain of P1 is polynomial in the security parameter. Then
Protocol 4 UC-realizes Ff

SFE in the F�
OT-hybrid model in the presence of adaptive

semi-honest adversaries.

The proof of Theorem5 can be found in the full version of this paper.
Using the adaptively secure OT presented in [8] (see Sect. 3) and using the

composition theorem from [5], we obtain the following corollary:

Corollary 1. Assuming the existence of augmented non-interactive NCE
schemes, every deterministic two-party functionality, for which the cardinality
of the domain of P1 is polynomial in the security parameter, can be securely
UC-realized, in the presence of adaptive semi-honest adversaries using a three-
message protocol.

On Adaptively Secure Multiparty Computation with a Short CRS 141

We note that this approach does not extend to probabilistic functionalities.
The reason is that if P2 locally computes f , then it must know the random
coins used in the computation. However, this information is not available to the
ideal-process adversary if only P2 is corrupted. Alternatively, when using the
standard transformation from a randomized functionality into a deterministic
one, by computing g((x1, r1), (x2, r2)) = f(x1, x2; r1 ⊕ r2), the input domain of
P1 is no longer polynomial.

Another important corollary from Theorem5 is that in order to prove impos-
sibility of constant-round adaptively secure two-party protocols, one must con-
sider either functionalities where both parties have super-polynomial domains,
or probabilistic functionalities.

5 Non-Committing Indistinguishability Obfuscation

An indistinguishability obfuscator [1,17] for a circuit class {Cκ} is a ppt machine
iO satisfying the following conditions:

Correctness: For every κ and every C ∈ Cκ, it holds that C and iO(C) compute
the same function.

Polynomial slowdown: There is a polynomial p such that for all C ∈ Cκ,
|iO(1κ, C)| ≤ p(κ) · |C|.

Indistinguishability: For any sequence {Cκ,0, Cκ,1, auxκ}κ, where Cκ,0, Cκ,1 ∈
Cκ, |Cκ,0| = |Cκ,1| and Cκ,0, Cκ,1 compute the same function, and for any
non-uniform ppt distinguisher D, there exists a negligible function negl such
that:

|Pr [D (iO (1κ, Cκ,0) , auxκ) = 1] − Pr [D (iO (1κ, Cκ,1) , auxκ) = 1]| ≤ negl(κ).

Indistinguishability obfuscation has recently led to a construction of a two-
round statically secure protocol [18] and to constant-round adaptively secure
protocols in the CRS model [10,11,15]. We consider an adaptive analogue for
iO called non-committing indistinguishability obfuscation and show that this
primitive is complete for constructing adaptively secure protocols with round
complexity that is independent of the function to compute. We emphasize that
currently we do not know how to construct non-committing indistinguishability
obfuscation, and that this result serves as a reduction from the problem of con-
structing adaptively secure protocols with round complexity independent of the
function to the problem of constructing non-committing iO.

Given a circuit class consisting of circuits that compute the same function,
we would like to have an indistinguishability obfuscator iO augmented with a
simulation algorithm Sim1 that outputs a “canonical” obfuscated circuit and
some state s, such that later, given any circuit from the class and the state, a
second algorithm Sim2 can explain the randomness for the obfuscation algorithm
to generate the canonical circuit as an obfuscation of this circuit. We note that
such a notion of non-committing iO is unlikely to exists in general, since this will
provide an efficient solution to the circuit equivalence problem, which is co-NP

142 R. Cohen and C. Peikert

complete, and so will imply a collapse of the polynomial hierarchy. Given two
circuits C0, C1, if and only if the circuits are equivalent, then there exists a
non-committing iO for this family and it is possible to first compute (C̃, s) ←
Sim1(1κ) and later explain C̃ both as r0 ← Sim2(s, C0) and as r1 ← Sim2(s, C1).

We overcome this difficulty by considering equivalent circuits that do not
receive any input, i.e., a family of constant circuits that produce the same out-
put. The circuit equivalence problem is easy in this scenario since one simply
runs both circuits and compares the outputs. More specifically, consider a circuit
C computing a function f and an input vector x. We hard-wire to each input
wire (i.e., to each input terminal in the terminology of Goldreich [19]) the corre-
sponding input value. This yields a circuit that computes the constant function
fx = f(x). We say that a circuit is a constant circuit if all its input wires have
hard-wired values (an so it computes a constant function).

Definition 4. A non-committing indistinguishability obfuscator scheme for a
circuit class {Cκ}, consisting of constant circuits, is a triplet of PPT algorithms
Π = (iO,Sim1,Sim2) such that:

– iO is an indistinguishability obfuscator for {Cκ}.
– Upon receiving 1κ, an integer m and a value y, Sim1 outputs a constant circuit

C̃ (of size m and output y) and a state s.
– Upon receiving a circuit C ∈ Cκ and a state s, Sim2 outputs a string r.
– For any non-uniform ppt D and for large enough κ ∈ N, it holds that:

Pr
[
Expt

Real
Π,D (κ) = 1

] − Pr
[
Expt

Ideal
Π,D (κ) = 1

] ≤ negl(κ),

where the experiments Expt
Real
Π,D and Expt

Ideal
Π,D are defined below, and the prob-

ability is over the random coins of the experiments and of D.

Experiment ExptReal
Π,D (κ) Experiment ExptIdealΠ,D (κ)

Send 1κ to D and get back a circuit C ∈ Cκ.

Send 1κ to D and get back a circuit C ∈ Cκ Run the circuit C and compute the output y.

Sample a uniformly distributed string r Compute (C̃, s) ← Sim1(1κ, |C|, y).
Compute C̃ = iO(1κ, C; r) Compute r ← Sim2(s, C).

Send (C̃, r) to D and get back a bit b Send (C̃, r) to D and get back a bit b.

Return b Return b

For our usage, we require that the depth of the circuit representing the obfus-
cator iO is independent of the depth of the (input variable) circuit C. This
requirement is motivated by the construction of Garg et al. [17] for “standard”
iO, which satisfies this property.

We note that the technique of Katz et al. [26] does not seem to rule out
non-committing iO for constant circuits, since the function that can be com-
puted using the simulator is fixed in advance. Likewise, the technique of Nielsen
[29] does not seem to work, since the number of constant circuits that can be
explained is bounded in advance.

On Adaptively Secure Multiparty Computation with a Short CRS 143

5.1 Adaptively Secure Protocol with Round Complexity
Independent of f

We define the protocol in a hybrid model where the parties have access to an
ideal obfuscate-circuit-with-input functionality FC

OCWI. For simplicity we present
the protocol for public-output deterministic functionalities, and the extension
to private-output randomized functionalities follows using standard techniques.
FC

OCWI is parametrized by a circuit C, each party sends its input to FC
OCWI, which

hard-wires the inputs to the circuit, obfuscates it and returns the obfuscated
circuit to the parties. Each party sends an additional random string that is used
as a share of the random coins for the obfuscation. The obfuscate-circuit-with-
input functionality is described in Fig. 1.

Fig. 1. The obfuscate-circuit-with-input functionality

Based on the properties of non-committing iO, the depth of a circuit com-
puting FC

OCWI depends only on the depth of the obfuscator iO and not the depth
of C.

Protocol 6 (Computing Ff
SFE in the FC

OCWI-hybrid model).

Common input: an n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n and a
circuit C computing f .

– Upon receiving (input, sid, xi) from Z, party Pi samples a random string
ri ∈R {0, 1}∗ and sends (ocwi-input, sid, (xi, ri)) to FC

OCWI.
– Upon receiving (ocwi-output, sid, C̃) from FC

OCWI, Pi runs the circuit C̃,
receives an output y and outputs (output, sid, y).

The adaptive, semi-honest multiparty protocol computing Ff
SFE

144 R. Cohen and C. Peikert

Theorem 7. Let f be an n-party functionality and let C be a circuit computing
f . If Π = (iO,Sim1,Sim2) is a non-committing iO scheme for constant circuits,
then Protocol 6 UC-realizes Ff

SFE in the FC
OCWI-hybrid model, in the presence of

adaptive semi-honest adversaries.

The proof of Theorem7 can be found in the full version of this paper.
When instantiating the ideal functionality FC

OCWI using the protocol from
Canetti et al. [8], the round complexity depends on the circuit representing
FC

OCWI, which is independent from the depth of f . Hence, using the composition
theorem from Canetti [5] we conclude with the following corollary.

Corollary 2. Assume that enhanced trapdoor permutations, augmented non-
committing encryption and non-committing iO scheme for constant circuits
exist. Then for any adaptively well-formed multiparty functionality f , there exists
a protocol that UC-realizes Ff

SFE in the presence of adaptive semi-honest adver-
saries, with round complexity that is independent of f .

Acknowledgements. We would like to thank Yehuda Lindell for helpful discussions
on the topic and to the anonymous referees for pointing to the work of [30] regarding
OT over polynomial-size domain and for pointing out a problem in an earlier version
of Definition 4.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

2. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic
adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658,
pp. 307–323. Springer, Heidelberg (1993)

3. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg
(2012)

4. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

5. Canetti, R.: Universally composable security: a new paradigm for cryptographi
cprotocols. In: Proceedings of the 42nd Annual Symposium on Foundations of
Computer Science (FOCS), pp. 136–145 (2001)

6. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

7. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: Proceedings of the 28th Annual ACM Symposium on Theory of
Computing (STOC), pp. 639–648 (1996)

8. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: Proceedings of the 34th Annual
ACM Symposium on Theory of Computing (STOC), pp. 494–503 (2002)

9. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. J. Cryptology 19(2),
135–167 (2006)

On Adaptively Secure Multiparty Computation with a Short CRS 145

10. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015)

11. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015, Part II. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015)

12. Damg̊ard, I.B., Ishai, Y.: Constant-round multiparty computation using a black-
box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 378–394. Springer, Heidelberg (2005)

13. Damg̊ard, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000)

14. Damg̊ard, I., Polychroniadou, A., Rao, V.: Adaptively secure multi-party com-
putation from LWE (via equivocal FHE). In: Cheng, C.-M., Chung, K.-M., Per-
siano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 208–233. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49387-8 9

15. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015)

16. Garg, S., Sahai, A.: Adaptively secure multi-party computation with dishonest
majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 105–123. Springer, Heidelberg (2012)

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of the 54th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 40–49 (2013)

18. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 74–94. Springer, Heidelberg (2014)

19. Goldreich, O.: Computational Complexity - A Conceptual Perspective.
Cambridge University Press, Cambridge (2008). ISBN 978-0-521-88473-0

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of the 19th
Annual ACM Symposium on Theory of Computing (STOC), pp. 218–229 (1987)

21. Gordon, D., Ishai, Y., Moran, T., Ostrovsky, R., Sahai, A.: On complete primitives
for fairness. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 91–108.
Springer, Heidelberg (2010)

22. Hazay, C., Patra, A.: One-sided adaptively secure two-party computation. In:
Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 368–393. Springer, Heidelberg
(2014)

23. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008)

24. Katz, J.: On achieving the ”best of both worlds” in secure multiparty computation.
In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing
(STOC), pp. 11–20 (2007)

25. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004)

http://dx.doi.org/10.1007/978-3-662-49387-8_9

146 R. Cohen and C. Peikert

26. Katz, J., Thiruvengadam, A., Zhou, H.-S.: Feasibility and infeasibility of adaptively
secure fully homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC
2013. LNCS, vol. 7778, pp. 14–31. Springer, Heidelberg (2013)

27. Lindell, Y.: Composition of Secure Multi-Party Protocols. LNCS, vol. 2815.
Springer, Heidelberg (2003)

28. Lindell, A.Y.: Adaptively secure two-party computation with erasures. In: Fischlin,
M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 117–132. Springer, Heidelberg (2009)

29. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

30. Poupard, G., Stern, J.: Generation of shared RSA keys by two parties. In: Ohta, K.,
Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 11–24. Springer, Heidelberg
(1998)

31. Yao, A.: Protocols for secure computations (extended abstract). In: Proceedings
of the 23rd Annual Symposium on Foundations of Computer Science (FOCS),
pp. 160–164 (1982)

Linear Overhead Optimally-Resilient Robust
MPC Using Preprocessing

Ashish Choudhury1, Emmanuela Orsini2, Arpita Patra3,
and Nigel P. Smart2(B)

1 International Institute of Information Technology, Bangalore, India
ashish.choudhury@iiitb.ac.in

2 Department of Computer Science, University of Bristol, Bristol, UK
Emmanuela.Orsini@bristol.ac.uk, nigel@cs.bris.ac.uk

3 Department of Computer Science and Automation, Indian Institute of Science,
Bangalore, India

arpita@csa.iisc.ernet.in

Abstract. We present a new technique for robust secret reconstruction
with O(n) communication complexity. By applying this technique, we
achieve O(n) communication complexity per multiplication for a wide
class of robust practical Multi-Party Computation (MPC) protocols.
In particular our technique applies to robust threshold computation-
ally secure protocols in the case of t < n/2 in the pre-processing model.
Previously in the pre-processing model, O(n) communication complexity
per multiplication was only known in the case of computationally secure
non-robust protocols in the dishonest majority setting (i.e. with t < n)
and in the case of perfectly-secure robust protocols with t < n/3. A sim-
ilar protocol was sketched by Damg̊ard and Nielsen, but no details were
given to enable an estimate of the communication complexity. Surpris-
ingly our robust reconstruction protocol applies for both the synchronous
and asynchronous settings.

1 Introduction

Secure MPC is a fundamental problem in secure distributed computing
[8,14,27,33]. An MPC protocol allows a set of n mutually distrusting parties
with private inputs to securely compute a joint function of their inputs, even if t
out of the n parties are corrupted. Determining the communication complexity
of MPC in terms of n, is a task which is both interesting from a theoretical
and a practical standpoint. It is a folklore belief that the complexity should be
essentially O(n) per multiplication in the computation. However, “most” robust
secret-sharing based MPC protocols which are practical have complexity O(n2).

To understand the problem notice that apart from the protocols for entering
parties inputs and determining parties outputs, the main communication task
in secret-sharing based MPC protocols is the evaluation of the multiplication
gates (we assume a standard arithmetic circuit representation of the function
to be computed for purely expository reasons, in practice other representations
c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 147–168, 2016.
DOI: 10.1007/978-3-319-44618-9 8

148 A. Choudhury et al.

may be better). If we consider the classic information-theoretic passively secure
sub-protocol for multiplication gates when t < n/2 (locally multiply the shares,
reshare and then recombine) we require O(n2) messages per multiplication gate
[8,26]. This is because each party needs to send the shares representing its local
multiplication to every other party, thus requiring O(n2) messages, and hence
O(n2) bits if we only look at complexity depending on n.

Even if we look at such protocols in the pre-processing model, where the so-
called “Beaver multiplication triples” are produced in an offline phase [4], and
we are primarily concerned about the communication complexity of the online
phase, a similar situation occurs. In such protocols, see for example [19], the
standard multiplication sub-protocol is for each party to broadcast a masking of
their shares of the gate input values to every other party. This again has O(n2)
communication complexity.

In the SPDZ protocol [22], for the case of non-robust1 maliciously secure
MPC (with abort) in the dishonest majority setting (i.e. with t < n), an online
communication complexity of O(n) was achieved. This is attained by replacing
the broadcast communication of the previous method with the following trick.
For each multiplication gate one party is designated as the “reconstructor”. The
broadcast round is then replaced by each party sending their masked values
to the reconstructor, who then reconstructs the value and then sends it to each
party. This requires exactly 2·n messages being sent, and is hence O(n). However,
this protocol is only relevant in the dishonest majority setting as any dishonest
behaviour of any party is subsequently detected via the SPDZ MAC-checking
procedure, in which case the protocol aborts. Our goal is to achieve such a result
for robust protocols in the pre-processing model.

Related Work: With t < n/3, information-theoretically secure an online pro-
tocols with O(n) communication per multiplication are presented in [21]. There
the basic idea is a new method of reconstructing a batch of Θ(n) secret-shared
values with O(n2) communication complexity, thus providing a linear overhead.
However, the method is tailor-made only for t < n/3 (as it is based on the
error-correcting capability of the Reed-Solomon (RS) codes) and will not work
with t < n/2. Hence with t < n/2 in the computational setting, a new technique
to obtain O(n) online complexity is needed. In [21] a similar protocol in the
pre-processing model is also sketched, which uses the designatred reconstructor
idea (similar to the idea used in SPDZ, discussed above). The protocol is only
sketched, and appears to require O(t) rounds to identify the faulty shares; as
opposed to our method which requires no additional rounds.

In [28], a computationally-secure MPC protocol with t < n/2 and communica-
tion complexity O(n) per multiplication is presented. The protocol is not designed
in the pre-processing model, but rather in the player-elimination framework, where
the circuit is divided into segments and each segment is evaluated “optimistically”,
assuming no fault will occur. At the end of the segment evaluation, a detection

1 An MPC protocol is called robust if the honest parties obtain the correct output
at the end of the protocol irrespective of the behaviour of the corrupted parties,
otherwise it is called non-robust.

Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing 149

protocol is executed to identify whether the segment is evaluated correctly and if
any inconsistency is detected, then a fault-localization protocol is executed. The
fault-localization process identifies a pair of parties, with at least one of them being
corrupted. The pair is then neglected for the rest of the protocol execution and
the procedure is repeated. There are several drawbacks of this protocol. The pro-
tocol cannot be adapted to the pre-processing model; so the benefits provided by
the pre-processing based MPC protocols (namely efficiently generating circuit-
independent raw materials for several instances of the computation in parallel)
cannot be obtained. The protocol also makes expensive use of zero-knowledge
(ZK) machinery throughout the protocol and it does not seem to be adaptable to
the asynchronous setting with O(n) communication complexity. Our techniques
on the other hand are focused on efficient protocols in the pre-processing model.
For example we use ZK tools only in the offline phase, and our online methods
are easily applicable to the asynchronous communication setting2, which models
real-world networks like the Internet more appropriately than the synchronous
communication setting.

In [9], an information-theoretically secure MPC protocol in the pre-processing
model with t < n/2 and O(n) communication complexity per multiplication is
presented. Both the offline and online phase of [9] are designed in the dispute
control framework [5], which is a generalisation of the player-elimination tech-
nique and so like other papers in the same framework it is not known if the
protocol can be made to work in the more practical asynchronous communica-
tion setting. Moreover since their online phase protocol is in the dispute control
framework, it requires O(n2+D) rounds of interaction in the online phase, where
D is the multiplicative depth of the circuit. This is unlike other MPC protocols
in the pre-processing model whose online phase requires only O(D) rounds of
interaction [6,10,21,22]. Our technique for the online phase protocol does not
deploy any player-elimination/dispute-control techniques and so requires fewer
rounds than [9]. And our online phase can be executed even in the asynchro-
nous setting with t < n/2 and O(n) communication complexity. Imagine a sce-
nario involving a large number of parties, participating from various parts of
the globe. Clearly (an asynchronous) online protocol with less number of com-
munication rounds is desirable here and so our online phase protocol will fit
the bill appropriately. In the non-preprocessing model, information-theoretically
secure MPC protocols with “near linear” amortized communication complexity
but non-optimal resilience are presented in [3,20,25]. Namely the overall com-
munication complexity of these protocols are O (polylog(n,C) · C), where C is
the circuit size. While the protocol of [20] is perfectly-secure and can tolerate
upto t < (1/3 − ε) · n corruptions where 0 < ε < 1/3, the protocols in [3,25] are
statistical with resilience t < (1/2− ε) ·n where 0 < ε < 1/2. The central idea in
these protocols is to take advantage of the non-optimal resilience by deploying
packed secret-sharing, where “several” values are secret shared simultaneously

2 We stress that we are interested only in the online complexity. Unlike our online
phase, our offline phase protocol cannot be executed in a completely asynchronous
setting with t < n/2.

150 A. Choudhury et al.

via a single sharing instance. None of the protocols are known to work in asyn-
chronous settings and all of them heavily rely on the fact that there are more
honest parties than just 1/2 (making them non-optimal in terms of resilience).

Finally we note that an asynchronous MPC protocol with t < n/3 and O(n)
communication complexity in the pre-processing model is presented in [17]. How-
ever the online phase protocol of [17] is based on the O(n) reconstruction method
of [6,21] with t < n/3 and hence cannot be adapted to the t < n/2 setting.

Our Contribution: We present a computationally-secure method to obtain
O(n) communication complexity for the online phase of robust MPC protocols
with t < n/2. We are focused on protocols which could be practically relevant, so
we are interested in suitable modifications of protocols such as VIFF [19], BDOZ
[10] and SPDZ [22]. Our main contribution is a trick to robustly reconstruct a
secret with an amortized communication complexity of O(n) messages. Assuming
our arithmetic circuit is suitably wide, this implies an O(n) online phase when
combined with the standard method for evaluating multiplication gates based
on pre-processed Beaver triples.

To produce this sub-protocol we utilize the error-correcting capability of the
underlying secret-sharing scheme when error positions are already known. To
detect the error positions we apply the pair-wise BDOZ MACs from [10]. The
overall sub-protocol is highly efficient and can be utilized in practical MPC pro-
tocols. Interestingly our reconstruction protocol also works in the asynchronous
setting. Thus we obtain a practical optimization in both synchronous and asyn-
chronous setting.

Before proceeding we pause to examine the communication complexity of the
offline phase of protocols such as SPDZ. It is obvious that in the case of a compu-
tationally secure offline phase one can easily adapt the somewhat homomorphic
encryption (SHE) based offline phase of SPDZ to the case of Shamir secret shar-
ing when t < n/2. In addition one can adapt it to generate SPDZ or BDOZ
style MACs. And this is what we exactly do to implement our offline phase in
the synchronous setting. In [22] the offline communication complexity is given
as O(n2/s) in terms of the number of messages sent, where s is the “packing”
parameter of the SHE scheme. As shown in the full version of [23], assuming a
cyclotomic polynomial is selected which splits completely modulo the plaintext
modulus p, the packing parameter grows very slowly in terms of the number of
parties (for all practical purposes it does not increase at all). In addition since
s is in the many thousands, for all practical purposes the communication com-
plexity of the offline phase is O(n) in terms of the number of messages. However,
each message is O(s) and so the bit communication complexity is still O(n2).

As our online phase also works in the asynchronous setting, we explore how
the offline phase, and the interaction between the offline and online phases can be
done asynchronously. For this we follow the VIFF framework [19], which imple-
ments the offline phase asynchronously with t < n/3 via the pseudo-random secret
sharing, assuming a single synchronization point between the offline and online
phases. Following the same approach, we show how the interaction between our
offline and online phase can be handled asynchronously with t < n/2. However we

Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing 151

require an additional technicality for t < n/2 to deal with the issue of agreement
among the parties at the end of asynchronous offline phase. Specifically, we either
require “few” synchronous rounds or a non-equivocation mechanism at the end of
offline phase to ensure agreement among the parties. We stress that once this is
done then the online phase protocol can be executed in a completely asynchronous
fashion with t < n/2.

2 Preliminaries

We assume a set of parties P = {P1, . . . , Pn}, connected by pair-wise authentic
channels, and a centralized static, active PPT adversary A who can corrupt any
t < n/2 parties. For simplicity we assume n = 2t + 1, so that t = Θ(n). The
functionality that the parties wish to compute is represented by an arithmetic
circuit over a finite field F, where |F| > n. We denote by μ and κ the statistical
and cryptographic security parameter respectively. A negligible function in κ (μ)
will be denoted by negl(κ) (negl(μ)), while negl(κ, μ) denotes a function which
is negligible in both κ and μ. We use both information-theoretic and public-
key cryptographic primitives in our protocols. The security of the information
theoretic primitives are parameterised with μ, while that of cryptographic prim-
itives are parameterised with κ. We assume F = GF(p), where p is a prime with
p ≈ 2μ, to ensure that the statistical security of our protocol holds with all but
negl(μ) probability. Each element of F can be represented by μ bits. For vectors
A = (a1, . . . , am) and B = (b1, . . . , bm), A ⊗ B denotes the value

∑m
i=1 aibi. The

ith element in a vector A is denoted as A[i] and (i, j)th element in a matrix A
as A[i, j].

2.1 Communication Settings

In this paper we consider two communication settings. The first setting is the
popular and simple, but less practical, synchronous channel setting, where the
channels are synchronous and there is a strict upper bound on the message
delays. All the parties in this setting are assumed to be synchronized via a global
clock. Any protocol in this setting operates as a sequence of rounds, where in
every round: A party first performs some computation, then they send messages
to the others parties over the pair-wise channels and broadcast any message
which need to be broadcast; this stage is followed by receiving both the mes-
sages sent to the party by the other parties over the pair-wise channels and the
messages broadcast by the other parties. Since the system is synchronous, any
(honest) party need not have to wait endlessly for any message in any round.
Thus the standard behaviour is to assume that if a party does not receive a
value which it is supposed to receive or instead it receives a “syntactically incor-
rect” value, then the party simply substitutes a default value (instead of waiting
endlessly) and proceeds further to the next round.

The other communication setting is the more involved, but more practical,
asynchronous setting; here the channels are asynchronous and messages can be

152 A. Choudhury et al.

arbitrarily (but finitely) delayed. The only guarantee here is that the messages
sent by the honest parties will eventually reach their destinations. The order of
the message delivery is decided by a scheduler. To model the worst case scenario,
we assume that the scheduler is under the control of the adversary. The scheduler
can only schedule the messages exchanged between the honest parties, without
having access to the “contents” of these messages. As in [7,12], we consider a
protocol execution in this setting as a sequence of atomic steps, where a single
party is active in each step. A party is activated when it receives a message. On
receiving a message, it performs an internal computation and then possibly sends
messages on its outgoing channels. The order of the atomic steps are controlled
by the scheduler. At the beginning of the computation, each party will be in a
special start state. A party is said to terminate/complete the computation if it
reaches a halt state, after which it does not perform any further computation.
A protocol execution is said to be complete if all the honest parties terminate
the computation.

It is easy to see that the asynchronous setting models real-world networks
like the Internet (where there can be arbitrary message delays) more appro-
priately than the synchronous setting. Unfortunately, designing protocol in the
asynchronous setting is complicated and this stems from the fact that we cannot
distinguish between a corrupted sender (who does not send any messages) and a
slow but honest sender (whose messages are arbitrarily delayed). Due to this the
following unavoidable but inherent phenomenon is always present in any asyn-
chronous protocol: at any stage of the protocol, no (honest) party can afford to
receive communication from all the n parties, as this may turn out to require an
endless wait. So as soon as the party hears from n − t parties, it has to proceed
to the next stage; but in this process, communication from t potentially honest
parties may get ignored.

2.2 Primitives

Linearly-Homomorphic Encryption Scheme (HE). We assume an IND-
CPA secure linearly-homomorphic public-key encryption scheme set-up for every
Pi ∈ P with message space F; a possible instantiation could be the BGV
scheme [11]. Under this set-up, Pi will own a secret decryption key dk(i) and
the corresponding encryption key pk(i) will be publicly known. Given pk(i), a
plaintext x and a randomness r, anyone can compute a ciphertext HE.c(x)

def
=

HE.Encpk(i)(x, r) of x for Pi, using the encryption algorithm HE.Enc, where the
size of HE.c(x) is O(κ) bits. Given a ciphertext HE.c(x) = HE.Encpk(i)(x, �)
and the decryption key dk(i), Pi can recover the plaintext x = HE.Decdk(i)(cx)
using the decryption algorithm HE.Dec. The encryption scheme is assumed to
be linearly homomorphic: given two ciphertexts HE.c(x) = HE.Encpk(i)(x, �)
and HE.c(y) = HE.Encpk(i)(y, �), there exists an operation, say ⊕, such that
HE.c(x) ⊕ HE.c(y) = HE.Encpk(i)(x + y, �). Moreover, given a ciphertext
HE.c(x) = HE.Encpk(i)(x, �) and a public constant c, there exists some oper-
ation, say �, such that c � HE.c(x) = HE.Encpk(i)(c · x, �).

Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing 153

Information-Theoretic MACs: We will use information-theoretically secure
MAC, similar to the one used in [10]. Here a random pair K = (α, β) ∈ F

2 is
selected as the MAC key and the MAC tag on a value a ∈ F, under the key
K is defined as MACK(a)

def
= α · a + β. The MACs will be used as follows: a

party Pi will hold some value a and a MAC tag MACK(a), while party Pj will
hold the MAC key K. Later when Pi wants to disclose a to Pj , it sends a along
with MACK(a); Pj verifies if a is consistent with the MAC tag with respect to
its key K. A corrupted party Pi on holding the MAC tag on a message gets one
point on the straight-line y = αx + β and it leaves one degree of freedom on
the polynomial. Therefore even a computationally unbounded Pi cannot recover
K completely. So a corrupted Pi cannot reveal an incorrect value a′ �= a to an
honest Pj without getting caught, except with probability 1

|F| ≈ 2−μ = negl(μ),
which is the probability of guessing a second point on the straight-line. We call
two MAC keys K = (α, β) and K′ = (α′, β′) consistent if α = α′. Given two
consistent MAC keys K = (α, β) and K′ = (α, β′) and a public constant c, we
define the following operations on MAC keys:

K + K′ def
= (α, β + β′), K + c

def
= (α, β + αc) and c · K def

= (α, c · β).

Given two consistent MAC keys K,K′ and a value c, the following linearity
properties hold for the MAC:

– Addition:
MACK(a) + MACK′(b) = MACK+K′(a + b).

– Addition/Subtraction by a Constant:

MACK−c(a + c) = MACK(a) and MACK+c(a − c) = MACK(a).

– Multiplication by a constant:

c · MACK(a) = MACc·K(c · a).

2.3 The Various Sharings

We define following two types of secret sharing.

Definition 1 ([·]-sharing). We say a value s ∈ F is [·]-shared among P if there
exists a polynomial p(·) of degree at most t with p(0) = s and every (honest) party

Pi ∈ P holds a share si
def
= p(i) of s. We denote by [s] the vector of shares of s

corresponding to the (honest) parties in P. That is, [s] = {si}n
i=1.

Definition 2 (〈·〉-sharing). We say that a value s ∈ F is 〈·〉-shared among P
if s is [·]-shared among P and every (honest) party Pi holds a MAC tag on its
share si for a key Kji held by every Pj. That is, the following holds for every
pair of (honest) parties Pi, Pj ∈ P: party Pi holds MAC tag MACKji

(si) for a
MAC key Kji held by Pj. We denote by 〈s〉 the vector of such shares, MAC
keys and MAC tags of s corresponding to the (honest) parties in P. That is,
〈s〉 =

{
si, {MACKji

(si),Kij}n
j=1

}n

i=1
.

154 A. Choudhury et al.

While most of our computations are done over values that are 〈·〉-shared, our effi-
cient public reconstruction protocol for 〈·〉-shared values will additionally require
a tweaked version of 〈·〉-sharing, where there exists some designated party, say
Pj ; and the parties hold the shares and the MAC tags in an encrypted form
under the public key pk(j) of an HE scheme, where Pj knows the corresponding
secret key dk(j). We stress that the shares and MAC tags will not be available
in clear. More formally:

Definition 3 (〈〈·〉〉j-sharing). Let s ∈ F and [s] = {si}n
i=1 be the vector of

shares corresponding to an [·]-sharing of s. We say that s is 〈〈·〉〉j-shared among
P with respect to a designated party Pj, if every (honest) party Pi holds an
encrypted share HE.c(si) and encrypted MAC tag HE.c(MACKji

(si)) under the
public key pk(j), such that Pj holds the MAC keys Kji and the secret key dk(j).
We denote by 〈〈s〉〉j the vector of encrypted shares and encrypted MAC tags cor-
responding to the (honest) parties in P, along with the MAC keys and the secret
key of Pj. That is, 〈〈s〉〉j =

{
{HE.c(si),HE.c(MACKji

(si))}n
i=1, {Kji}n

i=1,dk
(j)

}
.

Private Reconstruction of 〈·〉 and 〈〈·〉〉-shared Value Towards a Desig-
nated Party. Note that with n = 2t + 1, a [·]-shared value cannot be robustly
reconstructed towards a designated party just by sending the shares, as we
cannot do error-correction. However, we can robustly reconstruct a 〈·〉-sharing
towards a designated party, say Pj , by asking the parties to send their shares,
along with MAC tags to Pj , who then identifies the correct shares with high
probability and reconstructs the secret. A similar idea can be used to recon-
struct an 〈〈s〉〉j-sharing towards Pj . Now the parties send encrypted shares and
MAC tags to Pj , who decrypts them before doing the verification. We call the

Fig. 1. Protocols for reconstructing a 〈·〉-sharing and 〈〈·〉〉-sharing towards a designated
party

Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing 155

resultant protocols RecPrv(〈s〉, Pj) and RecPrvEnc(〈〈s〉〉j) respectively, which are
presented in Fig. 1. We stress that while 〈s〉 can be reconstructed towards any
Pj , 〈〈s〉〉j can be reconstructed only towards Pj , as Pj alone holds the secret key
dk(j) that is required to decrypt the shares and the MAC tags.

It is easy to see that if Pj is honest, then Pj correctly reconstructs the
shared value in protocol RecPrv as well as in RecPrvEnc, except with probability
at most t

|F| ≈ negl(μ). While protocol RecPrv has communication complexity
O(μ · n) bits, protocol RecPrvEnc has communication complexity O(κ · n) bits.
Also note that both the protocols will work in the asynchronous setting. We
argue this for RecPrv (the same argument will work for RecPrvEnc). The party
Pj will eventually receive the shares of s from at least n−t = t+1 honest parties,
with correct MACs. These t + 1 shares are enough for the robust reconstruction
of s. So we state the following lemma for RecPrv. Similar statements hold for
protocol RecPrvEnc. Thus we have the following Lemmas.

Lemma 1. Let s be 〈·〉-shared among the parties P. Let Pj be a specific
party. Protocol RecPrv achieves the following in the synchronous communica-
tion setting:

– Correctness: Except with probability negl(μ), an honest Pj reconstructs s.
– Communication Complexity: The communication complexity is O(μ · n) bits.

Lemma 2. Let s be 〈·〉-shared among the parties P. Let Pj be a specific party.
Protocol RecPrv achieves the following in the asynchronous communication
setting:

– Correctness & Communication Complexity: Same as in Lemma 1.
– Termination: If every honest party participates in RecPrv, then an honest Pj

will eventually terminate.

Linearity of Various Sharings. All of the previously defined secret sharings
are linear, which for ease of exposition we shall now overview. We first define
what is meant by key consistent sharings.

Definition 4 (Key-Consistent 〈·〉 and 〈〈·〉〉j Sharings). Two 〈·〉-sharings
〈a〉 and 〈b〉 are said to be key-consistent if every (honest) Pi holds consistent
MAC keys for every Pj across both the sharings.

Sharings 〈〈a〉〉j and 〈〈b〉〉j with respect to a designated Pj are called key-
consistent if Pj holds consistent MAC keys for every Pi across both the sharings,
and the encryptions are under the same public key of Pj.

Linearity of [·]-sharings: Given [a] = {ai}n
i=1 and [b] = {bi}n

i=1 and a public
constant c, we have:

– Addition: To compute [a + b], every party Pi needs to locally compute ai + bi,

[a] + [b] = [a + b] = {ai + bi}n
i=1 .

156 A. Choudhury et al.

– Addition by a Public Constant: To compute [c + a], every party Pi needs to
locally compute c + ai,

c + [a] = [c + a] = {c + ai}n
i=1 .

– Multiplication by a Public Constant: To compute [c · a], every party Pi needs
to locally compute c · ai,

c · [a] = [c · a] = {c · ai}n
i=1 .

Linearity of 〈·〉-sharing: Given 〈a〉 =
{
ai, {MACKji

(ai),Kij}n
j=1

}n

i=1
, and 〈b〉 ={

bi, {MACK′
ji

(bi),K′
ij}n

j=1

}n

i=1
that are key-consistent and a publicly-known con-

stant c, we have:

– Addition: To compute 〈a+ b〉, every party Pi needs to locally compute ai + bi,
{MACKji

(ai) + MACK′
ji

(bi)}n
j=1 and {Kij + K′

ij}n
j=1,

〈a〉 + 〈b〉 = 〈a + b〉 =
{

ai + bi, {MACKji+K′
ji

(ai + bi),Kij + K′
ij}n

j=1

}n

i=1
.

– Addition by a Public Constant: To compute 〈c + a〉, every party Pi needs to
locally compute c+ai, In addition recall that MACKji−c(ai +c) = MACKji

(ai).
Hence we assign MACKji

(ai) to MACKji−c(ai + c) and compute {Kij − c}n
j=1.

c + 〈a〉 = 〈c + a〉 =
{
c + ai, {MACKji−c(ai + c),Kij − c}n

j=1

}n

i=1
.

– Multiplication by a Public Constant: To compute 〈c · a〉, every party Pi needs
to locally compute c · ai, {c · MAC·Kji

(ai)}n
j=1 and {c · Kij}n

j=1,

c · 〈a〉 = 〈c · a〉 =
{
c · ai, {MACc·Kji

(c · ai), c · Kij}n
j=1

}n

i=1
.

Linearity of 〈〈·〉〉j-sharings: Given〈〈a〉〉j =
{{HE.c(ai),HE.c(MACKji

(ai)), }n
i=1,

{Kji}n
i=1,dk

(j)
}

and 〈〈b〉〉j =
{{HE.c(bi),HE.c(MACKji

(bi))}n
i=1, {K′

ji}n
i=1,

dk(j)
}

that are key-consistentwe canadd the sharings via the operation

〈〈a〉〉j + 〈〈b〉〉j = 〈〈a + b〉〉j

=
{

{HE.c(ai + bi),HE.c(MACKji+K′
ji

(ai + bi))}n
i=1,

{Kji + K′
ji}n

i=1,dk
(j)

}

So to compute 〈〈a+b〉〉j , every party Pi ∈ P needs to locally compute the values
HE.c(ai) ⊕ HE.c(bi) and HE.c(MACKji

(ai)) ⊕ HE.c(MACK′
ji

(bi)), while party Pj

needs to compute {Kji + K′
ji}n

i=1.

Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing 157

Generating 〈〈·〉〉j-sharing from 〈·〉-sharing. In our efficient protocol for
public reconstruction of 〈·〉-shared values, we come across the situation where
there exists: a value r known only to a designated party Pj , a publicly known
encryption HE.c(r) of r, under the public key pk(j), and a 〈·〉-sharing 〈a〉 ={
ai, {MACKji

(ai),Kij}n
j=1

}n

i=1
. Given the above, the parties need to compute a

〈〈·〉〉j sharing:

〈〈r · a〉〉j =
{

{HE.c(r · ai),HE.c(MACr·Kji
(r · ai))}n

i=1, {r · Kji}n
i=1,dk

(j)
}

of r · a. Computing the above needs only local computation by the parties.
Specifically, each party Pi ∈ P locally computes the values HE.c(r · ai) = ai �
HE.c(r) and

HE.c(MACr·Kji
(r · ai)) = HE.c(r · MACKji

(ai)) = MACKji
(ai) � HE.c(r),

since r · MACKji
(ai) = MACr·Kji

(ai · r). Finally party Pj locally computes
{r · Kji}n

i=1.

3 Public Reconstruction of 〈·〉-sharings with a Linear
Overhead

We present a new protocol to publicly reconstruct n(t+1)κ
μ = Θ(n2κ

μ) 〈·〉-shared
values with communication complexity O(κ ·n3) bits. So the amortized commu-
nication overhead for public reconstruction of one 〈·〉-shared value is linear in n
i.e. O(μ ·n) bits. For a better understanding of the ideas used in the protocol, we
first present a protocol RecPubSimple to publicly reconstruct n(t + 1) 〈·〉-shared
values with communication complexity O(κ · n3) bits. We will then extend this
protocol for n(t+1)κ

μ secrets while retaining the same communication complex-
ity; the resulting protocol is called RecPub.

Let {〈a(i,j)〉}n,t+1
i=1,j=1 be the 〈·〉-sharings, which need to be publicly recon-

structed. The naive way of achieving the task is to run Θ(n3) instances of
RecPrv, where Θ(n2) instances are run to reconstruct all the values to a sin-
gle party. This method has communication complexity O(κ · n4) bits and thus
has a quadratic overhead. Our approach outperforms the naive method, and
works for both synchronous as well as asynchronous setting; for simplicity we
first explain the protocol assuming a synchronous setting.

Let A be an n × (t + 1) matrix, with (i, j)th element as a(i,j). Let Ai(x) be a

polynomial of degree t defined over the values in the ith row of A; i.e. Ai(x)
def
=

A[i, 1] + A[i, 2]x + . . . , A[i, t + 1]xt. Let B denote an n × n matrix and B[i, j]
def
=

Ai(j), for i, j ∈ {1, . . . , n}. Clearly A can be recovered given any t + 1 columns
of B. We explain below how to reconstruct at least t+1 columns of B to all the
parties with communication complexity O(κ·n3) bits. In what follows, we denote
ith row and column of A as Ai and Ai respectively, with a similar notation used
for the rows and columns of B.

158 A. Choudhury et al.

Since Bi is linearly dependent on Ai, given 〈·〉-sharing of Ai, it requires only
local computation to generate 〈·〉-sharings of the elements in Bi. Specifically,
〈B[i, j]〉 = 〈A[i, 1]〉 + 〈A[i, 2]〉 · j + . . . + 〈A[i, t + 1]〉 · jt. Then we reconstruct the
elements of A to all the parties in two steps. First Bi is reconstructed towards
Pi using n instances of RecPrv with an overall cost O(μ · n3) bits. Next each
party Pi sends Bi to all the parties, requiring O(μ · n3) bits of communication.
If every Pi behaves honestly then every party would possess B at the end of the
second step. However a corrupted Pi may not send the correct Bi. So what we
need is a mechanism that allows an honest party to detect if a corrupted party
Pi has sent an incorrect Bi. Detecting is enough, since every (honest) party is
guaranteed to receive correctly the Bi columns from t + 1 honest parties. Recall
that t + 1 correct columns of B are enough to reconstruct A.

After Pi reconstructs Bi, and before it sends the same to party Pj , we allow
Pj to obtain a random linear combination of the elements in Bi (via interaction)
in a way that the linear combiners are known to no one other than Pj . Later,
when Pi sends Bi to Pj , party Pj can verify if the Bi received from Pi is correct
or not by comparing the linear combination of the elements of the received Bi

with the linear combination that it obtained before. It is crucial to pick the lin-
ear combiners randomly and keep them secret, otherwise Pi can cheat with an
incorrect Bi without being detected by an honest Pj . In our method, the ran-
dom combiners for an honest Pj are never leaked to anyone and this allows Pj to
reuse them in a latter instance of the public reconstruction protocol. Specifically,
we assume the following one time setup for RecPubSimple (which can be done
beforehand in the offline phase of the main MPC protocol). Every party Pj holds
a secret key dk(j) for the linearly-homomorphic encryption scheme HE and the
corresponding public key pk(j) is publicly available. In addition, Pj holds a vec-
tor Rj of n random combiners and the encryptions HE.c(Rj [1]), . . . ,HE.c(Rj [n])
of the values in Rj under Pj ’s public key pk(j) are available publicly. The above
setup can be created once and for all, and can be reused across multiple instances
of RecPubSimple.

Given the above random combiners in an encrypted form, party Pj can obtain

the linear combination c(i,j)
def
=

∑n
l=1 Bi[l]Rj [l] of the elements of Bi as follows.

First note that the parties hold 〈·〉-sharing of the elements of Bi. If the lin-
ear combiners were publicly known, then the parties could compute 〈c(i,j)〉 =∑n

l=1 Rj [l]〈Bi[l]〉 and reconstruct c(i,j) to party Pj using RecPrv. However since
we do not want to disclose the combiners, the above task is performed in an
encrypted form, which is doable since the combiners are encrypted under the
linearly-homomorphic PKE. Specifically, given encryptions HE.c(Rj [l]) under
pk(j) and sharings 〈Bi[l]〉, the parties first generate 〈〈Rj [l] ·Bi[l]〉〉j for every Pj

(recall that it requires only local computation). Next the parties linearly combine
the sharings 〈〈Rj [l] · Bi[l]〉〉j for l = 1, . . . , n to obtain 〈〈c(i,j)〉〉j , which is then
reconstructed towards party Pj using an instance of RecPrvEnc. In total n2 such
instances need to be executed, costing O(κ · n3) bits. Protocol RecPubSimple is
presented in Fig. 2.

Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing 159

Fig. 2. Robustly reconstructing 〈·〉-shared values with O(κ · n) communication com-
plexity

The correctness and communication complexity of the protocol are stated in
Lemma 3, which follows in a straight forward fashion from the protocol descrip-
tion and the detailed protocol overview. The security of the protocol will be
proven, in the full version, in conjunction with the online phase of our MPC
protocol.

Lemma 3. Let {〈a(i,j)〉}n,t+1
i=1,j=1 be a set of n(t + 1) shared values which

need to be publicly reconstructed by the parties. Then given a setup (pk(1),

dk(1)), . . . , (pk(n),dk(n)) for the linearly-homomorphic encryption schemeHE for
the n parties and encryptions HE.c(Rj [1]), . . . ,HE.c(Rj [n]) of n random values in
Rj on the behalf of each party Pj ∈ P, with only Pj knowing the random values,
protocol RecPubSimple achieves the following in the synchronous communication
setting:

– Correctness: Except with probability negl(κ, μ), every honest party reconstructs
{a(i,j)}n,t+1

i=1,j=1.
– Communication Complexity: The communication complexity is O(κ · n3) bits.

160 A. Choudhury et al.

From O(κ · n) to O(μ · n) Amortized Cost of Reconstruction. We note
that the amortized complexity of reconstructing one secret via RecPubSimple is
O(κ ·n), where κ is the cryptographic security parameter. To improve the amor-
tized cost to O(μ · n), we make the following observation on the communication
in RecPubSimple. There is a scope to amortize part of the communication to
reconstruct more than n(t + 1) secrets. This leads to a trick that brings down
the amortized communication complexity per secret to O(μ ·n) bits. We call our
new protocol RecPub. which starts with κ

μ batches of secrets where each batch
consists of n(t + 1) secrets. For each batch, RecPub executes exactly the same
steps as done in RecPubSimple except for the step involving the reconstruction
of Bi ⊗ Rj . RecPub keeps the communication cost of this step unperturbed by
taking a random linear combination of κ

μ Bi columns together. Therefore RecPub
still needs private reconstruction of n2 〈〈·〉〉j-shared values and a communication
of O(κ · n3) bits for this step. For the rest of the steps, the communication com-
plexity of RecPub will be κ

μ times the communication complexity of the same
steps in RecPubSimple. Since RecPubSimple requires O(μ · n3) bits of communi-
cation for the rest of the steps, the communication complexity of RecPub will
turn out to be O(κ · n3) bits of communication overall. Since the number recon-
structed secrets are n(t + 1)κ

μ , RecPub offers an amortized cost of O(μ · n) bits
per secret. The formal specification of protocol RecPub is in Fig. 3.

We note that RecPub takes random linear combination of κn
μ values. So the

one time set up has to be enhanced where every Pj now holds κn
μ random combin-

ers, and the encryptions of them are available in public. Namely Rj is a vector of
κn/μ random values and the encryptions HE.c(Rj [1]), . . . ,HE.c(Rj [κn/μ]) done
under Pj ’s public key pk(j) are available publicly. We thus have the following
Lemma.

Lemma 4. Let {〈a(i,j,k)〉}n,t+1,κ/μ
i=1,j=1,k=1 be a set of n(t + 1)κ

μ shared val-
ues which need to be publicly reconstructed by the parties. Then given a
setup (pk(1),dk(1)), . . . , (pk(n),dk(n)) for the linearly-homomorphic encryption
scheme HE for the n parties and encryptions HE.c(Rj [1]), . . . ,HE.c(Rj [κn/μ])
of κn/μ random values in Rj on the behalf of each party Pj ∈ P, with only
Pj knowing the random values, protocol RecPub achieves the following in the
synchronous communication setting:

– Correctness: Except with probability negl(κ, μ), every honest party reconstructs
{a(i,j,k)}n,t+1,κ/μ

i=1,j=1,k=1.
– Communication Complexity: The communication complexity is O(κ · n3) bits.

Protocol RecPubSimple and RecPub in the Asynchronous Setting: Con-
sider the protocol RecPubSimple, and note that the steps involving interaction
among the parties are during the instances of RecPrv and RecPrvEnc. All the
remaining steps involve only local computation by the parties. As the instances
of RecPrv and RecPrvEnc eventually terminate for each honest party, it follows

Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing 161

Fig. 3. Robustly reconstructing 〈·〉-shared values with O(μ · n) communication com-
plexity

that RecPubSimple eventually terminates for each honest party in the asynchro-
nous setting. Similar arguments hold for RecPub, so we get the following lemma.

Lemma 5. Protocol RecPub achieves the following in the asynchronous com-
munication setting:

– Correctness & Communication Complexity: Same as in Lemma 4
– Termination: Every honest party eventually terminates the protocol.

162 A. Choudhury et al.

4 Linear Overhead Online Phase Protocol

Let f : Fn → F be a publicly known function over F, represented as an arithmetic
circuit C over F, consisting of M multiplication gates. Then using our efficient
reconstruction protocol RecPub enables one to securely realize the standard ideal
functionality Ff (see Fig. 4 for an explicit functionality) for the MPC evaluation
of the circuit C, in the FPrep-hybrid model, with communication complexity
O(μ · (n ·M +n2)) bits, thus providing a linear overhead per multiplication gate.
More specifically, assume that the parties have access to an ideal pre-processing
and input processing functionality FPrep, which creates the following one-time
setup: (i) Every Pj holds a secret key dk(j) for the linearly-homomorphic encryp-
tion scheme HE and the corresponding public key pk(j) is available publicly. In
addition, each Pj holds n random combiners R(j) = (r(j,1), . . . , r(j,n)) and the
encryptions HE.c(r(j,1)), . . . ,HE.c(r(j,n)) of these values under Pj ’s public key
are publicly available. (ii) Each Pi holds αij , the α-component of all its keys
for party Pj (recall that for key-consistent sharings every Pi has to use the
same α-component for all its keys corresponding to Pj). The above setup can
be reused across multiple instances of ΠOnline and can be created once and for
all. In addition to the one-time setup, the functionality also creates at least M
random 〈·〉-shared multiplications triples (these are not reusable and have to
be created afresh for every execution of ΠOnline) and 〈·〉-shared inputs of the
parties. Functionality FPrep is presented in Fig. 5. In FPrep, the ideal adversary
specifies all the data that the corrupted parties would like to hold as part of the
various sharings generated by the functionality. Namely it specifies the shares,
MAC keys and MAC tags. The functionality then completes the sharings while
keeping them consistent with the data specified by the adversary.

Using FPrep we design a protocol ΠOnline (see Fig. 6) which realizes Ff

in the synchronous setting and provides universal composability (UC) security
[10,13,16,22]. The protocol is based on the standard Beaver’s idea of securely
evaluating the circuit in a shared fashion using pre-processed shared random
multiplication triples [4] and shared inputs. Namely, the parties evaluate the
circuit C in a 〈·〉-shared fashion by maintaining the following invariant for each
gate in the circuit. Given a 〈·〉-sharing of the inputs of the gate, the parties
generate an 〈·〉-sharing of the output of the gate. Maintaining the invariant for

Fig. 4. The ideal functionality for computing a given function

Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing 163

Fig. 5. Ideal functionality for setup generation, offline pre-processing and input
processing

164 A. Choudhury et al.

Fig. 6. Realizing Ff with a linear overhead in FPrep-hybrid model for the synchronous
setting

linear gates requires only local computation, thanks to the linearity property
of the 〈·〉-sharing. For multiplication gates, the parties deploy a shared mul-
tiplication triple received from FPrep and evaluate the multiplication gate by
using Beaver’s trick. Specifically, let 〈p〉, 〈q〉 be the sharing corresponding to
the inputs of a multiplication gate and let (〈a〉, 〈b〉, 〈c〉) be the shared random
multiplication triple obtained from FPrep, which is associated with this multi-
plication gate. To compute an 〈·〉-sharing of the gate output p · q, we note that

p ·q = (p−a+a) ·(q−b+b) = d ·e+d ·b+e ·a+c, where d
def
= p−a and e

def
= q−b.

So if d and e are publicly known then 〈p · q〉 = d · e + d · 〈b〉 + e · 〈a〉 + 〈c〉 holds.
To make d and e public, the parties first locally compute 〈d〉 = 〈p〉 − 〈a〉 and
〈e〉 = 〈q〉 − 〈b〉 and publicly reconstruct these sharings. Note that even though d
and e are made public, the privacy of the gate inputs p and q is preserved, as a
and b are random and private. Finally once the parties have the sharing 〈y〉 for
the circuit output, it is publicly reconstructed to enable every party obtain the
function output.

To achieve the linear overhead in ΠOnline, we require that the circuit is
“wide” in the sense that at every level there are at least n(t + 1)κ

μ independent

Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing 165

multiplication gates that can be evaluated in parallel. This is to ensure that
we can use our linear-overhead reconstruction protocol RecPub. We note that
similar restrictions are used in some of the previous MPC protocols to achieve a
linear overhead in the online phase. For example, [6,15,21] requires Θ(n) inde-
pendent multiplication gates at each level to ensure that they can use their
linear-overhead reconstruction protocol to evaluate these gates. In practice many
functions have such a level of parallel multiplication gates when expressed in
arithmetic circuit format, and practical systems use algorithms to maximise the
level of such parallelism in their execution, see e.g. [32].

The properties of ΠOnline are stated in Theorem 1, which is proved in the
full version. In the protocol, 2M 〈·〉-shared values are publicly reconstructed via
RecPub while evaluating the multiplication gates. Assuming that the M multi-
plication gates can be divided into blocks of n(t+1)κ

μ independent multiplication
gates, evaluating the same will cost O(κn3 · μM

n(t+1)κ) = O(μ · n · M) bits. The
only steps in ΠOnline which require interaction among the parties are during
the instances of the reconstruction protocols, which eventually terminate for the
honest parties. Hence we get Theorem 2 for the asynchronous setting.

Theorem 1. Protocol ΠOnline UC-securely realizes the functionality Ff in the
FPrep-hybrid model in the synchronous setting. The protocol has communication
complexity O(μ · (n · M + n2)) bits.

Theorem 2. Protocol ΠOnline UC-securely realizes the functionality Ff in the
FPrep-hybrid model in the asynchronous setting. The protocol has communication
complexity O(μ · (n · M + n2)) bits.

5 The Various Secure Realizations of FPREP

Securely Realizing FPrep in the Synchronous Setting. In the full version,
we present a protocol ΠPrep which realizes FPrep in the synchronous setting
and achieves UC security. The protocol is a straight forward adaptation of the
offline phase protocol of [10,22] to deal with Shamir sharing, instead of additive
sharing.

Securely Realizing FPrep with Abort in the Partial Synchronous Set-
ting. Any secure realization of FPrep has to ensure that all the honest parties
have an agreement on the final outcome, which is impossible in the asynchro-
nous setting with t < n/2 [29,30]. Another difficulty in realizing FPrep in an
asynchronous setting is that it is possible to ensure input provision from only
n − t parties to avoid endless wait. For n = 2t + 1 this implies that there may
be only one honest input provider. This may not be acceptable for most practi-
cal applications of MPC. To get rid of the latter difficulty, [19] introduced the
following variant of the traditional asynchronous communication setting, which
we refer as partial asynchronous setting:

166 A. Choudhury et al.

• The protocols in the partial asynchronous setting have one synchronization
point. Specifically, there exists a certain well defined time-out and the assump-
tion is that all the messages sent by the honest parties before the deadline
will reach to their destinations within this deadline.

• Any protocol executed in the partial asynchronous setting need not always ter-
minate and provide output to all the honest parties. Thus the adversary may
cause the protocol to fail. However it is required that the protocol up to the
synchronization point does not release any new information to the adversary.

In the full version we examine how to make ΠPrep work in the partial asynchro-
nous setting. We present two solutions; the first which allows some synchronous
rounds after the synchronization point, and one which uses a non-equivocation
mechanism (which can be implemented using a trusted hardware module).

Acknowledgements. This work has been supported in part by ERC Advanced
Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC via grants EP/I03126X and
EP/M016803, by DARPA and the US Navy under contract #N66001-15-C-4070, and
by the Infosys Foundation.

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)

2. Backes, M., Bendun, F., Choudhury, A., Kate, A.: Asynchronous MPC with a
strict honest majority using non-equivocation. In: Halldórsson, M.M., Dolev, S.
(eds.) PODC, pp. 10–19. ACM (2014)

3. Baron, J., J., Defrawy, J., Lampkins, J., Ostrovsky, R.: How to withstand
mobile virus attacks, revisited. In: Halldórsson, M.M., Dolev, S. (eds.) PODC,
pp. 293–302. ACM (2014)

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer,
Heidelberg (1992)

5. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006)

6. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008)

7. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:
Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds) STOC, pp. 52–61. ACM (1993)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) STOC, pp. 1–10. ACM (1988)

9. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012)

Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing 167

10. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. TOCT 6(3), 13:1–13:36 (2014)

12. Canetti, R.: Studies in secure multiparty computation and applications. Ph.D.
thesis, Weizmann Institute, Israel (1995)

13. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

14. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC, pp. 11–19. ACM (1988)

15. Choudhury, A., Hirt, M., Patra, A.: Asynchronous multiparty computation with
linear communication complexity. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205,
pp. 388–402. Springer, Heidelberg (2013)

16. Choudhury, A., Loftus, J., Orsini, E., Patra, A., Smart, N.P.: Between a rock and
a hard place: interpolating between MPC and FHE. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 221–240. Springer, Heidelberg
(2013)

17. Choudhury, A., Patra, A.: Optimally resilient asynchronous MPC with linear com-
munication complexity. In: Das, S.K., Krishnaswamy, D., Karkar, S., Korman, A.,
Kumar, M., Portmann, M., Sastry, S. (eds.) ICDCN, pp. 5:1–5:10. ACM (2015)

18. Clement, A., Junqueira, F., Kate, A., Rodrigues, R.: On the (limited) power of
non-equivocation. In: Kowalski, D., Panconesi, A. (eds.) PODC, pp. 301–308. ACM
(2012)

19. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC,
pp. 160–179 (2009)

20. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

21. Damg̊ard, I.B., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007)

22. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

23. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013)

24. Fitzi, M., Hirt, M.: Optimally efficient multi-valued Byzantine agreement. In:
Ruppert, E., Malkhi, D. (eds.) PODC, pp. 163–168. ACM Press (2006)

25. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015)

26. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multiparty
computations with applications to threshold cryptography. In: Coan, B.A., Afek,
Y. (eds.) PODC, pp. 101–111. ACM (1998)

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM
(1987)

168 A. Choudhury et al.

28. Hirt, M., Nielsen, J.B.: Robust multiparty computation with linear communication
complexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482.
Springer, Heidelberg (2006)

29. Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party
computation with optimal resilience (extended abstract). In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005)

30. Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with
quadratic communication. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol.
5126, pp. 473–485. Springer, Heidelberg (2008)

31. Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agree-
ment. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer,
Heidelberg (2006)

32. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure
MPC with dishonest majority. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013, pp. 549–560. ACM (2013)

33. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp.
160–164. IEEE Computer Society (1982)

High-Precision Secure Computation of Satellite
Collision Probabilities

Brett Hemenway1, Steve Lu2(B), Rafail Ostrovsky3, and William Welser IV4

1 University of Pennsylvania, Philadelphia, USA
fbrett@cis.upenn.edu

2 Stealth Software Technologies, Inc., Los Angeles, USA
steve@stealthsoftwareinc.com

3 University of California, Los Angeles, USA
rafail@cs.ucla.edu

4 RAND Corporation, Santa Monica, USA
bwelser@rand.org

Abstract. The costs of designing, building, launching and maintaining
satellites make satellite operators extremely motivated to protect their
on-orbit assets. Unfortunately, privacy concerns present a serious barrier
to coordination between different operators. One obstacle to improving
safety arises because operators view the trajectories of their satellites as
private, and refuse to share this private information with other operators.
Without data-sharing, preventing collisions between satellites becomes a
challenging task. A 2014 report from the RAND Corporation proposed
using cryptographic tools from the domain of secure Multiparty Compu-
tation (MPC) to allow satellite operators to calculate collision probabil-
ities (conjunction analyses) without sharing private information about
the trajectories of their satellites.

In this work, we report on the design and implementation of a
new MPC framework for high-precision arithmetic on real-valued vari-
ables in a two-party setting where, unlike previous works, there is no
honest majority, and where the players are not assumed to be semi-
honest. We show how to apply this new solution in the domain of
securely computing conjunction analyses. Our solution integrates the
integer-based Goldreich-Micali-Wigderson (GMW) protocol and Garbled
Circuits (GC). We prove security of our protocol in the two party, semi-
honest setting, assuming only the existence of one-way functions and
Oblivious Transfer (the OT-hybrid model). The protocol allows a pair
of satellite operators to compute the probability that their satellites
will collide without sharing their underlying private orbital informa-
tion. Techniques developed in this paper would potentially have a wide
impact on general secure numerical analysis computations. We also show
how to strengthen our construction with standard arithmetic message-
authentication-codes (MACs) to enforce honest behavior beyond the
semi-honest setting.

B. Hemenway—Work done while consulting for RAND Corporation.
R. Ostrovsky—Work done while consulting for Stealth Software Technologies, Inc.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 169–187, 2016.
DOI: 10.1007/978-3-319-44618-9 9

170 B. Hemenway et al.

Computing a conjunction analysis requires numerically estimating a
complex triple integral to a high degree of precision. The complexity of
the calculation, and the possibility of numeric instability presents many
challenges for MPC protocols which typically model calculations as sim-
ple (integer) arithmetic or binary circuits. Our secure numerical integra-
tion routines are extremely stable and efficient, and our secure conjunc-
tion analysis protocol takes only a few minutes to run on a commodity
laptop.

The full version appears in [HLOW16].

1 Introduction

There are currently more than 1300 active satellites orbiting the earth [UCS15],
and this number is growing rapidly. Technological improvements have drastically
reduced the barriers to building, launching and maintaining satellites in orbit,
and consequently the number of different governments and private corporations
maintaining active satellites is growing at an increasing rate (see Fig. 1). As the
number of satellites and operators grows, the problem of coordinating operations
between the different operators becomes more challenging.

1995 2000 2005 2010 2015
0

100

200

300

Number of Different Satellite Operators

1995 2000 2005 2010 2015

0

500

1,000

Number of Active Satellites

Fig. 1. The number of distinct satellite operators is increasing dramatically. In January
1995 there were only 21 different operators, while in January 2015 there were 357
according to the Union of Concerned Scientists [UCS15]. During the same time frame,
the number of active satellites increased from 24 to over 1200.

In February 2009 the telecommunication satellite Iridium-33 collided with
the Russian Kosmos 2251 in Low Earth Orbit (LEO). Their relative velocity
was over 20,000 miles per hour, and both satellites were instantly destroyed and
more than 1000 debris chunks over 4 in. in diameter were created [VO09].

Preventing future collisions requires coordination between a growing num-
ber of satellite operators. Unfortunately, privacy concerns present a barrier to
cooperation, and in fact satellite operators view the precise trajectories of their

High-Precision Secure Computation of Satellite Collision Probabilities 171

on-orbit assets as private information. The Space Surveillance Network (SSN)
managed by U.S. Strategic Command (USSTRATCOM) currently tracks more
than 20,000 orbital objects with diameters greater than 10 cm. These tracking
data, obtained by ground-based telescopes, are a valuable source of information,
but they are too low-fidelity to calculate the probability that two active satellites
will collide. Calculating collision probabilities (termed a “conjunction analyses”)
requires high-fidelity data from the satellites’ on-board instrumentation – and
these high-fidelity data are only available to the satellite’s operator.

Thus we are in a situation where satellite operators want to keep their high-
fidelity orbital information private, yet these are exactly the data needed to
compute conjunction analyses and prevent further collisions. To overcome this
obstacle, some operators have contracted the services of a trusted outside party
(e.g. Analytical Graphics, Inc.). Operators then share their private data with the
trusted party, the trusted party performs the conjunction analyses, and issues
warnings if the collision probability exceeds a given threshold.

Trusted third parties do not provide a perfect solution, however, as many
stakeholders cannot agree on a single trusted party, and even when such a mutu-
ally trusted party can be found, they can command a high price for their services.
Secure multiparty computation (MPC) provides a cryptographic alternative to a
trusted third party. Using MPC to securely compute satellite conjunction analy-
ses was first proposed as a potential solution by Hemenway, Welser and Baiocchi
[HWIB14]. Following that proposal, the problem of securely computing conjunc-
tion analyses was incorporated into DARPA’s PROCEED program as a potential
use-case for MPC technology, and received further media attention [HW15]. A
three-party honest-majority protocol that could securely perform conjunction
analyses was investigated in [KW14a].

Although MPC provides a general framework for computing arbitrary func-
tions securely, efficiency is a primary concern. The four main approaches to MPC
use Fully Homomorphic Encryption (FHE) [Gen09,BV11,LTV12], the GMW
Protocol [GMW87], the information-theoretic BGW protocol [BGW88] or Gar-
bled Circuits (GC) [Yao82,Yao86]. All four methods begin by converting the
function of interest into a circuit (either Boolean or arithmetic) and then evalu-
ating the circuit gate-by-gate.1 This approach yields polynomial-time algorithms,
but without heavy optimizations, these protocols are not practical for any but
the simplest calculations. Indeed, one of the primary technical challenges in
this area is to design protocols that are efficient enough to be used in practice.
Several works in the past [FSW03,CS10,ABZS13,KW14b,PS15] have looked at
optimizing MPC for real-valued computations, both for fixed and floating point,
though these operate in the honest majority setting, which is a major barrier in
the two-party setting for when two satellite operators only want to talk to each
other.

1 An alternative approach using Garbled RAM [LO13,GHL+14] avoids the problem
of converting the calculation to a circuit. Practical implementations of GRAM is an
interesting area to be explored.

172 B. Hemenway et al.

1.1 Our Results

In this paper we describe a new design and implementation of a secure two-party
computation framework for high-precision arithmetic of real-valued functions
that go beyond standard floating point levels of accuracy. As an application,
we show that it allows two satellite operators to perform a conjunction analysis
securely without the need to share their private orbital information with each
other or any outside party. From a theoretical standpoint, our solution is prov-
ably secure in the OT-hybrid model assuming only the existence of one-way
functions.

Our main contribution is an efficient construction of a new scheme that can
securely evaluate complex numerical calculations, in particular, the numerical
integration of calculating the probability of collision in a conjunction analysis
computation via “dynamic” fixed-point integer calculations. Our new scheme
extends the integer-arithmetic GMW protocol [GMW87] and Garbled Circuits
[Yao82,Yao86], and we show how to do it securely in the two-party setting where
there is no honest majority. This scheme can evaluate not only arithmetic gates
(+,×), but also augmented functionality gates which include comparison (which
will be optimized as a less-than-zero gate), shift-by-constant, which then allows
us to perform higher order functions such as integer division, square root, exp,
erf, and numerical integration. As part of our new construction, we also introduce
several optimizations and secure computation tools along the way, which may be
of independent interest. Furthermore, our framework is sufficiently general that
it could be of interest to other domains that require the secure computation of
numerical analysis. Finally, we provide an extension to the scheme by deploying
the arithmetic MAC technique of BeDOZa [BDOZ11] and SPDZ [DPSZ12] to
provide security guarantees against a larger class of adversaries.

2 Background

2.1 Secure Computation

We use the standard real/ideal paradigm for defining security of a Multiparty
Computation (MPC) protocol. We let

comp≈ denote computational indistinguisha-
bility of probability distributions, i.e., no PPT algorithm can distinguish them
with non-negligible probability.

Definition 1. We say that a (two party) protocol π securely computes (in the
semi-honest model) a deterministic functionality F if for every PPT algorithm
A there is a PPT algorithm Sim such that IDEALF

Sim

comp≈ REALπ
A ,where

IDEALF
Sim is the probability distribution of the output of the simulator Sim

interacting with the ideal functionality (i.e., Sim gets the input and output of
the corrupted party) and REALπ

A is the probability distribution of the view (pro-
tocol messages and internal randomness) of the corrupted party A during the
execution of the real protocol.

High-Precision Secure Computation of Satellite Collision Probabilities 173

Garbled Circuits. Garbled Circuits (GC) were originally proposed by Andrew
Yao in oral presentations [Yao82,Yao86]. The first formal proof of security for
Yao’s GC protocol was given by Lindell and Pinkas [LP09], and later formal-
ized as a standalone cryptographic primitive by Bellare, Hoang and Rogaway
[BHR12a,BHR12b].

Although there have been many improvements and variants on Yao’s original
idea for garbled circuits, the important features of GC-based MPC protocols are:
(1) the protocol can be done in two rounds of communication, independent of
the size of the circuit. (2) Each garbled gate is encrypted using a symmetric-
key cryptosystem (e.g. AES) so evaluating the garbled circuit requires roughly a
number of AES operations proportional to the size of the circuit. (3) Transferring
the input tokens requires OT, a public-key operation, and the size of this public-
key computation is roughly proportional to the size of the secret inputs. We refer
the reader to the full version for a more detaile exposition [HLOW16].

Secret-Sharing Based Protocols. Secret-sharing based protocols were first
introduced by works of GMW [GMW87], or BGW [BGW88] and CCD [CCD88].
Although these three protocols are all based on secret-shared computations,
each uses different mechanisms and has different security models (honest vs. no
honest majority, the existence of Oblivious Transfer, etc.). In these protocols,
each player begins by secret-sharing [Sha79] her private inputs among all the
players. The players then engage in a protocol to compute the given circuit, gate-
by-gate, on the shares. The GMW protocol requires OT for each multiplication
gate, while the BGW protocol is information-theoretic and computing each gate
requires only linear algebra (along with the assumption that a strict majority
of players are honest). The important features of secret-sharing based protocols
are: (1) the round complexity of the protocol is proportional to the depth of the
circuit. (2) The GMW protocol requires a number of OTs roughly proportional
to the number of multiplication gates in the circuit.

There have been many practical implementations of GMW-based MPC pro-
tocols including VIFF [DGKN09], TinyOT [NNOB12] and Wysteria [RHH14].
The Sharemind platform [BLW08] provides a general-purpose platform for secure
computation based on the BGW protocol. The Sharemind platform has been
used to perform conjunction analyses [KW14a]. A more detailed comparison of
our work with the Sharemind implementation can be found in Sect. 6.2.

Archer et al. provide a survey on the state of practical MPC protocols
[ABPP15].

Online/Offline Model of Secure Computation. Our construction works
in the online/offline model of computation, and we briefly review the model
here. The idea behind the online/offline model is that certain amounts of cryp-
tographic material can be computed independently of the input, such that it
can be stored and then recalled during the live computation when the inputs
are available. To improve efficiency, we split our secure computation into two
phases: the offline phase where input-independent data is precomputed and the

174 B. Hemenway et al.

online phase where input-dependent computations occur. Early research in this
area was done by Beaver [Bea95,Bea97], and the power of this model continues
to be demonstrated in works such as Ishai et al. [IKM+13] and have found use
in implementations as well [BDOZ11,DPSZ12]

The offline phase may involve communication between the parties – as long
as that communication is independent of their private inputs. In some situations,
we can use the aid of an offline dealer that only participates during the offline
phase and contributes no inputs nor receives any outputs during the online
phase, but instead distributes correlated randomness to the parties. Secondly,
we can talk about two kinds of pre-computed data: those that remain persistent
across multiple online invocations (e.g. public keys and parameters being sent
in advance), and those that are used and consumed (e.g. one-time pads being
sent in advance). Then, during the online phase, cryptographic material from
the offline phase is used in conjunction with the inputs in order to do the live
computation. We will see many instantiations of this in the forthcoming sections.

2.2 Oblivious Transfer

Oblivious transfer (OT) is a cryptographic primitive introduced by
Rabin [Rab05], and we use the 1-out-of-2 variant introduced by Even-Goldreich-
Lempel [EGL82]. In this variant, a Sender holds two string values x0 and x1 and
the Receiver holds a choice bit b. The Receiver should get xb without learning
anything about x1−b and without the Sender learning anything about b. This
can be viewed as a secure protocol for the functionality OT((x0, x1); b) = (⊥;xb),
where ⊥ denotes the empty message. We write OTm to indicate that the strings
x0 and x1 are of length m. Oblivious transfer can be implemented under a variety
of standard assumptions (cf. Goldreich’s book [Gol01,Gol04] for details).

2.3 Shared Arithmetic Triples (Oblivious Linear-Function
Evaluation)

Oblivious linear function evaluation is a natural extension of OT, where one
party (e.g. the Sender) holding two values a, b ∈ F and another party (e.g. the
Receiver) holding some value x ∈ F. The goal is to have the Receiver get ax + b
without learning a, b and without the Sender learning x.

We consider two alternative, equivalent functionalities: one of shared-input-
shared-output multiplication (SISO-M), and one of just shared-output multipli-
cation (SO-M). Due to the symmetric nature of these notions, we refer to the
two parties as Alice and Bob instead of the Sender and Receiver.

For SISO-M, Alice and Bob hold shares of two field elements, x, y and they
would like to obtain shares of the product. In particular, Alice holds x0, y0 ∈ F

and Bob holds x1, y1 ∈ F and the goal is to have Alice obtain a random z0 ∈ F and
Bob obtain z1 such that (z0+z1) = (x0+x1) · (y0+y1). Note that since each of the
two outputs is uniformly distributed over the field, each party learns no additional
informationabout theotherparty’s input. In the shared-outputversion,Aliceholds
x, Bob holds y and they want to obtain z0 and z1 such that (z0 + z1) = x · y.

High-Precision Secure Computation of Satellite Collision Probabilities 175

2.4 Conjunction Analysis Calculations

Before we describe our secure conjunction analysis computation, we review the
problem of computing it in the clear. Our secure computation solution is based
on Alfano’s method [Alf05].

Each satellite ismodelled as a spherical object, and thus its dimensions are com-
pletely captured by a single parameter, its radius. Although the radius is not par-
ticularly sensitive, our solution will hide the radius as well the trajectory informa-
tion. Each satellite operator’s private input has four parts: position: pa,pb ∈ R

3,
velocity: va,vb ∈ R

3, error: Ca,Cb ∈ R
3×3 and radius: Ra, Rb ∈ R.

Each satellite is assumed to deviate from its position, p, and these deviations
are assumed to be normally distributed with covariance matrix2 C. Thus each
satellite’s physical location is given by p+N (C), These normal distributions are
truncated at eight standard deviations [Alf07] resulting in a “density ellipsoid.”
Although each satellite is on an elliptical path, in any short time window, the
satellite’s trajectory is almost linear, and during the course of the conjunction
analysis, the two satellites are assumed to have linear relative velocities. These
simplifying assumptions were not introduced to facilitate a secure computation,
but instead are all part of the routine (insecure) conjunction analyses being
performed on a daily basis.

Because the positional errors on the two satellites are assumed to be inde-
pendent, we can shift all the errors onto one body, and imagine a “hardbody”
of radius Ra + Rb passing through a density ellipsoid with covariance matrix
Ca+Cb. This spherical hardbody traces a “collision tube” through the combined
density ellipsoid, and the probability of collision is then simply the probability
mass of the density ellipsoid within this collision tube (See Fig. 2).

Fig. 2. The hardbody of radius Ra+Rb traces out a collision tube through the combined
density ellipsoid. The probability of collision is the probability mass of the density
function inside the collision tube.

To simplify the calculation further, the three dimensional pdf is sliced, per-
pendicular to the relative velocity, at the point of nearest approach (where the
density is largest). This defines the “encounter plane”, and the cross-section of
the ellipsoid in the encounter plane is a density ellipse.

Thus the final probability is calculated by integrating the two dimensional
density ellipse in the region given by the cross-section of the hardbody. Given
2 These covariance matrices are usually assumed to be diagonal, i.e., the variances

along the three principal axes are independent. This assumption does not signifi-
cantly affect the computation.

176 B. Hemenway et al.

the combined radius R = Ra + Rb, the center of the hardbody in the encounter
plane, (xm, ym), and the lengths of the semi-principal axes (σx, σy) of the density
ellipse, we calculate the probability of collision, p.

p =
1

2πσxσy

∫ R

−R

∫ √
R2−x2

−√
R2−x2

exp

[
−1
2

[(
x − xm

σx

)2

+
(

y − ym

σy

)2
]]

dydx (1)

Changing variables, this becomes

p =
3√

8πσx

∫ R

−R

[
erf

(
ym +

√
R2 − x2

√
2σy

)
+ erf

(
−ym +

√
R2 − x2

√
2σy

)]

exp
(−(x + xm)2

2σ2
x

)
dx

(2)

This integral does not have a closed form, and Alfano suggests approximating
this integral using Simpson’s Rule (i.e., approximating the integral using arcs
of parabola). A more thorough discussion of the mathematics involved is in the
full version [HLOW16]. We also apply a change-of-variables z = x/R so that
the square root inside the integral and the limits of integration do not depend
on inputs, which allows for greater flexibility in hardwiring constants into the
circuit.

Pseudocode for the complete conjunction analysis calculation can also be
found in [HLOW16].

3 Our Techniques

Our construction uses an “augmented” arithmetic circuit, consisting of (integer)
addition, multiplication and division gates, with special gates for comparisons
and bit-shifts, and we securely compute this circuit gate-by-gate. Our comparison
and bit-shift gates are denoted < 0 and >> c. The < 0 gate takes a single integer
as input and returns 1 if its input is strictly less than zero, and 0 otherwise. The
>> c gate takes an integer and performs a bitwise right-shift by a (fixed) public
constant. A more thorough description of our circuit model can be found in the
full version [HLOW16].

3.1 Combining GC with Arithmetic GMW

We compute (integer) addition and multiplications natively using GMW. To
compute comparison and shift gates, we represent them as Boolean circuits and
then evaluate them using GC. The GC must take two secret-inputs and compute
a secret sharing of the output of the gate. Since the inputs are arithmetically
secret shared, one must first convert them to bits before inputting them into the
Boolean circuit that computes an augmented gate, and then convert them back
into arithmetic shares. We explain how two parties can perform these computa-
tions in Algorithms 1 and 2. Share conversion of this nature has been investigated
in previous works, e.g. Yu and Yang [YY12].

High-Precision Secure Computation of Satellite Collision Probabilities 177

Algorithm 1. Share-converted Less-Than-Zero
1: Hardwired: A modulus M = 2m

2: Inputs: Alice holds x0, Bob holds x1. Alice additionally provides a random R
3: x ← x0 + x1 (mod M) using standard m-bit add-with-carry circuit
4: b ← sgn(x)
5: Return: z1 = b + R (mod M) to Bob. Alice sets z0 = −R (mod M) herself.

Algorithm 2. Share-converted shift-right-by-constant
1: Hardwired: A modulus M = 2m and a shift constant c.
2: Inputs: Alice holds x0, Bob holds x1. Alice additionally provides a random R
3: x ← x0 + x1 (mod M) using standard m-bit add-with-carry circuit
4: y ← x >> c by duplicating the sign bit wire and dropping c rightmost wires
5: Return: z1 = y + R (mod M) to Bob. Alice sets z0 = −R (mod M) herself.

Representing Mathematical Functions as Circuits: Evaluating the inte-
gral given in Eq. 2 requires division, exp(·), √·, and erf(·). We explain how we
chose to implement these functions using our circuits.

Circuit Representation for Division: We implement integer division using
repeated subtraction. Using known bounds on the inputs, we can track maximum
and minimum values for each gate in the circuit, and using this (public) meta
information, we can bound the number of subtractions necessary for each division
in the circuit.

Circuit Representation for exp(·): We represent the function exp(·) using a
degree-24 Taylor series. We hard-code the Taylor coefficients as constants in the
circuit.

Circuit Representation for
√·: To approximate a square root, we use the

iterative Babylonian Algorithm. Given an input S, and an initial estimate x0,
the Babylonian Algorithm computes

xn+1 =
1
2

(
xn +

S

xn

)

For increased efficiency, we compute multiple steps at once, i.e., computing xn+4

as a ratio of two degree 16 polynomials in S and x0. For our calculations, we do
6 batches of degree 16 each to ensure a sufficient degree of accuracy.

Circuit Representation for erf(·): Taylor expansions of erf fare poorly outside
of a very restricted domain (see the full version for more details [HLOW16]).
Instead of the Taylor expansion, we approximate erf(x) using a degree 96 rational
function with uniform error bound of 10−7 across the entire range [AS65].

178 B. Hemenway et al.

4 Main Construction

We now describe our main construction, which is the semi-honest two-party secure
computation of the conjunction analysis functionality in the online/offline model.
We let πCA denote the protocol we are about to describe. We first describe how
to precompute the cryptographic resources during the offline phase. In the offline
preprocessing phase, we generate three cryptographic “resources” for later use.

4.1 Offline Phase

Pregenerated Random OTs. Our computation requires executing a huge
number of OTs. Using a now standard trick due to Beaver [Bea95], we can gen-
erate random OTs during the precomputation phase and then later “consume”
these random OTs during the online computation.

To pregenerate a random OT, the Sender holds random (r0, r1) and the
Receiver holds a random bit z. After running OT on these random values, the
Receiver gets rz. We now describe how to use this random OT to perform an
actual OT in the online phase.

Now suppose they want to run OT on actual inputs (s0, s1) for the Sender
and b for the Receiver. To begin, the Receiver sends w = z ⊕ b, then the Sender
sends to the Receiver (q0, q1) = (s0 ⊕ r0⊕w, s1 ⊕ r1⊕w). Finally the Receiver
outputs t = qb ⊕ rz.

There are two methods by which the participants can generate the necessary
random OT instances during the online phase. (1) The participants can generate a
small number ofOT instances and then use OTextension [IKNP03] to extend these
to a huge number of OTs. (2) They can make use of a trusted dealer who simply
provides correlated randomness to the two players, i.e., the dealer will generate
three random values (r0, r1, z) and provide r0, r1 to Alice and z, rz to Bob.

Pregenerated Random Triples. Similar to OTs, for shared arithmetic triples,
we can generate random arithmetic triples in the precomputation phase. We
outline the technique on how to actually generate shared-output versions of
these, which is due to the work of Ishai et al. [IPS09]. This technique works in
batches of size t and makes use of OTs.

Suppose Alice holds a1, . . . , at and Bob holds b1, . . . , bt and they want to
compute shares of all ai · bi. In other words, they want to compute a shared
output multiplication. Let k = 2t and n = ck where c is a constant. Suppose we
have t distinct evaluation points ζi and n distinct evaluation points θi, distinct
from the ζs.

Bob: Let B(x) be a random degree k − 1 polynomial such that B(ζi) = bi for
i = 1 . . . t. Such a B can be found by interpolation. Sample the polynomial at
the points θi to get yi = B(θi) for i = 1 . . . n. Sample L ⊂ {1, . . . , n} at random
of size t + k − 1. Set vi = yi if i ∈ L, and vi to be random if i /∈ L. Send the vis
to Alice.

High-Precision Secure Computation of Satellite Collision Probabilities 179

Alice: Let A(x) be the unique degree t − 1 polynomial such that A(ζi) = ai for
i = 1 . . . t. Such an A can be found by interpolation. Let Alice choose R(x), a
random degree t + k − 2 polynomial. Compute xi = A(θi) and ri = R(θi) for
i = 1 . . . n. Set wi = xi · vi − ri.

Alice and Bob: For each i = 1 . . . n, Bob plays the role of the Receiver in an
OT protocol with Alice, who plays the role of the Sender. Bob sets his bit b to
be 1 if and only if i ∈ L, and Alice sets her messages x1 = wi and x0 to be
random.

Bob: Bob sets Q to be the unique polynomial of degree t+k−2 with Q(θi) = wi

for i ∈ L, again via interpolation. Bob sets bobi = Q(ζi), Alice sets alicei = R(ζi),
for i = 1 . . . t. These are the output shares z0,i = alicei and z1,i = bobi for Alice
and Bob, respectively.

To see why this works, observe that Q + R = A · B, and so bobi + alicei =
Q(ζi) + R(ζi) = A(ζi) · B(ζi) = ai · bi.

To convert these into shared-input-shared-output triples, we proceed as fol-
lows: Suppose Alice holds x0, y0 and Bob holds x1, y1. They want to compute
shares z0 and z1 of (x0+x1)(y0+y1). This is just equal to x0y0+x0y1+x1y0+x1y1.
They can make two calls to the above protocol, once with x0 and y1 as inputs,
and once with x1 and y0 as inputs, which allows us to get shares for the cross-
terms x0y1 and x1y0.

Pregenerated Garbled Circuits. Our protocol will use garbled circuits to
compute the shift and comparison gates on secret-shared values. Because the
circuit garbling procedure is input-independent, we perform a small precompu-
tation here where we generate all the Γ during this phase. Our garbled circuits
implementation uses a fixed-key blockcipher (AES) as described in JustGarble
[BHKR13], without any of the newer garbled circuit optimizations.

4.2 Online Phase

For the online phase, we use the arithmetic version of the Goldreich-Micali-
Wigderson [GMW87] paradigm: each party secret shares his or her inputs, then
performs gate-by-gate operations as described below. Alice and Bob’s inputs are
denoted X0, Y0 and X1, Y1 respectively.

– For every addition and subtraction gate, Alice and Bob respectively add or
subtract their local shares Z0 = X0 ± Y0 and Z1 = X1 ± Y1.

– For every multiplication gate, Alice and Bob consume a shared triple to obtain
a newly shared Z0 and Z1. We refer the reader to the full version [HLOW16]
on how to perform this standard operation.

– For every shift gate, Alice and Bob’s shares are X0 and X1 and they want to
shift (X0+X1) by some publicly known amount N . This is accomplished using
a (precomputed) garbled circuit computing Algorithm 2, where Alice sends
Bob the garbled circuit and then Bob uses OT to obtain labels corresponding
to his inputs.

180 B. Hemenway et al.

– For every comparison gate (optimized as a less-than-zero gate), Alice has her
share X0 and Bob has his share X1 and they want to see if (X0+X1) is positive
or not. This is done via a circuit that computes Algorithm1. We then use the
garbled version of this circuit (that was precomputed earlier) to evaluate it
where Alice sends Bob the garbled circuit and then Bob uses OT to obtain
labels corresponding to his inputs.

Note that this process can be parallelized across an entire layer of the circuit,
so that interaction occurs at each level of the arithmetic circuit rather than at
each gate (excluding the free gates). In the end, the output values are shared as
O0 and O1, whereupon Alice and Bob reveal to each other their shares to obtain
the final output. We refer the reader to the full version for the proof [HLOW16]

5 Extending the Construction

In this section, we show how to extend our construction to provide security
against semi-malicious adversaries. In the malicious security model, corrupted
parties are allowed to deviate arbitrarily from the prescribed protocol, and the
protocol is secure if nothing revealed beyond what is revealed by the output
alone.

Our extended construction considers a slightly weaker model, where in the
presence of malicious behavior, the honest party will detect such activity and will
immediately abort the protocol. The event of abort reveals information about
the honest player’s decision to abort the protocol – but we allow this leakage.

The construction in this section achieves security against malicious adver-
saries with correlated abort (see e.g. [IKO+11]), i.e., nothing is revealed except
the output, unless in the case of an abort where nothing is learned except that
an abort occurred.

In order to extend our solution from the semi-honest model to this stronger
setting, we note that our shared triples generation is only secure in the
semi-honest model, and thus in order to be able to now securely precom-
pute triples we must resort to another technique. There are several works
(e.g. [BDOZ11,DPSZ12] and their follow-up research) that focus on optimiz-
ing this offline construction, and our novel contribution is focused on the online
phase. Therefore, we employ a secure two-party computation solution with an
offline phase that assumes the assistance of a semi-trusted dealer.

We describe how to securely evaluate an arithmetic circuit C(x, y) =
C(x1, . . . , xn, y1, . . . , yn) containing +,−,×, < 0, >> c gates over the integers,
where < 0 is the “less-than-zero” gate, and >> c is the “arithmetic-shift-right-
by-c” gate (we also include “constant” gates). In terms of representation, we
bound the total number of bits of any intermediate value in the computation
and choose a modulus N that is twice as large as the bound plus a security para-
meter, and use [N/2, N/2) as the set of representatives for the integers modulo
N . We henceforth take all arithmetic to be modulo N , where comparison to zero
and shift still makes sense because we are taking the half-interval around zero
representation.

High-Precision Secure Computation of Satellite Collision Probabilities 181

Suppose Alice holds the inputs x1, . . . , xn and Bob holds the inputs y1, . . . , yn.
We will evaluate each gate individually, and thus evaluate the entire circuit by
evaluating the “tree” of gates inductively (this is done in parallel to the furthest
extent possible, we only wait if one gate depends on another gate). For addition,
subtraction, multiplication, and constant gates, we employ an arithmetic MAC
style strategy for evaluation (see, e.g. [BDOZ11]) which we describe here.

Let g be a gate, and let L and R be the left and right inputs, respectively,
and let O = g(L,R) be the output of the gate. Let MACα,β(x) be αx + β. We
inductively assume that the two inputs are shared and MACced in the following
fashion:

– Alice and Bob each privately hold their own global MAC key, αA and αB , and
they each hold a unique β for each wire in the circuit.

– Let βL
A, βL

B , βR
A , βR

B denote the β for the left and right inputs, for Alice and
Bob.

– Alice will then hold random shares xL and xR and Bob will hold random
shares yL and yR subject to xL + yL = L and xR + yR = R.

– Alice will hold wL
A = MACαB ,βL

B
(xL) and wR

A = MACαB ,βR
B
(xR).

– Bob will hold wL
B = MACαA,βL

A
(yL) and wR

B = MACαA,βR
A
(yR).

– GOAL: Obtain xO, wO
A , βO

A for Alice and yO, wO
B , βO

B for Bob such that
the inductive invariants xO + yO = O, wO

A = MACαB ,βO
B

(xO), and wO
B =

MACαA,βO
A

(yO) hold.

For each gate type, we describe what is required as pregenerated content,
and what is done online. As the first step to setup, the dealer generates αA and
αB and sends them to Alice and Bob respectively.

Constant Gates. For constant gates, if the constant is c, the dealer gener-
ates βA, βB at random, x at random, and sets y = c − x. It then computes
wA = MACαB ,βB

(x) and wB = MACαA,βA
(y). It sends x,wA, βA to Alice and

y, wB , βB to Bob to store. During the online phase, Alice and Bob recall these
values from storage when needed.

Addition and Subtraction Gates. For addition/subtraction gates, no pre-
generation by the dealer is necessary. Indeed, Alice computes βO

A = βL
A ± βR

A ,
wO

A = wL
A ± wR

A, and xO = xL + xR, and Bob performs the analogous
computations. Then it is the case that the inductive invariant holds since:
xO + yO = xL ± xR + yL ± yR = (xL + yL) ± (xR + yR) = L ± R = O,
and wO

A = wL
A ± wR

A = MACαB ,βL
B
(xL) ± MACαB ,βR

B
(xR) = (αB · xL + βL

B) ±
(αB · xR + βR

B) = αB(xL ± xR) + (βL
B ± βR

B) = αB · xO + βO
B = MACαB ,βO

B
(xO).

Multiplication Gates. For multiplication gates, the pregeneration consists
of an authenticated “triple”. The dealer generates two random numbers a, b
and computes c = a · b. The dealer then creates authenticated shares for each
of these three values as follows. Randomly select βa

A, βb
A, βc

A, βa
B , βb

B , βc
B , and

xa, xb, xc at random, and set ya = a − xa, yb = b − xb, yc = c − xc. It then
sets wa

A = MACαB ,βa
B
(xa), wb

A = MACαB ,βb
B
(xb), wc

A = MACαB ,βc
B
(xc) and

182 B. Hemenway et al.

wa
B = MACαA,βa

A
(ya), wb

B = MACαA,βb
A
(yb), wc

B = MACαA,βc
A
(yc). It sends

xa, xb, xc, w
a
A, wb

A, wc
A, βa

A, βb
A, βc

A to Alice, and ya, yb, yc, w
a
B , wb

B , wc
B , βa

B , βb
B , βc

B

to Bob.
During the online step, each party subtracts their a share from their left share

(i.e., subtracting w, x, β simultaneously), and the b share from their right share.
The resulting differences, call them r and s are mutually revealed by sending each
other the resulting MAC and value, and mutually verified. Then each computes
their local result as the sum of their c share with the opened r times their right
share, the opened s times their left share, and the opened value r · s.

For the remaining two gate types, < 0 and >> c, we must take additional
care because there are also MAC values attached to each wire, so simply running
Algorithms 1 and 2 will not suffice. For example, if we are computing a < 0 gate,
then we want to compute authenticated shares of O = (LA+LB) < 0, where O is
0 if it is false and 1 if it is true. The dealer will precompute both possible outputs:
an authenticated sharing of 0 and of 1. However, in order to preserve privacy, we
cannot reveal to either party which is the sharing of 0 and which is the sharing of
1, otherwise they would learn the output. Thus, we have a “flip” bit f , such that
the output is flipped if f is 1. The parties share f : Alice holds fA, Bob holds fB

such that f = fA⊕fB . Thus, if we compute ((LA+LB) < 0)⊕fA⊕fB and reveal
this Boolean result to both parties, it properly indexes which authenticated share
they should each use, and will be a correct sharing of O with a MAC.

We model LTZ = ((LA+LB) < 0)⊕fA⊕fB as a Boolean circuit: the addition
is done via a straightforward adder-with-carry circuit, the comparison just looks
at the sign bit, and it finishes with two XOR gates. In order to securely evaluate
it, we use the garbled circuit methodology with precomputation. Additional
details may be found in the full version [HLOW16]

For shift-by-constant gates, there are multiple output bits, and we treat
each bit individually and reconstruct the output via the standard bits-to-integer∑

ai2i transformation, performed on the authenticated shares.

6 Benchmarks

6.1 Internal Testing and Benchmarks

Our implementation takes 20 integer inputs, each representing real numbers as
follows: an integer n represents the real number n

220 . These 20 inputs correspond
to the satellite trajectories of Party 1 and Party 2, namely the vectors for position
(xi, yi, zi), velocity (vxi

, vyi
, vzi

), error (σxi
, σyi

, σzi
), and a radius Ri for i = 1, 2.

The output is a single integer representing the probability of collision in the same
format. After significant optimization, the final circuit contained 2.67×105 gates.

Bounds and Error Tolerance. The goal of a conjunction analysis calculation
is to facilitate decision-making and improve space situational awareness. Because
our system is providing a numerical approximation to an integral without a
closed form, it is important to ensure that the approximations provide sufficient

High-Precision Secure Computation of Satellite Collision Probabilities 183

accuracy to inform decision making. The probability region between 10−1 and
10−7 is called the “operational decision region,” [Alf07], and it is most important
to maximize the (relative) accuracy for probabilities within this region. A longer
discussion about this can be found in [HLOW16].

Internally, we evaluated the circuit on 2000 test cases and obtained the fol-
lowing error bounds, when compared to a Maple implementation of [Alf07]:

Across all tests
Absolute error
|approx − true|

Relative error∣∣approx−true
true

∣∣
Min 9.000 × 10−10 1.240 × 10−8

Max 8.512 × 10−4 19 (see remark)
Avg 7.027 × 10−5 9.623 × 10−3

In Operational Decision Region
Absolute error
|approx − true|

Relative error∣∣approx−true
true

∣∣
Min 9.000 × 10−10 2.190 × 10−6

Max 9.608 × 10−5 2.543 × 10−3

Avg 5.759 × 10−7 1.208 × 10−5

Remark: In all cases where the relative error was extremely large, the true
probabilities were extremely close to zero, and the large relative error would not
impact decision making, e.g. cases where the “true” probability was 10−15, and
we estimated 2 · 10−14.

Benchmarks. We benchmarked our system on a virtual machine running 64bit
CentOS 6.4. The machine had 8 GB of RAM, 4 processors, and 100 GB of hard
disk space. We tested both pregeneration time and online run time between two
parties for a single conjunction, as well as disk space used. We present the average
runtime over 2000 tests as well as bounds on the maximum and minimum times.

Pregeneration Time
real 1m30s ± 15s
user 38s ± 15s
sys 27s ± 25s

Online Time
real 5m2s ± 15s
user 4m59s ± 15s
sys 15s ± 10s

6.2 Comparison with the Sharemind Implementation [KW14a]

Secure computation of conjunction analyses was one of the target use-cases for
MPC in DARPA’s PROCEED program, and consequently it has been used as a
benchmark for other secure computation systems. Our implementation was done
in parallel with that of Kamm and Willemson [KW14a], but the design and goals
of these projects are fundamentally different. In short, we focused on building a
two-party protocol that was custom-tailored to the problem of securely comput-
ing conjunction analyses, while Kamm and Willemson focused on building an
IEEE 754 floating point library for the three-party Sharemind system, and used
the conjunction analysis application to exhibit the capabilities of their general
platform. Additional discussion can be found in the full version [HLOW16].

184 B. Hemenway et al.

7 Conclusion

In this work, we described the design and implementation of a custom secure
computation protocol to compute the probability of satellite collisions. The
underlying collision probability calculation requires numerically estimating a
complicated integral – something that was, until recently, beyond the reach
of secure computation techniques. We envision that our techniques can extend
to other areas that require secure numerical computations as well. In order to
improve efficiency, we custom built and optimized an augmented arithmetic cir-
cuit to estimate the collision probabilities. We constructed a secure computation
protocol then used a combination of GMW and garbled circuits to evaluate these
augmented circuits. Our secure computation works in the offline/online model,
where during the offline phase the parties work to generate a large amount of
correlated randomness in the form of OTs and shared arithmetic triples. Later, in
the online phase, this correlated randomness is consumed to facilitate the secure
computation. Because of the sheer quantity of correlated randomness needed,
the limiting factor in our computation was disk I/O.

This work provides positive evidence for the fact that MPC technology is
now capable of evaluating very complex functions securely and efficiently.

Acknowledgements. This work was supported in part by the DARPA. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation therein. Disclaimer: The views and
conclusions contained herein are those of the authors and should not be interptered as
necessarily representing the official policies or endorsement, either expressed or implied,
of DARPA, or the U.S. Government.

References

[ABPP15] Archer, D.W., Bogdanov, D., Pinkas, B., Pullonen, P.: Maturity and Perfor-
mance of Programmable Secure Computation (2015). https://eprint.iacr.
org/2015/1039

[ABZS13] Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on
floating point numbers. In: NDSS 2013 (2013)

[Alf05] Alfano, S.: A numerical implementation of spherical object collision prob-
ability. J. Astronaut. Sci. 53(1), 103–109 (2005)

[Alf07] Alfano, S.: Review of conjunction probability methods for short-term
encounters. In: Proceedings of the AAS/AIAA Space Flight Mechanics
Meeting, PART 1, vol. 127, pp. 719–746, February 2007

[AS65] Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)

[BDOZ11] Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic
encryption and multiparty computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

[Bea95] Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

[Bea97] Beaver, D.: Commodity-based cryptography (extended abstract). In:
STOC 1997, pp. 446–455 (1997)

https://eprint.iacr.org/2015/1039
https://eprint.iacr.org/2015/1039

High-Precision Secure Computation of Satellite Collision Probabilities 185

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: STOC 1988, pp. 1–10 (1988)

[BHKR13] Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling
from a fixed-key blockcipher. In: IEEE Symposium on Security and Privacy,
SP 2013, pp. 478–492 (2013)

[BHR12a] Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer,
Heidelberg (2012)

[BHR12b] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:
CCS 2012, pp. 784–796 (2012)

[BLW08] Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: FOCS 2011, pp. 97–106 (2011)

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.B.: Multiparty unconditionally secure
protocols. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp.
462–462. Springer, Heidelberg (1988)

[CS10] Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In:
Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg
(2010)

[DGKN09] Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous mul-
tiparty computation: theory and implementation. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg
(2009)

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012)

[EGL82] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing
contracts. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO
1982, pp. 205–210. Springer, New York (1982)

[FSW03] Fouque, P.-A., Stern, J., Wackers, J.-G.: Cryptocomputing with rationals.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer,
Heidelberg (2003)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC
2009, pp. 169–178 (2009)

[GHL+14] Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.:
Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: STOC
1987, pp. 218–229 (1987)

[Gol01] Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge
University Press, Cambridge (2001)

[Gol04] Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge University Press, Cambridge (2004)

186 B. Hemenway et al.

[HLOW16] Hemenway, B., Steve, L., Ostrovsky, R., William Welser, I.V.: High-
precision secure computation of satellite collision probabilities. Cryptology
ePrint Archive, Report 2016/319 (2016). http://eprint.iacr.org/2016/319

[HW15] Hemenway, B., Welser, W.: Cryptographers could prevent satellite colli-
sions. Scientific American, 28–29 February 2015

[HWIB14] Hemenway, B., William Welser, I.V., Baiocchi, D.: Achieving higher-fidelity
conjunction analyses using cryptography to improve information sharing.
Technical report, RAND Corporation (2014)

[IKM+13] Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky,
A.: On the power of correlated randomness in secure computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Hei-
delberg (2013)

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers
efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–
161. Springer, Heidelberg (2003)

[IKO+11] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Effi-
cient non-interactive secure computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011)

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with
no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
294–314. Springer, Heidelberg (2009)

[KW14a] Kamm, L., Willemson, J.: Secure floating point arithmetic and private
satellite collision analysis. Int. J. Inf. Secur. 14, 1–18 (2014)

[KW14b] Krips, T., Willemson, J.: Hybrid model of fixed and floating point numbers
in secure multiparty computations. In: Chow, S.S.M., Camenisch, J., Hui,
L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 179–197. Springer,
Heidelberg (2014)

[LO13] Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734.
Springer, Heidelberg (2013)

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[LTV12] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption. In:
STOC 2012, pp. 1219–1234 (2012)

[NNOB12] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach
to practical active-secure two-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer,
Heidelberg (2012)

[PS15] Pullonen, P., Siim, S.: Combining secret sharing and garbled circuits for
efficient private IEEE 754 floating-point computations. In: FCS 2015, pp.
172–183 (2015)

[Rab05] Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology
ePrint Archive, Report 2005/187 (2005). http://eprint.iacr.org/2005/187

[RHH14] Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: a programming language
for generic, mixed-mode multiparty computations. In: IEEE Symposium on
Security and Privacy, pp. 655–670 (2014)

[Sha79] Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach.
22(11), 612–613 (1979)

[UCS15] Union of concerned scientists (2015). http://www.ucsusa.org/. Accessed 11
Sept 2015

http://eprint.iacr.org/2016/319
http://eprint.iacr.org/2005/187
http://www.ucsusa.org/

High-Precision Secure Computation of Satellite Collision Probabilities 187

[VO09] Associated Press Veronika Oleksyn: What a mess! experts ponder space
junk problem. USA Today, February 2009

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
FOCS 1982, pp. 160–164 (1982)

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: FOCS 1986, pp. 162–167 (1986)

[YY12] Yu, C.-H., Yang, B.-Y.: Probabilistically correct secure arithmetic compu-
tation for modular conversion, zero test, comparison, MOD and exponen-
tiation. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485,
pp. 426–444. Springer, Heidelberg (2012)

Zero-Knowledge Proofs

Zero-Knowledge Made Easy so It Won’t Make
You Dizzy

(A Tale of Transaction Put in Verse About an Illicit Kind
of Commerce)

Trotta Gnam(B)

Carpe Diem Consulting, Irvine, CA, USA
trotta.gnam@gmail.com

Abstract. For any research paper, as all the authors know
An abstract is required to keep the proper flow
An abstract is a lure that must be appetizing
It’s typically stuffed with shameless aggrandizing
Which brings us to the subject of our seminal result
Its impact on the Zeitgeist will alter the Gestalt
This noble work is prompted by dominance of prose
The reason crypto papers make readers comatose
This paper makes an effort to change the status quo
By showing that crypto poetry is another way to go

Keywords: Fiat-Shamir · Crypto humor · Crypto poetry ·
Zero Knowledge · Crypto education · Crypto lyrics

1 Introduction

Whoever reads these lines shall have no fear
This rhyming opus will explain Fiat-Shamir [1]
The tricky concept known as Zero Knowledge [2]
Will be as easy to digest as oatmeal porridge
So, now read on and keep one thing in mind
That tortured rhymes are difficult to find

2 Setup and Preliminaries

Computed safely, back in ancient times
Is number N – a product of two primes
Its murky origin is subject to debate
Let’s just assume that it was not the NSA
To make the protocol description very clear
All computations are mod N in Fiat-Shamir

Translated from the Slobonian by G. Tsudik, gts@ics.uci.edu.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 191–197, 2016.
DOI: 10.1007/978-3-319-44618-9 10

192 T. Gnam

2.1 The Cast

The protocol involves a dweeb, called Bob
A lazy, nerdy and socially-awkward slob
Like many of his bored and geeky kind
Bob smokes a lot of weed to numb his mind

His dealer, Alice, is crafty trailer trash
Who offers pot, ecstasy, and high-grade hash
Like any merchant wanting customers’ respect
She has integrity and stature to protect
For each transaction, Alice wants her client
To be completely Fiat-Shamir-compliant

2.2 Assumptions

To circumvent some simple online dangers
Suppose that Bob and Alice aren’t strangers
Thus, we assume that I – Bob’s ID string
Already hangs on Alice’s public-key ring
Meanwhile, its secret square root, called S
Bob had tattooed on his right foot, no less
NOTE: Due to consuming large quantities of pot
Bob’s long-term memory is unfortunately shot

3 Interaction

Round 1:

The online phase begins with round one
When Bob’s supply of cannabis is gone
Sneezing and coughing like a decrepit car
Bob generates a random number we’ll call R
Squaring it mod N , yields a value X
Which he then sends to Alice all in hex

Round 2:

Having received and stored X , she is content
Since there is merchandise for her to vend
Next, from her private random numbers pit
Alice selects a brand new challenge bit
It is referred to as C from here on
She quickly forwards it to Bob over the phone

Zero-Knowledge Made Easy so It Won’t Make You Dizzy 193

Round 3:

In round three, Bob readies his reply
Of course, it must on challenge C rely
Accordingly, it’s R if C is zero,
Else, R times S is sent by our hero

For C of zero, Alice squares the reply and checks
Whether it matches Bob’s prior commitment X
She otherwise compares X times I
With square mod N of Bob’s previous reply

Should she encounter any kind of error
Alice drops everything and runs away in terror
For this behavior, there is a solid reason:
She simply doesn’t want to land in prison

Back for more:

Assuming all goes well, it should be clear
That much remains to do in Fiat-Shamir
Though it is fast, simple, and discrete
There is a 50-50 chance that Bob can cheat
Thus, online phase must be re-run K times
Because of difficulty of coming up with rhymes

4 Epilog

Once the transaction is finally complete
Both parties hurry to get off the street
The dealer Alice now proactively decides
That time is right to re-stock the merchandise
Eager to sample freshly purchased hash
Bob rushes home while clutching his new stash

5 Security Proof (Sketch)

This is a mere sketch, no need to get excited
A real proof, as usual, will never be provided
As for security, there is but one direction
It’s plainly evident by cursory inspection
�

194 T. Gnam

6 Related Work

While feeling pride and yet not seeking fame
Having explored the literature, we claim
That this attempt at crypto-poetry is first
Which might result in stirring up a hornet’s nest
Thus triggering a crypto-lyrical tsunami
Which sadly rhymes only with pastrami

7 Future Work

Before tapping this poem with a verbal cork
We summarize directions for the future work
Our research isn’t finished and much is left to do
For instance, proving theorems completely in haiku
Devising crypto-protocols for alpine cows to yodel
That are proven secure in the standard crypto model
How to take advantage of symmetric-crypto tricks
To build one-way functions that spit out limericks
How to create lyrics, music and dance moves
That praise the shapely beauty of elliptic curves [3]
These are just examples and challenges abound
For any eager student open problems can be found

8 Conclusions

This paper demonstrated with obvious finesse
The awesome teaching power of pithy crypto-verse
Our research took advantage of a lucky trick
By picking Fiat-Shamir as its guinea pig

In sheer simplicity this method has no peer
Even a total idiot can comprehend Fiat-Shamir
To understand it, there’s no need to go to college
Its only purpose is advancing Zero Knowledge

We’ve reached the end and it’s time for a beer
Let’s drink at least K rounds, as in Fiat-Shamir [1]
And if we drink too much and feel a bit delirious
Everyone we meet should be honest-but-curious

Zero-Knowledge Made Easy so It Won’t Make You Dizzy 195

9 Disclaimer and Acknowledgments

Despite severe pressure from his poetic muse
The author of this poem doesn’t advocate drug use
This literary effort was made possible in part
By generous funding from Endowment for the Art
We finally acknowledge, with self-important flair
Helpful comments by reviewers and the Program Chair

Appendix A: A Poetical Revenge on Diffie-Hellman Key
Exchange

1. Introduction and Motivation

Teaching cryptography can be so boring
That one can hear students snoring
To verify this claim and see
Try introducing them to public key

Before we delve into this lecture
We need to first make a conjecture
Perhaps the boredom is caused
By dominance of sleep-inducing prose
We thus attempt to keep the audience alert
By rhymes to which we protocols convert

We start with Diffie-Hellman protocol [4]
Which is by far the simplest one of all
In this description, it isn’t very terse
Since it’s presented entirely in verse
NOTE: As we forward bravely plow
The rhyming tempo changes now

2. The Protocol

Setup

Before our Earth was ever trod
A large prime p was picked by God1

NOTE: In the protocol you’ll see
All computations are mod p
Then, a generator g was chosen
And thereafter both were frozen

1 And if you’re a godless atheist
Assume that p was picked by NIST

196 T. Gnam

Interaction

Alice – one of fairer sex
Computes g to random X
Bob – a sketchy kind of guy
Raises g to chosen Y

Clock synchronization loose
They exchange the residues
Not to spoil all the fun . . .
But, that’s the end of round one

Alice, with her secret, next
Raises gY to the X
Feeling just a little high
Bob computes gX to the Y
Now for both the time is ripe
To bootstrap a secure pipe

3. Correctness

To see that Diffie-Hellman works
Even between two total dorks
Consider that both Bob and Alice
Wind up computing equal values

4. Security

The Good News

A passive eavesdropper can see
How they obtain the shared key
But even best computing toys
Can’t help distinguish it from noise

The Bad News

Alas this claim’s no longer true
When adversary changes hue
When Eve adopts an active role
We’re left with a broken protocol
She distracts Alice by playing fiddle
While fooling Bob with man-in-the-middle

Zero-Knowledge Made Easy so It Won’t Make You Dizzy 197

References

1. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987)

2. Quisquater, J.-J., Guillou, L.C., Berson, T.A.: How to explain zero-knowledge pro-
tocols to your children. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
628–631. Springer, Heidelberg (1990)

3. Tate, J.: The Arithmetic of Elliptic Curves. Inventiones Math. 23(3–4), 179–206
(1974)

4. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

Fiat–Shamir for Highly Sound Protocols
Is Instantiable

Arno Mittelbach1 and Daniele Venturi2(B)

1 Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
2 Department of Information Engineering and Computer Science,

University of Trento, Trento, Italy
daniele.venturi@unitn.it

Abstract. The Fiat–Shamir (FS) transformation (Fiat and Shamir,
Crypto ’86) is a popular paradigm for constructing very efficient non-
interactive zero-knowledge (NIZK) arguments and signature schemes
using a hash function, starting from any three-move interactive protocol
satisfying certain properties. Despite its wide-spread applicability both
in theory and in practice, the known positive results for proving security
of the FS paradigm are in the random oracle model, i.e., they assume that
the hash function is modelled as an external random function accessible
to all parties. On the other hand, a sequence of negative results shows
that for certain classes of interactive protocols, the FS transform cannot
be instantiated in the standard model.

We initiate the study of complementary positive results, namely,
studying classes of interactive protocols where the FS transform does
have standard-model instantiations. In particular, we show that for a
class of “highly sound” protocols that we define, instantiating the FS
transform via a q-wise independent hash function yields NIZK argu-
ments and secure signature schemes. For NIZK, we obtain a weaker
“q-bounded” zero-knowledge flavor where the simulator works for all
adversaries asking an a-priori bounded number of queries q; for signa-
tures, we obtain the weaker notion of random-message unforgeability
against q-bounded random message attacks.

Our main idea is that when the protocol is highly sound, then
instead of using random-oracle programming, one can use complexity
leveraging. The question is whether such highly sound protocols exist
and if so, which protocols lie in this class. We answer this question in
the affirmative in the common reference string (CRS) model and under
strong assumptions. Namely, assuming indistinguishability obfuscation
and puncturable pseudorandom functions we construct a compiler that
transforms any 3-move interactive protocol with instance-independent
commitments and simulators (a property satisfied by the Lapidot-Shamir
protocol, Crypto ’90) into a compiled protocol in the CRS model that
is highly sound. We also present a second compiler, in order to be able
to start from a larger class of protocols, which only requires instance-
independent commitments (a property for example satisfied by the clas-
sical protocol for quadratic residuosity due to Blum, Crypto ’81). For
the second compiler we require dual-mode commitments.

We hope that our work inspires more research on classes of (efficient)
3-move protocols where Fiat–Shamir is (efficiently) instantiable.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 198–215, 2016.
DOI: 10.1007/978-3-319-44618-9 11

Fiat–Shamir for Highly Sound Protocols Is Instantiable 199

1 Introduction

The Fiat–Shamir (FS) transformation [26] is a popular1 technique to build effi-
cient non-interactive zero-knowledge (NIZK) arguments and signature schemes,
starting from three-round public-coin (3PC) protocols satisfying certain proper-
ties. In a 3PC protocol the prover starts by sending a commitment α, to which
the verifier replies with a challenge β drawn at random from some space B; finally
the prover sends a reply γ and the verifier’s verdict is computed as a predicate
of the transcript (α, β, γ).

1.1 Fiat–Shamir NIZK and Signatures

We briefly review both the main applications of the FS transform below.

– NIZK. A NIZK is a non-interactive protocol in which the prover—holding
a witness w for membership of a statement x in some NP -language L—can
convince the verifier—holding just x—that x ∈ L, by sending a single message
π. NIZK should satisfy three properties. First, completeness says that an
honest prover holding a valid witness (almost) always convinces an honest
verifier. Second, soundness says that a malicious prover should not be able to
convince the honest verifier into accepting a false statement, i.e. a statement
x �∈ L; we speak of arguments (resp., proofs) when the soundness requirement
holds for all computationally bounded (resp., computationally unbounded)
provers. Third, zero-knowledge requires that a proof does not reveal anything
about the witness beyond the validity of the statement being proven.

Apart from being a fascinating topic, NIZK have been demonstrated to
be extremely useful for cryptographic applications (see, e.g., [11,12,22,24,28,
36]). NIZK require a setup assumption, typically in the form of a common
reference string (CRS).

Starting with a 3PC protocol, the FS transform makes it a NIZK by having
the prover compute the verifier’s challenge as a hash of the commitment α via
some hash function H (with “hash key” hk); this results in a single message
π = (α, β, γ), where β = H(hk, α), that is sent from the prover to the verifier.2

(The description of the hash function, i.e. key hk, is included as part of the
CRS.)

– Signatures. Digital signatures are among the most important and well-
studied cryptographic tools. Signature schemes allow a signer (holding a pub-
lic/secret key pair (pk, sk)) to generate a signature σ on a message m, in such
a way that anyone possessing the public key pk can verify the validity of
(m,σ). Signatures must be unforgeable, meaning that it should be hard to
forge a signature on a “fresh” chosen message (even after seeing polynomially
many signatures on possibly chosen messages).

1 There are over 3.000 Google-Scholar-known citations to [26], as we type.
2 The value β is typically omitted from the proof, as the verifier can compute it by

itself.

200 A. Mittelbach and D. Venturi

Starting with a 3PC protocol, the FS transform makes it a signature by
having the signer compute the verifier’s challenge as a hash of the commitment
α, concatenated with the message m, via some hash function H (with “hash
key” hk); this results in a signature σ = (α, β, γ), where β = H(hk, α||m).

1.2 Positive and Negative Results

We refer to the non-interactive system obtained by applying the FS transform
to a 3PC protocol (i.e., a NIZK or a signature scheme) as the FS collapse.
A fundamental question in cryptography is to understand what properties the
initial 3PC protocol and the hash function should satisfy in order for the FS
collapse to be a NIZK argument or a secure signature scheme. This question has
been studied extensively in the literature; we briefly review the current state of
affairs below.

Positive Results. All security proofs for the FS transform follow the random
oracle methodology (ROM) of Bellare and Rogaway [4], i.e., they assume that
the function H behaves like an external random function accessible to all parties
(including the adversary). In particular, a series of papers [1,26,40,42] establishes
that the FS transform yields a secure signature scheme in the ROM provided that
the starting 3PC is a passively secure identification scheme. The first definition of
NIZK in the ROM dates back to [4] (where a particular protocol was analyzed);
in general, it is well known that, always in the ROM, the FS transform yields a
NIZK satisfying sophisticated properties such as simulation-soundness [25] and
simulation-extractability [6].

Barak et al. [3] put forward a new hash function property (called entropy
preservation3) that allows to prove soundness of the FS collapse without ran-
dom oracles; their result requires that the starting 3PC protocol is statistically
sound, i.e. it is a proof. Dodis et al. [21] show that such hash functions exist if a
conjecture on the existence of certain “condensers for leaky sources” turns out
to be true. Canetti et al. [13] study the correlation intractability of obfuscated
pseudorandom functions and show a close connection between entropy preser-
vation and correlation intractability, but it remains open whether their con-
struction achieves entropy preservation or, in fact, whether entropy-preserving
hash functions exist in the standard model. A negative indication to this question
was recently presented by Bitansky et al. [7] who show that entropy-preservation
security cannot be proven via a black-box reduction to a cryptographic game.

Negative Results. It is often difficult to interpret what a proof in the ROM means
in the standard model. This is not only because concrete hash functions seem
far from behaving like random oracles, but stems from the fact that there exist
cryptographic schemes that can be proven secure in the ROM, but are always
insecure in the standard model [14].
3 Entropy preservation roughly says that for all efficient adversaries that get a uni-

formly random hash key hk and produce a correlated value α, the conditional
Shannon entropy of β = H(hk, α) given α, but not hk, is sufficiently large.

Fiat–Shamir for Highly Sound Protocols Is Instantiable 201

The FS transformation is not an exception in this respect. In their study
of “magic functions”, Dwork et al. [23] establish that whenever the initial 3PC
protocol satisfies the zero-knowledge property, its FS collapse can never be (com-
putationally) sound for any implementation of the hash function. Goldwasser and
Kalai [29], building on previous work of Barak [2], construct a specially-crafted
3PC argument for which the FS transform yields an insecure signature scheme
for any standard model implementation of the hash function.

Bitansky et al. [8] and Dachman-Soled et al. [18] (see also [7]) show an unprov-
ability result that also covers 3PC proofs. More in detail, [8] shows that the FS
transform cannot always preserve soundness when starting with a 3PC proof,
under a black-box reduction to any falsifiable assumption (even ones with an
inefficient challenger). [18] shows a similar black-box separation (although only
for assumptions with an efficient challenger) for any concrete proof that is honest-
verifier zero-knowledge against sub-exponential size distinguishers. In a related
paper, Goyal et al. [30] obtain a negative result for non-interactive information-
theoretically secure witness indistinguishable arguments.

1.3 Our Contributions

The negative results show that, for certain classes of interactive protocols, the
FS transform cannot be instantiated in the standard model. We initiate the
study of complementary positive results, namely, studying classes of interactive
protocols where the FS transform does have a standard-model instantiation. We
show that for a class of “highly sound” protocols that we define, instantiating
the FS transform via a q-wise independent hash function yields both a NIZK
argument in the CRS model and a secure signature scheme. In the case of NIZK,
we get a weaker “q-bounded” zero-knowledge flavor where the simulator works
for all adversaries asking an a-priori bounded number of queries q; in the case of
signatures, we get the weaker notion of random-message unforgeability against
q-bounded random message attacks, where the forger can observe signatures on
random messages and has to produce a forgery on a fresh random message.

Very roughly, highly sound protocols are a special class of 3PC arguments and
identification schemes satisfying three additional properties: (P1) The honest
prover computes the commitment α independently of the instance being proven
and of the corresponding witness; (P2) The soundness error of the protocol is
tiny, in particular the ratio between the soundness error and the worst-case prob-
ability of guessing a given commitment is bounded-away from one; (P3) Honest
conversations between the prover and the verifier on common input x can be
simulated knowing just x, and moreover the simulator can fake α independently
of x itself.

We are not aware of natural protocols that are directly highly sound accord-
ing to our definition. (But we will later discuss that, e.g., the Lapidot-Shamir
protocol [37] partially satisfies our requirements.) Hence, the question is whether
such highly sound protocols exist and, if so, which languages and protocols lie
in this class. We answer this question in the affirmative in the CRS model and
under strong assumptions. Namely, assuming indistinguishability obfuscation,

202 A. Mittelbach and D. Venturi

puncturable pseudorandom functions and equivocal commitments, we build a
sequence of two compilers that transform any three-move interactive protocol
with instance-independent commitments (i.e., property P1) into a compiled pro-
tocol in the CRS model that satisfies the required properties. Noteworthy, our
compilers are language-independent, and we know that assuming one-way per-
mutations three-move interactive protocols with instance-independent commit-
ments exist for all of NP .

Our result avoids Dwork et al. [23], because we start from a protocol that is
honest-verifier zero-knowledge rather than fully zero-knowledge. Note that our
approach also circumvents the negative result of [8,30] as our technique applies
only to a certain class of 3PC arguments. Furthermore, we circumvent the black-
box impossibility result [18] by using complexity leveraging and sub-exponential
security assumptions.

1.4 Perspective

The main contribution from our perspective is to initiate the study of restricted
positive standard-model results for the FS transform. Namely, we show that for
the class of highly sound protocols, the FS transform can be instantiated via a
q-wise independent hash function (both for the case of NIZK and signatures).
This is particularly interesting given the negative results in [7,23,29].

An important complementary question is, of course, to study the class of
highly sound protocols. Under strong assumptions, our compilers show that
highly sound protocols exist for all languages in NP . However, the compilers
yield protocols in the CRS model and, at least for the case of NIZK, as we
discuss now, one has to take care in interpreting positive results about the FS
transform applied to 3PC protocols in the CRS model.

It is well known that in the CRS model one can obtain a NIZK both for
NP -complete languages [10] and for specific languages [31]. Let L be a language.
Given a standard 3PC protocol for proving membership of elements x ∈ L, and
with transcripts (α, β, γ), consider the following dummy “compiler” for obtaining
a 3PC protocol for L in the CRS model. The first message α∗ and the second
message β∗ of the compiled protocol are equal to the empty string ε; the third
message is a NIZK proof γ∗ that x ∈ L. Note that the FS transform is easily seen
to be secure (without random oracles) on such a dummy protocol, the reason
for this being that α∗ and β∗ play no role at all in the obtained 3PC! Further
note that this artificial “compiler” actually ignores the original protocol, and
hence it does not rely on any of the security features of the underlying protocol.
Regrettably, the above example does not shed any light on the security of the
FS transform and when it applies.

In turn, our result for FS NIZK has two interesting features. First, our instan-
tiation of the FS transform works even if the starting 3PC is in the standard
model (provided that it satisfies P1-P3). Second, our CRS-based compiler is
very different from the above dummy compiler in that we do not simply “throw
away” the initial 3PC but instead rely on all of its properties in order to obtain
a 3PC satisfying P1-P3.

Fiat–Shamir for Highly Sound Protocols Is Instantiable 203

We remark that the above limitation does not apply to our positive result for
FS signatures, since assuming the initial 3PC protocol works in the CRS model
does not directly yield a dummy “compiler” as the one discussed above.

1.5 Related Work

On Fiat–Shamir. It is worth mentioning that using indistinguishability obfus-
cation and puncturable PRFs one can directly obtain a NIZK for all NP as
shown by Sahai and Waters [43]. However, our main focus is not on construc-
tions of NIZK, rather we aim at providing a better understanding of what can be
proved for the FS transform without relying on random oracles. In this respect,
our result shares similarities to the standard-model instantiation of Full-Domain
Hash given in [34].

In the case of NIZK, an alternative version of the FS transform is defined
by having the prover hashing the statement x together with value α, in order
to obtain the challenge β. The latter variant is sometimes called the strong FS
transform (while the variant we analyze is known as the weak FS transform).
Bernhard et al. [6] show that the weak FS transform might lead to problems in
certain applications where the statement to be proven can be chosen adversarially
(this is the case, e.g., in the Helios voting protocol). Unfortunately, it seems hard
to use our proof techniques to prove zero-knowledge of the strong FS collapse,
because the simulator for zero-knowledge does not know the x values in advance.

Our positive result for FS signatures shares some similarities with the work
of Bellare and Shoup [5], showing that “actively secure” 3PC protocols yield a
restricted type of secure signature schemes (so-called two-tier signatures) when
instantiating the hash function in the FS transform via any collision-resistant
hash function.

Compilers. Our approach of first compiling any “standard” 3PC protocol into
one with additional properties that suffice for proving security of the FS trans-
form is similar in spirit to the approach taken by Haitner [32] who shows how
to transform any interactive argument into one for which parallel repetition
decreases the soundness error at an exponential rate.

Lindell recently used a similar idea to first transform a 3PC into a new proto-
col in the CRS model, and then show that the resulting 3PC when transformed
with (a slightly modified version of) Fiat–Shamir satisfies zero-knowledge in the
standard model [38]. His approach was later improved in [17]. We note that the
use of a CRS-enhanced interactive protocol is only implicit in Lindell’s work
as he directly analyzes the collapsed non-interactive version. On the downside,
to prove soundness Lindell still requires (non-programmable) random oracles.
We note that one of our compilers is essentially equivalent to the compiler used
by Lindell. Before Lindell’s work, interactive protocols in the CRS model have
also been studied by Damg̊ard who shows how to build 3-round concurrent zero-
knowledge arguments for all NP -problems in the CRS model [20].

204 A. Mittelbach and D. Venturi

Alternative Transforms. Other FS-inspired transformations were considered in
the literature. For instance Fischlin’s transformation [27] (see also [19]) yields
a simulation-sound NIZK argument with an online extractor; as mentioned
above, Lindell [38] defines a twist of the FS transform that allows to prove zero-
knowledge in the CRS model, and soundness in the non-programmable random
oracle model. It is an interesting direction for future research to apply our tech-
niques to analyze the above transformations without random oracles.

Concurrent Paper. Recently, in a concurrent and independent work, Kalai, Roth-
blum and Rothblum [35] showed a positive result for FS in the plain model,
under complexity assumptions similar to ours. More in details, assuming sub-
exponentially secure indistinguishability obfuscation, input-hiding obfuscation
for the class of multi-bit point functions, and sub-exponentially secure one-way
functions, [35] shows that, when starting with any 3PC proof, the FS transform
yields a two-round computationally-sound interactive protocol.

On the positive side, their result applies to any 3PC proof (while ours only
covers a very special class of 3PC arguments). On the negative side, their tech-
nique only yields a positive result for a two-round interactive variant of the FS
transform (while our techniques apply to the full FS collapse, both for NIZK
and for signatures).

1.6 Roadmap

Section 2 contains a detailed informal overview of our positive result for the case
of FS NIZK; the corresponding formal definitions and proofs are deferred to the
full version [39]. We present an overview of our compilers for obtaining highly
sound protocols (in the CRS model) in Sect. 3; a more detailed treatment appears
in the full paper [39], where we also explain how to adapt our techniques to the
case of FS signatures.

2 FS NIZK

Fiat–Shamir Transform. The Fiat–Shamir (FS) transform [26] is a generic way
to remove interaction from certain argument systems, using a hash function.
For the rest of the paper, we consider only interactive arguments consisting
of three messages—which we denote by (α, β, γ)—where the first message is
sent by the prover. We also focus on so-called public-coin protocols where the
verifier’s message β is uniformly random over some space B (e.g., β ∈ {0, 1}k for
some k ∈ N). We call this a 3PC argument system for short, and denote it by
Π = (K,P,V); here K generates a CRS crs,4 whereas P and V correspond to the
prover and verifier algorithms.

4 For standard-model 3PC arguments, the CRS contains the empty string ε. The
reason for considering a CRS is that, looking ahead, our compilers yield highly
sound protocols in the CRS model.

Fiat–Shamir for Highly Sound Protocols Is Instantiable 205

A 3PC Argument and its FS collapse

Prover: P(crs, x, w; r) Verifier: V(crs, x)

. Initial 3PC with CRS crs .

α ← P0(crs, x, w; r) α

β β ←$V0(1
λ)

γ ← P1(crs, x, w, β; r) γ

↓
V1(crs, x, (α, β, γ)) = d

. .

Prover: PFS(crs, x, w; r) Verifier: VFS(crs, x)

. FS collapse with CRS crs = (crs, hk) .

α ← P0(crs, x, w; r)

β ← H.Eval(hk, α)

γ ← P1(crs, x, w, β; r) π := (α, γ)

β ← H.Eval(hk, α)

↓
V1(crs, x, (α, β, γ)) = d

Fig. 1. Message flow of a typical 3PC argument system and its corresponding FS
collapse.

For 3PC arguments we can think of the prover algorithm as being split into
two sub-algorithms P := (P0,P1), where P0 takes as input a pair (x,w) and
outputs the prover’s first message α (the so-called commitment) and P1 takes as
input (x,w) as well as the verifier’s challenge β to produce the prover’s second
message γ (the so-called response). In general P0 and P1 are allowed to share the
same random tape, which we denote by r ∈ {0, 1}∗. In a similar fashion we can
think of the verifier’s algorithm as split into two sub-algorithms V = (V0,V1),
where V0 outputs a uniformly random value β ∈ B and V1 is deterministic and
corresponds to the verifier’s verdict (i.e., V1 takes as input x and a transcript
(α, β, γ) and returns a decision bit d ∈ {0, 1}).

The FS transform allows to remove interaction from any 3PC argument sys-
tem for a polynomial-time computable relation R as specified below (see also
Fig. 1). Let Π = (K,P,V) be the initial 3PC argument system. Additionally, con-
sider a family of hash functions H consisting of algorithms H.KGen, H.kl, H.Eval,

206 A. Mittelbach and D. Venturi

H.il and H.ol; here H.il and H.ol correspond, respectively, to the bit lengths of
messages α and β (as a function of the security parameter λ).

The FS collapse of Π using H is a triple of algorithms ΠFS,H :=
(KFS,PFS,VFS):

– Algorithm KFS takes as input the security parameter, samples hk ←$H.
KGen(1λ), crs ←$K(1λ), and publishes crs := (crs, hk).

– Algorithm PFS takes as input (crs, x, w) and runs P0(crs, x, w) in order to
obtain the commitment α ∈ {0, 1}H.il(λ); next PFS defines the challenge as
β := H.Eval(hk, α) and runs P1(crs, x, w, β) in order to obtain the response γ.
Finally PFS outputs π := (α, γ).

– Algorithm VFS takes as input (crs, x, π) and returns 1 if and only if verifier
V1(crs, x, (α, β, γ)) = 1 where β = H.Eval(hk, α).

Briefly, the result of Fiat and Shamir says that if Π is a (standard-model) 3PC
argument satisfying completeness, computational soundness, and computational
honest-verifier zero-knowledge (in addition to a basic requirement on the min-
entropy of the prover’s commitment), its FS collapse ΠFS,H is a NIZK argument
system if H is modeled as a random oracle.

Our standard-model security proof proceeds in two modular steps. In the
first step, we prove completeness and soundness of a “selective” variant of the
FS transform; in the second step we analyze the standard FS transform using
complexity leveraging. Details follow.

The Selective FS Transform. Consider a 3PC argument for a language L. For a
hash family H, consider the following (interactive) selective adaptation of the FS
transformation: The prover sends the commitment α as in the original protocol;
the verifier, instead of sending the challenge β ∈ B directly, forwards a honestly
generated hash key hk; finally the prover uses (hk, α) to compute β = H(hk, α)
and then obtains the response γ as in the original 3PC argument.

In the full paper [39] we prove that if the starting 3PC protocol has instance-
independent commitments, is complete and computationally sound, so is the one
obtained by applying the selective FS transform. The idea is to use a “program-
mable” q-wise independent hash function (e.g., a random polynomial of degree
q − 1 over a finite field) to “program” the hash function up-front; note that
commitment α is computed before the hash key is generated and hence, we can
embed the challenge value β into the hash function such that it maps α to β
and reduce to the soundness of the underlying 3PC argument.

Complexity Leveraging. The second step in proving soundness of the FS collapse
(we discuss zero-knowledge below) consists in applying complexity leveraging so
that we can swap the order of α and β. Hence, this step can only be applied to
protocols satisfying an additional property as we discuss next.

Let Π be the initial 3PC argument, and denote by Π its corresponding FS
collapse. Given a malicious prover P∗ breaking soundness of Π, we construct a
prover P attacking soundness of the selective FS transform as follows. P picks
a random α from the space of all possible commitments, and forwards α to

Fiat–Shamir for Highly Sound Protocols Is Instantiable 207

the verifier; after receiving the challenge hash key hk, prover P runs P∗ which
outputs a proof (α∗, γ∗). Prover P simply hopes that α∗ = α, in which case it
forwards γ∗ to the verifier (otherwise it aborts). It follows that if the selective
FS has soundness roughly s(λ) (for security parameter λ), the soundness of Π
is roughly s(λ) divided by the probability of guessing correctly the value α∗ in
the first step of the reduction.

Note that for the above argument to give a meaningful bound, we need that
the soundness of Π is bounded away from one. This leads to the following (non-
standard) requirement that the initial 3PC argument should satisfy.

P2:
(λ) := s(λ)/2−a(λ) < 1, where s(λ) is the soundness error and a(λ)
is the maximum bit-length associated to the commitment α.

Zero-Knowledge. We assume that the initial 3PC is honest-verifier zero-
knowledge (HVZK)—i.e., that it is zero-knowledge for honest verifiers. We
need to show that Π satisfies zero-knowledge. Here, we require two additional
properties as explained below; interactive protocols obeying the first property
already appeared in the literature under the name of “input-delayed” proto-
cols [15,16,33].

P1: The value α output by the prover is computed independently of the
instance x being proven (and of the corresponding witness w).

P3: The value α output by the simulator is computed independently of
the instance x being proven.

We now discuss the reduction for the zero-knowledge property and explain where
P1 and P3 are used. We need to construct an efficient simulator that is able to
simulate arguments for adaptively chosen (true) statements—without knowing
a witness for such statements. The output of the simulator should result in
a distribution that is computationally indistinguishable from the distribution
generated by the real prover. The simulator gets extra power, as it can produce a
“fake” CRS together with some trapdoor information tk (on which the simulator
can rely) such that the “fake” CRS is indistinguishable from a real CRS.

In order to build some intuition, it is perhaps useful to recall the random-
oracle-based proof for the zero-knowledge property of the FS transform. There,
values αi and βi corresponding to the i-th adversarial query are computed by
running the HVZK simulator and are later “matched” relying on the program-
mability of the random oracle. Roughly speaking, in our standard-model proof
we take a similar approach, but we cannot use adaptive programming of the
hash function. Instead, we rely on P1 and P3 to program the hash function in
advance. More specifically, the trapdoor information will consist of q random
tapes ri (one for simulating each proof queried by the adversary) and the corre-
sponding q challenges βi (that can be pre-computed as a function of ri, relying
on P1). Since the challenges have the correct distribution, we can use the under-
lying HVZK simulator to simulate the proofs; here is where we need P3, as the

208 A. Mittelbach and D. Venturi

simulator has to pre-compute the values αi in order to embed the βi values on
the correct points.

A caveat is that our simulator needs to know the value of q in advance; for
this reason we only get a weaker bounded flavor of the zero-knowledge property
where there exists a “universal” simulator that works for all adversaries asking
q queries, for some a-priori fixed value of q. Note, however, that the CRS—as it
contains the description of a q-wise independent hash function—needs to grow
with q, and hence bound q should be seen as a parameter of the construction
rather than a parameter of the simulator.

It is an interesting open problem whether this limitation can be removed, thus
proving that actually our transformation achieves unbounded zero-knowledge.

Putting it Together. We will call 3PC arguments satisfying properties P1-P3
above (besides completeness and soundness) highly sound 3PC arguments. The
theorem below summarizes the above discussion. Its proof is deferred to the full
version [39].

Theorem 1. Let Π = (K,P,V) be a highly sound 3PC argument system for
an NP language L, and H be a programmable q-wise independent hash function.
Then, the FS collapse ΠFS,H of Π using H yields a q-bounded NIZK argument
system for L.

3 Compilers

It remains to construct a highly sound 3PC argument, and to understand which
languages admit such arguments. Unfortunately we do not know of a natural
highly sound 3PC argument. However, we do know of protocols that partially
satisfy our requirements. For instance the classical 3PC argument for quadratic
residuosity due to Blum [9] satisfies P1, and moreover can be shown to achieve
completeness, soundness, and HVZK, but it does not directly meet P2 and P3.
Another interesting example is given by the Lapidot-Shamir protocol for the
NP -complete problem of graph Hamiltonicity [37] (see also [41, Appendix B]).
Here, the prover’s commitment consists of a (statistically binding) commitment
to the adjacency matrix of a random k-vertex cycle, where k is the size of the
Hamiltonian cycle.5 Hence, the protocol clearly satisfies P1. Additionally the
simulator fakes the prover’s commitment by either committing to a random k-
vertex cycle, or by committing to the empty graph. Hence, the protocol also
satisfies P3. As a corollary, we know that assuming non-interactive statistically
binding commitment schemes (which follow from one-way permutations [9]),
for all languages in NP , there exist 3PC protocols that satisfy completeness,
computational soundness, and HVZK, as well as P1 and P3.

Motivated by the above examples, we turn to the question whether it is
possible to compile a 3PC protocol (with completeness, soundness, and HVZK)
satisfying either P1 or P1 and P3, into a highly sound argument. Our compilers
5 Note that the value k can be included in the language, and thus considered as public.

Fiat–Shamir for Highly Sound Protocols Is Instantiable 209

rely on several cryptographic tools (including indistinguishability obfuscation,
puncturable PRFs, complexity leveraging and equivocal commitment schemes),
and yield a 3PC in the CRS model; note that this means that we obtain an
interactive protocol with a CRS even if the original protocol was in the standard
model. It is an intriguing open problem if a highly sound argument can be
constructed in the standard model, or whether a CRS is, in fact, necessary.

3.1 First Compiler

We present a compiler that turns a 3PC argument (possibly in the CRS model)
with instance-independent commitments and HVZK (i.e., properties P1 and
P3) into a 3PC argument which has the soundness-error-to-guessing ratio (i.e.,
property P2) needed for the complexity leveraging in our positive result for
FS NIZK. The idea for the compiler is to provide a mechanism that allows to
produce many challenges β given only a single commitment α. To this effect the
CRS will contain two obfuscated circuits to help the prover and the verifier run
the protocol. For obfuscation we use an indistinguishability obfuscator. The first
circuit C0 is used by the prover to generate a pre-commitment α∗ which it sends
over to the verifier. The verifier will then use the second circuit C1 and run it
on α∗ to obtain multiple commitments. For this C1[k, crs] has a PRF key (for
function F) and the crs for algorithm P0 of the underlying protocol hardcoded,
and computes � commitments as follows:

C1[k, crs](α∗)

for i = 1, . . . , � do

r∗ ← F.Eval(k, α∗ + i)

α[i] ← P0(crs; r
∗)

return α

Using C1 the compiled verifier V∗ can generate � real commitments α[1] to
α[�] given the single (short) pre-commitment α∗. The verifier will then run the
underlying verifier V on all these commitments to receive β1, . . . , β� which it
sends back to the prover.

In order to correctly continue the prover’s computation (which was started
on the verifier’s side) the compiled prover P∗ needs to somehow obtain the ran-
domnesses r∗ used within C1. For this, we will build a backdoor into C1 which
allows to obtain the randomness r∗ if one knows the randomness that was used
to generate α∗. Once the prover has recovered randomnesses r∗

1 , . . . , r
∗
� it can run

the underlying prover P on this randomness and the corresponding challenges
βi to get correct values γi which it sends back to the verifier. In a final step
verifier V∗ runs the original verifier on the implicit transcripts (αi, βi, γi)i=1,...,�

and returns 1 if and only if the original verifier returns 1 on all the transcripts.

210 A. Mittelbach and D. Venturi

Compiler Description. Let Π = (K,P,V) be a 3PC argument system
where the prover generates instance-independent commitments and that sat-
isfies instance-independent HVZK. Let rl denote an upper bound on the ran-
domness used by the prover (i.e., P.rl) and HVZK simulator (i.e., S.rl). Let F1

be a puncturable pseudorandom function which is length doubling. Let F2 be a
puncturable pseudorandom function with F2.il = F1.ol and with F2.ol = rl. Let
� be a polynomial. We construct an argument system Π∗ = (K∗,P∗,V∗) in the
CRS model as follows. On input the security parameter K∗ will construct an
obfuscation of the following two circuits:

K∗(1λ)

crs ←$K(1λ)

k1 ←$F1.KGen(1
λ)

k2 ←$F2.KGen(1
λ)

C0 ←$ iO(C0[k1])

C1 ←$ iO(C1[k1, k2, �, crs])

crs ← (crs, C0, C1)

return crs

C0[k1](τ)

α∗ ← F1.Eval(k1, τ)

return α∗

C1[k1, k2, �, crs](α∗, τ)

for i = 1, . . . , � do

r∗[i] ← F2.Eval(k2, α
∗ + i)

α [i] ← P0(crs; r
∗[i])

if α∗ �= F1.Eval(k1, τ) then

r∗[i] ← ⊥
return (α , r∗)

Note that we assume that the underlying protocol is in the CRS model and has
a setup algorithm K. If this is not the case one recovers the transformation for
a 3PC in the standard model by assuming that K outputs the empty string ε.
The compiled 3PC Π∗ = (K∗,P∗,V∗) is then constructed as in Fig. 2.

Security Analysis. It remains to show that the compiled protocol is compu-
tationally sound, achieves (bounded) instance-independent HVZK, is complete,
and that it has instance-independent commitments and a sufficient soundness-
error-to-guessing ratio:

Theorem 2. Let Π = (K,P,V) be a 3PC argument system for a polynomial-
time computable relation R such that Π is c-complete and s-sound and has
instance-independent commitments and satisfies q-bounded instance-independent
HVZK. Let iO be an indistinguishability obfuscator and F1 and F2 puncturable
pseudorandom functions. Let � be a polynomial. Then, in the CRS model, the
compiled protocol Π∗ = (K∗,P∗,V∗) is (� · c)-complete, (2 · s−� + 2F1.ol(λ)s−�)-
sound, has a worst-case collision probability of 2−F1.il(λ), and satisfies q/�-
bounded instance-independent HVZK. Furthermore the compiled protocol has
instance-independent commitments.

The proof to the above theorem appears in the full version [39].

3.2 Second Compiler

Next, we present a compiler that turns a 3PC protocol with HVZK and instance-
independent commitments (i.e., property P1) into a 3PC protocol in the CRS

Fiat–Shamir for Highly Sound Protocols Is Instantiable 211

Π∗ = (K∗,P∗,V∗)

crs ←$K∗(1λ)

. 3PC with CRS .

Prover: P∗(crs, x, w; rτ) Verifier: V∗(crs, x)

(crs, C0, C1) ← crs (crs, C0, C1) ← crs

τ ← rτ

α∗ ← C0(τ)
α∗

(α, ⊥) ← C1(α
∗, ⊥)

for i = 1, . . . , � do

βi ←$V0(1
λ)

β1, . . . , β�

(α, r∗) ← C1(α
∗, τ)

for i = 1, . . . , � do

γ1 ← P1(crs, x, w, βi; r
∗[i])

γ1, . . . , γ�
success ← 0

for i = 1, . . . , � do

success ← success+

V1(crs, x, (α[i], βi, γi))

↓
success = �

Accept if, and only
if, all � proofs verify.

Recovered random-
ness that was used in
the creation of α by
circuit C1.

Fig. 2. The compiled protocol from Sect. 3.1 to turn a 3PC protocol into one that has
a small soundness-error-to-guessing ratio (in the CRS model).

model that has instance-independent commitments and instance-independent
simulators, that is, the HVZK simulator produces α and β independently of the
instance (i.e., property P3).

The idea is inspired by Lindell’s compiler [38]. Namely, we replace α by a
commitment α∗ to α where the deployed commitment scheme can come in one
of two modes: if honestly generated the commitment will be perfectly binding
thus allowing us to directly argue that the resulting compiled protocol retains
soundness and completeness. On the other hand, the commitment scheme can
be initialized to be equivocal (looking indistinguishably from the honest commit-
ment setup) such that a simulator can open a commitment to arbitrary values.
This way, the simulator can first commit to an arbitrary α∗ and then, using the
trapdoor in the CRS, it can open α∗ to some arbitrary value α. In particular, in
the reduction to the HVZK property, the verifier can choose α∗ before knowing
the statement that the simulator of the underlying protocol needs in order to
produce α.

We refer the reader to the full paper [39] for a formal description of the above
compiler, and for its security analysis.

212 A. Mittelbach and D. Venturi

4 Fiat–Shamir Signatures

Our techniques can be generalized in order to obtain a standard model instan-
tiation of FS signatures, under similar complexity assumptions as in the case of
FS NIZK. In particular it is possible to identify a certain class of so-called highly
sound identification (ID) schemes, such that one can instantiate the hash func-
tion in the corresponding FS collapse via a q-wise independent hash function. As
discussed in the introduction, the obtained signature scheme satisfies the weaker
property of q-bounded random-message unforgeability against random-message
attacks. Since the actual details of the instantiation are somewhat similar to the
case of FS NIZK discussed above, we refer the reader to the full paper [39] for a
more throughout discussion.

Acknowledgments. We are grateful to Christina Brzuska for her active participation
in this research. Her ideas, feedback and suggestions played an essential part in the
development of this work.

We thank Nils Fleischhacker and Markulf Kohlweiss for helpful comments on the
presentation. We are grateful to an anonymous reviewer of TCC 2016 for pointing
out that the constant hash function already suffices for obtaining a 1-bounded NIZK
assuming properties P1-P3 and thereby inspiring using a q-wise independent hash-
function as instantiation. Before, we used a more complicated construction based on
indistinguishability obfuscation and puncturable PRFs. We also thank the reviewer
for pointing out the Blum-Lapidot-Shamir protocol, and we thank Ivan Visconti for
helpful discussions and clarifications on the Blum-Lapidot-Shamir protocol.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002)

2. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual
Symposium on Foundations of Computer Science, 14–17 October 2001, pp. 106–
115. IEEE Computer Society Press, Las Vegas (2001)

3. Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowl-
edge. In: 44th Annual Symposium on Foundations of Computer Science, 11–14
October 2003, pp. 384–393. IEEE Computer Society Press, Cambridge (2003)

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 93: 1st Conference on Computer
and Communications Security, 3–5 November 1993, pp. 62–73. ACM Press, Fairfax
(1993)

5. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
Fiat-Shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

6. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the Fiat-Shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)

Fiat–Shamir for Highly Sound Protocols Is Instantiable 213

7. Bitansky, N., Dachman-Soled, D., Garg, S., Jain, A., Kalai, Y.T., López-Alt, A.,
Wichs, D.: Why “Fiat-Shamir for proofs” lacks a proof. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 182–201. Springer, Heidelberg (2013)

8. Bitansky, N., Garg, S., Wichs, D.: Why Fiat-Shamir for proofs lacks a proof. Cryp-
tology ePrint Archive, Report 2012/705 (2012). http://eprint.iacr.org/2012/705

9. Blum, M.: Coin flipping by telephone. In: Gersho, A. (ed.) Advances in Cryptology
- CRYPTO 1981. ECE Report 82–04, pp. 11–15. U.C. Santa Barbara, Department
of Electrical and Computer Engineering, Santa Barbara, CA, USA (1981)

10. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions (extended abstract). In: 20th Annual ACM Symposium on Theory of Com-
puting, 2–4 May 1988, pp. 103–112. ACM Press, Chicago (1988)

11. Camenisch, J.L., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005)

12. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

13. Canetti, R., Chen, Y., Reyzin, L.: On the correlation intractability of obfuscated
pseudorandom functions. Cryptology ePrint Archive, Report 2015/334 (2015).
http://eprint.iacr.org/

14. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th Annual ACM Symposium on Theory of Computing,
23–26 May 1998, pp. 209–218. ACM Press, Dallas (1988)

15. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved
OR-composition of sigma-protocols. In: Kushilevitz, E., et al. (eds.) TCC 2016-
A. LNCS, vol. 9563, pp. 112–141. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49099-0 5

16. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/offline
or composition of sigma protocols. Cryptology ePrint Archive, Report 2016/175
(2016). http://eprint.iacr.org/

17. Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost
as efficient and general as the Fiat-Shamir transform without programmable ran-
dom oracles. In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9563, pp.
83–111. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 4

18. Dachman-Soled, D., Jain, A., Kalai, Y.T., López-Alt, A.: On the (in)security of
the Fiat-Shamir paradigm, revisited. IACR Cryptology ePrint Archive 2012, 706
(2012). http://eprint.iacr.org/2012/706

19. Dagdelen, Ö., Venturi, D.: A second look at Fischlin’s transformation. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp.
356–376. Springer, Heidelberg (2014)

20. Damg̊ard, I.B.: Efficient concurrent zero-knowledge in the auxiliary string model.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000)

21. Dodis, Y., Ristenpart, T., Vadhan, S.: Randomness condensers for efficiently sam-
plable, seed-dependent sources. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 618–635. Springer, Heidelberg (2012)

22. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd Annual ACM Symposium on Theory of Computing, 6–8 May 1991, pp.
542–552. ACM Press, New Orleans (1991)

http://eprint.iacr.org/2012/705
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-49099-0_5
http://dx.doi.org/10.1007/978-3-662-49099-0_5
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-49099-0_4
http://eprint.iacr.org/2012/706

214 A. Mittelbach and D. Venturi

23. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th
Annual Symposium on Foundations of Computer Science, 17–19 October 1999,
pp. 523–534. IEEE Computer Society Press, New York (1999)

24. Elkind, E., Lipmaa, H.: Interleaving cryptography and mechanism design. In: Juels,
A. (ed.) FC 2004. LNCS, vol. 3110, pp. 117–131. Springer, Heidelberg (2004)

25. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012)

26. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

27. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005)

28. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual
ACM Symposium on Theory of Computing, 25–27 May 1987, pp. 218–229. ACM
Press, New York City (1987)

29. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm.
In: 44th Annual Symposium on Foundations of Computer Science, 11–14 October
2003, pp. 102–115. IEEE Computer Society Press, Cambridge (2003)

30. Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero
knowledge. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory of
Computing, May 31–June 3 2014, pp. 515–524. ACM Press, New York (2014)

31. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

32. Haitner, I.: A parallel repetition theorem for any interactive argument. In: 50th
Annual Symposium on Foundations of Computer Science, 25–27 October 2009, pp.
241–250. IEEE Computer Society Press, Atlanta (2009)

33. Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party computa-
tion. Cryptology ePrint Archive, Report 2016/074 (2016). http://eprint.iacr.org/

34. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

35. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. Cryptology ePrint Archive, Report 2016/303 (2016).
http://eprint.iacr.org/

36. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 468–498. Springer, Heidelberg (2015)

37. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991)

38. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS and
non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part I. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015)

39. Mittelbach, A., Venturi, D.: Fiat-Shamir for highly sound protocols is instantiable.
IACR Cryptology ePrint Archive 2016, 313 (2016). http://eprint.iacr.org/2016/
313

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2016/313
http://eprint.iacr.org/2016/313

Fiat–Shamir for Highly Sound Protocols Is Instantiable 215

40. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993)

41. Ostrovsky, R., Visconti, I.: Simultaneous resettability from collision resistance.
Electronic Colloquium on Computational Complexity (ECCC) 19, 164 (2012).
http://eccc.hpi-web.de/report/2012/164

42. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

43. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory
of Computing, May 31–June 3 2014, pp. 475–484. ACM Press, New York (2014)

http://eccc.hpi-web.de/report/2012/164

Verifiable Zero-Knowledge Order Queries
and Updates for Fully Dynamic Lists and Trees

Esha Ghosh1(B), Michael T. Goodrich2, Olga Ohrimenko3,
and Roberto Tamassia1

1 Department Computer Science, Brown University, Providence, USA
{esha ghosh,roberto tamassia}@brown.edu

2 Department Computer Science, University of California, Irvine, USA
goodrich@uci.edu

3 Microsoft Research, Cambridge, UK
oohrim@microsoft.com

Abstract. We propose a three-party model for maintaining a dynamic
data structure that supports verifiable and privacy-preserving (zero-
knowledge) queries. We give efficient constructions supporting this model
for order queries on data organized in lists, trees, and partially-ordered
sets of bounded dimension.

1 Introduction

Cloud computing enables clients to outsource storage, computation, and ser-
vices to online service providers, thus benefiting from scalability, availability,
and usage-driven pricing. However, there are also some challenges that arise
from cloud computing, such as the difficulty of maintaining assurances of data
integrity and privacy as physical possession of data is delegated to a cloud storage
provider. Thus, we are interested in the study of technical solutions that allow a
cloud storage provider to prove the integrity of client data and the adherence to
privacy policies concerning this data. Of course, in order for any such technical
solution to be practically viable, the efficiency of such cloud-based integrity and
privacy solutions should be a major factor in evaluating them.

The need for simultaneously providing efficiency, integrity, and privacy in
cloud-based outsourced storage has motivated a considerable amount of recent
research on a three-party model, where a data owner uploads a database to a
cloud server so that a group of clients can interact with the server to execute
queries on the outsourced database (e.g., see [14–16,21,22,29]). This approach
has resulted in some interesting solutions, but most existing techniques appear
to be limited to static datasets, where data is uploaded only once by the data
owner and never updated, in spite of the fact that data changes over time in
many practical applications. There is only a small amount of prior work that
addresses integrity and privacy on dynamic outsourced data, and, to be best

Research supported in part by the U.S. National Science Foundation and by the
Kanellakis Fellowship at Brown University.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 216–236, 2016.
DOI: 10.1007/978-3-319-44618-9 12

Verifiable Zero-Knowledge Order Queries and Updates 217

of our knowledge, all of this prior work considers only set membership and set
algebra queries (e.g., see [7,13,25,33]).

In this paper, we provide a framework and formal security definitions for
the problem of ensuring integrity and privacy in cloud services operating on
dynamic data, with an efficient construction that can process a rich set of queries.
The queries include membership and order queries on dynamic lists, trees, and
partially-ordered sets of bounded dimension.

Our first main contribution is to formally define a model we call dynamic
privacy-preserving authenticated data structure (DPPADS). In this model, a data
owner outsources his data structure to a server who answers queries issued
by clients. The owner can at any point update the data structure. The server
answers queries in such a way that the clients (1) can verify the correctness
of the answers but (2) do not learn anything about the data structure or the
updates besides what can be inferred from the answers. In other words, the
privacy property ensures that even a malicious client learns nothing about any
update, unless she specifically queries for the updated item before and after the
update. For example, consider the case when a new element, x, is inserted into a
dataset. If a client queried for x before and after this update, she will only learn
that x has been added to the database, but nothing else about the database.

The dynamic behavior of data structures raises challenges from a definitional
point of view since an adversary (i.e., a malicious client) may choose update
operations and later query the system to see their effect on nearby data, for
example. Pöhls and Samelin [33] consider updates in the three-party model only
for positive membership queries and their definition is specific to their data
structure and cannot be easily generalized to support richer data structures and
queries. Thus, we feel a richer framework, like DPPADS, is warranted.

Our DPPADS model strives to capture realistic uses of cloud services from
the data owner’s perspective. First, the owner’s online presence is required only
if he needs to update the data. Hence, clients’ queries are performed solely by the
server. Second, access control policies on the data can be seamlessly integrated
with our model since integrity tokens sent to the clients to enable verification of
query answers do not leak any information about the non-queried data.

Our second main contribution is to show how to efficiently instantiate
DPPADS with membership and order queries on lists, trees, and partial orders
of bounded dimension. Order queries are fundamental mechanisms for seeking
relative order information about the elements of a partial order. In the simplest
case, an order query for two elements, u and v, of a list L asks whether u precedes
or follows v in L. Consider now an ordered tree, T , i.e., a rooted tree where a
left-to-right ordering is defined among the descendants of each node. An order
query on two nodes u and v, of T asks which one of the following relations holds:
u is above v; u is below v; u is to the left of v; or u is to the right of v. The
first two cases occur when one of u and v is a descendant of the other and the
last two cases occur when u and v are in distinct subtrees of their least common
ancestor. We note that none of the previous works supported dynamic behavior
on such a rich set of structural data with integrity and privacy guarantees.

218 E. Ghosh et al.

Our model implies that the client should be able to verify the data she
queried with authentication tokens produced in part by the server (as the owner
is not present in the query phase). Building constructions with such authentica-
tion tokens is challenging for several reasons. Beside being hard to forge, these
tokens should bare no information about the rest of the data, not even the size
of the data; only in this case we can protect privacy of non-queried data. Fur-
thermore, dynamic datasets require corresponding updates to these tokens as a
consequence. Hence, these tokens should be easily updatable.

Existing work comes short in achieving all of the requirements above at once.
For example, commitments and zero-knowledge proofs [17] present a naive but
unfortunately inefficient solution. In particular, a naive approach would require
space and setup cost quadratic in the list/tree size and, hence, very inefficient.
Though more efficient solutions exist [10,14], they are set in the case where data
does not change after the owner uploads it and they consider only sets and lists
as underlying datasets. An attempt to cover dynamic datasets with integrity
and privacy guarantees was made by Liskov [25] and Catalano and Fiore [7].
These constructions are set in a weaker privacy model which we elaborate fur-
ther in Sect. 2. In fact, the authors comment on this limitation themselves: “Ide-
ally, the adversary should learn nothing more than the values of elements for
which a proof has been obtained (and possibly updated), and that updates have
occurred. However, we have not been able to realize this full level of security, and
instead offer a weaker but acceptable notion of security.” [25] (We also note that
the question of efficient constructions of zero-knowledge data structures more
complex than sets is left open in [33]; we answer it affirmatively here.)

Due to these limitations, we take an algorithmic approach to this problem
and identify efficient dynamic constructions for lists and trees. Then we integrate
the lightweight cryptographic primitive developed in [14] with our algorithmic
constructions in a novel way. But this alone was not sufficient to achieve our
strong notion of privacy for updates that are influenced by a strong adversary. To
this end, we have developed a technique of systematic, periodic re-randomization
to achieve strong privacy guarantees. However, for some application, even this
technique is not sufficient as the information that “an update has occurred” can
itself be regarded as sensitive information. This leakage is out of the scope of
the privacy definitions, but can be crucial for some applications from a practical
point of view. We address this issue further and propose a technique that can
be executed periodically in order to hide the existence of an update.

Our constructions strive to achieve good performance for all the three parties.
In particular, all the parties run in optimal time except for a logarithmic (in the
size of the source data structure) runtime overhead for the server. The client-
server interaction consists of a single round: the client sends a query and the
server returns the answer and the proof. The proof size and client verification
time are proportional to the answer. The owner interacts with the server only
when he needs to make an update to his data. We consider two types of owners:
one that can keep a copy of the data structure (DPPADS) and one that prefers
not to (due to limited storage resources) (SE-DPPADS). In the first case, the

Verifiable Zero-Knowledge Order Queries and Updates 219

owner performs an update operation himself, in time linear in the size of a batch
update. In the second case, he outsources the update operation to the server
and later verifies it, incurring a logarithmic multiplicative cost in the size of the
source data structure. In both cases, the owner performs constant-time updates,
this time is amortized over the number of elements queried or updated since the
last update. Our contributions can be summarized as follows:

– We formally define the DPPADS model for a dynamic privacy-preserving
authenticated data structure that supports zero-knowledge proofs for queries
and zero-knowledge updates (Sect. 3).

– We give an efficient construction of a DPPADS in the Random Oracle
model for a list that supports order queries and updates (Sect. 4).

– We give an overview of a space-efficient variant of the DPPADS model in
Sect. 4 and defer the detailed description to the technical report [12].

– We present an efficient extension of our DPPADS construction to trees and
partial orders of bounded dimension (Sect. 5).

2 Related Work

We describe the related primitives and discuss how we compare with them.
Detailed comparison of privacy properties and the asymptotic complexity of our
constructions with the most efficient constructions in the literature is in Table 1.

Traditional authenticated data structures (ADS) [11,18,31,37] are often set
in the three party model with a trusted owner, a trusted client and a malicious
server; the owner outsources the data to the server and later the client interacts
with the server to run queries on the data. The security requirement of such
constructions is data authenticity for the client against the server. This integrity
requirement is the same in our model. However, since the client is trusted, the
strong privacy requirement of our model is usually violated by the ADS proofs.
For example, Merkle Hash Tree (MHT) [26] reveals the number of elements in
the dataset and the proof path in a MHT reveals order information.

Authenticity and privacy together were considered in the two-party model
of zero knowledge set (ZKS) [8,10,24,27] introduced in [27] and later used in
knowledge lists [14], statistically hiding sets [34] and consistent query proto-
cols [30]. In this model a malicious prover commits to a database in the setup
phase and later a malicious verifier queries it. The prover and the verifier are
non-colluding. The prover may try to give answers inconsistent with the com-
mitted database, while the verifier may try to learn information beyond query
answers. In this paper, we study a three-party model which can be seen as a
relaxation of the ZKS model with similar privacy and integrity guarantees. That
is, the committer is “honest” and the (malicious) prover is different from the
committer. The three party model leads to efficiency enhancements since one
can use primitives with a trapdoor (like bilinear aggregate signature in our case)
as opposed to trapdoorless hash and commitments and generic zero-knowledge
proofs. As a result, efficient constructions were proposed for positive mem-
bership queries [1,2,38], dictionary queries on sets [16,29], range queries [15],

220 E. Ghosh et al.

order queries and statistics on lists [6,9,14,22,23,32,35]. However, all of these
models consider a static dataset. We enhance this three-party model to support
a fully dynamic dataset and formalize the notion of privacy and integrity.

Updates in both of the above models have received only limited attention.
The notion of updatable zero knowledge set was first proposed in [25]with two
definitions: transparent and opaque. The transparent definition explicitly reveals
that an update has occurred and the verifier can determine whether previously
queried elements were updated. Constructions satisfying transparent updates are
given in [7,25]. Our zero-knowledge definition in Sect. 3 supports opaque updates
in the three-party model, which is also satisfied by our constructions.

In the three-party model, updates on a set were considered in the recent work
of [33]. This work supports privacy-preserving verification of positive member-
ship only (i.e., a proof is returned only when the queried elements are members
of the given set). Their formal definition for updates is based on an indistin-
guishability game and is specific to their data structure and cannot be easily
extended to support richer data structures and queries. In comparison, we pro-
pose simulation based definition and our definition are not tailored to any spe-
cific data structure. Moreover, the construction of [33] supports only two update
operations: addition of new elements and merge of two sets. Here, we consider
operations on lists, trees and support addition, deletion and replace operations.

We compare privacy properties and the asymptotic complexity of our con-
structions with the static [14] and updatable [33] constructions in Table 1. We
note that, the static construction for order queries in [14] was shown to outper-
form the existing static constructions of [6,9,20,21,32,35,36]. We show that the
performance of our construction for queries is the same as that of [14]. More-
over, our list construction is the first to support fully dynamic zero-knowledge
updates (inserts and deletes) and zero-knowledge queries (order and positive
membership) with near optimal proof size and complexities for all three parties.
In particular, the time and space complexities for setup and verification and
space complexity of query phase are optimal.

Finally, we note that our work on privacy-preserving updates is not to be con-
fused with history independent data structures (HIDSs) [28]. HIDS is concerned
with the leakage one obtains when she looks at the layout of a data structure
before and after a sequence of updates on it. In our model, the client (i.e., the
adversary) obtains only some content of the data structure and not the layout.
Furthermore, we require the client to be able to verify that query answers are
correct and not leak any information about the rest of the content.

3 Dynamic Privacy Preserving Authenticated Data
Structure (DPPADS)

An Abstract Data Type (ADT) is a data structure (DS) D with two types of
operations defined on it: immutable operations Q() and mutable operations U().
Q(D, δ) takes as input a query δ on the elements of D and returns the answer

Verifiable Zero-Knowledge Order Queries and Updates 221

Table 1. Comparison of the efficiency of the dynamic operations of our construction
with an existing updatable construction that supports privacy-preserving queries in
the three party model. All the time and space complexities are asymptotic. Notation:
n is the list size, m is the query size, L is the number of insertions/deletions in a
batch, M is the number of distinct elements that have been queried since the last
update (insertion/deletion), k is the security parameter. Wlog we assume list elements
are k bit long. Following the standard convention, we omit a multiplicative factor of
O(k) for element size in every cell. Assumptions: Strong RSA Assumption (SRSA);
Random Oracle Model (ROM); Division Intractible Hash Function (DIHF); n-Bilinear
Diffie Hellman Inversion Assumption (nBDHI); (SE-)DPPAL/T denotes (space effi-
cient) Dynamic Privacy Preserving Authenticated Lists and Trees. We use ñ to denote
min(m log n, n).

[14] [33] DPPAL/T SE-DPPAL/T

Zero-knowledge update � �
Transparent update � � �
Owner’s state size n n 1

Server storage size n n n n

Order query time ñ ñ ñ

Order verification time m m m

Positive membership query time ñ m ñ ñ

Positive membership verif. time m m m m

Proof size m m m m

Insertion time L L + M L log n + M

Deletion time L + M L log n + M

Assumptions ROM, nBDHI DIHF, SRSA ROM, nBDHI ROM, nBDHI

Assumptions ROM DIHF ROM ROM

nBDHI SRSA nBDHI nBDHI

and it does not alter D. U(D, u) takes as input an update request u (e.g., insert
or delete), changes D accordingly, and outputs the modified data structure, D′.

We present a three party model where a trusted owner generates an instanti-
ation of an ADT, denoted as (D, Q, U), and outsources it to an untrusted server
along with some auxiliary information. The owner also publicly releases a short
digest of D. The curious (potentially malicious) client(s) issues queries on the
elements of D and gets answers and proofs from the server, where the proofs are
zero-knowledge, i.e., they reveal nothing beyond the query answer. The client
can use the proofs and the digest to verify query answers. Additionally, the
owner can insert, delete or update elements in D and update the public digest
and the auxiliary information that the server holds. (In this model the owner
is required to keep a copy of D to perform updates, while in the space efficient
version the owner keeps only a small digest.) We also require the updates to be
zero-knowledge, i.e., an updated digest should be indistinguishable from a new
digest generated for the unchanged D.

222 E. Ghosh et al.

Model. DPPADS is a tuple of six probabilistic polynomial time algo-
rithms (KeyGen,Setup,UpdateOwner,UpdateServer,Query,Verify). We describe
how these algorithms are used between the three parties and give their API.

The owner uses KeyGen to generate the necessary keys. He then runs Setup to
prepare D0 for outsourcing it to the server and to compute digests for the client
and the server. The owner can update his data structure and make corresponding
changes to digests using UpdateOwner. Since the data structure and the digest
of the server need to be updated on the server as well, the owner generates
an update string that is enough for the server to make the update itself using
UpdateServer. The client can query the data structure by sending queries to the
server. For a query δ, the server runs Query and generates answer. Using its
digest, it also prepares a proof of the answer. The client then uses Verify to verify
the query answer against proof and the digest she has received from the owner
after the last update.

(sk, pk) ← KeyGen(1k) where 1k is the security parameter. KeyGen outputs a
secret key (for the owner) and the corresponding public key pk.

(stateO, digest0C , digest0S) ← Setup(sk, pk,D0) where D0 is the initial data struc-
ture. Setup outputs the internal state information for the owner stateO,
digests digest0C and digest0S for the client and the server, respectively.

(stateO, digestt+1
C ,Updt+1,Dt+1, ut) ← UpdateOwner(sk, stateO, digesttC , digesttS ,

Dt, ut,SIDt) where ut is an update operation to be performed on Dt. SIDt is
a session information and is set to the output of a function f on the queries
invoked since the last update (Setup is counted as the 0th update).
UpdateOwner returns the updated internal state information stateO, the
updated public/client digest digestt+1

C , update string Updt+1 that is used
to update digesttS and the updated Dt+1 := U(Dt, ut).

(digestt+1
S ,Dt+1) ← UpdateServer(digesttS ,Updt+1,Dt, ut) where Updt+1 is used

to update digesttS to digestt+1
S and ut is used to update Dt to Dt+1.

(answer, proof) ← Query(digesttS ,Dt, δ) where δ is a query on elements
of Dt, answer is the query answer, and proof is the proof of the answer.

b ← Verify(pk, digesttC , δ, answer, proof) with input arguments are defined above.
The output bit b is accept if answer = Q(Dt, δ), and reject, otherwise.

Our model also supports the execution of a batch of updates as a single oper-
ation, which may be used to optimize overall performance (Sect. 4). We note that
SID and f are introduced for efficiency reasons only. Intuitively, function f can
be instantiated in a way that helps reduce the owner’s work for maintaining
zero-knowledge property of each update. We leave f to be defined by a par-
ticular instantiation. Once defined, f remains fixed for the instantiation. Since
the function is public, anybody, who has access to the list of (authentic) queries
performed since the last update, can compute it.

A DPPADS has three security properties: completeness, soundness and zero-
knowledge.

Completeness dictates that if all three parties are honest, then for an
instantiation of any ADT, the client will always accept an answer to her query

Verifiable Zero-Knowledge Order Queries and Updates 223

from the server. Here, honest behavior implies that whenever the owner updates
the data structure and its public digest, the server updates D and its digest
accordingly and replies client’s queries faithfully w.r.t. the latest data structure
and digest.

Definition 1 (Completeness). For an ADT (D0, Q, U), any sequence of
updates u0, u1, . . . , uL on the data structure D0, and for all queries δ on DL:

Pr[(sk, pk) ← KeyGen(1k); (stateO, digest0C , digest0S) ← Setup(sk, pk,D0);{
(stateO, digestt+1

C ,Updt+1,Dt+1, ut) ←
UpdateOwner(sk, stateO, digesttC , digesttS ,Dt, ut,SIDt);

(digestt+1
S ,Dt+1) ← UpdateServer(digesttS ,Updt+1,Dt, ut);

}
0≤t≤L

(answer, proof) ← Query(digestLS ,DL, δ) :

Verify(pk, digestLC , δ, answer, proof) = accept ∧ answer = Q(DL, δ)] = 1.

Soundness protects the client against a malicious server. This property ensures
that if the server forges the answer to a client’s query, then the client will accept
the answer with at most negligible probability. The definition considers adver-
sarial server that picks the data structure and adaptively requests updates. After
seeing all the replies from the owner, it can pick any point of time (w.r.t. updates)
to create a forgery.

Since, given the server digest, the server can compute answers to queries
herself, it is superfluous to give Adv explicit access to Query algorithm.

Definition 2 (Soundness). For all PPT adversaries Adv and for all possible
valid queries δ on the data structure Dj of an ADT, there exists a negligible
function ν(.) such that, the probability of winning the following game is negligible:

Setup: Adv receives pk where (sk, pk) ← KeyGen(1k). Given pk, Adv picks an
ADT of its choice, (D0, Q, U) and receives the server digest digest0S for D0, where
(stateO, digest0C , digest0S) ← Setup(sk, pk,D0).

Query: Adv adaptively chooses a series of updates u1, u2, . . . , uL and correspond-
ing SIDs, where L = poly(k). For every update request Adv receives an update
string. Let Di+1 denote the state of the data structure after the (i)th update
and Updi+1 be the corresponding update string received by the adversary, i.e.,
(stateO, digesti+1

C ,Updi+1,Di+1, ui) ← UpdateOwner(sk, stateO, digestiC , digestiS ,
Di, ui,SIDi).

Response: Finally, Adv outputs (Dj , δ, answer, proof), 0 ≤ j ≤ L, and wins the
game if answer �= Q(Dj , δ) and Verify(pk, digestjC , δ, answer, proof) = accept.

Zero-knowledge captures privacy guarantees about the data structure against
a curious (malicious) client. Recall that the client receives a proof for every
query answer. Periodically she also receives an updated digest, due to the owner

224 E. Ghosh et al.

making changes to D. Informally, (1) the proofs should reveal nothing beyond
the query answer, and (2) an updated digest should reveal nothing about update
operations performed on D. This security property guarantees that the client
does not learn which elements were updated, unless she queries for an updated
element (deleted or replaced), before and after the update.

Definition 3 (Zero-Knowledge). Let RealE,Adv and IdealE,Adv,Sim be defined
as follows where, wlog the adversary is asks only for valid data and update
queries.1

RealE,Adv(1
k) IdealE,Adv,Sim(1k)

The challenger, C, runs KeyGen(1k) to generate

sk, pk, sends pk to Adv1.

Sim1 generates a public key, pk, sends it to Adv1
and keeps a state, stateS .

Given pk, Adv1 picks an ADT (D0, Q, U) of its choice.

Given D0, C runs Setup(sk, pk,D0) and sends digest0C
to Adv1.

Sim1 generates digest0C , sends it to Adv1, updates

stateS . (It is not given D0.)

With access to Adv1’s state, Adv2 adaptively queries {q1, q2, . . . , qM}, M = poly(k):

Let Dt−1 denote the state of the data structure at the time of qi.)

On data query qi:

C runs Query algorithm for the query on Dt−1 and

the corresponding digest as its parameters. C
returns answer and proof to Adv2

Given the answer to the query, Q(Dt−1, qi), and

stateS , Sim2 generates answer and proof, sends

them to Adv2 and updates its state.

On update query qi:

C runs UpdateOwner algorithm on qi and returns the

public digest digesttC

Given stateS , Sim2 returns updated digest digesttC
and updates its state. (It is not given the

update query qi.)

Adv2 outputs a bit b.

A DPPADS E is zero-knowledge if there exists a PPT algorithm Sim =
(Sim1,Sim2) s.t. for all malicious stateful adversaries Adv = (Adv1,Adv2) there
exists a negligible function ν(.) s.t.

|Pr[RealE,Adv(1k) = 1] − Pr[IdealE,Adv,Sim(1k) = 1]| ≤ ν(k).

We note that SID argument to UpdateOwner need not be used explicitly in the
definition: Adv implicitly controls the input of f by choosing queries on D (recall
that SID = f(. . .)), while the challenger and the simulator know all the queries
and can compute f themselves.

Comparison with the update definitions of [7,25]: Liskov [25] introduced
two notions of update (w.r.t. a zero-knowledge database): Opaque: an adver-
sary should learn nothing more than the values of queried elements and the
fact that an update has occurred. Transparent: in addition to what is revealed
in the opaque update, an adversary learns the pseudonym of an updated key;
pseudonyms are generated deterministically when keys are added to the data-
base and do not change. The constructions in [25] and [7] achieve only the weaker

1 This is not a limiting constraint, as we can easily force this behavior by checking if
a query/update is valid in the Real game.

Verifiable Zero-Knowledge Order Queries and Updates 225

of the two, that is, they satisfy the transparent definition. Our zero-knowledge
definition is close to the opaque definition where an updated client digest is indis-
tinguishable from a fresh digest, and old proofs are not valid after an update.

4 Dynamic Privacy-Preserving Authenticated List

In this section we instantiate a DPPADS with a list (an ordered set of distinct
elements) and refer to it as dynamic privacy-preserving authenticated list. We
first describe the cryptographic primitives and assumptions that our construction
relies on for security. We then explain how to maintain labeling of a dynamic
list and how we use it to achieve efficient updates in our construction.

Preliminaries. Let L denote a list and Elements(L) denote the unordered set
corresponding to L. We refer to element’s position in the list as it’s rank. We
define order queries on the elements of a list as δ. The query answer, answer, is the
elements of δ rearranged according to their order in L, i.e., answer = πL(δ). For
example, with L = {a, b, c, d, e} and δ = (d, a, e), answer is {a, d, e}. An update
operation on a list can be one of the following: linsertafter(x, y): insert element
x /∈ L after element y ∈ L; ldelete(x): delete element x from L; lreplace(x′, x):
replace element x′ ∈ L with element x /∈ L.

Bilinear Maps: Let k be the security parameter, p be a large k-bit prime and n =
poly(k). G and G1 are multiplicative groups of prime order p. A bilinear map
e : G×G → G1 is a map with properties: (1) ∀u, v ∈ G and ∀a, b ∈ Z, e(ua, vb) =
e(u, v)ab; (2) e(g, g) �= 1 where g is a generator of G. As is standard, we assume
that group action on G,G1 and the bilinear map e can be computable in one
unit time. We measure time complexity in terms of number of group actions.

Bilinear Aggregate Signature Scheme [5]: Given signatures σ1, . . . , σn on distinct
messages M1, . . . ,Mn from a user, it is possible to aggregate these signatures into
a single short signature σ such that it (and the n messages) convince the verifier
that the user indeed signed the n original messages. The scheme guarantees
that σ is valid iff the aggregator used all σi’s to construct it.

Hardness Assumption: Let p be a large k-bit prime where k ∈ N is a security
parameter. Let P ∈ N be polynomial in k, p = poly(k). Let e : G × G → G1 be a
bilinear map (as defined above) and g be a random generator of G. We denote a
probabilistic polynomial time (PPT) adversary A as a probabilistic polynomial
time Turing Machine running in time poly(k).

Definition 4 (P -Bilinear Diffie Hellman Inversion (P -BDHI) [4]). Let s
be a random element of Z

∗
p and P be a positive integer. Then, for every PPT

adversary A there exists a negligible function ν(.) such that: Pr[s $←− Z
∗
p; y ←

A(〈g, gs, gs2
, . . . , gsP 〉) : y = e(g, g)

1
s] ≤ ν(k).

226 E. Ghosh et al.

Online List Labeling (or File Maintenance) Problem [3,19,39]: In online list
labeling, a mapping from a dynamic set of n elements is to be maintained to the
integers in the universe U = [1, N] such that the order of the elements respect
the order of U . The integers, that the elements are mapped to, are called tags.
The requirement of the mapping is to match the order of the tags with the order
of the corresponding elements. Moreover, the mapping has to be maintained
efficiently as the list changes.

We use the order data structure OD presented in [3] for online list labeling.
We briefly describe OD and summarize its performance here. Let U = [1, N] be
the tag universe size and n be the number of elements in the dynamic set to be
mapped to tags from U , where N is a function of n and is set to be a power of
two. Then we consider a complete binary tree on the tags of U , where each leaf
represents a tag form the universe. Note that, this binary tree is implicit, it is
never explicitly constructed, but it is useful for the description and analysis.

At any state of the algorithm, n of the leaves are occupied, i.e., the tags used
to label list elements. Each internal node encloses a (possible empty) sublist of
the list, namely, the elements that have the tags corresponding to the leaves
below that node. The density of a node is the fraction of its descendant leaves
that are occupied. Then overflow threshold for the density of a node is defined
as follows. Let α be a constant between 1 and 2. For a range of size 20 (leaf), the
overflow threshold τ0 is set to 1. Otherwise, for a range of size 2i, τi = τi−1

α =
α−i. A range is in overflow if its density is above its overflow threshold. OD(n)
supports the following operations:
insertafter(x, y): To insert an element x after y, do the following: (1) Examine the
enclosing tag ranges of y. (2) Calculate the density of a tag range by traversing
the elements within the tag range. (3) Relabel the smallest enclosing tag range
that is not overflowing. (4) Return the relabeled tags and the tag of x.
delete(x): Delete x from the list and mark the corresponding tag as unoccupied.
tag(x): Return the tag of element x.

We note that the original list together with a sequence of updates on it
deterministically define the tags of all elements in OD.

Complexity: Initially, we set N = (2n)
1

1−log α , nmin = n/2 and nmax = 2n, where
n is the number of elements. As elements are inserted into or deleted from the
list, the data structure can generate tags while nmin ≤ n ≤ nmax. If at any
point, the current number of elements, n, falls below nmin or exceeds nmax, the
data structure is rebuilt for the new value of n and N is recomputed. Hence, the
algorithm needs log n

1−log α bits to represent a tag. The rebuild introduces a constant
amortized overhead (over the insert and delete operations). Hence, OD(n) uses
O(log n) bits per tag and O(n log n) bits for storing all tags. OD(n) has O(1)
amortized insert and delete time, and O(1) time for tag.

Dynamic Construction. Our construction of DPPAL uses as a starting point a
static privacy-preserving authenticated list [14]. At a high level, the construction
of PPAL works as follows: every element of the static list is associated with a

Verifiable Zero-Knowledge Order Queries and Updates 227

member witness that encodes the rank of the element (using a component of
the bilinear accumulator public key) “blinded” with randomness. Every pair of
element and its member witness is signed by the owner and the signatures are
aggregated using bilinear aggregate signature scheme (see above) to generate
the public list digest. The client and the server receive the list digest, while the
server also receives the signatures, member witnesses and the randomness used
for blinding. Given a query from the client on a sublist of the source list, the
server returns this sublist ordered as it is in the list with a corresponding proof
of membership and order. The server proves membership of every element in
the query using the homomorphic nature of bilinear aggregate signature, that is,
without the owner’s involvement. The server then uses the randomness and the
bilinear accumulator public key to compute the order witness. The order witness
encodes the distance between two elements, i.e., the difference between element
ranks, without revealing anything about it.

Although this construction is efficient for static lists, data structures are often
dynamic. The intuition behind our modifications is as follows. We first notice that
the rank information of each element used in the construction of [14] can actually
be replaced with any tag that respects the rank ordering. For example, let the
rank of elements x and y be 5 and 6, respectively. We can replace this information
with tag(x) and tag(y) as long as the following hold: 1) tag(x) < tag(y) and 2)
there is no other element in the list whose tag falls between tag(x) and tag(y).
The tag generation algorithm of the order labeling data structure OD(n) has
exactly this property: elements’ tags respect the order of elements’ ranks in the
list. Hence, we use OD(n) to generate tags for the elements (instead of their
ranks) to maintain list order. This enables efficient updates, albeit, in a non
privacy-preserving way (e.g., information about ranks as well as which elements
were updated is revealed). To this end, we develop a re-randomization method
(explained in the subsequent Update Phase) to preserve privacy.

Our construction consists of instantiating the algorithms of DPPADS: Setup,
UpdateOwner, UpdateServer, Query and Verify. We describe each algorithm in
this section and give their pseudo-code in Algorithms 1–6. We use the following
notation. H : {0, 1}∗ → G: cryptographic hash function that will be modeled
as a random oracle in the security analysis; all arithmetic/group operations are
performed mod p. System parameters are (p,G,G1, e, g,H), where p,G,G1, e, g
are defined in Sect. 4. L0 is the input list of size n = poly(k), where xi’s are
distinct. OD(n) is used to generate the tags for the list elements and supports
insertafter, delete, and tag operations.

KeyGen and Setup Phases: These algorithms proceed as follows. The owner ran-
domly picks s, v ∈ Z

∗
p and ω as part of his secret key sk and publishes pk = gv as

his public key as in [14]. But instead of using rank information, the owner inserts
the elements of L0 in an empty order data structure O := OD(n) respecting their
order in L0 and generating tag for each element. Hence, the order induced by
the tags of the elements is the list order. For every element xi ∈ L0, the owner
uses the following GenAuthTokens procedure: it generates fresh randomness ri to
blind tag(xi); computes member witness txi∈L0 as gstag(xi)ri and its signature σxi

228 E. Ghosh et al.

Algorithm 1. (stateO, digest0C , digest0S) ← Setup(sk, pk, L0) where L0 = {x1, . . . , xn}.

1: Set the internal state variable stateO := 〈L0, ⊥, ⊥, ⊥〉. salt ← (H(ω))v where ω is a nonce in sk.
% salt is treated as a list identifier that protects against mix-and-match attacks and from
revealing that the queried elements represent the complete list.

2: % Generate auxiliary data structure and authenticated information.
(σL0 ,O, ΣL0 , ΩL0) ← build(sk, stateO, L0)

3: stateO := 〈L0,O, ∀xi ∈ L0 : (txi∈L0 , σxi
, ri)〉 and digest0C := σL0

4: digest0S := 〈pk, σL0 , 〈g, gs, gs2 , . . . , gsn 〉, ΣL0 , ΩL0 〉
5: return (stateO, digest0C , digest0S)

as H(txi∈Lt
||xi)

v. The owner then executes standard signature aggregation by
multiplying element signatures into a list signature σL0 . To preserve privacy of
the size of the list, he further multiplies the list signature with salt = (H(ω))v.

The owner sends σL0 to the client, as the client digest digest0C . To the server,
he sends L0 and a digest digest0S which contains the tag, the random value used
for blinding, the member witness and the signature for every element in the list
(we refer to these four units as authentication units of an element). He also sends
gs0

, . . . , gsn

, that help the server compute proofs for the client during the query
phase. The owner saves L0,O, digest0S in his state variable stateO, which he later
uses to perform updates.

Update Phase: UpdateOwner (Algorithm 3) lets the owner perform update ut

on his outsourced data structure and propagate the update in the digests. For
the actual update, the owner uses O to efficiently compute the new tag of an
element and update the tags of the elements affected by the update. (We note
this may include rebuild of O itself when the size of the list either falls below n/2
or grows above 2n.) The owner then updates all the digests and authentication
units that have to be updated due to the tag change. For the server, the owner
computes the member witnesses and signatures since these operations rely on
the secret keys. As we argue later, updating only elements whose tags have been
modified due to the update is not sufficient to obtain zero-knowledge update. To
this end, the owner has to also rerandomize any authentication units that were
sent to the client. We elaborate on each step in the update below.

The update of authentication units depends on which one of the three update
operations was performed on the list. If a new element x has been inserted in
the list (i.e., linsertafter operation), then the owner recomputes all witnesses
and signatures of elements in Y where Y is a set of elements whose tags were

Algorithm 2. (σLt ,O, ΣLt , ΩLt) ← build(sk, stateO, Lt) where sk contains v and ω
and Lt = {x1, . . . , xn′}.

1: % Build the order labeling data structure O to generate tag(xi) ∀xi ∈ Lt.
O := OD(n′) where |Lt| = n′

2: For every i < i ≤ n′: O.insertafter(xi−1, xi).
3: For every xi ∈ Lt: ri, txi∈L0 , σxi

← GenAuthTokens(xi)
4: Compute list digest signature σLt ← salt ×∏xi∈Lt

σxi
, where salt = (H(ω))v .

5: ΣLt := 〈∀xi ∈ Lt : (txi∈Lt , σxi
), H(ω)〉 and ΩLt := 〈∀xi ∈ Lt : (ri, tag(xi)〉

6: return (σLt ,O, ΣLt , ΩLt)

Verifiable Zero-Knowledge Order Queries and Updates 229

Algorithm 3. (stateO, digestt+1
C ,Updt+1, Lt+1, ut) ← UpdateOwner(sk, stateO,

digesttC , digesttS , Lt, ut, SIDt), where digesttC and digesttS are the client and the server
digests corresponding to Lt, respectively; Lt is the list after (t − 1)th update, ut is the
update request (either linsertafter, ldelete or lreplace); and SIDt contains all the elements
that were accessed by queries since update operation ut−1.

1: Lt+1 := U(Lt, ut) % Update the list.
2: If n/2 ≤ |Lt+1| ≤ 2n, then:
3: Initialize Y := {} % Elements to refresh.
4: Initialize σtmp := 1 % Accumulates changes to list signature.
5: Initialize xnew := ⊥ % New element to add to list.
6: If ut = linsertafter(x, y):
7: Y ← O.insertafter(x, y) % Elements whose tags changed after insertion.
8: xnew ← x
9: Else if ut = lreplace(x′, x): % Replace x′ with x, where x /∈ Lt.

10: Replace x′ with x in O.
11: σtmp ← σ−1

x′ % Remove a signature of the old element x′.
12: xnew ← x
13: Else if ut = ldelete(z) % Delete z, its signature and auth. info.
14: O.delete(z)

15: σtmp ← σ−1
z (gvr′

), where r′ $←− Z
∗
p

16: % ΣUpd(+), ΩUpd(+) contain information of elements to be added/replaced:
17: ΣUpd(+) := 〈〉 and ΩUpd(+) := 〈(r′, ⊥)〉
18: % ΣUpd(−), ΩUpd(−) contain information of elements to be deleted:
19: ΣUpd(−) := 〈(tz∈Lt , σz)〉 and ΩUpd(−) := 〈(rz, tag(z))〉.
20: If xnew �= ⊥ % Generate auth. info. for new element.

21: r
$←− Z

∗
p

22: Generate member witness txnew∈Lt+1 ← (gstag(xnew)
)r.

23: Compute signature σxnew ← H(txnew∈Lt+1 ||xnew)v .

24: σtmp ← σtmpσxnew % Add a signature of new element.
25: ΣUpd(+) := 〈(txnew∈Lt+1 , σxnew)〉 and ΣUpd(−) := 〈〉.
26: ΩUpd(+) := 〈(rxnew , tag(xnew))〉 and ΩUpd(−) := 〈〉.
27: (σrefresh, ∀w ∈ SIDt ∪ Y : (rw, σw)) ← refresh(sk, stateO, SIDt ∪ Y)
28: ΣUpd(+) := ΣUpd(+) ∪ 〈∀w ∈ SIDt ∪ Y : (tw∈Lt+1 , σw)〉
29: ΩUpd(+) := ΩUpd(+) ∪ 〈∀w ∈ SIDt ∪ Y : (rw, tag(w))〉
30: σLt+1 ← σLtσtmpσrefresh % Update signature.

31: Updt+1 := 〈σLt+1 , ⊥, 〈ΣUpd(+), ΣUpd(−)〉, 〈ΩUpd(+), ΩUpd(−)〉〉
32: Else: % Update ut significantly changed list size.
33: (σLt+1 ,O, ΣLt+1 , ΩLt+1) ← build(sk, stateO, Lt+1) % Regenerate auth. info.

34: ΣUpd(+) := 〈∀w ∈ Lt+1 : (tw∈Lt+1 , σw)〉 and ΣUpd(−) = 〈〉.
35: ΩUpd(+) := 〈∀w ∈ Lt+1 : (ri, tag(wi))〉 and ΩUpd(−) = 〈〉.
36: Updt+1 := {σLt+1 , 〈g, gs, gs2 , . . . , gsn′

〉, 〈ΣUpd(+), ΣUpd(−)〉, 〈ΩUpd(+), ΩUpd(−)〉}.

37: digestt+1
C := σLt+1

38: stateO := 〈Lt+1,O, ∀xi ∈ Lt+1 : (txi∈Lt+1 , σxi
, ri)〉

39: return (Lt+1, digestt+1
C , ut,Updt+1, stateO)

updated due to insertion (recall that Y is of amortized size O(1)). The owner
also computes the member witness and a signature for the new x from scratch
(called, xnew in the pseudo-code). Note that this step is equivalent to the steps
in Setup for generating authentication units, only in this case it is for elements
in Y and element xnew instead of the whole list. The owner then propagates these
changes to the list digest signature σLt

as follows: (1) replaces signatures on the
elements that have changed (i.e., elements in Y); (2) adds a signature for xnew.

If an element x has been replaced with x′ (i.e., lreplace operation), then the
new member witness and signature is computed for x′. The owner propagates

230 E. Ghosh et al.

Algorithm 4. (digestt+1
S , Lt+1) ← UpdateServer(digesttS ,Updt+1, Lt, ut), where ut is

an update to perform on Lt and Updt+1 contains updates on authentication information
generated by the owner.

1: Update the list: Lt+1 := U(Lt, ut) where |Lt+1| = n′.
2: Parse Updt+1 as 〈σLt+1 , T , ΣUpd, ΩUpd〉.
3: Compute ΣLt+1 : add/replace/delete elements from ΣUpd in ΣLt .

4: Compute ΩLt+1 : add/replace/delete elements from ΩUpd in ΩLt .

5: If T �= ⊥: % ut caused regeneration of tags for all elements, hence authenticated information
needs to be replaced with new one

6: digestt+1
S := 〈pk, σLt+1 , 〈g, gs, gs2 , . . . , gsn′

〉, ΣLt+1 , ΣLt+1 〉.
7: Else % ut does not cause regeneration of tags for all elements

8: digestt+1
S := (pk, σLt+1 , 〈g, gs, gs2 , . . . , gsn 〉, ΣLt+1 , ΩLt+1) % where gsi

are from digesttS

9: return (Lt+1, digestt+1
S)

these change to the list digest signature σLt
as follows: (1) adds a signature

for x′; (2) removes the signature of the old element x.
In case when element z is deleted, the owner removes the signature of the

old element in the list digest signature σLt
and re-randomizes the list digest

signature with fresh randomness r′. Notice that, in case of insert and replace
operations, the list digest signature gets re-randomized implicitly, since the new
membership witness gets refreshed with fresh randomness.

As described so far, UpdateOwner has a viable leakage channel. Recall that
an update operation changes authentication units of elements in the update ut

and Y. Hence, if the client accesses an element in Y, before and after the
update, she will notice that its authentication unit has changed and infer that
a new element was inserted nearby. This violates the zero-knowledge property
of DPPADS: the client should not learn information about updates to elements
she did not query explicitly.

UpdateOwner achieves the zero-knowledge property as follows. We set f to be
a function that takes client queries that have occurred since the last update and
returns a set of elements accessed by them; recall that these are the elements
whose authentication units are known to the client. Given these elements in
UpdateOwner’s input SIDt, the owner can recompute the member-witnesses of
each of them using fresh randomness, update their signatures and the list digest
with GenAuthTokens. We define a subroutine refresh which calls GenAuthTokens
for each element in Y and SIDt, and returns σrefresh which contains old signatures
to be removed and new ones to be added to σLt+1 . Since the member-witnesses
and signatures of the elements in SIDt are changed independently of ut, seeing
refreshed units after the update reveals no information to the client. We define f
this way for optimization. In a naive implementation, where f is defined as a
constant function, or where SIDt is not used, the UpdateOwner algorithm has to
randomize member-witnesses and signatures for all the list elements.

Finally, the owner updates stateO and sends ut and authentication units
(updated due to ut and refresh) in Updt+1 to the server and updated list
digest σLt+1 to the client. The server runs UpdateServer (Algorithm 4) to

Verifiable Zero-Knowledge Order Queries and Updates 231

Algorithm 5. (answer, proof) ← Query(digesttS , Lt, δ), where δ = (z1, . . . , zm),
s.t. zi ∈ Lt, is the queried sublist and Lt is the most recent list.

1: answer = πLt (δ) = {y1, . . . , ym};
2: proof = 〈Σanswer, Ωanswer〉:
3: Σanswer := 〈σanswer, T, λL′ 〉 where L′ = Lt \ δ and:
4: σanswer ← ∏

yj∈answerσyj
. % Digest signature for the query elements.

5: T = (ty1∈Lt , . . . , tym∈Lt). % Member witnesses for query elements.
6: Let S be a set of random elements w/o tags, i.e., introduced in ΩLt due to ldelete.

7: The member verification unit: λL′ ← H(ω) × g
∑

r∈S r ×∏x∈L′ H(tx∈Lt ||x) where H(ω)

comes from digesttS .
8: Ωanswer = (ty1<y2 , ty2<y3 , . . . ,tym−1<ym):

9: For every j ∈ [1, m − 1]: Let i′ := tag(yj) and i′′ := tag(yj+1), and r′ := ΩL[i′]−1 and

r′′ := ΩL[i′′]. Compute tyj<yj+1 ← (gsd
)r′r′′

where d = |i′ − i′′|.
10: return (answer, proof)

Algorithm 6. b ← Verify(pk, digesttC , δ, answer, proof).

1: Compute ξ ← ∏
yj∈δH(tyj∈Lt ||yj)

2: e(σanswer, g)
?
= e(ξ, pk) % Verify answer digest is signed by the owner

3: e(σLt , g)
?
= e(σanswer, g) × e(λL′ , pk). % Verify answer is a part of the source list

4: ∀j ∈ [1, m − 1]: e(tyj∈Lt ,tyj<yj+1)
?
= e(tyj+1∈Lt , g). % Verify the returned order

5: If all equalities hold, then accept. Else reject.

propagate the update at its end. It uses ut to update the list and Updt+1 to
add/substitute/remove authentication units in its digest.

Query Phase: The server has to perform two tasks when it receives query δ. It
has to answer the query and compute the proof that the answer is correct. For
the former step, it simply reorders the elements in δ according to their order
in Lt, sets answer to πLt

(δ). The latter step consists of proving that elements
in answer are in Lt (i.e., membership) and that they are ordered correctly.

The detailed query phase is presented in Algorithm 5. In order to prove
membership of every element in answer, the server uses its digest to obtain
member witnesses tyj∈Lt

and signatures σyj
, for each element yi ∈ δ, and includes

them in the proof. It then proves that these yis are indeed part of the source
list Lt by computing the authentication digest for all elements not in the query.
Let L′ = Lt \ δ. Then, computing the authentication digest, λL′ , is very similar
to the computation of the list signature (i.e., client digest) by the owner albeit
without using secret key v. That is, λL′ is a product of hashed tags of elements
in L′ along with the hash of ω, given in the server digest.

The server proves the order condition as follows. For every pair of adjacent
elements yj , yj+1 in answer, the server computes an order witness tyj<yj+1 :=
(gsd

)r′′/r′
, where d = tag(yj+1) − tag(yj) and r′ and r′′ are randomness of yj and

yj+1 and gsd

is part of server’s digest. This part of the server digest, tyj<yj+1 , is

used for verification in the equation e(gtag(yj)
r′

, tyj<yj+1) = e(gtag(yj+1)
r′′

, g).
The above steps preserve privacy and integrity of the scheme. In particular,

tyj∈Lt
’s do not reveal element ranks since the witnesses have blinded using secret

232 E. Ghosh et al.

randomness during the setup. Furthermore, it is hard for the server to compute
an invalid order witnesses tyj<yj+1 as this would require computing (gs−d

)r′′/r′
.

This, in turn is (almost) equivalent to computing an inverse in the exponent,
violating the P -BDHI assumption as a result.

VerificationPhase: Given (answer, proof), the client usesVerify (Algorithm 6) and
her copy of the list digest signature to verify answer. She checks the membership
of elements in answer by using the properties of bilinear aggregate signatures. In
particular she canverify the relationship ofL′ = Lt\δ byknowing elements in δ and
their signatures, authentic list digest signature σLt

(received from the owner) and
server computed authentication digestλL′ .We note that the client cannot tell if δ is
the whole list or not, because of the blinding factor salt used in computing σLt

. The
client then uses bilinear map to verify order witnesses as it lets her verify algebraic
properties of the exponents, i.e., that d = tag(yj+1)−tag(yj) for tyj∈Lt

= gr′stag(yj)

and tyj+1∈Lt
= gr′′stag(yj+1)

.

Extensions: UpdateOwner can be easily generalized to batch updates for opti-
mization. Our construction can also hide from the client the fact that an update
has happened via periodic updates and refreshes. The details are in [12].

Efficiency: Our construction uses efficient cryptographic operations: multiplica-
tion and exponentiation in prime order groups, evaluation of a cryptographic
hash function and bilinear map. As is standard, we assume they take constant
time. Moreover, we use at most four of these operations per element. A mem-
ber/order witness and a signature is a group element and is represented using
O(1) space (by standard convention, the word size is log(poly(k)) and k is the
security parameter). Theorem 1 summarizes the security and performance.

Theorem 1. The dynamic privacy-preserving authenticated list (DPPAL) con-
struction of Sect. 4 satisfies the security properties of DPPADS including com-
pleteness, soundness (under the P -BDHI assumption [4]) and zero-knowledge
in the random oracle model (inherited from [5]). The construction has the fol-
lowing performance, where n is the list size, m is the query size, L is the number
of updates in a batch and M is the number of distinct elements that have been
queried since the last update:

– The owner uses O(n) time and space for setup, and keeps O(n) state;
– In the update phase the owner sends a message of size O(L+M) to the server

and a message of size O(1) to the client;
– The update phase requires O(L+M) time for the owner and the server, or O(1)

amortized over the number of elements queried or updated since the last update;
– The server uses O(n) space and performs the preprocessing in O(n) time;
– The server computes the answer to a query and its proof in time

O(min{m log n, n});
– The proof size is O(m);
– The client verifies the proof in O(m) time and space.

Verifiable Zero-Knowledge Order Queries and Updates 233

Space Efficient DPPADS: The model of Sect. 3 assumes the owner himself
updates his data structure and sends information to the server to propagate
the changes. So, the owner is required to keep the most recent version of Dt

and any associated auxiliary information. He gets the advantage of remaining
offline during the query phase and gets online only during an update. But this
may not be ideal for an owner with small memory requirement. So we propose a
model that is space efficient and relies on an authenticated data structure (ADS)
protocol executed between the owner and the server and give an instantiation
in [12]. We summarize the performance in Theorem 2 below.

Theorem 2. The space efficient dynamic privacy-preserving authenticated list
construction has the following performance, where n is the list size, L is the
number of updates in a batch and M is the number of distinct elements that
have been queried since the last update:

– The owner uses O(n) time and space for setup, and keeps O(1) state;
– The update phase requires one round of interaction between the owner and the

server where they exchange a message of size (L log n + M);
– The update phase requires O(L log n + M) time for the owner and the server,

or O(log n) amortized over the number of queried or updated elements.

5 Dynamic Privacy-Preserving Authenticated Tree

We now propose a tree instantiation of DPPADS: a dynamic privacy-preserving
tree (DPPAT) using a dynamic privacy-preserving authenticated list (Sect. 4).
We only give the summary of the performance here, in Theorem 3, and defer the
details of the construction to [12].

Order Queries: An order query on T is a pair of elements (x, y) from a tree T .
The corresponding answer is the pair rearranged according to their order in T
along with a bit b indicating if the relation in ancestry or left-right (i.e., one
node is to the left of the other with respect to their lowest common ancestor).
For generality, the data structure also supports a batch order query where the
returned answer is an induced forest of the queried elements.

DPPAT using DPPAL: A rooted tree T can be uniquely represented as two lists,
L-OrderT and R-OrderT , where the lists correspond to two different traversals of
the tree constructed as follows. Both traversals start from the root, process each
node they encounter, and recur on the subtrees of the current node. L-Order
traverses subtrees left to right while R-Order traverses subtrees right to left. To
construct a DPPAT, we construct two DPPAL’s: on L-OrderT and R-OrderT .
DPPAT uses DPPAL to augment the answer with proofs of membership of x
and y, and a proof of order. For a batch query of size m, the proof size is linear
in the answer size, i.e., it is sufficient to prove O(m) pairwise orders as we show
in [12]. DPPAT can support all the dynamic operations, namely, link, cut and
replace on T by making a constant number of update queries to the DPPALs
of L-OrderT and R-OrderT . We give the details in [12].

234 E. Ghosh et al.

Theorem 3. A dynamic privacy-preserving authenticated tree (DPPAT) can
be implemented using a DPPAL. This scheme satisfies the security properties of
a DPPADS: completeness, soundness and zero-knowledge. The runtime, space,
and message size for every party is proportional to the corresponding runtime,
space, and message size in the DPPAL scheme.

Remark: The technique used for DPPAT can be further extended to
d-dimensional Partial Orders (POs) for some constant d. The extension relies
on the unique intersection of d total ordered lists of a PO. Hence, the dynamic
privacy-preserving version can be implemented using d DPPALs (e.g., a tree is
a special case of d = 2).

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Waters, B.: Computing on
authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 1–20.
Springer, Heidelberg (2012)

2. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

3. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified
algorithms for maintaining order in a list. In: Möhring, R.H., Raman, R. (eds.) ESA
2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, Eli (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

6. Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and
constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
87–104. Springer, Heidelberg (2010)

7. Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC
(2013)

8. Catalano, D., Fiore, D., Messina, M.: Zero-knowledge sets with short proofs. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 433–450. Springer,
Heidelberg (2008)

9. Chang, E.-C., Lim, C.L., Xu, J.: Short redactable signatures using random trees.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer,
Heidelberg (2009)

10. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commit-
ments with applications to zero-knowledge sets. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 422–439. Springer, Heidelberg (2005)

11. Devanbu, P.T., Gertz, M., Martel, C.U., Stubblebine, S.G.: Authentic third-party
data publication. In: DBSec (2000)

12. Ghosh, E., Goodrich, M.T., Ohrimenko, O., Tamassia, R.: Fully-dynamic verifiable
zero-knowledge order queries for network data. ePrint 2015/283 (2015)

13. Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos, N.:
Zero-knowledge accumulators and set operations. ePrint 2015/404 (2015)

Verifiable Zero-Knowledge Order Queries and Updates 235

14. Ghosh, E., Ohrimenko, O., Tamassia, R.: Verifiable member and order queries on
a list in zero-knowledge. In: ACNS (2015)

15. Ghosh, E., Ohrimenko, O., Tamassia, R.: Efficient verifiable range and closest point
queries in zero-knowledge. PoPETs 2016(4) (2016)

16. Goldberg, S., Naor, M., Papadopoulos, D., Reyzin, L., Vasant, S., Ziv, A.: NSEC5:
provably preventing DNSSEC zone enumeration. In: NDSS (2015)

17. Goldreich, O.: The Foundations of Cryptography - Basic Applications, vol. 2. Cam-
bridge University Press, Cambridge (2004)

18. Goodrich, M.T., Nguyen, D., Ohrimenko, O., Papamanthou, C., Tamassia, R.,
Triandopoulos, N., Lopes, C.V.: Efficient verification of web-content searching
through authenticated web crawlers. PVLDB 5(10), 920–931 (2012)

19. Itai, A., Konheim, A.G., Rodeh, M.: A sparse table implementation of priority
queues. In: Even, S., Kariv, O. (eds.) Automata, Languages and Programming.
LNCS, vol. 115, pp. 417–431. Springer, Heidelberg (1981)

20. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer,
Heidelberg (2002)

21. Kundu, A., Atallah, M.J., Bertino, E.: Leakage-free redactable signatures. In:
CODASPY (2012)

22. Kundu, A., Bertino, E.: Structural signatures for tree data structures. In: PVLDB
(2008)

23. Kundu, A., Bertino, E.: Privacy-preserving authentication of trees and graphs. Int.
J. Inf. Secur. 12, 467–494 (2013)

24. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-
knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 499–517. Springer, Heidelberg (2010)

25. Liskov, M.: Updatable zero-knowledge databases. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 174–198. Springer, Heidelberg (2005)

26. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

27. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS (2003)
28. Naor, M., Teague, V.: Anti-presistence: history independent data structures. In:

Proceedings on 33rd Annual ACM Symposium on Theory of Computing, 6–8 July
2001 (2001)

29. Naor, M., Ziv, A.: Primary-secondary-resolver membership proof systems. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 199–228.
Springer, Heidelberg (2015)

30. Ostrovsky, R., Rackoff, C., Smith, A.: Efficient consistency proofs for generalized
queries on a committed database. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella,
D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1041–1053. Springer, Heidelberg (2004)

31. Papadopoulos, D., Papamanthou, C., Tamassia, R., Triandopoulos, N.: Practical
authenticated pattern matching with optimal proof size. PVLDB 8(7), 750–761
(2015)

32. Poehls, H.C., Samelin, K., Posegga, J., De Meer, H.: Length-hiding redactable
signatures from one-way accumulators in O(n). Technical report MIP-1201, FIM.
University of Passau (2012)

33. Pöhls, H.C., Samelin, K.: On updatable redactable signatures. In: Boureanu, I.,
Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 457–475.
Springer, Heidelberg (2014)

34. Prabhakaran, M., Xue, R.: Statistically hiding sets. In: Fischlin, M. (ed.) CT-RSA
2009. LNCS, vol. 5473, pp. 100–116. Springer, Heidelberg (2009)

236 E. Ghosh et al.

35. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable sig-
natures for independent removal of structure and content. In: Ryan, M.D., Smyth,
B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg
(2012)

36. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

37. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)

38. Wang, Z.: Improvement on Ahn et al.’s RSA P-homomorphic signature scheme.
In: Keromytis, A.D., Di Pietro, R. (eds.) SecureComm 2012. LNICST, vol. 106,
pp. 19–28. Springer, Heidelberg (2013)

39. Willard, D.E.: A density control algorithm for doing insertions and deletions in a
sequentially ordered file in good worst-case time. Inf. Comput. 97, 150–204 (1992)

On the Implausibility of Constant-Round
Public-Coin Zero-Knowledge Proofs

Yi Deng1(B), Juan Garay2, San Ling3, Huaxiong Wang3, and Moti Yung4

1 SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China
deng@iie.ac.cn

2 Yahoo Research, Sunnyvale, USA
3 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore, Singapore
4 Snapchat and Columbia University, New York, USA

Abstract. We consider the problem of whether there exist non-trivial
constant-round public-coin zero-knowledge (ZK) proofs. To date, in spite
of high interest in the problem, there is no definite answer to the ques-
tion. We focus on the type of ZK proofs that admit a universal simulator
(which handles all malicious verifiers), and show a connection between
the existence of such proof systems and a seemingly unrelated “program
functionality distinguishing” problem: for a natural class of constant-
round public-coin ZK proofs (which we call “canonical,” since all known
ZK protocols fall into this category), a session prefix output by the uni-
versal simulator can actually be used to distinguish a non-trivial property
of the next-step functionality of the verifier’s code.

Our result can be viewed as new evidence against the existence of
constant-round public-coin ZK proofs, since the existence of such a
proof system will bring about either one of the following: (1) a positive
result for the above functionality-distinguishing problem, a typical goal in
reverse-engineering attempts, commonly believed to be notoriously hard,
or (2) a major paradigm shift in simulation strategies, beyond the only
known (straight-line simulation) technique applicable to their argument
counterpart, as we also argue. Note that the earlier negative evidence
on constant-round public-coin ZK proofs is Barack, Lindell and Vadhan
[FOCS 2003]’s result, which was based on the incomparable assumption
of the existence of certain entropy-preserving hash functions, now known
not to be achievable from standard assumptions via black-box reduction.

The core of our technical contribution is showing that there exists a
single verifier step for constant-round public-coin ZK proofs whose func-
tionality (rather than its code) is crucial for a successful simulation. This
is proved by combining a careful analysis of the behavior of a set of ver-
ifiers in the above protocols and during simulation, with an improved
structure-preserving version of the well-known Babai-Moran Speedup
(de-randomization) Theorem, a key tool of independent interest.

The full version of this paper can be found at the IACR Cryptology ePrint
Archive [12].

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 237–253, 2016.
DOI: 10.1007/978-3-319-44618-9 13

238 Y. Deng et al.

1 Introduction

Goldwasser et al. [17] introduced the fascinating notion of a zero-knowledge (ZK)
interactive proof, in which a party (called the prover) wishes to convince another
party (called the verifier) of some statement, in such a way that the following
two properties are satisfied: (1) zero knowledge— the prover does not leak any
knowledge beyond the truth of the statement being proven, and (2) soundness—
no cheating prover can convince the verifier of a false statement except with
small probability. A vast amount of work ensued this pioneering result. Shortly
after the introduction of a ZK proof et al. [3] defined a ZK proof system with
relaxed soundness requirement, called a ZK argument, for which soundness is
only required to hold against polynomial-time cheating provers.

The original ZK proof system for the quadratic residuosity problem presented
in [17] is of a special form, in which the verifier simply sends independently ran-
dom coins at each of his steps. Such a proof system is called a public-coin proof
system, and has been found to be broadly applicable and versatile. Another
notable feature of this type of proof systems is its round efficiency, as it consists
of only 3 rounds, i.e., just 3 messages are exchanged in a session. This round effi-
ciency, however, brings about a side effect of soundness error, which is too large
to be used in cryptographic settings where typically a negligibly small such error
is required. Indeed, there seems to be a tradeoff between round efficiency and
soundness error for public-coin proof systems: we can achieve negligible sound-
ness error by sequential repetition, but then the resulting system is no longer
constant-round. This is in contrast with private-coin ZK proof systems, for which
constant rounds and negligible soundness error can be achieved simultaneously.

In fact, whether constant-round public-coin ZK protocols (or even argument
systems) with negligible soundness error exist for some non-trivial language was
a long-standing open problem. In [16], Goldreich and Krawczyk showed that, for
non-trivial languages, the zero knowledge property of such a proof system cannot
be proven via black-box simulation. Black-box simulation was in fact the only
known technique to demonstrate “zero-knowledgeness” for a long while, and
hence the Goldreich-Krawczyk result was viewed as strong negative evidence
against the existence of constant-round public-coin ZK proof systems.

A breakthrough result in 2001 changed the state of things. Indeed, in [2] Barak
presented a non-black-box ZK argument in which the simulator makes use of the
code of the malicious verifier in computing the prover messages (albeit without
understanding it). Barak’s construction follows the so-called “FLS paradigm” [13],
which consists of two stages. In the first stage the prover sends a commitment c
to a hash value of an arbitrary string, to which the verifier responds with a ran-
dom string r; in the second stage, the prover proves using a witness indistinguish-
able (WI) universal argument that either the statement in question is true or c is
a commitment to a hash value of some code Π, and, given input c, Π outputs r in
some super-polynomial time. Note that this is a constant-round public-coin argu-
ment, and that its simulator does not “rewind” themalicious verifier (and it is hence
called a straight-line simulator) and, furthermore, runs in strict polynomial time.

On the Implausibility of Constant-Round Public-Coin 239

These features have been proved impossible to achieve when using black-box sim-
ulation [6,16].

Barak’s argument system still left open the question whether non-trivial
constant-round public-coin (non-black-box) ZK proof systems exist. At first
sight, being able to extend his technique to a proof system seems challenging,
mainly due to the fact that since a Turing machine or algorithm may have an
arbitrarily long representation, a computationally unbounded prover may, after
receiving the second verifier message r, be able to find a program Π (whose
description may be different from the verifier’s with which the prover is interact-
ing) such that, c = Com(h(Π)), and on input c, Π outputs r in the right amount
of time.

In [8], Barak et al. showed further negative evidence for the above problem,
by proving that if a certain class of entropy-preserving hash functions exist, then
such a proof system cannot exist. Their formulation of entropy-preserving hash
functions is mathematically simple, inspiring further research to base such hash
functions on standard assumptions. Unfortunately, to our knowledge, we do
not have a candidate for such functions thus far, and furthermore, as shown by
Bitansky et al. [4], such functions cannot be based on any standard assumption
via black-box reduction.

Our Results and Techniques. In this paper, we provide evidence of a different
nature against the existence of constant-round public-coin ZK proof systems.
We focus on the type of ZK proofs that admit a universal simulator, i.e., ZK
proof systems for which there is a single simulator that can handle all malicious
verifiers. (To our knowledge, all constructions of ZK proofs in the literature are
of this type.)

We uncover an unexpected connection between the existence of such proof
systems and a seemingly unrelated “program functionality distinguishing” prob-
lem: for a natural class of constant-round public-coin ZK proofs (which we call
“canonical,” as all known ZK protocols fall in this category), a universal simula-
tor for such ZK proof system can actually be used to figure out some non-trivial
property of a verifier’s program functionality. (Since we will always be talking
about distinguishing verifiers’ programs, sometimes we will just refer to the prob-
lem as the “verifier distinguishing” problem). More specifically, we show that,
given a constant-round public-coin ZK proof system 〈P, V 〉, there exist a step
index k and a set of polynomial number of verifiers that share the verifier next-
message functions up to the (k − 1)-th step but have distinct k-th next-message
functions—say, t, for t a polynomial, and denoted by (V 1

k , V 2
k , ..., V t

k)—such that
for any polynomial-time constructible code V ∗

k that is promised to have the same
functionality as one of V i

k ’s in the above set, the universal simulator, taking V ∗
k

as input, can generate a session prefix before the k-th verifier step that enables
us to single out a V j

k in the set which is functionally different from V ∗
k .

In more detail, we construct a distinguishing algorithm U which, taking only
(V 1

k , V 2
k , ..., V t

k) and the session prefix output by the simulator as input, is able
to pin-point an element V j

k in the set which behaves differently from V ∗
k , with

probability negligibly close to 1. This means that the universal simulator must

240 Y. Deng et al.

have encoded some non-trivial property of V ∗
k ’s functionality in the session prefix

prior to the verifier’s k-th step, since otherwise if the session prefix is independent
of V ∗

k , the success probability of U will never exceed 1 − 1
t (note that U does

note take V ∗
k as an input). In the case of private-coin ZK protocols, encoding

the functionality of the next verifier step in a session prefix is typically done
by having the simulator execute V ∗

k first and then redo the prefix prior to the
k-th verifier step such that it can now handle the challenge from V ∗

k . It should
be noted that, for constant-round protocols, such a rewinding strategy seems to
work only for the cases where the functionality of V ∗

k is bound to some of the
verifier’s previous steps, and this is not the case for public-coin protocols1.

This is in a sharp contrast with Barak’s public-coin argument system, in
which the simulator does not need to “predict” the verifier’s next-message func-
tionality when computing a session prefix. Think of the first two steps in the
simulation of Barak’s argument, where the verifier sends a random hash func-
tion (h) and the prover replies with a commitment to a hash value of the code
(instead of its functionality) of the next message function of the verifier’s second
step (Com(h(V ∗

2))). Note that when the simulator computes this session prefix
it does not need to figure out the functionality of V ∗

2 , and in fact the functional-
ity of V ∗

2 is not bound to the history prefix (h,Com(h(V ∗
2))). Indeed, when the

commitment scheme Com(h(·)) is a perfectly hiding scheme (which is allowed in
Barak’s argument), the message c = Com(h(V ∗

2)) can be interpreted as a com-
mitment to any code of any functionality, and thus it contains zero information
about V ∗

2 ’s functionality.
Thus, our result can be viewed as further evidence against the existence of

constant-round public-coin ZK proof systems. On one hand, devising a rewind-
ing technique (to figure out the next-step functionality of the verifier) that could
be used in the simulation of such a public-coin proof appears to be fairly incon-
ceivable, as in these proofs the message (challenge) from each step of the verifier
is long and hard for a cheating prover to pass, and, intuitively, in this setting
the rewinding behavior of a simulator (given the code of a malicious verifier) is
akin to learning an arbitrarily complicated and obfuscated verifier’s next-step
function (which is, as a code, independent of any previous step functions) by
just sampling a few input-output pairs of this function.

On the other hand, if such a proof does admit a straight-line simulator,
then our “functionality distinguishing” result described above shows that one
would be able to figure out some non-trivial functionality/property of V ∗

k without
executing it (since “straight-line” typically means that in producing the session
prefix before the k-th verifier step, the simulator does not run V ∗

k), a problem

1 We note that the rewinding technique used for simulating the known public-coin pro-
tocols simply exploits the “guessing the next verifier’s coins” strategy, and requires
that the probability of a correct guess is very high. To meet such a requirement, the
verifier’s message has to be short, and as a consequence, the corresponding protocol
either has large (non-negligible) soundness error, such as the original Blum’s 3-round
proof fro Graph Hamiltonicity [7], or is of super-constant number of rounds, such as
the log2 n-fold sequential repetition of Blum’s proof system.

On the Implausibility of Constant-Round Public-Coin 241

commonly considered notoriously hard [20,21]. We note that exactly how hard
the problem is in our concrete setting we leave as an interesting research question.
(Indeed, although we do not give a definite answer to the question, we view our
work as providing new negative evidence from a different angle and suggesting
directions for further study towards that goal.)

One key tool in our reduction is an improved structure-preserving version
of the well-known Babai-Moran Speedup (derandomization) Theorem [1,9,10],
which is of independent interest. Essentially, our result says that for a constant-
round public-coin interactive proof system in which the verifier sends m messages
and each of the prover messages is of length p, if the cheating probability for
an unbounded prover is ε, then there exist (p/O(log 1

ε))m verifier random tapes
such that the cheating probability for the unbounded prover over these tapes is
bounded away from 1—and this holds even when the prover knows this small
set of random tapes in advance. In contrast, in our setting the original Babai-
Moran theorem would yield a much larger size (namely, (O(p))m) of such set of
verifier random tapes. In addition, we show that this result is tight with respect
to round complexity, in the sense that there are public-coin proof systems with
a super-constant number of rounds for which the prover’s cheating probability
is 1, over any polynomial number of verifier random tapes.

The way our derandomization lemma helps in the reduction to the verifier-
distinguishing problem is as follows. Intuitively, for a proof system, it seems
that there should be a verifier step k for which computing a session prefix prior
to this step in the simulation requires the simulator to classify the codes of
the “residual” verifiers according to their functionality, since by unconditional
soundness a fixed session prefix can (even for an all powerful prover) make only
a few (as opposed to all efficiently computable functions) of the residual verifiers
accept. Derandomization allows us to focus on those few verifiers on which the
cheating probability of an all powerful prover is still bounded away from 1, and
then prove the existence of the above critical verifier step.

Related Work. As mentioned above, Barak et al. [8] conjectured the existence
of certain entropy-preserving hash functions and proved that the conjecture’s
veracity would rule out the possibility of existence of constant-round public-coin
ZK proof systems. Recent work by Bitansky et al. [4], however, showed that this
conjecture cannot have a black-box reduction from any standard assumption.

Asomewhat relatedproblemtoour functionality-distinguishingproblem ispro-
gram obfuscation, the theoretical study of which was initiated by Barak et al. [5].
At a high level, an obfuscator is an efficient compiler that takes a program as input
and outputs an “unreadable” program with the same functionality as the input
program. Hada [19], in particular, showed that the existence of a certain type of
ZK protocol is tightly related to the existence of an obfuscator for some specific
functionality. Unfortunately, for a large class of functionalities, it has been shown
that obfuscators do not exist, and it is not clear whether the recent and exciting for-
mulation and constructions of indistinguishability obfuscators (cf. [15] and numer-
ous follow-ups) and “correlation intractable” hash functions [11] imply a negative
answer to our problem.

242 Y. Deng et al.

Organization of the Paper. Preliminaries, notation and definitions that are
used throughout the paper are presented in Sect. 2. Definitions of canonical ZK
proofs, concrete examples, and the verifier-distinguishing problem are formulated
in Sect. 3. The improved derandomization lemma is presented in Sect. 4, and the
reduction of constant-round public-coin ZK proofs to the verifier-distinguishing
problem, which makes use of it, in Sect. 5. Due to space limitations, compre-
hensive background definitions, illustrations, most of the detailed proofs, and
complementary material, including a counterexample for superconstant-round
proof systems, can be found in the full version of the paper [12].

2 Preliminaries

In this section we introduce relevant notation that will be used throughout the
paper. Refer to the full version of the paper [12] for some more traditional
definitions, such as negligible functions and interactive proofs, are given in

When referring to a Turing machine M , we will slightly abuse notation and
use M to represent both its code and its functionality. Specifically, if we write
M ∈ G for some set G, we will mean that there is a Turing machine in G whose
code is identical to the code of M ; on the other hand, if we say that M∗ is
“functionally equivalent” to M (as defined below), both M∗ and M will clearly
refer to their functionality.

Definition 1. For two deterministic (interactive) Turing machines M1 and
M2, we say M1 and M2 have the same functionality, or are functionally equiv-
alent if they compute the same collection of next-message functions. That is, for
any input hist, the next message produced by M1 is identical to the one produced
by M2—i.e., M1(hist) = M2(hist).

We will use M1 f= M2 as a shorthand for the above, and M1
f

�= M2 as its
negation.

Public-Coin Proof Systems and Verifier Decomposition. An interactive
proof system is called public-coin if at every verifier step, the verifier sends only
truly random messages.

We will use boldface lowercase letters to refer to the verifier’s random tapes
(e.g., r), and italic for each verifier message (e.g., r). Thus, for a 2m-round
public-coin interactive proof system 〈P, V 〉, we have r = [r1, r2, ..., rm], where ri

is the i-th verifier message. We use superscripts to distinguish different verifier’s
random tapes; e.g., ri, rj , etc.

Given a random tape r = [r1, r2, ..., rm], we can “decompose” the verifier
V (r) into a collection of next-message functions, V = [V1, V2, ..., Vm], with each
Vi being defined as:

ri or ⊥ ← Vi(hist, r1, r2, ..., ri),

On the Implausibility of Constant-Round Public-Coin 243

where hist refers to the current history up to the (i − 1)-st prover step ; that
is, given hist, Vi(hist, r1, r2, ..., ri) outputs ri if hist is accepting, or aborts if not.
Note that the next message function Vi needs the randomness [r1, r2, ..., ri−1] of
previous verifier steps in order to check whether the current history is accepting
or not.

We will sometimes abbreviate and use superscripts to distinguish verifiers
running on different random tapes; that is, given two random tapes ri =
[ri

1, r
i
2, ..., r

i
m] and rj = [rj

1, r
j
2, ..., r

j
m], we will use V i and V j as a shorthand

for V (ri) and V (rj), respectively. Similarly, we will use V i
k to denote the k-th

next-message function of the verifier V (ri).
Now, given a verifier V i = [V i

1 , ..., V i
m], we will use V i

[j,k] to denote the partial
verifier strategy starting with the j-th next message function and up to the k-th
next message function. We will typically be concerned with the following partial
strategies:

prefix strategy: V i
[1,k] � [V i

1 , V i
2 , ..., V i

k];

suffix strategy: V i
[k,m] � [V i

k , V i
k+1, ..., V

i
m].

ZK Proofs with Universal Simulator. In the standard definition of zero
knowledge proof, the simulation process for a malicious verifier V ∗ is typically
as follows. The PPT simulator S, taking the common input x and V ∗’s code as
inputs, is to output a session transcript. S treats V ∗ as a subroutine, interacting
(with possible “rewinds”) with it internally, and outputting a view of V ∗ as the
result of the interaction. Without loss of generality, one can think of the output
of the simulator as the final (internal) interaction between S(x, V ∗) and V ∗. In
this paper, we wish to be able to obtain prover messages from S one by one,
rather than obtaining the entire session transcript at once. For this purpose, we
make the above (final) internal interaction “external,” by casting the simulation
process for a malicious verifier V ∗ as a real interaction between S(x, V ∗) (playing
the role of the prover) and an external V ∗, and whenever S wants to rewind V ∗,
it does it on its own copy of V ∗. We denote this interaction by (S(x, V ∗) ⇔ V ∗),
and the view of V ∗ resulting from this interaction by {ViewS(x,V ∗)

V ∗ }x∈L. (For
brevity, we will sometimes drop x from the above notation.)

The following fact is easy to verify.

Fact 1. For any x and any V , V ∗ such that V
f= V ∗, (S(x, V ∗) ⇔ V ∗) generates

the same session transcript as (S(x, V ∗) ⇔ V).
We conclude this section with the following definition of ZK proof with uni-

versal simulator, which differs from the standard ZK definition in the order of
quantifiers (“∃S∀V ∗” instead of “∀V ∗∃S”).2

Definition 2 (Zero-Knowledge Proofs with Universal Simulator). An
interactive proof system 〈P, V 〉 for a language L is said to be zero-knowledge with
universal simulator if there exists a probabilistic polynomial-time algorithm S

2 To our knowledge, all known ZK proofs admit a universal simulator, satisfying this
stronger requirement.

244 Y. Deng et al.

such that for any probabilistic polynomial-time V ∗, the distribution {ViewP
V ∗}x∈L

is computationally indistinguishable from the distribution {ViewS(V ∗)
V ∗ }x∈L.

3 Canonical ZK Proofs and the Verifier-Distinguishing
Problem

In this paper we will focus on ZK proof systems with a certain property, which we
call “canonical,” since all known constructions (see below) fall in this category.
We first give some intuition behind it. (To simplify notation, from here on we will
drop the common input x from (S(x, V ∗) ⇔ V ∗), and write the simulation simply
as (S(V ∗) ⇔ V ∗).) We observe that for many ZK protocols, if the simulation is
formulated as an interaction between S(V ∗) and V ∗, as in the previous section,
then for a successful simulation to take place it is sufficient to feed S with only
the partial code of V ∗, rather than with its entire code. We elaborate on those
systems in detail in Sect. 3.2.

3.1 Canonical ZK Proofs

We mentioned partial code of V ∗ above. The following definition about session
prefixes of proof systems will become handy.

Definition 3 (Good/Bad Session Prefix). Let 〈P, V 〉 be a 2m-round public-
coin proof system for a language L, and let V[1,�] denote the set of verifiers
that share the same verifier prefix strategy V[1,�], for some 1 ≤ � ≤ m. We
call a session prefix (r1, p1, ..., p�) good with respect to V[1,�] if there is a resid-
ual (unbounded) prover strategy with auxiliary input V[1,�] which, based on this
session prefix, can make a verifier randomly chosen from V[1,�] accept with prob-
ability 1. Otherwise, we call the session prefix bad with respect to V[1,�].

We are now ready to define what we call canonical ZK proofs; these proofs are
defined conditionally, predicated on the existence of a good prefix. Roughly speak-
ing, the property states that if a simulator S([V ∗

[1,k−1], V
∗
k]), taking the partial code

[V ∗
[1,k−1], V

∗
k] as input, can generate a session prefix up to the (k−1)-th prover step

that is good for verifiers with a k-th step function different from V ∗
k , then S can

do the same without being given verifier code V ∗
k . Next, we present the definition

of a canonical ZK proof system with an arbitrary (constant) number of rounds; in
Sect. 3.2 we analyze concrete examples (e.g., 3-round proof systems).

Definition 4 (Canonical ZK Proofs). Let 〈P, V 〉 be a 2m-round universally
simulatable ZK proof system for a language L (Definition 2), S be the associated
simulator and t be some polynomial. We call 〈P, V 〉 canonical if for any common
input x (not necessarily in L), every set V[1,k−1] of verifiers that share prefix
strategy V[1,k−1], 2 ≤ k ≤ m (as in Definition 3), but with t distinct k-th step
strategies V 1

k , V 2
k , ..., V t

k , the following holds.

On the Implausibility of Constant-Round Public-Coin 245

For any verifier code V ∗
[1,k−1] satisfying V ∗

[1,k−1]

f= V[1,k−1], if, for some 1 ≤
i ≤ t, there exists V ∗

k
f= V i

k such that the session prefix (r1, p1, ..., pk−1) ←
(S([V ∗

[1,k−1], V
∗
k]) ⇔ [V ∗

[1,k−1], V
∗
k]) is good with respect to V[1,k−1], then S, taking

only V ∗
[1,k−1] as input, can also produce a session prefix (i.e., (r1, p′

1, ..., p
′
k−1) ←

(S(V ∗
[1,k−1]) ⇔ V ∗

[1,k−1])) which is good with respect to V[1,k−1].

Remark 1. We stress that, for a zero knowledge proof, the canonical property
above makes a demand on the simulator only when the condition of the “if”
clause holds. We also note that the ability of the simulator S([V ∗

[1,k−1], V
∗
k])

to produce a good session prefix may depend on the common input x (see the
examples in the next section).3

3.2 Canonical ZK Proofs: Examples

To our knowledge, all constructions of ZK proofs satisfy Definition 4—cf. the
FLS proof system [13] example at the beginning of the section, as well as those
protocols that do not follow the FLS paradigm, such as, for example, Blum’s
3-round ZK proof for Graph Hamiltonicity [7] (and its sequential repetition
version), which we now analyze in more detail.

Blum’s Graph Hamiltonicity ZK Proof. Consider Blum’s 3-round ZK proof sys-
tem for Graph Hamiltonicity (with soundness error 1

2). In this case, we denote
by V 1

1 and V 2
1 the verifiers that produce challenges 1 and 0, respectively4. Sup-

pose that when the verifier sends challenge 1, the prover needs to reveal the
isomorphism between the common input graph and the graph committed in the
first prover message p1. Note that when the simulator S takes any V ∗

1 that is
functionally equivalent to V 1

1 , then it will simply choose an isomorphism and
commit to a new graph isomorphic to the common input graph in the message
p1 (i.e., it acts as an honest prover in the first prover step). For this proof system,
the “if” clause of Definition 4 holds depending on whether the common input
graph is Hamiltonian or not:

– If the common input graph is Hamiltonian, then the “if” clause holds: Given
a verifier code V ∗

1 that is functionally equivalent to V 1
1 as input (i.e., i = 1

in Definition 4), S(V ∗
1) will generate a first prover message p1, for which an

unbounded prover can answer both challenges 1 and 0 (from V 1
1 and V 2

1 , resp.),
since the graph committed by S(V ∗

1) in p1 is also Hamiltonian. In this case,
the simulator S, without being given the code V ∗

1 , can also act as an honest
prover in the first prover step and generate p1 that will enable an unbounded

3 Further, looking ahead, the only place where this property will be used is in the
proof of our main theorem (step 3), where we fix a false statement x first and then
discuss the properties of the simulator.

4 To match our definition, we can think of these protocols as being of even number
rounds by letting the verifier send a dummy message in the first step of the protocol,
and denote by V i

2 the challenge step of the verifier.

246 Y. Deng et al.

prover to answer both challenges 1 and 05—i.e., prefix p1 is good with respect
to the verifier set {V 1

1 , V 2
1 }.

– If the common input graph is not Hamiltonian, then the “if” clause does not
hold: For t ∈ {1, 2}, given a verifier code V ∗

1 that is functionally equivalent
to V t

1 as input, S(V ∗
1) will generate the first prover message p1 for which

an unbounded prover can only answer a challenge from V t
1 , since the graph

committed in p1 is either a graph isomorphic to the common input graph or
a Hamiltonian graph (which is not isomorphic to the common input graph)—
i.e., p1 is bad with respect to the verifier set {V 1

1 , V 2
1 }.

In sum, Blum’s 3-round ZK proof system for Graph Hamiltonicity is canonical
according to Definition 4: whenever the definition’s “if” clause is satisfied, i.e.,
the simulator S(V ∗

1) can generate p1 that is good with respect to both verifier
challenges, then S, without being given the code V ∗

1 as input, can also generate
a good prefix p1.

FLS-type ZK Proofs. The classical FLS-type ZK proofs [13] are also canonical.
Recall how these proofs work. In the first stage, the verifier sends a perfectly
hiding commitment c1 to a random string, followed by a perfectly binding com-
mitment c2 to a random string from the prover, after which the verifier opens
the commitment sent at its first step. In the second stage, the prover proves that
the common input x ∈ L or that the random string committed in c1 matches
the random string committed in c2 via a Blum 3-round proof system as above
(but with negligible soundness error). We view the two verifier steps in the first
stage as a single step6, and denote it by V1, and denote by V2 the verifier step
in stage 2. We now analyze what happens at each step.

It is easy to verify that the second verifier step (k = 2) satisfies the definition,
based on the following observation. Fix a code V ∗

1 of the first verifier step (recall
that, by definition, we consider only the set of verifiers sharing the same first
verifier step that is functionally equivalent to V ∗

1). Observe that the simulator,
given only a code V ∗

1 that is functionally equivalent to some V1 as input, can
generate a good first stage prefix (by rewinding the first stage verifier V ∗

1) that
will enable an unbounded prover answer any challenge from the second verifier
step (since an unbounded prover can always recover the corresponding trapdoor
from the transcript of the first stage and act as an honest prover to carry out the
second stage in a straight-line fashion). I.e., the unbounded prover will, based
on the first stage transcript output by S(V ∗

1), make a random verifier that share
the same prefix V1 accept.

For the first verifier step V1, the “if” clause is satisfied depending on whether
x ∈ L or not:

– When x ∈ L, the “if” clause holds, since an unbounded prover can, based
on any first stage transcript output by the simulator S(V ∗

1), make a random
5 Recall that an honest prover can compute p1 without knowledge of the corresponding

witness.
6 Note that the second verifier message is bound to the first verifier message c1, and

merging these two steps will simplify the analysis.

On the Implausibility of Constant-Round Public-Coin 247

verifier (that may have a prefix functionally different from V ∗
1) accept with

probability 1 by finding the witness for x ∈ L and acting as an honest prover
in the second stage. In this case, the simulator S, without being given the
code V ∗

1 , can also act as an honest prover in the first prover step and generate
a random first stage transcript (which does not form a trapdoor), and based
on this transcript, an unbounded prover can always find a witness for x ∈ L
to make a random verifier accept with probability 1.

– When x /∈ L, the “if” clause does not hold: For every two different first verifier
steps V 1

1 , V 2
1 , and every two different second verifier steps V 1

2 , V 2
2 (that will

output different challenges in Blum’s protocol), where V t
1 (t ∈ {1, 2}) commits

to rt and then opens the commitment, and V b
2 (b ∈ {1, 2}) simply sends

challenge eb, the simulator S, given a code V ∗
1 that is functionally equivalent

to V i
1 (i ∈ {1, 2}) as input, will generate a first stage transcript for which an

unbounded prover cannot make a random verifier from the set of four verifiers
{V t

1 , V b
2 } accept with probability 1, since for verifier prefix V j

1 different from
V i
1 , the first stage transcript output by S(V ∗

1) will not form a valid trapdoor
for the prover, and thus, if the random verifier is chosen from the verifier set
{V j

1 , V b
2 }, based on this first stage transcript, an unbounded prover cannot

make the random verifier accept with probability greater than 1
2 .

In sum, FLS-type ZK proofs are also canonical according to Definition 4:
Whenever the “if” clause holds for a verifier step k, the simulator can generate
a good prefix prior to the k-th verifier step without being given the code of this
verifier step.

Barak’s Argument System. Finally, one may wonder where Barak’s argument
system (not known to be a proof system) fits in all this. We view the first
three messages in the system (the hash function selected by the verifier, the
commitment computed by the prover, and the verifier’s random challenge—recall
the description in Sect. 1) as the first stage, and the remaining WIUA (Witness
Indistinguishable Universal Argument) as the second stage. Thus, following the
same reasoning as the one for the FLS-type ZK proofs above at the second
(k = 2) verifier step, for every k > 2, the canonical property is satisfied at the
k-th verifier step. However, for the second verifier step (at which the verifier
outputs a random challenge), when x /∈ L, we do not know if Definition 4’s “if”
clause holds.

Canonical ZK proofs are used in the next section to formulate the “verifier-
distinguishing problem,” to which the existence of constant-round public-coin
ZK proofs is reduced.

3.3 The Verifier-Distinguishing Problem

In a nutshell, given a set of distinct verifier k-th next-message functions, the
problem resides in constructing a distinguishing algorithm U which, given a ses-
sion prefix (prior to the k-th verifier step) output by simulator S, such that for

248 Y. Deng et al.

any polynomial-time constructible program V ∗
k that is promised to be function-

ally equivalent to one of the next-message functions, is able to discern one from
the set that is functionally different from V ∗

k . Formally:

Definition 5 (The Verifier-Distinguishing Problem). Let 〈P, V 〉 be a
2m-round canonical ZK proof system for a language L (Definition 4), S be its
simulator, p the length of each prover’s message, and t a polynomial in the
security parameter n. Given are a set V[1,k−1] of deterministic honest verifiers
that share the same prefix verifier V[1,k−1], but have t distinct k-th next-message
functions V 1

k , V 2
k , ..., V t

k , denoted by set Vk, and an auxiliary input aux7. The
verifier-distinguishing problem is to find a non-uniform algorithm U , running in
time 2O(p), such that for every polynomial-time algorithm C, the following holds:

– First, C picks a machine V i
k ∈ Vk at random and outputs a polynomial-time

Turing machine V ∗
k such that V ∗

k
f= V i

k .
– Next, U , taking (V[1,k−1],Vk) and a session prefix (r1, p1, ..., pk−1) output by

S(aux, V ∗
k), outputs V j

k ∈ Vk such that V j
k

f

�= V ∗
k with probability negligibly

close to 1. I.e.,

Pr
[
V ∗

k ← C(Vk, i); (r1, p1, ..., pk−1) ← S(aux, V ∗
k);

j ← U(V[1,k−1],Vk, r1, p1, ..., pk−1)
: V ∗

k

f

�= V j
k

]
> 1−neg(n),

where the probability is taken over the random choice i and the randomness
used by C,U and S.

Remark 2. We now make a couple of remarks regarding Definition 5:

(a) By definition, a simulator for a ZK proof system needs to handle arbitrary
verifiers. In our context we just deal with the arbitrary code of an honest
verifier, which strengthens the result.

(b) We note that in the definition, algorithm U is not given V ∗’s code as input.
This means that if U is able to carry out its task, then the simulator must
encode some non-trivial functionality of V ∗

k in such a session prefix. As men-
tioned before, this is in sharp contrast with known straight-line simulators
such as Barak’s, which are oblivious to the verifier’s functionality in com-
puting a session prefix. We elaborated on some of the difficulties in solving
this problem in Sect. 1, overcoming which (if at all possible) would require a
technical breakthrough in simulation techniques.

4 An Improved Derandomization Lemma for Interactive
Proofs

In this section we prove a structure-preserving version of the well-known Babai-
Moran “Speedup Theorem” [1,9] with improved parameters for our application,
7 This auxiliary input is given to S; in our main theorem (Theorem 2) it will be the

code of some verifier prefix strategy.

On the Implausibility of Constant-Round Public-Coin 249

which we will then use in the proof of our main result (Theorem 2). Essentially,
the result says that for any constant-round public-coin interactive proof system
with small soundness error, there exists a polynomial set of random verifier tapes
such that the cheating probability for the unbounded prover over these verifier
tapes is bounded away from 1—and this holds even when the prover knows this
small set of random tapes in advance.

We first recall the Babai-Moran theorem. Let AM[k] denote the set of lan-
guages whose membership can be proved via a k-round public-coin proof system.

Theorem 1 ([9]). For any polynomial t(n), AM[t + 1] = AM[t]. In particular,
for any constant k, AM[k] = AM[2].

For our application, we wish to de-randomize the verifier while keeping the
original proof system structure intact (that is, without “collapsing” the round
complexity). The AM[k] = AM[2] proof—and its randomness-efficient variant
in [10]8—actually yield such a result: for any 2m-round public-coin proof system
with small soundness error ε, there exist (O(p))m verifier random tapes over
which the cheating probability of an unbounded prover is still bounded away
from 1, where p is the length of the prover’s messages.

Next, we present an improvement to this result, in which the number of such
verifier random tapes reduces to (p/O(log 1

ε))m. In addition, we show that this
de-randomization lemma is essentially tight with respect to the round complex-
ity, as there are super-constant-round public-coin proof systems for which the
prover’s cheating probability is 1, over any polynomial number of verifier random
tapes.

Before stating the lemma, we introduce some additional notation:

– V|(r1,r2...,rt) denotes the honest verifier that is restricted to choose uniformly at
random one of r1, r2..., rt as its random tape, where t is a polynomial; we use
V|(r1,r2...,rt)(ri) to denote the verifier that takes ri, 1 ≤ i ≤ t, as its random
tape.

– P ∗(r1, r2..., rt) denotes the unbounded cheating prover with auxiliary input
(r1, r2..., rt), indicating that it will interact with V|(r1,r2...,rt).

We now state the result formally. For simplicity, we assume that all the prover
messages are of equal length.

Lemma 1. Let m be a constant and 〈P, V 〉 be a 2m-round public-coin inter-
active proof system for language L with negligible soundness error ε. Let p

8 In [10], Bellare and Rompel present a randomness-efficient approach to transform
AM[k] into AM[2]: to halve the number of rounds of an Arthur-Merlin proof system,
they introduce a so-called “oblivious sampler” and use a small amount of randomness
to specify roughly O(p) verifier messages in the original proof system. Their proof,
however, yields almost the same result as the Speedup Theorem in our setting where
we want to maintain the structure of the original proof system, and only care about
the number of original verifier random tapes that are needed to make sure the
resulting protocol after derandomization is still a proof system.

250 Y. Deng et al.

denote the length of the prover’s messages. Then for every x /∈ L, there exist
q = (p/O(log 1

ε))m different random tapes, r1, r2, ...rq, such that for every
unbounded prover P ,

Pr[〈P (r1, r2, ...rq), V|(r1,r2,...rq)〉(x) = 1] ≤ 1 − 1
q

.

Here we present the intuition and basic inequalities that yield the proof for
the case of a 3-round proof system9 (similar ideas also appeared in [1,9]). Refer
to the full version of the paper [12] for the full proof.

Let us consider a 3-round public-coin proof system 〈P, V 〉 with negligible
soundness error for some language L10, in which the prover sends the first mes-
sage p1 and the last message p2, and the verifier sends the second message r
(its public coins). Without loss of generality, we assume |p1| = |p2| = p, and
|r| = n. We now prove that there exists a number p of verifier random tapes11

(r1, r2, ..., rp) over which the cheating probability is at most 1 − 1/p.
For the sake of contradiction, assume that for some false statement x /∈

L there is an unbounded prover P � such that for any p-tuple (r1, r2, ..., rp),
P �(r1, r2, ..., rp) can cheat V|(r1,r2,...rp) with probability 1. Now note that the
number of such successful cheating provers is

(
2n

p

)
, and that there are at most

2p different first prover messages p1. Thus, there is a number of at least
(
2n

p

)
/2p

P �(r1, r2, ..., rp)’s that produce the same first prover message, denote it p∗
1, for

which if the verifier is using a random tape in any of the p-tuples

{(r1, r2, ..., rp) : p∗
1 ← P �(r1, r2, ..., rp)},

we have an unbounded prover that can produce a second prover message p∗
2 to

make the verifier accept.
On the other hand, the number of p-tuple choices (r1, r2, ..., rp) out of a 1/2e

fraction of all possible verifier random tapes is at most
(2n

2e
p

)
. Since

(2n

2e

p

)
< (

2n

2p
)p <

(
2n

p

)

2p
,

we have that the set {(r1, r2, ..., rp) : p∗
1 ← P �(r1, r2, ..., rp)} covers at least a

1/2e fraction of all possible verifier random tapes.
In sum, we are able conclude that there is an unbounded prover, which sends

p∗
1 as its first message, that can make the verifier accept the false statement with

probability at least 1/2e. This contradicts the negligible soundness error of 〈P, V 〉.

9 The basic reasoning here applies to a proof system of even number (4) of rounds as
well, by having the verifier send a dummy message first.

10 For example, the n-folded parallel version of Blum’s 3-round proof for Graph Hamil-
tonicity [7], or the 3-round proof for Graph Isomorphism [18].

11 For simplicity’s sake, we do not optimize this parameter here.

On the Implausibility of Constant-Round Public-Coin 251

5 Constant-Round Public-Coin Zero-Knowledge Proofs
Imply Distinguishing Verifiers’ Programs

We are now ready to present our main result, which exhibits a reduction
from constant-round public-coin canonical ZK proofs to the functionality-
distinguishing problem (Definition 5), a problem seemingly quite different in
nature. We first fix some parameters and revisit notation:

– 〈P, V 〉: A 2m-round public-coin canonical ZK proof sytem for some constant
m. We let n be the security parameter and p be the length of each prover’s
message.

– V[1,k−1]: A set of deterministic honest verifiers that share the same (honest)
prefix verifier V[1,k−1], but have t distinct k-th step functions V 1

k , V 2
k , ..., V t

k ;
|V[1,k−1]| ≤ q, where t and q are polynomials (defined in Lemma 1)12.

– Vk: The set {V 1
k , V 2

k , ..., V t
k }, as above.

– V ′
[1,k−1]: The auxiliary input to S, which is the code of a prefix verifier such

that V ′
[1,k−1]

f= V[1,k−1]. (When k = 1, it is set to the empty string.)

We now show that if 〈P, V 〉 admits a universal simulator S, then there is
an algorithm U , taking V[1,k−1], Vk and a session prefix as inputs, which can
solve the functionality-distinguishing problem (cf. Definition 5) with respect to
verifier set Vk. Formally:

Theorem 2. Let 〈P, V 〉 be a 2m-round, public-coin canonical ZK proof system
for a non-trivial language L /∈ BPP, and S be its universal simulator. Then,
there exist an infinite set I, a sequence of false statements x /∈ L of length n
for each n ∈ I, a constant k, 2 ≤ k ≤ m, sets V[1,k−1] and Vk, a verifier code
V ′
[1,k−1] as above, and an algorithm U , running in time 2O(p), such that, for

any polynomial-time algorithm C that on input (Vk, i), 1 ≤ i ≤ t outputs V ∗
k

satisfying V ∗
k

f= V i
k ∈ Vk, the following holds:

Pr

[
V ∗
k ← C(Vk, i); (r1, p1, ..., pk−1) ← (S([V ′

[1,k−1]
, V ∗

k]) ⇔ V ′
[1,k−1]

)

j ← U(V[1,k−1],Vk, r1, p1, ..., pk−1)
: V ∗

k

f
�= V j

k ∈ Vk

]

> 1 − neg(n),

where the probability is taken over the random choice i and the randomness used
by C, U and S.

Here we give a high-level sketch of the proof, which mainly consists of three
steps. The full proof of the theorem is given in [12].

12 At the k-th verifier step, the number of distinct next-message functions should in
fact be tk. For simplicity, we assume t = tk for all 1 ≤ k ≤ m.

252 Y. Deng et al.

1. The first step is Lemma 1 from the previous section. Let V 1, V 2, ..., V q denote
the q deterministic verifiers given by the lemma.

2. Next, we show that there exists a sequence of infinitely many false state-
ments x such that for every verifier V i, 1 ≤ i ≤ q, and any polynomial-
time constructible code V ∗ which is functionally equivalent to V i, the session
(S(V ∗) ⇔ V ∗) (which, by Fact 1 is identical to (S(V ∗) ⇔ V i)) is accepting
except with negligible probability.

3. For any false statement x in the above sequence, we prove that among these
q verifiers, we can find (by using canonical property) a set of verifiers V[1,k−1]

that has the same prefix strategy [V1, V2, ..., Vk−1] up to the (k−1)-th verifier
step but “splits” at the k-th verifier step, and a code V ′

[1,k−1] that is function-
ally equivalent to V[1,k−1] = [V1, V2, ..., Vk−1], such that, for any polynomial-
time constructible code V ∗

k that is promised to be functionally equivalent to
one of those V i

k ’s (nodes) at level k, the following two conditions hold:
– The session prefix (r1, p1, ..., pk−1) produced by (S([V ′

[1,k−1], V
∗
k]) ⇔

V ′
[1,k−1]) (or equivalently, by (S([V ′

[1,k−1], V
∗
k]) ⇔ V[1,k−1])) is bad with

respect to V[1,k−1].
– However, the session prefix (r1, p1, ..., pk−1) is good with respect to the set

of verifiers that shares the same prefix strategy [V[1,k−1], V
i
k]

This enables us to construct an algorithm (running in time 2O(p)) that is able
to “understand” the code V ∗

k , by pin-pointing another verifier code, say, V j
k ,

such that V j
k

f

�= V ∗
k .

6 Conclusions

A natural question which arises from our reduction is: How hard is the
functionality-predicting problem (Definition 5)? As mentioned before, since our
predicting algorithm U does not take the target code V ∗

k as input, the sim-
ulator must encode some non-trivial functionality of V ∗

k in the session prefix
(r1, p1, ..., pk−1). However, if the simulator runs in a straight-line manner such
as Barak’s [2], it does not execute V ∗

k in computing the history prefix prior to the
verifier’s k-th step, and this means it is able to discern some non-trivial property
of V ∗

k ’s functionality and encode it in the session prefix (r1, p1, ..., pk−1) with-
out executing V ∗

k , which seems to be highly unlikely (See, e.g., [20,21] for some
general hardness results.) We leave the exact characterization of this problem’s
hardness as an interesting research question.

Since, as also argued in the introduction, rewinding seems to be out of the
picture, this leads us to think of our main theorem as strong evidence against the
existence of such proof systems, and safely conclude that constructing non-trivial
constant-round public-coin ZK proofs (if they exist) requires a paradigm-shifting
simulation technique.

Acknowledgements. The authors would like to thank Susumu Kiyoshima and
Sanjam Garg for their valuable comments.

On the Implausibility of Constant-Round Public-Coin 253

References

1. Babai, L.: Trading group theory for randomness. In: STOC, 1985, pp. 421–429
(1985)

2. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS 2001, pp.
106–115 (2001)

3. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

4. Bitansky, N., Dachman-Soled, D., Garg, S., Jain, A., Kalai, Y.T., López-Alt, A.,
Wichs, D.: Why “Fiat-Shamir for Proofs” lacks a proof. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 182–201. Springer, Heidelberg (2013)

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

6. Barak, B., Lindell, Y.: Strict polynomial-time in simulation and extraction.In:
STOC, 2002, pp. 484–493 (2002)

7. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, pp. 444–451 (1986)

8. Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowl-
edge. In: FOCS 2003, pp. 384–393 (2003)

9. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)

10. Bellare, M., Rompel, J.: Randomness-efficient oblivious sampling. In: FOCS 1994,
pp. 276–287 (1994)

11. Canetti, R., Chen, Y., Reyzin, L.: On the correlation intractability of obfuscated
pseudorandom functions. In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol.
9562, pp. 389–415. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 17

12. Deng, Y., Garay, J., Ling, S., Wang, H., Yung, M.: On the implausibility of
constant-round public-coin zero-knowledge proofs. Cryptology ePrint Archive,
Report 2012/508 (2012). http://eprint.iacr.org/2012/508

13. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29, 1–28 (1999)

14. Goldreich, O.: The Foundations of Cryptography, Volume 1, Basic Techniques
Cambridge University Press (2001)

15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

16. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25(1), 169–192 (1996)

17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM. J. Comput. 18(1), 186–208 (1989)

18. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991)

19. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000)

20. Landi, W.: Undecidability of static analysis. J. LOPLAS 1(4), 323–337 (1992)
21. Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang. Syst.

16(5), 1467–1471 (1994)

http://dx.doi.org/10.1007/978-3-662-49096-9_17
http://eprint.iacr.org/2012/508

Efficient Protocols

Improving Practical UC-Secure Commitments
Based on the DDH Assumption

Eiichiro Fujisaki(B)

NTT Secure Platform Laboratories, Tokyo, Japan
fujisaki.eiichiro@lab.ntt.co.jp

Abstract. At Eurocrypt 2011, Lindell presented practical static and
adaptively UC-secure commitment schemes based on the DDH assump-
tion. Later, Blazy et al. (at ACNS 2013) improved the efficiency of the
Lindell’s commitment schemes. In this paper, we present static and adap-
tively UC-secure commitment schemes based on the same assumption
and further improve the communication and computational complexity,
as well as the size of the common reference string.

1 Introduction

Universal composability (UC) framework [5] guarantees that if a protocol is
proven secure in the UC framework, it remains secure even if it is run concur-
rently with arbitrary (even insecure) protocols. The UC framework allows one
to divide the design of a large system into that of simpler sub-protocols, which
provides the designer a fundamental benefit.

Commitment schemes are one of the most important tools in the cryp-
tographic protocols. A commitment scheme consists of a two-phase protocol
between two parties, a committer and a receiver. In the commit phase, a com-
mitter gives a receiver the digital equivalent of a sealed envelope containing
value x. In the decommit phase, the committer reveals x in a way that the
receiver can verify it. From the original concept, it is required that a commit-
ter cannot change the value inside the envelope (binding property), whereas the
receiver can learn nothing about x (hiding property) unless the committer helps
the receiver open the envelope. Commitment schemes that are secure in the UC
framework were first presented by Canetti and Fischlin [6]. UC commitments are
complete for constructing UC zero-knowledge protocols [6,13] and UC two-party
and multiparty computation [7]. Informally, a UC commitment scheme maintains
the above binding and hiding properties under any concurrent composition with
arbitrary protocols. To achieve this, a UC commitment scheme requires equiv-
ocability and extractability at the same time. Since UC commitments cannot
be realized without an additional set-up assumption [6], the common reference
string (CRS) model is widely used.

Several UC commitment schemes in the CRS model have been proposed
so far. After [6], Canetti et al. [7] constructed inefficient schemes from general
assumptions. Damg̊ard and Nielsen [13] proposed interactive schemes that are
c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 257–272, 2016.
DOI: 10.1007/978-3-319-44618-9 14

258 E. Fujisaki

the first efficient UC-secure commitment schemes. Camenish and Shoup [4] also
presented efficient interactive schemes. Although they are asymptotically effi-
cient, their concrete instantiations are implemented on Nd+1 modulus for RSA
modulus N and d ≥ 1, or p2q modulus with primes, p and q.

In [24], Lindell presented the first practical UC commitment schemes based
on an ordinary prime-order group. In practice, his constructions are much more
efficient when implemented in elliptic curves whose security is equivalent to that
of RSA modulus. He proposed two types of UC commitment schemes. One is
static UC-secure and the other is adaptively UC-secure (with secure erasure). If
an adversary should decide to corrupt parities only before a protocol starts, it is
called static corruption. A corrupted party reveals its whole inner states to the
adversary. A commitment scheme is called static UC-secure if it is UC-secure
against static corruptions. On the other hand, if an adversary can decide to
corrupt parties at any point in the executions of protocols, it is called adaptive
corruption. A commitment scheme is called adaptively UC-secure if it is UC-
secure against adaptive corruptions. Adaptive corruptions are more flexible and
powerful attacks. Lindell’s adaptively UC-secure commitment scheme assumes
secure erasure, which means that parties can securely erase their unnecessary
inner states that would have risks of their security at future corruptions. Lindell’s
static UC-secure commitment scheme has total communication complexity of 10
group elements plus 4 scalars, whereas his adaptively UC-secure one has that
of 12 group elements plus 6 scalars. Shortly after, Fishlin et al. [15] transform
Lindell’s static UC-secure scheme into an non-interactive scheme adaptively UC-
secure with erasure, by removing the interaction of the Sigma protocol using
Groth-Sahai proofs [20]. Although their proposal is non-interactive, the commu-
nication and computational complexity is less efficient than [24], because it is
implemented in symmetric bilinear groups and requires expensive pairing oper-
ations. We note that implementing it in asymmetric bilinear groups does not
improve efficiency.

Blazy et al. [3] proposed the improvement of both Lindell’s commitment
schemes. Their static UC-secure commitment scheme has total communica-
tion complexity of 9 group elements plus 3 scalars. The commit phase is non-
interactive and the decommit phase consists of 3 rounds (instead of 5 in Lindell’s
scheme). Their adaptively UC-secure commitment with secure erasure requires
10 group elements and 4 scalars. The commit phase has 3 rounds (instead of 5
in Lindell’s scheme) and the decommit phase is non-interactive.

The static and adaptively UC-secure commitment schemes in [3,24] assume
the DDH assumption and the existence of the collision resistant hash functions.

More on Related Works. The constructions of [12,17,26] are also asymptoti-
cally efficient. The constructions of [4,12,13,17,26] achieve adaptive UC-security
without erasure in the CRS model. In [13], the CRS size grows linearly in
the number of the parties. In [26], the CRS is one-time, i.e., one needs a new
common-reference string for each execution of the commitment protocol. In the
other works, the CRS is independent of the number of parties and re-usable.
In addition, the work of [17] achieves non-interactiveness. The most efficient

Improving Practical UC-Secure Commitments Based on the DDH 259

constructions of [12,17,26] are implemented on Nd+1 modulus for RSA modulus
N , which are less efficient than [3,24].

Recently, [8,9,11,16,19] have proposed UC commitment schemes in the UC
oblivious transfer (OT) hybrid model. Their constructions are very useful when a
huge number of UC commitments are required. Their common significant prop-
erty is that the schemes are very fast except for the overhead of UC OT protocols.
In addition, one can make the number of the execution of UC commitments inde-
pendent of the number of the execution of OT protocols. However, the proposals
are only static UC-secure.

Therefore, [3,24] are still the most efficient adaptively UC-secure commitment
schemes.

Note. Lindell’s adaptively UC-secure commitment scheme [24] contains a small
bug. Blazy et al. [3] clarified and fixed it. See [3,18] for more details.

1.1 Our Contribution

In this paper we further improve the efficiency of Blazy et al. static and adap-
tively UC-secure schemes [3]. By observing the security proof in [3], we realize
that:

– In the adaptive case, two trapdoor commitments can be reduced to one.
– It is an overkill to use an IND-CCA secure public-key encryption (PKE)

scheme in both static and adaptive cases.

The first claim comes from a simple observation. The second claim derives
from our main technical contribution. We claim that an IND-PCA secure PKE
scheme suffices for the protocols. Here the IND-PCA security notion is formu-
lated by Abdala et al. [1] as a variant of the OW-PCA security notion [27].
The IND-PCA security notion is defined as indistinguishability of PKE in the
presence of the plaintext checkable oracle, and a short version of Cramer-Shoup
cryptosystem [10] satisfies this security notion.

In the concrete instantiation, we present practical static and adaptively UC-
secure commitment schemes under the same assumption as in [3,24]. Our adap-
tively UC-secure commitment scheme (with erasure) is more efficient than Blazy
et al. static UC-secure one. Our statistic and adaptive schemes both have the
total communication complexity of 7 group elements and 3 scalars with the
computational complexity of 18 exponentiations.

In Table 1, we compare our proposals with the previous works. All schemes
below are UC-secure commitment schemes assuming the DDH assumption on
cyclic group G and the existence of the collision resistant hash functions. All
adaptively UC-secure ones below assume secure erasure. κ denotes the security
parameter. Let q be the order of G. Then, log(q) = O(κ). |G| denotes the length
of the description of an element in G, which depends on the concrete instan-
tiation, but is generally slightly bigger than log(q). If it is implemented in an
elliptic curve, it is at least |G| ≥ log(q) + 1. T exp(G) denotes the computational
cost of one exponentiation on G.

260 E. Fujisaki

Table 1. Comparison among the UC commitments based on the DDH assumption

Schemes Public Communication Computational Rounds Security
parameter complexity complexity com/decom

Lin11 [24, Sect. 3] 7|G| 10|G|+ 4κ 27T exp(G) 1/4 Static

Lin11 [24, Sect. 4] 8|G| 12|G|+ 6κ 36T exp(G) 5/1 Adaptive

BCPV13 [3, Sect. 5.1] 7|G| 9|G|+ 3κ 22T exp(G) 1/3 Static

BCPV13 [3, Sect. 5.3] 7|G| 10|G|+ 4κ 26T exp(G) 3/1 Adaptive

Ours (Sect. 4.2) 5|G| 7|G|+ 3κ 18T exp(G) 1/3 Static

Ours (Sect. 4.1) 5|G| 7|G|+ 3κ 18T exp(G) 3/1 Adaptive

2 Preliminaries

2.1 (Tag-Based) Public-Key Encryption

We recall a tag-based public-key encryption (Tag-PKE) scheme (or a PKE
scheme supported with labels), following [22,25,31]. A Tag-PKE Π = (K,E,D)
consists of the following three algorithms. The key-generation algorithm K is
a PPT algorithm that takes 1κ and outputs a pair of public and secret keys,
(pk, sk). The encryption algorithm E is a PPT algorithm that takes public key
pk, tag t ∈ {0, 1}κ and message m ∈ MSPenc, draws string r uniformly from
the coin space COINenc, and produces ciphertext (t, c) where c = Et

pk(m; r). The
decryption algorithm D is a DPT algorithm that takes sk and a presumable
ciphertext (t, c) where c ∈ {0, 1}∗, and returns message m = Dt

sk(c). We require
that for every sufficiently large κ ∈ N, it always holds that Dt

sk(Et
pk(m)) = m,

for every (pk, sk) generated by K(1κ) and every m ∈ MSPenc. We say that
ciphertext (t, c) is proper if there exists (m, r) ∈ MSPenc × COINenc such that
c = Et

pk(m; r).
To suit actual instantiations, we assumeMSPenc andCOINenc are defined by pk.
IND-CCA. We recall CCA security for Tag-PKEs [25], also called weak

CCA security in [22]. We define the advantage of A = (A1, A2) for Π against
indistinguishability against chosen ciphertext attacks (IND-CCA) as

AdvccaΠ,A(κ) =
∣∣Pr[Exptcca-0Π,A (κ) = 1] − Pr[Exptcca-1Π,A (κ) = 1]

∣∣ ,

where experiment Exptcca-bΠ,A (κ) for b ∈ {0, 1} is defined in Fig. 1. The constraint
of A in the experement is that A2 is not allowed to submit (t∗, �) to Dsk(·, ·)
where t∗ is the challenge tag. We say that Π is indistinguishable against chosen-
ciphertext attacks (IND-CCA secure) if AdvccaΠ,A(κ) = negl(κ) for every non-
uniform PPT A.

We note that this security notion is weaker than the standard IND-CCA
security notion [2,10,29] for PKE, because an adversary is not only prohibited
from asking for the challenge ciphertext (t∗, c∗) but (t∗, c) with c �= c∗.

IND-PCA. Recently, Abdalla et al. [1] proposed a security notion of indistin-
guishability against plaintext checkable attacks (IND-PCA) for PKE. This paper

Improving Practical UC-Secure Commitments Based on the DDH 261

Fig. 1. Experiment of Exptcca-bΠ,A

utilizes a Tag-PKE variant. Let Exptpca-bΠ,A (κ) for b ∈ {0, 1} be the experiment as
in Fig. 2. Here oracle Opca

sk takes (t,m, c) and returns 1 if and only if c is a proper
ciphertext of m on tag t. The constraint of A in the experiment is that A is
not allowed to submit (t∗, �, �) to Opca

sk (·, ·, ·) where t∗ is the challenge tag. We
define the advantage of A for Π against indistinguishability against the plaintext
checkable attacks (IND-PCA) as

AdvpcaΠ,A(κ) =
∣∣∣Pr[Exptpca-0Π,A (κ) = 1] − Pr[Exptpca-1Π,A (κ) = 1]

∣∣∣ ,

We say that Π is indistinguishable against the plaintext checkable attacks
(IND-PCA secure) if AdvpcaΠ,A(κ) = negl(κ) for every non-uniform PPT A.

Fig. 2. Experiment of Exptpca-bΠ,A

2.2 Trapdoor Commitments

We define a trapdoor commitment scheme. Let TCOM = (Gentc,Comtc,TComtc,
TColtc) be a tuple of the following four algorithms. Gentc is a PPT algorithm takes
as input security parameter κ and outputs a pair of public and trap-door keys
(pk, tk). Comtc is a PPT algorithm takes as input pk and message x ∈ {0, 1}λm

committed to, chooses r ← COINcom, and outputs a ψ = Comtc
pk(m; r). TComtc

is a PPT algorithm takes as input tk and outputs (ψ, χ) ← TComtc
tk(1κ). TColtc

is a DPT algorithm that takes (tk, ψ, χ, x̂) where x̂ ∈ {0, 1}λm and outputs
r̂ ∈ COINcom such that ψ = Comtc

pk(x̂; r̂).
We call TCOM is a trapdoor commitment scheme if the following two condi-

tions hold.

262 E. Fujisaki

Trapdoor Collision. For all pk generated by Gentc(1κ), and all x ∈ {0, 1}λm(κ),
the following ensembles are statistically indistinguishable in κ:
{

(ψ, x, r) | r ← COINcom; ψ = Comtc
pk(x; r)

}

κ∈N,pk∈Gentc(1κ),x∈{0,1}λm

s≈
{

(ψ, x, r) | (ψ, χ) ← TComtc
tk(1κ); r = TColtctk(ψ, χ, x)

}

κ∈N,pk∈Gentc(1κ),x∈{0,1}λm
.

Computational Binding. For all non-uniform PPT adversary A,

Pr
[

pk ← Gentc(1κ); (x1, x2, r1, r2) ← A(pk) :
Comtc

pk(x1; r1) = Comtc
pk(x2; r2) ∧ (x1 �= x2)

]
= negl(κ).

2.3 Sigma Protocol

Let L be an NP language and RL be the relation derived from L. Let Σ =
(Pcom

Σ ,Pans
Σ ,Vvrfy

Σ , simPcom
Σ) be a tuple of algorithms (associated with L) as follows:

– Pcom
Σ is a PPT algorithm that takes (x,w) ∈ RL and outputs (α, ξ) ←

Pcom
Σ (x,w). For simplicity, we assume that ξ is inner coins of Pcom

Σ .
– Pans

Σ is a DPT algorithm that takes (x,w, ξ, β) and outputs γ = Pans
Σ (x,w, ξ, β)

where β ∈ {0, 1}λch .
– Vvrfy

Σ is a DPT algorithm that accepts or rejects (x, α, β, γ).
– simPcom

Σ is a PPT algorithm that takes (x, β) and outputs (α, β, γ) ←
simPcom

Σ (x, β).

Σ is called a Sigma protocol if it satisfies the following requirements:

Completeness: For every (x,w) ∈ RL, every (α, ξ) ∈ Pcom
Σ (x,w), and every

β ∈ {0, 1}λch , it always holds that Vvrfy
Σ (x, α, β, γ) = 1 where γ = Pans

Σ (x,w, ξ, β).

Special Soundness: If there are two different accepting conversations for the
same α on x, i.e., (α, β, γ) and (α, β′, γ′), with β �= β′, it must hold that x ∈ L
and there is an efficient extractor that takes (α, β, γ) and (α, β′, γ′) as input and
outputs w such that (x,w) ∈ RL. We call such a pair a collision on x. Special
soundness implies that there is at most one e such that Vvrfy

Σ (x, α, β, γ) = 1 for
every x �∈ L and every α.

Honest-Verifier Statistical Zero-Knowledgeness (HVSZK): For all
(x,w) ∈ RL, and all β ∈ {0, 1}λch , the following ensembles are statistically
indistinguishable in κ:

{simPcom
Σ (x, β; rγ)}κ∈N, (x,w)∈RL, β∈{0,1}λch

s≈{(Pcom
Σ (x,w; ξ)1, β,Pans

Σ (x,w, ξ, β))}κ∈N, (x,w)∈RL, β∈{0,1}λch ,

where Pcom
Σ (x,w)1 denotes the first output of Pcom

Σ (x,w). Here the probability
of the left-hand side is taken over random variable rγ and the right-hand side is
taken over random variable ξ.

Improving Practical UC-Secure Commitments Based on the DDH 263

3 Universal Composable Framework

The UC framework defines a non-uniform PPT environment machine Z that
oversees the execution of a protocol in one of two worlds. In both worlds, there
are an PPT adversary and honest parties (some of which may be corrupted by
the adversary). In the real world, the real protocol is run among the parties with
some possible attacks given by the real-world adversary. In the ideal world, there
additionally exists a trusted uncorrupted party, ideal functionality F , where the
honest parties in the ideal world do not interact with each other and instead
send their inputs to the ideal functionality F , which carries out the computation
of the protocol in the trusted manner and sends back to the outputs to each
party. We say that protocol π UC-realizes ideal functionality F if there exists an
ideal-world adversary (simulator) S such that no environment Z can distinguish
the real world where it runs with the real adversary A from the ideal world where
it runs with the ideal-world adversary (simulator) S .

In both worlds, the environment adaptively chooses the inputs for the honest
parties and receives the outputs that they get. The environment can control the
adversary and order it to corrupt any honest party at the beginning of the execu-
tion of the protocol (static corruption) or at any timing during the execution
of the protocol (adaptive corruption). When a honest party is corrupted, the
adversary may read the inner state of the honest party and fully control it. In the
ideal world, after a party is corrupted, the ideal-world adversary S may access
to the ideal functionality as the party does. The environment can see the inside
of the execution of the protocol – the actual interactions between the honest
parties or between the honest parties and the adversary – via the adversary’s
view. Since there is no interaction between the honest parties or between the
honest parties and the adversary in the ideal world, the ideal-world simulator
has to simulate the real-world adversary’s view as it comes from the inside of
the protocol in the real world.

We consider a model with ideal authentication channels, and so the adversary
is allowed to read the messages sent by uncorrupted honest party but cannot
modify them. Our protocols are executed in the common reference string (CRS)
model. This means that the protocol is run in a hybrid model where the parties
have access to an ideal functionality Fcrs that chooses a CRS according to the
prescribed distribution and hands it to any party that requests it. Our adaptively
UC-secure protocol requires the secure erasure assumption that the honest
parties can securely erase their unnecessary inner states, as with [3,24].

We denote by IdealF ,SA ,Z(κ, z) the output of the environment Z with input z
after an ideal execution with the ideal adversary (simulator) S and functionality
F , with security parameter κ. We only consider black-box simulators S and
denote the simulator by SA , which means that it works with the adversary A
attacking the real protocol. We denote by HybridFcrs

π,A,Z(κ, z) the output of the
environment Z with input z after an execution of the protocol π in the Fcrs

hybrid model (or in the real world in the CRS model). Informally, a protocol π
UC-realizes a functionality F in the Fcrs hybrid model if there exists a PPT

264 E. Fujisaki

simulator S such that for every non-uniform PPT environment Z every PPT
adversary A, and every polynomial p(·), it holds that

{IdealF ,SA ,Z(κ, z)}κ∈N,z∈{0,1}p(κ)
c≈{HybridFcrs

π,A,Z(κ, z)}κ∈N,z∈{0,1}p(κ) .

The importance of the universal composability framework is that it satisfies a
composition theorem that states that any protocol that is universally composable
is secure when it runs concurrently with many other arbitrary protocols. For
more details, see [5].

We consider UC commitment schemes that can be used repeatedly under a
single common reference string (re-usable common reference string). The
multi-commitment ideal functionality FMCOM from [7] is the ideal functionality
of such commitments. We formally provide it in Fig. 3.

Fig. 3. The ideal multi-commitment functionality

4 Our Proposal

For the space limitation, we focus on the adaptively UC-secure case. The static
case is just a simplified version of the adaptive case and hence the proof is
omitted to avoid a redundant exposition.

4.1 Our Adaptively UC-Secure Commitment with Erasure

We start by explaining the basic idea of Lindell’s scheme [24]. As mentioned
before, UC commitments require extractability and equivocability. Therefore, it
is natural to use a PKE scheme as an extractable commitment scheme in the
CRS model, where the committer commits to a secret value by encrypting it
using public-key pk put in the common reference string. In the simulation, the
simulator can choose the public-key along with the corresponding secret-key and
use it by extracting the committed value. However, UC commitments should be
equivocable at the same time. So, it is not possible at the decommit phase
to simply reveal the committed value and the randomness used to encrypt,

Improving Practical UC-Secure Commitments Based on the DDH 265

because encryptions are perfectly binding. Therefore, the committer instead
sends the committed value m and makes a concurrent (straight-line) non-
malleable zero-knowledge proof such that CT is a proper ciphertext of m. The
straight-line zero-knowledge simulation is needed, because in the UC setting, the
rewinding simulation is not allowed. In addition, concurrent non-malleability is
needed because the simulator makes a number of fake proofs (i.e., valid (simu-
lated) proofs on false statements), but ensures that the adversary cannot pro-
duce any fake proof even after it sees many fake ones. To do so, Lindell utilized
a dual mode encryption scheme, an IND-CCA secure PKE scheme, and a Sigma
protocol. To make the scheme secure against the adaptive corruptions, he addi-
tionally used a trapdoor commitment scheme. It enables the committer to switch
the order of messages in the proof and to run most of the proof in the commit
phase. Then, the committer can erase the randomness used to encrypt before
sending ciphertext CT, which makes the scheme adaptively UC-secure with era-
sure. Blazy et al. [3] showed that the dual mode encryption can be removed from
the proofs in both static and adaptive cases. By this observation, they improved
the number of the rounds from five to three at the commit phase in the adaptive
case (resp. from four to three at the decommit phase in the static case). See
Table 1.

Our starting point is the BCPV adaptively UC-secure commitment scheme.
Before exposing the difference, we give the description of our adaptively UC-
secure commitment scheme.

The Adaptively UC-Secure Commitment Scheme. Let Π = (K,E,D) be a
tag-based PKE scheme. Let Σ = (Pcom

Σ ,Pans
Σ ,Vvrfy

Σ , simPcom
Σ) be a Sigma protocol

on a language such that

L = {(pkenc,m, t,CT) | ∃w ∈ COINenc s.t. CT = Et
pkenc(m;w)}.

Let TCOM = (Gentc,Comtc,TComtc,TColtc) be a trap-door commitment scheme.
Our adaptively UC-secure commitment scheme is constructed as follows.

Common Reference String. The trusted party computes (pkenc, skenc) ← K(1κ)
and (pktc, tktc) ← Gentc(1κ). It chooses a collision-resistant hash H ← H such
that H : {0, 1}∗ → {0, 1}λm and sets crs = (pkenc, pktc,H).

The Commit Protocol.

1. Upon receiving (commit, sid, ssid, C,R,m) where m ∈ MSPpkenc , committer
C sets t = (sid, ssid, C,R), chooses random w ← COINpkenc , and computes
CT = Epkenc(t,m;w).

2. Let L = {(pkenc,m, t,CT) | ∃w ∈ COINenc s.t. CT = Epkenc(t,m;w)}. C com-
putes (α, ξ) ← Pcom

Σ (x,w) as the first message of Sigma protocol on x =
(pkenc,m, t,CT).

3. C computes φ = H(t, x, α) where t = (sid, ssid, C,R).
4. C chooses random rtc ← COINcom and computes ψ = Comtc

pktc(φ; rtc).
5. C sends (t, ψ) to receiver R.

266 E. Fujisaki

6. Receiver R checks t = (sid, ssid, C,R). If there is nothing wrong, then it
sends back β ← {0, 1}λch .

7. C computes γ = Pans
Σ (x,w, ξ, β).

8. C erases (w, ξ).
9. C sends CT to R.

10. R stores (t,CT, ψ, β) and outputs (receipt, sid, ssid, C,R).

The Decommit Protocol.

1. Upon receiving (open, sid, ssid), committer C sends (t,m, α, γ, rtc) to
receiver R where t = (sid, ssid, C,R).

2. R computes φ = H(t, x, α), where x = (pkenc,m, t,CT), and verifies ψ =
Comtc

pktc(φ; rtc) and Vvrfy
Σ (x, (α, β, γ)) = 1. If all relations hold, R accepts and

outputs (reveal, sid, ssid, C,R,m).

Protocol Idea. The difference of our scheme from the BCPV scheme is the
following two: Our scheme commits to ciphertext CT and the first message of
the Sigma prorocol, denoted α, in the same sealed envelope ψ, whereas the BCPV
scheme commits to CT and α in the distinct envelopes, ψ1 and ψ2, respectively.
However, the committer can simply reveal CT (without any witness) at the
commit phase and postpone to show the witness that ψ1 really contains CT
until the decommit phase. So, the two envelops can be unified. This is because
in the ideal world, the value m̃ extracted by the simulator at the commit phase
is revealed to the environment only when the corrupted committer (controlled
by the adversary) successfully executes the decommit phase.

The second improvement comes from realizing that IND-PCA secure PKE [1]
suffices, instead of IND-CCA secure PKE. We note that a simplified variant of
Cramer-Shoup scheme, the Short Cramer-Shoup (SCS) scheme [1], is IND-PCA
secure. The ciphertext of the SCS scheme consists of three group elements,
instead of four. Hence, the first message of the Sigma protocol is also reduced
to three group elements (instead of four).

We informally explain the reason that IND-PCA security suffices. In the
ideal world, the simulator simulates an honest committer without knowing the
committed value at the commit phase. In addition, when interacting with a
corrupted committer as an honest receiver, the simulator must extract the com-
mitted value m′ that the corrupted committer has committed to before the
decommit phase. The extracted value m̃′ is revealed to the environment when
the corrupted committer successfully executes the decommit phase. Therefore,
if the extracted value is different from the value opened by the corrupted com-
mitter, the environment can distinguish the real world from the ideal world. By
construction, at the decomit phase, a committer opens the committed value m′

with the proof that CT is a proper ciphertext of m′. If it is a real proof, m̃′ = m′

always holds. As long as the adversary only see the real proofs produced by the
honest committer (or the simulator), the corrupted committer (controlled by the
adversary) cannot make a fake proof (i.e., a “valid” proof on a false statement),
because of the binding property of TCOM and the soundness property of the
Sigma protocol. Hence, the valid proofs produced by the corrupted committer

Improving Practical UC-Secure Commitments Based on the DDH 267

should be real. Thus, the extracted value m̃′ should be the same as the opened
value m′. This corresponds to Game 1. In Game 2, the simulator simulates the
honest committer, by producing the simulated proofs on the true statements
that CT = Epk(m) is a proper ciphertext of m. Still, the adversary cannot make
a fake proof. This comes from the trapdoor collision property of TCOM and the
HVSZK property of the Sigma protocol. Indeed, the simulated proofs on the
true statements are statistically indistinguishable from the real proofs. In the
next game, the simulator finally makes fake proofs when simulating the honest
committer, i.e., simulated proofs on the false statements that CT = Epk(0) is a
proper ciphertext of m. Here, to prove the environment’s view is indistinguishable
from that in the former game, the works of [3,24] rely on the power of IND-CCA
secure PKE. However, it is an overkill. In Game 2, we know that the adversary
cannot make a fake proof. Hence, if it can make a fake proof, it means that we
are playing the latter game. To realize in which game we are playing, we need
the power of the PCA oracle. We can then construct an IND-PCA adversary A
whose advantage can be reduced to the probability of distinguishing these two
games. If the adversary makes a fake proof, then A can see, with the power of
the PCA oracle, that it is playing in the latter game. Then, it can halt and
make a precise decision. If the adversary does not make fake proofs, then A can
perfectly simulate either of two games according to which message, Epk(m) or
Epk(0), is encrypted. We let A output the output of the environment. Then,
if the difference of the environment’s output in the two games is significant,
the advantage of A in the IND-PCA game is also significant, which contradicts
IND-PCA security.

We now state the main theorem.

Theorem 1. Let Π be IND-PCA. Then, the above construction UC-securely
realizes the FMCOM functionality in the FCRS-hybrid model against the adaptive
corruptions with secure erasure.

Due to the space limitation, we provide the formal proof in the extended
version [18].

4.2 Our Static UC-Secure Commitment

Our static UC-secure commitment scheme is constructed as follows.

Common Reference String. The trusted party computes (pkenc, skenc) ← K(1κ)
and (pktc, tktc) ← Gentc(1κ). It chooses a collision-resistant hash H ← H such
that H : {0, 1}∗ → {0, 1}λm and sets crs = (pkenc, pktc,H).

The Commit Protocol.

1. Upon receiving (commit, sid, ssid, C,R,m) where m ∈ MSPpkenc , committer
C sets t = (sid, ssid, C,R), chooses random w ← COINpkenc , and computes
CT = Epkenc(t,m;w).

2. C sends (t,CT) to receiver R.
3. R stores (t,CT) and outputs (receipt, t).

268 E. Fujisaki

The Decommit Protocol.

1. Upon receiving (open, sid, ssid), committer C sets t = (sid, ssid, C,R),
and computes (α, ξ) ← Pcom

Σ (x,w) as the first message of Sigma protocol
on x = (pkenc,m, t,CT) for L = {(pkenc,m, t,CT) | ∃w ∈ COINenc s.t. CT =
Epkenc(t,m;w)}.

2. C computes φ = H(t, x, α) where t = (sid, ssid, C,R).
3. C chooses random rtc ← COINcom and computes ψ = Comtc

pktc(φ; rtc).
4. C sends (t, ψ) to receiver R.
5. Receiver R checks t = (sid, ssid, C,R). If there is nothing wrong, then it

sends back β ← {0, 1}λch .
6. C computes γ = Pans

Σ (x,w, ξ, β).
7. Committer C sends (t,m, α, γ, rtc) to receiver R where t = (sid, ssid, C,R).
8. R computes φ = H(t, x, α), where x = (pkenc,m, t,CT), and verifies ψ =

Comtc
pktc(φ; rtc) and Vvrfy

Σ (x, (α, β, γ)) = 1. If all relations hold, R accepts and
outputs (reveal, sid, ssid, C,R,m).

Theorem 2. Let PKE be IND-PCA. Then, the above construction UC-realizes
the FMCOM functionality in the FCRS-hybrid model against the static corruptions.

The proof is omitted due to the similarity of the proof of Theorem 1.

4.3 Actual Instantiations

In the above constructions, we use the following building blocks.

The Short Cramer-Shoup (Tag-PKE) Scheme Πpca = (K,E,D). This is
a Tag-PKE variant of the short version of Cramer-Shoup (SCS) cryptosystem
introduced in [1].

– K(1κ, (G, q)): It picks up hash function H ′ : {0, 1}∗ → Z/qZ and a random
generator g in G. It picks up independent random elements xe, x1, x2, y1, y2 ←
Z/qZ and computes h = gxe , c = gx1hx2 , and d = gy1hy2 . It finally outputs
(pkenc, skenc) = ((G, q,H ′, g, h, c, d), (xe, x1, x2, y1, y2)).

– Epkenc(t,m): To encrypt m ∈ G on tag t ∈ {0, 1}κ, it picks up random w ←
COINenc, sets τ = H ′(t, gw), and outputs CT = (gw,mhw, (cτd)w).

– Dskenc(t,CT): It first parses CT = (C1, C2, C3) and computes m = C2C
−xe
1 .

It aborts if C3 = Cτx1+y1
1 (C2/m)τx2+y2 where τ = H(t, C1); otherwise, it

outputs m.

The SCS cryptosystem is proven (in [1]) IND-PCA secure if the DDH assump-
tion holds and H ′ is a collision-resistant hash. The proof that the SCS Tag-PKE
scheme is (the tag version of) IND-PCA secure defined in Sect. 2 is straightfor-
ward from the original proof in [1].

Pedersen Commitment TCOM = (Gentc,Comtc,TComtc,TColtc). The follow-
ing is the description of Pedersen commitment scheme [28].

– Gentc(1κ, (G, q, g)): It picks up random xtc ← Z/qZ and computes ĥ = gxtc . It
outputs pktc = (G, q, g, ĥ) and tktc = (pktc, xtc).

Improving Practical UC-Secure Commitments Based on the DDH 269

– Comtc
pktc(φ): To commit to φ ∈ {0, 1}λm , it picks up random rtc ← Z/qZ and

outputs ψ = grtc ĥφ.
– TComtc

tktc(1
κ): It picks up random ξ ← Z/qZ and outputs ψ = gξ.

– TColtctktc(ξ, φ̂): To open ψ to φ̂ ∈ {0, 1}λm , it outputs r̂tc = ξ − φ̂ · xtc mod q.
One can note that ψ = gr̂tc ĥφ̂.

The Pedersen commitment scheme holds the trapdoor collision property
unconditionally and the computational binding property under the discrete log
(DL) assumption on G.

The Sigma Protocol on the Language Derived from the SCS Tag-PKE
Scheme. Let

Lenc = {(pkenc,m, t,CT) | ∃w s.t. C1 = gw, C2 = m · hw, and C3 = (cτd)w},

where τ = H ′(t, C1). Sigma protocol Σ = (Pcom
Σ ,Pans

Σ ,Vvrfy
Σ , simPcom

Σ) on Lenc is
described as follows.

– (α, ξ) ← Pcom
Σ (x,w), where x = (pkenc,m, τ,CT) and α = (α1, α2, α3) such

that ξ ← Z/qZ; α1 = gξ; α2 = hξ; and α3 = (cτd)ξ.
– γ ← Pans

Σ (x,w, ξ, β), where β ∈ {0, 1}λch and γ = ξ − βw mod q.
– Vvrfy

Σ (x, (α, β, γ)) = 1 if and only if it holds that α1 = gγC1
β , α2 = hγ(C2/m)β ,

and α3 = (cτd)γ
Cβ

3 .
– (α, β, γ) ← simPcom

Σ (x, β), where α = (α1, α2, α3) such that γ ← Z/qZ; α1 =
gγC1

β ; α2 = hγ(C2/m)β ; α3 = (cτd)γ
C3

β .

Applied to Our Adaptively UC-Secure Commitment Scheme.

– Common Reference String: crs = (G, q,H,H ′, g, h, c, d, ĥ).
– The Commit phase:

• Communication: (ψ, β,CT) ∈ G × {0, 1}λch × G
3.

• Committer’s Computation: w ← Z/qZ; CT = (C1, C2, C3) = (gw,m ·
hw, (cτd)w) with τ = H ′(t, C1) for t = (sid, ssid, C,R); ξ ← Z/qZ;
α = (α1, α2, α3) = (gξ, hξ, (cτd)ξ); γ = ξ − βw mod q; rtc ← Z/qZ;
ψ = gφĥrtc , where φ = H(t, x, α) with x = (pkenc,m, t,CT).

• Receiver’s Computation: β ← {0, 1}κ.
– The Decommit phase:

• Communication: (m,α, γ, rtc) where α ∈ G
3 and γ, rtc ∈ Z/qZ.

• Committer’s Computation: None
• Receiver’s Computation: Verify ψ = gφĥrtc , α1 = gγC1

β , α2 = hγ(C3/m)β ,
and α3 = (cτd)γ

C3
β , where τ = H ′(t, C1) and φ = H(t, x, α) with t =

(sid, ssid, C,R) and x = (pkenc,m, t,CT).

270 E. Fujisaki

Applied to Our Static UC-Secure Commitment Scheme.

– Common Reference String: crs = (G, q,H,H ′, g, h, c, d, ĥ).
– The Commit phase:

• Communication: CT ∈ G.
• Committer’s Computation: w ← Z/qZ; CT = (C1, C2, C3) = (gw,m ·

hw, (cτd)w) with τ = H ′(t, C1) for t = (sid, ssid, C,R).
• Receiver’s Computation: None.

– The Decommit phase:
• Communication: (m,ψ, α, β, γ, rtc) where ψ ∈ G, α ∈ G

3, β ∈ {0, 1}λch , and
γ, rtc ∈ Z/qZ.

• Committer’s Computation: ξ ← Z/qZ; α = (α1, α2, α3) = (gξ, hξ, (cτd)ξ);
γ = ξ − βw mod q; rtc ← Z/qZ; ψ = gφĥrtc , where φ = H(t, x, α) with
x = (pkenc,m, t,CT).

• Receiver’s Computation: β ← {0, 1}κ; Verify ψ = gφĥrtc , α1 = gγC1
β , α2 =

hγ(C3/m)β , and α3 = (cτd)γ
C3

β , where τ = H ′(t, C1) and φ = H(t, x, α)
with t = (sid, ssid, C,R) and x = (pkenc,m, t,CT).

Acknowledgments. We thank the members of public-key crypto study workshop at
NTT and the anonymous reviewers of SCN 2016 for nice feedback in the early version
of this work.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistin-
guishable under plaintext-checkable attacks. In: Katz [21], pp. 332–352. See also
http://eprint.iacr.org/2014/609

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption scheme. In: Krawczyk [23], pp. 26–45

3. Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Analysis and improve-
ment of Lindell’s UC-secure commitment schemes. In: Jacobson, M., Locasto, M.,
Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 534–551.
Springer, Heidelberg (2013)

4. Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of dis-
crete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

5. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145. IEEE Computer Society (2001). The full
version available at Cryptology ePrint Archive http://eprint.iacr.org/2000/067

6. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

7. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC 2002, pp. 494–503. ACM
(2002). The full version is available at http://eprint.iacr.org/2002/140

8. Cascudo, I., Damg̊ard, I., David, B., Döttling, N., Nielsen, J.B.: Rate-1, linear time
and additively homomorphic UC commitments. IACR Cryptology ePrint Archive
2016:137 (2016)

http://eprint.iacr.org/2014/609
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2002/140

Improving Practical UC-Secure Commitments Based on the DDH 271

9. Cascudo, I., Damg̊ard, I., David, B.M., Giacomelli, I., Nielsen, J.B., Trifiletti, R.:
Additively homomorphic UC commitments with optimal amortized overhead. In:
Katz [21], pp. 495–515

10. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk [23], pp. 13–25

11. Damg̊ard, I., David, B.M., Giacomelli, I., Nielsen, J.B.: Compact VSS and efficient
homomorphic UC commitments. In: Sarkar and Iwata [30], pp. 213–232

12. Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable commitment
schemes. In: STOC 2003, pp. 426–437. ACM (2003)

13. Damg̊ard, I.B., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)

14. Feigenbaum, J. (ed.): CRYPTO 1991. LNCS, vol. 576. Springer, Heidelberg (1991)
15. Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally

composable string commitments with adaptive security. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg
(2011)

16. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: On the complex-
ity of additively homomorphic UC commitments. In: Kushilevitz, E., Malkin, T.
(eds.) TCC 2016-A. LNCS, vol. 9562, pp. 542–565. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49096-9 23

17. Fujisaki, E.: All-but-many encryption - a new framework for fully-equipped UC
commitments. In: Sarkar and Iwata [30], pp. 426–447

18. Fujisaki, E.: Improving practical UC-secure commitments based on the DDH
assumption. IACR Cryptology ePrint Archive 2016:656 (2016)

19. Garay, J.A., Ishai, Y., Kumaresan, R., Wee, H.: On the complexity of UC commit-
ments. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 677–694. Springer, Heidelberg (2014)

20. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

21. Katz, J. (ed.): PKC 2015. LNCS, vol. 9020. Springer, Heidelberg (2015)
22. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,

Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

23. Krawczyk, H. (ed.): CRYPTO 1998. LNCS, vol. 1462. Springer, Heidelberg (1998)
24. Lindell, Y.: Highly-efficient universally-composable commitments based on the

DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 446–466. Springer, Heidelberg (2011)

25. MacKenzie, P.D., Reiter, M.K., Yang, K.: Alternatives to non-malleability: defin-
itions, constructions, and applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol.
2951, pp. 171–190. Springer, Heidelberg (2004)

26. Nishimaki, R., Fujisaki, E., Tanaka, K.: An efficient non-interactive universally
composable string-commitment scheme. IEICE Trans. 95–A(1), 167–175 (2012)

27. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–175. Springer, Heidelberg (2001)

28. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum [14], pp. 129–140

http://dx.doi.org/10.1007/978-3-662-49096-9_23

272 E. Fujisaki

29. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum [14], pp. 434–444

30. Sarkar, P., Iwata, T. (eds.): ASIACRYPT 2014. LNCS, vol. 8874. Springer,
Heidelberg (2014)

31. Shoup, V.: A proposal for an ISO standard for public key encryption. Cryptology
ePrint Archive, Report 2001/112, December 2001

The Whole is Less Than the Sum of Its Parts:
Constructing More Efficient Lattice-Based AKEs

Rafael del Pino1,2,3, Vadim Lyubashevsky4(B), and David Pointcheval1,2,3

1 INRIA, Paris, France
2 École Normale Supérieure, Paris, France

Rafael.Del.Pino@ens.fr
3 CNRS, Paris, France

4 IBM Research Zurich, Rüschlikon, Switzerland

Abstract. Authenticated Key Exchange (AKE) is the backbone of
internet security protocols such as TLS and IKE. A recent announce-
ment by standardization bodies calling for a shift to quantum-resilient
crypto has resulted in several AKE proposals from the research commu-
nity. Because AKE can be generically constructed by combining a digital
signature scheme with public key encryption (or a KEM), most of these
proposals focused on optimizing the known KEMs and left the authen-
tication part to the generic combination with digital signatures.

In this paper, we show that by simultaneously considering the secrecy
and authenticity requirements of an AKE, we can construct a scheme that
is more secure and with smaller communication complexity than a scheme
created by a generic combination of a KEM with a signature scheme. Our
improvement uses particular properties of lattice-based encryption and
signature schemes and consists of two parts – the first part increases secu-
rity, whereas the second reduces communication complexity.

We first observe that parameters for lattice-based encryption schemes
are always set so as to avoid decryption errors, since many observations
by the adversary of such failures usually leads to him recovering the
secret key. But since one of the requirements of an AKE is that it be
forward-secure, the public key must change every time. The intuition is
therefore that one can set the parameters of the scheme so as to not care
about decryption errors and everything should still remain secure. We
show that this naive solution is not quite correct, but the intuition can
be made to work by a small change in the scheme. Our new AKE, which
now remains secure in case of decryption errors, fails to create a shared
key with probability around 2−30, but adds enough security that we are
able to instantiate a KEM based on the NTRU assumption with rings of
smaller dimension.

Our second improvement is showing that certain hash-and-sign lattice
signatures can be used in “message-recovery” mode. In this mode, the
signature size is doubled but this longer signature is enough to recover

Supported by the European Horizon 2020 ICT Project SAFEcrypto (H2020/2014–
2020 Grant Agreement ICT-644729 – SAFECrypto), the French FUI Project FUI
AAP 17 – CRYPTOCOMP, and the SNSF ERC Transfer Grant CRETP2-166734 –
FELICITY. The full version of this work appears as an eprint Report 2016/435.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 273–291, 2016.
DOI: 10.1007/978-3-319-44618-9 15

274 R. del Pino et al.

an even longer message – thus the signature is longer but the message
does not need to be sent. This is advantageous when signing relatively
long messages, such as the public keys and ciphertexts generated by a
lattice-based KEM. We show how this technique reduces the commu-
nication complexity of the generic construction of our AKE by around
20%. Using a lattice-based signature in message-recovery mode is quite
generic (i.e. it does not depend on the structure of the message), and so
it may be used in AKE constructions that use a different KEM, or even
simply as a way to reduce the transmission length of a message and its
digital signature.

1 Introduction

Lattice-based cryptography has matured to the point that it is seen as a viable
replacement to number-theoretic cryptography. There are very efficient public-
key encryption schemes (and thus Key Encapsulation Mechanisms) based on the
NTRU [14,15] and Ring-LWE problems [6,22,24,30], as well as digital signature
schemes that are also based on NTRU [7,8,13] and Ring-LWE [11,21].

Once we have practical protocols for digital signatures and public key encryp-
tion / key encapsulation, it is clear that one can construct an authenticated key
exchange (AKE) scheme, and even a forward-secure one which guarantees the
key privacy after long-term authentication means are compromised. A rough
outline for a simple construction is described in Fig. 1, which uses a generic
key encapsulation scheme and a digital signature scheme. The simple idea is
that Party 1 picks an encapsulation/decapsulation key pair (Ke,Kd), sends the
encapsulation key in an authenticated way to Party 2, which in turn uses it
to encapsulate a random seed k, in an authenticated message. Only Party 1 is
then able to decapsulate the seed k derived into a session key sk. Authentica-
tion means are the signing keys, and their compromise or the compromise of
any future or past encryption/decryption keys does not have any impact on the
privacy of the session encrypted under key sk.

1.1 Recent Work

There has been a lot of recent work that deals with proposing optimizations of
lattice-based KEMs. The works of [2,4,6,30] gave constructions (and instantia-
tions) of a KEM derived from the Ring-LWE encryption scheme [23], while the
work of [14] optimized the parameters for a particular version of the NTRU
KEM. All these papers left the authentication part of the AKE to known
signature schemes and the generic composition in Fig. 1. The work of Zhang
et al. [32] adapted the (H)MQV [18,19] discrete log-based AKE protocol to the
Ring-LWE problem. But it seems that this approach leads to schemes that have
larger communication complexity (for similar security levels) than the approach

The Whole is Less Than the Sum of Its Parts 275

Fig. 1. A generic AKE construction from a KEM and a digital signature

in Fig. 1. Thus, it currently appears that the most efficient way of constructing
lattice-based AKE schemes is a generic composition of a KEM with a digital
signature scheme.

1.2 Our Contributions

In our work, we propose two enhancements to the generic AKE construction –
allowing decapsulation errors, which increases security, and using digital signa-
tures with message recovery, which decreases the communication.

Handling Decapsulation Errors. The security of lattice-based encryption /
encapsulation schemes relies on the hardness of solving linear equations in the
presence of noise. The larger the noise is (with respect to the field that we are
working over), the harder it is to recover the solution. On the other hand, if
the noise is too large, decryption may fail. These decryption failures are not
just an inconvenience – their detection usually results in the adversary being
able to recover the secret key (c.f. [17]). For this reason, stand-alone encryption
schemes use parameters such that decryption failures occur with only a negligible
probability.

In a forward-secure AKE, however, where the encryption keys are ephemeral,
there is intuitively no danger of decryption failures (which will result in the users
not agreeing on a shared key) since the users will restart and a fresh public key
will be used in the next key-agreement attempt. The cost of a restart is an
increase in the expected run-time and communication complexity of the scheme.
For example, if one run of the protocol uses T of some resource and has a failure
probability of ε, then the expected amount of this resource the complete protocol
will require until it completes successfully is T/(1 − ε). For values of ε that are
small, this is very close to T .

A natural idea to construct such an AKE is to take a KEM that may have
decapsulation failures and plug it into the prototype in Fig. 1. This solution,
however, is not necessarily secure. Consider an encapsulation scheme where

276 R. del Pino et al.

invalidly formed ciphertexts immediately lead to the recovery of the decapsu-
lated key1. The Adversary’s attack would then involve intercepting the cipher-
text sent by Party 2 and recovering the key k′ that will be the one decapsulated
by Party 1 in the event of a decapsulation error (which occurs with non-negligible
probability). The Adversary and Party 1 now share a session key. While a KEM
in which malformed ciphertexts can be opened by the Adversary to the decap-
sulated key may appear to be contrived, it does show that the protocol in Fig. 1
cannot be proven to be secure when instantiated with a generic scheme with
decryption failures.

Our first contribution (Sect. 4) is a construction of a forward-secure AKE that
remains secure even when instantiated with a KEM that leads to decapsulation
failures. In particular, we prove that our scheme is secure as long as recovering
the encapsulated key is a hard problem (regardless of what happens during decap-
sulation) – so essentially all we need for security is for the KEM to be a one-way
function. The modification of the scheme is not particularly complicated – Party
2 simply needs to apply a hash function to k and include it in his message (see the
informal description in Fig. 2 and the formal one in Fig. 3)– but the proof contains
several subtleties.

In order to instantiate the AKE, we show that a KEM based on NTRU
(Sect. 2) very naturally fits into the requirements of our generic construction. We
give a quick description of it, and leave the full details to Sect. 2. The decapsula-
tion key is a polynomial g with small coefficients (chosen according to Table 3)
in the ring Zq[x]/〈xn + 1〉 for q = 12289 and n = 512 or 1024. The encapsula-
tion key is h = f/g, where f is another polynomial with small coefficients. The
encapsulation procedure works by picking two polynomials r and e with small
coefficients and computing the ciphertext/shared key pair (2hr + e, e mod 2).
To decapsulate the ciphertext c = 2hr + e using the decapsulation key g, one
computes

cg mod q mod 2/g = (2fr + ge mod q) mod 2/g = e mod 2,

which is the shared key. Note that for the above equality to hold, it is crucial
that 2fr + ge mod q mod 2 = 2fr + ge mod 2, which happens exactly when the
coefficients of f , r, e,g are small enough that a reduction modulo q does not take
place. If a reduction does take place, then we will end up with a decapsulation
error.

Because in our construction decapsulation errors are no longer a security risk,
we can set the parameters such that these failures occur a non-negligible number

1 It is simple to construct such a scheme. Suppose we have an encapsulation scheme
(without decapsulation errors) with encapsulation procedure Enc and a decapsulation
procedure where Dec(Kd, 0) = 0. We modify it to a scheme where the encapsulation
procedure Enc′ runs Enc to obtain (c, k) and outputs it with probability 1 − ε. With
probability ε, it outputs (0, k). Notice that this new scheme is still secure (i.e. one-
way) because k is still hard to recover (and actually information-theoretically hard
to recover when (0, k) is the output), but with probability ε, the decapsulated key
is the constant Dec(Kd, 0) = 0.

The Whole is Less Than the Sum of Its Parts 277

Fig. 2. Informal AKE construction from encapsulation and digital signatures with
decapsulation errors

of times – for example with probability 2−30. If a failure does occur, then the
protocol can be safely restarted. We believe that 2−30 is a low-enough failure
probability that some external, for example, networking error may have a higher
probability of occurring. Table 3 shows the security gained when we instantiate
our scheme such that it has decapsulation error of 2−30 vs. 2−128. We discuss
the security of our proposals later in this section.

Signatures in Message Recovery Mode. Just as for signatures based on
standard number-theoretic assumptions, lattice-based signatures come in two
flavors – Fiat-Shamir and hash-and-sign.2 The improvement we present in this
paper is only for hash-and-sign signature schemes – in particular for the specific
parameters of the scheme presented in [8]. We now give a brief description of
that scheme, which combines the pre-image sampling algorithm from [10] with
a particular instantiation of an NTRU lattice [12].

The public key is a polynomial h ∈ Zq[x]/〈xn + 1〉 which is equal to f/g,
where the coefficients of f and g are somewhat small.3 The secret key, which is
a basis of a particular lattice induced by h, allows the signer to find polynomials
s1, s2 with small coefficients such that hs1+s2 = H(m), where m is the message
and H is a hash function modeled as a random oracle that maps {0, 1}∗ to
random elements in Zq[x]/〈xn + 1〉.

The signature of a message m is (s1, s2), and the verification procedure checks
that s1, s2 have small coefficients and that hs1 + s2 = H(m). Note that because
s2 is completely determined by s1 and m, there is no reason to send it. Thus
the signature can be just s1,m. For ease of exposition of our improvement,
2 There are also lattice signature schemes that do not use random oracles, but those

are much less practical.
3 The distribution of f and g is different from the way the secret key is constructed

for the KEM. In particular, we do not want f and g to be too small. Full details are
provided in [8].

278 R. del Pino et al.

assume that the bit-length of m is a little less than the bit-length of elements in
Zq[x]/〈xn + 1〉 (e.g. n log q − 256 bits). Then rather than sending s1,m as the
signature, we will send s′

1, s
′
2 that satisfy the equation hs′

1 + s′
2 = t where t is

the polynomial in Zq[x]/〈xn + 1〉 whose first coefficients are m + F (H ′(m)) and
its last 256/�log q� coefficients are H ′(m). Here H ′ is a random oracle mapping
{0, 1}∗ to {0, 1}256 (thus its output fits into 256/�log q� coefficients) and F is
another random oracle whose output range is n log q − 256 bits. Notice that if
we send s′

1 and s′
2 as the signature, the message m can be recovered by first

computing t = as′
1 + s′

2. Then from t, we can recover H ′(m), then F (H ′(m)),
and finally m. More details (in particular how one would handle messages that
are longer than n log q bits) is discussed in Sect. 3.2.

The main advantage of the message recovery signature scheme is that instead
of sending the message m, one can send the shorter element s2. Note that if the
message we are signing is short, then our technique of sending s2 instead of
a message is counterproductive and should not be used.4 The public key and
the ciphertext of a KEM, however, are polynomials that are pseudorandom over
Zq[x]/〈xn + 1〉, and so require n log q bits to represent, and their signatures
would benefit from the message-recovery technique. The efficacy of the message
recovery technique clearly does not depend on anything except the message size,
and so it may also be appropriate to use in combination with other KEMs. In
Table 2, we illustrate the savings of this technique when working over the ring
Zq[x]/〈x1024 + 1〉. When combining our signature scheme with our KEM, or
with the Ring-LWE based KEM in [2], the savings are about 20%. Note that
our complete scheme has less total communication complexity due to the fact
that our NTRU KEM is a little bit more compact than the Ring-LWE one.

1.3 Putting Everything Together

Table 1 shows the communication complexity of our full AKE when instantiated
with n = 512 and n = 1024 (the security of these choices will be discussed
later) for the case of two-sided authentication and for the case of when only
the second party needs to be authenticated (as is often the case in TLS). In
the full version of this paper, we also describe a modification of our proto-
col in which the identities of the parties are hidden from a passive adversary
(this is sometimes a desirable property and is an option in the IKE protocol).
This anonymity property is impossible to achieve in a 2-round scheme,5 and so a
third round is required. Additionally, since maintaining anonymity requires the
splitting of the key/signature pair usually sent in the first round, we cannot use
the message-recovery technique there (but it can still be used when signing the
4 We point out that this is in contrast to using message-recovery mode in other hash-

and-sign signatures, such as RSA. In those cases, the signature size does not increase
in message-recovery mode, and so this mode is always advantageous to use.

5 The intuition is that the player who moves first has to send his signed message in the
clear because there is no encryption key (public or private) available to him at the
start of the protocol. Therefore a passive adversary can simply perform a verification
procedure with that player’s public verification key to see if he is indeed the sender.

The Whole is Less Than the Sum of Its Parts 279

Table 1. Parameter sizes and communication length for our AKE. We consider the
versions where both parties authenticate themselves and the version in which only the
server is authenticated.

One-way authenticated KE Two-way authenticated KE

Dimension n 512 1024 512 1024

Modulus 12289 12289 12289 12289

First flow size (bits) ≈ 7200 ≈ 14400 ≈ 9800 ≈ 19300

Second flow size (bits) ≈ 10300 ≈ 19600 ≈ 10300 ≈ 19600

Signing key size (bits) ≈ 2100 ≈ 3700 ≈ 2100 ≈ 3700

Verification key size (bits) 7168 14336 7168 14336

ciphertext in the second flow), thus the total communication complexity will be
somewhat larger than in our 2-round scheme.

The comparison of our AKE with n = 1024 to the one in [2] is given in Table 2.
Because [2] only proposed a KEM, we combine it with the digital signature
scheme that we use for our KEM in this paper. One can see that our AKE
is slightly shorter than the one from [2] for essentially the same security level.
Also, the message-recovery technique reduces the communication lengths of both
AKEs by the same amount.

1.4 Computational Efficiency

We will now discuss the efficiency of our AKE. The KEM part of our scheme
requires generation of small polynomials and arithmetic operations in the ring
Zq[x]/〈xn + 1〉. Rather than generating polynomials with each coefficient being
independently chosen from some distribution, we follow the original NTRU way
of generating such polynomials by prescribing exactly how many of each coef-
ficient the polynomial should have. Such polynomials can be created using n
random swaps within an integer array. We remark that while such an algorithm
would be weak to timing attacks the permutation can be done in constant time
using a sorting network, as in e.g. [3], this incurs a small overhead resulting in a
complexity of O(n log2 n). Addition and subtraction similarly requires O(n) inte-
ger operations. Multiplication and division can be done in quasi-linear time by
employing the Number Theoretic Transform (i.e. FFT over a finite field) which
has very efficient implementations (e.g. [20]). The prime q = 12289 was chosen
such that xn + 1 (for n = 512 and n = 1024) splits into n linear terms and is
therefore amenable to the number theory transform. We point out that this is
the same ring that was used in [2,7], and those works produced schemes that
were faster than number-theoretic schemes of comparable security parameters.
The KEM part of our scheme is therefore very efficient.

280 R. del Pino et al.

Table 2. Comparison of our paper with [2]. For the comparison to be meaningful
we consider the AKE obtained by adding a Hash-and-Sign signature (either without
or with message-recovery) to the scheme in [2]. We illustrate the savings of message-
recovery mode by presenting the naive generic AKE construction and one that uses
the digital signature in message-recovery mode.

New hope [2] Our scheme

Hash-and-Sign Naive Message-recovery Naive Message-recovery

First flow size (bits) ≈ 24000 ≈ 19600 ≈ 23300 ≈ 18900

Second flow size (bits) ≈ 25800 ≈ 21400 ≈ 23600 ≈ 19200

Total communication (bits) ≈ 49800 ≈ 41000 ≈ 46900 ≈ 38100

Lattice-based signatures that use the hash-and sign approach use a technique
known as lattice pre-image sampling [10,27,29] and this generally results in digital
signatures that are longer and much less efficient to compute than those generated
using the Fiat-Shamir approach [7,11,21]. But there has been a lot of recent work
on trying to optimally (and securely) instantiate hash-and-sign signatures over
polynomial rings. In [8], it was shown that hash-and-sign signatures over carefully-
constructed NTRU lattices that are very similar to those in [12] may be instanti-
ated in a way such that they have signature sizes that are somewhat smaller than
the most compact Fiat-Shamir NTRU-based signature [7]. Then it was shown in
[25] that for many polynomial rings, the GPV sampling algorithm [10] that is used
to produce the compact signatures in [8], can actually be run in time O(n2) (and in
O(n) space) rather thanO(n3) time required for general lattices.Andvery recently,
it was further shown that pre-image sampling can be done in quasi-linear time over
rings Zq[x]/〈xn + 1〉 using ideas from the FFT procedure [9].

Asymptotically, therefore, hash-and-sign signatures are as efficient as the
Fiat-Shamir ones. The caveat is that the lattice pre-image sampling requires
the intermediate storage of a vector of a high precision approximations to real
numbers.6 This requires roughly 300–700 K bits of storage and so may not be
a suitable option for constrained devices. One should therefore consider the sit-
uation in which the AKE is used before deciding whether using hash-and-sign
signatures (and thus benefiting from their message-recovery mode) is appropri-
ate. The most common scenario in which it would be appropriate is TLS where
only the server (which is usually not a device with strong computational con-
straints) is being authenticated. On the other hand, if mutual authentication is
required and one of the devices has resource limitations, then the hash-and-sign
approach may not be appropriate and one may choose to forego the savings in
the communication complexity.

6 It was shown in [26] that one can do pre-image sampling without high-precision
arithmetic, but the resulting vector (and thus the signature size) ends up being
larger than when using sampling procedures such as [10].

The Whole is Less Than the Sum of Its Parts 281

1.5 Security

Obtaining the exact computational hardness of lattice-based schemes is an
extremely difficult problem. In order to put our work into context and obtain
an “apples-to-apples” comparison, we will use some security estimates from the
recent work in [2]. The most efficient attacks against the KEM and signature
scheme which comprise lattice-based AKEs are lattice reduction attacks.7 The
lattice attacks fall into two categories – sieving and enumeration.

The attacks based on sieving are asymptotically more efficient, but have a
very big downside in that the space complexity is essentially equivalent to the
time complexity. Moreover, all known approaches to sieving have lower bounds
to the required space complexity, and it would be a huge breakthrough if an
algorithm were discovered that required less space. The attacks based on enu-
meration are less efficient time-wise, but do not require a lot of space, and
thus are the attacks that are preferred in practice. We analyze our schemes
with respect to both attacks following the methodology in [2].8 All the schemes
that we propose have complexity against enumeration attacks (with quantum
speedup) larger than 128 bits (see Tables 3 and 4). Furthermore, all our schemes,
with the exception of the digital signature component of the AKE for n = 512
have security larger than 128 bits against sieving attacks as well. While the
signature scheme for n = 512 appears to have less than 128 bits of security,
we point out that the sieving complexity we state follows that from [2], which
uses the asymptotic complexity while leaving out the lower order terms. Those
lower-order terms are in fact quite significant in practice, and put the security of
the signature scheme above 128-bits. The analysis in [2] was purposefully done
to be extremely optimistic in favor of the attacker, and for that reason, that
paper only proposes parameters for n = 1024. But they admit that there is no
currently-known attack that exceeds 2128 for n = 512.

There have recently been recent attacks on NTRU encryption schemes where
the modulus is much larger than the size of the secret polynomials f ,g [1,5]. But
those attacks do not apply to schemes such as ours, where the size of these poly-
nomials is not too far from the range in which their quotient will be uniformly-
random in the ring [31].

1.6 Our Recommendations for Lattice-Based AKE

We presented two approaches for improving the generic construction of an AKE
scheme from lattice assumptions. The first approach introduces a very small
chance of protocol failure, but increases security. The second approach reduces
the communication size of the flows in the AKE assuming that the public key
and ciphertexts of the KEM are “large enough”.
7 There are also combinatorial attacks (e.g. [16]), but the dimensions considered in

this paper are too high for them to be effective.
8 The paper [2] also discussed a “distinguishing” attack, but such an attack does not

seem to be relevant in our case because the security in our AKE is based on the
1-wayness of the KEM – thus on a search, rather than a decision, problem.

282 R. del Pino et al.

If one were to make a recommendation for parameter sizes to be used today,
one should probably err on the side of caution and recommend that one use
n = 1024. In this sense, we agree with the decision to only propose parameters
for n = 1024 in the Ring-LWE based KEM of [2]. On the other hand, there
are currently no attacks that make our scheme with n = 512 less than 128-bit
secure. Nor are there really algorithmic directions that look promising enough
to make a significant impact on this parameter range. Thus the main reason for
recommending n = 1024 is to guard against completely surprising novel attacks
– in other words, to guard against “unknown unknowns.” But we believe that
if cryptanalysis over the next several years intensifies and still does not reveal
any novel attack ideas, it is definitely worth re-examining the possibility that
the parameters for n = 512 are indeed secure enough.

As in [2], when we set n = 1024, the security against even the most optimistic
attacks is way above the 128-bit threshold. In this case, we see little sense for
using KEM parameters that increase security at the expense of having a 2−30

chance of decapsulation errors (i.e. those in column III of Table 3). Thus if one
were to set n = 1024, then we recommend using parameters in column IV of
Table 3 along with those in column II of Table 4 for the signature. And one
should use the signature in message-recovery mode. The communication size of
the resulting AKE is in Table 2.

If one were to use n = 512, then one could use the KEM parameters in column
I of Table 3. In this case, an increase in 13 bits (compare to column II) of the
security against sieve attacks may be worthwhile. One could then also use the
parameters from column I of Table 4 for the signature. Note that the complexity
against sieving attacks is not quite 128 bits, but we remind the reader that this
does not take into account the lower order terms of the sieving attack, which
are significant. Also, such an attack requires over 285 space, which makes it
impossible to mount. Because the enumeration complexity is still higher than
128 bits, and authentication is not as critical as secrecy,9 we believe that using
the parameters in column I gives a good trade-off between security and efficiency
in all but the most sensitive applications.

As mentioned in Sect. 1.4, the hash-and-sign signatures that we propose may
not be suitable if the device doing the signing is extrememly limited in com-
putational resources. In this case, we would recommend combining our KEM
with a Fiat-Shamir signature such as BLISS (perhaps adapted to n = 1024) [7].
And if one does not want to perform any high precision arithmetic or Gaussian
sampling, then one can combine our KEM with the Fiat-Shamir scheme in [11]
which only requires sampling from the uniform distribution. Also, if one uses
the AKE in a way that is not completely forward-secure, i.e. the KEM public
key does not change with each interaction, then our security reduction in case
of decapsulation errors no longer holds. In this case, one should use our KEM
with the parameters in columns II and IV of Table 3.

9 If an attack on the signature scheme were discovered, the scheme could be changed.
Whereas an attack on the KEM would reveal all previous secret communication.

The Whole is Less Than the Sum of Its Parts 283

We also mention that the modulus of the rings we use in the paper – 12289 –
was chosen for efficiency purposes. It is the smallest integer q such that the
polynomial xn + 1, for n = 512 or 1024, can be factored into linear factors with
integer coefficients modulo q. Such a factorization, combined with the fact that
n is a power of 2, allows one to perform multiplication and division operations in
quasi-linear time using the Number Theory Transform. If one did not care about
optimizing the efficiency of the AKE, then we could have chosen a smaller q and
then performed multiplication using other techniques (e.g. Karatsuba’s multi-
plication). The advantage of choosing a smaller modulus is that the ciphertext,
which is of length ≈ n log q would be shorter. Of course, if we use our schemes
with a different modulus, we would have to change the distribution of all the
variables in order to maintain similar security and decapsulation error. So while
one cannot choose this modulus to be too small, it seems that something on the

Table 3. Parameters for the NTRU KEM

I II III IV

Polynomial x512 + 1 x512 + 1 x1024 + 1 x1024 + 1

Modulus 12289 12289 12289 12289

±12 coeff 1 0 0 0

±11 coeff 1 0 1 0

±10 coeff 3 0 2 0

±9 coeff 5 1 4 0

±8 coeff 8 2 8 1

±7 coeff 12 4 15 3

±6 coeff 17 9 26 9

±5 coeff 24 17 42 22

±4 coeff 31 28 61 46

±3 coeff 38 41 81 80

±2 coeff 44 55 100 118

±1 coeff 48 65 113 150

0 coeff 48 68 118 166

σ 4.151 2.991 3.467 2.510

sk norm ≈ 93.21 ≈ 67.17 ≈ 110.42 ≈ 79.54

bits (pk and ciphertext) 7168 7168 14336 14336

bits sk 2560 2560 5120 5120

failure prob ≈ 2−30 ≈ 2−128 ≈ 2−30 ≈ 2−128

block size 487 438 1026 939

sieving complexity (log #operations) > 128 > 115 > 269 > 246

sieving space (log bits) > 114 > 104 > 227 > 209

enumeration complexity (log #operations) > 185 > 157 > 645 > 503

284 R. del Pino et al.

order of 211 would be possible. Compared to using the current modulus of 12289,
this could result in a savings of approximately 3n bits in the length of the KEM
public key and ciphertext. Whether this is something worth doing would depend
on the scenario in which the AKE is employed. The main reason that we only
use 12289 in this paper is to obtain a fair comparison to [2], whose scheme also
used this modulus.

2 KEM from NTRU

In this section, we instantiate a KEM based on the hardness of the NTRU
problem.

The NTRU problem deals with finding short solutions to polynomial equa-
tions over certain rings. Some of the more “popular” rings to use are Z[x]/〈xn−1〉
where n is a prime integer and Z[x]/〈xn + 1〉 where n is a power of 2. Start-
ing from the seminal work of [15] where the NTRU problem was first defined,
there have been many different flavors of the problem mostly differing on the
underlying distributions from which the keys and randomness are generated.

Elements in Z[x]/〈xn ± 1〉 are represented as polynomials of degree at most
n−1 and reduction modulo an odd q maps the coefficients into the range [−(q−
1)/2, (q − 1)/2]. We also define the norm of an element in Z[x]/〈xn ± 1〉 to
simply be the �2-norm of the vector formed by its coefficients. In all variants of
the NTRU problem, there are some subsets De,Df of Z[x]/〈xn ±1〉 that consist
of polynomials with coefficients of small norms. Furthermore, the polynomials
from the set Df are also invertible in both Zq[x]/〈xn ± 1〉 and Z2[x]/〈xn ± 1〉.

The NTRU trap-door function intuitively rests on two assumptions. The first
is that when one is given a polynomial h = f/g mod q where f ,g ← Df , it is
hard to recover f and g. The second assumption is that when one is given an h
generated as above and t = 2hr+e mod q where r, e ← De, it is hard to recover
e mod 2.10 When one has the trap-door g, however, one can recover e by first
computing gt mod q = 2fr + ge. If the modulus q is large enough (i.e. 2fr + ge
in Z[x]/〈xn ± 1〉 is equal to 2fr + ge in Zq[x]/〈xn ± 1〉), then the preceding is
equal to ge in the ring Z2[x]/〈xn ± 1〉. Since g has an inverse in Z2[x]/〈xn ± 1〉,
one can then divide by g to recover e mod 2.

Definition 1. For some ring R = Zq[x]/〈xn ± 1〉 and subsets of the ring Df

and De, generate polynomials f ,g ← Df and e, r ← De. Define h = f/g mod q
and t = 2hr + e mod q. The NTRU(R,Df ,De) problem asks to find e mod 2
when given h and t.

10 This is somewhat different from the standard NTRU assumption in that we are
going to allow the coefficients of e to be larger than 2, but only require e mod 2 to
be recovered. This is actually more related to an NTRU encryption scheme that was
first introduced in [31] where the message was hidden in the lower order bits of the
error. One could then think of our KEM as an encryption of a random message. But
since the message itself is random, its randomness contributes to the noise making
it larger.

The Whole is Less Than the Sum of Its Parts 285

The distributions of Df and De will depend on the security and fail-
ure probability of our scheme. We direct the reader to Table 3 and Sect. 2.1.
We now present a simple KEM whose one-wayness is directly based on the
NTRU(R,Df ,De) problem in Definition 1, and whose correctness is based on
the discussion preceding the definition.

KEMKeyGen{ f ,g $← Df ,h ← f/g mod q

Return (Kd,Ke) = (g,h) }

Enc(h){ r, e $← De, t ← 2hr + e mod q

Return (c, k) = (t, e mod 2) }

Dec(g, t){
Return k =

gt mod q mod 2
g

mod 2 }

2.1 KEM Parameters

Table 3 contains our proposed parameter choices for the KEM. To explain the
table, we will use the first column as a running example. The polynomial ring
considered in this instantiation is Z12289[x]/〈x512 + 1〉 and the secret key and
randomness parameters f ,g, e, and r are chosen as random permutations of
degree 512 polynomials that have 1 coefficient set to ±12 (each), 1 to ±11, 3 to
±10, etc. and 48 set to 0. The norm of the secret key and error elements (f ,g)
and (r, e) in this instance is approximately 93.21.

Note that for security, one should use a distribution that produces the largest
vectors possible while not resulting in too many decryption failures. The most
appropriate such distribution is the normal distribution (either the discrete nor-
mal or a rounded continuous).11 Such an operation, though, might be somewhat
more costly than simply creating a random permutation of a fixed vector. We
thus fix the coefficients of our polynomials to be as close to a discrete Gaussian as
possible. Concretely the number of coefficients set to an integer k is the probabil-
ity that a discrete Gaussian of parameter σ outputs k multiplied by the degree of
the polynomial, e.g. 512 · Pr[D4.151 = 12] ≈ 1 so we fix the number of coefficient
with value 12 to one in our first parameter set. Public keys and ciphertexts are
polynomials in Z12289[x]/〈x512 + 1〉 and thus need 512 · 	log 12289
 = 7168 bits
of storage memory. On the other hand, since the coefficients of the secret key are
no larger than 12 they can be stored in 5 bits, resulting in a secret key of size
512 ·5 = 2560 bits. To evaluate the failure probability of decapsulation we model

11 The paper of [2] proposes to use the binomial distribution, which is a good approx-
imation of the normal distribution and is not too difficult to generate. It should be
pointed out that the distribution does not really affect the security of the scheme –
of main importance is the norm of the generated vectors.

286 R. del Pino et al.

the polynomial as having Gaussian coefficients, using an error analysis similar
to the one of Sect. 5.4.1 in [28], we obtain the following probability of failure:

Pr
[
‖2fr + ge‖∞ >

q − 1
2

]
= 1 − erf

(
q − 1√
40nσ2

)

where erf is the Gauss error function. Though we use permutations of fixed
polynomials rather than Gaussians, experiments show that the error rate is close
to the expected one.

3 Digital Signatures from NTRU

After the KEM, the second component of our AKE is a digital signature scheme.
As for number-theoretic schemes, there are two ways to construct (efficient)
lattice-based signature schemes. The first approach is via the Fiat-Shamir trans-
form of a sigma protocol. The currently most efficient such protocol is BLISS,
which was proposed in [7]. The second approach, hash-and-sign, was proposed
by Gentry et al. [10], and its most efficient instantiation is based on the hardness
of finding short vectors in NTRU lattices [8].

3.1 Hash-and-sign and Message Recovery

In this section we show how to adapt the hash-and-sign scheme from [8] to create
a signature scheme with message recovery. What this means is that instead of
sending a signature and a message, one can simply send a larger signature which
then allows for the entire message to be recovered. We first briefly outline the
scheme from [8]. In the below scheme the distribution Df is some distribution
from which secret keys are drawn and the distribution Ds is the distribution of
signatures. The goal of the signer is to produce polynomials according to the
distribution Ds conditioned on the message that he is signing. He is able to do
that using the fact that he knows the secret NTRU keys f and g.

SigKeyGen{ f ,g
$← Df ,h ← f/g mod q

Return (Ks, Kv) = ((f ,g),h) }

Sig((f ,g), m){ t ← H(m),

s1, s2
$← Ds such that hs1 + s2 = t mod q

Return σ = (s1, m) }

Ver(h, σ = (s1, m)){ t ← H(m)

s2 ← t − hs1 mod q

if ‖(s1, s2)‖ < B

then accept

else reject }

The Whole is Less Than the Sum of Its Parts 287

We now give a brief intuition about the correctness of the scheme. The cor-
rectness relies on the fact that the polynomials s1 and s2 are drawn according
to a discrete Normal distribution Ds with a small standard deviation by using
the trapdoor f ,g (this can be done by using e.g. [10,25]) so for an appropriate
positive value B, the probability that ‖(s1, s2)‖ < B is overwhelming. The con-
dition s1h + s2 = t comes directly from the way s1 and s2 are obtained during
the sampling.

We point out that as described above, the scheme needs to be stateful in
order to be secure. In particular, it needs to output the same signature for the
same m, and therefore store the signatures that were output. There are two
simple ways to remove this requirement. The first way is for the signer to use
a pseudo-random function on the message m (with an additional secret key) in
order to derive the randomness that he will use to produce the signature. The
second way is for the signer to pick a random string r and compute t ← H(m, r)
instead of H(m), and then send r along with the signature. This way, the signer
is almost certainly assured that he will never sign the same (m, r) pair twice.

The security of the scheme is based on the fact that it is hard to recover
f and g from h, and that forging a signature implies finding short polynomials
s1, s2 such that hs1+s2 = 0 mod q (see [8] for more formal security statements).

Based on the way that the parameters are set, recovering f and g is harder
than the corresponding problem for the KEM, and so we focus on the problem of
forging signatures. However, since the polynomials s1 and s2 are much larger than
the polynomials of our KEM (here the coefficients of s1 and s2 have standard
deviation 1.17

√
q which is ≈ 50 times larger than the ones used for the KEM)

the corresponding problem is no longer unique-SVP, but rather an approximate-

Table 4. Signature parameters for n = 512 and 1024, q = 12289, and message m ∈
Zq[x]/〈xn + 1〉

I II

Polynomial x512 + 1 x1024 + 1

Modulus 12289 12289

Signing key size (bits) ≈ 2100 ≈ 3700

Verification key size (bits) 6956 13912

message size (bits) 6956 13912

hash-and-sign size (bits) ≈ 11600 ≈ 23300

message-recovery hash-and-sign size (bits) ≈ 9600 ≈ 18900

Gamma factor 1.0041 1.0022

Block size 388 906

sieving complexity (log #operations) > 102 > 237

sieving space (log bits) > 85 > 216

enumeration complexity (log #operations) > 130 > 520

288 R. del Pino et al.

SVP one. To solve this problem we compute the γ factor of the associated lattice,
as done in [8] (see Table 4). To solve SVP using the BKZ algorithm, one needs
the vector b1 output by BKZ to be the shortest vector of the lattice, which
corresponds to the condition δ ≤ γ where δ = ((πβ)1/ββ/2πe)1/2(β−1). From this
equation we obtain the block size β and the security analysis (see full version of
the paper) gives the parameters of Table 4.

3.2 Signature with Message Recovery

Instead of sending the signature σ = (s1,m) and then letting the verification
algorithm recover s2, it may sometimes be intuitively useful to send the signa-
ture as s1, s2 and let the verifier somehow recover m. This may be advantageous
because s1 and s2 are drawn according to small Gaussians, and may be com-
pressed (see the full version of this paper), while m can be any polynomial in
Zq[x]/〈xn + 1〉 and so cannot be encoded in less than n log(q) bits. In this sce-
nario, a better solution would thus be to modify t so that sending s1 and s2
would allow the verifier to recover m. Our signature with message recovery can
be used to recover messages of up to n log q−256 bits, the scheme we define here
can be used for messages m = (m1‖m2) of arbitrary size but the second part
of the message m2 will not benefit from message recovery and thus needs to be
output as part of the signature.

Sig((f ,g),m = (m1‖m2)){ t = (m1 + F (H ′(m)) mod q‖H ′(m))

s1, s2
$← Ds such that hs1 + s2 = t mod q

Return σ = (s1, s2,m2) }

Ver(h, σ = (s1, s2,m2)){ (t1‖t2) ← hs1 + s2 mod q

m1 ← t1 − F (t2) mod q

if ‖(s1, s2)‖ < B and H ′(m1||m2) = t2
then accept
else reject }

While the hash function H mapped to a random element of Zq[x]/〈xn +1〉 �
Z

n
q in the previous scheme, now we want (m1 + F (H ′(m)) mod q‖H ′(m)) to be

a random element of Zq[x]/〈xn + 1〉. To achieve this, we split the message m
into (m1‖m2) with |m1| = n log q − 256 bits (note that m2 can be empty if m is
small) and we set the hash function H ′ to output 256 bits. To prove that this
scheme is secure we show that we can use an adversary that breaks this scheme
to break the one from [8].

Lemma 2. If the hash functions F and H are modeled as random oracles and
an adversary can break the message-recovery hash-and-sign scheme signature
unforgeability game with advantage ε, then there is an algorithm that can break
the previous hash-and-sign scheme with probability close to ε.

The Whole is Less Than the Sum of Its Parts 289

4 The Generic AKE Construction

In this section, we present a generic 2-round construction of a forward-secure
ε-AKE that is built from an ε-KEM and a digital signature. As can be seen from
the parameters in the previous section, by simply plugging in current lattice
primitives into this construction, one already achieves a rather efficient concrete
construction. The complete description is provided in Fig. 3, and the security
claim is the following:

Theorem 3. The authenticated key exchange AKE described in Fig. 3 is a
forward-secure ε-AKE, when H1 and H2 are modeled by random oracles onto
{0, 1}�1 and {0, 1}�2 respectively, if Σ is a secure signature scheme and KEM is
a secure ε-KEM:

Advfs−ind
AKE (t) ≤ n × Succsuf−cma

Σ (t) + 2q2sqh × SuccowKEM(t) +
q2s
2�2

,

Fig. 3. Generic 2-round forward-secure ε-AKE

290 R. del Pino et al.

where n is the number of players involved in the protocols, qs the number of Send-
queries, and qh the number of hash-queries. With a checkable KEM, one gets

Advfs−ind
AKE (t) ≤ n × Succsuf−cma

Σ (t) + 2q2s × SuccowKEM(t′) +
q2s
2�2

,

where t′ ≈ t + qh × tcheck, with tcheck the expected time to check a candidate.

Acknowledgements. We thank Léo Ducas for very helpful discussions related to
lattice reduction algorithms and to [2]. We also thank the committee members for
their comments which helped to improve parts of the paper.

References

1. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions: Cryptanalysis of some FHE and graded encoding schemes. Crypto
(2016)

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. USENIX (2016)

3. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime.
IACR Cryptology ePrint Archive 2016/461 (2016)

4. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17–21, 2015,
pp. 553–570 (2015)

5. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without an encoding of zero. IACR Cryptology ePrint
Archive (2016)

6. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688
(2012). http://eprint.iacr.org/

7. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

8. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 22–41. Springer, Heidelberg (2014)

9. Ducas, L., Prest, T.: A hybrid Gaussian sampler for lattices over rings. IACR
Cryptology ePrint Archive 2015/660 (2015)

10. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

11. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)

12. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSIGN: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-
RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003)

13. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.: Transcript
secure signatures based on modular lattices. In: Mosca, M. (ed.) PQCrypto 2014.
LNCS, vol. 8772, pp. 142–159. Springer, Heidelberg (2014)

http://eprint.iacr.org/

The Whole is Less Than the Sum of Its Parts 291

14. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.:
Choosing parameters for ntruencrypt. IACR Cryptology ePrint Archive 2015/708
(2015)

15. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

16. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–
169. Springer, Heidelberg (2007)

17. Howgrave-Graham, N., Nguyên, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of NTRU
encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–246.
Springer, Heidelberg (2003)

18. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

19. Law, L., Menezes, A., Qu, M., Solinas, J.A., Vanstone, S.A.: An efficient protocol
for authenticated key agreement. Des. Codes Cryptogr. 28(2), 119–134 (2003)

20. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster ideal
lattice-based cryptography. IACR Cryptology ePrint Archive 2016/504 (2016)

21. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

22. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

23. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices, learning with errors
over rings. J. ACM 60(6), 43 (2013). Preliminary version appeared in EURO-
CRYPT 2010

24. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013)

25. Lyubashevsky, V., Prest, T.: Quadratic time, linear space algorithms for Gram-
Schmidt orthogonalization and Gaussian sampling in structured lattices. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 789–
815. Springer, Heidelberg (2015)

26. Lyubashevsky, V., Wichs, D.: Simple lattice trapdoor sampling from a broad class
of distributions. In: Public-Key Cryptography- PKC, pp. 716–730 (2015)

27. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

28. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Chapter in Post-quantum Cryptography,
pp. 147–191. Springer, Heidelberg (2008)

29. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)

30. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Heidelberg (2014)

31. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: EUROCRYPT, pp. 27–47 (2011)

32. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key
exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015)

Efficient Asynchronous Accumulators
for Distributed PKI

Leonid Reyzin and Sophia Yakoubov(B)

Boston University, Boston, USA
{reyzin,sonka}@bu.edu

Abstract. Cryptographic accumulators are a tool for compact set rep-
resentation and secure set membership proofs. When an element is added
to a set by means of an accumulator, a membership witness is generated.
This witness can later be used to prove the membership of the element.
Typically, the membership witness has to be synchronized with the accu-
mulator value: it has to be updated every time another element is added
to the accumulator, and it cannot be used with outdated accumulator
values. However, in many distributed applications (such as blockchain-
based public key infrastructures), requiring strict synchronization is pro-
hibitive. We define low update frequency, which means that a witness
only needs to be updated a small number of times, and old-accumulator
compatibility, which means that a witness can be used with outdated
accumulator values. Finally, we propose an accumulator that achieves
both of those properties.

Keyword: Cryptographic accumulators

1 Introduction

Cryptographic accumulators, first introduced by Benaloh and de Mare [3], are
compact binding (but not necessarily hiding) set commitments. Given an accu-
mulator, an element, and a membership witness (or proof), the element’s pres-
ence in the accumulated set can be verified. Membership witnesses are generated
upon the addition of the element in question to the accumulator, and are typi-
cally updated as the set changes. Membership witnesses for elements not in the
accumulator are computationally hard to find.

There are many applications of Cryptographic accumulators. These can be
divided into localized applications, where a single entity is responsible for proving
the membership of all the elements, and distributed applications, where many
entities participate and each entity has interest in (or responsibility for) some
small number of elements. An example of a localized application is an authenti-
cated outsourced database, where the database owner outsources responsibility
for the database to an untrusted third party. When responding to a query, that
party can then use an accumulator to prove the presence of returned records in
the database record set. An example of a distributed application is a credential
c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 292–309, 2016.
DOI: 10.1007/978-3-319-44618-9 16

Efficient Asynchronous Accumulators 293

system; different parties can prove the validity of their credentials by showing
that they are in the accumulated set. In this paper, we focus on distributed
applications, which were the original motivation for accumulators [3].

A trivial accumulator construction simply uses digital signatures. That is,
when an element is added to the accumulator, it is signed by some trusted central
authority, and that signature then functions as the witness for that element.
The public verification key of the central authority functions as the accumulator
value. However, this solution is very limited, since it requires trust in the central
authority who holds the secret signing key. Many distributed applications have
no central authority that can be trusted, particularly if they are executed by a
number of mutually distrusting peers. In this paper, we are interested in so-called
strong accumulators (defined formally in Sect. 2), which require no secrets.

A classic example of a strong accumulator construction is a Merkle tree [15].
A set element is a leaf of the tree, and the corresponding witness is its authen-
ticating path (that is, the sequence of the element’s ancestors’ siblings). The
Merkle tree root is the accumulator value. Unfortunately, like all existing strong
accumulator constructions, this construction has the significant drawback of
requiring strict synchronization: membership witnesses need to be updated every
time a new element is added to the accumulated set, and can then only be veri-
fied against the current accumulator. If elements are added at a high rate, having
to perform work linear in the number of new elements in order to retain the abil-
ity to prove membership can be prohibitively expensive for the witness holders.
Additionally, because of the high update rate, the verifier might have trouble
maintaining the most current accumulator to use in verifications.

To address these issues, we introduce asynchronous accumulators, which have
two additional properties. Low update frequency allows witnesses to be updated
only a sub-linear number of times (in the number of element additions), which
in particular means that it is possible to verify a witness that is somewhat older
than the current accumulator value. Conversely, old-accumulator compatibility
allows membership verification against an old accumulator, as long as the old
accumulator already contains the element whose membership is being verified.

Section 3 describes these properties in more detail.1

Our New Accumulator. In this work, we introduce the first strong asynchro-
nous accumulator construction. It leverages Merkle hash trees, but maintains
multiple Merkle tree roots as part of the accumulator value, not just one. Our
construction has a low update frequency; it requires only a logarithmic amount of
work (in the number of subsequent element additions) in order to keep a witness
up to date. It is also old-accumulator compatible; unlike any prior construction,
it supports the verification of an up-to-date witness against an outdated accu-

1 The question of whether accumulators updates can be batched, as in our scheme,
was first posed by Fazio and Nicolosi [12] in the context of dynamic accumulators,
which support deletions. It was answered in the negative by Camacho [6], but only
in the context of deletions, and only in the centralized case (when all witnesses are
updated by the same entity).

294 L. Reyzin and S. Yakoubov

mulator, enabling verification by parties who are offline and without access to
the most current accumulator. Our construction is made even more well suited
for distributed applications by the fact that it does not require knowledge of
the accumulated set (or any other information linear in the number of elements)
for the execution of element additions. Section 4 describes our construction in
detail, and provides comparisons to prior constructions. Figure 1 describes the
asynchrony of our construction.

Our Accumulator

tx
(x added)

ta
(accumulator value)

(t + witness from any time tw

after (tx+ta)/2 can be used

time

Other Accumulators

tx
 added)

ta

(accumulator value)

tw (witness time) must match ta

time

ta)/2

Fig. 1. A membership witness w can either be outdated, or up-to-date. Our accu-
mulator construction is asynchronous because even if w is older or newer than the
accumulator, verification can still work. This table illustrates the constraints on how
outdated w can be. Note that in all other strong accumulator schemes, w must be
perfectly synchronized with the accumulator.

1.1 Application: Distributed PKI

The original distributed application proposed by Benaloh and DeMare [3]
involved a canonical common state, but did not specify how to maintain it. Pub-
lic append-only bulletin boards, such as the ones implemented by Bitcoin [16]
and its alternatives (altcoins, such as Namecoin [17]), provide a place for this
common state. Bitcoin and altcoins implement this public bulletin board by
means of blockchains; in Bitcoin they are used primarily as transaction ledgers,
while altcoins extend their use to public storage of arbitrary data.

Altcoins such as Namecoin can be used for storing identity information in
a publicly accessible way. For instance, they can be used to store (IP address,
domain) pairs, enabling DNS authentication [21]. They can also be used to store
(identity id, public key pk) pairs, providing a distributed alternative to certificate
authorities for public key infrastructure (PKI) [22].

Efficient Asynchronous Accumulators 295

Elaborating on the PKI example, when a user Bob registers a public key
pkBob, he adds the pair (“Bob”, pkBob) to the bulletin board. When the bulletin
board is implemented as a blockchain, it falls to the blockchain miners, who
act as the conduit by means of whom content is posted, to verify the validity
of this registration. They must, for instance, check that there is not already a
public key registered to Bob. Details of the verification process are described by
Yakoubov et al. [22]. If the registration is invalid, the miners do not post it to
the bulletin board. As a result of the miners’ verifications, the bulletin board
does not contain any invalid entries.2

When Alice needs to verify Bob’s public key, she can look through the bulletin
board to find this pair. However, when executed naively, this procedure requires
Alice to read the entire bulletin board—i.e., a linear amount of data. Bob can
save Alice some work by sending her a pointer to the bulletin board location
where (“Bob”, pkBob) is posted, which Alice will then follow to check that it
points to Bob’s registration, and retrieve pkBob. However, that still requires that
Alice have access to a linear amount of data during verification. What if Alice
doesn’t have access to the bulletin board at the time of verification at all, or
wants to reduce latency by avoiding on-line access to the bulletin board during
verification?

Adding our accumulator to the bulletin board can free Alice from the need
for on-line random access to the bulletin board [22] (see also [13] for a similar
use of accumulators). The accumulator would contain all of the (id, pk) pairs on
the bulletin board, with responsibility for the witnesses distributed among the
interested individuals. When Bob posts (“Bob”, pkBob) to the bulletin board, he
also adds (“Bob”, pkBob) to the accumulator, and stores his witness wBob. He
posts the updated accumulator to the bulletin board. The validity of this new
accumulator needs to be checked, by the same parties who check the validity of
Bob’s registration. In the blockchain setting, this check is performed by all of
the miners. Since our accumulator construction is strong (meaning trapdoor-free,
as explained in Sect. 2) and deterministic, the validity of the new accumulator
can be checked simply by re-adding (“Bob”, pkBob) to the old accumulator and
comparing the result to the new accumulator.

With our accumulator in place, Alice can simply download the latest accumu-
lator from the end of the bulletin board at pre-determined (perhaps infrequent)
intervals. When Alice wants to verify that pkBob is indeed the public key belong-
ing to Bob, all she needs is wBob and her locally cached accumulator. As long
as Bob’s registration pre-dates Alice’s locally cached accumulator, Alice can use
that accumulator and wBob to verify that (“Bob”, pkBob) has been posted to
the bulletin board. She does not need to refer to any of the new bulletin board
contents because our scheme is old-accumulator compatible.

Our construction also reduces the work for Bob, as compared to other
accumulator constructions. In a typical accumulator construction, Bob needs
to update wBob every time a new (id, pk) pair is added to the accumulator.

2 Note that we do not address public key updates; see Yakoubov et al. [22] for a
discussion of such updates.

296 L. Reyzin and S. Yakoubov

However, in a large-scale PKI, the number of entries on the bulletin board and
the frequency of element additions can be high. Thus, it is vital to spare Bob
the need to be continuously updating his witness. Because it has a low update
frequency, our accumulator reduces Bob’s burden: Bob needs to update his wit-
ness only a logarithmic number of times. Moreover, Bob can update his witness
on-demand—for instance, when he needs to prove membership—by looking at a
logarithmic number of bulletin board entries (see Sect. 5 for details).

2 Background

As described in the introduction, informally, a cryptographic accumulator is a
compact representation of a set of elements which supports proofs of member-
ship.3 In this section, we provide a more thorough description of accumulators,
their algorithms and their security definitions. In Sect. 3, we introduce new prop-
erties for asynchronous accumulators.

2.1 Accumulator Algorithms

A basic accumulator construction consists of four polynomial-time algorithms:
Gen, Add, MemWitUpOnAdd and VerMem, described below. They were first intro-
duced in Baric and Pritzmann’s [2] formalization of Benaloh and de Mare’s [3]
seminal work on accumulators, and a more general version was provided by Der-
ler Hanser and Slamanig [11]. For convenience, we enumerate and explain all of
the input and output parameters of the accumulator algorithms in Fig. 2.

k: The security parameter.

t: A discrete time / operation counter.

at: The accumulator at time t.

x, y: Elements which might be added to the accumulator.

wx
t : The witness that element x is in accumulator at at time t.

upmsgt: A broadcast message sent (by the accumulator manager, if one exists) at time
t to all witness holders immediately after the accumulator has been updated.
This message is meant to enable all witness holders to update the witnesses
they hold for consistency with the new accumulator. It will often contain
the new accumulator at, and the nature of the update itself (e.g. “x has
been added and witness wx

t has been produced”). It may also contain other
information.

Fig. 2. Accumulator algorithm input and output parameters.

We separate the accumulator algorithms into (1) those performed by the
accumulator manager if one exists, (2) those performed by any entity responsible
3 There also exist universal accumulators [14] which additionally support proofs of

non-membership; however, we only consider proofs of membership in this paper.

Efficient Asynchronous Accumulators 297

for an element and its corresponding witness (from hereon-out referred to as
witness holder), and (3) those performed by any third party.

Algorithms Performed by the Accumulator Manager:

– Gen(1k) → a0 instantiates the accumulator a0 (representing the empty set).
In some accumulator constructions, a secret key sk and auxiliary storage m
are additionally generated for the accumulator manager if these are needed to
perform additions. However, this is not the case in our scheme.

– Add(at, x) → (at+1, w
x
t+1, upmsgt+1) adds the element x to the accumulator,

producing the updated accumulator value at+1, and the membership witness
wx

t+1 for x. Additionally, an update message upmsgt+1 is generated, which can
then be used by all other witness holders to update their witnesses.

Note that accumulator constructions where Gen and Add are deterministic
and publicly executable are also strong (as defined by Camacho et al. [7]), mean-
ing that the accumulator manager does not need to be trusted. An execution of
Gen or Add can then be carried out by an untrusted accumulator manager, and
verified by any third party in possession of the inputs simply by re-executing the
algorithm and checking that the outputs match. In fact, an accumulator man-
ager is not necessary at all, since Gen and Add can be executed by the (possibly
untrusted) witness holders themselves and verified as needed.

Algorithms Performed by a Witness Bolder:

– MemWitUpOnAdd(x,wx
t , upmsgt+1) → wx

t+1 updates the witness for element
x after another element y is added to the accumulator. The update message
upmsgt+1 might contain any subset of {wy

t+1, at, at+1, y}, as well as other para-
meters.

Algorithms Performed by Any Third Party:

– VerMem(at, x, wx
t) → b ∈ {0, 1} verifies the membership of x in the accumula-

tor using its witness.

Accumulator Size. Space-efficiency is an important benefit of using an accu-
mulator. A trivial accumulator construction would eschew witnesses entirely, and
have the accumulator consist of a list of all elements it contains. However, this
is not at all space-efficient; any party performing membership verification would
need to hold all of the elements in the set. Ideally, accumulators (as well as their
witnesses and update messages) should remain small no matter how many items
are added to them. In the construction presented in this work, the accumulator
and its witnesses and updated messages grow only logarithmically.

298 L. Reyzin and S. Yakoubov

2.2 Accumulator Security Properties

Now that we have defined the basic functionality of an accumulator, we can
describe the security properties an accumulator is expected to have. Informally,
the correctness property requires that for every element in the accumulator it
should be easy to prove membership, and the soundness (also referred to as
security) property requires that for every element not in the accumulator it
should be infeasible to prove membership.

Definition 1 (Correctness). A strong accumulator is correct if an up-to-date
witness wx corresponding to value x can always be used to verify the membership
of x in an up-to-date accumulator a.

More formally, for all security parameters k, all values x and additional sets
of values [y1, . . . , ytx−1], [ytx+1, . . . , yt]:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

a0 ← Gen(1k);
(ai, w

yi

i , upmsgi) ← Add(ai−1, yi) for i ∈ [1, . . . , tx − 1];
(atx , w

x
tx , upmsgtx) ← Add(atx−1, x);

(ai, w
yi

i , upmsgi) ← Add(ai−1, yi) for i ∈ [tx + 1, . . . , t];
wx

i ← MemWitUpOnAdd(x,wx
i−1, upmsgi) for i ∈ [tx + 1, . . . , t] :

VerMem(at, x, wx
t) = 1

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

In Sect. 3, we modify the correctness definition for asynchronous accumula-
tors. In asynchronous accumulators, the witness wx does not always need to be
up-to-date in order for verification to work (as described in Definition 4), and
the accumulator itself can be outdated (as described in Definition 6).

Definition 2 (Soundness). A strong accumulator is sound (or secure) if it
is hard to fabricate a witness w for a value x that has not been added to the
accumulator.

More formally, for any probabilistic polynomial-time stateful adversary A,
there exists a negligible function negl in the security parameter k such that:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 ← Gen(1k); t = 1;x1 ← A(1k, a0);
while xt �= ⊥

(at, wxt
t , upmsgt) ← Add(at−1, xt);

t = t + 1;
xt ← A(at−1, w

xt−1
t−1 , upmsgt−1);

(x,w) ← A :
x �∈ {x1, . . . , xt} andVerMem(at−1, x, w) = 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ negl(k)

3 New Definitions: Asynchronous Accumulators

An accumulator is asynchronous if the accumulator value and the membership
witnesses can be out of sync, and verification still works. An accumulator and
witness can be out of sync in two ways. First, the witness can be “old” relative to

Efficient Asynchronous Accumulators 299

the accumulator, meaning that more values have been added to the accumulator
since the witness was last updated. Second, the accumulator can be “old” relative
to the witness, meaning that the witness has been brought up to date relative
to a newer accumulator value, but an old accumulator value is now being used
for verification. We describe correctness definitions for these two scenarios in
Sects. 3.1 and 3.2, respectively. The soundness definition doesn’t change.

3.1 Low Update Frequency

We consider an accumulator to have a low update frequency if the frequency with
which a witness for element x needs to be updated is sub-linear in the number
of elements which are added after x. The fact that witnesses do not need to be
updated with every addition naturally implies that they can be “old” relative to
the accumulator, and still verify correctly. Of course, the fact that updates are
needed at all implies that witnesses can’t be arbitrarily old without verification
failing.

Low update frequency requires a change in the correctness definition (but
not in the soundness definition). In the new correctness definition, we intro-
duce a function UpdateTimes(t, tw, tx) which describes when the witness needs
to be updated. It returns a set T of times between tw and t at which the wit-
ness w last updated at time tw for an element x added at time tx needs to be
updated. Note that UpdateTimes(tw, tw, tx) = ∅ and UpdateTimes(t1, tw, tx) ⊆
UpdateTimes(t2, tw, tx) if t1 < t2.

Definition 3 (Low Update Frequency (LUF)). An accumulator has low
update frequency if there exists a function UpdateTimes(t, tw, tx) such that (a)
|UpdateTimes(t, tw, tx)| is sublinear in t for all fixed tw, tx s.t. tw ≥ tx, and (b) the
accumulator is UpdateTimes(t, tw, tx)-LUF-correct, as described in Definition 4.

Definition 4 (Low Update Frequency (LUF) Correctness). An accumu-
lator is UpdateTimes(t, tw, tx)-LUF-correct if an outdated witness wx from time
tw corresponding to value x added at time tx can be used to verify the membership
of x in an up-to-date accumulator a at time t as long as UpdateTimes(t, tw, tx)
is empty.

More formally, for all security parameters k, for all values x and additional sets
of values [y1, . . . , ytx−1], [ytx+1, . . . , yt], the following probability is equal to 1:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

a0 ← Gen(1k);
(ai, w

yi

i , upmsgi) ← Add(ai−1, yi) for i ∈ [1, . . . , tx − 1];
(atx , w

x
tx , upmsgtx) ← Add(atx−1, x);

(ai, w
yt

i , upmsgi) ← Add(ai−1, yi) for i ∈ [tx + 1, . . . , t];
wx

i ← MemWitUpOnAdd(x,wx
i−1, upmsgi) for i ∈ UpdateTimes(t, tx, tx) :

VerMem(at, x, wx
i) = 1 for i = max(UpdateTimes(t, tx, tx))

⎤
⎥⎥⎥⎥⎥⎥⎦

300 L. Reyzin and S. Yakoubov

3.2 Old Accumulator Compatibility

We consider an accumulator to be old accumulator compatible if up-to-date wit-
nesses wx

t can be verified even against an outdated accumulator ata where ta < t,
as long as x was added to the accumulator before (or at) ta.4 Old accumulator
compatibility allows the verifier to be offline and out of sync with the latest
accumulator state.

Like low update frequency, old accumulator compatibility requires a change
in the correctness definition (but not in the soundness definition). Note that
unlike Definition 4, Definition 6 is not parametrized by a function; we expect a
witness to be compatible with an old accumulator no matter how out of sync
they are, as long as the accumulator already contains the element in question.

Definition 5 (Old Accumulator Compatibility (OAC)). An accumulator
is old accumulator compatible if the accumulator is OAC-correct, as described
in Definition 6.

Definition 6 (Old Accumulator Compatiblity (OAC) Correctness). An
accumulator is OAC-correct if an up-to-date witness wx corresponding to value x
can always be used to verify the membership of x in any out-of date accumulator
a which already contains x.

More formally, for all security parameters k, all values x and additional sets
of values [y1, . . . , ytx−1], [ytx+1, . . . , yt]:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

a0 ← Gen(1k);
(ai, w

yi

i , upmsgi) ← Add(ai−1, yi) for i ∈ [1, . . . , tx − 1];
(atx , w

x
tx , upmsgtx) ← Add(atx−1, x);

(ai, w
yi

i , upmsgi) ← Add(ai−1, yi) for i ∈ [tx + 1, . . . , t];
wx

i ← MemWitUpOnAdd(x,wx
i−1, upmsgi) for i ∈ [tx + 1, . . . , t] :

∀j ∈ {tx, . . . , t},VerMem(aj , x, wx
t) = 1

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

4 Our New Scheme

There are several known accumulator constructions, including the RSA con-
struction [3,8,14], the Bilinear Map construction [1,10,18], and the Merkle tree
construction [7]. (Other similar Merkle tree constructions are described in [4,5].)
Their properties are described in Fig. 3. None of these constructions have low
update frequency or old-accumulator compatibility.

We present a different Merkle tree construction which, unlike the construc-
tions given in [4,5,7,9], is asynchronous: that is, it has low update frequency
and old-accumulator compatibility. However, unlike some of those Merkle tree
constructions, it is not universal (meaning that it does not support proofs of
non-membership).
4 Note that this does not compromise the soundness property of the accumulator,

because if x was not a member of the accumulator at ta, w
x
t does not verify with

ata .

Efficient Asynchronous Accumulators 301

Accumulator Protocol Runtimes and Storage Requirements

Accumulator Signatures RSA Bilinear Map Merkle This Work

Add runtime 1 1 1 w/ trapdoor, log(n) log(n)
n without

Add storage 1 1 1 w/ trapdoor, log(n) log(n)
n without

MemWitUpOnAdd runtime 0 1 1 log(n) log(n)
MemWitUpOnAdd storage 0 1 1 log(n) log(n)

Accumulator Properties

Accumulator Signatures RSA Bilinear Map Merkle This Work

Accumulator size 1 1 1 1 log(n)
Witness size 1 1 1 log(n) log(n)

Strong? no no* no yes yes

Update frequency ** 0 n n n log(n)
Old accumulator compatibile? yes no no no yes

Fig. 3. Various accumulator constructions and their protocol runtimes, storage require-
ments, and properties. For each of Add and MemWitUpOnAdd, this table gives the
algorithm runtime, and the storage required for the algorithm execution. Additionally,
the table describes other accumulator properties, such as accumulator size, witness
size, strength, update frequency and old-accumulator compatibility. We let n denote
the total number of elements in the accumulator. The RSA Construction is due to
[3,8,14]. The Bilinear Map construction is due to [1,10,18]. The Merkle tree construc-
tion is due to [9], though it is not described as an accumulator construction. (Other
Merkle tree constructions are given in [4,5,7].) Big-O notation is omitted from this
table in the interest of brevity, but it is implicit everywhere. (∗Sander [20] shows a way
to make the RSA accumulator strong by choosing the RSA modulus in such a way that
its factorization is never revealed. ∗∗Here n refers to the number of elements added and
deleted after the addition of the element whose witness updates are being discussed.)

4.1 Construction

Let n be the number of elements in our accumulator, and let h be a collision-
resistant hash function. When h is applied to pairs or elements, we encode the
pair in such a way that it can never be confused with a single element x – e.g.,
a pair is prefaced with a ‘2’, and a single element with ‘1’. Additionally, we
encode accumulated elements in such a way that they can never be mistaken for
the output of h. For instance, we might preface each element with ‘elt’, and the
output of the hash function with ‘hash’.

Our accumulator maintains a list of D = �log(n + 1) Merkle tree roots
rD−1, . . . , r0 (as opposed to just one Merkle tree root). The leaves of these Merkle
trees are the accumulated elements. rd is the root of a complete Merkle tree with
2d leaves if and only if the dth least significant bit of the binary expansion of
n is 1. Otherwise, rd = ⊥. Note that this accumulator is very similar to a
binary counter of elements, but instead of having a 1 in the dth least significant
position representing the presence of 2d elements, the accumulator has root of
the complete Merkle tree containing those elements.

302 L. Reyzin and S. Yakoubov

A witness wx for x is the authenticating path for x in the Merkle tree
that contains x. That is, if x is in the Merkle tree with root rd, then wx =
((z1, dir1), . . . , (zd−1, dird−1)), where each zi is in the range of the hash function
h, and each dir is either right or left. These are the (right / left) sibling elements
of all of the nodes along the path from element x to the Merkle tree root of depth
d. These siblings, together with the element x, can be used to reconstruct the
root of the Merkle tree. Note that, if x is in the Merkle tree of depth 0, then the
witness is empty. An illustration of an accumulator a and a witness w is given
in Fig. 4.

Membership Verification. Verification is done by using the authenticating
path wx and the element x in question to recompute the Merkle tree root and
check that it indeed matches the accumulator root rd, where d is the length of
wx. In more detail, this is done by recomputing the ancestors of the element x
using the authenticating path wx, where the ancestors are the nodes along the
path from x to its root, as defined by x and by elements in wx. If the accumulator
is up to date, the last ancestor should correspond to the appropriate accumulator
root rd.

If the accumulator is outdated but still contains x, one of the recomputed
ancestors should still correspond to one of the accumulator roots. This is because,
as described in the full version of this paper [19], witnesses (and thus the ances-
tors they are used to compute) are append-only.

If the witness is outdated (that is, it is from time tw < t), verification can be
done at time t as long as t < tw+2d. In Fig. 1, we lower-bound d as log2(tw−tx),
where tx is the time at which the element in question was added. This results in
the condition t < 2tw − tx.

Verification is described in full detail in the full version of this paper [19].

Element Addition. Element addition is done by merging Merkle trees to create
deeper ones. Specifically, when the nth element x is added to a = [rD−1, . . . , r0],
if r0 = ⊥, we set r0 = h(x). If, however, r0 �= ⊥, we “carry” exactly as we would
in a binary counter: we create a depth-one Merkle tree root z = h(r0, h(x)), set
r0 = ⊥, and try our luck with r1. If r1 = ⊥, we can set r1 = z. If r1 �= ⊥,
we must continue merging Merkle trees and “carrying” further up the chain.
Element addition is described in full detail in the full version of this paper [19],
and is illustrated in Figs. 5 and 6 of AppendixA.

Membership Witness Updates. Membership witness updates need to be
performed only when the root of the Merkle tree containing the element in ques-
tion is merged, or “carried”, during a subsequent element addition. This occurs
at most D times. Membership updates use the update message upmsgt+1 =
(y, wy

t+1) (where y is the element being added and wy
t+1 is the witness generated

for y) in order to bring the witness wx
t for the element x up to date.

Efficient Asynchronous Accumulators 303

h(xt-5)

h(,)

h(xt-6) h(xt-4) h(xt-3) h(xt-2) h(xt-1)
h(xt)

h(,)

h(,)

z = h(,)

Accumulator A

h(,)

Fig. 4. An illustration of our accumulator. The accumulator itself is shaded; the
unshaded elements are elements of the Merkle trees which are not actually a part
of the accumulator. The elements with dashed outlines belong to the authenticating
path for xt−5 (which itself has a bold outline). So, the witness for xt−5 would be
wxt−5 = ((h(xt−6), left), (z, right)).

4.2 Properties

The accumulator construction presented in this paper is sound (Theorem1),
has low update frequency (Theorem 2) and is old-accumulator compatible
(Theorem 3).

Theorem 1. The construction presented in this paper is sound as described in
Definition 2 as long as h is collision resistant.

Proof. We prove soundness using the classical technique for Merkle trees. Say
we have an adversary Aa who can break soundness (i.e., who can find a witness
for an element that has not been added to the accumulator). We construct the
accumulator Merkle forest using the elements x1, . . . , xt−1 that Aa requests be
added to the accumulator. Aa then gives us an authenticating path for an element
x /∈ {x1, . . . , xt−1}, and therefore not in any of the accumulator Merkle trees.
Using that path, we reconstruct the ancestors of that element. The first ancestor
that actually appears in any of our accumulator Merkle trees is a collision, since
we have two values that hash to it: the value or pair of values that legitimately
appears in our accumulator Merkle tree, and the value or pair of values provided
by the adversary.

Theorem 2. The construction presented in this paper has low update frequency
as described in Definition 3.

304 L. Reyzin and S. Yakoubov

Proof. A witness for element x need only be updated when the Merkle tree in
which x resides is merged (or “carried”), which happens at most D = �log(n+1)
times.

Theorem 3. The construction presented in this paper is old-accumulator com-
patible as described in Definition 5.

Proof. Correctness (as described in Definition 1) is self-evident; a Merkle tree
root can be correctly reconstructed given its authenticating path. Old accu-
mulator compatibility (OAC) correctness (as described in Definition 6) follows
from the fact that witnesses are append-only; whenever they are modified, the
entire prior witness state remains and new information is tacked on at the end.
Thus, for every past accumulator (as long as it already contains the element x
in question), there is a subset of the current witness wx

t which can be used for
verification against that outdated accumulator.

Strength. Additionally, the construction presented in this paper is strong,
meaning that it does not rely on a trusted accumulator manager. Since every
operation is deterministic and publicly verifiable, the accumulator manager
would have no more luck breaking soundness than a witness holder would. This
is important for distributed use-cases, where there might not be a central trusted
party to execute element additions.

Distributed Storage. The construction presented in this paper has fully
distributed storage; all storage requirements are logarithmic in the number of
elements. The accumulator manager does not need to store the accumulated ele-
ments, or any other additional data, to perform additions. This, too, is important
for distributed use-cases, because storing a lot of data might be too burdensome
for the users of the distributed system, and there might not be a central manager
willing to store the necessary data.

5 Taking Advantage of Infrequent Membership Witness
Updates in a Distributed PKI

We now return to the PKI application of our accumulator described in Sect. 1.1,
where we have a membership witness holder who may not be able to make a
witness update whenever a new element is added. As highlighted in Sect. 4.2, our
accumulator scheme requires that the witness for a given element x be updated
at most D = �log(n+1) times, where n is the number of elements added to the
accumulator after x. However, one might observe that having to check whether
the witness needs updating each time a new element addition occurs renders
this point moot, since this check itself must be done a linear number of times.
We solve this problem by giving our witness holders the ability to “go back in
time” to observe past accumulator updates. If they can ignore updates when
they occur, and go back to the relevant ones when they need to bring their

Efficient Asynchronous Accumulators 305

witness up to date (e.g. at when they need to show it to a verifying third party),
they can avoid looking at the irrelevant ones altogether.

“Going back in time” is possible in the public bulletin board setting of our
PKI application, in which our accumulator is maintained as part of a public
bulletin board. The bulletin board is append-only, so it contains a history of all
of the accumulator states. Along with these states, we will include the update
message, and a counter indicating how many additions have taken place to date.
Additionally, we will include pointers to a selection of other accumulator states,
so as to allow the bulletin board user to move amongst them efficiently. The
pointers from accumulator state t would be to accumulator states t− 2i for all i
such that 0 < 2i < t (somewhat similarly to what is done in a skip-list). These
pointers can be constructed in logarithmic time: there is a logarithmic number
of them, and each of them can be found in constant time by using the previous
one, since t − 2i = t − 2i−1 − 2i−1. Note that storing these pointers is not a
problem, since we are already storing a logarithmic amount of data in the form
of the accumulator and witness.

Our witness holder can then ignore update messages altogether, performing
no checks or work at all. Instead, he updates his witness only when he needs to
produce a proof. When this happens, he checks the counter of the most recently
posted accumulator state. The counter alone is sufficient to deduce whether his
witness needs updating. If his witness does not need updating, he has merely per-
formed a small additional constant amount of work for the verification at hand.
If, as happens a logarithmic number of times, his witness does need updating,
the pointers and counters allow him to locate in logarithmic time the (at most
logarithmic number of) bulletin board entries he needs to access in order to bring
his witness up to date, as described in Appendix C of the full version of this
paper [19]. Thus, the total work performed by our witness holder will remain
logarithmic in the number of future element additions.

Acknowledgements. This research is supported, in part, by US NSF grants CNS-
1012910, CNS-1012798, and CNS-1422965. Leonid Reyzin gratefully acknowledges the
hospitality of IST Austria and École normale supérieure, where part of this work was
performed.

The authors would like to thank Dimitris Papadopoulos and Foteini Baldimtsi for
their insightful feedback.

A Element Addition

In Figs. 5 and 6, we illustrate a single element addition. Element xt+1 is being
added to the accumulator. The depth 0 and depth 1 Merkle trees are both present
in the accumulator, so two “carries” occur before xt+1 is successfully added into
the Merkle tree of depth 2.

306 L. Reyzin and S. Yakoubov

h(,)

h(xt-2) h(xt-1)
w = h(xt)

y = h(,)

Trying to add h(xt+1

location.
h(,)

h()

h()

h() h() h()

h() h() h()

h(,)

h(,) h(,) h(,) h(,)

Step 1

h(,)

h(xt-2) h(xt-1)

y = h(,)

h(,)

h()

h()

h() h() h()

h() h() h()

h(,)

h(,) h(,) h(,) h(,)

Placing an in that location, storing
a new Merkle hash tree of depth 2,

and trying the next accumulator
location.

z = h(w,h(xt+1))

Step 2

Fig. 5. An illustration of an addition operation in our accumulator - part 1.

Efficient Asynchronous Accumulators 307

h(,)

h(,)

h()

h()

h() h() h()

h() h() h()

h(,)

h(,)h(,)h(,)h(,)

Cannot add in that location either.
Placing an in that location, storing
a new Merkle hash tree of depth 3,

and trying the next accumulator
location.

z = h(y,h(w,h(xt+1)))

Step 3

h(,)

h(,)

h()

h()

h() h() h()

h() h() h()

h(,)

h(,)h(,)h(,)h(,)

Can add in that location!
z = h(y,h(w,h(xt+1))) is now one of
the accumulator values, as shown.

z = h(y,h(w,h(xt+1)))

h(xt-1)

y = h(,)

h(xt-2) w = h(xt) h(xt+1)

z = h(,)

h(,)

Step 4

Fig. 6. An illustration of an addition operation in our accumulator - part 2.

308 L. Reyzin and S. Yakoubov

References

1. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer,
Heidelberg (2009)

2. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

3. Benaloh, J.C., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)

4. Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using unde-
niable attestations. In: Proceedings of the 7th ACM Conference on Computer and
Communications Security, CCS 2000, pp. 9–17. ACM, New York (2000)

5. Buldas, A., Laud, P., Lipmaa, H.: Eliminating counterevidence with applications
to accountable certificate management. J. Comput. Secur. 10(3), 273–296 (2002)

6. Camacho, P.: On the impossibility of batch update for cryptographic accumulators.
Cryptology ePrint Archive, Report 2009/612 (2009)

7. Camacho, P., Hevia, A., Kiwi, M., Opazo, R.: Strong accumulators from collision-
resistant hashing. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008.
LNCS, vol. 5222, pp. 471–486. Springer, Heidelberg (2008)

8. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

9. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident logging.
In: Proceedings of the 18th Conference on USENIX Security Symposium, SSYM
2009, pp. 317–334. USENIX Association, Berkeley (2009)

10. Damgrd, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-
map accumulators. Cryptology ePrint Archive, Report 2008/538 (2008)

11. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA
2015. LNCS, vol. 9048, pp. 127–144. Springer, Heidelberg (2015)

12. Fazio, N., Nicolosi, A.: Cryptographic accumulators: definitions, constructions and
applications (2003)

13. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: 21st
Annual Network and Distributed System Security Symposium, NDSS 2014, San
Diego, California, USA, 23–26 February 2014

14. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007)

15. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
17. Namecoin. https://www.namecoin.org/
18. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.

(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)
19. Reyzin, L., Yakoubov, S.: Efficient asynchronous accumulators for distributed PKI.

Cryptology ePrint Archive, Report 2015/718 (2015). http://eprint.iacr.org/

https://www.namecoin.org/
http://eprint.iacr.org/

Efficient Asynchronous Accumulators 309

20. Sander, T.: Efficient accumulators without trapdoor extended abstract. In: Varad-
harajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 252–262. Springer,
Heidelberg (1999)

21. Slepak, G.: Dnschain + okturtles (2013). http://okturtles.com/other/dnschain
okturtles overview.pdf

22. Yakoubov, S., Fromknecht, C., Velicanu, D.: Certcoin: a namecoin based decen-
tralized authentication system (2014)

http://okturtles.com/other/dnschain_okturtles_overview.pdf
http://okturtles.com/other/dnschain_okturtles_overview.pdf

Outsourcing Computation

The Feasibility of Outsourced Database Search
in the Plain Model

Carmit Hazay1(B) and Hila Zarosim2

1 Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
zarosih@cs.biu.ac.il

Abstract. The problem of securely outsourcing computation to an
untrusted server gained momentum with the recent penetration of cloud
computing services. The ultimate goal in this setting is to design efficient
protocols that minimize the computational overhead of the clients and
instead rely on the extended resources of the server. In this paper, we
focus on the outsourced database search problem which is highly moti-
vated in the context of delegatable computing since it offers storage alter-
natives for massive databases, that may contain confidential data. This
functionality is described in two phases: (1) setup phase and (2) query
phase. The main goal is to minimize the parties workload in the query
phase so that it is proportional to the query size and its corresponding
response.

We study whether a trusted setup or a random oracle are necessary
for protocols with minimal interaction that meet the optimal commu-
nication and computation bounds in the query phase. We answer this
question positively and demonstrate a lower bound on the communica-
tion or the computational overhead in this phase.

Keywords: Outsourced computation · Database search functionali-
ties · Lower bound · Communication and computational complexities ·
Minimal interaction

1 Introduction

Background on Outsourced Secure Computation. The problem of securely out-
sourcing computation to an untrusted server gained momentum with the recent
penetration of cloud computing services, where clients can lease computing ser-
vices on demand rather than maintaining their own infrastructure. The ultimate

Carmit Hazay—Research partially supported by a grant from the Israel Ministry
of Science and Technology (grant No. 3-10883), by the European Research Council
under the ERC consolidators grant agreement n. 615172 (HIPS).
Hila Zarosim—The author is grateful to the Azrieli Foundation for the Azrieli
Fellowship award.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 313–332, 2016.
DOI: 10.1007/978-3-319-44618-9 17

314 C. Hazay and H. Zarosim

goal in this setting is to design efficient protocols that minimize the computa-
tional overhead of the clients and instead rely on the extended resources of the
server. Of course, the amount of work invested by the client in order to ver-
ify the correctness of the computation needs to be substantially smaller than
running the computation by itself. Another ambitious challenge of delegatable
computation is to design protocols that minimize the communication between
the cloud and the client. This becomes of particular importance with the prolif-
eration of smartphone technology and mobile broadband internet connections,
as for mobile devices communication and data connectivity is often the more
severe bottleneck.

The study of delagatable computation was initiated with the study of a
restricted scenario where a single client outsources its computation to an exter-
nal server. Two main approaches are examined in this context. In the first setting
there is only one phase of interaction between the client and the server such that
the overall amount of work performed by the client is smaller than performing
the computation on its own. Correctness in this setting is achieved by succinct
zero-knowledge proofs [GLR11,BCCT12,DFH12] with the aim of minimizing
the number of rounds between the client and the server. In the amortized set-
ting [GGP10,AIK10] the computational complexity of the client is analyzed in
an amortized sense. Namely, the client can perform some expensive preprocess-
ing (also known as the offline phase). After this phase is completed, it is required
to run very efficient computations in the online phase.

Recent results also study an extended setting with multiple r clients that
mutually distrust each other and wish to securely outsource a joint computa-
tion on their inputs with reduced costs [KMR11,KMR12,LATV12,AJLA+12,
CKKC13]. In particular, it is required that the communication between the
clients and the server, as well as the communication between the clients, will
be sufficiently smaller than running a secure computation in the standard set-
ting. This more complex setting is strictly harder than the single client setting
since one must handle potential corruptions of any (proper) subset of the clients,
that might collude with the server. It is worth noting that in case only correct-
ness is required then security in the multi clients setting is reduced to security in
the single client setting. This is due to the fact that we can consider a protocol
where r − 1 clients send their inputs to the rth client, that communicates with
the server using all inputs. It then forwards the server’s proof to the other clients
who can verify its correctness. Generally speaking, outsourced secure computa-
tion in the presence of collusion between any t clients and the server implies
secure computation in the standard setting with r − t + 1 parties. Thus, the
problem of delegatable computation with multiple clients focuses on achieving
privacy (with or without imposing correctness).

Modeling Outsourced Database Search. We consider an outsourced database
search functionality where one client has a database, and another set of clients
search the database using a sequence of queries. To simplify the presentation
we denote the data owner by the sender and the other set of clients by the
receiver (for simplicity, we focus on a single receiver asking for multiple queries).

The Feasibility of Outsourced Database Search in the Plain Model 315

The input of the sender is a database of size n.1 The input queries of the receiver
{qi}i∈[t] are picked from a predefined set Qn where Qn is a set of queries that
correspond to a database of size n. This functionality can be described in two
phases. In the setup phase the sender uploads a function of its database to the
server. This phase is run only once, where the sender’s state after this phase
is independent of n. Next, in the query phase the receiver picks a search query
and obtains from the server the answer to this query. To restrict the number
of queries, the sender must approve each query by providing a trapdoor that
depends on the content of the query.

This functionality is highly motivated in the context of outsourced computa-
tion since it offers storage alternatives for massive databases that may contain
confidential data (e.g., health related data about patient history). Our formal-
ization captures a large class of search functionalities such as oblivious transfer
(OT) with adaptive queries [NP99,GH11], keyword search [FIPR05], pattern
matching [HT10] and the indexing problem [Goh03]. The former two functional-
ities are part of a class for which a query’s response size is bounded by an a priori
fixed length, whereas for the latter two functionalities a response is unbounded
and might be O(n). Consequently, secure implementations of such functionali-
ties are more involved. Moreover, our infeasibility results are more meaningful
for this class.

Security is formalized via the standard ideal/real paradigm where in the ideal
setting the three parties: sender, receiver and server, communicate with an ideal
functionality that first obtains the preprocessed database from the sender and
later answers search queries made by the receiver, while leaking some information
about the responses to the server.2 Our modeling also captures collusion between
the server and the receiver. In order to take some advantage from this modeling,
we would like the setup phase to imply O(n) workload, yet the overall cost of
issuing a query should only grow linearly with the size of the query’s response
(which is as optimal as one can obtain). For functionalities that do not imply
a fixed bound on the query responses, this optimization comes at the price of
revealing some leakage about the database (for instance, in pattern matching
the server learns the number of matches of some hidden query).

Another important complexity measure of secure computation that has been
extensively studied in literature, is the round-complexity of secure protocols.
In the stand-alone setting, Katz and Ostrovsky [KO04] determined that the
exact round complexity of achieving a secure two-party computation protocol
is five (and four if only one of the parties receives an output). More recently,
Ostrovsky et al. [ORS15] strengthened this construction by demonstrating a
five-round protocol where the underlying cryptographic primitives are used only
in a “black-box” way. Both the results also provide a four-round protocol for

1 We remark that the internal structure of the database is not important for our
proofs.

2 Our formalization considers the minimal leakage of the length of the queries
responses, yet our proofs follow for any type of leakage as the preprocessed database
is computed independently of that leakage.

316 C. Hazay and H. Zarosim

single-output functionalities. In the multi-party setting, the recent work by Garg
et al. [GMPP16] studies the exact round-complexity of multi-party computation
(MPC) protocols in the plain model and shows that at least four rounds are
necessary for realizing general functionalities.

In this work we study the feasibility of protocols with minimal interaction
in the outsourced setting with no trusted setup, where in the setup phase the
sender sends a single message to the server, whereas in the query phase the sender
and the receiver exchange only two messages (one in each direction), and then
one message in each direction between the receiver and the server.3 Specifically,
we focus on semi-honest security and study the feasibility of the outsourced
database search functionality in the plain model with minimal interaction and
using minimal resources of communication and computation. Security in this
model implies sender’s privacy against, potentially colluding, server and receiver.
Whereas receiver’s privacy is ensured against either corrupted sender or server.
We address the following question,

Does there exist a private protocol with minimal interaction for the outsourced
search functionality in the plain model, that meets the optimal communication
and computation bounds in the query phase?

We prove that the answer for this question is negative and that there exists a
large class of search functionalities that cannot be realized privately with optimal
resources in the query phase.

1.1 Our Results

We prove that using a trusted setup or a random oracle is essential in order to
reduce the resources of the receiver within protocols with minimal interaction,
even if the sender’s state in o(n) and the number of rounds between the server
and the receiver is arbitrary. This result has the consequence that for certain
search functionalities (e.g., pattern matching and all its variants, and the index-
ing problem), either the communication complexity or the running time of the
receiver must be as large as the size of the database. In this paper we exam-
ine both non-private and private channels scenarios (where in the latter setting
corrupted parties do not see the communication between the honest parties),
and prove that our lower bound holds in both settings, where our proof in the
non-private setting relies on a weaker adversary.

More formally, let ANSn,q denote the set of all potential responses for
the query q when ranging over all databases T of size n, and let Hn,Q =
maxq∈Qn

log |ANSn,q| (intuitively, Hn,Q is the logarithm of the number of poten-
tial query responses when ranging over all databases of size n and all queries in
Qn; see Definition 2.1). Then we prove the following theorem,

3 We prove that if the order of communication between the receiver and the
sender/server is swapped then our lower bounds follow more easily. We further note
that our lower bounds are not restricted to a minimal interaction between the server
and the receiver.

The Feasibility of Outsourced Database Search in the Plain Model 317

Theorem 1.1 (informal). For any protocol with minimal interaction that
securely implements the outsourced database search functionality in the presence
of semi-honest adversaries, one of the following holds:

1. The communication complexity in the query phase is Ω(Hn,Q).
2. The number of random bits used by the receiver is Ω(Hn,Q).

Our proof follows a similar intuition of the proof from [Nie02] when show-
ing the impossibility of constructing non-interactive non-committing encryption
schemes in the plain model. Nevertheless, the formalization is more challenging
since the number of involved parties is three. One consequence that we need to
take into account is the order of rounds of which the receiver interacts with the
other parties. This is because for our proof in the private channels setting we
need to consider an adversary that corrupts both the server and the receiver. In
this case, the view of the adversary contains both the randomness of the receiver
and the server, as well as the messages sent from the sender. We further must
distinguish between the randomness of the receiver and that of the server and
rely on the fact that the random tape of the server is uniformly independent
of the receiver’s view. Specifically, we need to show that when we fix a partial
view of the receiver, then for almost all random tapes of the server, the receiver
outputs the correct value. Note that if the receiver communicates with the server
first then this independence no longer holds since the communication between
the receiver and the sender may depend on the random tape of the server (as it
may depend on the messages from the server). On the other hand, if the receiver
communicates with the sender first then independence follows, as semi-honest
adversaries cannot pick their randomness arbitrarily. This subtlety is in con-
trast to the proof in [Nie02] that relies on the correctness of the non-interactive
decryption algorithm of the underlying encryption scheme.

We consider the two potential orders of rounds in the query phase. If the
receiver communicates with the server first, we show that the communication
complexity of the protocol must be large. This is intuitively because at the
time the receiver communicates with the server, the server does not know which
information to send back and essentially must send as much information as the
maximal amount of information sent within any response to query q (when rang-
ing over all databases of size n). On the other hand, if the receiver communicates
with the sender first then recall that in the simulation of the setup phase the
simulator must commit to a setup message independently of the sender’s data-
base, where this message is fixed and cannot be later changed. Then in the query
phase, the simulator has to simulate the view for the corrupted parties so that
it yields the correct output for the receiver. We show that this means that for
every possible answer there must exist a view (rRec,m2) for the receiver (where
rRec is the random tape of the receiver and m2 the message from the sender to
the receiver) such that with a high probability (over the random coins of the
server), the receiver outputs the correct query response. This implies that the

318 C. Hazay and H. Zarosim

number of views (rRec,m2) must be proportional to the number of potential query
responses when ranging over all databases (and hence the length of (rRec,m2)
is linear in Hn,Q), which can be as large as the size of the database for certain
search functionalities even when the receiver’s output size is small.

It is important to note that our lower bounds hold for any protocol with
minimal interaction. Therefore, we can always focus on a protocol that makes
use of a minimal number of random coins. Saying differently, our lower bounds
consider the effective number of bits used by the receiver and even cover sce-
narios where the receiver’s random tape is very large, for which the receiver
ignores some portion of it. The reason for this is that for every such protocol, we
can consider an equivalent protocol where the receiver’s random tape does not
contain any unused bits and apply our lower bounds to the new protocol. This
further implies a lower bound on the running time of the receiver since these
random bits must be incorporated in the computation of the receiver. Moreover,
our lower bounds hold even if the receiver maintains no privacy since they follow
from the non-committing property that we require in the simulation.4 Impor-
tantly, any attempt to replace the uniform random bits of the receiver by an
output of a pseudorandom generator (PRG) in order to strengthen our lower
bounds fails since it requires finding a preimage relative to the PRG; see more
details in Sect. 3.3.

Finally, we note that our lower bounds also apply in the two-party setting for
reactive search functionalities (with a preprocessing phase), which implies the
infeasibility of private reactive pattern matching with optimal query response
and minimal interaction in the plain model. This is in contrast to the non-
private setting, where suffix trees [Wei73] (a data structure that solves pattern
matching and related problems on unencrypted data), are useful to store the
text in a way that allows fast string operations. In particular, it illustrates that
private pattern matching cannot be optimized in the preprocessing setting.

1.2 Prior Work

In [FHV13], Faust et al. use novel ideas to solve pattern matching in the cloud
based on a reduction to the subset sum problem, which do not rely on the hard-
ness of the problem but rather require instances that are solvable in polynomial-
time. This paper presents the first concrete protocols for this problem where the
receiver wishes to learn the positions at which a pattern of length m matches
the text (and nothing beyond that). Their constructions offer simulation-based
security in the presence of semi-honest and malicious adversaries and limit the
communication in the query phase to O(m) bits plus the number of occurrences
(where the semi-honest protocol is with minimal interaction). Nevertheless, Faust
et al. rely heavily on the programmability property of the random oracle, and
use it to equivocate a fake text. In [CS14], Chase and Shen solve outsourced

4 We note that when privacy is not considered, we prove that there exists a query
for which our lower bounds hold. For private protocols this implies that these lower
bounds hold for all queries or else some information about the query leaks.

The Feasibility of Outsourced Database Search in the Plain Model 319

pattern matching by constructing a so called queryable encryption, which is an
encryption scheme that supports search queries between a client and a server
with three rounds of communication. Their construction is based on suffix trees.

In [CK10] Chase and Kamara informally discuss (without providing a proof)
a lower bound on the token length for structured encryption scheme, that
encrypts a structured data in a way that allows to privately query the data.
Their intuition says that the length of the token for a given query grows with
the number of potential answers when working with a simulation-based defin-
ition. Our proofs formalize this intuition for settings with multiple clients for
which the data owner is a different entity than the receiver.

Another related line of works regarding symmetric searchable encryption
(SSE) allows a (single) client to store data on an untrusted server and later
perform keyword searches. This primitive has been widely studied recently; see
[CGKO11,KPR12,KP13,JJK+13,CGPR15,ANSS16] for just few examples. The
standard security definition for SSE schemes follows the ideal/real simulation
paradigm and comes with two flavours of static and adaptive searches (where in
the latter modeling a keyword may be determined as a function of the previous
tokens/responses). We note that our results also hold for non-interactive SSE
for which the tokens maintain the keyword privacy, and thus can be transferred
via a 2PC protocol to a different client than the data owner (denoted by the
receiver in our paper). This scenario is considered in [JJK+13] yet their security
definition is weaker in the sense that the receiver cannot collude with the server.

2 Our Modeling

In this section we model the reactive database search functionality where one
client has a database, and another set of clients search the database using a
sequence of queries. To simplify the presentation we denote the former client by
the sender and the other set of clients by the receiver. (For simplicity, we focus
on a single receiver asking for multiple queries).

Inputs and Outputs. The input of the sender is a database T of size n bits.
The input queries of the receiver {qi}i∈[t] are picked from a predefined set Qn

of binary strings, where Qn is a set of queries that correspond to a database of
size n. Specifically, we let the set of queries {Qn}n∈N depend on the database
size. This formalization captures search functionalities where Qn changes with
the database size, such as in oblivious transfer with adaptive queries. It further
covers search functionalities where the same set of queries is used for databases
of different sizes by fixing the same set of queries for all n, such as in pattern
matching, (see Section [HZ14] for the formal definitions of these functionalities).

The queries made by the receiver are determined adaptively by a PPT algo-
rithm M that takes the receiver’s initial input and the outputs of prior search
results. Whenever we say that the honest receiver picks a search query qi ∈ Qn,
we assume that the receiver applies its input selection algorithm M as speci-
fied above. Queries that do not have a suitable answer in the database will be

320 C. Hazay and H. Zarosim

responded with a “no match” message whenever queried by the receiver. Finally,
we assume that |q| ≤ m for all q ∈ Qn and some fixed parameter m = m(κ). We
further assume that n is polynomial in the security parameter κ.

We let Tq denote the response of the functionality on database T and query
q ∈ Qn. As above, this formalization is general enough and allows to capture
different search functionalities with different output structure (for instance, when
the query outcome contains a single vs. a set of records).

The Reactive Search Functionality. This functionality is described in two phases.

1. In the setup phase the sender sends a message a(T) to the server, where a(·)
is some polynomial-time algorithm. This phase is run only once, such that
the size of the sender’s state s upon completion is bounded by poly(κ).5

2. In the query phase the receiver picks a search query and obtains from the
server the answer to this query. Note that this definition is meaningful only
if we restrict the number of queries made by the receiver. Otherwise, no
notion of privacy is guaranteed for the sender, since the receiver (or even
the server) can potentially search the database for as many queries as they
wish. This requirement is formalized by asking the sender’s “permission”
whenever a query is made, and is an important feature of payment-based
search applications where the receiver pays per search. Looking ahead, we
implement this restriction using a secure protocol between the sender and
the receiver that allows the receiver to learn the answer to its search query
while maintaining the privacy of its query.

The formal definition of outsourced database search functionality appears in
Fig. 1.

Communication Model. Our result are introduced in the plain model in two dif-
ferent settings: (1) in the private channels case where corrupted parties do not
see the communication between the honest parties. (2) In the non-private chan-
nels case. In the later setting the adversary can observe the messages between
the honest parties. We note that any infeasibility result in the private setting
implies the same result in the non-private setting. Nevertheless, we reprove our
theorem for the latter setting as well, assuming a weaker type of adversary. Con-
cretely, our infeasibility result in the private setting requires a collusion between
the server and receiver, whereas the analogue proof relies on an adversary that
corrupts only the receiver.

Complexities. In order to take some advantage from this modeling, we would
like the setup phase to require O(n) workload, yet the overall cost of issuing a
query should only grow linearly with the size of the query’s response (which is as
optimal as one can obtain). As mentioned before, for some search functionalities,

5 For this to be meaningful, we requite that the size of the sender’s state is strictly
less than n. This is formalized by assuming the existence of two polynomials p1(·)
and p2(·) such that n ≤ p1(κ), s ≤ p2(κ) and s ∈ o(n).

The Feasibility of Outsourced Database Search in the Plain Model 321

Functionality FODBS

Letm, t ∈ N andQ = {Qn}n. Functionality FODBS sets a table B initially to be empty and
proceeds as follows, running with sender Sen, receiver Rec, server Ser and ideal adversary
SIM.

1. Upon receiving a message (DB, T,m) from Sen, send (preprocess, |T |,m) to Ser and
SIM, and record (DB, T) and n = |T |.

2. Upon receiving a message (query, qi) from Rec (for i ∈ [t]), where message (DB, ·)
has been recorded, |qi| ≤ m and qi ∈ Qn, check if the table B already contains an
entry of the form (qi, ·). If not, then pick the next available identifier id from {0, 1}∗

and add (qi, id) to B. Send (query, Rec) to Sen and SIM.
(a) Upon receiving (approve, Rec) from Sen send (response, Rec, |Tqi |, id) to server

Ser. Otherwise, if no (approve, Rec) message has been received from Sen, send
⊥ to Rec and abort.

(b) Send (response, qi, Tqi , id) to Rec.

Fig. 1. The outsourced database search functionality

where there is no fixed bound on the query’s response, this optimization comes
with the price of revealing some leakage about the database. We further allow
leaking the search pattern, where the server recognizes whether the same query
already asked before. Finally, we require that the round complexity of any pro-
tocol implemented in this setting is minimal. I.e., in the setup phase we require
a single message sent from the sender to the server, whereas in the query phase
we require the receiver exchange only two messages (one in each direction) with
each of the other clients.

Security Definition. Security is formalized using the standard ideal/real para-
digm, considering the server as a separate entity that does not contribute any
input to the computation. As in the standard two-party modeling a corrupted
party is either semi-honest or malicious, where in the semi-honest setting the
attacker follows the protocol’s instructions but tries to gain additional infor-
mation about the honest parties’ inputs, whereas in the malicious setting the
attacker follows an arbitrary efficient strategy. This modeling also captures col-
lusion between some of the parties, when the adversary corrupts more than one
party and the corrupted parties share a joint state. In this work we only consider
collusion between the server and the receiver.6 We say that a protocol is secure
in the presence of (P1/P2)-collusion if security holds against collusion between
parties P1 and P2 (in addition to individual corruptions). See [HZ14] for the
formal definition.

6 Notably, our lower bounds also apply to settings where all type of collusion are
allowed since this only strengthens the model.

322 C. Hazay and H. Zarosim

2.1 Useful Notations

Let n be a natural number denoting the size of the database and let Q = {Qn}n∈N

be such that Qn is a set of appropriate queries for databases of size n bits.7 We
introduce important notations next.

Definition 2.1. For every q ∈ Qn, we let ANSn,q denote the set of all
potential responses Tq for the query q when ranging over all databases T of
size n. Formally, ANSn,q = {Tq | T ∈ {0, 1}n} . Furthermore, let Hn,Q =
maxq∈Qn

log |ANSn,q| , which intuitively captures the maximal amount of infor-
mation that a response for any query q ∈ Qn provides.

For instance, consider the oblivious transfer with adaptive queries functionality
where every entry in the database is of size �. In this case, ANSn,q is the set of
all �-length binary strings.

Definition 2.2. We specify the following definitions:

1. Denote by ccn,q
Ser(κ) = ccSer(κ, n, q) the communication complexity of the inter-

action between Rec and Ser within πQuery such that the receiver’s input is the
query q and the database is of size n. Namely, the number of bits being trans-
ferred between the receiver and the server in the query phase with parameters
κ and q.

2. Analogously, denote by ccn,q
Sen(κ) = ccSen(κ, n, q) the communication complexity

of the interaction between the receiver and the sender within πQuery such that
the receiver’s input is the query q and the database is of size n.

3. Denote by ccn,q(κ) = cc(κ, n, q) the overall communication complexity within
πQuery. Namely, the overall number of bits being transferred during the execu-
tion of πQuery such that the receiver’s input is the query q and the database is
of size n.

4. Finally, denote by randn,q
Rec(κ) = randRec(κ, n, q) the size of the receiver’s ran-

dom tape within πQuery such that the receiver’s input is the query q and the
database is of size n.

3 Infeasibility of Outsourced Database Search in the
Plain Model

In this section we introduce our infeasibility result of outsourced database search
in the plain model. We introduce our lower bound in two settings: (1) In Sect. 3.1
we prove the private channels case where corrupted parties do not see the commu-
nication between the honest parties. (2) In Sect. 3.2 we prove a similar theorem
in the non-private channels case. In the later proof the adversary can observe
the messages between the honest parties, which implies that a corrupted receiver
observes the setup message. This simplifies our proof since the simulator does
not need to generate the internal state of the server. The proof in the former
setting holds only for protocols secure against (Ser/Rec)-collusion and is slightly
more involved.
7 We emphasize that the infeasibility proof holds for any database of length n (regard-

less of its internal structure).

The Feasibility of Outsourced Database Search in the Plain Model 323

3.1 The Private Channels Case

Our proof is shown in the presence of collusion between the receiver and the
server and crucially relies on the assumption that the receiver communicates with
the sender first. This ordering enables to split the randomness of an adversary
controlling these parties into two distinct and independent sets. In Theorem3.1
we show that this ordering in necessary, proving that if this order of rounds is
modified then the communication complexity between the server and the receiver
must be proportional to Hn,Q, that might be as large as the database size for
some functionalities (see Lemma 3.6). Informally, this statement follows since at
the time the receiver communicates with the server, the server does not know
anything about the database. It therefore does not know the correct response
to the receiver’s query, and essentially must send as much information as the
maximal amount of information sent within any response to query q (with respect
to all possible databases of size n). Recall that we assume that the receiver
communicates with each party only once. Formally,

Theorem 3.1. Fix n and m, and let π = (πPre, πQuery) be a protocol with
minimal interaction that securely implements FODBS with respect to queries
Q = {Qn}n in the presence of (Ser/Rec)-collusion and semi-honest adversaries.
Then, if πQuery is defined such that Rec communicates with Ser first, for every
n there exists q ∈ Qn such that it holds that ccn,q

Ser(κ) ≥ Hn,Q − s.8

Proof. Fix n and assume by contradiction that ccn,q′
Ser (κ) < Hn,Q − s for every

q′ ∈ Qn and consider the case that only the server is corrupted. Note first
whenever the receiver communicates with the server first, then for every query q
the length of the server’s response must be the same for all databases of size n.
Otherwise the server can distinguish between two different databases of size n
at the end of the setup phase (we recall that the server communicates with each
party only once). More formally, assume that for some query q′ and n, there
exist two databases T1 and T2 of size n, such that the length of the server’s
response to the receiver is different for the following executions: (1) The input
of the sender is T1 and the input of the receiver is q′. (2) The input of the sender
is T2 and the input of the receiver is q′. Next, consider a corrupted server that
obtains q′ as part of its auxiliary input. Now, since the receiver communicates
with the server first, the server can emulate this interaction by its own at the
end of the setup phase and distinguish between the case where the sender’s input
is T1 and the case where the sender’s input is T2 by observing the length of the
emulated response to the receiver, which violates the sender’s privacy. Note that
this attack does not work in the case that the receiver talks to the sender first
because the receiver’s message to the server cannot be emulated by the server.

This implies that the for every fixed query q ∈ Qn, the server must send the
same number of bits for any database T . Specifically, this holds for the case that
the receiver’s input is the query q∗, where q∗ is such that log |ANSn,q∗ | = Hn,Q.

8 Recall that s denotes the size of the sender’s state in the query phase and that
s ∈ o(n).

324 C. Hazay and H. Zarosim

Now, since the number of potential answers for q∗ is |ANSn,q∗ |, the receiver
must eventually learn log |ANSn,q∗ | = Hn,Q bits. Nevertheless, since the sender
can only send at most s bits to the receiver, we conclude that there exists a
query q∗ such that the server must send at least Hn,Q − s bits to the receiver
for all databases. �

We stress that for every q, |ANSn,q| is independent of the actual size of Tq

for a concrete T , since it counts the number of potential responses when ranging
over all databases of length n. Thus, the above lower bound is meaningful in
the sense that it shows that the communication complexity might be large even
if |Tq| is small for some concrete T . We are now ready to prove the following
theorem.

Theorem 3.2. Fix n and m, and let π = (πPre, πQuery) be a protocol with
minimal interaction that securely implements FODBS with respect to queries
Q = {Qn}n in the presence of (Ser/Rec)-collusion and semi-honest adversaries
in the private channels setting, such that Rec communicates with Sen first. Then
one of the following holds:

1. For every query q ∈ Qn the communication complexity ccn,q
Sen(κ) ≥

Hn,Q−3
2 or

2. There exists a query q ∈ Qn such that randn,q
Rec(κ) ≥ Hn,Q−3

2 .

Proof. Let π = (πPre, πQuery) be as in Theorem 3.2, let ASer,Rec be a real-
world semi-honest adversary controlling the server and the receiver, and let
SIMSer,Rec be an ideal-world adversary guaranteed to exist by the security of
π = (πPre, πQuery). By definition, upon given a message (preprocess, |T |,m) in the
setup phase SIMSer,Rec outputs a string aSim. Moreover, upon given a message
(response, q, Tq, id) in the query phase it outputs a valid view for ASer,Rec (recall
that Tq represents the correct output for query q with respect to database T).
This view is a triple (rRec,m2, rSer), where rRec and rSer are the respective random
tapes of Rec and Ser and m2 is a simulated message from Sen to Rec.

For a security parameter κ and a pair of query/response (q, Tq), we denote
by PrSIMSer,Rec,κ[aSim] the probability distribution over the simulated message
of πPre and by PrSIMSer,Rec,κ,q,Tq

[aSim, rRec,m2, r
∗
Ser] the probability distribu-

tion on the values (aSim, rRec,m2, r
∗
Ser) where aSim is generated by SIMSer,Rec

in the simulation of πPre, (rRec,m2) are generated by SIMSer,Rec in the
simulation of πQuery and r∗

Ser is a uniformly random string. Moreover, let
Prπ,ASer,Rec,κ,T,q[a(T), rRec,m2, rSer] denote the probability distribution on the
values (a(T), rRec,m2, rSer) that are generated in a real execution of π with
ASer,Rec, on inputs T for the sender and q of the receiver. We further denote
by πOutput(aSim, rRec,m2, rSer) the output of the receiver in an execution of π
with a message aSim from Sen to Ser in πPre, and a message m2 from Sen to Rec
in πQuery, where rRec and rSer denote the respective random tapes of the receiver
and the server.

The Feasibility of Outsourced Database Search in the Plain Model 325

We begin with a claim that states that whenever (aSim, rRec,m2, r
∗
Ser) are sam-

pled according to the distribution PrSIMSer,Rec,κ,q,Tq
[aSim, rRec,m2, r

∗
Ser], then the

receiver outputs the correct output with probability at least 3/4. Intuitively, this
claim follows by the correctness of the real protocol and the indistinguishability
of the ideal and real executions. That is, by the correctness of the protocol it
holds that most of the real views (rSer,m2) yield the correct output, when rSer
is randomly chosen (recall that by the order of the rounds, rSer is independent
of (rRec,m2) in the real protocol). By the security of the protocol this must also
hold in the simulation. Therefore, the simulated views must have the property
that with a high probability the receiver returns the correct output when r∗

Ser is
picked at random.

Claim 3.3. There exists a κ0 such that for all κ > κ0, T ∈ {0, 1}n and q ∈ Qn,

Pr
SIMSer,Rec,κ,q,Tq

[πOutput(aSim, rRec,m2, r
∗
Ser) = Tq] ≥ 3

4
. (1)

Proof Sketch. Assume that for infinitely many κ’s there exists T ∈ {0, 1}n

and q ∈ Qn such that

Pr
SIMSer,Rec,κ,q,T q

[πOutput(aSim, rRec,m2, r
∗
Ser) = T q] <

3
4
. (2)

By the correctness of π, we are guaranteed that for all sufficiently large κ, every
T ∈ {0, 1}n and every q ∈ Qn, there exists a negligible function negl(·) such that

Pr
π,ASer,Rec,κ,T,q

[πOutput(a(T), rRec,m2, rSer) = T q] > 1 − negl(κ). (3)

Therefore, we can construct a PPT distinguisher D that distinguishes between a
real execution of π with ASer,Rec and an ideal execution of FODBS with SIMSer,Rec

as follows. Given input T , q and a view (a, rRec,m2, rSer) that is either generated by
SIMSer,Rec or by the honest parties in a real execution of π, D chooses a uniform
random string r∗

Ser and outputs 1 if and only if πOutput(a, rRec,m2, r
∗
Ser) = T q.

It is easy to see that if (aSim, rRec,m2, rSer) were generated by
SIMSer,Rec, then D outputs 1 with probability PrSIMSer,Rec,κ,q,T q [πOutput(aSim,
rRec,m2, r

∗
Ser) = T q], whereas if (aSim, rRec,m2, rSer) were generated in a

real execution of π with ASer,Rec, then D outputs 1 with probability
Prπ,ASer,Rec,κ,T,q[πOutput(a(T), rRec,m2, rSer) = T q]. Hence, by Eqs. (3) and (2),
D distinguishes the views with overwhelming probability. �

To this end, we fix κ and q. Then, for every aSim and Tq let

GoodView(aSim, Tq)

=

{
(rRec,m2)| Pr

SIMSer,Rec,κ,q,Tq

[πOutput(aSim, rRec,m2, r
∗
Ser) = Tq | aSim, rRec,m2] >

1

2

}
.

Note that the above probability is only taken over the choice of r∗
Ser which is a

uniformly random string. Next, for a fixed Tq we let E(Tq) denote the expected

326 C. Hazay and H. Zarosim

value of |GoodView(aSim, Tq)| when aSim is generated by SIMSer,Rec in the sim-
ulation of πPre. That is,

E(Tq) = EaSim
[|GoodView(aSim, Tq)|] =

∑
aSim

Pr
SIMSer,Rec,κ

[aSim]·|GoodView(aSim, Tq)| .

Then, we prove the following claim,

Claim 3.4. For every Tq, it holds that E(Tq) ≥ 1
4 .

Proof. Let Tq be such that E(Tq) < 1/4, we show that this contradicts
Claim 3.3. First, recall that E(Tq) = EaSim

[|GoodView(aSim, Tq)|] . By the Markov
inequality it holds that

Pr
SIMSer,Rec,κ

[|GoodView(aSim, Tq)| ≥ 1] <
1
4
. (4)

Then, by the total probability theorem it holds that

Pr
SIMSer,Rec,n,q,Tq

[πOutput(aSim, rRec,m2, r
∗
Ser) = Tq]

= Pr
[
πOutput(aSim, rRec,m2, r

∗
Ser) = Tq

∣
∣
∣ |GoodView(aSim, Tq)| ≥ 1

]
· Pr [|GoodView(aSim, Tq)| ≥ 1]

+Pr
[
πOutput(aSim, rRec,m2, r

∗
Ser) = Tq

∣
∣
∣ |GoodView(aSim, Tq)| = 0

]
· Pr [|GoodView(aSim, Tq)| = 0]

≤ Pr [|GoodView(aSim, Tq)| ≥ 1] + Pr
[
πOutput(aSim, rRec,m2, r

∗
Ser) = Tq

∣
∣
∣ |GoodView(aSim, Tq)| = 0

]

<
1

4
+

1

2
=

3

4
.

The last inequality is due to Eq. (4) and the definition of GoodView(aSim, Tq).
This contradicts Eq. (1). �

Let Xn,q denote the sum of the expected value E(Tq) when ranging over all
possible Tq’s. Then, by Claim 3.4 it holds that Xn,q ≥ 1

4 · |ANSn,q|. Moreover,
it holds that

Xn,q =
∑

Tq∈ANSn,q

E(Tq) =
∑

Tq∈ANSn,q

∑
aSim

Pr
SIMSer,Rec

[aSim] · |GoodView(aSim, Tq)|

=
∑
aSim

Pr
SIMSer,Rec

[aSim] ·
∑

Tq∈ANSn,q

|GoodView(aSim, Tq)| .

Note that for a fixed message aSim, every pair (rRec,m2) belongs to only
one set GoodView(aSim, Tq). This is due to the fact that if (rRec,m2) ∈
GoodView(aSim, Tq) for some Tq then by definition the following probabil-
ity Pr[πOutput(aSim, rRec,m2, r

∗
Ser) = Tq | aSim, rRec,m2] > 1

2 . This implies
that if a pair (rRec,m2) belongs to two distinct sets T 0

q �= T 1
q , then

Pr[πOutput(aSim, rRec,m2, r
∗
Ser) ∈ {

T 0
q , T 1

q

} | aSim, rRec,m2] > 1. Therefore, for

The Feasibility of Outsourced Database Search in the Plain Model 327

every aSim the sum
∑

Tq
|GoodView(aSim, Tq)| is over disjoint sets. We conclude

that
∑

Tq∈ANSn,q

|GoodView(aSim, Tq)| ≤ |{(rRec,m2)}|

=
∑

i≤ccn,q
Sen (κ)+randn,q

Rec (κ)

2i = 2cc
n,q
Sen (κ)+randn,q

Rec (κ)+1 − 1

where the second to the last equality is implied by the fact that ccn,q
Sen(κ) is a

bound on the length of m2 and randn,q
Rec(κ) is a bound on the length of rRec. We

therefore conclude that

Xn,q ≤
∑

aSim

Pr
SIMSer,Rec

[aSim] ·
(
2cc

n,q
Sen (κ)+rand

n,q
Rec (κ)+1 − 1

)
≤ 2cc

n,q
Sen (κ)+rand

n,q
Rec (κ)+1 − 1.

Combining this with the observation that Xn,q ≥ 1
4 · |ANSn,q|, we obtain

2cc
n,q
Sen (κ)+randn,q

Rec (κ)+1 − 1 ≥ 1
4

· |ANSn,q|

and hence for every query q,

ccn,q
Sen(κ) + randn,q

Rec(κ) ≥ log
(

1
4

|ANSn,q|
)

− 1 = log |ANSn,q| − 3.

Therefore for every query q, it holds that ccn,q
Sen(κ) ≥ log|ANSn,q|−3

2 or
randn,q

Rec(κ) ≥ log|ANSn,q|−3
2 . Recall that Hn,Q = maxq∈Qn

log |ANSn,q|. We con-
clude that there exists a query q ∈ Qn for which either ccn,q

Sen(κ) ≥ Hn,Q−3
2 or

randn,q
Rec(κ) ≥ Hn,Q−3

2 . Note that if the former inequality holds, then by the secu-
rity of π the communication complexity is at least Hn,Q−3

2 for all queries q ∈ Qn

(otherwise, the sender can learn the receiver’s input by just looking at the length
of the messages sent in πQuery, thus breaking privacy). This concludes the proof
of Theorem 3.2. �
Lemma 3.6 below demonstrates that for the pattern matching functionality there
exists a family of queries Q such that Hn,Q = n for every n. Combining this with
Theorems 3.1 and 3.2, the following holds,

Corollary 3.5. There exists a family of queries Q = {Qn}n such that for any
protocol with minimal interaction that implements the outsourced pattern match-
ing functionality securely with respect to Q in the private channels setting, for
every n one of the following holds:

1. There exists q ∈ Qn such that the communication complexity in the query
phase is at least n−3

2 − s;
2. There exists q ∈ Qn such that the length of the receiver’s random tape is at

least n−3
2 − s.

328 C. Hazay and H. Zarosim

A Bound on Hn,Qfor Pattern Matching. We prove the following simple observa-
tion relative to the pattern matching functionality; see Sect. 2.1 for the definition
of this functionality.

Lemma 3.6. For the pattern matching functionality there exists a family of
queries Q such that Hn,Q = n for every n.

Proof. We prove the existence of a family of queries Q = {Qn}n such that
Hn,Q = n for every n. Fix n and let Qn = {0} denote the single-bit pat-
tern q = 0. In addition, recall that Hn,Q = maxq∈Qn

log |ANSn,q| where
ANSn,q = {T q | T ∈ {0, 1}n}. Note that ANSn,q=0 includes all subsets of
[n] and thus, |ANSn,q=0| = 2n and log |ANSn,q=0| = n, implying that
Hn,Q ≥ log |ANSn,q=0| = n. �

3.2 The Non-private Channels Case

In this setting a corrupted party observes the communication between the honest
parties. In our context this implies that a corrupted receiver sees the setup mes-
sage sent from the sender to the server. Consequently, we only need to consider
the corruption of the receiver where the order of communication in the query
phase does not matter as in the private channels case. We continue with our
main theorem for this section.

Theorem 3.7. Fix n and m, and let π = (πPre, πQuery) be a protocol with
minimal interaction that securely implements FODBS with respect to queries
Q = {Qn}n in the presence of semi-honest adversaries in the non-private chan-
nels setting. Then one of the following holds:

1. For every query q ∈ Qn the communication complexity ccn,q ≥ Hn,Q−2
2 or

2. There exists a query q ∈ Qn such that randn,q
Rec(κ) ≥ Hn,Q−2

2 .

Proof. The proof of Theorem3.7 is very similar to the proof of Theorem3.2.
We present the outline of the proof. Let π = (πPre, πQuery) be as in Theorem 3.7,
let ARec be a real-world semi-honest adversary controlling the receiver (note
that since we do not assume private channels, ARec sees all communication
between the honest parties and in particular the message within πPre), and
let SIMRec be an ideal-world adversary guaranteed to exist by the security
of π = (πPre, πQuery). By definition, upon given a message (preprocess, |T |,m) in
the setup phase SIMSer,Rec outputs a string aSim. Moreover, upon given a mes-
sage (response, q, Tq, id) in the query phase it outputs a valid view for ASerwhich
consists of a triple (rRec,m2,m4), where rRec is the random tape of Rec, m2 is
a simulated message from Sen to Rec and m4 is a simulated message from Ser
to Rec.

For a security parameter κ and a pair of query/response (q, Tq), we denote
by PrSIMRec,κ[aSim] the probability distribution over the simulated message
of πPre and let PrSIMRec,κ,q,Tq

[aSim, rRec,m2,m4] denote the probability distri-
bution on the values (aSim, rRec,m2,m4) where aSim is generated in the sim-
ulation of πPre, and rRec,m2,m4 are generated in the simulation of πQuery.

The Feasibility of Outsourced Database Search in the Plain Model 329

Also, let Prπ,ARec,κ,T,q[a(T), rRec,m2,m4] denote the probability distribution over
the values (a(T), rRec,m2,m4) that are generated in a real execution of π with
ARec, on inputs T for the sender and q for the receiver. We further denote by
πOutput(aSim, rRec,m2,m4) the output of the receiver in an execution of π with a
message aSim from Sen to Ser in πPre, a message m2 from Sen to Rec in πQuery

and a message m4 from Ser to Rec, where rRec denotes the random tape of the
receiver.

We continue with the following claim,

Claim 3.8. There exists a κ0 such that for all κ > κ0 and T ∈ {0, 1}n, q ∈ Qn,

Pr
SIMRec,κ,q,Tq

[πOutput(aSim, rRec,m2,m4) = Tq] ≥ 1
2
. (5)

Proof Sketch. Assume that for infinitely many κ’s there exists T ∈ {0, 1}n

and q ∈ Qn such that

Pr
SIMRec,κ,q,Tq

[πOutput(aSim, rRec,m2,m4) = Tq] <
1
2
.

By the correctness of protocol π, it is guaranteed that for all sufficiently large
κ, every T ∈ {0, 1}n and every q ∈ Qn, there exists a negligible function negl(·)
such that

Pr
π,ARec,κ,T,q

[πOutput(a(T), rRec,m2,m4) = Tq] > 1 − negl(κ)

Therefore we can construct a PPT distinguisher D that distinguishes a real
execution of π with ARec and an ideal execution of FODBS with SIMRec as follows.
Given input T , q and view a, rRec,m2,m4, output 1 if and only if the receiver’s
output is Tq. It is easy to verify that there is a non-negligible gap relative to the
real and the simulated views, and thus D distinguishes the executions with this
gap. �

To this end, we fix κ and q. Then, for every aSim and Tq let

GoodView(aSim, Tq) = {(rRec,m2,m4) | πOutput(aSim, rRec,m2,m4) = Tq} .

For a fixed Tq, we let E(Tq) denote the expected value of |GoodView(aSim, Tq)|
when aSim is generated by SIMRec in the simulation of πPre. The following claim
is proved similarly to the proof of Claim3.4:

Claim 3.9. For every Tq, it holds that E(Tq) ≥ 1
2 .

See [HZ14] for the complete proof which follows similarly to the proof of
Theorem 3.2 for the private channels case. �

Applying Lemma 3.6 we obtain the following corollary,

Corollary 3.10. There exists a family of queries Q = {Qn}n such that for any
protocol with minimal interaction that securely implements the outsourced pattern
matching functionality with respect to Q in the non-private channels setting and
for every n one of the following holds:

330 C. Hazay and H. Zarosim

1. The communication complexity between the sender and the receiver in πQuery

for any q ∈ Qn is at least (n − 2)/2;
2. There exists q ∈ Qn such that the length of the receiver’s random tape is at

least (n − 2)/2.

3.3 Difficulties with Proving a Communication Complexity Lower
Bound

Recall that our infeasibility result provides a lower bound on either the communi-
cation complexity of an outsourced protocol or the size of the receiver’s random
tape. Clearly, it would be preferable if we could give a strict lower bound on
each of these complexities separately. Towards achieving this goal, it seems very
appealing to use a pseudorandom generator G that shortens the length of the
receiver’s random tape. Namely, replace the uniform randomness of the receiver
in an outsourced protocol π by an output of a pseudorandom generator, com-
puted on a shorter seed of length κ; thus obtaining a new protocol π′ where the
length of the random tape of the receiver is bounded by κ. It is simple to observe
that the communication complexity of π′ is exactly the same as the communi-
cation complexity of π. We can then apply our lower bound on π′ in order to
claim that either the random tape of Rec′ in π′ is large or the communication
complexity of π′ is large. Now, since we already know that the random tape of
Rec′ is of length κ, we conclude that the communication complexity of π′ must
be large; hence obtaining that the communication complexity of π is large as
well.

Unfortunately, this intuition fails when trying to formalize it. We demonstrate
why it fails as follows. Let π = (πPre, πQuery) be a protocol for securely computing
FODBS in the presence of (Ser/Rec)-collusion and semi-honest adversaries, and
let π′ be a protocol obtained from π by having the receiver Rec′ pick a random
seed s ∈ {0, 1}κ and invoke Rec with randomness G(s). Our goal is to show
that π′ is also secure in the presence of (Ser′/Rec′)-collusion and semi-honest
adversaries by reducing its security to the security of π. Namely, we need to
simulate the view of the corrupted parties in π′ using the simulators constructed
in the security proof of π. Consider the corruption case of the receiver Rec in π.
Then, in order to construct a simulator SIM′ for the corrupted receiver Rec′ in
π′ we need to invoke simulator SIM and use its output in order to produce a
simulated view for Rec′.

Recall that a valid view of Rec consists of a pair (rRec, trans), where rRec is a
random string of length randn,q

Rec(κ) and trans are the incoming messages that Rec
observes during the execution of πQuery with randomness rRec, whereas a valid
view for Rec′ consists of a pair (s, trans) where s is a random seed of length
κ and trans are the incoming message that Rec′ observes during the execution
of πQuery with randomness G(s). Then, it is not clear how to use the output
(rRec, trans) of SIM in order to construct a simulated view (s, trans) for Rec′

within π′. Specifically, the difficulty is mainly because it might be that SIM
outputs only views for which rRec is not in the range of G, and hence obtaining
a corresponding s (that is part of SIM′’s output) is not even possible.

The Feasibility of Outsourced Database Search in the Plain Model 331

Finally, we remark that any attempt to relax the security definition in a way
that forces SIM to only output strings rRec that have preimages relative to
G, fails as well. This is because in this case the real and the ideal ensembles
that correspond to Rec′’s view must consist of the seed s to the pseudoran-
dom generator. This implies that the security argument cannot be based on the
indistinguishability of G(s) from a random string of the appropriate length.

References

[AIK10] Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness:
efficient verification via secure computation. In: Abramsky, S., Gavoille,
C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)

[AJLA+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer,
Heidelberg (2012)

[ANSS16] Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryp-
tion: optimal locality in linear space via two-dimensional balanced alloca-
tions. IACR Cryptology ePrint Archive, 2016:251 (2016)

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and
back again. In: ITCS, pp. 326–349 (2012)

[CGKO11] Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmet-
ric encryption: improved definitions and efficient constructions. J. Comput.
Secur. 19(5), 895–934 (2011)

[CGPR15] Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks
against searchable encryption. In: CCS, pp. 668–679 (2015)

[CK10] Chase, M., Kamara, S.: Structured encryption and controlled disclosure.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594.
Springer, Heidelberg (2010)

[CKKC13] Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive
verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785,
pp. 499–518. Springer, Heidelberg (2013)

[CS14] Chase, M., Shen, E.: Pattern matching encryption. IACR Cryptology
ePrint Archive, 2014:638 (2014)

[DFH12] Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with low
communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
54–74. Springer, Heidelberg (2012)

[FHV13] Faust, S., Hazay, C., Venturi, D.: Outsourced pattern matching. In: Fomin,
F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part
II. LNCS, vol. 7966, pp. 545–556. Springer, Heidelberg (2013)

[FIPR05] Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and
oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 303–324. Springer, Heidelberg (2005)

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

332 C. Hazay and H. Zarosim

[GH11] Green, M., Hohenberger, S.: Practical adaptive oblivious transfer from
simple assumptions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
347–363. Springer, Heidelberg (2011)

[GLR11] Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation with-
out rejection problem from designated verifier CS-proofs. IACR Cryptol-
ogy ePrint Archive, 2011:456 (2011)

[GMPP16] Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round
complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49896-5 16

[Goh03] Goh, E.-J.: Secure indexes. IACR Cryptology ePrint Archive, 2003:216
(2003)

[HT10] Hazay, C., Toft, T.: Computationally secure pattern matching in the pres-
ence of malicious adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 195–212. Springer, Heidelberg (2010)

[HZ14] Hazay, C., Zarosim, H.: The feasibility of outsourced database search in
the plain model. IACR Cryptology ePrint Archive, 2014:706 (2014)

[JJK+13] Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.-C., Steiner, M.: Out-
sourced symmetric private information retrieval. In: CCS, pp. 875–888
(2013)

[KMR11] Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party compu-
tation. IACR Cryptology ePrint Archive, 2011:272 (2011)

[KMR12] Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure
function evaluation. In: CCS, pp. 797–808 (2012)

[KO04] Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004)

[KP13] Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric
encryption. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–
274. Springer, Heidelberg (2013)

[KPR12] Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric
encryption. In: CCS, pp. 965–976 (2012)

[LATV12] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption.
In: STOC, pp. 1219–1234 (2012)

[Nie02] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic
proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

[NP99] Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer,
Heidelberg (1999)

[ORS15] Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-
party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015)

[Wei73] Weiner, P.: Linear pattern matching algorithms. In: SWAT (FOCS),
pp. 1–11 (1973)

http://dx.doi.org/10.1007/978-3-662-49896-5_16

Verifiable Pattern Matching
on Outsourced Texts

Dario Catalano, Mario Di Raimondo(B), and Simone Faro

Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy
{catalano,diraimondo,faro}@dmi.unict.it

Abstract. In this paper we consider a scenario where a user wants to
outsource her documents to the cloud, so that she can later reliably del-
egate (to the cloud) pattern matching operations on these documents.
We propose an efficient solution to this problem that relies on the homo-
morphic MAC for polynomials proposed by Catalano and Fiore in [14].
Our main contribution are new methods to express pattern matching
operations (both in their exact and approximate variants) as low degree
polynomials, i.e. polynomials whose degree solely depends on the size
of the pattern. To better assess the practicality of our schemes, we pro-
pose a concrete implementation that further optimizes the efficiency of
the homomorphic MAC from [14]. Our implementation shows that the
proposed protocols are extremely efficient for the client, while remaining
feasible at server side.

1 Introduction

Imagine that Alice wants to store all her data on the cloud in a way such that she
can later delegate, to the latter, basic computations on this data. In particular,
Alice wants to be able to do this while retaining some key properties. First, the
cloud should not be able to fool Alice by sending back wrong outputs. Specifi-
cally, the cloud should be able to provide a “short” (i.e. much shorter than a mere
concatenation of the inputs and the output) proof that the output it computed is
correct. Second, Alice should be able to check this proof without having to main-
tain a local copy of her data. In other words, the verification procedure should
not need the original data to work correctly. An elegant solution to this problem
comes from the notion of homomorphic authenticators. Informally, homomor-
phic authenticators are like their standard (non-homomorphic) counterparts but
come equipped with a (publicly executable) evaluation algorithm that allows
to obtain valid signatures on messages resulting from computing on previously
signed messages. Slightly more in detail, the owner of a dataset {m1, . . . ,m�}
uses her secret key sk to produce corresponding authenticating tags (σ1, . . . , σ�)
which are then stored on the cloud together with {m1, . . . ,m�}. Later, the server
can (publicly) compute m = f(m1, . . . ,m�) together with a succinct tag σ cer-
tifying that m is the correct output of the computation f . A nice feature of

A full version of this paper is available at http://www.dmi.unict.it/diraimondo/
uploads/papers/vpm-full.pdf.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 333–350, 2016.
DOI: 10.1007/978-3-319-44618-9 18

http://www.dmi.unict.it/diraimondo/uploads/papers/vpm-full.pdf
http://www.dmi.unict.it/diraimondo/uploads/papers/vpm-full.pdf

334 D. Catalano et al.

homomorphic authenticators is that, as required above, the validity of this tag
can be verified without having to know the original dataset.

Homomorphic authenticators turned out to be useful in a variety of settings
and have been studied in several flavors. Examples include homomorphic sig-
natures for linear and polynomial functions [10,11], redactable signatures [31],
transitive signatures and more [36,39].

Our Contribution. In this paper we consider the setting where Alice wants
to reliably delegate the cloud to perform pattern matching operations (both in
their exact and approximate flavors) on outsourced text documents. While in
principle this problem can be solved by combining (leveled) fully homomorphic
signatures [29] and well known pattern matching algorithms (e.g. [33]), our focus
here is on efficient, possibly practical, solutions. To achieve this, we develop
new pattern matching algorithms specifically tailored to cope well with the very
efficient homomorphic MAC solution from [14]. Our methods are very simple and
allow to represent several text processing operations via (relatively) low degree
polynomials1. Specifically, our supported functionalities range from counting the
number of exact (or approximate) occurrences of a string in a text to finding the
n-th occurrence of a pattern (and its position).

Slightly more in detail, our basic idea is to use the homomorphic MAC for
polynomials from [14] to authenticate the texts one wishes to outsource, in a
bit by bit fashion. Very informally this can be done as follows. If Alice wants to
outsource her file grades, denoting with bi the i-th bit of grades, she proceeds by
first producing a MAC σi, for each bi and then storing grades together with all
the σi’s on the cloud. Later, when Alice delegates a computation f to the cloud,
she gets back an output z and a proof of correctness π that, by the properties of
homomorphic authenticators, can be verified without having to maintain a copy
of the data locally.

The catch with this solution is that, in order to be any practical, f has to be
a low degree arithmetic circuit. This is because a drawback of the construction
from [14] is that the size of π grows linearly with the degree d of the circuit2.

To address this issue we observe that, when dealing with bits, relevant pattern
matching functionalities can be expressed via polynomials of degree, at most, 2m
where m is the bit-size of the pattern. To briefly illustrate the ideas underlying
our techniques, let us focus on the case of exact pattern matching. There, the
key observation is that checking if a pattern x, of size m, occurs in a text y,
of size n, can be done via the following easy steps. First, one considers all the
(n − m + 1) possible substrings w of y of size m. Next, for each such w, one
checks equality with x via the following simple formula

1 In particular the degree of these polynomials solely depends on the size of pattern
string and is independent of the size of the texts.

2 Notice that in [14] a solution where the size of π can be made independent of d
is also proposed. This solution however is computationally much less efficient as it
imposes larger parameters.

Verifiable Pattern Matching on Outsourced Texts 335

m−1∏
i=0

(2xiwi + 1 − xi − wi) (1)

which is 1 if and only if all bits of x and w are equal (and 0 otherwise). Thus,
x appears in y if at least one such products is non zero. This can be tested by
summing the products corresponding to all possible w and checking if the result
is different than zero.

Dynamic Polynomials. Notice however that, for large n, a naive application
of the technique above might result in a prohibitively expensive computation
for the server3, as the latter would need to first compute and then add O(n)
polynomials of degree 2m.

To overcome this limitation we observe that a more careful encoding of the
computation at server side, can drastically improve performances. The key point
here is that, for a given pattern x, the server can reduce its costs by adapting the
computation of the formula in (1) according to the bits of pattern x. Specifically,
the formula (1) can be rewritten as

m−1∏
i=0

(xiwi + (1 − xi)(1 − wi)) (2)

which can be computed in m steps my using the following procedure

P = 1
for i = 0 to m − 1 do

if (xi = 0) P ← P · (1 − wi)
else P ← P · wi

return P

Thus, for each queried pattern, the computed formula is dynamically adapted
to the pattern. This leads to computations which are both simpler and more
efficient than those induced by (1). Our tests show that this simple observation
allows to reduce the computational costs of the server by a (rough) −71% !

Evaluation over Samples and Experimental Results. As already hinted
above, to better assess the efficiency of our solutions we ran extensive experi-
ments. In order to gain better performances we further optimized our techniques
as follows. First, as already suggested in [14], we adopt Fast Fourier Transform
(FFT) to speed up multiplications of polynomials. Inspired by FFT, we also
propose an alternative strategy, named “evaluation over samples”, where the
whole evaluation is performed representing the polynomials via set of samples
(rather than via their coefficients). This further simplifies the implementation of
polynomial multiplication and, for the case of low degree polynomials, provides
3 Indeed, our first implementations show that this cost can quickly become unbearable

even for texts of few thousands characters.

336 D. Catalano et al.

an additional speed up. Finally, we note that, using some basic precomputation
at client side (see [8]), verification costs can be made essentially negligible.

Our experiments show that our optimized implementations are extremely
fast for the client while remaining feasible for the server. In terms of concrete
numbers, our tests show that it is possible to count the exact occurrences of a
4 characters pattern in a text of 10 KiB in about 4 s with a proof of 528 bytes
verifiable in just 300 ms. With a bigger text of 100 KiB the evaluation time raises
roughly to 38 s. The usage of large patterns sensibly slows down the evaluation
process (i.e. the costs for the server). We remark that, for a fixed pattern size, the
evaluation costs for the server grow linearly with n (i.e. the size of the text). This
means that for very large n our protocols, while feasible, cannot be considered
practical anymore.

Related Work. The problem of computing reliably on outsourced data can be
solved in principle using short non interactive arguments of knowledge on authen-
ticated data (AD-SNARKs) [7]. Such a solution would allow lower verification
costs (i.e. independent from the size of the computed circuit). The main disadvan-
tage of AD-SNARKs, with respect to our solution, is that they require much more
complex machinery (thus making the costs for the server even more prohibitive).
Moreover, even without considering efficiency, our homomorphic-authenticators
based solution is preferable for at least two reasons. First, it requires shorter para-
meters: known AD-SNARKs [7] require evaluation/verification keys that grow sig-
nificantly with the size of the supported circuits. Also, our solution requires only
standard, falsifiable assumptions.

The questions considered in this paper share some similarities with those
addressed by Verifiable Computation (VC) [26]. There, a client wants to outsource
some computationally intensive task and still be able to quickly verify the correct-
ness of the received result. Typically, VC schemes assume that the input remains
available to the verifier. In our context, on the other hand, the difficulty comes
from the fact that the (not necessarily complex) task involves data not locally
available to the client.

The notion of homomorphic MAC was first considered (in the setting of
linear functions) by [1] and later extended to more general functionalities
in [8,14,15,28] In the asymmetric setting the idea of homomorphic signature
was first proposed by Desmedt [23] and later refined by Johnson et al. [31].
Starting from the work of Boneh et al. [10], several other papers further studied
this notion both in the standard model [4–6,18–20,25] and in the random ora-
cle model [11,12,16,17,27]. Beyond linear functions, Boneh and Freeman in [11]
proposed an homomorphic signature scheme for constant degree polynomials.
This result was later improved by Catalano et al. [21] and, more recently, by
Gorbunov et al. [29]. This latter construction provides the first realization of a
(leveled) fully homomorphic signature scheme. See [13] for a survey on homo-
morphic authenticators.

Polynomial encodings have been extensively studied in past. Among others,
we recall the works by Applebaum et al. [2,3] on randomized encodings.

Verifiable Pattern Matching on Outsourced Texts 337

Other Related Work. The string matching problem is one of the most funda-
mental problems in computer science. It consists in finding all the occurrences
of a given pattern x of length m, in a text y of length n. The worst case time
complexity of string matching problem is O(n + m), and was achieved for the
first time by the well known Knuth-Morris-Pratt algorithm [33]. However the
most efficient solutions to the problem in the average case have an O(nm) worst
case time complexity [24]. In the approximate string matching problem we allow
the presence of errors in the occurrences of the pattern in the text. Specifically
we are interested in the string matching problem with δ errors, where at most δ
substitutions of characters are allowed in order to make the pattern occur in the
text. Solution to both exact and approximate string matching problems are based
on comparisons of characters [33], deterministic finite state automata [22], sim-
ulation of non-deterministic finite state automata [9] and filtering methods [32].
In this paper we are interested in solving the string matching problem by using
polynomial functions. To our knowledge this is the first time the string matching
problem is defined in polynomial form.

In [37] Papadopoulos et al. propose an efficient solution for an outsourced
pattern matching scenario similar to the one considered here. Their idea com-
bines suffix trees with cryptographic accumulators. The resulting proofs have size
comparable to ours but, thanks to an heavy pre-processing over the outsourced
texts4, they can be generated very efficiently. We note also that this preprocess-
ing step is not update friendly: after the text is updated it becomes necessary
to re-create the whole suffix tree. Our solution is slightly better than this as, for
the specific case of append-updates it does not require any recomputations for
the original tags.

Road Map. In Sect. 2 we recall the efficient homomorphic MAC scheme
from [14]. Our new pattern matching algorithms are presented in Sect. 3, while
the details of the proposed implementation together with relevant experimental
results are given in Sect. 4.

2 Homomorphic MACs

In this section we briefly recall the construction of homomorphic MACs from [14]
that is going to be used in our constructions. For details not discussed here we
defer the reader to the original paper. Intuitively, the constructions proposed
in [14], are given in the setting of labeled programs [28]. To authenticate a compu-
tation f one authenticates its inputs m1, . . . mn by also specifying corresponding
labels τ1 . . . τn. A label can be seen as an index of a database record or, simply,
as a name given to identify the (outsourced) input. In the application considered
in this paper a label might simply be the name of the document followed by an
indexing of its characters (bits). For example, each bit bi of the documents exams
could simply be the string τi = exams||i (here || denotes concatenation).
4 Moreover this pre-processing has to be done by the text owner (the weak client in

our scenario) and cannot be delegated to the untrusted cloud server.

338 D. Catalano et al.

The combination of f and the labels is a labeled program P, that is what
is later executed by the cloud. For the case of pattern matching applications,
labeled programs are used as follows. When outsourcing a text document T to
the cloud, the client proceeds as follows. First she computes a MAC of T , by
authenticating each bit bi of T using its corresponding label τi. Denoting with σbi

the MAC corresponding to the i-th bit of T , the client stores (T, σb1 , . . . , σb|T |)
on the cloud.

As in [14], we consider circuits where additive gates do not get inputs labeled
by constants. We stress that adding such gates can be done easily, as one can
adopt an equivalent circuit where a special variable/label for the value 1 is added.
A MAC of 1 is also added to the public parameters. It is worth mentioning the
fact that the construction given below does not provide succinct authenticating
tags, if the number of multiplications performed is too high. This is because the
size of the tag grows with the degree d of the arithmetic circuit one wants to
authenticate. In our case this is not going to be a problem as (see Sect. 3) d is
bounded by the size of the pattern.

The following description is taken (almost) verbatim from [14]

KeyGen(1λ). Let p be a prime of roughly λ bits. Choose a seed K of a pseudo-
random function FK : {0, 1}∗ → Zp and a random value x

$← Zp. Output
sk = (K,x), ek = p and let the message space M be Zp.

Auth(sk, τ,m). To authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ, com-
pute rτ = FK(τ), set y0 = m, y1 = (rτ −m)/x mod p and output σ = (y0, y1).
Thus, y0, y1 are the coefficients of a degree-1 polynomial y(z) with the special
property that it evaluates to m on the point 0 (y(0) = m), and it evaluates
to rτ on a hidden random point x (y(x) = rτ).
Tags σ are seen as polynomials y ∈ Zp[z] of degree d ≥ 1 in some (unknown)
variable z, i.e., y(z) =

∑
i yiz

i.
Eval(ek, f,σ). The homomorphic evaluation algorithm takes as input the evalu-

ation key ek = p, an arithmetic circuit f : Zn
p → Zp, and a vector σ of tags

(σ1, . . . , σn).
Eval proceeds gate-by-gate as follows. At each gate g, given two tags
σ1, σ2 (or a tag σ1 and a constant c ∈ Zp), it runs the algorithm
σ←GateEval(ek, g, σ1, σ2) described below that returns a new tag σ, which
is in turn passed on as input to the next gate in the circuit.
When the computation reaches the last gate of the circuit f , Eval outputs the
tag vector σ obtained by running GateEval on such last gate.
To complete the description of Eval we describe the subroutine GateEval.

– GateEval(ek, g, σ1, σ2). Let σi = y(i) = (y(i)
0 , . . . , y

(i)
di

) for i = 1, 2 and di ≥ 1
(see below for the special case when one of the two inputs is a constant c ∈ Zp).
If g = +, then:
• let d = max(d1, d2). Here we assume without loss of generality that d1 ≥ d2

(i.e., d = d1).
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) = y(1)(z) +

y(2)(z). This can be efficiently done by adding the two vectors of coefficients,
y = y(1)+y(2) (y(2) is eventually padded with zeroes in positions d1 . . . d2).

Verifiable Pattern Matching on Outsourced Texts 339

If g = ×, then:
• let d = d1 + d2.
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) = y(1)(z) ∗

y(2)(z) using the convolution operator ∗, i.e., ∀k = 0, . . . , d, define yk =∑k
i=0 y

(1)
i · y

(2)
k−i.

If g = × and one of the two inputs, say σ2, is a constant c ∈ Zp, then:
• let d = d1.
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) = c · y(1)(z).
Return σ = (y0, . . . , yd).

Notice that the size of a tag grows only after the evaluation of a multiplication
gate (where both inputs are not constants). It is not hard to see that after the
homomorphic evaluation of a circuit f , it holds |σ| = d+1, where d is the degree
of f .

Ver(sk,m,P, σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and
σ = (y0, . . . , yd) be a tag for some d ≥ 1. Verification proceeds as follows:

– If y0 �= m, then output 0 (reject). Otherwise continue as follows.
– For every input wire of f with label τ compute rτ = FK(τ).
– Next, evaluate the circuit on rτ1 , . . . , rτn , i.e., compute ρ←f(rτ1 , . . . , rτn), and

use x to check whether the following equation holds:

ρ =
d∑

k=0

ykxk (3)

If this is true, then output 1. Otherwise output 0.

In [14] it is proved that the scheme above is secure under the sole assumption
that pseudorandom functions exist.

3 String Matching Using Polynomial Functions

In this section we describe our new pattern matching solutions. These are specif-
ically tailored to work nicely with the practical homomorphic MACs from [14].
We start by describing a simple methodology to count the number of exact occur-
rences of a pattern in a text. Next, we describe how to modify this procedure to
encompass other cases.

Let X be the input pattern of length M , and let Y be the input text of
length N , both over the same alphabet Σ of size σ. We use the symbol Xi to
indicate the (i + 1)-th character of X, with 0 ≤ i < m. Moreover we use the
symbol X[i..j] to indicate the substring of X starting at position i and ending
at position j (included), where 0 ≤ i ≤ j < n. We say that X has an occurrence
in Y at position j if X = Y [j..j + m − 1].

Our methods performs computation using the bitwise representation of the
input strings. To this purpose, observe that each character in Σ can be repre-
sented using log(σ) bits. For instance each character in the set of 256 elements

340 D. Catalano et al.

of the ASCII table can be represented using 8 bits. Let x and y be bitwise
representation of X and Y , respectively. We use m to indicate the length of x
and n for the length of y, so that m = M log(σ) and n = N log(σ). Moreover
xi, yj ∈ {0, 1}, for each 0 ≤ i < m and 0 ≤ j < n.

In the following sections we will describe string matching problems in terms of
functions, where the input strings play the role of variables. Additional relevant
definitions will be introduced where needed. Proofs to lemmas and theorems
stated below are deferred to the full version of this paper.

3.1 Counting the Number of Exact Occurrences of a String

In this section we address the problem of counting the number of exact occur-
rences of a string X of size M in a string Y of size N . We recall that a string X
has an exact occurrence at position j of Y if and only if X = Y [j..j + N − 1].
More formally the problem of counting all exact occurrences of a string can be
defined as the problem of computing the cardinality of the set

{j : 0 ≤ j < N and X = Y [j..j + M − 1]}
When both strings are defined over the binary alphabet Σ = {0, 1}, com-

parisons between strings and characters can be represented as polynomials. For
instance we can use the polynomial function (2ab + 1 − a − b) for computing
comparison between two given binary values a, b ∈ {0, 1}.

Formally we have

2ab + 1 − a − b =
{

1 if a = b
0 otherwhise (4)

Specifically we come up with the following definition for a polynomial which
count the number of occurrences X in Y , using their bitwise representations, x
and y. For the sake of clarity and brevity we will use in the following the symbol
y(i,j) to indicate the character y[j log(σ) + i].

Definition 1 (Exact Matches Function). Let X be a pattern of length M ,
and let Y be a text of length N , both over the same alphabet Σ of size σ. Let x
and y be their bitwise representations, of length m and n, respectively. Then we
can compute the number of exact occurrences of X in Y by using the polynomial
function α(X,Y) defined as

α(X,Y) =
N−M∑
j=0

(
m−1∏
i=0

(
2xiy(j,i) + 1 − xi − y(j,i)

))
(5)

The function α(X,Y) defined above requires O(NM log(σ)) multiplications
while the resulting polynomial has degree 2m = 2M log(σ). When computing
such polynomial function we are able to retrieve the number of occurrences of X
in Y , but we are not able to know the positions of such occurrences. Theorem 1
given below proves the correctness of the function given in (5). We first prove
the following technical lemma which defines a method for comparing two binary
strings with the same length.

Verifiable Pattern Matching on Outsourced Texts 341

Lemma 1. Let x = x0x1..xm−1 and w = w0w1..wm−1 be two strings of length
m, both over the binary alphabet Σ = {0, 1}. Then we have that

x = w ⇔
m−1∏
i=0

(2xiwi + 1 − xi − wi) = 1 (6)

��
Theorem 1. Given a pattern X, of length M , and a text Y , of length N , both
over the binary alphabet Σ of size σ, let x and y their bitwise representations,
of length m and n, respectively. Then the exact matches polynomial function
given in Definition 1 computes correctly the number of occurrences of X in Y .
Formally

α(X,Y) =
∣∣{j : 0 ≤ j ≤ N − M and X = Y [j..j + M − 1]

}∣∣ ��

3.2 Finding the Positions of All Occurrences

In many applications it is required to find the positions of the occurrence of the
pattern X in Y . Let π(X,Y, j) be initial position of the j-th occurrence of X in
Y , with i > 0. We assume that π(X,Y, j) = ∞ if the number of occurrences of
X in Y is less than i. The position of the first occurrence (i.e. π(X,Y, 1)) can be
obtained by asking the server to compute such position, say p1, and subsequently
to verify if such information is correct. Specifically we have that

π(X,Y, 1) = p1 ⇔ α(X,Y [0..p1 + M − 2]) = 0 and α(X,Y [p1..p1 + M − 1]) = 1

If π(X,Y, 1) = ∞, indicating that no occurrence of X is contained in Y , we can
verify such information by computing α(X,Y). Specifically we have

π(X,Y, 1) = ∞ ⇔ α(X,Y) = 0

In general, if we are interested in computing the position of all occurrences
of X in Y it is possible to iterate the above procedure along the whole text Y .
Let pj be the position of the j-th occurrence of X in Y , i.e. π(X,Y, j) = pj , for
j > 0, and let k = α(X,Y) the total number of occurrences. Thus we have that
π(X,Y, j) = ∞ for all j > k.

It turns out that, for all 0 < j ≤ k, π(X,Y, j) = pj if and only if we have
α(X,Y [pj−1 + 1..pj + M − 2]) = 0 and α(X,Y [pj ..pj + M − 1]) = 1. Moreover,
for j > k, we have that π(X,Y, j) = ∞ if and only if α(X,Y [pk + 1..N]) = 0.

3.3 Counting the Approximate Occurrences of a String

In our setting of the approximate string matching problem, given a pattern X
of length M , a text Y of length N , and a bound δ < M , we want to find all
substring of the text of length M which differ from the pattern of, at most, δ
characters. In literature such variant of the approximate string matching problem
is referred as string matching with δ errors [35].

342 D. Catalano et al.

More formally we want to find all substrings Y [j..j + M − 1], for 0 ≤ j < N ,
such that ∣∣∣{i : 0 ≤ i < M and Xi �= Yj+i

}∣∣∣ ≤ δ

We first define the following k-error constant τk, for a strung of length M , which
will be used later. Specifically we set

τk =
k∏

i=1

i ×
−1∏

i=k−M

i (7)

We next prove the following lemma which introduces a polynomial function for
computing the number of mismatches between two strings of equal length. We
recall that we use the symbol y(j,i) to indicate yj log(σ)+i.

Lemma 2 (Mismatch Function). Let X and W two strings over a common
alphabet Σ of size σ. Let x and w be their bitwise representations of length
m = M log(σ). The mismatch function Ψ : ΣM ×ΣM → {0, 1, ..,M}, defined as

Ψ(X,W) =
M−1∑
j=0

[
1 −

log σ−1∏
i=0

(
2x(j,i)w(j,i) + 1 − x(j,i) − w(j,i)

)]
(8)

counts the number of mismatches between X and W .

��
Let us take into account the value τk(x,w), defined as the product of the

differences between Psi(x,w) and the values int he range {1..m}. Formally

τ(X,W) =
M∏
i=0

(Ψ(X,W) − i) . (9)

Since 0 ≤ Ψ(X,W) ≤ M , it turns out that the value of τ(X,W) is always equal
to 0. In fact one (and only one) of the factors in (9) is equal to zero.

We are now ready to prove the following lemma which introduces a polyno-
mial function for detecting if X and W differs exactly of k characters.

Lemma 3 (k-Mismatch Function). Let X and W be two strings of length M
over an alphabet Σ of size σ. Moreover let k an error value in {0, ..,M}. Then
the k-mismatch function, τk : Σm × Σm → {0, 1}, defined as

τk(X,W) =
1
τk

k−1∏
i=0

(Ψ(X,W) − i) ×
M∏

i=k+1

(Ψ(X,W) − i) . (10)

is equal to 1 if X and W has k mismatches, otherwise it is equal to 0. ��
Observe that the resulting polynomial for computing τ(X,Y) has degree 2m

while the polynomial for computing τk has degree (m − 1).

Verifiable Pattern Matching on Outsourced Texts 343

The following corollary gives a method to compute the number of approx-
imate occurrences of a given pattern X in a text Y with exactly k errors. It
trivially follows from Lemma 3.

Corollary 1 (Count k Errors Matches Function). Given a pattern X, of
length M , a text Y , of length N , and an error value k ≤ M , we can compute the
number of occurrences of X in Y with (exactly) k errors by using the function
βk(X,Y) defined as

βk(X,Y) =
N−M∑
i=0

τk(X,Y [i..i + M − 1])

Finally, the following corollary introduces the function for computing the
number of approximate occurrences of X in Y assuming an error bound δ. It
trivially follows from Corollary 1.

Corollary 2 (Count δ-Approximate Matches Function). Given a pattern
X, of length M , a text Y , of length N , and an error bound δ ≤ M , we can
compute the number of occurrences of X in Y with at most δ errors by using the
function γ(X,Y) defined as

γ(X,Y) =
δ∑

k=0

βk(X,Y) (11)

As previously described we can also adapt such technique to find the position
of the first occurrence, as the position of all occurrences of X in Y .

3.4 Using Dynamic Polynomials

In our experimental results, using the polynomials introduced above, we observed
a prohibitively expensive computation for the server, especially for large texts.
It turns out, in fact, that for both exact and approximate pattern matching we
need to first compute and then add O(N) polynomials of degree 2m.

In this section we present a method to overcome this limitation and decrease
the degree of the resulting polynomials. Specifically we observe that a more
careful encoding of the computation at server side can drastically improve the
performances. The key point here is that, for a given pattern X, the server can
reduce its costs by adapting the computation of the polynomials according to
the bits of the pattern X.

Specifically, the formulas (6) and (8) can be rewritten, respectively, as

m−1∏
i=0

(xiwi + (1 − xi)(1 − wi)) (12)

M−1∑
i=0

[
1 −

log σ−1∏
i=0

(
x(j,i)(1 − w(j,i)) + (1 − x(j,i))w(j,i)

)]
(13)

344 D. Catalano et al.

Fig. 1. Procedure Exact-Matching (on the left) for computing the dynamic polyno-
mial given in (5) and procedure Approximate-Matching (on the right) for computing
the dynamic polynomial in (11).

Thus for instance, if all bits in x are equal to 0, i.e. x = 0m, then the polynomial
in (12) is equal to

∏m−1
i=0 (1 − wi), while it is equal to

∑m−1
i=0 wi when x = 1m.

According to such observation the number of exact and approximate occurrences
of the string X in Y can be computed using the algorithms shown in Fig. 1, which
construct the polynomial according to the bits contained in X.

Specifically, the algorithm Exact-String-Matching shown in Fig. 1 (on
the left) computes the dynamic polynomial correspondent to the function in
(5) in O(NM log(σ)) time. The resulting polynomial has a degree equal to
m = M log(σ). Similarly, the algorithm Approximate-String-Matching
shown in Fig. 1 (on the right) computes the dynamic polynomial correspon-
dent to the function in (11). Procedure Product-Factors computes a matrix
P of dimension N × M where P [j, i] is 1 if Yj = Xi, and 0 otherwise. Such
computation is performed in time O(NM log(σ)). The overall time complexity
of procedure Approximate-String-Matching is O(NMδ log(σ)) while the
resulting polynomial has a degree equal to m.

4 Implementation Details

In this section we discuss the details of our implementation together with some
optimizations. These, in particular, target both server evaluation and client
verification.

Verifiable Pattern Matching on Outsourced Texts 345

Optimizations. The first optimization we consider is the usage of the dynamic
polynomials technique described in Sect. 3.4. Beyond reducing computational
costs at server side, this technique also reduces bandwidth costs both when the
client sends a pattern query and when the server provides back the answer.
In the first case, the gain comes from the fact that the pattern can be sent
unauthenticated (i.e. without authenticating it bit by bit, as the basic, non
dynamic, version of our technique would require). In the second case, one gains
from computing a lower degree polynomial (m instead of 2m)5.

The second optimization (referred as “Evaluation over Samples” in our
tables) works at a lower level: the way the server evaluates tags (i.e. polynomials).
Recall that in our case a MAC is a polynomial with coefficients in Zp and Eval
essentially performs additions and multiplications of polynomials (with multipli-
cation being the computationally most intensive operation). A naive implemen-
tation of polynomial multiplication has time complexity O(n2), when starting
from polynomials of degree n. It is well known, that this can be reduced to
O(n log n) using FFT. Very informally, FFT allows to quickly perform multi-
plication by temporarily switching to a more convenient representation of the
starting polynomials. In particular a set of complex points is (carefully) chosen
and the polynomials are computed over such points. Multiplication can now be
achieved by multiplying corresponding points and then going back to the original
representation via interpolation.

Inspired by this, we notice that, since we work with low degree polyno-
mials, we can stick to a “fast” point representation the whole time, without
switching representation at each multiplication, as done in FFT. Specifically,
instead of representing each polynomial f via its coefficients, we keep the points
f(i1), . . . , f(i�), where i1, . . . , i� are (non complex) fixed points and is large
enough to perform interpolation at the end. In particular addition (multipli-
cation) of polynomials is obtained by adding (multiplying) the corresponding
points6. We stress that, differently than FFT we keep this alternative represen-
tation along the whole evaluation: polynomial interpolation is applied only once,
to compute the final tag that the server sends back to the client. We also remark
that our technique is alternative to FFT and they cannot be used together.

Our experiments show that verification at client’s side is very fast (few sec-
onds even with the largest considered texts). Still, we could reduce these costs
even further via preprocessing. This is because the homomorphic MAC from [14]
allows for a two phase verification procedure. The most expensive phase is the
one that involves the computation of ρ (see Sect. 2). This phase, however, can
be done “offline”, before knowing of the answer provided by the server (in par-
ticular it can be done while waiting for the server’s response). Once receiving an
answer, the client can complete the residual verification procedure with a total

5 Recall that in the homomorphic MAC scheme from [14] the size of the tags grows
with the degree of the arithmetic circuit.

6 Notice that the fact that we consider low degree polynomials is crucial here. Our
technique is efficient solely because � does not need to be too big to be able to
interpolate correctly at the end.

346 D. Catalano et al.

cost of O(d) multiplications, where d is the degree of the tag. Our experimental
results show that this on-line phase has a negligible cost of few milliseconds.

Testing Environment and Experiment Parameters. Our code was written
in C using (mainly) the GMP [30] library but also exploiting NTL [38] and
gcrypt [34] codes, respectively, for a good implementation of the FFT-based
polynomial multiplication and for AES (as underlying PRF). Our single-thread
code was executed on a laptop equipped with a 64-bit Intel i7 6500U dual-core
CPU running at 2.50 GHz speed. Given a specific experiment, the reported
timing is obtained as the average value over multiple runs.

In our experiments, we first implemented the pattern matching algorithm
reporting the number of exact matches of a pattern in a given text, as explained
in Sect. 3. Then, we progressively applied the proposed optimizations in order
to properly quantify the contribution added by each technique. We also imple-
mented the approximate variant of our algorithm to test its performances. The
algorithmic solutions of Sect. 3 producing the position of selected occurrences
are clearly a mere application of previous algorithms, so no specific tests were
conducted.

All the involved cryptographic tools where tuned to work with a long-term
security level of 128 bits. We also implemented a (very) low security, 64 bit
variant of our methods7. In this latter case it is possible to get an additional
20 %–30 % gain in performances.

Optimization Timings. A former set of experiments were carried on in order
to estimate the single contribution of each considered optimization. The usage of
(standard) FFT on the single tag multiplications was also included. The exper-
iments involved a wide range of parameters (mainly varying text and pattern
length). Here we report, the timings of a representative sample: a 1024 characters
long text with a pattern of 8 characters. The time complexity of the evaluation
step is clearly linear in the size of the text, so the performance on larger or
smaller texts can be easily deduced.

For the chosen parameters, the timings for the server evaluation are reported
in Table 1. It is interesting to note that evaluation over samples beats FFT only
when used in conjunction with the dynamic polynomials optimization.

Additional Tests. Next, we considered the behaviour of our methods when
considering different text sizes and pattern lengths8.

We consider three possible pattern lengths: 4, 8 and 16 characters. These
patterns are searched in texts of sizes: 1 KiB, 10 KiB and 100 KiB. As stated
above, the linear complexity in the length of the text allows to easily deduce the
behaviour with longer texts.

7 These timings are not reported in this paper but are available upon request.
8 We stress that we focused on our optimized techniques, as they are better than the

alternative solutions discussed before in essentially all settings considered here.

Verifiable Pattern Matching on Outsourced Texts 347

Table 1. Evaluation of an 8 chars pattern on a 1024 chars text

Algorithm + optimizations Evaluation time (s)

“count exact occurrences” algorithm 35.585

+FFT 8.572

+evaluation over sample 15.937

+dynamic polynomials 10.012

+dynamic polynomials +FFT 3.835

+dynamic polynomials +evaluation over samples 1.424

The timings and some bandwidth/memory measures using the considered
settings are reported in Table 2. For a specific pattern size, the sampled evalu-
ation and verification timings confirm the linearity in the text length. On the
other side, it rapidly grows using longer patterns. The reported verification tim-
ings do not include the possible on-line/off-line optimization discussed before (in
such a case the off line cost of verification becomes essentially the whole cost).

Table 2. Timings and sizes of exact pattern matching with both optimizations applied

Text Pattern Key gen Text auth Evaluation Verification Text tags Proof tag

(chars) (ms) (bytes)

1K 4 0.107 12 408 29 256K 528

1K 8 0.107 12 1424 59 256K 1040

1K 16 0.100 12 7685 117 256K 2064

10K 4 0.100 117 4106 307 2.5M 528

10K 8 0.100 113 15263 581 2.5M 1040

10K 16 0.100 116 81383 1176 2.5M 2064

100K 4 0.100 1430 37826 3274 25M 528

100K 8 0.133 1169 151369 6431 25M 1040

100K 16 0.133 1155 788093 11717 25M 2064

The cloud storage space for the authenticated text indicates a non-negligible
fundamental factor of 1 KiB/character: it could be almost halved with a smart
implementation considering that the known term of the 1-degree polynomial
representing the tag is always a single bit and not a full 128 bits field element.
The size of the proof reported by the server is quite small and it grows linearly
with the size of the pattern.

Further experimental results on the approximate pattern matching algo-
rithms are available in the full version of this paper.

348 D. Catalano et al.

Acknowledgements. This research was supported in part by a FIR 2014 grant by the
University of Catania. Thanks to Nuno Tiago Ferreira de Carvalho for his Homomor-
phic MACs library (Available at https://bitbucket.org/ntfc/cf-homomorphic-mac/).

References

1. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009)

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient
verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010)

4. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)

5. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

6. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

7. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical
and privacy-preserving proofs on authenticated data. In: 2015 IEEE Symposium
on Security and Privacy, pp. 271–286. IEEE Computer Society Press (2015)

8. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13,
pp. 863–874. ACM Press, November 2013

9. Baeza-Yates, R.A., Gonnet, G.H.: A new approach to text searching. Commun.
ACM 35(10), 74–82 (1992)

10. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

11. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

12. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011)

13. Catalano, D.: Homomorphic signatures and message authentication codes. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 514–519.
Springer, Heidelberg (2014)

14. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
336–352. Springer, Heidelberg (2013)

https://bitbucket.org/ntfc/cf-homomorphic-mac/

Verifiable Pattern Matching on Outsourced Texts 349

15. Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic
MACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 538–555. Springer, Heidelberg (2014)

16. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-
way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS, vol.
7785, pp. 680–699. Springer, Heidelberg (2013)

17. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-
way functions: constructions and applications. Theoret. Comput. Sci. 592, 143–165
(2015)

18. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private:
constructions and applications to (homomorphic) signatures with shorter public
keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
254–274. Springer, Heidelberg (2015)

19. Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applica-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223.
Springer, Heidelberg (2011)

20. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012)

21. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014)

22. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Oxford
(1994)

23. Desmedt, Y.: Computer security by redefining what a computer is. In: NSPW
(1993)

24. Faro, S., Lecroq, T.: The exact online string matching problem: a review of the
most recent results. ACM Comput. Surv. 45(2), 13 (2013)

25. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

26. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

27. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
142–160. Springer, Heidelberg (2010)

28. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320.
Springer, Heidelberg (2013)

29. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: 47th ACM STOC, pp. 469–477. ACM Press (2015)

30. Granlund, T., GMP Development Team.: GNU MP: The GNU Multiple Precision
Arithmetic Library, 6.1.0 edn (2016)

31. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer,
Heidelberg (2002)

32. Kärkkäinen, J., Chae Na, J.: Faster filters for approximate string matching. In:
Proceedings of the Nine Workshop on Algorithm Engineering and Experiments,
ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM (2007)

350 D. Catalano et al.

33. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

34. Koch, W., Libgcrypt Development Team.: Libgcrypt, 1.7.0 edn (2016)
35. Landau, G.M., Vishkin, U.: Efficient string matching with k mismatches. Theor.

Comput. Sci. 43, 239–249 (1986)
36. Micali, S., Rivest, R.L.: Transitive signature schemes. In: Preneel, B. (ed.) CT-RSA

2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002)
37. Papadopoulos, D., Papamanthou, C., Tamassia, R., Triandopoulos, N.: Practical

authenticated pattern matching with optimal proof size. Proc. VLDB Endowment
8(7), 750–761 (2015)

38. Shoup, V.: NTL: A Library for doing Number Theory, 9.7.1 edn (2016)
39. Yi, X.: Directed transitive signature scheme. In: Abe, M. (ed.) CT-RSA 2007.

LNCS, vol. 4377, pp. 129–144. Springer, Heidelberg (2006)

Digital Signatures

Virtual Smart Cards: How to Sign
with a Password and a Server

Jan Camenisch1, Anja Lehmann1(B), Gregory Neven1, and Kai Samelin1,2

1 IBM Research – Zurich, Rüschlikon, Switzerland
{jca,anj,nev,ksa}@zurich.ibm.com

2 Technische Universität Darmstadt, Darmstadt, Germany

Abstract. An important shortcoming of client-side cryptography on
consumer devices is the poor protection of secret keys. Encrypting the
keys under a human-memorizable password hardly offers any protection
when the device is stolen. Trusted hardware tokens such as smart cards
can provide strong protection of keys but are cumbersome to use. We
consider the case where secret keys are used for digital signatures and
propose a password-authenticated server-aided signature Pass2Sign pro-
tocol, where signatures are collaboratively generated by a device and a
server, while the user authenticates to the server with a (low-entropy)
password. Neither the server nor the device store enough information to
create a signature by itself or to perform an offline attack on the pass-
word. The signed message remains hidden from the server. We argue that
our protocol offers comparable security to trusted hardware, but with-
out its inconveniences. We prove it secure in the universal composability
(UC) framework in a very strong adaptive corruption model where, unlike
standard UC, the adversary does not obtain past inputs and outputs
upon corrupting a party. This is crucial to hide previously entered pass-
words and messages from the adversary when the device gets corrupted.
The protocol itself is surprisingly simple: it is round-optimal, efficient,
and relies exclusively on standard primitives such as hash functions and
RSA. The security proof involves a novel random-oracle programming
technique.

1 Introduction

Mobile devices such as smart phones and tablets are used more and more for
security-critical tasks such as e-banking, authentication, and signing documents.
However, they can be infected by malware and, due to their mobility, the devices
are easily lost or stolen. Keeping cryptographic keys safe in such an environment
is challenging. Typically, they are simply encrypted with a human-memorizable
password. If a device is lost, stolen, or compromised by malware, the password-
encrypted keys are usually easily recovered through an offline dictionary attack.

This work was supported by the European Commission through the Seventh Frame-
work Programme under grant agreement #321310 for the PERCY grant.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 353–371, 2016.
DOI: 10.1007/978-3-319-44618-9 19

354 J. Camenisch et al.

Such attacks are extremely effective on modern hardware, especially given the
low entropy in human-memorizable passwords [23].

Higher-security use cases such as online banking or government-issued elec-
tronic identification (eID) therefore often resort to tamper-proof hardware such
as smart cards, SIM cards or trusted platform modules (TPMs) for extra pro-
tection. The hardware tokens offer interfaces to interact with the keys, e.g., to
compute digital signatures on messages provided by the host, while the signing
key never leaves the confined environment. Usually, a password or PIN code is
added as a second layer of protection. Offline attacks on the password or PIN are
infeasible as the token blocks after too many failed attempts. In case a hardware
token is compromised, it can additionally be rendered useless by revoking its
public key.

The protection is not perfect though; without a dedicated display, malware
on the host machine may instruct the plugged-in token to sign more or differ-
ent messages than the user intended to sign. Also, side-channel attacks such
as differential power analysis only become more powerful with time. In other
words, what is considered tamper-proof hardware today, may not be so anymore
tomorrow [29]. Additionally, trusted hardware suffers from poor usability and
high deployment and maintenance costs. Users find it inconvenient to carry a
hardware token for each security-sensitive application. Desktop and laptop com-
puters rarely come with built-in smart card readers and not all consumer-grade
machines have TPMs. External USB card readers are available, but supporting
drivers and browser plug-ins on several platforms simultaneously requires a con-
siderable effort. Using trusted hardware in combination with mobile devices is
even more problematic, as they often lack connectivity to interact with external
tokens.

So the question is, can we somehow realize similar security guarantees as
hardware tokens, but avoid their practical inconveniences? Software obfuscation
may come to mind, but does not help at all: leaking an obfuscated signing algo-
rithm to an adversary is just as bad as leaking the signing key itself. As network
connectivity is far more ubiquitous than trusted hardware in consumer devices,
how about relying on the assistance of an online server to create signatures? A
solution must protect the keys as long as at least one of the device or the server
is not corrupted. Moreover, we want the user to remember at most a potentially
weak password or a PIN code, while offering protection against offline password
guessing attacks. Involving an online server in the signing process enables addi-
tional control of the use of the signing key, as the server can block the account
or involve a second authentication factor.

Our Primitive. We introduce the notion of password-authenticated server-aided
signatures (Pass2Sign), where the signing key is distributed over the user’s device
and an online server. The signing key is never reconstructed; rather, the device
and the server must engage in a distributed protocol to compute signatures.
For added security, the user must enter a password on the device each time a
signature is generated. The server not only verifies the password, but also the
identity of the device, i.e., an adversary without access to the device cannot even

Virtual Smart Cards: How to Sign with a Password and a Server 355

perform an online guessing attack. This prevents an adversary from blocking an
honest user’s account by swamping the server with fake login attempts: the server
simply ignores signing attempts from the wrong device. If the device falls into
the wrong hands, or if the device is compromised by malware, then the attacker
must still perform an online guessing attack before it can generate signatures.
When the server detects too many failed password attempts or signing requests
per time period, it can take appropriate action such as blocking the account or
requiring additional authentication. The server neither learns the message that
is being signed, nor does it learn the user’s password (or password attempts).
This not only protects the user against malicious servers, but also protects the
password in case the server is broken into by hackers.

Malware running on the device can of course capture both the device keys
and the password, enabling the adversary to sign any messages it wants, but only
by interacting with the server for each new signature. The server can therefore
implement additional security measures on top of our protocol, e.g., a logic which
detects abnormal signing behavior, or a secondary communication channel via
which the server informs the user about his account activity. When suspicious
transactions are detected, the server can block the user’s account to ensure that
no further signatures can be created, and revoke the user’s public key.

The resulting security level is almost identical to the protection offered by
trusted hardware tokens, but without their inconveniences. Only few smart card
readers feature integrated trusted keypads and displays; built-in secure elements
such as SIM cards or TPMs never do. Malware running on the host system can
therefore also capture the user’s PIN code and have different messages signed
than what is shown on the screen. The main security guarantee of trusted hard-
ware tokens is therefore that no more signatures can be generated after unplug-
ging the token—which can actually be quite cumbersome or even impossible for
SIM cards and TPMs. In the same way, our protocol prevents further signatures
from being generated when the user’s account is blocked by the server. When
the device is lost, our solution even offers better protection than hardware: while
it may be possible to extract the keys from a compromised token, the only infor-
mation that an adversary can extract from a corrupted device is a useless key
share.

Strong Security Notion and Corruption Model. We define the security of a
Pass2Sign scheme in the universal composability (UC) framework [12]. The main
goal of our protocol is to guarantee protection of the user’s password and signing
key in the event of device or server compromise. We therefore propose a very
strong corruption model that, unlike standard corruptions as defined in the UC
framework, does not hand all past inputs and outputs to the adversary when a
party is corrupted. In case the device gets corrupted, these inputs include the
user’s password and all previously signed messages, which obviously goes directly
against our security goals. Clearly, it is impossible to achieve such a strong cor-
ruption model without secure erasures: if the entered passwords are not erased,
then there is no way to hide it from an adversary upon corruption.

356 J. Camenisch et al.

The UC framework is well known to provide superior and more natural secu-
rity guarantees for the particular case of password-based protocols than tradi-
tional game-based notions [14]. In particular, by letting the environment generate
all passwords and password attempts, UC formulations correctly model arbitrary
dependencies between passwords. For example, their game-based counterparts
fail to provide any security guarantees when honest users make typos while enter-
ing their passwords, a rather frequent occurrence in real life. Also, by absorbing
password guessing attacks inside the functionality, secure composition with other
protocols is guaranteed to hold; this is much less clear for game-based notions
that tolerate a non-negligible adversarial success probability.

Efficient Protocols. One might expect that meeting such stringent security stan-
dards comes at a considerable cost in efficiency. Indeed, similar protocols involve
a factor 4–10 in performance penalty to protect against (standard) adaptive
corruptions [9], while generic techniques to obtain adaptive security at least
double the number of communication rounds [34]. Blindness for signed messages
is another feature that is notoriously expensive to achieve in the UC frame-
work [28]. It is therefore even more surprising that our protocol, in the random-
oracle model, is refreshingly simple, round-optimal, and efficient. Generating a
signature requires only three modular exponentiations on the device and two on
the server, plus a few hash function evaluations, with only one protocol message
from the device to the server and back. The resulting signature is an RSA-FDH
signature on a double salted hash of the message and some session identifiers.
We also describe two simpler variants of our protocol for the setting where mes-
sage blindness is not required. Our first variant exposes the message only to the
server, a second variant does not hide the message at all.

Proof Technique. In spite of its simplicity, the security proof of the protocol is
actually quite intricate. The many cases triggered by adaptive corruptions (which
are allowed even during setup and arbitrarily interleaved signing sessions) and
the mixture of passwords, encryption, and signatures require very careful book-
keeping, especially of the random-oracle responses during simulation. We employ
an interesting and, to the best of our knowledge, novel technique to reconcile the
seemingly contradictive requirements that the simulator must be able to deter-
mine the value of each signature, but without learning the message being signed.
We avoid typical blind signature techniques and the associated “one-more”-type
security assumptions [4] by letting the device and the server both contribute to
the randomness of the signature, and by programming the random oracle “just-
in-time” at the moment that the signature is verified, not when it is created.
This technique is of independent interest, and may find applications in other
scenarios as well.

Implementation. We implemented our protocol on a commodity mobile device
and provide a thorough performance analysis of our prototypical implementation
to demonstrate the practicality of our protocol. With signature generation for

Virtual Smart Cards: How to Sign with a Password and a Server 357

a 2048-bit key requiring about 250 ms in total, our protocol is clearly efficient
enough for use in practice. An overview is given in Sect. 5

Related Work. We give a short overview of related work here. Additional related
work is provided in the full version. Threshold signatures [2,8,17,20,33] let a
signing key be split over more than one entity. In their basic form, threshold
signatures assume that all parties somehow know and agree on the message being
signed, and do not specify how a signing protocol is triggered. Some protocols
rely on trusted hardware [16,31], assume a non-corruptible server [6], allow the
server or a threshold of servers to sign in the user’s name without access to the
device [26,35], or use signing keys or key shares derived from the user’s password
and are therefore vulnerable to offline attacks by a corrupt server [19,21,22].

The S-RSA protocol due to MacKenzie and Reiter [30] envisages many of the
goals that we also pursue, such as requiring the adversary to compromise the
device to perform even an online attack, avoiding offline attacks as long as the
server and the device are not both compromised, and “key disabling” by blocking
a user’s account on the server. Their protocol is proven secure in a property-based
(i.e., non-UC) notion that is weaker than ours in several respects. Foremost, it
does not enjoy the many advantages of UC password-based protocols discussed
earlier, such as preserving security in case of mistyped passwords and secure
composition with other protocols. Also, the server in their protocol sees the
message being signed, can only be corrupted between (and not during) signing
sessions, and can actually perform an offline dictionary attack on the password
based on the information it sees during the signing protocol (but this problem
is easy to fix). Our protocol is the first to support fully adaptive corruptions of
the server as well as the device in the UC model even during signing sessions.
One could of course evaluate the signing algorithm using generic adaptively UC-
secure MPC, but this comes at great cost: evaluating even a single multiplication
gate is considerably more expensive than our protocol [10].

2 Preliminaries

Here we introduce the building blocks for our construction. These include RSA-
FDH signatures (DSIGRSA), non-committing encryption (NCE), trapdoor one-
way permutations (TDP), and three UC-functionalities.

Notation. We use τ ∈ N as our security parameter. 1τ is the string of τ ones.
All algorithms receive 1τ as an implicit input. a

r← S denotes that a is assigned
a random element chosen uniformly from the set S. If A is a PPT algorithm we
write y

r← A(x; r) to denote that y is assigned the output of A with input x and
external random coins r. If we drop r, the random coins are drawn internally. For
deterministic algorithms, we write y ← A(x). A function ε : N → R is negligible
if ε(τ) = τ−ω(1). By |m| we denote the binary length of a message m. |S| denotes
the cardinality of the set S. If an argument is a list, we assume that the list has
an injective encoding which allows embedding it into {0, 1}∗.

358 J. Camenisch et al.

Ideal Functionality FCA. We assume a public-key infrastructure where servers can
register their public keys, modeled by the ideal functionality FCA [13]. These keys
can be retrieved by any party using the entity’s identity for which the public key
is requested. A formal definition of FCA is given in the full version.

Ideal Functionality FD→R
RO . A random oracle can be seen as an idealized hash

function that consistently maps inputs from domain D to random values in range
R [5]. It is adjusted for our notation, as we parametrize it with domain D and
range R. We sometimes use more than one random oracle with the same range R
and domain D for easier analysis, i.e., more than one random oracle corresponds
to FD→R

RO . To distinguish different random oracles, we assume that each call is
prefixed with a unique identifier. The formal definition of FD→R

RO is based on [27]
and given in the full version.

Ideal Functionality FAuth. The FAuth functionality provides authenticated (but
public) channels between parties [12,13]. For our protocol, we can use the sim-
plified version of [12], which allows to send a single authenticated message to the
designated receiver. The formal definition of FAuth is given in the full version.

One-Wayness of RSA. Let (N, e, d, p, q) r← RSAGen(1τ) be an RSA-key gener-
ator returning an RSA modulus N = pq, where p and q are random distinct
primes, e > 1 an integer coprime to ϕ(N), and d ≡ e−1 mod ϕ(N). The RSA
one-wayness problem associated to RSAGen is, given N , e, and y

r← Z
∗
N , to

find x such that xe ≡ y mod N . The RSA (one-wayness) assumption now states
that for every PPT adversary A, Pr[(N, e, d, p, q) r← RSAGen(1τ), y r← Z

∗
N , x

r←
A(N, e, y) : xe ≡ y mod N] ≤ ε(τ) for some negligible function ε.

RSA-FDH Signatures. We use a RSA Full-Domain Hash (FDH) signature
scheme DSIGRSA = (SKGenRSA,SignRSA,VerifyRSA) associated to RSA-key gen-
erator RSAGen defined as follows. The key generation algorithm (spk , ssk) r←
SKGenRSA(1τ) runs (N, e, d, p, q) r← RSAGen(1τ) and outputs ssk = (d, p, q) and
spk = (N, e). It also requires a hash function HRSA : {0, 1}∗ → Z

∗
N , modeled as

a random oracle. To sign a message m ∈ {0, 1}∗ with key ssk = (d, p, q), SignRSA
computes σ ← (HRSA(m))d mod N . To verify if a signature σ is valid for a
message m ∈ {0, 1}∗ and spk = (N, e), VerifyRSA outputs true if 0 < σ < N and
HRSA(m) = σe mod N , else it outputs false. RSA-FDH signatures are strongly
unforgeable against chosen message attacks in the random-oracle model if the
RSA assumption holds [15].

Trapdoor One-Way Permutations. Let (f, f−1, Σ) r← TFGenf(1τ) be the instance
generator for a function f : Σ → Σ defining a permutation over Σ, with an
inversion function f−1 : Σ → Σ, such that we have 1) for all x ∈ Σ, all τ ∈
N, and for all (f, f−1, Σ) r← TFGenf(1τ), we have x = f−1(f(x)), and 2) for
all PPT adversaries A we have Pr[(f, f−1, Σ) ← TFGenf(1τ), x r← Σ : x =
A(f, f(x), Σ)] ≤ ε(τ) for some negligible function ε. We also require that we can
efficiently sample from Σ. An RSA-key generator RSAGen yields a trapdoor one-
way permutation under the RSA assumption with Σ = Z

∗
N , f(x) = xe mod N

and f−1(y) = yd mod N [5].

Virtual Smart Cards: How to Sign with a Password and a Server 359

Experiment ExpRECV−SIM−ideal
NCE,A,SIMNCE

(τ):

epk
r← SIMNCE(publickey, 1

τ)
Q ← ∅
stateA

r← AOH(·),OEnc(·,·),ODec(·,·)
(epk)

where OEnc(·,·) on input (mi i):

Ci
r← SIMNCE(encrypt, |mi| i)

Q ← Q ∪ {(Ci, mi i)}
return Ci

where ODec(·,·) on input (Cj j):
if (Cj , mj j) ∈ Q, return mj

else, return mj ← SIMNCE(decrypt, Cj j)

where OH(·) on input qk:

return hk
r← SIMNCE(roquery, qk)

esk
r← SIMNCE(keyleak, Q)

return AOH(·)
(esk , stateA)

Experiment ExpRECV−SIM−real
NCE,A (τ):

(epk , esk)
r← EKGen(1τ)

stateA
r← AOH(·),OEnc(·,·),ODec(·,·)

(epk)

where OEnc(·,·) on input (mi i):

return Ci
r← Enc(epk , mi i)

where ODec(·,·) on input (Cj j):
return mj ← Dec(esk , Cj j)

where OH(·) on input qk:

return hk
r← H(qk)

return AOH(·)
(esk , stateA)

Fig. 1. Experiments RECV-SIM-ideal and RECV-SIM-real for our RECV-SIM definition.

Non-committing Labeled Public-Key Encryption Scheme. To deal with adap-
tive corruptions, we require a non-committing encryption scheme. In the secu-
rity proof, the simulator needs to be able to simulate ciphertexts without know-
ing the corresponding plaintexts which would be encrypted in the real protocol.
However, when the adversary later corrupts the receiver of a simulated cipher-
text, the simulator has to provide a state of the corrupted party such that all
the ciphertexts decrypt to some concrete plaintext. This is related to the “selec-
tive de-commitment problem” [3]. The notion of non-committing encryption that
we require is stronger than some that were proposed in the literature [18,25] and
weaker than others [32]. To minimize the security assumptions for our protocol
and open the possibility for more efficient instantiations, we introduce our own
definition and provide a non-interactive construction in the random-oracle model.

A labeled non-committing encryption scheme NCE = (EKGen,Enc,Dec) con-
sists for three algorithms: a key generation algorithm (epk , esk) r← EKGen(1τ)
outputting a public and secret key, where the public key specifies a finite message
space M, an encryption algorithm C

r← Enc(epk ,m, �) computing a ciphertext
C on input a public key epk , a message m ∈ M, and a label � ∈ {0, 1}∗, and a
decryption algorithm m′ ← Dec(esk , C, �) that takes as input a secret key esk ,
a ciphertext C and a label � and outputs either a message m′ or ⊥ if decryption
failed. We require the usual correctness properties to hold. Sometimes we need
to explicitly talk about the random choices of the encryption algorithm. To this
end, let Σ be the space of these choices.

We now define the RECV-SIM security property that a labeled non-
committing encryption scheme needs to satisfy in our context.

Definition 1 (RECV-SIM Security). An encryption scheme NCE = (EKGen,
Enc,Dec) is RECV-SIM-secure if for all PPT adversaries A there exists a
stateful PPT simulator SIMNCE such that

∣∣ Pr[ExpRECV−SIM−real
NCE,A (τ) = 1] −

Pr[ExpRECV−SIM−ideal
NCE,A,SIMNCE

(τ) = 1]
∣∣ ≤ ε(τ) for some negligible function ε and the exper-

iments of Fig. 1.

360 J. Camenisch et al.

This definition says an encryption scheme is RECV-SIM-secure (RECeiVer-
SIMulatable), if there exists a simulator that is given control over the random
oracle such that no adversary can distinguish between simulated ciphertexts
(which do not contain any information) and honestly generated ones.

More precisely, the adversary must not be able to tell in which of the two exper-
iments it is run in, even if it can adaptively query for new encryptions, decryptions,
and receives the secret key at some point. The crucial difference is that in the ideal
game the adversary receives simulated ciphertexts instead of real ones, which are
computed by a simulator on input only the length of the plaintext. Moreover, the
adversary A receives the secret key of the receiver at a later point of its own choice.
In the ideal world, this secret key is provided by the simulator which only now
learns the plaintexts to which it produced the simulated ciphertexts. The adver-
sary expects that the ciphertexts indeed decrypt to the messages queried to the
encryption oracle using the given secret key.

Compared to the definition given by Fehr et al. [18], our adversary A is
allowed adaptive queries, and receives the secret key esk (but not the random-
ness used to create it) at the last step of the experiment, while the definitions
given by Hazay et al. [25] only consider a single (or randomly sampled according
to some distribution) message per key pair, which is not enough for our protocol.
Likewise, Nielsen [32] gives a formulation of non-committing encryption—in the
sense of secure message transmission—in the UC framework. However, his func-
tionality is stronger than what we need, because it simulates all randomness,
which we do not require, as our protocol relies on secure erasures anyway. In
the full version, we prove that any encryption scheme that RECV-SIM security
implies IND-CCA2 security.

Instantiation. We now give a concrete instantiation for an encryption scheme
that achieves RECV-SIM security. We modify the CCA2-secure encryption
scheme introduced in [5] to include labels and handle arbitrary-length messages.
Let G : {0, 1}∗ → {0, 1}τ and K : {0, 1}∗ → {0, 1}τ denote two hash functions,
modeled as random oracles. Let ec : {0, 1}∗ → ({0, 1}τ)+ be an injective encod-
ing function and let dc : ({0, 1}τ)+ → {0, 1}∗ denote the corresponding decoding
function that returns ⊥ if no valid pre-image exists. We require that the output
length of ec only depends on the length of its input.

EKGen(1τ) : Generate a random trapdoor one-way permutation, i.e.,
(f, f−1, Σ) r← TFGenf(1τ). The message space M is {0, 1}∗. Output the pub-
lic key epk = (f,Σ), and esk = f−1 as the secret key.

Enc(epk ,m, �) : Let (m1,m2, . . . ,mk) ← ec(m). Draw x
r← Σ, compute C1 ←

f(x), Ci
2 ← G(i, x) ⊕ mi for i = 1, . . . , k, and C3 ← K(x, k,m, �) and output

the ciphertext C := (C1, (C1
2 , . . . , Ck

2), C3).
Dec(esk , C, �) : Parse C as (C1, (C1

2 , . . . , Ck′
2), C3) for some k′ ≥ 1. Compute

x′ ← f−1(C1) and m′
i ← G(i, x′) ⊕ Ci

2 for i = 1, . . . , k′. Let m′ ← dc(m′
1, . . . ,

m′
k′). If m′ = ⊥ or C3
= K(x′, k′,m′, �), output ⊥. Output m′.

The above construction fulfills perfect correctness. The proof of the following
theorem is given in the full version [11].

Virtual Smart Cards: How to Sign with a Password and a Server 361

Theorem 1. The construction above is RECV-SIM-secure, if G and K are mod-
eled as random oracles and TFGenf(1τ) is a secure TDP generator.

3 Ideal Functionality

We now formally define password-authenticated server-aided signatures
(Pass2Sign) by describing its ideal functionality in the universal composability
(UC) framework [12].

First, recall the high-level goal of our Pass2Sign scheme: signatures on mes-
sages are derived collaboratively between two parties, a device D and a server
S, meaning that a valid signature can only be obtained if both parties agree
to the generation. Access to the server’s signing operation is protected by a
user password pwd that is chosen at setup and needs to be provided for every
signing request. The server then verifies whether the password is correct and
also whether the request came from the correct device, which has the additional
advantage that an attacker cannot block an honest user’s account by swamp-
ing the server with false login attempts. The protocol must be secure against
offline attacks on the password used during setup and on the password attempts
during signing. That is, as long as at least one party remains honest, the adver-
sary does not learn anything about the used passwords. In particular, the server
learns only whether a password attempt in a signing request was correct or not,
but not the actual password attempt itself. The server also does not learn the
messages being signed. (If this blindness feature is not required, we discuss how
it can easily be removed in the full version [11].) Security must be guaranteed
for adaptive corruptions in order to protect against the main threat, namely the
user losing his device. Note that we subsume the user of the device into the
environment to have a more readable functionality. How this maps to real-life
scenarios is discussed at the end of this section.

The detailed description of our ideal functionality FPass2Sign for password-
authenticated server-aided signatures is given in Figs. 2 and 3. When describing
our functionality, we use the following conventions to reduce repetitive notation:

– For the SETUPREQ and KEYGEN interfaces, the ideal functionality only
considers the first input for each sid . Subsequent inputs to the same inter-
face for the same sid are ignored. For the SIGNREQ, DELIVER, PROCEED,
SIGNATURE interfaces the functionality only considers the first input for each
combination of sid and qid .

– At each invocation, the functionality checks that sid = (S,D, sid ′) for some
server identity S, device identifier D and sid ′ ∈ {0, 1}∗. Also, whenever we
say that F receives input from or provides output to S or D, we mean S or
D as specified in the sid , respectively.

– When we say that the functionality “looks up a record”, we implicitly under-
stand that if the record is not found, the functionality ignores the input and
returns control to the environment.

362 J. Camenisch et al.

1. Setup Request Device. On input (SETUPREQ, sid , pwd) from device D:

– Create a record (setup-req, sid , pwd) and send (SETUPREQ, sid) to A.

2. Key Generation. On input (KEYGEN, sid , pwd∗, pk) from adversary A:

– Look up a record (setup-req, sid , pwd).

– If D (taken from sid) is corrupt, then mark this instance as key-corrupt.

– If D is corrupt and pwd∗ = ⊥, then create a record (setup, sid , pwd∗, pk). Else,
create a record (setup, sid , pwd , pk).

– Output (SETUP, sid , pk) to D.

3. Sign Request. On input (SIGNREQ, sid , qid , pwd , m) from device D:

– Look up a record (setup, sid , pwd , pk).

– Create a record (sign-req, sid , qid , pwd , m).

– Send (SIGNREQ, sid , qid) to A.

4. Sign Delivery. On input (DELIVER, sid , qid , pwd∗, m∗) from adversary A:

– Look up records (setup, sid , pwd , pk) and (sign-req, sid , qid , pwd , m).

– If D is corrupt and pwd∗ = ⊥, then set pwd ← pwd∗ and m ← m∗.
– If pwd = pwd then set status ← pwdok, else set status ← pwdwrong.

– Create a record (sign, sid , qid , m, status).

– Output (SIGNREQ, sid , qid , status) to S .

5. Server Proceed. On input (PROCEED, sid , qid) from server S :

– Look up a record (sign, sid , qid , m, status) with status = pwdok.

– Update the record to status ← proceed, and send (PROCEED, sid , qid) to A.

6. Signature Generation. On input (SIGNATURE, sid , qid , σ) from A:

– Look up a record (sign, sid , qid , m, status).

– If S is honest, only proceed if status = proceed.

– If there is no record (signature, pk , m, σ, false), then create a record
(signature, pk , m, σ, true), and output (SIGNATURE, sid , qid , σ) to D.

7. Verify. On input (VERIFY, sid , pk , m, σ) from a party P :

– Create a record (verify, sid , pk , m, σ, P) and send (VERIFY, sid , pk , m, σ, P)
to A.

8. Verified. On input (VERIFIED, sid , pk , m, σ, φ) from A with φ ∈ {true, false}:
– Look up, and delete afterwards, a record (verify, sid , pk , m, σ, P).

– Record (signature, pk , m, σ, f) and output (VERIFIED, sid , pk , m, σ, f) to P ,
where f is determined as follows:

• If a record (signature, pk , m, σ, f) for some f exists, set f ← f . (consis-
tency)

• Else, if a record (setup, sid , pwd , pk) exists with pk = pk and the instance
is not marked key-corrupt, set f ← false. (strong unforgeability)

• Else, set f ← φ.

Fig. 2. Main interfaces of our functionality FPass2Sign.

– We assume that the session (sid) and query identifiers (qid) given as input to
our functionality are globally unique. In the two-party setting that we consider,
this can be achieved by exchanging random nonces between both parties and
including the concatenation of both in the identifiers. We also assume that

Virtual Smart Cards: How to Sign with a Password and a Server 363

9. Corruption. On input (CORRUPT, sid , P , Σ) from adversary A:

– Look up a record (setup, sid , pwd , pk) and initialize a list L ← ∅.
– If P = S , then assemble L containing (qid i, ci) for all existing records

(sign-req, sid , qid i, pwd i, mi), where ci ← pwdok if pwd = pwd i and ci ←
pwdwrong otherwise.

– If now both D and S are corrupt, then mark this instance as key-corrupt
and complete the abandoned sign requests: For all (qid i, σi) ∈ Σ, look up
mi from record (sign-req, sid , qid i, pwd i, mi). If there does not exist a record
(signature, pk , mi, σi, false), then create a record (signature, pk , mi, σi, true).

– Send (CORRUPT, sid , P , L) to A.

10. Password Guessing. On input (PWDGUESS, sid , qid , pwd∗) from adversary A:

– If not both D and S are corrupt, then ignore this input.

– If qid = ⊥ then look up a record (setup-req, sid , pwd).

– If qid = ⊥ then look up a record (sign-req, sid , qid , pwd , m).

– Set c ← pwdok, if pwd∗ = pwd and c ← pwdwrong otherwise.

– Send (PWDGUESS, sid , qid , c) to A.

Fig. 3. Interfaces of our functionality FPass2Sign.

honest parties drop any inputs with session or query identifiers to which they
did not contribute.

– When we say that an instance is “marked”, we mean that the specified label
is associated with the instance of the functionality with the current sid . This
does not affect other instances of the functionality with a different sid .

If the device is already corrupt at the time of setup, we consider the instance
as key-corrupt even though the server might still be honest. A stronger security
notion, requiring only slight changes to the functionality, would be achievable
where the instance is only considered key-corrupt when both the device and
server are corrupted. However, this would mean that in the realization, the key
generation be done distributively between the server and the device. This is
possible but for RSA rather inefficient [1,24] and seems to offer little added
security; hence we chose not to do this. A detailed discussion of the interfaces is
given in the full version.

Discussion. Let us discuss how real-world attack scenarios map to our ideal
functionality. If a user loses his device, we assume that the adversary is able to
extract all the data from the device, so the device becomes corrupted. As long
as the server is not corrupted, though, the adversary controlling the device still
has to make online password guesses to be able to sign, but does not obtain the
(full) signing key. To protect against online password guessing, the server should
implement some kind of throttling on top of our protocol, such as refusing to
serve further queries after too many failed password attempts.

If the device becomes infected by malware, we also capture the worst case
scenario: it may get all the data from the device and hence the device becomes
corrupted. In contrast with the scenario above, the malware may also learn the

364 J. Camenisch et al.

(correct) password of the user if he’s unaware of the infection and continues
to use the device. This behavior is subsumed into the environment; we model
this correctly by letting the environment provide the correct password to the
adversary. Some protection against this kind of attack can be implemented on
top of our protocol by adding intrusion detection logic on the server’s side, e.g.,
by stopping to serve requests if they become too frequent. This situation is
actually similar to that of a smart card inserted in an infected device: the device
could intercept the PIN and sign any messages it wants until the card is removed.

One could consider a more gradual corruption model where the device can be
semi-corrupted, e.g., if an application turns malicious, but the uncompromised
operating system separates it from other applications on the device. Our model
covers this as long as applications have their own protected execution space: the
device in our model represents the application, while everything else is subsumed
into the environment. More advanced models where applications can observe
other applications (e.g., their running times) are beyond the scope of this paper.

4 Our Pass2Sign Protocol

The core idea of our protocol is fairly simple: an RSA secret key d = dD ·
dS mod ϕ(N) is split between the device and the server who then jointly perform
the signing operation for each message m. To hide the message from the server,
the device “blinds” it with randomness r as hm ← H(r,m) and lets the server
sign it as σS ← hdS

m . The device completes the signature as σ ← σdD
S . For

each signing request, the user authenticates towards the server using a salted
password hash hp ← H(k, pwd), where the salt k is stored on the device.

Our Corruption Model and the Need for Secure Erasures. The main challenge
is to maintain this simplicity while achieving the strong security properties that
we envisage. Most often, security against adaptive corruptions in the UC model
comes at a considerable price in terms of computation and communication, and
our corruption model is even substantially stronger. In particular, recall that
we want to protect the user’s password and previously signed messages in case
the device is lost or stolen. The “standard corruption” model in the UC frame-
work [12] hands all previous inputs and outputs of a party to the adversary
upon corruption of that party, which in case of the device would include all
previous passwords and messages. It is quite obvious that standard corruption
does not suffice for our purposes, and also that our model cannot be achieved
without secure erasures, as there would be no way to securely erase previous
inputs. Given the usual difficulty of achieving even standard UC corruption, it
is surprising that our protocol remains refreshingly simple, round-optimal, and
efficient.

Achieving Blindness. Achieving blind signatures against adaptive corruptions
in the UC model is notoriously hard: the only scheme is due to Kiayias and
Zhou [28] and requires six rounds of communication and several zero-knowledge

Virtual Smart Cards: How to Sign with a Password and a Server 365

proofs. We decided to strike a reasonable compromise between security and effi-
ciency by dropping the unlinkability requirement, i.e., the property that the
signer cannot link a signature to a previous signing transcript, but focusing
entirely on hiding the message from the signer. We describe a new “just-in-time”
programming technique for the random oracle that inserts the correct entries into
the oracle when signatures are verified, rather than when they are created. We
thereby obtain an efficient and round-optimal construction without having to
rely on one-more-type assumptions that are typical for full-domain-hash blind
signatures [4,7].

In a bit more detail, to enable the simulator to open any signing transcript
to any message-signature pair, the server adds another layer of randomness, i.e.,
he signs h′

m ← H(r′, hm) for some randomly chosen r′. When the simulator
has to provide a signature σ to the functionality without knowing the message
m, it simply signs a random value h′

m
r← {0, 1}τ . The connection to m is only

established when the signature is verified, which we call “just-in-time” program-
ming. Namely, whenever a random oracle query H(r′,H(r,m)) is made where
r, r′ were previously used in a simulated blind signature, the simulator verifies
whether (m,σ) is valid with the help of the ideal functionality. If so, the simu-
lator programs the random oracle to map the message m it just learned to the
randomly chosen h′

m that was signed as σ.

Non-committing Communication and State. As we allow corruptions during
setup and signing sessions, we have to take special care that messages sent by
the device and server do not commit the simulator to values that it might not
know at that time in the proof. We achieve this by employing non-committing
encryption for the passwords hashes hp ← H(k, pwd) and each password attempt
h′

p ← H(qid ,H(k, pwd ′)) that the device sends to the server. At a first glance
that might seem unnecessary since we also assume secure erasures. However,
secure erasures are not sufficient as an adversary can intercept the ciphertexts
and later corrupt the server to learn the decryption key. He then expects all
ciphertexts to open to the proper password hashes (that in the security proof
might be unknown when the ciphertexts are generated). The non-committing
encryption gives us exactly that flexibility. To determine the correct password
hashes hp and h′

p upon server corruption we use different random oracle program-
ming techniques, eventually also relying on the password guessing interfaces of
the ideal functionality (if both parties are corrupted).

We have to take similar care for the intermediate state records that the device
keeps during interactive protocols. After sending a signing request, the device
cannot store the message m, or even the randomness r and the message hash
hm ← H(r,m), as the simulator does not learn m upon corrupting the device.
Nevertheless, the device must be able to verify whether the server’s contribu-
tion is correct. Therefore, when sending the message hash hm, the device also
sends a value t ← H("MAC", qid , k, hm) that acts as a message authentication
code (MAC) for hm. This allows the device to check that the server signed the
correct message upon receiving the signature share, but without requiring state
information that depends on m.

366 J. Camenisch et al.

Authentication of Participants. As already mentioned earlier, the session identi-
fier sid contains the identities of the device D and the server S. This means that
D and S have to be authenticated. We do so by employing FAuth for authen-
ticated communication, thereby making abstraction of how the authentication
is performed. This could be through a shared secret, through digital signatures
(e.g., TLS with client authentication), or in an “offline fashion” by letting the
user use a trusted third party to register the device, such as a bank or a local
municipal office. The last option has the additional advantage that one could
also check the name or other credentials of the user, and also directly certify the
resulting public key of the user.

4.1 Protocol Description

We now present the detailed protocol for our Pass2Sign scheme. We assume
that a server has a key pair (epk , esk) for a non-committing encryption scheme
(EKGen,Enc,Dec), generated by EKGen on input the security parameter 1τ . We
also assume a public-key infrastructure, where devices and servers can regis-
ter their public keys, modeled by the ideal functionality FCA [13], and authen-
ticated message transmission, modeled by FAuth. In the protocol description
we denote inputs to and outputs from them informally to make the protocol
more readable (e.g., we will write that S sends m to D via FAuth instead of an
explicit call to FAuth with sub-session IDs etc.). We further assume that parties
check the correctness of session and sub-session IDs in all inputs. Moreover, we
use H and HRSA as shorthand notations for two random-oracle functionalities
F{0,1}∗→{0,1}τ

RO and F{0,1}∗→Z
∗
N

RO , respectively. Note that these are single-instance
functionalities; one can obtain a secure multi-instance implementation by pre-
fixing each call to them with sid . Our protocol further makes use of an RSA-key
generator RSAGen.

As discussed earlier, secure erasures are necessary to achieve our security
guarantees. We thus assume that after each protocol step all variables are deleted
unless we explicitly state that a variable is stored.

Finally, we assume that whenever a check performed by the server or device
fails, the checking party will abort the protocol.

Setup Protocol. The setup procedure is the following protocol that a device D
runs on input (SETUPREQ, sid , pwd) with server S, where sid = (S,D, sid ′).

Setup – Step 1. Device generates account data:
(a) Upon input (SETUPREQ, sid , pwd), retrieve epk for S from FCA.
(b) Generate RSA key material as (N, e, d, p, q) r← RSAGen(1τ) and share

the secret exponent d by choosing a random dD
r← Z

∗
ϕ(N) and setting

dS ← d · d−1
D mod ϕ(N), where dS is encoded as an |N |-bit string.

(c) Compute hp ← H(k, pwd) for a random k
r← {0, 1}τ .

(d) Encrypt the RSA key share dS and the authentication information hp

under epk and with the label (sid , (N, e)). That is, compute C
r←

Enc(epk , (dS , hp), (sid , (N, e))).

Virtual Smart Cards: How to Sign with a Password and a Server 367

(e) Store the record (setup-temp, sid , k, dD, (N, e)) and send the message m =
(sid , (N, e), C) to the server S using FAuth.

Setup – Step 2. Server registers account:
(a) Upon receiving m = (sid , (N, e), C) from D via FAuth, check that sid is

not registered yet.
(b) Decrypt C as (dS , hp) ← Dec(esk , C, (sid , (N, e))). If decryption succeeds,

store (setup, sid , hp, dS , (N, e)).
(c) Acknowledge the created account by sending (sid) to D via FAuth.
Setup – Step 3. Device completes registration:
(a) Upon receiving a message (sid) from S via FAuth, check that a record

(setup-temp, sid , k, dD, (N, e)) for sid exists.
(b) Store (setup, sid , k, dD, (N, e)) and end with output (SETUP, sid , (N, e)).

Signing Protocol. The signing protocol starts when the device D receives an input
(SIGNREQ, sid , qid ,m, pwd ′), where sid = (S,D, sid ′), upon which he runs the
following protocol with the server S. Recall that we assume that both parties
have previously agreed upon a common and globally unique query identifier qid .
All messages sent between the device and server also contain the qid as prefix,
and only those messages with the corresponding qid are further processed.

Sign – Step 1. Device sends signing request:
(a) Upon input (SIGNREQ, sid , qid ,m, pwd ′), retrieve (setup, sid , k, dD,

(N, e)).
(b) “Blind” the message by drawing r

r← {0, 1}τ and computing hm ←
H(r,m).

(c) Compute the (re-)authentication value h′
p ← H(qid ,H(k, pwd ′)).

(d) Compute a “MAC” t of hm as t ← H("MAC", qid , k, hm).
(e) Generate a non-committing encryption of h′

p, hm, and t under the public
key epk and with label (sid , qid) as C ′ r← Enc(epk , (h′

p, hm, t), (sid , qid)).
f) Store the record (sign, sid , qid , r) and send (sid , qid , C ′) to S via FAuth.
Sign – Step 2. Server verifies information:
(a) Upon receiving (sid , qid , C ′) from D via FAuth, retrieve (setup, sid , hp, dS ,

(N, e)) for sid .
(b) Decrypt C ′ to (h′

p, hm, t) ← Dec(esk , C ′, (sid , qid)).
(c) Check the password by verifying whether H(qid , hp) = h′

p and set c ←
pwdok if so and c ← pwdwrong otherwise.

(d) Store the record (sign, sid , qid , hm, t, c) and output (SIGNREQ, sid , qid , c).
Sign – Step 3. Server creates its signature share:
(a) Upon input (PROCEED, sid , qid), retrieve (sign, sid , qid , hm, t, c) for qid

and abort if c
= pwdok.
(b) Compute the signature share σS ← HRSA(sid , qid ,H(r′, hm))dS mod N

for a random r′ r← {0, 1}τ .
(c) Send (sid , qid , hm, t, r′, σS) to D via FAuth.
Sign – Step 4. Device completes the signature:
(a) Upon receiving (sid , qid , hm, t, r′, σS) from S via FAuth, retrieve

(sign, sid , qid , r) for qid and setup record (setup, sid , k, dD, (N, e)).

368 J. Camenisch et al.

(b) Verify that t = H("MAC", qid , k, hm).
(c) Complete the signature by computing σRSA ← (σS)dD mod N . Verify that

(σRSA)e = HRSA(sid , qid ,H(r′, hm)) mod N holds, i.e., that the server’s
signature share was correct.

(d) Set σ ← (σRSA, qid , r, r′) and end with output (SIGNATURE, sid , qid , σ).

Signature Verification. On input (VERIFY, sid ,m, σ, pk), parse pk = (N, e), σ =
(σRSA, qid , r, r′) and set M ← (sid , qid ,H(r′,H(r,m))). If σRSA is a valid RSA
signature on M , i.e., if 0 < σRSA < N and HRSA(M) = σe

RSA mod N , output
(VERIFIED, sid ,m, σ, pk , true) and (VERIFIED, sid ,m, σ, pk , false) otherwise.

4.2 Security

The detailed proof of the following theorem is given in the full version [11].

Theorem 2. The Pass2Sign scheme described in Sect. 4 securely implements
the ideal functionality FPass2Sign defined in Sect. 3 in the (FCA,FRO,FAuth)-
hybrid model with secure erasures if the RSA one-wayness assumption associ-
ated to RSAGen holds and (EKGen,Enc,Dec) is an RECV-SIM secure encryption
scheme.

Using the RECV-SIM secure encryption scheme proposed in Sect. 2, which is
an extension of the Bellare-Rogaway CCA2 encryption scheme, and instantiated
with the RSA trapdoor permutation, we get the following corollary:

Corollary 1. The Pass2Sign scheme described in Sect. 4 and instantiated as
described above, securely implements the ideal functionality FPass2Sign defined in
Sect. 3 in the (FCA,FRO,FAuth)-hybrid model with secure erasures if the RSA
assumption associated with RSAGen holds.

5 Implementation of Our Pass2Sign Scheme

In this section we give a short summary of our prototypical implementation of
the Pass2Sign scheme. A more detailed description is given in the full version.
We measured our protocol with three different RSA-moduli sizes, 1,024, 2,048
and 4,096Bit to account for different security requirements. The key size is used
for both the signing key and the trapdoor permutation in the non-committing
encryption scheme. To instantiate the random oracles K,G, and H we use SHA-
512 and prefix each call accordingly. The instantiation of the full-domain hash
HRSA is based on the construction given in [5], and uses rejection sampling to
uniformly map into Z

∗
N . Messages are sent using standard TCP-Sockets.

Our implementation uses Java 8 without any optimization. Our server is a
laptop with a 2.7GHz processor and 16 GB RAM, while the device is a Nexus 10
tablet with 1.7GHz, 2 GB RAM and Android 5.1.1, while the identification of
the participants is done using standard TLS certificates.

Virtual Smart Cards: How to Sign with a Password and a Server 369

Table 1. Overview of our measurements. All values are in ms.

Setup Signing

Key size 1,024 Bit 2,048 Bit 4,096 Bit 1,024 Bit 2,048 Bit 4,096Bit

Device

Median 648.11 3′335.34 14′343.46 19.08 79.83 482.60

Average 855.58 3′646.27 16′202.58 19.79 83.40 574.41

Server

Median 14.32 63.96 388.11 11.76 64.53 456.38

Average 15.20 65.69 393.27 12.31 65.50 466.73

Table 1 depicts the average time for the setup and signing protocol, split
between the device and server part, based on measurements of 100 protocol
runs. The table does not include network latencies, as they strongly depend on
the actual location setting. However, assuming a round-trip time takes 100 ms,
a full signing protocol with 2,048 Bit keys then requires roughly 250 ms in total.

References

1. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002)

2. Almansa, J.F., Damg̊ard, I.B., Nielsen, J.B.: Simplified threshold RSA with adap-
tive and proactive security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 593–611. Springer, Heidelberg (2006)

3. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic
adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658,
pp. 307–323. Springer, Heidelberg (1993)

4. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-rsa-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993, pp. 62–73 (1993)

6. Bellare, M., Sandhu, R.S.: The security of practical two-party RSA signature
schemes. ePrint Report 2001/060 (2001)

7. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

8. Boyd, C.: Digital multisignatures. In: Cryptography and Coding 1989, pp. 241–246
(1989)

9. Camenisch, J., Enderlein, R.R., Neven, G.: Two-server password-authenticated
secret sharing UC-secure against transient corruptions. ePrint Report 2015/006
(2015)

10. Camenisch, J., Enderlein, R.R., Shoup, V.: Practical and employable protocols for
UC-secure circuit evaluation over Zn. In: Crampton, J., Jajodia, S., Mayes, K.
(eds.) ESORICS 2013. LNCS, vol. 8134, pp. 19–37. Springer, Heidelberg (2013)

370 J. Camenisch et al.

11. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: how to
sign with a password and a server. ePrint Report 2015/1101 (2015)

12. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. ePrint Report 2000/067 (2000)

13. Canetti, R.: Universally composable signature, certification, and authentication.
In: CSFW 2004, pp. 219–233 (2004)

14. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

15. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

16. Damg̊ard, I., Mikkelsen, G.L.: On the theory and practice of personal digital signa-
tures. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 277–296.
Springer, Heidelberg (2009)

17. Desmedt, Y.G., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

18. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010)

19. Ganesan, R.: Yaksha: augmenting kerberos with PKC. In: NDSS 1995, pp. 132–143
(1995)

20. Gennaro, R., Rabin, T., Jarecki, S., Krawczyk, H.: Robust and efficient sharing of
RSA functions. J. Cryptol. 13(2), 273–300 (2000)

21. Gjøsteen, K.: Partially blind password-based signatures using elliptic curves. ePrint
Report 2013/472 (2013)

22. Gjøsteen, K., Thuen, Ø.: Password-based signatures. In: Petkova-Nikova, S.,
Pashalidis, A., Pernul, G. (eds.) EuroPKI 2011. LNCS, vol. 7163, pp. 17–33.
Springer, Heidelberg (2012)

23. Gosney, J.M.: Password cracking HPC. In: Passwordŝ 12 Conference (2012)
24. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and

threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (2012)

25. Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. ePrint
Report 2015/860 (2015)

26. He, Y.-Z., Wu, C.-K., Feng, D.-G.: Server-aided digital signature protocol based
on password. In: CCST 2005, pp. 89–92 (2005)

27. Hofheinz, D., Müller-Quade, J.: Universally composable commitments using ran-
dom oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 58–76. Springer,
Heidelberg (2004)

28. Kiayias, A., Zhou, H.-S.: Equivocal blind signatures and adaptive UC-security. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 340–355. Springer, Heidelberg
(2008)

29. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard
processors. In: WOST 1999 (1999)

30. MacKenzie, P.D., Reiter, M.K.: Networked cryptographic devices resilient to cap-
ture. Int. J. Inf. Sec. 2(1), 1–20 (2003)

31. Mannan, M., van Oorschot, P.C.: Using a personal device to strengthen password
authentication from an untrusted computer. In: FC 2007, pp. 88–103 (2007)

32. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

Virtual Smart Cards: How to Sign with a Password and a Server 371

33. Rabin, T.: A simplified approach to threshold and proactive RSA. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 89–104. Springer, Heidelberg (1998)

34. Venkitasubramaniam, M.: On adaptively secure protocols. In: Abdalla, M.,
De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 455–475. Springer, Heidelberg
(2014)

35. Xu, S., Sandhu, R.: Two efficient and provably secure schemes for server-assisted
threshold signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 355–372.
Springer, Heidelberg (2003)

Signatures Resilient to Uninvertible Leakage

Yuyu Wang1,2(B), Takahiro Matsuda2, Goichiro Hanaoka2,
and Keisuke Tanaka1,3

1 Tokyo Institute of Technology, Tokyo, Japan
wang.y.ar@m.titech.ac.jp, keisuke@is.titech.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{t-matsuda,hanaoka-goichiro}@aist.go.jp
3 JST CREST, Tokyo, Japan

Abstract. In this paper, we present a fully leakage resilient signa-
ture scheme in the selective auxiliary input model, which captures an
extremely wide class of side-channel attacks that are based on physi-
cal implementations of algorithms rather than public parameters cho-
sen. Our signature scheme keeps existential unforgeability under chosen
message attacks as long as the adversary cannot completely recover the
entire secret state from leakage in polynomial time with non-negligible
probability. Formally speaking, the leakage is allowed to be any com-
putable uninvertible function on input the secret state, without any addi-
tional restrictions. We instantiate such a signature scheme by exploiting
a point-function obfuscator with auxiliary input (AIPO) and a differing-
inputs obfuscator (diO).

As far as we know, this is the first signature scheme secure against
uninvertible leakage. Furthermore, our signature scheme is public-coin,
in the sense that the randomness used in the signing procedure is a part
of a signature and no additional secret randomness is used.

Additionally, we provide a variant of the above signature scheme,
for which leakage functions are additionally required to be injec-
tive, and the sizes of the circuits representing leakage functions are
upper bounded. This scheme is resilient to uninvertible leakage that
information-theoretically determines the secret information, and can be
constructed based only on diO, without exploiting AIPO.

Keywords: Leakage resilient signature · Selective auxiliary input ·
Uninvertible leakage · Side-channel attack

1 Introduction

1.1 Background

Leakage Resilient Primitives. A cryptographic primitive is usually proved
to be secure in the attack models where intermediate values, e.g., secret keys (or

Y. Wang—This author is supported by a JSPS Fellowship for Young Scientists.
K. Tanaka—A part of this work was supported by MEXT/JSPS KAKENHI
16H01705.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 372–390, 2016.
DOI: 10.1007/978-3-319-44618-9 20

Signatures Resilient to Uninvertible Leakage 373

signing keys in the case of signatures) and randomizers used to encrypt or sign
messages, are assumed to be completely hidden. However, it is becoming more
and more unrealistic to rule out the possibility that an adversary learns leakage
on secret information (including secret keys and secret randomizers) from the
physical implementation of algorithms by executing the side-channel attacks [29].
Motivated by this scenario, previous works put a great effort into constructing
leakage resilient (LR) primitives (e.g. [1,15,19,32]). Since LR primitives remain
secure even when some part of secret information is leaked, they are more reliable
when implemented in the practical world, where various side-channel attacks can
be easily executed with low cost, compared with traditional primitives with no
leakage resilience.

The Auxiliary Input Model. Most of LR primitives are proved to be secure in
the bounded leakage model [1], continual leakage model [15,19], or noisy leakage
model [32], which simulate the practical environment where secret information
may be leaked. Although these models are well defined, all of them assume
that partial information of the secret key is information-theoretically hidden,
while the leakage information-theoretically determines the secret information
(including the secret key and other secret randomness) typically in the practi-
cal world [35]. Intrigued by this fact, Dodis et al. [21] initialized the research
in the auxiliary input model (also called the hard-to-invert leakage model), in
which, it is only assumed that it is hard to recover the secret key from the leak-
age, i.e., the secret key may be information-theoretically revealed by the leak-
age. There are several researches focusing on encryption in the auxiliary input
model [14,18,26,37,38,40], while proposing signatures in such a model seemed
to be hopeless. For signatures in the auxiliary input model, a leakage function
could be of the form f(·) = Sign(pk, ·,m∗; r), which is the signing algorithm for
a challenge message m∗. It is obvious that in this case, the leakage obtained
by the adversary, which is f(sk) = Sign(pk, sk,m∗; r), is itself a successfully
forged signature on m∗. However, since signatures play a very important role in
public-key cryptography and previously proposed LR signatures do not capture
a large class of side channel attacks, defining and constructing signatures in the
auxiliary input model have remained an important and practically-motivated
problem. To avoid the aforementioned trivial attack, the followup works define
the auxiliary input model for signatures by making some restrictions.

The Auxiliary Input Model for Signatures. Faust et al. [22] firstly defined
LR signatures in the auxiliary input model. The restriction they made is that
the leakage should be exponentially hard-to-invert instead of polynomially hard-
to-invert. The signature schemes they provided were not fully leakage resilient
(FLR) since they only considered leakage on signing keys, where FLR signa-
tures [28] denote signature schemes remaining secure in the presence of leakage
on not only signing keys but also randomizers used in the signing procedure.

The Selective Auxiliary Input Model for Signatures. Independently of the
work of Faust et al., Yuen et al. [39] defined the selective auxiliary input model.
This model avoids the aforementioned trivial attack by letting the adversary

374 Y. Wang et al.

choose candidates of leakage functions before seeing the verification key. The
signature scheme they gave is FLR and the leakage is allowed to be polynomially
hard-to-invert.

The selective auxiliary input model is reasonably defined since it captures
the implementation-based side-channel attacks which help an adversary learn
leakage on the secret information independently of the public parameters chosen
in the system [39] (e.g., the power analysis of the CPU). Furthermore, a signature
scheme secure in this model can be typically proved to be secure in the model
of [22] by making use of complexity leveraging.

However, the restriction made on the class of leakage functions in [39] is
very strong. Roughly speaking, the leakage function f should satisfy Pr[sk ←
A(f(state), pk,S)] ≈ 0 in [39], where A denotes any adversary, (pk, sk) a ran-
domly generated verification/signing key pair, S the set of signatures obtained
from the signing oracle, and state the secret state (including sk and the secret
randomizers used to generate S). Our point of view that their restriction is
too strong lies in: (a) By making this restriction, they ruled out the possibility
that A may recover sk from the leakage in the presence of pk and S, which in
turn makes obtaining a secure signature scheme in this model much easier. (b)
Hardness of recovering the secret state should not bypass the hardness of recov-
ering the signing key itself (i.e., it is more practical to assume that it is hard for
A to recover state rather than sk).

Signatures Secure Against Uninvertible Leakage. It is a natural question
to ask if it is possible to construct a signature scheme in the selective auxiliary
input model where the restriction on the class of leakage functions is extremely
weak, especially when leakage functions are only required to be uninvertible. Note
that in this case, the leakage function f is only required to satisfy Pr[state ←
A(f(state))] ≈ 0 rather than Pr[sk ← A(f(state), pk,S)] ≈ 0. It is obvious
that such a signature scheme is secure against much wider class of side-channel
attacks, compared with the one proposed in [39].

1.2 Our Results

In this paper, we study signatures secure against uninvertible leakage in the
selective auxiliary input model and obtain the following results.

– We propose an FLR signature scheme, for which the leakage is allowed to
be any computable uninvertible function on input the secret information. To
achieve our goal, we exploit a point-function obfuscator with auxiliary input
(AIPO) and a differing-inputs obfuscator (diO) for circuits1.

As far as we know, this is the first FLR signature scheme secure in the
presence of uninvertible leakage. It is also the first FLR signature scheme with
public-coin construction, which does not make use of secret randomness in the
signing procedure, as far as we know.

1 In this paper, when we say an “obfuscator”, we mean an obfuscator for circuits, unless
we clearly state that it is an obfuscator for Turing machines or point functions.

Signatures Resilient to Uninvertible Leakage 375

– We propose a weak version of the above signature scheme, for which leakage
functions are additionally required to be injective and the sizes of (the circuits
representing) them are upper bounded2, based on diO, without making use of
AIPO. Such restriction makes sense since the leakage information-theoretically
determines the secret information typically in the practical world [35] as we
mentioned before, and the upper bound on the sizes of leakage functions can
be set reasonably, depending on the computational ability of adversaries in
the practical world.

Although our constructions are based on strong assumptions, they show that
signature schemes resilient to uninvertible leakage are achievable. Furthermore,
they can be treated as a solution to the open problem mentioned in [13], which
is whether it is possible to achieve public-coin (or deterministic) constructions
of FLR signatures3. Constructing signature schemes with such strong security
based on standard assumptions is an open problem we hope to address in future
works.

High-Level Idea. A high-level idea about how we obtain the proposed signature
schemes is as follows.

It is obvious that if a leakage function f is allowed to be any computable
uninvertible function and state contains the signing key sk and the secret ran-
domness R, then an adversary may trivially obtain sk by setting a leakage func-
tion f as f(sk,R) = (sk, f ′(R)), where f ′ is uninvertible. To avoid such attack,
we choose the way mentioned by Boyle et al. [13] to achieve FLR signatures,
which is letting state contain only sk. This requires the signature scheme to be
deterministic or only make use of public coins in the signing procedure.

Furthermore, since uninvertible leakage helps an adversary obtain extremely
large amount of information of sk, we have to make sure that the verification
key and signatures from the signing oracle reveal no information about sk other
than the leakage (which do not have to be considered in [39] since they had
already assumed that an adversary cannot recover sk from the leakage in the
presence of the verification key and signatures, as explained above).

As the first step to achieve our goal, we define the notion of uninvertible
leakage resilient (ULR) hard relations. Roughly speaking, this is a binary relation
RHR such that if a pair (y, x) satisfying RHR is chosen randomly, then it is hard for
any adversary to find x∗ such that RHR(y, x∗) = 1, even given y and uninvertible
leakage on x. Inspired by Brzuska and Mittelbach [16], who proposed a public key
2 Note that for FLR signatures in the bounded leakage model, it is the number of total

leaked bits that is upper bounded, while for FLR signatures in our model, it is the
sizes of leakage functions that are upper bounded. Furthermore, the upper bound
in the bounded leakage model must be smaller than the size of signing keys, or an
adversary can let leakage queries (which can be any polynomially computational
functions) output a whole signing key, while the upper bound in our model could be
any polynomial.

3 The only previously proposed FLR signature scheme with deterministic construction
is the one proposed by Katz and Vaikuntanathan [28], which is only one-time secure,
and there are no known constructions of FLR signatures with public-coin property.

376 Y. Wang et al.

encryption scheme in the auxiliary input model by making use of weak multi-bit
AIPO (which is based on AIPO and indistinguishability obfuscator (iO), where
iO a special case of diO), we instantiate such a relation by making use of AIPO.

Next we let (pk, sk) = ((y, ˜Sign, ˜Verify), x) be the verification/signing key
pair of our signature scheme, where ˜Sign is a signing program obfuscated by diO,
˜Verify a verification program obfuscated by iO, and (y, x) is a public/secret key

pair satisfying the ULR-hard relation. When signing a message m, ˜Sign takes
as input (y, x,m) and checks if RHR(y, x) = 1. If the check works out, it outputs
F (K, y||m), which is a Sahai-Waters style signature [34] linked with y, where F
is a puncturable pseudorandom function and K is a hard-wired value in both
˜Sign and ˜Verify4. Otherwise, it aborts. When verifying a message/signature
pair (m,σ), ˜Verify takes as input (y,m, σ) and checks if σ = F (K, y||m). Since
˜Sign and ˜Verify are independent of (y, x) and signatures contain no information
about x other than y, an adversary is not able to recover x, given pk, a set of
signatures, and the leakage f(x). As a result, the adversary has no “access” to K
to obtain a forged signature linked with y. Since such a scheme is only selectively
unforgeable (i.e., an adversary is required to determine the challenge message, on
which a signature will be forged, before seeing the verification key), we extend it
into an adaptively secure one by letting ˜Sign output the Ramchen-Waters style
signatures [33] instead of the Sahai-Waters style ones, linked with y.

If we generate y as an iO-obfuscated point-function that maps all inputs to 0
except for x, instead of AIPO, we obtain another primitive that we call injective
uninvertible leakage resilient (IULR) hard relation, for which leakage functions
are additionally required to be injective and the sizes of them are upper bounded.
By substituting the ULR-hard relation with an IULR-hard relation in the sig-
nature scheme we described above, we immediately obtain a signature scheme
resilient to injective uninvertible leakage, while the sizes of leakage functions are
upper bounded.

Status of iO, diO, and AIPO. To achieve signatures secure against unin-
vertible (full) leakage, we make use of iO [23], diO [2,4,11], and AIPO [9], the
existence of which is a strong assumption.

iO can be used to obfuscate circuits without changing their functionality,
and two iO-obfuscated circuits are indistinguishable (in the presence of auxiliary
input) if they have the same functionality. diO is a natural extension of iO. The
difference is that diO provides a stronger guarantee such that two circuits are
indistinguishable if it is hard to find an input that leads the underlying original
circuits to different outputs, in the presence of auxiliary input. Boyle et al. [11]
proved that iO can be used as diO, if the number of inputs leading the two
circuits to different outputs is polynomial. AIPO focuses on obfuscating point
functions that map all strings to 0 except for a single string mapped to 1, when
auxiliary input is present.

4 K is deleted after generating ˜Sign and ˜Verify.

Signatures Resilient to Uninvertible Leakage 377

The first candidate of iO was given in the breakthrough work by Garg
et al. [23] based on multilinear maps. Following their work, many multilinear
map based iO schemes have been proposed. Although a lot of works demonstrate
that existing multilinear maps suffer from vulnerabilities, most of them have no
direct impact on the security of iO candidates, as discussed by Ananth et al. [3,
Appendix A]. Furthermore, Ananth et al. [3] showed how to build iO combiners
using LWE and DDH respectively. By using their combiners, we can produce an
instantiation of iO from serval iO candidates, and the resulting instantiation is
secure as long as one of the original candidates is secure. They also constructed
a universal iO scheme, which is secure as long as any secure iO scheme exists,
and noted that iO exists if P = NP, which give us more confidence in iO-based
schemes.

Compared with iO, there are more negative results on diO. Garg et al. [24]
showed that general-purpose diO for circuits does not exist if there exists some
special-purpose obfuscator for Turing machine. However, the heuristic analysis
they used to justify the special-purpose obfuscator is itself much stronger than
assuming diO as discussed by Bellare et al. in [8]. Following this work, Boyle and
Pass [12] showed some negative results on public-coin diO [27] which is a relaxed
notion of diO. They proved that if extractable one-way functions w.r.t. some
auxiliary input (respectively, succinct non-interactive arguments of knowledge)
exist, then public-coin diO for Turing machines (respectively, for NC1 circuits)
does not exist. Recently, Bellare et al. [8] showed that sub-exponentially secure
(respectively, polynomially secure) diO for Turing machines does not exist if sub-
exponentially secure one-way function (respectively, sub-exponentially secure iO)
exists. Although the status of diO is in flux, as far as we know, there is no
negative results on diO for circuits (rather than Turing machines) based on
weak or standard assumptions yet, beyond the known negative results on iO.

The notion of AIPO was firstly formalized by Bitansky and Paneth [9] while
the first candidate of AIPO was proposed by Canetti [17]. Bitansky and Paneth
extended the point-function obfuscator proposed by Wee [36] to a candidate of
AIPO based on a novel assumption on a trapdoor permutation. The candidate
by Canetti is based on the Auxiliary-Input Diffie-Hellman Inversion assumption.
Lynn et al. [30] also showed that it is easy to obtain AIPO in the random
oracle model. Recently, Bellare and Stepanovs [6] gave three candidates of AIPO
respectively based on iO and one-way functions relative to target generators,
deterministic public-key encryption, and universal computational extractors [5].

1.3 Related Work

Akavia et al. [1] introduced the bounded leakage model, in which a primitive
is said to be LR if it is secure against an adversary who may learn partial
information of the secret key. The leakage is denoted as f(sk) where sk is the
secret key, and f can be any efficiently computable function as long as the
number of output bits of f is not larger than the leakage parameter �. In [28],
Katz and Vaikuntanathan introduced the notion of FLR, which is a stronger
security against the adversary who may learn leakage on not only the secret

378 Y. Wang et al.

key, but also the intermediate values during the whole lifetime of a signature
scheme. It is obvious that � must be smaller than the length of the secret key, or
an adversary can easily break a system by letting a leakage function output the
whole secret key. As an extension of the bounded leakage model, Dodis et al. [19]
and Brakerski et al. [15] suggested the continual leakage model, which is the same
as the bounded leakage model except that it requires the system to be able to
update the secret key periodically without changing the public key. Another
model called the noisy leakage model, which can be treated as a generalization
of the bounded leakage model, was proposed by Naor and Segev [32]. In the
noisy leakage model, there is no bound on the number of leaked bits. It is only
required that the secret key keeps some min-entropy, given leakage.

Although there have been a great deal of research focusing on LR crypto-
graphic primitives (including FLR ones) in the bounded, continual, and noisy
leakage model (e.g., [13,19,20,28,31,32]), all of these models assume that partial
information of the secret key is information-theoretically hidden.

In [21], Dodis et al. introduced the auxiliary input model, in which, it is only
assumed that recovering the secret key from leakage is difficult. The crypto-
graphic primitive they gave is a secret key encryption scheme, while a follow-up
paper by Dodis et al. [18] focused on public key cryptosystems with auxiliary
input. Goldwasser et al. [26] and Brakerski and Goldwasser [14] also considered
hard-to-invert leakage when constructing their encryption schemes.

The first auxiliary input model for signatures was proposed by Faust et al. [22].
The leakage in their work is denoted as f(pk, sk), which is given to the adversary
along with pk at the beginning of the security game, where f is the leakage function
and (pk, sk) is the verification/signing key pair. To formalize the attack model,
they followed [18] to define two classes of leakage functions. For a function f in
the first class, it is required that given (pk, f(pk, sk)), it is hard to compute sk,
while in the second class, the requirement is that it is hard to compute sk given
only f(pk, sk). They proposed two signature schemes. The first one is unforgeable
against random message attacks, which is resilient to polynomially hard-to-invert
leakage w.r.t. the first class of leakage functions and exponentially hard-to-invert
leakage w.r.t. the second class. The second one is existentially unforgeable against
chosen message attacks (EUF-CMA), and resilient to exponentially hard-to-invert
leakage w.r.t. both classes of leakage functions.

In [39], Yuen et al. defined another model called the selective auxiliary input
model. The leakage functions {fi}i take as input state instead of sk where state
contains all the secret information. The restriction on the functions is that it
is hard for an adversary to recover sk given {fi(state)}i, pk, and signatures
obtained from the signing oracle. They require the adversary to determine the
leakage functions before seeing the verification key but allow it to make leakage
queries at any point.

Another signature scheme satisfying the same security was proposed by Yuen
et al. [40] by exploiting the Goldreich-Levin randomness extractor [25], while this
tool was also used by Yu et al. [37] to achieve a chosen-ciphertext PKE scheme
secure in the presence of hard-to-invert leakage. This method is based on the

Signatures Resilient to Uninvertible Leakage 379

well-known fact that given f(x) where f is hard-to-invert, the hard-core bit string
is indistinguishable from randomness. Therefore, by making use of the secret key
x, intermediate values can be generated by computing the hard-core bit string h(x)
instead of choosing the real randomness, while f(x) can be learnt by the adversary
as the leakage. However, f must be exponentially hard-to-invert or restricted in
other ways. What is more, the more hard-core bits are generated, the more restric-
tions have to be applied to f . The only known randomness extractor that can pro-
vide poly-many hardcore bits for any one-way function was proposed by Bellare
et al. [7], based on iO and diO. However, since the construction of their hard-core
bits generator depends on the one-way function, it cannot be used as a building
block of LR primitives.

1.4 Outline of This Paper

In Sect. 2, we recall several definitions of cryptographic primitives. In Sect. 3, we
define and instantiate two new LR primitives called a ULR-hard relation and
an IULR-hard relation, which will be used as building blocks in our proposed
signature schemes. We also show how to construct the former (respectively, the
latter) from AIPO (respectively, iO). In Sect. 4, we propose an FLR signature
scheme against uninvertible leakage (respectively, injective uninvertible leakage)
based on a ULR-hard relation (respectively, an IULR-hard relation) and diO,
which is the main result of this paper. Due to page limitation, we give the security
proofs in the full paper.

2 Preliminaries

Notation. We let x ← X denote sampling an element x from a set X at random.
Furthermore, when describing a program, we use characters with check marks
above (e.g., x̌) to denote the inputs.

2.1 One-Way Function and Uninvertible Function

Now we recall the definitions of a one-way function and an uninvertible function.

Definition 1 (One-Way Function). A function f : {0, 1}∗ → {0, 1}∗ is said
to be one-way if it is efficiently computable, and for any probabilistic polynomial
time (PPT) adversary A5, there exists a negligible function negl such that we
have Pr[x ← {0, 1}k, x∗ ← A(1k, f(x)) : f(x∗) = f(x)] ≤ negl(k).

Definition 2 (Uninvertible Function). A function f : {0, 1}∗ → {0, 1}∗ is
said to be uninvertible if it is efficiently computable, and for any PPT adversary
A, there exists a negligible function negl such that we have Pr[x ← {0, 1}k : x ←
A(1k, f(x))] ≤ negl(k).

5 In this paper, when we say PPT adversary, we mean a non-uniform PPT adversary.

380 Y. Wang et al.

A one-way or uninvertible function is said to be injective if it additionally
satisfies that for all a and b in {0, 1}∗, f(a) = f(b) implies a = b. Note that a
function is an injective one-way function iff it is injective and uninvertible.

It is not hard to see that an uninvertible function is not necessarily a one-way
function while a one-way function must be uninvertible, which means that the
class of uninvertible functions is larger than that of one-way functions.

2.2 Fully Leakage Resilient Signatures in the Selective Auxiliary
Input Model

Now we give the definition of FLR signatures in the selective auxiliary input
model. In this model, we allow an adversary to learn any uninvertible leakage on
sk and learn all the randomizers used in the signing procedure. We do not con-
sider leakage during the key generation procedure since the verification/signing
key pair can be generated “off-line” [13]. The syntax, correctness, and security
for signatures in the selective auxiliary input model are as follows.

Syntax. A signature scheme consists of three PPT algorithms. KeyGen is a
probabilistic algorithm that takes as input 1k, and returns a verification/signing
key pair (pk, sk). Sign is a probabilistic algorithm that takes as input a ver-
ification/signing key pair (pk, sk) and a message m, and returns a signature
σ = Signpk,sk(m; r) where r is the randomizer chosen in the signing procedure.
Verify is a deterministic algorithm that takes as input a verification key pk, a
message m, and a signature σ, and returns 1 (accept) or 0 (reject). The message
space is denoted as M and the randomizer space is denoted as R.

We say that a signature scheme is public-coin if randomizers used in the
signing procedure are contained in signatures.

Correctness. A signature scheme is said to be correct if we have Verifypk(m,

Signpk,sk(m; r)) = 1, for all security parameters k, all (pk, sk) ← KeyGen(1k), all
m ∈ M, and all r ∈ R.

Now we give the definition of EUF-CMA security in the selective auxiliary
input model. In the security game, we allow the adversary to learn leakage,
which is selective (i.e., independent of the verification key), on the signing key.
Furthermore, we let the signing oracle return (σi, ri) when answering an adaptive
signing query mi, where σi is a signature on mi and ri is the randomizer used
to generate σi. Since ri is public information, the secret state for the signature
scheme only contains the signing key, which means that a signature scheme
satisfying this security is FLR.

Definition 3 (EUF-CMA Security in the Selective Auxiliary Input
Model). Let F denote a polynomial-time computable function family6. A sig-
nature scheme (KeyGen,Sign,Verify) is said to be EUF-CMA in the selective
auxiliary input model w.r.t. F if for any PPT adversary A and any f ∈ F ,

6 In this paper, when we say functions, we mean the descriptions of them, which are
of the form of circuits.

Signatures Resilient to Uninvertible Leakage 381

there exists a negligible function negl such that we have Pr[A wins] ≤ negl(k),
in the following experiment:

1. The challenger computes (pk, sk) ← KeyGen(1k).
2. On input tuple (1k, pk, f(sk)), A may make queries to the signing oracle,

defined as follows.
– Signing oracle: On receiving a query mi ∈ M, the signing oracle samples

ri ← R, computes σi ← Signpk,sk(mi; ri), and returns (σi, ri).
3. At some point, A stops and outputs (m∗, σ∗).
4. A wins in the experiment if: (a) Verifypk(m∗, σ∗) = 1. (b) m∗ was not queried

to the signing oracle.

Now we give the definition of FLR signatures and a variant of it called weak
FLR signatures, in the selective auxiliary input model. For an FLR signature
scheme, leakage functions are allowed to be any computable uninvertible func-
tion, while for a weak FLR one, they are additionally required to be injective
and the sizes of them are upper bounded.

Definition 4 (FLR Signatures in the Selective Auxiliary Input Model).
A signature scheme is said to be FLR in the selective auxiliary input model if
it is correct and EUF-CMA secure in the selective auxiliary input model w.r.t.
Fuf , where Fuf denotes the family of all the (polynomial-time computable) unin-
vertible functions.

Definition 5 (Weak FLR Signatures in the Selective Auxiliary Input
Model). Let λ = λ(k) be a polynomial. A signature scheme is said to be λ-weak
FLR in the selective auxiliary input model if it is correct and EUF-CMA secure
in the selective auxiliary input model w.r.t. Fλ−iuf , where Fλ−iuf denotes the
family of all (polynomial-time computable) injective uninvertible functions whose
sizes are less than or equal to λ.

2.3 Obfuscations

In this subsection, we recall the definitions of diO (for circuits), iO (for circuits),
and AIPO. Below, Ck denotes a family of circuits whose size is some polynomial
of k.

Definition 6 (Same-Functionality Sampler/Differing-Inputs Sampler).
Let Samp be a (non-uniform) PPT algorithm that takes 1k as input, and outputs
two circuits C0, C1 ∈ Ck and a string α ∈ {0, 1}∗. Samp is said to be

– a same-functionality sampler for {Ck} if the two circuits in the output of Samp
have the same functionality (i.e. C0(x) = C1(x) for all inputs x).

– a differing-inputs sampler for {Ck} if for any PPT adversary A, there exists
a negligible function negl such that we have

Pr[(C0, C1, α) ← Samp(1k), x ← A(1k, C0, C1, α) : C0(x) �= C1(x)] ≤ negl(k).

382 Y. Wang et al.

Definition 7 (Differing-Inputs Obfuscation (diO)). A uniform PPT algo-
rithm DIO is said to be a differing-inputs obfuscator for circuit class {Ck}, if it
satisfies the functionality preserving property and the differing-inputs property.

The functionality preserving property is satisfied if for all security parameters
k, all C ∈ Ck, all C ′ ← DIO(1k, C), and all inputs x, we have C ′(x) = C(x).

The differing-inputs property is satisfied if for any differing-inputs sampler
Samp for {Ck} and any PPT adversary D, there exists a negligible function negl
such that we have

| Pr[(C0, C1, α) ← Samp(1k) : D(1k,DIO(1k, C0), α) = 1]

−Pr[(C0, C1, α) ← Samp(1k) : D(1k,DIO(1k, C1), α) = 1]| ≤ negl(k).

Definition 8 (Indistinguishability Obfuscation (iO)). A uniform PPT
algorithm IO is said to be an indistinguishability obfuscator for circuit class
{Ck} if it satisfies the functionality preserving property and indistinguishability
property. The former property is defined in exactly the same way as that of diO.
The indistinguishability property is also defined in the same way as the differing-
inputs property of diO, except that we replace “for any differing-inputs sampler”
with “for any same-functionality sampler”.

Definition 9 (Point Function). A function px for a value x ∈ {0, 1}∗ is called
a point-function if for any x̌ ∈ {0, 1}∗, we have px(x̌) = 1 if x̌ = x, and px(x̌) = 0
otherwise.

Definition 10 (Unpredictable Distribution). A distribution ensemble {Zk,
Xk} associated with a PPT algorithm Samp is said to be unpredictable if for
any PPT adversary A, there exists a negligible function negl such that we have
Pr[(z, x) ← Samp(1k) : x ← A(1k, z)] ≤ negl(k).

Definition 11 (Point Obfuscation with Auxiliary Input (AIPO)). A
PPT algorithm AIPO is said to be AIPO if on input x it outputs a polynomial-
size circuit p̃x such that p̃x(x̌) = 1 if x̌ = x and p̃x(x̌) = 0 otherwise, and the
following property is satisfied.

For any unpredictable distribution associated with a PPT algorithm Samp
over {0, 1}∗×{0, 1}k and any PPT algorithm D, there exists a negligible function
negl such that we have

| Pr[(z, x) ← Samp(1k), r ← {0, 1}k, p̃ ← AIPO(r) : D(1k, p̃, z) = 1]

−Pr[(z, x) ← Samp(1k), p̃ ← AIPO(x) : D(1k, p̃, z) = 1]| ≤ negl(k).

We will utilize the following simple fact about AIPO, and the formal proof
of it appears in the full version of this paper.

Lemma 1. If a PPT algorithm AIPO is AIPO, then AIPO is a probabilistic
uninvertible function, i.e., the distribution of (AIPO(r), r) where r is randomly
chosen from {0, 1}k is unpredictable.

Signatures Resilient to Uninvertible Leakage 383

2.4 Puncturable Pseudorandom Function

Now we recall the definition of a puncturable pseudorandom function (punc-
turable PRF) [10,34], which is a variant of PRF.

Definition 12 (Puncturable Pseudorandom Function (Puncturable
PRF)). A puncturable PRF consists of three algorithms (F,Puncture,Eval).
F : K × {0, 1}m(k) → {0, 1}n(k) is a PRF function that takes as input K ∈ K
and a bit string x ∈ {0, 1}m(k), and outputs a string y ∈ {0, 1}n(k), where m
and n are polynomial functions. Puncture takes as input K ∈ K and a bit
string s ∈ {0, 1}m(k), and outputs a punctured key K{s}. Eval takes as input
a punctured key K{s} and a bit string x ∈ {0, 1}m(k), and outputs a string
y ∈ {0, 1}n(k). The puncturable PRF must satisfy two properties, which are func-
tionality preserved under puncturing property and pseudorandom at punctured
point property.

The functionality preserved under puncturing property is satisfied if for all
security parameters k, all s, x ∈ {0, 1}m(k) such that x �= s, and all K ∈ K, we
have Eval(K{s}, x) = F (K,x) where K{s} = Puncture(K, s).

The pseudorandom at punctured point property is satisfied if for any PPT
adversary (A1,A2), there exists a negligible function negl such that we have

| Pr[(s, α) ← A1(1
k), K ← K, K{s} = Puncture(K, s) : A2(K{s}, F (K, s), α) = 1]

− Pr[(s, α) ← A1(1
k), K ← K, K{s} = Puncture(K, s), r ← {0, 1}n(k) :

A2(K{s}, r, α) = 1]| ≤ negl(k).

3 Uninvertible Leakage Resilient Hard Relations

We define two new primitives called a ULR-hard relation and an IULR-hard
relation in Sect. 3.1, and give the constructions of them in Sect. 3.2. They will
be used as building blocks to achieve our proposed signature schemes.

3.1 Definitions

Now we give the definition of a ULR-hard relation. Roughly speaking, for a
randomly chosen public/secret key pair (y, x) satisfying the ULR-hard relation,
it is hard for any adversary to find a valid secret key w.r.t. y, even given y and
uninvertible leakage on x. The formal definition is as follows.

Definition 13 (ULR-Hard Relation). A ULR-hard relation consists of two
algorithms (KeyGenHR, RHR). KeyGenHR takes as input 1k and outputs a pub-
lic/secret key pair (y, x). RHR takes as input a public/secret key pair (y, x) and
outputs either 1 (“accept”) or 0 (“reject”).

A ULR-hard relation must satisfy the correctness property and security
property.

384 Y. Wang et al.

The correctness property is satisfied if we have RHR(y, x) = 1 for all security
parameters k and all (y, x) ← KeyGenHR(1k).

Let Fuf denote the family of all the (polynomial-time computable) uninvert-
ible functions. The security property is satisfied if for any PPT adversary A
and any f ∈ Fuf , there exists a negligible function negl such that we have
Pr[A wins] ≤ negl(k) in the following game:

1. The challenger computes (y, x) ← KeyGenHR(1k).
2. On input (1k, y, f(x)), A outputs x∗ and wins if RHR(y, x∗) = 1.

Now we give the definition of an IULR-hard relation, which is the same as
that of a ULR-hard relation, except that leakage functions are required to be
injective and the sizes of them are upper bounded.

Definition 14 (IULR-Hard Relation). Let λ = λ(k) be a polynomial. A pair
of algorithms (KeyGenHR, RHR), whose syntax is the same as that of a ULR-hard
relation, is said to be a λ-IULR-hard relation if it satisfies the correctness property
and security property. The correctness property is defined in exactly the same way
as that of a ULR-hard relation. The security property is also defined in the same
way as the that of a ULR-hard relation, except that we replace “Fuf” with “Fλ−iuf”
which denotes the family of all (polynomial-time computable) injective uninvertible
functions whose sizes are less than or equal to λ.

3.2 Constructions

In this subsection, we give our constructions of a ULR-hard relation and an
IULR-hard relation.

ULR-Hard Relation Based on AIPO. Let AIPO be AIPO. Then the con-
struction of a ULR-hard relation is as follows.

– KeyGenHR(1k): Randomly select x ← {0, 1}k, compute y ← AIPO(x), and
output (y, x).

– RHR(y, x): Output y(x).

Theorem 1. The above scheme (KeyGenHR, RHR) is a ULR-hard relation if
AIPO is AIPO.

The high-level idea of the proof of Theorem 1 is as follows.
An adversary A wins the security game if it outputs x∗ such that y(x∗) = 1,

which happens if and only if x∗ = x since y is a point function. As a result, the
goal of A is to find x, given 1k, y, and f(x). However, according to Lemma 1, A
cannot find x when seeing only 1k and y, and intuitively, seeing f(x) does little
to help A since f is uninvertible. The formal proof appears in the full paper.

IULR-Hard Relation Based on iO. Let IO be iO, pa a point-function for a,
and y the program given in Fig. 1. The construction of an IULR-hard relation
is as follows.

Signatures Resilient to Uninvertible Leakage 385

y
Constant: x.
Input: x̌.
Output px(x̌).

y
Constant: f, f(x) where |f | ≤ λ and f is injective uninvertible.
Input: x̌.
Output 1 if f(x̌) = f(x). Output 0 otherwise.

Fig. 1. Programs y and y′. Here, y is padded so that its size is equal to � which denotes
the maximum possible size of y′.

– KeyGenHR(1k): Randomly select x ← {0, 1}k, compute y ← IO(1k,y) where
y is the program described in Fig. 1, and output (y, x).

– RHR(y, x): Output y(x).

Theorem 2. Let {Ck} denote a family of circuits whose size is equal to the
size of y. If IO is iO for {Ck}, then the above scheme (KeyGenHR, RHR) is a
λ-IULR-hard relation.

The high-level idea of the proof of Theorem 2 is as follows.
An adversary A wins the security game if it outputs x∗ such that y(x∗) = 1,

which happens if and only if x∗ = x since y is a point function. As a result, the
goal of A is to find x, given 1k, y, and f(x). However, since f is uninvertible, A
cannot find x when it sees only 1k and f(x), and intuitively, y contains no more
information on x than f(x) due to the power of iO. The formal proof appears
in the full paper.

Note that in the formal proof, we define hybrid games in which y denotes
obfuscations of different but functionally equivalent circuits y and y′ (see Fig. 1).
In our construction and in all these hybrids, we pad the circuits so that their
sizes are equal to �, which denotes the maximum possible size of y′.

4 Fully Leakage Resilient Signatures in the Selective
Auxiliary Input Model

In this section, we give our main results, which are constructions of FLR signa-
tures in the selective auxiliary input model.

In Sect. 4.1, we give the construction of an FLR resilient signature scheme
(by making use of a ULR-hard relation) while the formal security proof appears
in the full paper. In Sect. 4.2, we explain that by substituting the underlying
ULR-hard relation with an IULR-hard relation in our FLR signature scheme,
we can immediately obtain a weak FLR signature scheme.

4.1 Fully Leakage Resilient Signature Scheme

Construction. The high-level idea of the construction of our FLR signature
scheme is given in Sect. 1.2, and the concrete construction is as follows.

Let DIO be diO, IO iO, and (KeyGenHR, RHR) a ULR-hard relation, while
the output size of KeyGenHR is (l + k)-bit (where l is the size of public keys and

386 Y. Wang et al.

k the size of secret keys). Let (F,Puncture,Eval), (F1,Puncture1,Eval1), · · · ,
(Fk,Puncturek,Evalk) be puncturable PRFs respectively with key spaces K, K1,
· · · , Kk, where F (K, ·) maps (l + log k + 1 + k)-bit inputs to k-bit outputs and
Fj(Kj , ·) maps (l + j)-bit inputs to k-bit outputs for j = 1, · · · , k7. Then our
signature scheme (KeyGen,Sign,Verify) with message space {0, 1}k is as follows.
In the following, for strings m, t ∈ {0, 1}k we denote by m[j] the jth bit of m,
and by t(j) the first j bits of t.

– KeyGen(1k):
1. Compute (y, x) ← KeyGenHR(1k).
2. Choose K ← K, K1 ← K1, · · · , Kk ← Kk.
3. Compute ˜Sign ← DIO(1k,Sign) and ˜Verify ← IO(1k,Verify) where

Sign and Verify are the programs in Fig. 2.
4. Output (pk, sk) = ((y, ˜Sign, ˜Verify), x)8.

– Signpk,sk(m):

1. Randomly choose t ← {0, 1}k and output σ = ˜Sign(y, x,m, t).
– Verifypk(m,σ):

1. Output ˜Verify(y,m, σ).

Sign

Constant: K, (Kj)
k
j=1.

Input: y̌, x̌, m̌, ť.
If RHR(y̌, x̌) = 0, output ⊥.

Compute š1 = ⊕k
j=1F (K, y̌||j||m̌[j]||ť).

Compute š2 = ⊕k
j=1Fj(Kj , y̌||ť(j)).

Output σ̌ = (š1, š2, ť).

Verify

Constant: K, (Kj)
k
j=1.

Input: y̌, m̌, σ̌.
Parse σ̌ = (š1, š2, ť).

If š1 = ⊕k
j=1F (K, y̌||j||m̌[j]||ť)

and š2 = ⊕k
j=1Fj(Kj , y̌||ť(j)), output 1.

Otherwise, output 0.

Fig. 2. Programs Sign and Verify. Sign and Verify are respectively padded so that
their sizes are equal to the programs in the security proof that appears in the full
paper.

It is obvious that our construction is public-coin, since like the Ramchen-
Waters style signature scheme, we only use a randomness t, which is part of a
signature, in the signing procedure.

The security of our proposed scheme is guaranteed by the following theorem.

7 We do not necessarily have to let the size of messages, number of PRFs (excluding
(F,Puncture,Eval)), and size of outputs of puncturable PRFs be k. We do this only
for simplicity.

8
˜Sign and ˜Verify do not have to be generated in every key generation procedure
since they do not depend on (y, x). Instead, they can be used as global parameters
for this scheme.

Signatures Resilient to Uninvertible Leakage 387

Theorem 3. Let Ck denote a family of circuits whose size is equal to the size
of Sign and C′

k a family of circuits whose size is equal to the size of Verify.
If (KeyGenHR, RHR) is a ULR-hard relation, DIO is diO for {Ck}, IO is iO
for {C′

k}, (F,Puncture,Eval) and {(Fj ,Puncturej ,Eval j)}k
j=1 are puncturable

PRFs, and there exists an injective one-way function h : {0, 1}k → {0, 1}∗9,
then (KeyGen,Sign,Verify) is an FLR signature scheme in the selective auxiliary
input model.

In the security proof of Theorem 3, we define hybrid games in which ˜Sign
(respectively, ˜Verify) denotes obfuscations of different circuits, and we pad the
underlying circuits of ˜Sign (respectively, ˜Verify) in our construction and in all
these hybrids so that they have the same size. Due to page limitation, we give
the proof in the full paper.

4.2 Weak Fully Leakage Resilient Signature Scheme

If we substitute the ULR-hard relation with a λ-IULR-hard relation in the FLR
signature scheme (KeyGen,Sign,Verify) in Sect. 4.1, we immediately obtain a
λ-weak FLR signature scheme in the selective auxiliary input model, as described
in the following theorem.

Theorem 4. Let Ck denote a family of circuits whose size is equal to the size
of Sign and C′

k a family of circuits whose size is equal to the size of Verify.
If (KeyGenHR, RHR) is a λ-IULR-hard relation, DIO is diO for Ck, IO is
iO for C′

k, (F,Puncture,Eval) and {(Fj ,Puncturej ,Eval j)}k
j=1 are puncturable

PRFs, and there exists an injective one-way function h : {0, 1}k → {0, 1}∗,
then (KeyGen,Sign,Verify) is a λ-weak FLR signature scheme in the selective
auxiliary input model.

We omit the proof of Theorem 4 since it is the same as the proof of Theorem 3
except that the uninvertible (leakage) function is substituted with an injective
uninvertible one, the size of which is upper bounded by λ.

Remark. We also give several extensions for our proposed signatures, such as
proving the strong existential unforgeability against chosen message attacks of
them and removing the use of diO by weakening the unforgeability. We refer the
reader to the full paper for details.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. IACR Cryptology ePrint Archive 2013:689 (2013)

9 h appears in the security proof.

388 Y. Wang et al.

3. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal obfuscation and
witness encryption: boosting correctness and combining security. Cryptology ePrint
Archive, Report 2016/281 (2016)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

5. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398–415. Springer, Heidelberg (2013)

6. Bellare, M., Stepanovs, I.: Point-function obfuscation: a framework and generic
constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9563,
pp. 565–594. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 21

7. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–121. Springer,
Heidelberg (2014)

8. Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs
obfuscation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 792–821. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5.
ISBN: 978-3-662-49895-8

9. Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer, Heidelberg
(2012)

10. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

11. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

12. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional auxil-
iary input. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453,
pp. 236–261. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3 10

13. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011)

14. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010)

15. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: public-key cryptography resilient to continual memory leakage. In:
FOCS 2010, pp. 501–510 (2010)

16. Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point
obfuscation with auxiliary input. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014,
Part II. LNCS, vol. 8874, pp. 142–161. Springer, Heidelberg (2014)

17. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–
469. Springer, Heidelberg (1997)

18. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/978-3-662-49099-0_21
http://dx.doi.org/10.1007/978-3-662-49896-5
http://dx.doi.org/10.1007/978-3-662-48800-3_10

Signatures Resilient to Uninvertible Leakage 389

19. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS 2010, pp. 511–520 (2010)

20. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

21. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC
2009, pp. 621–630 (2009)

22. Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes
secure against hard-to-invert leakage. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 98–115. Springer, Heidelberg (2012)

23. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
2013, pp. 40–49 (2013)

24. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014)

25. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
STOC 1989, pp. 25–32 (1989)

26. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: ICS 2010, pp. 230–240 (2010)

27. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol.
9015, pp. 668–697. Springer, Heidelberg (2015)

28. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

29. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

30. Lynn, B.Y.S., Prabhakaran, M., Sahai, A.: Positive results and techniques for
obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 20–39. Springer, Heidelberg (2004)

31. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual
leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol.
6597, pp. 89–106. Springer, Heidelberg (2011)

32. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

33. Ramchen, K., Waters, B.: Fully secure and fast signing from obfuscation. In: ACM
CCS 2014, pp. 659–673 (2014)

34. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC 2014, pp. 475–484 (2014)

35. Standaert, F.-X.: Leakage resilient cryptography: a practical overview. In: Invited
Talk, SKEW 2011 (2011)

36. Wee, H.: On obfuscating point functions. In: STOC 2005, pp. 523–532 (2005)
37. Yu, Z., Xu, Q., Zhou, Y., Hu, C., Yang, R., Fan, G.: Weak-key leakage resilient

cryptography. IACR Cryptology ePrint Archive 2014:159 (2014)
38. Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption resilient

to continual auxiliary leakage. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 117–134. Springer, Heidelberg (2012)

390 Y. Wang et al.

39. Yuen, T.H., Yiu, S.M., Hui, L.C.K.: Fully leakage-resilient signatures with auxiliary
inputs. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372,
pp. 294–307. Springer, Heidelberg (2012)

40. Yuen, T.H., Zhang, Y., Yiu, S.: Encryption schemes with post-challenge auxiliary
inputs. IACR Cryptology ePrint Archive 2013:323 (2013)

Practical Round-Optimal Blind Signatures in
the Standard Model from Weaker Assumptions

Georg Fuchsbauer1, Christian Hanser2(B), Chethan Kamath3,
and Daniel Slamanig2

1 Inria, ENS, CNRS and PSL Research University, Paris, France
georg.fuchsbauer@ens.fr

2 IAIK, Graz University of Technology, Graz, Austria
{christian.hanser,daniel.slamanig}@iaik.tugraz.at

3 Institute of Science and Technology Austria, Klosterneuburg, Austria
ckamath@ist.ac.at

Abstract. At Crypto 2015 Fuchsbauer, Hanser and Slamanig (FHS)
presented the first standard-model construction of efficient round-
optimal blind signatures that does not require complexity leveraging. It
is conceptually simple and builds on the primitive of structure-preserving
signatures on equivalence classes (SPS-EQ). FHS prove the unforgeabil-
ity of their scheme assuming EUF-CMA security of the SPS-EQ scheme
and hardness of a version of the DH inversion problem. Blindness under
adversarially chosen keys is proven under an interactive variant of the
DDH assumption.

We propose a variant of their scheme whose blindness can be proven
under a non-interactive assumption, namely a variant of the bilinear
DDH assumption. We moreover prove its unforgeability assuming only
unforgeability of the underlying SPS-EQ but no additional assumptions
as needed for the FHS scheme.

1 Introduction

Blind signatures allow a user (or obtainer) to obtain a signature from a signer
(or issuer) without the latter learning the message that is actually signed. They
are an important building block for various privacy and anonymity related appli-
cations including e-cash, e-voting, anonymous credentials and ticketing. Since
their invention by Chaum [18], research has led to numerous blind signature
schemes in various settings and models [2,15,16,39]. The most appealing setting
is that of (i) round-optimal schemes, i.e., schemes that require only two moves
(and are thus automatically concurrently secure), that (ii) do not require any

C. Hanser—Supported by EU FP7 through project MATTHEW (GA No. 610436).
C. Kamath—Research supported by the European Research Council, ERC starting
grant (259668-PSPC) and ERC consolidator grant (682815 - TOCNeT).
C. Hanser and D. Slamanig—Supported by EU Horizon 2020 through project Pris-
macloud (GA No. 644962).

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 391–408, 2016.
DOI: 10.1007/978-3-319-44618-9 21

392 G. Fuchsbauer et al.

heuristic assumptions (such as random oracles) nor (iii) a setup assumption,
such as common reference strings or honestly generated keys.

Blindness is formalized by a game between a malicious signer and a challenger
who asks for two blind signatures on messages of the signer’s choice, but in
random order. If both signature issuings succeed, the signer is given the resulting
signatures and should not be able to tell in which order they were signed. It is
natural to let the malicious signer choose its own key pair (rather than having
the challenger create it), in which case we speak of the malicious-key model.

There are well known efficient round-optimal constructions in the honest-
key model with security proofs in the random oracle model [11,15,19]; and
there are various constructions without random oracles and in the malicious-
key model, but relying on a trusted setup, such as a common reference string
(CRS). Among those are constructions using structure-preserving signatures [4]
and Groth-Sahai (GS) proofs [31] instantiating the framework of Fischlin [21],
as well as other approaches in the bilinear group setting [12–14,43]. There is
also a very recent construction [33] without a CRS but relying on non-falsifiable
“knowledge” assumptions with security in the honest-key model. Some construc-
tions [16,30] require both a CRS and honestly generated keys.

Round-Optimal Schemes in the Plain Model. Until now, only very few
schemes [26–28] were proposed that are round-optimal and require neither ran-
dom oracles nor setup assumptions, that is, satisfying (i)–(iii). Due to known
impossibility results, such constructions are indeed hard to find. Lindell [38]
showed that concurrently secure blind signatures are impossible in the stan-
dard model when relying on simulation-based security notions. Later, Fischlin
and Schröder [23] proved that black-box reductions from unforgeability to non-
interactive assumptions in the standard model are impossible for blind signature
schemes satisfying certain conditions.

Known constructions bypass these impossibility results in several ways: All
rely on game-based security definitions [42] instead of simulation-based ones.
The constructions due to Garg et al. [28] as well as Garg and Gupta [27] make
use of complexity leveraging in their proofs and thus do not use black-box reduc-
tions. The first scheme [28] can only be considered a feasibility result and the
second [27] is still too inefficient for practical applications. In contrast, the most
recent construction by Fuchsbauer et al. [26], whose signatures consist of 5 ele-
ments from a bilinear group, can be considered practical. It is based on the
recent concept of structure-preserving signature schemes on equivalence classes
(SPS-EQ) [25,32], whose unforgeability is proven in the generic group model, and
commitments. A drawback of the scheme is that blindness (in the malicious-key
model) is proven under an interactive assumption.

The FHS Construction. Before looking at the ideas underlying the FHS con-
struction, let us recall SPS-EQ. Defined over groups equipped with a bilinear
map e : G1 × G2 → GT , structure-preserving signatures [4] are schemes whose
verification keys, signatures and messages all consist of elements from the base
groups G1 and G2 and signatures are verified by evaluating the bilinear map
on these elements. In SPS-EQ the message space, typically G

�
1 for some � > 1,

Practical Round-Optimal Blind Signatures in the Standard Model 393

is partitioned into equivalence classes, where all multiples of a vector belong to
one class. These classes should be indistinguishable, that is, it should be hard to
tell whether two messages belong to the same class or not (which follows from
DDH in G1).

Given an SPS-EQ signature on a message, anyone can publicly adapt the
signature to a different representative of the same class. Unforgeability is there-
fore defined w.r.t. equivalence classes, that is, after being given signatures on
messages of its choice, no adversary should be able to compute a signature on a
message from a different class. SPS-EQ moreover guarantees that after signing
a message, not even the signer is able to distinguish an adaptation of the sig-
nature to another representative of the same class from a fresh signature on a
completely random message.

The FHS blind-signature scheme [26] works as follows: the obtainer assembles
a representative of an equivalence class as a vector containing a commitment
to the message and a normalization element (the group generator). She then
blinds this message by changing it to another representative and sends it to
the signer. The signer signs the representative and sends the signature to the
obtainer. Given this signature, the obtainer adapts it to a signature on the
original representative. (Due to the normalization element, the obtainer can
only switch back to the original representative.) The blind signature is then
the rerandomized (unlinkable) signature for the original representative, which
contains a commitment to the message, plus an opening of the commitment.

The FHS scheme uses a variant of Pedersen commitments that are perfectly
hiding and computationally binding under the co-DHI∗1 assumption (cf. Sect. 3.1
for a more detailed discussion). The commitment key is part of the signer’s public
key, which guarantees that the obtainer cannot open commitments to different
messages (and thereby break unforgeability). Consequently, unforgeability relies
on the co-DHI∗1 assumption in addition to EUF-CMA security of the SPS-EQ
scheme. To prove blindness in the malicious-key model (where the reduction has
no access to the adversarially generated signing key), FHS argue that during the
blindness game the adversary must always produce valid SPS-EQ signatures,
as otherwise the challenger does not send any blind signatures in the end, in
which case the adversary cannot win the game as all it sees are perfectly hiding
commitments.

Intuitively, blindness follows, since under the DDH assumption the random-
ization of the representative containing the commitment during signature issuing
can be replaced by a random representative of a random class. In the latter case,
the order in which the messages are signed is perfectly hidden and thus the adver-
sary cannot win. However, since the commitment key is chosen by the adversary,
to actually make this replacement, FHS need an interactive assumption. More-
over, this replacement is only indistinguishable to a simulator that does not
know the randomization of the representative used. This however means that
the simulator cannot later adapt back the signer’s SPS-EQ signatures in order
to produce the blind signatures. FHS overcome this by relying on SPS-EQ secu-
rity, which guarantees that adapted signatures look like fresh ones. Thus, if the

394 G. Fuchsbauer et al.

reduction knew the signing key (which is the case in the honest-key model) then
it could simply produce the final blind signatures by itself. In the malicious-key
model, the reduction computes the fresh signatures by using the adversary as a
signing oracle: it runs the adversary to obtain these signatures and then rewinds
it. In the second (and actual) run, it embeds an (interactive) DDH instance and
uses the signatures from the first run.

Open Questions. As the FHS scheme is the most efficient scheme having all
the discussed properties, it would be desirable to base its security (or that of
a related scheme) on weaker assumptions. The first question we ask is whether
one can relate the unforgeability of a blind signature scheme based on SPS-EQ
directly to the EUF-CMA security of the latter without necessitating any further
assumptions. Even more interesting would be whether it is possible to remove
the requirement for an interactive assumption for blindness. To address the first
question, instead of the perfectly hiding commitment, one could use a perfectly
binding one, as then each SPS-EQ signature from the signer can only be opened
in one way, meaning that SPS-EQ unforgeability would directly imply blind-
signature unforgeability. This however means that the commitment key cannot
be chosen by the signer anymore, as knowing the underlying randomness could
allow the signer to break hiding of the commitment and thus blindness of the
scheme. But even if we let the user choose the commitment key, the information-
theoretic argument by FHS that a signer must send valid SPS-EQ signatures does
not apply anymore: even when not seeing the final blind signatures, the signer
still obtains information on which message corresponds to which issuing, as the
commitments are only computationally hiding.

Our Contribution. We answer the two above questions in the affirmative and
reduce the strength of the required assumptions for both security notions. We
construct a variant of the FHS blind signature scheme and prove unforgeability
solely under the EUF-CMA security of the underlying SPS-EQ scheme. More
importantly, we show that our scheme is blind in the malicious-key model under
a non-interactive (and non-“q-type”) assumption, namely an extension of the
bilinear DDH assumption in asymmetric bilinear groups.

Our scheme replaces the perfectly hiding commitments in FHS by perfectly
binding ones, which means unforgeability follows directly from SPS-EQ unforge-
ability. As there are no trusted parameters, we let the user choose the commit-
ment key during signature issuing and include it in the final signature. Straight-
forward implementation of this approach however turns out not to result in a
blind scheme. We therefore “distribute” the commitment key over several group
elements, which enables us to show blindness.

Our blindness proof follows FHS’s idea of rewinding the signer in order to use
it as a signing oracle for signatures which the simulator cannot adapt on its own.
The proof is however much more involved, since we need to consider adversaries
that might return invalid SPS-EQ signatures but still break blindness. Our proof
works by rewinding the blindness adversary numerous times to increase the
success probability of the reduction noticeably beyond one half. We moreover

Practical Round-Optimal Blind Signatures in the Standard Model 395

show in the full version that these multiple rewinds are necessary by giving a
counterexample for the case of only rewinding once.

Organization. Sect. 2 discusses preliminaries including signature schemes on
equivalence classes (SPS-EQ). Section 3 discusses blind signatures, the FHS con-
struction and presents our construction of round-optimal blind signatures and
the extension to partially blind signatures.

2 Preliminaries

A function ε : N → R
+ is called negligible if for all c > 0 there is a k0 such

that ε(k) < 1/kc for all k > k0. By a ←R S, we denote that a is chosen uniformly
at random from a set S. Furthermore, we write A(a1, . . . , an; r) if we want to
make the randomness r used by a probabilistic algorithm A(a1, . . . , an) explicit
and denote by [A(a1, . . . , an)] the set of points with positive probability of being
output by A. For an (additive) group G we use G

∗ to denote G \ {0G}.

Definition 1 (Bilinear Map). Let G1, G2 and GT be cyclic groups of prime
order p, where G1 and G2 are additive and GT is multiplicative. Let P and P̂
be generators of G1 and G2, resp. We call e : G1 × G2 → GT a bilinear map or
pairing if it is efficiently computable and it is:

Bilinear: e(aP, bP̂) = e(P, P̂)ab = e(bP, aP̂) ∀ a, b ∈ Zp,
Non-degenerate: e(P, P̂) �= 1GT

, i.e., e(P, P̂) generates GT .

If G1 = G2 then e is symmetric (Type-1) and asymmetric (Type-2 or 3)
otherwise. For Type-2 pairings there is an efficiently computable isomorphism
Ψ : G2 → G1; for Type-3 pairings no such isomorphism is known. Type-3 pair-
ings are currently the optimal choice in terms of efficiency for a given security
level [17].

Definition 2 (Bilinear-Group Generator). A bilinear-group generator
BGGen is a (possibly probabilistic1) polynomial-time algorithm that takes
a security parameter 1κ and outputs a bilinear group description BG =
(p,G1,G2,GT , e, P, P̂) consisting of groups G1 = 〈P 〉, G2 = 〈P̂ 〉 and GT of
prime order p with log2 p = 	κ
 and an asymmetric pairing e : G1 × G2 → GT .

Definition 3 (DDH). Let BGGen be a bilinear-group generator that outputs
BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂). For i ∈ {1, 2} the decisional Diffie-
Hellman assumption holds in Gi for BGGen if for all PPT adversaries A there is
a negligible function ε(·) such that

Pr
[

b ←R {0, 1}, BG ←R BGGen(1κ), r, s, t ←R Zp

b∗ ←R A(BG, rPi, sPi, ((1 − b) · t + b · rs)Pi)
: b∗ = b

]
− 1

2
≤ ε(κ).

1 For BN-curves [9], the most common choice for Type-3 pairings, group generation is
deterministic.

396 G. Fuchsbauer et al.

The next assumption is in the spirit of the bilinear Diffie-Hellman assumption
(BDDH) [35], which in symmetric bilinear groups states that given rP, uP, vP ,
the element ruvP looks random. In asymmetric groups, we can additionally give
uvP , uP̂ and vP̂ . We therefore call the assumption ABDDH+.

Definition 4 (ABDDH+). Let BGGen be a bilinear-group generator that out-
puts BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂). The ABDDH+ assumption holds
for BGGen if for all PPT algorithms A there is a negligible function ε(·) such
that

Pr

[
b ←R {0, 1}, BG ←R BGGen(1κ), r, u, v, t ←R Zp

b∗←R A(BG, rP, uP, uvP, uP̂ , vP̂ , ((1−b)·t + b·ruv)P
) : b∗ = b

]
− 1

2
≤ ε(κ).

In the generic group model, in order to distinguish ruvP from random, one
basically needs to construct this element in the target group. It is easily seen
that this cannot be done from the remaining elements, which we now make
formal:

Proposition 1. The assumption in Definition 4 holds in generic groups and
reaches the optimal, quadratic simulation error bound.

We prove the above proposition in the full version. Moreover, note that given an
ABDDH+ instance (BG, R, U,W, Û , V̂ , T), we could use a DDH oracle to decide
it: simply query (BG, R,W, T) to the oracle and return the result. We thus have:

Lemma 1. If ABDDH+ holds for a bilinear-group generator BGGen then DDH
in G1 also holds for it.

2.1 SPS on Equivalence Classes

Structure-preserving signatures (SPS) [3–8,10,24,29,37] canhandlemessages that
are elements of a bilinear group, without requiring any prior encoding. In such a
scheme public keys, messages and signatures consist only of group elements and
the verification algorithm evaluates a signature by deciding group membership of
signature elements and by evaluating pairing-product equations (PPEs).

The notion of SPS on equivalence classes (SPS-EQ) was introduced by Hanser
and Slamanig [32]. Their initial instantiation was only secure against random-
message attacks, but together with Fuchsbauer [25] they subsequently presented
a scheme that they proved EUF-CMA-secure in the generic group model.

The idea is as follows. For a prime p, Z�
p is a vector space. Thus, if � > 1

we can define a projective equivalence relation on it, which propagates to G
�
i

and partitions G
�
i into equivalence classes. Let ∼R be this relation, i.e., for

M,N ∈ G
�
i we have M ∼R N ⇔ ∃ s ∈ Z

∗
p : M = sN . An SPS-EQ scheme signs

an equivalence class [M]R for M ∈ (G∗
i)

� by actually signing a representative
M of [M]R. It then allows to switch to other representatives of [M]R and to
update the corresponding signature without having access to the secret key. If
the DDH assumption holds on the message space, then a random representative

Practical Round-Optimal Blind Signatures in the Standard Model 397

of a given class [M]R is indistinguishable from a message vector outside of [M]R.
Moreover, the malicious-key perfect adaptation property (defined in Definition 9)
guarantees that updated signatures are random elements in the corresponding
space of signatures. The combination of both properties implies the unlinkability
of message-signature pairs (under the same pk) corresponding to the same class.

The Abstract Signature Scheme. Here, we discuss the abstract model, the
security model of such a signature scheme [25,26,32] and a concrete construction,
as presented in [25].

Definition 5 (SPS-EQ). A structure-preserving signature scheme for equiva-
lence relation R over Gi with i ∈ {1, 2} is a tuple SPS-EQ of the following PPT
algorithms:

BGGenR(1κ) is a (probabilistic) bilinear-group generation algorithm which on
input a security parameter 1κ outputs a prime-order bilinear group BG.

KeyGenR(BG, 1�) is a probabilistic algorithm which on input a bilinear group
BG and a vector length � > 1 (in unary) outputs a key pair (sk, pk).

SignR(M, sk) is a probabilistic algorithm which on input a representative M ∈
(G∗

i)
� of an equivalence class [M]R and a secret key sk outputs a signature σ

for the equivalence class [M]R.
ChgRepR(M,σ, μ, pk) is a probabilistic algorithm, which on input a representa-

tive M ∈ (G∗
i)

� of an equivalence class [M]R, a signature σ for M , a scalar
μ and a public key pk returns an updated message-signature pair (M ′, σ′),
where M ′ = μ · M is the new representative and σ′ its updated signature.

VerifyR(M,σ, pk) is a deterministic algorithm which given a representative M ∈
(G∗

i)
�, a signature σ and a public key pk outputs 1 if σ is valid for M

VKeyR(sk, pk) is a deterministic algorithm which given a secret key sk and
a public key pk checks their consistency and returns 1 on success and 0
otherwise.

An SPS-EQ scheme SPS-EQ defined on message-space Gi is secure if the DDH
assumption holds in Gi, if SPS-EQ is correct, EUF-CMA secure and if it perfectly
adapts signatures.

Definition 6 (Correctness). An SPS-EQ scheme SPS-EQ over Gi with i ∈
{1, 2} is correct if for all security parameters κ ∈ N, for all � > 1, all bilinear
groups BG = (p,G1,G2,GT , e, P, P̂) ∈ [BGGenR(1κ)], all key pairs (sk, pk) ∈
[KeyGenR(BG, 1�)], all messages M ∈ (G∗

i)
� and all scalars μ ∈ Zp

∗ we have:

VKeyR(sk, pk) = 1 and

Pr
[
VerifyR(M,SignR(M, sk), pk) = 1

]
= 1 and

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), μ, pk), pk) = 1

]
= 1.

In contrast to the standard unforgeability definition for signatures, EUF-CMA
security for SPS-EQ is defined with respect to equivalence classes, i.e., a forgery
is a signature on a message from an equivalence class from which the adversary
has not asked any messages to be signed.

398 G. Fuchsbauer et al.

Definition 7 (EUF-CMA). An SPS-EQ scheme SPS-EQ over Gi with i ∈
{1, 2} is existentially unforgeable under adaptive chosen-message attacks if for
all � > 1 and all PPT algorithms A having access to a signing oracle SignR(·, sk),
there is a negligible function ε(·) such that:

Pr

⎡
⎣
BG ←R BGGenR(1κ),
(sk, pk) ←R KeyGenR(BG, 1�),
(M∗, σ∗) ←R ASignR(·,sk)(pk)

:
[M∗]R �= [M]R ∀M ∈ Q ∧

VerifyR(M∗, σ∗, pk) = 1

⎤
⎦ ≤ ε(κ) ,

where Q is the set of queries that A has issued to the signing oracle.

The next two definitions were introduced in [26]. They formalize the notion that
signatures output by ChgRepR are distributed like fresh signatures on the new
representative.

Definition 8 (Signature Adaptation). Let � > 1. An SPS-EQ scheme
SPS − EQ on (G∗

i)
� with i ∈ {1, 2} perfectly adapts signatures if for all tuples

(sk, pk,M, σ, μ) with

VKeyR(sk, pk) = 1 VerifyR(M,σ, pk) = 1 M ∈ (G∗
i)

� μ ∈ Zp
∗

ChgRepR(M,σ, μ, pk) and (μM,SignR(μM, sk)) are identically distributed.

The following definition demands that this even holds for maliciously gener-
ated verification keys. As for such keys there might not even exist a corresponding
secret key, we require that adapted signatures are random elements in the space
of valid signatures.

Definition 9 (Signature Adaptation Under Malicious Keys). Let � > 1.
An SPS-EQ scheme SPS − EQ on (G∗

i)
� with i ∈ {1, 2} perfectly adapts signa-

tures under malicious keys if for all tuples (pk,M, σ, μ) with

VerifyR(M,σ, pk) = 1 M ∈ (G∗
i)

� μ ∈ Zp
∗ (1)

we have that ChgRepR(M,σ, μ, pk) outputs (μM, σ′) such that σ′ is uniformly
random in the space of signatures, conditioned on VerifyR(μM, σ′, pk) = 1.

In Fig. 1, we restate the SPS-EQ construction from [25]. It is EUF-CMA
secure in the generic group model and satisfies Definitions 8 and 9.

3 Blind Signatures

Before we discuss the construction from [26] and then present our new blind
signature construction, we give the abstract model and the security properties
of blind signature schemes. These are correctness, unforgeability and blindness
and were initially studied in [36,41] and later on rigorously treated in [22,42].

Definition 10 (Blind Signature Scheme). A blind signature scheme BS con-
sists of the following PPT algorithms:

Practical Round-Optimal Blind Signatures in the Standard Model 399

BGGenR(1κ): On input a security parameter 1κ, output BG ←R BGGen(1κ).

KeyGenR(BG, 1): On input a bilinear-group description BG and vector
length 1 (in unary), choose (xi)i∈[] ←R (Zp

∗) , set secret key sk ←
(xi)i∈[], compute public key pk ← (X̂i)i∈[] = (xiP̂)i∈[] and output
(sk, pk).

SignR(M, sk): On input a representative M = (Mi)i∈[] ∈ (G∗
1) of equiva-

lence class [M]R and a secret key sk = (xi)i∈[] ∈ (Zp
∗) , choose y ←R Zp

∗

and output σ ← (Z, Y, Ŷ) with

Z ← y
i∈[]

xiMi Y ← 1
yP Ŷ ← 1

y P̂ .

VerifyR(M, σ, pk): On input a representative M = (Mi)i∈[] ∈ (G∗
1) of

equivalence class [M]R, a signature σ = (Z, Y, Ŷ) ∈ G1 × G
∗
1 × G

∗
2

and public key pk = (X̂i)i∈[] ∈ (G∗
2) , check whether

i∈[]

e(Mi, X̂i) = e(Z, Ŷ) ∧ e(Y, P̂) = e(P, Ŷ)

and if this holds output 1 and 0 otherwise.

ChgRepR(M, σ, μ, pk): On input a representative M = (Mi)i∈[] ∈ (G∗
1) of

equivalence class [M]R, a signature σ = (Z, Y, Ŷ), μ ∈ Zp
∗ and public

key pk, return ⊥ if VerifyR(M, σ, pk) = 0. Otherwise pick ψ ←R Zp
∗ and

return (μ · M, σ) with σ ← (ψμZ, 1
ψ Y, 1

ψ Ŷ).

VKeyR(sk, pk): On input sk = (xi)i∈[] ∈ (Zp
∗) and pk = (X̂i)i∈[] ∈ (G∗

2) ,
output 1 if xiP̂ = X̂i ∀i ∈ [] and 0 otherwise.

Fig. 1. Scheme 1, an EUF-CMA secure SPS-EQ scheme

KeyGenBS(1κ), on input κ, returns a key pair (sk, pk). The security parameter κ
is also an (implicit) input to the following algorithms.

(UBS(m, pk),SBS(sk)) are run by a user and a signer, who interact during exe-
cution. UBS gets input a message m and a public key pk and SBS has input
a secret key sk. At the end UBS outputs σ, a signature on m, or ⊥ if the
interaction was not successful.

VerifyBS(m,σ, pk) is deterministic and given a message-signature pair (m,σ) and
a public key pk outputs 1 if σ is valid on m under pk and 0 otherwise.

A blind signature scheme BS is secure if it is correct, unforgeable and blind.

400 G. Fuchsbauer et al.

Definition 11 (Correctness). A blind signature scheme BS is correct if for all
security parameters κ ∈ N, all key pairs (sk, pk) ∈ [KeyGenBS(1κ)], all messages m
and all signatures σ ∈ [(UBS(m, pk),SBS(sk))] it holds that VerifyBS(m,σ, pk) = 1.

Definition 12 (Unforgeability). BS is unforgeable if for all PPT algorithms
A having access to a signer oracle, there is a negligible function ε(·) such that:

Pr
[
(sk, pk) ← KeyGenBS(1κ),
(m∗

i , σ
∗
i)k+1

i=1 ←A(·,SBS(sk))(pk)
:

m∗
i �= m∗

j ∀i, j ∈ [k+1], i �= j ∧
VerifyBS(m∗

i , σ
∗
i , pk)=1 ∀i ∈ [k+1]

]
≤ ε(κ),

where k is the number of completed interactions with the oracle.

There are several different kinds of blindness, where the strongest (and
arguably most natural) definition is blindness in the malicious-key model [1,40].
In this case, the public key is generated by the adversary, whereas in the weaker
honest-key model the key pair is initially set up by the environment, i.e., it
requires a trusted setup. We use the stronger notion to prove the blindness of
our construction—as also done by other existing round-optimal standard-model
constructions [26–28]:

Definition 13 (Blindness). A blind signature scheme BS is called blind in the
malicious-key model if for all PPT algorithms A having one-time access to two
user oracles, there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎢⎢⎣

b ←R {0, 1}, (pk,m0,m1, st) ←R A(1κ),
st ←R A(UBS(mb,pk),·)1,(UBS(m1−b,pk),·)1(st),
Let σb and σ1−b be the resp. outputs of UBS,
If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1) ← (⊥,⊥),
b∗ ←R A(st, σ0, σ1)

: b∗ = b

⎤
⎥⎥⎥⎥⎦

− 1
2

≤ ε(κ).

3.1 The FHS Construction

The construction in [26] uses unconditionally hiding commitments to the mes-
sages and SPS-EQ to sign these commitments. The latter allows for blinding
and unblinding, as it implies the ability to derive a signature for arbitrary rep-
resentatives of this class (without knowing the private signing key). The con-
struction is unforgeable under the EUF-CMA security of the SPS-EQ and an
asymmetric-group variant of the Diffie-Hellman inversion assumption. It is blind
under an interactive DDH variant in the malicious-key model without requiring
any trusted setup. Its design principle is as follows.

A signer public key consists of an SPS-EQ verification key pk and two ele-
ments (Q = qP, Q̂ = qP̂) for some random q ∈ Zp

∗. When asking for a signa-
ture on a message m, the user picks r ←R Zp

∗ and creates a Pedersen commitment
C = mP +rQ and forms a vector (C,P), which is a representative of equivalence
class [(C,P)]R. Then she chooses a randomizer s ←R Zp

∗ and uses it to random-
ize (C,P) to another representative (sC, sP), thereby blinding the vector, and
sends (sC, sP) to the signer. When the signer returns an SPS-EQ signature on

Practical Round-Optimal Blind Signatures in the Standard Model 401

(sC, sP), the user is able to derive a signature for the unblinded (original) mes-
sage (C,P), using SPS-EQ’s changing of representatives. Verification of the blind
signature will only accept messages whose second component is P . Together with
SPS-EQ unforgeability, this means that the only such message for which the user
can derive a signature is (C,P).

The Pedersen commitment C = mP + rQ has a tweaked opening, which is
(m, rP) instead of (m, r), and which lets one check the well-formedness of C via
the pairing equation e(C−mP, P̂) = e(rP, Q̂). This can be thought of as showing
knowledge of the discrete logarithm r without revealing it (revealing r would lead
to attacks against blindness). Under the co-DHI∗1 assumption commitments with
opening of this form are binding, meaning the user can open a commitment only
to one message, which is required for blind-signature unforgeability. The user
includes the values T ← C − mP and R ← rP in the blind signature to allow
the verification of the opening.

Blindness intuitively follows from the fact that the message (sC, sP) =
(smP + srQ, sP) that the signer sees during issuing looks unrelated to the mes-
sage m and the resulting blind signature (which contains rP): under DDH, given
sP and rP , the element srP looks random. However, the blinding factor in the
randomized commitment is not srP but srQ, with Q chosen by the signer. This is
what forced FHS to introduce an interactive variant of DDH, where the adver-
sary chooses Q and Q̂ and then gets an instance rP, rQ, sP, tQ and needs to
decide whether t = rs.

3.2 Construction

In previous round-optimal blind-signature schemes (using a related approach
involving commitments) the commitment is done w.r.t. a commitment key con-
tained in the CRS. Since we aim at constructing a scheme in the standard model
where there is no CRS, we could add the commitment key to the signer’s public
key—as done in [26]. In this case the commitment must be perfectly hiding and
can thus only be computationally binding. (Binding protects the signer from
a user generating signatures on more messages than signatures issued by the
signer.) We choose a different approach, namely to let the user choose the com-
mitment key. To prevent forgeries, the commitment now needs to be perfectly
binding, which we achieve by using an encryption scheme. We then show that,
together with the properties of the used SPS-EQ scheme, computational hiding
of the commitment implies blindness of our construction.

In our signing protocol the user chooses a public key Q for ElGamal encryp-
tion and then commits to the message m by encrypting mP as (C,R) =
(mP + rQ, rP). The user then forms a vector (C,R,Q, P), consisting of the
ciphertext, the public key and the group generator P . (Note that this vector
uniquely defines m.) Next, to blind the message, the user transforms this tuple
to a random element of the equivalence class [(C,R,Q, P)]R: she picks s ←R Zp

∗,
computes M ← (sC, sR, sQ, sP), and sends M to the signer. When the signer
returns an SPS-EQ signature on (sC, sR, sQ, sP), the user derives a signature for
the unblinded (original) message (C,R,Q, P). For unforgeability, this unblinding

402 G. Fuchsbauer et al.

must be unambiguous, which is why verification only accepts tuples whose last
component is P .

Finally, the user needs to “open” (C,R,Q = qP) to the actual message m.
This could be done by publishing Z = rQ and Q̂ = qP̂ : then for a message m
we could check whether the signature is valid on (mP +Z,R,Q, P) and whether
Z is of the correct form, by checking e(Q, P̂) = e(P, Q̂) and

e(Z, P̂) = e(R, Q̂). (2)

This is basically the opening thatFHSuse (where Q̂ is part of the commitment key).
In their scheme R is only given in the final signature; here however, the signer also
sees sR, which leads to the following attack: The signer can check whether M =
(sC, sR, sQ, sP) received during the signing protocol corresponds to a particular
m, by testing e(M1 − mM4, P̂) = e(M2, Q̂), since this corresponds to the pairing
equation e(srQ, P̂) = e(srP, Q̂).

To prevent this attack, we “split” the logarithm of Q and define Q = uvP .
Instead of publishing Q̂, we publish X = ruP and V̂ = vP̂ and replace the RHS
of (2) with e(X, V̂) = e(r · uvP, P̂). Now we additionally need to enable a check
that X and V̂ are correctly formed, which we do by publishing U = uP and
Û = uP̂ . As in [25,26], we assume the bilinear group generation algorithm of
the SPS-EQ scheme to be deterministic and to produce one bilinear group per
security parameter. We then show that assuming ABDDH+ for such a group
generation algorithm, our scheme satisfies malicious-key blindness. Our blind-
signature scheme is detailed in Fig. 2.

3.3 Security

The correctness of the scheme in Fig. 2 follows by inspection.

Theorem 1. If the underlying SPS-EQ scheme is EUF-CMA secure, then the
scheme in Fig. 2 is unforgeable.

Unforgeability of the SPS-EQ scheme guarantees that after k signing queries
the adversary possesses only signatures on k tuples of the form (Ci, Ri, Qi, P).
(Since the last component fixes each equivalence class to one representative.) It
remains to show that each such tuple can only be opened to one message m: let
(C,R,Q, P) and σ be such a valid message-signature pair. Then we show that
any choice of (Y,U,X, Û , V̂) that satisfies verification together with (σ,Q,R)
leads to the same m. Let u, v be such that Û = uP̂ and V̂ = vP̂ . Then by
(3.2), the 2nd equation in (3): Q = uvP ; and (4.1) implies U = uP . With r s.t.
R = rP , we have X = ruP by (4.2) and Y = ruv = rQ by (4.3). This means
that R and Q uniquely determine Y , which together with C = mP +Y uniquely
determines m.

The formal proof is given in the full version. The reduction has a natural
security loss determined by the number of signing queries by the adversary,
since the reduction has to guess which of the k+1 valid signatures is the forgery.

Practical Round-Optimal Blind Signatures in the Standard Model 403

KeyGenBS(1κ): Given a security parameter κ > 0 (in unary), compute BG ←
BGGenR(1κ); compute (sk, pk) ←R KeyGenR(BG, 14) and output (sk, pk).

U (1)
BS (m, pk): Given pk and a message m ∈ Zp, compute BG ← BGGenR(1κ);

choose r, s, u, v ←R Zp
∗ s.t. m + ruv = 0 and output

M ← (s(mP + ruvP), srP, suvP, sP) st ← (pk, M, r, s, u, v)

SBS(M, sk): Given M ∈ (G∗
1)

4 and a secret key sk, output π ←R SignR(M, sk).

U (2)
BS (st, π): Parse st as (pk, M, r, s, u, v). If VerifyR(M, π, pk) = 0, return ⊥.

Else run ((mP + ruvP, rP, uvP, P), σ) ←R ChgRepR(M, π, 1
s , pk);

output τ ← (σ, Y = ruvP, Q = uvP, R = rP, U = uP, X = ruP,
Û = uP̂ , V̂ = vP̂).

VerifyBS(m, τ, pk): Given message m ∈ Zp, blind signature τ = (σ, Y, Q,

R, U, X, Û, V̂) and public key pk, output 1 if the following holds and
0 otherwise.

VerifyR((mP + Y, R, Q, P), σ, pk) = 1 e(Q, P̂) = e(U, V̂) (3)

e(U, P̂) = e(P, Û) e(X, P̂) = e(R, Û) e(Y, P̂) = e(X, V̂) (4)

Fig. 2. A blind signature scheme from SPS-EQ.

Blindness. In the full version, we first show that ABDDH+ (Definition 4) implies
that when given rQ,Q,R,U,X, Û , V̂ (the elements which the signer sees in the
final signature), the elements srQ (the blinding factor of the message in the
issuing protocol), and sQ, srP and sP (the remaining components seen during
issuing) are indistinguishable from random. This intuitively means that what
the adversary sees during issuing looks unrelated to the derived blind signature.

We start with the basic idea to prove blindness. Given an instance of the
decision problem just described (BG, R, S = sP, U = uP,X = uR,Q = uvP, Y =
rQ, Û = uP̂ , V̂ = vP̂ , T,W,Z), where either (a) T = sR, W = sQ and Z = sY
or (b) T , W and Z are random, in the blindness game the challenger could
compute the message sent to the signer during issuing as

M ← (m · S + Z, T,W, S), (3)

which is correctly distributed in case (a) but independent of m (and the resulting
blind signature) in case (b). In the blindness game, the challenger next receives
an SPS-EQ signature on M , which it needs to adapt to the unblinded message
in order to construct a blind signature.

404 G. Fuchsbauer et al.

Overall, we distinguish two behaviors of blindness adversaries. Type I does
not return correct SPS-EQ signatures during issuing. As in this case the adver-
sary does not obtain blind signatures at the end, the above simulation already
works and we are done.

However, if the adversary returns valid signatures (Type II) then the simula-
tor, after embedding the instance when creating M as in (3), does not know the
blinding factor s, meaning the simulator cannot adapt the SPS-EQ signature
to the unblinded message. By perfect adaptation however, the distribution of
an adapted signature is the same as that of a fresh signature on the unblinded
message. In the honest-key model, where the simulator knows the signing key,
it could therefore compute a signature σ on (m · P + Z,R,Q, P) and return the
blind signature (σ, Y,Q,R,U,X, Û , V̂). Blindness follows, since during issuing
the signer obtained a random quadruple; thus the game is independent of bit b.

For blindness in the malicious-key model, we do not have access to the adver-
sarially generated signing key, meaning we cannot recompute the signature on
the unblinded message. Instead, we use the adversary A as a signing oracle by
rewinding it. (This is similar to Coron’s [20] meta-reduction strategy, which was
extended to randomizable signatures by Hofheinz et al. [34].) The idea is to
first run the adversary to obtain a signature on (s′(mP +Y), s′R, s′Q, s′P) for a
known s′, which we can therefore transform into a signature on (mP+Y,R,Q, P).
We then rewind the adversary to the point after it output the public key and the
messages, and then run it again (using a new random bit b), this time setting M
as in (3), thus not knowing s. In the second run we are not able to transform the
signature, but we can use the signature from the first run, which is distributed
identically, thanks to the property of the SPS-EQ scheme.

Making this approach actually work turns out quite tricky. In the proof in
[26] it is argued that an adversary must always output two valid signatures, as
otherwise the bit b is perfectly hidden due to the perfectly hiding commitments.
For such adversaries if the original blindness game is won with some probability
then the game that rewinds the adversary will yield valid signatures in the first
run and in the second run the adversary wins with the same probability as in
the original (non-rewinding) game.

This is not true anymore for our scheme, as an aborting adversary (one that
returns invalid SPS-EQ signatures) can still win the game. In particular, we
show in the full version that rewinding once is not enough by giving an example
of an adversary’s coin distribution (before and after the point of rewinding) that
leads to the original blindness game being won with non-negligible probability,
while the game with rewinding (which outputs a random bit if it receives invalid
signatures in the first run) is won with probability less than one half.

However, if we rewind more than once then it suffices to obtain valid
signatures in at least one of the rewinds. We therefore consider a game where
we rewind the adversary λ times and abort if all runs yield invalid signatures
(outputting a random bit); otherwise, we run the adversary a final time and
check if it wins or not.

Practical Round-Optimal Blind Signatures in the Standard Model 405

In the full version we show the following: suppose the adversary wins the
blindness game with non-negligible advantage, that is, for some polynomial p
and infinitely many security-parameter values κ, the probability of winning the
blindness game is greater than 1

2 + 1
p(κ) . Then if we rewind the adversary λ =

κ ·p(κ) times, the probability that at least one of the λ runs yields valid SPS-EQ
signatures and the adversary wins the final run is greater than 1

2 + 1
2·p(κ) for

infinitely many κ’s. We make this formal in the following theorem.

Theorem 2. If the underlying SPS-EQ scheme has perfect adaptation of signa-
tures under malicious keys and ABDDH+ holds for BGGen then the scheme in
Fig. 2 satisfies blindness in the malicious-key model.

Efficiency of the Construction. When instantiating our blind signature con-
struction with the SPS-EQ scheme from [25], we obtain a public key size of 4G2,
a communication complexity of 6G1 + 1G2 and a signature size of 7G1 + 3G2

elements. We will now contrast this to the FHS construction [26] and to the
DLIN construction from [27].

Instantiating the FHS construction with the SPS-EQ scheme from [25] yields
a blind signature scheme having a public key size of 1G1+3G2, a communication
complexity of 4G1 + 1G2 and a signature size of 4G1 + 1G2 elements. While
being more efficient, we recall that blindness of the FHS construction is based
on an interactive and, thus, much stronger assumption.

Ignoring the increase of the security parameter due to complexity leveraging
for the construction from [27], it has a public key size of 43G1 elements, a
communication complexity of 18 log2 q + 41G1 elements (where, for instance,
we have log2 q = 155 when assuming that the adversary runs in at most 280

steps) and a signature size of 183G1 elements.

Extension to Partially Blind Signatures. We note that analogously to the
extension of the round-optimal blind signature construction in [26], it is possible
to derive a partially blind signature scheme from the scheme in Fig. 2. To include
a common information γ ∈ Zp

∗, the underlying SPS-EQ scheme is set up for � = 5
(instead of � = 4) and the additional vector component is being used to include
γ. In contrast to the blind signature scheme in Fig. 2, the signer on receiving
M ← (s(mP + ruvP), srP, suvP, sP) computes an SPS-EQ signature for vector
(s(mP + ruvP), srP, suvP, γ(sP), sP). In the verification of the partially blind
signature, the SPS-EQ signature is verified on (mP + Y,R,Q, γP, P).

References

1. Abdalla, M., Namprempre, C., Neven, G.: On the (im)possibility of blind message
authentication codes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860,
pp. 262–279. Springer, Heidelberg (2006)

2. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151.
Springer, Heidelberg (2001)

406 G. Fuchsbauer et al.

3. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012)

4. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

5. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

6. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures
from Type II pairings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 390–407. Springer, Heidelberg (2014)

7. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

8. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups
for modular protocol design. Cryptology ePrint Archive, Report 2010/133 (2010).
http://eprint.iacr.org/2010/133

9. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

10. Barthe, G., Fagerholm, E., Fiore, D., Scedrov, A., Schmidt, B., Tibouchi, M.:
Strongly-optimal structure preserving signatures from Type II pairings: synthesis
and lower bounds. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 355–376.
Springer, Heidelberg (2015)

11. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

12. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomiz-
able ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011)

13. Blazy, O., Pointcheval, D., Vergnaud, D.: Compact round-optimal partially-blind
signatures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp.
95–112. Springer, Heidelberg (2012)

14. Blazy, O., Pointcheval, D., Vergnaud, D.: Round-optimal privacy-preserving proto-
cols with smooth projective hash functions. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 94–111. Springer, Heidelberg (2012)

15. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

16. Camenisch, J.L., Koprowski, M., Warinschi, B.: Efficient blind signatures without
random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp.
134–148. Springer, Heidelberg (2005)

17. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of ψ revisited. Discret. Appl. Math. 159(13), 1311–1322 (2011)

18. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum Press, New York
(1982)

19. Chaum, D.: Blind signature system. In: Chaum, D. (ed.) CRYPTO 1983, p. 153.
Plenum Press, New York (1984)

http://eprint.iacr.org/2010/133

Practical Round-Optimal Blind Signatures in the Standard Model 407

20. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002)

21. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006)

22. Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg
(2009)

23. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010)

24. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application
to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320
(2009). http://eprint.iacr.org/2009/320

25. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. Cryptology ePrint
Archive, Report 2014/944 (2014). http://eprint.iacr.org/2014/944

26. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 233–253. Springer, Heidelberg (2015)

27. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (2014)

28. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011)

29. Ghadafi, E.: Short structure-preserving signatures. In: Sako, K. (ed.) CT-RSA
2016. LNCS, vol. 9610, pp. 305–321. Springer, Heidelberg (2016)

30. Ghadafi, E., Smart, N.P.: Efficient two-move blind signatures in the common ref-
erence string model. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol.
7483, pp. 274–289. Springer, Heidelberg (2012)

31. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

32. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014)

33. Hanzlik, L., Kluczniak, K.: A short paper on blind signatures from knowledge
assumptions. FC 2016. LNCS. Springer, Heidelberg (2016)

34. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduc-
tion. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 66–83. Springer, Heidelberg (2012)

35. Joux, A.: A one round protocol for tripartite Diffie-hellman. In: Bosma, W.
(ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000).
http://dx.doi.org/10.1007/10722028 23

36. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997)

http://eprint.iacr.org/2009/320
http://eprint.iacr.org/2014/944
http://dx.doi.org/10.1007/10722028_23

408 G. Fuchsbauer et al.

37. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 275–295. Springer, Heidelberg (2015)

38. Lindell, Y.: Bounded-concurrent secure two-party computation without setup
assumptions. In: 35th ACM STOC, pp. 683–692. ACM Press, San Diego, 9–11
June 2003

39. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993)

40. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (2006)

41. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

42. Schröder, D., Unruh, D.: Security of blind signatures revisited. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 662–679.
Springer, Heidelberg (2012)

43. Seo, J.H., Cheon, J.H.: Beyond the limitation of prime-order bilinear groups, and
round optimal blind signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 133–150. Springer, Heidelberg (2012)

Cryptanalysis

How (Not) to Instantiate Ring-LWE

Chris Peikert(B)

University of Michigan, Ann Arbor, USA
cpeikert@alum.mit.edu

Abstract. The learning with errors over rings (Ring-LWE) problem—
or more accurately, family of problems—has emerged as a promising
foundation for cryptography due to its practical efficiency, conjectured
quantum resistance, and provable worst-case hardness: breaking certain
instantiations of Ring-LWE is at least as hard as quantumly approxi-
mating the Shortest Vector Problem on any ideal lattice in the ring.

Despite this hardness guarantee, several recent works have shown that
certain instantiations of Ring-LWE can be broken by relatively simple
attacks. While the affected instantiations are not supported by worst-
case hardness theorems (and were not ever proposed for cryptographic
purposes), this state of affairs raises natural questions about what other
instantiations might be vulnerable, and in particular whether certain
classes of rings are inherently unsafe for Ring-LWE.

This work comprehensively reviews the known attacks on Ring-LWE
and vulnerable instantiations. We give a new, unified exposition which
reveals an elementary geometric reason why the attacks work, and pro-
vide rigorous analysis to explain certain phenomena that were previously
only exhibited by experiments. In all cases, the insecurity of an instanti-
ation is due to the fact that the error distribution is insufficiently “well
spread” relative to the ring. In particular, the insecure instantiations use
the so-called non-dual form of Ring-LWE, together with spherical error
distributions that are much narrower and of a very different shape than
the ones supported by hardness proofs.

On the positive side, we show that any Ring-LWE instantiation which
satisfies (or only almost satisfies) the hypotheses of the “worst-case hard-
ness of search” theorem is provably immune to broad generalizations of
the above-described attacks: the running time divided by advantage is
at least exponential in the degree of the ring. This holds for the ring of
integers in any number field, so the rings themselves are not the source of
insecurity in the vulnerable instantiations. Moreover, the hypotheses of
the worst-case hardness theorem are nearly minimal ones which provide
these immunity guarantees.

C. Peikert—This material is based upon work supported by the National Science
Foundation under CAREER Award CCF-1054495 and CNS-1606362, the Alfred
P. Sloan Foundation, and by a Google Research Award. The views expressed are
those of the authors and do not necessarily reflect the official policy or position of
the National Science Foundation, the Sloan Foundation, or Google.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 411–430, 2016.
DOI: 10.1007/978-3-319-44618-9 22

412 C. Peikert

1 Introduction

Cryptography based on lattices is an exciting and fast-developing area of
research, due in part to conjectured security against quantum attacks, asymp-
totic efficiency and parallelism, and a wide range of applications spanning from
basic tasks like key exchange, to powerful objects like fully homomorphic encryp-
tion. A large fraction of lattice-based cryptographic constructions are built upon
the average-case learning with errors (LWE) problem [25] or its more efficient
variant learning with errors over rings (Ring-LWE) [16,17]. These are actually
families of problems, which are instantiated by choosing a particular dimension
or ring, an integer modulus, and an error distribution.

A main attraction of the (Ring-)LWE problems is their worst-case hard-
ness theorems, also known as worst-case/average-case reductions. These say that
breaking certain instantiations of (Ring-)LWE (or the cryptosystems based upon
them) is provably at least as hard as quantumly solving any instance of certain
lattice problems, i.e., in the worst case. For Ring-LWE, the underlying lattice
problem is the approximate Shortest Vector Problem (approx-SVP) on ideal lat-
tices, which are algebraically structured lattices corresponding to ideals in the
ring. To date, no known quantum (or classical) algorithm for approx-SVP has
significantly better worst-case performance on ideal lattices (in any concrete ring
of interest) than on general lattices of the same dimension. For the polynomial
approximation factors often used in cryptography, the fastest known algorithms
require exponential time and space in the dimension (see, e.g., [1,2,22]).

Despite the above-described hardness guarantees, several recent works
[9–11,13,14] have shown that certain ad-hoc instantiations of Ring-LWE are
insecure, via relatively simple attacks. How should we interpret such results?
We emphasize that the vulnerable instantiations were not previously proposed
for any cryptographic application, and were specifically sought out for their
insecurity.1 In addition, the attacks do not appear to translate to any improved
algorithms for ideal-lattice problems, because the vulnerable instantiations do
not satisfy the hypotheses of the worst-case hardness theorems. Yet this expla-
nation leaves several natural questions unanswered, such as:

– How “close” are these insecure instantiations to ones that do enjoy worst-case
hardness?

– Do these vulnerable instantiations imply anything about what rings might be
more or less secure for Ring-LWE?

– How can we evaluate other instantiations that may not be backed by worst-
case hardness theorems?

The goals of this work are twofold: first, to shed further light on recent attacks
and vulnerable Ring-LWE instantiations; and second, to articulate a general set
of principles by which we can systematically evaluate the (in)security of an
instantiation. Toward this end, we provide the following main contributions.
1 Indeed, it is easy to design trivially insecure (Ring-)LWE instantiations for any

choice of dimension or ring: just define the error distribution to always output zero.
However, the vulnerable instantiations in question do involve some nontrivial error.

How (Not) to Instantiate Ring-LWE 413

Review of Attacks. We comprehensively review the attacks and insecure Ring-
LWE instantiations from the above-cited works. We give a new, unified exposi-
tion of the attacks in terms of the geometry of dual ideals, and provide formal
analysis to explain certain phenomena that were previously only exhibited by
experiments. In all cases, the heart of the insecurity is the use of a non-standard,
“non-dual” form of Ring-LWE with relatively narrow spherical error, rather than
the “dual” form that was defined and proved to have worst-case hardness in [16].
Using a simple “tweak” that allows for a direct comparison of the dual and non-
dual forms, we find that the error distributions in the insecure instantiations
are much narrower than those in the provably hard ones, which is why they are
vulnerable to attacks.

In a bit more technical detail: for the instantiations from [14], we give a
simpler proof of the fact, first noticed and exploited in [9], that the (discretized)
errors lie in a very low-dimensional linear subspace of the ring. This means that
every Ring-LWE sample reveals many errorless LWE samples, which leads to
an elementary linear-algebraic attack (no ring algebra needed). We also show
that the instantiations from [10,11], with slightly narrower error distributions,
fall to the same kind of attack. Finally, we give formal analyses showing why
the (unmodified) instantiations of [10,11] are broken by a different but closely
related distinguishing attack.

Invulnerable Instantiations. On the positive side, we consider Ring-LWE instan-
tiations that satisfy, or only “almost” satisfy, the “worst-case hardness of search”
theorem from [16, Sect. 4]. We show that any such instantiation is provably
immune to broad classes of attacks which include all those described above.
By “immune” we mean that the attacks perform no better than known attacks
(e.g., [5,6]) against plain LWE when instantiated to have worst-case hardness;
in particular, the running time divided by advantage is at least exponential in
the LWE dimension (in the typical case of modulus q = poly(n)).

We stress that the worst-case hardness theorem from [16, Sect. 4] works for
the ring of integers (or more generally, any order) of any number field. There-
fore, all the rings appearing in the insecure instantiations from the above-cited
works do indeed admit provably hard instantiations—they just need different
error distributions. In other words, the rings themselves are not the source of
insecurity. For illustration, in the full version we describe and graphically depict
some example hard instantiations in detail, including for prime cyclotomic rings
and quadratic extensions thereof.

To be clear, in this work we do not propose concrete security estimates for
particular (Ring-)LWE instantiations, e.g., “the mth cyclotomic with Gaussian
error of width r offers at least λ bits of security” (see, e.g., [3,7,15,21] for rep-
resentative works that do so). We are also not concerned with the applicability
(or lack thereof) of instantiations for cryptographic purposes, nor with lower-
level computational details or efficiency (see, e.g., [12,17] for works along these
lines). Our central focus is on understanding and evaluating the fundamental
(in)security of Ring-LWE instantiations, which is a necessary prerequisite to
these other important goals.

414 C. Peikert

Discussion. The main conclusion from this work is that for the security of Ring-
LWE, proper choice of the error distribution is essential, especially because there
is so much more freedom of choice than in plain LWE. It should not be surpris-
ing that ad-hoc instantiations of Ring-LWE can be insecure—indeed, the same
goes for LWE. For example, there is a roughly nd-time attack (using roughly
nd samples) for d-bounded errors [5]. But this does not affect LWE’s conjec-
tured 2Ω(n) hardness when instantiated according to its worst-case hardness
theorems, which require Gaussian errors of standard deviation Ω(

√
n). Indeed,

it may even increase our confidence that this is the “right” error distribution for
LWE, since the wide variety of known attack strategies all require 2Ω(n) time
beyond this threshold.

On the positive side, the fact that worst-case-hard instantiations are immune
to concrete attacks also should not be surprising, since any efficient attack would
translate to a comparably efficient quantum algorithm for approx-SVP on any
ideal lattice in the ring—which would be a major achievement in computational
number theory. But it is instructive to understand what precisely gives the hard
instantiations their immunity. In particular, some of the more peculiar aspects
of Ring-LWE, like the width of the error distributions and especially the role of
the “dual” ideal R∨, were adopted in order to obtain the strongest and tightest
hardness theorems in general number fields. (See [16, Sect. 3.3] for discussion.)
Notably, these choices also turn out to be nearly minimal ones that provably
withstand broad classes of attacks. We believe that this provides yet another
example of the importance of worst-case hardness proofs in lattice cryptography.

Organization. The remainder of the paper is organized as follows.

Section 2 recalls the relevant mathematical background, the (Ring-)LWE prob-
lems and the formal relationship between them, and their known worst-case
hardness theorems.

Section 3 gives a new exposition and unified framework for the Ring-LWE
attacks developed in [9–11,13,14], focusing on the essential geometric reasons
why they work.

Section 4 reviews the insecure Ring-LWE instantiations through the lens of the
unified attack framework, and formally proves that the attacks work against
them.

Section 5 gives a sufficient condition that makes a Ring-LWE instantiation
provably immune to the attacks in the framework, and shows that the con-
dition is satisfied for any instantiation supported by the worst-case hardness
theorem of [16, Sect. 4].

2 Preliminaries

In this section we recall the necessary mathematical background on lattices,
Gaussians, and (Ring-)LWE, including its “dual” and “non-dual” forms. Due to
space restrictions, standard background material on algebraic number theory is
omitted; we adopt the notation and concepts from [16].

How (Not) to Instantiate Ring-LWE 415

2.1 Lattices and Gaussians

In ring-based lattice cryptography, it is convenient to work in the space H ⊆
R

s1 × C
2s2 for some nonnegative integers s1, s2 with n = s1 + 2s2, defined as

H := {(x1, . . . , xn) ∈ R
s1 × C

2s2 : xs1+s2+j = xs1+j ∀j ∈ {1, . . . , s2}}.
It is easy to check that H, with the inner product 〈x,y〉 =

∑
i xiyi of the ambient

space C
n, is an n-dimensional real inner product space, i.e., it is isomorphic

to R
n via an appropriate rotation. Therefore, the reader may mentally replace H

with R
n in all that follows.

For the purposes of this work, a lattice L is a discrete additive subgroup of H
that is full dimensional, i.e., span

R
(L) = H. Any lattice is generated as the set of

all integer linear combinations of some (non-unique) linearly independent basis
vectors B = (b1, . . . ,bn), as

L = L(B) :=
{
Bz =

∑
i

zibi : z ∈ Z
n
}

.

The volume (or determinant) of a lattice L is vol(L) := vol(H/L) = |det(B)|,
where B denotes any basis of L. The minimum distance λ1(L) is the length (in
the Euclidean norm) of a shortest nonzero lattice vector: λ1(L) = min0 �=x∈L ‖x‖.
The dual lattice L∨ of L is defined as the set of all points in H having integer
inner products with every vector of the lattice: L∨ = {w ∈ H : 〈w,L〉 ⊆ Z}. It
is easy to verify that (L∨)∨ = L.

Gaussians and Smoothing. For r > 0, the Gaussian probability distribution Dr of
parameter (or width) r over H is defined to have probability density function pro-
portional to ρr(x) := exp(−π‖x‖2/r2). A standard fact is that 〈w,Dr〉 = Dr‖w‖
(over R) for any nonzero w ∈ H. In addition, a one-dimensional Gaussian Dr

over R satisfies the tail bound Prx←Dr
[|x| ≥ t] ≤ 2 exp(−π(t/r)2) for any t ≥ 0.

The smoothing parameter [20] is an important lattice quantity that is related
to several other lattice parameters.

Definition 1. For a lattice L and positive real ε > 0, the smoothing parame-
ter ηε(L) is the smallest r > 0 such that ρ1/r(L∨\{0}) ≤ ε.

Lemma 1 [20, Lemma 3.2]. For any n-dimensional lattice L, we have η2−2n

(L) ≤ √
n/λ1(L∨).2

The following lemma explains the name “smoothing parameter:” it says that
a Gaussian whose width exceeds the smoothing parameter is essentially uniform
modulo the lattice.

Lemma 2 [20, Lemma 4.1]. For any lattice L ⊂ H, ε > 0, and r ≥ ηε(L), the
statistical distance between Dr mod L and the uniform distribution over H/L is
at most ε/2.
2 Note that have we have ε = 2−2n instead of 2−n as in [20], but the proof is exactly

the same.

416 C. Peikert

2.2 Learning with Errors (Over Rings)

In this section we review the learning with errors problem [25] and its ring-based
analogue [16], describe the formal relationship between them, and recall their
worst-case hardness theorems.

LWE. Informally, learning with errors (LWE) [25] concerns “noisy” random
inner products with a secret vector. More precisely, LWE is parameterized by a
dimension n, a positive integer modulus q defining the quotient ring Zq = Z/qZ,
and an error distribution ψ over R.

Definition 2 (LWE, [25]). The search-LWEn,q,ψ problem is to recover a uni-
formly random secret vector s ∈ Z

n
q , given many independent samples of the

form
(ai , bi = 〈s,ai〉 + ei mod q) ∈ Z

n
q × R/qZ,

where each ai ← Z
n
q is uniformly random and each ei ← ψ is drawn from the

error distribution. The decision-LWEn,q,ψ problem is to distinguish, with some
noticeable advantage, between samples generated as above, and uniformly random
samples in Z

n
q × (R/qZ).

Sometimes the number m of available samples is also considered as an addi-
tional parameter of the LWE problems, but here we let it be arbitrarily large;
this can only make the problems easier to solve, because samples can be ignored.
It is often convenient to group the m samples (ai, bi) into a matrix and vector

A = [a1 | a2 | · · · | am] ∈ Z
n×m
q and bt = stA + et ∈ (R/qZ)m,

where A is uniformly random and e ∈ R
m is distributed as ψm.

Insecure Instantiations. Certain instantiations of LWE are trivially easy to solve.
For instance, if the error distribution ψ always outputs 0—i.e., no error at all—
then the problem is easily solved by standard linear algebra: as long as the rows
of A are linearly independent over Zq (which holds with high probability once m
is a little more than n), we can easily recover s given A and bt = stA.

Now suppose we allow potentially dependent errors, i.e., each group of k
samples has an error vector drawn from some distribution κ over R

k. Then this
form of LWE is easy if, e.g., some (discretized) error coordinate is always zero
under κ: just ignore the samples corresponding to the other coordinates.

Hard Instantiations. Certain instantiations of LWE appear computationally
hard, and have strong “worst-case hardness” theorems in support of this belief.
Specifically, for a Gaussian error distribution ψ = Dr with r ≥ 2

√
n, solving

search-LWEn,q,ψ is at least as hard as quantumly approximating certain well-
studied “short vector” problems on any n-dimensional lattice to within Õ(n·q/r)
factors, i.e., there is a quantum reduction from worst-case lattice problems to
search-LWE [25]. Moreover, for q ≥ 2n/2 there is a classical reduction from a

How (Not) to Instantiate Ring-LWE 417

subset of these problems, for essentially the same approximation factors [23].
Finally, under mild conditions on the modulus q and the Gaussian parameter r,
the search and decision problems are equivalent, i.e., there are reductions from
search to decision. See, e.g., [8,18,19,23,25].

Ring-LWE. Analogously to LWE, learning with errors over rings (Ring-
LWE) [16,17] concerns “noisy” random ring products with a secret ring element.
Formally, it is parameterized by a ring R, which is the ring of integers (or more
generally, an order) of a number field K, a positive integer modulus q, and an
error distribution ψ over KR. Recall that R∨ = {x ∈ K : Tr(xR) ⊆ Z} is the
(fractional) dual ideal of R, and for any fractional ideal I define the quotient
Iq := I/qI.

Definition 3 (Ring-LWE, [16]). The search-R-LWEq,ψ problem is to find a
uniformly random secret s ∈ R∨

q given many independent samples of the form

(ai , bi = s · ai + ei mod qR∨) ∈ Rq × KR/qR∨,

where each ai ← Rq is uniformly random and each ei ← ψ is drawn from the
error distribution. (Observe that each s ·ai ∈ R∨

q .) The decision-R-LWEq,ψ prob-
lem is to distinguish, with some noticeable advantage, between samples generated
as above, and uniformly random samples in Rq × KR/qR∨.

The above definition is sometimes called the “dual” form of Ring-LWE owing
to the appearance of R∨, whose role might appear somewhat mysterious. How-
ever, its importance for obtaining the “right” definition of Ring-LWE is discussed
at length in [16, Sect. 3.3]. In short, the combination of R∨ and (nearly) spherical
Gaussian error ψ (in the canonical embedding) yields both the tightest connec-
tion with worst-case problems on ideal lattices, and the best error tolerance
and computational efficiency in cryptographic applications. (See [16,17] for full
details.) Nevertheless, for various reasons it may be more convenient to work
with a “non-dual” form of Ring-LWE, where the secret is a uniformly random
s ∈ Rq (not R∨

q), and samples are of the form

(ai , bi = s · ai + ei mod qR) ∈ Rq × KR/qR,

where each ai ← Rq is uniform and each ei ← ψ.
It turns out that the dual and non-dual forms of Ring-LWE are in fact equiv-

alent up to the choice of error distribution ψ—so it does not really matter which
syntactic form we use, as long as long as we also use an appropriate error dis-
tribution. This is because we can always convert one form to another using an
appropriate “tweak” factor, as described in the full version. (Such a “tweaked”
form of Ring-LWE, which replaces R∨ by R, has been used in [4,12,24].) How-
ever, it is important to note that the transformation may in general convert
spherical Gaussian error to (highly) non-spherical error.

Because R is usually much sparser than R∨ (viewed as lattices in the canon-
ical embedding), for non-dual Ring-LWE some prior works have used a volume-
normalized parameter r0 = r/ vol(R)1/n = r/δR as a rough measure of how

418 C. Peikert

“wide” Gaussian error Dr is relative to R. We caution, however, that this mea-
sure does not account for any lack of “well-roundedness” in R (i.e., gaps among
its successive minima), so even a large value of r0 does not necessarily mean that
the error is “well-spread” relative to R.

Hard Instantiations. Much like LWE, certain instantiations of Ring-LWE are
supported by worst-case hardness theorems; see [16] for formal statements, which
we summarize here. For r ≥ 2 · ω(

√
log n), [16, Theorem 4.1] says that for any

number field K and R = OK , solving search-R-LWE for all continuous Gaussian
error distributions ψ = Dr, where each ri ≤ r, is at least as hard as quantumly
approximating certain “short vector” problems on any ideal lattice in K, to
within Õ(

√
n·q/r) factors. (The distribution Dr over H is essentially an elliptical

Gaussian with parameter ri in the ith coordinate.) Moreover, [16, Sect. 5] shows
that for any cyclotomic number field, and for appropriate moduli q, decision is
classically at least as hard as search for any spherical Gaussian error distribution.
(The proof immediately generalizes to any Galois number field [13].) Alterna-
tively, decision for spherical error of parameter roughly r · n1/4 is classically
at least as hard as search for the class of elliptical distributions Dr described
above. (The conditions on q have subsequently been weakened, and hardness of
decision is now known for essentially any large enough modulus, via “modulus
switching” [8].)

Connection to LWE. Ring-LWE can be seen as a special case of LWE, in the
following sense. For simplicity we describe a reduction for the “non-dual” form,
but it easily generalizes to the dual form from Definition 3.

Fix any Z-basis B of the ring R, which is also a Zq-basis of Rq and an R-
basis of KR. Then for any a ∈ Rq, multiplication by a corresponds to a matrix
Aa ∈ Z

n×n
q with respect to B, i.e., for any s ∈ Rq having coefficient vector s ∈ Z

n
q

w.r.t. B, the coefficient vector of s · a w.r.t. B is stAa. Moreover, if a ∈ Rq

is uniformly random then so is every column of Aa (though the columns are
maximally dependent).

Given a Ring-LWE sample (a ∈ Rq, b = s ·a+e ∈ KR/qR), we can transform
it to n LWE samples

(Aa ∈ Z
n×n
q , bt = stAa + et ∈ (R/qZ)n),

where s ∈ Z
n
q , e ∈ R

n are respectively the coefficient vectors of s, e w.r.t. B. The
distribution of e is σ(B)−1 · σ(ψ), which is “narrow” if ψ itself is narrow and B
is chosen appropriately. Note that the columns of Aa are not independent, nor
are the entries of e in general.

3 Attack Framework

In this section we give a new exposition of the Ring-LWE attacks described
in [9–11,13,14], focusing on the essential geometric reasons why they work. All
the attacks fall into one of two classes: reduction to errorless LWE, for which

How (Not) to Instantiate Ring-LWE 419

search is trivially solvable; and reduction modulo an ideal divisor q of the mod-
ulus qR, for which decision can be solved under certain conditions on q and the
error distribution. In this section we describe a simple, unified framework that
encompasses both classes of attack. Then in Sect. 4 we show how certain con-
crete instantiations are vulnerable to the attacks, and in Sect. 5 we show that
worst-case-hard instantiations are provably immune to them.

Following the above-cited works, throughout this section we restrict our
attention to the so-called “non-dual” form of Ring-LWE, which involves spheri-
cal Gaussian error relative to R (in the canonical embedding). We mainly work
with continuous rather than discrete error, which more clearly exposes the essen-
tial ideas without the extra complication of discretization. We contend that a
successful attack against an instantiation with continuous Gaussian error should
be enough to reject the corresponding discrete version, since we should not rely
on (nor expect) discretization itself to provide any significant security. Indeed,
in the full version we consider the effect of discretization, and show that the
attacks frequently work in the discrete setting as well.

3.1 Attacking Ring-LWE

The authors of [9–11,13,14] describe analogous attacks on Ring-LWE that can
yield rather small search spaces for the reduced secret, even for nontrivial target
moduli. (The approaches are closely related to the search-to-decision reduction
for Ring-LWE from [16].) As we shall see, the attacks are all instances of the
following framework.

Let q ⊆ R be an ideal divisor of qR, having norm N(q) := |R/q|, and let ψ
be a continuous error distribution over KR. Given Ring-LWE samples

(ai , bi = s · ai + ei) ∈ Rq × KR/qR

where ai ← Rq and ei ← ψ, we can reduce them modulo q to obtain samples

(a′
i = ai mod q , b′

i = bi mod q) ∈ R/q × KR/q.

As above, we have b′
i = s′ · a′

i + ei mod q where s′ = s mod q, so these are Ring-
LWE samples with error distribution ψ, but now the secret lies in a space of size
N(q). Also observe that reduction modulo q maps uniform samples to uniform
samples.

When N(q) is not too large, the preceding observations potentially yield
attacks:

– If ψ mod q is detectably non-uniform, then we immediately have a distinguish-
ing attack against the search problem: try all candidates ŝ ∈ R/q for s′, and
for each one test whether the b′

i − ŝ · a′
i ∈ KR/q are statistically non-uniform;

accept if such an ŝ exists, otherwise reject. In Sect. 3.1 below we describe
a standard method of distinguishing reduced spherical Gaussians Dr mod q
from uniform.

420 C. Peikert

– Similarly, if ψ has one or more coefficients (relative to some fixed Z-basis of q)
that usually do not “wrap around” modulo Z, then we can attack search by
reducing to errorless LWE. See Sect. 3.1 below for further details.

– On the positive side, if ψ = Dr is a continuous Gaussian of parameter r ≥
ηε(q) for some very small ε, then neither of the attacks work, because every
coefficient of the error “wraps around,” and moreover, the reduced error ψ mod
q is statistically close to uniform. We return to these points in Sect. 5.

Distinguisher. To run the distinguishing attack, we need a way of efficiently
distinguishing ψ mod q from uniform over KR/q, for spherical Gaussian error
ψ = Dr. A variety of statistical tests have been proposed in [10,11,13,14], but
in this work it suffices to consider a standard method that uses a sufficiently
short nonzero element w in the dual ideal q∨ of q, or equivalently, a short nonzero
vector w = σ(w) in the dual lattice L∨ = σ(q)∨ of L = σ(q). More generally, one
can use multiple linearly independent dual vectors—e.g., to reduce the number
of consumed samples, or to improve the effectiveness of the statistical test—but
we do not pursue such optimizations because we will not need them (see the
discussion below).

Lemma 3. Let L be any lattice, w ∈ L∨\{0} be any nonzero element of its dual
lattice, and r > 0. Then for x ← Dr mod L, the distribution of 〈w,x〉 mod Z is
Dr‖w‖ mod Z, and

Ex[cos(2π〈w,x〉)] = exp(−π(r‖w‖)2).

In particular, if r‖w‖ = O(1), then the expectation is Ω(1).

Proof. Because w ∈ L∨ we have 〈w,L〉 ⊆ Z, so the distribution of
〈w,Dr mod L〉 mod Z is 〈w,Dr〉 mod Z = Ds mod Z, where s = r‖w‖. The
expectation Ex←Ds

[cos(2πx)] is merely the Fourier coefficient at 1 of Ds mod Z,
which by a routine calculation is exp(−πs2).

It is easy to see that for uniformly random x modulo L, the inner product
〈w,x〉 mod Z is uniform, so E[cos(2π〈w,x〉)] = 0. With Lemma3, this imme-
diately yields an efficient distinguisher between Dr mod L and uniform when
r‖w‖ = O(1): given many samples xi, compute the average of cos(2π〈w,xi〉) and
accept if it exceeds an appropriate threshold t = Ω(1). (See, e.g., [25, Lemma 3.6]
for more details.)

Relation to Prior Distinguishing Attacks. The distinguishing attacks from
[10,11,13,14] are not described using dual ideals and the trace pairing, but in the
full version, we show how they all can be expressed in these terms. Moreover, the
trace-pairing perspective is strictly more general, because it can capture linear
functions that are not ring homomorphisms.

How (Not) to Instantiate Ring-LWE 421

Search Attack. We now describe the details of the attack on search, focusing
on the case q = R for simplicity.3 This generalizes the attack from [9], and gives
a simpler analysis with the same ultimate results (see below for a comparison,
and Sect. 4 for concrete examples). Let B = (bj)j be a fixed Z-basis of R for
which one or more coefficients of ψ do not wrap around, i.e.,

Pr
e←ψ

[ej ∈ [− 1
2 , 1

2)] ≈ 0 (1)

for some j, where e =
∑

j ej · bj for ej ∈ R is the unique representation of e
with respect to B. Lemma 4 below shows that for spherical Gaussian error, this
condition holds for the index j of any sufficiently short element of the dual basis
of B.

To perform the attack, as described in Sect. 2.2 we transform each Ring-LWE
sample (a ∈ Rq, b = s · a + e ∈ KR/qR) to n LWE samples

(Aa ∈ Z
n×n
q , bt = stAa + et ∈ (R/qZ)n),

where Aa denotes the matrix of multiplication by a (whose columns are uni-
formly random but maximally dependent), and s, e are respectively the coeffi-
cient vectors of s, e (all with respect to basis B). Now, for each index j for which
Eq. (1) holds, we can with high probability obtain ej ∈ [− 1

2 , 1
2) as the distin-

guished representative of the jth entry of b mod Z. This yields an errorless LWE
sample for the jth column of Aa. Given enough errorless samples, we can solve
for s by standard linear algebra.

Lemma 4. Let D = (dj) be the dual basis of B = (bj), i.e., D = B∨ := (B−1)∗

where B = σ(B), D = σ(D). Then for any r, ε > 0, if

‖dj‖ ≤
(
2r

√
log(2/ε)/π

)−1

then Pre←Dr
[ej ∈ [− 1

2 , 1
2)] ≥ 1 − ε, where e =

∑
j ej · bj for ej ∈ R.

Proof. By definition, the distribution of e, the coefficient vector of e with
respect to B, is B−1 · Dr, where Dr is the spherical Gaussian of parameter r
over H. Therefore, ej is distributed as a Gaussian of parameter s = r · ‖dj‖ ≤
(2

√
log(2/ε)/π)−1. The claim then follows directly by the standard Gaussian

tail bound Prx←Ds
[|x| ≥ t] ≤ 2 exp(−π(t/s)2) for any t ≥ 0.

Comparison with [9]. The authors of [9] also attack search using a reduction to
errorless LWE, but use a different approach for showing that error coefficients are
zero. In brief, they consider the matrix B = σ(B) of the linear transformation
that maps from a basis B (e.g., the power basis B = (1,X, . . . ,Xn−1)) to the
canonical embedding. Using its singular value decomposition, they analyze the
“skewness” of the transformation via its singular values, and the “alignment” of
the basis elements with the singular vectors, to show that certain error coeffi-
cients are usually small. By contrast, the approach described above only needs
to analyze the lengths of the dual vectors, i.e., the rows of B−1.
3 The attack easily generalizes to arbitrary ideal divisors q|qR of not-too-large norm;

we omit the details, because the present form will be enough for our purposes.

422 C. Peikert

4 Insecure Instantiations

In this section we show how the attack framework from Sect. 3 applies to the
concrete insecure Ring-LWE instantiations defined in [10,11,13,14] (among oth-
ers). In all cases, the core reason for the insecurity is that the error distributions
are insufficiently “well spread” relative to the rings, viewed as lattices. (See, e.g.,
Fig. 2.) To prove this formally, it suffices by Lemmas 3 and 4 to demonstrate suf-
ficiently short nonzero elements in the dual ideal q∨ of some ideal divisor q of qR
(possibly q = R itself) whose algebraic norm N(q) is not too large.

We stress that all these insecure instantiations—excepting [13], for which
the following conclusions still apply—are for the “non-dual” version of Ring-
LWE with spherical Gaussian errors relative to R (in the canonical embedding).
By contrast, the definition of Ring-LWE from [16], and the instantiations hav-
ing worst-case hardness, involve spherical errors relative to the dual ideal R∨

(see Sect. 2.2). When the insecure and hard instantiations are transformed to
be directly comparable, the resulting error distributions turn out to have very
different widths and shapes. We return to this point in Sect. 5, where we show
that the hard instantiations are immune to the attacks from Sect. 3.

4.1 Rings Z[X]/(Xn + aX + b)

The instantiations defined in [14] involve rings of the form R = Z[X]/(Xn +
aX + b) for some nonnegative integers a, b, and spherical Gaussian error in the
canonical embedding. The original attacks on these instantiations solved the
decision problem for certain moduli q via (essentially) the distinguishing attack
from Sect. 3.1, using 20 samples. Later work by [9] successfully attacked search
for any modulus q by reduction to errorless LWE, obtaining a 100 % success
probability using only 4–7 samples (depending on the instantiation). The analysis
of [9] relied on the singular values of the embedded power basis elements, and the
alignment of the singular vectors with those embedded powers. Here we use our
simpler analysis in terms of the lengths of dual vectors, following the approach
described in Sect. 3.1, to obtain the same conclusions; see Fig. 1.4

4.2 Prime Cyclotomics

Let the modulus q be a prime integer and let R = Z[ζq] be the qth cyclotomic
ring, where ζq denotes a primitive qth root of unity. It is well known (and easy
to verify) that qR = qq−1 and qR∨ = q, where the ideal q = (1 − ζq)R + qR is
prime and has norm N(q) = q.

In [10, Sect. 6], the authors use (essentially) the approach from Sect. 3.1 to
obtain distinguishing attacks that work in practice for the cases q = 251, 503, 809,

4 A preliminary version of this work incorrectly concluded that for each instantiation,
more than 90% of the coordinates are errorless; this was due to a misinterpretation
of the parameter w from [14, Sect. 9]. We thank an anonymous reviewer for pointing
this out.

How (Not) to Instantiate Ring-LWE 423

f(X) r0 r threshold num. short dj samples

X192 + 4092 8. , .32 × 10−5 29 (15.

X256 + 8190 8. , .01 × 10−5 47 (18.

X128 + 524288X + 524285 8. ,

87 5 440 6

35 8 390 4

00 45 540 7.79 × 10−6 32 (25.

1 %) 7

3 %) 6

0 %) 4

Fig. 1. Analysis of the instantiations from [14], for the power basis B =
(1, X, . . . , Xn−1) and its dual D = (dj). “Threshold” denotes the value
(2r
√

log(4n)/π)−1 from Lemma 4 (for ε = 1/(2n)) for the lengths of the dual vec-
tors dj , below which the jth error coefficient is zero with probability at least 1 − ε.
“Num. short dj” denotes the number (and percentage, out of n) of the dual vectors
whose norms are below the threshold. “Samples” denotes the number of Ring-LWE
samples that suffice to recover the secret via linear algebra on the errorless coefficients.

using q as the ideal divisor of qR. Their experiments work for parameters

r ≤ 1.53 · δR = 1.53
√

q(q−2)/(q−1) < 1.53
√

q.

(Note that this corresponds to a volume-normalized parameter of r0 ≤ 1.53,
which is considered quite small for LWE errors.) We remark that these distin-
guishing attacks are not known to translate to search, because no search-decision
equivalence is known for this choice of parameters.

Our Analysis. The following lemma formally proves why the experiments work,
and additionally implies that search can be solved via errorless LWE for slightly
smaller parameters.

Lemma 5. Let q, R, and q be as above. Then q−1 · (1, ζq, . . . , ζ
q−2
q) is a Z-basis

of q∨, all of whose elements have length
√

q − 1/q.

Two immediate corollaries are that by Lemma 4, we can solve search by
reducing to errorless LWE for, say, r ≤ √

q · π/(4 log(4q)) = Θ(
√

q/ log q); and
by Lemma 3 and the associated distinguisher, we can efficiently solve decision
for any r = O(

√
q).

Proof. Because qR∨ = q, the dual ideal of q is q∨ = q−1R∨ = q−1R, for which
q−1 · (1, ζq, . . . , ζ

q−2
q) is a Z-basis. Because every complex embedding of ζj

q is a
root of unity, we have ‖q−1 · ζj‖ =

√
q − 1/q.

4.3 Quadratic Extensions of Cyclotomics

In [11], the authors consider non-dual Ring-LWE instantiations for certain
quadratic extensions of cyclotomics, namely, R = Z[ζp,

√
d] where ζp denotes

a primitive pth root of unity for an odd prime p, and d > 1 is a square-free
integer that is coprime to p, and is 3 modulo 4. They prove that for appropriate

424 C. Peikert

R

1

X

R∨

d0

d1

Fig. 2. On the left: the canonical embedding L = σ(R) of R = Z[
√

d] for d = 31,
along with a continuous spherical Gaussian distribution of parameter r =

√
d/2, which

corresponds to a volume normalized parameter of r0 := r/ det(L)1/2 = d1/4/(2
√

2).
Observe that discretizing an error term to R using the power basis P = (1, X) usually
results in a coefficient of zero for X. On the right: the dual lattice L∨ (corresponding
to R∨), along with the dual basis D = (d0, d1) of the power basis. Observe that d1 is
very short, which corresponds to the wide gap between integers multiples of X.

moduli, and for spherical Gaussian error of parameter r ≈ √
d, which corresponds

to a volume-normalized parameter of r0 = r/δR ≈ d1/4/
√

p, one can efficiently
solve search by combining a distinguishing attack with known search-decision
equivalences for Galois rings. In addition, their distinguishing attacks work in
practice up to larger parameters r ≈ √

p · d (corresponding to r0 ≈ d1/4), though
no formal analysis was provided to explain why.

Our Analysis. Here we prove that for the same class of rings, and for r ≈√
p · d/ log p (i.e., r0 ≈ d1/4/

√
log p), we can solve search directly by reducing to

errorless LWE, using the approach from Sect. 3.1. (As above, this works for any
choice of modulus q.) Moreover, for any r = O(

√
p · d) we can efficiently solve

decision, and hence search, using the distinguishing attack from Sect. 3.1.
The basic reason why the attacks work on these instantiations is quite simple:

Z[
√

d] has root discriminant ≈ d1/4, but its dual lattice has a very short vector
of length ≈ 1/

√
d. This means that error of parameter r ≈ √

d (i.e., r0 ≈ d1/4)
is still so narrow relative to Z[

√
d] that discretizing yields a zero coefficient;

see Fig. 2. The same goes for the compositum ring Z[ζp,
√

d] ∼= Z[ζp] ⊗ Z[
√

d],
because Z[ζp] has many dual elements whose lengths are essentially the inverse
of the root discriminant.

Lemma 6. For p and d as described above, let B = (1, ζp, . . . , ζ
p−2
p) ⊗ (1,

√
d),

which is a Z-basis of R = Z[ζp,
√

d] ∼= Z[ζp]⊗Z[
√

d]. Then the dual basis D = B∨

has p − 1 elements of length 1/
√

pd.

How (Not) to Instantiate Ring-LWE 425

Due to space restrictions, we defer the proof to the full version. An immediate
corollary is that by Lemma4, we can solve search via errorless LWE for, say,
r =

√
p · d · π/(4 log(8p)). Because R has root discriminant

δR = δZ[ζp] · δ
Z[

√
d] =

√
p(p−2)/(p−1) · (4d)1/2 ≤ √

p · (4d)1/4,

this corresponds to a volume-normalized parameter r0 ≥ (d · π2/64)1/4/
√

log(8p)
= Θ(d1/4/

√
log p). Another corollary is that by Lemma3, we can solve decision for

any r = O(
√

p · d), which corresponds to r0 = O(d1/4).

p d r r0 r = 1.48
√
pd r0

31 4,967 148.5 2.38 580.7 9.30

43 4,871 168.1 2.27 677.3 9.14

61 4,643 189.8 2.15 787.6 8.94

83 4,903 222.0 2.12 944.1 8.99

103 4,951 244.4 2.08 1,056.9 8.98

109 4,919 249.6 2.06 1,083.7 8.95

151 100,447 1,296.2 4.26 5,763.9 18.94

181 100,267 1,400.0 4.20 6,304.9 18.89

Fig. 3. Instantiations of non-dual Ring-LWE for rings R = Z[ζp,
√

d] where: (1) for
spherical error of parameter r = r0 · δR, search can be solved by reducing to errorless
LWE, and (2) for spherical error of parameter r′ = r′

0 · δR, decision (and hence search)
can be solved efficiently using the distinguishing attack. The constant factor 1.48 is
chosen (somewhat arbitrarily) to ensure a Fourier coefficient of at least 10−3 in the
distinguishing attack.

4.4 Subfields of Cyclotomics

In [10, Sect. 5], the authors consider non-dual Ring-LWE instantiations involv-
ing subfields K of cyclotomic fields L = Q(ζm), namely, those that are fixed
pointwise by the automorphisms in some subgroup of the Galois group of L/Q.
Letting R = OK be the ring of integers in K, the instantiations involve spherical
Gaussian error with volume-normalized parameter r/δR = r0 = σ0

√
2π < 3.14

(which is considered somewhat small for LWE errors). The authors’ distinguish-
ing attacks work in practice, and they provide some heuristics as potential expla-
nations, but no formal analysis.5

5 We remark that the ring dimensions in these instantiations are all at most 144, which
is small enough that search is reasonably easy to solve using standard basis-reduction
techniques. Here we restrict our attention to the class of attacks from Sect. 3.

426 C. Peikert

Our Analysis. For the sub-cyclotomic rings R considered in [10, Sect. 5], it turns
out that the dual ideal R∨ contains many rather short nonzero elements, relative
to the root discriminant δR. By Lemma 3, this implies an efficient distinguishing
attack on non-dual Ring-LWE for narrow enough spherical Gaussians, which
in particular includes the parameters studied in [10]. The attack works for any
choice of the modulus q, at least for continuous error.

Due to space restrictions, we defer all the details to the full version.

5 Invulnerable Instantiations

In this section we give sufficient conditions that make a Ring-LWE instantiation
provably immune to all the attacks described in Sect. 3. By “immune” we mean
that the attacks perform no better than known attacks (e.g., [5,6]) against plain
LWE when instantiated to have worst-case hardness, i.e., with Gaussian error
of parameter r ≥ 2

√
n. In particular, each attack’s running time divided by

its advantage is at least 2Ω(n), in the typical case of polynomially bounded
modulus q = poly(n).

We focus on instantiations that satisfy, or only “almost” satisfy, the hypothe-
ses of the “worst-case hardness of search” theorem from [16, Sect. 4]. We show
that any such instantiation, in any number field, satisfies the sufficient condi-
tions, and is therefore immune to the attacks.

5.1 Class of Instantiations

Throughout the section, we consider instantiations of the “dual” Ring-LWE
problem (Definition 3 and [16, Sect. 3]) for the ring of integers R in a number
field K of degree n (over Q), with a continuous, spherical Gaussian error distri-
bution ψ = Dr over KR for some r > 0. Recall from Sect. 2.2 that in this form
of Ring-LWE,

s ∈ R∨
q := R∨/qR∨ and a ∈ Rq := R/qR,

so s ·a ∈ R∨
q , and we have “noisy” products b = s ·a+e ∈ KR/qR∨ where e ← ψ.

For showing invulnerability to attacks, using continuous rather than dis-
crete error yields stronger results that immediately transfer to the discrete set-
ting. This is because the attacker can always discretize continuous samples, and
thereby the underlying error, on its own if it so desires.6 We also note that all
the results in this section apply (tautologically) to any equivalent form of Ring-
LWE, e.g., the “tweaked” form that replaces R∨ with R. For illustration, we
depict some of these forms later in the section.

6 More precisely, this argument applies to any discretization � · � : KR → R∨ for which
�z + e� = z + �e� for any z ∈ R∨ and e ∈ KR, which is the case for any standard
method. See [17, Sect. 2.6] for further details.

How (Not) to Instantiate Ring-LWE 427

Invulnerability condition. We will show that a sufficient condition for invulner-
ability to the attacks from Sect. 3 is

r ≥ 2. (2)

While at first glance this bound may appear very small, remember that it should
be compared against the high “density” of R∨, and in this respect the error is
actually quite well spread relative to R∨. This will become apparent in the
analysis and figures below.

We remark that Condition (2) is actually a bit weaker than what is required
by [16, Theorem 4.1] (worst-case hardness of search). Specifically, the theorem
requires r ≥ 2 ·ω(

√
log n), and moreover, it requires the search algorithm to work

for any elliptical Gaussian error distribution whose parameter in each coordinate
(of the canonical embedding) is bounded by r. These conditions may be artifacts
of the proof technique, but in any case, they certainly require the attacker to
succeed for spherical Gaussian error of some parameter r ≥ 2, which is the case
we study here.

5.2 Invulnerability to Attacks

Here we consider the two classes of attack described in Sect. 3.1: reducing to plain
LWE, and reducing modulo an ideal divisor of qR. We prove that Condition (2)
renders our class of instantiations invulnerable to both kinds of attack. Both
analyses rely on the following standard fact about ideal lattices, which is an
immediate consequence of the arithmetic mean-geometric mean inequality.

Lemma 7. For any fractional ideal I in a number field K of degree n,

λ1(I) ≥ √
n · N(I)1/n.

Reduction to LWE. As described in Sect. 2.2, this attack simply converts each
Ring-LWE sample to n plain-LWE samples, and attempts to solve the resulting
LWE instance. We emphasize that the attacker may use arbitrary Z-bases of R
and R∨ to perform the transformation. More specifically, given each Ring-LWE
sample

(a, b = s · a + e) ∈ Rq × KR/qR∨

where e ← Dr, we transform it to n LWE samples

(Aa,b = stAa + et),

where b ∈ (R/qZ)n and e ∈ R
n are respectively the coefficient vectors of b ∈

KR/qR∨ and e ∈ KR (with respect to the chosen basis of R∨), and Aa ∈ Z
n×n
q

is the matrix of multiplication by a ∈ Rq with any element of R∨
q (with respect

to the chosen bases of R,R∨).
The following shows that the entries of the resulting error vector e are Gaus-

sians of parameter at least 2
√

n, which is the exactly the lower bound from the
worst-case hardness theorems for plain LWE [23,25].

428 C. Peikert

Theorem 1. For any Z-basis B∨ = (b∨
j) of R∨ used in the above reduction,

each entry of e is a continuous Gaussian of parameter at least r
√

n ≥ 2
√

n.

Proof. Let B = (bj)j = (B∨)∨ be the ordered Z-basis of R that is dual to B∨,
i.e., σ(B)∗ = σ(B∨)−1. Because e ∈ R

n is the coefficient vector of e ∈ KR with
respect to basis B∨, by definition we have

e = σ(B∨)−1 · σ(e) = σ(B)∗ · σ(e).

Now because B ⊆ R is a Z-basis of R, all its elements are nonzero, so ‖σ(bj)‖ ≥√
n by Lemma 7. Because the jth row of σ(B)∗ is σ(bj)∗, the jth entry of e is a

continuous Gaussian of parameter r‖σ(bj)‖ ≥ r
√

n ≥ 2
√

n, as claimed.

We point out that while the Gaussian entries of e have large width, they are
not necessarily independent. It follows from the above proof that e is distrib-
uted as a Gaussian with covariance matrix r2 · σ(B)∗ · σ(B)/(2π). For example,
when B = (1, ζp, . . . , ζ

p−2
p) is the power basis of the pth cyclotomic for prime p,

the covariance matrix of e is r2 · (pIp−1 − 1)/(2π). Whether there are better
attacks for this or other regimes that arise from reducing Ring-LWE to LWE is
an interesting open question.

Reducing Modulo an Ideal. This attack uses an ideal divisor q of qR to
attempt to solve decision-Ring-LWE, analogously to the attack described in
Sect. 3.1. More specifically, we are given independent samples (ai ∈ Rq, bi ∈
KR/qR∨), which are distributed either uniformly or according to the Ring-LWE
distribution with some secret s ∈ R∨

q . We first reduce the samples to

(a′
i = ai mod q , b′

i = bi mod qR∨) ∈ R/q × KR/qR∨,

and for each of the N(q) candidate reduced secrets s′ ∈ R∨/qR∨, we test whether
the b′

i − a′
i · s′ ∈ KR/qR∨ are non-uniform. The exact implementation of this

test is not important for our purposes, because we will show that no test can
meaningfully succeed.

For the attack to work, the reduced error distribution Dr mod qR∨ needs
to have noticeable statistical distance from uniform; otherwise, the b′

i − a′
i · s′

are close to uniform regardless of the form of the original samples. However,
the following theorem shows that for any ideal q whose norm is not too large,
and for error satisfying Condition (2), the statistical distance from uniform is
exponentially small.

Theorem 2. Let q ⊆ R be any ideal of norm N(q) ≤ 2n, and let the error
parameter r ≥ 2 satisfy Condition (2). Then the reduced error distribution
Dr mod qR∨ is within statistical distance 2−2n of uniform over KR/qR∨.

Proof. The dual ideal of qR∨ is (qR∨)∨ = q−1, which has norm N(q−1) =
N(q)−1 ≥ 2−n. By Lemma 7, its minimum distance is

λ1(q−1) ≥ √
n · N(q−1)1/n ≥ √

n/2.

Then by Lemma 1, the smoothing parameter of qR∨ for ε = 2−2n is ηε(qR∨) ≤√
n/λ1(q−1) ≤ 2 ≤ r. The theorem then follows by Lemma 2.

How (Not) to Instantiate Ring-LWE 429

In the full version, we study some example invulnerable instantiations in
detail, and directly contrast them with related insecure instantiations that were
studied in Sect. 4, by “tweaking” the dual form to an equivalent non-dual form.
In all cases, the error distributions of the invulnerable instantiations are wider
by Ω(

√
p) to Ω(p3/2) factors in each coordinate of the canonical embedding

(where p is the index of the cyclotomic used in the instantiation), and also have
very different non-spherical shapes.

Acknowledgments. I thank Léo Ducas, Kristin Lauter, Vadim Lyubashevsky, Oded
Regev, and Katherine Stange for many valuable discussions and comments on topics
related to this work. I also thank the anonymous reviewers for helpful comments, and
especially for pointing out a misinterpretation of the parameters in [14, Sect. 9].

References

1. Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the short-
est vector problem in 2n time using discrete Gaussian sampling. In: STOC, pp.
733–742 (2015)

2. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: STOC, pp. 601–610 (2001)

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: USENIX Security Symposium (2016, to appear)

4. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 1–20.
Springer, Heidelberg (2013)

5. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011)

6. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

7. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: IEEE Symposium
on Security and Privacy, pp. 553–570 (2015)

8. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC, pp. 575–584 (2013)

9. Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of Ring-LWE
revisited. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 147–167. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 6

10. Chen, H., Lauter, K., Stange, K.E.: Attacks on search RLWE. Cryptology ePrint
Archive, Report 2015/971 (2015). http://eprint.iacr.org/

11. Chen, H., Lauter, K., Stange, K.E.: Vulnerable galois RLWE families and improved
attacks. Cryptology ePrint Archive, Report 2016/193 (2016). http://eprint.iacr.
org/

12. Crockett, E., Peikert, C.: Λ◦λ: a functional library for lattice cryptography. Cryp-
tology ePrint Archive, Report 2015/1134 (2015). http://eprint.iacr.org/

13. Eisenträger, K., Hallgren, S., Lauter, K.: Weak instances of PLWE. In: Joux, A.,
Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 183–194. Springer, Heidelberg
(2014)

http://dx.doi.org/10.1007/978-3-662-49890-3_6
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

430 C. Peikert

14. Elias, Y., Lauter, K.E., Ozman, E., Stange, K.E.: Provably weak instances of Ring-
LWE. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO
2015. LNCS, vol. 9215, pp. 63–92. Springer, Heidelberg (2015)

15. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

16. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43:1–43:35 (2013). Preliminary version in Eurocrypt 2010

17. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for Ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013)

18. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

19. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

20. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007). Preliminary version in FOCS
2004

21. Micciancio, D., Regev, O.: Lattice-based cryptography. Post Quantum Cryptogra-
phy, pp. 147–191. Springer, Heidelberg (2009)

22. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for
most lattice problems based on Voronoi cell computations. In: STOC, pp. 351–358
(2010)

23. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC, pp. 333–342 (2009)

24. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Heidelberg (2014)

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009). Preliminary version in STOC 2005

Pen and Paper Arguments for SIMON
and SIMON-like Designs

Christof Beierle(B)

Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Bochum, Germany
christof.beierle@rub.de

Abstract. In this work, we analyze the resistance of Simon-like ciphers
against differential attacks without using computer-aided methods. In
this context, we first define the notion of a Simon-like cipher as a gener-
alization of the Simon design. For certain instances, we present a method
for proving the resistance against differential attacks by upper bounding
the probability of a differential characteristic by 2−2T+2 where T denotes
the number of rounds. Interestingly, if 2n denotes the block length, our
result is sufficient in order to bound the probability by 2−2n for all full-
round variants of Simon and Simeck. Thus, it guarantees security in
a sense that, even having encryptions of the full codebook, one can-
not expect a differential characteristic to hold. The important difference
between previous works is that our proof can be verified by hand and
thus contributes towards a better understanding of the design. However,
it is to mention that we do not analyze the probability of multi-round
differentials.

Although there are much better bounds known, especially for a high
number of rounds, they are based on experimental search like using
SAT/SMT solvers. While those results have already shown that Simon
can be considered resistant against differential cryptanalysis, our argu-
ment gives more insights into the design itself. As far as we know, this
work presents the first non-experimental security argument for full-round
versions of several Simon-like instances.

Keywords: Simon · Simeck · Differential cryptanalysis · Feistel

1 Introduction

Once a new cipher is proposed, the designers are expected to provide security
arguments, at least against the most important and powerful attack vectors
known, that are differential [12] and linear cryptanalysis [22]. Thus, any new
design itself should allow for an, if possible simple, security argument. Nowadays,
a majority of block ciphers is based on Feistel- and Substitution-Permutation
(SP) constructions. As the name already implies, SP designs iterate both substi-
tution and permutation operations. While the latter is a linear function (linear
layer), the substitution layer consists of highly non-linear components (e.g. S-
boxes). The alternation of those layers is responsible for both offering confusion
and diffusion [26].
c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 431–446, 2016.
DOI: 10.1007/978-3-319-44618-9 23

432 C. Beierle

This separation into linear and non-linear components offers the advantage
of analyzing the structure more easily. Two design principles are common, that
are the wide-trail strategy [16] and the use of computer-aided methods. In the
wide-trail strategy, which was introduced by Daemen and Rijmen, the idea is
that the design of the linear layer is related to coding theory, as its construction
is based upon a linear code over GF (2m) with high (and often optimal) minimum
distance. Thereby, the parameter m defines the word size of the S-box. As the
minimum distance indicates the number of active S-boxes over two consecutive
rounds, it contributes to the resistance against differential and linear crypt-
analysis in a provable (by pen and paper) way. A more clever choice of the linear
layer even allows for arguments on four (resp. eight, sixteen,...) rounds using
the so-called superbox (resp. megabox, gigabox, etc.) structure, as for example
described in [8,9,17]. In fact, the Rijndael cipher [18], which was standardized as
the Advanced Encryption Standard in 2000 [25], was designed according to this
principle. The advantage of the wide-trail strategy is one reason why so many
AES-like designs occurred in the last years. It also emphasizes that designers pre-
fer well-understood principles. While for AES-like ciphers counting the number
of active S-boxes can be somehow done independently of the choice of the S-box,
some other strategies use specific properties of the non-linear components. For
instance, the designers of Present showed that an arbitrary five-round differen-
tial characteristic has at least 10 active S-boxes under certain assumptions [14].

The other strategy is measuring the security using computer-aided search
methods. For instance, one can model the propagation of differential and lin-
ear characteristics as a mixed-integer linear programming problem [8,23,29].
Examples of a design which uses experimental arguments are Keccak [10] and
Serpent [11]. However, the bounds obtained with this approach are not veri-
fiable without a machine and do not contribute significantly to a better under-
standing of the design itself.

Basically, in both strategies, (if the non-linear component is not too weak)
the design of the linear layer is the crucial step when it comes to providing secu-
rity against differential and linear attacks. While a single round can often be
analyzed quite easily, the analysis of the linear layer w.r.t. diffusion properties
usually has to be done using a more complex argument over multiple rounds.
Unfortunately, besides the wide-trail strategy, not many constructions are known
that guarantee security using pen and paper arguments. Especially, almost every
multi-round argument uses some sort of superbox (resp. megabox, etc.) struc-
ture. One therefore may seek for alternative design principles. Especially for lots
of Feistel designs, the constructions might be less clear and less understood.
However, there are some fundamental results on bounding the differential and
linear behavior [24]. There are also Feistel designs which consist of SP-type round
functions [27,28] combining the advantages of the Feistel construction and the
simple arguments of the wide-trail strategy.

In contrast to a scientific design process, the NSA recently presented the
Simon family of lightweight block ciphers [6]. Besides its specification, no argu-
ments on the security are provided. Especially since Simon is an innovative

Pen and Paper Arguments for SIMON and SIMON-like Designs 433

Feistel cipher, its design is harder to analyze. Besides its non-bijective round
function and combining the branches after every round, the difficulties are caused
by the bitwise structure. Since the design choice was left unclear, one seeks for
a deeper understanding of the cipher.1

Related Work. The appearance of the Simon family of block ciphers [6] in the
cryptology eprint archive inspired the cryptographic community taking further
investigations on the possible design rationale. Therefore, several cryptanalytic
results followed. For instance, see [1–5,13,15,21,30–32] for a selection. They are
mostly based on experimental search.

At CRYPTO 2015, Kölbl, Leander and Tiessen pointed out some interesting
properties of Simon-like round functions [20]. These observations were then
used for a further analysis of the differential and linear behavior over multiple
rounds. Although the analysis of the round function was done in a mathematical
rigorous manner, the multi-round behavior was derived using a computer-aided
approach. As one result, the rotation constants of Simon turned out to be in
some sense not optimally chosen. Inspired by the design, Yang et. al. proposed
the Simeck family of lightweight block ciphers at CHES 2015 [33]. It can be seen
as a Simon-like cipher using different rotation constants in its round function
and a key schedule inspired by Speck [6].

Recently, the designers of Simon published a follow-up paper at the NIST
lightweight workshop covering some implementation aspects [7]. However, the
authors gave no additional insights into the design choice from a cryptanalytic
point of view.

Contribution. After describing a generalization of the Simon design by decou-
pling the round function into a linear and a non-linear component, we show that
the structure of a Simon-like design allows for a proof on the resistance against
differential attacks under certain assumptions. The question whether the proof
works depends on the interaction between these two components. If the non-
linear part ρ is of the form ρ(x) = (x ≪ a) ∧ (x ≪ b), it can be in general
formulated as a property of the linear layer. A sufficient condition is that the
linear layer has a branch number of at least 11. Since this is not the case for
Simon and Simeck, we consider these ciphers separately. In particular, for all
instantiations of Simon and Simeck, we are able to upper bound the probability
of any differential characteristic by 2−2n where 2n denotes the block length. We
show this in detail for the example of Simon.

In clear distinction to prior work such as [20], our argument is a formal
proof covering multiple rounds and can thus be verified without experimental
tools. In our approach, we use the well-known property of the Simon-like round

1 As we only focus on the probabilities of differential characteristics and do not provide
a full security analysis, this work should not be seen as a recommendation for using
Simon. Some design choices are still unclear. To mention is the key schedule as one
example.

434 C. Beierle

function that the set of possible output differences Uα defines an affine subspace
depending on the input difference α and that the differential probability highly
depends on the Hamming weight of α. The main idea is that we extend the
analysis of the round function to the cases where α has a Hamming weight
equal to 2 and consider the propagation of Hamming weights over the Feistel
structure.

Figure 1 illustrates the bounds proven with our method and, as a comparison,
the bounds obtained from experimental search described in [20, Sect. 5.2] for two
instances of Simon. It is to mention that, although our bounds are worse than the
experimental results, they are still much better than the bounds one obtains by
trivially multiplying the worst-case probabilities for every round. Moreover, since
the development of the experimental bounds becomes more complex for a high
number of rounds, we believe that one cannot expect to significantly improve
upon our theoretical result by using a simple argument. Such an argument will
likely cover lots of rounds.

2 4 6 8 10 12 14 16

0

10

20

30

40

50

number of rounds

−
lo

g
2
p

Simon48

Simon32

our bound

trivial bound

Fig. 1. Comparison of the experimental bounds for Simon32 and Simon48 as described
in [20, Sect. 5.2] and our provable bounds.

2 Preliminaries

Elements in the vector space F
n
2 are denoted with bold letters. The all zero vec-

tor will be denoted by 0 and the all one vector by 1, respectively. We use wt(x)
to denote the Hamming weight of a vector x = (x0, x1, . . . , xn−1). Moreover, a
superscript notation is used for describing the index of a component. For exam-
ple, the element (0, . . . , 0, y(i), 0, 0, . . . , 0) denotes the vector (x0, x1, . . . , xn−1)
with xi = y and xk = 0 for all k �= i. The Boolean operations, bitwise AND,

Pen and Paper Arguments for SIMON and SIMON-like Designs 435

OR, NOT and bitwise XOR, are denoted by ∧,∨, and ⊕, respectively. A cyclic
rotation (with offset r) is denoted by ≪ r, if the rotation is to the left, and
by ≫ r, if the rotation is to the right.

Differential Cryptanalysis. In the following, we recall the basic definitions in
differential cryptanalysis. We use the notion of XOR differences in this context.

Definition 1. For a vectorial function f : F
n
2 → F

m
2 , the probability of the

differential α
f→ β is defined as

P (α
f→ β) :=

|Δf (α,β)|
2n

where
Δf (α,β) := {x ∈ F

n
2 | β = f(x) ⊕ f(x ⊕ α)}.

If fi denotes the i-th round function of an iterated cipher, a valid T -round
differential characteristic C : α0

f1→ α1
f2→ . . .

fT→ αT has |Δfi
(αi−1,αi)| �= 0 for

all 1 ≤ i ≤ T . Assuming that the probabilities of all one-round differentials are
independent, we compute the probability of the characteristic C as

P (C) =
T∏

i=1

P (αi−1
fi→ αi).

Note that for a key-alternating cipher, this holds under the assumption of
independent round-keys. When designing a block cipher, one would like to avoid
the existence of (multi-round) differentials with high probability. Since in general,
computing the maximum probability of multi-round differentials is not a trivial
task, one concentrates on upper bounding the probability of a characteristic
instead. If n denotes the block length, a typical approach is to estimate the
number of rounds T ′ such that P (C) ≤ 2−n for any T ′-round characteristic C
and specify the number of rounds of the primitive as T = T ′+κ with a reasonable
security margin κ.

A Remark on the Feistel Construction. We point out a useful property
of the Feistel construction in the following. Recall that for a vectorial function
f : Fn

2 → F
n
2 and k ∈ F

n
2 , we define a Feistel round function as

F f
k : Fn

2 × F
n
2 → F

n
2 × F

n
2

(x,y) 	→ (f(x) ⊕ y ⊕ k,x).

Thereby, f is called the Feistel function (or simply f-function) and k is called
the round key. For simplicity, we will use an identical Feistel function f in every
round.

A difference within the Feistel cipher is denoted as (γ, δ) describing the left
and the right branch, respectively. Lemma 1 presents a general observation on

436 C. Beierle

the Feistel construction. It states that, having upper bounds on the probability
for all differential characteristics starting with (0,α) and ending with (0,β), one
can easily bound the probability of any characteristic.

Lemma 1. For t ≥ 1, let for all non-zero differences α,β, the differential prob-
ability of any t-round characteristic starting with (0,α) and ending with (0,β)
be upper bounded by p(t).

Let further p(0) := 1 and q := maxα�=0,β P (α
f→ β). Then,

P (C) ≤ max
k≤T

p(k)qT−k−1

for any non-trivial T -round characteristics C with T > 0.

Proof. For a given T -round characteristic C = (γ0, δ0)
F f

→ . . .
F f

→ (γT, δT), it

holds that P(C) =
∏T−1

i=0 P (γi
f→ γi+1) assuming independent probabilities.

The proof is now split into two cases.

(i) Let’s assume that there exist distinct i, j such that γi = γj = 0. Then one
can choose w.l.o.g two distinct indices i′, j′ such that γi′ = γj′ = 0 and
γk �= 0 for all k < i′ and all k > j′. Now, by definition

P((γi′ , δi′)
F f

→ . . .
F f

→ (γj′ , δj′)) ≤ p(j′ − i′).

Since γj′ = 0 and all other γk �= 0, we have

P(C) ≤ p(j′ − i′)
i′−1∏
k=0

P (γk
f→ γk+1)

T−1∏
k=j′+1

P (γk
f→ γk+1)

≤ p(j′ − i′)qi′
qT−(j′+1) = p(j′ − i′)qT−(j′−i′)−1.

(ii) If γi = 0 for at most one i, then

∏
k<T

P (γk
f→ γk+1) ≤

∏
k �=i

P (γk
f→ γk+1) ≤ qT−1 = p(0)qT−1. ��

As Lemma 1 is a general statement for all Feistel ciphers, we give a simplified
version in Sect. 3 as Corollary 1. It covers the special case of a Simon-like round
function, which will be defined next.

SIMON and SIMON-like Ciphers. We generalize the design of the Simon
block cipher to the Simon-like structure. Figure 2 illustrates this construction.
For the Simon-like design, one requires a quadratic, rotational invariant function
as the non-linear component. A vectorial function f : Fn

2 → F
n
2 is called rotational

invariant iff f(x ≪ r) = (f(x) ≪ r) for all elements x ∈ F
n
2 and all offsets r.

This leads to the following definition.

Pen and Paper Arguments for SIMON and SIMON-like Designs 437

Definition 2. A Simon-like f -function is composed of an F2-linear function θ
and a degree-2 function ρ of the form ρ(x) = ϑ1(x) ∧ ϑ2(x) with F2-linear and
rotational invariant ϑi as

fS : Fn
2 → F

n
2 ,x 	→ ρ(x) ⊕ θ(x).

In this context, a Simon-like cipher uses such an f-function in a Feistel
construction.

Note that the rotational invariance is, in this general case, not required for
the linear part θ.

≪ 8

≪ 1

≪ 2

∧

kt

ϑ1

ϑ2

θ

∧
ρ

kt

Fig. 2. Illustration of the Simon and the generalized Simon-like round function

3 Analysis of Differential Characteristics

In this section, we analyze the propagation characteristics of differences over
several rounds under certain assumptions. We rely on the fact that a single
Simon-like round is quite well understood. Let

Lα(x) := (ϑ1(x) ∧ ϑ2(α)) ⊕ (ϑ1(α) ∧ ϑ2(x)).

We first recall the observation that for any input difference α ∈ F
n
2 into a

Simon-like round function fS , the output difference lies in the affine subspace
Uα := Im Lα + fS(α). This is formally stated in Theorem 1.

Theorem 1. (Kölbl, Leander, Tiessen [20]). For an input difference α ∈ F
n
2

into fS, the set of possible output differences defines an affine subspace Uα s.t.
P (α

fS→ β) �= 0 if and only if β ∈ Uα. Defining dα := dim ImLα it holds

β ∈ Uα ⇔ β ⊕ fS(α) ∈ Im Lα

and P (α
fS→ β) = 2−dα for all valid differentials over fS.

438 C. Beierle

Since the probability is the same for all output differences β in this subspace,
we simply write pα for P (α

fS→ β) with β ∈ Uα. For all output differences which
are not elements in this subspace, the probability will be zero.

Because of the rotational invariance, it holds that ImL(α≪r) = (Im Lα ≪ r)
with p(α≪r) = pα. One can thus restrict the consideration to a single represen-
tative of this equivalence class if only one round function is analyzed.

3.1 Restriction to ϑ1(x) = (x ≪ A) and ϑ2(x) = (x ≪ B)

This describes the most simple structure of a generalized Simon-like cipher. For
the θ step defined as θ(x) = (x ≪ c), one obtains Simon and Simeck as a
special case using (8, 1, 2), resp. (5, 0, 1), as a choice for the rotation constants
(a, b, c). The following lemma states that we can obtain an upper bound on
the differential probability over fS depending on the Hamming weight of the
input difference. While a weaker version of Lemma 2 can be deduced from [20,
Theorem 3, p. 9], we improved the bound from [20] if the Hamming weight of
the input difference equals 2. Although this improvement seems to be of little
importance at a first glance, it is exactly this tighter bound which allows us to
prove the main result. Thus, Lemma 2, and especially case (2), is one of the core
components in our proof of the upper bound on the probability of differential
characteristics.

Lemma 2. Let ϑ1(x) = (x ≪ a) and ϑ2(x) = (x ≪ b). Assume that n ≥ 6 is
even and gcd(a − b, n) = 1. Let α be an input difference into fS. Then, for the
differential probability over fS it holds that

(1) If wt(α) = 1, then pα ≤ 2−2.
(2) If wt(α) = 2, then pα ≤ 2−3.
(3) If wt(α) �= n, then pα ≤ 2−wt(α).
(4) If wt(α) = n, then pα ≤ 2−n+1.

Proof. Without loss of generality one can assume that b = 0 and a < n
2 , a �= 0

because of the rotational invariance and since a−b and n are coprime. According
to [20, Theorem 3, p. 9], it is pα = 2−dα with

dα =

{
wt

(
((α ≪ a) ∨ α) ⊕ (α ∧ (α ≪ a) ∧ (α ≪ 2a))

)
iff wt(α) �= n

n − 1 iff wt(α) = n
.

Note that dα = dim Im Lα where

Lα(x) = ((x ≪ a) ∧ α) ⊕ ((α ≪ a) ∧ x) .

(1), (3) and (4) follow directly from the above formula. In order to show (2), we
construct three linearly independent elements in ImLα.

Let wt(α) = 2 with α0 = αi = 1. Again, w.l.o.g. let i ≤ n
2 , i �= 0 since every

α with a Hamming weight of two is rotational equivalent to that one assumed.

Pen and Paper Arguments for SIMON and SIMON-like Designs 439

Now, consider the following three elements x,y, z:

x = (0, . . . , 0, 1(a), 0, . . . , 0) ⇒ Lα(x) = (1(0), 0, . . . , 0, α
(a)
2a , 0, . . . , 0)

y = (0, . . . , 0, 1(a+i), 0, . . . , 0) ⇒ Lα(y) = (0, . . . , 1(i), 0, . . . , 0, α
(i+a)
i+2a , 0, . . . , 0)

z = 1 ⇒ Lα(z) = (α ≪ a) ⊕ α

Clearly, Lα(x) and Lα(y) are linearly independent. To show that Lα(z) /∈
span{Lα(x), Lα(y)}, consider the two cases

(i) αi+2a = 0 : Then Lα(y)i+a = 0. Since Lα(z)n−a = 1 and n − a /∈ {0, i, a},
the linear independence follows.

(ii) αi+2a = 1 : Then i + 2a mod n ∈ {0, i} because of the construction of α.
However, since 2a �= 0 mod n, it follows that i + 2a = 0 mod n. Hence,
2a = n − i. Now 2a �= i, because otherwise n = 4a which is contradictory to
gcd(a, n) = 1 (since n ≥ 6). Thus Lα(x)a = 0. In addition, i �= a because
otherwise 3a = 0 mod n which is also contradictory to gcd(a, n) = 1. Now,
Lα(z)i−a mod n = 1 and i − a /∈ {0, i, i + a}. ��
In all cases, we thus have pα ≤ 2−2 if α �= 0 and p0 = 1. The interesting

property is the fact that pα ≤ 2−wt(α)−1 if α has a Hamming weight of 2. This is
what we make use of in the following arguments. The basic idea is to guarantee
enough transitions with a probability ≤ 2−3 before a zero input difference into
fS occurs (then p0 = 1). This allows us to catch up the factor 2−2 that we lose for
the zero input difference. Otherwise, if we were not able to guarantee the tighter
bound described in Lemma 2 (2), the input difference into fS of every second
round might be equal to zero in the worst case and our argument would only
provide the trivial bound of 2−T over T rounds. See also Fig. 1 for an illustration.
For the formal proof, we give Corollary 1 at first. It is an implication of Lemma 1
for the Simon-like f function.

Corollary 1. Let for all non-zero differences α,β and all t ≥ 1 the differential
probability of any t-round characteristic starting with (0,α) and ending with
(0,β) be upper bounded by 2−2t. Let further pα ≤ 2−2. Then,

P (C) ≤ 2−2T+2

for any non-trivial T -round characteristics C with T > 0.

Proof. With the notation in Lemma 1, it is p(t) = 2−2t and q = 2−2. Thus,

P (C) ≤ max
k≤T

p(k)qT−k−1 = max
k≤T

2−2k2−2T+2k+2 = 2−2T+2. ��

Thus, in order to prove an upper bound on the probability of a differential
characteristic of 2−2T+2 we only have to concentrate on t-round characteristics of
the form (0,α) → · · · → (0,β) and prove an upper bound of 2−2t for all of these.
We further can restrict ourselves to the shortest characteristics of this form, e.g.
γi �= 0 for all intermediate γi. The reason is that one can easily concatenate
these short characteristics to longer ones for which the property holds as well.

440 C. Beierle

We have to do the analysis for a specific choice of the linear mapping θ. As a
more general case, Theorem 2 formulates a sufficient condition for the argument
to work. For a linear mapping θ : Fn

2 → F
n
2 , the differential branch number is

defined as the minimum number of active bits in the differential (α θ→ θ(α)),
formally

Bθ := min
α�=0

{wt(α) + wt (θ (α))} .

Theorem 2. Let Bθ ≥ 11. Then for any distinct a, b and any n fulfilling the
properties of Lemma 2, the probability of a T -round differential characteristic is
upper bounded by 2−2T+2.

Proof. Fix a t-round characteristic of the form

(0,α) → (γ1 = α,0) → (γ2, δ2) → · · · → (γt−1, δt−1) → (0,β)

with γi �= 0 for all i ∈ {1, . . . , t − 1}. Thus, we have pγi
≤ 2−2 for all i. Since

γ1 = α and (0,α) 1→ (α,0) holds with certainty (p0 = 1), we have to show that
either pγi

≤ 2−4 for at least one i or that pγi
, pγj

≤ 2−3 for at least two distinct
indices i, j. In other words, one has to make sure to gain a factor of 2−2 within
the characteristic. In order to show this, we make use of Lemma 2. If wt(α) ≥ 4,
we are clearly done since pγ1 = pα ≤ 2−wt(α). We thus have to distinguish 3
cases.

(i) wt(α) = 1: Because of the branch number, it is wt(θ(x) ⊕ θ(x ⊕ α)) ≥ 10.
Since further wt(ρ(x) ⊕ ρ(x ⊕ α)) ≤ 2, we have wt(γ2) ≥ 8 and pγ2 ≤ 2−4.

(ii) wt(α) = 2: It is wt(θ(x) ⊕ θ(x ⊕ α)) ≥ 9 and wt(ρ(x) ⊕ ρ(x ⊕ α)) ≤ 4.
Thus, wt(γ2) ≥ 5 and therefore pγ2 ≤ 2−4.

(iii) wt(α) = 3: We already have pα ≤ 2−3. Since wt(θ(x) ⊕ θ(x ⊕ α)) ≥ 8 and
wt(ρ(x) ⊕ ρ(x ⊕ α)) ≤ 6, it is wt(γ2) ≥ 2 and therefore pγ2 ≤ 2−3.

See also Fig. 3 for the propagation of the differential Hamming weights. ��
We recall that θ does not have to be rotational invariant. Nevertheless, having

a branch number of at least 11 is a quite restrictive property on a linear layer
and in fact, for n = 16, there does not exist such a linear mapping. The reason
is that the minimum distance d of any [32, 16, d] code over F2 is at most 8 [19].
However, for n ∈ {24, 32, 48, 64}, such a linear mapping θ exists as one can also
deduce from [19]. As the previous argument is more generic, we investigate the
linear part of Simon in more detail in the rest of the paper.

3.2 Obtaining the Upper Bound for SIMON and Simeck

In the following, we consider the linear layer θ(x) = (x ≪ c) which has a branch
number of only 2. Choosing (8, 1, 2) for the rotation constants (a, b, c), we obtain
the round function of Simon. Theorem 3 states the same bound as above for all
variants of Simon. Note that the results are dependent on the specific choice of

Pen and Paper Arguments for SIMON and SIMON-like Designs 441

θ

ρ

α 0
1 0

≤2

≥10

γ2 δ2 = α
≥8

θ

ρ

α 0
2 0

≤4

≥9

γ2 δ2 = α
≥5

θ

ρ

α 0
3 0

≤6

≥8

γ2 δ2 = α
≥2

Fig. 3. Propagation of the differential Hamming weight for wt(α) ∈ {1, 2, 3}.

the rotation constants, but can be proven for other choices in a similar way. Of
course, it does not hold for all possible a, b and c. For example, if c = a or c = b,
one obtains the trivial bound of 2−t since

(
(1, 0, . . . , 0) 0

) → (
0 (1, 0, . . . , 0)

) → (
(1, 0, . . . , 0) 0

)

would be a valid two-round iterative characteristic with probability 2−2.

Theorem 3 (Bounds for Simon). Let n ∈ {16, 24, 32, 48, 64} and let θ(x) =
(x ≪ 2). For the rotation constants a = 8, b = 1, the probability of any T -round
differential characteristic is upper bounded by 2−2T+2.

Proof Again, fix a t-round characteristic of the form

(0,α) → (γ1 = α,0) → (γ2, δ2) → · · · → (γt−1, δt−1) → (0,β)

with γi �= 0 for all i ∈ {1, . . . , t − 1}. We have to show that either pγi
≤ 2−4 for

at least one i or that pγi
, pγj

≤ 2−3 for at least two distinct indices i, j. In order
to show this, Lemma 2 is used several times within this proof. Again, we have to
distinguish 3 cases. Note that for simplicity with indices, we assume rotations
to the right in the following. We use the ∗ symbol to indicate an unknown bit.

(i) wt(α) = 1: Considering the rotational equivalence, let w.l.o.g.

α = (1, 0, . . . , 0).

Recall that we get Uα = Im Lα ⊕ fS(α). Since we assume

fS : x 	→ (x ≫ 8) ∧ (x ≫ 1) ⊕ (x ≫ 2),

we obtain

γ2 = (0, ∗1, 1, 0, 0, 0, 0, 0, ∗2, 0, 0, 0, 0, 0, 0, 0 . . .) ∈ Uα ⊕ 0.

442 C. Beierle

Case 1 (∗2 = 0): Then,2

γ3 = (1, 0, ∗, ∗, 1, 0, 0, 0, 0, ∗, ∗, 0, 0, 0, 0, 0 . . .) ∈ Uγ2 ⊕ α,

γ4 = (0, ∗, ∗†, ∗, ∗, ∗, 1, 0, ∗, 0, ∗, ∗, ∗, 0, 0, 0 . . .) ∈ Uγ3 ⊕ γ2.

If now the weight of γ4 is higher than 1, then pγ3 , pγ4 ≤ 2−3. Thus, let
wt(γ4) = 1. It follows that

γ5 = (1, 0, ∗, ∗, 1, 0, 0, ∗, 1, ∗, ∗, 0, 0, 0, ∗, 0 . . .) ∈ Uγ4 ⊕ γ3

and thus pγ5 ≤ 2−3.

Case 2 (∗2 = 1): Then pγ2 ≤ 2−3 already holds and3

γ3 = (∗‡, 0, ∗, ∗, 1, 0, 0, 0, 0, ∗, ∗, 0, 0, 0, 0, 0 . . .) ∈ Uγ2 ⊕ α.

Again, let w.l.o.g wt(γ3) = 1. It follows that

γ4 = (0, ∗, 1, 0, 0, ∗, 1, 0, 1, 0, 0, 0, ∗, 0, 0, 0 . . .) ∈ Uγ3 ⊕ γ2

and thus pγ4 ≤ 2−3.
(ii) wt(α) = 2: Considering the rotational equivalence, let w.l.o.g.

α = (1, 0, . . . , 0, 1(i), 0, . . . , 0)

with i ≤ n
2 . It follows that already pα ≤ 2−3.

Case 1 (i = 1): Then,

γ2 = (0, ∗, ∗, 1, 0, 0, 0, 0, ∗, ∗, 0, 0, 0, 0, 0, 0 . . .) ∈ Uα ⊕ 0.

Again, let w.l.o.g. wt(γ2) = 1. Then,

γ3 = (1, 1, 0, 0, ∗, 1, 0, 0, 0, 0, 0, ∗, 0, 0, 0, 0 . . .) ∈ Uγ2 ⊕ α

and thus pγ3 ≤ 2−3.

Case 2 (i = 4): Then,

γ2 = (0, ∗, 1, 0, 0, ∗, 1, 0, ∗, 0, 0, 0, ∗, 0, 0, 0 . . .) ∈ Uα ⊕ 0

and pγ2 ≤ 2−3.

2 †: This bit is only unknown if the bitlength is 16 bit (n = 16). Therefore, w.l.o.g. we
assume this bit to be unknown. In the following, we may also consider certain bits
to be unknown if the actual value does not matter for the proof.

3 ‡: Of course, this bit is already equal to 1 if the bitlength n is greater than 16.

Pen and Paper Arguments for SIMON and SIMON-like Designs 443

Case 3 (i �= 1, i �= 4): Then,

γ2 = (∗, ∗, 1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗ . . .) ∈ Uα ⊕ 0.

Again, let w.l.o.g. wt(γ2) = 1. Then,

γ3 = (1, ∗, ∗, ∗, 1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗ . . .) ∈ Uγ2 ⊕ α

and thus pγ3 ≤ 2−3.
(iii) wt(α) = 3: Let w.l.o.g. α = (1, 0, . . . , 1(i), 0, . . . , 1(j), 0, . . . , 0) with i ≥ n

3
because of the rotational invariance. Again, pα ≤ 2−3. Since n ≥ 16, it is
i ≥ 6. We distinguish the following cases:

Case 1 (j �= n − 6, i �= n − 6): Then,

γ2 = (∗, ∗, 1, ∗, ∗, ∗, ∗, ∗, . . . ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗) ∈ Uα ⊕ 0

and for wt(γ2) = 1 we obtain

γ3 = (1, 0, 0, ∗, 1, 0, ∗, ∗, . . . ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗) ∈ Uγ2 ⊕ α

such that pγ3 ≤ 2−3.

Case 2 (i = n − 6): Then,

γ2 = (∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, . . . ∗, ∗, ∗, ∗, 1, ∗, ∗, ∗) ∈ Uα ⊕ 0

if j �= n − 5 and

γ2 = (∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, . . . ∗, ∗, ∗, ∗, ∗, 1, ∗, ∗) ∈ Uα ⊕ 0

if j = n − 5. In both cases, for wt(γ2) = 1 we obtain

γ3 = (1(0), 0, 0, 0, ∗, ∗, 0, 0, . . . 0, 0, 1(i), ∗, ∗, ∗, ∗, ∗) ∈ Uγ2 ⊕ α

such that pγ3 ≤ 2−3.

Case 3 (j = n − 6): Now, we still have to consider the two possibilities
j − i �= 6 and j − i = 6. For the first case, one gets

γ2 = (∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, . . . ∗, ∗, ∗, ∗, 1, ∗, ∗, ∗) ∈ Uα ⊕ 0

and for wt(γ2) = 1,

γ3 = (1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, . . . ∗, ∗, ∗, ∗, ∗, ∗, 1, ∗) ∈ Uγ2 ⊕ α.

If j − i = 6, then,

γ2 = (∗, ∗, ∗, ∗, . . . ∗, ∗, 1(i+2), ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗) ∈ Uα ⊕ 0

and for wt(γ2) = 1,

γ3 = (1(1), ∗, ∗, ∗, . . . 1(i), ∗, ∗, ∗, 1, ∗, 1(j), ∗, ∗, ∗, ∗, ∗) ∈ Uγ2 ⊕ α. ��

444 C. Beierle

Table 1. Number of rounds needed for bounding the differential probability of a char-
acteristic by 2−2n for all instances of Simon and Simeck. The � symbol indicates that
there is an appropriate instance of Simeck with the same number of rounds.

Rounds Rounds needed Margin κ

Simon32/64� 32 17 15

Simon48/72 36 25 11

Simon48/96� 36 25 11

Simon64/96 42 33 9

Simon64/128� 44 33 11

Simon96/96 52 49 3

Simon96/144 54 49 5

Simon128/128 68 65 3

Simon128/192 69 65 4

Simon128/256 72 65 7

Using a similar argument, one obtains the bounds for Simeck as the following
theorem states.

Theorem 4. (Bounds for Simeck). Let n ∈ {16, 24, 32} and θ(x) =
(x ≪ 1). For the rotation constants a = 5, b = 0, the probability of any T -
round differential characteristic is upper bounded by 2−2T+2.

Interestingly, for every instance of Simon and Simeck, it turns out that our
approach is sufficient in order to bound the probability of differential characteris-
tics below 2−2n where n denotes the bit length of one Feistel branch. For n up to
32, the security margin κ of the corresponding primitive(s) can be considered as
reasonable. See Table 1 for a comparison.

4 Conclusion

We presented a more general description of Simon-like designs by separating
the round function into a linear and a non-linear component and proved upper
bounds on the probability of differential characteristics for specific instances. In
fact, we developed a non-experimental security argument on full-round versions
of Simon that can be verified by pen and paper. We hope that this work encour-
ages to further research on analyzing Simon-like designs. An open question is
whether our approach can be generalized in order to obtain better bounds over
multiple rounds. However, as described earlier, we believe that such an argument
would be much more complex. Furthermore, it would be favorable to avoid the
consideration of every special case individually. This is related to the question
of how to design the linear part θ in this set-up.

Acknowledgements. The author’s work was supported by DFG Research Training
Group GRK 1817 Ubicrypt. Special thanks go to Gregor Leander for his valuable
suggestions and comments.

Pen and Paper Arguments for SIMON and SIMON-like Designs 445

References

1. Abdelraheem, M.A., Alizadeh, J., Alkhzaimi, H.A., Aref, M.R., Bagheri, N.,
Gauravaram, P.: Improved linear cryptanalysis of reduced-round SIMON-32 and
SIMON-48. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol.
9462, pp. 153–179. Springer International Publishing, Heidelberg (2015)

2. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
SIMON and SPEAK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540,
pp. 525–545. Springer, Heidelberg (2015)

3. Alizadeh, J., Bagheri, N., Gauravaram, P., Kumar, A., Sanadhya, S.K.: Lin-
ear cryptanalysis of round reduced SIMON. Cryptology ePrint Archive, Report
2013/663 (2013). http://eprint.iacr.org/2013/663

4. Alkhzaimi, H.A., Lauridsen, M.M.: Cryptanalysis of the SIMON family of block
ciphers. Cryptology ePrint Archive, Report 2013/543 (2013). http://eprint.iacr.
org/2013/543

5. Ashur, T.: Improved linear trails for the block cipher Simon. Cryptology ePrint
Archive, Report 2015/285 (2015). http://eprint.iacr.org/

6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/2013/404

7. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
SIMON and SPECK: block ciphers for the internet of things. In: NIST Lightweight
Cryptography Workshop, Vol. 2015 (2015)

8. Beierle, C., Jovanovic, P., Lauridsen, M.M., Leander, G., Rechberger, C.: Analyzing
permutations for AES-like ciphers: understanding ShiftRows. In: Nyberg, K. (ed.)
CT-RSA 2015. LNCS, vol. 9048, pp. 37–58. Springer, Heidelberg (2015)

9. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 Proposal: ECHO (2010). http://crypto.rd.francetelecom.com/
ECHO/

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: The Keccak reference. Submission
to NIST (Round 3), 13 (2011)

11. Biham, E., Anderson, R., Knudsen, L.R.: Serpent: a new block cipher proposal. In:
Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, p. 222. Springer, Heidelberg (1998)

12. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

13. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
546–570. Springer, Heidelberg (2015)

14. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

15. Chen, H., Wang, X.: Improved linear hull attack on round-reduced SIMON with
dynamic key-guessing techniques. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783,
pp. 428–449. Springer, Heidelberg (2016). doi:10.1007/978-3-662-52993-5 22

16. Daemen, J.: Cipher and hash function design strategies based on linear and dif-
ferential cryptanalysis. Ph.D. thesis, Doctoral Dissertation, KU Leuven, March
1995

http://eprint.iacr.org/2013/663
http://eprint.iacr.org/2013/543
http://eprint.iacr.org/2013/543
http://eprint.iacr.org/
http://eprint.iacr.org/2013/404
http://crypto.rd.francetelecom.com/ECHO/
http://crypto.rd.francetelecom.com/ECHO/
http://dx.doi.org/10.1007/978-3-662-52993-5_22

446 C. Beierle

17. Daemen, J., Lamberger, M., Pramstaller, N., Rijmen, V., Vercauteren, F.: Com-
putational aspects of the expected differential probability of 4-round AES and
AES-like ciphers. Computing 85(1–2), 85–104 (2009)

18. Daemen, J., Rijmen, V.: AES Proposal: Rjindael (1998). http://csrc.nist.gov/
archive/aes/rijndael/Rijndael-ammended.pdf

19. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes
(2007). http://www.codetables.de. Accessed 15 Feb 2016

20. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
161–185. Springer, Heidelberg (2015)

21. Kondo, K., Sasaki, Y., Iwata, T.: On the design rationale of SIMON block cipher:
integral attacks and impossible differential attacks against SIMON variants. In:
Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696,
pp. 518–536. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39555-5 28

22. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

23. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)

24. Nyberg, K., Knudsen, L.: Provable security against a differential attack. J. Cryptol.
8(1), 27–37 (1995)

25. PUB FIPS. 197: Advanced encryption standard (AES), National Institute of
Standards and Technology (2001). http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf

26. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),
656–715 (1949)

27. Shirai, T., Preneel, B.: On Feistel ciphers using optimal diffusion mappings across
multiple rounds. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 1–15.
Springer, Heidelberg (2004)

28. Shirai, T., Shibutani, K.: Improving immunity of Feistel ciphers against differential
cryptanalysis by using multiple MDS matrices. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 260–278. Springer, Heidelberg (2004)

29. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014)

30. Todo, Y., Morii, M.: Bit-based division property and application to SIMON family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-52993-5 18

31. Wang, N., Wang, X., Jia, K., Zhao, J.: Differential attacks on reduced SIMON
versions with dynamic key-guessing techniques. Cryptology ePrint Archive, Report
2014/448 (2014). http://eprint.iacr.org/2014/448

32. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of
reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer International Pub-
lishing, Heidelberg (2014)

33. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of light-
weight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS,
vol. 9293, pp. 307–329. Springer, Heidelberg (2015)

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://www.codetables.de
http://dx.doi.org/10.1007/978-3-319-39555-5_28
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://dx.doi.org/10.1007/978-3-662-52993-5_18
http://eprint.iacr.org/2014/448

Two-party Computation

Bounded Size-Hiding Private Set Intersection

Tatiana Bradley(B), Sky Faber, and Gene Tsudik

University of California, Irvine, USA
tebradle@uci.edu

Abstract. Private Set Intersection (PSI) and other private set opera-
tions have many current and emerging applications. Numerous PSI tech-
niques have been proposed that vary widely in terms of underlying cryp-
tographic primitives, security assumptions as well as complexity. One
recent strand of PSI-related research focused on an additional privacy
property of hiding participants’ input sizes. Despite some interesting
results, only one practical size-hiding PSI (SH-PSI) has been demon-
strated thus far [1].

One legitimate general criticism of size-hiding private set intersection
is that the party that hides its input size can attempt to enumerate
the entire (and possibly limited) domain of set elements, thus learning
the other party’s entire input set. Although this “attack” goes beyond
the honest-but-curious model, it motivates investigation of techniques
that simultaneously hide and limit a participant’s input size. To this
end, this paper explores the design of bounded size-hiding PSI techniques
that allow one party to hide the size of its input while allowing the other
party to limit that size. Its main contribution is a reasonably efficient
(quasi-quadratic in input size) bSH-PSI protocol based on bounded keyed
accumulators. This paper also studies the relationships between several
flavors of the “Strong Diffie-Hellman” (SDH) problem.

Keywords: Private set intersection · Size hiding · Bounded input ·
Cryptographic accumulators · SDH problem

1 Introduction

Private set operations have many potential applications in secure cloud comput-
ing and storage, as well as other settings involving mutually suspicious parties
that wish to divulge to each other nothing beyond the outcome of a particular
set operation. This serves as one motivating factor for research in more efficient
and more secure techniques. The other, no less important, factor is intellectual
curiosity. There is something inherently appealing about private set operations,
perhaps because they represent an interesting and realistic-sounding application
domain for secure two-party computation.

The most natural and popular private set operation is Private Set Intersec-
tion (PSI), a cryptographic technique that allows two parties, server and client,
to interact such that one or both of them (often, client) computes the intersection
c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 449–467, 2016.
DOI: 10.1007/978-3-319-44618-9 24

450 T. Bradley et al.

S ∩ C over their respective input sets S and C. Typically, server and client learn
nothing beyond the size of each other’s set and the resulting intersection. There
are multiple PSI flavors with varying privacy properties, security models, com-
plexities and underlying cryptographic primitives [1,8,13–18,22–25,27,28,33].

One recent PSI research direction focused on techniques that additionally
hide the input size of one participant. This property is sometimes called one-
sided input size-hiding. This line of research is attractive because, in general,
there are few cryptographic techniques that achieve non-padding-based input
size-hiding. (See Sect. 2 for an overview of related work).

Meanwhile, one important criticism of size-hiding PSI (SH-PSI) is the unlim-
ited nature of the size-hiding feature. In scenarios where the overall input domain
is small1, a dishonest client can enumerate all (or most) of the possible elements,
use them as its input set and thus learn all (or most) of server’s input set.

On the one hand, this criticism seems unfair because a client that enumerates,
and provides as input, elements that it does not actually have, goes beyond the
“honest-but-curious” (HbC) adversary model considered in, for example, [1]. On
the other hand, it could be that the entire notion of input size-hiding inherently
motivates a slightly different adversary model than HbC.

Consequently, the main motivation for this paper is the need to combine
hiding of one party’s input size with the other party’s ability to upper-bound
it, i.e., to limit the amount of information potentially learned by the first party.
Specifically, the goal is to explore PSI techniques that allow client to hide its set
size while assuring server that it does not exceed some fixed threshold t. At the
first glance, it seems that this can be trivially met by modifying current SH-PSI,
PSI or similar techniques.

One intuitive approach to bounded size-hiding is to amend any regular PSI
protocol by having client always pad its (linear-size) input with dummy elements,
up to the server-selected upper bound t. While this approach would meet our
goals, we consider it to be undesirable, for several reasons:

– Padding by client always incurs O(t) computation and bandwidth costs, even
if |C| and/or |S| are small relative to t.2

– Representation of dummy elements must be indistinguishable from that of
their genuine counterparts. This very likely entails generating a random value
for every dummy element, which, depending on the underlying PRNG, can
involve as little computation as a hash, or as much as a large-integer arithmetic
operation.

– If |C| < t, a misbehaving HbC client can easily cheat – and learn more about
S than it is entitled to – by inserting extra actual elements into its input that
it could later claim are just dummies.3

1 For example: age, blood type, birthday, country, zip code, etc.
2 In contrast, bSH-PSI incurs only O(|C|) costs, since client can download server’s

public key only once, ahead of time, i.e., off-line.
3 As discussed later, although the proposed bSH-PSI has the same issue, it discourages
client’s cheating by imposing a relatively high client computational cost for each
additional element in the accumulator, up to the bound.

Bounded Size-Hiding Private Set Intersection 451

Even if aforementioned reasons are deemed to be superficial, we still consider
padding-based size-hiding techniques to be inelegant.

Another simple way to force boundedness, is to modify any PSI protocol
such that server, acting unilaterally, uses a subset S∗ ∈ S of no more than t set
elements as its PSI input. This implies that client would learn an intersection
of at most t elements. However, client would also very likely learn less than
it is entitled to if |C ∩ S∗| < |C ∩ S| ≤ t. An equally trivial approach is for
server to pick a random subset C∗ ∈ C of no more than t set elements (assuming
|C| > t) of client’s input. This is doable since most (not size-hiding) PSI protocols
involve a message from client to server that contains some linear representation
of client’s input set. The end-result would be the same: client would likely learn
less than C ∩ S even if |C ∩ S| ≤ t.

In this paper, we introduce the notion of Bounded Size-Hiding Private Set
Intersection (bSH-PSI) and demonstrate the first provably secure and reason-
ably efficient4 bSH-PSI protocol. In the process, we introduce two new crypto-
graphic SDH-related assumptions and show their equivalence to more established
assumptions. Finally, we discuss several bSH-PSI extensions and optimizations.

In a general sense, bSH-PSI operates as follows: before any interaction, server
chooses a bound t. During the interaction, client inputs a set of size m < t
and server inputs a set of size n, which is independent of t. At the end of the
interaction, client learns the intersection of the two sets and n, the server’s set
size. The server learns nothing.
Notable features of proposed bSH-PSI include:

– It is particularly well-suited for scenarios where server needs to interact with
client whose input set is larger than server’s. However, bSH-PSI is effective
regardless of client’s and server’s relative set sizes.

– Server can set (and modify at will) the upper bound t on client’s input set
size. In particular, if set elements are drawn from a small domain, this prevents
client from enumerating all elements and determining the entirety of server’s
set.

– It is based on a bounded cryptographic accumulator construct from [32].
– Client privacy is unconditional with respect to both set elements and their

number, i.e., set size.
– Server security holds under the One-Generator [3] and Exponent [34] q-Strong

Diffie-Hellman (SDH) Assumptions in the Random Oracle Model (ROM) [2].
– Server incurs computational complexity linear in server’s input size – O(n)

where n = |S|.
– Client incurs computational complexity of O(m2log2m) in client’s input set

size: m = |C|. With pre-computation, this can be lowered to O(m2).
– Overall bandwidth complexity is linear in server’s input size – O(n).

Organization: Related work is discussed in Sect. 2. Section 3 formally defines
SH-PSI, its security properties and underlying cryptographic assumptions. A con-
crete SH-PSI construct is presented in Sect. 4, along with its security arguments.
4 The term “efficient” is used in the standard sense, i.e., efficient in the context of

most cryptographic literature.

452 T. Bradley et al.

Section 5 discusses scenario-specific extensions and open problems. Next, Sect. 6
presents reductions of new cryptographic assumptions to their better-known
counterparts. The paper concludes with a summary in Sect. 7. Techniques for
efficient computation by client are discussed in the full version of this paper [5].

2 Related Work

The concept of size-hiding private set intersection (SH-PSI) was introduced by
Ateniese et al.in [1]. It demonstrated the first SH-PSI technique using RSA accu-
mulators, with unconditional privacy of client’s set size and its contents, server
privacy based on the strong RSA assumption, and correctness in the HbC setting
in the random oracle model (ROM).

D’Arco et al. [9] (revised in [10]) is the only other effort, to our knowledge,
focused on SH-PSI. It demonstrates several results about the possibility of SH-
PSI, including one that one-sided SH-PSI is possible in both the standard model
and ROM. However, the proposed techniques – which are based on oblivious
pseudorandom function (OPRF) evaluation and RSA, require a setup phase
using a trusted third party (TTP). The revised version [10] presents a tech-
nique that avoids random oracles at the price of a commitment scheme which is
unspecified; thus, the exact complexity is unclear.

There have been other efforts to define, and show feasibility of, various size-
hiding two-party computation techniques. However, these results are largely the-
oretical.

Lindell et al. [30] prove some results about the feasibility of input-size hiding
in two-party computation under various conditions. In particular, one-sided size-
hiding is shown to be possible for every function in the HbC model without
random oracles, given that the output size is upper-bounded by some function
of a party’s input size, which is the case in bSH-PSI. The concrete protocol
presented in [30] is based on fully homomorphic encryption, which is not yet
practical. The full version [29] shows how to modify the protocol for the case
where one party hides its size and learns the outcome. Size-hiding is achieved by
padding client’s input with random elements.

Chase et al. [7] present an extended definition of the real/ideal model that
allows for input-size hiding in the presence of malicious players. The extended
model allows one party in the ideal world to send what is called an “implicit
representation” of its input (which does not necessarily reveal the input size) in
lieu of the input itself. The generic protocol for two-party computation involves
five rounds of communication, making use of fully homomorphic encryption.
Also, the output size must be fixed, which is not the case in PSI.

Other results discuss the need for input size-hiding in secure computation,
starting with Micali et al. [31], which introduces the notion of zero-knowledge
sets – a size-hiding cryptographic primitive. The protocol allows a party to com-
mit to a private set (with size hidden) and later prove whether a given element
is a member of that set. This notion is different from PSI since the element (for
which set membership is being tested) is public.

Bounded Size-Hiding Private Set Intersection 453

De Cristofaro et al. [12] focus on size- and position-hiding private substring
matching in the context of genomic privacy. The proposed protocol is highly spe-
cialized, in particular, not suitable for generic PSI. Based on additively homomor-
phic encryption, it allows client to test whether a number of substrings are present
in server’s string (genome) at pre-determined positions, while revealing neither
positions nor sizes of the substrings to server, and precluding client from learning
anything about server’s input beyond the binary result of the computation.

Ishai and Paskin [26] show that it is possible to securely evaluate branching
programs while hiding the size of the program, given that the length of the
program is upper-bounded by some polynomial. In this context, size refers the
number of instructions in the program, while length refers to the length of the
longest branch in the program. The protocol in [26] is based on strong oblivious
transfer.

Goyal et al. [21] show that constant-round public-coin zero knowledge is
possible using only black box techniques, while hiding the size of the input
string. The protocol is based on a commit-and-prove scheme using extendible
Merkle trees.

3 Problem Statement and Preliminaries

We now formally define bSH-PSI as well as four relevant cryptographic prob-
lems. The latter include two new assumptions: polynomial-generalized exponent
q-SDH (PG-E-SDH) and polynomial-generalized one-generator q-SDH (PG-OG-
SDH) as well as their better-known counterparts: exponent q-SDH (E-SDH) and
one-generator q-SDH (OG-SDH).

3.1 Bounded SH-PSI

Informally, bSH-PSI extends SH-PSI with the requirement that client can only
input a limited number of set elements. This bound t is fixed by server prior
to protocol execution. For ease of presentation, we define bSH-PSI directly, and
refer to [4] and [1] for formal definitions of PSI and SH-PSI, respectively. In the
following, ∼ denotes computational indistinguishability, as defined in [20].

Definition 1 (Bounded SH-PSI). A scheme satisfying correctness, bounded-
ness, client privacy and server privacy, (per Definitions 2, 3, 4 and 5, respec-
tively) involving two parties: client C and server S, and two components: Setup
and Interaction, where:

– Setup: an algorithm that selects global parameters, including t and server’s
public key, if any.

– Interaction: a protocol between S and C on respective inputs: S = {s1, . . . , sn}
and C = {c1, . . . , cm}.

Definition 2 (Correctness). If both parties are honest and m ≤ t, then, at
the end of Interaction on inputs (S,C) server outputs ⊥, and client outputs
(n, S ∩ C).

454 T. Bradley et al.

Definition 3 (Boundedness). If client’s set size exceeds the bound (|C| =
m > t), and server is honest, client only learns n = |S|.
Definition 4 (Client Privacy). For any PPT adversary S∗ acting as server
on input S′ in execution of bSH-PSI, we say that Client Privacy holds if the
views of S∗ are computationally indistinguishable when interacting with any pair
of client input sets: [C(0), C(1)]. Specifically, let ViewS(C) represent the view of
S∗ during protocol execution on input C. Then, Client Privacy is:

∀ (C(0), C(1)) : ViewS [C(0)) ∼ ViewS(C(1)]

We note that Client Privacy implies that S∗ learns no information about C,
including m, i.e., Client Privacy includes privacy of client’s set elements and of
their number.

Definition 5 (Server Privacy). Let ViewC(C,S) be a random variable rep-
resenting C’s view during execution of bSH-PSI on inputs: C,S. We say that
Server Privacy holds if there exists a PPT algorithm C∗ such that:

∀ (C,S) : C∗(C,C ∩ S, n) ∼ ViewC(C,S).

In other words, for any pair of inputs [C,S], C’s view of the protocol can be
efficiently simulated5 by C∗ on input C and C ∩ S alone. In particular, this
means C∗ does not have access to S.

Security Model. We aim to construct bSH-PSI techniques secure in the HbC
model [19]. HbC assumes that, while all parties faithfully follow the protocol,
they may try to infer or compute additional information from the protocol tran-
script(s). However, due to the unusual input-boundedness feature of bSH-PSI,
we extend the HbC model for client by allowing it to attempt using an input set
larger than the server-imposed bound t, while still adhering to the rest of the
protocol. We refer to this as the HbC* model.6 In particular, client’s messages
are assumed to be well-formed. However, the HbC model for server is unchanged
from its usual form.

3.2 q-Strong Diffie-Hellman Assumptions

As discussed later in the paper, security of the proposed bSH-PSI relies on the hard-
ness of two non-standard cryptographic problems: polynomial-generalized expo-
nent q-SDH (PG-E-SDH) and polynomial-generalized one-generator q-SDH (PG-
OG-SDH). These are the generalizations of well-known exponent q-SDH (E-SDH)
and one-generator q-SDH (OG-SDH) problems, to allow polynomials in the group
exponent. Each of these problems assumes the same public information derived
5 Being simulatable means that C∗ can output a computationally indistinguishable

transcript.
6 Note that because the adversarial client has more power in the HbC* model than in

plain HbC, security also holds in HbC.

Bounded Size-Hiding Private Set Intersection 455

from the secret z. This public information is a (q+1)-tuple: [g, gz, . . . , g(z
q)], where

all components are mod p, g is a generator of the p′ order subgroup (G) of Z∗
p and

p and p′ are large primes. (We omit the mod p notation from here on).
PG-E-SDH generalizes E-SDH to reflect the difficulty of computing g expo-

nentiated with any polynomial in z of degree larger than q, instead of simply
zq+1. Similarly, PG-OG-SDH generalizes OG-SDH to the difficulty of exponen-
tiating a base (not just g) to the power of 1

z+c . Specifically, it considers base
elements of the form g exponentiated to any polynomial in z of degree less than
or equal to q.

We now state the problems and then discuss the assumptions on their hard-
ness. Our definitions of the standard problems (1 and 2 below) follow the pre-
sentation in [3].

Problem 1 (One-generator q-Strong Diffie-Hellman Problem). Given a (q + 1)-
tuple [g, gz, . . . , g(z

q)] as input, the one-generator q-SDH problem in G is to
output a pair: [c, g

1
(z+c)] where c ∈ Z

∗
p′ . An algorithm A has advantage ε in

solving one-generator q-SDH in G if:

Pr
[
A(

[g, gz, . . . , g(z
q)]

)
= [c, g

1
z+c]

]
≥ ε

where the probability is over the random choice of generator g ∈ G, the random
choice of z ∈ Z

∗
p′ , and random bits consumed by A.

Problem 2 (Exponent q-Strong Diffie-Hellman Problem). Given a (q + 1)-tuple
[g, gz, . . . , g(z

q)] as input, the exponent q-SDHproblem in G is to output g(z
q+1).

An algorithm A has advantage ε in solving exponent q-SDH in G if

Pr
[
A(

[g, gz, . . . , g(z
q)]

)
= g(z

q+1)
]

≥ ε

where the probability is over the random choice of generator g ∈ G, the random
choice of z ∈ Z

∗
p′ , and random bits consumed by A.

The following are the two new problems that generalize the two above. We refer
to Sect. 6 for formal reductions.

Problem 3 (Polynomial-generalized one-generator q-Strong Diffie-Hellman
Problem). Given a (q + 1)-tuple [g, gz, . . . , g(z

q)] and a polynomial Pn(z) in
z of degree n ≤ q with known coefficients in Z

∗
p as input, the polynomial-

generalized one-generator q-SDH problem in G is to output a pair: [c, g
Pn(z)
(z+c)],

where −c is not a root of Pn(z). An algorithm A has an advantage ε in solving
polynomial-generalized one-generator q-SDH in G if:

Pr
[
A(

[g, gz, . . . , g(z
q)], Pn(z)

)
= [c, g

Pn(z)
z+c]

]
≥ ε

where the probability is over the random choice of generator g ∈ G, the random
choice of z ∈ Z

∗
p′ , and random bits consumed by A.

456 T. Bradley et al.

Note 1. Note that the polynomial-generalized one-generator q-SDH problem
described above is not hard if (z + c) divides Pn(z) (i.e., −c, the additive inverse
of c, is a root) because of the restriction that n ≤ q. If −c is a root of Pn(z), the
problem is equivalent to computing (c, gP ′

n−1(z)), where P ′
n−1(z) = Pn(z)

z+c . This is
achievable by exponentiation and multiplication of elements in [g, gz, . . . , g(z

q)].

Problem 4 (Polynomial-generalized exponent q-Strong Diffie-Hellman Problem).
Given as input a (q + 1)-tuple [g, gz, . . . , g(z

q)] and Pn(z), a polynomial in z of
degree n > q (and n being polynomial in the security parameter) with known
coefficients in Z

∗
p, the polynomial-generalized exponent q-SDH problem in G is

to output g(Pn(z)). An algorithm A has an advantage ε in solving polynomial-
generalized exponent q-SDH in G if:

Pr
[
A(

[g, gz, . . . , g(z
q)]

)
= gPn(z) s.t. n > q

]
≥ ε

where the probability is over the random choice of generator g ∈ G, the random
choice of z ∈ Z

∗
p′ , and random bits consumed by A.

Definition 6. For each of the four q-SDH problems described above, we say that
the corresponding (q, t′, ε)-SDH assumption holds in G if no t′-time algorithm has
advantage at least ε in solving that q-SDH problem in G.

As discussed later, security of our bSH-PSI protocol is based on these assumptions,
against polynomial time adversaries with q = t, and negligible advantage ε.

Group Selection. While there are many candidate groups, we focus on the
Diffie-Hellman prime-order integer subgroups modulo a large prime. Specifically,
let τ be a security parameter and let DH.setup(τ) be an algorithm that outputs
a triple: (p, p′, g) such that: (1) p is a prime of the form p = 2(p′)l + 1 for some
integer l, (2) p′ is a prime, and (3) g is a generator of a subgroup of Z∗

p of order
p′. For more on our choice of group see Sect. 5.5.

4 Protocol

We now present a concrete bSH-PSI technique, followed by security arguments.

4.1 Protocol Description

We first introduce the building blocks and intuition behind this realization of
bSH-PSI. The primary building blocks are: (1) a t-bounded keyed accumulator [32],
(2) a keyed unpredictable function fz,X(c) = X

1
z+c , and (3) two cryptographic

hash functions F (·) and H(·) modeled as Random Oracles: F : {0, 1}∗ → {0, 1}ω

whereω is a security parameter7, andH : {0, 1}∗ → {0, 1}log p′
. For the timebeing,

we assume that ω = log p′, though, in practice, ω can be smaller.

7 A practical example is SHA-256 for ω = 256.

Bounded Size-Hiding Private Set Intersection 457

Intuitively, client aggregates its input elements C = {c1, . . . , cm} into an
accumulator of the form X ′ = g

∏m
i=0 hci+z, where hci = H(ci). Client can

compute this product using server’s public key [g, gz, . . . , g(z
t)] by expand-

ing the product in the exponent into the polynomial of the form: A(z) =
a0 + a1z + . . . + amzm, where each coefficient ak is a product-sum of a com-
bination of client’s hashed inputs: hc1, . . . , hcm.

Each ak has a closed-form solution dependent only on client’s input and t.
Optionally, it can be computed before protocol execution. Techniques for efficient
computation of this polynomial are presented in the full paper [5]. The resulting
accumulator X ′ is then blinded as X = X ′r, (using a fresh random value r)
and sent to server. Due to this consistent random blinding client benefits from
unconditional privacy of its input. It also obtains unconditional privacy of its
input size since X is log p bits long. Furthermore, total protocol bandwidth is
independent of m.

Upon receipt of X, for each hashed element hsj , server computes a distinct

tag, denoted tgj , as the composition of F and fz,X . That is: tgj = F (X
1

z+hsj)
where hsj = H(sj). The resulting set of tags is then sent to client who, in turn,
uses them to determine the actual set intersection.

Note that fz,X(hsj) is of the form g
Pm(z)
z+hsj for some polynomial Pm(z). Also,

fz,X(hsj) is unpredictable given public information provided to client, if and only
if PG-OG-SDH assumption holds. Applying F (·) converts these unpredictable
values into pseudorandom values, which is essential for server privacy.

Meanwhile (either before receiving server’s tags or upon receiving them),
client computes a tag tg′

i for each hashed element hci in its input set. As part
of computing each tg′

i client essentially constructs “witness” Xi for the original
accumulator X, based on each hci, i.e., Xi is a partial accumulator, with one
term missing from the product in the exponent. Specifically, each tg′

i is computed
as: F (·) applied to a witness: g exponentiated with a product of m−1 binomials
of the form (hci + z) and the random value r. The product of binomials can
be represented by a unique polynomial Ai(z), such that: Ai = a(i,0) + a(i,1)z +
. . . + a(i,m)z

m and a(i,k) is a product-sum involving all of client’s hashed input,
except hci. As mentioned above, client tags can be computed ahead of time. The
intersection of: {tg′

i | 0 < i ≤ m} and {tgj | 0 < j ≤ n}, determines client’s
output: S ∩ C.

Figure 1 shows the Interaction component of this bSH-PSI protocol.
Setup(z, t) returns the information extracted from the output of DH.setup(τ)
and the public key [g, gz, . . . , g(z

t)] generated from a bound t and secret z. Before
the protocol begins, server selects t and z and publishes the output of Setup.

4.2 Security Analysis

We now present proofs of security for Definitions 2, 3, 4 and 5.

Correctness. Following Definition 2, we show that when both parties are hon-
est, client outputs (n, S ∩ C) and server outputs ⊥, i.e., nothing.

458 T. Bradley et al.

bSH-PSI on input: (p, p , H(·), F (·), [g, gz , . . . , g(zt)])

CLIENT on input: C = {c1, . . . , cm } SERVER on input: (S = {s1, . . . , sn } , z)

. Phase 1 .

for (i = 1 to m) for (j = 1 to n)

hci = H(ci) hsj = H(sj)

r ←$ Z
∗
p ksj = (z + hsj)

−1 (mod p)

A =
m

i=1

(z + hci) =
m

k=1

akzk−1 (mod p)

X = grA =

m

k=1

(gzk−1
)rak

for (i = 1 to m)

Ai =
A

z + hci
=

m−1

k=1

a(i,k)z
k−1 (mod p)

Xi = grAi =

m−1

k=1

(gzk−1
)
a(i,k)r

tgi = F (Xi)

. Phase 2 .

X for (j = 1 to n) tgj = F (Xksj)

T PERMUTE: T = Π({tg1, . . . , tgn })

return (|T |, ci|tgi ∈ T) return ⊥

Fig. 1. bSH-PSI Protocol. All computation is (mod p) unless stated otherwise.

It is easy to see client correctly computes n. For every sj ∈ S, HbC server
sends exactly one tgj to client. Thus, client needs only to count the number of
tgj ’s received.

To see that client correctly computes the intersection, let ci be an arbitrary
element in client’s set, such that ci ∈ S ∩ C. Then, there is some 0 < j ≤ n
such that ci = sj and hci = hsj . Therefore, tgj , computed by server and sent to
client matches client’s tag tg′

i:

tg′
i = F (Xi) = F (gr(z+hc1)...(z+hci−1)(z+hci+1)...(z+hcm)) =

= F (g
r(z+hc1)...(z+hcm)

z+hci) = F (gr A
z+hci) = F (X

1
z+hci) = tgj .

Thus client concludes that ci is in the intersection.
Now consider a client’s element ck /∈ S ∩ C, i.e., there is no j such that

ck = sj . Thus, there is also no j such that hck = hsj and tgj = tg′
k except

for negligible probability, due to collisions in either F (·) or H(·), or degenerate
input x such that (H(x) + z) = 0 mod p′. (If server ever detects such an input
element, it must change its public key.) Therefore, client computes no match and
concludes that ck is not in the intersection.
Boundedness. As described in Definition 3, we need to show that client learns
only server’s input set size if it attempts to input more than t set elements. We
note that in order to extract S ∩ C with a set of size m = u, where u > t, client

Bounded Size-Hiding Private Set Intersection 459

must aggregate u elements into X. This follows directly from our security model
which requires client messages to be well formed. Then, we show that this is
impossible under the PG-E-SDH assumption. Thus, if client is able to extract
S ∩ C then m ≤ t.

More formally, we show by contradiction, that constructing a well-formed X,
as described, is infeasible. We now assume that client can aggregate u elements
into X. Then, client must have a PPT algorithm A which – given C, H(·), and
[g, gz, . . . , g(z

t)] – computes:

X = gr(z+hc1)...(z+hcu) = g(A0+...+Au−1zu−1+zu),

where each Ai is a product-sum of values known to client: r, hc1, ..., hcu.
However, computing X is the same as solving the polynomial-generalized

exponent q-SDH problem on inputs: [g, gz, . . . , g(z
t)] and Pn(z) = A0 + ... +

Au−1z
u−1+zu, which, based on our assumption, is infeasible since u > t. Hence,

by contradiction, the embedding is impossible and client learns only n.
Client Privacy. The only message sent from client to server is:

X = gr(z+hc1)...(z+hcm) mod p.

X is always of this form as an HbC server always correctly generates its public
key. Since g is a generator of the cyclic subgroup G ⊂ Z

∗
p of order p′, and no

(z +hci) is a multiple of p′, except for negligible probability, we can assume that
A = g(z+hc1)...(z+hcu) is also a generator of G. Since r is chosen uniformly, at
random, from Z

∗
p′ , X also has a uniform distribution in G.

Thus with overwhelming probability8, ViewS(C0) and ViewS(C1) are two
uniformly distributed group elements and are thus indistinguishable. Therefore,
Client Privacy holds in the presence of an HbC server.

By making one slight modification to the protocol, Client Privacy can be
guaranteed unconditionally, regardless of the adversarial model of server. To
mitigate the possibility of a malicious server presenting an invalid public key,
client can simply verify that: (g(z+hc1)...(z+hcm))p′

mod p = 1. If so, then gA is
a generator of G and X = (gA)r is uniformly distributed in G. Otherwise client
aborts the protocol by sending just gr and ignoring server’s response. In either
case, Client Privacy is guaranteed.
Server Privacy. Following Definition 5, in order to show Server Privacy we
construct an efficient simulator C∗ of client’s view that is computationally indis-
tinguishable from a real protocol execution. First, C∗ computes the first message
X from C, using H(·). It computes the remainder of the transcript as follows: It
uses knowledge of S ∩ C to construct: {F (Ki) | ci ∈ S ∩ C}. Then, it adds to
the set {F (rj)} for 0 < j ≤ n− |S ∩ C|, where each rj is chosen at random. C∗

then randomly permutes this set and returns the result as the second message
to server.

8 This probability is taken over the input space. Given non-degenerate inputs, these
views are perfectly indistinguishable.

460 T. Bradley et al.

To arrive at a contradiction, suppose that a distinguisher D exists which can
differentiate between the real protocol execution: ViewC(C,S) and that of the
view simulated by C∗: C∗(C,C ∩ S, n). Then, by the hybrid argument, a PPT
distinguisher D′ must exist that can distinguish between random oracle outputs:
F (Ki) and F (rj) for some j and i, such that si /∈ S ∩ C. Thus, by the random
oracle model, a simulator for D′ can be used to construct an algorithm A which
computes:

Ki = X
1

z+hsi = g
r(z+hc1)...(z+hcm)

(z+hsi)

where si �= ck, for all k. (Ki must be of this form due to boundedness and HbC
behavior of client.)

Therefore, (z + hsi) is not a factor of Pm(z) = r(z + hc1)...(z + hcm) and
does not evenly divide it, with overwhelming probability. There are two possible
events that occur with only negligible probability: (1) collisions in H(·), or (2)
Pm(z)/(z + hsi) having a remainder that is a multiple of p′. Thus, we can use
A to solve the polynomial-generalized one-generator q-SDH problem on inputs:
[g, gz, . . . , g(z

t)] and Pm(z) = r(z + hc1)...(z + hcm), which is infeasible, based
on our assumption. Consequently, by contradiction, Server Privacy holds.

4.3 Computational and Communication Complexity

We now assess communication, computation and storage costs of bSH-PSI, as
presented in Fig. 1.

Communication complexity involves: (1) a single log(p)-bit group element in
the first message, and (2) n outputs of F (·) in the second message.

We partition computation costs into Phase 1 and Phase 2. Computation
costs are further broken down by specific cryptographic operations: (1) invo-
cations of random oracles: F (·) and H(·) (2) short log(p′)-bit multiplications,
exponentiations, and inversions, and (3) and long log(p)-bit multiplications and
exponentiations. We analyze costs for both server and client.

Server’s Phase 1 work starts with O(t) mod(p) exponentiations to compute
the public key. However, this can be done once for many interactions. It also
includes O(n) invocations of H(·), and O(n) mod p′ inversions. This requires
server to know its input set S. If S is stable, this work can also be amortized
for many interactions. Server’s Phase 2 work consists of O(n) short log(p′)-bit
exponentiations and O(n) invocations of F (·).

Client’s Phase 1 work is dominated by the computation of X and m wit-
nesses: {Xi|0 < i ≤ m}. Most work is done in the expansion of the product
of binomials of the form

∏
(z + hci). This can be performed as soon as client’s

input set is known. Also, as long as p′ is fixed globally, client does not even
need to know which server will be involved in the interaction. Coefficients of
the resulting reduced polynomial in z can be computed in O(m2) time using the
näıve method of repeated polynomial multiplication. Thus, we can precompute
the numerator of X and each Xi in O(m3) short multiplications. This can be
further reduced to O(m2 log2 m) by taking advantage of a more sophisticated

Bounded Size-Hiding Private Set Intersection 461

technique (discussed in the full version [5]) leveraging an O(d log d) algorithm
for d-degree polynomial multiplication.

Also, client must perform O(m) invocations of H(·) and F (·), O(m2) long
multiplications and short exponentiations, and O(m) multiplications and expo-
nentiations for each Xi in order to embed the corresponding polynomial evalu-
ated at particular z corresponding to server’s public key. In more detail, given
Pt(s) =

∑m
i=0 ais

i, client computes
∏m

i=0 gsiai

, which is feasible because all gsi

are known.
Client’s only mandatory Phase 2 work amounts to computing a cleartext set

intersection, which is achievable with a single sort via O((m + n) log (m + n))
swaps.

Storage overhead is dependent on precomputation. If all possible precompu-
tation is performed, then server’s storage is dominated by O(n) log(p′)-bit group
elements. Client’s storage is dominated by O(m) log(p)-bit group elements and
O(m) outputs of F (·). If client computes Phase 1 without knowledge of server’s
public key then storage is dominated by O(m2) short (log(p′)-bit) integers.

Optimizations. Choices of public parameters are essential for fast operation.
In particular, bSH-PSI can operate in different groups (e.g., on some elliptic
curves). We chose integers mod p due to their more efficient operation [11,12].
Practical current examples of sufficiently secure parameters are: log(p) ≈ 1024
and log(p′) ≈ 160.

Furthermore, H(·) substantially influences computational complexity. If the
range of H is considerably smaller than p′ then O(m2 log2 m) short (log(p′))
multiplications may reduce to O(m2 log2 m) multiplications of |H(·)|-bit inte-
gers, and O(m2) short multiplications (accounting for r).

5 Discussion and Open Problems

5.1 Unlinkability and Change Obliviousness

In settings where client and server interact more than once, additional privacy
properties of unlinkability and change obliviousness might be desirable for either
party.

Informally, unlinkability means that, if client and server interact twice, they
should be unable to determine whether they have interacted before. Change
obliviousness means: if one party’s input changes between protocol executions,
the other party should not learn this, unless: (1) input size changes, and/or (2)
protocol output changes. Unlinkability subsumes change obliviousness; thus, is
usually requires more effort.

The proposed bSH-PSI protocol provides both unlinkability and change obliv-
iousness for client. This is due to client’s unconditional privacy. To attain server
change obliviousness the protocol can be modified to use a keyed random oracle

462 T. Bradley et al.

F ′
γ(·) – instead of F (·) – with a fresh random server-selected γ for every inter-

action. Whereas, to obtain unlinkability, server must also generate new secret9

(z) and public ([g, gz, . . . , g(z
t)]) keys for every interaction, and communicate the

latter to client.
These modifications require additional Phase 2 computation and storage for

client and an extra round of communication. Specifically, γ and one-time public
key ([g, gz, . . . , g(z

t)]) must be communicated to client before it can send X.
Client must now store Xi instead of F (Xi), even if the target server is known.
If server unlinkability is provided, client must also store A and Ai and compute
X and Xi during Phase 2.

5.2 Flexibility of t

At times, it may be desirable for server to increase the upper bound t to t′.
There are at least two intuitive ways to do so. One way is for client and server to
simply run the protocol t′/t � times. Alternatively, server can publish the extra
elements of the public key: [gzt+1

, . . . , gzt′
]. Either approach provides forward

security for both parties. That is, no additional information can be learned from
prior protocol executions, with lower bounds. Note, however, that t cannot be
decreased unless an entirely new public key is generated.

5.3 Interacting with Multiple Servers

Optimizations can be made to save client’s resources in settings where client
intends to interact with multiple servers using the same input set. First, if
server’s set is not known ahead of time, or if space is a concern, client can
compute and store A and Ai instead of X and t′i. Of course, this is only possible
if all servers use the same public key parameters: (g, p, p′).

5.4 Malicious Security

While our protocol is secure in the HbC* model, it provides unconditional client
privacy regardless of the behavior of server10. Security against a fully malicious
server [19] would require a proof of valid computation of the random oracle F (·)
without revealing the oracle’s input. Security against a malicious client would
require a proof that the accumulator X = gu is well-formed, for some u. We
believe that such a proof is challenging since the exponent u is not known to
client. Moreover, it is unclear how to construct a proof without revealing client’s
input size in the process. An alternative approach is to rely on a variant of the
Exponent Strong q-SDH assumption which states that: computing (c, x

1
z+c) is

hard for all x ∈ Zp given [g, gz, . . . , g(z
q)].

9 Strictly speaking, a new z is not needed. Instead, server can generate a new base ĝ,

compute the new [ĝ, ĝz, . . . , ĝ(zt)] and keep the same z.
10 Client need only verify gA is a generator by computing (gA)p

′
before exponentiating

with r.

Bounded Size-Hiding Private Set Intersection 463

5.5 Group Selection

Due to its computational efficiency of operations, we chose prime-order integer
DH-groups. This efficiency is largely based on the fact that exponentiation can
take advantage of the relatively small size of p′. Our protocol would work equally
well in other DH-groups, such as the elliptic curve DH-group variant [6]. However,
in our experience, these groups tend to be slower using existing implementations.
Since computational cost (and not storage) is of primary importance, integer
groups are the logical choice. We also conjecture that variants of the protocol
composite groups (e.g., in the RSA setting) are easily realizable.

5.6 t-Intersection bSH-PSI

Thus far, we focused on limiting the amount of information revealed to client in
each interaction by providing a guaranteed upper bound on client’s input size.
An alternative approach would be limit the size of the intersection |C ∩ S|.
Although not secure against enumeration by client, this approach is useful in
some situations. It is particularly applicable if server’s input set is much larger
than t and the domain of set elements is large. For example, suppose that server
owns a database and is willing to answer any query with a result set less than
t. A hypothetical t-intersection bSH-PSI protocol could be realized in at least
two variations (each of independent interest): (1) if |C ∩ S| > t, client learns
nothing, or (2) if |C ∩ S| > t, client learns a random t sized subset of the
intersection C ∩ S. We defer the investigation of this topic for future work.

6 Equivalence of SDH Problems

We now show equivalence of the two new assumptions and their more estab-
lished counterparts. First, we argue that polynomial-generalized one-generator
q-SDH and one-generator q-SDH are equivalent. Next, we show equivalence of
polynomial-generalized exponent q-SDH and exponent q-SDH . Both equivalence
proofs describe two reductions (one in eachdirection) between respective problems.

Theorem 1. The one-generator (q, t, ε)-SDH assumption holds iff the
polynomial- generalized one-generator (q, t, ε)-SDH assumption holds.

Proof. We show the contrapositive in each case. First, suppose that there exists
an algorithm:

A(
[g, gz, . . . , g(z

q)]
) → (c, g

1
(z+c))

that has an non-negligible advantage ε in solving one-generator q-SDH . We can
then construct an algorithm:

A′([g, gz, . . . , g(z
q)], Pn(z))

) → (c, g
Pn(z)
(z+c))

464 T. Bradley et al.

that has the same advantage in solving the polynomial-generalized one-generator
q-SDH problem. First, A′ runs A(

[g, gz, . . . , g(z
q)]

)
. With probability at least ε,

A outputs:
[c, g

1
z+c] (1)

for some c ∈ Z
∗
p′ . We observe that A′ may use the polynomial division algorithm

to rewrite the non-trivial part of its desired output as:

g
Pn(z)
(z+c) = g

P ′
n(z)+r

z+c = g
P ′
n(z)
z+c g

r
z+c ,

where P ′
n(z) is a polynomial divisible by (z + c), and r is a constant in Z

∗
p′ .

Because (z + c) divides P ′
n(z),

g
P ′
n(z)
z+c = gP ′′

n−1(z), (2)

where P ′′
n−1(z) is a polynomial in z of degree n − 1. Because (n − 1) < q, A′

may compute (2) by exponentiating and multiplying together elements from
[g, gz, . . . , g(z

q)]. Using (1), A′ computes

(g
1

z+c)r = g
r

z+c . (3)

Finally, A′ multiplies (2) by (3) to obtain the value g
Pn(z)
(z+c) = g

Pn(z)
z+c , which is

then output with the known value c. If and only if A’s output is correct, A′ also
outputs a correct solution. Therefore, A′ has advantage equal to ε in solving the
polynomial-generalized exponent q-SDH problem.

Now, conversely, suppose that there exists an algorithm:

A(
[g, gz, . . . , g(z

q)], Pn(z)
) → (c, g

Pn(z)
(z+c))

that has an advantage ε in solving the polynomial-generalized one-generator q-
SDH problem. Then, we can construct an algorithm:

A′([g, gz, . . . , g(z
q)]

) → (c, g
1

(z+c))

that has an advantage ε in solving the one-generator q-SDH problem with prob-
ability at least ε by merely running A(

[g, gz, . . . , g(z
q)], 1

)
and outputting the

result. If A yields a correct output [c, g
1

(z+c)], then A′ is also correct. Thus A′

has advantage equal to ε of solving the one-generator q-SDH problem.

Theorem 2. The exponent (q, t, ε)-SDH assumption holds iff the polynomial-
generalized exponent (q, t, ε)-SDH assumption holds.

Proof. We show the contrapositive for both cases. Suppose there exists an
algorithm:

A(
[g, gz, . . . , g(z

q)]
) → g(z

q+1)

that has an advantage ε in solving the exponent q-SDHproblem. We then con-
struct another algorithm:

A′([g, gz, . . . , g(z
q)], Pn(z)

) → g(Pn(z))

Bounded Size-Hiding Private Set Intersection 465

that has an advantage of (ε)poly(n) in solving the polynomial-generalized exponent
q-SDH problem. (Note that (ε)poly(n) is non-negligible if ε is non-negligible).
A′ creates an (n + 1)-tuple of the form [g, gz, . . . , g(z

n)] as follows: for each
q < j ≤ n, it runs A(

[g, gz, . . . , g(z
j−1)]

)
to obtain gzj

and saves it for subsequent
calls to A. If any call fails to produce the correct output, A′’s output will also
be incorrect. We observe that Pn(z) = a0 + a1z + . . . + anzn. Thus,

gPn(z) = ga0ga1z . . . ganzn

.

Since all coefficients ai and values ([g, gz, . . . , g(z
n)]) are now known to A′,

it outputs gPn(z). Thus, A′ has non-negligible advantage εn−q in solving the
polynomial-generalized exponent q-SDH problem.

Now suppose there exists an algorithm:

A(
[g, gz, . . . , g(z

q)], Pn(z)
) → g(Pn(z))

that has a non-negligible advantage ε in solving polynomial-generalized exponent
q-SDH . We construct another algorithm:

A′([g, gz, . . . , g(z
q)]

) → g(z
q+1)

that has the same advantage ε in solving exponent q-SDHby simply running and
outputting A(

[g, gz, . . . , g(z
q)], zq+1

)
. This call to A has probability at least ε of

outputting gzq+1
, and solving the exponent q-SDHproblem.

7 Conclusions

Motivated by recent advances in size-hiding secure computation and, more specif-
ically, SH-PSI: size-hiding private set intersection techniques, this paper investi-
gated bounded variants thereof. The main contribution of this work is the con-
struction of the first bSH-PSI technique that allows client to unconditionally hide
its input size while allowing server to limit that size. We believe that bSH-PSI can
be a useful tool in the arsenal of secure computation techniques. There are at least
three directions for future work: (1) alternative and/or more efficient, bSH-PSI
techniques, (2) other private set operations with bounded (one-sided) size-hiding
input, e.g., private set union and private set intersection cardinality, and (3) mod-
ifications of our current construct and its proofs to provide security against mali-
cious client in the standard model, i.e., without relying on random oracles. The
extended version of this paper [5] details specific techniques client can use to effi-
ciently embed its input into an accumulator using server’s public key.

Acknowledgments. We are grateful to the anonymous reviewers for their helpful
comments. We also thank Jaroslav Šeděnka for his contributions to the initial stages
of this work.

466 T. Bradley et al.

References

1. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-hiding private
set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (2011)

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73. ACM (1993)

3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

5. Bradley, T., Faber, S., Tsudik, G.: Bounded size-hiding private set intersection.
IACR Cryptology ePrint Archive, Report 2016/657 (2016). http://eprint.iacr.org/
2016/657

6. Caelli, W.J., Dawson, E.P., Rea, S.A.: Pki, elliptic curve cryptography, and digital
signatures. Comput. Secur. 18(1), 47–66 (1999)

7. Chase, M., Ostrovsky, R., Visconti, I.: Executable proofs, input-size hiding secure
computation and a new ideal world. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 532–560. Springer, Heidelberg (2015)

8. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private
set intersection. Int. J. Appl. Cryptogr. 2(4), 289–303 (2012)

9. D’Arco, P., González Vasco, M.I., Pérez del Pozo, A.L., Soriente, C.: Size-hiding
in private set intersection: existential results and constructions. In: Mitrokotsa, A.,
Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 378–394. Springer,
Heidelberg (2012)

10. D’Arco, P., González Vasco, M.I., Pérez del Pozo, A.L., Soriente, C.: Size-hiding
in private set intersection: existential results and constructions. In: Mitrokotsa, A.,
Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 378–394. Springer,
Heidelberg (2012)

11. De Cristofaro, E., Faber, S., Gasti, P., Tsudik, G.: Genodroid: are privacy-
preserving genomic tests ready for prime time? In: WPES, pp. 97–108. ACM (2012)

12. De Cristofaro, E., Faber, S., Tsudik, G.: Secure genomic testing with size- and
position-hiding private substring matching. In: WPES, pp. 107–118. ACM (2013)

13. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.)
CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012)

14. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010)

15. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010)

16. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: Proceedings of the ACM SIGSAC Conference
on Computer & Communications Security, pp. 789–800. ACM (2013)

17. Faber, S., Petrlic, R., Tsudik, G.: Unlinked: private proximity-based off-line OSN
interaction. In: Proceedings of the 14th ACM Workshop on Privacy in the Elec-
tronic Society, pp. 121–131. ACM (2015)

http://eprint.iacr.org/2016/657
http://eprint.iacr.org/2016/657

Bounded Size-Hiding Private Set Intersection 467

18. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004)

19. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, Cambridge (2004)

20. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

21. Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero
knowledge. In: STOC, pp. 515–524. ACM (2014)

22. Hahn, C., Hur, J.: Scalable and secure private set intersection for big data. In:
International Conference on Big Data and Smart Computing, BigComp 2016, Hong
Kong, China, 18–20 January 2016, pp. 285–288 (2016)

23. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from alge-
braic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015,
pp. 90–120. Springer, Heidelberg (2015)

24. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

25. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS (2012)

26. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

27. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryp-
tion. In: Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security, pp. 85–86. ACM (2012)

28. Kissner, L., Song, D.: Private and threshold set-intersection. Technical report,
DTIC Document (2004)

29. Lindell, Y., Nissim, K., Orlandi, C.: Hiding the input-size in secure two-party
computation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 421–440. Springer, Heidelberg (2013)

30. Lindell, Y., Nissim, K., Orlandi, C.: Hiding the input-size in secure two-party
computation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 421–440. Springer, Heidelberg (2013)

31. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS, pp. 80–91.
IEEE Computer Society (2003)

32. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

33. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: 23rd USENIX Security Symposium (USENIX Security 2014), pp.
797–812 (2014)

34. Tanaka, N., Saito, T.: On the q-strong Diffie-Hellman problem. IACR Cryptology
ePrint Archive, 2010:215 (2010)

On Garbling Schemes with and Without Privacy

Carsten Baum(B)

Department of Computer Science, Aarhus University, Aarhus, Denmark
cbaum@cs.au.dk

Abstract. Garbling schemes allow to construct two-party function eval-
uation with security against cheating parties (SFE). To achieve this
goal, one party (the Garbler) sends multiple encodings of a circuit
(called Garbled Circuits) to the other party (the Evaluator) and opens
a subset of these encodings, showing that they were generated honestly.
For the remaining garbled circuits, the garbler sends encodings of the
inputs. This allows the evaluator to compute the result of function, while
the encoding ensures that no other information beyond the output is
revealed. To achieve active security against a malicious adversary, the
garbler in current protocols has to send O(s) circuits (where s is the
statistical security parameter).

In this work we show that, for a certain class of circuits, one can reduce
this overhead. We consider circuits where sub-circuits depend only on one
party’s input. Intuitively, one can evaluate these sub-circuits using only
one circuit and privacy-free garbling. This has applications to e.g. input
validation in SFE and allows to construct more efficient SFE protocols
in such cases. We additionally show how to integrate our solution with
the SFE protocol of [5], thus reducing the overhead even further.

1 Introduction

Background. In actively-secure Two-party Function Evaluation (SFE) two
mutually distrusting parties Alice and Bob (Pa, Pb) want to jointly evaluate
a function f based on secret inputs x, y that they choose individually. This is
done using an interactive protocol where both parties exchange messages such
that, at the end of the protocol, they only learned the correct output z = f(x, y)
of the computation and no other information. This also holds if one of the par-
ties arbitrarily deviates from the protocol. The problem was originally stated by
Yao in 1982 [20], who also gave the first solution for the setting of honest, but
curious parties.

Given a trusted third party T which both Pa, Pb have access to, one can
solve the problem as follows: Both send their inputs as well as a description of

C. Baum—Supported by The Danish National Research Foundation and The
National Science Foundation of China (under the grant 61061130540) for the Sino-
Danish Center for the Theory of Interactive Computation, within which part of
this work was performed; by the CFEM research center (supported by the Danish
Strategic Research Council) within which part of this work was performed; and by
the Advanced ERC grant MPCPRO.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 468–485, 2016.
DOI: 10.1007/978-3-319-44618-9 25

On Garbling Schemes with and Without Privacy 469

f which we call Cf to T , which then does the following: We consider Cf to be
a boolean circuit with dedicated input and output wires. Cf consists of gates of
fan-in two. T represents the inputs x, y as assignments of 0, 1 to the input wires
of the circuit, and then the functions of the gates are applied (as soon as both
input wires of a gate have an assignment) until all the output wires1 of Cf are
either 0 or 1. Then T translates the values on the output wires into z and sends
it to both Pa, Pb. Yao showed in his seminal work how to replace this T with an
interactive protocol. This technique became known as Garbled Circuits.

Garbled Circuits in a Nutshell. In order to obtain a garbled circuit from Cf ,
the garbler Pa does the following: Each gate of the circuit can be represented as
a table, where for each combination of the inputs a value from {0, 1} is assigned
to the output wire. Now, the rows of this table are first shuffled and then the 0, 1
values of the inputs and outputs are replaced by random bit strings (keys), such
that the output key of a gate corresponds to the input key of another gate if its
output is wired into the respective input in Cf and if they both correspond to the
same value on the wire. One then stores information such that each output key
can be derived if and only if both input keys for the corresponding row are known.
Such a gate is called a Garbled Gate and by applying this technique recursively
to all gates, Pa computes a so-called Garbled Circuit. One then considers the
gates whose inputs are the input wires of the circuit. These keys are considered
as the input keys of the circuit. Moreover, Pa also has to store a table of the
keys that belong to the output wires of the circuit.

In the next step, Pa sends the garbled circuit and the input keys correspond-
ing to her chosen input to the evaluator Pb. He obtains his input keys from Pa by
a so-called Oblivious Transfer(OT) protocol, where Pa inputs all possible keys
and Pb starts with his input y, such that afterwards Pb only learns the keys
that correspond to his input and Pa does not learn y. Pb can now evaluate the
circuit gate by gate until he obtains the output keys, which he sends to Pa. Intu-
itively, the security of the protocol is based on the OT hiding Pb’s input while
the garbling hides the input of Pa (and to some extend the computed circuit).

Pa can cheat in the above protocol in multiple ways: The circuit that is
computed is hidden from Pb, so it may differ from Cf (or he obtains input keys
that do not correspond to his inputs). A solution to this problem is called the
cut-and-choose approach, where a number of circuits is garbled and sent to Pb.
He then chooses a random subset to be opened completely to him and he can
check that the circuit indeed computes the right function. For the other garbled
instances, the above protocol is then run multiple times in parallel and the
evaluator derives the result from the outputs of these instances. This may lead
to new problems, see e.g. [16,17] for details.

Garbling Schemes. The garbled circuits-approach has found many applica-
tions in cryptography, such as in verifiable computation, private set intersection,
zero-knowledge proofs or functional encryption with public keys (to just name

1 We let T accept only descriptions of f where the graph representing the circuit Cf

is directed and acyclic.

470 C. Baum

a few). Moreover, it has been treated on a more abstract level e.g. in [12] as
Randomized Encodings. Kamara and Wei [14] discuss the idea of special pur-
pose garbled circuits which do not yield full-fledged SFE but can on the other
hand efficiently be instantiated using Structured Encryption Schemes and yield
smaller overhead compared to directly using GC. Moreover, Bellare et al. [3] dis-
cussed garbling as a primitive having potentially different security notions, and
studied how these are related. Using their framework one can compare different
properties that a garbling scheme can have, such as privacy, authenticity and
obliviousness. This allows to look for special schemes that may only implement
a subset or different properties, which may be of use in certain contexts. As an
example for such an application, one can e.g. consider the efficient zero-knowledge
protocol due to Jawurek et al. [13] where the prover evaluates a garbled circuit
in order to prove a certain statement.

Since only the evaluator in [13] has private inputs to the circuit and evaluates
it on known values, no privacy of the inputs is necessary. A garbling scheme such
as the one from [7] can then be used, which has lower overhead than comparable
schemes with privacy.

The Problem. In this paper, we address the following question:

Can one construct Secure Function Evaluation protocols based on a combination
of garbling schemes both with and without privacy, thus reducing overhead?

The question can be thought of as a generalization of [13]: Those parts of a circuit
Cf that do only depend on one party’s input may not need to be computed with
active security. Such circuits naturally arise in the case when predicates must be
computed on the inputs of each party, which includes the case when signatures
must be verified or inputs in a reactive computation are checked for consistency.
For such functions this separate evaluation can potentially improve the runtime
of SFE, as e.g. shown by [15]. While it seems intuitive that in such a case this
evaluation strategy is preferable, it is unclear how to combine those schemes
while not introducing new problems. In particular, one has to make sure that
the outputs of the privacy-free part correspond to the inputs of the actively-
secure computation.

f(x, y)

ga(x) gb(y)

f̂(ga(x), gb(y))

x y x y

Fig. 1. A graphical depiction of the function decomposition.

On Garbling Schemes with and Without Privacy 471

Contributions. In this work, we describe a solution to the aforementioned
problem. It can be applied for a certain class of functions that are decomposable
as shown in Fig. 1.

On the left side of the figure, the evaluation without optimization is shown.
Here the whole circuit must be evaluated using an actively secure two-party SFE
scheme, while on the right side only parts of the circuit (the grey circuit) will
be computed with active security. Our solution allows that the evaluation of f̂
can be done by an arbitrary SFE scheme. To achieve this goal, we use circuit
augmentation for ga, gb, f̂ which in itself introduces a small overhead. We will
show that this overhead can mostly be eliminated using e.g. [5] as SFE scheme.

We start with the following idea: Let Pa compute a privacy-free garbling
of gb and Pb compute a privacy-free garbling of ga. Both parties exchange and
evaluate the privacy-free garbling, whose output in turn will be the input to the
evaluation of f̂ . Now we must verify that both Pa and Pb take the output of their
respective functions and do not replace it before inputting it into f̂ . At the same
time, the outputs of ga, gb are confidential and we must prevent the garbler from
sending an incorrect circuit or wrong input keys. Our solution will deal with the
inconsistency problem by checking that the inputs to f̂ come indeed from ga, gb

using a hash function whose output is properly masked. This, in turn, creates
new problems since such a mask can be used to tamper with the obtained hash.
Therefore, care must be taken about the timing in the protocol. Details follow
in Sect. 3.

Why not Just Using Zero-Knowledge Proofs? Intuitively there is another
solution to the above problem that avoids privacy-free garbling altogether: Pa

commits to her inputs to f̂ as Com(ga(x); r) and proves in zero-knowledge that
this commitment indeed contains a value that lies in the image of ga (Pb similarly
uses gb in the proof). Now all functions ga, gb are assumed to be binary circuits
and the most efficient generic zero-knowledge proofs over Z2 are [9,13], where
the proof-size is linear in the circuit size2. The crucial point is that, to the best
of our knowledge, the proof itself must compute either the Com function or
some verification function such as to tie the proof together with the SFE input.
Computing public key-based primitives over Z2 incurs a huge blowup in the
proof size. If one uses symmetric primitives like e.g. SHA-256 then our approach
is still preferable, since computing such a hash function requires significantly
more AND gates (see e.g. [19]) than computing the matrix multiplication that
is required in our protocol.

Related Work. Our problem shares some similarity with Verifiable Computa-
tion [2,8]. Here, the idea is that a weak client outsources an expensive computa-
tion to a computationally stronger but possibly malicious server. This server then
performs the computation and delivers a proof of correct computation which the
client can check (in time significantly smaller than evaluating the function itself).
Our setting differs, since we want that the server performs the evaluation of the

2 Approaches based on SNARKs have smaller proof size but require much more work
on the prover’s side, which is why we do not mention them.

472 C. Baum

circuit on his own inputs and these must be kept secret. Moreover, we do only
require one evaluation of the circuit.

Our solution, as already mentioned, bears resemblance with the concept of
Zero-Knowledge Proofs [10,11] where a prover convinces a verifier about the truth
of the statement in an interactive protocol without revealing anything but the
validity of this statement. In particular (in our setting), Pa proves to Pb that her
input to f̂ lies in the image of the function ga and vice versa. In cryptographic pro-
tocols, these proofs are often used to show that certain algebraic relations among
elements hold. The fact that these proofs can also be used to (efficiently) show
that the prover knows a specific input to a circuit was already observed in [13]. In
comparison to their work, we exploit this phenomenon in a more general sense.

In concurrent and independent work, Katz et al. [15] described a related
approach to enforce input validity in SFE. Their techniques differ significantly
from our work: Using a clever combination of OT and ElGamal encryption they
can enforce that f̂ and ga, gb have the same inputs, where ga, gb are predicates
with public output (that validate the inputs of each party) and f̂ is evaluated
using SFE. Their approach is using the protocol of Afshar et al. [1] for the
evaluation of f̂ while we allow for a larger class of SFE schemes to be used.

2 Preliminaries

In this work, we let λ denote the computational and s denote the statistical
security parameter. We use the standard definitions for a negligible function
negl(·) and polynomial function poly(·). Two distributions of random variables
are statistically indistinguishable if their distance is negligible in s. If instead
distinguishing them breaks a computational assumption (parametrized by λ),
then we consider them as computationally indistinguishable, which we denote
as ≈c. We use B as shorthand for {0, 1}.

Let us assume that Pa, Pb agreed to evaluate a function f : B2n → B
m, where

the first n input bits are provided by Pa and the second n input bits by Pb. We
assume that the function can be decomposed into f̂ : Bla+lb → B

m,
ga : Bn → B

l
a, gb : Bn → B

l
b such that

∀x, y ∈ B
n : f̂(ga(x), gb(y)) = f(x, y)

To be more applicable in our setting, we have to look at the functions as circuits,
and will do so using an approach similar to [3].

2.1 Circuits and the Split-Input Representation

Consider the tuple Cf = (nin, nout, ng, L,R,G) where

– nin ≥ 2 is the number of input wires, nout ≥ 2 the number of output wires
and ng ≥ 1 the number of gates. We let nw = nin +ng be the number of wires.

– we define the sets Inputs ← {1, ..., nin}, Wires ← {1, ..., nw} as well as
Outputs ← {nw − nout + 1, ..., nw} and Gates ← {nin + 1, ..., nw} to iden-
tify the respective elements in the circuit.

On Garbling Schemes with and Without Privacy 473

– the function L : Gates �→ Wires\Outputs identifies the left incoming wire and
R : Gates �→ Wires\Outputs identifies the right incoming wire for each gate,
with the restriction that ∀g ∈ Gates : L(g) < R(g) < g.

– the mapping G : Gates × B
2 �→ B determines the function that is computed

by a gate.

To obtain the outputs of the above circuit when evaluating it on an input
x = x1...xnin

one evaluates Cf as follows:

eval(Cf , x):
(1) For g = nin + 1, ..., nw:

(1.1) l ← L(g), r ← R(g)
(1.2) xg ← G(g, xl, xr)

(2) Output xnw−nout+1...xnw

For a function f : Bnin �→ B
nout , we consider Cf = (nin, nout, ng, L,R,G) as

a circuit representation of f iff ∀x ∈ B
nin : f(x) = eval(Cf , x).

In order to be able to apply our solution, the circuit in question must be
decomposable in a certain way as already outlined in Sect. 1. We will now for-
malize what we mean by this decomposability.

Definition 1 (Split-Input Representation (SIR)). Let f : B2n → B
m,

f̂ : Bla+lb → B
m, ga : Bn → B

l
a, gb : Bn → B

l
b be functions such that

∀x, y ∈ B
n : f̂(ga(x), gb(y)) = f(x, y)

Let moreover Cf , Cf̂ , Cga
, Cgb

be their respective circuit representations. Then we
call Cf̂ , Cga

, Cgb
the Split-input representation of Cf .

For every function h with n ≥ 2 such a decomposition always exists, but it
is only of interest in our setting if (intuitively) ng(Cf̂) 	 ng(Cf).

2.2 Secure Two-Party Computation and Garbling Schemes

The notion of an SFE protocol is described by a protocol between two parties
Pa, Pb that securely implements Fig. 2.

Note that FSFE&CommitOT moreover provides commitments and3 committed
OT [4]. Committed OT resembles OT as depicted in Fig. 3, but where the choice
of the receiver is determined by a commitment.

The main reason why we need this specific functionality FSFE&CommitOT is
that we have to ensure consistency of inputs using the commitments between
the actively secure scheme and the privacy-free part, and having all of these as
one functionality simplifies the proof.

3 These are building blocks are used in many SFE protocols. We hence assume that
they are available and cheap.

474 C. Baum

Functionality FSFE&CommitOT

The input x to the circuit is split up into j blocks I1, ..., Ij , where each block is
provided by either Pa, Pb or both.

Initialization:
– On input (init, C, I1, ..., Ij) from both Pa, Pb where C = (n, m, g, L, R, G) is

a circuit, store C. Moreover, the parties agree on a set of disjoint subsets
Ii ⊆ [n] such that

⋃
Ii = [n].

Commit:
– Upon input (commit, id, x) from either Pa or Pb and if id was not used before,

store (id, x, Pa) if the command was sent by Pa, and (id, x, Pb) otherwise.
Then send (commit, id) to both parties.

Open:
– Upon input (open, id) by Pa and if (id, x, Pa) was stored, output (open, id, x)

to Pb.
– Upon input (open, id) by Pb and if (id, x, Pb) was stored, output (open, id, x)

to Pa.
One-sided Committed OT:

– On input (cotB, id) from Pb and (cotB, id, {yi
0, y

i
1}i∈[l]) by Pa and if there is

a (id, x, Pb) stored with x = x1...xl, then output (ot, {yi
xi

}i∈[l]) to Pb.

Input by both parties:
– Upon input (input, id, x) by both parties and if id was not used before, store

(id, x, ∼).
Input of Pa:

– Upon input (inputA) from Pa where there is a (Ii, xi, ·) stored for each i ∈ [j],
output (inputA) to Pb.

Input of Pb:
– Upon input (inputB) from Pb where inputA was obtained, load all xi from

(Ii, xi, ·), compute z ← eval(C, x1...xj) and output (output, z) to Pb.

Fig. 2. SFE, commitments and committed OT for two parties.

Functionality FOT

OT for Pa:
– On input (otA, x) from Pa and (otA, {yi

0, y
i
1}i∈[l]) by Pb and if x = x1...xl,

output (ot, {yi
xi

}i∈[l]) to Pa.
OT for Pb:

– On input (otB, x) from Pb and (otB, {yi
0, y

i
1}i∈[l]) by Pa and if x = x1...xl,

output (ot, {yi
xi

}i∈[l]) to Pb.

Fig. 3. Functionality for OT.

On Garbling Schemes with and Without Privacy 475

Out of the framework of [3] we will now recap the notion of projective veri-
fiable garbling schemes. We require the properties correctness, authenticity and
verifiability. These intuitively ensure that the evaluated circuit shall compute
the correct function, only leak the output keys that can be obtained using the
provided input keys and that one can check after the fact (i.e. when obtaining all
the input keys) whether the circuit in fact was a garbling of a certain function.

Let λ be a security parameter and G = (Gb,En,De,Ev, V e) be a tuple of
(possibly randomized) algorithms such that

Gb(1λ, Cf): On input 1λ, Cf where nin, nout = poly(λ), n ≥ λ and |Cf | = poly(λ)
the algorithm outputs a triple (F, e, d) where we call F the garbled circuit,
e the input encoding information and d the output decoding information.

En(e, x): On input e, x where e = {X0
i ,X1

i } is a set of keys representing the
input wires, output X such that Xi ← Xxi

i i.e. output the 0 key for input i
if xi = 0 and vice versa for xi = 1.

Ev(F,X, x): On input (F,X, x) where F,X are outputs of the above algorithms,
evaluate the garbled circuit F on the input keys X to produce output keys Z.

De(Z, d): Let Z, d be input to this algorithm, where d = {Z0
i , Z1

i } and Z contains
l elements. The algorithm outputs a string z ∈ {0, 1,⊥}l where zi ← b if
Zi = Zb

i , and zi ← ⊥ if Zi �∈ {Z0
i , Z1

i }.
V e(Cf , F, e): On input Cf , F, e with the same semantics as above, the algorithm

outputs 1 if F, e is a garbling of Cf .

The definitions are according to [7]. Correctness is straightforward and
implies that combining the above algorithms yields the expected output from
evaluating f directly.

Definition 2 (Correctness). Let G be a verifiable projective garbling scheme.
Then G is correct if for all nin, nout = poly(λ), f : Bnin → B

nout with circuit
representation Cf and for all x ∈ B

nin it holds that

Pr
[
De(Ev(F, (Xxi

i), x), d) �= f(x) | (F, e, d) ← Gb(1λ, Cf) ∧
(Xxi

i) ← En(e, x)
] ≤ negl(λ)

Authenticity is very important for our later application. It prevents the adver-
sary from successfully outputting other output keys than those he can derive
from the input keys and the garbling.

Definition 3 (Authenticity). Let G be a verifiable projective garbling scheme.
Then G provides authenticity if for all nin, nout = poly(λ), f : Bnin → B

nout with
circuit representation Cf and for all x ∈ B

nin , y ∈ B
nout with y �= f(x) it holds

that

Pr
[
De(A(Cf , F, (Xxi

i), x), d) = y | (F, e, d) ← Gb(1λ, Cf) ∧
(Xxi

i) ← En(e, x)
] ≤ negl(λ)

for every A that is running in probabilistic polynomial time in λ.

476 C. Baum

In the definition of verifiability one has to consider that the V e algorithm can
also output 1 for adversarially chosen garblings F ′. In such a case, we require
that no information about the input is leaked if the evaluator honestly evaluates
the garbled circuit.

Definition 4 (Verifiability). Let G be a verifiable projective garbling scheme.
Then G has verifiability if for all nin, nout = poly(λ), f : B

nin → B
nout with

circuit representation Cf and for all x, y ∈ B
nin , x �= y, f(x) = f(y) it holds that

Pr
[
Ev(F, (Xxi

i), x) �= Ev(F, (Xyi
i), y) | V e(Cf , F, {X0

i , X1
i }) = 1 ∧

(F, {X0
i , X1

i }) ← A(1λ, Cf)
] ≤ negl(λ)

for every probabilistic polynomial-time A.

A garbling scheme G that fulfils all the above three conditions will from now
on be called privacy-free.

2.3 Universal Hash Functions

A third ingredient that we need for our protocol are universal hash functions. For
such a function two inputs will yield the same output only with small probability
for as long as the function itself is randomly chosen after the inputs are fixed.
This is a rather weak requirement in comparison to e.g. collision-resistant hash
functions, but it is strong enough in our setting: If the circuits are first garbled
and the inputs are fixed before the hash function is chosen, then the chance of
two inputs colliding is very small (even though the universal hash function might
be easily invertible).

Definition 5 (Universal Hash Function). Let H = {h : B
m → B

s}, then H
is a family of universal hash functions if

∀x, y ∈ B
m, x �= y : Pr

h∈RH
[h(x) = h(y)] ≤ 2−s

A family of universal hash functions has the uniform difference property if

∀x, y ∈ B
m, x �= y, ∀z ∈ B

s : Pr
h∈RH

[h(x) ⊕ h(y) = z] ≤ 2−s

An family of functions that we will later use is defined as follows:

Definition 6. Let t ∈ B
m+s−1 and M ∈ B

s×m such that Mi,j = ti+j−1 and
define ht : x �→ Mx. Moreover, define the family H as H = {ht | t ∈ B

m+s−1}.
Remark 1. H is a family of universal hash functions with the uniform difference
property.

Proof. See [5, Appendix E]

On Garbling Schemes with and Without Privacy 477

3 Construction

In our protocol, we use the functions defined above to protect against the adver-
sary providing an inconsistent input to f̂ . To do so, we augment the computed
circuits slightly. A graphical depiction of that can be found in Fig. 4.

The solution is tailored for protocols with one-sided committed OT (which
is normally available for SFE schemes based on garbled circuits). If there is
committed OT for both or none of the parties, then the protocol and function
augmentation can be adjusted in a straightforward manner.

We let f, f̂ , ga, gb be functions as defined before. To compute a proof that
Pa computed ga correctly, we will make Pa additionally compute a digest on the
output of ga. Therefore, we augment ga with a universal hash function ht drawn
from H to which Pa then adds a random string sa that is fixed in advance. As
such, the output will not reveal any information about the computed value. On
the other hand, since Pa will commit to the input before ht is chosen, the inputs
ga(x), sa to f̂ will differ from the output g′

a with high probability. We observe
that t, g′

a can be public inputs to f̂ ′.

g′
a : Bla+s−1 × B

n × B
la → B

la

(t, x, sa) �→ ht(ga(x)) ⊕ sa

In the case of Pb, it is not necessary for him to compute an actual hash
of gb(y). This is because only Pa can arbitrarily send differing inputs for f̂ by
choosing different values that blind her input (whereas committed OT is available
for Pb to circumvent this). Nevertheless, Pb adds a one-time-pad sb to gb(y), so
that we once again can make the value g′

b a public input to f̂ ′.

g′
b : Bn × B

lb → B
lb

(y, sb) �→ gb(y) ⊕ sb

ga(x) gb(y) x y

ga(x) gb(y)f(x, y)

f(x, y)

sby

gb(·) ⊕ ·

g′
b(y, sb)

x sat

h·(ga(·)) ⊕ ·

g′
a(t, x, sa)

ga(x) gb(y)sa g′
a sbt g′

b

f̂ ′(·, ·, ·, ·, ·, ·, ·)

f̂(·, ·) ga(·) gb(·)

Fig. 4. The functions and how they will be augmented.

478 C. Baum

The actively secure protocol will evaluate f̂ on the inputs ga(x), gb(y) as
before. The correct value will only be output of f̂ ′ if, given the auxiliary inputs
sa, sb and the public inputs t, g′

a, g′
b it holds that ht(ga(x))⊕sa = g′

a and gb(y)⊕
sb = g′

b. Otherwise, an abort symbol ⊥ will be delivered:

f̂ ′ :
(
B

la × B
s × B

s × B
la+s−1×

B
lb × B

lb × B
lb

)
→ B

m ∪ {⊥}

(ga(x), sa, g′
a, t, gb(y), sb, g

′
b) �→

⎧⎪⎨
⎪⎩

f̂(ga(x), gb(y)) if gb(y) ⊕ sb = g′
b ∧

ht(ga(x)) ⊕ sa = g′
a

⊥ else

Protocol ΠSIREval (part 1)

Both parties Pa, Pb want to evaluate a function f : B2n → B
m and we consider its

SIR Cf̂ , Cga , Cgb . Pa has input x ∈ B
n and Pb has input y ∈ B

n.

Input phase:
(1) Let Cf̂ ′ , Cg′

a
, Cg′

b
be circuits representing f̂ ′, g′

a, g′
b which were defined before.

(2) Both parties send (init, Cf̂ ′ , ”ga(x)”, ”sa”, ”g′
a”, ”ht”, ”gb(y)”, ”sb”, ”g′

b”) to
FSFE&CommitOT .

(3) Pa computes ga(x) locally and chooses sa ∈R B
s. Pb computes gb(y) locally

and chooses t ∈R B
la+s−1, sb ∈R B

lb .
(4) Pa sends (commit, ”ga(x)”, ga(x)), (commit, ”sa”, sa) to FSFE&CommitOT .

Pb sends (commit, ”y”, y), (commit, ”gb(y)”, gb(y)), (commit, ”sb”, sb),
(commit, ”ht”, t) to FSFE&CommitOT .

Function sampling:
(1) Pa computes (Fb, {yi

0, y
i
1}i∈[n]{si0,b, s

i
1,b}i∈[lb], db) ← Gb(1s, Cg′

b
) and sends

Fb to Pb.
(2) Pb computes

(Fa, {ti0, t
i
1}i∈[la+s−1]{xi

0, x
i
1}i∈[n]{si0,a, si1,a}i∈[s], da) ← Gb(1s, Cg′

a
) and

sends Fa to Pa.
Privacy-free phase:

(1) Pa sends (otA, x) and Pb sends (otA, {xi
0, x

i
1}i∈[n]) to FOT, hence Pa obtains

{xi}i∈[n]. They do the same for ”sa” so Pa obtains {sia}i∈[s]. Moreover, Pb

sends {ti}i∈[la]+s−1 to Pa.
(2) Conversely, Pb sends (cotB, ”y”) and Pa sends (cotB, ”y”, {yi

0, y
i
1}i∈[n]) to

FSFE&CommitOT , hence Pb obtains {yi}i∈[n]. They do the same for ”sb” so Pb

obtains {sib}i∈[lb].
(3) Pb sends (open, ”ht”) to FSFE&CommitOT .
(4) Pa evaluates the privacy-free garbling as

(gi′
a)i∈[s] ← Ev(Fa, {ti}i∈[la]+s−1{xi}i∈[n]{sia}i∈[s], txsa) and then commits

to (gi′
a)i∈[s].

(5) Pb evaluates the privacy-free garbling as
(gi′

b)i∈[lb] ← Ev(Fb, {yi}i∈[n]{sib}i∈[lb], ysb) and then commits to (gi′
b)i∈[lb].

Fig. 5. Protocol ΠSIREval to evaluate SIR of a function.

On Garbling Schemes with and Without Privacy 479

The protocol will be as follows:

Input Phase. Both parties Pa, Pb first locally compute ga(x), gb(y). They then
commit to the inputs x, y, sa, sb, ga(x), gb(y) using FSFE&CommitOT.

Function Sampling. Pb samples a hash function ht ∈ H and sends its descrip-
tion t to FSFE&CommitOT. He then sends a privacy-free garbling of g′

a(·, ·, ·).
Pa sends a privacy-free garbling of a circuit computing g′

b(·, ·) to Pb.
Privacy-Free Phase. Pb uses committed OT to obtain the input keys that

correspond to the his commitments from the input phase. Pa uses FOT.
Afterwards, Pb decommits t and thereby reveals the hash function ht. They
then evaluate the privacy-free garblings locally and commit to the output
keys.

Check Phase. Pa, Pb open the whole privacy-free garbling towards the other
party. They each verify that the circuit was constructed correctly and after-
wards open the commitments to the output keys. These values are then used
as public inputs g′

a, g′
b to f̂ ′ in the next step.

Computation Phase. Pa and Pb evaluate f̂ ′ securely using SFE. The inputs
are defined by the commitments from the input phase and the opened com-
mitments from the check phase.

The Concrete Protocol. We are now ready to present the protocol as outlined
in the previous subsection. It can be found in Figs. 5 and 6.

Protocol ΠSIREval (part 2)

Check phase:
(1) Pa sends (Fb, {yi

0, y
i
1}i∈[n]{si0,b, s

i
1,b}i∈[lb], db) to Pb who checks that he

obtained correct input and output keys and that
V e(Cg′

b
, Fb, {yi

0, y
i
1}i∈[n]{si0,b, s

i
1,b}i∈[lb]) = 1. If not, then Pb aborts.

(2) Pb sends (Fa, {ti0, t
i
1}i∈[la+s−1]{xi

0, x
i
1}i∈[n]{si0,a, si1,a}i∈[s], da) to Pa who

checks that she obtained correct input and output keys and that
V e(Cg′

a
, Fa, {xi

0, x
i
1}i∈[n]{si0,a, si1,a}i∈[s]) = 1. If not, then she aborts.

(3) Pa opens her commitments to (gi′
a)i∈[s]. Pb computes g′

a ← De((gi′
a)i∈[s], da)

and aborts if one of the indices is ⊥. Otherwise, both send (input, ”g′
a”, g′

a)
to FSFE&CommitOT .

(4) Pb opens his commitments to (gi′
b)i∈[lb]. Pa computes g′

b ← De((gi′
b)i∈[lb], db)

and aborts if one of the indices is ⊥. Otherwise, both send (input, ”g′
b”, g′

b)
to FSFE&CommitOT .

Computation phase:
(1) Pa sends (inputA) to FSFE&CommitOT, followed by Pb sending (inputB).
(2) Pb obtains (output, z) from FSFE&CommitOT and outputs z.

Fig. 6. Protocol ΠSIREval to evaluate SIR of a function, continued.

480 C. Baum

4 Security

We will now prove the security of the protocol from the previous section. More
formally, consider the stripped-down functionality in Fig. 7 which focuses on
the SFE.

Theorem 1. Let G = (Gb,En,De,Ev, V e) be a privacy-free garbling scheme,
λ its computational security parameter, and s be a statistical security parame-
ter, then ΠSIREval securely implements FSFE in the FSFE&CommitOT, FOT-hybrid
model against static, malicious adversaries corrupting either Pa or Pb.

We split the proof into two different simulators, one for Pa being corrupt and
the other one for a malicious Pb, where the second one is a simplified version
of the malicious-Pa simulator. The proof works as follows: In the ideal world,
the simulator runs a protocol where it intercepts all the commitments coming
from Pa and simulates an honest P̃b (with some default input) for the protocol.
It aborts when the committed values between the stages do not match up, or
when Pa sends keys that she was not supposed to obtain. Then, a hybrid argu-
ment proves the claimed statement.

Functionality FSFE

Initialization:
– On input (init, C) from both Pa, Pb where C = (2n, m, g, L, R, G) is a circuit,

store C.
Input of Pa:

– Upon input (inputA, x) from Pa where x ∈ B
n and where no input was given

by Pa before, store x and send (inputA) to Pb.
Input of Pb:

– Upon input (inputB, y) from Pb where y ∈ B
n and where no input was given

by Pb before and if (inputA) was obtained by Pb, compute z ← eval(C, xy)
and output z to Pb.

Fig. 7. Secure function evaluation.

Proof. As in the protocol ΠSIREval we assume that both parties Pa, Pb want to
evaluate a function f : B2n → B

m and we consider its SIR Cf̂ , Cga
, Cgb

. Pa has
input x ∈ B

n and Pb has input y ∈ B
n.

Proof for Malicious Pa. We first show a simulator SA to prove that from Pa’s
perspective, FSFE � SA ≈ FSFE&CommitOT � ΠSIREval.

Let TPaReal be the distribution of the transcripts that are obtained by exe-
cuting ΠSIREval and TPaSim be the distribution obtained from SA (both of them
only for a corrupted Pa), so the goal is to show that TPaReal ≈ TPaSim (Fig. 8).

Define the following hybrid distributions:

On Garbling Schemes with and Without Privacy 481

Simulator SA

Input phase:
(1) Start a copy of FSFE&CommitOT with which Pa will communicate in the sim-

ulated protocol.
(2) P̃b sends (init, Cf̂) to FSFE&CommitOT. Moreover, the simulator sends (init, Cf)

to FSFE .
(3) P̃b follows Step 1 − 3 of the protocol normally.
(4) In Step 4 of the simulated protocol, extract the inputs that Pa is sending

to FSFE&CommitOT . Save these values as oa, sa,1 locally. Moreover, let y be a
default input for the P̃b, which P̃b uses in Step 4 of the protocol.

Function sampling:
(1) P̃b behaves like in the protocol.

Privacy-free phase:
(1) Run Step 1 − 5 of the protocol. During Step 1 extract the values that Pa

inputs into the FOT functionality as x and sa,2.
Check phase:

(1) Run Step 1 − 2 of the protocol.
(2) In Step 3 compute the keys that Pa should have obtained based on sa,2, ht, x.

If Pa opens commitments to different keys, then abort.
(3) In Step 4 follow the protocol normally.

Computation phase:
(1) Run Step 1, 2 of the protocol, with the following restriction:

– If oa �= ga(x) where oa, x are the extracted values above and ga(x) is
the function evaluated on the extracted input, then abort. Also abort if
sa,1 �= sa,2.

– If no abort (also not from P̃b) happened, then send (inputA, x) to FSFE .

Fig. 8. The simulator for a malicious Pa.

TPaHybrid1 which is obtained from using the simulator SA with the following
change: In the Computation phase, abort in Step 2 only if the output z
of FSFE would be z = ⊥, i.e. if the hash function does not detect a differing
input.

TPaHybrid2 which is obtained from using the simulator generating TPaHybrid1

with the following change: In the Check phase, do only abort if P̃b would
abort instead of aborting if Pa opens commitments to wrong, but still valid
keys.

Consider the distributions TPaSim and TPaHybrid1, then the only difference
lies in the outputs when Pa is cheating. In the first case, Pa will always be caught
cheating whereas in the second case, she gets away with it as long as f̂ ′ does not
output ⊥. There are three different events to consider:

(1) oa = ga(x), but sa,1 �= sa,2: In this case, both oa, ga(x) hash to the same
value, hence ht(oa) ⊕ sa,1 �= ht(ga(x)) ⊕ sa,2 which will always be detected
by f̂ ′, so the success probability is 0.

482 C. Baum

(2) oa �= ga(x), but sa,1 = sa,2: Since both oa, ga(x) are independent of ht and
since ht is chosen uniformly at random from the family H, by Remark 1 they
will collide with probability 2−s, which is negligible in s.

(3) oa �= ga(x) and sa,1 �= sa,2: FSFE&CommitOT will not output ⊥ iff ht(oa) ⊕
sa,1 = ht(ga(x)) ⊕ sa,2. Hence it must hold that

ht(oa) ⊕ ht(ga(x)) = sa,1 ⊕ sa,2 = c

and a succeeding Pa will have to fix this c before learning ht. By Remark
1 the success in doing so is 2−s due to the uniform difference property and
therefore negligible in s.

We hence conclude that TPaSim ≈s TPaHybrid1. For the difference of
TPaHybrid1 and TPaHybrid2, the simulator aborts in the first case if Pa com-
mits to the wrong values, whereas it aborts in TPaHybrid2 if Pa provides strings
that are not valid output keys of G. By assumption, G provides Correctness
and Authenticity, meaning that if Pa does not cheat, then she will obtain the
correct keys and P̃b will continue. On the other hand, she can succeed in pro-
viding wrong keys only with probability negl(λ). Therefore, we also obtain that
TPaHybrid1 ≈c TPaHybrid2.

Now consider the distributions TPaHybrid2, TPaReal. The output that is deliv-
ered to Z as the output of Pb is the same in both distributions, so we focus on
the messages that Pa obtains. The only difference between those is that in the
Check phase, Step 4 these depend on a fixed input in TPaHybrid2 and on the
real input of Pb in TPaReal. In both cases, these keys correspond to values that
are uniformly random to Pa since they are obtained by XOR-ing a uniformly
random value sb to gb(x) if Pa sent a correct garbling. Assume that Fb was not
generated by G, but instead chosen arbitrarily by the adversary. Then the output
wires may leak some information about the inputs. In Step 1 of the Check phase
the garbling Fb was verified and by the Verifiability of the garbling scheme G the
computed output keys only depend on the output of the function except with
probability negligible in λ. For every fixed output g′

b of the circuit and for every
y there exists at least one sb to obtain g′

b from y, and therefore the opened keys
differ only with probability negl(λ). Hence TPaHybrid2 ≈c TPaReal which proves
the statement for a malicious Pa.

Proof for Malicious Pb. The proof of security for a malicious Pb goes along
the same lines as the proof for Pa and is included in the full version.

5 Optimizations

We will now discuss how the overhead from the protocol presented in Sect. 3 can
be reduced. In particular, our construction requires more rounds of interaction
and some computational overhead for securely computing the hash function and
the committed OT for Pb. We will show that, by making non-trivial use of the
SFE protocol by Frederiksen et al. [5] (FJN14) one can avoid parts of these extra

On Garbling Schemes with and Without Privacy 483

computations. Due to the complexity of FJN14, we will just sketch this solution
without a proof of security.

A Short Overview Over the FJN14 Construction
In Sect. 1 we sketched how an SFE protocol based on garbled circuits generally
works. The presented pattern introduces a number of problems (as mentioned in
the introduction), which are addressed in FJN14 using techniques which we will
discuss now. We only focus on those techniques that are important with respect
to our protocol.

Consistency of Pb’s Inputs. If one uses standard OT during the above proto-
col, then Pb may ask for various input keys for different circuits. As an example,
he could (for a subset of circuits) decide that the 5th wire shall be 1 whereas it
will be 0 for the other instances. This may, depending on the computed function,
leak information about Pa’s input. To thwart this attack, FJN14 performs OT
for longer strings, where all zero- or one-keys for a certain input wire for all
circuits will be obtained in one iteration4.

Consistency of Pa’s Inputs. Similarly to Pb, also Pa can send different input
keys for the instances. A solution similar to the above for Pb does not work,
since Pb will then learn Pa’s inputs. Instead, one lets Pa commit to her input
keys ahead of time. Pb chooses a message digest function from H and Pa will
garble the circuits such that they also compute a digest of her inputs. Pb checks
during the evaluation that the hash value is the same for all evaluated circuits,
and aborts if not. To prevent leakage of information about Pa’s input, Pa will
mask the hash with a fixed string5.

Using the FJN14 Construction with Our Protocol

Using the OT of FJN14. Let Pb obtain the input keys for the privacy-free cir-
cuit together with the input keys of the actively-secure garbling, by also including
these keys for sb in the same OT. We therefore have to transfer an only slightly
longer string for each input wire related to sb

6.

Evaluating the Hash in the SFE for Free. In the actively secure protocol
Pb will choose the hash function for the consistency check. We can let this be
the same hash function that is used in our protocol with the same random
padding sa. This means that we will use a lightweight version of our suggested
f̂ ′ function that only checks for consistency of Pb’s input, while Pa’s consistency
is implicitly checked during the evaluation of the actively secure protocol. Note
that in the case of a cheating Pa the protocol will then be aborted before the
actual output is computed by Pb. Therefore, Pa must send her input keys for

4 To the best of our knowledge, a similar idea was first introduced in [17].
5 We used the same technique, but for a different reason, in ΠSIREval. It was first

introduced in the context of SFE with garbled circuits in [6,18].
6 This means that we have to change the function g′

b(·, ·) slightly, due to a technique
that avoids selective failure-attacks in FJN14. This change does not increase the size
of the privacy-free circuit that is sent, since only XOR gates are added.

484 C. Baum

FJN14 and must have obtained her keys for the privacy-free garbling before ht

is revealed to her.

Public Inputs. An approach to implement public inputs is to let the SFE
protocol have a second input phase where Pa can submit the keys for the public
inputs. Like in the FJN14 protocol, the input keys will be linked to a polynomial
(whose evaluations are linked to either the 0-keys or 1-keys for each wire i) which
is of degree s/2. Before the evaluation, Pb checks that all such points for the keys
lie on the same polynomial (using the already opened circuits and keys from the
cut-and-choose phase as well as the newly obtained keys). Now Pb can identify
to which wire the keys sent by Pa belong by taking one of the submitted keys for
both the 0, 1-wires, interpolating the polynomial and checking whether all other
keys belong to the polynomial that is linked to the correct bit of the publicly
chosen input. We require that these public input keys, the polynomials and the
links are generated by Pa during the garbling phase. They are sampled the same
way as in the original protocol, and Pa is committed to the keys.

Acknowledgements. We want to thank Ivan Damg̊ard and Tore Frederiksen for
helpful discussions.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014)

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient
verification via secure computation. In: Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G., Abramsky, S. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010)

3. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the ACM Conference on Computer and Communications Security, pp.
784–796. ACM (2012)

4. Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and private
multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol.
963, pp. 110–123. Springer, Heidelberg (1995)

5. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B.: Faster maliciously secure two-
party computation using the GPU. In: Abdalla, M., De Prisco, R. (eds.) SCN
2014. LNCS, vol. 8642, pp. 358–379. Springer, Heidelberg (2014)

6. Frederiksen, T.K., Nielsen, J.B.: Fast and maliciously secure two-party computa-
tion using the GPU. Cryptology ePrint Archive, Report 2013/046 (2013). http://
eprint.iacr.org/

7. Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with
applications to efficient zero-knowledge. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 191–219. Springer, Heidelberg (2015)

8. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

http://eprint.iacr.org/
http://eprint.iacr.org/

On Garbling Schemes with and Without Privacy 485

9. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean
circuits. Cryptology ePrint Archive, Report 2016/163 (2016). http://eprint.iacr.
org/

10. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM (JACM) 38(3),
690–728 (1991)

11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing, pp. 291–304. ACM (1985)

12. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: Proceedings of 41st Annual
Symposium on Foundations of Computer Science, pp. 294–304. IEEE (2000)

13. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, pp. 955–966.
ACM (2013)

14. Kamara, S., Wei, L.: Garbled circuits via structured encryption. In: Adams, A.A.,
Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862, pp. 177–188. Springer,
Heidelberg (2013)

15. Katz, J., Malozemoff, A.J., Wang, X.: Efficiently enforcing input validity in secure
two-party computation. Cryptology ePrint Archive, Report 2016/184 (2016).
http://eprint.iacr.org/2016/184

16. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 1–17. Springer, Heidelberg (2013)

17. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

18. Shen, C., Shelat, A.: Fast two-party secure computation with minimal assumptions.
In: Proceedings of the ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 523–534. ACM (2013)

19. Tillich, S., Smart, N.: Circuits of basic functions suitable for MPC and FHE.
https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/. Accessed 25
June 2016

20. Yao, A.C.: Protocols for secure computations. In: 2013 IEEE 54th Annual Sympo-
sium on Foundations of Computer Science, pp. 160–164. IEEE (1982)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2016/184
https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

What Security Can We Achieve
Within 4 Rounds?

Carmit Hazay1(B) and Muthuramakrishnan Venkitasubramaniam2

1 Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

2 University of Rochester, Rochester, NY 14611, USA
muthuv@cs.rochester.edu

Abstract. Katz and Ostrovsky (Crypto 2004) proved that five rounds
are necessary for stand-alone general black-box constructions of secure
two-party protocols and at least four rounds are necessary if only one
party needs to receive the output. Recently, Ostrovsky, Richelson and
Scafuro (Crypto 2015) proved optimality of this result by showing how
to realize arbitrary functionalities in four rounds where only one party
receives the output via a black-box construction (and an extension to five
rounds where both parties receive the output). In this paper we study
the question of what security is achievable for stand-alone two-party pro-
tocols within four rounds.

We first provide a four-round two-party protocol for coin-tossing that
achieves 1/p-simulation security (i.e. simulation fails with probability at
most 1/p+ negl), in the presence of malicious corruptions. Next, we pro-
vide a four-round two-party protocol for general functionalities, where
both parties receive the output, that achieves 1/p-security in the presence
of malicious adversaries corrupting one of the parties, and full security in
the presence of non-aborting malicious adversaries corrupting the other
party.

Next, we provide a three-round oblivious-transfer protocol, that
achieves 1/p-simulation security against arbitrary malicious senders,
while simultaneously guaranteeing a meaningful notion of privacy against
malicious corruptions of either party.

Finally, we show that the simulation-based security guarantees for our
three-round protocols are optimal by proving that 1/p-simulation secu-
rity is impossible to achieve against both parties in three rounds or less
when requiring some minimal guarantees on the privacy of their inputs.

Keywords: Secure computation · Coin-tossing · Oblivious transfer ·
Round complexity

C. Hazay—Research partially supported by a grant from the Israel Ministry of Sci-
ence and Technology (grant No. 3-10883), by the European Research Council under
the ERC consolidators grant agreement n. 615172 (HIPS), and by the BIU Center
for Research in Applied Cryptography and Cyber Security in conjunction with the
Israel National Cyber Bureau in the Prime Minister’s Office.
M. Venkitasubramaniam—Research supported by Google Faculty Research Grant
and NSF Award CNS-1526377.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 486–505, 2016.
DOI: 10.1007/978-3-319-44618-9 26

What Security Can We Achieve Within 4 Rounds? 487

1 Introduction

Secure two-party computation enables two parties to mutually run a protocol
that computes some function f on their private inputs, while preserving a num-
ber of security properties. Two of the most important properties are privacy and
correctness. The former implies data confidentiality, namely, nothing leaks by
the protocol execution but the computed output. The latter requirement implies
that the protocol enforces the integrity of the computations made by the par-
ties, namely, honest parties learn the correct output. Feasibility results are well
established [4,12,22,30], proving that any efficient functionality can be securely
computed under full simulation-based definitions (following the ideal/real para-
digm). Security is typically proven with respect to two adversarial models: the
semi-honest model (where the adversary follows the instructions of the proto-
col but tries to learn more than it should from the protocol transcript), and
the malicious model (where the adversary follows an arbitrary polynomial-time
strategy), and feasibility holds in the presence of both types of attacks.

An important complexity measure of secure computation that has been
extensively studied in literature, is the round-complexity of secure protocols.
In the stand-alone setting, Yao [30] presented the first constant-round secure
two-party computation protocol in the semi-honest model. In contrast, Goldre-
ich et al. [12] showed how to obtain protocols that tolerate malicious adversaries
which requires non-constant number of rounds, followed by Lindell [19] who
gave the first constant-round secure two-party protocol tolerating such attacks.
In an important characterization, Katz and Ostrovsky [18] determined that the
exact round complexity of achieving a (black-box) maliciously secure two-party
computation protocol is five (and four if only one of the parties receives an out-
put) where by a round of communication we mean a single message transmis-
sion from one party to another. More precisely, they constructed a five-round
protocol to securely compute arbitrary functionalities and showed that there
cannot exist any four-round black-box construction that securely realizes the
coin-tossing functionality with black-box simulation. More recently, Ostrovsky
et al. [25] strengthened this construction by demonstrating a five-round protocol
where additionally the underlying cryptographic primitives are used only in a
“black-box” way. Both the results also provide a four-round protocol for single-
output functionalities. While these results only consider the stand-alone model,
assuming some trusted-setup such as a common reference string (CRS), it is
possible to construct round-optimal (i.e. two-round) secure two-party protocols;
see [17] for a recent example.

Motivated by this line of works, the main question we address in this work is:

What security is achievable for stand-alone two-party computation in four
rounds when both parties receive the output?

RelaxedNotions of Security. In this work, we focus on what security is achiev-
able in the standard message model (i.e. not simultaneous message passing) in the

488 C. Hazay and M. Venkitasubramaniam

two-party setting. More precisely, we initiate the study of what security guaran-
tees can be achieved in round-efficient protocols. We overview the relaxed notions
of security we consider in this work.

1. 1/p-security. The first relaxation we consider is to weaken the indistinguisha-
bility requirement on the simulation. Namely, in the real/ideal paradigm def-
inition when comparing an ideal simulated execution to the real execution,
this relaxation implies that the ideal execution is defined as in the origi-
nal definition yet the simulation notion is relaxed. More concretely, the two
executions are now required to be distinguishable with probability at most
1/p + negl, where p(·) is some specified polynomial. This relaxation has been
considered in the past in the context of achieving coin-tossing [7,23] and fair-
ness for arbitrary functionalities [13]. Then, in case of malicious adversaries
we require that our protocol admits 1/p-security. We note that this notion is
meaningful and sufficient for many practical scenarios and certain values of
1/p. It is related to the notion of covert security, introduced by Aumann and
Lindell in [2]. This notion models adversaries that may deviate arbitrarily
from the protocol specification in an attempt to cheat, but do not wish to
get caught doing so. In one of their variants, the simulator is allowed to fail,
as long as it is guaranteed that the real and ideal output distributions are
distinguishable with a probability that is related to the probability of detect-
ing cheating. We note that our security notion directly implies covert security
as the simulator may only fail in case the adversary aborts, which is always
detected as cheating.

2. Privacy only. Loosely speaking, privacy is a weaker notion of simulation-based
definition for which no party should be able to distinguish two views generated
based on distinct set of inputs for the other party but yield the same output.
Private oblivious-transfer (OT) was formalized by Halevi and Kalai in [15]
that considered two separate definitions. Namely, receiver privacy requires
that no malicious sender be able to distinguish the cases when the receiver’s
input is 0 or 1 (for instance, the standard OT protocol of [8] satisfies this
notion). Moreover, sender privacy requires that for every malicious receiver
and honest sender with input (s0, s1) there exists some input b for which the
receiver cannot distinguish an execution where s1−b is set to the correct value
from an execution where s1−b is sampled uniformly at random.

3. Non-aborting (malicious) adversaries. Non-aborting adversaries imply adver-
saries who are guaranteed to not abort in the middle of the execution. Secu-
rity against non-aborting strategies implies that if an adversary deviates from
the protocol it will be detected (either because of an ill-formed message or
because of an abort). This notion is therefore stronger than semi-honest secu-
rity where malicious behavior can go undetected. It is further useful in settings
that apply external measures to ensure fairness, such as the recent work of
[5] that has shown how to rely on external mechanisms, such as bitcoins to
ensure fairness. Another line of works, considers “optimistic” fairness where
a trusted party can be used to compensate the loss of information due to
aborting adversaries [1,20]. In this setting, the trusted party is involved only

What Security Can We Achieve Within 4 Rounds? 489

if one of the parties prematurely aborts and is not involved in the computa-
tion otherwise. In such settings it is a reasonable assumption to develop and
analyze security in the presence of non-aborting adversaries.

In general, 1/p-security and privacy are incomparable. While privacy always
guarantees some form of input-indistinguishable security, 1/p-secure protocols
could lose complete security with probability 1/p. For example, in the case
of oblivious-transfer, a protocol that is 1/p-secure against malicious receivers
implies that with probability 1/p it could be the case that the receiver knows
both the inputs of the sender. On the other hand, privacy against malicious
receivers ensures that there is at least one of the two inputs that are “indistin-
guishable” to the receiver (this is formalized via a notion introduced by Halevi
and Kalai [15]). The same intuition extends to general two-party computation
where 1/p-security implies that with probability at most 1/p all security is lost.
It is harder to generalize the notion of privacy to two-party functionalities and it
is an interesting direction for future work. In this work we design OT protocols
that satisfy a combination of all these notions but explore only the possibility of
1/p-security and security against non-aborting adversaries for general function-
alities, where both parties receive the output.

Related Work. The work of Ishai et al. [17] shows how to construct a two-
round secure two-party computation protocol in the so-called OT-hybrid, where
the parties are assumed access to an ideal functionality implementing oblivious-
transfer (OT). In essence, their work shows that improving the round complexity
of secure computation is closely related to constructing round-efficient oblivious
transfer protocols. When assuming setup, the work of Peikert et al. [28] shows
how to construct highly efficient two-round protocols for the OT functionality
in the CRS model. In the plain model, weaker security requirements for the
OT functionality have been considered. In the Random Oracle model, Naor and
Pinkas [24] developed a two-round OT protocol that obtains one-sided simula-
tion (w.r.t. the sender), whereas only privacy is guaranteed against a malicious
receiver. Halevi and Kalai in [15] showed how to construct two-round protocols
for OT without the random-oracle where only privacy is guaranteed against both
the sender and receiver. We further note that the notion of private OT is related
to the notion of input-indistinguishable computation, introduced by Micali et
al. in [21], which considers a weaker security notion for two-party computation.
Nevertheless, we remark that private OT is more general than input indistin-
guishability as the latter requires that the inputs are (statistically)-bound to the
transcript.1

Another related notion is that of super-polynomial time simulation [3,26,29]
which allows the simulator to run in super-polynomial (potentially exponential)
time. In the context of zero-knowledge proofs, exponential time simulation is
equivalent to witness indistinguishability. However, more generally, for secure

1 Formally, they require an “implicit input” function that can, from a transcript of the
interaction, specify the input of a particular party. Our protocols provide statistical
privacy guarantees and such a security guarantee cannot be input-indistinguishable.

490 C. Hazay and M. Venkitasubramaniam

computation it seems that the implication is only one-way where exponential
time simulation implies privacy. Concretely, the protocols in [8,15] and some
of our protocols guarantee statistical privacy against at least one party and
hence cannot admit exponential time simulation. A more recent work by Garg
et al. [10] studies the round-complexity of secure protocols in the simultaneous
message model, where in a single round multiple parties are allowed to simul-
taneously transmit messages. They extend the Katz-Ostrovsky lower bound to
show that four rounds are necessary to realize the coin-tossing functionality in
the multiparty setting (where all parties receive the output).

In the context of (partial) fairness, Gordon and Katz [13] showed how to
construct secure protocols with 1/p-security which are fully private. The focus
of their work is to achieve a meaningful notion of fairness, while the round
complexity incurred by their protocols is high. More recently, Garay et al. [9]
considered a utility-based security definition that is both 1/p-secure and fully
private (and in that sense, stronger than 1/p-security). We remark that our def-
inition of privacy is weaker than the definition of [13]. While their definition has
a simulation-based flavor ours is an indistinguishability-based definition (where
the combination of both guarantees is discussed above). Nevertheless, the focus
of our work is not related to fairness rather to minimize the number of rounds.

1.1 Our Results

Our first result concerns with the coin-tossing functionality where we show how
to achieve 1/p-security. More precisely, we prove the following theorem:

Theorem 1.1 (Informal). Assuming the discrete logarithm problem is hard,
there exists a four-round protocol that securely realizes the coin-tossing function-
ality with 1/p-security.

We remark that if we allow our simulator to run in expected polynomial-
time, we actually obtain perfect simulation against one of the parties and 1/p-
security against the other (even against aborting adversaries). On the other
hand, if we require strict polynomial-time simulation, where this polynomial is
independent of the adversary’s running time, our protocol achieves 1/p-security
relative for both corruption cases. We further provide an abstraction for this
protocol using a two-round cryptographic primitive denoted by homomorphic
trapdoor commitment scheme, where the commitment transcript, as well as the
trapdoor, are homomorphic. This abstraction captures a larger class of hardness
assumptions such as RSA and factoring.

Next, we explore the possibility of extending this idea to realize the oblivious-
transfer functionality with 1/p-simulation security. In our first result, we con-
struct an OT protocol that achieves 1/p-security against arbitrary (possibly
aborting) malicious senders and full simulation security against non-aborting
receivers. More precisely, we prove the following theorem: More precisely, we
prove the following theorem:

What Security Can We Achieve Within 4 Rounds? 491

Theorem 1.2 (Informal). Assuming the Decisional Diffie-Hellman problem
is hard, there exists a four-round oblivious-transfer protocol where the receiver
receives the output at the end of the third round which is 1/p-secure in the
presence of aborting senders and fully secure in the presence of non-aborting
receivers.2

We remark here that, if the receiver is required to learn the output only at
the end of the fourth round, then the protocol of [25] already provides such a
protocol with full simulation security against malicious (aborting) senders and
receivers. Our contribution is providing a protocol where the receiver learns the
output in the third round. The main advantage of this protocol is that we can
combine our oblivious-transfer protocol with the two-round protocol of [17] to
obtain four-round secure computation where both parties receive the output
with analogous security guarantees. Specifically, the receiver in the above OT
protocol obtains its input already in the third round. This allows to apply the
[17] protocol within the second and third OT rounds. More precisely, we obtain
the following corollary:

Theorem 1.3 (Informal). Assuming the Decisional Diffie-Hellman problem is
hard, there exists a four-round two-party secure protocol for any functionality,
where both parties receive the output, that is 1/p-secure in the presence of abort-
ing senders and fully secure in the presence of non-aborting receivers.

While these protocols achieve 1/p-security against corrupted senders and full
security against non-aborting receivers, it is unsatisfactory in that all security
is compromised if a malicious receiver aborts (after receiving the output in the
third round). Finally, in our third protocol we provide a different protocol for
the oblivious-transfer functionality that guarantees 1/p-security against mali-
cious (possibly aborting) senders while guaranteeing privacy against malicious
(possibly aborting) senders and receivers (with the later guarantee analogous to
[15]), based on claw-free trapdoor permutations. More formally, we obtain the
following theorem.

Theorem 1.4 (Informal). Assuming the existence of claw-free permutations,
there exists a three-round oblivious-transfer protocol that is 1/p-secure in the
presence of aborting senders and private in the presence of aborting senders and
receivers.

Comparing our two OT protocols, we note that they achieve incompara-
ble notions of security with respect to malicious receivers. Specifically, the first
protocol is fully secure in the presence of non-aborting adversaries and requires
four-rounds, whereas the second protocol requires only three-rounds and achieves
privacy against malicious receivers. In the full version we explore the possibil-
ity of extending the second OT protocol to functionalities that provide output
to only one party and additionally provide a privacy guarantee. An interesting

2 By fully secure, we mean standard simulation-based security.

492 C. Hazay and M. Venkitasubramaniam

future work would be to extend the notions of privacy and construct protocols
in the case where there are outputs to both parties.

Lower Bounds. We complement our positive results with two lower bounds,
where we show that achieving 1/p-security against aborting receivers is impos-
sible under black-box simulation. Our first result is:

Theorem 1.5 (Informal). Assuming NP �⊆ BPP, there exists no three-round
secure protocol for arbitrary functionalities with black-box simulation, with 1/p-
security in the presence of malicious receivers and correctness with probability 1.

Our proof follows by extending the [11] lower bound, to show that three-round
black-box zero-knowledge proofs (or arguments) with negligible soundness and
1/p-security exist only for languages in BPP. Indeed, it is possible to construct
zero-knowledge proofs with 1/p-soundness and 1/p-zero-knowledge security
(for instance by repeating the Blum’s Hamiltonicity proof [6] log p times).

Our second lower bound is:

Theorem 1.6 (Informal). There exists no three-round oblivious transfer pro-
tocol that achieves privacy in the presence of malicious senders and 1/p-security
in the presence of malicious receivers for p > 2.

We remark that privacy against both parties is in some sense the minimal require-
ment of any secure computation protocol. Our lower bound shows that under
this minimal requirement if we want to additionally achieve 1/p-security in three
rounds, it can be achieved only against a malicious sender, which matches our
upper bound, thus establishing its optimality.

1.2 Our Techniques

Coin Tossing [16]. We briefly sketch the technical details of our constructions for
our four-message (i.e. three message when only one party receives output) proto-
cols, beginning with our coin tossing protocol. In this protocol we make use of an
extension variant of Pedersen’s trapdoor commitment scheme [27]. Basically, party
P1 generates a set of generators for P2’s commitment scheme using pairs of shares,
and then reveals the discrete logarithm of half of the shares by responding to a ran-
dom challenge given by P2. Looking ahead, this allows to define a simulator that
extracts a trapdoor for this commitment scheme using rewinding which, in turn,
allows the equivocation of the committed message. Forcing a particular outcome
when P2 is corrupted is carried out by first observing the decommitted value of P2

and then rewinding,where in the second execution the simulator programs its input
according to the outcome it received from the trusted party. We note that Peder-
sen’s commitment scheme is captured under our abstraction for trapdoor commit-
ment schemes. This is shown in the full version.

4-Round 2PC Against Non-aborting Adversaries (Sect. 3). Our gen-
eral approach would be to first construct an OT protocol with same guarantees
and then combine it with the 2-round 2PC protocol in the OT-hybrid of [17].

What Security Can We Achieve Within 4 Rounds? 493

In order to construct a 4-round protocol for general two-party computation where
both parties receive the output, using this approach, we require that our OT pro-
tocol deliver its output to the sender at the end of the fourth round. We will
therefore construct a 4-round OT protocol with the property that the receiver
receives the output at the end of third round.

As a warmup, our first OT protocol employs a common paradigm for securely
realizing this functionality. Namely, the receiver picks two public keys for which
it knows only one of the corresponding secret keys, and sends them to the sender,
that uses these keys to encrypt its OT inputs. If indeed the receiver knows only
one of the secret keys, then it will not be able to decrypt both inputs. Thus, the
main challenge in designing OT protocols with security in the presence of mali-
cious adversaries is a mechanism to enforce the receiver to choose its public keys
correctly. In this work we enforce that by asking the public key for the unknown
secret key to take a particular form, for which the receiver does not know the
trapdoor associated with it (concretely, this trapdoor is a discrete logarithm of
some generator picked by the sender). Enforcing this choice is carried out by a
witness-indistinguishable proof-of-knowledge (WI-PoK), that further allows to
extract the bit b for which the receiver indeed knows the corresponding secret
key (which implies input extraction of the receiver’s input).

On a very high-level, our security guarantee against (malicious) non-aborting
receivers is achieved by first obtaining a three-round protocol that is defensibly
private with respect to malicious receivers [14] and then combining it with a
zero-knowledge proof-of-knowledge (ZK-PoK) protocol in order to achieve full
security against malicious (non-aborting) adversaries. We recall here that an
OT protocol is said to be defensibly-private with respect to the receiver if no
adversarial receiver can distinguish the sender’s input corresponding to input
1 − b from a random input, while outputting a valid defense, i.e. random coins
τ that are consistent with the view for input b. Given a defensibly-private OT
protocol, obtaining a protocol that guarantees full security against malicious non-
aborting receivers is obtained by combining it with a ZK-PoK protocol where
the receiver proves the knowledge of a valid defense. (We stress that in our actual
protocol, a witness-indistinguishability proof as opposed to a ZK proof will be
sufficient).

On the other hand, we achieve security against non-aborting senders as fol-
lows. The sender picks two public-keys to be combined (in order to enforce a
public-key for which its secret key is unknown), so that the receiver is only
allowed to choose one secret key to be opened by the sender. Simulation is
achieved by rewinding and extracting both the secret-keys (or trapdoors) which
is possible as the sender is non-aborting.

Finally, to obtain secure computation for general functionalities, we combine
our OT with the two-round protocol of [17] which is specified in the OT-hybrid.
Their protocol provides an output to only one of the parties (namely, the receiver
of the OT instances). Yet, we run this protocol in parallel with our OT protocol
where the second and third messages of the OT protocol run in parallel with
the [17] protocol. As a result, the receiver of the OT receives the output of the

494 C. Hazay and M. Venkitasubramaniam

computation at the end of third round. Finally, to extend this protocol to have
outputs delivered to both parties, we can rely on the fourth round where the
receiver transmits the output the sender.

4-Round 2PC with 1/p-Security Against Aborting Senders and Full
Security Against Non-aborting Receivers (Sect. 4). As with our warmup
protocol, to construct a protocol for general functionalities, it will suffice to
construct an OT protocol with same guarantees (where the receiver receives the
output at the end of third round).

We begin with the observation that our previous OT-protocol is already 1/p
secure for p = 1 + 1

3 against malicious aborting senders. To see this, suppose
that for some trapdoor the sender aborts with probability at most 1

2 when it
is asked to reveal it, then in expectation the simulator needs to rewind the
sender just twice in order to extract that trapdoor. If both trapdoors satisfy
this condition then the simulator can easily extract both of them. Now, suppose
this is not the case, then it would have to be the case that the sender aborts
with probability at least 1

2 when it is asked to open one of the trapdoors. Then,
the overall probability with which the sender aborts is 1

4 (as each trapdoor is
requested to be revealed with probability 1

2). In order to achieve 3
4 security, it

suffices to output a distribution that is 3
4 -close to the real distribution. As the

sender aborts with probability at least 1
4 a simulator that simply outputs all the

views on which the sender aborts already achieves 3
4 security.

With this observation, we show that 1/p-security for an arbitrary polynomial
p, can be achieved by amplifying the indistinguishability argument via parallel
repetition. More precisely, by repeating the basic protocol O(κp) times, where
κ is the security parameter, we can show, using a careful application of Yao-
type amplification, that if the adversary does not abort with probability at least
Ω(1/p), then the simulation can extract most of the trapdoors. This idea is
used in conjunction with the combiner of Ostrovsky et al. [25] to ensure that
the simulator extracts the sender’s inputs if and only if the receiver successfully
extracts it, or in other words, prevents any form of input dependent attacks.

3-Round OT with 1/p-Security Against Aborting Senders and Privacy
Against Aborting Receivers (Sect. 5). We conclude with our third OT proto-
col which demonstrates the feasibility of 1/p sender security and privacy against
aborting receivers in three rounds. We begin with a basic protocol that only
achieves receiver privacy and then amplify it security to get 1/p sender simulation.
Implicit in our first OT protocol is a strategy to amplify the security of a protocol
that achieves privacy against malicious senders to one that is 1/p secure whenever
there exists a trapdoor, that given the first message of the sender can be used to
generate a receiver message that will allow extraction. Our basic protocol based
on claw-free trapdoor permutations is simple: The sender samples a pair of func-
tions f0, f1 from a claw-free family and provides the description to the receiver.
The receiver samples y = fb(x) for a random x and returns y to the sender. The
sender with inputs (s0, s1) using the trapdoors for f0 and f1 obtains xb = f−1

b (x)
and masks s0 with the Goldreich-Levin hard-core predicate of xb. To prove receiver
privacy, we need to show it is impossible for the receiver to distinguish both the

What Security Can We Achieve Within 4 Rounds? 495

games where the sender’s input are sampled according to (s0, U) and (U, s1) from
the real-game (where U is the uniform distribution over {0, 1}). We argue that if
such a receiver exists, then using the list-decodable extractor guaranteed by the
Goldreich-Levin Theorem we can extract x0 and x1, thus finding a claw, i.e. x0 and
x1 such that f0(x0) = f1(x1). This reduction is subtle as creating a predictor to run
the list-decodable extractor requires being able to sample a view of the receiver by
supplying sender’s messages without knowledge of the trapdoors. Nevertheless, by
using a careful averaging argument we show this is possible. Finally, we amplify
this protocol to achieve 1/p sender simulation. As mentioned above, we just need
to produce a trapdoor that will allow generating the receiver message in a way that
will help to extract the sender’s input. The trapdoor is simply one of the trapdoors
corresponding to the functions f0 and f1, as with this trapdoor it is possible to sam-
ple a random claw. Our protocol can be implemented based on the RSA claw-free
collection of functions. Details of this construction can be found in Sect. 5. In the
full-version, we explore an extension of this protocol in conjunction with [17] to
obtain a three-round protocol for general functionalities that deliver an output to
only one of the parties and leave it as futurework to consider functionswith outputs
to both parties.

2 Preliminaries

Definition 2.1. Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N

be two distribution ensembles. We say that X and Y are computationally 1/p-

indistinguishable, denoted X
1/p≈ Y , if for every PPT distinguisher D there exists

a negligible function μ(·) such that for every a ∈ {0, 1}∗ and all sufficiently large n

∣∣Pr [D(X(a, n), 1n) = 1] − Pr [D(Y (a, n), 1n) = 1]
∣∣ <

1
p(n)

+ μ(n).

Private Oblivious Transfer. We consider a privacy definition in the presence
of malicious receivers and senders [15]. Recall first that the OT functionality is
defined by FOT: (b, (s0, s1) �→ (−, sb)). Then, let 〈Sen(s0, s1),Rec∗(b)〉(1n) denote
the random variable describing the corrupted receiver’s output when interact-
ing with Sen that is invoked on inputs (s0, s1), whereas 〈Sen∗(s0, s1),Rec(b)〉(1n)
denote the random variable describing the corrupted sender’s output when inter-
acting with Rec that is invoked on inputs b. Then define privacy as follows,

Definition 2.2 (Sender’s Privacy). A protocol π that realizes the FOT func-
tionality is private with respect to the receiver if for any PPT adversary Rec∗

corrupting Rec there exists a negligible function negl(·) and a PPT distinguisher
D such that for all n’s large enough it holds that

∣∣ Pr[D(〈Sen(s0, s1),Rec∗(b)〉(1n)) = 1]

−Pr[D(〈Sen(s0, s̃),Rec∗(b)〉(1n)) = 1]
∣∣ ≤ negl(n), or

496 C. Hazay and M. Venkitasubramaniam

∣∣ Pr[D(〈Sen(s0, s1),Rec∗(b)〉(1n)) = 1]

−Pr[D(〈Sen(s̃, s1),Rec∗(b)〉(1n)) = 1]
∣∣ ≤ negl(n)

where the probability is taken over the choice of s̃ and the randomness of the
parties.

Definition 2.3 (Receiver’s Privacy). A protocol π that realizes the FOT func-
tionality is private with respect to the sender if for any PPT adversary Sen∗

corrupting Sen there exists a negligible function negl(·) and a PPT distinguisher
D such that for all n’s large enough it holds that

∣∣ Pr[D(〈Sen∗(s0, s1),Rec(0)〉(1n)) = 1]

−Pr[D(〈Sen∗(s0, s1),Rec(1)〉(1n)) = 1]
∣∣ ≤ negl(n)

where the probability is taken over the randomness of the parties.

3 Warmup: 4-Round 2PC Against Non-aborting
Adversaries

In this section, as a warmup, we present a four-round 2PC protocol for arbi-
trary functionalities, where both parties receive the output, in the presence of
arbitrary adversaries that are restricted to be non-aborting. We first introduce a
four-round OT protocol that securely computes functionality FOT: ((s0, s1), b) �→
(−, sb) in the presence of non-aborting senders and receivers, where the receiver
receives the output in the third round. Next, we induce a four-round 2PC pro-
tocol with the same security guarantees by combining our OT with [17]. In the
following section, we rely on this protocol as a building block to construct another
OT protocol that achieves 1/p-security against malicious (aborting) senders and
full simulation-based security against non-aborting receivers.

Protocol 1 (Protocol πOT).
Public parameters: The description of a group G of prime order p.
Inputs: The sender Sen holds s0, s1 and the receiver Rec holds a bit b.
The protocol:

1. Sen → Rec:
(a) Sen picks a random generator g ← G and computes h0 = gr0 and h1 = gr1

where r0, r1 ← Zp.
(b) Sen sends g, h0, h1 to Rec.

2. Rec → Sen:
(a) Rec generates two public-keys according to the El Gamal PKE as follows:

PKb = gm and PK1−b = (h0h1)
m̃ where m, m̃ ← Zp. Rec sets SK = m.

(b) Rec sends PK0,PK1 to Sen.
(c) Rec sends the first message of the WI-PoK for proving the knowledge of the

discrete logarithms of either PK0 or PK1 with respect to (h0h1) (namely, Rec
sends the first message with respect to πWI

DL for the compound statement with
PK0 and PK1 being the statements).

(d) Rec sends a challenge bit β.

What Security Can We Achieve Within 4 Rounds? 497

3. Sen → Rec:
(a) Sen computes ciphertexts c0, c1 as follows: c0 = (gu0 ,PKu0

0 · s0) and c1 =
(gu1 ,PKu1

1 · s1) where u0, u1 ← Zp.
(b) Sen sends c0, c1 to Rec
(c) Sen sends the second message eSen for the WI-PoK protocol πWI

DL given by the
receiver (recall that this message is a random challenge).

(d) Sen sends rβ = logg(hβ)
4. Rec → Sen:

(a) Upon receiving the sender’s ciphertexts c0 = 〈c0[1], c0[2]〉 and c1 = 〈c1[1], c1[2]〉,
Rec computes sb by decrypting cb under SKb. More precisely, it computes sb =
cb[2]/(cb[1])SK.

(b) Rec sends the last message for the WI-PoK protocol πWI
DL.

Theorem 3.1 (Warmup). Assume that the Decisional Diffie-Hellman
assumption holds in G and that πWI

DL is as above. Then, Protocol 1 is a four-
round protocol, where the receiver receives the output in the third round, that
securely realizes FOT in the presence of non-aborting senders and non-aborting
receivers.

See [16] for the complete proof.

Obtaining 4-Round 2PC. Due to space limitations, we defer the discussion
of this section to the full version and only specify our theorem; see also Sect. 4.2.

Theorem 3.2. Assuming the Decisional Diffie-Hellman problem is hard, there
exists a four-round two-party protocol for any functionality, where both parties
receive the output, that is fully secure in the presence non-aborting senders and
non-aborting receivers.

4 4-Round 2PC with 1/p Sender Security and Full
Security Against Non-aborting Receivers

In this section we extend our OT protocol from Sect. 3 and demonstrate how to
achieve 1/p-simulation with respect to corrupted aborting senders while retain-
ing the same guarantees against non-aborting receivers. Next, in Sect. 4.2, we
show how to induce a general 2PC protocol with the same security guaran-
tees. Our OT protocol is inspired by the recent result of Ostrovsky et al. [25].
Roughly speaking, the protocol in [25] provide a cut-and-choose mechanism to
transform an oblivious-transfer protocol that is vulnerable to input dependent
abort by a malicious sender to full security. The basic idea is to use a special
kind of “verifiable” secret sharing that will allow the receiver to open a subset
of the shares of both the sender inputs to verify the validity of the shares and
input consistency. Only if the checks pass the receiver proceeds to obtain its real
output. This extra step helps prevent input dependent abort as if the validity
checks pass then with high probability we can reconstruct unique values for both
inputs of the sender from the shares. In our protocol we will implicitly perform
the cut-and-choose by relying on the OT protocol itself. We remark that while

498 C. Hazay and M. Venkitasubramaniam

the issue that needed to be resolved was an input-dependent abort in [25], in
our case, we use it to boost the extraction probability of sender’s inputs while
maintaining the privacy against the receiver. The secret sharing ensures that the
receiver cannot learn more than one output and extracting a significant fraction
of shares is sufficient to extract the outputs. Another advantage of relying on
the OT protocol to perform the cut-and-choose is that the sender needs to use
its input only in the third-round of our protocol after the receiver submits its
input for the OT instance.

We begin with the following building blocks used in our construction: let
(1) Commit be a statistically binding commitment scheme, (2) let (Share,Rec)
be a (M + 1)-out-of-2M Shamir secret-sharing scheme over Zq, together with a
linear map φ : Z2M

q → Z
M−1
q such that φ(v) = 0 iff v is a valid sharing of some

secret. We further note that the WI-PoK πWI
DL that is given by Rec in Protocol 1,

is extended here to handle the parallel case. Namely, the receiver proves the
validity of one of the public keys it generates within each pair, in parallel.

The security guarantees of this protocol are 1/p-security against malicious
senders and full security against non-aborting receivers. We remark that the
receiver’s simulation essentially follows a similar approach as in the simulation
of Protocol 1. On the other hand, the sender simulation needs to achieve 1/p-
simulation. The high-level idea is to apply techniques from the simulation in [25],
given that the simulator extracts sufficiently enough shares of the sender’s inputs
to the parallel OTs. The core of our argument and the main technical part of this
protocol is to show that if an adversarial sender does not abort before sending
the third message too often (i.e. < 1 − 1

p) then the simulator can extract the
trapdoor by rewinding sufficiently many times.

4.1 4-Round OT with 1/p Sender Security and Full Security
Against Non-aborting Receivers

We construct a four-round OT protocol with the stronger guarantee of 1/p secu-
rity in the presence of (possibly aborting) malicious senders.

Protocol 2 (Protocol πOT).
Public parameters: The description of a group G of prime order p.
Inputs: The sender Sen holds s0, s1 and the receiver Rec holds a bit b.
The protocol:

1. Sen → Rec:
(a) Let N = 3M . Then, for i ∈ [N], Sen picks random generator gi ← G and

computes hi,0 = g
ri,0
i and hi,1 = g

ri,1
i where ri,0, ri,1 ← Zp.

(b) Sen sends the N tuples {gi, hi,0, hi,1}i∈[N] to Rec.
2. Rec → Sen:

(a) Rec samples uniformly at random c1, . . . , cM ← {0, 1}. The ci values serve as
the input to the first M OT executions.

(b) Rec selects a random subset T1−b ⊆ [2M] of size M/2. Define Tb = [2M]/T1−b.
For every j ∈ [2M], Rec sets bj = α if j ∈ Tα. The bj values serve as the inputs
to the OT for the next 2M executions.

What Security Can We Achieve Within 4 Rounds? 499

(c) According to its input for the 3M OT executions, Rec generates N = 3M pairs
of El Gamal PKE’s as follows:
– For every i ∈ [M], PKi,ci = gmi

i and PKi,1−ci = (hi,0hi,1)
m̃i where

mi, m̃i ← Zp. Rec sets SKi = mi.
– For every j ∈ [2M], PKM+j,bj = g

mM+j

M+j and PKM+j,1−bj =

(hM+j,0hM+j,1)
m̃M+j where mM+j , m̃M+j ← Zp. Rec sets SKM+j =

mM+j.
(d) Rec sends {PKi,0,PKi,1}i∈[N] to Sen.
(e) Rec sends the first message of the WI-PoK for proving the knowledge for

every i ∈ [N] of the discrete logarithms of either PKi
0 or PKi

1 with respect
to (hi,0hi,1).

(f) Rec sends a challenge string β = (β1, . . . , βN).
(g) Rec sends the first message for the statistically-binding commitment scheme

com.
3. Sen → Rec:

(a) Sen picks two random strings x0, x1 ← Zq and secret shares them using
the Shamir’s secret-sharing scheme. In particular, Sen computes [xb] =
(x1

b , . . . , x
2M
b) ← Share(xb) for b ∈ {0, 1}. Sen commits to the shares [x0], [x1]

as follows. It picks random matrices A0, B0 ← Z
M×2M
q and A1, B1 ← Z

M×2M
q

such that ∀i ∈ [M]:

A0[i, ·] + B0[i, ·] = [x0], A1[i, ·] + B1[i, ·] = [x1].

Sen computes two matrices Z0, Z1 ∈ Z
M×M−1
q and sends them in the clear

such that:

Z0[i, ·] = φ(A0[i, ·]), Z1[i, ·] = φ(A1[i, ·]).
(b) Sen sends the committed matrices (comA0 , comB0 , comA1 , comB1) to Rec where

each element of each matrix is individually committed using com.
(c) For i ∈ [M], Sen computes ciphertexts ci,0, ci,1 where ci,0 is an encryption of

the decommitment of the rows A0[i, ·] and A1[i, ·] under public key PKi,0 and
ci,1 is an encryption of the decommitment of the rows B0[i, ·] and B1[i, ·] under
public key PKi,1. Sen sends {ci,0, ci,1}i∈[M] to Rec.

(d) For j ∈ [2M], Sen computes ciphertexts c̃j,0, c̃j,1, where c̃j,b is an encryption of
the decommitment of the columns Ab[·, j], Bb[·, j] under public key PKM+j,b.
Sen sends {c̃j,0, c̃j,1}j∈[2M] to Rec.

(e) Sen sends the second message eSen for the WI-PoK protocol πWI
DL given by the

receiver (recall that this message is a random challenge).
(f) Sen sends rβi = loggi

(hi,β) for all i ∈ [N].
(g) Sen sends C0 = s0 ⊕ x0 and C1 = s1 ⊕ x1 to Rec.

4. Rec → Sen:
(a) Decryption Phase: Upon receiving the all the sender’s ciphertexts the

receiver decrypts them to obtain the OT outputs. These include decommit-
ments to A0[i, ·], A1[i, ·] for every i ∈ [M] when ci = 0 and decommitments
to B0[i, ·], B1[i, ·] when ci = 1. They also include columns Abj [·, j], Bbj [·, j] for
every j ∈ [2M].

(b) Shares Validity Check Phase: For i = 1, . . . , M , if ci = 0 check that
Z0[i, ·] = φ(A0[i, ·]) and Z1[i, ·] = φ(A1[i, ·]). Otherwise, if ci = 1 check that
φ(B0[i, ·]) + Z0[i, ·] = 0 and φ(B1[i, ·]) + Z1[i, ·] = 0. If all the checks pass, the
receiver proceeds to the next phase and otherwise aborts.

500 C. Hazay and M. Venkitasubramaniam

(c) Shares Consistency Check Phase: For each b ∈ {0, 1}, Rec randomly
chooses a set Tb for which bj = b at M/2 coordinates. For each j ∈ Tb, Rec
checks that there exists a unique xi

b such that Ab[i, j] + Bb[i, j] = xj
b for all

i ∈ [M]. If so, xj
b is marked as consistent. If all shares obtained in this phase

are consistent, Rec proceeds to the reconstruction phase. Else it aborts.
(d) Reconstruction Phase: For j ∈ [2M]/T1−b, if there exists a unique xj

b

such that Ab[i, j] + Bb[i, j] = xj
b, Rec marks share j as a consistent column.

If R obtains less than M + 1 consistent columns, it aborts. Otherwise, let

xj1
b , . . . , x

jM+1
b be any set of M + 1 shares obtained from consistent columns.

Rec computes xb ← Reconstruct(xj1
b , . . . , x

jM+1
b) and outputs sb = Cb ⊕ xb.

(e) Rec sends the last message for the WI-PoK protocol πWI
DL.

Theorem 4.1. Assume that the Decisional Diffie-Hellman assumption holds in
G and that πWI

DL is as above. Then Protocol 2 is a four-round protocol, where the
receiver receives the output in the third round, that securely realizes FOT with
1/p-security in the presence of aborting senders and with full security in the
presence of non-aborting receivers.

See [16] for the proof. As a final remark, we note that Protocol 2 can be
viewed as a three-round protocol by removing the WI-PoK given by the receiver.
This implies that we can remove the last round sent by the receiver. Then the
security guarantee of the modified protocol is the same with respect to malicious
senders, whereas security against malicious receivers is ensured in the presence
of defensible private adversaries [14], where a “proof” of an honest behaviour
implies privacy. Intuitively, the proof follows due to the following argument. If a
malicious receiver is able to provide a valid defence, which includes an input and
randomness, this implies that for each pair of keys it provides a discrete logarithm
with respect to hi,0, hi,1. Then, a reduction to the privacy of El Gamal can be
constructed similarly by reducing the distinguishing probability between the two
views to the distinguishing probability between two ciphertexts.

4.2 4-Round 2PC Protocol

Obtaining general secure two-party computation is carried out analogous to
Protocol 1 by embedding the two-round protocol of [17] within the second/third
messages of our OT protocol. It follows just as before that we obtain a two-party
protocol that is secure against malicious non-aborting adversaries.

Note that, in our previous protocol, to achieve simulation when the receiver is
corrupted, we consider a simulator that honestly generates the sender’s messages
with arbitrary inputs for the functionality being computed and then extracts the
receiver’s inputs to the OT by rewinding the WI-PoK. By relying on precisely
the same strategy, we can obtain the receiver’s inputs in this protocol and then
complete the simulation by relying on the simulator for the malicious receiver in
[17] protocol.

To achieve simulation when the sender is corrupted, we combine two obser-
vations:

What Security Can We Achieve Within 4 Rounds? 501

– First, using the approach from our previous protocol, it follows that whenever
the simulator extracts the required trapdoor, it is possible to generate the OT
part in the second message from the receiver in a way that it is identically
distributed to the real receiver’s message while at the same time extracting the
sender’s inputs to the OT. Furthermore, whenever the sender’s input extrac-
tion is successful, we can rely on the simulation of [17] in the FOT-hybrid to
complete the rest of the simulation.

– Second, we observe that, if the sender aborts before sending the third message,
no extraction is needed to be carried out since no inputs need to be feed to
FOT.

We can now conclude that our simulation achieves 1/p-security against malicious
senders, by using the same two cases as we considered for Protocol 2 based on
the abort probability of the sender. More precisely,

Case: non-aborting probability of A is greater than 1
pN . In this case, we

know that except with probability O(1p) the simulator extracts the required
trapdoors and we achieve perfect simulation with probability at least 1−O(1p).

Case: non-aborting probability of A is at most 1
pN . If the non-aborting

probability is smaller than 1
pN then the probability mass of aborting views is

at least 1 − 1
pN > 1 − 1

p and since no extraction needs to be carried out we
achieve 1/p-security.

Therefore, we have the following theorem:

Theorem 4.2. Assuming the Decisional Diffie-Hellman problem is hard, there
exists a four-round two-party secure protocol for any functionality, where both
parties receive the output, that is 1/p-secure in the presence of aborting senders
and fully secure in the presence of non-aborting receivers.

5 3-Round OT with 1/p Sender Security and Receiver
Privacy

In this section, we construct a three-round protocol that achieves receiver privacy
while maintaining 1/p security against malicious senders. We rely on claw-free
(trapdoor) permutations instead of the discrete-logarithm assumption. We begin
with a description of a basic protocol that only provides receiver privacy and
then, relying on the techniques from Sect. 4, we discuss how to achieve 1/p-
security against aborting senders and full security against non-aborting senders.

Protocol 3 (Protocol πOT).
Inputs: The sender Sen holds s0, s1 and the receiver Rec holds a bit b.
The protocol:

1. Sen → Rec: Sen samples (i, tk0, tk1) ← Gen(1n) and sends i to the receiver Rec.
2. Rec → Sen: Rec samples x ← Di and sends y = fb

i (x).

502 C. Hazay and M. Venkitasubramaniam

3. Sen → Rec: Upon receiving y, Sen computes xβ = (fβ
i)−1(y) for all β ∈ {0, 1},

and sends (〈x0, r0〉 ⊕ s0, r0) and (〈x1, r1〉 ⊕ s1, r1) for random r0, r1.
3

Theorem 5.1 Assume the existence of claw-free trapdoor permutations. Then,
Protocol 3 is a three-round protocol that securely realizes FOT with privacy in the
presence of aborting receivers and senders.

See [16] for the proof. Note that Protocol 3 information theoretically hides
the receiver’s input from the malicious sender as y is uniformly distributed over
Di. While this guarantees perfect privacy against malicious senders, it is not
simulatable. We make the observation that to achieve sender simulation, we
need a mechanism to extract the sender’s input while maintaining the receiver’s
message distribution. This can be achieved if the simulator knows tkb for at least
one value of b. With tkb, the simulator can sample x1−b at random and compute
xb = (f b

i)−1(y) using tkb where y = f1−b
i (x1−b). Now, the simulator supplies

this y as the input and using both x0 and x1 extracts both s0 and s1. Since y
is distributed identically as the real distribution we achieve simulation. Hence,
there is a trapdoor information that allows simulation which is committed to by
the sender in the first message via the function index i.

To achieve 1/p simulation against aborting senders, we repeat our basic pro-
tocol in parallel analogous to Protocol 2 where we rely on the OT protocol to
perform the cut-and-choose checks. In slight more detail, we modify the sender’s
algorithm analogously to also commit to its input by appropriately secret-sharing
its input. Recall that we needed 3M parallel invocations in the previous protocol
to achieve this transformation. Here we will repeat it 6M times where only half
of them will be used by the sender.

To argue receiver privacy, we observe that receiver privacy composes in par-
allel just as WI does. Privacy then holds from following an argument analogous
to our previous protocol where we show that receiver can learn sufficiently many
shares for only one of the two sender’s inputs. Achieving 1/p sender simulation,
on the other hand, follows using a standard cut-and-choose argument to establish
that, through rewinding, a simulator can extract sufficiently many trapdoors as
long as the sender does not abort too often. This protocol additionally achieves
full simulation against non-aborting senders. A complete proof will be provided
in the full version.

Protocol 4 (Protocol πOT).
Inputs: The sender Sen holds s0, s1 and the receiver Rec holds a bit b.
The protocol:

– Sen → Rec: Let N = 6M . Then, for j ∈ [N], Sen samples (indj , tk
0
j , tk

1
j) ←

Gen(1n) and sends ind1, . . . , indN to the receiver Rec.
– Rec → Sen: Rec picks a subset Trap ⊂ [N] of size N/2 and sends Trap to Sen. Let

the remaining 3M indices be {a1, . . . , a3M}. For these indices, the receiver proceeds
as follows
1. Rec samples uniformly at random c1, . . . , cM ← {0, 1}. The ci values serve as

the input to the first M OT executions.

3 We can consider some canonical representation of elements in Di in {0, 1}∗.

What Security Can We Achieve Within 4 Rounds? 503

2. Rec selects a random subset T1−b ⊆ [2M] of size M/2. Define Tb = [2M]/T1−b.
For every j ∈ [2M], Rec sets bj = α if j ∈ Tα. The bj values serve as the inputs
to the OT for the next 2M executions.

3. According to its input for the 3M OT executions, Rec generates image elements
as follows:

• For every i ∈ [M], it samples xj ← Dai , and sends yj = fci
ai

(xj).
• For every j ∈ [2M], it samples xM+j ← DaM+j , and sends yM+j =

f
bj
aM+j (xM+j).

– Sen → Rec:
1. Upon receiving Trap and y1, . . . , y3M , Sen sends tk0j for all j ∈ Trap.
2. Sen picks two random strings t0, t1 and secret shares them using the Shamir’s

secret-sharing scheme. In particular, Sen computes [tb] = (t1b , . . . , t
2M
b) ←

Share(tb) for b ∈ {0, 1}. Sen commits to the shares [t0], [t1] as follows. It picks
random matrices A0, B0 ← Z

M×2M
q and A1, B1 ← Z

M×2M
q such that ∀i ∈ [M]:

A0[i, ·] + B0[i, ·] = [t0], A1[i, ·] + B1[i, ·] = [t1].

Sen computes two matrices Z0, Z1 ∈ Z
M×M−1
q and sends them in the clear such

that:

Z0[i, ·] = φ(A0[i, ·]), Z1[i, ·] = φ(A1[i, ·]).
3. Sen sends the committed matrices (comA0 , comB0 , comA1 , comB1) to Rec where

each element of each matrix is individually committed using com.
4. For i ∈ [M], Sen computes xi

β = (fβ
ai

)−1(yi) for all β ∈ {0, 1} and sends
(〈xi

0, r
i
0〉 ⊕ ti

0, r
i
0) and (〈xi

1, r
i
1〉 ⊕ ti

1, r
i
1) for random ri

0, r
i
1.

5. For all j ∈ [2M], Sen computes xM+j
β = (fβ

aM+j
)−1(yM+j) for all β ∈ {0, 1} and

sends the tuples (〈xM+j
0 , rM+j

0 〉 ⊕ (A0[·, j], B0[·, j]), rM+j
0) and (〈xM+j

1 , rM+j
1 〉 ⊕

(A1[·, j], B1[·, j]), rM+j
1) for random rM+j

0 , rM+j
1 .

6. Sen sends C0 = s0 ⊕ t0 and C1 = s1 ⊕ t1 to Rec.

– Rec computes the output of the as follows:
1. Decryption Phase: Upon receiving the senders message, the receiver com-

putes the actual OT outputs for all parallel invocations. These include decom-
mitments to A0[i, ·], A1[i, ·] for every i ∈ [M] when ci = 0 and decommitments
to B0[i, ·], B1[i, ·] when ci = 1. They also include columns Abj [·, j], Bbj [·, j] for
every j ∈ [2M]. If any of the decommitments are incorrect, the receiver aborts.

2. Shares Validity Check Phase: For i = 1, . . . , M , if ci = 0 check that Z0[i, ·] =
φ(A0[i, ·]) and Z1[i, ·] = φ(A1[i, ·]). Otherwise, if ci = 1 check that φ(B0[i, ·]) +
Z0[i, ·] = 0 and φ(B1[i, ·]) + Z1[i, ·] = 0. If all the checks pass, the receiver
proceeds to the next phase.

3. Shares Consistency Check Phase: For each b ∈ {0, 1}, Rec randomly
chooses a set Tb for which bj = b at M/2 coordinates. For each j ∈ Tb, Rec
checks that there exists a unique xi

b such that Ab[i, j] + Bb[i, j] = xj
b for all

i ∈ [M]. If so, xj
b is marked as consistent. If all shares obtained in this phase

are consistent, Rec proceeds to the reconstruction phase. Else it aborts.
4. Reconstruction Phase: For j ∈ [2M]/T1−b, if there exists a unique xj

b

such that Ab[i, j] + Bb[i, j] = xj
b, Rec marks share j as a consistent column.

If R obtains less than M + 1 consistent columns, it aborts. Otherwise, let

xj1
b , . . . , x

jM+1
b be any set of M + 1 shares obtained from consistent columns.

Rec computes xb ← Reconstruct(xj1
b , . . . , x

jM+1
b) and outputs sb = Cb ⊕ xb.

504 C. Hazay and M. Venkitasubramaniam

We conclude with the following theorem.

Theorem 5.2. Assume the existence of claw-free trapdoor permutations. Then
Protocol 4 is a three-round protocol that securely realizes FOT with 1/p-security
in the presence of aborting senders and with privacy in the presence of aborting
senders and receivers.

References

1. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signa-
tures. IEEE J. Sel. Areas Commun. 18(4), 593–610 (2000)

2. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols
for realistic adversaries. J. Cryptol. 23(2), 281–343 (2010)

3. Barak, B., Sahai, A.: How to play almost any mental game over the net - con-
current composition via super-polynomial simulation. IACR Cryptology ePrint
Archive 2005:106 (2005)

4. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)

5. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (2014)

6. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, USA, pp. 1444–1451

7. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: STOC, pp. 364–369 (1986)

8. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

9. Garay, J.A., Katz, J., Tackmann, B., Zikas, V.: How fair is your protocol? A
utility-based approach to protocol optimality. In: PODC, pp. 281–290 (2015)

10. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 16

11. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof sys-
tems. SIAM J. Comput. 25(1), 169–192 (1996)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

13. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer,
Heidelberg (2010)

14. Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box con-
structions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266
(2011)

15. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptol. 25(1), 158–193 (2012)

16. Hazay, C., Venkitasubramaniam, M.: What security can we achieve in 4-rounds?
IACR Cryptology ePrint Arch. 2015, 797 (2015). http://eprint.iacr.org/2015/797

http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://eprint.iacr.org/2015/797

What Security Can We Achieve Within 4 Rounds? 505

17. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011)

18. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004)

19. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party compu-
tation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 171. Springer,
Heidelberg (2001)

20. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:
PODC, pp. 12–19 (2003)

21. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: FOCS,
pp. 367–378 (2006)

22. Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)

23. Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009)

24. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457
(2001)

25. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party
computation. IACR Cryptology ePrint Archive 2015:553 (2015)

26. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol
composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–
176. Springer, Heidelberg (2003)

27. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

28. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

29. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: STOC, pp. 242–251 (2004)

30. Yao, AC.-C.: How to generate and exchange secrets (extended abstract). In:
FOCS, pp. 162–167 (1986)

Secret Sharing

Secret Sharing Schemes
for Dense Forbidden Graphs

Amos Beimel1, Oriol Farràs2, and Naty Peter1(B)

1 Ben Gurion University of the Negev, Be’er Sheva, Israel
amos.beimel@gmail.com, naty@post.bgu.ac.il
2 Universitat Rovira i Virgili, Tarragona, Spain

oriol.farras@urv.cat

Abstract. A secret-sharing scheme realizes a given graph if every two
vertices connected by an edge can reconstruct the secret and every inde-
pendent set in the graph does not get any information about the secret.
A secret-sharing scheme realizes a forbidden graph if every two vertices
connected by an edge can reconstruct the secret and every two vertices
which are not connected by an edge do not get any information about
the secret. Similar to secret-sharing schemes for general access structures,
there are gaps between the known lower bounds and upper bounds on the
total share size for graphs and for forbidden graphs. Following [Beimel
et al. CRYPTO 2012], our goal in this paper is to understand how the
total share size increases by removing few edges from a graph that can
be realized by an efficient secret-sharing scheme.

We show that if a graph with n vertices contains at least
(

n
2

)− n1+β

edges for some 0 ≤ β < 1
2
, i.e., it is obtained by removing few edges

from the complete graph, then there is a scheme realizing its forbid-
den graph in which the total share size is O(n7/6+2β/3). This should be
compared to O(n3/2), the best known upper bound for the total share
size in general forbidden graphs. Additionally, we show that a forbidden
graph access structure obtained by removing few edges from an arbitrary
graph G can be realized by a secret-sharing scheme with total share size
of O(m + n7/6+2β/3), where m is the total size of the shares in a secret-
sharing scheme realizing G and n1+β is the number of the removed edges.

We also show that for a graph obtained by removing few edges from
an arbitrary graph G with n vertices, if the chromatic number of the
graph that contains the removed edges is small, then there is a fairly
efficient scheme realizing the resulting graph; specifically, we construct
a secret-sharing scheme with total share size of Õ(m2/3n2/3+2β/3c1/3),
where m is the total size of the shares in a secret-sharing scheme realiz-
ing G, the value n1+β is an upper bound on the number of the removed

Amos Beimel–Supported by ISF grant 544/13 and by the Frankel center for computer
science.
Oriol Farràs–Supported by the Spanish Government through a Juan de la Cierva
grant and TIN2014-57364-C2-1-R, by the European Union through H2020-ICT-2014-
1-644024, and by the Government of Catalonia through Grant 2014 SGR 537.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 509–528, 2016.
DOI: 10.1007/978-3-319-44618-9 27

510 A. Beimel et al.

edges, and c is the chromatic number of the graph of the removed edges.
This should be compared to O(n2/ log(n)), the best known upper bound
for the total share size for general graphs.

Keywords: Secret sharing · Covers by graphs · Avoiding covers

1 Introduction

A secret-sharing scheme, introduced by [11,32,41], is a method in which a dealer,
which holds a secret (i.e., a string of bits), can distribute shares (which are
strings) to a set of participants such that only predefined subsets of the partic-
ipants can reconstruct the secret from their shares, while other subsets get no
information about the secret. The collection of the subsets that can reconstruct
the secret is called the access structure. Secret-sharing is an important primitive
for storing sensitive information, being able to give access to just some subsets of
parties. For example, secret-sharing schemes can be used in access control, giv-
ing access to the secret to some subsets of parties. Furthermore, secret-sharing
schemes are used in many secure protocols and applications, such as multiparty
computation [8,18], threshold cryptography [24], access control [38], attribute-
based encryption [31,46], and oblivious transfer [42,45]. The question whether
there is a secret-sharing scheme with small share size, i.e., polynomial in the
number of participants, is the main open problem in secret-sharing schemes.
Clearly, secret-sharing schemes with super-polynomial share size are not usable
in the above-mentioned application of secret sharing.

In this paper we will mainly consider secret-sharing schemes in which the
minimal authorized sets are of size 2, and we represent such access structures
by graphs, where each vertex represents a participant and each edge represents
a minimal authorized set. Following [5], we will study the problem of realizing
graph access structures, in particular for graphs obtained by removing few edges
from an arbitrary graph, and from the complete graph. Given a scheme realizing a
graph, we want to understand how the size of the shares increases when removing
few edges from the graph, compared to the size of the shares in the scheme of
the original graph. We consider graphs with “good” schemes, i.e., graphs with
schemes in which the size of the shares is small. We present efficient constructions
both for graph access structures and for forbidden graph access structures.

1.1 Related Work

Works on Arbitrary Access Structures. Secret-sharing schemes were introduced
by Shamir [41] and Blakley [11] for the threshold case, and by Ito et al. [32]
for the general case. Threshold access structures, in which the authorized sets
are all the sets containing at least t participants (for some threshold t), can be
realized by secret-sharing schemes in which the size of each share is the size
of the secret [11,41]. There are other access structures that have secret-sharing
schemes in which the size of the shares is small, i.e., polynomial (in the number

Secret Sharing Schemes for Dense Forbidden Graphs 511

of participants) share size [9,10,14,34]. In particular, Benaloh and Leichter [9]
proved that if an access structure can be described by a small monotone formula,
then it has an efficient secret-sharing scheme. Improving on this result, Karchmer
and Wigderson [34] showed that if an access structure can be described by a small
monotone span program, then it has an efficient secret-sharing scheme. However,
the best known schemes for general access structures (e.g., [10,14,32,34]) are
highly inefficient, i.e., they have share size of 2O(n) (where n is the number of
participants). The best lower bound known on the total share size of schemes
realizing an access structure is Ω(n2/ log(n)) [21,22]. For linear secret-sharing
schemes, which are secret-sharing schemes described by linear mappings, the
best lower bound on the share size is 2Ω(nc) for some constant c < 1 [20] (this
very recent lower bound improves the results in [2,6,27,28]). Most known secret-
sharing schemes are linear, and many applications require linear schemes. More
information about secret sharing can be found in [3].

Graph Access Structures. A secret-sharing scheme realizes a given graph if every
two vertices connected by an edge can reconstruct the secret and every inde-
pendent set in the graph does not get any information on the secret. The trivial
secret-sharing scheme for realizing a graph is sharing the secret independently
for each edge; this results in a scheme whose total share size is O(n2) (times
the length of the secret, which will be ignored in the introduction). This can be
improved – every graph access structure can be realized by a linear secret-sharing
scheme in which the size of the shares is O(n2/ log(n)) [16,26].

Graph access structures have been studied in [5,6,12,13,15,17,23,43].
Capocelli et al. [17] proved that there exists a graph with 4 vertices such that
the size of the share of at least one party is at least 3/2 times the size of the
secret. Brickell and Davenport [15] showed that a graph access structure (with n
vertices) can be realized by a secret-sharing scheme in which the total size of the
shares is n if and only if the graph is a complete multipartite graph. Stinson [43]
showed that for a graph with average degree d, there is a secret-sharing scheme
realizing its graph access structure in which the average share size of a vertex is
at most (d + 1)/2. Blundo et al. [13] presented upper and lower bounds on the
size of the shares of a scheme realizing graph access structures, for multipartite
graphs, connected graphs, paths, cycles, and trees. In particular, it is proven
in [13] that the smallest share size of a scheme which realizes a graph access
structure is the size of the secret or at least 1.5 times greater than the size of the
secret. Blundo et al. [12] showed that there exists a d-regular graph such that the
share size of each vertex in any scheme that realizes its graph access structure
is at least (d + 1)/2. Beimel et al. [6] proved a lower bound of Ω(n3/2) on the
total share size of a linear schemes realizing a certain graph access structure.
Csirmaz [23], extending a result of van Dijk [25], showed that there exist graphs
for which the total share size in every secret-sharing scheme realizing their graph
access structures is Ω(n log(n)).

Beimel et al. [5] showed that a graph with n vertices that contains
(
n
2

)−n1+β

edges for some constant 0 ≤ β < 1 can be realized by a scheme in which the
total share size is Õ(n5/4+3β/4). They also showed that if n1+β edges are removed

512 A. Beimel et al.

from an arbitrary graph that can be realized by a secret-sharing scheme with
total share size m, then the resulting graph can be realized by a secret-sharing
scheme with total share size Õ(m1/2n1+β/2).

Some of the results for graph access structures have been extended to general
access structures, e.g., Mart́ı-Farré and Padró [36], generalizing results of [13],
showed that in every secret-sharing scheme realizing an access structure that
is not a port matroid (and, hence, not ideal) the size of the shares is at least
1.5 times the size of the secret. Other results have been extended to homoge-
nous access structures [35,39], which are access structures in which the minimal
authorized sets are of the same size (in graph access structures, this size is
2), e.g., Padró and Sáez [39] showed upper bounds on the size of the shares
of secret-sharing schemes realizing homogenous access structures. These results
demonstrate that graph access structures can be used to understand problems
about general access structures.

Forbidden Graph Access Structures. Another model we consider is the forbidden
graph access structures, which was first described in [44]. A secret-sharing scheme
realizes a forbidden graph access structure if every two vertices can reconstruct
the secret if and only if they are connected by an edge. We do not care if sets
of 3 or more vertices can reconstruct the secret (in [44], every set of 3 or more
vertices can reconstruct the secret). The requirement that every set of 3 or more
vertices can reconstruct the secret (as in [44]) increases slightly the total share
size, since we can independently share the secret using the 3-out-of-n scheme of
Shamir [41], in which the size of the share of every participant is the size of the
secret (when the size of the secret is at least log(n)).

The requirements for graph access structures are stronger than for forbidden
graph access structures, since for graph access structures every independent set
in the graph is an unauthorized subset, and in forbidden graph access structures
we only require independent sets of size 2 to be unauthorized sets.

Every forbidden graph access structure can be realized by a secret-sharing
scheme in which the size of the shares is O(n3/2) [7]. Furthermore, this can be
done by a linear scheme [29]. In contrast, the best known upper bound for graph
access structures is O(n2/ log(n)) [23].

Gertner et al. [30] presented conditional disclosure of secrets (CDS). In this
problem, two parties want to disclose a secret to a referee if and only if their
inputs (strings of N bits) satisfy some predicate (e.g., if their inputs are equal).
For that, each party sends one message to the referee (this message depends only
on its input and the secret), and if the predicate holds the referee can reconstruct
the secret from the messages it received. This problem is interesting, since in [30]
CDS is used to efficiently realize a symmetrically-private information retrieval
(SPIR) schemes. Additionally, in [29] it is shown that CDS can be used for
attribute-based encryption [31,40].

We can represent the CDS problem as the problem of realizing a secret-
sharing scheme for a forbidden graph access structure of a bipartite graph and
vice-versa: Every possible input for the first party is a vertex in the first part of
the graph and every possible input for the second party is a vertex in the second

Secret Sharing Schemes for Dense Forbidden Graphs 513

part of the graph, and there is an edge between two vertices from different parts
if and only if the two corresponding inputs satisfy the predicate. The size of the
share of each vertex is equivalent to the size of the message sent to the referee by
the party, when it holds the input associated with the vertex. We get a bipartite
graph with 2N vertices in each part (where N is the size of the input of the
parties).

It was shown in [29] that for every predicate there exists a linear CDS such
that the size of each of the messages sent by the two parties to the referee is
2N/2.1 It implies that there exists a linear secret-sharing scheme in which the
total size of the shares is O(n3/2) (where n is the number of the participants)
for every forbidden graph access structure.

By a generalization of a result of [37], we get a lower bound of Ω(n3/2) on
the size of the shares of a linear scheme realizing an implicit forbidden graph
access structures.

1.2 Our Results

The first problem we deal with in this paper is the construction of secret-sharing
schemes realizing forbidden graph access structures for dense graphs, i.e., for
graphs in which its complement graph contains few edges. Given a dense graph
with n vertices and with at least

(
n
2

) − n1+β edges, for some 0 ≤ β < 1
2 , we

construct a secret-sharing scheme that realizes its forbidden graph access struc-
ture, in which the total size of the shares is O(n7/6+2β/3). Compared to [5],
which shows that graph access structures of such graphs can be realized by a
scheme with total share size Õ(n5/4+3β/4), our scheme for forbidden graph access
structures is more efficient.

As a corollary, we show that if a graph with n vertices contains
(
n
2

)− � edges
for some 0 < � < n, then it can be realized by a secret-sharing scheme in which
the total share size is O(n + �7/6). For example, if � = O(n6/7), then the total
share size of the scheme is O(n).

In addition, we show that if an arbitrary forbidden graph access structure
(with n vertices) can be realized by a secret-sharing scheme in which the total
size of the shares is m, and we remove n1+β edges from it (for some 0 ≤ β < 1

2),
then the resulting forbidden graph access structure can be realized by a secret-
sharing scheme in which the total size of the shares is O(m + n7/6+2β/3).

The second problem we consider is constructing secret-sharing schemes that
realize graph access structures for graphs obtained when removing few edges
from an arbitrary graph that has a “good” scheme, i.e., the size of the shares
in this scheme is relatively small. We solve this question when the graph of the
removed edges has a small chromatic number.

Namely, we consider a graph with n vertices that can be realized by a secret-
sharing scheme with total share size m, and we remove a set of at most n1+β edges
from the graph, for some 0 ≤ β < 1. Then we show that if the chromatic number

1 A linear CDS is a CDS in which if the predicate holds, then the reconstruction
function of the referee is linear.

514 A. Beimel et al.

c of the graph with the removed edges satisfies c < n1−β/2

m1/2 , then the obtained
graph has a secret-sharing scheme with total share size Õ(m2/3n2/3+2β/3c1/3).

It should be compared to the result of Beimel et al. [5], showing that such a
graph can be realized by a scheme with total share size Õ(m1/2n1+β/2) without
any restrictions on the chromatic number of the removed edges. Thus, our scheme
is better when the chromatic number is relatively small and m is not too big (it
is always more efficient when c < n1−β/2

m1/2).

Remark 1.1. In particular, our result is valid for graphs obtained by removing
few edges from a graph with small chromatic number, denoted by c, since in this
case the graph which contains the removed edges is a subgraph of the original
graph, and thus, its chromatic number is at most c.

As a corollary, we show that if a graph with n vertices can be realized by a
secret-sharing scheme with total share size m, and we remove � edges from it,
for some 0 < � < n, such that the chromatic number of the graph containing the
removed edges is c, where c < �

m1/2 , then we can realize the remaining graph by
a secret-sharing scheme in which the total share size is Õ(cm + m2/3�2/3c1/3).
Thus, if � = Θ(cm1/2), then the total share size of the scheme is Õ(cm).

Techniques. A cover of a graph G is a collection of subgraphs of G satisfying
that every edge in G appears in at least one subgraph of the collection. Covers of
graphs where used to construct secret-sharing schemes (e.g., in [5,43]). The idea
of the construction is to share the secret independently for each subgraph in the
cover. By choosing subgraphs that have efficient secret-sharing schemes (e.g.,
multipartite graphs, which have an ideal scheme), it is possible to find efficient
schemes for other graphs.

When realizing the graph access structure of a graph obtained by removing
few edges from a general graph G, we use a new technique of avoiding cov-
ers. We cover a bipartite graph, which is a subgraph of G, by bipartite graphs
G1, . . . , Gr in such a way that for every bipartite graph Gi of the cover, there
are no removed edges between any two vertices (in the same part or in different
parts) in the graph Gi. Then, for every graph Gi of the cover, we share the secret
independently using the scheme of the graph G.

Following [5], we construct a scheme realizing graph access structures of
graphs obtained by removing few edges with small chromatic number from a
general graph in 3 main steps. We first realize all the edges incident to vertices
with high degree in the graph of the removed edges by stars, and remove these
vertices and their incident edges from the graph. After this step, the degree of
every vertex in the graph of the removed edges is bounded. Next, we reduce the
maximum degree of a vertex in the graph of the removed edges by using the
chromatic number of the graph, and in the final step we use the avoiding cover
to realize the remaining graph.

Similar to graph access structures, the main scheme realizing forbidden graph
access structures of dense graphs contains 3 main steps. First, we realize all the

Secret Sharing Schemes for Dense Forbidden Graphs 515

edges incident to vertices with high degree in the complement graph by two inde-
pendent schemes, for the induced graph on these vertices, and for the bipartite
graph between these vertices and the remaining vertices. We then remove these
vertices and their incident edges from the graph. In this step, we use the scheme
of [7,29] and get a more efficient scheme than the cover by stars used in [5] for
graph access structures. We get a graph in which the degree of every vertex in
its complement is bounded. Next, we decrease the maximum degree of a vertex
in the complement graph log log(n) times, and finally we realize the remaining
graph using a forest cover.

2 Preliminaries

In this section we define secret-sharing schemes, secret-sharing schemes for
graphs and for forbidden graphs, and some other useful definitions. Additionally,
we present the graph terminology we use.

Notations. We denote the logarithmic function with base 2 and base e by log and
ln, respectively. We use the Õ notation, which ignores polylogarithmic factors,
i.e., O(nδ loga(n)) = Õ(nδ) for a constant a. For any two strings of bits s1, s2,
let s1 ⊕ s2 denote the bitwise exclusive-or between the strings.

Secret Sharing. We start by defining access structures, distribution schemes, and
secret-sharing schemes, as described in [4,19].

Definition 2.1 (Access Structures, Distribution Schemes, and Secret
Sharing). Let P = {p1, . . . , pn} be a set of parties. A collection Γ ⊆ 2P is
monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ . An access structure is a
monotone collection Γ ⊆ 2P of non-empty subsets of P . Sets in Γ are called
authorized, and sets not in Γ are called unauthorized. The family of minimal
authorized subsets is denoted by min Γ .

A distribution scheme Σ = 〈Π,μ〉 with domain of secrets K is a pair, where μ
is a probability distribution on some finite set R called the set of random strings
and Π is a mapping from K × R to a set of n-tuples K1 × K2 × · · · × Kn,
where Kj is called the domain of shares of party pj. A dealer distributes a secret
k ∈ K according to Σ by first sampling a random string r ∈ R according to μ,
computing a vector of shares Π(k, r) = (s1, . . . , sn), and privately communicating
each share sj to party pj. For a set A ⊆ P , we denote ΠA(s, r) as the restriction
of Π(s, r) to its A-entries. Given a distribution scheme, the size of the secret
is log(|K|), the (normalized) size of the share of party pj is log(|Kj |)

log(|K|) , and the

(normalized) total share size of the distribution scheme is
n∑

j=1

log(|Kj |)
log(|K|) .

Let K be a finite set of secrets, where |K| ≥ 2. A distribution scheme 〈Π,μ〉
with domain of secrets K is a secret-sharing scheme realizing an access structure
Γ if the following two requirements hold:

516 A. Beimel et al.

Correctness requirement: The secret k can be reconstructed by any authorized
set of parties.

Privacy requirement: Every unauthorized set cannot learn anything about the
secret from their shares.

Graph Terminology. In this paper we consider graph access structures and for-
bidden graph access structures. In the sequence, G = (V,E) is an undirected
graph, where the vertices of V will also denote parties of an access structure as
discussed below.

The degree of a graph is the maximum degree of a vertex in the graph. A
graph G′ = (V ′, E′) is a subgraph of the graph G = (V,E) if V ′ ⊆ V and
E′ ⊆ E ∩ (V ′ × V ′). All through this paper, n is the number of the vertices in
the graph G = (V,E), i.e., |V | = n.

Definition 2.2 (The Complement Graph and Intersection of Graphs).
Given a graph G = (V,E), the complement graph of G is the graph G = (V,E),
where every two vertices u, v ∈ V satisfy (u, v) ∈ E if and only if (u, v) /∈ E.
Given two graphs G1 = (V,E1) and G2 = (V ′, E2) such that V ′ ⊆ V , the
intersection of G1 and G2 is G1 ∩ G2 = (V ′, E1 ∩ E2).

Next we define one of the techniques to construct a secret-sharing scheme
realizing a graph that uses covers of graphs.

Definition 2.3 (λ-Covers). Let G = (V,E) be a graph. A λ-cover of G is a
collection of graphs G1 = (V1, E1), . . . , Gr = (Vr, Er) such that each Gi is a
subgraph of G, and each edge in E is in at least λ graphs of the collection. A
cover of G is a 1-cover of G.

Recall that a bipartite graph G = (U, V,E) is a graph where the vertices are
U ∪ V (U and V are called the parts of G) and E ⊆ U × V . A bipartite graph
is complete if E = U × V . A complete bipartite λ-cover of G is a λ-cover of
G by complete bipartite graphs. A complete bipartite cover of G is a complete
bipartite 1-cover of G.

Definition 2.4 (Equivalence Graphs and Equivalence Covers [1]). An
equivalence graph is a vertex-disjoint union of cliques. An equivalence cover of
the graph G = (V,E) is a cover G1 = (V1, E1), . . . , Gr = (Vr, Er) of G such that
each Gi is an equivalence graph.

Definition 2.5 (The Graph GF and the Graph G∗
F). Given a graph G =

(V,E) and a set of vertices F ⊂ V , we define the bipartite graph GF = (F, V \
F,E ∩ (F × (V \ F))), which is the bipartite graph with parts F and V \ F ,
restricted to the edges of G.

For a set of vertices F ⊂ V and a set of edges E∗ ⊂ E (which is the set of
the removed edges), we define G∗

F = (F, V \ F,E∗ ∩ (F × (V \ F))), i.e., G∗
F is

a bipartite graph with parts F and V \ F , which contains only the edges that are
not removed from G.

Secret Sharing Schemes for Dense Forbidden Graphs 517

Forbidden Graphs and Secret Sharing. We next present the definition of forbid-
den graph access structures, in which we only require that sets of size 2 that are
edges can reconstruct the secret, while sets of size 2 that are not edges cannot
learn any information about the secret.2

Definition 2.6 (Forbidden Graph Access Structures). Given a graph
G = (V,E), its forbidden graph access structure Γ is the access structure on
V composed of all the sets in E and all the sets of 3 or more vertices. For a
graph G = (V,E), a secret-sharing scheme realizes its forbidden graph if the
scheme realizing its forbidden graph access structure, i.e., if every edge of E and
every set of size at least 3 can reconstruct the secret, and every edge of E cannot
get any information about the secret.

In our constructions for forbidden graph access structures, edges are removed
from the complete graph G = (V,E), where |E| =

(
V
2

)
. The set E∗ ⊂ E is the

set of edges we remove from the graph G, i.e., the excluded edges, such that
|E∗| ≤ n1+β for some constant 0 ≤ β < 1

2 , i.e., we remove at most n1+β edges
from the complete graph. We want to realize the graph G ∩ G∗ = G∗, where
G∗ = (V,E∗), i.e., we want to find a secret-sharing scheme in which each edge
in E \ E∗ = E∗ can reconstruct the secret and each edge in E∗ cannot learn
any information about the secret. Note that since |E∗| ≤ n1+β , the number of
edges in the graph G∗ is |E∗| ≥ (

n
2

) − n1+β , i.e., the graph G∗ is a dense graph
in which its complement contains few edges. Our constructions are only useful
when 0 ≤ β < 1

2 , since for larger values of β, the total share size of the schemes
we present is larger than n3/2 and every forbidden graph access structure can
be realized by a secret-sharing scheme whose total share size is O(n3/2).

Graphs and Secret Sharing. Next, we formally define graph access structures.

Definition 2.7 (Graph Access Structures). Given a graph G = (V,E), its
graph access structure is the access structure whose set of participants is V and
whose minimal authorized sets are the edges in E, that is, a set is authorized if
it contains an edge, and a set is not authorized if it is an independent set in G.
We say that a secret-sharing scheme realizes a graph if the scheme realizes its
graph access structure, i.e., if every edge can reconstruct the secret, and every
independent set in G cannot get any information about the secret.

Remark 2.8. When we say that a secret-sharing scheme realizes a graph, we
mean that the scheme realizes its graph access structure or its forbidden graph
access structure, according to the context, e.g., if we discuss forbidden graph
access structures, we say that a secret-sharing scheme realizing a graph if the
scheme realizing its forbidden graph access structure. In Sect. 3 we consider for-
bidden graph access structures and in Sect. 4 we consider graph access structures.

2 In [44], the access structure is specified by the complement graph, i.e., by the edges
that are forbidden from learning information on the secret.

518 A. Beimel et al.

We use the following notations: the graph G = (V,E) is the original graph.
The set E∗ ⊂ E is the set of edges we remove from the graph G, i.e., the excluded
edges, such that |E∗| ≤ n1+β for some constant 0 ≤ β < 1. Furthermore, m is
the total share size of a secret-sharing scheme realizing the graph G.

We want to find a secret-sharing scheme in which each edge in E \E∗ (equiv-
alently, in E ∩E∗) can reconstruct the secret, and such that every set of vertices
with no edge in E \E∗ cannot learn any information on the secret. Additionally,
we use the notation G∗, where G∗ = (V,E∗), i.e., G∗ is the graph of the edges
that are not removed, and G∗ = (V,E∗) is the graph which contains the removed
edges from G. The value χ(G∗) is the chromatic number of G∗, i.e., the minimal
number of colors needed to color the vertices of V such that there are no edges
of E∗ between any two vertices with the same color. Our construction applies
only when the graph of the removed edges has a small chromatic number.

In the definition of secret-sharing schemes realizing graph access structures
we require that every independent set cannot learn any information about the
secret. However, in our constructions in Sect. 4 we only claim that non-edges
cannot learn information on the secret. The next claim shows that, due to the
selection of special covers, in our constructions the latter requirement implies the
former strong requirement (as discussed in Sect. 3, this is not true for general
constructions).

Claim 2.9. Let G = (V,E) be a graph, and G1 = (V1, E1), . . . , Gr = (Vr, Er)
be graphs such that each Gi is a subgraph of G. If we independently realize each
graph Gi using a scheme that realizes the graph access structure of Gi (i.e., every
independent set in Gi does not get any information on the secret), then every
independent set in G cannot learn any information on the secret.

Remark 2.10. In our construction, we use the scheme of the graph G to real-
ize subgraphs of G with no removed edges (i.e., with no edges from E∗). We
also use the trivial scheme for some edges from E \ E∗ (i.e., sharing the secret
independently for each edge). These schemes also realize subgraphs of G with
no edges from E∗ (each such subgraph contains only one edge). Since we use
schemes that realize the graph access structures of subgraphs of G, a set of ver-
tices can reconstruct the secret if and only if it contains an edge from the graph
G. So, by Claim 2.9, to argue that every independent set of G∩G∗ cannot learn
any information on the secret, it is sufficient to show that every edge in E ∪ E∗

cannot learn any information on the secret.

3 Schemes for Forbidden Graph Access Structures

In this section, we consider forbidden graph access structures, where every edge
in the graph can reconstruct the secret, and every edge not in the graph cannot
reconstruct the secret. In all the schemes in this section, except for the schemes
presented in Lemma 3.1 and in Theorem 3.2, the size of the secret should be at
least log(n), since in these schemes we use the t-out-of-n scheme of Shamir [41].
Some of the proofs in this section are deferred to the full version of this paper.

Secret Sharing Schemes for Dense Forbidden Graphs 519

3.1 Constructions for Arbitrary Graphs

In the first scheme we realize bipartite graphs. The following schemes are based
on the construction for CDS of [29].

Lemma 3.1. Let H = (U, V,E) be a bipartite graph such that |U | = k and
|V | = n. Then, there is a secret-sharing scheme such that: (1) each edge in H
can reconstruct the secret, (2) each edge not in H cannot learn any information
about the secret, and (3) if k2 ≤ n then the total share size of the scheme is
O(n). Otherwise, the total share size of the scheme is O(n1/2k).

The following theorem provides a scheme realizing an arbitrary graph G. We
use the scheme of Lemma 3.1 for bipartite graphs log(n) times to get a scheme
for an arbitrary graph.

Theorem 3.2 ([7,29]). Let G = (V,E) be a graph such that |V | = n. Then,
there is a secret-sharing scheme such that: (1) each edge in G can reconstruct
the secret, (2) each edge not in G cannot learn any information about the secret,
and (3) if the size of the secret is 1, then the total share size of the scheme is
O(n3/2 log(n)) = Õ(n3/2). If the size of the secret is Ω(log2(n)), then the total
share size of the scheme is O(n3/2).

3.2 Constructions for Bounded Degree Excluded Graphs

The next lemma shows that given a forest, i.e., a graph that does not contain any
cycle, we can realize its complement graph with a scheme in which the total share
size is O(n). In the sequence, we use this scheme in the following construction,
to realize the complement of a bounded degree graph.

Lemma 3.3. Let G = (V,E) be a graph such that its complement graph G =
(V,E) is a forest. Then, there is a secret-sharing scheme such that: (1) each
edge in G can reconstruct the secret, (2) each edge not in G cannot learn any
information about the secret, and (3) the total share size of the scheme is at
most 3n.

Proof Sketch. Denote V = {v1, . . . , vn}. Since G is a forest, it is composed of
trees. Let T1 = (V1, E1), . . . , Tk = (Vk, Ek) be the trees in the graph G containing
all the vertices in G (isolated vertices in G are trees with one vertex). First,
we share the secret by generating n + k shares r1, . . . , rn+k using the 4-out-
of-(n + k) scheme of Shamir [41]. For every 1 ≤ i ≤ k, we give shares to the
vertices in the tree Ti as follows: For the tree Ti = (Vi, Ei), denote |Vi| = t and
Vi = {vi1 , . . . , vit

}. We consider the tree as a rooted tree, with a root vi1 , and
for every vertex v in Ti, we denote the parent of v by π(v). The root vertex vi1

gets the shares rn+i, ri1 , and for every 2 ≤ j ≤ t, vertex vij
∈ Vi gets the shares

rp, rij
, where π(vij

) = vp.
Additionally, we denote the maximum distance of a vertex from the root

by Di. For every 1 ≤ � ≤ Di, define Fi,� = {v ∈ Vi : The distance of v

520 A. Beimel et al.

from the root in the tree Ti is �}. For every Fi,�, we independently share the
secret by generating |Fi,�| shares t1, . . . , t|Fi,�| using the 2-out-of-|Fi,�| scheme
of Shamir, and giving the jth vertex in Fi,� the share tj . It can be verified that
the above scheme is correct, private, and has shares of size 3n. �
Definition 3.4 (Covers by Forests). Let H = (V,E) be a graph. A forest
cover of H is a cover G1 = (V,E1), . . . , Gr = (V,Er) of H such that each Gi is
a forest.

The next lemma shows that every graph with degree d can be covered by a
forest cover of size d.

Lemma 3.5. Let H = (V,E) be a graph such that the degree of each vertex in H
is bounded by d. Then, there is a cover of H by d forests G1 = (V,E1), . . . , Gd =
(V,Ed) such that every edge e ∈ E appears in exactly one graph of the cover.

The forest cover is used below to construct a scheme for the complement of
a bounded degree graph. The secret-sharing scheme we present saves a factor of
Θ(log(n)) compared to the scheme of [5], which realizes graph access structures
of bounded degree graphs (we only realize forbidden graph access structures).

Theorem 3.6. Let G = (V,E) be a graph such that the degree of every vertex
in its complement graph G = (V,E) is bounded by d. Then, there is a secret-
sharing scheme realizing the forbidden graph access structure of G such that the
total share size of the scheme is at most 3dn.

Definition 3.7. (The Bipartite Complement). Let H = (U, V,E) be a
bipartite graph. The bipartite complement of H is the bipartite graph H =
(U, V,E), where every u ∈ U and v ∈ V satisfy (u, v) ∈ E if and only if
(u, v) /∈ E.

First, we show how to construct a scheme realizing a bipartite graph such that
the degree of every vertex in one part in its bipartite complement is bounded.

Lemma 3.8. Let H = (U, V,E) be a bipartite graph with |V | = n and |U | = k ≤
n satisfying that the degree of every vertex in V in the bipartite complement graph
H = (U, V,E) is at most d. Then, there is a secret-sharing scheme such that:
(1) each edge in H can reconstruct the secret, (2) each edge not in H (including
edges between vertices in the same part in the bipartite graph H) cannot learn
any information about the secret, and (3) the total share size of the scheme is
at most 8dn.

Proof. To share a secret s, we choose random strings s1, s2, s3 such that s =
s1 ⊕ s2 ⊕ s3. We give s1 to each vertex in U and give s2 to each vertex in V . The
total share size for these shares is at most 2n. By Lemma 3.5, there is a cover
of H by d forests such that every edge in H appears in exactly one graph of the
cover. Next, consider the graph G = (U ∪V,E ∪ (U ×U)∪ (V ×V)). Notice that
G is the complement graph of the graph H. We share s3 to the graph G using
the forest cover of H by the scheme from Theorem 3.6 such that each edge in G

Secret Sharing Schemes for Dense Forbidden Graphs 521

can reconstruct the secret and each edge in H cannot learn any information on
the secret, and the total share size of the scheme is at most 3d(|U |+ |V |) ≤ 6dn.
Thus, the total share of the resulting scheme is at most 8dn.

For an edge (u, v) ∈ E such that u ∈ U and v ∈ V , the edge (u, v) is in G,
and thus, the edge (u, v) can reconstruct s3. Moreover, since u ∈ U , the vertex u
holds s1 and since v ∈ V , the vertex v holds s2, and, hence, the edge (u, v) can
reconstruct the secret s by performing bitwise exclusive-or between the strings
s1, s2, s3.

For an edge (u, v) /∈ E such that u, v ∈ U , vertices u, v do not hold the string
s2, and, hence, cannot learn any information on the secret. For an edge (u, v) /∈ E
such that u, v ∈ V , the vertices u, v do not hold the string s1, and, hence, cannot
learn any information on the secret. For an edge (u, v) /∈ E such that u ∈ U
and v ∈ V , the edge (u, v) is in H, and thus, the edge (u, v) cannot learn any
information on s3, and cannot learn any information about the secret. �

We use a different construction to realize a bipartite graph such that one part
is much smaller than the other and the degree of every vertex in its bipartite
complement is bounded.

Lemma 3.9. Let H = (U, V,E) be a bipartite graph with |V | = n and |U | = k ≤
n satisfying that the degree of every vertex in U ∪ V in the bipartite complement
graph H = (U, V,E) is at most d, where d < k. Then, there is a secret-sharing
scheme realizing the forbidden graph access structure of H such that the total
share size of the scheme is O(n + d2/3k4/3).

Proof. Define D1 = {v ∈ V : There exists u ∈ U such that (u, v) ∈ H}. Since
the degree of every vertex of U in H is at most d, the size of D1 is at most dk.
Furthermore, the complete bipartite graph H1 = (U, V \ D1, U × (V \ D1)) is a
subgraph of H. We realize H1 by an ideal scheme in which the total share size
is at most |U | + |V | = O(n) (see Fig. 1).

U

V

H1

D1

Fig. 1. The bipartite graph H1. Edges in E are marked with blue crosses.

Next, define D2 = {v ∈ D1 : The degree of v in H is at least (k
d)

1
3 }. Because

the graph H contains at most dk edges, we get that |D2| ≤ dk/(k
d)

1
3 = d4/3k2/3.

522 A. Beimel et al.

Let H2 = (U,D2, E∩(U ×D2)). Since d < k, we get that |U |2 = k2 = k4/3k2/3 >
d4/3k2/3 ≥ |D2|, and, hence, by Lemma 3.1, we can realize the graph H2 such
that each edge in H2 can reconstruct the secret, each edge not in H2 cannot
learn any information about the secret, and the total share size of the scheme is
O(|D2| 1

2 · |U |) = O((d4/3k2/3)
1
2 k) = O(d2/3k4/3).

Finally, let D3 = D1\D2 and H3 = (U,D3, E∩(U ×D3)). The degree of each
vertex of D3 in the graph H3 is at most (k

d)
1
3 . By Lemma 3.6, we can realize the

graph H3 by a scheme in which the total share size is O((k
d)

1
3 dk) = O(d2/3k4/3).

As H1, H2, and H3 cover H, we constructed a scheme realizing H such
that each edge in H can reconstruct the secret, each edge not in H cannot
learn any information about the secret, and the total share size of the scheme is
O(n + d2/3k4/3). �

3.3 Constructions for Excluded Graphs with Few Edges

Given a graph, the following construction shows how to realize the edges incident
to vertices with high degree in its complement. Recall that G∗ is the graph which
contains the removed edges.

Lemma 3.10. Let G = (V,E) be the complete graph and E∗ ⊂ E such that
|E∗| ≤ n1+β, where 0 ≤ β < 1

2 . Then, for every d = nβ+ε for some constant
0 < ε ≤ 1

2 , we can remove a set of vertices and all their incident edges from the
graph G∗ and obtain the graph G∗

d such that the degree of every vertex in G∗
d is

at most d, the graph G∗
d contains at most n1+β edges, and the total share size

for the removed edges from G∗ is O(n3/2+β

d).3

Proof Sketch. To prove the above lemma, note that there are at most O(n1+β/d)
vertices whose degree in the graph of excluded edges is greater than d. We use
Lemma 3.1 to realize the bipartite graph, where one part contains the vertices
of degree greater than d and the other part are all other vertices. The share
size in the above scheme is O((n1+β/d) · n1/2) = O(n3/2+β/d). We also use the
the scheme of Theorem 3.2 to realize the graph containing the edges between
the vertices of degree at least d; the share size of this secret-sharing scheme is
smaller than O(n3/2+β/d). �

For a graph such that the degree of every vertex in its complement is bounded,
we show how to decrease the maximum degree of a vertex in its complement by
removing few vertices from the graph and realize all the removed edges from it.

Lemma 3.11. Let 0 < α′ < α ≤ 1 such that α ≥ 1
6 and let G = (V,E) be

the complete graph. Furthermore, let E∗ ⊂ E such that |E∗| = �, and assume
that the degree of each vertex in G∗ is at most nα. Then, we can remove a set
of vertices and all their incident edges from the graph G∗ and obtain the graph

3 We intend to the total share size of the scheme realizing the graph of the edges we
removed from G∗ in Lemma 3.10 and are contained in E \E∗. The same is also valid
for Lemma 3.11.

Secret Sharing Schemes for Dense Forbidden Graphs 523

G∗
α′ such that the degree of every vertex in G∗

α′ is at most nα′
, the graph G∗

α′

contains � − �′ edges for some �′ > 0, and the total share size for the removed
edges from G∗ is O(�′n1/4+α/2−α′

).

Proof. Define d = nα and d′ = nα′
(notice that d′ < d). Additionally, let

D = {v ∈ V : The degree of v in G∗ is at least d′}.

We remove the vertices of D in steps, where in each step we choose a set F of
k = n3/4

d1/2 > 1 (since d ≤ n) vertices, and remove F and all the edges incident to
the vertices of F (if the number of the remaining vertices with degree at least
d′ in G∗ is smaller than k, then we take the remaining vertices with degree at
least d′ and put them in F).

First, consider all the edges between two vertices in F . By Theorem 3.2,
we can realize the graph G∗[F] = (F,E∗ ∩ (F × F)) by a scheme such that
every edge in G∗[F] can reconstruct the secret and every edge not in G∗[F]
cannot learn any information about the secret, in which the total share size is
O(k

3
2) = O((n3/4

d1/2)
3
2) = O(n9/8

d3/4) = O(n) (since d ≥ n1/6).
Next, consider the bipartite graph G∗

F = (F, V \ F,E∗ ∩ (F × (V \ F))).
Because the degree of every vertex in G∗ is at most d, the degree of every vertex
in the bipartite complement graph G∗

F is at most d. Hence, by Lemma 3.9, we
can realize the graph G∗

F such that: (1) every edge in G∗
F can reconstruct the

secret, (2) every edge not in G∗
F cannot learn any information about the secret,

and (3) the total share size of the scheme is O(n). Thus, we can remove the
vertices of F and all the edges incident to them from the graph G∗, and the
total share size of the scheme for this step is O(n).

We continue in the same manner until the degree of all the vertices in the
graph G∗ is at most d′ and obtain the graph G∗

α′ after removing all the vertices
with degree greater than d′ in the graph G∗ and the edges incident to them from
G∗. Let �′ be the total number of edges we removed from G∗ in these steps until
the degree of every vertex in G∗ is at most d′. The graph G∗

α′ contains � − �′

edges and the degree of every vertex in G∗
α′ is at most d′. Additionally, in every

iteration, except for the last, we remove at least kd′ edges. Thus, there are at
most 1 + �′

d′k = O(�′d1/2

d′n3/4) iterations in this process, and the total share size for

the removed edges from G∗ is O(�′d1/2

d′n3/4 · n) = O(�′n1/4+α/2−α′
). �

The next scheme realizes dense graphs using three main steps as described
in the beginning of this section. We apply the degree reduction of the second
step log log(n) times, to get a scheme with smaller total share size.

Theorem 3.12. Let G = (V,E) be the complete graph and E∗ ⊂ E such that
|E∗| ≤ n1+β, where 0 ≤ β < 1

2 . Then, there is a secret-sharing scheme such that:
(1) each edge in E \ E∗ can reconstruct the secret, (2) each edge in E∗ cannot
learn any information about the secret, and (3) the total share size of the scheme
is O(n7/6+2β/3).

524 A. Beimel et al.

3.4 Constructions for Arbitrary Graphs When Removing Few
Edges

In the following theorem, we realize the graph obtained from an arbitrary graph
G when removing few edges from it. We first share the secret using the 2-out-of-2
scheme. We share the first share using the scheme of the graph G and share the
second share using the scheme of the graph G∗, which is the complement of the
graph of the removed edges.

Theorem 3.13. Let G = (V,E) be a graph and E∗ ⊂ E such that |E∗| ≤ n1+β,
where 0 ≤ β < 1

2 . Furthermore, assume that the forbidden graph access structure
of G can be realized by a scheme in which the total share size is m. Then, there
is a secret-sharing scheme such that: (1) each edge in G ∩ G∗ = (V,E \ E∗) can
reconstruct the secret, (2) each edge in E ∪ E∗ cannot learn any information
about the secret, and (3) the total share size of the scheme is O(m + n7/6+2β/3).

Proof. Let s be the secret, and let s1, s2 be random strings such that s = s1 ⊕s2
(i.e., s1 is chosen with uniform distribution and s2 = s1 ⊕ s). We independently
share s1 using the scheme of the graph G with total share size m.

The graph G∗ = (V,E∗) is a dense graph, in which the number of edges in
its complement is |E∗| ≤ n1+β , where 0 ≤ β < 1

2 . Hence, by Theorem 3.12, we
can realize the graph G∗ such that: (1) every edge not in E∗ can reconstruct
the secret, (2) every edge in E∗ cannot learn any information about the secret,
and (3) the total share size of the scheme is O(n7/6+2β/3). We share s2 using
the scheme of the graph G∗ with total share size O(n7/6+2β/3). Combining, the
total share size of the scheme is O(m + n7/6+2β/3).

For an edge e ∈ E \ E∗ = E ∩ E∗, since e ∈ E, the edge e can reconstruct s1
from the scheme of G, and since e ∈ E∗, the edge e can reconstruct s2 from the
scheme of G∗, and, hence, the edge e can reconstruct the secret s by performing
bitwise-xor between the strings s1 and s2.

For an edge e ∈ E ∪ E∗, if e ∈ E, the edge e cannot learn any information
on s1 from the scheme of G, and cannot reconstruct the secret s. Otherwise
e ∈ E∗, and the edge e cannot learn any information on s2 from the scheme of
G∗. Hence, the edge e cannot learn any information on the secret s. �
Remark 3.14. The last scheme does not realize graph access structures. Indeed,
every independent set in G∩G∗ which contains an edge e1 from E∗ and an edge
e2 from E can reconstruct the secret, because the edge e1 can reconstruct s1 and
the edge e2 can reconstruct s2, and together they can reconstruct the secret s.

Additionally, any improvement of the total share size of the scheme presented
in Theorem 3.12 will lead to an improvement of the total share size of the scheme
for a general graph G when removing few edges from it, for m = o(n7/6+2β/3),
where m is the total share size of a scheme in which each edge in G can recon-
struct the secret, and each edge not in G cannot learn any information about
the secret.

Secret Sharing Schemes for Dense Forbidden Graphs 525

4 Using Avoiding Covers to Realize Graph Access
Structures

In this section, we define avoiding covers and show how to use them to realize
graphs obtained by removing few edges from an arbitrary graph, such that the
degree of the graph which contains the removed edges is bounded. Avoiding
covers are a special kind of covers by complete bipartite graphs that are used to
reach the following goal. We want to realize a graph obtained by removing few
edges from an arbitrary graph G. For that, we want to use a cover by complete
bipartite graphs of the complete graph without the removed edges from the
graph G (i.e., every edge between the parts in each graph in the cover is not a
removed edge).

We would like to realize every graph in the cover by the scheme of the graph
G restricted to the vertices of the graph. Notice that the graph G might contain
edges between vertices in the same part; such edges would be able to reconstruct
the secret. However, if one of the graphs in the cover contains removed edges
between vertices in the same part, then they can reconstruct the secret although
these edges are unauthorized sets and should not learn any information about
the secret.

Thus, for a graph G = (V,E) and a set F ⊂ V , we want to find a cover of
the bipartite graph GF (defined in Definition 2.5) by complete bipartite graphs
such that there are no edges of G between any two vertices in the same part
of each complete bipartite graph in the cover. We next define avoiding covers,
which have this property.

Definition 4.1 (Avoiding λ-Covers by Complete Bipartite Graphs).
Let G = (V,E) be a graph and F ⊂ V . A complete bipartite λ-cover G1 =
(U1, V1, E1), . . . , Gr = (Ur, Vr, Er) of GF avoids E if E∩((Ui×Ui)∪(Vi×Vi)) = ∅
for every 1 ≤ i ≤ r, that is, there are no edges of G between any two vertices
in the same part of any Gi. A complete bipartite E-avoiding cover of GF is a
complete bipartite E-avoiding 1-cover of GF .

We show in the following claim the use of avoiding covers in our constructions.

Claim 4.2. Let G = (V,E) be a graph that can be realized by a scheme in which
the total share size is m, and let E∗ ⊂ E. Let F ⊂ V be a set satisfying that
there is an E∗-avoiding cover of G∗

F by complete bipartite graphs such that each
vertex v ∈ V is in at most μ graphs of the cover. Then, there is a secret-sharing
scheme such that: (1) each edge in G ∩ G∗

F can reconstruct the secret, (2) every
independent set in G∩G∗ cannot learn any information on the secret (we do not
care if the edges in E \ E∗ and not in G∗

F can learn information on the secret),
and (3) the total share size is at most μm.

For a graph G and a set of vertices F , the next lemma proves the existence
of a small avoiding cover of the bipartite graph GF when the degree of every
vertex in its complement G is bounded by d. In this cover the number of graphs

526 A. Beimel et al.

is O(d2 log(n)), compared to O(d ln(n)) graphs of the complete bipartite cover
presented in [33]. However, each vertex in the cover we construct appears in
O(d log(n)) graphs of the cover. This makes this cover equivalent to the complete
bipartite cover when comparing the total share size of the secret-sharing scheme
in which we share the secret independently for each graph of the cover.

Lemma 4.3. Let G = (V,E) be a graph such that the degree of each vertex
in G is bounded by d > 1 and F ⊂ V . Then, there is a log(n)-cover of size
r = O(d2 log(n)) of GF by complete bipartite graphs that avoids E such that
every vertex v ∈ V appears in O(d log(n)) graphs of the cover.

Theorem 4.4. Let G = (V,E) be a graph that can be realized by a scheme with
total share size m, and let E∗ ⊂ E. If the degree of each vertex in G∗ is bounded
by d, then G ∩ G∗ can be realized by a scheme in which the total share size is
Õ(dm).

Remark 4.5. The degree in G∗ is bounded by d, so by [5, Lemma 5.2] there
exists an equivalence ln(n)-cover, and in particular an equivalence cover of G∗

with O(d ln(n)) equivalence graphs. For every equivalence graph in the cover,
and for every clique in it, we can share the secret among the vertices in the
clique using the scheme of the graph G with total share size m. The edges that
can reconstruct the secret are the edges of E \ E∗, and every independent set
in G ∩ G∗ cannot learn any information on the secret. The total share size of
realizing each graph of the equivalence cover is m and the total share of the
resulting scheme (realizing all the graphs of the cover) is O(dm ln(n)) = Õ(dm),
slightly better than the above theorem. Using Stinson’s technique [43], if the
secret size is Ω(log2(n)), then the total share size of the scheme realizing G∩G∗

from Theorem 4.4 is O(dm), which improves the total share size of the scheme
from [5].

In the full version of this paper, we prove the following theorem, using avoid-
ing covers and adapting techniques from [5].

Theorem 4.6. Let G = (V,E) be a graph that can be realized by a scheme
with total share size m, let E∗ ⊂ E with |E∗| ≤ n1+β and 0 ≤ β < 1, and let
c = χ(G∗). If c < n1−β/2

m1/2 , then G ∩ G∗ can be realized by a scheme in which the
total share size is Õ(m2/3n2/3+2β/3c1/3).

References

1. Alon, N.: Covering graphs by the minimum number of equivalence relations. Com-
binatorica 6(3), 201–206 (1986)

2. Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone
span programs. Combinatorica 19(3), 301–319 (1999)

3. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011)

Secret Sharing Schemes for Dense Forbidden Graphs 527

4. Beimel, A., Chor, B.: Universally ideal secret-sharing schemes. IEEE Trans. Inf.
Theor. 40(3), 786–794 (1994)

5. Beimel, A., Farràs, O., Mintz, Y.: Secret-sharing schemes for very dense graphs. J.
Cryptol. 29(2), 336–362 (2016)

6. Beimel, A., Gál, A., Paterson, M.: Lower bounds for monotone span programs.
Comput. Complex. 6(1), 29–45 (1997)

7. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic com-
plexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 317–342. Springer, Heidelberg (2014)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In: Proceedings of the 20th ACM
Symposium on the Theory of Computing, pp. 1–10 (1988)

9. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions.
In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer,
Heidelberg (1990)

10. Bertilsson, M., Ingemarsson, I.: A construction of practical secret sharing schemes
using linear block codes. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS,
vol. 718, pp. 67–79. Springer, Heidelberg (1993)

11. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS
National Computer Conference, AFIPS Conference proceedings, vol. 48, pp. 313–
317. AFIPS Press (1979)

12. Blundo, C., De Santis, A., de Simone, R., Vaccaro, U.: Tight bounds on the infor-
mation rate of secret sharing schemes. Des. Codes Crypt. 11(2), 107–122 (1997)

13. Blundo, C., De Santis, A., Stinson, D.R., Vaccaro, U.: Graph decomposition and
secret sharing schemes. J. Cryptol. 8(1), 39–64 (1995)

14. Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Math. Combin. Com-
put. 6, 105–113 (1989)

15. Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing
schemes. J. Cryptol. 4(73), 123–134 (1991)

16. Bublitz, S.: Decomposition of graphs and monotone formula size of homogeneous
functions. Acta Inf. 23(6), 689–696 (1986)

17. Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares for
secret sharing schemes. J. Cryptol. 6(3), 157–168 (1993)

18. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp.
11–19 (1988)

19. Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. J. Cryptol. 6(2),
87–96 (1993)

20. Cook, S.A., Pitassi, T., Robere, R., Rossman, B.: Exponential lower bounds for
monotone span programs. Electron. Colloq. Comput. Complex. 23, 64 (2016).
www.eccc.uni-trier.de/eccc/

21. Csirmaz, L.: The dealer’s random bits in perfect secret sharing schemes. Studia
Sci. Math. Hungar. 32(3–4), 429–437 (1996)

22. Csirmaz, L.: The size of a share must be large. J. Cryptol. 10(4), 223–231 (1997)
23. Csirmaz, L.: Secret sharing schemes on graphs. Technical report 2005/059, Cryp-

tology ePrint Archive (2005). eprint.iacr.org/
24. Desmedt, Y.G., Frankel, Y.: Shared generation of authenticators and signatures.

In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer,
Heidelberg (1992)

25. van Dijk, M.: On the information rate of perfect secret sharing schemes. Des. Codes
Crypt. 6(2), 143–169 (1995)

http://www.eccc.uni-trier.de/eccc/
http://eprint.iacr.org/

528 A. Beimel et al.

26. Erdös, P., Pyber, L.: Covering a graph by complete bipartite graphs. Discrete
Math. 170(1–3), 249–251 (1997)

27. Gál, A.: A characterization of span program size and improved lower bounds for
monotone span programs. In: Proceedings of the 30th ACM Symposium on the
Theory of Computing, pp. 429–437 (1998)

28. Gál, A., Pudlák, P.: Monotone complexity and the rank of matrices. Inform.
Process. Lett. 87, 321–326 (2003)

29. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional disclo-
sure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015)

30. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)

31. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM confer-
ence on Computer and Communications Security, pp. 89–98 (2006)

32. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. In: Proceedings of the IEEE Global Telecommunication Conference,
Globecom, vol. 87, pp. 99–102 (1987). Journal version: Multiple assignment scheme
for sharing secret. J. Cryptol. 6(1), 15–20 (1993)

33. Jukna, S.: On set intersection representations of graphs. J. Graph Theor. 61(1),
55–75 (2009)

34. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the 8th IEEE
Structure in Complexity Theory, pp. 102–111 (1993)

35. Mart́ı-Farré, J., Padró, C.: Secret sharing schemes on sparse homogeneous
access structures with rank three. Electr. J. Comb. 11(1) (2004). http://www.
combinatorics.org/ojs/index.php/eljc/article/view/v11i1r72/

36. Mart́ı-Farré, J., Padró, C.: On secret sharing schemes, matroids and polymatroids.
J. Math. Cryptol. 4(2), 95–120 (2010)

37. Mintz, Y.: Information ratios of graph secret-sharing schemes. Master’s thesis,
Department of Computer Science, Ben Gurion University (2012)

38. Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. In:
3rd ACM Conference on Computer and Communications Security, pp. 157–167
(1996)

39. Padró, C., Sáez, G.: Lower bounds on the information rate of secret sharing schemes
with homogeneous access structure. Inform. Process. Lett. 83(6), 345–351 (2002)

40. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

41. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
42. Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized

oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha,
S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg (2008)

43. Stinson, D.R.: Decomposition construction for secret sharing schemes. IEEE Trans.
Inf. Theor. 40(1), 118–125 (1994)

44. Sun, H., Shieh, S.: Secret sharing in graph-based prohibited structures. In: Pro-
ceedings IEEE INFOCOM 1997, pp. 718–724 (1997)

45. Tassa, T.: Generalized oblivious transfer by secret sharing. Des. Codes Crypt.
58(1), 11–21 (2011)

46. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v11i1r72/
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v11i1r72/

Proactive Secret Sharing with a Dishonest
Majority

Shlomi Dolev1, Karim ElDefrawy2(B), Joshua Lampkins2, Rafail Ostrovsky3,
and Moti Yung4

1 Department of Computer Science, Ben-Gurion University, Beersheba, Israel
2 Information and Systems Sciences Laboratory, HRL Laboratories, Malibu, USA

eldefrawy@gmail.com
3 Department of Computer Science and Department of Mathematics,

UCLA, Los Angeles, USA
4 Snapchat and Department of Computer Science, Columbia University,

New York, USA

Abstract. In standard Secret Sharing (SS) a dealer shares a secret s
among n parties such that an adversary corrupting no more than t par-
ties does not learn s, while any t + 1 parties can efficiently recover s.
Over a long period of time all parties may be corrupted and the thresh-
old t may be violated, which is accounted for in Proactive Secret Sharing
(PSS). PSS retains confidentiality even when a mobile adversary corrupts
all parties over the lifetime of the secret, but no more than a threshold
t during a certain window of time, called the refresh period. Existing
PSS schemes only guarantee secrecy in the presence of an honest major-
ity with at most n/2 − 1 total corruptions during such a refresh period;
an adversary that corrupts a single additional party beyond the n/2− 1
threshold, even if only passively and only temporarily, obtains the secret.
We develop the first PSS scheme secure in the presence of a dishonest
majority. Our PSS scheme is robust and secure against t < n−2 passive
adversaries when there are no active corruptions, and secure but non-
robust (but with identifiable aborts) against t < n/2 − 1 active adver-
saries when there are no additional passive corruptions. The scheme is
also secure (with identifiable aborts) against mixed adversaries control-
ling a combination of passively and actively corrupted parties such that
if there are k active corruptions there are less than n−k−2 total corrup-
tions. Our scheme achieves these high thresholds with O(n4) communi-
cation when sharing a single secret. We also observe that communication
may be reduced to O(n3) when sharing O(n) secrets in batches. Our work
is the first result demonstrating that PSS tolerating such high thresholds
and mixed adversaries is possible.

1 Introduction

Secret sharing is a cornerstone primitive often utilized in constructing secure
distributed systems and protocols [CH94,HJKY95,FGMY97,CL02,BCS03,
DGGK09] [DGGK11,DGG+15], and especially in secure multiparty compu-
tation (MPC) [GMW87,CCD88,RB89,OY91,DIK+08,BTH08,DIK10,BFO12,
c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 529–548, 2016.
DOI: 10.1007/978-3-319-44618-9 28

530 S. Dolev et al.

HML13,BELO14]. In standard (linear) secret sharing [Sha79,Bla79] a dealer
shares a secret (s) among n parties such that an adversary that corrupts no
more than a threshold (t) of the parties does not learn s, while any t + 1 par-
ties can efficiently recover it. In reality, over a long period of time all parties
may be corrupted and the threshold may be violated, even if sometimes only for
short duration. An approach to deal with an adversary’s ability to move around
and eventually corrupt all parties is the so-called proactive security model intro-
duced in [OY91]. The proactive security model puts forward the notion of a
mobile adversary motivated by the persistent corruption of parties in a proto-
col, or nodes/servers in a distributed system. A mobile adversary is one that
moves around and can corrupt all parties in a protocol during the execution
but with the following limitations: (1) only a constant fraction of parties can be
corrupted during any round of the protocol; (2) parties are periodically rebooted
(reset) to a pristine predictable initial state, guaranteeing small fraction of cor-
rupted parties, assuming that the corruption rate is not more than the reboot
rate. The model assumes that the process of rebooting to a clean state includes
global computation information, e.g., identities of other parties, access to secure
point-to-point channels and to a broadcast channel; the model also assumes
that parties can erase information from their memory and that such information
cannot be recovered by adversaries.

Long-term Confidentiality via Proactive Security: It is common these days to
see news of massive breaches that expose private information of millions of indi-
viduals. A notable example is the 2015 breach [Tim16] of the health insurance
company Anthem which affected 80 million patient and employee records. The
breach occurred over several weeks, beginning in December 2014. While stor-
ing encrypted data, and regularly re-encrypting it improves security, it does not
protect against determined capable attackers that exfiltrate encrypted data by
compromising servers storing it, and by obtaining encryption keys through other
means. The situation becomes more challenging when insiders are involved in
such attacks, or when the confidentiality of the data has to be guaranteed for
tens of years, e.g., for sequenced genomes of individuals, or other sensitive per-
sonal, corporate or government information. Utilizing proactive secret sharing to
distribute the data among several storage servers, and periodically rerandomize
(also called refresh) shares in a distributed manner can significantly increase the
security guarantees for such data. A high level of security ensures that as long as
a single server remains uncorrupted during the period between two refreshes (and
thus deletes its old shares when refreshed), and as long as different servers are
uncorrupted at different periods, then the secret shared data is never revealed;
this should be the case even if all the data (shares) on all other servers is obtained
when they are corrupted. To achieve this requires (ideally) tolerating a passive
corruption threshold of up to n − 1 in the face of mobile adversaries. Realiz-
ing a high security level close to the one described above is the main goal of
this paper. While we do not achieve secrecy against n − 1 passive corruptions,
we achieve it against less than n − 2 passive corruptions with no active ones,
and with ability to recover shares of a single rebooted party at each instant

Proactive Secret Sharing with a Dishonest Majority 531

(and less than n − c − 1 when c parties are to be rebooted in parallel). In addi-
tion, our PSS scheme tolerates mixed adversaries that combine both passive and
active corruptions and may add up to a dishonest majority (more details below).

Contributions: We develop the first PSS scheme secure in the presence of a
dishonest majority. Our new scheme is secure and robust against t < n − 2
passive adversaries when there are no active corruptions, and secure but non-
robust (with identifiable aborts) against t < n/2−1 active adversaries when there
are no additional passive corruptions. The scheme is also secure (but non-robust
with identifiable aborts) against mixed adversaries that control a combination of
passively and actively corrupted parties such that if there are k active corruptions
there are less than n − k − 2 total corruptions. Existing PSS schemes cannot
handle a dishonest passive majority, and mixed adversaries that may form a
majority as described above. Existing PSS schemes can only guarantee secrecy
in the presence of an honest majority with at most n/2 − 1 total compromises;
an adversary that compromises a single additional party beyond the n/2 − 1
threshold, even if only passively and only for a short period of time, obtains
the secret. While we also discuss techniques to reduce communication in our
protocols, we do not achieve optimal communication. To construct our PSS
scheme requires designing new protocols for refreshing and recovering shares, this
is achieved using a combination of information-theoretic, e.g., additive sharing,
and cryptographic commitments to protect against active adversaries.

Outline: The rest of the paper is organized as follows, Sect. 2 provides an
overview of existing PSS schemes and why they are insecure in the face of a
passively dishonest majority or mixed adversaries that also exceed a majority.
Section 3 contains definitions and preliminaries required for the rest of the paper,
and Sect. 4 contains the technical details of our new PSS scheme. We conclude
with a discussion of open problems and possible follow up work in Sect. 5.

2 Related Work and Roadblocks

Existing Proactive Secret Sharing (PSS) schemes, summarized in Table 1, are
insecure when a majority of the parties are compromised, even if the compro-
mise is only passive. Such schemes [OY91,HJKY95,WWW02,ZSvR05,Sch07,
BELO14] typically store the secret as the free term in a polynomial of degree
t < n/2; once an adversary compromises a majority of the parties (even if only
passively) it will obtain more than t+1 shares, and it will be able to reconstruct
the polynomial and recover the secret. PSS schemes with optimal-communication
[BELO14,BELO15] also use a similar technique but instead of storing the secret
in the free term, they store a batch of b = O(n) secrets at different points in
the polynomial; similar to the single secret case, even when secrets are stored as
multiple points on a polynomial, once the adversary compromises a majority of
the parties, it can reconstruct the polynomial and recover the stored secrets.

The most relevant related work in (non-proactive) secret sharing is [HML13],
it develops a gradual secret sharing scheme for mixed adversaries, and utilizes it

532 S. Dolev et al.

Table 1. Comparison of Proactive Secret Sharing (PSS) schemes. Threshold is for
each reboot/refresh phase. Communication complexity is amortized per bit. Note that
in the above table none of the previous schemes could tolerate the combination of the
active threshold plus one or more passively compromised parties.

Scheme Threshold passive (active) Security Network type Comm. complexity

[WWW02] t < n/2 (n/2) Crypto Synch. exp(n)

[ZSvR05] t < n/3 (n/3) Crypto Asynch. exp(n)

[CKLS02] t < n/3 (n/3) Crypto Asynch. O(n4)

[Sch07] t < n/3 (n/3) Crypto Asynch. O(n4)

[HJKY95] t < n/2 (n/2) Crypto Synch. O(n2)

[BELO14] t < n/3 − ε (n/3 − ε) Perfect Synch. O(1) (amortized)

[BELO14] t < n/2 − ε (n/2 − ε) Statistical Synch. O(1) (amortized)

This paper t < n − 2 (passive only) Crypto Synch O(n4)for

t < n/2 − 1 (active only) Single secret

& mixed passive/active adversaries O(n3)for

Where with k active corruptions Batch of n secrets

< n − k − 2 total corruptions exist

to build MPC protocols for such adversaries. Our work essentially proactivizes
the gradual secret sharing scheme of [HML13]. We stress that if the adversary
is static, i.e., non-mobile, then our protocols reduce to those in [HML13], no
refreshing or recovering of shares is needed against static adversaries.

3 Definitions and Preliminaries

This section provides required definitions and preliminaries. We build on pre-
vious definitions of Verifiable Secret Sharing (VSS) for mixed adversaries from
[HML13], and Proactive Secret Sharing (PSS) from [BELO14,BELO15]; we com-
bine and extend these two to define PSS for mixed adversaries in Sect. 3.3.

3.1 System and Network Model

We consider a set of n parties, P = {Pi}n
i=1, connected via a synchronous net-

work, and an authenticated broadcast channel. Each pair of parties also share
a secure authenticated communication channel which can be instantiated via
appropriate encryption and digital signature schemes.

Time Periods and Refresh Phases: We assume that all parties are synchro-
nized via a global clock. Time is divided into time periods or epochs; at the
beginning of each period (e.g., an hour, a day or a week) all parties engage in an
interactive refresh protocol (also called refresh phase). At the end of the refresh
phase all parties hold new shares for the same secret, and delete their old shares.
We note that honest parties must delete their old shares so that if they get
compromised in future periods, the adversary cannot recover their shares from
old periods. The parties may additionally engage in a recovery protocol to allow

Proactive Secret Sharing with a Dishonest Majority 533

parties that have lost their shares due to corruption or rebooting to recover new
shares for the same secret. In Sect. 3.3 we provide a detailed definition of PSS
and the refresh and recovery phases and protocols.

3.2 Adversary Model

To model a mixed mobile adversary, we adopt a characterization similar to
the one for static mixed adversaries in [HML13], and extend it to the mobile
case, i.e., the protocol has phases and as long as the corruption thresholds
are not violated in each phase, the properties and security of a PSS scheme
(defined below) are guaranteed. We assume the existence of an adversary
with (polynomially) bounded computing power who moves around and pas-
sively corrupts a set of parties (P∗) and only reads their internal state; the
adversary may also actively corrupt some of these parties (A∗) and makes
them misbehave arbitrarily, i.e., they do not follow the steps of the protocol,
and may inject, modify, or delete messages, among other actions. To simplify
the notation we assume that A∗ ⊆ P∗. Note that A∗ may also be empty.
We believe that this mixed mobile adversary model captures the situation in
practice, where sometimes the same attacker may be able to compromise dif-
ferent components of a distributed system with various degrees of success, e.g.,
escalation of privileges leading to a complete compromise may only work on
some components, while on some other components all the adversary is able to
achieve is reading portions of the memory or some files without being able to
modify or control the software.

We note that the thresholds of t < n−2 and t < n/2−1 given in Table 1 apply
to the cases of A∗ = ∅ and A∗ = P∗, respectively. When discussing mixed adver-
saries, we use the symbol ta to denote the threshold of active corruptions and tp
to denote the threshold of passive corruptions. That is, |A∗| ≤ ta and |P∗| ≤ tp.
The inequalities in Table 1 can then be written tp < n − 2 and ta < n/2 − 1.
Combinations of active and passive corruptions can be obtained by “swapping”
active and passive corruptions such that each active corruption is “worth” two
passive corruptions. More formally, in addition to satisfying tp < n − 2 and
ta < n/2 − 1, the corruptions must also satisfy ta + tp < n − 2. Note that
since each active corruption is also a passive corruption, each active corrup-
tion is counted twice in the preceding inequality. To simplify the illustration,
we assume that if a party does not receive an expected message (or gets an
invalid one), a default one is used instead. Finally, in the rest of the paper hon-
est parties are the uncorrupted parties, while non-actively corrupted parties are
called correct parties. To model security guarantees against incomparable max-
imal adversaries, we consider multiple pairs of thresholds similar to [HML13].
We use multi-thresholds T = {(ta,1, tp,1), . . . , (ta,k, tp,k)}, i.e., sets of pairs of
thresholds (ta, tp). In this model, security is guaranteed if (A∗,P∗) ≤ (ta, tp)
for some (ta, tp) ∈ T , denoted by (A∗,P∗) ≤ T , where (A∗,P∗) ≤ (ta, tp)
is a shorthand |A∗| ≤ ta and |P∗| ≤ tp. Similar to [HML13], the level of
security (correctness, secrecy, robustness) depends on the number (A∗,P∗)
of actually corrupted parties. We consider three multi-thresholds T c, T s, T r.

534 S. Dolev et al.

Correctness (with agreement on abort, and identification of misbehaving par-
ties) is guaranteed for (A∗,P∗) ≤ T c, secrecy is guaranteed for (A∗,P∗) ≤ T s,
while robustness is guaranteed for (A∗,P∗) ≤ T r. We note that T r ≤ T c and
T s ≤ T c, as secrecy and robustness are not well defined without correctness.

3.3 Definition of Proactive Secret Sharing (PSS)

A Secret Sharing (SS) scheme consists of two protocols, Share and Reconstruct.
Share allows a dealer to share a secret, s, among n parties such that the secret
remains secure against an adversary that controls up to ta parties and reads
the state/informtion of up to tp parties, while allowing any group of n − ta or
more uncorrupted parties to reconstruct the secrets via Reconstruct if it is a
robust scheme against ta. If the SS scheme is non-robust against ta then the
remaining honest parties may not be able to reconstruct the secret, but if the
protocol provides identifiable aborts against ta (e.g., similar to [HML13]) then
corrupted parties are identified on abort. A Verifiable Secret Sharing (VSS)
scheme allows parties to verify that a dealer has correctly shared a secret. The
definition of a Proactive Secret Sharing (PSS) scheme is similar to that of a
standard SS scheme, but operates in phases, where between consecutive phases
refreshing of shares (and recovery of shares of rebooted parties) is performed. PSS
requires the addition of two new protocols to perform Refresh and Recovery
for securing the secret against a mobile adversary that can corrupt all n parties
over a long period of time, but no more than a specific threshold during any
phase. The Refresh protocol refreshes shares to prevent a mobile adversary
from collecting (over a long period) a large number of shares that could exceed
the reconstruction threshold and thus reveal the secret. The Recovery protocol
allows de-corrupted (or rebooted) parties to recover their shares, preventing the
adversary from destroying the secrets that are shared. As our definitions of SS
and VSS are standard, we refer to their previous formal definitions in [HML13];
we provide a definition of PSS below. We start by first defining the refresh and
recovery phases.

Definition 1. Refresh and Recovery Phases Execution of PSS proceeds in
phases. A refresh phase (resp. recovery phase) is the period of time between two
consecutive executions of the Refresh (resp. Recovery) protocol. Furthermore,
the period between Share and the first Refresh (resp. Recovery) is a phase,
and the period between the last Refresh (resp. Recovery) and Reconstruct is a
phase. Any Refresh (resp. Recovery) protocol is considered to be in both adja-
cent phases, i.e., their execution occurs between phases number w and w + 1.

Definition 2. Proactive Secret Sharing (PSS) for Mixed Adversaries A
(T s, T r, T c)-secure PSS scheme consists of four protocols, Share, Refresh,
Recover, and Reconstruct. Share allows a dealer to share a secret, s, among a
group of n parties. Refresh is executed between two consecutive phases, phases w
and w + 1, and generates new shares for phase w + 1 that encode the same secret
as shares of phase w. Recover allows parties that lost their shares to obtain new

Proactive Secret Sharing with a Dishonest Majority 535

shares encoding the same secret s with the help of the other honest parties. Recover
allows parties to recover a value s′. These four protocols are (T s, T r, T c)-secure if
the following holds:

1. Termination: All honest parties will complete each execution of Share,
Refresh, Recover, and Reconstruct.

2. Correctness: Upon completing Share, the dealer is bound to a value s′, where
s′ = s if the dealer is correct. If (A∗,P∗) ≤ T c and upon completing Refresh

and/or Recover, either the shares held by the parties encode s′, or all (correct)
parties abort. In Reconstruct, either each (correct) party outputs s′ or all
(correct) parties abort.

3. Secrecy: If (A∗,P∗) ≤ T s, then in Share the adversary obtains no informa-
tion about s. If (A∗,P∗) ≤ T s in both phase w and in phase w + 1, and if
Refresh and Recover are run between phases w and w+1, then the adversary
obtains no information about s.

4. Robustness: The adversary cannot abort Share. If (A∗,P∗) ≤ T r, then the
adversary cannot abort Refresh, Recover, and Reconstruct.

3.4 Batched Secret Sharing

One of the main techniques to achieve efficient amortized communication com-
plexity is batched (or packed) secret sharing, it is a generalization of the polyno-
mials based linear secret sharing scheme. The idea, introduced in [FY92], is to
encode a “batch” of multiple secrets as distinct points on a single polynomial, and
then distribute shares to each party as in standard linear secret sharing [Sha79].
The number of secrets stored in the polynomial (the “batch size”) is O(n). This
allows parties to share O(n) secrets with O(n) communication complexity which
results in an amortized complexity of O(1) per secret.

3.5 Homomorphic Commitments and Verifiable Secret Sharing

A commitment scheme is a protocol between two parties, P1 and P2, that allows
P1 to commit to a secret message m by sending to P2 the value of the com-
mitment to m computed with some randomness r, i.e., Comm(m, r). Later P1

may open the commitment and reveal to P2 that she committed to m, typi-
cally by revealing the randomness that was used. Commitment schemes must
be binding and hiding. The binding property ensures that P1 cannot change
her mind, a commitment can only be opened to a single message m; the hid-
ing property ensures that P2 does not learn the message that P1 commit-
ted to. An (additively) homomorphic commitment scheme, allows P2 to com-
pute the commitment to the sum of m1 and m2 under the sum of r1 and r2
using Comm(m1, r1) and Comm(m2, r2) as follows: Comm(m1 +m2, r1 + r2) =
Comm(m1, r1) � Comm(m2, r2), where � indicates the homomorphic operator
of the group the commitment is typically defined over.

A problem with standard secret sharing, e.g., Shamir’s scheme or a batched
version thereof, is that a dishonest dealer may deal inconsistent shares from

536 S. Dolev et al.

which t + 1 or more parties may not be able to reconstruct the secret. This
malicious behavior can be prevented by augmenting the secret sharing scheme
with homomorphic commitments, this is essentially what a VSS scheme does.
(In the full version we utilize Feldman’s VSS [Fel87], where security is based on
the hardness of computing discrete logarithms over Zp for a large prime p.)

4 Proactive Secret Sharing for a Dishonest Majority

This section starts with notation required to describe our PSS scheme, it then
provides an overview and then the details of the four protocols constituting the
PSS scheme. We note that protocols for sharing and reconstructing a secret
are similar to those in [HML13] but with a minor difference in the number of
summands and the highest degree of the sharing polynomials used.

4.1 Notation and Preliminaries

Field operations occur over a finite field Zp for some prime p. Let α be a generator
of Z∗

p and let β = α−1. In the case of multiple secrets, secrets will be stored at
locations that are multiple values of β, i.e., if f(x) is a sharing polynomials then
f(β1) and f(β2) will evaluate to secret 1 and 2 respectively, while shares will
be computed as the evaluation of f(x) at different values of α, i.e., f(α1) and
f(α2) are the shares of party 1 and 2 respectively, the αi for party Pi is public
information. We note that in the case of sharing a single secret, only one β is
needed, and in that case it will not be the inverse of α, traditionally it has been
the case that for single secrets β = 0, thus the secret s is stored at the free
term of the sharing polynomial, i.e., f(0) = s. The shares can be evaluations of
f(x) at indices of the parties, i.e. f(1), f(2) . . . f(n). (We defer more details on
handling multiple secrets to the full version.)

4.2 Intuition and Overview of Operation

To simplify the illustration we assume in this subsection when describing the
intuition of the share, reconstruct and refresh protocols, that adversaries only
compromise parties temporarily, so only refreshing of shares is needed. If recovery
of shares of rebooted parties is required, the tolerated threshold of those proto-
cols has to be decreased by the maximum number of parties that are rebooted in
parallel and can loose their shares at the same time. If parties are rebooted seri-
ally such that only a single share needs to be recovered at any instant, then the
tolerated thresholds are only decreased by 1. Specifically, if no recovery of shares
is needed then the protocols can withstand < n/2 active only corruptions, and
< n passive only corruptions, and combinations of passive and active corruptions
that may exceed half the parties but where with k active corruptions there are
less than n − k total corruptions; when recovery of a single share is needed then
the thresholds become < n/2 − 1 active only corruptions, and < n − 2 passive
only corruptions, and combinations of passive and active corruptions that may

Proactive Secret Sharing with a Dishonest Majority 537

exceed half the parties but where with k active corruptions there are less than
n − k − 2 total corruptions (when c shares should be recovered at once then the
condition becomes < n/2 − c active only corruptions, and < n − (c + 1) passive
only corruptions, and with k active corruptions there are < n − k − (c + 1) total
corruptions).

As mentioned in the related work and roadblocks section (Sect. 2), in order
to tolerate a dishonest majority it is not enough to directly store secrets in the
free term, or as other points on a polynomial. What is needed is to encode the
secret in a different form resistant to a dishonest majority of say up to n − 2
parties. This can be achieved by first additively sharing the secret into d = n−2
random summands (this provides security against t < n−1 passive adversaries),
then those random additive summands may be shared and proactively refreshed
using methods that can tolerate t < n/2 active adversaries with aborts, i.e., if less
than n/2 of the parties are actively corrupted their misbehavior will be detected
and flagged by the other n/2 + 1 or more parties while ensuring confidentiality
of the shared secret. This is the blueprint that we follow, specifically, we start
from the gradual secret sharing schemes from [HML13] which can tolerate up to
n − 1 passive adversaries with no active corruptions, or up to n/2 − 1 active
corruptions such that when there are k active corruptions there no more than
n − k − 1 total corruptions in total. We develop two new protocols to verifiably
generate refreshing polynomials with the required properties, i.e., they have a
random free term that encodes random additive shares that add up to zero. To
recover shares with the above security guarantees, we observe that it is enough
that the recovery protocol ensures security against t < n/2−1 active adversaries,
as passive adversaries only generate random polynomials and send them to the
recovering party, i.e., if they respect the polynomials generation process, and as
long as one honest party generates a random polynomial, the rest of the n − 3
potentially passively corrupted parties will only see random polynomials with
the appropriate degrees.

4.3 Sharing and Reconstruction for Dishonest Majorities

To simplify the presentation and due to space constraints we describe our pro-
tocols in this section using a generic homomorphic commitment scheme and in
terms of a single secret1. For completeness, we provide below the protocols for
gradual sharing of a secret (DM-Share), and gradual reconstruction of the same
secret (DM-Reconstruct) which are secure against a dishonest majority, both
similar to those in [HML13]. The gradual secret sharing scheme in [HML13]
is secure against t < n passive adversaries, and t < n/2 active adversaries, and
mixed adversaries that control a combination of passively and actively corrupted
parties that add up to more than n/2, but such that if there are k active cor-
ruptions there no more than n − k − 1 total corruptions. Sections 4.4 and 4.5

1 In the full version we generalize the protocols to handle multiple secrets to
increase communication and storage efficiency, and provide an instantiation using
commitments based on hardness of discrete logarithms using Feldman’s VSS [Fel87].

538 S. Dolev et al.

contain our new refresh and recovery protocols that together with DM-Share and
DM-Reconstruct constitute a PSS scheme secure against a dishonest majority of
parties. Our PSS scheme provides security against < n/2 − 1 active corruptions
only with no additional passive ones, and < n − 2 passive only corruptions with
no active ones, and combinations of passive and active corruptions that may
exceed half the parties but where with k active corruptions there are less than
n − k − 2 total corruptions.

Sharing a Secret with a Dishonest Majority. The protocol DM-Share
shares a secret s in two phases, first an additive sharing phase (Step 1 in
DM-Share) by splitting s into d random summands; in our case to achieve the
maximum secrecy thresholds we use d = n−3, where as in [HML13] the protocol
is described in terms of the variable d < n, and thus called gradual d-sharing (see
Definition 3 in [HML13]). This first sharing phase provides protection against
less than n − 2 passive adversaries only. In the second phase (Steps 2.1 to 2.4 of
the loop in step 2 in DM-Share) one performs linear secret sharing of each of the
additive shares from the first phase by using polynomials of increasing degrees,
from 1 to d. We stress that the above value of d = n−3 assumes that recovery of
shares of a single node will be needed; if this is not the case and only refreshing
of shares is needed, then only d = n − 1 is needed. Note also that other lower
values of d can be chosen but they would result in lower thresholds.

Secret Sharing for Dishonest Majorities (DM-Share) [HML13]

A dealing party (PD) sharing a secret s performs the following:
1. PD chooses d random summands s1, ..., sd which add up to s, Σd

i=1si = s.
2. For i ∈ {1, . . . , d} PD does the following:

2.1 PD generates a random polynomial fi(x) of degree i with the free term
equal to the i-th summand, fi(0) = si.

2.2 PD then computes and broadcasts to each of the other n−1 receiving
parties, Pr, (homomorphic) commitments of the coefficients of fi(x).

2.3 For each share shi,r = fi(αr), each receiving party, Pr, locally com-
putes a commitment ci,r; this is possible based on the homomorphism
of the commitment scheme. PD sends the corresponding opening infor-
mation oi,r to party Pr. Pr broadcasts a complaint bit, indicating
whether oi,r correctly opens ci,r to some value sh

′
i,r.

2.4 For each share shi,j for which an inconsistency was reported, PD

broadcasts the opening information oi,j , and if oi,j opens ci,j , Pr

accepts oi,j . Otherwise, PD is disqualified (and a default sharing of a
default value is used).

3. Each receiving party Pr outputs its d shares (sh1,r, o1,r), ..., (shd,r, od,r) and
all commitments.

Proactive Secret Sharing with a Dishonest Majority 539

DM-Share requires O(n2) communication to share a single secret s, s is first split
into O(n) summands, then each one is split into O(n) shares because d = O(n).

Reconstructing a Secret with a Dishonest Majority. Assuming that a
secret s is shared using DM-Share with the number of summands and the highest
degree of sharing polynomials being d, the protocol DM-Reconstruct gradually
reconstructs the d (again, d = n − 3 for highest secrecy threshold) summands
by requiring parties to broadcast their shares of each of the i = {d, . . . 1} poly-
nomials of decreasing degrees i. Each polynomial can be interpolated from the
shares that are broadcast if at least i + 1 parties are honest.

Secret Reconstruction for Dishonest Majorities (DM-Reconstruct) [HML13]

Given a sharing of a secret s using DM-Share, parties can reconstruct s as follows:
1. For i ∈ {d, ..., 1} do:

1.1 Each party Pj broadcasts openings of the commitments to its shares
shi,j corresponding to the sharing polynomial fi(x). Remember that
the i-th summand of s is stored in the free term of that polynomial,
i.e., fi(0) = si.

1.2 If i + 1 or more parties correctly opened their commitments to their
respective shares, each party locally interpolates fi(x) and computes
the i-th summand as the free term of the recovered fi(x), si = fi(0).

1.3 If only i parties or less opened correctly, then abort and each party
outputs the set B of parties that did not broadcast correct openings
to their commitments.

2. Each party outputs the secret as the sum of the reconstructed summands,
s = s1 + s2 + · · · + sd.

DM-Reconstruct requires O(n2) communication to reconstruct a single secret,
as d = O(n), O(n) shares are broadcast for each of the O(n) summands.

4.4 Refreshing Shares with a Dishonest Majority

In the DM-Refresh protocol below, each party generates d (again, d = n − 3 for
highest secrecy threshold) random refreshing polynomials with the appropriate
degrees, i.e., from 1 to d. Each party then verifiably shares these refreshing
polynomials with the other n−1 parties by committing to the coefficients of these
generated refreshing polynomials. These refreshing polynomials should satisfy
the following condition: they have random constant coefficients (when a single
secret is shared in the free term) that add up to 0, this can be enforced by
checking that the polynomials shared by each party have this property. This
condition ensures that the shared secret remains unchanged when its shares
are refreshed by adding the shares generated from the new polynomials to the
old shares. Once each party receives all the shares generated by other parties,

540 S. Dolev et al.

they add them to their local shares, and delete the shares that resulted from the
previous execution of DM-Refresh.

Refreshing Shares for Dishonest Majorities (DM-Refresh)

1. Each party Pj generates an additive random sharing (of d randomization
summands) which add up to 0, i.e., Σd

i=1rj,i = 0.
2. For i ∈ {1, . . . , d} do:

2.1 Each party Pj generates a random polynomial gj,i(x) of degree i with
the free term equal to its i-th randomization summand, i.e., gj,i(0) =
rj,i.

2.2 Each party verifiably shares its generated randomization summands
by sharing the random polynomial gj,i(x) with the other n−1 parties
as follows: Pj computes and broadcasts to each of the other n − 1
receiving parties, Pr, (homomorphic) commitments of the coefficients
of gj,i(x) and sends to each Pr each share shr

j,i = gj,i(αr) over a
private channel.

2.3 For each share shr
j,i, each receiving party Pr, locally computes a com-

mitment cr
j,i; this is possible based on the homomorphism of the com-

mitment scheme. Pj sends the opening information or
j,i corresponding

to each of the cr
j,i commitments to party Pr. Pr broadcasts a complaint

bit, indicating if or
j,i correctly opens cr

j,i to some value zr
j,i.

2.4 For each share shr
j,i for which an inconsistency was reported, Pj broad-

casts the opening information oj,i , and if oj,i opens cj,i, Pr accepts
oj,i. Otherwise, Pj is disqualified, and Pj is added to the set B of
parties that did not share correctly and did not broadcast correct
openings to their commitments.

3. Each party Pj broadcasts an opening to the commitment to Σd
i=1gj,i(0) =

Σd
i=1rj,i, and each receiving party Pr checks that the free terms of the d

sharing polynomials used by each other party Pj add up to 0 by combin-
ing the commitments to the free terms and using the broadcast opening
information. This can be checked based on the homomorphic properties of
the commitment scheme. If Pj does not broadcast correct commitments it
is added to the set B of parties that did not share correctly and did not
broadcast correct openings to their commitments.

4. For i ∈ {1, . . . , d} each receiving party Pr adds up the shares it receives from
the other n − 1 parties Pj at the current time period (denoted shr

j,i where
j �= r), and its shares of the randomization polynomials it generated at pw+1

(denoted shr
r,i), to its existing share at the previous time period pw (denoted

shpw,r
i); the result is the final refreshed shares at the end of the current time

period pw+1 (denoted sh
pw+1,r
i), i.e., sh

pw+1,r
i = shpw,r

i + Σn
j=1sh

r
j,i.

5. Each honest party must delete all old shares it had from period pw (shpw,r
j,i)

after executing the above steps.

Proactive Secret Sharing with a Dishonest Majority 541

There are O(n) parties, and each one will generate O(n) shares (step 2.1 to
2.4) for each of the O(n) (d = O(n)) refreshing polynomials, hence a total of
O(n3) communication.

4.5 Recovering Shares with a Dishonest Majority

When recovery of shares of a single rebooted party has to be performed, then
the other n − 1 parties can recover the shares of that rebooted party using the
protocol DM-Recover below. Remember that in each refresh period there are d
(d = n − 3 for maximum secrecy threshold) current sharing polynomials with
degrees ranging from d to 1, and each party has a share for each of these poly-
nomials. When a party Prc is rebooted and needs to recover its shares, i.e., the
evaluation of each of the current sharing polynomials at Prc’s evaluation point
αrc, what the other parties need to perform is generate and verifiably share d
random polynomials that evaluate to the same values as the current sharing
polynomials at αrc. To achieve this, parties generate and verifiably share d ran-
dom recovery polynomials that evaluate to 0 at αrc. All parties add their local
shares of the current sharing polynomials to the shares of these random recovery
polynomials, this results in d shared random recovery polynomials that have only
the point at αrc in common with the current sharing polynomials. All parties
then send their shares of these d shared random recovery polynomials to Prc,
and Prc can then interpolate these polynomials without learning anything about
the secret or the actual sharing polynomials of the current period. We note that
passively corrupted parties in the recovery will execute the protocol correctly,
and actively corrupted parties are limited to t < n/2 − 1; we mainly need a
recovery protocol secure against t < n/2 − 1 active adversaries because only
the recovering party receives information. Every other party generates random
polynomials and shares it with the rest of the parties, so there is no information
related to the secret that is revealed to any party. As long as there is a single
honest party, the random recovery polynomials that such an honest party gen-
erates ensures randomness of overall recovery polynomials; this ensures that the
only thing Prc learns are its d shares at αrc.

Recovering Shares for Dishonest Majorities (DM-Recover)

1. Assume that party Prc is the one that needs recovery and that its shares are
the evaluation of the sharing polynomials (fi(x) for i ∈ {1, . . . , d}) at αrc.

2. For i ∈ {1, . . . , d} do:
2.1 Each party Pj generates a random polynomial gj,i(x) of degree i with

gj,i(αrc) = 0.
2.2 Each party verifiably shares its generated polynomial with the other

n − 2 parties (which do not include Prc) as follows: Pj computes
and sends to each of the other n − 2 receiving parties Pr the value

542 S. Dolev et al.

gj,i(αr), and broadcasts (homomorphic) commitments of the coeffi-
cients of gj,i(x) to all parties.

2.3 For each share shr
j,i = gj,i(αr), each receiving party Pr, locally com-

putes a commitment cr
j,i, each party also ensures that the polyno-

mials corresponding to its received share evaluates to 0 at αrc, i.e.,
gj,i(αrc) = 0. Both checks are possible based on the homomorphism of
the commitment scheme. Pj sends the opening information or

j,i corre-
sponding to each of the cr

j,i commitments to party Pr. Pr broadcasts
a complaint bit, indicating if or

j,i correctly opens cr
j,i to some value

zr
j,i.

2.4 For each share shr
j,i for which an inconsistency was reported, Pj broad-

casts the opening information oj,i , and if oj,i opens cj,i, Pr accepts
oj,i. Otherwise, Pj is disqualified and is added to the set B of parties
that did not share correctly and did not broadcast correct openings
to their commitments.

2.5 Each party Pr adds all the shares it received from the other n − 2
parties for the random recovery polynomials gj,i(αr) to its share of fi,
i.e., zr

i = fi(αr) + Σn−2
j=1 shr

i,j = fi(αr) + Σn−2
j=1 gj,i(αr).

2.6 Each party Pr sends zr
i to Prc; Prc then interpolates the random recov-

ery polynomial zi and obtain its current share as zi(αrc) = fi(αrc)

Since O(n) parties may need recovery in series at each period, for each recov-
ering party O(n) parties will need to share O(n) polynomials, with each resulting
in O(n) shares, the total will be O(n4) communication.

4.6 Security and Correctness of the PSS Scheme

Recall that d, the degree of gradual secret sharing adopted from [HML13], is
the crucial parameter in the PSS scheme. d determines in DM-Share the number
of summands in the additive sharing phase, the number of polynomials used to
linearly share those summands, and the maximum degree of those polynomials.
A similar set of polynomials of similar degrees is used for refreshing shares of,
recovering shares of, and reconstructing those summands in DM-Refresh, DM-
Recover, and DM-Reconstruct. d should be less than n − c − 1 (where c is the
maximum number of parties that will be recovering in parallel, c = 1 when only a
single party at a time is recovered), and for the maximum secrecy threshold with
a single recovering party d = n − 3. We stress the maximum secrecy threshold
because this is typically the main motivation for proactive secret sharing of data,
i.e., to ensure long-term confidentiality against a mobile adversary.

Theorem 1. Given a gradual secret sharing parameter d < n − 2 the four pro-
tocols DM-Share, DM-Reconstruct, DM-Refresh and DM-Recover form a com-
putationally secure (T s, T r, T c)-secure PSS scheme, utilizing a computationally
secure homomorphic commitment scheme, according to Definition 2 of PSS for

Proactive Secret Sharing with a Dishonest Majority 543

mixed adversaries characterized by (A∗,P∗) where A∗ ⊆ P∗. The PSS scheme
ensures secrecy if |P∗| ≤ d, is robust against |A∗| ≤ k if d < n − k − 1 and
|P∗| ≤ d, and is correct with agreement on aborts if |P∗| ≤ d ∧ |P∗|+|A∗| ≤ n−2.

Proof. Termination, correctness, secrecy, and robustness for DM-Share and DM-
Reconstruct are similar to the proofs of [HML13]. We prove those properties for
DM-Refresh and DM-Recover via the Lemmas below.

Similar to [HML13] we provide below proof sketches in a property-based secu-
rity model; this enables us to simplify the security arguments and present them
in an intuitive and understandable manner. All statement could be made formal
in simulation-based model using standard techniques; because the focus on this
paper is on secret sharing, as opposed to MPC, we do not utilize simulation-based
proofs, we also do not make claims about composability in this paper. Extend-
ing our work to MPC, and proving composability, is an interesting direction but
outside the scope of this paper.

Proof Sketches for DM-Refresh

Lemma 1. Termination of DM-Refresh: The protocol will always terminate
after O(n3) steps.

Proof. There are O(n) parties, and each one will generate O(n) shares (step 2.1
to 2.4) for each of the O(n) (d = O(n)) summands, hence a total of O(n3) steps.

Lemma 2. Correctness of DM-Refresh: If |P∗| ≤ d ∧ |P∗| + |A∗| ≤ n − 2,
when the protocol terminates, either all parties will receive new shares (in phase
w +1) encoding the same secret as those old shares (in phase w) they had before
executing the protocol, or the parties will refuse incorrect shares generated by a
subset of the parties and abort while identifying such misbehaving parties.

Proof. In Steps 2.1 and 2.2, any well-formed commitments broadcasted by any
party are correct, otherwise by security of the commitment scheme inconsisten-
cies will be detected and reported, the protocol will then abort and the responsi-
ble misbehaving party will be identified. In Step 2.3, commitments to all shares
are computed locally by each receiving party directly from the commitments to
the coefficients broadcasted in Step 2.2. All non-actively corrupted parties (that
are passively corrupted, called correct, and are honest) have a consistent view
with correct commitments. When |P∗| ≤ d then |A∗| ≤ n − d − 2, there will
always be at least n − |A∗| = n − n + d + 2 = d + 2 parties (or d + 1 if a party
is rebooted) either honest or behaving correctly (while passively corrupted), so
there are enough shares among those parties to uniquely define all polynomials
(of maximum degree d). In Steps 2.3 and 2.4, due to the binding property of the
commitments, the adversary cannot distribute inconsistent opening information
without being detected, and causing an abort and identification of misbehav-
ing parties. Step 3 demonstrates to parties that the shared summands all add
up to 0 to preserve the additively shared secret, this can also be guarnteed via

544 S. Dolev et al.

the homomorphic property of the commitment scheme; essentially parties ensure
that the commitments to the free terms of the d refresh polynomials from each
party, when summed up are commitments to 0 to make sure the new shares still
encode the same old d summands. Hence, the new sharing is a correct one and
the secret is preserved.

Lemma 3. Secrecy of DM-Refresh: When the protocol terminates, all parties
will receive new random shares (in phase w + 1) encoding the same secret as
those old shares (in phase w) they had before executing the refresh protocol. The
new shares are independent of the old ones, and the protocol does not reveal any
information about the secret when the number of summands d < n−2, and when
up to d parties are passively corrupted, |P∗| ≤ d.

Proof. The commitments are computationally hiding, therefore, the adversary
obtains no information in Step 2.2 of DM-Refresh. Furthermore, the random-
ization summands generated by each party rj,i are chosen independent of the
shared secret, and are shared with a degree i polynomial (where i ≤ d). In Step
2.3, if no more than d parties are passively corrupted, the adversary obtains no
information about one of the shared summand si (because there will be an i for
which i + 1 > d and it takes i + 1 points to interpolate a polynomial of degree
i and learn the free term in it), and therefore learns no information about s.
Also, if there’s at least a single honest party it will generate a random polyno-
mial with a free term equals to 0, adding shares of this polynomial to those of
the polynomials of other (possibly passively corrupted parties) will ensure that
the final resulting refreshing polynomials is a random one, and thus new shares
of all parties are random. In Steps 2.3 and 2.4, whenever a value is broadcast,
the adversary knew this value already beforehand if it arose due to a dispute,
otherwise the broadcast information does not reveal anything about the secret.

Lemma 4. Robustness of DM-Refresh: The protocol is robust and the secret is
never lost when shares are refreshed if |A∗| ≤ k when d < n−k−1 and |P∗| ≤ d.

Proof. When a secret is shared with DM-Share, and refreshed with DM-Refresh,
and to be able to withstand active corruptions |A∗| ≤ k there will be d = n−k−2
additive summands shared with polynomials of degrees i from 1 to n−k−2. The
shares of the n−k−2 polynomials need to be refreshed with random polynomials
of the corresponding degrees with 0 as their free terms. A polynomial of degree
i can be interpolated with i + 1 points. To interpolate the polynomial with the
highest degree of n − k − 2 one needs n − k − 1 points. Given that out of n
parties, one party may be rebooted and recovering and thus has no shares, and
if |A∗| ≤ k, there will always be n − k − 1 correct parties that will be able
to participate in DM-Refresh and generate correct polynomials to refresh (and
maintain) n − k − 1 shares, which are enough to preserve, refresh, and recover a
secret, that was shared with d = n − k − 2, at any later point in time.

Note that the maximum secrecy threshold corresponds to k = 1, in that case
d = n − 3 as specified in the description of the protocols above.

Proactive Secret Sharing with a Dishonest Majority 545

Proof Sketches for DM-Recover

Lemma 5. Termination of DM-Recover: The protocol will always terminate
after O(n3) steps.

Proof. A single recovering party has to recover d (d = O(n)) shares (Step 2),
one for each of the d sharing polynomials. Each of the O(n) parties will generate
O(n) shares (Step 2.1 to 2.5) for each of the shares to be recovered, a maximum
total of O(n3) steps are executed.

Lemma 6. Correctness of DM-Recover: If |P∗| ≤ d ∧ |P∗| + |A∗| ≤ n − 2,
either the protocol aborts, or a recovering party, Prc, will receive at least d new
shares zi(αrc), encoding the same values of the current sharing polynomials at
the party’s evaluation point αrc, i.e., zi(αrc) = fi(αrc) for i ∈ {1, . . . , d}.
Proof. In Step 2.3, any well-formed commitments broadcasted by the a party
are correct, otherwise by security of the commitment scheme inconsistencies will
be detected and reported. In Step 2.3, commitments to all shares are computed
locally by each receiving party directly from the commitments to the coefficients
broadcasted in Step 2.2. Hence, all correct (passively corrupted and honest par-
ties) parties have a consistent view with correct commitments. In Step 2.3, a
commitment to 0 can also be computed from commitments to the coefficients of
the polynomials. When |P∗| ≤ d then |A∗| ≤ n − d − 2, there will always be at
least n − |A∗| = n − n + d + 2 − 1 = d + 1 parties (as one party is rebooted and
recovering) either honest or behaving correctly (while passively corrupted), so
there are enough shares among those parties to uniquely define all polynomials
(of maximum degree d). In Step 2.5 the shares of the final d random recovery
polynomials are computed as zr

i = fi(αr)+Σd+1
j=1sh

r
ij = fi(αr)+Σd+1

j=1gji(αr) and
given that Σd+1

j=1gji(αrc) = 0, Prc in steps 2.6 recovers its d shares after interpo-
lating the polynomials zi(x) as: zi(αrc) = fi(αrc) + Σd+1

j=1gji(αrc) = fi(αrc) as
required.

Lemma 7. Secrecy of DM-Recover: When number of summands is d < n − 2,
and when up to d parties are passively corrupted, |P∗| ≤ d, either the protocol
aborts identifying misbehaving parties, or a recovering party, Prc, receives shares
encoding the same secret as old shares it should have had, and the protocol does
not reveal any information about the secret or shares of other parties.

Proof. In step 2.1 each party generates random polynomials evaluating to 0 at
the evaluation point of the recovering party αrc, these polynomials are indepen-
dent of the shared secret and of the shares of other parties. The commitments
to the coefficients of these polynomials are computationally hiding, and thus do
not reveal anything about the polynomials, therefore, the adversary obtains no
information in Step 2.2 of DM-Recover. If a single honest party exists (always
the case if d < n − 2 and |P∗| ≤ d, and because A∗ ⊆ P∗), then the polynomial
it will generate will be random, and the polynomials resulting from adding all
the shares of all the polynomials to the old shares will result in new random

546 S. Dolev et al.

polynomials that share the same values as the current sharing polynomials at
αrc, otherwise the values of the new recovery polynomials are random. In step
2.6, Prc receives shares of these random recovery polynomials and when inter-
polating, the only relevant information learned is the evaluations at αrc which
are its required shares.

Lemma 8. Robustness of DM-Recover: The protocol is robust and the secret is
never lost when shares are recovered for c parties if |A∗| ≤ k when d < n− k − c
and |P∗| ≤ d.

Proof. A similar argument to that made for the robustness of DM-Refresh can
be made here, the only difference is that instead of assuming a single recovering
party, we now assume c recovering parties and adjust d to be d < n − k − c.
In that case the highest polynomial will have degree d = n − k − c − 1, and
if there are k actively corrupt parties, and c recovering parties, the remaining
n − k − c parties will have among themselves enough shares to generate random
polynomials with the correct degrees and the correct values as the shares of the
recovering parties at their public evaluation point.

4.7 Reducing the Required Communication

To reduce communication by O(n), one can construct generalizations of the four
protocols in the PSS scheme and that operate using a batch of b = O(n) secrets
instead of a single secret. The batched versions of DM-Share and DM-Reconstruct
would require O(n2) communication to share and reconstruct O(n) secrets, effec-
tively reducing their communication to O(n), while DM-Refresh and DM-Recover
would require O(n3) and O(n4) communication to refresh and recover O(n)
secrets, and thus effectively reducing their communication to O(n2) and O(n3).
(Due to space constraints we defer the full specification of the batched versions
of the protocols to a full version of this paper.)

5 Conclusion and Open Questions

We present the first Proactive Secret Sharing (PSS) scheme for a dishonest
majority. Our PSS scheme is robust and secure against t < n − 2 passive adver-
saries with no active corruptions, and secure but non-robust (but with identifi-
able aborts) against t < n/2 − 1 active adversaries when there are no additional
passive corruptions. The scheme is also secure, and non-robust but with identi-
fiable aborts, against mixed adversaries that control a combination of passively
and actively corrupted parties such that with k active corruptions there are
less than n − k − 2 total corruptions. The following issues remain open: (i) It
is unclear what the lowest communication required for a PSS scheme secure
against a dishonest majority is; we achieve O(n3) for batches of O(n) secrets,
and it remains open if this can be further reduced. We conjecture that O(n)
is the lower bound for our blueprint which first shares the secret via an addi-
tive scheme as such an additive step does not seem to be amenable to batching

Proactive Secret Sharing with a Dishonest Majority 547

using standard techniques for batching the linear sharing step. (ii) There are
currently no PSS schemes secure against dishonest majorities and operate over
asynchronous networks. Our scheme assumes a synchronous network.

Acknowledgments. We thank Jeremiah Blocki for helpful comments and discussions
on an earlier version of this paper. We also thank the anonymous reviewers for their
useful feedback. Part of this work was carried out while visiting The Simmons Institute
for Theory of Computation.

References

[BCS03] Backes, M., Cachin, C., Strobl, R.: Proactive secure message transmission
in asynchronous networks. In: Proceedings of the Twenty-Second ACM
Symposium on Principles of Distributed Computing, PODC, Boston,
Massachusetts, USA, 13–16 July 2003, pp. 223–232 (2003)

[BELO14] Baron, J., ElDefrawy, K., Lampkins, J., Ostrovsky, R.: How to withstand
mobile virus attacks, revisited. In: Proceedings of the ACM Symposium
on Principles of Distributed Computing, PODC 2014, pp. 293–302. ACM,
New York (2014)

[BELO15] Baron, J., Defrawy, K.E., Lampkins, J., Ostrovsky, R.: Communication-
optimal proactive secret sharing for dynamic groups. In: Malkin, T., et al.
(eds.) ACNS 2015. LNCS, vol. 9092, pp. 23–41. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-28166-7 2

[BFO12] Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-
secure multiparty computation with a dishonest minority. In: Safavi-
Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–
680. Springer, Heidelberg (2012)

[Bla79] Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS
National Computer Conference vol. 48, pp. 313–317 (1979)

[BTH08] Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear com-
munication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 213–230. Springer, Heidelberg (2008)

[CCD88] Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure
protocols. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, STOC 1988, pp. 11–19. ACM, New York (1988)

[CH94] Canetti, R., Herzberg, A.: Maintaining security in the presence of tran-
sient faults. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
425–438. Springer, Heidelberg (1994)

[CKLS02] Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous ver-
ifiable secret sharing and proactive cryptosystems. In: ACM Conference
on Computer and Communications Security, pp. 88–97 (2002)

[CL02] Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

[DGG+15] Dolev, S., Garay, J.A., Gilboa, N., Kolesnikov, V., Yuditsky, Y.: Towards
efficient private distributed computation on unbounded input streams. J.
Math. Cryptol. 9(2), 79–94 (2015)

[DGGK09] Dolev, S., Garay, J., Gilboa, N., Kolesnikov, V.: Swarming secrets. In: 47th
Annual Allerton Conference on Communication, Control, and Computing,
Allerton, pp. 1438–1445, September 2009

http://dx.doi.org/10.1007/978-3-319-28166-7_2

548 S. Dolev et al.

[DGGK11] Dolev, S., Garay, J.A., Gilboa, N., Kolesnikov, V.: Secret sharing Krohn-
Rhodes: private and perennial distributed computation. In: Proceedings
of the Innovations in Computer Science, ICS, 7–9 January 2011, pp. 32–
44. Tsinghua University, Beijing (2010)

[DIK+08] Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scal-
able multiparty computation with nearly optimal work and resilience. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer,
Heidelberg (2008)

[DIK10] Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty com-
putation and the computational overhead of cryptography. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer,
Heidelberg (2010)

[Fel87] Feldman, P.: A practical scheme for non-interactive verifiable secret shar-
ing. In: Proceedings of the 28th Annual Symposium on Foundations of
Computer Science, SFCS 1987, pp. 427–438. IEEE Computer Society,
Washington, DC (1987)

[FGMY97] Frankel, Y., Gemmell, P.S., MacKenzie, P.D., Yung, M.: Proactive RSA.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 440–454.
Springer, Heidelberg (1997)

[FY92] Franklin, M.K., Yung, M.: Communication complexity of secure compu-
tation (extended abstract). In: STOC, pp. 699–710 (1992)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, STOC 1987, pp. 218–229. ACM, New York (1987)

[HJKY95] Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret shar-
ing or: how to cope with perpetual leakage. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)

[HML13] Hirt, M., Lucas, C., Maurer, U.: A dynamic tradeoff between active and
passive corruptions in secure multi-party computation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 203–219.
Springer, Heidelberg (2013)

[OY91] Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks
(extended abstract). In: PODC, pp. 51–59 (1991)

[RB89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority. In: Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, STOC 1989, pp. 73–85. ACM, New
York (1989)

[Sch07] Schultz, D.: Mobile proactive secret sharing. Ph.D. thesis, Massachusetts
Institute of Technology (2007)

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[Tim16] Los Angeles Times. Anthem is warning consumers about its huge data

breach. Here’s a translation (2016). http://www.latimes.com/business/
hiltzik/la-fi-mh-anthem-is-warning-consumers-20150306-column.html.
Accessed 10 Feb 2015

[WWW02] Wong, T.M., Wang, C., Wing, J.M.: Verifiable secret redistribution for
archive system. In: IEEE Security in Storage Workshop, pp. 94–106 (2002)

[ZSvR05] Zhou, L., Schneider, F.B., van Renesse, R.: APSS: proactive secret sharing
in asynchronous systems. ACM Trans. Inf. Syst. Secur. 8(3), 259–286
(2005)

http://www.latimes.com/business/hiltzik/la-fi-mh-anthem-is-warning-consumers-20150306-column.html
http://www.latimes.com/business/hiltzik/la-fi-mh-anthem-is-warning-consumers-20150306-column.html

Obfuscation

Shorter Circuit Obfuscation in Challenging
Security Models

Zvika Brakerski(B) and Or Dagmi

Weizmann Institute of Science, Rehovot, Israel
{zvika.brakerski,or.dagmi}@weizmann.ac.il

Abstract. The study of program obfuscation is seeing great progress in
recent years, which is crucially attributed to the introduction of graded
encoding schemes by Garg, Gentry and Halevi [20]. In such schemes, ele-
ments of a ring can be encoded such that the content of the encoding is
hidden, but restricted algebraic manipulations, followed by zero-testing,
can be performed publicly. This primitive currently underlies all known
constructions of general-purpose obfuscators.

However, the security properties of the current candidate graded
encoding schemes are not well understood, and new attacks frequently
introduced. It is therefore important to assume as little as possible about
the security of the graded encoding scheme, and use as conservative secu-
rity models as possible. This often comes at a cost of reducing the effi-
ciency or the functionality of the obfuscator.

In this work, we present a candidate obfuscator, based on composite-
order graded encoding schemes, which obfuscates circuits directly a
la Zimmerman [34] and Applebaum-Brakerski [2]. Our construction
requires a graded encoding scheme with only 3 “plaintext slots” (= sub-
rings of the underlying ring), which is directly related to the size and
complexity of the obfuscated program. We prove that our obfuscator is
superior to previous works in two different security models.
1. We prove that our obfuscator is indistinguishability-secure (iO) in

the Unique Representation Generic Graded Encoding model. Previ-
ous works either required a composite-order scheme with polynomi-
ally many slots, or were provable in a milder security model. This
immediately translates to a polynomial improvement in efficiency,
and shows that improved security does not come at the cost of effi-
ciency in this case.

2. Following Badrinarayanan et al. [3], we consider a model where find-
ing any “non-trivial” encoding of zero breaks the security of the
encoding scheme. We show that, perhaps surprisingly, secure obfus-
cation is possible in this model even for some classes of non-evasive
functions (for example, any class of conjunctions). We define the
property required of the function class, formulate an appropriate
(generic) security model, and prove that our aforementioned obfus-
cator is virtual-black-box (VBB) secure in this model.

Research supported by the Israel Science Foundation (Grant No. 468/14), the Alon
Young Faculty Fellowship, Binational Science Foundation (Grant No. 712307) and
Google Faculty Research Award.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 551–570, 2016.
DOI: 10.1007/978-3-319-44618-9 29

552 Z. Brakerski and O. Dagmi

1 Introduction

A program obfuscator is a compiler that takes a program as input, and outputs a
functionally equivalent program that is hard to reverse engineer. Early works by
Hada [24] and Barak et al. [6] provided rigorous definitional treatment of obfus-
cation, but also showed the impossibility of achieving strong security notions for
general circuits. In particular Virtual Black-Box (VBB) security, where interac-
tion with the obfuscated program can be simulated using only black-box access
to the obfuscated program, was proven impossible in general.

Constructing secure obfuscators, even heuristically, is a very challenging task.
Indeed, until recently, candidate obfuscators were only known to exist for a few
simple function classes. The game changer in this field had been the introduction
of graded encoding schemes (GES) by Garg, Gentry and Halevi [20] and follow-
up constructions by Coron, Lepoint and Tibouchi [18,19]. GES allow to encode
ring elements (from some underlying ring) in a way that hides the identity of the
ring element, but still allows algebraic manipulation on the encoding (addition
and multiplication). Each encoding is associated with a level, which is a positive
integer (or more generally an integer vector). Addition is only allowed within a
level, and in multiplication the level of the output is the sum of the levels of the
inputs. A GES allows to test if the contents of an encoding is the zero element,
but only at a predetermined “zero-test level”, and not beyond. Thus GES allows
arithmetic operations of bounded degree.

Garg et al. [21] presented a candidate obfuscator for general circuits based on
GES. They conjectured, with some supporting evidence, that their obfuscator is
a secure indistinguishability obfuscator (iO). Indistinguishability obfuscation is a
weak security notion and it first glance it may seem useless. However, Sahai and
Waters [32] showed that iO is actually sufficient for a wide variety of applications.
Numerous follow-up works showed how to use iO to construct many desirable
cryptographic primitives, thus establishing iO itself as one of the most impor-
tant cryptographic primitives. The goal of formally establishing the security of
obfuscation candidates had since been central in cryptographic research.

Brakerski and Rothblum [12] presented a similar obfuscator candidate, and
proved its security in the generic GES model. This model addresses adversaries
that are restricted to algebraic attacks on the encoding scheme, i.e. generate
encodings, perform algebraic manipulations and test for zero, while being obliv-
ious to the representation of the element. This is modeled by representing the
encodings using random strings, thus making them completely opaque. The
algebraic functionality is provided as oracle. Other candidate obfuscators with
generic proofs followed [1,5,28]. Pass, Seth and Telang [31] replaced the generic
model with a strong notion of “uber-assumption”.

The constructions mentioned so far were all based on converting the obfus-
cated program into a branching program, thus having computational cost which
scaled with the formula size of the program to be obfuscated.1 This was improved

1 An additional “bootstrapping” step established that obfuscating polynomial-size
formulae is sufficient in order to obfuscate general circuits.

Shorter Circuit Obfuscation in Challenging Security Models 553

by newer constructions that used composite order GES (where the underlying
ring is isomorphic to ZN for a composite N). In a nutshell, composite order rings
allow for “slotted” representation of elements via the Chinese Remainder Theo-
rem, so that each ring element is viewed as a tuple of slots, and algebraic oper-
ations are performed slot-wise. In particular, Zimmerman [34] and Applebaum
and Brakerski [2] presented obfuscators whose overhead relates to the circuit
size of the program and not its formula size. However, using known candidate
GES, the underlying encodings again incorporated overhead that depends on the
formula size. Nonetheless, these constructions carry the promise that given more
efficient GES candidates, the dependence on the formula size can be completely
removed. Proofs in generic models were provided.

Since the generic model restricts the adversary beyond its actual attack capa-
bilities, such proofs should be taken only as evidence in lieu of standard model
proofs. In order for the evidence to carry more weight, we should be prudent
and use models that pose as few restrictions as possible on the adversary.

For example, [2,5,34] consider a model where one assumes that not only
encodings of different elements appear to the adversary as independent uniform
strings, but also if the same element is computed in two different ways then it will
have two independent-looking representations. This is a fairly strong assumption
and in particular one that does not hold in cryptographic multilinear-maps, if
such exist [7]. It is shown in [2] that the suggested obfuscation scheme actu-
ally breaks if one is allowed to even test for zero at levels below the zero-test
level. They therefore proposed a more robust obfuscator that is secure in the
unique representation model of [10–12], in which each ring element has a unique
representation. Unfortunately, this added security came at a cost of reducing effi-
ciency, specifically the number of “input slots” goes up from 2 to n + 2 (where
n is the input length). This directly translates to an efficiency loss in the con-
struction.2 Boneh, Wu and Zimmerman [8] proposed a way to immunize GES so
that zero encodings cannot be created below the zero-test level.

A notable progress in the study of secure obfuscation had been made recently
by Gentry, Lewko, Sahai and Waters [22]. They showed an obfuscator whose secu-
rity is based on an assumption in the standard model. It is yet unclear whether
their hardness assumption holds true in known candidate GES (recent attacks
[16,30] suggest it might not). It should further be noted that this construction
again requires a large number of input slots (essentially proportional to the for-
mula size of the obfuscated circuit).3

We see that the attempts to come up with a more realistic security model
comes at the cost of increasing the number of required slots, and therefore reduc-
ing the efficiency. It is not clear whether this trade-off is necessary.

Does a stronger security model come at the cost of efficiency?

2 Miles, Sahai and Weiss [28] suggested constraining the model in a different, orthog-
onal manner. Their model is less relevant for this work.

3 They also suggest a construction using a single-slot GES, however the efficiency cost
was even greater.

554 Z. Brakerski and O. Dagmi

In this work, we show that at least in the generic model, one does not need
to pay in efficiency to achieve better security.

We proceed to consider an even more conservative security model, one where
even finding a non-trivial encoding of the zero element is assumed to obliterate
security completely.4 This model is motivated by new attacks on the security
of all known proposed GES candidates [15–17,20,25,30], showing that having
access to encodings of the ring’s zero element results, in some cases, in a complete
security breach. Indeed, current attacks do not work with just any non-trivial
zero encoding, however they do raise concern that having an adversary access an
encoding of zero might be a vulnerability. This concern had been significantly
heightened recently as Miles, Sahai and Zhandry [29] presented an attack on
obfuscators that are based on the [20] GES candidate. This new attack again
makes crucial use of top-level encodings of zero (but does not require “low-level”
zero encodings like some prior attacks).

To hedge against these risks, Badrinarayanan, Miles, Sahai and Zhandry [3]
proposed to avoid zeros completely. Namely, to construct an obfuscator in such
a way that the adversary is unable to generate such encodings altogether. How-
ever, this seems to defeat the purpose, since zero-testing is the way to extract
information out of an encoding for functionality purposes. They get around this
barrier in a creative way, by only obfuscating evasive functions, where finding an
accepting input using oracle access is (unconditionally) hard.5 Classes of evasive
functions have played an important role in the study of obfuscation, since many
classes that are desirable to obfuscate are evasive (e.g. various variants of point
functions, starting with the work of Canetti [14]) and one could hope that they
can even be obfuscatable in the strong VBB setting. (See [4] for more informa-
tion and the state of the art about evasive functions.) Badrinarayanan et al.
show that when their obfuscator is applied to an evasive function, the adversary
is unable to find an encoding of zero. The proof here is in the generic model as
well. The restriction to evasive functions, however, excludes interesting function
classes such as conjunctions [10,13]. We therefore address the following question.

Can we obfuscate non-evasive functions in the zero-sensitive model?

Perhaps surprisingly, we answer this question in the affirmative, and show that
our obfuscator (the same as above) is secure in a zero-sensitivemodel, even for some
non-evasive function classes, and in particular for worst-case conjunctions.

1.1 Our Results

A More Efficient Circuit Obfuscator. We present a new direct circuit obfuscator,
i.e. one that does not go through branching programs. Our construction is inspired
4 A “trivial” zero is, for example, the result of subtracting an encoding from itself, or

of similar computations that nullify based on the syntax of the equation rather than
the encoded values.

5 We note that if the [3] obfuscator is applied to non evasive functions, and top-level
zeros can occur, then the [29] attack applies. This highlights the significance of
completely avoiding zeros.

Shorter Circuit Obfuscation in Challenging Security Models 555

by the “robust obfuscator” RobustObf of [2]. However, whereas RobustObf works
over a composite order graded encoding scheme with (n + 2) message slots, our
obfuscator only requires 3 slots.Our obfuscator provides equivalent level of security
to RobustObf in the unique representation generic GES model (see details below).
This improvement translates directly to a factor n improvement in the size of the
encodings, and a poly(n)-factor improvement in the computational complexity of
generating and evaluating the obfuscated program.6 We therefore show that at
least in the generic model, there is no real efficiency gain to working in a less secure
model. We hope that our techniques can be translated to reduce the number of
required slots in the non-generic setting as well, in particular in the [22] scheme.

We prove that the resulting obfuscator is indistinguishability secure in the
unique representation graded encoding model. The proof outline is similar in
spirit to that of the robust obfuscator of [2], while incorporating some proof
techniques from [34]. In particular, we rely on the sub-exponential hardness of
factoring the order of the underlying ring, in addition to the security of the
generic model. In contrast, [2] work in a model where the order of the ring is
hidden so that factoring it is information theoretically hard.

We note that one can consider many variants of the generic model: known
modulus, unknown modulus and information theoretic hardness, computational
hardness. Furthermore, [34] also shows how to prove VBB security at the cost of
increasing the size of the obfuscator by additional n2 encodings. Our improve-
ment can be applied to all of these variants, transforming them to the unique
representation model while preserving the number of slots as constant. For the
sake of concreteness, we chose to prove in a setting that we found interesting.

The Zero-Sensitive Oracle and All-or-Nothing Functions. We show that the [3]
approach discussed above can be extended even beyond evasive functions. This
may come as a surprise since applying our obfuscator to non-evasive functions
gives the adversary access to zero encodings. As a motivating example, consider
the class of conjunctions that had been studied in [10]. One can think of a
conjunction as string-matching with wildcards. Namely, the function is defined
by a string v ∈ {0, 1, �}n, and fv(x) = 1 if and only if for all i, either v[i] = x[i]
or v[i] = �. Indeed, some distributions on this class of functions are evasive, but
what if we want to obfuscate it in the worst case?

Naturally, in the worst case there could be an adversary that can find an
accepting input (more generally, no function class is evasive in the worst case
except the zero function). However, the critical observation is that this does
not necessarily hinder security, since given an accepting input, one can learn
the entire function. In the case of conjunctions this is easy to do by taking an
accepting x and flipping each of its bits in turn to see if this bit is a wildcard
(and switching it back afterwards). Therefore, if we find an accepting input, we
should not expect the obfuscator to hide anything anyway!

6 See e.g. [23, Appendix B] for suggested trade-offs between the number of input slots
and the size of the encoding.

556 Z. Brakerski and O. Dagmi

We generalize this property and define All-or-Nothing (AoN) function classes
to be ones where if an adversary finds an accepting input, then it can recover the
function in its entirety (a formal definition is provided). We would like to show
that indeed such function classes can be securely obfuscated even in a setting
where a non-trivial zero encoding implies that the GES is insecure.

In the proof of [3] for evasive functions, proving security was split into two
tasks: presenting a simulator, and showing that the adversary cannot compute
encodings of zero. Our notion of security, however, requires additional defini-
tional treatment, since we would like successful simulation even in the case where
an accepting input had been found, and we cannot tell in advance whether such
an input will be found or not. We therefore define a new generic model where
the GES oracle keeps track of the encodings that the adversary generates, and
if one of those is a non-trivial zero, then the adversary gets access to a decoding
oracle that allows to decode any given encoding to obtain the plaintext. This is
how we model the risk in non-trivial zeros.

Finally, we prove that our obfuscator is indeed a secure VBB obfuscator for
AoN functions in our new zero-sensitive model. Interestingly, we don’t need to
use complexity leveraging here and we can prove VBB security without increas-
ing the number of encodings. We view this as evidence that AoN functions may
be strictly easier to obfuscate than general functions, and are perhaps a good
candidate for VBB obfuscation in the standard model.

What GES Candidate To Use? We stress that our work is completely abstract
and not directly related to any specific GES candidate, but naturally it would be
more convincing if it could be instantiated with one. To date, the only candidate
composite order GES is that of [18,19], and indeed this candidate can be used
with our scheme. We stress that the only known attacks on this candidate uses
encodings of zero, and there are no known attacks in the zero evading model
(this is also true for the [20] candidate). In fact, even in the “standard” model,
the attacks of [17,29] do not seem to apply to our obfuscator when instanti-
ated with [18,19]. However, these attacks suggest that obfuscators such as ours
might be vulnerable to future attacks. The goal of finding secure instantiations
of composite order candidate GES is a very important one, but orthogonal to
the contributions of this paper.

1.2 Our Techniques

Our Obfuscator. Our building block is a graded encoding scheme whose plaintexts
are elements in a composite order ring. We denote the encoding of the element a
by [a]. Encodings can be added, subtracted, multiplied and tested for zero (sub-
ject to constraints imposed by the levels, which we will ignore in this outline since
they are similar to previous works). We think of a itself as a tuple of elements via
the Chinese Remainder Theorem. Each sub-ring is of high cardinality and it is
assumed that “isolating” the components of an encoded element is computation-
ally hard (in the generic model this relates to the hardness of factoring the order
of the ring). The [2] obfuscator (following [10–12]) adds an additional layer on top

Shorter Circuit Obfuscation in Challenging Security Models 557

of this encoding and rather than encoding [a] itself, it produces a pair of encod-
ings [r] and [r · a], for a random r, i.e. the plaintext value is the ratio between the
values in the two encodings. This “rational encoding” plays an important role in
both functionality and security. For the purpose of this outline only, we use [a]♦ as
shorthand notation for the pair [r], [r · a]. It can be shown that rational encodings
can be added and multiplied, subject to constraints as in previous works.

The starting point of our construction is the “robust obfuscator” from [2].
This obfuscator, in turn, is derived from a simpler solution [2,34] that applies in
a more forgiving generic model. In the “simple obfuscator”, for each input bit i,
two encodings are given as a part of the obfuscator. These encodings are of the
form [(yi, b)]♦, for b ∈ {0, 1}, where yi is a random value that is the same whether
b = 0 or 1. The weakness of this scheme stems from the ability to subtract the
two encodings that correspond to the same i, and cancel out the yi value to
obtain an encoding of the form [(0, 1)]♦, which in turn allows to test whether the
second slot of a given encoding is zero or not (via multiplying by [(0, 1)]♦ and
zero-testing). In the less restrictive multiple representation generic model, this
attack is prevented by disallowing to test for zero in some situations. However,
this cannot be avoided in a model where each element has a unique representation
since one can always test for zero by comparing to a known encoding of zero.

The robust obfuscator from [2] prevents this problem by adding n additional
slots to the encodings, and publishing, for each input bit of the obfuscated func-
tion, the values [wi,b]♦, for b ∈ {0, 1}, where wi,b = (yi, b, ρ1,b, . . . , ρn,b). The ρ
values are uniform and independent, and therefore subtracting [wi,1]♦ − [wi,0]♦

here will not cancel out the ρ values. The ρ values should be eliminated in the
end of the computation, and this is done by providing additional encodings of a
special form ŵi,b = (ŷi, βi,b, ρ̂1,b, . . . , ρ̂i−1,b, 0, ρ̂i+1,b, . . . , ρ̂n,b). Namely, encodings
that zero out the ith ρ value. In the evaluation, the value

∏
i ŵi,xi

is computed and
multiplied with the result of the computation so far, thus zeroing out the last n
slots. Note that even though the ρ values can be zeroed out, this does not enable
the previous attack. This is due to the level constraints that impose structural
limitations. In particular, [ŵi,0]♦ and [wi,1]♦ cannot be used in the same compu-
tation, which is in contrast to [wi,0]♦ and [wi,1]♦ that cannot be prevented from
interacting (at a high level, this is because each input bit can be used many times
in the circuit, but the ŵ values are designed to only be used once).

Our modification to this scheme is quite simple. We observe that the use of
n different ρ slots is only due to the cancellation step via ŵ, where we need to
enforce that an adversary must use a [ŵi,b]♦ value for each and every i. The
reason is that this use prevents the dangerous mix-and-match of [wi,0]♦ and
[wi,1]♦. We notice, however, that since rational encodings can be added and not
just multiplied, one could enforce that an ŵi,b is used for every i using a sum
rather than a product. We set ŵi,b = (ŷi, βi,b, ρ̂i), thus reducing the number of
sub-rings to only 3. We choose the ρ̂i values at random, subject to the constraint
that

∑
i ρ̂i = 0. This means that in order to zero-out the ρ̂ coordinate, an

adversary needs to use a [ŵi,b]♦ element for every i. As before, we must prevent
[ŵi,0]♦ and [ŵi,1]♦ from interacting, since taking their difference zeros out the

558 Z. Brakerski and O. Dagmi

ρ̂ coordinate and is therefore dangerous, but this is done in the same way as
previous works.

Proving Security. As has been shown in a number of previous works, in the
generic model, the adversary is limited to applying arithmetic circuits over the
encodings received as input, and testing the output for zero. The simulator,
therefore, generates a collection of random strings to play the role of the encod-
ings in the obfuscated program, and then to answer queries of the form of an
arithmetic circuit, determining whether applying this circuit to the encodings
at hand evaluates to zero.7 The problem is that the simulator needs to do this
with only oracle access to the obfuscated circuit. Namely, it does not fully know
what is the plaintext in the encoding that it generated.

We use a proof practice that started with [10]. They notice that if we use
rational encoding as described above, then the polynomial computed by an
arithmetic circuit can be decomposed into a sum of terms that we call semi-
monomials. A semi-monomial is a polynomial of the form M(�r)Q(�w), where
M(�r) is a product of “randomizing” variables, and Q(�w) is a polynomial in
the “content” variables. Since the randomizer variables are random and inde-
pendent, the task of testing the polynomial for zero is identical to the task of
finding whether there exists a non-zero semi-monomial.

We distinguish between semi-monomials that are “valid”, in the sense that
they represent a legal evaluation of the circuit on an input, and ones that are
“invalid”. We show how to test if a semi-monomial is valid or not, and that
an invalid semi-monomial cannot zero-out, regardless which circuit had been
obfuscated, assuming the hardness of factoring the ring order. We show that
“valid” monomials zero-out if and only if the obfuscated circuit accepts their
associated input x.

Therefore, our proof strategy is straightforward. We extract semi-monomials
from the circuit one after the other.8 For each semi-monomial, we check whether
it is invalid, in which case we can immediately return that the arithmetic circuit
computes a non-zero. If the semi-monomial is valid for some input x, we query
the obfuscated circuit oracle on x. If it rejects, then the answer is again non-zero,
but if it accepts, then the answer is still undetermined and we need to proceed
to the next semi-monomial.

This process takes 2n time in the worst case, since there can be at most 2n

valid semi-monomials. Thus the running time of our iO simulator is exponential
in the input length. However, in the case of AoN functions, the situation is much
simpler and in fact only one semi-monomial needs to be inspected. The reason
is that if the extracted x is an accepting input for the circuit, then we don’t need
to proceed at all, since for AoN functions, we can efficiently learn the code of
the circuit, which allows us to continue the simulation trivially by just assigning
the right values to the �w variables. This completes the proof.
7 It may seem that the simulator needs to do much more than that, but it can be

shown that all other functionalities reduce to this problem.
8 In fact, our extraction procedure might output terms with a few semi-monomials,

but in such case one of them must be invalid, which will be detected in the next step.

Shorter Circuit Obfuscation in Challenging Security Models 559

1.3 Paper Organization

In Sect. 2 we present our new generic model as well as our new zero-sensitive
model, which is a new contribution. Section 3 features the specifics of our obfus-
cator, and security is proven in Sect. 4, where we also define the class of AoN
functions. Due to space constraints, much of the technical content is deferred to
the full version [9].

2 The Generic GES Model and Our New Zero-Sensitive
Variant

We would like to prove the security of our construction against generic adver-
saries. To this end, we will use the generic graded encoding scheme model,
adapted from [5,10–12], which is analogous to the generic group model (see
Shoup [33] and Maurer [27]).

There are various flavors of generic models suggested in the literature. In
this work, we follow [2,10] and use the unique-representation model, where each
element in the underlying ring, at each level, has a unique representation. This is
in contrast to the multiple-representation model [2,5,34] which (roughly) states
that if the same element is being computed via different computational paths,
then each path will lead to a different and independent representation of that
element. While the latter model makes the task of proving security easier, it
is inadequate in some situations, as we described in the introduction. We note
that a proof in the unique representation model immediately carries over to
the multiple representation model, but not the other way around. We provide a
definition of this model in Sect. 2.1 below.

We then introduce our zero-sensitive model. This model is motivated by
recent attacks that leverage non-trivial encodings of zero. In this model we treat
a non-trivial encoding of zero at any level as perilous. In particular, once such an
encoding had been generated, the GES oracle will no longer keep any secret, and
surrender the plaintexts of all encodings to the adversary. As we explained above,
we can prove security of all-or-nothing functions in this model. See Sect. 2.2 for
details.

Lastly, in Sect. 2.3, we define indistinguishability and virtual black-box obfus-
cation in the presence of our oracles.

2.1 The Ideal GES Oracle

We present the “online” variant of the unique representation model. As shown in
previous works, this variant is equivalent to the “offline” variant up to negligible
statistical distance. See [2,10] for more details. We model the GES using an oracle
RG which implements the functionality of a GES in which the representations
of elements are uniform and independent random strings.

560 Z. Brakerski and O. Dagmi

The Online RG Oracle. The online RG oracle is implemented by an online poly-
nomial time process, which samples representations for ring elements on-the-fly.
Specifically, the oracle will maintain a table of entries of the form (v, a, labelv,a),
where labelv,a ∈ {0, 1}t is the representation of [a]v in RG, and F is either a for-
mal variable or an arithmetic circuit over formal variables. The table is initially
empty and is filled as described below.

– Whenever a sampling query is made, RG generates an element a from R (or
the appropriate sub-ring), and a uniform length t label. It then stores the
tuple (0, a, label0,a) in its table.

– For encoding and arithmetic operations, the oracle takes the input labels and
finds appropriate entries in the table that correspond to these labels. If such
don’t exist then ⊥ is returned. Otherwise, the oracle retrieves the appropriate
(v, a) values to perform the operation. It then checks that the level values are
appropriate (e.g. encRand can only be applied to level zero encodings, addition
can only take two operands of the same level), and computes the output of
the operation. It then performs the computation on the ring elements. Finally,
the oracle needs to return an encoding of an element of the form (v′, a′). To
do this, the oracle checks whether (v′, a′) is already in the table, and if so
returns the appropriate labelv′,a′ . Otherwise it samples a new uniform label,
and inserts a new entry into the table. Otherwise it samples a new uniform
label, and inserts a new entry into the table.

– Extraction is trivial in our representation, one can just use labelv′,a′ as the
extracted value for [a]v.

– Zero testing is performed by finding the appropriate entry in the table and
checking whether the respective ring element is indeed 0.

2.2 The Zero-Sensitive Generic Model

We propose a new generic model that incorporates the zero-evading requirement
of [3] into the generic GES model. Whereas our oracle is a modification of the
unique representation generic model presented above, similar modifications can
be made to other generic models in the literature.

We propose a generic model with an additional decoding functionality which
will allow the adversary to retrieve the plaintext of any encoding of its choosing,
once an encoding of zero had been generated. Some care needs to be taken, since
it is easy to produce “syntactic zeros” which are harmless. E.g. subtracting an
encoding from itself will produce such a zero encoding, or less trivially, computing
an expression of the form (A + B) ∗ C − (C ∗ A + C ∗ B). These expressions will
evaluate to zero regardless of the values that are actually encoded in A,B,C
and we refer to them as “trivial” or “syntactic” zeros. Such encodings of zero
are unavoidable, but they are not dangerous. (Indeed, in known instantiations
of GES [18–20], syntactic zeros are always encoded by the all-zero string and
thus provide no meaningful information.) We design an oracle that whenever a
non-syntactic zero is created (or rather, when it could potentially be created),
enables the decoding feature.

Shorter Circuit Obfuscation in Challenging Security Models 561

We consider the encodings that are generated by the encRand function as
atomic variables, and for every encoding generated by the adversary throughout
the computation, we maintain its representation as an algebraic circuit over these
variables. Whenever two syntactically different such arithmetic circuits evaluate
to the same value, we enable the decoding feature. Details follow.

The RGZ Oracle. The new oracle is based on the functionality of the oracle RG
defined in Sect. 2.1. It will maintain a table similarly to RG, but in addition each
entry in the table will contain an additional value in the form of an arithmetic
circuit over the formal variables X1,X2, Elements encoded at level 0 will
not have a circuit associated with them, but whenever encRand is executed, the
resulting element will be stored in the table together with a new variable Xi. It
will also maintain a global binary state decode which is initialized to false.

When the arithmetic functionality of RGZ is called, say on operands A1, A2

whose table entries are (v1, a1, A1, C1), (v1, a2, A2, C2), it performs exactly as
RG and computes the values (v′, a′) corresponding to the level and value of the
result. In addition RGZ also defines C ′ = C1opC2, where op is the arithmetic
operation to be performed (e.g. C ′ = C1+C2 or C ′ = C1×C2). Then, just like in
RG, we search the table to find whether (v′, a′) already appears. If it does not,
then a new label A′ is generated, (v′, a′, A′, C ′) is stored in the table, and A′ is
returned. However, if there already exists (v′, a′, A′′, C ′′) in the table, then there
is potential for a non-trivial zero in the case where C ′ �≡ C ′′. This equivalence
is easy to check (even in polynomial time using Schwartz-Zippel). If the circuits
are equivalent: C ′ ≡ C ′′, then there is no risk, the table entry does not change
and A′′ is returned. However, if indeed C ′ �≡ C ′′, then the adversary can create a
non-trivial zero (since he generated the element a′ in two syntactically different
ways). Therefore, in this event, RGZ sets decode = true.

As explained above, RGZ also provides an additional decoding functionality:
Decode(A). This function, upon receiving an encoding A as input, first checks
the decode variable. If decode = false then it returns ⊥. Otherwise, it searches the
table for and entry whose label is A, and returns the corresponding “plaintext”
value a.

Non-trivial Zeros in the Unique Representation Model. Our zero evad-
ing model has unique representations, in the sense that the oracle assigns a single
string to each ring element. This state of affairs may be confusing, since if there
is only one representation for each element (in particular, the zero element), it
may seem that the distinction between trivial and non-trivial zeros is meaning-
less. While this intuition is true in the standard model, in a generic model the
RG oracle can judge whether an encoding of zero is trivial or not even though
they are represented by the same string, since it can keep track of the path the
adversary took in generating said encoding. In fact, security in our model is
stronger than in a model that allows multiple representations. Details follow.

562 Z. Brakerski and O. Dagmi

We note that unique representation GES (call it uGES for short) is effectively
equivalent to multiple representations GES (mGES) in which zero-testing can be
performed anywhere below level vzt and not just at vzt itself. This is because the
adversary can always think about the first representation of a specific element
as the “real” one. Whenever it sees a new encoding, it can subtract it from all
previous ones that it saw in the same level, and test for zero, thus discovering
if two different encodings in fact refer to the same element. Therefore, by using
uGES we only give the adversary extra power. Another advantage of using uGES
is that the extraction procedure becomes trivially defined and does not need
additional machinery. One can thus think of our use of uGES as a formalism
that allows us to seamlessly handle cases such as mGES with low-level zero-
testing (and extraction).

2.3 Obfuscation in the Generic GES Model

These definitions are fairly standard and originate from [10]. We start with
correctness, which should hold with respect to an arbitrary GES implementation.

Definition 2.1 (Preserving Functionality). A GES-based obfuscation
scheme (Obf,Eval) for C is functionality preserving if for every instantiation G of
GES, every n ∈ N, every CK ∈ C where K ∈ {0, 1}m(n), and every x ∈ {0, 1}n,
with all but negl(λ) probability over the coins of Obf,Eval and the GES oracle G
it holds that:

EvalG(1n, 1λ, Ĉ, x) = CK(x), where Ĉ
$← ObfG(1n, 1λ,K).

We define Indistinguishability Obfuscator with respect to some (possibly inef-
ficient) GES instantiation. Our definition is formulated in terms of unbounded
simulation which is equivalent to the more standard indistinguishability-based
definition (cf. [12]).

Definition 2.2 (Indistinguishability/VBB Security [6]). A GES-based
obfuscation scheme (Obf,Eval) for C is called an Indistinguishability Obfuscator
(iO) with respect to some GES instantiation G (which possibly contains a decode
function) if for every polynomial size adversary A, there exists a (computation-
ally unbounded) simulator S, such that for every n ∈ N and for every CK ∈ C
where K ∈ {0, 1}m(n):

∣∣ Pr[AG(1λ, Ĉ) = 1] − Pr[SCK (1|K|, 1n, 1λ) = 1]
∣∣ = negl(λ),

where Ĉ
$← ObfG(1n, 1λ,K). If the simulator can be implemented by polynomial

size circuits than the obfuscator is Virtually Black-Box (VBB) secure.

3 Description of Our Obfuscator and Its Correctness

3.1 Setting and Definitions

We define C = {CK}K∈{0,1}∗ to be a family of efficiently computable functions
with n-bit inputs, representation size m = m(n) and universal evaluator U .

Shorter Circuit Obfuscation in Challenging Security Models 563

And we let Û be the arithmetized version of U . That is, an arithmetic circuits
with {+,×} gates such that for any field F if (x,K) ∈ {0, 1}n+m ⊆ F

n+m, then
Û(x,K) = CK(x). We also denote by DÛ the degree of the polynomial computed
by Û .

Wedefine themultiplicity of inputwire i as follows.We consider an enumeration
of the wires of Û in topological order, such that the first n + m wires refer to the
wires of the x,C inputs. For each wire i we define a vector si ∈ Z

n+m as follows. If
i ≤ n + m, then si = ei (the ith indicator vector). For a wire i which is the output
wire of a gate whose input wires are j1, j2, we define si = sj1 +sj2 . The multiplicity
is defined to be Mi = sout [i], where “out” is the output wire of Û .

3.2 The Obfuscator Obf

For all i ∈ [n], b ∈ {0, 1} we define vi,b ∈ Z
(n+m+1)×4 as vi,b = ei⊗ [b, 1, 1 − b, 0].

We further define v̂i,b = ei ⊗ [(1 − b) · M [i] , 0, b · M [i] , 1].
For all i ∈ {n + 1, . . . , n + m} we define vi = ei ⊗ [1, 1, 1, 0]. We define

v0 = en+m+1 ⊗ [1, 1, 1, 0] and v∗ = en+m+1 ⊗ [0, 0, 0, 1]. Lastly, we define: vzt =
(sout + en+m+1) ⊗ [1, 1, 1, 0] +

(∑n+m
i=1 ei

)
⊗ [0, 0, 0, 1] + D · v∗ ∈ Z

(n+m+1)×4,

where D = DÛ + n. We note that for all x ∈ {0, 1}n it holds that vzt =
v0 +

∑n
i=1 (M [i] · vi,xi

+ v̂i,xi
) +

∑n+m
i=n+1 M [i] · vi + D · v∗. We illustrate the

various level vectors in Fig. 1.

vi,0 =

⎡
⎢⎢⎣
0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0

⎤
⎥⎥⎦ , vi,1 =

⎡
⎢⎢⎣
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0

⎤
⎥⎥⎦ , vi =

⎡
⎢⎢⎣
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0

⎤
⎥⎥⎦

v̂i,0 =

⎡
⎢⎢⎣
0 · · · M[i] · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0

⎤
⎥⎥⎦ , v̂i,1 =

⎡
⎢⎢⎣
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · M[i] · · · 0 0
0 · · · 1 · · · 0 0

⎤
⎥⎥⎦ , v0 =

⎡
⎢⎢⎣
0 · · · 0 1
0 · · · 0 1
0 · · · 0 1
0 · · · 0 0

⎤
⎥⎥⎦ , v∗ =

⎡
⎢⎢⎣
0 · · · 0 0
0 · · · 0 0
0 · · · 0 0
0 · · · 0 1

⎤
⎥⎥⎦

vzt =

⎡
⎢⎢⎣
M[1] · · · M[n] M[n + 1] · · · M[n + m] 1
M[1] · · · M[n] M[n + 1] · · · M[n + m] 1
M[1] · · · M[n] M[n + 1] · · · M[n + m] 1

1 · · · 1 0 · · · 0 D

⎤
⎥⎥⎦

Fig. 1. The level vectors for the obfuscator.

The Obfuscator Obf:

– Input: Circuit identifier K ∈ {0, 1}m where CK ∈ C and a security
parameter λ.

– Output: Obfuscated program with the same functionality as CK .
– Algorithm:

564 Z. Brakerski and O. Dagmi

1. Instantiate a 3-composite graded encoding scheme

(params, evparams) = InstGen(1λ+log ‖vzt‖1 , 13,vzt).

2. For all i ∈ [n], compute random encodings Ri,b = [ri,b]vi,b
as well as

encodings of Zi,b = [ri,b · wi,b]vi,b+v∗ , where wi,b = (yi, b, ρi,b) and yi, ρi,b

are uniform.
3. For all i ∈ [i], compute random encodings: R̂i,b = [r̂i,b]v̂i,b

as well

as encodings of Ẑi,b = [r̂i,b · ŵi,b]v̂i,b+v∗ , where ŵi = (ŷi, β̂i, ρ̂i), where

ŷi, β̂i, {ρ̂i}i�=n are all uniform but ρ̂n = −∑n−1
i=1 ρ̂i.

4. For all i ∈ {n + 1, . . . , n + m}, compute random encodings Ri = [ri]vi
as

well as encodings of Zi = [ri · wi]vi+v∗ , where wi = (yi,Ki−n, ρi), where
Ki is the ith bit of the circuit description and yj , ρi are uniform.

5. Compute random encoding R0 = [r0]v0
and Z0 = [r0 · w0]v0+Dv∗ , where

w0 =
(∑

i∈[n] ŵi

)
· (y0, 1, 0) and y0 = Û(y1, . . . , yn+m).

6. The obfuscated program will contain the following:
• The evaluation parameters evparams.
• For all i ∈ [n], b ∈ {0, 1} the elements Ri,b, Zi,b, R̂i,b, Ẑi,b.
• For all i ∈ {n + 1, . . . , n + m} the elements Ri, Zi.
• The elements R0, Z0.

We denote by Dλ(n,K) the distribution over the encoded ring elements the
obfuscator outputs according to the construction. Evaluating an obfuscated pro-
gram is done in a straightforward manner, similarly to previous works. See full
version [9] for details.

4 Security

This section contains security proofs for Obf for all-or-nothing functions (defined
in Sect. 4.1) in the zero-sensitive RGZ model (Sect. 4.2).

Due to space limitations we are only able to present the outline of the security
analysis. The proof in the classical generic model follows fairly similar lines and
is outline in the end of Sect. 4.2. Many details are missing in this high level
presentation and we encourage the reader who wishes to see the entire analysis
in context to refer to the full version [9].

4.1 All-or-Nothing (AoN) Functions

We define a category of “all or nothing” functions. These are functions such that
are either evasive or perfectly learnable, namely, finding an accepting input for a
function in the class implies that the code of the function can be retrieved. This
class is an extension of the class of evasive functions. For simplicity we provide
the definition in the standalone setting, but it can be extended to the auxiliary
input setting as well.

Shorter Circuit Obfuscation in Challenging Security Models 565

Definition 4.1. An ensemble of functions C = {Cn} is AoN if for any ppt
algorithm A, there exists a ppt algorithm B such that for all C ∈ Cn,

Pr
r

[(
C

(AC (1n; r)
)

= 1
) ∧ (BC(1n; r) �= C

)]
= negl(λ) ,

that is A,B use the same random tape r.

We can also define an average-case analogue:

Definition 4.2. An ensemble of functions C = {Cn} together with distributions
{Dn} over C is average-case AoN if for any ppt algorithm A, there exists a ppt
algorithm B such that:

Pr
r, C←Dn

[(
C

(AC (1n; r)
)

= 1
) ∧ (BC(1n; r) �= C

)]
= negl(λ) ,

that is A,B use the same random tape r.

Note that we ask that B outputs the exact code of C, given only black
box access. Therefore, AoN function classes which are not evasive need to have
programs with unique representations. This indeed holds for classes such as
conjunctions.

4.2 Zero-Sensitive Security for All-or-Nothing Functions

The following theorem states the VBB security of Obf for any class of AoN
functions. We note that while we provide a proof for worst-case AoN, the average
case setting follows by a similar proof (note that there could exist function classes
that are average case AoN but not worst case AoN).

Theorem 4.3. Assuming factoring is hard then if C is a family of AoN func-
tions, then Obf is VBB-secure with respect to the oracle RGZ .

Proof. In order to prove VBB security, we want to define an efficient simulator
S that will simulate the view of the adversary using only an oracle access to CK .

Similarly to the definition of the RGZ oracle in Sect. 2.2, the simulator S will
need to act differently when a non-trivial encoding of zero is encountered (that
is, simulate the performance of RGZ when decode = true). The simulator will
maintain a variable decode that upon initialization will be set to false and only
when we encounter a non-trivial encoding of zero it will be set to true. As long as
decode = false, we use the hardness of factorization in order to show that finding
non-trivial zero using invalid monomials is unlikely, therefore up to the point
where such encoding is found, the simulator will not use the factorization of the
ring at all. The factorization will only be used afterwards in order to continue
the simulation after decode was set to true.

566 Z. Brakerski and O. Dagmi

Initialization: The simulator generate a number N which it knows how to factor
into three factors p1, p2, p3 (which have gcd(pi, pj) = 1 for i �= j, but does not
have to be primes). In similar with the RGZ oracle, the simulator will also create
a table L. For each encoding the obfuscator outputs, S will create a row in the
table associating random label string with the formal variable represented by the
encoding and the appropriate level of the encoding. S, just like the obfuscator,
will output a list of label strings for each of the obfuscated encodings and give
them to the adversary. The only difference between the simulator and the oracle
here is that the ring element is not stored in the table at this point.

S.Add(enc1, enc2),S.Mult(enc1, enc2),S.Negate(enc): Given an arithmetic oper-
ation (Add, Mult, Negate), the simulator will construct an arithmetic-circuit
Ares = Aenc1 op Aenc2 (where Aenc1 and Aenc2 are the arithmetic-circuits asso-
ciated with enc1 and enc2 respectively) and check if it is equivalent to one of
the other elements in the table with the same level. It can easily be done by
subtracting Ares from the arithmetic-circuit in the table and using isZero pro-
cedure. If they are equivalent, the simulator will response with the same label.
Otherwise, the simulator will create a new row in L containing a new label, Ares

and the new level. Outputs the label to the adversary.

S.isZero(enc): The isZero algorithm works differently when decode is set to true
or false.

The Case Where decode = false: The simulator will check if enc is in L. If not
it will output ⊥, otherwise the simulator use the following algorithm:

1. Use the AoNZero algorithm from Lemma 4.5 on the arithmetic-circuit associ-
ated with enc in order to determine whether it evaluates to zero or in order
to find an accepting input. If the algorithm output a decision regarding the
evaluation of the arithmetic-circuit output it.

2. Otherwise, we note that the adversary together with the simulator up to
this point is an efficient algorithm that finds an accepting input. From the
definition of the function class (Definition 4.1) we can use the B algorithm
associated with this combined algorithm in order to find the code of the
obfuscated circuit C.

3. Generate values to all the formal variables given in the initialization step
using the known factorization of the ring. And store the values for future use.
We note that when we choose random variables, we could have broken con-
sistency with previous queries, as it could have been that using these values
previous isZero calls would have response with true. But note that such incon-
sistency can only occur with negligible probability.

4. Set decode = true and run S.isZero(enc) again.

Remark 4.4. The isZero algorithm this case can only return that the value is
indeed “zero” if the encoded element is a trivial zero. In any other case we either
output “non-zero” or we change to the case where decode = true.

The Case Where decode = true: In this case, the simulator has already assigned
values to each of the formal variables in the table L, and therefore it can easily

Shorter Circuit Obfuscation in Challenging Security Models 567

evaluate the result of the arithmetic-circuit associated with enc and reply to the
isZero accordingly.

S.Decode(enc): If decode = false simply return ⊥ as this is what the simulator
will do. We note that in every arithmetic operation that the adversary does,
we initiate isZero on all the elements at the same level. Therefore, if the adver-
sary succeeded in finding a non-trivial zero or received the same element in two
different ways, the simulator will change decode to be true. Thus in that case,
the simulator has already assigned values to all the formal variables used in the
arithmetic-circuit associated with enc. By substituting those variables into this
arithmetic-circuit results the decoded value of enc which we can output to the
adversary.

Correctness: We want to show the correctness of the S.isZero procedure in both
cases. We note that if decode = true, the simulator already knows the function
evaluated and it have assignments to all the formal variables that are in use,
therefore, it is clear that substituting this values in the arithmetic-circuit asso-
ciated with the encoding the adversary wish to zero test will yield a correct
answer.

On the other hand, while decode = false, the correctness is immediate from
the correctness of Lemma 4.5 together with the definition of the AoN class and
the hardness of factoring. But using the hardness of factoring is delicate since
S knows factors of N , therefore we cannot simply solve factoring using the
simulator, because in order to construct the simulator those factors are needed
to be known in advanced. We note that once decode = true the hardness of
factoring doesn’t play a role in the correctness of the simulator.

Because we only care when decode = false, we can construct a new simulator
S1 that will abort when decode = true. It is clear that if AoNZero in S broke
factoring while decode = false so it must during S1. Now, we introduce the
simulator S2 which is similar to S1 only that S2 does not know any proper
factors of N . We notice that those factors are only being used when we set
decode = true, and since S1 aborts when decode is set to true the behavior of S1

and S2 is the same, and therefore the behavior of S2 and S is the same as long
as decode = false.

Now, we want to bound the probability that AoNZero, when being used in the
S during the time decode = true, will output a factor or fail (which occurs only
in negligible probability as explained in Lemma4.5). We note that in simulator
S2 the probability to either of those event is negligible since factoring is hard.
Thus, because the behavior of S and S2 is the same as long as decode = false,
the probability will have to be negligible in S.

Lemma 4.5. Let C be from a family of AoN functions. There exists an algo-
rithm AoNZeroC that when given an arithmetic circuit A either determines
whether it evaluates to zero, outputs an accepting input for C or output a
non-trivial factor of N .

568 Z. Brakerski and O. Dagmi

4.3 Indistinguishability Obfuscation in the Classic Generic Model

In a nutshell, the proof in the classic generic model is simpler since the detection
of non-trivial zeros and the decode oracle are not required. However, we cannot
rely on recovering the code of the circuit when an accepting input is encountered.
Therefore, we have to go over all semi-monomials, and only if all of them are
valid and correspond to an accepting input, we declare that the result is zero.
This requires computation that scales with 2n and therefore we must take are
parameters large enough to make factoring hard even for such algorithms. See
details in the full version [9].

References

1. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security, Scottsdale, AZ, USA, 3–7 November 2014,
pp. 646–658 (2014)

2. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015,
pp. 528–556. Springer, Heidelberg (2015)

3. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
new mathematical tools, and the case of evasive circuits. IACR Cryptology ePrint
Archive, 2015:167 (2015). To appear in Eurocryppt 2016

4. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfusca-
tion for evasive functions. In: Lindell [26], pp. 26–51

5. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

7. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. IACR
Cryptology ePrint Archive, 2002:80 (2002)

8. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. IACR Cryptology ePrint Archive, 2014:930 (2014)

9. Brakerski, Z., Dagmi, O.: Shorter circuit obfuscation in challenging security models
(full version of this work). Cryptology ePrint Archive, Report 2016/418 (2016).
http://eprint.iacr.org/2016/418

10. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434. Springer,
Heidelberg (2013)

11. Brakerski, Z., Rothblum, G.N.: Black-box obfuscation for d-cnfs. In: Naor, M. (ed.)
Innovations in Theoretical Computer Science, ITCS 2014, Princeton, NJ, USA,
12–14 January 2014, pp. 235–250. ACM (2014)

12. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell [26], pp. 1–25

13. Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions
under entropic ring LWE. In: Sudan, M. (ed.) Proceedings of the ACM Conference
on Innovations in Theoretical Computer Science, Cambridge, MA, USA, 14–16
January 2016, pp. 147–156. ACM (2016)

http://eprint.iacr.org/2016/418

Shorter Circuit Obfuscation in Challenging Security Models 569

14. Canetti, R.: Towards realizing random oracles: hash functions that hide all par-
tial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 455–469. Springer, Heidelberg (1997)

15. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)

16. Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new CLT multilinear maps.
Cryptology ePrint Archive, Report 2015/934 (2015). http://eprint.iacr.org/

17. Coron, J., et al.: Zeroizing without low-level zeroes: new MMAP attacks and their
limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 247–266. Springer, Heidelberg (2015)

18. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

19. Coron, J., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. IACR
Cryptology ePrint Archive, 2015:162 (2015)

20. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

21. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013,
Berkeley, CA, USA, 26–29 October 2013, pp. 40–49 (2013)

22. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309 (2014). To appear in FOCS 2015

23. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent
assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 426–443. Springer, Heidelberg (2014)

24. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000)

25. Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive, Report
2015/301 (2015). http://eprint.iacr.org/

26. Lindell, Y. (ed.): TCC 2014. LNCS, vol. 8349. Springer, Heidelberg (2014)
27. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P.

(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer,
Heidelberg (2005)

28. Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic attacks.
IACR Cryptology ePrint Archive, 2014:878 (2014)

29. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps:
cryptanalysis of indistinguishability obfuscation over GGH13. Cryptology ePrint
Archive, Report 2016/147 (2016). http://eprint.iacr.org/

30. Minaud, B., Fouque, P.-A.: Cryptanalysis of the new multilinear map over the
integers. Cryptology ePrint Archive, Report 2015/941 (2015). http://eprint.iacr.
org/

31. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

570 Z. Brakerski and O. Dagmi

32. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing,
STOC, New York, NY, USA, 31 May–03 June 2014, pp. 475–484. ACM (2014)

33. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

34. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015)

Bounded KDM Security from iO and OWF

Antonio Marcedone1(B), Rafael Pass1, and Abhi Shelat2

1 Cornell University, Ithaca, USA
{marcedone,rafael}@cs.cornell.edu

2 Northeastern University, Boston, USA
abhi@neu.edu

Abstract. To date, all constructions in the standard model (i.e., with-
out random oracles) of Bounded Key-Dependent Message (KDM) secure
(or even just circularly-secure) encryption schemes rely on specific
assumptions (LWE, DDH, QR or DCR); all of these assumptions are
known to imply the existence of collision-resistant hash functions. In this
work, we demonstrate the existence of bounded KDM secure encryption
assuming indistinguishability obfuscation for P/poly and just one-way
functions. Relying on the recent result of Asharov and Segev (STOC’15),
this yields the first construction of a Bounded KDM secure (or even circu-
larly secure) encryption scheme from an assumption that provably does
not imply collision-resistant hash functions w.r.t. black-box construc-
tions. Combining this with prior constructions, we show how to augment
this Bounded KDM scheme into a Bounded CCA2-KDM scheme.

1 Introduction

The notion of Key Dependent Message (KDM) security, introduced by Black
et al. [BRS02], requires an encryption scheme to remain secure even if the
attacker can request encryptions of functions of the secret key, and more gener-
ally encryptions of different secret keys in use by different players. This notion
generalizes circular security introduced by Camenish and Lysyanskaya [CL01] in
which the adversary can request encryptions of the form Encpki

(ski+1 mod N).
Both circularly-secure and KDM-secure encryption schemes have various appli-
cations, such as anonymous credential schemes, the “bootstrapping” technique
used to construct fully homomorphic encryption, and disk encryption in the
cases where the key itself might be encrypted.

The original works of Black et al. [BRS02] and of Camenish and
Lysyanskaya [CL01] provided construction of circularly-secure encryption and
even “full” KDM security (where there is no bound on the class of functions)
in the Random Oracle model. Subsequent results provided constructions in the
standard model (i.e., without random oracles), which is the focus of this paper.

R. Pass—Supported in part by NSF Award CNS-1217821, AFOSR Award FA9550-
15-1-0262, a Microsoft Faculty Fellowship, and a Google Faculty Research Award.
A. Shelat—Supported in part by NSF grants CNS-0845811, TC-1111781, TC-
0939718, a Microsoft Faculty Fellowship, an SAIC Faculty Award, and a Google
Faculty Research Award.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 571–586, 2016.
DOI: 10.1007/978-3-319-44618-9 30

572 A. Marcedone et al.

Circular Security and KDM for Simple Functions. In a breakthrough
result, Boneh et al. [BHHO08], provided the first construction of circular-secure
encryption in the standard model (without a random oracle); their construc-
tion is based on the DDH assumption. Subsequently, schemes which expanded
the class of permissible KDM queries and which were based on different assump-
tions were presented: Applebaum et al. [ACPS09] obtain KDM security for affine
functions under the Learning With Error (LWE) assumption; Brakerski et al.
[BGK09] give a transformation to convert a KDM scheme (with some additional
properties) into one that is secure w.r.t. a richer class of functions: applying
such transformation to the [BHHO08,ACPS09] gives a scheme secure w.r.t. the
class to functions that can be expressed as polynomials of bounded degree, and
a second one where the class consists of functions expressed as Turing machines
of logarithmic size description. Malkin et al. [MTY11] achieves KDM security
w.r.t. modular arithmetic circuits of bounded degree but (unbounded) polyno-
mial size, based on the Decisional Composite Residuosity assumption (DCR).
Wee [Wee16] explains [BHHO08,BGK09,BG10] as instantiations of a common
framework based on smooth projective hashing, but known constructions of such
hashing are based on the DDH, QR and DCR assumptions.

Bounded KDM Security. Barak et al. [BHHI10] significantly expand the
class of permissible functions by showing how to realize KDM secure encryption
for any set of circuits of a-priori bounded size; this notion is referred to as
Bounded KDM security. Roughly speaking, their construction shows how to
utilize schemes that satisfy KDM-security w.r.t. affine functions (and additional
properties, which are satisfied by the known constructions) to get KDM security
w.r.t. any circuit of bounded size. Their constructions can be instantiated from
schemes relying on either DDH or LWE. Applebaum [App14] also show how
to use randomized encodings to amplify KDM security against a small class of
functions to Bounded KDM security1.

Our Results. Summarizing, all known constructions in the standard model
(i.e., without random oracles) of Bounded KDM secure, and even just circularly-
secure encryption rely on specific assumptions (LWE, DDH, QR or DCR). This
gives rise to the following natural question:

Can Bounded KDM encryption be based on general assumptions?

In fact, all assumptions under which Bounded KDM schemes can be constructed
imply the existence of collision-resistant hash functions. An orthogonal, but
related, question is thus:
1 Both [App14,BHHI10] discuss how to strengthen their schemes to achieve a notion

called length-dependent KDM security, which is slightly stronger than Bounded
KDM security in the sense that the functions queried by the adversary can have
circuit size which grows polynomially in the length of their inputs and outputs. We
choose to state our result using Bounded KDM security for simplicity of exposition,
but our construction can be similarly adapted to achieve this stronger notion by
padding the obfuscated circuits appropriately.

Bounded KDM Security from iO and OWF 573

Can Bounded KDM encryption be constructed from an assumption that
does not imply collision-resistant hash functions?

In this work we address both of these questions assuming the existence of
indistinguishability obfuscation (iO). Roughly speaking, program obfuscation is
a class of cryptographic primitives aimed at making programs “intelligible” while
preserving their functionality: in particular, iO guarantees that the obfuscations
of two circuits of the size that compute the same function (although potentially
very different) are computationally indistinguishable. Our key result shows:

Theorem 1 (Informally Stated). Assume there exists an indistinguishability
obfuscator for P/poly, and a family of one way functions, then there exists a
Bounded KDM secure public key encryption scheme.

Interpreting Our Results. Although iO is seemingly stronger than all
assumptions from which KDM security could previously be based, our construc-
tion relies on assumption of qualitatively different and more general nature (we
make no number-theoretic or lattice-based assumptions).

By the recent beautiful result by Asharov and Segev [AS15], it is known
that black-box construction of CRH from iO and OWF is not possible2, and as
such, the assumption we use are separated (at least w.r.t. oracle-aided black-
box constructions) from the assumptions previously used. As such, our work
also addresses the second italicized question3. Notably, by embedding (in the
security reduction) the code of the functions that the adversary asks as queries
inside obfuscated circuits, our construction circumvents the impossibility result
of [HH09], which shows that KDM security is impossible to get from any hardness
assumption, as long as the reduction’s proof of security treats both the adversary
and functions queried as black boxes.

CCA2-KDM Security. Camenisch et al. [CCS09] construct a CCA2-KDM
secure encryption scheme by using a KDM-secure scheme for the function family,
an NIZK proof system, a CCA2-secure encryption scheme, a strongly secure
one time signature scheme, and applying the Naor-Yung construction [NY90].
By combining our Bounded-KDM construction with the known constructions of
CCA2 encryption and NIZK from sub-exponentially secure iO, one-way functions
and signatures, we construct bounded CCA2-KDM secure encryption.

2 They show that a CRHF cannot be constructed in a blackbox-manner from a one-way
permutation and an indistinguishability obfuscator for all polynomial-sized oracle-
aided circuits without exponential-loss in security. Such oracle-aided circuits can
model most common uses of iO in cryptographic constructions such as puncturing in
which the circuits that are obfuscated make oracle calls to the one-way permutation.

3 In fact, combining our result with [AS15] directly rules black-box constructions of
CRH from single-key BKDM security. On the other hand, it is not directly clear
whether our final construction of multi-key BKDM falls into the class of oracle-aided
circuits.

574 A. Marcedone et al.

IND-CPA Security and Circular Security. The dual problem of separating
IND-CPA security from n-circular (and therefore KDM) security for n > 1 has
also been open for a long time, and was solved assuming indistinguishability
obfuscation and one way functions in [MO14,KRW15], and more recently relying
on LWE in [KW16,AP16].

1.1 Proof Overview

Informally, the (N,L)-Bounded KDM security definition4 states that no efficient
adversary has non-negligible advantage in the following game:

1. The challenger generates a random bit b and N key pairs (sk1, PK1), . . . ,
(skN , PKN) (where the secret keys have length k) and runs the adversary A
on input the public keys.

2. A can adaptively make queries of the form (h, i), where i ∈ {1, . . . , N} and h
is a circuit of size at most L, input size kN and output size k (representing
a function from N secret keys to a k bit message). If b = 1, A receives an
encryption EncPKi

(h(sk1, . . . , skn)), and otherwise receives EncPKi
(0k).

3. A halts and outputs a bit b′. A wins if b = b′.

The Single-Key Case. We start by giving an high level overview of our
Bounded KDM secure scheme in the simpler case where N = 1. The secret key
of our construction is just a string s ∈ {0, 1}k, while the public key consists of
(p,K), where K is the key for an injective5 one way function and p = OWFK(s).
To encrypt a message m, the ciphertext consists of the obfuscation of a program
that on input x returns m if OWFK(x) = p and ⊥ otherwise. Decryption consists
of running the obfuscated ciphertext program on input the secret key.

Informally, such a scheme should be IND-CPA secure because, if we treat the
obfuscation as a black box, the only way to extract the message from a ciphertext
(i.e. an obfuscated circuit) is to run the circuit on input the secret key, which is a
sufficiently long uniformly random string. To argue the IND-CPA security of the
scheme relying on an indistinguishability obfuscator, one can instead leverage a
theorem from [BCP14]: informally, any adversary that distinguishes obfuscations
of two circuits that differ on polynomially many inputs can be turned into an
adversary that computes one input on which the two circuits differ. Therefore,
an adversary distinguishing between encryptions of two different messages, i.e.
only having different output on input an x such that OWFK(x) = p, can be
turned into an adversary that computes such an x, effectively inverting the one
way function.

4 For simplicity, in this paper we assume that the message and key space of the encryp-
tion scheme are both {0, 1}k, where k is the security parameter.

5 [BPW16] shows how to construct a family of one way functions where randomly
sampled functions are injective with overwhelming probability. Their construction
requires iO, one way functions and q-wise independent hashing, as detailed in Sect. 2.

Bounded KDM Security from iO and OWF 575

To prove that the scheme is also KDM secure, the simulator needs to answer
queries about a function h of a secret key s it does not know: this can be achieved
by obfuscating a program that on input x, first checks whether OWFK(x) = p,
and then returns either h(x) if the check passes or ⊥ otherwise. Since this new
program is functionally equivalent to an honest encryption of h(s) (as the one
way function is injective6 and therefore there is only one input s that passes the
equality test, namely the secret key), indistinguishability obfuscation guarantees
that no adversary will notice the difference. Moreover, since such a simulation
does not require the secret key, we can later switch (in a standard hybrid argu-
ment) to a game where the public key is a pair (p,K) on which the simulator
wants to invert the one way function, and prove security as in the IND-CPA
case. This proof outline omits several subtle corner cases which complicate the
formal proof.

The Multi-key Case. We can extend the idea of computing h(s) “on the fly”
inside the ciphertext program when the correct secret key is given as input to
the case where multiple secret keys are involved. The challenge is that the new
ciphertext program is given as input only one of the secret keys and has to
compute a function possibly depending on other independently generated keys7.

We circumvent the problem by embedding in the simulated ciphertexts the
relationship between secret keys s1, . . . , sn in the form a vector r = (s1⊕s1, s2⊕
s1, . . . , sn ⊕ s1). Note that the vector itself is uniformly distributed (since the
secret keys are, except for the first component 0k = s1 ⊕ s1 which is left there
for convenience of notation) and it allows the (simulated) ciphertext program,
given one of the secret keys, to compute on the fly all the other secret keys (and
therefore functions of them).

To reduce the security of the encryption scheme to the hardness of inverting
the one way function, we have one last problem: the simulator has to compute
the vector r without knowing the secret keys. Equivalently, we use the vector
r to define the secret keys: the simulator will get a tuple (p1,K1) for which it
has to find a preimage and sample a random r , thus implicitly defining each
secret key si as the string that satisfies OWFK1(si ⊕ ri) = p1. Note that this
change does not modify the distribution of the secret keys and that the cipher-
text programs will still be functionally equivalent to the ones in the real experi-
ment. However, the simulator now cannot compute as public keys values (pi,Ki)
consistent with pi = OWFKi

(si). We therefore modify the original encryption
scheme so that the public keys are also released in obfuscated form: the modified
encryption scheme will have as public keys obfuscations of programs that have
(pi,Ki) embedded and on input x output 1 if pi

?= OWFKi
(x) and ⊥ otherwise.

6 To be more precise, the function is only injective with overwhelming probability. We
will deal with this and other subtleties in the formal proof.

7 Note that [BHHI10] solves the problem by embedding in their ciphertexts an encryp-
tion of the other secret keys under the appropriate public key, which is why circular
security is required as an additional assumption for their underlying encryption
scheme.

576 A. Marcedone et al.

The ciphertexts will be modified accordingly as obfuscations of programs that
have the obfuscated public key PK embedded and on input x return the message
if PK(x) ?= 1 and ⊥ otherwise. In the simulation, these public key programs will
be substituted with (functionally equivalent) obfuscated programs that output
1 iff p1 = OWFK1(x ⊕ ri). This last modification allows the simulation to be
completed without knowledge of any of the secret keys.

Lastly, as before, the same lemma from [BCP14] allows us to switch to a
hybrid in which all the ciphertexts returned to the adversary are encryptions of
0; this implies the KDM security of the scheme.

2 Preliminaries

Notation and Conventions. If S is a finite set s ← S is a uniformly random
sample from S. If A is a randomized algorithm, x ← A is the output of A on a
uniformly random input tape.

Definition 1 (Injective OWF Family (as Stated in [BPW16])). Let l be a
polynomially-bounded length function. An efficiently computable family of func-
tions

OWF = {OWFK : {0, 1}k → {0, 1}∗ : K ∈ {0, 1}l(k), k ∈ N}
associated with an efficient (probabilistic) key sampler KOWF is said to be an
injective OWF family if it satisfies:

1. Injectiveness: With overwhelming probability over the choice of K ←
KOWF (1k), the function OWFK is injective

2. One-wayness: For any polysize inverter Adv there exists a negligible func-
tion negl(·), such that for all k ∈ N,

Pr
[
x ← {0, 1}k,K ← KOWF (1k) : Adv(K,OWFK(x)) ?= x

]
≤ negl(k)

[BPW16] shows how to construct injective one way functions assuming one
way functions and indistinguishability obfuscation.

2.1 Bounded Key Dependent Message Security

Definition 2 (KDM Security w.r.t. H). Let PKE = (Gen,Enc,Dec) be a
public key encryption scheme with message space M and secret key space K,
where for simplicity we assume M = K = {0, 1}k. Fix a positive integer valued
function N = N(k) > 0. Consider the following probabilistic experiment (i.e. a
random variable) between a challenger and an adversary A, parametrized by a
bit b:

KDMb
N,A(k):

– The challenger runs N = N(k) times Gen(1k) to get (pk1, sk1), . . . ,
(pkN , skN) and runs the adversary A on input pk = (pk1, . . . , pkN).

Bounded KDM Security from iO and OWF 577

– The adversary can adaptively submit queries of the form (h, i), where h :
KN → M is a function (encoded as a circuit) and i ∈ 1, . . . , N . If b =
1, the challenger answers these queries with Enc(pki, h(sk)), otherwise with
Enc(pki, 0k), where sk = (sk1, . . . , skN).

– The adversary stops and outputs a bit b′, which is defined as the output of the
game (i.e. the value of the random variable).

The KDM advantage of A is defined as

AdvKDM
PKE,N,A(k) def= |Pr[KDM1

N,A(k) = 1] − Pr[KDM0
N,A(k) = 1]|

We say that PKE is KDM secure with respect to a function class H = {Hk} iff
for every polynomial N and every PPT A that in the above game only queries
the challenger with functions h ∈ Hk, the advantage function AdvKDM

PKE,N,A(k) is
negligible in k.

Definition 3 (Bounded KDM Security). A public key encryption scheme
PKE is said to be (N,L)-Bounded KDM secure if it is KDM secure with respect
to the class H = {Hk}, where Hk consists of all functions h : KN(k) → M that
can be encoded as circuits8 of size bounded by the polynomial function L(k).

Note that, for simplicity, we have denoted with N(k) both the arity of the
functions in H and the number of key pairs generated in the security experiment
above. In general, the number of keys in the experiment might be higher than
the arity of the functions in H, and it is easy to extend our proofs to hold even
in this case.

2.2 Indistinguishability Obfuscation

Definition 4 (Indistinguishability Obfuscation [GGH+13]). Given a cir-
cuit class {Ck}, a (uniform) PPT machine iO is called an indistinguishability
obfuscator (iO) for {Ck} if it satisfies:

Preserving Functionality: For every k ∈ N and C ∈ Ck,

Pr[C ′(x) = C(x)|C ′ ← iO(k,C)] = 1 ∀x

Indistinguishability: For any (not necessarily uniform) polynomial-size dis-
tinguisher D, all security parameters k and all couples C0, C1 ∈ Ck such that
C0(x) = C1(x) for all inputs x, we have that

∣∣∣ Pr[D(iO(k,C0)) = 1] − Pr[D(iO(k,C1)) = 1]
∣∣∣ ≤ negl(k)

8 Recall that we assume for simplicity M = K = {0, 1}k.

578 A. Marcedone et al.

2.3 Extractability Obfuscation

Definition 5 (Weak Extractability Obfuscation [BCP14]). A uniform
transformation O is a weak extractability obfuscator for a class of circuits
C = {Ck} if the following holds. For every PPT adversary A and polynomial
p(k), there exists a PPT algorithm E and polynomials pE(k), tE(k) for which
the following holds. For every polynomial d(k), for all sufficiently large k, and
every pair of circuits C0, C1 ∈ Ck differing on at most d(k) inputs, and every
auxiliary input z,

Pr[b ← {0, 1}; C̃ ← O(1k, Cb) : A(1k, C̃, C0, C1, z) = b] ≥ 1
2

+
1

p(k)

⇒ Pr[x ← E(1k, C0, C1, z) : C0(x) �= C1(x)] ≥ 1
pE(k)

,

and the runtime of E is tE(k, d(k)).

Lemma 1 ([BCP14]). Let iO be an indistinguishability obfuscator for P/poly.
Then iO is also a weak extractability obfuscator for P/poly.

3 (1,L)-Bounded KDM Construction

The scheme is parametrized over a polynomial function L(k) (which is a bound
on the size of the circuits for which we can prove the Bounded KDM security of
the scheme).

ΠL :
Key Generation: The algorithm Gen(1k) generates a random secret key s ←

{0, 1}k and a key for an injective one way function K ← KOWF (1k). It
outputs s as the secret key and the couple (p,K) where p ← OWFK(s) as
the public key.

Encryption: The algorithm Enc((p,K),m) on input a public key (p,K) and a
message m ∈ {0, 1}k outputs an obfuscated circuit C ← iO(Gp,K,m(·)) (the
circuit Gp,K,m is described in Fig. 1).

Decryption: The algorithm Dec(s, C) on input a secret key s ∈ {0, 1}k and a
ciphertext C ∈ P outputs m′ = C(s).

It can be verified that correctness of the Obfuscator implies correctness of
the encryption scheme. The following theorem argues that the scheme achieves
Bounded KDM Security.

Theorem 2. If iO is an indistinguishability obfuscator for P/poly and OWF
is a family of injective one way functions, then for any polynomial function L(·)
the encryption scheme ΠL = (Gen,Enc,Dec) described above is (1, L)-Bounded
KDM secure.

Bounded KDM Security from iO and OWF 579

Fig. 1. Circuits used in the encryption of the (1-L)-Bounded KDM scheme

Proof. The proof proceeds by a hybrid argument. Assume by contradiction that
there exists an adversary A such that AdvKDM

ΠL,1,A(k) is non negligible in k, i.e.
there exists a polynomial p such that AdvKDM

ΠL,1,A(k) > 1
p(k) for infinitely many k.

We define the random variable KDMHyb
1,A (k) exactly as KDM1

1,A(k), but where
queries (h, 1) by the adversary9 are answered by returning as the ciphertext an
obfuscation iO(G′

p,K,h), where (p,K) is the public key generated in the first
step of the game and G′ is described in Fig. 1. Since A has non negligible advan-
tage, it must be that either |Pr[KDM1

1,A(k) = 1] − Pr[KDMHyb
1,A (k) = 1]| or

|Pr[KDMHyb
1,A (k) = 1] − Pr[KDM0

1,A(k) = 1]| are non negligible. However, the
next two lemmas will prove that both these quantities are negligible, which is
a contradiction and therefore proves the claim. In the following, for brevity, we
will denote KDMb

1,A(k) for b = 0, 1,Hyb as Zb.
To make sure we can rely on the security of the iO in the lemmas below, we

set �(k, L) to be an upper bound on the size of the circuits Gp,K,m and G′
p,K,h

of Fig. 1. �
Lemma 2.

|Pr[Z1 = 1] − Pr[ZHyb = 1]| < negl(k)

The proof of the above lemma relies on the security of the iO obfuscator. For lack
of space, it is deferred to the full version of the paper.

Lemma 3.
|Pr[ZHyb = 1] − Pr[Z0 = 1]| < negl(k)

Proof. The proof is by contradiction of the one-wayness property of the function
family leveraging Lemma 1. Let q(k) be a (polynomial) upper bound on the
9 Since there is only one public key, in the rest of the theorem we will just refer to the

query for a function h and implicitly assume i = 1.

580 A. Marcedone et al.

number of queries that A makes. We consider a series of hybrid games: for
j = 0, . . . , q(k) define the random variable Hj as an interactive experiment
where the first and third step (i.e. the key generation phase and the output
of the game) are defined as in KDM0

1,A(k), while the queries are handled as
follows. The first q(k) − j queries made by A are answered with iO(G′

p,K,h)
(where h is the function the adversary queried), i.e. according to what would
happen in game ZHyb; instead, the last j queries are answered with iO(Gp,K,0k)
(i.e. according to Z0). Since H0 has the same distribution as ZHyb and Hq(k)

has the same distribution as Z0, to prove the claim it is enough to show that for
all j, |Pr[Hj = 1] − Pr[Hj+1 = 1]| < negl(k).

Assume by contradiction that there exist a specific index j and an adversary
A that can distinguish between Hj and Hj+1 with non negligible probability
a(k). Note that, as in the previous lemma, the view of the adversary in games
Hj and Hj+1 has the same distribution up to the point where A makes the
(q(k) − j)th query. We will use such an adversary to build an adversary B that
breaks the one wayness of OWF . B takes as input randomly chosen function
key K ← KOWF and the image p of the function on a random input, and has
to compute a preimage x such that OWFK(x) = p.

By Lemma 1, the existence of an adversary C that distinguishes (with non
negligible probability) between obfuscations of two circuits that differ on only one
input implies the existence of a polynomial time algorithm E that computes the
input on which they are different with overwhelming probability. B proceeds in
two stages: first, it simulates for A an experiment similar to Hj+1, using its own
input (p,K) as the public key and up to the point where the (q(k)−j)th query for
a function h̄ is asked. Let t be the state of the adversary A (including its view)
at this point in the simulation. Note that this simulation is possible because
knowledge of the preimage x is not necessary to compute obfuscations of the
programs G′

p,K,h that are returned as answers to the queries. As a second step,
B can run the algorithm E (given by Lemma 1) on input (1k, G′

p,K,h̄
, Gp,K,0k , t),

which runs in polynomial time, and return its output.
We now analyze the success of B in two steps: we define a property of the

states t sampled by B (a state satisfying the property will be called a “good”
state), and show that B samples a good state with non negligible probability.
Second, we show there exists an algorithm E that succeeds with noticeable prob-
ability conditioned on the fact that t is good.

Denote with T the distribution on the states of A obtained by running Hj+1

up to the point where the (q(k) − j)th query for a function h̄ is asked. A state
t ← T (containing the public key (p,K) and the (q(k) − j)th query h̄) is said to
be “good” if all the following holds:

1. K denotes an injective function
2. h̄ is such that ∀x,OWFK(x) = p ⇒ h̄(x) �= 0k

3.
∣∣∣ Pr[Hj = 1|t] − Pr[Hj+1 = 1|t]

∣∣∣ > a(k)
2 . Here Pr[Hj = 1|t] denotes the

probability that the value of the random variable Hj is 1 given that after the
(q(k) − j)th query is asked A is in state t.

Bounded KDM Security from iO and OWF 581

Denote with Tg the set of good states, with T1 the set of states that do not
satisfy condition 1, with T2 the states that satisfy condition 1 but not condition
2, and with T3 the states that satisfy conditions 1 and 2 but not 3. Note that
Tg, T1, T2, T3 are a partition of T . First, although B executes A using its own
input (p,K) as the public key, when this input is randomly sampled (x ←
{0, 1}k;K ← KOWF (1k); p ← OWFK(x)) the distribution of t obtained by B is
exactly T . To argue that t ← T is good with non negligible probability, assume
by contradiction it was not. We have that, by a union bound

a(k) =
∣∣∣ Pr[Hj = 1 | t ∈ Tg] − Pr[Hj+1 = 1 | t ∈ Tg]

∣∣∣ Pr[t ∈ Tg]+

3∑
i=1

∣∣∣ Pr[Hj = 1 | t ∈ Ti] − Pr[Hj+1 = 1 | t ∈ Ti]
∣∣∣ Pr[t ∈ Ti] ≤ (∗)

We note that Pr[t ∈ T1] is negligible because the OWF is injective. More-
over, it is not hard to prove that

∣∣∣ Pr[Hj = 1 | t ∈ T2] − Pr[Hj+1 = 1 | t ∈ T2]
∣∣∣

is negligible as well: in fact, if h̄(x) = 0k then G′
p,K,h̄

and Gp,K,0k would be
functionally equivalent, and therefore their obfuscations computationally indis-
tinguishable (because of the security of iO), so A in an execution from state t
would only be able to distinguish between them (and therefore between Hj and
Hj+1) with negligible probability. Moreover, since for t ∈ T3 condition 3 is not

satisfied,
∣∣∣ Pr[Hj = 1 | t ∈ T3] − Pr[Hj+1 = 1 | t ∈ T3]

∣∣∣ ≤ a(k)/2 from which

(∗) ≤
∣∣∣ Pr[Hj = 1 | t ∈ Tg] − Pr[Hj+1 = 1 | t ∈ Tg]

∣∣∣ Pr[t ∈ Tg] +
a(k)

2
+ negl(k)

Therefore, if Pr[t ∈ Tg] was negligible, then a(k) would be bounded by a negli-
gible function, which is a contradiction.

For the second step we prove that, conditioned on t ∈ Tg, B inverts with non
negligible probability. Note that, on good states, there is exactly one x such that
OWFK(x) = p, and moreover it holds that h̄(x) �= 0k. Therefore G′

p,K,h̄
and

Gp,K,0k will differ on input x and have the same output on all others. Under this
condition, B inverts the function iff algorithm E (given by Lemma 1) is successful,
which happens with overwhelming probability as long as we can prove that as
long as we can prove that there is an adversary C such that for each t ∈ Tg, C
distinguishes obfuscations of G′

p,K,h̄
and Gp,K,0k with non negligible probability.

Consider the following adversary C(O,G′
p,K,h̄

, Gp,K,0k , t)) :

1. Resume running A from the saved state t, answering its first (i.e. (q(k)−j)th)
query with O.

2. Answer all subsequent queries with obfuscations of Gp,K,0k .
3. When A halts outputs a bit b′, halt and output the same bit.

Note that when O ← iO(G′
p,K,h), the output of C has the same distribution

as Hj |t, while if instead C is run on an obfuscation O ← iO(G′
p,K,0k), the view

of A is consistent with Hj+1|t.

582 A. Marcedone et al.

Therefore, if t ∈ Tg, the advantage of C in distinguishing obfuscations of the

two circuits is equal to
∣∣∣ Pr[Hj = 1 | t] − Pr[Hj+1 = 1 | t]

∣∣∣ > a(k)
2 which is non

negligible. This proves that algorithm E exists and has overwhelming success
probability on good states. Since we have also proven that B samples good
states with non negligible probability, we can conclude that it has non negligible
probability of inverting the OWF , which contradicts its one-wayness. �

4 (N,L)-Bounded KDM Construction

The scheme is parametrized over polynomial functions L(k), N(k) (which are
bounds on the size of the circuits and number of keys for which we can prove
the Bounded KDM security of the scheme).

Fig. 2. Circuits used in the key generation of the (N-L)-Bounded KDM scheme

ΠL :
Key Generation: The algorithm Gen(1k) samples a random secret key s ←

{0, 1}k and a key for an injective one way function K ← KOWF (1k). Then
it computes p ← OWFK(s). It outputs s as the secret key, and the program
PK(·) ← iO(Fp,K(·)) as the public key (the circuit Fp,K is described in
Fig. 2).

Encryption: The algorithm Enc(PK,m) on input a public key PK (which is
interpreted as an obfuscated program) and a message m ∈ {0, 1}k outputs
an obfuscated circuit C ← iO(GPK,m(·)) (the circuit GPK,m is described in
Fig. 3).

Decryption: The algorithm Dec(s, C) on input a secret key s ∈ {0, 1}k and a
ciphertext C ∈ P outputs m′ = C(s).

Bounded KDM Security from iO and OWF 583

Fig. 3. Circuits used in the encryption of the (N-L)-Bounded KDM scheme

It can be easily verified that correctness of the Obfuscator implies correctness
of the encryption scheme. The following theorem argues that the scheme achieves
Bounded KDM Security.

Theorem 3. If iO is an indistinguishability obfuscator for P/poly and there
exists a family of injective OWF , then for any polynomial function L and any
N ∈ N the encryption scheme ΠN,L = (Gen,Enc,Dec) described above is (N,L)-
Bounded KDM secure.

Proof. The proofs proceeds by an hybrid argument, with a very similar structure
to Theorem 2. Given any adversary A define the following random variables:

Z1: this is the same as KDM1
ΠN,L,N,A(k).

Z2: this is the same as the previous one, but the public keys are generated as
follows: the challenger samples s1, . . . , sN ← {0, 1}k and K ← KOWF ; then
it computes p ← OWFK(s1), r ← (0k, s1 ⊕ s2, s1 ⊕ s3, . . . , s1 ⊕ sn) and sets
PKi ← iO(F ′

p,ri,K
) for all i.

ZHyb: this is the same as the previous one, but queries (h, i) by the adversary
are answered by returning as the ciphertext an obfuscation iO(G′

PK1,r ,h,i).
(Note that knowing the secret keys is not needed to simulate this step).

Z3: this is the same as Z0, but the public keys are generated (as in Z2) as
follows: the challenger samples s1, . . . , sN ← {0, 1}k and K ← KOWF ; then
it computes p ← OWFK(s1), r ← (0k, s1 ⊕ s2, s1 ⊕ s3, . . . , s1 ⊕ sn) and sets
PKi ← iO(F ′

p,ri,K
) for all i.

Z0: this is the same as KDM0
ΠN,L,N,A(k).

Arguing that each couple of consecutive hybrids is indistinguishable is analogous
to what was done in the proof of 2. For lack of space, we defer the details to the
full version of this paper.

584 A. Marcedone et al.

To make sure we can rely on the security of the iO in all the above hybrids, we
first set �PK(k,N,L) to be an upper bound on the maximum size of the circuits
Fp,K and F ′

p,r,K of Fig. 2 (which depends on k, N , L). Then we can define
�′
PK(k,N,L, iO) (which in turns determines the size of GPK,m and G′

PK,r,h,i)
to be a bound on the size of the output of iO on input a circuit of length
�PK(k,N,L). At last, we set �Enc(k,N,L, iO) to be an upper bound on the size
of circuits GPK,m and G′

PK,r,h,i. Notice that all these functions are polynomially
bounded. �

Combining the above theorem with the construction of a family of one way
permutations by Bitansky et al. [BPW16] gives the following corollary:

Corollary 1. If there exists an indistinguishability obfuscator for P/poly, and a
family of one way functions, then for any polynomial function L and any N ∈ N

there exists a (N,L)-Bounded KDM secure public key encryption scheme.

Avoiding Reliance on a Specific OWF. As an additional interesting result,
we note that the scheme can be further simplified so that its security does not
depend on a specific (injective) one way function, but rather on the existence
of an (injective) one way functions which can be computed by a circuit whose
size is below an explicitly specified bound. The idea behind this construction is
the fact that in our encryption scheme the public key is just an obfuscation of a
point function, and therefore an obfuscated public key is indistinguishable from
the obfuscation of a program (padded to an appropriate size) which directly
checks if its input x is equal to the secret s (as opposed to checking whether
OWFK(x) = s) and therefore does not have to internally compute the one way
function.

We can leverage this fact and design a new encryption scheme where the key
generation algorithm chooses a secret key s uniformly at random and outputs
as the public key the obfuscation of a program that returns 1 iff its input x

?= s
(encryption and decryption algorithms are unchanged). To prove security, we
argue that the public keys of this new scheme are indistinguishable from the
ones of ΠN,L,iO (when instantiated with a secure OWF) and therefore reduce to
the latter’s Bounded KDM security.

Bounded KDM-CCA2 Security. Our construction can also be used to con-
struct Bounded KDM-CCA2 security in which, informally, the KDM adversary
may also ask CCA2 queries on any ciphertexts except for the ones received as
answers to KDM queries (see [CCS09] for a formal definition). Camenish et al.
[CCS09] show a generic transformation for any KDM secure encryption scheme
into a KDM-CCA2 secure one (w.r.t. the same family of functions) by applying
the Naor-Yung paradigm [NY90]. Their transformation thus requires an NIZK
proof system and a CCA2-secure (normal) encryption scheme and a strongly
secure one time signature. Combining our construction with their Theorem 1,
and the construction of NIZK, CCA2 and signatures from sub-exponentially
secure iO and one-way functions from [SW14], we get the following corollary:

Bounded KDM Security from iO and OWF 585

Corollary 2. If there exists a sub-exponentially secure indistinguishability
obfuscator for P/poly, and a family of one way functions, then for any poly-
nomial function L and any N ∈ N there exists a (N,L)-Bounded KDM-CCA2
secure public key encryption scheme.

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009)

[AP16] Alamati, N., Peikert, C.: Three’s compromised too: circular insecurity for
any cycle length from (ring-) LWE. Technical report, Cryptology ePrint
Archive, Report /110 (2016)

[App14] Applebaum, B.: Key-dependent message security: generic amplification and
completeness. J. Cryptology 27(3), 429–451 (2014)

[AS15] Asharov, G., Segev, G.: Limits on the power of indistinguishability obfus-
cation and functional encryption. In: FOCS 2015. IEEE (2015)

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lin-
dell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg
(2014)

[BG10] Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-
key encryption under subgroup indistinguishability. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

[BGK09] Brakerski, Z., Goldwasser, S., Kalai, Y.: Circular-secure encryption beyond
affine functions. Technical report, Citeseer (2009)

[BHHI10] Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent
message security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 423–444. Springer, Heidelberg (2010)

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

[BPW16] Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos.
In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016)

[BRS02] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the
presence of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.)
SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

[CCS09] Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme
secure against key dependent chosen plaintext and adaptive chosen cipher-
text attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
351–368. Springer, Heidelberg (2009)

[CL01] Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer,
Heidelberg (2001)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: FOCS 2013. IEEE (2013)

586 A. Marcedone et al.

[HH09] Haitner, I., Holenstein, T.: On the (im)possibility of key dependent encryp-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219.
Springer, Heidelberg (2009)

[KRW15] Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for
arbitrary length key cycles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 378–400. Springer, Heidelberg (2015)

[KW16] Koppula, V., Waters, B.: Circular security counterexamples for arbitrary
length cycles from LWE. Technical report, Cryptology ePrint Archive,
Report /117 (2016)

[MO14] Marcedone, A., Orlandi, C.: Obfuscation → (IND-CPA security � circular
security). In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642,
pp. 77–90. Springer, Heidelberg (2014)

[MTY11] Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public
key encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011)

[NY90] Naor, M., Yung, M.: Public-key cryptosystems provably secure against cho-
sen ciphertext attacks. In: STOC 1990. ACM (1990)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: STOC 2014. ACM (2014)

[Wee16] Wee, H.: KDM-security via homomorphic smooth projective hashing. In:
Cheng, C.-M., et al. (eds.) PKC 2016. LNCS, vol. 9615, pp. 159–179.
Springer, Heidelberg (2016)

A Unified Approach to Idealized Model
Separations via Indistinguishability Obfuscation

Matthew D. Green1, Jonathan Katz2, Alex J. Malozemoff2,
and Hong-Sheng Zhou3(B)

1 Johns Hopkins University, Baltimore, USA
mgreen@cs.jhu.edu

2 University of Maryland, College Park, USA
{jkatz,amaloz}@cs.umd.edu

3 Virginia Commonwealth University, Richmond, USA
hszhou@vcu.edu

Abstract. It is well known that the random-oracle (RO) model is not
sound in the sense that there are schemes that are secure in the RO model
but are insecure when instantiated by any family of hash functions. How-
ever, existing separation results do not hold for all cryptographic schemes
in the RO model (e.g., bit encryption), leaving open the possibility that
such schemes can be soundly instantiated.

In this work we refute this possibility, assuming the existence of indis-
tinguishability obfuscation. First, we present a separation for bit encryp-
tion; namely, we show that there exists a bit-encryption protocol secure
in the RO model but is insecure when the random oracle is instantiated
by any concrete function. Second, we show how to adapt this separation
to work for most natural simulation-based and game-based definitions.
Our techniques can easily be adapted to other idealized models, and thus
we present a unified approach to showing separations for many protocols
of interest in various idealized models.

1 Introduction

A common technique in cryptography is the use of idealized models, where one
assumes oracle access to some (ideal) process. Idealized models provide powerful
mechanisms for constructing elegant and simple protocols while still being able

Full version available at http://eprint.iacr.org/2014/863.
M.D. Green—Work supported in part by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL) under contract
FA8750-11-2-0211 and the Office of Naval Research under contract N00014-14-1-
0333.
J. Katz—Work supported in part by NSF award #1223623.
A.J. Malozemoff—Work supported in part by NSF award #1223623 and with Gov-
ernment support through the National Defense Science and Engineering Graduate
(NDSEG) Fellowship, 32 CFG 168a, awarded by DoD, Air Force Office of Scientific
Research.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 587–603, 2016.
DOI: 10.1007/978-3-319-44618-9 31

http://eprint.iacr.org/2014/863

588 M.D. Green et al.

to provide some provable guarantees. Some common examples of such models
are the random oracle model [5], the generic group model [28], and more recently,
the generic graded encoding model [1,7], among others.

Over the past several years, there has been significant interest in under-
standing the implications of using these models when developing cryptographic
protocols. Indeed, it is well-known that such models do not match “reality” in
the sense that there exist secure schemes in generic models which are not secure
when concretely instantiated. The first work to present such a result was that of
Canetti, Goldreich, and Halevi [10], who showed such a separation for the ran-
dom oracle model. Following this result, Dent showed a similar separation for the
generic group model [15]. Likewise, a separation for the generic graded encoding
model has been demonstrated by Brakerski and Rothblum and Barak et al. [1,7],
who each construct virtual black-box obfuscators in the generic graded encoding
model even though it is known that virtual black-box obfuscation is impossible
in the standard model [2].

However, each of the above separation results employs different techniques
and only covers a subset of cryptographic schemes. For example, the random
oracle separation presented by Canetti et al. [10] does not apply to CPA-secure
bit-encryption [16]. Thus, the existing results have left open the possibility that
certain protocol classes (such as bit-encryption) are not subject to the counterex-
amples described in prior work. We note that this omission may have practical
implications due to the renewed interest in fully-homomorphic bit-encryption
systems secure in the random oracle model [13,19]. More fundamentally, it leaves
us with critical gaps in our theoretical understanding of the security of cryptosys-
tems analyzed in idealized models. Might these exceptions provide a “loophole”
through which certain protocols could be safely instantiated?

Our Results. In this work, we refute this notion, assuming the existence of indis-
tinguishability obfuscation (iO). Specifically, we show that if there exists a secure
iO scheme (in the standard model), then for a large class of cryptographic tasks
there exists a variant of said protocol which is secure in a given idealized model
but completely insecure when concretely instantiated.

The core of our technique is using iO to obfuscate a circuit which hides some
secret information needed to break security. Finding the proper input to reveal
this secret information in the idealized model is hard, whereas as soon as the
idealized model is instantiated by some concrete function, it is easy to construct
a proper input. Our specific results are as follows:

1. A counterexample for bit-encryption in the random oracle model. Our first
result is to show a separation for bit-encryption in the random oracle model
(Sect. 3). In presenting our counterexample we solve a longstanding open
problem raised by Dent [15]. Simultaneously, we demonstrate the generality
of our technique by observing that the same result cannot be derived using
the original Canetti et al. [10] or Maurer et al. [26] approaches, since these
do not work for bit-encryption.
Specifically, our result shows that if an iO scheme exists in the standard
model, then for any length �, there exists an IND-CPA secure bit-encryption

A Unified Approach to Idealized Model Separations 589

scheme that is provably secure when a hash function h is instantiated using
a random oracle, but becomes insecure when h is instantiated using any
concrete function which can be represented in ≤ � bits. To achieve this result
we employ the obfuscation of a universal circuit, and show how an adversary
with knowledge of the description of h can win the IND-CPA game with
non-negligible probability.1 As in previous counterexamples, the proposed
scheme breaks catastrophically when instantiated using a concrete function
by revealing the secret key for the scheme.

2. A generic approach to constructing idealized model separations for crypto-
graphic tasks. Next, we generalize our initial result to show random oracle
model separations for most natural protocols secure under simulation-based or
game-based definitions (Sect. 4). These results can be easily adapted to apply
to other idealized models, including the generic group model, the random
permutation model, etc. Thus, we present a unified approach to constructing
separations for most cryptographic tasks of interest in most idealized models
of interest.

These results deepen our understanding of how to define “secure” protocols
and help us to understand the implications of these idealized models. They
also provide additional justification for the ongoing effort to develop new and
instantiable assumptions/models in which we may analyze these protocols (e.g.,
the UCE framework [4]).

1.1 Related Work

The random oracle model was first introduced formally by Bellare and Rog-
away [5]; this was also the first work to put forward the notion of an “idealized
model” as a way to simplify both cryptographic constructions and proofs. How-
ever, soon after Canetti et al. [10] demonstrated that the random oracle model
is not sound in the sense that there exist schemes secure in the random ora-
cle model but completely insecure when instantiated in the standard model.
This separation spawned a large body of work showing separations for both new
classes of protocols [3,11,17,20,24,25,27] as well as other idealized models [15].

In a separate line of work, since the breakthrough result of Garg et al. [18]
demonstrating a candidate indistinguishability obfuscation (iO) scheme, several
works have studied the implications of iO; here, we discuss those most relevant
to our work. Bitansky et al. [6] showed that virtual-black-box obfuscation cannot
exist for super-polynomial pseudo-entropic functions assuming iO exists. Their
techniques are similar in spirit to ours, in that they utilize the “uncompressabil-
ity” of certain classes of functions to derive their separation, similar to how we
utilize the “uncompressability” of the random oracle.

Concurrently and independently, Brzuska, Farshim, and Mittelbach [8] show
that some cryptographic transformations based on random oracles are uninstan-
tiable in the standard model. Their underlying technique is very similar to ours
1 Note that using iO for circuit obfuscation only gives a separation for hash functions

of a priori fixed length.

590 M.D. Green et al.

at a high level, in that they obfuscate a universal circuit taking as input the
description of a hash function; the technical details, however, differ. Besides the
similarity in the underlying technique, both works are in some sense orthogonal,
as Brzuska et al. [8] show separations for cryptographic transformations whereas
we show separations for cryptographic constructions.

Finally, a recent line of work constructs schemes which use both iO and
the random oracle model [14,21,22]. Our results serve as a warning sign that
combining these two approaches may lead to insecure schemes when the random
oracle is instantiated in the standard model.

2 Preliminaries

Let n denote the security parameter. For a polynomial-time function f , we let
〈f〉 denote the (binary) description of an algorithm computing f . We use the
notation x←$ S to denote that x is chosen uniformly at random from the set S,
and use ppt to mean “probabilistic polynomial time”. As our main results show
separations in the random oracle model (although our results can be extended
to other idealized models), we review this idealized model and how to instatiate
it in the standard model using function ensembles [10].

Random Oracle Model. Let �out : N → N be a length function. The ran-
dom oracle model is defined by a (stateful) function O : {0, 1}∗ → {0, 1}�out(n)

available to all parties which works as follows: O maintains an internal table T
which stores inputs and their associated outputs. If x ∈ T , let T (x) denote the
associated output. On input x, If x ∈ T , then O outputs T (x); otherwise, O
chooses y ←$ {0, 1}�out(n), adds (x, y) to T , and outputs y.

Fig. 1. Functionality FRO.

We define ideal functionalities FRO (for a random oracle [23]) and FGG (for
a generic group) in Figs. 1 and 2, respectively.

Function Ensembles. We use the notion of function ensembles introduced
by Canetti et al. [10], and we reproduce it here mostly verbatim. The idea

A Unified Approach to Idealized Model Separations 591

Fig. 2. Functionality FGG.

of a function ensemble is to capture the intuitive notion of what it means to
“instantiate” a random oracle.

Let �out : N → N be a length function. An �out-ensemble is a sequence
F = {Fn}n∈N

of families of functions Fn = {fs : {0, 1}∗ → {0, 1}�out(n)}s∈{0,1}n

such that the following condition holds:

1. There exists a polynomial-time algorithm Eval such that for every s ∈ {0, 1}n

and x ∈ {0, 1}∗ it holds that Eval(s, x) = fs(x).

Let �eval(n) be the length of the bitstring representation of Eval for function
family Fn; we have that �eval(n) ≤ p(n), where p(·) is a polynomial.

Let an (�out, �eval)-ensemble be an �out-ensemble such that the bitstring rep-
resentation of Eval is less than or equal to �eval. In what follows, we in general do
not care what the output length of the function is, as long as it is polynomial in
the security parameter. We denote this class of ensembles as (poly, �)-ensembles;
that is, the class of �′-ensembles such that �′ < p(n), where p(·) is some polyno-
mial, and the bitstring representation of Eval is less than or equal to �.

Indistinguishability Obfuscation. All our constructions use indistinguisha-
bility obfuscation (iO), defined as follows. Let {Cλ} be the class of circuits of
size at most λ, where λ ≤ p(n) for some polynomial p(·). We utilize the notion
of family-indistinguishability obfuscators [2,18], and we reproduce it here mostly
verbatim.

A uniform ppt algorithm iO is a family-indistinguishability obfuscator for a
circuit class {Cλ} if the following two conditions hold:

1. For all λ ∈ N and for all C ∈ Cλ, it holds that

Pr
[∀x,C ′(x) = C(x) : C ′ ← iO(1λ, C)

]
= 1.

592 M.D. Green et al.

2. For all ppt adversaries Samp and A, there exists a negligible function negl(·)
such that if

Pr
[∀x,C0(x) = C1(x) : (C0, C1, σ) ← Samp(1λ)

]
> 1 − negl(λ)

then
∣∣∣ Pr[A(σ, iO(1λ, C0)) = 1 : (C0, C1, σ) ← Samp(1λ)]

−Pr[A(σ, iO(1λ, C1)) = 1 : (C0, C1, σ) ← Samp(1λ)]
∣∣∣ ≤ negl(λ).

3 Random Oracle Separation for Bit-Encryption

As our first result, we present a random oracle separation for the case of (public-
key) bit-encryption. Note that most existing techniques for showing idealized
model separations work by having the adversary send some specially-crafted
message to an oracle; the oracle, given this message, leaks the secret key and thus
the adversary can easily break security. However, in the case of bit-encryption,
the only values an adversary can send are bits, and thus these approaches do
not work in this setting.

Consider the security game PubKA,Π between a challenger C and an adver-
sary A for a public-key bit-encryption scheme Π = (Gen,Enc,Dec):

1. C runs (pk, sk) ← Gen(1n), chooses b←$ {0, 1}, computes c ← Encpk(b), and
sends (pk, c) to A.

2. A outputs a bit b′ and succeeds if b = b′.

Definition 3.1 (IND-CPA Security). A public-key bit-encryption scheme Π
is IND-CPA -secure if for all ppt adversaries A there exists a negligible function
negl such that Pr [PubKA,Π(n) = 1] ≤ 1

2 + negl(n).

Theorem 3.2. Assume there exists an IND-CPA-secure public-key bit-encryp-
tion scheme and an indistinguishability obfuscator secure in the standard model.
Let p(·) be a polynomial. Then for all � < p(n), there exists a public-key bit-
encryption scheme that is IND-CPA-secure in the random oracle model but inse-
cure when the random oracle is instantiated using any (poly, �)-ensemble.

Proof. Our construction, at a high level, works as follows. Taking an existing
bit-encryption scheme, we modify it by appending an obfuscated circuit to the
public-key. The obfuscated circuit is built as follows. We choose �n random
values xi and compute yi ← H(xi), where H is either a random oracle or a
function ensemble, depending on whether we are operating in the random oracle
or standard model. The circuit hardcodes the values xi and yi, along with the
secret key to the original bit-encryption scheme. On input a description of a
hash function h, the circuit outputs the secret key if and only if yi = h(xi) for
all i. In the random oracle model it is unlikely that such a hash function can be
found to satisfy yi = h(xi) for all i, whereas in the standard model this is easily
satisfied (since h is public).

A Unified Approach to Idealized Model Separations 593

Fig. 3. Program C.

Fig. 4. Program C′.

Note that this approach is similar to that given by Maurer et al. [26], who
provide an alternate proof of the separation result given by Canetti et al. [10].
The main difference is our use of indistinguishability obfuscation, which allows
the adversary to break security in the standard model without needing to send
messages to the challenger. Next, we present the proof details.

Let iO be an indistinguishability obfuscator, let Π ′ = (Gen′,Enc′,Dec′) be
an existing IND-CPA-secure public-key bit-encryption scheme, and let O be a
random oracle. Fix some polynomial p(·) and value � < p(n). The scheme Π =
(Gen,Enc,Dec) is constructed as follows. Note that all algorithms are provided
oracle access to O.

– Gen: On input 1n, proceed as follows. For i ∈ {1, . . . , �n}, choose xi ←$ {0, 1}n

and compute yi ← O(xi). Next, run (pk′, sk′) ← Gen′(1n), and set sk := sk′.
Then, create an obfuscation iO(C) of the program C as described in Fig. 3.
Finally, let pk := (pk′, iO(C)) and output (pk, sk).

– Enc: On input pk and bit b, parse pk as (pk′, iO(C)) and compute c ←
Enc′

pk′(b). Output c.
– Dec: On input private key sk = sk′ and ciphertext c, compute m := Dec′

sk′(c).
Output m.

Lemma 3.3. Assume that Π ′ is an IND-CPA-secure public-key bit-encryption
scheme and that iO is an indistinguishability obfuscator. Then, for any choice
of � < p(n) the construction Π is an IND-CPA-secure bit-encryption scheme in
the random oracle model.

Proof. Consider the following two hybrids.

HybridH0: This is the IND-CPA game for scheme Π.

594 M.D. Green et al.

HybridH1: This hybrid is the same as H0 except that now we change program
C into program C ′ as in Fig. 4.

Claim. If iO is an indistinguishability obfuscator in the standard model, then
with high probability over the choices of the random oracle the two hybrids H0

and H1 are computationally indistinguishable.

Proof. The proof is by a reduction to the security of the indistinguishability
obfuscator. The proof relies on the fact that with high probability there is no
“small representation” of a random oracle. That is, the probability that there
exists a description 〈h〉 ∈ {0, 1}� of a function h such that for i ∈ {1, . . . , �n} it
holds that yi = h(xi) is negligible. Thus, with high probability over the choices
of the random oracle, programs C and C ′ are equivalent, and thus we can reduce
security to that of indistinguishability obfuscation.

More formally, let Func�out(n) be the class of all functions mapping x1, . . . , x�n

to �out(n)-bit outputs; there are 2�n�out(n) such functions. Also note that there
exist ≤ 2� functions capable of being represented by � bits. Thus, the prob-
ability that a random function from Func�out(n) can be represented in � bits
is ≤ 2�/2�n�out(n) = negl(n). Thus, with all but negligible probability over the
choices of the random oracle, programs C and C ′ are equivalent. Therefore, if
there is a difference in advantage, we can create an algorithm B that breaks the
security of indistinguishability obfuscation.

Algorithm B runs as the challenger in the IND-CPA game. When it is time to
create the obfuscated program it submits both programs C0 = C and C1 = C ′

to an indistinguishability obfuscation challenger. If the challenger chooses the
first then we are in H0; if it chooses the second then we are in H1. Thus, any
adversary with non-negligible advantage in the two hybrids leads to B as an
attacker on the security of the indistinguishability obfuscator. 	

We now show that an adversary who can successfully attack hybrid H1 can
be used to construct an adversary attacking the underlying IND-CPA scheme.

Claim. Pr [PubKA,H1(n) = 1] ≤ Pr [PubKB,Π′(n) = 1] where A is the adver-
sary in H1 and B is the IND-CPA adversary against the underlying encryption
scheme Π ′.

Proof. The adversary B runs A. When B receives pk′, it generates iO(C ′) as
in H1 and provides pk := (pk′, iO(C ′)) to A. When B receives a challenge
ciphertext c, it forwards c to A. Finally, B outputs the bit b′ output by A.

Clearly, if A can win the H1 game with probability ε then B can win the
IND-CPA game with at least ε. 	

Together, these claims show Pr [PubKA,Π(n) = 1] ≤ Pr [PubKB,Π′(n) = 1],
where A is the IND-CPA adversary against Π and B is the IND-CPA adversary
against the underlying encryption scheme Π ′. Since the underlying Π ′ is IND-
CPA-secure, we have that Pr [PubKB,Π′(n) = 1] ≤ 1

2 + negl(n). Therefore we
obtain Pr [PubKA,Π(n) = 1] ≤ 1

2 + negl(n), which completes the proof. �

A Unified Approach to Idealized Model Separations 595

Lemma 3.4. For all � < p(n), there exists a public-key bit-encryption scheme
secure in the random oracle model but insecure when implemented with any effi-
ciently computable (poly, �)-ensemble.

Proof. Fix some � < p(n). We modify the scheme Π described above to use
(poly, �)-ensemble F to implement the random oracle, thus obtaining the scheme
Π̃ = (G̃en, Ẽnc, D̃ec):

– G̃en: On input 1n, choose s←$ {0, 1}n, run (pk, sk)←$Genfs(1n), and output
((pk, s), (sk, s)).

– Ẽnc: Output Encpk(b).
– D̃ec: Output Decsk(c).

Now the seed s is part of the public key, and it is known to the adversary. Thus,
the adversary can simply parse pk into (pk′, iO(C)), and provide as input to
iO(C) the description of Eval 2, thus learning sk. �

4 Extensions

Our approach used in Sect. 3 can be applied to more than just bit-encryption.
Here we show how to extend our result to provide separations for protocols
satisfying most “natural” simulation- or game-based definitions. In Sect. 4.1,
we show how to adapt our separation to work for a large class of protocols
secure under simulation-based definitions. Likewise, in Sect. 4.2, we adapt our
separation to work for a class of protocols secure under game-based definitions.
Although the theorem statements below provide separations in the random oracle
model, the same approach can be applied to other idealized models (e.g., the
generic-group model).

4.1 Separations for Simulation-Based Definitions

Here we focus on the universal composability (UC) framework [9]; we believe
the separation detailed below can be easily adapted to other simulation-based
models. In what follows, we assume the reader is familiar with the UC framework.

We consider well-formed functionalities [12]. We call an ideal functionality f
trivial if it can be realized by an “all revealing” protocol π as described in the
following:

Definition 4.1. Let f be an ideal functionality in the UC framework, and let π
be a protocol where, upon initialization, all parties broadcast their initial random-
ness and inputs. Then f is trivial if for all environments E and for all adversaries
A, there exists a simulator S such that Pr[execf,S,E = execπ,A,E] = 1.

We now prove the following.
2 Recall that Eval is the algorithm such that Eval(s, x) = fs(x) for all s ∈ {0, 1}n and
x ∈ {0, 1}∗.

596 M.D. Green et al.

Theorem 4.2. Consider a non-trivial ideal functionality f in the UC frame-
work, and let π be a protocol which UC-realizes f in the F-hybrid world. Then
for all choices of � ∈ poly(n), there exists some protocol π′ which UC-realizes f
in the (F ,FRO)-hybrid world3 but is not UC-realizable when instantiated with a
(poly, �)-ensemble.

Proof. Fix some non-trivial ideal functionality f for some set of parties P =
{P1, . . . , Pm}, and let π be a t-round protocol which UC-realizes f . On protocol
initialization, each party Pi is initialized with randomness ri and given input xi.
Let Mk

i,j denote the message sent from party Pi to party Pj in round k; without
loss of generality, we assume that for all parties Pi and Pj and for all rounds
1 ≤ k ≤ t, message Mk

i,j exists4.

Now fix some � ∈ poly(n). We construct a protocol π′ as follows. Protocol
π′ runs exactly as π except for the first round of the protocol. In this round,
each party Pi proceeds as follows. For j ∈ {1, . . . , �n}, Pi chooses zj ←$ {0, 1}n

and computes yj ← O(zj). Then, based on input xi, randomness ri, as well as
{zj , yj}j , party Pi creates an obfuscation of the program Ci as defined in Fig. 5
and sends iO(Ci) over the standard channel, in addition to sending message M1

i,j

as normal (i.e., this message may be sent using some hybrid functionality).

Fig. 5. Program Ci.

Lemma 4.3. Assume that iO is an indistinguishability obfuscator. Then for any
choice of � ∈ poly(n) the construction π′ UC-realizes f in the (F ,FRO)-hybrid
world.

Proof (Sketch). This follows directly from the fact that with high probability
there is no “small representation” of a random oracle, and the argument is very
similar to that shown in Lemma 3.3. We thus only give the high-level idea below.

Let A′ be an adversary attacking protocol π′; we construct a simulator S′ as
follows. The simulator S′ simply runs the simulator S for protocol π and outputs
whatever S outputs. Intuitively, the output of S′ is indistinguishable from that
of A′ because π′ is exactly the same as π except for the sending of iO(Ci) by

3 FRO is defined in Fig. 1.
4 This is without loss of generality because Mk

i,j can always be the empty message.

A Unified Approach to Idealized Model Separations 597

party Pi. However, with high probability over the choices of the random oracle
(cf. Lemma 3.3), this obfuscation is identical to the obfuscation of the zero circuit,
and thus A′ gains no advantage from this additional information. 	

Lemma 4.4. Assume that iO is an indistinguishability obfuscator. Then for any
choice of � ∈ poly(n) the construction π′ is completely insecure in the F-hybrid
world (i.e., when the random oracle is instantiated by any efficiently computable
(poly, �)-ensemble).

Proof (Sketch). Let A be an adversary attacking π′. Adversary A reads the mes-
sages sent by all parties, and thus receives iO(Ci) from all parties Pi (recall that
iO(Ci) is sent over the standard channel). Thus, A can extract Pi’s random-
ness and input by providing the instantiation of the random oracle as input to
iO(Ci), and can thus reproduce the internal state and inputs of all parties.

Now suppose towards a contradiction that π′ UC-realizes f . This implies that
there exists some simulator S which when interacting with f produces a similar
transcript to that produced by A; namely, S must be able to reproduce the
internal state and inputs of all honest parties given only access to f . However,
this implies that f is trivial, a contradiction. 	

This completes the proof. �

Theorem 4.2 can be easily adapted to other idealized models besides the
random oracle model, such as the generic group model, the random permutation
model, etc. Thus, assuming iO, we are able to show idealized model separations
for most protocols secure in the UC framework.

4.2 Separations for Game-Based Definitions

We first give a general framework for what we mean by a “game-based” defini-
tion. We consider only single-stage games, where an adversary A interacts with
some challenger C. A game-based definition G is defined by a tuple (C,O1, . . . ,Ok,
Ok+1, . . . Om, k, f, T), where C denotes a ppt algorithm (i.e., the challenger’s
code), O1, . . . ,Ok denote oracles available to both A and C, Ok+1, . . . ,Om denote
oracles available to only C, f denotes a predicate function, and T denotes a
threshold function. Each oracle Oi outputs tuples of strings. The randomness
of all the oracles is initialized by C. A scheme/protocol Π implements G if it
implements the oracles O1, . . . ,Om.

For definition G and scheme Π which implements G, let z ← AO1,...,Ok denote
the output of the adversary after interacting with C, where all the oracle calls are
“routed through” C. That is, each oracle available to A is first initialized by C,
where the initialization fixes both the oracle’s randomness and (optionally) some
of the oracle’s inputs; all queries by A to oracle Oi go through this (fixed) oracle.
For example, if Oi is an encryption oracle, C fixes both the initial randomness as
well as the public key; any queries by A will thus be encrypted under the fixed
public key using the fixed initial randomness. The predicate f takes as input the
initial randomness of C and the output of A, and outputs a bit.

598 M.D. Green et al.

We define A’s success probability against scheme Π in G as

SuccA [G,Π] def= Pr
r,r1,...,rk

[
z ← AO1,...,Ok : f(r, z) = 1

]
.

That is, A’s success probability is the probability it can make the predicate f
output 1, where the probability is over the choices of C’s and the oracles’ ran-
domness. We say that a scheme Π securely implements G, or is secure, if it holds
that SuccA [G,Π] ≤ T (n) + negl(n); otherwise the scheme is called insecure.

As an example, consider the definition for bit-encryption as presented in
Sect. 3. This is captured in our framework as follows. We define three oracles,
O1 = Enc, O2 = Gen, and O3 = Dec, corresponding to the three algorithms
required for bit-encryption. Since A only has access to the encryption oracle, we
set k = 1. The challenger C is defined as in Sect. 3. The predicate f(r, z) runs
C(r) until C computes b, and outputs whether or not b equals z (where z is the
value output by A). The threshold function is set to T (n) = 1/2.

We call a game-based definition G trivially secure if for all secure schemes Π
it holds that

SuccA [G,Π] = Pr
r,r1,...,rk

[
z ← AO1,...,Ok(r) : f(r, z) = 1

]
.

That is, a definition is trivially secure if a scheme satisfying the definition is
as secure as the setting where the adversary is given all the initial randomness
to C. As an example, note that bit encryption is not trivially secure, as if A
was given the randomness r of C, it could simply run C internally and extract
the secret key sk, thus succeeding with probability 1, whereas without r we have
that A succeeds with probability 1/2+ negl(n) (assuming some underlying hard
problem, of course). However, consider a game where C chooses a random x,
computes y := H(x) for some cryptographic hash function H, and sends y to A;
security holds if A cannot find an x′ �= x such that H(x′) = y. In this setting,
whether A has x or not does not necessarily help it break security, and thus this
definition may be trivially secure for certain instantiations of H.

Note that we can easily integrate idealized models, such as the random oracle
model, into this framework by including an additional oracle which implements
the desired idealized functionality to both A and C.

Now we want to show that for all game-based definitions G, for all protocols
Π which securely implement G in the random oracle model, and for all choices
of � ∈ poly(n), there exists some protocol Π ′ secure in the random oracle model
but insecure in the standard model when instantiated with a (poly, �)-ensemble.

However, it turns out that the notion of a game-based definition defined
above is too strong to prove this result. This is because we place no restrictions
on the challenger C. As an example, consider a modified bit-encryption game
where the challenger acts exactly as before, except it refuses to send any bits
to A that “look like” an obfuscated circuit. This simple modification to the
challenger prevents our attack from working for particular implementations of
iO, e.g., ones that prepend each obfuscated circuit with the string “this is an
obfuscated circuit”.

A Unified Approach to Idealized Model Separations 599

We thus consider a restriction on the above framework, and in particular, a
restriction on the actions of C. Consider a challenger which, on input randomness
r, runs with oracle access to O1, . . . ,Om as before. When C queries an oracle, it
receives back a tuple (s1, . . .). We call a challenger weakened if all messages sent
to A are values within the tuples output by the oracle queries. For example, if
C queries an oracle which implements key generation for some public-key cryp-
tosystem, it receives back the tuple (pk, sk). If the challenger is weakened, it can
send pk, sk, both or neither to A, but it cannot send f(pk) for some arbitrary
function f , and likewise it cannot send some value x not output by an oracle.
Note that most game-based definitions use this weakened challenger notion.

We call G a weak game-based definition if it is a game-based definition as
defined above, except with the requirement that C be a weakened challenger. We
are now ready to prove the following theorem.

Theorem 4.5. Consider a non-trivially secure weak game-based definition G,
and let Π be a protocol which securely implements G. Then for all choices of
� ∈ poly(n), there exists some protocol Π ′ secure in the random oracle model but
insecure when instantiated with a (poly, �)-ensemble.

Proof. Fix some non-trivially secure weak game-based definition G, and let Π
be a protocol which securely implements G (Π need not be in the random oracle
model). Fix some � ∈ poly(n). We construct a protocol Π ′ as follows. Protocol
Π ′ runs exactly as Π except for the first message sent from C to A. Let M be this
message. In protocol Π ′, C proceeds as follows. Let r be the initial randomness of
C. For i ∈ {1, . . . , �n}, C chooses xi ←$ {0, 1}n and computes yi ← O(xi). Then,
C creates an obfuscation iO(C) of the program C defined in Fig. 6 and sends M̂

to A, where M̂ = (M, iO(C)).

Fig. 6. Program C.

Lemma 4.6. Assume that iO is an indistinguishability obfuscator. Then for any
choice of � ∈ poly(n) the construction Π ′ securely implements G in the random
oracle model.

Proof (Sketch). This follows exactly as in Lemma 4.3. 	

600 M.D. Green et al.

Lemma 4.7. Assume that iO is an indistinguishability obfuscator. Then for any
choice of � ∈ poly(n) the construction Π ′ is insecure when the random oracle is
instantiated by any efficiently computable (poly, �)-ensemble.

Proof (Sketch). We apply the same idea as in Lemma 4.4. Let A be the adversary.
Upon receiving the first message from C, A can extract C’s initial randomness
r and thus reproduce the internal state of C. By our assumption that G is not
trivially secure, Π ′ is thus insecure. 	

This completes the proof. �

Note that as in the simulation-based case, we can easily adapt Theorem 4.5
to other idealized models and thus achieve idealized model separations for most
game-based protocols, assuming indistinguishability obfuscation.

5 Extensions to the Generic Group Model

To demonstrate how to adapt Theorems 4.2 and 4.5 to other idealized models,
we provide here an adaptation to the generic group model. We first define the
generic group model and how this model is instantiated using encoding ensem-
bles [15] (which can be thought of as analogous to the function ensembles used
for instantiating the random oracle model).

Generic Group Model. Let �out : N → N be a length function with �out(n) ≥
n, and define the set S = {0, 1}�out(n). Let p be an n-bit prime. The generic group
model is defined by two oracles, Oenc and Oadd, available to all parties, where
Oenc : Zp → S such that Oenc(x) = Oenc(y) iff x = y and Oadd : S × S × Z2 → S

such that Oadd(Oenc(x),Oenc(y), b) = Oenc(x + (−1)b
y).5

Encoding Ensembles. Let �out : N → N be a length function with �out(n) ≥ n.
An �out-encoding-ensemble is a sequence F = {Fn}n∈N

of families of functions
Fn = {fs : Zp → {0, 1}�out(n)}s∈{0,1}n such that the following conditions hold:

1. There exists a polynomial-time algorithm Eval such that for every s ∈ {0, 1}n

and x ∈ Zp it holds that Eval(s, x) = fs(x).
2. There exists a polynomial-time algorithm Add such that Add(s, fs(x),

fs(y), b) = fs(x + (−1)b
y).

As in the function ensemble case, let �eval(n) be the length of the bitstring
representation of Eval. Let a (poly, �)-encoding-ensemble be a class of �′-encoding-
ensembles such that �′ ∈ poly(n) (with the restriction that �′ ≥ n) and the
bitstring representation of Eval is ≤ �.

Let FGG denote the “natural” adaptation of the generic group model to the
UC framework (see Fig. 2). We can now prove the following theorem.

5 Note that we only need Oenc to prove our separations results.

A Unified Approach to Idealized Model Separations 601

Theorem 5.1. Consider a non-trivial ideal functionality f in the UC frame-
work, and let π be a protocol which UC-realizes f in the F-hybrid world. Then
for all choices of � ∈ poly(n), there exists some protocol π′ which UC-realizes f
in the (F ,FGG)-hybrid world6 but is not UC-realizable when instantiated with a
(poly, �)-encoding-ensemble.

Proof. The proof structure follows exactly that shown in Theorem4.2. The only
difference is that instead of each party querying the random oracle when con-
structing the obfuscated circuit, they instead query Oenc. The proof follows
immediately from the fact that with high probability there is no “small repre-
sentation” of Oenc, whereas when Oenc is instantiated with a concrete function,
the adversary can easily extract the hidden information to break security. �

The adaptation of Theorem4.5 is similar, and thus we only present the the-
orem statement.

Theorem 5.2. Consider a non-trivially secure weak game-based definition G,
and let Π be a protocol which securely implements G. Then for all choices of
� ∈ poly(n), there exists some protocol Π ′ secure in the generic group model but
insecure when instantiated with a (poly, �)-encoding-ensemble.

Acknowledgments. The authors would like to thank Brent Waters and Susan Hohen-
berger for helpful conversations during the course of this work.

References

1. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (Im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

3. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

4. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398–415. Springer, Heidelberg (2013)

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press
(1993)

6. Bitansky, N., Canetti, R., Cohn, H., Goldwasser, S., Kalai, Y.T., Paneth, O., Rosen,
A.: The impossibility of obfuscation with auxiliary input or a universal simulator.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp.
71–89. Springer, Heidelberg (2014)

7. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

6 FGG is defined in Fig. 2.

602 M.D. Green et al.

8. Brzuska, C., Farshim, P., Mittelbach, A.: Random-oracle uninstantiability from
indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part
II. LNCS, vol. 9015, pp. 428–455. Springer, Heidelberg (2015)

9. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)

10. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

11. Canetti, R., Goldreich, O., Halevi, S.: On the random-oracle methodology as
applied to length-restricted signature schemes. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 40–57. Springer, Heidelberg (2004)

12. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th STOC, pp. 494–503. ACM
Press (2002)

13. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012)

14. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013)

15. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic
group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109.
Springer, Heidelberg (2002)

16. Dent, A.W.: Fundamental problems in provable security and cryptography. Philos.
Trans. R. So. A 364, 3215–3230 (2006)

17. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

18. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

19. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2008)

20. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th FOCS, pp. 102–115. IEEE Computer Society Press (2003)

21. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to
generate and use universal samplers. Cryptology ePrint Archive, Report 2014/507
(2014). http://eprint.iacr.org/2014/507

22. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained
pseudorandom functions. Cryptology ePrint Archive, Report 2014/720 (2014).
http://eprint.iacr.org/2014/720

23. Hofheinz, D., Müller-Quade, J.: Universally composable commitments using ran-
dom oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 58–76. Springer,
Heidelberg (2004)

24. Kiltz, E., Pietrzak, K.: On the security of padding-based encryption schemes –
or – why we cannot prove OAEP secure in the standard model. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 389–406. Springer, Heidelberg (2009)

http://eprint.iacr.org/2014/507
http://eprint.iacr.org/2014/720

A Unified Approach to Idealized Model Separations 603

25. Leurent, G., Nguyen, P.Q.: How risky is the random-oracle model? In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 445–464. Springer, Heidelberg (2009)

26. Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

27. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, p. 111. Springer, Heidelberg (2002)

28. Shoup, V.: Lower bounds for discrete logarithms and related problems. In:
Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer,
Heidelberg (1997)

Author Index

Attrapadung, Nuttapong 42
Au, Man Ho 3

Baum, Carsten 468
Beierle, Christof 431
Beimel, Amos 509
Biagioni, Silvio 62
Boldyreva, Alexandra 83
Bradley, Tatiana 449
Brakerski, Zvika 551

Camenisch, Jan 104, 353
Catalano, Dario 333
Chen, Jie 23
Choudhury, Ashish 147
Cohen, Ran 129

Dagmi, Or 551
del Pino, Rafael 273
Deng, Yi 237
Di Raimondo, Mario 333
Dolev, Shlomi 529

ElDefrawy, Karim 529
Enderlein, Robert R. 104

Faber, Sky 449
Faro, Simone 333
Farràs, Oriol 509
Fuchsbauer, Georg 391
Fujisaki, Eiichiro 257

Garay, Juan 237
Ghosh, Esha 216
Gnam, Trotta 191
Goodrich, Michael T. 216
Green, Matthew D. 587
Guo, Fuchun 3

Hanaoka, Goichiro 42, 372
Hanser, Christian 391
Hazay, Carmit 313, 486
Hemenway, Brett 169

Kamath, Chethan 391
Katz, Jonathan 587
Kim, Jongkil 3
Kim, Taesoo 83

Lampkins, Joshua 529
Lehmann, Anja 353
Libert, Benoît 23
Ling, San 237
Lipton, Richard 83
Lu, Steve 169
Lyubashevsky, Vadim 273

Malozemoff, Alex J. 587
Marcedone, Antonio 571
Masny, Daniel 62
Matsuda, Takahiro 372
Maurer, Ueli 104
Mittelbach, Arno 198

Neven, Gregory 353

Ogawa, Kazuto 42
Ohrimenko, Olga 216
Ohtake, Go 42
Orsini, Emmanuela 147
Ostrovsky, Rafail 169, 529

Pass, Rafael 571
Patra, Arpita 147
Peikert, Chris 129, 411
Peter, Naty 509
Pointcheval, David 273

Ramanna, Somindu C. 23
Reyzin, Leonid 292

Samelin, Kai 353
Shelat, Abhi 571
Slamanig, Daniel 391
Smart, Nigel P. 147
Susilo, Willy 3

Tamassia, Roberto 216
Tanaka, Keisuke 372
Tsudik, Gene 449

Venkitasubramaniam, Muthuramakrishnan
486

Venturi, Daniele 62, 198

Wang, Huaxiong 237
Wang, Yuyu 372

Warinschi, Bogdan 83
Watanabe, Hajime 42
Welser IV, William 169

Yakoubov, Sophia 292
Yamada, Shota 42
Yung, Moti 237, 529

Zarosim, Hila 313
Zhou, Hong-Sheng 587

606 Author Index

	Preface
	SCN 2016 The 10th Conference on Security and Cryptography for Networks
	Abstracts of Invited Talks
	Foundations of Blockchain Protocols
	Cryptography and Game Theory
	Contents
	Encryption
	A Tag Based Encoding: An Efficient Encoding for Predicate Encryption in Prime Order Groups
	1 Introduction
	1.1 Our Contribution
	1.2 Our Technique

	2 Related Works
	3 Background
	3.1 Bilinear Maps
	3.2 Complexity Assumptions
	3.3 Predicate Encryption
	3.4 Notations

	4 Tag Based Encoding
	5 Our Compiler
	5.1 The Construction

	6 Security Analysis
	7 New Schemes
	8 Conclusion
	References

	Non-zero Inner Product Encryption with Short Ciphertexts and Private Keys
	1 Introduction
	2 Background
	2.1 Bilinear Maps and Complexity Assumptions
	2.2 Non-zero Inner Product Encryption (IPE)

	3 A Construction for Non-zero Inner Products with Constant-Size Ciphertexts and Private Keys
	4 NIPE from Constant-Size Subgroup Assumptions
	References

	Attribute-Based Encryption for Range Attributes
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Definitions for General ABE
	2.2 Definitions for Some Previous Predicates
	2.3 Embedding Lemma
	2.4 Efficient Encoding for Range Membership

	3 Definitions for New Predicates
	4 Generic Constructions
	4.1 From ABE to ABE-SI
	4.2 From ABE-SI to ABE-RM1
	4.3 From KP-DSE to ABE-SI

	5 Instantiations and Performances
	6 Extensions
	References

	Naor-Yung Paradigm with Shared Randomness and Applications
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Public-Key Encryption
	2.3 Non-Interactive Zero-Knowledge

	3 Naor-Yung Paradigm with Shared Randomness
	3.1 A Twist of Naor-Yung
	3.2 Randomness Fusion
	3.3 Main Theorem
	3.4 Extensions

	4 KDM Security from Subset Sum
	4.1 The Subset Sum Problem
	4.2 Scheme Description
	4.3 Proof of Correctness
	4.4 Proof of Security

	5 Concrete Instantiations and Comparisons
	6 Conclusion and Open Problems
	References

	Memory Protection
	Provably-Secure Remote Memory Attestation for Heap Overflow Protection
	1 Introduction
	2 Notation
	3 Remote Memory Attestation
	4 Building Blocks
	5 RMA Constructions
	5.1 Hash-Based RMA
	5.2 Encryption-Based RMA

	6 Implementation and Evaluation
	References

	Memory Erasability Amplification
	1 Introduction
	1.1 Contributions of This Paper
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Constructive Cryptography
	2.3 Cryptographic Building Blocks
	2.4 All-or-Nothing Transform (AoNT)

	3 Modelling Imperfectly Erasable Memory
	3.1 Specification of the General Imperfectly Erasable Memory Resource M<·>
	3.2 Instantiations of M<Σ,ψ, ρ, κ>

	4 Constructing Better Memory Resources
	4.1 Admissible Converters for Constructions Using Erasable Memory
	4.2 Memory Erasability Amplification
	4.3 Constructing a Large Perfectly Erasable Memory from a Small One

	5 New Realizations of All-or-Nothing Transforms
	5.1 AoNT from a Protocol that Constructs PM<Φk> from IMD<Φ, n, d>
	5.2 Perfectly Secure AoNT Based on Matrices with Ramp Minimum Distance
	5.3 Realizing a Perfectly Secure AoNT over a Small Field by Combining AoNTs
	5.4 Computationally Secure AoNT over a Large Field from a PRG

	References

	Multi-party Computation
	On Adaptively Secure Multiparty Computation with a Short CRS
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Additional Related Work

	2 Universally Composable Non-Interactive NCE
	2.1 Non-Committing Encryption
	2.2 Non-Interactive NCE in the UC Framework

	3 Proof of the Adaptively Secure OT from CLOS
	4 Functionalities with One-Sided Poly-Size Domain
	5 Non-Committing Indistinguishability Obfuscation
	5.1 Adaptively Secure Protocol with Round Complexity Independent of f

	References

	Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing
	1 Introduction
	2 Preliminaries
	2.1 Communication Settings
	2.2 Primitives
	2.3 The Various Sharings

	3 Public Reconstruction of <·> -sharings with a Linear Overhead
	4 Linear Overhead Online Phase Protocol
	5 The Various Secure Realizations of FPREP
	References

	High-Precision Secure Computation of Satellite Collision Probabilities
	1 Introduction
	1.1 Our Results

	2 Background
	2.1 Secure Computation
	2.2 Oblivious Transfer
	2.3 Shared Arithmetic Triples (Oblivious Linear-Function Evaluation)
	2.4 Conjunction Analysis Calculations

	3 Our Techniques
	3.1 Combining GC with Arithmetic GMW

	4 Main Construction
	4.1 Offline Phase
	4.2 Online Phase

	5 Extending the Construction
	6 Benchmarks
	6.1 Internal Testing and Benchmarks
	6.2 Comparison with the Sharemind Implementation [KW14a]

	7 Conclusion
	References

	Zero-Knowledge Proofs
	Zero-Knowledge Made Easy so It Won't Make You Dizzy
	1 Introduction
	2 Setup and Preliminaries
	2.1 The Cast
	2.2 Assumptions

	3 Interaction
	4 Epilog
	5 Security Proof (Sketch)
	6 Related Work
	7 Future Work
	8 Conclusions
	9 Disclaimer and Acknowledgments
	References

	Fiat--Shamir for Highly Sound Protocols Is Instantiable
	1 Introduction
	1.1 Fiat--Shamir NIZK and Signatures
	1.2 Positive and Negative Results
	1.3 Our Contributions
	1.4 Perspective
	1.5 Related Work
	1.6 Roadmap

	2 FS NIZK
	3 Compilers
	3.1 First Compiler
	3.2 Second Compiler

	4 Fiat--Shamir Signatures
	References

	Verifiable Zero-Knowledge Order Queries and Updates for Fully Dynamic Lists and Trees
	1 Introduction
	2 Related Work
	3 Dynamic Privacy Preserving Authenticated Data Structure (DPPADS)
	4 Dynamic Privacy-Preserving Authenticated List
	5 Dynamic Privacy-Preserving Authenticated Tree
	References

	On the Implausibility of Constant-Round Public-Coin Zero-Knowledge Proofs
	1 Introduction
	2 Preliminaries
	3 Canonical ZK Proofs and the Verifier-Distinguishing Problem
	3.1 Canonical ZK Proofs
	3.2 Canonical ZK Proofs: Examples
	3.3 The Verifier-Distinguishing Problem

	4 An Improved Derandomization Lemma for Interactive Proofs
	5 Constant-Round Public-Coin Zero-Knowledge Proofs Imply Distinguishing Verifiers' Programs
	6 Conclusions
	References

	Efficient Protocols
	Improving Practical UC-Secure Commitments Based on the DDH Assumption
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 (Tag-Based) Public-Key Encryption
	2.2 Trapdoor Commitments
	2.3 Sigma Protocol

	3 Universal Composable Framework
	4 Our Proposal
	4.1 Our Adaptively UC-Secure Commitment with Erasure
	4.2 Our Static UC-Secure Commitment
	4.3 Actual Instantiations

	References

	The Whole is Less Than the Sum of Its Parts: Constructing More Efficient Lattice-Based AKEs
	1 Introduction
	1.1 Recent Work
	1.2 Our Contributions
	1.3 Putting Everything Together
	1.4 Computational Efficiency
	1.5 Security
	1.6 Our Recommendations for Lattice-Based AKE

	2 KEM from NTRU
	2.1 KEM Parameters

	3 Digital Signatures from NTRU
	3.1 Hash-and-sign and Message Recovery
	3.2 Signature with Message Recovery

	4 The Generic AKE Construction
	References

	Efficient Asynchronous Accumulators for Distributed PKI
	1 Introduction
	1.1 Application: Distributed PKI

	2 Background
	2.1 Accumulator Algorithms
	2.2 Accumulator Security Properties

	3 New Definitions: Asynchronous Accumulators
	3.1 Low Update Frequency
	3.2 Old Accumulator Compatibility

	4 Our New Scheme
	4.1 Construction
	4.2 Properties

	5 Taking Advantage of Infrequent Membership Witness Updates in a Distributed PKI
	A Element Addition
	References

	Outsourcing Computation
	The Feasibility of Outsourced Database Search in the Plain Model
	1 Introduction
	1.1 Our Results
	1.2 Prior Work

	2 Our Modeling
	2.1 Useful Notations

	3 Infeasibility of Outsourced Database Search in the Plain Model
	3.1 The Private Channels Case
	3.2 The Non-private Channels Case
	3.3 Difficulties with Proving a Communication Complexity Lower Bound

	References

	Verifiable Pattern Matching on Outsourced Texts
	1 Introduction
	2 Homomorphic MACs
	3 String Matching Using Polynomial Functions
	3.1 Counting the Number of Exact Occurrences of a String
	3.2 Finding the Positions of All Occurrences
	3.3 Counting the Approximate Occurrences of a String
	3.4 Using Dynamic Polynomials

	4 Implementation Details
	References

	Digital Signatures
	Virtual Smart Cards: How to Sign with a Password and a Server
	1 Introduction
	2 Preliminaries
	3 Ideal Functionality
	4 Our Pass2Sign Protocol
	4.1 Protocol Description
	4.2 Security

	5 Implementation of Our Pass2Sign Scheme
	References

	Signatures Resilient to Uninvertible Leakage
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Related Work
	1.4 Outline of This Paper

	2 Preliminaries
	2.1 One-Way Function and Uninvertible Function
	2.2 Fully Leakage Resilient Signatures in the Selective Auxiliary Input Model
	2.3 Obfuscations
	2.4 Puncturable Pseudorandom Function

	3 Uninvertible Leakage Resilient Hard Relations
	3.1 Definitions
	3.2 Constructions

	4 Fully Leakage Resilient Signatures in the Selective Auxiliary Input Model
	4.1 Fully Leakage Resilient Signature Scheme
	4.2 Weak Fully Leakage Resilient Signature Scheme

	References

	Practical Round-Optimal Blind Signatures in the Standard Model from Weaker Assumptions
	1 Introduction
	2 Preliminaries
	2.1 SPS on Equivalence Classes

	3 Blind Signatures
	3.1 The FHS Construction
	3.2 Construction
	3.3 Security

	References

	Cryptanalysis
	How (Not) to Instantiate Ring-LWE
	1 Introduction
	2 Preliminaries
	2.1 Lattices and Gaussians
	2.2 Learning with Errors (Over Rings)

	3 Attack Framework
	3.1 Attacking Ring-LWE

	4 Insecure Instantiations
	4.1 Rings Z[X]/(Xn+aX+b)
	4.2 Prime Cyclotomics
	4.3 Quadratic Extensions of Cyclotomics
	4.4 Subfields of Cyclotomics

	5 Invulnerable Instantiations
	5.1 Class of Instantiations
	5.2 Invulnerability to Attacks

	References

	Pen and Paper Arguments for SIMON and SIMON-like Designs
	1 Introduction
	2 Preliminaries
	3 Analysis of Differential Characteristics
	3.1 Restriction to 1(x) = (x A) and 2(x) = (x B)
	3.2 Obtaining the Upper Bound for SIMON and Simeck

	4 Conclusion
	References

	Two-party Computation
	Bounded Size-Hiding Private Set Intersection
	1 Introduction
	2 Related Work
	3 Problem Statement and Preliminaries
	3.1 Bounded SH-PSI
	3.2 q-Strong Diffie-Hellman Assumptions

	4 Protocol
	4.1 Protocol Description
	4.2 Security Analysis
	4.3 Computational and Communication Complexity

	5 Discussion and Open Problems
	5.1 Unlinkability and Change Obliviousness
	5.2 Flexibility of t
	5.3 Interacting with Multiple Servers
	5.4 Malicious Security
	5.5 Group Selection
	5.6 t-Intersection bSH-PSI

	6 Equivalence of SDH Problems
	7 Conclusions
	References

	On Garbling Schemes with and Without Privacy
	1 Introduction
	2 Preliminaries
	2.1 Circuits and the Split-Input Representation
	2.2 Secure Two-Party Computation and Garbling Schemes
	2.3 Universal Hash Functions

	3 Construction
	4 Security
	5 Optimizations
	References

	What Security Can We Achieve Within 4 Rounds?
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	3 Warmup: 4-Round 2PC Against Non-aborting Adversaries
	4 4-Round 2PC with 1/p Sender Security and Full Security Against Non-aborting Receivers
	4.1 4-Round OT with 1/p Sender Security and Full Security Against Non-aborting Receivers
	4.2 4-Round 2PC Protocol

	5 3-Round OT with 1/p Sender Security and Receiver Privacy
	References

	Secret Sharing
	Secret Sharing Schemes for Dense Forbidden Graphs
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Preliminaries
	3 Schemes for Forbidden Graph Access Structures
	3.1 Constructions for Arbitrary Graphs
	3.2 Constructions for Bounded Degree Excluded Graphs
	3.3 Constructions for Excluded Graphs with Few Edges
	3.4 Constructions for Arbitrary Graphs When Removing Few Edges

	4 Using Avoiding Covers to Realize Graph Access Structures
	References

	Proactive Secret Sharing with a Dishonest Majority
	1 Introduction
	2 Related Work and Roadblocks
	3 Definitions and Preliminaries
	3.1 System and Network Model
	3.2 Adversary Model
	3.3 Definition of Proactive Secret Sharing (PSS)
	3.4 Batched Secret Sharing
	3.5 Homomorphic Commitments and Verifiable Secret Sharing

	4 Proactive Secret Sharing for a Dishonest Majority
	4.1 Notation and Preliminaries
	4.2 Intuition and Overview of Operation
	4.3 Sharing and Reconstruction for Dishonest Majorities
	4.4 Refreshing Shares with a Dishonest Majority
	4.5 Recovering Shares with a Dishonest Majority
	4.6 Security and Correctness of the PSS Scheme
	4.7 Reducing the Required Communication

	5 Conclusion and Open Questions
	References

	Obfuscation
	Shorter Circuit Obfuscation in Challenging Security Models
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Paper Organization

	2 The Generic GES Model and Our New Zero-Sensitive Variant
	2.1 The Ideal GES Oracle
	2.2 The Zero-Sensitive Generic Model
	2.3 Obfuscation in the Generic GES Model

	3 Description of Our Obfuscator and Its Correctness
	3.1 Setting and Definitions
	3.2 The Obfuscator Obf

	4 Security
	4.1 All-or-Nothing (AoN) Functions
	4.2 Zero-Sensitive Security for All-or-Nothing Functions
	4.3 Indistinguishability Obfuscation in the Classic Generic Model

	References

	Bounded KDM Security from iO and OWF
	1 Introduction
	1.1 Proof Overview

	2 Preliminaries
	2.1 Bounded Key Dependent Message Security
	2.2 Indistinguishability Obfuscation
	2.3 Extractability Obfuscation

	3 (1,L)-Bounded KDM Construction
	4 (N,L)-Bounded KDM Construction
	References

	A Unified Approach to Idealized Model Separations via Indistinguishability Obfuscation
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Random Oracle Separation for Bit-Encryption
	4 Extensions
	4.1 Separations for Simulation-Based Definitions
	4.2 Separations for Game-Based Definitions

	5 Extensions to the Generic Group Model
	References

	Author Index

