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Abstract. In the paper characteristics of an open queueing network
with correlated input Markovian arrival processes and phase type distri-
bution of service time in the nodes are studied. The developed method-
ology is used for the performance evaluation of broadband wireless
networks with linear topology. A comparison study of numeric results of
analytic modelling and simulation is carried out. To study open queueing
networks with MAP input a pyQuMo library has been developed using
Python 3 language. The library provides a means for model description,
model properties computations by taking advantage of an analytical app-
roach, and simulation as well as results visualisation.

Keywords: Markovian arrival process · Batch MAP · PH-distribution ·
Open queueing network · Wireless network

1 Introduction

The designing of a backbone network is a topical task for the systems which are
as follows: intellectual transport systems (ITS), road safety systems, pico- and
femtocells access systems, as well as for the development of telecommunications
infrastructure along railways and pipelines. For the performance evaluation and
optimal design of networks of this rank there is a need for new mathematical
models describing the functionality of wireless networks. In this paper we propose
a model of open homogeneous queueing networks with a correlated input arrival
process (MAP), PH-distribution of service time in the network nodes and a
routing matrix ‖tij‖, where tij is the probability of packet arrival at the j-th
node after its serving at the i-th node is completed.

The state space and transmission intensities of the Markovian process are
described. The results of numerical computation of the queues length, packet
loss probabilities and other network parameters are presented. Such results are
achieved by making use of a precise analytical approach as well as simulation
modelling.
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2 The Model of an Open Homogeneous Network
with Correlated Input Arrivals and PH-Distribution
of Service Time

It is not enough to make use of traditional approaches, which are based on
the models of BCMP-networks [1,2] being used extensively for the performance
evaluation and optimization of computer networks characteristics, and for taking
into account a number of significant features of functioning of wireless network
considered. Such features are as follows:

– correlated nature of input arrival process of packets;
– limited buffer memory of base stations and respective packet loss;
– the ability to transmit packets repeatedly when the packet losses occurred as

a result of, for instance, interference or strong signal attenuation;
– the service and transmission time of packets being produced by different appli-

cations can vary significantly and have various distributions.

To take account of the correlated nature of the traffic let us consider MAP
(Markovian Arrival Process) and BMAP (Batch MAP) to arrive into an open
homogeneous queueing network [3,4]. Let us denote MAP A ∼ MAP (D0,D1),
where D = D0 + D1 is an infinitesimal generator of an appropriate Markovian
chain, i.e.

∀i :
∑

j=1

dij = 0, ∀i �= j : dij ≥ 0, ∀i : dii ≤ 0.

D0 and D1 are constrained matrices:

∀i, j : {D1}ij ≥ 0, ∀i �= j : {D0}ij ≥ 0, ∀i : {D0}ii ≤ 0.

The aim of such partitioning is to divide invisible transitions leading only
to a change of state and determined by matrix D0 and visible ones determined
by matrix D1 that cause packet generation. In the case of BMAP a sequence
of matrices {Di : i ≥ 1} is set up instead of a single D1 matrix. Each matrix
from this sequence defines transition intensities resulting to packet generating.
Applications of MAP and BMAP to telecommunication traffic modelling are well
studied and available in the literature. It has been shown that one can simulate
real traffic with sufficient precision using these arrivals [5,6]. Batch MAP allows
us to describe the simultaneous arrival of an arbitrary amount of packets while
MAP does not. To simplify the formulas of the suggested model, MAP is made
use of, but all this reasoning is also valid for BMAP.

To take into account the errors and losses arising during transitions let us
associate the error probability pei

with each station, thus a packet being served
returns into the queue or leaves it irretrievably with that probability.

Service time can be modelled by PH-distribution [7]. Phase type distrib-
ution is made extensive use of and allows us to describe the service process
as part of a Markovian model. Let us denote B PH-distributed random value,
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B ∼ PH(S, τ), S ∈ R
W×W , τ ∈ R

W , that depicts the time elapsed until arrival
to the accepting state. Let us define the generator of the chain as

[
S −S1
0 0

]
.

It has W + 1 states, the last state is accepting. Vector τ specifies the initial
distribution of probabilities of the modulating chain.

To make allowance for the limited station memory the queue of each station
is supposed to have a capacity of Mi packets and each station can contain up to
Ki = Mi + 1 packets.

Let us consider each station as associated with a user which contributes to the
network with the arrival process Ai ∼ MAP (D(i)

0 ,D
(i)
1 ) and can be treated as

the traffic sink as well: each packet accepted by the station with the probability
ri is transmitted to the user and leaves the network or it arrives to the queue
with complementary probability 1 − ri. If the queue is full, the packet is lost
irretrievably. The service time is PH-distributed: B ∼ PH(Si, τ i).

Finally, the packet routing is carried out according to the stochastic matrix
T ∈ R

N×N , where N is the number of stations. Element tij of the matrix equals
the conditional probability of packet transmission to the j-th station after serving
at the i-th station on condition of successful transmission. Since the ability to
transmit the packet back to the queue having been considered, it is reasonable
to suppose tii = 0 for all i.

Unconditional probabilities of packet transmission from the i-th to the j-th
station, to its user as well as packet loss and packet retransmission probabilities
are shown in Fig. 1.

The functioning of the whole network is described by a Markovian process
C ∼ Markov(Q), that is defined by a Markovian process modulating MAP and
PH-distributions. Having the infinitesimal generator Q of such a process one
can compute the stationary probability distribution of its states and then the
distribution of queue lengths, busy coefficients of stations and other character-
istics. Moreover, it is easy to build matrices D̂

(i)
0 , D̂

(i)
1 of the MAP of packets

served by the i-th station and also Ď
(i)
0 , Ď

(i)
1 of overall MAP incoming at the

Fig. 1. The queueing network modelling wireless network with linear topology.
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i-th station. Knowing these matrices allows us to compute the probability that
the next packet is lost due to memory overflow.

So, the space of states and transition intensities between the states are
required to be defined to describe the process C. It is possible to completely
define any state of the chain given the following values:

– the number of packets ki at the i-th station, ki = 0..Ki;
– the state ai of a user input MAP Ai, ai ∈ 1..Vt;
– the state bi of a server (of its PH-distribution modulating chain), bi ∈ 1..Wi.

It is not difficult to see that the state space of the process has size Z =∏N
i=1(Vi + KiViWi) and grows exponentially with the growth of N . It is not

feasible to express the generator matrix in explicit form due to its size. Instead
of this let us take advantage of the notion of transition classes (e.g., see [8]) and
describe them. Each class defines the set of transitions of the same type in which
some subset of states changes equally while other states remain immutable.

The change of the state of the chain C can be caused by both the state change
of a user MAP or PH-distribution of a server. If the transition does not cause
either packet arrival or service completion, then the change is localized in the
corresponding process. Otherwise, both the state of the corresponding process
and the number of packets in one or two nodes can be changed.

Let triplet 〈ki, vi, wi〉 describe the state of the i-th node, where ki is the
number of packets in the node, vi — the state of a user input MAP, wi — the
state of a server. For the reason that the last component is meaningless when
ki = 0, we can omit it from time to time: 〈0, vi〉. The transition class is depicted
by the expression of the form:

〈ki, vi, wi〉, 〈kj , vj , wj〉 λ−→ 〈ḱi, v́i, ẃi〉, 〈ḱj , v́j , ẃj〉

where the left side of the expression describes the states of the nodes before
transition and the right side — the states after transition (the state with a dash
sign is modified); the transition intensity is above the arrow. Other states not
mentioned in the expression remain unmodified.

The transitions appearing due to the change of the state of modulating chain
of input MAP-flow of the i-th node Ai ∼ MAP (D(i)

0 ,D
(i)
1 ):

〈ki, vi, wi〉,
{D

(i)
1 }viv́i−−−−−−−→ 〈min(ki + 1,Ki), v́i, wi〉 (1)

〈0, vi〉,
τ(i)
wi

{D
(i)
1 }viv́i−−−−−−−−−→ 〈1, v́i, wi〉 (2)

〈ki, vi, wi〉,
{D

(i)
0 }viv́i−−−−−−−→ 〈ki, v́i, wi〉 (3)

〈0, vi〉,
{D

(i)
0 }viv́i−−−−−−−→ 〈0, v́i〉 (4)
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The transition appearing due to the change of the state of the modulating
chain of PH-distribution of a server Bi ∼ PH(S(i), τ (i)):

〈ki, vi, wi〉, 〈kj , vj , wj〉
tij(1−rj)(1−pei

)τ(i)
wi

{−S(i)1}wi−−−−−−−−−−−−−−−−−−−−−→
〈ki − 1, vi, ẃi〉, 〈min(kj + 1,Kj), vj , wj〉

(5)

〈ki, vi, wi〉, 〈0, vj〉
tij(1−rj)(1−pei

)τ
(i)
ẃi

τ(j)
wj

{−S(i)1}wi−−−−−−−−−−−−−−−−−−−−−−−→ 〈ki − 1, vi, ẃi〉, 〈1, vj , wj〉 (6)

〈1, vi, wi〉, 〈kj , vj , wj〉
tij(1−rj)(1−pei

){−S(i)1}wi−−−−−−−−−−−−−−−−−−→
〈0, vi〉, 〈min(kj + 1,Kj), vj , wj〉

(7)

〈1, vi, wi〉, 〈0, vj〉
tij(1−rj)(1−pei

)τ(j)
wj

{−S(i)1}wi−−−−−−−−−−−−−−−−−−−−−→ 〈0, vi〉, 〈1, vj , wj〉 (8)

〈ki, vi, wi〉,
τ
(i)
ẃi

(tijrj(1−pei
)+pei

pli
){−S(i)1}wi−−−−−−−−−−−−−−−−−−−−−−−−→ 〈ki − 1, vi, ẃi〉, (9)

〈1, vi, wi〉,
(tijrj(1−pei

)+pei
pli

){−S(i)1}wi−−−−−−−−−−−−−−−−−−−−−→ 〈0, vi〉, (10)

〈ki, vi, wi〉,
τ
(i)
ẃi

pei
(1−pli

){−S(i)1}wi
+S

(i)
wiẃi−−−−−−−−−−−−−−−−−−−−−−→ 〈ki, vi, ẃi〉, (11)

The classes (1) and (2) correspond to the appearing of a packet in MAP,
(3) and (4) — transition of the chain of MAP-flow without packet generating.
The classes (5)–(8) correspond to transition of the chain of PH-distribution of
the i-th device into an accepting state and transmission of the packet to the
j-th node. The classes (9) and (10) correspond to the transition of the chain
of PH-distribution into the accepting state with the error of transmission or
transmission of the packet to the user of the i-th node – anyway, the packet leaves
the network irretrievably. Finally, the class (11) corresponds to the transitions of
the chain of PH-distribution which leads the chain into the accepting state, but
the packet is retransmitted (the first summand) or the transition of the chain
is carried out into a non-accepting state (the second summand) and service is
continued - the amount of packets in the node is not changed.

Let x = (x1, · · · ,xi, · · · ,xN ) be the state of the chain C, where

xi =

{
〈ki, vi, wi〉 if ki = 1 · · · Ki

〈0, vi〉 if ki = 0

— the state of the i-th node, X the set of all states of the chain, ‖X‖ =
∏N

i=1(Vi+
KiViWi). The stationary distribution of the chain C can be found as the solution
of the system:

πQ = 0,π1 = 1,

where π ∈ [0, 1]|X|. Let q
(i)
l = P{ki = l} =

∑
x:ki=l πx — the stationary prob-

ability that the i-th node has l packets. In particular, q
(i)
0 — the probability of
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the fact that the node is vacant and q
(i)
Ki

— the probability that the queue is

full. Knowing the probabilities {q
(i)
K } allows us to compute the mean number of

packets li =
∑Ki

k=0 kq
(i)
k in the i-th station, from which the loss probability of

the arrival packet can be achieved:

p
(i)
ql = v(i) Ď

(i)
1

λ(i)
1,

where v(i) is a projection of the vector π in which ki = Ki, Ď
(i)
1 is the matrix of

visible transitions of input MAP, and λ(i) = φ(i)Ď
(i)
1 is a mean arrival intensity

of this process, φ(i) is its stationary probability distribution. The probability
φ(i) and v(i) can be achieved from π by summing up over the states from which
the input arrival process is independent.

Knowing the mean intensity of packet arrival λ(i) and the mean number of
packets in the system makes it possible to compute the mean packet delay in
the station by Little’s formula: Ti = li/[(1− p

(i)
ql )λ(i)] . Here an additional factor

in the denominator appears due to the fact that the input process turns out
to be filtered with the probability being equal complementary loss probability
resulting from the queue overflow.

To study other characteristics of the model the expression of MAP incoming
to the station (both from the user and from other stations) as well as of MAP
departure may be required. Due to the existence of feedback in the general case
the modulating chains will depend on the states of all network nodes. Therefore
let us consider the modulating chain of the arrival process that is to be found,
to have the same space of the state X as the process operating the system does.
Obviously, chain C performs control over MAP as well, however from different
points of observation the transitions being in an intensity matrix of packet gen-
erating Di will differ. So, to determine a MAP A(i,j) ∼ MAP (D(i,j)

0 ,D
(i,j)
1 )

describing the arriving of the packets at the j-th node after being served at the
i-th node, the intensities defined by expressions (5)–(8) for the given pair (i, j)
should be placed into matrix D

(i,j)
1 and the other intensities — into matrix D0.

If the MAP Ǎj ∼ MAP (Ď(j)
0 , Ď

(j)
1 ) arriving at the station j from all other sta-

tions (excluding packet retransmission as it actually does not affect the amount
of packets in the network) is in a region of interest, then all intensities (5)–(8)
for all i �= j should be placed into matrix D1. An other arrival process can be
achieved similarly.

It should be noted that the matrices of the arrival process have an enor-
mous size, which makes it difficult or even impossible to use them for analytical
computations. However, it is possible to achieve more simple expressions for the
arrival process matrices in some special cases. In particular, it is possible to build
MAP for a tandem network that is described below as an example, with the help
of the following theorems [4,9,10]:

Theorem 1. The result of sifting of MAP A ∼ MAP (D0,D1) with probability
p is MAP Ap ∼ MAP (D0 + (1 − p)D1, pD1) (further we will denote it as pA).
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Theorem 2. The composition of a MAP A1 ∼ MAP (D(1)
0 ,D

(1)
1 ) and a MAP

A2 ∼ MAP (D(2)
0 ,D

(2)
1 ) is a MAP B = A1 ⊕ A2 ∼ MAP (D(1)

0 ⊕ D
(2)
0 ,D

(1)
1 ⊕

D
(2)
1 ), where ⊕ is a Kronecker sum.

Theorem 3. A MAP of served packets in the system MAP/PH/1/M , where
the interval between arrivals is distributed by A ∼ MAP (D0,D1), service time -
B ∼ PH(S, τ ), M is the capacity of the queue, V is an order of matrix S, W is
a number of input MAP states, service discipline is FIFO, is B ∼ MAP (D̂0, D̂1)
and its matrices are defined as:

D̂0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

D0 ⊗ IV R0 0 · · · 0 0
0 D0 ⊗ S D1 ⊗ IV · · · 0 0
0 0 D0 ⊗ S · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · D0 ⊗ S D1 ⊗ IV

0 0 0 · · · 0 RA

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

D̂1 =

⎡

⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0
IW ⊗ Ct · · · 0 0 0

...
. . .

...
...

...
0 · · · IW ⊗ Ct 0 0
0 · · · 0 IW ⊗ Ct 0

⎤

⎥⎥⎥⎥⎥⎦
,

where
R0 = D1 ⊗ (τ ⊗ 1V ),

RA = (D0 + D1) ⊗ S,

Ct = (−S1V ) ⊗ τ

There are no state components corresponding to the number of packets in
the i-th and further stations of the input MAP in construction of MAP as
consistent with the given theorems. At the expense of this fact the computation is
significantly simplified, in particular the computation of vectors φ(i) and v(i): the
first one turns out to be a projection of the stationary distribution of generators
states of the i-th station that corresponds to a full queue and the second one —
the stationary distribution of the states of an input MAP generator.

Due to the exponential growth and enormously large dimension of the state
space it is extremely difficult to find precise analytical expressions even for small
dimensions. For practical applications of the suggested model approximation
methods can be exploited. Such methods approximate both MAP and PH-
distributions by the arrival process and distributions of lower dimensions and
replace the large fragments of the network by much more simple chains that
approximate such fragments [11]. The method of iterative search can be applied
for an approximate solution by using multiplicative representation according to
paper [8]. The other way to explore such systems is to apply the method of iter-
ative modelling presented in the current work as well to simulate the networks
of enormous dimensions.
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3 Simulation of a Wireless Network with Linear Topology
and Hot Standby Links

Wireless networks with linear topology are often used to organize connections
along long-length objects (highways, railways, pipeline) when the optical fibre
is not available. Up-to-date wireless communication systems allows us to build
networks consisting of a large amount of retransmitters being placed from 100 m
to tens of kilometres from each other and providing transmission rate from
150 Mbps (e.g. IEEE 802.11) to 1 Gbps (e.g. mmwave relay link).

The network suffers from packet losses as it is wireless. In the case of outage
of one of the stations its neighbours can connect with each other if visibility
conditions and the strength of the signal allow to do it. Such connections are
acceptable in the case of the station working correctly as well. An example of
such a network is shown in Fig. 2.

Fig. 2. The queueing network modelling wireless network with linear topology.

A special case of a wireless network with linear topology is an uplink aggrega-
tion network where the traffic is generated by the users (e.g. video cameras) and
being transmitted to a control centre. In particular, such networks are applied
in road safety systems. We have studied this network in the model mentioned
above as an example. The analytical computations have been performed for a
simple network where the transmissions occur between neighbouring stations
only, and the same network to calibrate the results as well as a network where
transmissions escaping neighbouring stations are allowed is computed with the
help of simulation.

As was mentioned above the construction of a chain generator faces the prob-
lem of exponential growth of the state space. In the case of an open queueing
system without routing loops the scheme of chain construction can be simplified.
To achieve the analytical solution of the problem the scheme of iterative con-
struction of served packets MAP was employed [10]. This scheme is similar to
the one being used to explore a more simple open network with linear topology
that takes advantage of consecutive transmission without transmission losses and
losses due to transmission errors. According to this scheme, starting from the
first station, MAP matrices are build, that describe the intervals between the
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outage of served packets of each station. Output arrival processes are computed
as a composition of input MAP. The iterative procedure using Theorems 1–3
mentioned above is made use of.

One of the most important characteristics of the network functioning is an
end-to-end delay being equal to the time passed from the packet arrival into the
network until it leaves the network in a destination node. As all packets of a data
aggregation network are transmitted into the center connected with the N -th
station the delay of packet transmission in the network from the i-th station
can be computed as the sum of delays

∑N
j=i Tj , where Tj is a delay in the j-th

station, the computation of it having been described above. Let us note that in
case of a computation of the mean residence time the loss probabilities must be
taken into account. At the same time keeping computation of end-to-end delays
we actually consider only the packets arriving successfully and take advantage
of conditional probabilities of successful arrival. In the studied models the same
cross-traffic arrived into all stations. Therefore a mean delay throughout the
whole network is supposed to be equal to the arithmetic average of delay from
each station.

The characteristics of a network with linear topology without the ability to
transmit over the neighbour (i.e. all traffic is directed to the next station) have
been studied with the help of an analytical model. The computation has been
performed iteratively according to the scheme mentioned above. A more general
case has been studied with the help of simulation. In that case the routing matrix
of a data aggregation network with linear topology has an upper triangular form
with zero main diagonal:

T =

⎡

⎢⎢⎢⎣

0 t12 · · · t1N

0 0 · · · t2N

...
...

. . .
...

0 0 · · · 0

⎤

⎥⎥⎥⎦

To simplify the computation we make a natural assumption that the station
can transmit data to its neighbour or the station next to the neighbour only (that
is nonzero elements of matrix T are ti,i+1 and ti,i+2) and these probabilities are
equal for all stations excluding two border stations: p = ti,i+1∀i < N − 1. The
input MAP A0 ∼ MAP (D0,D1) are as follows:

D0 =

⎡

⎣
−1.724 0 0
0.172 −1.552 1.293
0.086 1.724 −1.811

⎤

⎦ D1 =

⎡

⎣
0.862 0.862 0

0 0 0.086
0 0 0

⎤

⎦

Fig. 3. A graphic representation of input MAP being used (transitions corresponding
to the D0 matrix marked by dashed lines and transitions corresponding to the D1

matrix marked by solid lines)
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The graph depicting this MAP is shown in Fig. 3. Such MAP arrives at each
station as a cross-traffic. In different experiments MAP is scaled using the mean.

To simplify the computation the serving is performed according to the expo-
nential distribution with rate μ = 5 in all experiments. The number of stations
in the network is supposed to be equal to N = 5 and the capacity of all queues
is supposed to be K = 2.

Fig. 4. Mean time of end-to-end delay depending on the mean rate of input cross-traffic.
The value of the p parameter is a fraction of traffic transmitted to direct neighbour
after service completion

In Fig. 4 end-to-end delays for different arrived rates of input MAP and
different value of the probability p of packet transmission to the direct neighbour
(the less p, the greater a fraction of the traffic transmitted escaping the direct
neighbour) are shown. As we can see in the figure the delay decreases when
the fraction of the traffic transmitted into direct neighbour drops. The result
is expected and related to reduction of the mean path length that packet is
transmitted over to the last station.

Let us note that the delay tendency to an asymptote when the intensity
growths (instead of an unbound increase in the case of systems with an infinite
queue) related to memory limitation — starting from some moment the stations
are in a high-loaded state, all the extra packets are discarded and the delay of
served packets stops increasing. The result is also confirmed by the change of
delivery and loss probabilities over different stations and the change in the mean
number of packets in stations as well (see Fig. 5).

As in the case of delays the losses drops when parameter p reduces, which is
also related to the reduction of route lengths and, as a consequence, the reduction
of input arrivals rates (see Fig. 5). At the same time starting from some moment
the stations accumulate at input the maximum arrivals that they can serve
whereupon the studied parameters change slightly; but if the p is small this
moment comes later.

The dependence of delivery probability on the mean intensity of input outer
traffic and parameter p is illustrated in the form of a heatmap in Fig. 6. Here
the brighter the colour, the lower the successful delivery probability.
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Fig. 5. The delivery and loss probabilities as well as the mean queueing lengths (left).
The mean intensities of input and served arrivals over stations (right).

To carry out the calculations, analysis of results and their visualisation a
pyQuMo library allowing us to work effectively with Markovian queueing models
of large dimensions was developed. It is implemented in Python 3 languages and
based on SciPy, NumPy and Pandas libraries. One of the advantages of pyQuMo is
the storing and handling of chain generators in the form of sparse matrices which
allows the handling of models having up to several million states using an ordi-
nary laptop. As simulation requires the handling of a large amount of events the
OMNeT++ system is used. The work with a simulation model is performed by
pyQuMo, making it possible to compare the results of analytical modelling and
simulation using a single program. A vast bulk of statistics is collected during the
program work and to meet this problem SQLite is made use of.

Fig. 6. The dependence of delivery probability on cross-traffic mean arrival rate (ordi-
nate, rises from bottom to top) and the fraction of traffic transmitted to its direct
neighbour (abscissa, rises from left to right).
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4 Conclusion

In this paper a model of an open queueing network with correlated input Markov-
ian arrival processes and phase type distribution of service time is presented. A
network with linear topology that adequately describes wireless long-distance
networks with the ability to transmit data over several stations is studied spe-
cially. A comparison study of numeric results of analytic modelling and simula-
tion has been carried out. It is shown that to drop transmission delays as well as
the fraction of packet losses it is rational to divide traffic and transmit as small a
fraction as possible to the direct neighbour. We developed a pyQuMo library in
Python 3 language to compute queueing systems with correlated input arrivals.
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