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Abstract. The processes of short-term interest rates generate changes
in most market indices, as well as form the basis of determining the value
of marketable assets and commercial contracts. They play a special role
in calculating the term structure of the yield. Therefore, the develop-
ment of mathematical models of these processes is extremely interesting
for financial analysts and researchers of market issues. There are many
versions of change of short-term risk-free interest rates in the framework
of the theory of diffusion processes. However, there is still no such model,
which would be the basis for building a term structure of yields close to
that existing in a real financial market. It is interesting to analyze the
existing models in order to clarify features of models in a probabilistic
sense in more detail than has been done by their creators and users.
Such an analysis will be made here for the family of models used by the
authors in three well-known papers [1–3], where they were applied for
the fitting of the real time series of yield.
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1 Introduction

All the models considered belong to the class of diffusion models, that generate
processes X(t), described by the equation

dX(t) = μ(X(t))dt + σ(X(t))dW (t), t > t0, X(t0) = X0, (1)

where a specific determination of drift μ(x) and volatility σ(x) defines one or
another particular model. Some models, such as models: Vasicek, Cox-Ingersoll-
Ross, geometric Brownian motion, Ahn-Gao, are well documented in the liter-
ature, but nevertheless their properties are listed here for convenience of com-
parison with other, less well-known or not investigated models. The analysis is
the first part of the work devoted to the explanation of the most suitable short-
term rate models to determine the term structure of a zero-coupon yield that is
reproducing the actually observed yield, as far as possible, the best way.

2 The Vasicek Model [4]

For μ(x) = k(θ − x), σ2(x) = σ2 the Eq. (1) generates the Ornstein-Uhlenbeck
process that is known in finance literature as the Vasicek model. Probability
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density for this process is normal with the expectation E[X] = θ and the variance

Var [X] =
σ2

2k
:

f(x) =

√
k

π

1
σ

e
−k

(x−θ)2

σ2 . (2)

3 The CIR Model [5]

When the functions of drift and volatility are μ(x) = k(θ − x) and σ2(x) = σ2x
from (1) for the short-term interest rate r(t) a nonnegative process is obtained.
In financial literature such a process is named the Cox-Ingersoll-Ross model (the
CIR model).

dr(t) = k(θ − r(t))dt +

√
2kD

r(t)
θ

dW (t),

where θ and D are the stationary expectation and variance respectively.

The CIR process has a gamma distribution with the scale parameter c =
2k

σ2

and the form parameter q =
2kθ

σ2
. So

f(x) =
cqxq−1

Γ (q)
e−cx, q > 0, x > 0. (3)

The moments of this distribution are calculated by the formula

E[Xm] =
Γ (m + q)
cmΓ (q)

,

and important numerical characteristics are the expectation E[X], the variance
Var [X], the skewness S and the kurtosis K:

E[X] =
q

c
= θ,

Var [X] ≡ D =
q

c2
=

σ2θ

2k
,

S ≡ E
[
(X − E[X])3

]
Var [X]

3
2

= 2
√

q,

K ≡ E
[
(X − E[X])4

]
Var [X]2

= 3 +
6
q
.

4 The Duffie-Kan Model [6]

In the Duffie-Kan model the rate r(t) is generated by Eq. (1) with functions

μ(x) = k(θ − x) and σ(x) =
√

γx + δ ≡
√

2kD
x − r0
θ − r0

:

dr(t) = (αr(t) + β)dt +
√

γr(t) + δdW (t), γr(0) + δ > 0,
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where k = −α > 0, θ = −β

α
> 0, D =

βγ − αδ

2α2
> 0, r0 = − δ

γ
< θ.

The process r(t) has the stationary probability density f(x) which is a shifted
gamma density with the shift parameter r0, the scale parameter c and the form
parameter q, i.e.

f(x) =
cq(x − r0)q−1

Γ (q)
e−c(x−r0), r0 < x < ∞, (4)

where q =
(θ − r0)2

D
, c =

(θ − r0)
D

> 0, r0 is the limit bottom value of interest

rate r(t).
The important numerical characteristics of the stationary density

E[X] =
q

c
= θ,

Var [X] ≡ D =
q

c2
,

S = 2
√

q,

K = 3 +
6
q
.

5 The Ahn-Gao Model [2]

In the Ahn-Gao model it is assumed that drift and volatility are nonlinear func-
tions μ(x) = k(θ − x)x and σ2(x) = σ2x3. Such a process has the stationary
probability density f(x) of form

f(x) =
cq

Γ (q)x1+q
e− c

x , x > 0, (5)

where the scale parameter c =
2kθ

σ2
and the form parameter q = 2 +

2k

σ2
. The

process of the Ahn-Gao model can be obtained from the CIR process by transfor-

mation XAG =
1

XCIR
. The important numerical characteristics of the stationary

density of process are determined by formulae

E[X] =
c

q − 1
=

2kθ

2k + σ2
,

Var [X] =
c2

(q − 1)2(q − 2)
=

2kσ2θ2

(2k + σ2)2
,

S = 4
√

q − 2
q − 3

,

K = 3
(q − 2)(q + 5)
(q − 3)(q − 4)

.
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6 The BDT Model [7]

The Black-Derman-Toy (BDT) model

dr(t) = [α1r(t) − α2r(t) ln r(t)]dt + βr(t)dW (t), α2 > 0,

by transformation Y (t) = ln r(t) reduces to linear form

dY (t) =
(

α1 − β2

2
− α2Y (t)

)
dt + βdW (t).

This equation allows a stationary solution and process Y (t) that is found in
explicit form

Y (t) =
1
α2

(
α1 − β2

2

)
+ ξ(t), ξ(t) = β

t∫
−∞

e−α2sdW (s),

where ξ(t) is a stochastic Gaussian process with zero expectation, variance

Var [ξ(t)] =
β2

2α2
and covariance Cov [t1, t2] =

β2

2α2
e−α2|t2−t1|. Thus the BDT

model generates a log-normal process and allows a stationary regime. The lead-
ing stationary moments of the interest rate are calculated by formulae

E[r] = e
1

α2

(
α1− β2

4

)
,

Var [r] = (λ − 1)e
2

α2

(
α1− β2

4

)
, λ = e

β2

2α2 ,

S = (λ + 2)
√

λ − 1,

K = λ4 + 2λ3 + 3λ2 − 3.

7 The Ait-Sahalia Model [8]

Ait-Sahalia has tested the based models of short interest rates (including those
described here) by fitting them to the actually time series of rates. It was found
that an acceptable level of goodness-of-fit of all these rates was rejected because
of the drift and volatility properties. As a result he proposed the following func-
tions of drift and diffusion

μ(r) = α0 + α1r + α2r
2 + α−1

1
r
, σ2(r) = β0 + β1r + β2r

2.

In this model, the non-linear functions of drift and diffusion allow a wide variety
of forms. To σ2(r) > 0 for any r, it is necessary that the diffusion function
parameters ensure the fulfilment of inequalities

β0 > 0, β2 > 0, γ2 ≡ 4β0β2 − β2
1 � 0.
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Relevant to this function a probability density is given by the expression

f(x) = NxB(β0 + β1x + β2x
2)C−1eAx+Garctg (E+Fx), x > 0,

where N is the normalization constant,

A =
2α2

β2
< 0, B =

2α−1

β0
> 0, C =

α1

β2
− α2β1

β2
2

− α−1

β0
,

G =
2
(

2α0 +
α2β

2
1

β2
2

− α1β1

β2
− 2α2β0

β2
− α−1β1

β0

)

γ
, E =

β1

γ
, F =

β2

γ
.

Since the density f(x) at x → 0 has order O(xB), B > 0, and at x → ∞ its
order is O(xB+CeAx), A < 0, then for every finite m the moments E[Xm] exist,
but their analytical expressions cannot be obtained, and they can be calculated
only numerically.

8 The CKLS Model [1]

In the Chan-Karolyi-Longstaff-Sanders (CKLS) model it is assumed that
μ(x) = k(θ − x), σ2(x) = σ2x3. It turns out that a random process correspond-
ing to this model has a stationary density

f(x) =
n

x3
e
−c

((
θ
x

)2−2 θ
x

)
, x > 0, (6)

where c =
k

θσ2
, n is normalization constant. Note that such random process has

only the first stationary moment E[X] = θ.

9 The Unrestricted Model I [2]

In “unrestricted model I”

dr = (α1 + α2r + α3r
2)dt +

√
α4 + α5r + α6r3dW (7)

all the preceding models are embedded, that is, at a certain setting parameters
{α} can get any of the previous models. The table in this case has the form

Restrictions of parameters Model Equation of processes

α3 = α5 = α6 = 0 Vasicek dr = k(θ − r)dt + σdW

α3 = α4 = α6 = 0 CIR dr = k(θ − r)dt + σ
√

rdW

α3 = α6 = 0 Duffie-Kan dr = k(θ − r)dt +
√

α + βrdW

α1 = α4 = α5 = 0 Ahn-Gao dr = k(θ − r)rdt + σr1.5dW

α3 = α4 = α5 = 0 CKLS dr = k(θ − r)dt + σr1.5dW
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Stationary probability density “unrestricted I” process has the form

f(x) =
c(w)
σ2(x)

e

x∫
w

2μ(u)
σ2(u)du

=
c(w)

α4 + α5x + α6x3
e

x∫
w

2(α1+α2u+α3u2)
α4+α5u+α6u3 du

,

where c(w) is the normalization constant, w is a fixed number from the set of
possible values of a random process, the specific value of which does not play
some role.

Getting the explicit form of expression for f(x) is possible, but it will be
quite cumbersome in a general case, and we restrict ourselves to the case when
the values of the parameters {α} provide the performance properties of the
probability density f(x). First, we note that the volatility of the real process
needs to be a real function, so σ2(r) = α4 + α5r + α6r

3 � 0 for all values of r.
At the same time analytic properties of the probability density depend on the
type of the roots of equation α4 + α5r + α6r

3 = 0, α6 > 0. The sign of the

discriminant Δ =
(

α5

3α6

)3

+
(

α4

2α6

)2

specifies the number of real and complex

roots of the equation. When Δ > 0, there is one real and two complex conjugate
roots. When Δ < 0, there are three different real roots. When Δ = 0, real roots
are multiples.

Let Δ > 0 and the real root is r = r0, then we can write

α4 + α5r + α6r
3 = α6(r − r0)

(
r2 + pr + q

)
,

where r0, p and q are a relatively sophisticated analytical expression and because
of that are not listed here. However, if α4 = 0, then r0 = 0, p = 0, q =

α5

α6
. In

this case, the probability density is given by

f(x) =
c(w)

α6x

(
x2 +

α5

α6

)e

x∫
w

2(α1+α2u+α3u2)
α6u(u2+α5

α6 ) du

= nx
2α1
α5

−1
(
α6x

2 + α5

) α3
α6

− α1
α5

−1e
2α2√
α5α6

arctg
[
x
√

α6
α5

]
, (8)

where n is the normalization constant. For the existence of the probability den-
sity its parameters must satisfy the inequalities:

α1

α5
> 1,

α3

α6
< 1. In order to at

the same time there exist stationary moments it is necessary for the expectation
α3

α6
< 0.5, for variance

α3

α6
< 0, for the third moment

α3

α6
< −0.5 and for the

fourth moment
α3

α6
< −1.

If Δ < 0, denote the roots of the equation r0 > r1 > r2 so

α4 + α5r + α6r
3 = α6(r − r0)(r − r1)(r − r2).
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Then the probability density is expressed in the form

f(x) = n(x − r0)
2(α1+α2r0+α3r2

0)
α6(r0−r1)(r0−r2)

−1

×(x − r1)
− 2(α1+α2r1+α3r2

1)
α6(r0−r1)(r1−r2)

−1
(x − r2)

2(α1+α2r2+α3r2
2)

α6(r0−r2)(r1−r2)
−1

. (9)

In this case the inequalities must be performed

2(α1 + α2r0 + α3r
2
0) > α6(r0 − r1)(r0 − r2),

α3

α6
< 1.

For the existence of the m-th moment other than that necessary to perform
the conditions

m

2
+

α3

α6
< 1. Unfortunately, the analytical expression of the

normalization constant n and moments E[rm] is very cumbersome and they
includes hypergeometric functions. Under these assumptions the process with
such a density has a bottom line equal to the largest root, i.e. r(t) � r0.

10 The Unrestricted Model II [1]

In the “unrestricted model II” process of short rate follows the equation

dr = k(θ − r)dt + σrγdW, γ > 0. (10)

Therefore μ(x) = k(θ − x), σ2(x) = σ2x2γ and the stationary density f(x)
has form

f(x) =
n

x2γ
e

1

x2γ

(
qx

1−2γ − cx2

2−2γ

)
, x > 0, (11)

where q =
2kθ

σ2
, c =

2k

σ2
, n is the normalization constant. The values of para-

meter γ, allowing the convergence of the integral of f(x) on the interval (0,∞),
determined by the inequality γ > 0.5. At the same time, there are two critical
points: γ = 0.5 (in this case, the model is transformed into a short-term rate
model CIR) and γ = 1, when the probability density is reduced to a form that
corresponds to process of the Brennan-Schwartz model [9]

f(x) =
q1+c

x2+cΓ (1 + c)
e− q

x , x > 0. (12)

When γ = 1.5, the “unrestricted model II” is known as the CKLS model. The
Vasicek model is also a model embedded in the “unrestricted model II” at γ = 0.
For existence of moments of order m, it is necessary the fulfilment of inequality
2γ > m+1. Unfortunately, the expression for the probability density in the gen-
eral case does not allow the calculation of moments in analytical form, although
for referred particular cases they are simply calculated. For the model CIR

E[Xm] =
Γ (m + q)
cmΓ (q)

,
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for Brennan-Schwartz model

E[Xm] = qm Γ (1 + c − m)
Γ (1 + c)

,

the moments of order m exist if the inequality m < 1 + c is fulfilled. So that

Model γ E[X] Var [X] Skewness Kurtosis

Vasicek 0 θ
σ2

2k
0 3

CIR 0.5
q

c
= θ

q

c2
=

σ2θ

2k
2
√

q 3 +
6

q

Brennan-Schwartz 1.0
q

c
= θ

θ2

c − 1

4
√

c − 1

c − 2

3(c − 1)(c + 6)

(c − 2)(c − 3)

CKLS 1.5
q

c
= θ not exist not exist not exist

Even before the appearance of the “unrestricted model II” models were used,
which then turned out to be special cases of this model. This is the model of the
CIR (1980) [10], which is obtained from the Eq. (10), if we assume that γ = 1.5
and k = 0. Another particular version is the CEV model, i.e. the model of
constant elasticity of variance that was proposed J. Cox and S. Ross (1976) [11],
as in Eq. (10) made θ = 0. The properties of the processes generated by these
models can be understood by considering the limiting transition k → 0 in the
first model or θ → 0 in the second. When k and θ are still finite the stationary
regimes in the models exist and the probability density of processes for these
models is expressed in the form (11). However, in the limiting case k = 0 or
θ = 0 stationary regimes of processes no longer exist, and the probability density
cannot be expressed in the form (11), and can be obtained as solutions of partial
differential equations

∂f(x, t|y, s)
∂t

− 1
2

∂2[σ2x3f(x, t|y, s)]
∂x2

= 0

for the CIR model (1980) and

∂f(x, t|y, s)
∂t

+ β
∂[xf(x, t|y, s)]

∂x
− σ2

2
∂2[x2γf(x, t|y, s)]

∂x2
= 0

for the CEV model at the boundary condition for both equations

lim
t→s

f(x, t|y, s) = δ(x − y).

Unfortunately, these equations cannot be solved analytically, but we can say that
for k = 0 or θ = 0 the process generated by the Eq. (10) becomes unsteady for
the CIR model (1980) with the constant expectation and increasing with time
variance, and for the CEV model changing with time both the expectation and
the variance.

The other non-stationary models are as following.
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11 The Merton Model [12]

dr(t) = αdt + σdW (t)

generates a nonstationary Gaussian process

r(t) = r(0) + αt + σW (t)

with a linearly varying expectation and linearly increasing variance

E [r|r(0)] = r(0) + αt, Var [r] = σ2t.

12 The Dothan Model [13]

The equation of the Dothan model

dr = σrdW

is solved in explicit form:

r(t) = r(0)e−0.5σ2t+σW (t),

which implies that a random process generated by the model has a log-normal
distribution and is non-stationary. The expectation is steady, but the variance
increases exponentially with time

E[r|r(0)] = r(0), Var [r|r(0)] = r(0)2
(
eσ2t − 1

)
.

13 The GBM Model [14]

The GBM model is a model of process geometric Brownian motion

dr = βrdt + σrdW

was introduced into the modern financial analysis by P. Samuelson (1965). It
generates a non-stationary process of geometric Brownian motion

r(t) = r(0)e(β−0.5σ2)t+σW (t).

In this case, the probability density of the interest rate is log-normal. Unlike
BDT model, which also generates a log-normal process, moments of r(t) in the
GBM model is not constant but increases exponentially with time, in particular,

E[r|r(0)] = r(0)eβt,

Var [r|r(0)] = r(0)2(λ − 1)e2βt, λ = eσ2t,

S = (λ + 2)
√

λ − 1,

K = λ4 + 2λ3 + 3λ2 − 3.

Expressions for skewness and kurtosis formally coincide with the expressions of
these characteristics of the BDT model, but parameter λ here is not constant
and increases exponentially with time.
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14 Conclusion

As mentioned above, the process of short-term rates is the basis for building
a term structure of the yield of zero-coupon bonds. This explains the interest
in the analysis of the processes of short-term rates. In the literature there are
many articles that made empirical attempts to find a model of short-term rates,
for which a term structure closest to the actual observed structure is obtained
[1–3]. On the other hand there is also empirical evidence in the literature that the
famous model of short-term rates do not provide an acceptable level of goodness-
of-fit [8]. Therefore there is a need for analytical studies to determine the degree
of risk in the use of a particular model of short-term rates of the yield. As a
necessary basis for this information is needed about the probability properties
of the short-term rate processes, expressed analytically. This is the subject of
this paper that shall be considered as the first stage of this work.
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