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Preface

The series of scientific conferences on Information Technologies and Mathematical
Modelling (ITMM) was started in 2002. In the beginning, its status was that of a
national conference but in 2012 become international. The conference series is named
after Alexander Terpugov, one of the first organizers of the conference, an outstanding
scientist of the Tomsk State University, a leader of the famous Siberian school on
applied probability, queueing theory, and applications.

Traditionally, the conferences has about 10 sections in various fields of mathe-
matical modelling and information technologies. Throughout the years, the sections on
probabilistic methods and models, queueing theory, telecommunication systems, and
software engineering have been the most popular ones at the conference. International
participation is presented by researchers from many countries: Austria, Azerbaijan,
Belarus, Bulgaria, China, Germany, Hungary, India, Italy, Kazakhstan, Korea, The
Netherlands, Poland, UK, USA, etc. Many of our foreign participants come to this
Siberia conference every year because there is a warm acceptance and serious scientific
discussions.

This volume presents selected papers devoted to new results in queueing theory and
its applications. It is aimed at specialists in probabilistic theory, random processes,
operations research, and mathematical modelling as well as engineers engaged in
logical and technical design and operational management of telecommunication and
computer networks, contact centers, manufacturing systems, etc.

September 2016 Alexander Dudin
Alexander Gortsev
Anatoly Nazarov
Rafael Yakupov
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Maximum Likelihood Estimation of the Dead
Time Period Duration in the Modulated

Semi-synchronous Generalized Flow of Events

Maria Bakholdina(B) and Alexander Gortsev

Department of Operations Research, Faculty of Applied Mathematics
and Cybernetics, National Research Tomsk State University,

36 Lenina Avenue, Tomsk 634050, Russia
maria.bakholdina@gmail.com

Abstract. This paper is focused on studying the modulated semi-
synchronous generalized flow of events which is one of the mathematical
models for incoming streams of events (claims) in computer communi-
cation networks and is related to the class of doubly stochastic Poisson
processes (DSPPs). The flow is considered in conditions of its incom-
plete observability, when the dead time period of a constant duration
T is generated after every registered event. This paper is devoted to
the maximum likelihood estimation of the dead time period duration on
monitoring the time moments of the flow events occurrence.

Keywords: Modulated semi-synchronous generalized flow of events ·
Doubly Stochastic Poisson Process (DSSP) · Markovian Arrival Process
(MAP) · Maximum likelihood estimation · Likelihood function · Dead
time period duration

1 Introduction

In the recent literature, the problem of studying doubly stochastic Poisson
processes (DSPPs) [1–6] has been of great interest, since DSPPs have found
applications in many fields such as network theory, peer-to-peer streaming net-
works and adaptive data streaming, optical communication systems, statistical
modeling, quantitative finance, spatial epidemiology, etc. [7–11]. In real situa-
tions the input flow parameters can be unknown or partially known or, worse,
may vary in time in a random way. That is why the central problems faced when
modeling these processes are: (1) flow states estimation on monitoring the time
moments of events occurrence (the filtering of the underlying and unobservable
intensity process) [12–15]; (2) flow parameters estimation on monitoring the time
moments of events occurrence [16–21].

It is worth noting that in most cases researchers consider the mathematical
models of flows where time moments of the flow events occurrence are observ-
able. In practice, however, any recording device (a server in this context) spends
some finite time on event measurement and registration, during which the server
c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 1–17, 2016.
DOI: 10.1007/978-3-319-44615-8 1



2 M. Bakholdina and A. Gortsev

cannot handle the next event correctly. In other words, every event registered by
a server causes a period which is called the period of dead time [19,20,22–26],
during which no other events are observed (they are lost). We may suppose that
this period has a fixed duration.

In this paper we continue to study the modulated semi-synchronous gener-
alized flow of events [15,27,28], which belongs to the class of doubly stochastic
Poisson processes (DSPPs) with a piecewise constant intensity process. There are
a large number of references in the literature which may be found in [15,28,29]
and contain studies of similar flows of events (synchronous, asynchronous and
semi-synchronous flows), herewith we shall note that these flows of events can
be presented as mathematical models of MAP-flows of events [29]. The present
paper is devoted to the maximum likelihood estimation of the dead time period
duration on monitoring the time moments of events occurrence. The rest of
the paper is organized as follows. In Sect. 2 we present the modulated semi-
synchronous generalized flow of events, which provides our modelling frame-
work. In Sect. 3 we describe the optimization problem consisting of maximizing
the likelihood function and, finally, find the solution of the optimization problem
in Sect. 4.

2 Problem Statement

We consider the modulated semi-synchronous generalized flow of events (further
flow or flow of events), whose intensity process is a piecewise constant stationary
random process λ (t) with two states 1, 2 (first, second correspondingly). In the
first state λ (t) = λ1 and in the second state λ (t) = λ2 (λ1 > λ2 � 0). During
the time interval of a random duration when the process λ (t) is in state λi

(λ (t) = λi), a Poisson flow of events with intensity λi, i = 1, 2, arrives. The
transition of the process λ (t) from the first state to the second state is possible
at any moment of a Poisson event occurrence in state 1 of the process λ (t),
herewith the process λ (t) can change its state to the second one with probability
p (0 � p � 1) or continue to stay in state 1 with complementary probability 1−p.
The transition of the process λ (t) from state 1 to state 2 is also possible at any
moment that does not coincide with the moment of a Poisson event occurrence,
herewith the duration of the process λ (t) staying in the first state is distributed
according to the exponential law with parameter β: F (τ) = 1−e−βτ , τ � 0. Then
the duration of the process λ (t) staying in the first state is distributed according
to the exponential law with parameter (pλ1 +β): F1(τ) = 1− e−(pλ1+β)τ , τ � 0.
The transition of the process λ (t) from the second state to the first state at the
moment of a Poisson event occurrence in state 2 is impossible and can be done
only at a random time moment. In this case the duration of the process λ (t)
staying in state 2 is distributed according to the exponential law with parameter
α: F2(τ) = 1 − e−ατ , τ � 0. At the moment when the state changes from
the second to the first one, an additional event is assumed to be initiated with
probability δ (0 � δ � 1). Such flows with additional events initiation are called
generalized flows. In accordance with these assumptions we can assert that λ (t)
is a Markovian process.
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Fig. 1. The formation of an observable flow of events

The registration of flow events is considered in conditions of a constant (unex-
tendable) dead time. The dead time period of a constant duration T begins after
every registered at the moment tk, k � 1, event. During this period no other
events are observed. When the dead time period is over, the first coming event
causes the next interval of dead time of duration T and so on. Figure 1 shows the
possible variant of the flow operation and observation. Here 1, 2 are the states
of the process λ (t); additional events, which may occur at the moment of the
process λ (t) transition from state 2 to state 1, are marked with letter δ; dead
time periods of duration T are marked with hatching; unobservable events are
displayed as black circles, observable events t1, t2, ... are shown as white circles.

The process λ (t) is considered in steady-state conditions, which is why we
may neglect transient processes at the interval of observation (t0, t], where t0 is
the instant of beginning the observations, t is the instant of ending the obser-
vations (the moment of a decision making). In steady-state conditions we may
take t0 = 0. We should note that the process λ (t) and possible events (events
of Poisson flows with intensity λi, i = 1, 2, and additional events) are basically
unobservable; we register only time moments t1, t2, ..., tk of events occurrence in
observable flow during the interval of observation (t0, t]. We assume that the flow
parameters λ1 > λ2 � 0, 0 � p � 1, β > 0, α > 0, 0 � δ � 1 are known and the
duration of the dead time period T is not known. In that way, the main problem
is to obtain the estimate T̂ of the dead time period duration at the moment t of
ending the observations on monitoring the time moments t1, t2, ..., tk of events
occurrence in an observable flow using the maximum-likelihood technique.
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3 Likelihood Function Construction

Let us denote by τk = tk+1 − tk, k = 1, 2, ..., the value of the k interval length
between two consecutive flow events (τk > 0). In steady-state conditions we
may accept that the probability density function of the k interval length is
pT (τk) = pT (τ), τ � 0, for any k (the index T stresses that the probability
density depends on the dead time period duration). Thereby we may also accept
that the time moment tk is equal to zero, i.e. the moment of the event occurrence
is τ = 0. Then one-dimensional probability density function pT (τ) can be written
as [28]

pT (τ) = 0, 0 � τ < T,

pT (τ) =
z1

z2 − z1

[
z2 − 1

β1 + β2
f (T )

]
e−z1(τ−T )

− z2
z2 − z1

[
z1 − 1

β1 + β2
f (T )

]
e−z2(τ−T ), τ � T ;

f(T ) = λ1α + (pλ1 + β)(λ2 + αδ) + α(λ1 − λ2 − αδ)

× {(pλ1 + β)[λ1(1 − p + pδ) − λ2 + δβ] − pλ1α}e−(β1+β2)T

F (T )
,

F (T ) = z1z2 − qe−(β1+β2)T , β1 = pλ1 + β, β2 = α,

q =λ1[λ2 − p(λ2 + αδ)],

z1,2 =
1
2

[
λ1 + λ2 + α + β ∓

√
(λ1 − λ2 − α + β)2 + 4αβ(1 − δ)

]
.

(1)

Now let τ1 = t2 − t1, τ2 = t3 − t2, ..., τk = tk+1 − tk, τ1 � 0, τ2 � 0, ...,
τk � 0, be the sequence of values of the interval lengths between consecutive flow
events measured during the interval of observation (0, t]. Arrange the variables
τ1, τ2, ..., τk in ascending order: τmin = τ (1) < τ (2) < ... < τ (k). Under the made
assumptions we can assert that the sequence of the time moments t1, t2, ..., tk, ...
corresponds to an embedded Markov chain {λ (tk)}, i.e. the flow has the Markov
property if the evolution of the flow is considered from the time moment tk,
k = 1, 2, ..., of the event occurrence.

As the main problem is to estimate the dead time period duration on the
assumption that the flow parameters λ1 > λ2 � 0, 0 � p � 1, β > 0, α > 0,
0 � δ � 1 are known, then according to the maximum-likelihood technique
we should maximize the likelihood function L

(
T |τ (1), ..., τ (k)

)
and solve the

following task of optimization:

L
(
T |τ (1), ..., τ (k)

)
=

k∏
j=1

pT

(
τ (j)

)
=⇒ max

T
, 0 � T � τmin, τmin > 0, (2)

where pT

(
τ (j)

)
is defined by (1) for τ = τ (j). The value of T , when the likelihood

function (2) reaches its global maximum, will be the estimate T̂ of the dead time
period duration.
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4 The Solution of the Optimization Problem (2)

Let us denote by τm = τmin. Since the likelihood function (2) is different from
zero when 0 � T � τm, assume that pT

(
τ (j)

)
= 0, j = 2, k, T > τm (τm > 0).

The situation continues when τm = 0, refers to the extension of defining the
functions being studied at the boundary points. Let us study the behaviour of
the function pT (τm) as a function of a variable T (0 � T � τm). We shall note
that pT (τm) � 0, as pT (τm) is the probability density function. Turn now to
studying the first derivative p′

T (τm) with respect to the argument T . We obtain

p′
T (τm) =

1
(z2 − z1)(β1 + β2)

× {z1e−z1τm [z1z2(β1 + β2) − z1f(T ) − f ′(T )]e−z1T

− z2e
−z2τm [z1z2(β1 + β2) − z2f(T ) − f ′(T )]e−z2T },

f ′(T ) = − α(λ1 − λ2 − αδ)(β1 + β2)z1z2
× {(pλ1 + β)[λ1(1 − p + pδ) − λ2 + δβ] − pλ1α}

× e−(β1+β2)T

F 2(T )
, 0 � T � τm,

(3)

where f (T ), F (T ) are defined by (1), f ′ (T ) is a derivative of f (T ) with respect
to the argument T .

Lemma 1. The derivative p′
T (τm) is a positive function of a variable τm for

T = 0, 0 � τm < ∞ (p′
T=0 (τm) > 0).

Proof. Since τm is an arbitrary nonnegative number (τm � 0), we can consider
p′

T=0 (τm) as a function of a variable τm. Substituting T = 0 into (3) and carrying
out some transformations, we obtain

p′
T=0 (τm) =

C

A2 (z2 − z1)
× [

z2(C − z1A)e−z2τm − z1(C − z2A)e−z1τm
]
, τm � 0,

C =λ1α[λ1(1 − p + pδ) + δβ] + (λ2 + αδ)[λ2(pλ1 + β) + pλ1α]
= − z1z2(β1 + β2) + (z1 + z2)A > 0,

A =λ1α + (pλ1 + β)(λ2 + αδ) = z1z2 − q > 0.

(4)

Let us consider the equation p′
T=0 (τm) = 0 for the purpose of finding roots,

which can be transformed to the following form using (4):

B = e−(z2−z1)τm , B =
z1 (z2A − C)
z2 (z1A − C)

. (5)

Taking into account (4) we also find

p′
T=0 (τm = 0) = (C/A)2 > 0, lim

τm→∞
p′

T=0 (τm) = ±0. (6)
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Substituting the expressions for z1, z2, that are defined by (1), into (5), we
obtain

B =
z21

[
−2A + (β1 + β2) (z1 + z2) + (β1 + β2)

√
D

]

z22

[
−2A + (β1 + β2) (z1 + z2) − (β1 + β2)

√
D

] =
B1

B2
.

where D = (λ1 − λ2 − α + β)2 + 4αβ(1 − δ).
It can be shown that B1 > 0 irrespective of the expression (λ1 − λ2 − α + β)

sign. There are two possible variants for the expression (5):

(1) B1 = z1 (z2A − C) > 0; B2 = z2 (z1A − C) > 0. Then B > 0 and the
difference B1 − B2 = C (z2 − z1) > 0. Consequently, B1 > B2 and B > 1.
Then the Eq. (5) does not have a solution and therefore p′

T=0 (τm) > 0,
τm � 0, since p′

T=0 (τm = 0) > 0 and lim
τm→∞ p′

T=0 (τm) = +0 due to (6).

(2) B1 = z1 (z2A − C) > 0; B2 = z2 (z1A − C) < 0. Then B < 0 and the Eq. (5)
does not have a solution. Therefore p′

T=0 (τm) > 0, τm � 0, similarly to the
previously described variant.

It remains to consider the case when z1A−C = 0. Substituting z1A−C = 0
into (4), we have

p′
T=0 (τm) =

C

A2 (z2 − z1)
(z2A − C) z1e

−z1τm > 0, τm � 0,

since B1 = z1 (z2A − C) > 0 and, consequently, z2A − C > 0.
Thus, if z2 (z1A − C) � 0 or z2 (z1A − C) < 0, then p′

T=0 (τm) > 0, τm � 0
Lemma 1 is proved.

Remark 1. q > q1.

Proof. As has already been pointed out in the course of the proof of Lemma 1,
z2A − C > 0. It can be shown that z2A − C = z1 (q − q1) and, consequently,
q > q1.

Lemma 2. The derivative p′
T (τm) is strictly greater than zero for T = τm

(p′
T=τm

(τm) > 0), 0 � τm < ∞.

Proof. Substituting T = τm into (3), we obtain

p′(τm) = p′
T=τm

(τm) =
1

β1 + β2

{
C + ϕ(q)Ψ(τm)

e−(β1+β2)τm

F 2 (τm)

}
,

Ψ(τm) =C + (z1 + z2) q
[
1 − e−(β1+β2)τm

]
,

ϕ(q) = (β1 + β2) C − A2 = −q2 + [2z1z2 − (β1 + β2) (z1 + z2)] q
− z1z2 (z1 − β1 − β2) (z2 − β1 − β2) ,

(7)
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where q, F (τm) are defined by (1); A, C are defined by (4). It can be shown that
ϕ(q) = − (q − q1) (q − q2), where q1 = z2 (z1 − β1 − β2), q2 = z1 (z2 − β1 − β2)
are the roots of the equation ϕ(q) = 0. Let us note that

p′(τm = 0) = (C/A)2 > 0, lim
τm→∞

p′ (τm) =
C

β1 + β2
> 0,

p′(τm = 0) − lim
τm→∞

p′ (τm) =
C

A2 (β1 + β2)
ϕ(q).

(8)

It follows from C > 0 that Ψ(τm) > 0, τm � 0. Then the sign of derivative
p′ (τm) depends on the sign of function ϕ(q). Then, if ϕ(q) � 0, the derivative
(7) is strictly greater than zero (p′(τm) > 0) for τm � 0.

Let us assume that ϕ(q) < 0. Introduce into consideration the second deriv-
ative p′′(τm) of a variable T at the point T = τm. Using (3), we obtain

p′′(τm) = −z1z2
ϕ(q)

F 3 (τm)
e−(β1+β2)τm

[
z1z2 (z1 + z2 − β1 − β2)

− (z1 + z2 + β1 + β2) qe−(β1+β2)τm

]
, τm � 0,

where q, F (τm) are defined by (1); ϕ(q) is defined by (7). Taking into account

that ϕ(q) < 0, we have
[
−z1z2

ϕ(q)
F 3 (τm)

e−(β1+β2)τm

]
> 0, therefore the sign of

p′′(τm) depends on the sign of function

y (τm) = z1z2 (z1 + z2 − β1 − β2) − (z1 + z2 + β1 + β2) qe−(β1+β2)τm , τm � 0.

Let us turn now to studying the function y (τm) as a function of a variable
τm (τm � 0). We have

y (0) =C − q (β1 + β2) ,

lim
τm→∞

y (τm) =y (∞) = z1z2 (z1 + z2 − β1 − β2) = z1z2 [λ1(1 − p) + λ2] > 0,

where q is defined by (1); C is defined by (4). At this point there are several
variants possible:

(1) q < 0 and, consequently, y (0) = C − q (β1 + β2) > 0. Then y (τm) is
a decreasing function of a variable τm (τm � 0); it decreases from
y (0) = C − q (β1 + β2) > 0 to y (∞) = z1z2 (z1 + z2 − β1 − β2) > 0. There-
fore y (τm) > 0, τm � 0. It follows that p′′(τm) > 0, τm � 0, and p′(τm) is an
increasing function of a variable τm (τm � 0). So, taking into account (8),
we have p′(τm) > 0, τm � 0.

(2) q = 0. Then y (τm) = z1z2 (z1 + z2 − β1 − β2) > 0, τm � 0. The result is
identical to the result for variant 1.

(3) q > 0. Then y (τm) is an increasing function of a variable τm (τm � 0); it
increases from y (0) = C − q (β1 + β2) to y (∞) = z1z2 (z1 + z2 − β1 − β2) >
0. At this variant there are three possible cases: (a) y (0) > 0; (b) y (0) = 0;
(c) y (0) < 0. Let us look at these cases one by one.
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Case (a): y (0) = C − q (β1 + β2) > 0. Then y (τm) > 0, τm � 0. It follows that
p′′(τm) > 0, τm � 0, and p′(τm) is an increasing function of a variable
τm (τm � 0). So, taking into account (8), we have p′(τm) > 0, τm � 0.

Case (b): y (0) = C − q (β1 + β2) = 0. Then y (τm) � 0, τm � 0, at that the
equality of zero (y (τm) = 0) holds only at the point τm = 0. The result
is identical to the result for case (a).

Case (c): y (0) = C − q (β1 + β2) < 0. Then: (1) y (τm) < 0, 0 � τm < τ∗
m;

(2) y (τm) = 0, τm = τ∗
m; (3) y (τm) > 0, τ∗

m < τm < ∞. Hence, the
derivative p′ (τm) reaches its minimal value p′ (τ∗

m) at the point
τm = τ∗

m. The point of minimum τm = τ∗
m is found from the equation

p′(τm) = 0:

τ∗
m = − 1

β1 + β2
ln

z1z2 (z1 + z2 − β1 − β2)
(z1 + z2 + β1 + β2) q

,
z1z2 (z1 + z2 − β1 − β2)

(z1 + z2 + β1 + β2) q
> 0.

Next, we calculate the p′ (τm) value at the point τ∗
m:

p′ (τ∗
m) =

1
β1 + β2

{
C + ϕ(q)

(z1 + z2 − β1 − β2)
2

4 (β1 + β2) q

}
.

It can be shown that p′ (τ∗
m) > 0. Finally we conclude p′ (τm) > 0, τm � 0.

Thus, if ϕ(q) < 0, then the derivative p′ (τm) is strictly greater than zero
(p′ (τm) > 0), τm � 0. Lemma 2 is proved.

Let us turn now to studying the derivative p′
T (τm) as a function of a variable

T , 0 � T � τm. Let us consider the equation p′
T (τm) = 0 for the purpose of

finding roots, which can be transformed to the following form using (3):

e−(z2−z1)(τm−T ) = f1 (T ) /f2 (T ) , 0 � T � τm,

f1 (T ) = z1 [z1z2 (β1 + β2) − z1f (T ) − f ′ (T )] ,
f2 (T ) = z2 [z1z2 (β1 + β2) − z2f (T ) − f ′ (T )] .

(9)

Then χ (T ) = e−(z2−z1)(τm−T ) is an increasing function of a variable T ,
0 � T � τm; it increases from χ (0) = e−(z2−z1)τm to χ (T = τm) = 1; its max-
imum value is 1.

Since τm can be equal to infinity, let us now study functions f1 (T ), f2 (T )
as functions of a variable T , T � 0.

Proposition 1. The function f1 (T ) = z1 [z1z2 (β1 + β2) − z1f (T ) − f ′ (T )],
T � 0, satisfies the following relations:

(1) f1 (0) = (β1 + β2)
z1C

A2
(z2A − C) = (β1 + β2)

z21C

A2
(q − q1) > 0, where

q1 = z2 (z1 − β1 − β2), q > q1;
(2) f1 (∞) = lim

T→∞
f1 (T ) = z1 (z2A − C) = z21 (q − q1) > 0;

(3) f ′
1(T ) =

z21z2 (β1 + β2)
F 3 (T )

ϕ (q) e−(β1+β2)T

×
[
z1z2 (z1 − β1 − β2) − (z1 + β1 + β2) qe−(β1+β2)T

]
, T � 0;
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(4) T1(q) is a bending point (or an inflexion point) of function f1 (T ):

T1(q) = − 1
β1 + β2

ln
z1z2 (z1 − β1 − β2)

(z1 + β1 + β2) q
,

z1 − β1 − β2

q
> 0; (10)

(5) f1 (T1(q)) =
z1 (z1 + β1 + β2)

2

4 (β1 + β2) q
[q − z2 (z1 − β1 − β2)]

×
[
q − z1 (z1 − β1 − β2)

2 (z2 − β1 − β2)
(z1 + β1 + β2)

2

]
,

z1 − β1 − β2

q
> 0,

where q11 = q1 = z2 (z1 − β1 − β2), q12 =
z1 (z1 − β1 − β2)

2 (z2 − β1 − β2)
(z1 + β1 + β2)

2 are

the roots of the equation f1 (T1(q)) = 0.
Here q, F (T ) are defined by (1); A, C are defined by (4); ϕ(q) is defined

by (7).

Lemma 3. f1 (T ) is a positive function (f1 (T ) > 0) of a variable T , T � 0.

Proof. Let q = q1, then

f1(T, q = q1) = z21 [z2 (β1 + β2) − z1z2 + z2 (z1 − β1 − β2)] = 0;

let q = q2, then

f1 (T, q = q2) = z21 (z2 − z1) (β1 + β2) > 0.

The points q = q1, q = q2 can be excluded from further consideration as ϕ(q) = 0
at these points. Let us discuss later all possible cases:

Case 1. ϕ (q) > 0, 0 < q1 < q < q2. The sign of derivative f ′
1 (T )

depends on the sign of function y1 (T ) = z1z2 (z1 − β1 − β2) −
(z1 + β1 + β2) qe−(β1+β2)T , T � 0. In this case y1 (T ) is an increas-
ing function of a variable T , T � 0; it increases from y1 (T = 0, q) < 0
to y1 (∞) = z1z2 (z1 − β1 − β2) > 0, i.e. it intersects only once the axis
of abscisses at the point T1(q), that is defined by (10). It follows that
the function f1 (T ) has only one point of minimum at T = T1(q). It
can be shown that f1 (T1(q)) > 0, then f1 (T ) > 0, T � 0. Finally, if
ϕ (q) > 0, 0 < q1 < q < q2, then f1 (T ) > 0, T � 0.

Case 2. ϕ (q) > 0, q1 = 0 < q < q2. In this case y1 (T ) = − (z1 + β1 + β2) ×
qe−(β1+β2)T < 0, T � 0. Then f ′

1 (T ) < 0, T � 0, i.e. f1 (T ) is a
decreasing function of a variable T , T � 0; it decreases from f1 (0) > 0
to f1 (∞) > 0. It follows that f1 (T ) > 0, T � 0. Finally, if ϕ (q) > 0,
q1 = 0 < q < q2, then f1 (T ) > 0, T � 0.

Case 3. ϕ (q) > 0, q1 < 0 < q < q2. In this case y1 (T ) = z1z2 (z1 − β1 − β2) −
(z1 + β1 + β2) qe−(β1+β2)T < 0, T � 0. Then f ′

1 (T ) < 0, T � 0;
further the idea is basically the same as in the proof of case 2. Finally,
if ϕ (q) > 0, q1 < 0 < q < q2, then f1 (T ) > 0, T � 0.
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Case 4. ϕ (q) > 0, q1 < q = 0 < q2. In this case y1 (T ) = z1z2 (z1 − β1 − β2) =
const < 0, T � 0. Then f ′

1 (T ) < 0, T � 0; further the idea is basically
the same as in the proof of case 2. Finally, if ϕ (q) > 0, q1 < q = 0 < q2,
then f1 (T ) > 0, T � 0.

Case 5. ϕ (q) > 0, q1 < q < 0 < q2. In this case y1 (T ) =
z1z2 (z1 − β1 − β2) − (z1 + β1 + β2) qe−(β1+β2)T , T � 0, and y1 (T )
is a decreasing function of a variable T , T � 0; it decreases from
y1 (T = 0, q) to y1 (∞) = z1z2(z1 − β1− β2) < 0. Let us look at
y1 (T = 0, q) = z1z2 (z1 − β1 − β2) − (z1 + β1 + β2) q, q1 � q � 0. We
have: (a) y1 (T = 0, q = q1) = −z2 (β1 + β2) (z1 − β1 − β2) > 0; (b)
y1 (T = 0, q = 0) = z1z2 (z1 − β1 − β2) < 0; (c) y1 (T = 0, q = q∗

1) = 0,
where q∗

1 = z1z2 (z1 − β1 − β2) / (z1 + β1 + β2), q1 < q∗
1 < 0. Then

for q1 < q < q∗
1 < 0 we have: (1) y1 (T ) > 0, 0 � T < T1(q); (2)

y1 (T ) = 0, T = T1(q); (3) y1 (T ) < 0, T > T1(q); T1(q) is defined
by (10). Therefore, for q1 < q < q∗

1 < 0 we have: (1) f ′
1 (T ) > 0,

0 � T < T1(q); (2) f ′
1 (T ) = 0, T = T1(q); (3) f ′

1 (T ) < 0, T > T1(q).
It follows that the function f1 (T ) has only one point of maximum at
T = T1(q) and thus f1 (T ) > 0, T � 0. For q = q∗

1 we have y1 (T ) =
z1z2 (z1 − β1 − β2)

[
1 − e−(β1+β2)T

]
< 0, T � 0. Then f ′

1 (T ) < 0,
T � 0, i.e. f1 (T ) is a decreasing function of a variable T , T � 0; it
decreases from f1 (0) > 0 to f1 (∞) > 0. It follows that f1 (T ) > 0,
T � 0. For q∗

1 < q < 0 the extreme point T = T1(q) does not exist
(T � 0), herewith y1 (T = 0, q) < 0 and, consequently, y1 (T ) < 0,
T � 0. Further the proof is entirely analogous to that of case 2. Finally,
if ϕ (q) > 0, q1 < q < 0 < q2, then f1 (T ) > 0, T � 0.

Case 6. ϕ (q) > 0, q1 < q < q2 = 0. In this case y1 (T ) =
−z1z2 (z2 − z1) − (z1 + z2) qe−z2T , T � 0, and y1 (T ) is a
decreasing function of a variable T , T � 0; it decreases from
y1 (T = 0, q) to y1 (∞) = −z1z2 (z2 − z1) < 0. Let us look at
y1 (T = 0, q) = − [z1z2 (z2 − z1) + (z1 + z2) q], q1 � q � q2 =
0. We have: (a) y1 (T = 0, q = q1) = −z22 (z1 − β1 − β2) > 0; (b)
y1 (T = 0, q = q2 = 0) = −z1z2 (z2 − z1) < 0; (c) y1 (T = 0, q = q∗

1) =
0, where q∗

1 = −z1z2 (z2 − z1) × (z1 + z2)
−1, q1 < q∗

1 < 0. Further the
idea is basically the same as in the proof of case 5. Finally, if ϕ (q) > 0,
q1 < q < q2 = 0, then f1 (T ) > 0, T � 0.

Case 7. ϕ (q) > 0, q1 < q < q2 < 0. In this case y1 (T ) = z1z2 (z1 − β1 − β2) −
(z1 + β1 + β2) qe−(β1+β2)T , T � 0, and y1 (T ) is a decreasing func-
tion of a variable T , T � 0; it decreases from y1 (T = 0, q) to
y1 (∞) = z1z2(z1 − β1− β2) < 0. Let us look at y1 (T = 0, q) =
z1z2 (z1 − β1 − β2) − (z1 + β1 + β2) q, q1 � q � q2 < 0. We
have: (1) y1 (T = 0, q = q1) = −z2 (β1 + β2) (z1 − β1− β2) > 0;
(2) y1 (T = 0, q = q2) = −z1 (β1 + β2) [z2 − z1 + (z2 − β1 − β2)], here
z2 − β1 − β2 < 0. At this point there are some variants possible. Vari-
ant (a): y1 (T = 0, q = q2) > 0. In this variant the function y1 (T )
intersects the axis of abscisses once at the point T1(q), that is defined
by (10). Then we have: (1) f ′

1 (T ) > 0, 0 � T < T1(q); (2) f ′
1 (T ) = 0,

T = T1(q); (3) f ′
1 (T ) < 0, T > T1(q). It follows that the function f1 (T )
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has only one point of maximum at T = T1(q) and thus f1 (T ) > 0,
T � 0, as f1 (0) > 0, f1 (∞) > 0, f1 (0) > f1 (∞). Variant (b):
y1 (T = 0, q = q2) = 0. The result is identical to the result obtained in
variant (a). Variant (c): y1 (T = 0, q = q2) < 0. The result is identical
to the result obtained in case 5. Finally, if ϕ (q) > 0, q1 < q < q2 < 0,
then f1 (T ) > 0, T � 0.

Summarizing the results obtained in cases 1–7, we have: if ϕ (q) >0,
q1 < q < q2, then f1 (T ) > 0, T � 0. We may now moce on to consider
the cases when ϕ (q) < 0. Since q > q1, the region where q � q1 can
be excluded from further consideration.

Case 8. ϕ (q) < 0, 0 < q1 < q2 < q. In this case y1 (T ) = z1z2 (z1 − β1 − β2) −
(z1 + β1 + β2) qe−(β1+β2)T , T � 0, and y1 (T ) is an increasing func-
tion of a variable T , T � 0; it increases from y1 (T = 0, q) to
y1 (∞) = z1z2(z1 − β1− β2) > 0. Let us look at y1 (T = 0, q) =
z1z2 (z1 − β1 − β2) − (z1 + β1 + β2) q, 0 < q1 < q2 � q. Then
y1 (T = 0, q = q2) < 0 and (1) y1 (T ) < 0, 0 � T < T1(q); (2)
y1 (T ) = 0, T = T1(q); (3) y1 (T ) > 0, T > T1(q); T1(q) is defined
by (10). Therefore, we have: (1) f ′

1 (T ) > 0, 0 � T < T1(q); (2)
f ′
1 (T ) = 0, T = T1(q); (3) f ′

1 (T ) < 0, T > T1(q). It follows that
the function f1 (T ) has only one point of maximum at T = T1(q),
herewith f1 (0) > 0, f1 (∞) > 0, f1 (0) < f1 (∞). Thus, f1 (T ) > 0,
T � 0. Finally, if ϕ (q) < 0, 0 < q1 < q2 < q, then f1 (T ) > 0, T � 0.

Case 9. ϕ (q) < 0, q1 = 0 < q2 < q. In this case y1 (T ) = − (z1 + β1 + β2) ×
qe−(β1+β2)T < 0, T � 0. Then f ′

1 (T ) > 0, T � 0, i.e. f1 (T ) is an
increasing function of a variable T , T � 0; it increases from f1 (0) > 0
to f1 (∞) > 0. It follows that f1 (T ) > 0, T � 0. Finally, if ϕ (q) < 0,
q1 = 0 < q2 < q, then f1 (T ) > 0, T � 0.

Case 10. ϕ (q) < 0, q1 < 0 < q2 < q. In this case y1 (T ) = z1z2 (z1 − β1 − β2)−
(z1 + β1 + β2) qe−(β1+β2)T < 0, T � 0. Then f ′

1 (T ) > 0, T � 0; further
the idea is basically the same as in the proof of case 9. Finally, if
ϕ (q) < 0, q1 < 0 < q2 < q, then f1 (T ) > 0, T � 0.

Case 11. ϕ (q) < 0, q1 < q2 < 0 < q. In this case y1 (T ) = z1z2 (z1 − β1 − β2)−
(z1 + β1 + β2) qe−(β1+β2)T < 0, T � 0. Then f ′

1 (T ) > 0, T � 0; further
the idea is basically the same as in the proof of case 9. Finally, if
ϕ (q) < 0, q1 < q2 < 0 < q, then f1 (T ) > 0, T � 0.

Case 12. ϕ (q) < 0, q1 < q2 < q = 0. In this case y1 (T ) = z1z2 (z1 − β1 − β2) =

const < 0, T � 0. Then f ′
1 (T ) > 0, T � 0; further the idea is basically

the same as in the proof of case 9. Finally, if ϕ (q) < 0, q1 < q2 < q = 0,
then f1 (T ) > 0, T � 0.

Case 13. ϕ (q) > 0, q1 < q2 < q < 0. In this case y1 (T ) = z1z2 (z1 − β1 − β2)−
(z1 + β1 + β2) qe−(β1+β2)T , T � 0, and y1 (T ) is a decreasing func-
tion of a variable T , T � 0; it decreases from y1 (T = 0, q) to
y1 (∞) = z1z2(z1 − β1− β2) < 0. Let us look at y1 (T = 0, q) =
z1z2 (z1 − β1 − β2) − (z1 + β1 + β2) q, q2 � q � 0. We have: (1)
y1(T = 0, q = q2) = −z1(β1 + β2)[z2 − z1 + (z2 − β1 − β2)]; (2)
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y1 (T = 0, q = 0) = z1z2 (z1 − β1 − β2) < 0. Now three subcases are
possible:

Subcase 13.1. y1 (T = 0, q = q2) > 0. At this point there are some variants pos-
sible. Variant (a): y1 (T = 0, q) > 0, q2 < q < q∗

1 < 0. In this
variant the function y1 (T ) intersects the axis of abscisses once
at the point T1(q), that is defined by (10). Then we have: (1)
f ′
1 (T ) < 0, 0 � T < T1(q); (2) f ′

1 (T ) = 0, T = T1(q); (3)
f ′
1 (T ) > 0, T > T1(q). It follows that the function f1 (T ) has

only one point of minimum at T = T1(q). It can be shown that
f1 (T1(q)) > 0, q2 < q < q∗

1 < 0, then f1 (T ) > 0, T � 0. Vari-
ant (b): y1 (T = 0, q) = 0, q = q∗

1 < 0. In this variant y1 (T ) is
a decreasing function of a variable T , T � 0; it decreases from
y1 (T = 0, q = q∗

1) to y1 (∞) = z1z2 (z1 − β1 − β2) < 0. Then: (1)
y1 (T ) < 0, T > 0; (2) y1 (T ) = 0, T = 0. Therefore, we have:
(1) f ′

1 (T ) > 0, T > 0; (2) f ′
1 (T ) = 0, T = 0. It follows that the

function f1 (T ) is an increasing function of a variable T , T > 0,
and nondecreasing function at the point T = 0; f1 (T ) increases
from f1 (0) > 0 to f1 (∞) > 0. Thus, f1 (T ) > 0, T � 0. Vari-
ant (c): y1 (T = 0, q) < 0, q∗

1 < q < 0. In this variant y1 (T )
is a decreasing function of a variable T , T � 0; it decreases
from y1 (T = 0, q) < 0 to y1 (∞) = z1z2 (z1 − β1 − β2) < 0. Then
y1 (T ) < 0, T > 0, and, consequently, f ′

1 (T ) > 0, T > 0. It fol-
lows that the function f1 (T ) is an increasing function of a vari-
able T , T � 0; it increases from f1 (0) > 0 to f1 (∞) > 0. Thus,
f1 (T ) > 0, T � 0. Here q∗

1 = z1z2 (z1 − β1 − β2) / (z1 + β1 + β2).
Subcase 13.2. y1 (T = 0, q = q2) = 0. In this subcase y1 (T ) is a decreasing func-

tion of a variable T , T � 0; it decreases from y1 (T = 0, q) < 0 to
y1 (∞) = z1z2 (z1 − β1 − β2) < 0. Then y1 (T ) < 0, T � 0, and
further the proof is entirely analogous to that of case 9.

Subcase 13.3. y1 (T = 0, q = q2) < 0. Further the proof is entirely analogous to
that of subcase 13.2.

Summarizing the results obtained in subcases 13.1–13.3, we have: if ϕ (q) < 0,
q1 < q2 < q < 0, then f1 (T ) > 0, T � 0. Summarizing the results obtained in
cases 8–13, we have: if ϕ (q) < 0, q1 < q2 < q, then f1 (T ) > 0, T � 0.

Finally, we have: (1) if ϕ (q) > 0, q1 < q < q2, then f1 (T ) > 0, T � 0; (2) if
ϕ (q) = 0, q = q2, then f1 (T ) = const > 0, T � 0; (3) if ϕ (q) < 0, q1 < q2 < q,
then f1 (T ) > 0, T � 0, where q1 = z2 (z1 − β1 − β2), q2 = z1 (z2 − β1 − β2) are
arbitrary real numbers. Lemma 3 is proved.

Proposition 2. The function f2 (T ) = z2 [z1z2 (β1 + β2) − z2f (T ) − f ′ (T )],
T � 0, satisfies the following relations:
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(1) f2 (0) = (β1 + β2)
z2C

A2
(z1A − C) = (β1 + β2)

z22C

A2
(q − q2), where q2 =

z1 (z2 − β1 − β2); herewith f2 (0) may be: (a) f2 (0) > 0, (b) f2 (0) = 0,
(c) f2 (0) < 0; q > q1, q1 < q2;

(2) f2 (∞) = lim
T→∞

f2 (T ) = z2 (z1A − C) = z22 (q − q2); herewith f2 (∞) may be:

(a) f2 (∞) > 0, (b) f2 (∞) = 0, (c) f2 (∞) < 0;

(3) f ′
2 (T ) =

z1z
2
2 (β1 + β2)
F 3 (T )

ϕ (q) e−(β1+β2)T
[
z1z2(z2 − β1 − β2) − (z2 + β1 + β2)

×qe−(β1+β2)T
]
, T � 0;

(4) T2(q) is a bending point (or an inflexion point) of function f2 (T ):

T2(q) = − 1
β1 + β2

ln
z1z2 (z2 − β1 − β2)

(z2 + β1 + β2) q
,

z2 − β1 − β2

q
> 0;

(5) f2 (T2(q)) =
z2 (z2 + β1 + β2)

2

4 (β1 + β2) q
[q − z1 (z2 − β1 − β2)]

×
[
q − z2 (z1 − β1 − β2) (z2 − β1 − β2)

2

(z2 + β1 + β2)
2

]
,

z2 − β1 − β2

q
> 0, where q22 =

q2 = z1 (z2 − β1 − β2), q21 =
z2 (z1 − β1 − β2) (z2 − β1 − β2)

2

(z2 + β1 + β2)
2 are the roots

of the equation f2 (T2(q)) = 0.

Here q, F (T ) are defined by (1); A, C are defined by (4); ϕ(q) is defined
by (7).

Lemma 4. The function f2 (T ) is a negative function (f2 (T ) < 0) of a variable
T , T � 0, if ϕ (q) > 0, q1 < q < q2, and f2 (T ) is a positive function (f2 (T ) > 0)
of a variable T , T � 0, if ϕ (q) < 0, q1 < q2 < q, where q1 = z2 (z1 − β1 − β2),
q2 = z1 (z2 − β1 − β2) are arbitrary real numbers.

Proof. The proof is very similar to the proof of Lemma3.

Let us turn now to studying the function Φ (T ) = f1 (T )−f2 (T ) as a function
of a variable T , T � 0.

Proposition 3. The function Φ (T ) = f1 (T ) − f2 (T ), T � 0, satisfies the
following relations:

(1) Φ (T ) = (z2 − z1) [−z1z2 (β1 + β2) + (z1 + z2) f (T ) + f ′ (T )], T � 0;
(2) Φ (0) = (z2 − z1) (β1 + β2) (C/A)2 > 0, consequently, f1 (0) > f2 (0);
(3) Φ (∞) = lim

T→∞
Φ (T ) = (z2 − z1) C > 0, consequently, f1 (∞) > f2 (∞);

(4) Φ (0) − Φ (∞) = (z2 − z1) ϕ (q) C/A2;

(5) Φ′ (T ) = − (z2 − z1) ϕ (q)
z1z2 (β1 + β2) e−(β1+β2)T

F 3 (T )
× [

z1z2 (z1 + z2 − β1 − β2) − (z1 + z2 + β1 + β2) qe−(β1+β2)T
]
, T � 0;
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(6) T ∗(q) is a bending point (or an inflexion point) of function Φ (T ):

T ∗(q) = − 1
β1 + β2

ln
z1z2 (z1 + z2 − β1 − β2)

(z1 + z2 + β1 + β2) q
,

z1 + z2 − β1 − β2

q
> 0;

(7) Φ (T ∗(q)) = (z2 − z1)

{
C + ϕ(q)

(z1 + z2 − β1 − β2)
2

4 (β1 + β2) q

}
,

z1 + z2 − β1 − β2

q
> 0.

Here q, F (T ) are defined by (1); A, C are defined by (4); ϕ(q) is defined
by (7).

Lemma 5. The function Φ (T ) is a positive function (Φ (T ) > 0) of a variable
T , T � 0, i.e. f1 (T ) > f2 (T ), T � 0.

Proof. The proof is very similar to the proof of Lemma3.

Theorem 1. The derivative p′
T (τm) is a positive function (p′

T (τm) > 0) of a
variable T , 0 � T � τm, 0 � τm < ∞, for any set of parameters λ1 > λ2 � 0,
0 � p � 1, β > 0, α > 0, 0 � δ � 1.

Proof. The proof is based on consistent application of Lemmas 1–5:

(1) If ϕ (q) > 0, q1 < q < q2, q �= q2, then f1 (T ) > 0, f2 (T ) < 0, T � 0. Thus,
f1 (T ) /f2 (T ) < 0, T � 0, including 0 � T � τm. It follows that the Eq. (9)
does not have a solution and therefore p′

T (τm) does not reach zero point
for 0 � T � τm. Since p′

T=0 (τm) > 0, p′
T=τm

(τm) > 0, then p′
T (τm) > 0,

0 � T � τm.
(2) If ϕ (q) = 0, q = q1, q �= q2, then f1 (T ) = 0, f2 (T ) < 0, T � 0. Thus,

f1 (T ) /f2 (T ) = 0, T � 0, including 0 � T � τm. It follows that the Eq. (9)
does not have a solution and, consequently, p′

T (τm) > 0, 0 � T � τm.
(3) If ϕ (q) = 0, q �= q1, q = q2, then f1 (T ) > 0, f2 (T ) = 0, T � 0. In this case

the Eq. (9) can be converted into the following equation to avoid divide-by-
zero error:

e(z2−z1)(τm−T ) = f2 (T ) /f1 (T ) , 0 � T � τm. (11)

Thus, f2 (T ) /f1 (T ) = 0, T � 0, including 0 � T � τm. It follows that the
Eq. (11) does not have a solution and, consequently, the Eq. (9) also does not
have a solution. Finally, p′

T (τm) > 0, 0 � T � τm.
(4) If ϕ (q) < 0, q > q2, then f1 (T ) > 0, f2 (T ) > 0, f1 (T ) > f2 (T ), T � 0.

Thus, f1 (T ) /f2 (T ) > 1, T � 0, including 0 � T � τm. It follows that the
Eq. (9) does not have a solution and therefore p′

T (τm) > 0, 0 � T � τm. The
Theorem 1 is proved.

Theorem 2. The probability density function pT (τm) is an increasing func-
tion of a variable T , 0 � T � τm, 0 � τm < ∞, for any set of parameters
λ1 > λ2 � 0, 0 � p � 1, β > 0, α > 0, 0 � δ � 1, and reaches its global
maximum at the point T = τm, 0 � τm < ∞.
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Proof. The proof follows from the proof of Theorem1.

Corollary 1. By Theorem1, functions pT

(
τ (j)

)
, j = 2, k, are increasing func-

tions of a variable T , 0 � T � τ (j), 0 � τ (j) < ∞, j = 2, k, for any set of
parameters λ1 > λ2 � 0, 0 � p � 1, β > 0, α > 0, 0 � δ � 1.

Corollary 2. By Theorem2, the likelihood function L
(
T |τ (1), ..., τ (k)

)
reaches

its global maximum at the point T̂ = τm, i.e. the solution of optimization task (2)
is the estimate of the dead time period duration: T̂ = τm.

5 Conclusion

The obtained results provide the possibility of solving the problem of parame-
ters estimation of the modulated semi-synchronous generalized flow of events in
conditions of a constant dead time without using numerical methods: during the
observation of the flow (during the time interval (0, t]) the values τk, k = 1, n, are
calculated; τmin = min τk, k = 1, n, is found and the estimate of the dead time
period duration is assumed to equal T̂ = τmin. Let us note that the maximum
likelihood estimate of the dead time period duration will always be shifted for
a finite value of t (τmin > T ); the unbiasedness of the estimate will take place
only in an asymptotic case (t → ∞).

Acknowledgments. The work is supported by Tomsk State University Competitive-
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Abstract. The authors consider the Markov modulated Poisson process
with two states of the Markovian controlling chain. The flow intensity
of the observed process depends on the unobserved controlling chain
state. All the process parameters are supposed to be unknown. The paper
develops a new sequential change-point detection method based on the
cumulative sum control chart approach to determine the switching points
of the flow intensity. Usage of special sign statistics allows the obtaining
of theoretical characteristics of the proposed algorithm.

Keywords: Markov modulated Poisson process · Jump intensity ·
Change-point detection · Sign statistics · CUSUM algorithm

1 Introduction

The Markov-modulated Poisson process (MMPP) has been extensively used for
modeling Poisson processes whose arrival intensities vary randomly over time.
It qualitatively models the time-varying arrival rate and captures some of the
important correlations between the interarrival times while still remaining ana-
lytically tractable [1]. It can be described as a Poisson process whose intensity
is determined by a controlling chain state. Transition between the states occurs
in unknown random instants, and the time of being in a state is distributed
exponentially.

MMPP arise in many applications of interest, such as Web-servers, multime-
dia traffic, call-centers, cell phone call activity, product demand, etc. Mingrui Zou
and Jianqing Liu in [2] use MMPP to investigate an unsaturated IEEE 802.16
network with the contention-based access mechanism. The authors model packet
arrivals at each subscriber station as a MMPP) and derive analytical expressions
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A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 18–33, 2016.
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for the network throughput and packet delay subject to the MMPP parameters,
i.e., the steady-state probabilities and the average arrival rate.

Nogueira et al. in [3] use a superposition of discrete time MMPP model
(dMMPP) for the modeling of network traffic on multiple time scales. Two
Markovian models are proposed: the fitting procedure of the first model matches
the complete distribution of the arrival process at each timescale of interest,
while the second proposed model is constructed using a hierarchical procedure
that decomposes each MMPP state into new MMPPs that incorporate a more
detailed description of the distribution at finer time scales. The traffic process is
then represented by a MMPP equivalent to the constructed hierarchical struc-
ture. Both approaches use estimators of the characterizing parameters of each
MMPP, that is, the matrices corresponding to the transition probabilities and
the Poisson arrival rates for each state.

Giacomazzi in [4] develops a method for using traffic sources modeled as
a MMPP in the framework of the bounded-variance network calculus, a novel
stochastic network calculus framework for the approximated analysis of end-
to-end network delay. The mean and the variance of the cumulative traffic are
analyzed for two traffic envelopes, the first, the two-moment envelope, is an
approximation of traffic with the same first two moments of the actual source
traffic. The second, the linear envelope, provides a less precise approximation
but it permits the closed-form analysis of single-node and end-to-end delay with
several types of important schedulers.

Choi et al. in [5] consider MMPP as model for traffic streams with bursty
characteristic and time correlation between interarrival times. Traffics such as
voice and video in ATM networks have these properties. By using the embed-
ded Markov chain method, the authors derive the queue length distribution at
departure epochs. They also obtain the queue length distribution at an arbitrary
time by the supplementary variable method. The authors apply the results for
preventive congestion control in telecommunication networks.

There exist a number of rather complicated flow models based on the MMPP.
Vasil’eva and Gortsev in [6] study an asynchronous double stochastic flow of
events where each event results in a dead time period when other events cannot
be observed. The authors determine the Laplace transformation of the event-
event interval probability density in the observed flow and derive the equations
of moments for the estimation of dead time and initial event flow parameters.
Gortsev and Nezhelskaya in [7] study the stationary mode of an asynchronous
double stochastic flow with initiation of superfluous events. The authors deter-
mine important properties of the flow studied as interval probability density and
joint probability density of neighboring intervals lengths. Also this work speci-
fies conditions in which the flow either becomes recursive or degenerates to an
elementary one.

The papers surveyed above describe some applications of the MMPP process
but of course not all of them. To take decisions concerning process behavior
and to develop dispatching rules one needs to fit a model and to evaluate the
model parameters. There are two classical approaches to the MMPP parameter
estimation problem: maximum likelihood estimation and its implementation via
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the EM (expectation-maximization) algorithm and matching moment method.
A detailed survey of former methods is given in [8]. The survey [9] with a huge
bibliography is focused on the latter methods. These approaches are connected
with complicated numerical calculations. It implies difficulties in their theoret-
ical investigations and, hence, the necessity of their study via simulation. That
stresses the urgency of the MMPP parameter estimation problem and necessity
of simple efficient estimation algorithms, whose non-asymptotic properties can
be investigated theoretically.

In [10], we a the sequential analysis approach to parameter estimation for
MMPP process. The time intervals between the observed flow events were consid-
ered as the values of a stochastic process. The mean of the process was supposed
to change in some unknown instants, or change points.

The problem of sequential change-point detection can be formulated as fol-
lows. A stochastic process is observed. Several parameters of the process change
in random points. The problem is to detect the change points when the process
is observed online. Sequential methods include a special stopping rule that deter-
mines a stopping time. At this instant, a decision on the change point can be
made. There are two types of errors typical for sequential change-point detection
procedures: a false alarm, when one makes a decision that change has occurred
before a change point (type 1 error), and delay, when the change is not detected
(type 2 error).

At the first stage of the algorithm, these change points were detected by using
CUSUM (cumulative sum control chart) algorithms. After that the intensity
parameters were estimated under the assumption that the intensity was constant
between detected change points. The quality of the proposed algorithms was
studied via simulation.

In this paper, a modification of the CUSUM algorithm is proposed. Instead
of the lengths of the interval between events, special sign statistics are used at
the change-point detection procedure. It allows us to investigate theoretically the
properties of the algorithm and give recommendations concerning the parameter
choice.

2 Problem Statement

We consider a Markov-modulated poisson process, i.e. a flow of events controlled
by a Markovian chain with a continuous time. The chain has two states and
transition between the states happens at random instants. The time of sojourn
of the chain in the i-th state is exponentially distributed with the parameter αi,
i = 1, 2.

The flow of events has exponential distribution with the intensity parameter
λ1 or λ2 subject to the state of the Markovian chain. We suppose that the
intensity of the switch between the controlling chain states is sufficiently smaller
then the intensity of the arrival process, i.e. αi << λi. In this case, several events
commonly occur before the change of the controlling chain state. The parameters
of the system λ1, λ2 and the instants of switching between the states are supposed
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to be unknown. The sequence of instants of arriving events is observed. The
problem is to estimate the parameters λ1, λ2, α1, α2.

3 Sign CUSUM Algorithm

Consider the process {τi}i≥1, where τi = ti − ti−1 is the length of the i-th
interval between arriving events in the observed flow. Figure 1 demonstrates the
construction of the sequence {τi}.

Fig. 1. Construction of the sequence {τi}.

If the controlling chain is in the l-th state then the mean length between
events is equal to 1/λl. So at the first stage of our procedure we try to detect
the instants of the chain transition from one state to another as the instants of
change in the mean of the process {τi}i≥1 using the Sign CUSUM procedure.
At the first time such algorithm was proposed in [11] and developed in [12]
for the case of the single change point. In this paper we consider the multiple
change-point detection problem which has some special features.

Now we describe the procedure. Let the parameters λ1, λ2 satisfy the
condition

0 < λ2 < λ1;
1
λ2

− 1
λ1

> Δ,
(1)

where Δ is a certain known positive parameter. Choose then an integer para-
meter k describing the memory depth. The idea is to compare the values τi and
τi−k. If there are no changes in the controlling chain state within the interval
[ti−k−1, ti] then the variables τi and τi−k have the identical exponential distrib-
ution with the mean 1/λ1 or 1/λ2. If the chain state changes within the interval
[ti−k−1, ti] then the expectations of the values τi and τi−k are different.

For the case of the single change-point detection the parameter k is taken
commonly as large as possible in order to guarantee that the decision is taken
while the means of the variables are different. For our case of multiple change-
point detection the parameter k should not be too large so as to contain more
than one chain state change within the interval [ti−k−1, ti]. In paper [10] we
recommended choosing k ≈ r/2, where λi ≥ rαi. Further we consider the choice
of the algorithm parameters in more detail.

As the initial state of the chain is unknown, we shall consider two CUSUM
procedures simultaneously. The first procedure is set up to detect an increase
in the mean of the process and, hence, decrease of the intensity, and the second
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procedure is set up to detect an decrease in the mean and, hence, increase of the
intensity. For the first procedure we introduce the sequence of the statistics

z
(1)
i = n (sign(τi − τi−k) − δ) , i > k. (2)

For the second procedure we introduce the sequence of the statistics

z
(2)
i = n (sign(τi−k − τi) − δ) , i > k. (3)

These statistics are calculated at the instant ti. Here δ = m/n, m and n are
integers, m < n, and the fraction m/n is irreducible.

Consider then four hypothese concerning the state of the controlling chain:

– H1(ti−k−1, ti) – the intensity of the arrival process on the interval [ti−k−1, ti]
is constant and equal to λ1;

– H2(ti−k−1, ti) – the intensity of the arrival process on the interval [ti−k−1, ti]
is constant and equal to λ2;

– H1,2(ti−k, ti−1) – the intensity of the arrival process on the interval [ti−k, ti−1]
changed once from λ1 to λ2, i.e., decreased;

– H2,1(ti−k, ti−1) – the intensity of the arrival process on the interval [ti−k, ti−1]
changed once from λ2 to λ1, i.e., increased.

Note that in the conditions of the hypothesis Hl(ti−k−1, ti) the random vari-
ables τi and τi−k have the same mean and the functions sign(τi − τi−k) and
sign(τi−k − τi) take the values 1 and –1 with the equal probabilities 1/2. So, in
this case the expectation of the statistics z

(l)
i is negative. To implement CUSUM

procedures it is necessary to provide positive expectations of the statistics z
(1)
i

and z
(2)
i after an increase or decrease in the mean of τi correspondingly. So,

introducing the notations

p = P{τi ≥ τi−k|H1,2(ti−k, ti−1)} = P{τi−k ≥ τi|H2,1(ti−k, ti−1)};
q = P{τi < τi−k|H1,2(ti−k, ti−1)} = P{τi−k < τi|H2,1(ti−k, ti−1)},

(4)

where p > 1/2, q < 1/2, p + q = 1 we can obtain the following result.

Theorem 1. If the parameter δ satisfies the condition

δ < 2p − 1, (5)

then the statistics z
(j)
i , j ∈ {1, 2} (2) and (3) have the following properties:

E
[
z
(1)
i

∣∣∣ Hl(ti−k−1, ti)
]

= −m < 0, l = 1, 2;

E
[
z
(1)
i

∣∣∣ H2,1(ti−k, ti−1)
]

= −n(2p − 1) − m < 0;

E
[
z
(1)
i

∣∣∣ H1,2(ti−k, ti−1)
]

= n(2p − 1) − m > 0;

E
[
z
(2)
i

∣∣∣ Hl(ti−k−1, ti)
]

= −m < 0, l = 1, 2;

E
[
z
(2)
i

∣∣∣ H1,2(ti−k, ti−1)
]

= −n(2p − 1) − m < 0,

E
[
z
(2)
i

∣∣∣ H2,1(ti−k, ti−1)
]

= n(2p − 1) − m > 0.

(6)
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Proof. Using (4) and (5) one obtains

E
[
z
(1)
i

∣∣∣ Hl(ti−k−1, ti)
]

= n (E [ sign(τi − τi−k)|Hl(ti−k−1, ti)] − δ)
= n((1/2 − 1/2) − δ) = −m < 0;

E
[
z
(1)
i

∣∣∣ H2,1(ti−k, ti−1)
]

= n (E [ sign(τi − τi−k)|H2,1(ti−k, ti−1)] − δ)
= n((q − p) − δ) = −n(2p − 1) − m < 0;

E
[
z
(1)
i

∣∣∣ H1,2(ti−k, ti−1)
]

= n (E [ sign(τi − τi−k)|H1,2(ti−k, ti−1)] − δ)
= n((p − q) − δ) = n(2p − 1) − m > 0;

E
[
z
(2)
i

∣∣∣ Hl(ti−k−1, ti)
]

= n (E [ sign(τi−k − τi)|Hl(ti−k−1, ti)] − δ)
= n((1/2 − 1/2) − δ) = −m < 0;

E
[
z
(2)
i

∣∣∣ H1,2(ti−k, ti−1)
]

= n (E [ sign(τi−k − τi)|H1,2(ti−k, ti−1)] − δ)
= n((q − p) − δ) = −n(2p − 1) − m < 0;

E
[
z
(2)
i

∣∣∣ H2,1(ti−k, ti−1)
]

= n (E [ sign(τi−k − τi)|H2,1(ti−k, ti−1)] − δ)
= n((p − q) − δ) = n(2p − 1) − m < 0

So the average values of statistics (2) and (3) change from a negative value
to positive when the intensity of the process changes. Besides, the statistic z

(1)
i

reacts to decrease the intensity, i.e., to increase the mean length of the interval
between events; the statistic z

(2)
i reacts to increase the intensity, i.e., to decrease

the mean length of the interval between events. These properties determine the
construction of the procedures. We introduce positive values h1 and h2 as the
procedures thresholds and construct the cumulative sums S

(1)
i and S

(2)
i which

are recalculated at the instants ti. For the first procedure it is defined as follows

S
(1)
k = m + n;

S
(1)
i = max{m + n, S

(1)
i−1 + z

(1)
i }, i > k;

S
(1)
i = m + n, if S

(1)
i ≥ h1.

(7)

For the second procedure the cumulative sum is defined as follows

S
(2)
k = m + n;

S
(2)
i = max{m + n, S

(2)
i−1 + z

(2)
i }, i > k;

S
(2)
i = m + n, if S

(2)
i ≥ h2.

(8)

If the cumulative sum S
(1)
i reaches the threshold h1 then we make the decision

that the mean time between events increased and hence the intensity of the
process decreased, i.e., it changed from λ1 to λ2. If the cumulative sum S

(2)
i

reaches the threshold h2 then we make the decision that the mean time between
events decreased and hence the intensity of the process increased, i.e., it changed
from λ2 to λ1. Once the sum reaches the threshold it is reset to m + n and the
corresponding procedure is restarted.

In connection with sequential change-point detection procedures two types
of errors are considered: the false alarm and the skip of the change. A false alarm
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occurs when one of the cumulative sums reaches the corresponding threshold in
the case of the constant intensity of the arrival process. These events can be
described as follows:

F1 =
{

S
(1)
i ≥ h1

∣∣∣ Hl(ti−k−1, ti) ∪ H2,1(ti−k, ti−1)
}

;

F2 =
{

S
(2)
i ≥ h2

∣∣∣ Hl(ti−k−1, ti) ∪ H1,2(ti−k, ti−1)
}

.
(9)

A skip of the change occurs when the change of the parameter occurs but the
corresponding cumulative sum does not reach its threshold. These events can be
described as follows:

G1 =
{

S
(1)
i < h1

∣∣∣ H1,2(ti−k, ti−1)
}

;

G2 =
{

S
(2)
i < h2

∣∣∣ H2,1(ti−k, ti−1)
}

.
(10)

4 Characteristics of the Algorithm

4.1 Probability p

First, we calculate the probability p (4) as

p = P{τi ≥ τi−k|H1,2(ti−k, ti−1)}.

In the conditions of the hypothesis H1,2(ti−k, ti−1) the variable τi−k is distrib-
uted exponentially with the parameter λ1, and the variable τi is distributed
exponentially with the parameter λ2, hence

p =

∞∫
0

P{τi > t}dP{τi−k < t} =

∞∫
0

e−λ2tλ1e
−λ1tdt =

λ1

λ1 + λ2
.

According to (1), p > 1/2, and we obtain

p =
λ1

λ1 + λ2
, q =

λ2

λ1 + λ2
. (11)

4.2 Average Delay

Then, we investigate the characteristics of the change-point detection procedure
if the change occurs more then once. Figure 4 demonstrates an example of the
multiple change point.

In the case of the multiple change-point detection problem any parameter
change should be detected before the next change occurs. Without loss of gen-
erality, we consider the first procedure and suppose that at the instant θ1 the
intensity parameter changes from λ1 to λ2, and then at the instant θ2 it changes
from λ2 to λ1, so, our procedure should detect the first change. The first change
occurs within the interval [ti−1, ti], and the second change occurs within the
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Fig. 2. Multiple change point

interval [ti+j , ti+j+1]. It means that the first change should be detected at the
interval [ti, tj ], i.e., the cumulative sum should reach the threshold no later than
at the instant tj . On the other hand, the expectation of the statistics z

(1)
i+a is

positive if and only if a ≤ j, a ≤ k − 1, so, the change should be detected not
more than in k−1 steps. Consequently, the most important characteristics of any
multiple change-point detection algorithm are those connected with the delay in
the detection (Fig. 2).

Note that in the conditions of the hypothesis H1,2(ti−k, ti), at the instant
ti+1, the cumulative sum can increase by n − m with the probability p, and it
can decrease by n + m with the probability q. Let us introduce the following
notations

n + m = N, n − m = M.

To simplify the further calculations, we suppose that M > 1.
The cumulative sum is recalculated at the moments when the flow events

occur. We will call every such recalculation a step. We denote the mean number
of steps for the sum S

(1)
i necessary to reach the threshold h(1) if at the moment i

the sum is equal to j as T (1)(j). Taking into account that N is the minimal value
of the cumulative sum one obtains that the mean delay for the first procedure is

T
(1)
delay = T (1)(N). (12)

The values T (1)(j) satisfy the following set of equations [11,12]

T (1)(j) = 1 + pT (1)(j + M) + qT (1)(j − N) (13)

with the initial conditions

T (1)(h(1)) = ... = T (1)(h(1) + M − 1) = 0;
T (1)(0) = ... = T (1)(N − 1) = T (1)(N).

(14)

The decision of this system is obtained at [11,12] and can be written as follows

T (1)(j) =
j

qN − pM
+ A1μ

j
1 + ... + AN+Mμj

N+M , (15)

where μ1, ..., μN+M are the roots of the characteristic polynomial of system (13)

P1(μ) = pμN+M − μN + q. (16)
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The exact formulas for the decision (15) are given in [11,12]. For the second
procedure one can obtain the same result. These imply the following lower bound
for the memory depth parameter k

k ≥ T (1)(N) + 1. (17)

Table 1 demonstrates some values of the mean delay T (1) = T (1)(N) subject
to the parameters λ1, λ2 and h(1). Here δ = 1/5, i.e., M = 4, N = 6.

Table 1. Average delay

λ1 λ2 p q h T (1) h T (1) h T (1) h T (1)

2 0.4 0.83 0.17 42 12.12 62 19.01 77 24.12 97 30.9

2 0.6 0.77 0.23 37 13.27 52 20.24 72 29.23 87 35.94

2 0.8 0.71 0.29 32 15.85 47 26.04 67 39.34 82 49.23

2 1 0.67 0.33 32 19.07 47 33.04 62 47.23 77 61.57

Let us calculate now the mean delay not in terms of steps, but in terms of
real time between the change point and the instant of its detection. If the change
point is detected in b steps, i.e., at the instant ti+b then the time necessary to
detect the change can be expressed as follows

ti+b − ti =
b∑

j=1

τi+j .

So the mean time of the change-point detection can be written in the form

Q
(1)
delay = E

b∑
j=1

τi+j .

If θ1 ∈ [ti−1, ti], k > b and θ2 > ti+b then the random variables τi+j and b satisfy
the following conditions

(a) {τi+j} are all finite-mean random variables having the same expectations;
(b) Eτi+j1b≥i+j = Eτi+j1S

(1)
i+j−1<h1 = Eτi+jP (S(1)

i+j−1 < h1);
(c) b has a finite expectation.

So, using the Wald’s identity [13] one can obtain

Q
(1)
delay = EτiEb =

1
λ2

T
(1)
delay. (18)

The change point θ1 should be detected earlier then the next change occurs,
so, the necessary condition for this is ti+b < θ2, or ti+b − θ1 < θ2 − θ1. Rewriting
the left side of the expression

ti+b − θ1 =
b∑

j=1

τi+j + (ti − θ1)
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and taking into account that ti − θ1 has exponential distribution with the para-
meter λ2, we obtain the following condition

E(ti+b − θ1) = Q
(1)
delay + E(ti − θ1) ≤ Q

(1)
delay +

1
λ2

=
1
λ2

(
T

(1)
delay + 1

)
.

The variable θ2 − θ1 is distributed exponentially with the parameter α2. This
and (18) implies the condition

1
λ2

(
T

(1)
delay + 1

)
<

1
α2

(19)

4.3 Average Time Between False Alarms

A false alarm occurs when the cumulative sum reaches the corresponding thresh-
old in the conditions of the hypothesis Hl(ti−k−1, ti+1). At the instant ti+1, the
cumulative sum can increase by M or decrease by N with the probability 1/2.

Let us denote the mean number of steps for the sum S
(1)
i necessary to reach

the threshold h(1) if at the moment i the sum is equal to j as R(1)(j). Taking
into account that N is the minimal value of the cumulative sum one obtains that
the mean number of steps between false alarms for the first procedure is

T
(1)
alarm = R(1)(N). (20)

The values R(1)(j) satisfy the following set of equations [11,12]

R(1)(j) = 1 +
1
2
R(1)(j + M) +

1
2
R(1)(j − N) (21)

with the initial conditions

R(1)(h(1)) = ... = R(1)(h(1) + M − 1) = 0;
R(1)(0) = ... = R(1)(N − 1) = R(1)(N).

(22)

The decision of this system is obtained at [11,12] and can be written as follows

R(1)(j) =
2j

N − M
+ C1μ

j
1 + ... + CN+Mμj

N+M , (23)

where μ1, ..., μN+M are the roots of the characteristic polynomial of system (21)

P1(μ) = μN+M − 2μN + 1. (24)

The exact formulas for the decision (23) are given in [11,12]. For the second
procedure one can obtain the same result.

Table 2 demonstrates some values of the mean number of steps between false
alarms R(1) = R(1)(N) subject to the parameter h = h(1).

As for the mean delay, we can obtain the formula for the mean time between
the false alarms

Q
(1)
false =

1
λ2

T
(1)
alarm. (25)
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Table 2. Average time between false alarms

h R(1) h R(1)

20 12,31 50 195,17

30 37,99 60 385,13

40 91,86 70 727,26

According to G. Lorden [14], a sequential change-point detection procedure is
optimal if both the average delay and the logarithm of the average time between
false alarms grow linearly with an increase in the parameter h. Figures 3 and 4
demonstrate this property. Figure 4 indicates that the growth rates of the average
delay increase with the decreasing in the probability p.

Fig. 3. Logarithm of the average time between false alarms

Fig. 4. Average delay

4.4 Memory Depth

Now we consider the event B
(1)
j =

{
j∑

a=1
τi+a + (ti − θ1) < θ2 − θ1

}
, which means

that the next change of the controlling chain state occurs after the instant ti+j .
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All the variables τa and ti − θ1 are independent and identically distributed with
the parameter λ2. Their sum has the gamma distribution Gamma(1/λ2, j + 1):

f(x) =

⎧⎨
⎩λj+1

2 xj e−λ2x

j!
, if x ≥ 0;

0, if x < 0.

The difference θ2 − θ1 has the exponential distribution with the parameter α2;
hence, we obtain

P

(
j∑

a=1

τi+a + (ti − θ1) < θ2 − θ1

)
=

∞∫
0

P (θ2 − θ1 > x)λj+1
2 xj e−λ2x

j!
dx

=
λj+1
2

j!

∞∫
0

e−α2xxje−λ2xdx =
λj+1
2

j!
j!

(λ2 + α2)j+1
=

λj+1
2

(λ2 + α2)j+1
.

For the change of the controlling chain state from the second to the first, we
have the same result. Finally, we obtain

P
(
B

(1)
j

)
=

λj+1
2

(λ2 + α2)j+1
, P

(
B

(2)
j

)
=

λj+1
1

(λ1 + α1)j+1
(26)

On the one hand, the next change point should be detected in not more than k
steps. On the other hand, the next change should occur later than the previous
is detected. So, the probability of the event Bk should exceed the prescribed
probability Q which is close to one. This implies the upper bound for the value
of the parameter k

λk+1
l

(λl + αl)k+1
≥ Q, l = 1, 2. (27)

Before we supposed that λl ≥ rαl, where r >> 1. Table 3 demonstrates the
maximum values of k satisfying condition (27) subject to the values of Q (in the
rows) and r (in the columns). In practice, the values of k < 10 lead to frequent
skips of changes; hence, the empty cells correspond to such values of k.

Table 3. Upper bound for the memory depth

Q\r 40 60 80 100 120 160 200

0,7 13 22 27 34 41 56 70

0,75 11 16 22 27 33 45 56

0,8 12 16 21 24 34 43

0,85 12 15 18 25 31

0,9 11 16 20
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4.5 Error Probabilities

Now we consider the event Aj =
j⋃

a=1
S
(1)
i+a < h(1) which means that the first

change point is not detected in j steps. In every step, the cumulative sum can
increase by M with the probability p and can decrease by N with the probability
q. So, for the event S

(1)
i+j < h(1), if the condition Aj−1 holds true, we have

P
(
S
(1)
i+j < h(1)

)
= p1h(1)−M>NP

(
S
(1)
i+j−1 < h(1) − M

)
+q1h(1)>NP

(
S
(1)
i+j−1 < h(1)

)
.

By using this formula again for its right side, we obtain

P
(
S
(1)
i+j < h(1)

)
= p1h(1)−M>N

[
p1h(1)−2M>NP

(
S
(1)
i+j−2 < h(1) − 2M

)
+ q1h(1)−M>NP

(
S
(1)
i+j−2 < h(1) − M

)]
+q1h(1)>N

[
p1h(1)−M>NP

(
S
(1)
i+j−2 < h(1) − M

)
+ q1h(1)>NP

(
S
(1)
i+j−2 < h(1)

)]
= p21h(1)−2M>NP

(
S
(1)
i+j−2 < h(1) − 2M

)
+2pq1h(1)−M>NP

(
S
(1)
i+j−2 < h(1) − M

)
+ q21h(1)>NP

(
S
(1)
i+j−2 < h(1)

)
.

By using the mathematical induction method, finally we obtain

P (Aj) =
j∑

a=0

Cj
apaqj−a1h(1)−aM>NP

(
S
(1)
i < h(1) − aM

)

If we choose the threshold as h(1) = N + cM , where c is an integer, then

P (Aj) =
min{j,c−1}∑

a=0

Cj
apaqj−aP

(
S
(1)
i < h(1) − aM

)

As the minimum value of the sum S
(1)
i is N , we can bound this probability

from above

P (Aj) ≤
min{j,c−1}∑

a=0

Cj
apaqj−a.

This formula is used for c < j, because the probability should be small enough.
So, we obtain

P (Aj) ≤
c−1∑
a=0

Cj
apaqj−a, (28)

where c = (h(1) − N)/M .
This formula gives a way to determine the value of the threshold. Let P1 be

the desired value of the probability of the skip of the change, then the value c
can be calculated as the maximum integer satisfying the following conditions

c−1∑
a=0

Cj
apaqj−a ≤ P1. (29)
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Note that the probability does not depend on the exact values of the input
flow intensities, it includes only the probabilities p and q given by formulas (4).
One can use instead of p its minimum desired value p∗, and, instead of q the
value q∗ = 1 − p∗. As a result, the value of the threshold for p ≥ p∗ will be
obtained.

Let S
(1)
i = N , and the process satisfy the hypothesis Hl(ti−k−1, ti+j). Let us

consider the event Cj =
j⋃

a=1
S
(1)
i+a < h(1) which means that no false alarms occur

in j steps if the initial value of the sum is N . By using the same reasoning as
for a skip of the change, we obtain

P (Cj) =
1
2j

c−1∑
a=0

Cj
a, (30)

where c = (h(1) − N)/M .
Table 4 gives some results of calculations. Here P1 = 0, 1, m = 1, n = 6

(so, M = 5, N = 7); λ1 and λ2 are the process parameters, j is the number of
steps, p and q are calculated by formulas (4); c is the maximum value satisfying
condition (29), h = N + cM , P̂1 is the upper bound for the probability of a
skip of the change calculated by Eq. (28), P̂0 is the probability of a false alarm
calculated by Eq. (30).

The error probabilities depend on the probability p: an increase in p leads
to a decrease in the probability of a skip of the change: hence, the value of the
threshold can be increased for the fixed value of P1. In turn, this implies an
decrease in the false alarm probability. Both error probabilities are sufficiently
small for p > 0.75. On the other hand, the change point should be detected
in k steps; so, we can decrease the false alarm probability by increasing k and,
consequently, the threshold.

Table 5 demonstrates the results of calculations for the values of k taken
from Table 3. The parameter h was chosen to provide the false alarm probability
less then 0.15. Then the probability of a skip of the change was calculated for
different values of λ2 and, hence, p and q.

Table 4. Error probabilities

λ1 λ2 p q j c h P̂1 P̂0 j c h P̂1 P̂0

2 0.4 0.83 0.17 10 7 42 0.07 0.172 15 11 62 0.09 0.059

2 0.6 0.77 0.23 10 6 37 0.058 0.377 15 9 52 0.038 0.304

2 0.8 0.71 0.29 10 5 32 0.038 0.623 15 8 47 0.038 0.5

2 1 0.67 0.33 10 5 32 0.077 0.623 15 8 47 0.088 0.5

2 0.4 0.83 0.17 20 14 77 0.037 0.058 25 18 97 0.044 0.022

2 0.6 0.77 0.23 20 13 72 0.069 0.132 25 16 87 0.044 0.115

2 0.8 0.71 0.29 20 12 67 0.087 0.252 25 15 82 0.072 0.212

2 1 0.67 0.33 20 11 62 0.092 0.412 25 14 77 0.092 0.345
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Table 5. Error probabilities

λ1 k h P̂0 λ2 p q P̂1 λ2 p q P̂1

2 31 107 0.075 0.4 0.83 0.17 0.0028 0.6 0.77 0.23 0.0037

2 43 137 0.111 0.4 0.83 0.17 0.00008 0.6 0.77 0.23 0.0048

2 56 182 0.07 0.4 0.83 0.17 0.00001 0.6 0.77 0.23 0.002

2 70 212 0.094 0.4 0.83 0.17 0.0000002 0.6 0.77 0.23 0.00019

2 31 107 0.075 0.8 0.71 0.29 0.0016 1 0.67 0.33 0.323

2 43 137 0.111 0.8 0.71 0.29 0.0043 1 0.67 0.33 0.153

2 56 182 0.07 0.8 0.71 0.29 0.03 1 0.67 0.33 0.139

2 70 212 0.094 0.8 0.71 0.29 0.0074 1 0.67 0.33 0.061

Greater values of k provide adequate error probabilities in the most of cases.
Then we compare the results presented in Tables 1 and 4 for the same values

of the threshold h and the intensities λi. Table 1 demonstrates the mean delay
T (1) in the change-point detection, and Table 4 contains the number of steps j
used to detect a change point with the probability 0.9 and greater.

For p = 0.83, the values T (1) and j differ insignificantly (not more than by
25 %), but the decrease in p leads to the increase of that difference, and for
p = 0.67 the value T (1) exceeds the value of j twice or more. So, in spite of the
big values of the mean delay for small values of p, the change in this case will
be detected most probably much earlier than in the mean delay time.
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A Mathematical Model of an Insurance
Company in the Form of a Queueing System

with an Unlimited Number of Servers
Considering One-Time Insurance Payments
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Abstract. This paper focuses on the research of a model of an insurance
company with an unlimited insurance field considering implicit advertis-
ing and one-time insurance payments. Using the method of characteristic
functions we obtained the probability distribution of a two-dimensional
stochastic process of a number of risks that are insured in the company
and a number of demands for one-time insurance payments. We also
obtain expressions for the expected values and dispersions of components
of a two-dimensional process. The total amount of insurance payments
has been reviewed and its distribution found.

Keywords: Mathematical model · Insurance company · One-time
insurance payments · Queueing system · Characteristic function

1 Introduction

Nowadays mathematical modeling is widely used, both for solving practical tasks
and for theoretical research of economic processes. Models of actuarial mathe-
matics, which studies insurance, are getting much attention nowadays. In the
main, all the papers devoted to the research of an insurance company’s mathe-
matical models have such characteristics of a company’s functioning as: expected
values of the risk’s numbers, capital, bankruptcy possibility and so on. Thus,
paper [1] is about a model of an insurance company that takes into account
advertising expenses, paper [2] is about a model with the possibility of reas-
surance of some company’s risks. In [3] we got the distribution of number of
demands for payments of sums insured with a random variable of the duration
of the contract and the stationary Poisson arrival process of risks. In [4] by using
the method of asymptotic analysis we have found the probability distribution
of a two-dimensional process of a number of demands for insurance payments
and the number of a company’s risks, given that the arrival process of risks is a
stationary Poisson. In paper [5] we researched the two-dimensional process of a
number of demands for payments of sums insured and a number of risks, that
are insured in the company in the case when the parameter of the arrival process
c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 34–43, 2016.
DOI: 10.1007/978-3-319-44615-8 3
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of insurance risks depends on the number of risks that are already insured in the
company, which considers the possibility of implicit advertising. Mathematical
models with this arrival process of risks are reviewed in [6], but methods of the
model’s research are of a different nature and the process of a number of insur-
ance payments is ignored. In this paper we research the mathematical model of
an insurance company with one-time insurance payments considering implicit
advertising, which is no doubt present in real life.

2 Mathematical Model and Formulation of the Problem

Let us consider the model of an insurance company with an unlimited insurance
field [7] in the form of a queueing system with an unlimited number of servers
(Fig. 1). The validity of the insurance contract matches the server’s duration of
request handling. We will assume that risks are flowing into the company, form-
ing an arrival process with an intensity that depends on a number of insured
risks. The intensity of that arrival process will be determined by two components:
parameter λ, which determines the arrival process of risks that come indepen-
dently of insured ones, and parameter α, which determines the arrival process
of risks that are under the influence of implicit advertising. Each risk located in
the company generates a request for a one-time insurance payment with inten-
sity γ for the duration of the insurance contract independently of other risks.
These requests also form the stationary Poisson process of events. It is natural to
assume that a request for payment is determined by an insured accident. After
receiving the insurance payment there is the risk of leaving the company. We
will assume that the duration of the insurance contract for each risk located in
the company will be a random variable that is distributed by an exponential law
with parameter μ.

Fig. 1. Model of an insurance company with an unlimited insurance field considering
insurance payments and implicit advertising

Let us denote: n(t) – number of requests for payments during the time interval
[ 0 , t ], i(t) – number of insurance risks located in the company at an instant
of time t, P (i, n, t) = P{i(t) = i, n(t) = n} – probability distribution of a two-
dimensional process of a number of one-time insurance payments and a number of



36 D. Dammer

insurance risks at an instant of time t. The task is to obtain this two-dimensional
distribution and also numerical characteristics of a number of insured risks and
a number of one-time insurance payments.

3 Probability Distribution of Two-Dimensional Stochastic
Process of a Number of Insurance Risks and a Number
of One-Time Insurance Payments

Let us write a system of Kolmogorov differential equations [8] for probability
distribution P (i, n, t) using the Δt method. First, the prelimit equalities:

P (i, n, t + Δt) = P (i, n, t)(1 − (λ + iα)Δt)(1 − iγΔt)(1 − iμΔt)
+(λ + (i − 1)α)ΔtP (i − 1, n, t)

+(i + 1)γΔtP (i + 1, n − 1, t) + (i + 1)μΔtP (i + 1, n, t) + o(Δt).

The system of differential equations will have this form:

∂P (i, n, t)
∂t

= −[λ + i(α + μ + γ)]P (i, n, t) + (λ + (i − 1)α)P (i − 1, n, t)

+(i + 1)μP (i + 1, n, t) + (i + 1)γP (i + 1, n − 1, t).
(1)

Let us introduce a characteristic function to solve system (1):

∞∑
i=0

∞∑
n=0

ejuiejwnP (i, n, t) = H(u,w, t),

where j is the imaginary unit. We will continue solving the task of determining
the form of this function. Then, we form system (1), considering the properties
of characteristic functions, we will get a partial differential equation of the first
order for the function H(u,w, t):

∂H(u,w, t)
∂t

= −λH(u,w, t)(1 − eju)

+j
∂H(u,w, t)

∂u
(α + μ + γ − αeju − μe−ju − γe−juejw).

(2)

The solution for differential Eq. (2) is determined by solving the following system
of ordinary differential equations for characteristic curves [9]:

dt

1
=

du

−j(α + μ + γ − αeju − μe−ju − γe−juejw)
=

dH(u,w, t)
H(u,w, t)λ(eju − 1)

. (3)

We will start by finding the two first integrals of this system. First, let us examine
this equation:

dt =
du

j(α(eju − 1) − μe−ju(eju − 1) − γe−ju((eju − 1) + 1 − ejw))
. (4)
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We will change variables eju − 1 = v, and, considering

u =
ln(v + 1)

j
, du =

dv

j(v + 1)
, e−ju =

1
v + 1

, j2 = −1, (5)

the Eq. (4) will have this form:

dt =
dv

−(αv2 + (α − μ − γ)v − γ(1 − ejw))
.

Let us examine the right part of the last equation. We can write down

αv2 + (α − μ − γ)v − γ(1 − ejw) = α(v − v1)(v − v2), (6)

where v1 and v2 are the roots of said quadratic equation. Let us write down
expressions for v1 and v2:

v1(w) = −1
2

[(
1 − μ + γ

α

)
−

√
D(w)

]
,

v2(w) = −1
2

[(
1 − μ + γ

α

)
+

√
D(w)

]
,

(7)

where D(w) =
(

1 − μ + γ

α

)2

+ 4
γ

α
(1 − ejw) > 0. Therefore, roots v1(w) and

v2(w) are real and different, v1(w) > 0 and v2(w) ≤ 0 for α < μ.
Thus, based on the foregoing, the solution for Eq. (4) could be written in this

form:

t =
1

α(v1(w) − v2(w))
ln

(
v − v2(w)
v − v1(w)

)
− ln(C̃1),

which will determine our first integral. Let us write down expression for C̃1, we
have:

C̃1 = e−t

(
v − v2(w)
v − v1(w)

) 1
α(v1(w)−v2(w))

.

We denote C1 = C̃
α(v1(w)−v2(w))
1 , then

C1 = e−α(v1(w)−v2(w))t

(
v − v2(w)
v − v1(w)

)
. (8)

The other first integral will be found from equation:

dH(u,w, t)
H(u,w, t)

=
λ(eju − 1)du

j(α(eju − 1) − μe−ju(eju − 1) − γe−ju(eju − ejw))
. (9)

Let us make a similar change to variables eju −1 = v. We will introduce function
G(v, w, t) = H(u,w, t). Let us write down Eq. (9) for the function G(v, w, t) while
splitting variables considering (5):

dG(v, w, t)
G(v, w, t)

=
λvdv

−(αv2 + (α − μ − γ)v − γ(1 − ejw))
,
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or considering (6)

dG(v, w, t)
G(v, w, t)

=
λvdv

−α(v − v1(w))(v − v2(w))
, (10)

where v1 and v2 are determined by expressions (7). Let us write down the solution
to Eq. (10)

G(v, w, t) = C2

[
(v − v2(w))v2(w)

(v − v1(w))v1(w)

] λ
α(v1(w)−v2(w))

. (11)

We will introduce an arbitrary differentiable function φ(C1) = C2. Then the
general solution to Eq. (10) considering (8) will have this form:

G(v, w, t) = φ

[
e−α(v1(w)−v2(w))t

(
v − v2(w)
v − v1(w)

)]

×
[
(v − v2(w))v2(w)

(v − v1(w))v1(w)

] λ
α(v1(w)−v2(w))

.

(12)

We define the particular solution with the help of initial conditions. To do
this, we will write down the value of function H(u,w, t) at initial time t = 0.
Then

H(u,w, 0) =
∞∑

i=0

∞∑
n=0

ejuiejwnP (i, n, 0) =
∞∑

i=0

ejuiP (i), (13)

because at the initial time there were no requests for an insurance payment,
which means P (i, n, 0) = P (i) , if n = 0 , and P (i, n, 0) = 0, if n > 0.

Let us denote H(u,w, 0) = H(u), then by using Eq. (2) we can write down
the equation for function H(u):

j(μ + γ − αeju)
dH(u)

du
+ λejuH(u) = 0. (14)

The solution will have this form for normality condition H(0) = 1:

H(u) =

⎛
⎜⎝

1 − α

μ + γ
eju

1 − α

μ + γ

⎞
⎟⎠

− λ
α

. (15)

We note that characteristic function (15) is a discrete analog of gamma distrib-
ution. Now we can write down the expression for H(v, w, t) considering t = 0:

G(v, w, 0) = φ

(
v − v2(w)
v − v1(w)

)[
(v − v2(w))v2(w)

(v − v1(w))v1(w)

] λ
α(v1(w)−v2(w))

, (16)

or (
μ + γ − α(v + 1)

μ + γ − α

)− λ
α

= φ

(
v − v2(w)
v − v1(w)

)

×
(

(v − v2(w))v2(w)

(v − v1(w))v1(w)

) λ
α(v1(w)−v2(w))

,

(17)
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where

v1(w) = −1

2

[(
1 − μ + γ

α

)
−
√

D(w)
]
, v2(w) = −1

2

[(
1 − μ + γ

α

)
+
√

D(w)
]
,

D(w) =
(

1 − μ + γ

α

)2

+ 4
γ

α
(1 − ejw).

We will define the form of function φ(.) now. Let us denote

f(w) =
v − v2(w)
v − v1(w)

. (18)

Then

φ(f(w)) =

⎡
⎢⎢⎣

(
1 − α

μ + γ

)
(v2(w) − v1(w))

(1 − f(w)) − α

μ + γ
(1 + v2(w) − (1 + v1(w))f(w))

⎤
⎥⎥⎦

λ
α

×f(w)
λv2(w)

α(v2(w)−v1(w)) ,

(19)

where

v =
v2(w) − f(w)v1(w)

1 − f(w)
. (20)

Now we can write down the expression for function φ(.):

φ

[
e−α(v1(w)−v2(w))t

(
v − v2(w)
v − v1(w)

)]
= eλv2(w)t

× [μ + γ − α(v2(w) − v1(w))(v − v1(w))]
λ
α

×
[
((v − v1(w)) − (v − v2(w))eα(v2(w)−v1(w))t)(μ + γ)

− α
(
(v − v1(w))(1 + v2(w)) − (v − v2(w))(1 + v1(w))eα(v2(w)−v1(w))t

)]− λ
α

×
(

v − v2(w)
v − v1(w)

) λv2(w)
α(v2(w)−v1(w))

.

Accordingly, we will write down the expression for function G(v, w, t). We have:

G(v, w, t) = eλv2(w)t [(μ + γ − α) (v1(w) − v2(w))]
λ
α

×
{

(v1(w) − v) [μ + γ − α(1 + v2(w))]

−(v2(w) − v)e−α(v1(w)−v2(w))t
[
μ + γ − α(1 + v1(w))

]}− λ
α

.

(21)

Let us write down the expression for function H(u,w, t) by passing from variable
v to variable u:

H(u,w, t) = eλv2(w)t [(μ + γ − α) (v1(w) − v2(w))]
λ
α

×
{

(v1(w) − eju + 1) [μ + γ − α(1 + v2(w))]

−(v2(w) − eju + 1)eα(v2(w)−v1(w))t
[
μ + γ − α(1 + v1(w))

]}− λ
α

.

(22)
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Resulting function (22) is a characteristic function of a two-dimensional random
process of a number of risks that are insured in the company and a number of
requests for one-time insurance payments. Knowing this function, we can obtain
the functions of marginal distributions of processes i(t) and n(t).

4 Probability Distributions and Numerical
Characteristics of a Number of Risks and a Number of
Requests for One-Time Insurance Payments

Let us suppose that in (22) u = 0, now we can get the marginal characteristic
function of process n(t):

H(0, w, t) = H1(w, t) = eλv2(w)t [(μ + γ − α) (v1(w) − v2(w))]
λ
α

×
{

v1(w) [μ + γ − α(1 + v2(w))]

−v2(w)e−α(v1(w)−v2(w))t [μ + γ − α(1 + v1(w))]
}− λ

α

.

(23)

Let us suppose that in (22) w = 0, now we can get the marginal characteristic
function of process i(t). Because

v1(0) =
μ + γ

α
− 1, v2(0) = 0,

we have:

H(u, 0, t) = H(u) =

⎛
⎜⎝

1 − α

μ + γ
eju

1 − α

μ + γ

⎞
⎟⎠

− λ
α

. (24)

Now we can write down the expected values for a number of risks and a
number of requests for one-time insurance payments. We have

E{i(t)} =
1
j

dH(u)
du

∣∣∣∣
u=0

,

E{n(t)} =
1
j

∂H1(w, t)
∂w

∣∣∣∣
w=0

,

then
E{i(t)} =

λ

μ + γ − α
, (25)

and
E{n(t)} =

λγt

μ + γ − α
. (26)

Now we can write down the dispersions for a number of risks and a number
of requests for one-time insurance payments: We have:

D{i(t)} =
1
j2

∂2Hi(u, t)
∂u2

∣∣∣∣
u=0

− E2{i(t)},

and
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D{n(t)} =
1
j2

∂2Hn(w, t)
∂w2

∣∣∣∣
w=0

− E2{n(t)},

then

D{i(t)} =
λ(μ + γ)

(μ + γ − α)2
, (27)

and

D{n(t)} =
λγ

μ + γ − α
t +

2λγ2(μ + γ)
(μ + γ − α)3

t

− 2λγ2(μ + γ)
(μ + γ − α)4

+
2λγ2(μ + γ)
(μ + γ − α)4

e−(μ+γ−α)t.
(28)

Formulas (25) and (27) match with the result we obtained in work [6] for γ = 0,
where the one-dimensional process of a number of insured risks considering
implicit advertising was researched.

Let us review the coefficient of the correlation of processes i(t) and n(t).
Knowing function H(u,w, t), we can obtain a joint moment of studied processes.
We have:

1
j2

∂2H(u,w, t)
∂u∂w

∣∣∣∣
u=0,w=0

= E{i(t)n(t)}, (29)

then, considering the characteristics we obtained earlier, let us write down the
expression for the coefficient of correlation:

rin(t) = γ
√

λ(μ + γ)(1 − e−(μ+γ−α)t)
×

[
2λ(μ + γ)γ2(μ + γ − α)t + λγ(μ + γ − α)3t

−2λ(μ + γ)γ2
(
1 − e−(μ+γ−α)t

)]− 1
2
.

(30)

The nonzero coefficient of correlation shows the presence of dependence between
processes i(t) and n(t).

5 Probability Distributions and Numerical
Characteristics of the Value of the Total Amount of
One-Time Insurance Payments

We will denote S(t) as a value of the total amount of insurance payments for all
insured events during the time interval [ 0, t ], ξ is the value of the payment for
one insured event. Let us introduce characteristic function of the value of S(t):

Ψ(η, t) = E{e−ηS(t)}. (31)

In paper [5] it was proved:

Ψ(η, t) =
∞∑

n=0

θn(η)P (n, t), (32)
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where θ(η) = E{e−ηξ} is the characteristic function of the value of ξ. With this
in mind we can write down

Ψ(η, t) =
∞∑

n=0

θn(η)P (n, t) = F (θ(η), t), (33)

where
F (ejθ(η), t) = H1(θ(η), t).

Function H1(θ(η), t) are determined by expression (23). Let us introduce func-
tions

y1(η) = v1(θ(η)) = −1
2

[(
1 − μ

α
− γ

α

)
−

√
D(θ(η))

]
,

y2(η) = v2(θ(η)) = −1
2

[(
1 − μ

α
− γ

α

)
+

√
D(θ(η))

]
,

(34)

where
D(θ(η)) =

[
1 − μ

α
− γ

α

]2
+ 4

γ

α
(1 − θ(η)). (35)

Expressions (34) and (35) are written considering (7). Then, the characteristic
function of the total amount of one-time insurance payments will have this form:

Ψ(η, t) = F (θ(η), t) = eλy2(η)t

[(
1 − α

μ + γ

)
(y1(η) − y2(η))

] λ
α

×
{

y1(η)
[
1 − α

μ + γ
(1 + y2(η))

]

− y2(η)eα(y2(η)−y1(η))t

[
1 − α

μ + γ
(1 + y1)(η)

]}− λ
α

.

(36)

Now that we know the form of the characteristic function of a value of the total
amount of one-time insurance payments, we can obtain the numerical character-
istics of value S(t):

E{S(t)} =
λγa1t

μ + γ − α
(37)

and

D{S(t)} =
λγa2

μ + γ − α
t +

2λ(γa1)2(μ + γ)
(μ + γ − α)3

t

−2λ(γa1)2(μ + γ)
(μ + γ − α)4

+
2λ(γa1)2(μ + γ)

(μ + γ − α)4
e−(μ+γ−α)t,

(38)

where E{ξ} = a1, E{ξ2} = a2.

6 Conclusions

Thus, in this paper we have researched a mathematical model of an insurance
company in the form of a queueing system with an unlimited number of servers
considering one-time insurance payments. We have found the expression for prob-
ability distribution of a number of requests for one-time insurance payments and
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a number of insurance risks. Also we have found expressions for the numerical
characteristics of the said processes. It has been shown that the results are
the generalization of particular cases. The characteristic function and numerical
characteristics of a value of the total amount of one-time insurance payments
have also been found. These results may be used for analysis of indicators of
economic activity of insurance companies and other economic systems.
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with Randomized Choice of Customers

Admission Discipline
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Abstract. A single server queue with a finite buffer is analyzed. The
input is described by the BMAP (Batch Markovian Arrival Process), and
the service process is of Semi-Markovian (SM) type. Due to the batch
arrivals, situations may occur when the available capacity of the buffer is
not enough to admit to the system a whole arriving batch of customers.
A randomized choice of admission disciplines among well-known par-
tial admission, complete admission and complete rejection disciplines is
assumed. The stationary queue length distribution at service completion
and arbitrary epochs is calculated. The expression for loss probability
is given. The problem of optimal randomization between disciplines of
complete admission and complete rejection is considered in brief.

Keywords: Batch Markovian Arrival Process · Semi-Markovian service
time · Finite buffer · Admission discipline

1 Introduction

The BMAP is a popular mathematical model of bursty correlated flows in mod-
ern communication networks, see, e.g., [3,10,11]. The Semi-Markovian service
process is an essential extension of the renewal process. It enables the taking
into account correlation and different distribution of successive service times. The
BMAP/SM/1 retrial system was considered in [5]. The BMAP/SM/1 system
with an infinite buffer was considered in [14]. Systems with a finite buffer are
important for analysis because the capacity of the buffer in many real life sys-
tems is restricted. Systems with a BMAP arrival process and a finite buffer were
first considered in [1,2,7]. A vacation model of such a type was considered in [16].

It is well known that, due to the capacity limitation and batch arrivals, a
situation can occur when the size of the arriving batch exceeds the currently
available capacity of the buffer. Three popular admission disciplines for such a
situation are known in the literature, see, e.g. [13]:

• partial admission (PA) when only a part of the batch corresponding to the
number of free places in the buffer is allowed to join the system;

c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 44–56, 2016.
DOI: 10.1007/978-3-319-44615-8 4
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• complete admission (CA) when the whole batch is allowed to enter the system;
• complete rejection (CR) when the whole batch is rejected.

Only the discipline of PA is well investigated for the models with a general
service time distribution. This stems from the fact that the technique of the
embedded Markov chains, which is very effective in research, has a difficulty
with arrivals accounting between the embedded epochs when the disciplines of
CA and CR are applied. However, these disciplines are very important, e. g., in
modelling in telecommunications. If the batch is interpreted as a set of packages
belonging to one information unit, e.g., message or file, it does not make sense
to allow partial admission of the packages. Thus, the discipline of CR or CA
type should be chosen in such a situation.

A general BMAP/SM/1/N model with PA discipline was investigated in
[6]. The assumption that the input flow is the BMAP allows the use of this result
for modelling modern telecommunication networks where the flows of informa-
tion are correlated and so they can not be well approximated in terms of the
stationary Poisson process (even with the use of the Hurst parameter). The
assumption that the service process is of SM (Semi-Markovian) type allows to
capture a possible correlation of successive service times. The advantage of the
paper [6] comparing to earlier papers [2,7], besides consideration of the more
general SM service process, consists of the following. In paper [2], direct solving
of the finite set of equilibrium equations is performed. So, the existing specifics
of the transition probability matrix is practically ignored. In paper [7], such
specifics are taken into account effectively. However, the algorithm developed
for computing the stationary distribution of the system states is not numeri-
cally stable for large values of the buffer capacity N due to the presence of a
subtraction operation over the matrices involved to the recursive computations.
The algorithm presented in [6] takes into account the special structure of the
transition probability matrix of the embedded Markov chain and simultaneously
is very stable numerically.

In paper [16], the system BMAP/G/1/N was analysed by means of the
method of supplementary variables for PA and CR disciplines. Disciplines CA
and CR in the BMAP/G/1/N system were considered in [8]. In this paper
we extend the results of [8] where the service times of successive customers are
independent identically arbitrarily distributed random variables to the case of
SM service and consider more general customers admission discipline. Namely,
we assume that at a batch arrival moment in a situation when the buffer is
not full, but its capacity is not enough to admit a whole batch, a randomized
decision about the fate of the arrived batch is made. Some probabilities, pcr, ppa

and pca such as
pcr + ppa + pca = 1

are fixed. With probability ppa we admit a part of the batch that matches the
available capacity. With probability pca we admit the whole batch. With prob-
ability pcr we reject the whole batch.

Note that in different real life applications some disciplines may not be
applicable. E.g., if the customers of a batch constitute one entity, it does not
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makes sense to apply PA discipline. If there is no additional buffer along with
the main buffer of the system, the discipline CA is not applicable.

If the discipline PA does not makes sense, but both other disciplines may
be applied, one can have a difficult choice which discipline, CR or CA, should
be applied. CR discipline is easy realised in any system. However, e.g., if the
size of the batch may be of the same order as the capacity of the buffer, CR
discipline may lead to high probability of customer loss and essential degradation
of the system. Many customers are lost while the server is often idle and the
throughput of the system is low. CA discipline is more difficult to realise in a
real world system. It is necessary to have additional storage to temporarily keep
customers from the batch who did not find a place in the main buffer. The use
of additional storage may be charged explicitly or implicitly (because the use of
additional storage, e.g. external memory, may lead to more slow processing of
customers). However, it can be verified that CA discipline can provide, among
the three considered disciplines, the lowest value of loss probability and highest
value of the system throughput. Because the mentioned disciplines have their
own advantages and shortcomings, it seems reasonable to use a combination
of these disciplines. The results presented in our paper show that a randomized
choice between the available classical disciplines may be profitable for the system.

2 Mathematical Model

We consider a single server queue with a finite buffer. The capacity of the buffer
is N . Customers arrive into the system according to the BMAP . The behavior
of the BMAP is defined by the underlying process νt, which is a continuous-
time irreducible Markov chain with the state space {0, 1, . . . ,W}. The customers
arrive at the epochs when the chain νt makes transitions. The matrix Dk defines
the intensities of transitions of the chain νt, which are accompanied by arrival

of a batch consisting of k customers, k ≥ 0. Denote D(z) =
∞∑

k=0

Dkzk, |z| ≤ 1.

The matrix D(1) is the infinitesimal generator of the process νt. The vector θ
of steady state distribution of the chain νt, satisfies the system

θD(1) = 0, θe = 1.

Here e is a column vector consisting of all ones. The average intensity λ of the
BMAP (fundamental rate) is calculated as λ = θD′(1)e, and the intensity λg

of group arrivals is defined as

λg = θ(−D0)e.

The variance v of intervals between group arrivals is calculated as

v = 2λg
−1θ(−D0)−1e − λg

−2,

while the correlation coefficient ccor of intervals between successive group arrivals
is given by

ccor = (λg
−1

θ(−D0)(D(1) − D0)(−D0)−1e − λg
−2)/v.
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The BMAP is a popular descriptor of flows in modern telecommunication net-
works. It allows to be bursty their captured correlated nature. So, the models of
queues with the BMAP are investigated intensively. For more details about the
BMAP and related research see [3,15].

It was assumed in [8] that service times of the customers are independent
identically distributed random variables having distribution function B(t). Such
a suggestion does not allow us to consider the systems where the successive
service times may be dependent. So, here we assume that the service of customers
is governed by the semi-Markovian process mt. It is characterized by the state
space {1, ...,M} and the semi-Markovian kernel B(x). This kernel is a matrix
with entries Bm,m′(x), m,m′ = 1,M . The successive service times of customers
are defined as the sojourn times of the process mt in its states. The average
service time is given by the formula

b1 = bδ,

where b is the invariant probability vector of the stochastic matrix B(+∞) (i.e.,
it is defined as a solution to the system and b = bB(+∞), be = 1 and δ is the
column vector defined by formula

δ =

∞∫
0

xdB(x)e.

Without essential loss of generality, we will assume that the kernel B(x) has the
following form:

B(x) = diag{B1(x), . . . , BM (x)}Q

where Bm(x) is a distribution function of the sojourn time of the process mt

in the state m and Q = B(∞) is a transition probability matrix of the Markov
chain embedded at the moments of the jumps of the process mt.

3 The Process of the System States and the Embedded
Markov Chain

Let us consider the process it which is the number of customers in the system at the
moment t, t > 0. In general, because CA discipline can be applied, the state space
of this process is infinite. This process, in general, is not Markovian. So, let us first
consider the embedded process itn+0 where tn is the n-th service completion epoch,
n ≥ 1. In the sequel, we use notation in = itn+0, n ≥ 1. The process in, n ≥ 1, is
also non-Markovian. But the three-dimensional process ξn = {in, νn,mn}, n ≥ 1,
where νn = νtn

, mn = mtn+0 is a Markov chain. To make this clear, we have to
compute the one-step transition probabilities of this process.

Let Pi,l be the matrices with entries

P{in+1 = l, νn+1 = ν′, mn+1 = m′|in = i, νn = ν, mn = m},

ν, ν′ = 0,W , m,m′ = 1,M.
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To calculate the matrices Pi,l, which define the probability of transitions of the
Markov chain ξn, n ≥ 0, between two successive service completion epochs, we
should first calculate the matrices P (j)(n, t), which define the following condi-
tional probabilities. The (ν, ν′)-th entry of the matrix P (j)(n, t) is the probability
to admit n customers during the time interval (0, t] and to have the state ν′ of
the underlying process of the BMAP at the epoch t conditional that the state
of this process was ν at the epoch 0 and at most j customers can be admitted
during the interval (0, t], n = 0, j.

In the case of PA discipline, the matrices P (j)(n, t) are easily calculated as:

P (j)(n, t) =

⎧⎨
⎩

P (n, t), n < j,
∞∑
l=j

P (l, t), n = j

where the matrices P (n, t) are defined (see, e.g., [15]) as the coefficients in the
following matrix expansion:

eD(z)t =
∞∑

n=0

P (n, t)zn.

Unfortunately, it is not possible to compute the matrices P (n, t) directly
from this matrix expansion and D. Lucantoni (see [15]) has offered the following
procedure for computing these matrices.

Let ψ be defined as ψ = max(−D0)ν,ν , ν = 0,W . Then

P (n, t) = e−ψt
∞∑

i=0

(ψt)i

i!
U (i)

n ,

where the matrices U
(i)
n are computed from recursions

U
(0)
n =

{
I, n = 0,
0, n > 0,

U
(i+1)
n = U

(i)
n (I + ψ−1D0) + ψ−1

n−1∑
l=0

U
(i)
l Dn−l, i ≥ 0, n ≥ 0.

These formulas are derived using the notion of uniformization of the Markov
chain based on the well known system of differential equations

Ṗ (n, t) =
n∑

k=0

P (k, t)Dn−k, n ≥ 0,

for matrices P (n, t), n ≥ 0.
Using this approach for computation of the matrices P (j)(n, t) for the system

under study, it is possible to verify that the following statement is true.
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Lemma 1. The matrices P (j)(n, t) are computed by formulas

P (j)(n, t) = e−ψt
∞∑

i=0

(ψt)i

i!
U (i)

n (j)

where the matrices U
(i)
n (j) are computed by recursions

U (0)
n (j) =

{
I, n = 0,
0, n > 0,

U (i+1)
n (j) = ψ−1

n−1∑
l=0

U
(i)
l (j)Dn−l + U (i)

n (j)

⎛
⎝I + ψ−1(D0 + pcr

∞∑
m=j+1−n

Dm)

⎞
⎠ ,

i ≥ 0, j = 0, N + 1, n = 0, j − 1,

U
(i+1)
j (j) = U

(i)
j (j)(I + ψ−1D(1)) + ψ−1

j−1∑
l=0

U
(i)
l (j)

×
(

(pcr + pca)Dn−l + ppa

∞∑
m=n−l

Dm

)
, i ≥ 0, j = 0, N + 1,

U (i+1)
n (j) = U (i)

n (j)
(
I + pcaψ−1D(1)

)
+ pcaψ−1

j−1∑
l=0

U
(i)
l (j)Dn−l,

i ≥ 0, j = 0, N + 1, n > j.

These recursions are derived from the differential equations for matrices
P (j)(n, t) having the following form:

Ṗ (j)(n, t) = P (j)(n, t)

⎛
⎝D0 + pcr

∞∑
m=j+1−n

Dm

⎞
⎠

+
n−1∑
l=0

P (j)(l, t)Dn−l, j = 0, N + 1, n = 0, j − 1,

Ṗ (j)(j, t) = P (j)(j, t)D(1)

+
j−1∑
l=0

P (j)(l, t)

(
(pcr + pca)Dn−l + ppa

∞∑
m=n−l

Dm

)
, j = 0, N + 1,

Ṗ (j)(n, t) = pca(P (j)(n, t)D(1)

+
j−1∑
l=0

P (j)(l, t)Dn−l), j = 0, N + 1, n > j.

Now we are able to derive expressions for matrices Pi,l.
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Lemma 2. Transition probability matrices Pi,l are computed by formulas

Pi,l =

∞∫
0

P (N+1−i)(l + 1 − i, t) ⊗ dB(t), i = 1, N, l ≥ i − 1,

Pi,l = 0, i > N, l �= i − 1 i > 0, l < i − 1,
Pi,l = G, i > N, l = i − 1,

P0,l = D̃p

l+1∑
k=1

D̃kPk,l, l = 0, N − 1,

P0,N = D̃p

N+1∑
k=1

D̃kPk,N + ppa(−D̃0)−1
∞∑

m=N+2

D̃mG,

P0,l = pca(−D̃0)−1

(
D̃l+1G +

N∑
k=1

D̃kPk,l

)
, l > N,

D̃p = −
⎛
⎝pcr

(
D̃0 +

∞∑
m=N+2

D̃m

)−1

+ (ppa + pca)D̃−1
0

⎞
⎠ ,

where

G =

∞∫
0

eD(1)t ⊗ dB(t) =

∞∫
0

P (0)(0, t) ⊗ dB(t),

D̃l = Dl ⊗ IM , l ≥ 0,

⊗ is the symbol of the Kronecker product of matrices, see [9].

Having proved two lemmas and accounting the special form of the kernel B(t)
we get the following formula useful for computation of transition probability
matrices Pi,l.

∞∫
0

P (j)(l, t) ⊗ dB(t) =
∞∑

i=0

U
(i)
n (j)

∞∫
0

e−ψt (ψt)i

i! ⊗ dB(t)

=
∞∑

i=0

U
(i)
n (j) ⊗ diag{γ

(1)
i , . . . , γ

(M)
i }Q,

where

γ
(m)
i =

∞∫
0

e−ψt (ψt)i

i!
dBm(t), m = 1,M.

Integrals like γi =
∞∫
0

e−ψt (ψt)i

i! dBm(t)(t), i ≥ 0, in the case of arbitrary

distribution can be computed numerically. But for distributions many popular
in queueing theory these integrals are computed explicitly.

If service time is deterministic and equals b1 then

γi =
ρi

i!
e−ρ, ρ = ψb1.
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If service time has gamma-distribution with parameters (μ, δ) then B′(t) =
μδ

Γ(δ) t
δ−1e−μt:

γi =

i−1∏
l=0

(δ + l)

i!
ρi

(1 + ρ)i+δ
, ρ = ψb1, b1 =

δ

μ
.

In the particular case of Erlang’s distribution with parameters (k, μ) we have

γi = Ci
k+1

ρi

(1 + ρ)i+k

where ρ = ψb1, b1 = k
μ .

If service time has uniform distribution in interval [t1, t2], then

γi =
1

ψ(t2 − t1)

(
e−ψt1

i∑
m=0

(ψt1)m

m!
− e−ψt2

i∑
m=0

(ψt2)m

m!

)
.

4 Stationary Distribution of the Embedded Markov
Chain

Using the results from [12], it is possible to prove that the considered Markov
chain is ergodic if and only if the inequality

λb1 < 1

holds good.
Let this condition be fulfilled. Then the following limits exist:

π(i, ν,m) = lim
n→∞ P{in = i, νn = ν, mn = m}, ν = 0,W , m = 1,M.

Let πi be the vector consisting of probabilities π(i, ν,m), enumerated in lexico-
graphic order, i ≥ 0.

Using the results from [12], it is also possible to prove the following statement.

Theorem 1. Vectors πi can be computed by formalas

πi = π0Φi, i ≥ 0,

where the matrices Φi are computed from recursion

Φ0 = I, Φl =
l−1∑
i=0

ΦiP̄i,l(I − P̄l,l)−1, l > 0,

and the vector π0 is the unique solution to the system

π0(I − P̄0,0) = 0, π0

∞∑
l=0

Φle = 1.
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Here the matrices P̄i,l are computed from recursion

P̄i,l = Pi,l + P̄i,l+1Gl, i ≥ 0, l ≥ i,

matrices Gi are computed from backward recursion

Gi = G, i ≥ N,

Gi =(I−
∞∑

l=i+1

Pi+1,lGl−1Gl−2 · . . . · Gi+1)−1Pi+1,i,

i = 0, N − 1.

The procedure for computation of probability vectors πi defined by this theo-
rem is numerically stable due to avoiding operations with matrices having the
negative entries.

5 Stationary Distribution of the System States at
Arbitrary Time

Let us consider the stationary probabilities

p(i, ν,m) = lim
t→∞ P{it = i, νt = ν, mt = m}, ν = 0,W , m = 1,M,

and let pi be the vector consisting of these probabilities enumerated in lexico-
graphic order, i ≥ 0.

The necessary and sufficient condition for the existence of these limits also
is the fulfillment of inequality λb1 < 1.

Theorem 2. Vectors pi, i ≥ 0, are defined by

p0 = τ−1π0(−D0)−1,

pi =
i∑

k=1

(
p0D̃k + τ−1πk

)

×
∞∫
0

P (N+1−k)(i − k, t) ⊗
(
IM − B̃(t)

)
dt, i = 1, N + 1,

pi =
N+1∑
k=1

(
pcap0D̃k + (1 − δk,N+1)τ−1πk

) ∞∫
0

P (N+1−k)(i−k, t)⊗
(
IM − B̃(t)

)
dt

+
(
pcap0D̃i + τ−1πi

) ∞∫
0

eD(1)t ⊗
(
IM − B̃(t)

)
dt, i > N + 1,

where the average inter-departure time τ is computed by

τ = b1 + π0D̃pe

where B̃(t) is the diagonal matrix with entries B(t)e.
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The proof of the theorem is performed based on the known results for Markov
renewal processes, see [4]. Here the matrices

S(j)
n =

∞∫
0

P (j)(n, t) ⊗
(
IM − B̃(t)

)
dt

can be computed using the modified algorithm from [15] having the form:

S(j)
n =

∞∑
i=0

U (i)
n (j) ⊗ diag{γ̂

(1)
i , . . . , γ̂

(M)
i }Q,

where

γ̂
(m)
i = ψ−1

(
1 −

i∑
k=0

γ
(m)
k

)
, i ≥ 0, m = 1,M.

A numerically stable procedure for computation of values γ̂
(m)
i is given by:

γ̂
(m)
i =

⎧⎨
⎩

ψ−1
Nγ∑

k=i+1

γ
(m)
k , i = 0, Nγ − 1, m = 1,M,

0, i ≥ Nγ , m = 1,M,

where, for an arbitrary chosen small number εγ , the integer Nγ is chosen in such
a way as

Nγ∑
j=0

γ
(m)
j > 1 − εγ .

6 Loss Probability

By loss probability of an arbitrary customer in the system we mean the value

Ploss = 1 − lim
t→∞

N
(s)
t

Nt
,

where Nt is the number of customers arriving into the system during the interval
(0, t) and N

(s)
t is the number of customers being served in the system during

this interval.

Theorem 3. Probability of arbitrary customer loss Ploss is given by the formula

Ploss = 1 − 1
τλ

.

The theorem is proved using the ergodic theorems for functionals defined on the
trajectories of Markov chains.

Alternative formulas for computation of Ploss can be written down as
straightforward extension of the corresponding formulas presented in [6] (for
PA discipline) and [8] (for CA and CR disciplines). The existence of different
formulas is helpful for control at the stage of computer implementation.
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7 Optimization Problem

The set of probabilities pcr, ppa and pcr might be chosen to provide better quality
of system operation. To evaluate the quality of the system operation, we consider
the charge closs for a loss of one customer and the charge cextra for occupation
of one place beyond the main buffer of the system per unit of time.

The average number Nextra of additionally occupied places is computed by

Nextra =
∞∑

i=N+2

(i − N − 1)pie.

Then the total charge of the system paid during a unit of time is given by
the formula

F = clossλPloss + cextraNextra.

The optimal set of probabilities pcr, ppa and pcr can be found by means of
minimization of the value F as a function of parameters pcr, ppa and pcr with
the help of a computer.

8 Numerical Result

Let the arrival flow of customers be a group stationary Poisson process given by

D0 = (−5), Dk = (1), k = 5, 9.

Service time distribution is exponential with parameter 100, buffer capacity
is N = 7, charges for customers loss and the rent of additional buffer space are
defined by closs = 1 and cextra = 100.

We suggest that the application of the PA discipline is not appropriate in
the system under study because the customers are not independent and partial

Fig. 1. Cost criterion as function of probability pcr
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loss is not allowed. The CR discipline is applied with probability pcr while the
CA discipline is applied with complementary probability pca = 1− pcr. We vary
the value of pcr from 0 to 1 with step 0.05 and compute the value of the cost
criterion F. The results are presented the Fig. 1.

It is evidently seen that the optimal value of probability pcr is 0.65. Thus,
in the situation when the number of customers arriving in a batch to a non-full
system exceeds the available capacity of the system, in 65 % of cases we have to
admit this batch and we have to reject this batch in 35 % of cases.

9 Conclusion

We analysed a single server queue with a finite buffer under very general assump-
tions about the arrival and service processes. We introduced customers admis-
sion discipline which includes all previously studied disciplines as partial cases.
Stationary distributions of the embedded at service completion moments multi-
dimensional Markov chain and the system states at an arbitrary moment are
calculated. A formula for the probability of arbitrary customer loss is presented.
The brief numerical result shows that the introduced admission discipline may
have an advantage over the previously applied disciplines.
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Abstract. Heterogeneous servers which can differ in service speed and
reliability are becoming more popular in the modelling of modern com-
munication systems. For a two-server queueing system with one non-
reliable server and constant retrial discipline we formulate an optimal
allocation problem for minimizing a long-run average cost per unit of
time. Using a Markov decision process formulation we prove a number
of monotone properties for the increments of the dynamic-programming
value function. Such properties imply the optimality of a two-level thresh-
old control policy. This policy prescribes the usage of a less productive
server if the number of customers in the queue becomes higher than a
predefined level which depends on the state of a non-reliable more power-
ful server. We provide also a heuristic solution for the optimal threshold
levels in explicit form as a function of system parameters.

Keywords: Optimal allocation ·Markov decision process ·Monotonicity
properties · Threshold policy · Heterogeneous servers · Long-run average
cost

1 Introduction

In modern communication systems the speed of data transmission in a link can
interact with its reliability. In many cases this interaction is differently directed.
The complementary properties of different links lead engineers to an idea to
combine them in such a way that the advantages of high speed links could guar-
antee acceptable values of the cost and reliability characteristics. As example of
a system where the data transmission links differ in speed and reliability is a
Radio Frequency/Free Space Optic (RF/FSO) channel [33]. The capacity of the
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RF link is limited to link throughputs in the order of tens of Mbps over distances
of tens of meters. However, link availability can be maintained in most weather
conditions. In contrast, the commercial FSO currently provides throughputs of
several Gbps with link distances of a kilometre or more. One of the major limita-
tions of FSO technology is the need for optical links to maintain line-of-sight and
sensitivity to adverse weather conditions such as fog or heavy snowfalls. Another
example of a system with combined technologies is a modern call-centre where
the human operators are working together with a self-service facility which serves
the calls on the basis of speech recognition methods [7].

Queueing systems with heterogeneous servers are appropriate models to
describe the behaviour of communication systems with the properties mentioned
above. In [14] it was proved that heterogeneous multi-server systems are superior
in performance to homogeneous ones with the same total service time. This is
also established in [24] in the context of manufacturing cells and systems, and it
was confirmed in [30] using simulation results. In [5] a non-trivial application of
a queue with heterogeneous servers to the performance evaluation of a wireless
communication system is presented. The question of how to allocate the cus-
tomers between heterogeneous servers in order to minimize the mean number of
customers in the system has been studied by many authors. In [13] the optimal-
ity of a threshold policy was conjectured that prescribes the usage of the faster
server whenever it is idle and there are customers in the system and the slower
server must be used only if the queue length exceeds some prespecified threshold
level. Based on a dynamic programming approach, the authors in [16] considered
a similar problem and proved the optimality of a threshold policy. Some alterna-
tive proofs of this result were later given in [11,18,34]. The problem of optimal
allocation in the system with more than two servers was studied in [2,21,22,32].
The allocation problem between the servers with failures was recently studied
in [25], where the optimality of threshold policy and dependence of a state of an
unreliable server was proved.

Analysis control procedures for queueing systems with additional cost struc-
ture with the aim of minimizing the long-run average cost per unit of time is
notoriously more difficult. Some progress has been made in [20], where a model
with set-up costs and hysteresis control policy was studied. The paper [23] gener-
alizes results to the case of a multi-server system with a cost structure. A recent
paper [17] introduces the optimal routing problem in two-server systems which
differ in speed and quality of resolution. Multi-server retrial queueing systems
have been extensively studied only for homogeneous servers. Queueing systems
that combine heterogeneous servers and retrial effect were only rarely exam-
ined in research, especially in queueing theory. The authors in [28] evaluated the
mean performance measures for the fastest free server allocation policy using
the MOSEL performance modelling tool in the case of a finite-population multi-
server retrial queueing system. In [9] the optimality of a threshold policy was
proved in a queue with a constant retrial discipline, where only the customer at
the head of the queue repeats an attempt to occupy the server.

The results presented here differ from those obtained in previous papers.
The paper studies the structural properties of the optimal control policy for a
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two-server heterogeneous queueing system where we combine the classical model
with an additional cost structure, unreliability of the server and constant
retrial discipline. Our primary contribution includes a rigorous proving of the
monotonicity properties of the dynamic programming value function for opti-
mization problems with a constraint, of the threshold structure of the optimal
allocation policy, evaluation of the stationary state probabilities in matrix form
for the corresponding quasi-birth-and-death (QBD) process and derivation of
the heuristic solution for the optimal threshold levels as a function of system
parameters.

The remainder of the paper is organized as follows. Section 2 describes the
Markov decision process. In Sect. 3 the optimization problem is formulated and
the optimality equations for the dynamic-programming value function together
with the relationship to the control policy is derived. Section 4 presents the
monotonicity properties of the value function needed to establish the optimality
of threshold policies. Section 5 is devoted to stationary probabilistic analysis
under the given control policy. Section 6 presents the heuristic results for explicit
evaluation of optimal thresholds.

2 Mathematical Model

Let us consider a controllable heterogeneous queueing system M/M/2 with
breakdowns and a constant retrial rate. Customers arrive at the system accord-
ing to a Poisson process with intensity λ, 0 < λ < ∞. The service facility con-
sists of two heterogeneous exponential servers with intensities μ1 and μ2 with
0 < μ2 ≤ μ1 < ∞. The customer, who is rejected to occupy one of the servers,
joins a queue of orbiting customers. According to a constant retrial discipline
the customer at the head of the queue retries for service after an exponential
distributed time with intensity τ, 0 < τ < ∞. Server 1 is assumed to be non-
reliable with exponential distributed life times with intensity α. A failure can
occur in both cases, if a server is idle or busy. If the server fails, the repair starts
immediately and a customer leaves this server if it was busy and joins the head
of the queue. The repair time is exponential with intensity β, 0 < β < ∞. Let
us assume that a customer who gets service at a certain server, cannot change
it up to the moment of leaving the system, e.g. after service completion and at
a failure time. All interarrival times, intervals of successive retrials and service
times, times to failure and repair times are assumed to be mutually independent.
The system is supplied with a controller who gets full information about system
states and can allocate customers between two servers or put it to the queue of
the orbiting customers at each arrival, failure of the busy server or retrial epoch.
The objective is to minimize the long-run average cost per unit of time. We
propose to formulate the allocation problem as a Markov decision process and
then to use the value iteration technique to prove some structural properties,
e.g. threshold structure, of the optimal control policy.

Let Q(t) denote the number of customers in the queue at time t, and Dj(t)
denote the state of server j ∈ {1, 2} at time t, where Dj(t) = 0 if Server j is idle,
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Dj(t) = 1 if Server j is busy and D1(t) = 2 if Server 1 is failed. The system
states at time t are described by a Markov process

{X(t)}t≥0 = {Q(t),D1(t),D2(t)}t≥0. (1)

The controllable model associated with a Markov process {X(t)}, which is
referred to as a Markov decision process (MDP), is a five-tuple

{E,A, {A0(x), Ab,1(x), As(x), x ∈ E, j ∈ {1, 2}}, λxy(a), c(x)}. (2)

– E is a state space,

E = {x = (q(x), d1(x), d2(x)); q(x) ≥ 0, d1(x) ∈ {0, 1, 2}, d2(x) ∈ {0, 1}}. (3)

Further in the paper the notations q(x) and dj(x) will be used to specify the
certain components of the vector state x ∈ E. For every state x we denote by
J0(x), J1(x) and J2(x) the sets of indices of idle, busy and failed servers,

J0(x) = {j; dj(x) = 0}, J1(x) = {j; dj(x) = 1}, J2(x) = {1; d1(x) = 2}. (4)

– A = {0, 1, 2} is an action space with elements a ∈ A, where a = 0 means
“to send a customer to the queue” and a = 1, 2 - “to send a customer to
Server 1 or 2”. A0(x), Ab,1, As ⊆ A denote subsets of control actions in state
x, respectively in case of a new arrival, failure of busy Server 1 and a retrial
arrival, where A0(x) = J0(x)∪{0}. All other subsets can be expressed through
the subset A0(x),

Ab,1(x) = A0(S1x), q(x) ≥ 0, 1 ∈ J1(x), (5)

As(x) = A0(S−1
0 x), q(x) > 0,

where S0, S
−1
0 , Sj , S

−1
j , j ∈ {1, 2} stand for the shift operators defined as

S0x = x + e0, S−1
0 x = x − e0, q(x) > 0, (6)

Sjx = x + ej , j ∈ J0(x) ∪ J1(x), S−1
j x = x − ej , j ∈ J1(x) ∪ J2(x),

where ej is used for the vector of dimension 3 with 1 in the jth position
(beginning from 0th) and 0 elsewhere.

– λxy(a) is a transition intensity to go from state x to state y under a control
action a. It is assumed that the model is conservative, i.e.

λxy(a) ≥ 0, y �= x, λxx(a) = −λx(a) = −
∑
y �=x

λxy(a), λx(a) < ∞.

– c(x) is an immediate cost, in state x ∈ E,

c(x) = c0q(x) + c111{1∈J1(x)} + c21{2∈J1(x)} + c121{1∈J2(x)}, (7)

where c0, c11, c12 and c2 is respectively the waiting cost per unit of time for
each customer in the system, the usage and repair costs for Server 1 and usage
cost for Server 2.
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We will next explain how the controller chooses its actions. First the concept of
a stationary policy must be introduced.

Definition 1. A stationary policy f for the given model is a vector of functions

f = (f0, fb,0, fs), where f• : E → A•(x). (8)

The policy f specifies the control actions that must be chosen at different decision
epochs whenever they occur just after an event at state x ∈ E:

– just after an arrival, if the queue is not empty, a customer can be sent to one
of the idle servers or sent to the queue;

– just after a failure of a busy server a customer from the server can be sent to
the queue or to another idle server;

– just after a retrial arrival a customer can be sent from the head of the queue,
if it is not empty, to an idle server.

We assume that just after any other transition no control action has to be chosen.

3 Optimization Problem for Performance Characteristics

For every fixed stationary policy f we wish to guarantee that the process
{X(t)}t≥0 with a state-space E is an irreducible, positive recurrent Markov
process defined through its infinitesimal matrix Λ = [λxy(f(x))]. As is known
[29], for an ergodic Markov process with costs the long-run average cost per unit
of time (also referred to as gain) for the policy f coincides with the corresponding
assemble average,

gf = lim
t→∞

1
t
V f (x, t) =

∑
y∈E

c(y)πf
y , (9)

where V f (x, t) =
∫ t

0

∑
y∈E P

f [X(u) = y|X(0) = x]c(y)du denotes the total aver-
age cost up to time t when the process starts in state x and πf

y = P
f [X(t) = y]

denotes stationary probability of the process given policy f . The policy f∗ is
said to be optimal when for any admissible policy f

gf∗
= min

f
gf . (10)

In many applications it is often necessary to find a policy f∗ which minimizes
the long-run average cost per unit of time under the constraint on the sojourn
time or the number of customers in the system (due to Little’s Law), namely

gf∗
= min

f
gf subject to N̄ ≤ γ, (11)

where N̄ is a mean number of customers in the system. The constrained Markov
decision problem can be rewritten as an unconstrained one using Lagrange mul-
tipliers, see e.g. [1,4]. The application of MDP with constraints to the problem
of optimal allocation in queueing systems was illustrated e.g. in [35].
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The optimal policy f∗ can be evaluated by means of a Howard iteration
algorithm [10], which constructs a sequence of improved policies until the average
cost optimal is reached. The key role in this algorithm is played by the dynamic
programming value function v : E → R+ which indicates a transition effect of
an initial state x to the total average cost and satisfies an asymptotic relation,

V f (x, t) = gf t + vf (x) + o(1), x ∈ E, t → ∞. (12)

The functions V f , vf and gf further in the paper will be denoted by V, v and g
without upper index f . The system will be uniformized as in [26] with

λ + μ1 + μ2 + α + β + τ = 1,

which can be obtained by time scaling. As is well known, the optimal policy f
and the optimal average cost g are solutions of the optimality equation

Bv(x) = v(x) + g, (13)

where B is the dynamic programming operator acting on value function v.

Theorem 1. The dynamic programming operator B is defined as follows

Bv(x) = c(x) + ηl(x) + λT0v(x) +
∑

j∈J1(x)

μjTjv(x) (14)

+ αTb,0v(x) + αTb,1v(x) + βTrv(x) + τTsv(x)

+
( ∑

j /∈J1(x)

μj + β1{1/∈J2(x)}
)
Tdv(x),

where T0,Tj, j ∈ {1, 2},Tb,0,Tb,1,Tr,Ts and Td – event operators, respectively,
for a new arrival, for service completion on server j, failure occurrence in idle
or busy state, repair completion of Server 1 and retrial arrival, the last operator
stands for dummy transitions,

T0v(x) = min
a∈A0(x)

v(x + ea), Tjv(x) = v(S−1
j x), j ∈ J1(x),

Tb,0v(x) = v(S2
1x), 1 ∈ J0(x), Tb,1v(x) = T0v(S1x), 1 ∈ J1(x),

Trv(x) = v(S−2
1 x), 1 ∈ J2(x), Tsv(x) =

{
T0v(S

−1
0 x) q(x) > 0,

v(x) q(x) = 0.
, Tdv(x) = v(x).

Proof. The optimality equation is obtained by analysing the function V (x, t) in
some infinitesimal interval [t, t + dt]. It leads to a differential equation. Apply-
ing further the limit expression for dt → 0 and due to the Markov property
of {X(t)}t≥0 with asymptotic relation (12) ones get (14). Here η > 0 is the
Lagrange multiplier, l(y) stands for the number of customers in state y. When
η increases, then the value of N̄ decreases. Therefore, there exist values η′ and
η′′, such that N̄(η′) > γ and N̄(η′′) ≤ γ, where η′′ = η′ + ε for a small ε ≥ 0.
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The structure of the system (14) implies for each x ∈ E the following statement.

Corollary 1. The optimal policy f = (f0, fb,1, fs) is defined through the value
function v(x) and depends only on its component f0 for the shifted states,

f0(x) = arg min
a∈A0(x)

{v(Sax)}, (15)

fb,1(x) = arg min
a∈Ab,1(x)

{v(SaS1x)} = f0(S1x), 1 ∈ J1(x),

fs(x) = arg min
a∈As(x)

{v(SaS−1
0 x)} = f0(S−1

0 x), q(x) > 0.

Therefore, the optimal component f0 completely defines the optimal policy f .
To show the structural properties of the optimal policy f some monotonicity
properties of the increments of the value function v(x) must be proved.

The relations (15) show that the structural and monotone properties of the
optimal control policy f can be derived by analysing the monotonicity properties
of the value function v. Such properties for other types of controlled queues in a
tandem were studied also in [12,15,31]. It was shown that the value function has
some monotonicity properties like non-decreasing and superconvexity. To prove
such inequalities it is necessary to solve (13). Since the solution of the optimality
equation in analytic form is hardly available, it can be solved recursively defining
vn+1 = Bvn for some arbitrary initial v0. Due to the limit relation

lim
n→∞ Bnv0(x) = v(x) (16)

we get an optimal solution for the value function. For existence and convergence
solutions and optimal policies we refer to [3,25–27].

4 Optimality of the Threshold Policy

Now some monotonicity properties of the value function for the system under
study will be presented and proved, but first we have to make a statement.

Theorem 2. The value function v satisfies the conditions for any x ∈ E:
C1. Non-decreasing condition

(a) v(x) − v(S0x) ≤ 0,

(b) v(x) − v(Sjx) ≤ 0, j ∈ {1, 2}, dj(x) = 0,
(c) v(S1x) − v(S2x) ≤ 0, d1(x) = d2(x) = 0,
(d) v(S1x) − v(S0x) ≤ 0, d1(x) = 0.

C2. Superconvexity condition

(a) v(S0x) − v(S2x) ≤ v(S2
0x) − v(S0S2x), d1(x) ∈ {0, 1, 2}, d2(x) = 0,

(b) v(S1x) − v(S2x) ≤ v(S0S1x) − v(S1S2x), q(x) = 0, d1(x) = d2(x) = 0.
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C3. Supermodularity condition

(a) v(S0x) − v(x) ≤ v(S0S2x) − v(S2x), d1(x) ∈ {0, 1, 2}, d2(x) = 0,
(b) v(S1x) − v(x) ≤ v(S1S2x) − v(S2x), q(x) = 0, d1(x) = 0, d2(x) = 0.

C4. Convexity condition

(a) 2v(S0x) − v(x) − v(S2
0x) ≤ 0, d1(x) ∈ {1, 2}, d2(x) = 0,

(b) 2v(S0S2x) − v(S2x) − v(S2
0S2x) ≤ 0, d1(x) ∈ {1, 2}, d2(x) = 0,

(c) 2v(S1x) − v(x) − v(S0S1x) ≤ 0, d1(x) = 0, d2(x) = 0.

Statement 1. The inequality (C4-a) directly follows by summing up the conditions
(C2-a) and (C3-a), the inequality (C4-b) – by summing up the conditions (C2-a)
and (C3-a) in state x and S0x respectively and (C4-c) – by summing up the
conditions (C2-b) and (C3-b), which are the boundary conditions for the state
x = (0, 0, 0). The name of condition (C3) is borrowed from [6].

Statement 2. (C1-c) can be explicitly proved only under assumption c11 − c2 ≤ 0
and (C1-d) – under assumption c11 − c0 ≤ 0, which are of course too strong. We
assume that for conditions (C1)–(C4) the expression (26) must be positive.

Due to lack of space we demonstrate the proof only for the properties (C1-c)
and (C2-a). The rest of the inequalities can be proved in a similar way.

Proof (Condition C1). The proof is by induction on n in vn. Let us define
v0(x) = 0 for all states x ∈ E. This function obviously satisfies the conditions
(C1)–(C3). Now, we assume (C1)–(C3) for the function vn(x), x ∈ E, and some
n ∈ N. One has to prove that vn+1(x) satisfies the proposed conditions as well.

(C1-c). Let us consider the inequality (C1-c). For this increment we get,

vn+1(S1x) − vn+1(S2x) = c(S1x) − c(S2x) + η(l(S1x) − l(S2x)) (I)
+ λ[T0vn(S1x) − T0vn(S2x)] (II)
+ μ1[T1vn(S1x) − Tdvn(S2x)] (III)
+ μ2[Tdvn(S1x) − T2vn(S2x)] (IV )
+ α[Tb,1vn(S1x) − Tb,0vn(S2x)] (V )
+ τ [Tsvn(S1x) − Tsvn(S2x)] (V I)
+ β[Tdvn(S1x) − Tdvn(S2x)] ≤ 0. (V II)

The term (I) is equal to c11 − c2 ≤ 0, which is true by assumption. The term (II)

(II) = T0vn(S1x) − vn(S1S2x) ≤ vn(S1S2x) − vn(S1S2x) = 0

by virtue of (C1-c) and (C1-d). Now we join the terms (III) and (IV),

(III) + (IV ) = μ2[Tdvn(S1x) − T2vn(S2x)] − μ1[Tdvn(S2x) − T1vn(S1x)]
= μ2[vn(S1x) − vn(x)] − μ1[vn(S2x) − vn(x)]

= μ1μ2

[vn(S1x) − vn(x)
μ1

− vn(S2x) − vn(x)
μ2

]
≤ 0,
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for q(x) > 0 due to μ1 ≥ μ2 and (C1-b). The term (V) is non-positive,

(V) = T0vn(S2
1x) − vn(S2

1S2x) ≤ vn(S2
1S2x) − vn(S2

1S2x) = 0.

For the term (VI) we have

(VI) = T0vn(S−1
0 S1x) − T0vn(S−1

0 S2x) = T0vn(S−1
0 S1x) − vn(S−1

0 S1S2x)

≤ vn(S−1
0 S1S2x) − vn(S−1

0 S1S2x) = 0, for q(x) > 0,

(VI) = vn(S1x) − vn(S2x) ≤ 0, for q(x) = 0,

by (C1-c). The term (VII) is non-positive according to (C1-c). If (C1) holds for
vn(x) then it holds by induction for any n and by (16) for the function v(x).

Proof (Condition C2). The proof is made by induction on n in vn. Let us define
v0(x) = 0 for all states x ∈ E. It is clear that this function satisfies condition
(C2). Now suppose that properties (C1)–(C4) hold for vn, n ∈ N. Now we prove
that it holds for n + 1 as well.

(C2-a). In this case for the function vn(x) holds the following inequality

vn+1(S0x) − vn+1(S2x) − vn+1(S2
0x) + vn+1(S0S2x)

= c(S0x) − c(S2x) − c(S2
0x) + c(S0S2x) (I)

+ η(l(S0x) − l(S2x) − l(S2
0x) + l(S0S2x))

+ λ[T0vn(S0x) − T0vn(S2x) − T0vn(S2
0x) + T0vn(S0S2x)] (II)

+ μ1[T1vn(S0x) − T1vn(S2x) − T1vn(S2
0x) + T1vn(S0S2x)] (III)

+ α[Tb,1vn(S0x) − Tb,1vn(S2x) − Tb,1vn(S2
0x) + Tb,1vn(S0S2x)] (IV )

+ β[Trvn(S0x) − Trvn(S2x) − Trvn(S2
0x) + Trvn(S0S2x)] (V )

+ μ2[Tdvn(S0x) − T2vn(S2x) − Tdvn(S2
0x) + T2vn(S0S2x)] (V I)

+ τ [Tsvn(S0x) − Tsvn(S2x) − Tsvn(S2
0x) + Tsvn(S0S2x)] (V II)

+ ((α + μ1)1{d1(x)=2} + β1{d1(x)=1})

× [Tdvn(S0x) − Tdvn(S2x) − Tdvn(S2
0x) + Tdvn(S0S2x)] ≤ 0. (V III)

The term (I) is obviously 0. We show that the term (II) is non-positive. To
perform it let us consider the following two subcases. If f0(S2x) = f(S2

0x) = 0,
then

(II) = T0vn(S0x) − vn(S0S2x) − vn(S3
0x) + T0vn(S0S2x)

≤ vn(S2
0x) − vn(S0S2x) − vn(S3

0x) + vn(S2
0S2x) ≤ 0

due to (C2-a) in state S0x. If f0(S2x) = 0 and f(S2
0x) = 2, then

(II) = T0vn(S0x) − vn(S0S2x) − vn(S2
0S2x) + T0vn(S0S2x)

≤ vn(S0S2x) − vn(S0S2x) − vn(S2
0S2x) + vn(S2

0S2x) = 0.
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The term (III) satisfies

(III) = vn(S0S
−1
1 x) − vn(S−1

1 S2x) − vn(S2
0S−1

1 x) + vn(S0S
−1
1 S2x) ≤ 0,

which follows from the inequalities (C2-a). Let us consider the term (IV). We
have

(IV) = T0vn(S0S
2
1x) − T0vn(S2

1S2x) − T0vn(S2
0S2

1x) + T0vn(S0S
2
1S2x) ≤ 0,

with respect to the property of the operator T0 applied to (C2-a) in state S2
1x.

The term (V) is of the form

(V) = vn(S0S
−2
1 x) − vn(S−2

1 S2x) − vn(S2
0S−2

1 x) + vn(S0S
−2
1 S2x) ≤ 0,

which follows from the inequality (C2-a) in state S−2
1 x for d1(x) = 2. For the

term (VI) we have

(VI) = vn(S0x) − vn(x) − vn(S2
0x) + vn(S0x) = 2vn(S0x) − vn(x) − vn(S2

0x) ≤ 0,

by (C4-a). The term (VII) is non-positive for q(x) > 0 due to the property of
the operator Ts and T0 applied to the state S−1

0 x in (C2-a),

(VII) = T0vn(x) − T0vn(S−1
0 S2x) − T0vn(S0x) + T0vn(S2x) ≤ 0.

For q(x) = 0 we get

(VII) = T0vn(x) − vn(S2x) − T0vn(S0x) + T0vn(S2x).

If f0(S0x) = 0, then we have

(VII) = T0vn(x) − vn(S2x) − vn(S2
0x) + T0vn(S2x)

≤ vn(S0x) − vn(S2x) − vn(S2
0x) + vn(S0S2x) ≤ 0

as in (C2-a). If f0(S0x) = 2, then

(VII) = T0vn(x) − vn(S2x) − vn(S0S2x) + T0vn(S2x)
≤ vn(S2x) − vn(S2x) − vn(S0S2x) + vn(S0S2x) = 0.

The last term (VIII) is non-positive by (C2-a).
Hence, we conclude, by taking the limit n → ∞, that the value function v(x)

preserves the conditions (C2).

Corollary 2. The optimal allocation policy is of threshold type. There exists a
two-level threshold policy f∗ = (q∗

1 , q
∗
2) such that

1. Server 1 must be used whenever it is free while a customer tries to get service
at a service facility.

2. Server 2 must be used whenever it is free, Server 1 is busy or failed, a customer
tries to get service and the queue length q(x) upon arrival in state x satisfies
q(x) ≥ q∗

k − 1 if d1(x) = k, k ∈ {1, 2}.
Proof. The statement follows directly from the definition (15) of the control
policy f(x) and monotonicity properties of the value function (C1-c), (C1-d)
and (C2-a) given in Theorem2.
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5 Stationary State Probabilities

Now we fix the threshold policy f = (q1, q2). The possible states of the system
at any time are presented by the vector state x = (q, d1, d2) ∈ E. Let us define
the levels 0,1,2, . . . as a set (block) of states,

q = {(q, 0, 0), (q, 1, 0), (q, 2, 0), (q, 0, 1), (q, 1, 1), (q, 2, 1)}

for q ≥ 0. Let the row-vector of the stationary state probabilities π be par-
titioned as π = (π0,π1,π2, . . . ), where πq = {π(q,0,0), π(q,1,0), π(q,2,0), π(q,0,1),
π(q,1,1), π(q,2,1)}. Let us denote by ej the vector of dimension 6 with 1 in the jth
position (beginning from 0th) and 0 elsewhere and by e the unit vector of the
same dimension.

Theorem 3. If the stability condition holds, the vector π exists and is a unique
solution of the system πΛ = 0,πe = 1, where Λ := Λ(q1, q2) specifies a three
diagonal block infinitesimal matrix of {X(t)}t≥0, which is of the QBD type:

Λ(q1, q2) = diag(Q1,0, Q1,1, . . . , Q1,1︸ ︷︷ ︸
q2−2

, Q1,2, Q1,3, . . . , Q1,3︸ ︷︷ ︸
q1−q2−1

, Q1,4, Q1,5, . . . )

+ diag+(Q0,1, . . . , Q0,1︸ ︷︷ ︸
q2−2

, Q0,2, . . . , Q0,2︸ ︷︷ ︸
q1−q2−1

, Q0,3, . . . ) (17)

+ diag−(Q2,1, . . . , Q2,1︸ ︷︷ ︸
q2−2

, Q2,2, . . . , Q2,4︸ ︷︷ ︸
q1−q2−1

, Q2,3, . . . ).

with (Q1,0 + Q0,1)e = (Q2,1 + Q1,1 + Q0,1)e = (Q2,1 + Q1,2 + Q0,2)e = (Q2,2 +
Q1,3 + Q0,2)e = (Q2,2 + Q1,4 + Q0,3)e = (Q2,3 + Q1,5 + Q0,3)e = 0.

Blocks Q1,n,n = 0, 5, include outgoing intensities for the certain block state,

Q1,0 =

⎛
⎜⎜⎜⎜⎜⎝

−(λ + α) λ α 0 0 0
μ1 −(λ + μ1 + α) 0 0 0
β 0 −(λ + β) 0 0 0
μ2 0 0 −(λ + μ2 + α) λ α
0 μ2 0 μ1 −(λ + μ1 + μ2 + α) 0
0 0 μ2 β 0 −(λ + μ2 + β)

⎞
⎟⎟⎟⎟⎟⎠

,

Q1,1 = Q1,0 + τ(e0 ⊗ e
′
0 + e3 ⊗ e

′
3), Q1,2 = Q1,1 + λe2 ⊗ e

′
5 + αe1 ⊗ e

′
5,

Q1,3 = Q1,2 + τe2 ⊗ e
′
2, Q1,4 = Q1,3 + λe1 ⊗ e

′
4, Q1,5 = Q1,4 + τe1 ⊗ e

′
1.

Blocks Q0,n,n = 1, 3, include the incoming intensities from the lower level,

Q0,1 = diag(0, λ, λ, 0, λ, λ) + diag+(0, α, 0, 0, α),
Q0,2 = Q0,1 − λe2 ⊗ e′

2 − αe1 ⊗ e′
2, Q0,3 = Q0,2 − λe1 ⊗ e′

1.

Blocks Q2,n,n = 1, 3, include the incoming intensities from the upper level,

Q2,1 = diag+(τ, 0, 0, τ, 0), Q2,2 = Q2,1 + τe2 ⊗ e′
5, Q2,3 = Q2,2 + τe1 ⊗ e′

4.
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For the given QBD process to be stable, it is necessary ([19], Theorem 3.1.1,
p.82) that pQ0,3e < pQ2,3e, where p is an invariant probability, which can be
evaluated from p(Q0,3 + Q1,5 + Q2,3) = 0 and pe = 1.

Theorem 4. The macro-vectors πq, q ≥ 0, satisfy the relations

πq = πq1

q1−q∏
j=1

Mq1−j , q = 0, q1 − 1, (18)

πq = πq1R
q−q1 , q ≥ q1,

where matrices Mq are of the form,

M0 = −Q2,1Q
−1
1,0, Mq = −Q2,1(Mq−1Q0,1 + Q1,1)−1, q = 1, q2 − 2, (19)

Mq2−1 = −Q2,2(Mq2−2Q0,1 + Q1,2)−1, Mq1−1 = −Q2,3(Mq1−2Q0,2 + Q1,4)−1,

Mq = −Q2,2(Mq−1Q0,2 + Q1,3)−1, q = q2, q1 − 2.

The vector πq1 is a unique solution of the system of equations

πq1

[ q1−1∑
q=0

q1−q∏
j=1

Mq1−j + (I − R)−1
]
e = 1, (20)

πq1(Mq1−1Q0,3 + Q1,5 + RQ2,3) = 0.

Matrix R is a minimum non-negative solution of the matrix quadratic equation,

R2Q2,3 + RQ1,5 + Q0,3 = 0. (21)

Proof. The results for boundary blocks, if q < q1, follows by recursive solution
of the balance equation after routine block identification. For q ≥ q1 we have a
matrix geometric solution as shown in [19].

Corollary 3. Optimization problem consists in minimizing of the function

g = c0Q̄ + c11Ū1 + c2Ū2 + c12B̄ (22)

subject to N̄ ≤ γ. Here Q̄ is the mean number of customers in the queue,

Q̄ =
[ q1−1∑

q=0

qπq + πq1(R + q1(I − R))(I − R)−2
]
e,

Ūj = P[Dj(t) = 1] stands for the utilization of the Server j,

Ūj =
[ q1−1∑

q=0

πq + πq1(I − R)−1
]
(e11{j=1} + (e3 + e5)1{j=2} + e4),

B̄ = P[D1(t) = 2] is a failure index of the Server 1,

B̄ =
[ q1−1∑

q=0

πq + πq1(I − R)−1
]
(e2 + e5),

and N̄ is the mean number of customers in the system, N̄ = Q̄ + Ū1 + Ū2.
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6 Heuristic Solution for Optimal Thresholds

The Howard iteration algorithm allows us to evaluate numerically the optimal
threshold levels. This method has weak spots connected with a necessity to
solve the system of 6N linear equations for any fixed set of values of the system
parameters. Here N specifies a truncation parameter to transform an infinite
buffer system to a finite equivalent. A direct analytic minimization of the func-
tion g(q1, q2) is infeasible and numerical evaluation requires evaluation of the
corresponding matrices Mq, q = 0, q1 − 1 for each pair (q1, q2).

Let us consider first the equivalent scheduling problem where is assumed that
there are customers in the system and the problem consists in allocation between
the servers until the system becomes empty with the aim of the total expected
cost minimization. That means that in the original system the arrival rate λ
must be set to be 0.

Theorem 5. The optimal thresholds q∗
k, k ∈ {1, 2}, for the scheduling problem

satisfy the relations,

q∗
k = max

{
1,

⌊ 1
c0Ak

[ c2
μ2

− c11
μ1

− c0Bk − c12Ck

]⌋}
, where (23)

A1 =
(α + β)(α + μ1 + τ)

μ1βτ
, A2 = A1 +

α + β + τ

βτ
, (24)

B1 = B2 =
α(α + β + τ)

μ1βτ
, C1 =

α(α + μ1 + τ)
μ1βτ

, C2 = C1 +
α + τ

βτ
.

Proof. Let us consider the case λ = 0. Due to the threshold structure of the
control policy f , we can calculate the total average cost V (x) incurred by the
customers presented in the system until it becomes empty given initial state x.
Assuming the known values of (q1, q2) after some algebra we get for the state
x = (0, 0, 0),

V (Sq
0S1x) =

c11
μ1

+ c0q
(α + β)(α + μ1 + τ)

μ1βτ
+ c0

α(α + β + τ)
μ1βτ

+ c12
α(α + μ1 + τ)

μ1βτ
+ V (Sq−1

0 S1x),

V (Sq+1
0 S2

1x) =
c11
μ1

+ c0q
[ (α + β)(α + μ1 + τ)

μ1βτ
+

α + β + τ

βτ

]
+ c0

α(α + β + τ)
μ1βτ

+ c12

[α(α + μ1 + τ)
μ1βτ

+
α + τ

τβ

]
+ V (Sq−1

0 S1x).

By successive substitution of expressions for v(Sq
0S1x) we obtain

V (Sq
0S1x) =

c11
μ1

+ c0
q(q + 1)

2
(α + β)(α + μ1 + τ)

μ1βτ
(25)

+ (q + 1)
[
c0

α(α + β + τ)
μ1βτ

+ c12
α(α + μ1 + τ)

μ1βτ

]

=
c11
μ1

+ c0
q(q + 1)

2
A1 + (q + 1)[c0B1 + c12C1]



70 D. Efrosinin and J. Sztrik

V (Sq
0S

2
1x) =

c11
μ1

+ c0
q(q + 1)

2

[ (α + β)(α + μ1 + τ)
μ1βτ

+
α + β + τ

βτ

]

+ (q + 1)
[
c0

α(α + β + τ)
μ1βτ

+ c12

[α(α + μ1 + τ)
μ1βτ

+
α + τ

τβ

]]

=
c11
μ1

+ c0
q(q + 1)

2
A2 + (q + 1)[c0B2 + c12C2].

When the orbit has reached the level q1 or q2, it becomes optimal to use the
second server. Then the following inequalities must hold,

V (Sq−1
0 S1S2x) =

c2
μ2

+ V (Sq−1
0 S1x) ≤ V (Sq

0S1x)

V (Sq−1
0 S2

1S2x) =
c2
μ2

+ V (Sq−1
0 S1x) ≤ V (Sq

0S
2
1x).

Solving the last two inequalities using the notations (24) for the expressions (25)
we get the relations (23) for the optimal thresholds (q∗

1 , q
∗
2).

In [8] the heuristic solution was obtained for the ordinary M/M/2 queue.
Substituting in this relation the mean service 1

μ1
by the effective mean service

time of the model under study Ak, taking into account the cost structure and
form of the scheduling threshold levels, we can make the following conjecture.

Conjecture 1. The optimal threshold q∗
k, k ∈ {1, 2}, for the case λ > 0 can be

calculated approximately by

q∗
k ≈ q̂∗

k = max
{

1,

⌊
1

c0Ak

[
c2
μ2

Fk − c11
μ1

− c0Bk − c12Ck

]⌋}
, where (26)

Fk =
1 − λAk +

√
(1 − λAk)2 + 4λμ2A2

k

2
(27)

Statement 3. The threshold levels defined by (23) satisfy the inequalities

1
c0Ak

[ c2
μ2

(1 − λAk) − c11
μ1

− c0Bk − c12Ck

]
≤ q̂k (28)

≤ 1
c0Ak

[ c2
μ2

− c11
μ1

− c0Bk − c12Ck

]
, for μ2 ≤ 1

Ak

Proof. The left inequality of (28) follows directly from

Fk ≥ 1 − λAk +
√

(1 − λAk)2

2
= 1 − λAk.

To prove the inequality at the right hand side we show that Fk ≤ 1. By solving
this inequality using simple algebraic manipulations we get μ2 ≤ A−1

k , where Ak

represents the mean effective service time of the customer.

Statement 4. Because of the restricted volume space we have skipped numerical
examples and make here only two general observations:
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1. The optimal threshold policy can be up to 25 % superior in performance
compared with policies like Fastest Free Server or Random Server Selection.

2. The difference between the real and heuristic policies does not exceed 1.5 %
of the performance value.

7 Conclusion

In this paper we have studied a dynamic allocation problem for a two-server
heterogeneous queueing system. The more productive server is unreliable and
subject to breakdowns whereas the less productive is absolutely reliable. Under
some assumption about the costs it was proved that the optimality of a threshold
control policy depends on the state of the unreliable server. We expect that this
result can be generalized to the multi-server retrial queue where all servers are
unreliable and to the limited case where retrial intensity tends to infinity. But
in this case, as for the ordinary M/M/K queue, the optimal threshold levels
may depend also on the states of slower servers although this influence is very
negligible.
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Abstract. We investigate the simulation methods for a multiphase
queuing network with non-Poisson flows. Specifically, we study how the
network internal flows react to a change of the network flow control para-
meters. The parameters are: the number of phases, system load, queue
capacity, time interval distribution between applications. Also, we inves-
tigate how the internal flows react on different routing rules in the system.
All these simulations are compared with the analytical results, obtained
under the assumption that the flows are either Poisson or Erlang. Finally,
we demonstrate when it is justifiable to use Poisson approximation for
the input flows for these kind of systems.

Keywords: Networks with non-poisson flows · Queuing networks with
restrictions · Serial connection · Simulations · The reliability character-
istics of systems · Flow control

1 Introduction

As information networks (IN) become widespread and complex, society demands
more efficient designs and more useful functionality indicators for the networks.
Queuing Theory (QT) is often used to describe how information networks work.
Modern networks require new, better, and more adequate models of real-life
objects. Classic QT formulas were developed for simplest Poisson input flows,
and it appears that for many problems this approach works. However, a lot of
research works indicate that in many modern real-life systems, a model behaves
very differently from its real life counterpart as a Poisson flow is substituted for
a real one.

In 1993 the group of researchers W. Leland, M. Taqqu, W. Willinger, and
D. Wilson published the paper “On the SelfSimilar Nature of Ethernet Traffic”
[1]. It was discovered that conventional approximation for elementary flows in
IN leads to incorrect results. It appears that on a large scale the network traffic
is self-similar. In other words, these flows are already of a completely different
structure than in the classical Teletraffic theory. Self-similar telecommunication
c© Springer International Publishing Switzerland 2016
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network traffic is associated with a widespread use of packet switching rather
than circuit-switching, is often used in telephone networks [2].

In addition to the type of switching, there is a number of parameters that
affect the flow distribution shape. These parameters include, for example, a loss
of orders due to queue overflow, the rules of request routing, and so on.

A large number of works has been devoted to construct and study queuing
models with non-Poisson input flow. In those works, a number of methods that
beget adequate results has been proposed [3–5]. However, there are problems
that require a systematic approach:

• different models are built by different methods to obtain adequate results for
specific tasks. There is no algorithm that allows to the choice of the optimal
method. Existing models are diverse, each new model requires a lot of compu-
tation work. There is no general classification and structuring of models and
methods to study IN;

• practically, there is no sufficiently developed general theoretical framework to
model systems with traffic other than a simple flow. QT requires generalization
to a larger number of tasks that meet modern needs [6]. There is no single
algorithm to calculate the IN quality indicators; also, a unified method to
assess occurring errors is missing;

• there is no unified framework to study the mutual influence of flow distribu-
tions and system operational parameters. The emergence of self-similar traffic
and the deviation of the real application flow from the simplest one are often
due to the structure of the network and the rules of the network’s construc-
tion. Even as a simple Poisson application flow enters the system, the flow
shape is gradually distorted under the influence of various parameters of the
network.

It becomes obvious that we need a comprehensive study to systematize the
already obtained results in how the application flow and the network performance
parameters depend on the network setup. Our report presents an overview of
the works on the subject. We demonstrate the results of a simulation model of a
queuing system; the simulation was conducted by means of a software package
we developed specifically for this project. Also, we show that our model can be
flexibly adjusted for different network setups to study how the network para-
meters and the flow distributions are related; our software is also capable of
comparing simulation results with analytical ones.

Queuing networks are often taken as models of real life processes. However, it
is important that those models adequately represent the original processes. For
many problems it is sufficient to select a Poisson-distributed input flow. Internal
flows circulating inside queuing networks are of particular interest in case of
serially connected queuing systems (QS), that is when the output flow of one
QS is the input flow of another QS, or when applications are rerouted. It is known
that a QS network with exponential service time without restriction on queue
length has all its internal flows to remain Poisson. For a QS with restrictions,
the output flow is distorted, and the next QS in line receives a modified flow
[7–9].
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Relatively few works are devoted to QSs with losses or with different appli-
cation flows. However, there are some papers that are of interest for this study
[4,10–12].

In [10] a multiphase model of a QS with restrictions on queue length is inves-
tigated. The work is dedicated to find the average number of lost applications
for each phase of service. The formulas to calculate that number are obtained on
the assumption of Poisson flow. In [11] a model of a two-phase QS is constructed;
the formulas for the probability distribution of system states and the probability
of loosing an application are found for that model.

2 Multiphase Systems with Constraints

To study flows in a multiphase queuing network, let us take the system that was
investigated in the work [10] as an example. That system was a 5-phase queuing
system that has a single channel in each phase. The time it takes the system to
service a request in the i-th phase is a random variable, distributed exponentially
with parameter μi. The system is fed a stationary Poisson application flow with
parameter λ. If an application finds the system busy during a particular phase,
the application is considered lost in that phase.

For this study we take a 5-phase queuing network with a limited queue.
Analytical calculations of the number of lost applications were made with the
assumption that the internal flows are Poisson. We have built a simulation model
to compare the results. The table shows the results obtained analytically and
by means of a simulation for each phase and varying intensity of the input
stream. The difference in the results obtained is noticeable - so internal flows are
significantly different from the Poisson distribution.

The authors of [10] built a simulation model that allowed them to compute
the average number of applications lost during every phase. Table 1 shows the
results. The column “Analytics” indicates the results obtained from the analyt-
ical formulas derived in [10]:

z1 = ρ
1+ρ , z2 = ρ

2(1+ρ)2 , z3 = ρ(3+ρ)
8(1+ρ)3

z4 = ρ(ρ2+4ρ+5)
16(1+ρ)4 , z5 = ρ(5ρ3+25ρ2+47ρ+35)

128(1+ρ)5

where z1, z2,..., zn are the average fractions of the applications that are lost
during the 1-, 2 - ,..., n-th phase accordingly. ρ = μ

λ , μ = μ1 = μ2 = μ3 = μ4 =
μ5 = 1.

The difference is noticeable even at low intensity of the input flow; the greater
the intensity, the greater the difference. As the input flow intensity in the phases
4–5 becomes high, the results differ by more than a factor of 2.
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Table 1. The fraction of lost applications in each phase vs. incoming flow

Incoming flow Phase number (analytics) Phase number (simulation)

1 2 3 4 5 1 2 3 4 5

0.1 0.091 0.041 0.029 0.023 0.019 0.092 0.046 0.033 0.027 0.023

0.2 0.167 0.069 0.046 0.035 0.029 0.166 0.083 0.061 0.049 0.042

0.3 0.231 0.089 0.056 0.041 0.032 0.231 0.115 0.083 0.066 0.056

0.4 0.286 0.102 0.062 0.044 0.034 0.286 0.143 0.101 0.08 0.067

0.5 0.333 0.111 0.065 0.045 0.034 0.333 0.166 0.117 0.091 0.076

0.6 0.375 0.117 0.066 0.044 0.033 0.375 0.188 0.13 0.1 0.083

0.7 0.412 0.121 0.066 0.043 0.032 0.412 0.206 0.141 0.108 0.088

0.8 0.444 0.123 0.065 0.042 0.03 0.445 0.222 0.151 0.115 0.93

0.9 0.474 0.125 0.064 0.041 0.029 0.474 0.237 0.159 0.12 0.097

Fig. 1. Internal flow distributions in the system under a moderate load

Obviously, the analytical expressions derived under the assumption that the
input flow is Poisson are of limited accuracy for multiphase QSs with losses.

Let us compare how the intervals between the output flow of 1st and 5th

phase and the Poisson-distributed input flow are distributed (Figs. 1 and 2).
The service intensity in both cases is equal to 1, the restriction on the queue
length is 0. This means that if the device is busy, then an incoming application is
lost. Figure 1 describes the flow circulating in the network with a low load for the
input stream 0.1. Figure 2 does the same for the input flow intensity increased
to 0.9.

It is clear that the profile of the flow probability distribution differs signifi-
cantly from a Poisson one. Moreover, the difference increases as the number of
phases the system passes increases; also the difference increases and the load
increases.

Let us see what happens when we increase the queue’s capacity. Figures 3
and 4 show how the circulating internal flows react to one more element in the
queue.

Under a moderate system load, a small growth in the queue causes significant
reduction of application losses. Also in this regime, the internal flows approach
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Fig. 2. Internal flow distributions in the system as the load increases

Fig. 3. Time interval distribution function between applications, the internal flow is 0.1

Fig. 4. Time interval distribution function between applications, the internal flow is 0.9

exponential distribution. As the system load increases, the difference between
analytical and simulation results remains very significant. The former flow can
be approximated by a Poisson flow, the latter flow bears similarity neither with
Poisson nor with Erlang flows.

3 Flow Approximations

We demonstrated that the flows may differ significantly from Poisson. Let us see
how significant the difference is for our system’s performance. For example, we
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take the average residence time of an application in a queue with exponential ser-
vice and maintenance intensity μ = 1.0. Next, we replace the flow obtained from
the simulation with the Poisson flow that has the same expectation value (Fig. 5).

Fig. 5. Approximation of the flow by a Poisson one

Fig. 6. Approximation of the simulated flow by a 3rd order Erlang flow

The mean value of the time between applications of the input flow is 4.14. Our
simulation gave the following value of the mean residence time of an application
in our system: t = 1.098.

The analytical expression for the mean residence time of an application in a
M/M/1 system is t = 1

μ−λ . The input flow is λ = 1/4.14 = 0.242. Thus, the mean
residence time of an application in our system under Poisson approximation is
t = 1.318.

It follows that making the assumption that the input flow is Poisson to solve
applied problems is not always justified, as the error in this case may be very
significant. However, the analytical results obtained in this paper can be used
to estimate the upper limit of performance of a QS. A real life system will
perform better, because a Poisson flow gives maximum dispersion of intervals
between applications. Obviously, the Poisson approximation of a flow results in
far too high a value of the average residence time of an application in the system.



How Does a Queuing Network React to a Change of Different Flow 79

Perhaps for some special cases it will be possible to select some of the well-studied
distributions, which allows us to calculate the properties of a QS with minimal
error. For example, the distribution obtained in the first experiment is similar
to an Erlang distribution. Figure 6 shows how the Erlang distribution works to
approximate the output flow from the fifth phase of the previously considered
case (the intensity of the input is 0.9).

4 Role of Routing

Another commonly used method of flow control inside a queuing network is
routing of applications. Let us see how the internal flows of a QS change, if
different routing rules are applied to the network. We take a simple QS that
consists of two parallel-connected QS with exponentially distributed service time
and intensity of service μ1 = μ2 = 1.0.

If a request is routed at random (with a given probability) among the queues,
the output flow of every QS is Poisson; this fact allows us to use standard analyt-
ical formulas to analyze the system. In the case of a sequential routing algorithm,
the output flow takes the form shown in Fig. 7 (the intensity of the incoming
application flow is 0.1) and Fig. 8 (the intensity of the incoming application flow
is 0.9).

Fig. 7. Residence time distribution in case of sequential routing (the intensity of the
input flow is 0.1)

The following routing rule is intended to minimize queues and load the
devices as uniformly as possible; an application is assigned to the queue with
minimal length. If any two queues are the same, then the application is assigned
to the first one. Our simulation was carried out for two values of the flow inten-
sities - 0.1 (Fig. 9) and 0.9 (Fig. 10).
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Fig. 8. Residence time distribution in case of sequential routing(the intensity of the
input flow is 0.9)

Fig. 9. Residence time distribution in case of minimal queue routing (the input flow
intensity is 0.1)

Fig. 10. Residence time distribution in case of minimal queue routing (the input flow
intensity is 0.9)

5 Conclusion

This work shows that for a QS with an incoming Poisson flow, the internal flows
remain the same only if the queues are infinite and the flows are not routed. If
there is a queue with restrictions or a flow is divided between multiple devices,
the flows actually coming to each QS differ from Poisson. If this fact is ignored
and analytical formulas for the elementary streams are used without caution,
significant errors are inevitable as one tries to predict how the QS performs.



How Does a Queuing Network React to a Change of Different Flow 81

Sometimes it is easy to guess a distribution to approximate and compute the
characteristics of a QS: some real life flows are well approximated by an Erlang
flow (Fig. 6); in some cases, approximation by a Poisson flow gives a small error.
But there are times when it is difficult to choose a distribution to approximate a
flow, and analytical formulas for a QS exist only for some well-studied distribu-
tions. There are no analytical methods to determine the shape and characteristics
of an output flow depending on the characteristics of an incoming flow. It is time-
consuming and difficult to build a simulation model for each specific problem.
Perhaps statistical information collected for further processing will allow us to
learn more about the laws governing internal flows in QSs.

A piece of software, written while working on this paper, allows us to quickly
build simulations of different QSs, including QSs with complex topology and
routing rules. These features allow us to use the program as a tool to study the
distributions of flows depending on input data and error estimations, which are
obtained analytically. The ability to build a large number of different simulation
models allows us to collect statistics to study flows, that are different from a
Poisson one, circulating in QSs. It is possible to trace the dynamics of a flow
by varying a particular parameter to estimate the influence of the parameter on
the shape of the distribution of the flow. These data, combined with a modern
research methodology, could help us to identify laws governing QS’s flows and
their characteristics.
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Abstract. In the paper, methods of quasi-geometric, gamma and
Gaussian approximation of the probability distribution of the calls num-
ber in the orbit for multiserver retrial queueing systems are proposed. A
description and analysis of the application area of each method for retrial
queueing system M |M |N are given. In addition, the results of approx-
imations are compared and a table of decision making on the choice of
the approximation type has been composed.
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1 Introduction

In queueing theory, there are two classes of queueing systems: systems with queue
and loss systems. In real systems, there are situations when a queue cannot be
explicitly identified, but also we cannot say that calls are lost if they come when
the service device is unavailable. Usually, a primary call does not refuse service
and performs repeated calls to get the desired service in random time intervals.
Examples of these situations are telecommunication systems. Thus a new class
of queueing systems has appeared: systems with a source of repeated calls or
retrial queueing systems.

The retrial queueing systems model is a class of queueing systems which
appeared because of practical problems in telecommunication systems [1–6]. The
main feature of this model is repeated calls which perform attempts to get the
service in random time intervals.

The most comprehensive description, detailed comparison of classical queue-
ing systems and retrial queues and main results in this scientific area are found
in books by J.R. Artalejo, A. Gomez-Corral, G.I. Falin and J.G.C. Temple-
ton [7–9]. But analytical results are obtained only in cases of simple input and
service processes (e.g., Poisson arrivals or the exponential distribution of ser-
vice law and only for N = 2 servers) [8]. The majority of studies of retrial
queues are performed numerically or via computer simulation [10,11] and matrix
c© Springer International Publishing Switzerland 2016
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methods [12,13]. Asymptotic and approximate methods were developed by
G.I. Falin [14], J.R. Artalejo [15], V.V. Anisimov [16] and others [17,18].

In a number of our previous papers devoted to the study of various single-
server retrial queues [19,20], we proposed the asymptotic analysis method for
retrial queueing systems under a heavy load condition and quasi-geometric and
gamma approximation methods.

In this paper we generalize our results for multiserver retrial queueing sys-
tems. Furthermore, we add the method of Gaussian approximation which allows
to extend the range of applicability of the results.

2 Mathematical Model

Let us consider a retrial queueing system of the M |M |N type. The structure of
the system is presented in Fig. 1.

Fig. 1. Retrial queueing system M |M |N

The input process is a Poisson arrival process with rate λ. There are N service
devices (servers). The service time of each call is exponentially distributed with
rate μ. If a call arrives when there is a free server, the call occupies it for the
service. If all servers are busy, the call goes to the orbit. There, the call stays
during a random time distributed by exponential law with parameter σ. Then
the call from the orbit makes an attempt to reach the server again. If there is a
free server, the call occupies it, otherwise the call instantly returns to the orbit.

Let i(t) be the random process described by the number of calls in the orbit
and k(t) be the random process which defines the server state as follows:
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k(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if all servers are free at the moment t,
1, if 1 server is busy at the moment t,
2, if 2 servers are busy at the moment t,
. . .
N, if all servers are busy at the moment t.

The problem is to find the probability distribution of the number of calls in
the orbit.

The process i(t) is not Markovian, so we consider the two-dimensional process
{k(t), i(t)} which is a continuous time Markov chain.

We denote the probability that the device is in state k and there are i calls
in the orbit at the time moment t by P (k, i, t) = P{k(t) = k, i(t) = i}. So,
the following direct system of Kolmogorov differential equations for the system
states probability distribution P (k, i, t) can be written for i ≥ 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P (0, i, t)
∂t

= −(λ + iσ)P (0, i, t) + μP (1, i, t),
∂P (k, i, t)

∂t
= −(λ + kμ + iσ)P (k, i, t) + λP (k − 1, i, t)

+(i + 1)σP (k − 1, i + 1, t) + (k + 1)μP (k + 1, i, t), for k = 1, N − 1,
∂P (N, i, t)

∂t
= −(λ + Nμ)P (N, i, t) + λP (N − 1, i, t)

+(i + 1)σP (N − 1, i + 1, t) + λP (N, i − 1, t).

(1)

We denote P (k, i) = lim
t→∞ P (k, i, t). Then in stationary state, the system (1)

has the following form:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−(λ + iσ)P (0, i) + μP (1, i) = 0,
−(λ + kμ + iσ)P (k, i) + λP (k − 1, i, t) + (i + 1)σP (k − 1, i + 1)
+(k + 1)μP (k + 1, i) = 0, for k = 1, N − 1,
−(λ + Nμ)P (N, i) + λP (N − 1, i) + (i + 1)σP (N − 1, i + 1)
+λP (N, i − 1) = 0.

(2)

Analytical results for considered model are not known in the literature. But
the system (2) can be easily solved by a numerical algorithm.

Obviously, the results of any numerical algorithm depend on the dimension of
solved systems and values of parameters. Furthermore, numerical algorithms are
applied for truncated model (for i ≤ Imax). Moreover, for more complex retrial
queues (e.g., not with Poisson input process) the use of numerical algorithms is
more difficult or impossible.

In this regard, in the paper, we propose methods of approximation of the
probability distribution of the calls number in the orbit (gamma, quasi-geometric
and Gaussian approximations).

3 Gamma Approximation

In this section, we offer to approximate the probability distribution of the num-

ber of calls in the orbit Pi =
∞∑
k=0

P (k, i) by discrete analogue (defined below)
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of the gamma distribution Gi with a shape parameter α and an inverse scale
parameter β.

The method of gamma approximation consists in approximation of the prob-
ability distribution Pi by the discrete analogue of the gamma distribution Gi

whose parameters are calculated via equating means and variances of distribu-
tions Pi and Gi. So parameters α and β are the following

α =
E{i(t)}

var{i(t)} , β =
E2{i(t)}
var{i(t)}

where E{i(t)} is a mean and var{i(t)} is a variance of the probability distribution
Pi of the number of calls in the orbit or their estimates obtained statistically in
practical problems.

Many ways can be offered for getting discrete distributions from the gamma
distribution. In particular, they are the following:

1. G1(i) = c1f(i) where c1 is a normalizing constant, and f(i) is the density of
the gamma distribution at point i.

2. G2(i) = F (i + 1) − F (i) where F (i) is function of the gamma distribution at
point i.

We choose the second way for the calculation of Gi.
Let us compare the probability distribution of the number of calls in the

orbit Pi calculated by a numerical algorithm and its gamma approximation Gi

for different values of the system parameters.
Lets there be N = 3 servers in the system and the service rate μ = 1. The

rate of input process is equal to λ = ρNμ where variable ρ is the system load.
We analyse the results of approximation depending on the parameter of load ρ
and delay rate σ.

In Table 1, we show the Kolmogorov distance [21] between approximate and
exact distributions calculated as follows:

Δ = max
0≤i≤Imax

∣∣∣∣∣
i∑

n=0

Gn −
i∑

n=0

Pn

∣∣∣∣∣ .

In Table 1, the note “–” means that the numerical algorithm does not work.
Comparing the values in Table 1 with the results of the approximation in the

singleserver system [20], we expect that the approximation accuracy increases
with number of servers N .

In Table 2 we show the Kolmogorov distance [21] between approximate and
exact distributions for N = 10:

In Table 2 the note 0 means that Δ ≤ 10−4.
It is clear that the results of the approximation in the system with N =

10 servers is better than in the previous example for most values of system
parameters, so we can conclude that the approximation methods became more
accurate when the number of servers N grows.
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Table 1. Kolmogorov distance between the gamma approximation and the exact dis-
tribution for N = 3

Values of the system rates σ = 0.01 σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 10

ρ = 0.1 0.066 0.007 0.002 0.001 0.006 0.001

ρ = 0.3 0.096 0.188 0.066 0.107 0.028 0.016

ρ = 0.5 0.031 0.100 0.162 0.129 0.098 0.063

ρ = 0.7 0.012 0.038 0.075 0.088 0.094 0.077

ρ = 0.9 0.064 0.010 0.021 0.027 0.032 0.039

ρ = 0.95 – 0.016 0.013 0.014 0.019 0.035

Table 2. Kolmogorov distance between the gamma approximation and the exact dis-
tribution for N = 10

Values of the system rates σ = 0.01 σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 10

ρ = 0.1 0 0 0 0 0 0

ρ = 0.3 0.011 0.014 0.003 0.001 0.001 0

ρ = 0.5 0.055 0.117 0.074 0.045 0.028 0.013

ρ = 0.7 0.015 0.046 0.097 0.102 0.085 0.049

ρ = 0.9 – 0.037 0.023 0.030 0.035 0.046

ρ = 0.95 – 0.048 0.012 0.022 0.025 0.060

Table 3. The range of the applicability of the gamma approximation method for
N = 10

Values of the retrial rate σ Values of the load rate ρ

σ = 0.01 ρ ≤ 0.7

σ = 0.1 ρ < 0.4 or ρ ≥ 0.7

σ = 0.5 ρ < 0.5 or ρ ≥ 0.8

σ = 1 ρ ≤ 0.5 or ρ ≥ 0.9

σ = 2 ρ ≤ 0.6 or ρ ≥ 0.9

σ = 10 ρ ≤ 0.9

We assume that the criterion of applicability of methods is the following
inequality holding: Δ ≤ 0.05. Having considered more numerical examples we
defined the range of the method applicability (Table 3).

In some numerical examples, the probability distribution of the number of
calls in the orbit was similar to geometric or Gaussian ones (Fig. 2).

So, in the following sections we suggest applying quasi-geometric and
Gaussian approximations of Pi for results improving.
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Fig. 2. The probability distribution of the number of calls in the orbit is geometric or
Gaussian

4 Quasi-Geometric Approximation

The method of quasi-geometric approximation of the probability distribution of
the number of calls in the orbit consists in the approximation of the probability
distribution Pi by the quasi-geometric distribution Qgi [22] whose parameters
p0 and δ are calculated through equating means and variances of distributions
Pi and Qgi as follows

δ =
var{i(t)}

2E{i(t)} + var{i(t)} and p0 = 1 − (1 − δ)E{i(t)}. (3)

Let us note that the value of p0, defined by the formula (3) may be negative.
In this case we assume p0 = 0. Then quasi-geometric distribution is shifted.

We compare the probability distribution of the number of calls in the orbit Pi

obtained numerically and quasi-geometric approximation Qgi for different values
of the system parameters. The results of comparison are presented in Tables 4
and 5.

In Table 6, the range of the method’s applicability is demonstrated.

Table 4. Kolmogorov distance between the quasi-geometric approximation and the
exact distribution for N = 3

Values of the system rates σ = 0.01 σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 10

ρ = 0.1 0.026 0.003 0.001 0 0 0

ρ = 0.3 0.678 0.044 0.027 0.017 0.012 0.007

ρ = 0.5 0.999 0.337 0.008 0.034 0.033 0.023

ρ = 0.7 0.999 0.845 0.175 0.208 0.078 0.015

ρ = 0.9 0.999 0.988 0.617 0.400 0.239 0.210

ρ = 0.95 – 0.996 0.701 0.514 0.371 0.185
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Table 5. Kolmogorov distance between the quasi-geometric approximation and the
exact distribution for N = 10

Values of the system rates σ = 0.01 σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 10

ρ = 0.1 0 0 0 0 0 0

ρ = 0.3 0.041 0.006 0.001 0 0 0

ρ = 0.5 0.841 0.008 0.031 0.020 0.013 0.006

ρ = 0.7 0.999 0.636 0.161 0.023 0.016 0.017

ρ = 0.9 – 0.986 0.549 0.319 0.161 0.274

ρ = 0.95 – 0.995 0.692 0.505 0.308 0.153

Table 6. The range of the applicability of the quasi-geometric approximation method

Values of the retrial rate σ Values of the load rate ρ

σ = 0.01 ρ < 0.4

σ = 0.1 ρ ≤ 0.5

σ = 0.5 ρ < 0.7

σ = 1 ρ ≤ 0.7

σ = 2 ρ < 0.8

σ = 10 ρ ≤ 0.8

5 Gaussian Approximation

In the literature (e.g., [23]), it was shown that the probability distribution of
the number of calls in the orbit is asymptotically Gaussian under the long delay
condition. Thus we consider a Gaussian approximation.

The method of Gaussian approximation consists in approximation the prob-
ability distribution Pi by the discrete analogue of the normal distribution Gsi
whose parameters are calculated through equating means and variances of dis-
tributions Pi and Gsi.

Table 7. Kolmogorov distance between the Gaussian approximation and the exact
distribution for N = 3

Values of the system rates σ = 0.001 σ = 0.01 σ = 0.1

ρ = 0.1 0.128 0.062 0.010

ρ = 0.3 0.014 0.055 0.229

ρ = 0.5 0.009 0.025 0.117

ρ = 0.7 – 0.017 0.059

ρ = 0.9 – 0.009 0.039

ρ = 0.95 – – 0.018
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Table 8. Kolmogorov distance between the Gaussian approximation and the exact
distribution for N = 10

Values of the system rates σ = 0.001 σ = 0.01 σ = 0.1

ρ = 0.1 0 0 0

ρ = 0.3 0.099 0.155 0.020

ρ = 0.5 0.016 0.050 0.028

ρ = 0.7 – 0.022 0.094

ρ = 0.9 – – 0.042

ρ = 0.95 – – 0.017

Table 9. The range of the applicability of the Gaussian approximation method

Values of the retrial rate σ Values of the load rate ρ

σ = 0.001 ρ < 0.2 or ρ ≥ 0.5

σ = 0.01 ρ ≤ 0.1 or ρ ≥ 0.5

σ = 0.1 ρ ≤ 0.6 or ρ ≥ 0.9

For getting the discrete analogue of Gaussian distribution we use the first
way of transformations described in Sect. 3.

In Tables 7 and 8, we show the Kolmogorov distance between the approximate
and exact distributions for the delay rate 0.001 ≤ σ ≤ 0.1.

In the Table 9, the range of the method applicability for N = 10 is demon-
strated.

6 Decision Making About the Type of Applying
Approximation

In Fig. 3, we demonstrate the comparison of the results of proposed methods:
quasi-geometric and gamma approximations for different values of system para-
meters.

It is obvious that in case A in Fig. 3, the exact distribution is similar to a
geometric one, so the quasi-geometric approximation can be applied and in case
B it is better to apply gamma approximation.

From Tables 3, 6 and 9, the overall table of decision making about the type
of applying approximation in multiserver retrial queues is composed (Table 10).

By comparing Table 10 with the same table for the singleserver system [20]
we note that the accuracy of proposed approximation methods increases with
the number of servers N .

Also it was shown in [20] that the proposed methods can be applied to sin-
gleserver systems with more complex models and the table of decision making
about the type of applying approximation is the same.
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Fig. 3. Comparison of approximation methods

Table 10. Decision making about the type of approximation in use

Values of the load rate σ = 0.001 σ = 0.01 σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 10

ρ = 0.1 Qgi Qgi Qgi Qgi Qgi Qgi Qgi

ρ = 0.3 Gsi Gi Qgi Qgi Qgi Qgi Qgi

ρ = 0.5 Gsi Gsi Gi Qgi Qgi Qgi Qgi

ρ = 0.7 Gsi Gsi Gi Qgi Qgi Qgi

ρ = 0.9 Gsi Gsi Gi Gi Gi Gi Gi

ρ = 0.95 Gsi Gsi Gsi Gi Gi Gi Gi

Thus we can conclude that Table 10 can be used for any multiserver retrial
queues: with Markovian arrival process (MAP), Batch Markovian arrival process
(BMAP) or Semi-Markov arrivals, etc.

7 Conclusions

In the paper, methods of quasi-geometric, gamma and Gaussian approximations
of the probability distribution of the calls number in the orbit for multiserver
retrial queueing systems are proposed. Based on a study of the M |M |N system,
methods are described and obtained distributions are compared with exact ones.
In this way conclusions about methods applicability are made. Finally table for
decision making about the type of using approximation was composed. From
Table 10, we conclude that the proposed approximations can be applied to almost
all values of system parameters.

In addition, methods of quasi-geometric, gamma and Gaussian approxima-
tions can be applied to more complex multiservers retrial queueing systems (e.g.,
with MAP arrivals or general distribution function of service time). The main
advantage of methods is that for their application we need to know only the mean
and variance or their estimates statistically obtained in practical problems.
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Abstract. The paper presents two techniques for the identification of
extremal loading via determination of special thresholds in order to dis-
tinguish between “normal” and “extreme” values in information data
flows. Both algorithms are based on the Rényi limit theorem on rar-
efaction of renewal processes flows and the Pickands–Balkema–de Haan
theorem on the asymptotic distribution for peaks over large thresholds.
The methodology can be applied to various information systems. The
two methods differ in the direction of threshold moving. The ascend-
ing algorithm increases the value of the threshold, while the descending
one decreases it step-by-step. In addition, for the descending method
we suggest a way to process the cumulative data. The key stages of
both methods are represented by flowcharts. Some graphical results are
demonstrated for test data generated by a special information system.

Keywords: Extreme values · Threshold · Peak over Threshold · Statis-
tical data analysis · Pickands–Balkema–de Haan theorem · Rényi theo-
rem · Probabilistic models

1 Introduction

The problem of finding an appropriate threshold is very important in many
applied problems. First of all, this is so in the problems of identification of
extremal loading in information data flows. These thresholds can be used for the
classification of observations into the standard and dangerous elements, often
with the help of the Peak over Threshold (POT) method [1].

Let us consider a marked point process {τi,Xi; i = 1, 2, . . .}, where τ0 = 0
and τi are random variables such that τi < τi+1, and Xi are nonnegative ran-
dom variables, i ≥ 0. This process can be interpreted as follows: τi is the time
moment at which the value Xi was observed. Let us assume that the random
c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 94–103, 2016.
DOI: 10.1007/978-3-319-44615-8 8
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variables X1,X2, . . . are identically distributed with common distribution func-
tion F (x) = P(Xi < x), x ≥ 0.

Traditionally the threshold for the identification of “extremal” observations
among the Xi’s is determined as some high-order quantile of the distribution
function F (x). Within such an approach the determination of the threshold is
preceded by the convention that the fraction of “extremal” values among the Xi’s
should be equal to some given number γ. Hence, the threshold is determined as
the (1 − γ)-quantile of the distribution function F (x). However, the assignment
of the particular value of γ is rather subjective. It is extremely desirable to have
some more or less objective reasonable algorithm free from subjective conven-
tions. An approach to the construction of such objective algorithms is proposed
in this paper.

The algorithms described in the paper differ in the direction of threshold
moving. The ascending algorithm increases the value of the threshold, while the
descending one decreases it step-by-step. In addition, for the descending method
we suggest a way to process the cumulative data. The proposed methodology
for finding thresholds is based on the Rényi limit theorem on rarefaction of
renewal processes flows and the Pickands–Balkema–de Haan theorem on the
asymptotic distribution for peaks over large thresholds. It does not depend on
any assumptions concerning the data structure, probability distributions, etc.
The universality of methodology leads to the possibility of its correct application
to various information systems. The theoretical backgrounds of this approach
were described in [2–7].

2 Ascending Method

Figure 1 demonstrates the flowchart of the algorithm for the ascending method
to find the threshold. First of all, the parameters

– Data (the initial data);
– Name (the part of title or filename for the graphical output);
– step (the value to modify current threshold level consecutively);
– alpha (the significance level of the Pearson’s χ2-test).

should be input by the user. The initial value of the parameter lvl, which is used
for finding the threshold, equals 0. The auxiliary sample contains the differences
between the time moments τi when Data exceeds the current value of lvl. Then,
the hypothesis about the exponentiality of the auxiliary sample is tested with
the help of Pearson’s χ2-test at the significance level alpha. The method starts
with the zero level and, if necessary, lvl is increased by the step.

The form of the null hypothesis is due to the Rényi theorem on the rarefac-
tion of renewal processes [8] which establishes that a stationary point process
converges to the Poisson process under ordinary rarefaction when each point is
deleted with probability 1 − p and left as it is with probability p → 0 accom-
panied by an appropriate change of scale to provide the non-degeneratedness of
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the limit process. As is known, the Poisson process is characterized by the inter-
vals between successive points being independent identically distributed random
variables with exponential distribution.

Fig. 1. The algorithm for the ascending method to find the threshold

If the value of the parameter lvl exceeds the maximum of Data, the noti-
fication “There is no threshold” should be printed. Otherwise, in the case of
exponentiality of the auxiliary sample, the value of lvl should be subtracted
from the data. The empirical distribution function of a new sample could be well
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approximated by the generalized Pareto distribution according to the Pickands–
Balkema–de Haan theorem [9,10]: for a large class of distribution functions of a
random variable X

F (X − u � y | X > u) → Fξ,σ,μ(y), as u → ∞,

where Fξ,σ,μ(·) denotes a cumulative density function of the generalized Pareto
distribution:

Fξ,σ,μ(x) =

⎧⎨
⎩

1 −
(
1 + ξ(x−μ)

σ

)−1/ξ

, if ξ �= 0,

1 − exp
(−x−μ

σ

)
, otherwise.

Using Pearson’s χ2-test at the significance level alpha, the goodness of fit
with the generalized Pareto distribution is tested. The histograms of the two
samples mentioned above are plotted together with the approximating distribu-
tions. An example of application of an ascending algorithm for the test data can
be found in [11].

3 Descending Method

As an alternative way for finding the threshold, the descending method can be
used. Unlike the ascending algorithm, in this case the parameter lvl should
be initialized by the maximum of Data and then it should be decreased by
the parameter step. For the purpose of correct automatization of testing, the
initial value of lvl could be specified by the parameter corresponding to the
minimal number of elements that exceed the current level. Moreover, testing
a hypothesis is often based on the P -value, so the required value should be
determined beforehand. Within the framework of a descending algorithm, the
P -values are evaluated for each level. The relationship between the P -value and
the current level can be very informative.

Figure 2 demonstrates the flowchart of a descending algorithm for cumulative
data. The initial sample is divided into consecutive non-zero domains while zero
domains are located between them. Each element represents the sum of all the
previous observations and a current one inside the domain. The details of domain
forming are presented in Fig. 2 with the help of the variable TotalVol.

The procedure for finding locations when data in the domain exceed the
threshold, is implemented in the block Moments. The first locations from non-
zero domains form a new sample while the others are ignored. Moreover, the
user can specify the minimum number of elements above the threshold at this
stage. It leads to changing the start value of lvl.

The vectors p(k) (the P -value for each level) and LVL(k) (the current level)
are the results of the descending method. Plotting graphs p(LVL) (see Fig. 3)
and LVL(p) (see Fig. 4), the correct value for the threshold can be obtained.
The solid lines represent smoothed discontinuous data by the moving average,
whereas the corresponding relationships p(LVL) and LVL(p) are plotted by dots.
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Fig. 2. The algorithm for the descending method to find the threshold
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The graph in Fig. 4 is rotated by 90◦ in Fig. 3. These figures are intended
for the evaluation of the P -value which is enough for the acceptance of the null
hypothesis for the real data. The level is moved down in Fig. 3 or right in Fig. 4
step-by-step.

Figure 5 demonstrates the cumulative data with the evaluated threshold
(a solid horizontal line).

Suppose that the observations can be represented as Xn,j where n is the
number of the current non-zero domain, j is the number of observation in the
domain. If t is a start time of the domain, the cumulative data equals:

– Xn,1 at time t;
– Xn,1 + Xn,2 at time t + 1;

. . .

– Xn,1 + . . . + Xn,kn
at time t + kn where kn is a length of the current domain.

Fig. 3. Levels as a function of p-values for test data

The threshold is exceeded at time t + j (for each non-zero domain), where
the value j is determined by the following inequalities:

Xn,1 + . . . + Xn,j−1 � u,

Xn,1 + . . . + Xn,j > u.

Other moments (t + j + 1, t + j + 2, etc.) should be ignored.
The examples of fitting empirical distribution functions with the exponential

(Fig. 6) for the differences of time moments and the generalized Pareto (Fig. 6)
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Fig. 4. P-values as a function of levels for test data

Fig. 5. The cumulative data with the evaluated threshold (a solid horizontal line)
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distributions for the values above the evaluated threshold with the corresponding
P -values are demonstrated. The histograms in Figs. 6 and 7 are normalized to
estimate the probability density function.

The height of each bar is determined by the expression

Nbin

Nobs · Wbin
,

where Nbin is the number of observations in the bin, Nobs is the total number of
observations and Wbin is the width of a bin. The area of each bar is the relative
number of observations. The sum of the bar areas is 1.

Fig. 6. An example of fitting the empirical distribution function with the exponential
distribution (the P -value is shown in the legend)

For the test data the value of the threshold equals 26.9. The number of
elements that exceed the threshold (in the sense mentioned above) is 100. The
maximum likelihood estimator for the parameter of the exponential distribution
(a solid line) is 0.005 (the P -value of the Pearson’s χ2-test equals 0.6696, so
the null hypothesis is not rejected). The maximum likelihood estimators for the
parameters of the generalized Pareto distribution (a solid line) are 0.165, 6.378
(the P -value of the Pearson’s χ2-test equals 0.813, so the null hypothesis is not
rejected).
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Fig. 7. An example of fitting empirical distribution function with the generalized
Pareto distribution (the P -value is shown in the title)

4 Conclusions

The representation of data in the form
∑Nn

j=1 Xn,j (Nn is a random variable)
leads to interesting ideas for further research. The probability distribution of
the random variables Xn,j in the described information system can be success-
fully fitted by gamma or Pareto distributions, while Nn is the negative binomial
random variable. It is known that these types of probability distributions can be
represented as mixtures [12] of some distributions (Poisson, exponential mixture
models). So, it is possible to clarify the nature of processes in data flows.
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Abstract. A modulated synchronous doubly stochastic flow is consid-
ered. The flow under study is considered in conditions of a fixed dead
time. It means that after each registered event there is a time of the fixed
duration T (dead time), during which other flow events are inaccessible
for observation. When duration of the dead time period finishes, the first
event to occur creates the dead time period of duration T again and etc.
It is supposed that the dead time period duration is an unknown vari-
able. Using the maximum likelihood method and a moments of observed
events occurrence the problem of dead time period estimation is solved.

Keywords: Modulated synchronous doubly stochastic flow · Fixed dead
time · Likelihood function · Maximum likelihood estimation · Dead time
period duration

1 Introduction

This paper is a continuation of the modulated synchronous flow investigation
which was started in papers [1,2].

Mathematical models of queueing theory are widely used when describing
real physical, technological and other processes and systems. In connection with
the rapid development of computer equipment and information technologies an
important sphere of queueing theory applications appeared. This sphere was
called design and creation of data-processing networks, computer communication
networks, satellite networks and telecommunication networks [3,4].

In practice, the intensity of input flow varies along with time. Moreover,
these variations are often of a random nature. This leads to consideration of a
doubly stochastic flow of events [5–10]. An example of such a flow is a modulated
synchronous doubly stochastic flow [11,12].

When considering doubly stochastic flow of events there are problems of
flow state estimation [13–18] and flow parameter estimation [19–27]. One of the
confounding factors when estimating flow states and parameters is the dead time
of registering devices, which is initiated by registered flow event. All other events
occurring during the dead time period are inaccessible for observation [28–37].
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The modulated synchronous doubly stochastic flow of events was introduced
into consideration in papers [1,2]. This flow is a generalization of the synchronous
flow and it is related to the class of MAP-flows of the second order. In this paper,
which is a continuation of investigations [1,2], the maximum likelihood method
is applied for solving the problem of dead time period estimation, because the
estimation results obtained when using this method usually have interesting
characteristics.

2 Problem Statement

Let us consider a modulated synchronous doubly stochastic flow of events,
whose rate is a piecewise constant random process λ(t) with two states: λ1,
λ2 (λ1 > λ2 � 0). The sojourn time of the process λ(t) in the state λi has an
exponential probability distribution function with the parameter αi, i = 1, 2.
If at the moment t the process λ(t) sojourns in the state λi than in the small
half-interval [t, t + Δt), with the probability αiΔt + o(Δt) the process finishes
its stay in state λi and moves to state λj with probability of one (i, j = 1, 2,
i �= j). During the time random interval when λ(t) = λi a Poisson flow with rate
λi, i = 1, 2 arrives. A state transition of the process λ(t) may also occur at the
moment of the Poisson flow event arrival. Moreover, transition from state λ1 to
state λ2 is realized only at the moment of event occurrence with the probability
p, (0 � p � 1). With the complementary probability 1−p the process remains at
state λ1. Transition from state λ2 to state λ1 is also realized only at the moment
of event occurrence with the probability q, (0 � q � 1). With the complementary
probability 1−q the process remains at the state λ2. In the described conditions
λ(t) is the Markovian process.

Block matrixes of infinitesimal coefficients are of the form:

D1 =
∣∣∣∣(1 − p)λ1 pλ1

qλ2 (1 − q)λ2

∣∣∣∣ , D0 =
∣∣∣∣−(λ1 + α1) α1

α2 −(λ2 + α2)

∣∣∣∣ .

The elements of the matrix D1 are the intensities of the process λ(t) transition
from the state to the state with an event occurrence. Off-diagonal elements of
the matrix D0 are the intensities of the process λ(t) transition from the state to
the state without an event occurrence. Diagonal elements of the matrix D0 are
the intensities of the process λ(t) leaving its states, which are taken with the
opposite sign. We should note that if αi = 0, i = 1, 2 there is a usual synchronous
flow of events [10].

After each registered event there is a period of fixed duration T (dead time
later) during which other flow events are inaccessible for observation. It is consid-
ered a fixed dead time, which means that events occurring during the dead time
interval do not initiate its prolongation. When the dead time period finishes, the
first event creates a dead time period of duration T again, etc.

An example of this situation is shown in the Fig. 1, where λ1, λ2 are the states
of the process λ(t), t1, t2, . . . are the moments of the observable flow events
occurrence, crosshatching lines are the dead time periods of T duration, axis
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Fig. 1. Forming the flow of observed events

number 1 shows the initial modulated synchronous flow of events, axis number 2
shows the scheme of dead time creation, axis number 3 shows an observable
events of the modulated synchronous flow.

Let us emphasize that there is an assumed priority of the event occurrence in
the problem statement. An event occurs and after that the process λ(t) makes
a transition from the state to the state. This circumstance is irrelevant when
obtaining analytical results because event occurrence and the process λ(t) state
transition happen immediately. When obtaining numerical results using simula-
tion modeling, it is necessary to have the definiteness what is the first: the event
occurrence or the state transition.

The process λ(t) and event types (Poisson flow events of λ1 and λ2 intensities)
are not observable in principle (in prepositions made λ(t) is a latent Markovian
process). Only the moments of observable events occurrence t1, t2, . . . tk, . . . are
accessible for observation. A stationary mode of flow functioning is considered.
A sequence of time moments of event occurrence t1, t2, . . . tk, . . . is an imbedded
Markov chain {λ(tk)}. So the flow has a Markovian chain characteristic when
its evolution is considered from the moment tk, k = 1, 2, ... (the moment of flow
event occurrence).

The main purpose of the research is the creation of a dead time period esti-
mation T̂ using the maximum likelihood method (assuming that all other flow
parameters λ1, λ2, α1, α2, p, q are known).

3 Likelihood Function Creation

Let τk = tk+1 − tk, k = 1, 2, . . . , is a value of the k interval duration between
the moments of the adjacent observable flow events occurrence.

Since the flow functions in stationary mode then a probability density func-
tion of interval duration between the moments of adjacent observable flow events
occurence is pT (τk) = pT (τ), τ � 0, for any k (index T gives an accent that the
probability density function depends on a dead time period). So without the loss
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of generality the moment tk of the event occurrence can be assumed equal to
null, which means τ = 0.

Then the probability density function pT (τ) of the interval duration between
the moments of modulated synchronous flow adjacent event occurrence is written
in the form of [2]:

pT (τ) =

{
0, 0 � τ < T,

γ(T )z1e−z1(τ−T ) + (1 − γ(T ))z2e−z2(τ−T ), τ � T,

γ(T ) =
1

z2 − z1
(z2 − π1(T )λ1 − π2(T )λ2),

z1 = (λ1 + α1 + λ2 + α2) −
√

(λ1 + α1 − λ2 − α2)2 + 4α1α2,

z2 = (λ1 + α1 + λ2 + α2) +
√

(λ1 + α1 − λ2 − α2)2 + 4α1α2,

π1(T ) =π1 − (π1 − π1(0|T ))e−(α1+pλ1+α2+qλ2)T ,

π2(T ) =π2 − (π2 − π2(0|T ))e−(α1+pλ1+α2+qλ2)T ,

π1(0|T ) =
[
qλ2α1 + (1 − p)λ1(λ2 + α2) − λ1λ2(1 − p − q)

× (π2 + π1e
−(α1+pλ1+α2+qλ2)T )

]{
z1z2 − λ1λ2(1 − p − q)

×(π2 + π1e
−(α1+pλ1+α2+qλ2)T )

}−1

,

π2(0|T ) =
[
(1 − q)λ2(λ1 + α1) + pλ1α2 − λ1λ2(1 − p − q)

×(π2 + π1e
−(α1+pλ1+α2+qλ2)T )

]{
z1z2 − λ1λ2(1 − p − q)

×(π2 + π1e
−(α1+pλ1+α2+qλ2)T )

}−1

,

π1 =
α2 + qλ2

α1 + pλ1 + α2 + qλ2
, π2 =

α1 + pλ1

α1 + pλ1 + α2 + qλ2
.

(1)

Let τ1 = t2 − t1, τ2 = t3 − t2, . . . , τk = tk+1 − tk, k = 1, 2, . . . is a sequence
of interval durations between the adjacent events of observable modulated syn-
chronous flow after its observation on the interval (0, t). Let us put in order
the values τ1, τ2, . . . τk by increasing: τ (1) < τ (2) < . . . τ (k). Then the likelihood
function with regard to (1) can be written as follows:

L(λi, αi, p, q, T |τ (1), τ (2), . . . , τ (k)) = 0, 0 < τmin < T,

L(λi, αi, p, q, T |τ (1), τ (2), . . . , τ (k)) =
k∏

j=1

pT (τ (j)), T � τmin.

Because the main purpose of the research is the creation of a dead time
period estimation T̂ , the solution of the problem under study is obtaining the
maximum of the likelihood function by the unknown variable T :
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L(T |τ (1), τ (2), . . . , τ (k)) =
k∏

j=1

(pT (τ (j))) =
k∏

j=1

(
γ(T )z1e−z1(τ

(j)−T )

+(1 − γ(T ))z2e−z2(τ
(j)−T )

)
⇒ max

T
, 0 < τmin < T,

(2)

where z1, z2, γ(T ) are defined in (1).
The value of T wherein (2) reaches its global maximum is a dead time period

estimation T̂ .

4 Solution of the Optimization Problem

Let us make a redefinition: τmin = τm. Because the likelihood function (2) is not
equal to zero when 0 � T � τm then let pT (τ (j)) = 0, j = 2, k when T > τm,
(τm > 0). Let us treat the probability density pT (τm), 0 � T � τm as a func-
tion of the variable T . In future investigation the situation when τm = 0 means
determination of functions under study in a boundary point. Let us consider a
derivative function p

′
T (τm) of pT (τm) function by the variable T . The differential

equation is of the form:

p
′
T (τm) =

F1(T )e−z1(τm−T ) − F2(T )e−z2(τm−T )

(z2 − z1)(β1 + β2)
,

F1(T ) = z1

[
(β1 + β2)z1z2 − z1f(T ) − f

′
(T )

]
,

F2(T ) = z2

[
(β1 + β2)z1z2 − z2f(T ) − f

′
(T )

]
,

f(T ) = P1 + P2 + (λ1 − λ2)
(β1P1 − β2P2)e−(β1+β2)T

F (T )
,

f
′
(T ) = − (λ1 − λ2)(β1 + β2)z1z2

(β1P1 − β2P2)e−(β1+β2)T

F 2(T )
,

F (T ) = z1z2 − Pe−(β1+β2)T > 0, 0 � T � τm, τm � 0,

(3)

where β1 = α1 + pλ1, β2 = α2 + qλ2, P1 = λ1α2(1 − p) + qλ2(λ1 + α1), P2 =
λ2α1(1 − q) + pλ1(λ2 + α2), P = λ1λ2(1 − p − q), z1z2 = λ1λ2 + λ1α2 + λ2α1;
z1, z2 are defined in (1).

Lemma 1. The derivative function p
′
T (τm) is a positive function of the variable

τm when T = 0 (p
′
T (τm) > 0).

Proof. Because τm is any non-negative number (τm � 0) then p
′
T (τm) can be

considered as a function of the variable τm. Inserting T = 0 into (3) we can
obtain:

p
′
0(τm) =

C

(z2 − z1)A2

{
z1e

−z1τm(z2A − C)

− z2e
−z2τm(z1A − C)

}
, τm � 0, (4)
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where A = P1 +P2, C = λ1P1 +λ2P2; P1, P2 are defined in (3), z1z2 are defined
in (1).

The value of the derivative function (4) in point τm = 0 is of the form:

p′
0(0) = p′

0(τm = 0) = (C/A)2 > 0, (5)

where A,C are defined in (4).
The limit of the function p

′
0(τm) when τm → ∞ is defined as follows:

p
′
0(∞) = lim

τm→∞p
′
0(τm) = ±0. (6)

Let us treat the function p
′
0(τm) (τm > 0) on the existence of zero. Let us

consider the equation p
′
0(τm) = 0, which can be written in the form:

e−(z2−z1)τm =
z1(z2A − C)
z2(z1A − C)

, τm > 0. (7)

Let us note B = B1/B2; B1 = z1(z2A − C), B2 = z2(z1A − C). We should
emphasize that if B2 = 0 then z2(z1A − C) = 0, that is z1A = C. Then z1A − C
= (z2 − z1)A > 0 and it follows from (4) that p

′
0(τm) > 0 (τm � 0).

Transforming B1 we can obtain:

B1 =
1
2
z21

{
−2A + (β1 + β2)(z1 + z2)

+(β1 + β2)
√

(λ1 − λ2 + α1 − α2)2 + 4α1α2

}
>

1
2
z21

{
−2A + (β1 + β2)

×(z1 + z2) + (β1 + β2)|λ1 − λ2 + α1 − α2|
}

.

It is not difficult to show that the first part of the last inequation always
is strictly more than zero. Then B1 > 0. Therefore two variants occur in
Eq. (7): (1) B1 > 0, B2 < 0; (2) B1 > 0, B2 > 0. For the first variant
B < 0 and Eq. (7) does not have a solution. For the second variant B > 1
because B1 − B2 = (z2 − z1)C > 0 and Eq. (7) does not have a solution either.
It follows that the derivative function p

′
0(τm) does not reach zero point for

τm > 0. Then (6) takes the form p
′
0(∞) = +0. Grouping (5), (6) and conclusion

p
′
0(τm) �= 0 (τm > 0) proves Lemma 1. Lemma 1 is proved.

From Lemma 1 it follows that the probability density function pT (τm) is the
increasing function of the variable T in the point T = 0 (τm � 0).

Lemma 2. The derivative function p
′
T (τm) is strictly more than zero when

T = τm (p
′
T=τm

(τm) = p
′
(τm) > 0, τm � 0).

Proof. Inserting T = τm into (3) we obtain

p
′
(τm) =

1
β1 + β2

[
C + (λ1 − λ2)(β1P1 − β2P2)

× e−(β1+β2)τm

(z1z2 − Pe−(β1+β2)τm)2
X(τm)

]
, (8)

X(τm) = C + P (z1 + z2)(1 − e−(β1+β2)τm), τm � 0,
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where C is defined in (4), β1, β2, P1, P2, P are defined in (3), z1, z2 are defined
in (1).

It is not difficult to show that X(τm) > 0 for τm � 0. The latter means that a
sign of the derivative function p

′
(τm) is defined by the multiplier (β1P1 −β2P2).

Let us consider p
′
(τm) as a function of the variable τm (τ � 0). Then we

have:
p

′
(τm = 0) = (C/A)2 > 0, p

′
(τm = ∞) = C/(β1 + β2) > 0.

A sign of the derivative function p
′
(τm = 0) − p

′
(τm = ∞) = C(λ1 −

λ2)(β1P1 − β2P2)/(A2(β1 + β2)) is defined by a sign (β1P1 − β2P2): if (β1P1 −
β2P2) > 0 then p

′
(τm = 0) > p(τm = ∞); if (β1P1 − β2P2) < 0 then

p
′
(τm = 0) < p(τm = ∞); if (β1P1 − β2P2) = 0 then p

′
(τm = 0) = p(τm = ∞).

From the form of the derivative function p
′
(τm) it follows that if (β1P1 −

β2P2) � 0 the function p
′
(τm) > 0, therefore p(τm) is the increasing function of

the variable T in the point T = τm(τm � 0). The case when (β1P1 − β2P2) < 0
needs to be considered in more detail. For this case we should consider the second
derivative function p

′′
(τm) of p(τm). The derivative function p

′′
(τm) with regard

to (8) is of the form:

p
′′
(τm) = − (λ1 − λ2)(β1P1 − β2P2)z1z2

e−(β1+β2)τm

F 3(τm)
Y (τm),

Y (τm) =
{

C + (z1 + z2)P − (z1 + z2 + β1 + β2)Pe−(β1+β2)τm
}

, τm � 0,

(9)

where C is defined in (4), β1, β2, P1, P2, P , F (T = τm) are defined in (3), z1,
z2 are defined in (1).

Because we consider the case when (β1P1 − β2P2) < 0 then the multiplier
in (9): −(λ1 − λ2)(β1P1 − β2P2)z1z2e−(β1+β2)τm/F 3(τm) > 0; then a sign of the
derivative function p

′′
(τm) is defined by a sign of the expression for Y (τm). Let

us treat the function Y (τm). We have: Y (∞) = C + (z1 + z2)P � 0, Y (0) =
C − P (β1 + β2), in addition Y (0) > 0 or Y (0) < 0 or Y (0) = 0. The derivative
function Y

′
(τm) is of the form:

Y
′
(τm) = (β1 + β2)(z1 + z2 + β1 + β2)Pe−(β1+β2)τm , τm � 0.

A sign of the derivative function Y
′
(τm) depends on the multiplier P : (1)

if P < 0 then Y
′
(τm) < 0 (τm � 0), then p

′′
(τm) > 0 (τm � 0); (2) if P = 0

then Y
′
(τm) = C > 0 (τm � 0), then p

′′
(τm) > 0 (τm � 0); (3) if P > 0 then

Y
′
(τm) > 0 (τm � 0), then p

′′
(τm) > 0 or p

′′
(τm) < 0 or p

′′
(τm) = 0 (τm � 0).

For the first two cases the derivative function p
′
(τm) > 0 (τm � 0). If the

third case is realized then there are some variants of the function p
′
(τm) (τm � 0)

behaviour: (a) if Y (0) = C − P (β1 + β2) > 0 then p
′′
(τm) > 0 (τm � 0); then

p
′
(τm) > 0 (τm � 0); (b) if Y (0) = C−P (β1+β2) = 0 then p

′′
(τm) = 0 (τm = 0),

p
′′
(τm) > 0 (τm > 0); then p

′
(τm) > 0 (τm � 0); (c) if Y (0) = C−P (β1+β2) < 0

then behaviour of the derivative function p
′′
(τm) is defined by the next situations:

(1) 0 � τm < τ∗
m, then p

′′
(τm) < 0; (2) τm = τ∗

m, then p
′′
(τm) = 0; (3) τ∗

m < τm,
then p

′′
(τm) > 0.
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Therefore when Y (0) = C − P (β1 + β2) < 0 is realized then the derivative
function p

′
(τm) (τm > 0) reaches its global minimum at the point τm = τ∗

m. In
addition the point τ∗

m is defined by the expression:

τ∗
m = − 1

(β1 + β2)
ln

z1z2(z1 + z2 − β1 − β2)
(z1 + z2 + β1 + β2)P

, P > 0. (10)

Inserting (10) into (8) we obtain the expression for the derivative function
p

′
(τm) in the minimum point τm = τ∗

m:

p
′
(τ∗

m) =
1

(β1 + β2)

×
{

C + (λ1 − λ2)(β1P1 − β2P2)
(z1 + z2 − β1 − β2)2

4P (β1 + β2)

}
, P > 0. (11)

It can be shown that the derivative function defined in (11) is strictly more
than zero (p

′
(τ∗

m) > 0, P > 0). From the latter it follows that when the situation
Y (0) = C − P (β1 + β2) < 0 is realized then the inequation p

′
(τm) > 0, (τm � 0)

takes place. Lemma 2 is proved.
Then we should consider the behaviour of the derivative function p

′
T (τm) as

a function of the variable T on the interval (0, τm).
Let us consider the equation p

′
T (τm) = 0 on root existence which can be

transformed according to (3) into the form:

Ψ(T ) = e−(z2−z1)(τm−T ), Ψ(T ) =
F1(T )
F2(T )

, 0 � T � τm, (12)

where F1(T ), F2(T ) are defined in (3). Because τm is as big as can be then let
us consider the behaviour of the function Ψ(T ) when T � 0.

Let us emphasize that e−(z2−z1)τm � e−(z2−z1)(τm−T ) � 1, 0 � T � τm,
τm � 0.

Let us denote h = 1 − p − q, then P = λ1λ2h. The variable (λ1 − λ2)(β1P1 −
β2P2) can be written as follows:

(λ1 − λ2)(β1P1 − β2P2)

= −(λ1λ2)2h2 + λ1λ2 [2z1z2 − (β1 + β2)(z1 + z2)] h
−z1z2(z1 − β1 − β2)(z2 − β1 − β2) = x(h), −1 � h � 1. (13)

The function (13) reaches its null in the points h = h1 and h = h2; h1 =
z2(z1 − β1 − β2)/λ1λ2, h2 = z1(z2 − β1 − β2)/λ1λ2, h1 < h2.

Let us investigate the function F1(T ), T � 0 from the (12) which was defined
in (3).

Lemma 3. The function F1(T ) < 0, T � 0.

Proof. We have
F1(0) = z1(β1 +β2)(z2A−C)C/A2, F1(∞) = lim

T→∞
F1(T ) = z1(z2A−C) > 0

because (z2A − C) > 0 (Lemma 1).
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Then (z2A − C) = λ1λ2z1(h − h1) > 0. From this it follows that h > h1

always.
For the next investigation of the function F1(T ) for a sign we should present

it as a function depending on the variable h (F1(T ) = F1(T, h)):

F1(T, h) = z1

[
(β1 + β2)z1z2 − z1f(T, h) − f

′
(T, h)

]
, T � 0, −1 � h � 1,

f(T, h) =A + x(h)
e−(β1+β2)T

F (T, h)
,

f
′
(T, h) = − z1z2(β1 + β2)x(h)

e−(β1+β2)T

F 2(T, h)
,

(14)

where x(h) is defined in (13), A – in (4); β1, β2, F (T, h) – in (3); z1, z2 – in (1).
A sign of the function F1(T, h) depends on a sign of the function x(h) defined

in (13). Let us consider all possible variants.
Let x(h) = 0. It is possible as follows from (13) if h = h1 or h = h2. Because

always h > h1 then the situation h = h1 is excluded. Then for the situation
h = h2 we have: F1(T, h = h2) = z21(z2 − z1)(β1 + β2) > 0, T � 0.

Let x(h) > 0. The latter is possible if one of the following variants is realized:
0 < h1 < h < h2; 0 = h1 < h < h2; h1 < 0 < h < h2; h1 < h = 0 < h2;
h1 < h < 0 < h2; h1 < h < h2 = 0; h1 < h < h2 < 0.

Let us consider the variant 0 < h1 < h < h2. We have:

∂F1(T, h)
∂T

=
z21z2(β1 + β2)x(h)e−(β1+β2)T

F 3(T, h)

×
{

z1z2(z1 − β1 − β2) − λ1λ2(z1 + β1 + β2)he−(β1+β2)T
}

,

T � 0, 0 < h1 < h < h2. (15)

A sign of the derivative function (15) is defined by a sign of the function:

y1(T, h) = z1z2(z1 − β1 − β2)

−λ1λ2(z1 + β1+ β2)he−(β1+β2)T , T � 0, 0 < h1 < h < h2. (16)

Then because h > 0 the function (15) is the increasing function of the vari-
able T (it increases from y1(T = 0, h) = z1z2(z1 −β1 −β2)−λ1λ2(z1 +β1 +β2)h
to y1(T = ∞, h) = z1z2(z1 − β1 − β2) > 0). Then y1(T = 0, h) < 0 for
0 < h1 < h < h2. From this it follows that the function (16) crosses zero
into the point:

T1(h) = − 1
(β1 + β2)

ln
z1z2(z1 − β1 − β2)

λ1λ2(z1 + β1 + β2)h
, 0 < h1 < h < h2.

According to this the behaviour of the derivative function F
′
1(T, h) (defined

in (15)) depending on the variable T will look as follows: F
′
1(T, h) < 0,

0 � T < T1(h); F
′
1(T, h) = 0, T = T1(h); F

′
1(T, h) > 0, T > T1(h). There-

fore the function F1(T, h) reaches its global minimum at the point T = T1(h).
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In addition F1(T = 0, h) > F1(T = ∞, h), 0 < h1 < h < h2. Let us show
that the function F1(T, h) is strictly more than zero at the point T = T1(h)
(F1(T = T1(h), h) > 0, 0 < h1 < h < h2). We have:

F1(T = T1(h), h) = z1{(λ1λ2)
2 (z1 + β1 + β2)2h2 − λ1λ2(z1 − β1 − β2)

×[
z1(z1 − β1 − β2)(z2 − β1 − β2) + z2(z1 + β1 + β2)2

]
h

+z1z2(z1 − β1 − β2)3(z2 − β1 − β2)}, 0 < h1 < h < h2. (17)

The function (17) reaches its null at the point h = h1. When h > h1 the
inequation F1(T = T1(h), h) > 0 takes place. Using the formulas (15), it can
be shown that F1(T, h) > 0, T � 0 for other variants which are realized for the
situation x(h) > 0.

Let x(h) < 0. It is possible if one of the following variants is realized:
0 < h1 < h2 < h � 1; 0 = h1 < h2 < h � 1; h1 < 0 < h2 < h � 1;
h1 < h2 = 0 < h � 1; h1 < h2 < 0 < h � 1; h1 < h2 < h = 0; h1 < h2 < h < 0.

Using the formulas (15)–(17) it can be shown that for all variants described
above the function F1(T, h) > 0, T � 0, h > h2. Lemma 3 is proved.

Let us consider the function F2(T ), T � 0 from (12) which is defined in (3).

Lemma 4. (1) The function F2(T ) = 0, T � 0 if x(h) = 0; (2) the function
F2(T ) < 0, T � 0 if x(h) > 0.

Proof. We have

F2(0) = λ1λ2z
2
2(β1 + β2)(h − h2)C/A2, F2(∞) = lim

T→∞
F2(T ) = λ1λ2z

2
2(h − h2).

For the next investigation of the function F2(T ) on a sign we should present it
as a function depending on the variable h (F2(T ) = F2(T, h)):

F2(T, h) = z2

[
(β1 + β2)z1z2 − z2f(T, h) − f

′
(T, h)

]
,

T � 0, −1 � h � 1, (18)

where f(T, h), f
′
(T, h) are defined in (14).

A sign of the function F2(T, h) depends on a sign of the function x(h) defined
in (13). Let us consider all possible variants.

Let x(h) = 0. It is possible as follows from (13) if h = h1 or h = h2. Because
always h > h1 (Lemma 3) then the situation h = h1 is excluded. The for the
situation h = h2 we have: F2(T, h = h2) = 0, T � 0.

Let x(h) > 0. The latter is possible if one of the following variants is realized
(Lemma 3): 0 < h1 < h < h2; 0 = h1 < h < h2; h1 < 0 < h < h2; h1 < h = 0 <
h2; h1 < h < 0 < h2; h1 < h < h2 = 0; h1 < h < h2 < 0.

Let us consider the variant 0 < h1 < h < h2. We have:

∂F2(T, h)
∂T

=
z1z

2
2(β1 + β2)x(h)e−(β1+β2)T

F 3(T, h)

×
{

z1z2(z2 − β1 − β2) − λ1λ2(z2 + β1 + β2)he−(β1+β2)T
}

,

T � 0, 0 < h1 < h < h2. (19)
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A sign of the derivative function (19) is defined by a sign of the function:

y2(T, h) = z1z2(z2 − β1 − β2) − λ1λ2(z2 + β1 + β2)he−(β1+β2)T ,

T � 0, 0 < h1 < h < h2. (20)

Then because h > 0 the function (20) is the increasing function of the variable
T (it increases from y2(T = 0, h) = z1z2(z2 − β1 − β2) − λ1λ2(z2 + β1 + β2)h
to y2(T = ∞, h) = z1z2(z2 − β1 − β2) > 0). There are two possible situations
here: (a) y2(T = 0, h) < 0 for 0 < h1 < h < h2; (b) y2(T = 0, h) > 0 for
0 < h1 < h < h∗

2; y2(T = 0, h) = 0 for h = h∗
2; y2(T = 0, h) < 0 for h∗

2 < h < h2,
where h∗

2 = z1z2(z2 − β1 − β2) [λ1λ2(z2 + β1 + β2)]
−1.

Let us consider the situation (a). Then the function (20) crosses zero at the
point:

T2(h) = − 1
(β1 + β2)

ln
z1z2(z2 − β1 − β2)

λ1λ2(z2 + β1 + β2)h
, 0 < h1 < h < h2.

According to this the behaviour of the derivative function F
′
2(T, h) (defined

in (19)) depending on the variable T will look as follows: F
′
2(T, h) < 0,

0 � T < T2(h); F
′
2(T, h) = 0, T = T2(h); F

′
2(T, h) > 0, T > T2(h). There-

fore the function F2(T, h) reaches its global minimum at the point T = T2(h).
In addition F2(T = 0, h) < 0, F1(T = ∞, h) < 0, F2(T = 0, h) < F (T = ∞, h),
0 < h1 < h < h2. This all proves that F2(T, h) < 0, T � 0 for the situation (a).
It can be proved that F2(T, h) < 0, T � 0 for the situation (b).

Using the formulas (19), (20) it can be shown that F2(T, h) < 0, T � 0 for
other variants which are realized for the situation x(h) > 0. Lemma 4 is proved.

For the situation x(h) < 0 it takes place

Lemma 5. The function F2(T ) > 0, T � 0 if x(h) < 0.

Proof. The lemma can be proved by applying the formulas (19), (20) (similar to
applying these formulas for Lemma 4) for the variants of parameter h changing
which are described in Lemma 3 for the situation when x(h) < 0. Lemma 5 is
proved.

Let us introduce into consideration the function

Φ(T, h) =F1(T, h)− F2(T, h) = (z2 − z1)

×
[
−z1z2(β1 + β2) + (z1 + z2)f(T, h) + f

′
(T, h)

]
, T � 0, −1 � h � 1, (21)

where F1(T, h), f(T, h), f
′
(T, h) are defined in (14), F2(T, h) – in (18).

Lemma 6. The function Φ(T, h) > 0, T � 0 if x(h) � 0.
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Proof. We have Φ(T = 0, h) = (z2 − z1)(β1 + β2)(C/A)2 > 0, Φ(T = ∞, h) =
lim

T→∞
Φ(T, h) = (z2 − z1)C > 0.

The sign of the function Φ(T, h) depends on the sign of the function x(h)
defined in (13).

Let x(h) = 0. It is possible as follows from (13) if h = h1 or h = h2.
Because always h > h1 (Lemma 3) then the situation h = h1 is excluded.
Then for the situation h = h2 inserting h2 into (21) we have: Φ(T, h = h2) =
(z2 − z1)(β1 + β2)z21 > 0, T � 0.

Let x(h) > 0. The latter is possible if one of the following variants is realized
(Lemma 3): 0 < h1 < h < h2; 0 = h1 < h < h2; h1 < 0 < h < h2; h1 < h =
0 < h2; h1 < h < 0 < h2; h1 < h < h2 = 0; h1 < h < h2 < 0.

Let us consider the variant 0 < h1 < h < h2. We have:

∂Φ(T, h)
∂T

= − z1z2(z2 − z1)(β1 + β2)x(h)e−(β1+β2)T

F 3(T, h)

×
{

z1z2(z1 + z2 − β1 − β2) − λ1λ2(z1 + z2 + β1 + β2)he−(β1+β2)T
}

,

T � 0, 0 < h1 < h < h2. (22)

A sign of the derivative function (22) is defined by a sign of the function:

y(T, h) = z1z2(z1 + z2 − β1 − β2)

− λ1λ2(z1 + z2 + β1 + β2)he−(β1+β2)T , T � 0, 0 < h1 < h < h2. (23)

Then because h > 0 the function (23) is the increasing function of the variable
T (it increases from y(T = 0, h) = z1z2(z1+z2−β1−β2)−λ1λ2(z1+z2+β1+β2)h
to y(T = ∞, h) = z1z2(z1+z2−β1−β2) > 0). There are three possible situations
here: (a) y(T = 0, h) > 0 for 0 < h1 < h < h2; (b) y(T = 0, h = h2) = 0;
(c) y(T = 0, h) > 0 for 0 < h1 < h∗; y(T = 0, h) = 0 for h = h∗; y(T = 0, h) < 0
for h∗ < h < h2, where h∗ = z1z2(z1 + z2 −β1 −β2) [λ1λ2(z1 + z2 + β1 + β2)]

−1.
Let us consider the situation (a). Then the function (23) is a positive function

of the variable T (y(T = 0, h) > 0, T � 0). According to this the derivative func-
tion (22) is a negative function of the variable T (T � 0). All these mean that the
function (21) is decreasing from Φ(T = 0, h) > 0 to Φ(T = ∞, h) > 0. It follows
from this that the function Φ(T, h) > 0, T � 0 for the situation (a). Similarly it
can be proved that the function Φ(T, h) > 0, T � 0 for the situation (c).

Using the formulas (22), (23) it can be shown that for all the other variants
described above (Lemma 3) for the situation x(h) > 0 the function Φ(T, h) > 0,
T � 0. Lemma 6 is proved.

For the situation x(h) < 0 we have

Lemma 7. The function Φ(T, h) > 0, T � 0 if x(h) < 0.

Proof. The lemma can be proved by applying the formulas (22), (23) (similar
to applying these formulas for the Lemma 6) for the variants of parameter h
changing which described in the Lemma 3 for the situation when x(h) < 0.
Lemma 7 is proved.
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Lemma 8. The functions F1(T, h), F2(T, h) satisfy the inequation
F1(T, h) > F2(T, h), T � 0, −1 � h � 1.

Proof. The lemma can be proved by applying the results of the Lemmas 6, 7.
Lemma 8 is proved.

Lemma 9. The Eq. (12) does not have a solution.

Proof. The lemma can be proved by applying the results of the Lemmas 3, 4, 5
and 8. Lemma 9 is proved.

Lemma 10. The derivative function p
′
T (τm) defined in the formula (3) is a

positive function of the variable T (p
′
T (τm) > 0, 0 � T � τm, τm � 0).

Proof. The lemma can be proved by applying the results of the Lemmas 1, 2
and 9. Lemma 10 is proved.

Theorem 1. The probability density function pT (τm) is an increasing function
of the variable T (0 � T � τm, τm � 0).

Proof. The theorem can be proved by applying the result of the Lemma 10.
Theorem 1 is proved.

Theorem 2. The probability density function pT (τm) reaches its global maxi-
mum at the point T = τm (0 � T � τm, τm � 0).

Proof. The theorem can be proved by applying the result of the Theorem 1.
Theorem 2 is proved.

Corollary 1. The functions pT (τ (j)) = 0, j = 1, k from (2) are increasing
functions of the variable T (0 � T � τm, τm � 0).

Proof. It follows from Theorem 1.

Corollary 2. The likelihood function L(T |τ (1), τ (2), . . . , τ (k)) defined in (2)
reaches its global maximum at the point T = τm that the solution of the opti-
mization problem (2) is the estimation of a dead time period duration T̂ = τm.

Proof. It follows from Theorem 2.

5 Conclusion and Future Research

The results obtained make it possible to solve the problem of a dead time period
estimation without using a numerical computing: when observing (during the
interval (t0, t)) the flow of events the variables τk, k = 1, n are being computed.
After that it can be obtained τm = min τk (k = 1, n) and assumed T̂ = τm.
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Abstract. In recent years more and more attention has been paid to
mobile ad hoc special purpose networks. The application of such networks
expands the specter of opportunities in any sphere of human activity.
The main objective of MANET networks, as well as any others, is data
transmission. The TCP protocol provides for its execution. This arti-
cle describes the features of MANET networks and contains results of
model experiments with the TCP protocol under the influence of a high
bit errors rate and changeable topology. Additionally, modifications for
increasing the performance of the TCP-NewReno protocol are presented.

Keywords: MANET · TCP · Ad hoc · Protocol · Networks · Perfor-
mance of TCP · Modification of TCP

1 Introduction

MANET is an autonomous wireless ad hoc special purpose network system con-
sisting of independent nodes, which can move freely in any direction. Unlike wire
and cellular networks, MANET has no fixed infrastructure and central manage-
ment. The nodes can communicate directly if they are located in each others
radio area, or through intermediate nodes, and each of them can be a transmis-
sion endpoint and router simultaneously.

The presence of mobility and the single-level principle of construction make
MANET networks difficult to realize in real life. The difficulties lie in the devel-
oping of routing systems, resource management, etc.

At the moment there is much research in the field of routing [1–4] and trans-
port protocols [5–8].

MANET networks [9,10] are suitable for use in combat, rescue operations and
other situations, where it is not possible to use an expanded network infrastruc-
ture.

In such situations the possibility of data transmitting with delivery guarantee
is necessary. For modern networks such a service is provided by the TCP protocol
– the protocol of stream data transmitting with packet switching. It was intended
c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 120–131, 2016.
DOI: 10.1007/978-3-319-44615-8 10
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initially for networks with a low level of losses and fixed or weakly varying
topology, which is natural for wired networks.

In research on the mechanisms of TCP congestion control in MANET [11] it
was found that this protocol deals with its problems with insufficient efficiency
in such networks. In the same research it was found that the TCP-NewReno
protocol operates better in MANET.

The following research is dedicated to analysis of algorithms and parameters
of TCP-NewReno protocol and its modifications for MANET networks.

Our research is based on imitating modeling on the basis of an event-discrete
approach, which is carried out by MANET networks simulation. Such an app-
roach allows us to research and develop original network protocols. NS-3 is
recognized as one of the best event-discrete simulators for MANET modeling,
researching and development of new protocols [12]. The NS-3.22 is used in our
research. The main model parameters are given in [11]. Other parameters (the
number of nodes, their initial location, rate, the number of UDP applications
(User Datagram Protocol – the protocol of data delivery without logical con-
nection establishment) and their transmission rate, duration of the simulated
period) are specified by the conditions of the experiment.

2 Research

2.1 Problem Definition

There is an imitation model of the network consisting of 5 mobile nodes moving
at any time. The physical and canal levels are realized according to the standard
802.11a (Wi-Fi). The communication method is half-duplex (the device trans-
mits or receives simultaneously) with a flow capacity of 54 Mbps/sec. At the
network level the IP4v protocol is used. The AODV protocol is responsible for
routing. The simulation period lasts 250 s.

It is necessary to conduct an analysis of the parameters and TCP-NewReno
protocols algorithms and to perform a modification of the protocol in order to
increase its efficiency. Efficiency is understood as the amount of successfully
transmitted data during the whole simulation period.

2.2 Theory

With an understanding of the TCP protocols work and MANET features, it is
possible to make preliminary conclusions on their compatibility [10].

Bit Errors. In the ad hoc networks bit errors have a quite low level of BER, if
the network is multilevel and communicating nodes are closer than the detection
limit and nonmovable. In the cellular networks BER increases, because with
the change in distance comes a change in the received power and translation
parameters. An even greater increase in BER is caused by use of the single-
rank principle of network organization, It adds medium access conflict problems,
problems of hidden terminal, etc.
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The high segment losses level makes the congestion control spend much time
in states of congestion elimination and slow start. Because of this, frequent delays
and pauses in transmission, and excessive retransmissions occur.

Route Errors. The high level of bit errors in the network leads to losses in
the routing protocols packets. Because of this there may be routes breaks and
changes. The packet with a TCP segment will be dropped at the intermediate
node. As a result we have the same consequences as in the previous section.

Changeable Topology. The high mobility of the nodes in MANET networks
leads to frequent shot-term breaks and changes of routes. This feature negatively
influences the work of the TCP protocol because the connection parameters are
selected principally for the certain route. But the change of the route leads to
changes in its metric. And then the calculated parameters may not fit the new
route. For example, the high value of CWND (Congestion Window) may cause
network congestion and segment losses after route metric degradation, and the
RTO high value (Retransmission Time-out) may cause downtime in transmission
after route recovery.

Because of the changeable topology, the transmissioned packets may be
received in the wrong order since segments are sent via different routes with
different metrics. As the result, gaps in the stream could appear, which would
lead to a decrease in the transmission speed and excessive data retranslation.

Multipath Routing. It promotes the distribution of the load on separate nodes
and improves the translation speed, but a typical TCP protocol is unable to work
with it. The use of such a type of routing leads to disordered entry of segments
at the receiving end, the consequences of which are stated above.

2.3 Analysis of the TCP-NewReno Protocol Parameters
and Algorithms

Medium Access Conflict. In wireless ad hoc networks the channel through-
put is divided between all the nodes and that is why the conflicts appear in
simultaneous medium access, and part of the transmitted data gets lost.

Conflicts lead to route errors. In order to determine the influence of the
conflicts on TCP efficiency, the experiment with a network model was conducted,
where 8 nonmovable nodes were arranged in the lattice sites (Fig. 1).

In order to eliminate the influence of the mobility of the nodes their location
was fixed.

The shortest way between the server and the client has a length of 3 hops,
but it does not mean that the route between them has the same length and
consists of the same nodes. Also, the data from the C node was transmitted to
the D node according to the UDP protocol with the speed of 5 mbps in order to
create multiple signals from the nearby nodes (Fig 2).
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Fig. 1. Experiment illustration

Fig. 2. TCP connection throughput as a function of time

The conditions of the experiment are presented in Fig. 3: (a) – route length
change; (b) – sequence of numbers of segments sent from the client node; (c) –
RTO change; (d) – instantaneous data stream speed.

Increasing the number of hops leads to performance degradation. The route of
greater length passes through the nodes, which are used by the UDP application.
It leads to additional data and confirmations delay, because of which TCP-
NewReno enters the slow start mode.

In Fig. 3b one can see how test segments starting from the 32 s were sent in
order to check the paths availability. Wherein, the RTO value increased every
time. At the moment of 48.8 s the route went back to the previous state, but the
TCP protocol was waiting for the confirmation of the last test segment. For this
reason time was wasted, which affected the general performance.
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Fig. 3. TCP-NewReno protocol performance

Dynamic Topology. In the model experiment 15 nodes were moving in a
random direction. The data was transmitting from the client to the server only.
4 simulation runs were conducted, in which the nodes velocity amounted to 2,
6, 10 and 20 m/s respectively.

In Fig. 4 the characteristic of the shortest way between the client and the
server is presented. The marks on the graphic indicate the time moments of the
path changes, and the broken line – its length. In every run the same pattern of
behavior was used, so the duration of the simulated time period was decreasing
inversely related to speed: 1500, 500, 300 and 150 s.

In the graphs of Fig. 4b, e, the data transmission speed depending on the
time is shown. Let us note that the curves of Fig. 4b, e correlate with changes
in the length of the route [11].
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At a node speed equal to 2 m/s (Fig. 4b) the data stream was sent through
the routes of 1, 2 and 3 hop length. Every change in the network leads to the
data transmission speed dropping up to zero, after which recovery occurs with
a delay.

Starting from the normalized time moment 0.34 (Fig. 4a), a distance reduc-
tion up to 1 hop and lost segments led to a long connection pause. The protocol
did not have time to establish the necessary connection settings.

At 6 m/s (Fig. 4c) the path changes come faster, so the protocol does not have
time to react to each of them. The attempts to eliminate nonexistent congestion
and determine the availability of a route with the help of test segments lead to
a weakening of data transmission in the period of normalized time from 0.16 to
0.37 and to its complete absence after 0.6, because the test segments are sent
during the topology changes.

Fig. 4. TCP-NewReno protocol performance at different speeds of node movement
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At 10 m/s (Fig. 4d) even greater weakening is observed in the first half of
the runs time and, surprisingly, the appearance of the traffic in the second.
The short-form route changes barely affected the connection settings. Unlike the
previous run, it allowed the recommencement of transmission in the period of
normalized time [0.76, 0.8]. The dissynchronization occurred between the test
segments and topology changes.

At an even higher speed (Fig. 4e) data was not transmitted through the routes
longer than one hop.

In each of the 4 cases the most problematic time for the TCP protocol starts
from the moment 0.6 of normalized time. In order to check the data transmis-
sion possibility at this period of time all the 4 runs were repeated with the
replacement of the TCP protocol by UDP. The obtained results are shown in
Fig. 5. It follows from the figure that the network and link levels enabled the
data transmission, which was not used by the TCP protocol.

The Complex Experiment. The interaction of the processes occurring in the
network is manifested in the data transmission speed drops. Let us turn to the
results of one of the experiments on choosing the congestion control mechanism
in order to explain the causes of this phenomenon.

Let us take a look at CWND value dynamics (Fig. 6).
The instability in the changes of this parameter indicates the presence of

congestion control switching states. The reason for this is the segments loss, the
time of which is also shown in the graph. Moreover, the data loss did not occur
for the reason of buffer overflow at any of the nodes, i.e. congestion did not
appear in the network. The states of slow start and congestion elimination lead
to data delay and unnecessary segments retransmission. The cause of the long
pauses was discussed earlier. Let us take a look at the problem of unnecessary
retransmissions.

During the elimination of the congestion, the segments with a sequence num-
ber equal to the last AckSeq are sent repeatedly. After that, with every received
ACK (Acknowledgement) double, the value of CWND increases by one MSS
(Maximum Segment Size) until the new AscSeq (Acknowledgement Sequence
Number) is received. If it is equal to the maximum sequence number of the sent
byte in the stream, than the congestion elimination is considered successful.
Otherwise, the process continues. The examined algorithm leads to unnecessary
retransmissions if the first sent segment in the state of congestion elimination is
lost. In this case the transmitting side sends all the data from the buffer, then
the RTO time-out expiration occurs and the mechanism goes to the slow start
mode. This transition may cause the third attempt to send the existing data to
the receiving end, since the ACK doubles received in the previous state do not
indicate the sequence number of the received segments (Fig. 7).

The high CWND value during the route change leads to occurrence of con-
gestion and, consequently, to the loss of large number of segments, which was
revealed during the model experiment, in which a network consisting of 5 nodes
was used.
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Fig. 5. UDP protocol performance at different speeds of node movement

Fig. 6. Congestion window of the TCP-NewReno protocol in MANET
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Fig. 7. Demonstration of the excess retransmissions

At the start moment the routes length between the client and the server was
equal to one hop. After a while, the client stopped the data transmission in order
to receive the remaining acknowledgements and to clear the entire congestion
window. After that, the clients node shifted in such a way that the route to the
server began to pass through the node, which was used to transmit another data
stream, and the stream renews. The large number of segments quickly filled the
remaining buffer space of the intermediate node and a part of the segments was
lost (Fig. 8).

2.4 TCP-NewReno Protocol Modification

Some changes were added to congestion control in order to boost the performance
of the protocol. The ssThresh (Slow Start Threshold) was reduced to MSS. RTO
does not change after loss of the test segment. When receiving the ACK double
the congestion window remains the same and the first unconfirmed segment is
sent once again. After receiving a new acknowledgement CWND decreases or
increases to such a value at which the free space of congestion window allows to
send DelAckCount (Delay Acknowledgement Count) of the segments.

Modified congestion control was used in the re-runs of the experiments. In
Fig. 9 a comparison of the results of the first experiment with the standard TCP-
NewReno and modified TCP-NewReno is shown. It can be seen that the amount
of successfully transmitted data increased.

Figure 10 presents the results of a 6 m/s run.
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Fig. 8. Congestion appears after route change

Fig. 9. Comparison of the original and the modified TCP-NewReno protocol

Fig. 10. The performance of the modified TCP-NewReno protocol at 6m/s nodes
movement speed
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The fixed RTO value in the process of determining the presence of the path
allowed the use of longer routes in a period of time, in which the original mech-
anism was not able to do so.

3 Conclusion

The experimental results described in Sect. 2, confirm the preliminary conclu-
sions on the effectiveness of the TCP protocol application in MANET.

The protocol interprets the segments losses incorrectly because of the bit
errors and errors of route that affect the TCP performance.

Frequent switching in the slow start and congestion elimination mode leads
to the large number of unnecessary segment retransmissions.

At the high level of mobility the protocol is able to transmit the data through
one-hop routes only, though the using of UDP in the same conditions showed
the possibility of using longer paths.

The changes in the congestion control gave a boost to the protocol perfor-
mance. The weakening of the onslaught on the network during the congestion
elimination and reduction of the interval between the test segments improved
the results.

In order to solve the problem of the unnecessary retransmissions it is neces-
sary to make changes to the protocol itself.
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Abstract. In the paper, we present some analytical results obtained for
probability characteristics of a thinned renewal process. The thinning
is processed according to a given function which depends on evolution
time and on the number of already thinned points. The characteristics are
obtained in the form of Laplace–Stieltjes transforms which are defined
by a system of recurrence integral equations. Some partial cases are also
considered.

Keywords: Renewal process · Thinned point process · Time-depended
function of thinning · Laplace–Stieltjes transform

1 Introduction

Thinning of random point processes plays an important role in the theory of
random processes and in queueing theory. A thinned point process is a random
process which is constructed on some other random point process by excluding
some points according to a given probability, or given law (function), or by using
additional random processes, etc. In queueing theory, such thinned processes can
be used as independent models of processes forming different real fields, and also
as the models of arrival processes for queueing systems.

In the Russian edition [1] of books [2,3], Yu.K. Belyaev remarked that the
thinned Poisson process is still a Poisson process. A. Renyi [4] proved the first
theorem about the thinning of a renewal process. The main idea is that we place
a point from the source process into the thinned process with a constant proba-
bility q and do not place with probability (1 − q). A rate of the thinned process
can be considered as constant if we make suitable changes in the time scale. If
we make a thinning n times with different probabilities q1, . . . , qn where n → ∞
and all q1, . . . , qn → 0, then the resulting thinned process converges to a Poisson
process. Later, Yu.K. Belyaev made a generalization [5] of the theorem to the
case of an arbitrary point process. In the book [6], this theorem was generalized
to the case of a non-stationary asymptotically thinned process. A.D. Soloviev
demonstrated [7] that the first epoch of a rare event in a regenerating process is
asymptotically exponential with a parameter equal to 1 (if we use an appropriate
scale).
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All these papers are focused on obtaining asymptotic results under a con-
dition of unlimited thinning. One main feature of the construction of these
approaches is that a thinning process depends neither on time nor on the number
of epochs before. In our paper, we use both parameters to involve them in the
process of thinning of the source renewal point process.

Some other results regarding thinned point processes and their applications
can be found in the books and papers [8–11]. The inverse (in a certain sense)
problem of “thickening” of the point process is considered in the paper [12].

In Sect. 2, the mathematical model and the problem are formulated. A solu-
tion is given in Sect. 3. In Sect. 4, we consider a special case of thinning where the
thinning probabilities depend on the number of thinned points and do not depend
on the current time, but the arrival probabilities for source process depend both
on the number of thinned points and on the last decision of the thinning process.

2 Problem Statement

Let us consider stationary renewal process (we call it as source process). Let
t0 = 0 be the initial time moment and the number of the points in the thinned
process under construction is equal to 0. Let F (x) be a cumulative distribution
function (c.d.f.) for all epochs except the first one which has distribution func-
tion F0(x). The thinning of the considering renewal process is performed in the
following way. Let the point arrive in the source process at the time moment
t > t0 and a number of the points in the thinned process before the moment t
is equal to i. In this case we generate a point in the thinned process with given
probability Pi(t) where i = 0, 1, 2, . . . (and do not generate with probability
1 − Pi(t)).

The aim of the study is a probability distribution of number of the points in
the thinned process occurring before some arbitrary time moment t.

3 Solution

Let us denote by ν(t) a number of points in the thinned process occurring
before the moment t and by ξ(t) a residual time from the moment t until the
next point in the source process. Let us consider the two-dimensional process
ζ(t) = {ν(t), ξ(t)}. This process is Markovian because its evolution after the
moment t depends only on values ν(t) and ξ(t) but does not depend on its states
before t. Let us denote ϕi(t, x) = P{ν(t) = i, ξ(t) < x}, ϕi(t) = ϕi(t,∞) for
i = 0, 1, 2, . . . . The problem is to find the probability distribution ϕi(t) of the
number of points in the thinned process occurring before the time moment t.

At the first stage, let us derive the distributions ϕi(t, x). We can write the
following system of differential equations for these functions:
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ϕ0(t + Δt, x − Δt) = ϕ0(t, x) − ϕ0(t,Δt) + ϕ0(t,Δt)[1 − P0(t)]F (x),

ϕi(t + Δt, x − Δt) = ϕi(t, x) − ϕi(t,Δt) + ϕi−1(t,Δt)Pi−1(t)F (x)
+ ϕi(t,Δt)[1 − Pi(t)]F (x) for i > 0.

Then, from this system, we can derive the following system of differential
equations:

∂ϕ0(t, x)
∂t

− ∂ϕ0(t, x)
∂x

= −∂ϕ0(t, 0)
∂x

+
∂ϕ0(t, 0)

∂x
[1 − P0(t)]F (x),

∂ϕi(t, x)
∂t

−∂ϕi(t, x)
∂x

= −∂ϕi(t, 0)
∂x

+
∂ϕi−1(t, 0)

∂x
Pi−1(t)F (x) (1)

+
∂ϕi(t, 0)

∂x
[1 − Pi(t)]F (x) for i > 0

with the initial condition
ϕ0(0, x) = F0(x). (2)

Let us use the following notations:

F̃0(s) =

∞∫
0

e−sxdF0(x), F̃ (s) =

∞∫
0

e−sxdF (x), (3)

ϕ̃i(u, s) =

∞∫
0

∞∫
0

e−ute−sxdxϕi(t, x)dt, ϕ̃′
i(u) =

∞∫
0

e−ut ∂ϕi(t, 0)
∂x

dt, (4)

ψ̃′
i(u) =

∞∫
0

e−ut ∂ϕi(t, 0)
∂x

Pi(t)dt, i = 0, 1, 2, . . . (5)

We can prove the following theorem.

Theorem 1. Laplace–Stieltjes transforms ϕ̃i(u, s) satisfy the following
expressions

ϕ̃0(u, s) =
1

u − s

[
−ϕ̃′

0(u)
(
1 − F̃ (s)

)
− ψ̃′

0(u)F̃ (s) + F̃0(s)
]
, (6)

ϕ̃i(u, s) =
1

u − s

[
−ϕ̃′

i(u)
(
1 − F̃ (s)

)
+ ψ̃′

i−1(u)F̃ (s) − ψ̃′
i(u)F̃ (s)

]
, i > 0, (7)

where
∂ϕi(t, 0)

∂x
in the expressions (4)–(5) for ϕ̃′

i(u) and ψ̃′
i(u) (i = 0, 1, 2, . . . )

are determined by the following system of recurrence integral equations

(
1 − F̃ (u)

) ∞∫
0

e−ut ∂ϕ0(t, 0)
∂x

dt + F̃ (u)

∞∫
0

e−ut ∂ϕ0(t, 0)
∂x

P0(t)dt = F̃0(u), (8)
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(
1 − F̃ (u)

) ∞∫
0

e−ut ∂ϕi(t, 0)
∂x

dt + F̃ (u)

∞∫
0

e−ut ∂ϕi(t, 0)
∂x

Pi(t)dt = (9)

F̃ (u)

∞∫
0

e−ut ∂ϕi−1(t, 0)
∂x

Pi−1(t)dt, i > 0.

Proof. Let us apply a Laplace–Stieltjes transform in the system (1)–(2), we
obtain the system

ϕ̃0(u, s)(u − s) = −ϕ̃′
0(u)

(
1 − F̃ (s)

)
− ψ̃′

0(u)F̃ (s) + F̃0(s), (10)

ϕ̃i(u, s)(u − s) = −ϕ̃′
i(u)

(
1 − F̃ (s)

)
+ ψ̃′

i−1(u)F̃ (s) − ψ̃′
i(u)F̃ (s), i > 0, (11)

from which we can directly derive the expressions (6)–(7).
If we substitute u = s into the equalities (10)–(11) we obtain the following

expressions
−ϕ̃′

0(u)
(
1 − F̃ (u)

)
− ψ̃′

0(u)F̃ (u) + F̃0(u) = 0,

−ϕ̃′
i(u)

(
1 − F̃ (u)

)
+ ψ̃′

i−1(u)F̃ (u) − ψ̃′
i(u)F̃ (u) = 0, i > 0.

Substituting here expressions (3)–(5), we obtain the system (8)–(9). The theorem
is proved.

The goal of the study is to find the probability distribution functions ϕi(t).
Using the notations

ϕ̃i(u) =

∞∫
0

e−utϕi(t); dt, P̃i(u) =

∞∫
0

e−utPi(t)dt,

for i = 0, 1, 2, . . . , we can make the following conclusion from Theorem 1.

Corollary 1. Laplace transforms ϕ̃i(u) of the probability distribution functions
ϕi(t) for i = 0, 1, 2, . . . are determined by the following expressions:

ϕ̃0(u) =
1
u

[
−ψ̃′

0(u) + F̃0(u)
]
, (12)

ϕ̃i(u) =
1
u

[
ψ̃′
i−1(u) − ψ̃′

i(u)
]
, i > 0. (13)

It is interesting to see what will happen if we consider partial cases of the
model under study. The first one is when thinning probabilities do not depend
on the number of the points occurring in the thinned process but depend on
the current time t. In this case, we have Pi(t) = P (t) for all i = 0, 1, 2, . . .
Unfortunately, we obtain only a slightly simpler form for the functions ψ̃′

i(u) in
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the expression (5) but we still need to use the expressions (12)–(13) to calculate
probability distributions ϕi(t).

In the contrary case, the thinning probabilities depend only on a number of
points occurring in the thinned process before the current time moment t and
do not depend on the value of t. We can obtain some results which are more
simple than the results derived in this section. Such a case with some additional
complicate condition is considered in the following section.

4 Special Case: Thinning Probabilities Depend only on
Number of Points

Let us consider the case when the thinning probabilities Pi(t) do not depend on
the value of t. So, we can use them in the form Pi as a probability that any point of
the source process generates a point in the thinned process if the number of points
already occurring in the thinned process equals i. In this section we consider a more
complex problem when arrivals of the points in the source process depend on the
number of points in the thinned process too and, in addition, they depend on the
last decision of the thinning: did the last arrival generate a thinned point or not.
So, the arrivals and thinning process are described as follows.

The first point in the source process arrives at the random epoch with c.d.f.
F0(x). Then, if some point occurs in the source process it may be thinned into
the thinned process with the probability Pi where i is a number of points in
the thinned process. If it does then the epoch of the next arrival in the source
process has c.d.f. Fi(x), i ≥ 1. Otherwise (if the source point was not thinned
into the thinned process), the epoch of the next arrival in the source process will
have c.d.f. Gi(x), i ≥ 0. The goal of the study is the same as earlier – to find the
probability distribution of the number of points occurring in the thinned process
before the time moment t > 0 if at the initial moment this number is equal to
zero.

Using the notations from Sect. 3, we can write the following system of
differential equations for the functions ϕi(s):

ϕ0(t + Δt, x − Δt) = ϕ0(t, x) − ϕ0(t,Δt) + ϕ0(t,Δt)[1 − P0]G0(x),

ϕi(t + Δt, x − Δt) = ϕi(t, x) − ϕi(t,Δt) + ϕi−1(t,Δt)Pi−1Fi(x) (14)
+ ϕi(t,Δt)[1 − Pi]Gi(x) for i > 0.

We can derive the following system of differential equations from (14)

∂ϕ0(t, x)
∂t

− ∂ϕ0(t, x)
∂x

= −∂ϕ0(t, 0)
∂x

+
∂ϕ0(t, 0)

∂x
[1 − P0]G0(x),

∂ϕi(t, x)
∂t

− ∂ϕi(t, x)
∂x

= −∂ϕi(t, 0)
∂x

+
∂ϕi−1(t, 0)

∂x
Pi−1Fi(x) (15)

+
∂ϕi(t, 0)

∂x
[1 − Pi]Gi(x) for i > 0

with initial condition
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ϕ0(0, x) = F0(x). (16)

Let us use the following notations:

F̃i(s) =

∞∫
0

e−sxdFi(x), G̃i(s) =

∞∫
0

e−sxdGi(x),

ϕ̃i(u, s) =

∞∫
0

∞∫
0

e−ute−sxdxϕi(t, x)dt, ϕ̃′
i(u) =

∞∫
0

e−ut ∂ϕi(t, 0)
∂x

dt

for i = 0, 1, 2, . . . We can formulate the following theorem.

Theorem 2. Laplace–Stieltjes transforms ϕ̃i(u, s) satisfy the following
expressions

ϕ̃0(u, s) =
1

u − s

[
−ϕ̃′

0(u)
(
1 − (1 − P0)G̃0(s)

)
+ F̃0(s)

]
, (17)

ϕ̃i(u, s) =
1

u − s

[
−ϕ̃′

i(u)
(
1 − (1 − Pi)G̃i(s)

)
+ Pi−1ϕ̃

′
i−1(u)F̃i(s)

]
, i > 0,

(18)
where ϕ̃′

i(u) are determined by the following recurrence equations

ϕ̃′
0(u) =

F̃0(u)
1 − (1 − P0)G̃0(u)

, (19)

ϕ̃′
i(u) =

ϕ̃′
i−1(u)Pi−1F̃i(u)

1 − (1 − Pi)G̃i(u)
, i > 0. (20)

Proof. Let us apply a Laplace–Stieltjes transform in the system (15)–(16), we
obtain the following equations

ϕ̃0(u, s)(u − s) = −ϕ̃′
0(u)

[
1 − (1 − P0)G̃0(s)

]
+ F̃0(s), (21)

ϕ̃i(u, s)(u − s) = −ϕ̃′
i(u)

[
1 − (1 − Pi)G̃i(s)

]
+ Pi−1(u)ϕ̃′

i−1(u)F̃ (s), i > 0,

(22)
from which we directly derive the expressions (17)–(18).

If we substitute u = s into the equalities (21)–(22) we obtain the following
expressions

−ϕ̃′
0(u)

[
1 − (1 − P0)G̃0(u)

]
+ F̃0(u) = 0,

−ϕ̃′
i(u)

[
1 − (1 − Pi)G̃i(u)

]
+ Pi−1ϕ̃

′
i−1(u)F̃i(u) = 0, i > 0.

These expressions give us the recurrence Eqs. (19)–(20). The theorem is proved.
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The goal of the study is to find the probability distribution functions ϕi(t).

Using the notations ϕ̃i(u) =

∞∫
0

e−utϕi(t)dt for i = 0, 1, 2, . . . , we can make the

following conclusion from Theorem 2.

Corollary 2. Laplace transforms ϕ̃i(u) of the probability distribution functions
ϕi(t) are determined by the following expressions

ϕ̃0(u) =
1
u

[ϕ̃′
0(u)P0 + 1] ,

ϕ̃i(u) =
1
u

[−Piϕ̃
′
i(u) + Pi−1ϕ̃

′
i−1(u)

]
, i > 0,

where functions ϕ̃′
i(u) are determined by the system (19)–(20).

5 Conclusions

In the paper, we have considered a thinning process which is performed on a
source renewal point process according to given functions Pi(t). These functions
depend both on the time t of the process evolution and on the number i of the
points already thinned in the resulting process. In Sect. 4, we have considered a
special case of thinning when thinning probabilities do not depend on time and
on the number of thinned points but at the same time the probability of the
future arrival significantly depend on the last thinning decision. All results are
presented in the form of Laplace–Stieltjes transforms.

The results of the paper may be useful both for solving practical problems
with the appropriate models and for using as models of arrival processes for
queueing systems and networks.
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Abstract. In this paper, a single-server retrial queue with renewal
input, phase type service time distribution and a constant retrial rate
is analyzed. A constant retrial rate is typical for some real world systems
where the intensity of individual retrials is inversely proportional to the
number of customers in the orbit or only one customer from the orbit
is allowed to make the retrials. A distinguishing feature of the system
under consideration is an arbitrary distribution of inter-arrival times and
phase type service time distribution while the vast majority of previous
research is devoted to retrial systems with a stationary Poisson input or
Markovian extensions and exponentially distributed service times. We
derive the stationary distributions of the system states and the Laplace-
Stieltjes transform of the sojourn time distribution.

Keywords: Renewal input · Phase-type distribution · Constant retrial
rate · Stationary distribution · Sojourn time

1 Introduction

Retrial queues take into account the phenomenon that a customer who cannot
get service immediately upon arrival goes to so-called orbit and retries for the
service again after a random time. Most retrial queues assume a classical retrial
policy, i.e. each customer in the orbit seeks service independently. An overview
of the literature on such retrial queues can be found in [1–4].

However, there are situations in telecommunication networks which do not
satisfy the assumption about classical retrial policy. Sometimes information
about the state of the server is not available to the customer at the head of
the queue and he/she repeats the attempts to reach the server at random times.
In other cases the server takes time to check whether the transmission facility is
available or the server requires time to search for a specified customer. In such
cases the retrial rate is independent of the number of customers (if any) in the
orbit. The constant retrial policy was introduced by Fayolle [5] who modeled
a telephone exchange system. Later, retrial queueing systems with a constant
retrial rate were studied by many researchers, see, e.g., [6–11].
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However, practically all research in retrial queues with a constant retrial rate
has been conducted for cases when the arrival flow is described by a station-
ary Poisson process or its Markovian extensions. To the best of our knowledge,
only paper [12] has dealt with a retrial queue with arbitrary distribution of
inter-arrival times. In that paper, the GI/M/1 queue with a constant retrial
rate was investigated. However, real computer networks almost never satisfy the
assumption about exponential distribution of service time. In the present paper
we consider an extension of the model investigated in [12] to the case of phase
type distribution (PH distribution) of service time. We construct an embedded
Markov chain describing the process of the system states, derive the ergodicity
condition and present an algorithm for calculation of the stationary distribution
of the system states. The stationary distribution of the sojourn time is solved in
terms of a Laplace-Stieltjes transform. Analysis is based on the matrix technique.

2 Model Description

We consider GI/PH/1 retrial queue with a constant retrial rate. The inter-
arrival times in the input flow are independent random variables with general

distribution A(t), Laplace-Stieltjes transform A∗(s) =
∞∫
0

e−stdA(t), Re s ≥ 0,

and finite first moment a =
∞∫
0

tdA(t).

The service time of a customer by the server has PH type distribution with
irreducible representation (β, S). It means the following. The service time is
interpreted as the time until the continuous time Markov chain mt, t ≥ 0, with
the state space {1, . . . , M + 1} reaches the single absorbing state M + 1. Tran-
sitions of the chain mt, t ≥ 0, within the state space {1, . . . , M} are defined by
the sub-generator S while the intensities of transitions into the absorbing state
are defined by the vector S0 = −Se. At the service beginning epoch, the state
of the process mt, t ≥ 0, is chosen within the state space {1, . . . , M} according
to the probabilistic row vector β. It is assumed that the matrix S + S0β is an
irreducible one. The service rate is calculated as μ = −(βS−1e)−1. For more
information about the PH type distribution, its properties, partial cases, and
suitability for approximation of a variety of probability distributions arising in
modeling real-life systems see, e.g., [13].

If an arriving (primary) customer meets an idle server, it starts the service
immediately. In the contrary case, it goes to some virtual place called orbit and
stands at the end of the queue of the so-called repeat customers. The first cus-
tomer in the queue makes repeated attempts to get service in a random amount
of time until it succeeds in entering the service. The intervals between two suc-
cessive retrials are independent exponentially distributed random variables with
parameter γ. The orbit capacity is assumed to be unlimited.

The goal of the paper is to obtain the stationary distribution of the system
states and the stationary distribution of the sojourn time.
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3 Embedded Markov Chain

We define the system state at time t as (0) if the system is empty at this time.
In the contrary case, the state of the system is defined as a pair (i,m) where i is
the number of customers in the system (in the orbit and in the service, if any),
m = 0 if the server is idle and m = m̃ if the server is busy at time t and the
service process is at the phase m̃, m̃ = 1, . . . ,M.

Let tn denote the instant of the nth arrival. We define an embedded Markov
chain as ξn = {itn−0,mtn+0}, n ≥ 1. To be able to derive the transition proba-
bilities of the chain ξn, n ≥ 1, we need to know the distribution of the number of
customers (primary and repeated) that complete their service during an inter-
arrival time. To calculate such a distribution we introduce the notion of gener-
alized service time of a customer from the orbit. The generalized service time
consists of an exponentially distributed with parameter γ phase during which
the customer reaches the idle server and a proper service time of this customer
by the server.

Then the generalized service time distribution of the repeat customer can be
described as phase-type (PH) distribution with the irreducible representation

(β̃, S̃) where β̃ = (1,0M ) and S̃ =
(−γ γβ

0 S

)
. Here 0M is a row vector of

size M. For the detailed description of PH distribution see, e.g. [13]. In our
case the matrix S̃ describes the transition rates of the phases of generalized
service that do not lead to service completion. The vector S̃0 = −S̃e, where e
is a column vector of units, describes the rates of transitions leading to service
completion. The vector β̃ indicates that the service of the repeated customer
always starts from the first phase 0. For further use we introduce the notation
D(z) = S̃+S̃0β̃z, |z| ≤ 1. It is easy to see that the matrix D(1) is a generator of
the Markov chain that describes the transitions of the generalized service phases
during the inter-arrival time intervals belonging to a busy period.

The service time of a primary customer who found an idle server can be
considered as the phase of the generalized service time corresponding to the
proper service time. It is evident that the service time of such a customer has
PH distribution with irreducible representation (ê, S̃) where ê = (0,β).

Let P (k, t), k ≥ 0, be the matrix probability that k renewals occur in the
renewal process defined by the above PH distribution. It is well-known that the
matrices P (k, t), k ≥ 0, are defined by the expansion

∞∑
k=0

P (k, t)zk = eD(z)t, |z| ≤ 1. (1)

Let us denote by Pi,j transition probability matrix of the chain ξn, n ≥ 1, from
the states corresponding to the number i of customers in the system to the states
with the number j of customers, i, j ≥ 0.
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Theorem 1. The transition probability matrix of the chain ξn, n ≥ 1, has the
following block structure

P = (Pi,j)i,j≥0 =

⎛
⎜⎜⎜⎝

B0 A0 0 0 . . .
B1 A1 A0 0 . . .
B2 A2 A1 A0 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎠

where the matrices Ak, Bk, k ≥ 0, are defined by

Ak = C
∞∫
0

P (k, t)dA(t), Bk = C
∞∑

l=k+1

∞∫
0

P (l, t)dA(t)eê.

Here C =
(

0 β
0T IM

)
, ê = (0,β), IM is an identity matrix of size M , 0 is a row

vector of zeroes.

Proof. To clarify the expressions for transition probability matrices Ak and Bk,
we note the following probabilistic interpretation of the matrices appearing in
these expressions.

The (m,m′)th entry of the matrix P (k, x) is the conditional probability that,
in the interval [0, x) belonging to the busy period of the system, k customers will
be served and the state of the PH generalized service process at the moment
x is m′ conditional the state of this process at the moment 0 was m. So, the

integral
∞∫
0

P (k, t)dA(t) defines the matrix probability that k customers will be

served during an inter-arrival time.
The matrix C defines the probabilities of jumps of the phase of a generalized

service time at an arrival epoch. If the server is idle, with probability (β)m the
phase is changed from 0 to m, m = 1, . . . , M, and the service of the arriving
customer starts. In the contrary case, the phase of a customer who is being
served is not changed and the service of this customer is continued. The above
explains why the integrals in the expressions for Ak, Bk are multiplied on the
left on the matrix C. In the expression for Bk, the integrals are multiplied on the
right by the vector eê to specify the phase of the generalized service time after
the moment of arrival of a customer to the idle system.

Corollary 1. The process ξn, n ≥ 1, belongs to the class of GI/M/1 type
Markov chains, see [13].

Proof of the corollary follows from the structure of the transition probability
matrix P.

4 Stationary Distribution

In this section we focus on the derivation of the ergodicity condition and calcu-
lation of the stationary distribution of the chain ξn.
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Let us present the matrix (D(1))k, k ≥ 1, in the block form

(D(1))k =
(

hk hk

fk Fk

)
where fk is a column vector of size M and Fk is M × M

matrix.
For further use we need to calculate the blocks Fk and fk of the matrices

Dk(1), k ≥ 1.

Lemma 1

Fk = (−1)k−1S(γB − S)k−1, fk = −Fke, k ≥ 1, (2)

where B = eβ.

Proof. Formula (2) is derived by induction.

Theorem 2. Stationary distribution of the Markov chain ξn, n ≥ 1, exists if
and only if the following inequality holds

(x1β + x2)(γB − S)−1Ψ S0 +
a1μγ

μ + γ
> 1 (3)

where

x2 = β(I − Ψ [I − (I − B)(I − Ψ)]−1, x1 = 1 − x2e, (4)

Ψ = S(γB − S)−1[A∗(γB − S) − I].

Proof. Using the results of [13] for GI/M/1 type Markov chains, it is possi-
ble to formulate the ergodicity condition in terms of the generating function

A(z) =
∞∑
i=0

Aiz
i, |z| ≤ 1.

The chain is ergodic if and only if the inequality

xA′(1)e > 1 (5)

is satisfied where the vector x = (x1,x2) is the unique solution of the system

xA(1) = x, (6)

xe = 1. (7)

This condition has an abstract form and is not amenable to interpretation in
terms of the system parameters. Taking into account these shortcomings of the
general approach we will derive the ergodicity condition in form (3).

It follows from (1) and Theorem 1 that

A(z) = C
∞∫
0

eD(z)tdA(t). (8)
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Using expression (8) for A(z), we can write system (6) in the form

(0, x1β + x2)

∞∫
0

(I +
∞∑
k=1

Dk(1)tk

k!
)dA(t) = (x1,x2). (9)

Using Lemma 1, we reduce (9) to the following system

(x1β + x2)

∞∫
0

∞∑
k=1

fk
tk

k!
dA(t) = x1,

(x1β + x2)(I +

∞∫
0

∞∑
k=1

Fk
tk

k!
dA(t) = x2.

Substituting in this system expressions (2) for fk and Fk, calculating sums of
series and using the notion Ψ given in the statement of the theorem, we arrive
to the system

(x1β + x2)Ψe = x1, (10)

(x1β + x2)(I − Ψ) = x2. (11)

In such a way, system (6) is reduced to systems (10) and (11). Taking into
account the normalizing Eq. (7), we see that Eq. (10) is a linear combination of
equations from (11). Thus, system (6) is equivalent to system (11) and systems
(6) and (7) is reduced to system (11), (7). From (11), (7) we obtain expressions
(4) for x1 and x2.

Now consider inequality (5). The left-hand side of this inequality is trans-
formed as follows:

xA′(1)e = (0, x1β + x2)

∞∫

0

[eD(z)t]′|z=1dA(t)e = (0, x1β + x2)

∞∫

0

[eD(z)t]′|z=1dA(t)e

= (0, x1β + x2)

∞∫
0

[tI +
∞∑
k=1

Dk(1)tk+1

(k + 1)!
]D′(1)dA(t)e

= ((x1β+x2)

∞∫
0

∞∑
k=1

fk
tk+1

(k + 1)!
dA(t), (x1β+x2)

∞∫
0

[tI +
∞∑
k=1

Fk
tk+1

(k + 1)!
]dA(t))S̃0

×(x1β + x2)

∞∫
0

[tI +
∞∑
k=1

Fk
tk+1

(k + 1)!
]dA(t)S0.
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Then inequality (5) can be write in the form

(x1β + x2)

∞∫
0

[tI +
∞∑
k=1

Fk
tk+1

(k + 1)!
]dA(t)S0 > 1. (12)

Substituting in (12) expressions (2) for Fk after some algebraic transformation
we obtain ergodicity condition (3).

Corollary 1. In the case of exponential service time the stationary distribution
of the Markov chain ξn, n ≥ 1, exists if and only if the inequality

μ

μ + γ

{
μ

μ + γ

[
1 − A∗(μ + γ)

]
+ aγ

}
> 1

is fulfilled.

In the following we assume that the ergodicity condition (3) holds. Let us
denote the stationary probabilities of the Markov chain ξn, n ≥ 1, by

π(i,m) = lim
n→∞ P{itn−0 = i,mtn+0 = m}, i ≥ 0,m = 0,M.

Let us denote πi = (π(i, 0), π(i, 1), . . . , π(i,M), i ≥ 0.

Theorem. The stationary probability vectors of the Markov chain ξn, n ≥ 1,
are calculated by

πi = π0R
i, i ≥ 0,

where the matrix R is the minimal nonnegative solution of the matrix equation

R =
∞∑
j=0

RjAj ,

and the vector π0 is the unique solution of the following system of linear algebraic
equation:

π0

∞∑
j=0

RjBj = π0, π0(I − R)−1e = 1.

Proof of the theorem follows from the results for GI/M/1 type Markov chains,
see [13].

5 Laplace-Stieltjes Transform of the Stationary
Distribution of the Sojourn Time

The sojourn time of an arriving customer is equal to the proper service time if
the server is idle at the arriving epoch. Otherwise, the customer goes to the orbit
and the structure of its sojourn time is much more complicated. In this case the
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derivation of the desired Laplace-Stieltjes transform (LST ) is a difficult problem.
So, in this section our main efforts will be directed to solving this problem.

Let ϕi(u), Re u ≥ 0, be the column vector of size M whose mth entry,
(ϕi(u))m, is the LST of the stationary distribution of the sojourn time of an
arriving customer which finds the busy server in phase m and i − 1 customers
in the orbit, i ≥ 1,m = 1,M.

Let us introduce the vector generating function Φ(z, u) =
∞∑
i=1

ϕi(u)zi,

0 < |z| ≤ 1.

Lemma 2. The vector generating function Φ(z, u) satisfies the following equa-
tion:

Φ(z, u)
[
I − A∗(uI − S) − H(u)[A∗

1(u) − A∗
2(u)](S0 ⊗ IM+1)

(
β

)
zIM

]

= zH(u)
[
[(uI − S)−1 ⊗ IM+1][I − A∗

1(u)] − [IM ⊗ (uI − D(z))−1][I − A∗
2(u)]

]

× (S0 ⊗ IM+1)S̃0 + [A∗
1(u) − A∗

2(u)](S0 ⊗ IM+1)
(
0
)
eM β(uI − S)−1S0 (13)

where

H(u) = (IM ⊗ β̃)([S ⊕ (−D(z))]−1, A∗
1(u) = A∗(uI − S) ⊗ IM+1,

A∗
2(u) = IM ⊗ A∗(uI − D(z)).

Proof. First, we derive the following recursive formulas for the vector functions
ϕi(u), i ≥ 1:

ϕi(u) =
∞∑
k=0

[∞∫
0

e(S−uI)ydA(y)
]k

(14)

×
{∞∫

0

e−ut
t∫
0

eSxS0dxβ̃
i−1∑
n=0

P (n, t − x)dA(t)β̃
T
βϕi−n(u)

+
∞∫
0

e−ut
t∫
0

eSxS0dxβ̃
i−1∑
n=0

P (n, t − x)dA(t)
(

0
IM

)
ϕi−n−1(u)

+
∞∫
0

e−ut
t∫
0

eSxS0dxβ̃P (i − 1, t − x)S̃0(1 − A(t))dt

}

where ϕ0(u) = eMβ(uI − S)−1S0.
In the derivation of (14) we used the probabilistic interpretation of the LST,

see, e.g. [14]. We assume that, independently of the system operation, the sta-
tionary Poisson flow of so-called catastrophes arrives. Let u, u > 0 be the rate
of this flow. Then (ϕi(u))m can be interpreted as the probability of no catastro-
phe arrival during the sojourn time of an arriving customer who found the busy
server in phase m and i − 1 customers in the orbit, i ≥ 1,m = 1,M.
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This allows us to derive the expression for ϕi(u) by means of probabilistic
reasonings.

Let a tagged primary customer find the busy server with i − 1 customers
waiting in the orbit. In this case, the customer is placed at the end of the queue
in the orbit. Without loss of generality, we assume that the arrival epoch of
the tagged customer is t0 = 0. Let us denote t1, t2, . . . the moments of further
arrivals.

Let us analyze the structure of the sojourn time of the tagged customer. First
of all, this time includes a residual service time of a customer which occupies
the server at time t0. During the residual service time, k, k ≥ 0, new primary
customers can arrive into the system. This means that the service of a customer
who occupied the server at time t0 is completed in the interval (tk, tk+1). We
assume that the length of this interval is equal to t and service completion occurs
at the moment tk + x where x < t.

During the residual inter-arrival time t − x the following events affecting the
sojourn time of the tagged customer may occur:

(1) n, n = 0, i − 1, customers from the orbit will be served and the (n + 1)th
customer has made no attempt to reach the server. In this case the gener-
alized service of the (n + 1)th customer is at the phase m = 0 at the next
arrival epoch tk+1;

(2) n, n = 0, i − 1, customers from the orbit will be served and the (n + 1)th
customer has reached the server earlier than tk+1 but service has not ended
by the epoch tk+1. Let service at the phase m,m = 1,M, the epoch tk+1. It
means that the generalized service of the (n+1)th customer is at the phase
m at the epoch tk+1;

(3) n, n = 0, i − 1, customers staying in the queue ahead of the tagged customer
and this customer itself are served by the arrival epoch tk+1.

It is evident that in scenario (1) the distribution of the remaining sojourn time
of the tagged customer after the moment tk+1 coincides with the distribution of
the sojourn time of a primary customer which finds, upon arrival, a busy server
and i − n customers in the orbit. So, the vector probability of no catastrophe
arrival during the remaining sojourn time is equal to ϕi−n(u). Analogously we
come to the conclusion that, in scenario (2), such a vector probability is equal
to ϕi−n−1(u).

Using the above reasoning, we derive expression (14) for the vector prob-
ability of no catastrophe arrival during the sojourn time of the tagged cus-
tomer. In this expression the rth summand in the brackets pre-multiplied

by
∞∑
k=0

[∞∫
0

e(S−uI)ydA(y)
]k

is the vector probability of no catastrophe arrival

during the sojourn time of the tagged customer under scenario (r), r = 1, 2, 3.
By multiplying Eq. (14) by zi and summing up, after tedious algebra we

derive formula (13).
Let v(u), Re u ≥ 0, be the column vector of size M whose mth entry is

the LST of the stationary distribution of the sojourn time of a customer in the
system.
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Theorem 7. The vector LST v(u) of the stationary distribution of the sojourn
time in the system is calculated as

v(u) = π0ϕ0(u) +
∞∑
i=1

πiβ̃
T
β̃ϕ0(u) +

∞∑
i=1

πi

(
0

IM

)
ϕi(u). (15)

Proof. Formula (15) follows immediately from the formula of total probability.

6 Conclusion

In this paper, the GI/PH/1 retrial queue with a constant retrial rate has been
studied. The necessary and sufficient condition for the existence of stationary
distribution has been derived and the algorithm for calculating the steady state
probabilities has been presented. The Laplace-Stieltjes transform of the station-
ary distribution of the sojourn time has been derived. Using formula for this
transform, the moments of the sojourn time can be obtained in a direct way.
All the presented results agree with the results for the GI/M/1 retrial queue
with a constant retrial rate and for the GI/PH/1 queue with waiting room. To
check the results for a queue with waiting room, one should to move to the limit
γ → ∞ in the corresponding formulas. The results can be extended to the case
of more general semi-Markovian arrival process.
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Abstract. A stochastic model is proposed of the process of informa-
tion transfer of multipacket messages in a multilink transport connection
with distortion of the packets on separate areas of hops, differentiated
by accounts of the pipeline effect. We investigate the influence of the
level of distortions of protocol data units in a separate part of transport
connections and the duration of the timeout of non-use of an end-to-
end acknowledgment in probability-time characteristics of the transport
protocol.

Keywords: Transport connection · Multipacket message · Pipeline
effect · Delay · Duration of timeout · The probability of distortion

1 Introduction

The operational characteristics of modern computer networks are largely deter-
mined by the transport protocol and its parameters — window width and length
of the timeou t waiting end-to-end Acknowledgements [1,2]. Modeling the trans-
port connection and the analysis of its probability-time characteristics in various
conditions were shown in [1–15]. Modern transport protocols contain a wide vari-
ety of mechanisms for congestion control [3]. There is a wide range of studies [3–9]
in the field of control parameters of the transport protocol in order to prevent
and circumvent congestion that focuses on constructing models of diagnostics
over various indicators [3] and adaptation of protocol parameters to changing
network load and connectivity, the level of loss, activity interactive subscribers
and other data transmission conditions. In [10], an analysis of the impact of
reliability of transmission of packets in individual links and lock of finite buffer
memory in the transit nodes of the transport connection on its performance.
The most important indicator of the quality of customer service is the delay
of user messages within the transport connection, which is largely determined
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by the pipeline effect, manifested in the transmission multipacket messages in
multi data link path in the form of parallel transfer of different parts of a mes-
sage by different parts of the way. Well-known approaches [11–15] to analyze
the delay of subscriber messages allow studying of the influence of the time-out
duration waiting for the Acknowledgment and packet size on operating charac-
teristics process of data transfer in a determined [11–13], or stochastic [14,15]
data transmission path. In these studies suggested methods of analysis of oper-
ating characteristics of the multi-packet messaging process in a deterministic
and single-packet messaging in the multi data link path when moving end-to-
end acknowledgments in the information and service packets of oncoming traffic.
However, the results were obtained with significant constraints on the protocol
parameters and conditions of transfer. In addition, according to end-to-end delay
multi-packet messages in a stochastic multi-data link transport a connection is
not obtained. A natural extension and generalization of the results [11–15] is the
study of the mechanism of pipeline transfer multi-packet messages in the multi-
data link paths with distortion in some parts of the hop. In this paper we suggest
an approach to building a distribution of time-transfer multi-packet messages in
a multi-data link virtual channel consisting of two sections and three hops with a
distortion, which is the basis for an analysis of the influence of the length of the
path, the data transfer size multi-packet communication, distortion and dura-
tion of end-to-end timeout for acknowledgment of non-use of probability-time
characteristics of data transportation.

2 Transport Connections Model

When applying the factors of distortion of protocol data units and the crucial
feedback mechanism [2] (retransmissions of corrupted blocks) on the pipeline
effect, taking place for the process of transferring information flows on multi-
link (multi-phase) paths, a virtual connection can be interpreted as a stochastic
pipeline, whose processing time for individual phases is random. As the level
of pass-through multi-packet messaging application systems urgent task is to
determine the duration of end-to-end acknowledgment timeout, it becomes an
important aspect of a probability description of the process of information trans-
fer through the transport level. A comprehensive description of this pipeline
specifies the time distribution of end-to-end delivery of application messages to
the recipient, which allows the obtaining of a probabilisty-time characteristic of
the protocol to control procedures of the transport level. Let us consider the
process of transmission of a message consisting of N > 1 packets, in a transport
compound consisting of D > 1 parts of a hop with the same performance. We
assume that the information packets of the message and acknowledgment car-
ried in the information packets counter flow, are the same size, are transmitted
in each link according to the administering procedure for start-stop protocol
[2], and the transmission cycle of the packet in each link from the beginning
of its conclusion in the line of communication till the moment of acknowledg-
ment at the data link level is T . The likelihood of distortion of the n-th packet
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of the message on the d-th plot of hops will be denoted by Rnd, n = 1, N ,
d = 1,D. Then the time error-free transmission of the n-th packet on the d-th
cross-site connection is a random quantity that is a multiple of the cycle dura-
tion T and distributed according to geometric law with parameter 1 −Rnd. It is
also assumed that uploading the packet at each site hop of the virtual channel
begins only after it has been transferred without distortion in the previous area
of the connecting path. We believe that end-to-end transport of data is organized
as follows. To send a message to a remote destination and receiving from it a
return acknowledgment is allocated a time-out duration of S intervals of size
T . If an acknowledgment is not received at the time of the timeout, the sender
re-organizes end-to-end transmission. The number of end-to-end retransmissions
is believed to be unlimited.

3 Probabilistic-Time Characteristics of the Process
of Message Delivery to the Addressee

To find the probability of delivery of a multipacket message to the addressee by
a multilink virtual channel precisely for k ≥ N + D − 1 intervals of duration T .
We define a probability function p(k,N,D) using probability distortion Rnd for
the set of parameters N = 2, D = 2. Since the process of transmission (including
retransmission) of the first and second packets of the message on the second and
first sections of hops is combined, there are two possible scenarios when the
first packet on the second site is transferred either before or after the correct
completion of the transmission of the second packet in the first link:

p(k, 2, 2) =
2,2∏

n,d=1

(1 − Rnd)
k−3∑
i=0

Ri
11

k−3−i∑
j=0

Rj
21

×
{

j−1∑
l=0

Rl
12R

k−3−i−j
22 +

k−3−i−j∑
m=0

Rj+m
12 Rk−3−i−j−m

22

}
.

For a statistically flat uniform data path and uniform information flow Rnd = R,
n = 1, 2, d = 1, 2 this dependence of the probability of delivery time of the
message to the remote subscriber using the expressions finite sums revealing-
power functions [16] is converted into the following form:

p(k, 2, 2) = (1 − R)3Rk−3

[
2
(
k − 1

2

)
− (k − 2)

1 + R

1 − R
+

R(1 + R)(1 − Rk−2)
(1 − R)2

]
.

For sets of parameters N = 3, D = 2 N = 2, D = 3 the variety of events is
even higher, since this increases the pipeline effect of combining transmissions of
different packets of a message at different parts of the way. When N = 3, D = 2
the first packet can be transmitted in the second link until the transmission
is completed in the first phase path or the second or the third packet, either
after stopping at a transit node of the third package. In addition, the second
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message packet can reach the destination either before or after the transfer of
the third package in the first link. Taking into account the combinatorics of the
probabilistic trajectories of events receiving different packets of the message by
the addressee, the function of probability delivery of a three packet massage on
a two-link path within a given time k ≥ N + D − 1 is defined as:

p(k, 3, 2) =
3,2∏

n,d=1

(1 − Rnd)
k−4∑
i=0

Ri
11

k−4−i∑
j=0

Rj
21

k−4−i−j∑
l=0

Rl
31

{
j−1∑
m=0

Rm
12

( l−1∑
g=0

Rg
22

× Rk−4−i−j−l
32 +

k−4−i−j−l∑
g=0

Rg+l
22 Rk−4−i−j−l−g

32

)
+

l−1∑
m=0

Rm+j
12

(l−1−m∑
g=0

Rg
22R

k−4−i−j−l
32

+
k−4−i−j−l∑

g=0

Rg+l−m
22 Rk−4−i−j−l−g

32

)
+

k−4−i−j−l∑
m=0

Rm+j+l
12

k−4−i−j−l−m∑
g=0

Rg
22R

k−4−i−j−l−m−g
32

}
.

For the set of parameters N = 2, D = 3 a probability function is determined
similar to the transmission of the first packet to the second and third sections of
the hops either before or after the transmission of the second packet or the first
or in the second link of the transport connection:

p(k, 2, 3) =
2,3∏

n,d=1

(1 − Rnd)
k−4∑
i=0

Ri
11

k−4−i∑
j=0

Rj
21

{
j−1∑
m=0

Rm
12

k−4−i−j∑
l=0

Rl
22

(j−m+l−1∑
g=0

Rg
13

× Rk−4−i−j−l
23 +

k−4−i−j−l∑
g=0

Rl+g+j−m
13 Rk−4−i−j−l−g

23

)
+
k−4−i−j∑

m=0

Rj+m
12

k−4−i−j−m∑
l=0

Rl
22

×
( l−1∑

g=0

Rg
13R

k−4−i−j−m−l
23 +

k−4−i−j−m−l∑
g=0

Rl+g
13 Rk−4−i−j−m−l−g

23

)}
.

When Rnd = R, using the correlation [16], it is easy to verify that these equations
coincide:

p(k, 3, 2) = p(k, 2, 3) = (1 − R)4Rk−4

{
3
(
k − 1

3

)
− 2

(
k − 2

2

)
1 + R

1 − R

×
(

1 +
Rk−2

2

)
+ (k − 2)

R(1 + 2R)(1 − Rk−3)
(1 − R)2

}
.

Thus, there is a space-time symmetry of the process of information transfer of
a uniform stream of packets in a statistically uniform data path, which consists
of the invariance of probability-time characteristics of the delivery process mul-
tipacket messages in multilink virtual channels to mutually symmetrical values
of N and D.
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We get analytical dependence for the distribution function of the time of com-
municating the messages to the recipient P (S,N,D). According to the meaning
the probability of message delivery to the addressee within a specified time
time-out S is:

P (S,N,D) =
S∑

k=N+D−1

p(N,D, k).

For these values of N and D are true:

P (S, 2, 2) = (1 − RS)(1 − RS−2) − S(S − 2)(1 − R)2RS−2;

P (S, 3, 2) = P (S, 2, 3) = (1−RS−3)(1−3RS−1+2RS)−(S−3)(1−R)3RS−3

×
{
S

2

(
S − 1 − 1

1 − R

)
+

1 + R2

(1 − R)2
− RS−1

1 − R

(
S

2
− 1 + R

1 − R

)}
.

Hence it is easy to verify that if the minimum duration of the time-
out with S = N + D − 1 the probability of message delivery respectively is
P (S, 2, 2) = (1 − R)4 and P (S, 3, 2) = (1 − R)6, and in the case of a timeout
of unlimited duration (S = ∞) the receipt of the message by the subscriber is a
determine event.

We find the average time N̄(S,N,D) of message delivery to the addressee,
expressed as a duration T , at time S, subject to be recieved by the remote
subscriber:

N̄(S,N,D) =
n̄(S,N,D)
P (S,N,D)

, n̄(S,N,D) =
S∑

k=N+D−1

kp(k,N,D).

For sets of values for the message size and the data length of the transmission
path N = D = 2; N = 3, D = 2 and N = 2, D = 3, we obtain:

n̄(S, 2, 2) =
1 − RS−2

1 − R2

[
3 + 4R − (3 − 2R2)RS

]
− (S − 2)RS−2

[
S(1 − R)

(
1

+ S(1 − R)
)

+ (1 + R)2 − RS
]
;

n̄(S, 3, 2) = n̄(S, 2, 3) =
1 − RS−3

1 − R

[
4 +

2R
1 + R

− R2

(1 + R)3
− RS−1

× 12 + 16R − 10R2 − 18R3 + 3R4 + 6R5

(1 + R)3

]
− (S − 3)(1 − R)3RS−3

×
[
(S − 3)3

2
+ 4(S − 3)2 + (S − 3)

21 − 38R + 23R2

2(1 − R)2

+
11 − 20R + 29R2 − 14R3

(1 − R)3

]
+ (S − 3)(1 − R)2R2S−4

[
(S − 3)2

2
+ (S − 3)

× 9 + 4R − 4R2

2(1 − R2)
+

26 + 24R − 19R2 − 16R3 + 3R4

2(1 − R2)2

]
.
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For timeout minimum duration S = D + N − 1, the average conventional time
of message delivery to the addressee coincides with the duration of the timeout.
When S = ∞ the average delivery time of the message takes the form:

N̄(∞, 2, 2) =
3

1 − R
+

R

1 − R2
;

N̄(∞, 3, 2) = N̄(∞, 2, 3) =
4

1 − R
+

R

1 − R2

(
2 − R

(1 + R)2

)
.

Thus, in the case of an unlimited duration of timeout the average time of
message delivery to the recipient is determined by the sum of average delays
of packets in a determine pipeline [11] at the transmission time on each phase
equal to the average delay of the packet in a separate link 1/(1−R), and a value
proportional to the intensity of distortion: R/(1 − R2).

4 Analysis of the End-To-End Operating Performance
of Message Transmission

We get the dependency for the probability of delivery of a message of length N
to the subscriber from a remote sender on to the D hops, and getting end-to-end
aknowledgement, packed in the information package, exactly for k ≥ N +2D−1
intervals of duration T . This characteristic is determined by the set of all variants
of the probability of transmitting the message to the recipient and the probability
that the source of notification notifies about the successful transmission for a
specified time:

f(k,N,D) =
k−D∑

i=N+D−1

p(i,N,D)p(k − i, 1,D).

For these values of the set of parameters N , D and type of dependence for
p(k, 1,D) [14] the probability function of time end-to-end has the form:

f(k, 2, 2) = (1 − R)5Rk−5

{
2
(
k − 1

4

)
−

(
k − 2

3

)
R(1 + R)
(1 − R)2

− (k − 3)
R2(1 + R)
(1 − R)3

+
R2(1 + R)
(1 − R)4

(1 − Rk−3)

}
;

f(k, 3, 2) = (1−R)6Rk−6

{
3
(
k − 1

5

)
−2

(
k − 2

4

)
1+R

1−R
+

k

3

(
k − 4

2

)

× R(1 + 2R)
(1 − R)2

+
R2(1 − Rk−5)

(1 − R)4

(
3 + 7R + 2R2

1 − R
− (k − 4)

× (3 + 4R−2R2)
)

− (k−5)Rk−3

(1 − R)3

(
3+7R+2R2

1 − R
+ (k−4)

R(1−R)
2

)}
;
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f(k, 2, 3) = (1 − R)7Rk−7

{
3
(
k − 1

6

)
− 2

(
k − 2

5

)
1 + R

1 − R
+

k + 1
4

×
(
k − 4

3

)
R(1 + 2R)
(1 − R)2

− R2(1 − Rk−6)
(1 − R)4

(
R(6 + 12R + 3R2)

(1 − R)2

− (k − 5)
(

3 + 7R + 2R2

1 − R
− (k − 4)

3 + 4R − 2R2

2

))

+
(k − 6)Rk−4

(1 − R)4

(
R(6 + 12R + 3R2)

1 − R
− (k − 5)

3 + 4R − 3R2

2

)}
.

Now we find the probability of end-to-end transfer multipacket messages for
a given time S ≥ N + 2D − 1.

F (S,N,D) =
S∑

k=N+2D−1

f(k,N,D).

Finally, the function of distribution of time end-to-end transmission with differ-
ent N and D takes the following form:

F (S, 2, 2) = (1−RS−4)(1−RS)−S(S−4)
12

(1−R)4RS−4

(
(S−2)2+3

(1+R)2

(1−R)2

)
;

F (S, 3, 2) = (1 − RS−5)(1 − 10RS−1 + 2RS) + (S − 5)(1 − R)2R2S−6

(
S − 4

2

+
4

1 − R

)
− (S − 5)(1 − R)5RS−5

(
(S−5)4

40
+

(S−5)3(7−8R)
24(1 − R)

+
(S−5)2(31−64R+41R2)

24(1 − R)2
+

(S − 5)(65 − 158R + 217R2 − 100R3)
24(1 − R)3

+
161 + 309R + 541R2 − 859R3 + 286R4

60(1 − R)4

)
;

F (S, 2, 3) = (1 − RS−6)(1 + 15RS−1 − 2RS) − (S − 6)(1 − R)2R2S−7

(
S − 5

2

+
5

1 − R

)
− (S − 6)(1 − R)6RS−6

(
(S − 6)5

240
+

(S − 6)4(17 − 19R)
240(1 − R)

+
(S − 6)3(23 − 48R + 29R2)

48(1 − R)2
+

(S − 6)2(279 − 215R + 265R2 − 113R3)
48(1 − R)3

+
S − 6

120(1 − R)4
(
362 − 1023R + 1727R2 − 1833R3 + 587R4

)

+
167 − 352R + 668R2 − 982R3 + 1343R4 − 304R5

60(1 − R)5

)
.
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We find the average waiting time of end-to-end acknowledgement at the time
of the timeout S ≥ N + 2D − 1 upon the receipt of the message by the sender:

S̄(S,N,D) =
s̄(S,N,D)
F (S,N,D)

, s̄(S,N,D) =
S∑

k=N+2D−1

kf(k,N,D).

Hence, we obtain the dependence of the average conditional waiting time of the
end-to-end receipt:

s̄(S, 2, 2) =
1 − RS−4

1 − R

(
5 +

R

1 + R
− RS 5 − 4R2

1 + R

)
+ (S − 4)R2S−4 − (S − 4)

× (1 − R)4RS−4

12

(
(S − 4)4 + (S − 4)3

13 − 12R

1 − R
+ (S − 4)2

63 − 102R + 55R2

(1 − R)2

+
S − 4

(1−R)3

(
143−268R+269R2−120R3

)
+

152−218R+272R2−258R3+124R4

(1 − R)4

)
;

s̄(S, 3, 2) =
1−RS−5

1 − R

(
6+

2R

1+R
− R2

(1+R)3
− RS−1

(1+R)3

(
60+108R−9R2−98R3

−30R4+10R5
))

+
(S−5)(1−R)2

2
R2S−6

(
(S−5)2 + (S−5)

15 + 8R − 6R2

1 − R2

+
74+84R−37R2−44R3+5R4

(1 − R2)2

)
−(S−5)(1−R)5RS−5

(
(S−5)5

40
+(S−5)4

× 53−55R

120(1−R)
+(S−5)3

73−144R+81R2

24(1 − R)2
+(S−5)2

251−663R+757R2−305R3

24(1 − R)3

+(S − 5)
1136 − 3139R + 5336R2 − 4869R3 + 1536R4

60(1 − R)4

+
513 − 1012R + 2018R2 − 3557R3 + 3173R4 − 775R5

30(1 − R)5

)
;

s̄(S, 2, 3) =
1 − RS−6

1 − R

(
7 +

2R

1 + R
− R2

(1 + R)3
+

RS−1

(1 + R)3

(
105 + 196R − 7R2

−177R3−66R4+12R5
))

− (S−6)(1−R)2

2
R2S−7

(
(S−6)2+(S−6)

18+10R−7R2

1 − R2

+
1

(1 − R2)2

(
107 + 126R − 49R2 − 64R3 + 6R4

))
− (S − 6)(1 − R)6RS−6

×
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(S − 6)6

240
+
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(
234 − 469R + 259R2

)
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× (3489−11291R+18279R2−15161R3+456R4)

240(1 − R)4
+

S − 6

120(1−R)5

(
2868−9007R
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+
1
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(
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.
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Let us analyze the average end-to-end delay of multipacket messages. The
time of protocol of the transmission cycle end-to-end transmission consists of
the time taken to pass messages to a remote subscriber and time of the acknowl-
edgement receipt. Because of the failure to obtain acknowledgement during the
timeout, the sender retransmits the message, and the number of retransmissions
is not limited, the average end-to-end delay, expressed in number of intervals of
duration T is:

T̄ (N,D, S) =
∞∑
i=1

{
(i − 1)S + S̄(S,N,D)

}{
1 − F (S,N,D)

}i−1

F (S,N,D)

=
S

(
1 − F (S,N,D)

)
F (S,N,D)

+ S̄(S,N,D).

At a minimum timeout duration Sm = N + 2D− 1 average end-to-end delay
is given by:

T̄ (N,D, Sm) =
N + 2D − 1

(1 − R)DN+D
.

With unlimited growth of S delay coincides with the average conditional expec-
tation of the acknowledgement, and leads to the relation:

T̄ (2, 2,∞) =
5

1 − R
+

R

1 − R2
;

T̄ (3, 2,∞) =
6

1 − R
+

2R
1 − R2

− R2

(1 − R2)(1 − R)2
;

T̄ (2, 3,∞) =
7

1 − R
+

2R
1 − R2

− R2

(1 − R2)(1 − R)2
.

The first term in these expressions determines the delay in the determine pipeline
multipacket messages and end-to-end return acknowledgement receipt when the
transmission time in a separate phase is 1/(1−R) and the corresponding average
transmission time of a packet is a separate inter-node connection.

The contribution is proportional to the remaining terms of R and R2, and
the real level of distortion in the high-quality channels of communication can be
neglected. From Table 1 it is easy to see that for the three-fold excess of S over a
minimum duration of the timeout Sm and R ≤ 0.5 the value of end-to-end delay
practically coincides with T̄ (N,D,∞). Hence, for practical calculations when
S ≥ 3Sm and low distortion R as the average transmission time multipacket
messages in the multi-link path, you can use an analytical expression for the
delay in the determine pipeline with the time of transmission in a separate
phase, equal to the average delay of a packet in a separate link:

T̄ (N,D, S) =
N + 2D − 1

1 − R
.
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Table 1. The distribution of mean end-to-end message delay from the probability of
distortion of the packet for the size of the timeout, multiples of the minimum dura-
tion Sm

T̄ (N,D, S) R

0.3 0.4 0.5 0.6 0.7

T̄ (2, 2, Sm) 42.50 107.17 320.00 1220.70 6858.71

T̄ (2, 2, 2Sm) 7.87 10.58 16.83 34.51 105.87

T̄ (2, 2, 3Sm) 7.87 8.90 11.38 17.09 35.49

T̄ (2, 2, 4Sm) 7.87 8.81 10.74 14.20 23.46

T̄ (2, 2,∞) 7.87 8.81 10.67 13.44 18.04

T̄ (3, 2, Sm) 104.08 357.22 1536.00 9155 91449.47

T̄ (3, 2, 2Sm) 9.68 13.48 23.50 57.76 245.55

T̄ (3, 2, 3Sm) 9.18 10.95 14.10 22.20 53.56

T̄ (3, 2, 4Sm) 9.17 10.86 13.25 17.62 30.71

T̄ (3, 2,∞) 9.17 10.86 13.19 16.66 22.41

T̄ (2, 3, Sm) 173.47 694.60 3584.00 26702.88 355636.84

T̄ (2, 3, 2Sm) 11.08 15.36 27.35 72.00 353.52

T̄ (2, 3, 3Sm) 10.60 12.59 16.04 25.18 63.46

T̄ (2, 3, 4Sm) 10.60 12.52 15.23 20.03 34.77

T̄ (2, 3,∞) 10.60 12.52 15.19 19.16 25.75

5 Conclusion

In this article, we construct a stochastic model of the transfer process of a mul-
tipacket subscriber message in a multi-link transport connection, differentiated
by the accounts of pipeline effect in the tract with distortion in some parts of
the hops. The proposed model allows us to analyze the effect of the duration
of the timeout on the probability-time characteristics of the transport protocol.
We detected the property of space-time symmetry of the stochastic process of
information transfer a uniform stream of packets in a statistically uniform data
path, which manifests itself in the invariance of probability-time performance of
message delivery to a remote subscriber to mutually symmetrical values of the
size of the message N and the length of transport connection D. It is estab-
lished that the main contribution to the limiting value of the average message
delay in a transport connection with the distortion in some parts of hops corre-
sponding to the unlimited duration of the timeout, making the transmission of
multipacket messages and upon receiving return acknowledgement in the deter-
mine pipeline and transmission time in a separate phase, equal to the average
delay of the packet. The contribution of other components in end-to-end delay is
proportional to the intensity of the packet distortion of R, which for high-quality
communication channels can be neglected. It is shown that at three times the size
the timeout of idling of end-to-end acknowledgements over a minimum duration
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of Sm and low distortion in communication channels of a transport connection
for practical calculations, in most cases, you can use the ratio of marginal delay
in the stochastic pipeline.

References

1. Fall, K., Stevens, R.: TCP/IP Illustrated, Volume 1: The Protocols, 2nd edn, p.
1017. Addison-Wesley Professional Computing Series (2012)

2. Boguslavskii, L.B.: Upravlenie potokami dannykh v setyakh EVM (Controlling
Data Flows in Computer Networks), p. 168. Energoatomizdat, Moscow (1984)

3. Calleari, C., Giordano, S., Pagano, M., Pepe, T.: A survey of congestion control
mechanisms in Linux TCP Communications in Computer and Information Science.
In: Vishnevsky, V.; Kozyrev, D.; Larionov. A. (eds.) DCCN: Distributed Computer
and Communication Networks 17th International Conference, vol. 2014, pp. 28–24,
Moscow, Russia, 7–10 October 2013. Revised Selected Papers

4. Dunaitsev, R.A., Kucheryavaya, E.A.: Improved and supplemented PFTK-model
of TCP Reno. Telecommunications, no. 3. pp. 27–31 (2005)

5. Bogoiavlenskaia, O.: Discrete model of TCP congestion control algorithm with
round dependent loss rate. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.)
NEW2AN/ruSMART 2015. LNCS, vol. 9247, pp. 190–197. Springer, Heidelberg
(2015)

6. Giordano, S., Pagano, M., Russo, F., Secchi, R.: Modeling TCP startup perfor-
mance. J. Math. Sci. 200(4), 424–431 (2014)

7. Kravets, O.Y.: Mathematical modeling of parameterized TCP protocol. Autom.
Remote Control. 74(7), 1218–1224 (2013)

8. Wang, J., Wen, J., Han, Y., Zhang, J., Li, C., Xiong, Z.: Achieving high throughput
and TCP Reno fairness in delay-based TCP over large networks. Front. Comput.
Sci. 8(3), 426–439 (2014)

9. Nikitinskiy, M.A., Chalyy, D.J.: Performance analysis of trickles and TCP trans-
port protocols under high-load network conditions. Autom. Control Comput. Sci.
47(7), 359–365 (2013)

10. Sushchenko, S.P.: Lockout of buffer storage: its effect on the performance of a
ladder-type data-transfer track. Autom. Remote Control. 60(7), 958–969 (1999)

11. Sushchenko, S.P.: Method of rational choice of the packet length of packet switching
network. Avtom. Vychisl. Tekh., no. 3. pp. 24–28 (1984)

12. Sushchenko, S.P.: Parametric optimization of packet switching networks. Avtom.
Vychisl. Tekh., no. 2., pp. 43–49 (1985)

13. Sushchenko, S.P.: Analysis of end-to-end message delay in multi-tier virtual chan-
nel. Avtom. Vychisl. Tekh., no. 3. pp. 52–64 (1989)

14. Sushchenko, S.P.: Effect of duration end-to-end timeout on the data latency in a
virtual channel. Avtom. Vychisl. Tekh., no. 6., pp. 36–40 (1991)

15. Sushchenko, S.P.: Analysis of the influence of duration of end-to-end timeout on
the operational characteristics of a virtual channel. Avtom. Vychisl. Tekh., no. 4.,
pp. 43–66 (1995)

16. Sushchenko, S.P.: Analytical computability of sums of compositions of exponential
and power functions. In: kN.: Mathematical Modeling and Probability Theory,
Collected Scientific Works of TSU, pp. 253–256. TSU publishing house, Tomsk
(1998)



Analysis of LRU Cache Trees with a Power Law
Reference Distribution

Udo R. Krieger1(B) and Natalia M. Markovich2

1 Otto-Friedrich-Universität, 96045 Bamberg, Germany
udo.krieger@ieee.org

2 Russian Academy of Sciences, 117997 Moscow, Russia
markovic@ipu.rssi.ru
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1 Modeling LRU Cache Trees

Following Che et al. [3] and Fricker et al. [4], we consider a hierarchical cascade
of LRU caches in an access and backbone infrastructure of a packet-switched
next generation network (see also [1]).

We assume that we have four layers in a tree-like hierarchy:

– Layer 3 : The consumers consist of clients with a very small browser cache.
They are not modelled and just work as requestors of M different Poisson
object streams with the rates Λ∗i = Λ(1) · pi and individual selection proba-
bilities pi = K/iα, K−1 =

∑M
i=1 1/iα, i ∈ C = {1, . . . , M}, governed by a Zipf

law [2] with tail index α > 0. They constitute an overall Poisson stream with
the rate Λ(1) =

∑M
i=1 Λ∗i.

– Layer 2 : This layer of leaf caches at level 1 consists of a network of N LRU
caches with the capacities C(L1) = (C1, . . . , CN ) in the access network of an
ISP. Each cache m serves M Poisson flows fmj of object requests with rates
λmj . They are arising from all M object types j ∈ C stemming from the
clients at layer 3. The superimposed Poisson stream of cache m has the rate
Λm =

∑M
j=1 λmj . It arises from the splitting Λm = Λ(1) · l(1)m of the overall

Poisson traffic of the clients with the rate Λ(1) into the offered load Λm of each
cache m with probabilities l(1)m.
The individual miss and hit ratios of each stream i are given by η

(1)
mi ,H

(1)
mi = 1−

η
(1)
mi and the corresponding overall variants of cache m at level 1 by η

(1)
m ,H

(1)
m =

1 − η
(1)
m , respectively.

c© Springer International Publishing Switzerland 2016
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– Layer 1 : This layer comprises one level 0 backbone cache of capacity C0 with
an overall miss ratio η(0) and hit ratio H

(0)
= 1 − η(0).

– Layer 0 : It comprises a fully interconnected network of servers offering all
requested objects, e.g. provided by a CDN-like set of data centers.

2 Performance Analysis of LRU Cache Cascades

In the following we formulate a computationally tractable, matrix-oriented
framework that can be used to determine all relevant quantities of our cache
tree model by appropriate measurement and estimation procedures. First we
define the matrix of the rates of the Poisson arrival streams fij at cache
i ∈ L1 = {1, . . . , N} of level 1 associated with object references of type
j ∈ C = {1, . . . , M} by λ = (λij){i=1,...,N ;j=1,...,M} ∈ (IR+)N×M . Its i-th row
λi· = et

i · λ = (λi1, . . . , λiM ), where ei is the ith unit vector, determines the
vector of all object-specific arrival rates to cache i. Then the overall rate of the
Poisson process arriving at cache i is given by Λi = λi· · e =

∑M
j=1 λij = et

i · λ · e
where e is the vector of all ones. As the arrival streams to each cache i are
derived from a heavy-tailed popularity distribution with selection probabili-
ties pi = K · 1/iα, K−1 =

∑M
i=1 1/iα, of Zipf type, we get the representa-

tion λi· = (Λip1, . . . , ΛipM ) = Λi · pt, i = 1, . . . , N of the rows of the rate
matrix λ in terms of the overall arrival rate Λi and the type selection vec-
tor pt = (p1, . . . , pM ) ∈ (IR+)M . We denote the corresponding rate vector by
Λt = (Λ1, . . . , ΛN ). The superposition of all request processes for objects of
type j ∈ C at all level 1 caches i constitutes a Poisson process with the rate
Λ(1) =

∑N
i=1

∑M
j=1 λij = et · Λ · pt · e = et · λ · e. Then we get the representation

λij = Λi · pj , hence, λ = Λ · pt of the arrival rate matrix λ in terms of the rate
vector Λ at level 1 caches and the type selection probability vector p. The split-
ting of the overall Poisson stream at caches of level 1 into the Poisson arrival
streams with the rates Λi can be described by a vector l(1)t = (l(1)1, . . . , l(1)N )
of splitting probabilities l(1)i = Λi/Λ(1) = et

i · λ · e/et · λ · e for i = 1, . . . , N ,
hence, l(1)t = Λt/Λ(1).

Considering the object flows of type j ∈ C at a cache i ∈ L1 = {1, . . . , N}
of level 1, we describe the hit ratios H

(1)
ij and corresponding miss ratios η

(1)
ij =

1−H
(1)
ij by a blocking matrix B(1) =

(
η
(1)
ij

)
{i=1,...,N ;j=1,...,M}

with Che’s approx-

imation η
(1)
ij ∈ (0, 1) of the miss ratio at cache i (cf. [3,4]) represented in terms

of θij = 1−
(
η
(1)
ij

)1/Ci

by (B(1))ij = η
(1)
ij = (1−θij)Ci . According to Little’s law

the miss ratio is determined by the ratio of the rejected proportion λij · (B(1))ij

of the requests with the total rate Λi =
∑M

j=1 λij and its proportion λij = Λi ·pj

of offered type j ∈ C traffic

η
(1)
ij = 1 − H

(1)
ij =

λij · (B(1))ij

λij
=

Λi · pj · (1 − θij)Ci

Λi · pj
= (1 − θij)Ci . (1)
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Then the miss ratio η
(1)
·j arising from the superimposed Poisson traffic of type

j ∈ C at all caches of level 1 with the total rate Λ∗j =
∑N

i=1 λij =
∑N

i=1 Λi ·pj =

Λ(1) · pj is given by
(
η
(1)
·1 , . . . , η

(1)
·M

)
= l(1)t · B(1) = Λt · B(1)/Λ(1).

Due to Little’s law the overall miss ratio of cache i is determined by the
relative blocking rates (B(1))ij = η

(1)
ij of all individual object streams of types

j ∈ C with miss traffic rates λij · (1 − θij)Ci compared to the overall arrival
rate Λi =

∑M
j=1 λij at cache i, i.e. by the ratio of the rejected proportion of the

requests to the total rate at cache i:

η
(1)
i = 1 − H

(1)
i =

∑M
j=1 λij(B(1))ij

Λi
=

((
B(1) � (e · pt)

)
e
)

i
=

(
B(1) · p

)
i
(2)

Here we use the Hadamard matrix product (A � B)i,j = Aij · Bij for the entry-
wise multiplication of two matrices A = (Aij), B = (Bij) of equal dimensions.
Then the vector of the miss ratios of all caches at level 1 is determined by

η(1) =

⎛
⎜⎜⎝

η
(1)
1
...

η
(1)
M

⎞
⎟⎟⎠ =

(
B(1) � (e · pt)

) · e = B(1) · p.

We realize that the miss ratio η
(1)
i of a level 1 cache i can be associated with a

superposition of truncated geometric distributions Ĝij(k) = gij ·θij · (1−θij)k =
sij ·Gij(k), Gij(k) = pj ·(1−θij)k, k = 0, . . . , Ci, with normalization constants
(gij)−1 =

∑Ci

k=0 Gij(k) = 1 − (1 − θij)Ci+1, (sij)−1 = (gij)−1 · pj/θij .
The overall miss ratio η(1) of level 1 caches L1 = {1, . . . , N} is determined by

η(1) =
Λt

Λ(1)
· η(1) =

Λt · B(1) · p

Λ(1)
= l(1)t · B(1) · p (3)

The missing proportions λ(1)ij = λij · (B(1))ij of the original traffic λ(2) =
λ = (λij){i,j} offered to cache i of object type j at level 1 is approximated by
a new Poisson process with the rate λ(1) = (λ(1)ij){i,j} and routed as a load
to cache 0 at level 0 (cf. [3]). We use again the associative, commutative and
distributive Hadamard matrix product (A � B)i,j = Aij · Bij for the entrywise
multiplication of two real matrices to define this new load matrix

λ(1) =
(
λij · η

(1)
ij

)
{i=1,...,N ;j=1,...,M}

= λ � B(1) = B(1) � λ. (4)

This representation enables an efficient matrix-vector computation, e.g., in
Matlab by the ‘.∗’ operator.

We define a routing matrix R =
(
R(i,k),(j,l)

)
that models the routing of

type l traffic of cache j at level 1 to type k of cache i at level 0. As the
type classes are not modified and all level 1 caches route to cache 0, we get
R =

(
R{0}×{1,...,M}, . . . , R{0}×{1,...,M}

)
= (IM , . . . , IM ) = (e(N)t ⊗ IM ) where

e(N) ∈ IRN denotes the vector of all ones, IM ∈ IRM×M the identity matrix,
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and ⊗ the Kronecker product A⊗B = (AijB). The input-output relation of the

routing chains is given by y = R ·x with an input load vector x =

⎛
⎜⎝

(λ(1)1·)t

...
(λ(1)N ·)t

⎞
⎟⎠ .

It is defined by the rows λ(1)i· corresponding to cache i of the missing traffic

matrix λ(1) =

⎛
⎜⎝

λ(1)1·
...

λ(1)N ·

⎞
⎟⎠ , now sorted as column vectors. Then the output

y = R · x =
∑N

i=1(λ(1)i·)t = λ(1)t · e(N) = λt
0 = (λ01, . . . , λ0M )t is the type-

based superposition of the missing traffic rates and determines the arrival rates
λ0j of type j to cache 0.

If we interpret the vector e(N) of all ones as submatrix R̂{1,...,M}×{0} of the
adjacency matrix of the directed graph Γ describing the two-level tree of caches
L1 = {1, . . . , N}, L0 = {0} at levels 1 and 0, respectively, then we get

λ0 = (λ01, . . . , λ0M ) = yt = e(N)t · λ(1) = R̂t · λ(1) (5)

as a simple representation in terms of the missing traffic rates λ(1) of level 1.
This scheme can be easily extended to arbitrary cache hierarchies and routing
schemes.

We conclude that the matrix representation

λ(1)ij = (λ � B(1))ij =
(
(Λpt) � B(1)

)
ij

= Λipj(1 − θij)Ci = Λi · Gij(Ci)(6)

holds with the matrix G = (Gij(Ci)){i,j} =
(
pj · (1 − θij)Ci

)
{i,j} = (e · pt) �

B(1) = B(1) � (e · pt) . Then the proportion of the offered load λ(0) = λ0 to
cache 0 of type j ∈ {1, . . . , M} λ0j =

∑N
i=1 Λi · pj · (1 − θij)Ci = Λt · (G · ej)

yields the simple matrix representation

λ0 = R̂t · λ(1) = e(N)
(
(Λ · pt) � B(1)

)
= Λt ·

(
B(1) � (

e · pt
))

= Λt · G (7)

related to the type-based arrival rates λ0j of the superimposed Poisson process
routed to cache 0.

Then the aggregated arrival rate Λ(0) of the Poisson process of missing cache
requests reaching level 0 is given by

Λ(0) =
M∑

j=1

λ0j = λ0 · e = Λt · G · e = Λt
(
B(1) � (

e · pt
))

e = Λt · B(1) · p. (8)

The selection probability of type j at the cache of level 0 is determined by the
ratio of the arrival rate of type j to the overall arrival rate at the single cache
of level 0 p

(0)
j = λ0j/Λ(0). It yields the selection vector

(
p(0)

)t

=
Λt · G

Λt · G · e
=

et · (
(Λ · pt) � B(1)

)
Λt · B(1) · p

=

(
Λt · B(1)

) � pt

Λt · B(1) · p
. (9)
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Following the single LRU cache analysis (1), the miss ratio η
(0)
0j of object flows of

type j at cache 0 is determined as blocking (B(0))0j by the ratio of the missing
traffic to the offered traffic of type j, approximated by Che’s approximation [3],
and represented as

η
(0)
0j =

λ0j · (B(0))0j

λ0j
= (1 − θ0j)C0 . (10)

This representation (7) to (10) allows a simultaneous computation of all the miss
ratios η

(0)
0j , e.g., by a simple Matlab routine.

The total miss rate η(0) of cache 0 at the level 0 is determined by

η(0) =
M∑

j=1

λ0j

λ0 · e
· (B(0))0j =

1
Λt · B(1) · p

M∑
j=1

N∑
i=1

Λi · (1 − θ0j)C0 · (1 − θij)Ci · pj

and yields the following matrix representation:

η(0) =
1

Λ(0)
·
(
λ0 � B(0)

)
· e =

((
Λt · B(1)

) � B(0)
) · p

Λt · B(1) · p
= B(0) · p(0) (11)

We realize the structural equivalence to relation (2) describing the miss ratios
η(1) of level 1.

Due to Little’s law the total miss ratio ηj of type j traffic handled by the
complete two-level cache hierarchy is determined by the ratio of the rates of the
overall miss traffic of type j to the arriving Poisson traffic of type j, i.e.

ηj =
λ0j∑N
i=1 λij

· (B(0))0j =

((
Λt · B(1)

) � B(0)
) · ej

Λ(1)
. (12)

Thus, we get the matrix representation

(η1, . . . , ηM ) =

(
Λt · B(1)

) � B(0)

Λ(1)
=

(
l(1)t · B(1)

)
� B(0). (13)

The total miss ratio η of the complete two-level cache hierarchy is determined
by the ratio of the rates of the overall miss traffic to the arriving Poisson traffic:

η =
M∑

j=1

λ0j

Λ(1)
· (B(0))0j =

((
l(1)t · B(1)

)
� B(0)

)
· p (14)

This representation of the overall miss ratio η of the cache cascade clearly reveals
the distribution of the load among the caches at level 1 by the cache selection
vector l(1)t, the blocking B(1), B(0) by cache misses at level 1 and 0, respectively,
and the superposition of the different object types by the selection vector p.
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Abstract. Stationary functioning of an exponential closed queueing
network with temporarily non-active customers and multi-regime service
is considered. Non-active customers are located in queues of network sys-
tems, not being serviced. For a customer, the opportunity of passing from
its ordinary state to the temporarily non-active state (and backwards)
is provided. Each system can operate in several regimes corresponding
to different degrees of its efficiency. Service times are independent expo-
nentially distributed random values. Times of functioning in regimes are
independent random distributed values. Stationary distribution insensi-
tivity is established.

Keywords: Closed queueing network · Non-active customers ·
Multi-regime service · Stationary distribution insensitivity

1 Introduction

Presently attention to queueing theory is mainly stimulated by the need to apply
the results of this theory to important practical problems. Nowadays important
research efforts are devoted to the problem of queueing systems reliability. In
practical terms, it is important to consider several different approaches: a queue-
ing system can break down totally or partially. Yu.V. Malinkovsky introduced
into consideration open and closed queuing networks with multi-regime service
strategies. Queueing systems in multi-regime networks can operate in several
regimes. Each regime corresponds to a certain degree of service efficiency. Here-
with, the problem of customer reliability becomes relevant too. Indeed not only
the queueing system can break down. Customers may also lose some of their
quality indicators. A queueing network with temporarily non-active customers
is a model with customers which are partly unreliable. The necessity of their
research was caused by practical considerations, because such networks allow us
to consider models with partially unreliable customers. Non-active customers are
located in queues of network systems, not being serviced. For a customer, the
opportunity of passing from its ordinary state to the temporarily non-active
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state (and backwards) is provided. Non-active customers can be interpreted
as customers with a defect that makes them unfit for service. G. Tsitsiashvili
and M. Osipova [1,2] have researched an open exponential queueing network
with temporarily non-active customers and have obtained the form of stationary
distribution.

The standard assumption in analysis of classical Jackson and Gordon-Newell
queueing networks [3,4] is that service times are independent exponentially dis-
tributed random values. But real numerous statistical data prove the opposite.
Therefore there is an actual problem of researching open and closed queue-
ing networks with random distributed service times. Currently, this problem
attracts the increasing attention of researchers. The first result about stationary
distribution insensitivity belongs to B.A. Sevastyanov, who has observed queue-
ing system M/G/m/0 and has proved stationary distribution insensitivity [5].
BCMP-theorem (Baskett, Chandy, Muntz, Palacios) [6] is the first result about
stationary distribution insensitivity for queueing networks. We have generalized
the result [1,2] in the case of random distributed service times [7–9]. We have
established stationary distribution insensitivity with respect to functional form
of service time distribution.

V.A. Ivnitsky [10] has considered a rather interesting class of queueing net-
works with not “temporal” but so-called “energetic” interpretation of customer
service. For this type of queueing networks every service operation is character-
ized by the random variable of work for customer service. Stationary distribution
insensitivity with respect to a functional form of distribution of work quantity
for customer service has been established for different classes of open and closed
queueing networks [10] and for open and closed queueing networks with tem-
porarily non-active customers [11,12].

Closed multi-regime queueing networks with non-active customers were
researched in [13,14]. Stationary distribution has been obtained in [14]. [13]
has generalized the result of [11] in the case of multi-regime service. Times of
functioning at regimes in the model from [13] were exponentially distributed
values. Stationary distribution insensitivity with respect to functional form of
distribution of work quantity for customer service has been established [13].

This paper considers stationary functioning of a closed queueing network with
non-active customers and multi-regime service strategies. Each system can operate
at several regimes corresponding to different degrees of its efficiency. In contrast to
[11,13] this paper considers closed queueing network with exponential distributed
times of service, herewith it is assumed that times of functioning at regimes are
random distributed values. Stationary distribution insensitivity with respect to
functional form of distribution of time of functioning at regimes is established.

2 Queueing Network Description

A closed queueing network with the set of systems J = {1, 2, . . . , N} is con-
sidered. M customers are circulating in the network. Non-active customers
are located in queues of network systems, not being serviced. There are input
Poisson flows of signals with rates νi and ϕi, i ∈ J . When arriving at the system
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i ∈ J the signal with rate νi induces an ordinary customer, if any, to become
non-active. When arriving at the system i ∈ J the signal with rate ϕi induces
an non-active customer, if any, to become ordinary. Signals do not need service.

Let ni(t), n′
i(t) be the numbers of ordinary and non-active customers at the

system i ∈ J at time t accordingly and n′′
i (t) – the number of service regime.

A stochastic process z(t) = ((ni(t), n′
i(t), n

′′
i (t)), i ∈ J) is considered. The

space of states for process z(t) is Z = {(z = (n1, n
′
1, n

′′
1), . . . , (nN , n′

N , n′′
N ))|

ni, n′
i ≥ 0,

∑
i∈J(ni + n′

i) = M,n′′
i = 0, ri, i ∈ J}.

Numbering of ordinary customers in the system queue is made from the
“tail” of the queue to the device. Non-active customers in the queue of the
system i ∈ J are numbered as follows: a customer which has become non-active
in the last turn, has number n′

i. When arriving at the system i ∈ J the signal
with rate νi induces an ordinary customer with number 1 to become a non-active
customer with number n′

i +1. When arriving at the system i ∈ J the signal with
rate ϕi induces a non-active customer with number n′

i to become an ordinary
customer with number 1. So, the set of customers’ numbers in the system i ∈ J
is (1, . . . , n′

i, 1, . . . , ni).
The discipline of service is FCFS. Service times are independent exponen-

tially distributed random values with rates μi, i ∈ J .
Each system can operate in several regimes corresponding to different degrees

of efficiency. The times of functioning in regimes are independent random distrib-
uted values with functions of distribution Φi(n′′

i , t), (Φi(n′′
i , 0) = 0) and expected

values ηi < ∞, i ∈ J . Switching is possible only to neighboring regimes. The
speed of regime switching is σi + ρi, (σi, ρi > 0, i ∈ J).

System i has a single device, which can operate at ri + 1 regimes. Let us
denote 0 as a basic service regime, then the device is switched to the regime 1.
For states (ni, n

′
i, n

′′
i ), where 0 ≤ n′′

i ≤ ri, the time of functioning in the regime
n′′

i is a random distributed value, then the device is switched to the regime n′′
i +1

with the probability
σiIn′′

i
<ri

σiIn′′
i
<ri

+ρiIn′′
i
>0

or to the regime n′′
i −1 with the probability

ρiIn′′
i
>0

σiIn′′
i
<ri

+ρiIn′′
i
>0

. The time of functioning in the regime ri is a random distributed

value, then the device is switched to the regime ri − 1. During regime switching
the number of customers does not change. Switching from the regime n′′

i − 1
to n′′

i can be interpreted as a partial working capacity decline. Transition from
regime n′′

i to regime n′′
i − 1 means the recovery of working capacity, which was

lost after switching from regime n′′
i − 1 to n′′

i .
After completing the of service process in the system i ∈ J the customer passes

to the system j ∈ J with the probability pi,j (
∑N

j=1 pi,j = 1). Let pi,i = 0, i ∈ J .
A traffic equations system is:

εi =
N∑

j=1

εjpj,i, i ∈ J. (1)

It has been proved [4] that a traffic equations system has a unique non-trivial
solution up to a constant.
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3 Stationary Distribution Insensitivity

We consider a closed queueing network with multi-regime service strategies. The
times of functioning in regimes are independent random distributed values. In
this instance z(t) is not a Markov process.

Let us denote by ξi,n′′
i
(t) the rest time of functioning in the regime n′′

i from
time t to the time of regime switching, ξ(t) = (ξ1,n′′

1
(t), . . . , ξN,n′′

N
(t)).

So we introduce into consideration a Markov process ζ(t) = (z(t), ξ(t)),
where ξ(t) = (ξ1,n′′

1
(t), . . . , ξN,n′′

N
(t)).

Let us denote by

F (z, x) = F (z, x1,n′′
1
, . . . , xN,n′′

N
)

= lim
t→∞ P{z(t) = z, ξ1,n′′

1
(t) < x1,n′′

1
, . . . , ξN,n′′

N
(t) < xN,n′′

N
}, z ∈ Z,

xi,n′′
i

∈ R∀ i ∈ J, n′′
i = 0, ri.

Functions F (z, x) are called stationary functions of ζ(t) distribution.
A model of closed multi-regime queueing network with temporarily non-

active customers has beenwas considered in [14]. The times of functioning at
regimes were independent exponentially distributed random values. The follow-
ing theorem has been proved.

Theorem 1. The Markov process z(t) is ergodic. The stationary distribution of
the process is:

p((n1, n
′
1, n

′′
1), . . . , (nN , n′

N , n′′
N )) = G−1(M,N)p1(n1, n

′
1, n

′′
1)p2(n2, n

′
2, n

′′
2) × . . .

× pN (nN , n′
N , n′′

N ), (2)

where

pi(ni, n
′
i, n

′′
i ) =

( εi

μi

)ni
( εiνi

μiϕi

)n′
i
(σi

ρi

)n′′
i

,

εi is the traffic equations system solution. G(M,N) is a normalizing constant.

In our case for the closed queueing network with non-active customers, multi-
regime service strategies and random distributed times of functioning in regimes
the following theorem is true.

Theorem 2. The Markov process ζ(t) is ergodic. The stationary functions of
the process ζ(t) distribution are:

F (z, x) =G−1(M,N)p1(n1, n
′
1, n

′′
1)p2(n2, n

′
2, n

′′
2) . . . pN (nN , n′

N , n′′
N ) (3)

×
N∏

i=1

1
ηi

xi,n′′
i∫

0

(1 − Φi(n′′
i , u))du, z ∈ Z,

where

pi(ni, n
′
i, n

′′
i ) =

( εi

μi

)ni
( εiνi

μiϕi

)n′
i
(σi

ρi

)n′′
i

, (4)
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εi is the traffic equations system solution (1). G(M,N) is a normalizing constant,
which can be found from the following condition∑

((n1,n′
1,n′′

1 ),...,(nN ,n′
N ,n′′

N ))∈Z

p((n1, n
′
1, n

′
1), . . . , (nN , n′

N , n′′
N )) = 1. (5)

p((n1, n
′
1, n

′
1), . . . , (nN , n′

N , n′′
N )) is found by means of (2).

Proof. Let us denote by ei ∈ Z – the vector which coordinates equal 0 with the
exception of (ni, n

′
i, n

′′
i ) = (1, 0, 0), let us denote by e′

i ∈ Z – the vector which
coordinates equal 0 with the exception of (ni, n

′
i, n

′′
i ) = (0, 1, 0), analogically let

us denote by e′′
i ∈ Z – the vector which coordinates equal 0 with the exception

of (ni, n
′
i, n

′′
i ) = (0, 0, 1), i ∈ J .

We consider the process ζ(t). In the case of exponentially distributed times
of functioning in regimes the process z(t) is ergodic by ergodic Markov theorem.
The process ζ(t) is also ergodic because ζ(t) is obtained from z(t) by adding
continuous components.

The process ζ(t) can change its states due to incoming signals or regime
switching. Such changes we call spontaneous changes.

Let us suppose that h is a small time interval and consider the probability

P{z(t + h) = z, ξ1,n′′
1
(t + h) < x1,n′′

1
, . . . , ξN,n′′

N
(t + h) < xN,n′′

N
}.

This event may occur in the following ways:

1. From the moment t during time h there were no spontaneous changes and
the service in any system was not over. The probability of this event is

P{z(t) =z, h ≤ ξ1,n′′
1
(t) < x1,n′′

1
+ h, . . . , h ≤ ξN,n′′

N
(t) < xN,n′′

N
+ h}

× (1 −
N∑

i=1

(νiIni>0 + ϕiIn′
i>0 + μiIni>0)h + o(h)).

2. During time h a customer was serviced in the system j ∈ J and was routed
to the system i ∈ J . There were no spontaneous changes.

P{z(t) =z − ei + ej , h ≤ ξ1,n′′
1
(t) < x1,n′′

1
+ h,

. . . , h ≤ ξN,n′′
N

(t) < xN,n′′
N

+ h} × (μjpj,ih + o(h))Ini>0.

3. During time h an informational signal with rate νi arrived at the system
i ∈ J . There were no other spontaneous changes. No customer was serviced.

P{z(t) =z + ei − e′
i, h ≤ ξ1,n′′

1
(t) < x1,n′′

1
+ h,

. . . , h ≤ ξN,n′′
N

(t) < xN,n′′
N

+ h} × (νih + o(h))In′
i>0.

4. During time h an informational signal with rate ϕi arrived at the system
i ∈ J . There were no other spontaneous changes. No customer was serviced.

P{z(t) =z − ei + e′
i, h ≤ ξ1,n′′

1
(t) < x1,n′′

1
+ h,

. . . , h ≤ ξN,n′′
N

(t) < xN,n′′
N

+ h}(ϕih + o(h))Ini>0.
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5. During time h the service regime of the system i was increased by 1. There
were no other spontaneous changes. No customer was serviced.

P{z(t) =z − e′′
i , h ≤ ξ1,n′′

1
(t) < x1,n′′

1
+ h,

. . . , ξi,n′′
i −1(t) < h, . . . , h ≤ ξN,n′′

N
(t) < xN,n′′

N
+ h}

× (Φi(n′′
i , xi,n′′

i
+ θh)

σiIn′′
i <ri

σiIn′′
i <ri

+ ρiIn′′
i >0

+ o(h))In′′
i >0.

6. During time h the service regime of the system i was decreased by 1. There
were no other spontaneous changes. No customer was serviced.

P{z(t) =z + e′′
i , h ≤ ξ1,n′

1
(t) < x1,n′

1
+ h,

. . . , ξi,n′′
i +1(t) < h, . . . , h ≤ ξN,n′′

N
(t) < xN,n′′

N
+ h}

× (Φi(n′′
i , xi,n′′

i
+ θh)

ρiIn′′
i >0

σiIn′′
i <ri

+ ρiIn′′
i >0

+ o(h))In′′
i <ri

.

Hereinbefore 0 < θ < 1.
7. During time h there were more than two changes of queueing network condi-

tion. This probability is o(h).

Therefore

P{z(t + h) = z, ξ1,n′′
1
(t + h) < x1,n′′

1
, . . . , ξN,n′′

N
(t + h) < xN,n′′

N
}

= P{z(t) = z, h ≤ ξ1,n′′
1
(t) < x1,n′′

1
+ h, . . . , h ≤ ξN,n′′

N
(t) < xN,n′′

N
+ h}

×(1 −
∑

N
i=1(νiIni>0 + ϕiIn′

i>0 + μiIni>0)h + o(h))

+P{z(t) = z − ei + ej , h ≤ ξ1,n′′
1
(t) < x1,n′′

1
+ h,

. . . , h ≤ ξN,n′′
N

(t) < xN,n′′
N

+ h} × (μjpj,ih + o(h))Ini>0

+P{z(t) = z + ei − e′
i, h ≤ ξ1,n′′

1
(t) < x1,n′′

1
+ h,

. . . , h ≤ ξN,n′′
N

(t) < xN,n′′
N

+ h} × (νih + o(h))In′
i>0

+P{z(t) = z − ei + e′
i, h ≤ ξ1,n′′

1
(t) < x1,n′′

1
+ h,

. . . , h ≤ ξN,n′′
N

(t) < xN,n′′
N

+ h} × (ϕih + o(h))Ini>0

+P{z(t) = z − e′′
i , h ≤ ξ1,n′

1
(t) < x1,n′

1
+ h, (6)

. . . , ξi,n′′
i −1(t) < h, . . . , h ≤ ξN,n′′

N
(t) < xN,n′′

N
+ h}

×(Φi(n
′′
i , xi,n′′

i
+ θh)

σiIn′′
i <ri

σiIn′′
i <ri

+ ρiIn′′
i >0

+ o(h))In′′
i >0

+P{z(t) = z + e′′
i , h ≤ ξ1,n′′

1
(t) < x1,n′′

1
+ h,

. . . , ξi,n′′
i +1(t) < h, . . . , h ≤ ξN,n′′

N
(t) < xN,n′′

N
+ h}

×(Φi(n
′′
i , xi,n′′

i
+ θh)

ρiIn′′
i >0

σiIn′′
i <ri

+ ρiIn′′
i >0

+ o(h))In′′
i <ri

+ o(h).
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Each probability from (6) may be expressed in terms of functions

Ft(z, x) = P{z(t) = z, ξ1,n′′
1
(t) < x1,n′′

1
, . . . , ξN,n′′

N
(t) < xN,n′′

N
}.

Consider the decomposition of Ft(z, x) in Taylor series, taking into consideration
that

P{z(t) = z, h ≤ ξi,n′′
i
(t) < xi,n′′

i
+ h, i ∈ J}

= Ft(z, xi,n′′
i

+ h, i ∈ J) −
N∑

k=1

Ft(z, xi,n′′
i

+ h, i ∈ J, i �= k; xk,n′′
k

× 0 + h) + . . .

+ Ft(z, xi,n′′
i

× 0 + h, i ∈ J).

Therefore

P{z(t) =z, h ≤ ξi,n′′
i
(t) < xi,n′′

i
+ h, i ∈ J}

=Ft(z, xi,n′′
i
, i ∈ J) +

N∑
i=1

∂Ft(z, xi,n′′
i
, i ∈ J)

∂xi,n′′
i

× h

−
N∑

i=1

(∂Ft(z, x)
∂xi,n′′

i

)
xi,n′′

i
=0

× h + o(h).

We consider Φi(n′′
i , xi,n′′

i
+ θh) as a function of the variable θ, use its decom-

position in a Taylor series and let t tend to infinity. So we obtain the following
differential equations system:

F (z, x) = F (z, x) + h

N∑
i=1

(
∂F (z, x)

∂xi,n′′
i

−
(∂F (z, x)

∂xi,n′′
i

)
x
i,n′′

i
=0

)

−
( N∑

i=1

(
νiIni>0 + ϕiIn′

i
>0 + μiIni>0)h + o(h)

)
F (z, x)

+h

N∑
j=1

N∑
i=1,i�=j

pj,iF (z + ej − ei, x)(μjh + o(h))Ini>0 (7)

+

N∑
i=1

F (z + ei − e
′
i, x)(νih + o(h))In′

i
>0

+
N∑

i=1

F (z − ei + e
′
i, x)(ϕih + o(h))Ini>0

+h
N∑

i=1

Φi(n
′′
i , xi,n′′

i
)
(∂F (z − e′′

i , x)

∂xi,n′′
i

−1

)
x
i,n′′

i
−1=0

×
σiIn′′

i
<ri

σiIn′′
i
<ri

+ ρiIn′′
i
>0

In′′
i
>0

+h

N∑
i=1

Φi(n
′′
i , xn′′

i
)
(∂F (z + e′′

i , x)

∂xi,n′′
i
+1

)
x
i,n′′

i
+1=0

×
ρiIn′′

i
>0

σiIn′′
i
<ri

+ ρiIn′′
i
>0

In′′
i
<ri

+ o(h).
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Subtracting F (z, x) from both sides of (7), dividing both sides of (7) by h and
letting h tend to zero, we obtain the following differential equations system:

F (z, x)
N∑

i=1

(
νiIni>0 + ϕiIn′

i>0 + μiIni>0

)

=
N∑

i=1

(
∂F (z,x)
∂xi,n′′

i

−
(

∂F (z,x)
∂xi,n′′

i

)
xi,n′′

i
=0

)

+
N∑

j=1

N∑
i=1,i �=j

μjpj,iF (z + ej − ei, x)Ini>0

+
N∑

i=1

F (z + ei − e′
i, x)νiIn′

i>0 +
N∑

i=1

F (z − ei + e′
i, x)ϕiIni>0

+
N∑

i=1

Φi(n′′
i , xn′′

i
)
(

∂F (z−e′′
i ,x)

∂xi,n′′
i

−1

)
xi,n′′

i
−1=0

× σiIn′′
i
<ri

σiIn′′
i
<ri

+ρiIn′′
i
>0

In′′
i >0

+
N∑

i=1

Φi(n′′
i , xn′′

i
)
(

∂F (z+e′′
i ,x)

∂xi,n′′
i
+1

)
xi,n′′

i
+1=0

× ρiIn′′
i
>0

σiIn′′
i
<ri

+ρiIn′′
i
>0

In′′
i <ri

.

(8)

Let us divide (8) into local balance equations:

F (z, x)
(
νiIni>0 + ϕiIn′

i>0

)
= F (z + ei − e′

i, x)νiIn′
i>0 + F (z − ei + e′

i, x)ϕiIni>0,
(9)

F (z, x)μiIni>0 =
N∑

j=1,j �=i

μjpj,iF (z + ej − ei, x)Ini>0,(
∂F (z,x)
∂xi,n′′

i

)
xi,n′′

i
=0

− ∂F (z,x)
∂xi,n′′

i

(10)

= Φi(n′′
i , xn′′

i
)
((

∂F (z−e′′
i ,x)

∂xi,n′′
i

−1

)
xi,n′′

i
−1=0

× σiIn′′
i
<ri

σiIn′′
i
<ri

+ρiIn′′
i
>0

In′′
i >0

+
(

∂F (z+e′′
i ,x)

∂xi,n′′
i
+1

)
xi,n′′

i
+1=0

× ρiIn′′
i
>0

σiIn′′
i
<ri

+ρiIn′′
i
>0

In′′
i <ri

)
.

(11)

Substituting functions F (z, x), determined by means of (3)–(5) into local balance
Eqs. (9)–(11) and considering traffic equation system (1), we obtain the identity. �

Let us denote by {p(z), z ∈ Z} the stationary distribution of the process z(t).
From the foregoing theorem, considering equality p(z) = F (z,+∞), we obtain
the following corollary.
Corollary 1. Process z(t) is ergodic and has stationary distribution

p(z) = G−1(M,N)p1(n1, n
′
1, n

′′
1)p2(n2, n

′
2, n

′′
2) . . . pN (nN , n′

N , n′′
N ), z ∈ Z,

which does not depend on the functional form of Φi(s, x), i ∈ J . Probabilities
pi(ni, n

′
i, n

′′
i ) may be found by means of (4).

4 Conclusion

We have considered the stationary functioning of a closed queueing network
with temporarily non-active customers and multi-regime service strategies. An
expression for stationary distribution has been obtained. Stationary distribution
insensitivity has been established. The research results have practical importance
and may be used for investigations of real networks.
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Abstract. During the last decade bike sharing systems have emerged
as a public transport mode in urban short trips in more than 500 major
cities around the world. For the mobility service mode, many challenges
from its operations are not well addressed yet, for example, how to
develop bike sharing systems to be able to effectively satisfy the fluc-
tuating demands both for bikes and for vacant lockers. To this end, it is
key to conduct performance analysis of bike sharing systems. This paper
first describes a large-scale bike sharing system. Then the bike sharing
system is abstracted as a closed queueing network with multi-class cus-
tomers, where the virtual customers and the virtual nodes are set up,
and the service rates as well as the relative arrival rates are established.
Finally, this paper gives a product-form solution to the steady state joint
probabilities of queue lengths, and provides a performance analysis of the
bike sharing system. Therefore, this paper provides a unified framework
for analyzing closed queueing networks in the study of bike sharing sys-
tems. We hope that the methodology and results of this paper can be
applicable in the study of more general bike sharing systems.

Keywords: Bike sharing system · Closed queueing network ·
Product-form solution · Problematic station

1 Introduction

During the last decade bike sharing systems are fast increasing as a public trans-
port mode in urban short trips, and have been launched in more than 500 major
cities around the world. Also, bike sharing systems offer a low cost and environ-
mental protection mobility service through sharing one-way use. Nowadays, bike
sharing systems are regarded as an effective way to jointly solve traffic congestion,
parking difficulties, traffic noise, air pollution and so forth. DeMaio [3] reviewed
the history, impacts, models of provision and future of bike sharing systems.
Larsen [12] reported that over 500 major cities host advanced bike sharing systems
with a combined fleet of more than half a million bikes up to April 2013. A synthesis
of the literature for bike sharing systems was given by Fishman et al. [5] and Labadi
et al. [11]. At the same time, for some countries or cities developing bike sharing
systems, readers may refer to, such as, Europe, the Americas and Asia by Shaheen
c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 177–191, 2016.
DOI: 10.1007/978-3-319-44615-8 16
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et al. [22], the European OBIS Project by Janett and Hendrik [10], France by Faye
[4], China by Tang et al. [24], London by Lathia et al. [13], Montreal by Morency
et al. [16], and a number of well-known cities by Shu et al. [23].

In operations of bike sharing systems, a crucial question is the ability not
only to meet fluctuating demand for renting bikes at each station but also to
provide enough vacant lockers to allow the renters to return the bikes at their
destinations. Since the number of bikes packed in each station is always ran-
domly dynamically changing, this causes an unpredictable imbalance, such as,
some stations contain more bikes but others are seriously short of available bikes.
Such a randomly dynamic imbalance of bikes distributed among stations often
leads to occurrence of problematic stations (i.e., full or empty stations). Note
that problematic stations reflect a common challenge faced by bike sharing sys-
tems in practice due to the stochastic and time-inhomogeneous nature of both
customer arrivals and bike returns, thus the probability of problematic stations
has been regarded as a main factor to measure the satisfaction of customers and
even to estimate the quality of service. Obviously, how to effectively reduce the
probability of problematic stations becomes a key way to improve the satisfac-
tion of customers and further to promote the quality of service. Therefore, it
is a major task to develop effective methods for computing the probability of
problematic stations in the study of bike sharing systems.

Queueing theory and Markov processes are very useful for computing the prob-
ability of problematic stations, and more generally, analyzing performance mea-
sures of the bike sharing systems. However, available works on such a research line
are still few up to now. We would like to refer readers to four classes of recent liter-
ature as follows. (a) Simple queues: Leurent [14] used the M /M /1/C queue to
study a vehicle-sharing system in which each station contains an additional waiting
room which helps those customers arriving at a problematic station, and analyzed
performance measures of this system in terms of geometric distribution. Schui-
jbroek et al. [20] evaluated the service level by means of the transient distribution of
theM /M /1/C queue, and the service level is used to establish some optimal mod-
els to discuss the inventory rebalancing and vehicle routing. Raviv et al. [18] and
Raviv and Kolka [17] employed the transient distribution of a time-inhomogeneous
M(t)/M(t)/1/C queue to compute the expected number of bike shortages at each
station. (b) The mean-field theory: Fricker et al. [7] considered a space inho-
mogeneous bike sharing system with different clusters, and expressed the minimal
proportion of problematic stations within each cluster. For a space homogeneous
bike sharing system, Fricker and Gast [6] used the M /M /1/K queue to provide a
more detailed analysis for some simple mean-field models (including the power of
two choices), derived a closed-form solution to the minimal proportion of problem-
atic stations, and compared the incentives and redistribution mechanisms. Fricker
and Tibi [8] studied the central limit and local limit theorems for independent
(perhaps non identically distributed) random variables which effectively support
analysis of a generalized Jackson network with a product-form solution; and used
these obtained results to evaluate performance measures of space inhomogeneous
bike sharing systems, where its asymptotics give a complete picture for equilibrium
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state analysis of the locally space homogeneous bike sharing systems. Li et al. [15]
provided a mean-field queueing method to study a large-scale bike sharing sys-
tem through using a combination of, for example, the virtual time-inhomogeneous
queue, the mean-field equations, the martingale limit, the nonlinear birth-death
process, numerical computation of the fixed point, and numerical analysis for the
steady state probability of problematic stations. (c) Queueing networks: Savin
et al. [19] used a loss network as well as admission control to discuss capacity alloca-
tion of a rental model with two classes of customers, and studied the revenue man-
agement and fleet sizing decision in the rental system. Adelman [1] applied a closed
queueing network to set up an internal pricing mechanism for managing a fleet of
service units, and also used a nonlinear flow model to discuss the price-based pol-
icy for the vehicle redistribution. George and Xia [9] provided a queueing network
method in the study of vehicle rental systems, and determined the optimal number
of parking spaces for each rental location. (d)Markov decision processes: Sto-
chastic optimization and Markov decision processes are applied to analysis of bike
sharing systems. From a dynamic price mechanism, Waserhole and Jost [25] used
closed queuing networks to propose a Markov decision model of a bike sharing sys-
tem. To overcome the curse of dimensionality in the Markov decision process with
a high dimension, they established a fluid approximation that computes a static
policy and gave an upper bound on the potential optimization. Such a fluid approx-
imation for the Markov decision processes of the bike sharing systems was further
developed in Waserhole and Jost [26,27] and Waserhole et al. [28].

The main purposes of this paper are to provide a unified framework for
analyzing closed queueing networks in the study of bike sharing systems. This
framework of closed queueing networks is interesting, difficult and challenging
from three crucial features: (a) Stations and roads have very different physical
attributes, but all of them are abstracted as indistinguishable nodes in closed
queueing networks; (b) the service discipline of the stations is First Come First
Served (abbreviated as FCFS), while the service discipline of the roads is Proces-
sor Sharing (abbreviated as PS); and (c) the virtual customers (i.e., bikes) in the
stations are of a single class, while the virtual customers (i.e., bikes) on the roads
are of two classes, and their classes may change on the roads according to the
first bike-return or at least two successive bike-returns due to the full stations,
respectively. For such a closed queueing network, this paper provides a detailed
analysis both for establishing a product-form solution to the steady state joint
probabilities of queue lengths, and for computing the steady state probability of
problematic stations, more generally, for analyzing performance measures of the
bike sharing system. The main contributions of this paper are twofold. The first
contribution is to describe a large-scale bike sharing system and to provide a
unified framework for analyzing closed queueing networks through establishing
some basic factors: The service rates from stations or roads; and the routing
matrix as well as the relative arrival rates to stations or roads. Notice that the
basic factors play a key role in the study of closed queueing networks. The second
contribution of this paper is to provide a product-form solution to the steady
state joint probabilities of queue lengths in the closed queueing network, and
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give performance analysis of the bike sharing system in terms of the steady state
joint probabilities.

The remainder of this paper is organized as follows. In Sect. 2, we describe
a large-scale bike sharing system with N different stations and with at most
N(N −1) different roads. In Sect. 3, we provide a unified framework for analyzing
closed queueing networks in the study of bike sharing systems, and also compute
the service rates, the routing matrix, and the relative arrival rates. In Sect. 4,
we give a product-form solution to the steady state joint probabilities of queue
lengths in the closed queueing network, and analyze performance measures of
the bike sharing system by means of the steady state joint probabilities. Some
concluding remarks are given in Sect. 5.

2 Model Description

In this section, we describe a large-scale bike sharing system with N different
stations and with at most N(N−1) different roads due to the riding-bike directed
connection between any two stations. To analyze such a bike sharing system, we
provide a unified framework for analyzing closed queueing networks in the study
of bike sharing systems.

In a large-scale bike sharing system, a customer arrives at a station, rents a
bike, and uses it for a while; then she returns the bike to a destination station, and
immediately leaves this system. Obviously, for any customer renting and using a
bike, her first return-bike time is different from those return-bike times that she
has successively returned the bike for at least two times due to arriving at full
stations. At the same time, it is easy to understand that for any customer, her
first road selection as well as her first riding-bike speed are different from those
of having successively returned her bike for at least two times. Also, it is noted
that the customer must return her bike to a station, then she can immediately
leave the bike sharing system.

Now, we describe the bike sharing system, including operation mechanism,
system parameters and mathematical notation, as follows:

(1) Stations and roads:There are N different stations and at most N(N−1)
different roads, where the N(N − 1) roads are observed from the fact that there
must exist a direct road from a station to another station. In addition, we assume
that at the initial time t = 0, every station has C bikes and K parking places,
where 1 ≤ C < K < ∞; and NC ≥ K, which means that some of the NC bikes
can result in at least a full station.

(2) Customer arrival process: The arrivals of outside customers at the
ith station are a Poisson process with arrival rate λi > 0 for 1 ≤ i ≤ N .

(3) The first riding-bike time: Once an outside customer arrives at the
ith station, she immediately goes to rent a bike. If there is no bike in the ith
station (i.e., the ith station is empty), then the customer directly leaves this bike
sharing system. If there is at least one bike in the ith station, then the customer
rents a bike, and then goes to Road i → j. We assume that for j �= i with
1 ≤ i, j ≤ N , the customer at the ith station rides the bike into Road i → j
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with probability pi,j for
∑N

j �=i pi,j = 1; and her riding-bike time from the ith
station to the jth station (i.e., riding on Road i → j) is an exponential random
variable with riding-bike rate μi,j > 0, where the expected riding-bike time is
1/μi,j .

(4) The bike return times:
The first return – When the customer completes her short trip on the above

Road i → j (see Assumption (3)), she needs to return her bike to the jth station.
If there is at least one available parking position (i.e., a vacant docker), then the
customer directly returns her bike to the jth station, and immediately leaves
this bike sharing system.

The second return – If no parking position is available at the jth station,
then she has to ride the bike to another station l1 with probability αj,l1 for
l1 �= j for

∑N
l1 �=j αj,l1 = 1; and her riding-bike time from the jth station to

the l1th station (i.e., riding on Road j → l1) is an exponential random variable
with riding-bike rate ξj,l1 > 0. If there is at least one available parking position,
then the customer directly returns her bike to the l1th station, and immediately
leaves this bike sharing system.

The third return – If no parking position is available at the l1th station, then
she has to ride the bike to another station l2 with probability αl1,l2 for l2 �= l1
for

∑N
l2 �=l1

αl1,l2 = 1; and her riding-bike time from the l1th station to the l2th
station (i.e., riding on Road l1 → l2) is an exponential random variable with
riding-bike rate ξl1,l2 > 0. If there is at least one available parking position,
then the customer directly returns her bike to the l2th station, and immediately
leaves this bike sharing system.

The (k + 1)st return for k ≥ 3 – We assume that this bike has not been
returned at any station yet through k consecutive return processes. In this case,
the customer has to try her (k + 1)st lucky return. Notice that the customer
goes to the lkth station from the lk−1th full station with probability αlk−1,lk for
lk �= lk−1 for

∑N
lk �=lk−1

αlk−1,lk = 1; and her riding-bike time from the lk−1th
station to the lkth station (i.e., riding on Road lk−1 → lk) is an exponential
random variable with riding-bike rate ξlk−1,lk > 0. If there is at least one avail-
able parking position, then the customer directly returns her bike to the lkth
station, and immediately leaves this bike sharing system; otherwise she has to
continuously try another station again.

We further assume that the returning-bike process is persistent in the sense
that the customer must find a station with an empty position to return her bike,
because the bike is public property so no one can make it her own.

It is seen from the above description that the parameters: pi,j and μi,j for
j �= i and 1 ≤ i, j ≤ N , of the first return, may be different from the parameters:
αi,j and ξi,j for j �= i and 1 ≤ i, j ≤ N , of the kth return for k ≥ 2. Note that such
an assumption with respect to these different parameters is actually reasonable
because the customer possibly has more things (for example, tourism, shopping,
visiting friends and so on) in the first return process, but she has only one return
task during the k successive return processes for k ≥ 2.
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Fig. 1. The physical structure of the bike sharing system

(5) The departure discipline: The customer departure has two different
cases: (a) An outside customer directly leaves the bike sharing system if she
arrives at an empty station; or (b) if one customer rents and uses a bike, and
she finally returns the bike to a station, then the customer completes her trip,
and immediately leaves the bike sharing system.

We assume that the customer arrival and riding-bike processes are indepen-
dent, and also all the above random variables are independent of each other. For
such a bike sharing system, Fig. 1 provides some physical interpretation.

3 A Closed Queueing Network

In this section, we first provide a closed queueing network to express the bike
sharing system, as seen in Fig. 1. Then we determine the service rates, the routing
matrix, and the relative arrival rates of the closed queueing network. Note that
there are two classes of customers on the N(N − 1) roads.

In the bike sharing system described in the above section, there are NC bikes,
N stations and N(N − 1) roads. Now, we abstract the bike sharing system as a
closed queueing network as follows:

(1) Virtual nodes: Although the stations and roads have different physical
attributes such as functions, and geographical topologies, the stations and
roads are all regarded as the same nodes in the closed queueing network.



Closed Queueing Networks Analyzing in Bike Sharing Systems 183

(2) Virtual customers: The bikes at the stations or roads are described as
follows:

Abstract: The virtual customers are abstracted by the bikes, which are either
parked in the stations or ridden on the roads. Note that the total number of bikes
in the bike sharing system is fixed as NC due to the fact that bikes can neither
enter nor leave this system, thus the bike sharing system can be regarded as a
closed queueing network.

Multiple classes: From Assumption (2) in Sect. 2, it is seen that there is
only one class of customers in the nodes abstracted from the stations. From
Assumptions (3) and (4) in Sect. 2, we understand that there are two different
classes of customers in the nodes abstracted from the roads, where the first class
of customers is the bikes ridden on the roads for the first time; while the second
class of customers is the bikes which are successively ridden on at least two
different roads due to the full station.

(3) Service disciplines: The First Come First Served (or FCFS) is used in
the nodes abstracted from the stations; while new processor sharing (or PS)
is used in the nodes abstracted from the roads.

In the above closed queueing network, let Qi(t) be the number of bikes parked
in ith station at time t ≥ 0 for 1 ≤ i ≤ N , and R

(r)
k,l (t) the number of bikes of

class r ridden on Road k → l at time t for r = 1, 2, and k �= l with 1 ≤ k, l ≤ N .
We write

X(t) = (L1(t),L2(t), . . . ,LN−1(t),LN (t)),

where for 1 ≤ i ≤ N

Li (t) =
(
Qi (t) ;R(1)

i,1 (t) , R
(2)
i,1 (t) ;R(1)

i,2 (t) , R
(2)
i,2 (t) ; . . . ;R(1)

i,i−1 (t) , R
(2)
i,i−1 (t) ;

R
(1)
i,i+1 (t) , R

(2)
i,i+1 (t) ;R(1)

i,i+2 (t) , R
(2)
i,i+2 (t) ; . . . ;R(1)

i,N (t) , R
(2)
i,N (t)

)
.

Obviously, {X(t) : t ≥ 0} is a Markov process of size N(2N − 1) due to the
exponential and Poisson assumptions of this bike sharing system.

Now, we describe the state space of the Markov process {X(t) : t ≥ 0}. It is
seen from Sect. 2 that

0 ≤ Qi(t) ≤ K, 1 ≤ i ≤ N, (1)

0 ≤ R
(r)
k,l (t) ≤ NC, r = 1, 2, k �= l, 1 ≤ k, l ≤ N, (2)

and
N∑

i=1

Qi(t) +
N∑

k=1

N∑
l �=k

R
(1)
k,l (t) +

N∑
k=1

N∑
l �=k

R
(2)
k,l (t) = NC. (3)
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From (1) to (3), it is seen that the state space of the Markov process
{X(t) : t ≥ 0} of size N(2N − 1) is given by

Ω =
{−→n : 0 ≤ ni ≤ K, 0 ≤ m

(1)
k,l ,m

(2)
k,l ≤ NC,

N∑
i=1

ni +
N∑

k=1

N∑
l �=k

m
(1)
k,l +

N∑
k=1

N∑
l �=k

m
(2)
k,l = NC

⎫⎬
⎭ ,

where −→n = (n1,n2, . . . ,nN−1,nN ),

and for 1 ≤ i ≤ N

ni =
(
ni;m

(1)
i,1 ,m

(2)
i,1 ;m(1)

i,2 ,m
(2)
i,2 ; . . . ;m(1)

i,i−1,m
(2)
i,i−1;

m
(1)
i,i+1,m

(2)
i,i+1;m

(1)
i,i+2,m

(2)
i,i+2; . . . ;m

(1)
i,N ,m

(2)
i,N

)
.

Note that mk,l = m
(1)
k,l + m

(2)
k,l is the total number of bikes being ridden on

Road k → l for k �= l with 1 ≤ k, l ≤ N , and also the state space Ω contains
(K + 1)N (NC + 1)2N(N−1) elements.

To compute the steady state joint probabilities of N(2N − 1) queue lengths
in the bike sharing system, it is seen from Chap. 7 in Bolch et al. [2] that we
need to determine the service rate, the routing matrix and the relative arrival
rate for each node in the closed queueing network.

(a) The service rates
From Fig. 2, it is seen that the service rates of the closed queueing network

are given from two different cases as follows:
Case one: The node is one of the N stations
The departure process of bikes from the ith station, renting at the ith station

and immediately ridden on one of the N − 1 roads (such as, Road i → l for l �= i
with 1 ≤ l ≤ N), is Poisson with service rate

bi = λi1{1≤ni≤K}
N∑
l �=i

pi,l = λi1{1≤ni≤K} (4)

by means of the condition:
∑N

l �=i pi,l = 1.
Case two: The node is one of the N(N − 1) roads
In this case, two different processor sharing queueing processes of Road i → l

(with two classes of different customers) are explained in Fig. 2. Now we describe
the service rates with respect to the two classes of different customers as follows:

The first class of customers: The departure process of bikes from Road i → l,
rented from Station i and being ridden on Road i → l for the first time, is Poisson
with service rate

b
(1)
i,l = m

(1)
i,l μi,l. (5)
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Fig. 2. The queueing processes in the closed queueing network

The second class of customers: The departure process of bikes from Road
i → l, having successively been ridden on the roads for at least two times but
now on Road i → l, is Poisson with service rate

b
(2)
i,l = m

(2)
i,l ξi,l. (6)

(b) The routing matrix and the relative arrival rates
Now we compute the relative arrival rate of each node in the closed queueing

network. As opposed to the service rates analyzed above, it is more complicated
to determine the relative arrival rates by means of the routing matrix.

Based on Chap. 7 in Bolch et al. [2], we denote by ei(ni) and e
(r)
i,l (m(r)

i,l ) the
relative arrival rates of the ith station with ni parking bikes, and of Road i → l

with m
(r)
i,l riding bikes of class r, respectively. We write

E = {−→e (−→n ) : −→n ∈ Ω},

where −→e (−→n ) = (e1(−→n ), e2(−→n ), . . . , eN−1(−→n ), eN (−→n )),

and for 1 ≤ i ≤ N

ei(−→n ) =(ei(ni); e
(1)
i,1 (m(1)

i,1 ), e(2)i,1 (m(2)
i,1 ); . . . ; e(1)i,i−1(m

(1)
i,i−1), e

(2)
i,i−1(m

(2)
i,i−1);

e
(1)
i,i+1(m

(1)
i,i+1), e

(2)
i,i+1(m

(2)
i,i+1); . . . ; e

(1)
i,N (m(1)

i,N ), e(2)i,N (m(2)
i,N )).
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Now we introduce two useful notations: −→g i and −→g (r)
i,l as follows:

−→g i : A unit row vector of size N(2N − 1), which is given by the method of
replacing elements from −→n to −→g i, that is, corresponding to the row vector−→n , the element ni is replaced by one, while all other elements of the vector−→n are replaced by zeros.−→g (r)

i,l : A unit row vector of size N(2N − 1), which is given by the method of

replacing elements from −→n to −→g (r)
i,l , that is, corresponding to the row vector

−→n , the element m
(r)
i,l is replaced by one, while all other elements of the vector

−→n are replaced by zeros.

To compute the vector −→e (−→n ), we first need to give the routing matrix P of
the closed queueing network as follows:

P = (P−→n ,−→n ′)−→n ,−→n ′∈Ω,

where the routing matrix P is of order (K + 1)N (NC + 1)2N(N−1), and the
element P−→n ,−→n ′ is computed from the following three cases:

Case one: From a station to a road
For 1 ≤ i, l ≤ N with l �= i, we observe a transition route from the ith station

to Road i → l. If a rented bike leaves the ith station and enters Road i → l, then
1 ≤ ni ≤ K, and there is a two-element change: (ni,m

(1)
i,l ) → (ni − 1,m

(1)
i,l + 1).

Thus we obtain that for 1 ≤ ni ≤ K

P−→n ,−→n ′ = P−→n ,−→n −−→g i+
−→g (1)

i,l

= pi,l

by means of Assumption (3) of Sect. 2. There are NK(N −1) such elements with
P−→n ,−→n ′ = P−→n ,−→n −−→g i+

−→g (1)
i,l

= pi,l in the closed queueing network.

Case two: From a road to a station
For r = 1, 2 and 1 ≤ k, i, l ≤ N with i �= k and l �= i, we observe a transition

route from Road k → i to the ith station. If a riding bike of class r leaves Road
k → i, then either it enters the ith station if 0 ≤ ni ≤ K − 1; or it goes to Road
i → l if ni = K.

In the former case (the riding bike of class r enters the ith station if 0 ≤
ni ≤ K − 1), we obtain for 0 ≤ ni ≤ K − 1, there is a two-element change:
(m(r)

k,i , ni) → (m(r)
k,i − 1, ni + 1), hence this results in for 0 ≤ ni ≤ K − 1

P−→n ,−→n ′ = P−→n ,−→n −−→g (r)
k,i+

−→g i
= 1,

since the end of Road k → i is only the ith station. There are 2N2(N − 1)CK
such elements with P−→n ,−→n ′ = P−→n ,−→n −−→g (r)

k,i+
−→g i

= 1 in the closed queueing network.

Case three: From a road to another road
In the latter case (the riding bike of class r goes to Road i → l if ni = K),

we see that there is a two-element change: (m(r)
k,i ,m

(2)
i,l ) → (m(r)

k,i − 1,m
(2)
i,l + 1).

Thus we obtain that for ni = K

P−→n ,−→n ′ = P−→n ,−→n −−→g (r)
k,i+

−→g (2)
i,l

= αi,l
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by means of Assumption (4) of Sect. 2. There are 2N3(N − 1)2C2 such elements
with P−→n ,−→n ′ = P−→n ,−→n −−→g (r)

k,i+
−→g (2)

i,l

= αi,l in the closed queueing network.

In summary, the above analysis gives

P−→n ,−→n ′ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P−→n ,−→n −−→g i+
−→g (1)

i,l

= pi,l, if 1 ≤ ni ≤ K, (station → road)

P−→n ,−→n −−→g (r)
k,i

+−→g i
= 1, if 0 ≤ ni ≤ K − 1, (road → station)

P−→n ,−→n −−→g (r)
k,i

+−→g (2)
i,l

= αi,l, if ni = K, (road → road, a full station)

0, otherwise.

At the same time, the minimal number of zero elements in the routing matrix
P is given by
[
(K + 1)N (NC + 1)2N(N−1)

]2
− NK (N − 1) − 2N2 (N − 1) CK − 2N3 (N − 1)2 C2.

This also shows that there exist more zero elements in the routing matrix P.
We write a row vector

−→� = (−→e (−→n ) : −→e (−→n ) ∈ E) ,

where

E = {−→e (−→n ) : −→n ∈ Ω} .

Theorem 1. The routing matrix P is irreducible and stochastic (i.e., P1 = 1,
where 1 is a column vector of ones), and there exists a unique positive solution
to the following system of linear equations

{−→� =
−→� P,(−→�

)
1

= 1,

where
(−→�

)
1
is the first element of the row vector

−→� .

Proof: The outline of this proof is described as follows. It is well-known that
the routing structure of the closed queueing network indicates that the routing
matrix P is stochastic, and the accessibility of each station or road of the bike
sharing system shows that the routing matrix P is irreducible. Thus the routing
matrix P is not only irreducible but also stochastic. Note that the size of the
routing matrix P is (K + 1)N (NC + 1)2N(N−1), it follows from Theorem 1.1 (a)
and (b) of Chap. 1 in Seneta [21] that the left eigenvector

−→� of the irreducible
stochastic matrix P corresponding to the maximal eigenvalue 1 is more than 0,
that is,

−→� > 0, and
−→� is unique for

(−→�
)
1

= 1. This completes this proof. �
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4 A Product-Form Solution and Performance Analysis

In this section, we first provide a product-form solution to the steady state joint
probabilities of N (2N − 1) queue lengths in the closed queueing network. Then
we analyze performance measures of the bike sharing system by means of steady
state joint probabilities.

Note that

X (t) = (L1 (t) ,L2 (t) , . . . ,LN−1 (t) ,LN (t)) ,

where for 1 ≤ i ≤ N

Li (t) =
(
Qi (t) ;R(1)

i,1 (t) , R
(2)
i,1 (t) ;R(1)

i,2 (t) , R
(2)
i,2 (t) ; . . . ;R(1)

i,i−1 (t) , R
(2)
i,i−1 (t) ;

R
(1)
i,i+1 (t) , R

(2)
i,i+1 (t) ;R(1)

i,i+2 (t) , R
(2)
i,i+2 (t) ; . . . ;R(1)

i,N (t) , R
(2)
i,N (t)

)
.

At the same time, {X (t) : t ≥ 0} is an irreducible continuous-time Markov
process on state space Ω which contains (K + 1)N (NC + 1)2N(N−1) states.
Therefore, the Markov process {X (t) : t ≥ 0} is irreducible and positive recur-
rent. In this case, we set

π (−→n ) = lim
t→+∞ P

{
Qi (t) = ni, 1 ≤ i ≤ N ; R

(1)
k,l (t) = m

(1)
k,l , R

(2)
k,l (t) = m

(2)
k,l ,

1 ≤ k, l ≤ N with k �= l,

N∑
i=1

ni +
∑

r=1,2

N∑
k=1

N∑
l �=k

m
(r)
k,l = NC

⎫⎬
⎭ .

(a) A product-form solution to the steady state joint probabilities
The following theorem provides a product-form solution to the steady state

joint probability π (−→n ) for −→n ∈ Ω; while its proof is easy by means of Chap. 7
in Bolch et al. [2] and is omitted here.

Theorem 2. For the closed queueing network of the bike sharing system, the
steady state joint probability π (−→n ) is given by

π (−→n ) =
1
G

N∏
i=1

F (ni)
N∏

k=1

N∏
l �=k

mk,l!H(1)
(
m

(1)
k,l

)
H(2)

(
m

(2)
k,l

)
,

where −→n ∈ Ω, mk,l = m
(1)
k,l + m

(2)
k,l ,

F (ni) =

{[
ei(ni)

λi

]ni

, 1 ≤ ni ≤ K,

1, ni = 0,

H(1)
(
m

(1)
k,l

)
=

⎧⎪⎨
⎪⎩

1

m
(1)
k,l !

[
e
(1)
k,l

(
m

(1)
k,l

)

m
(1)
k,lμk,l

]m
(1)
k,l

, 1 ≤ m
(1)
k,l ≤ NC,

1, m
(1)
k,l = 0,
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H(2)
(
m

(2)
k,l

)
=

⎧⎪⎨
⎪⎩

1

m
(2)
k,l !

[
e
(2)
k,l

(
m

(2)
k,l

)

m
(2)
k,lξk,l

]m
(2)
k,l

, 1 ≤ m
(2)
k,l ≤ NC,

1, m
(2)
k,l = 0,

and G is a normalization constant, given by

G =
∑

−→n ∈Ω

N∏
i=1

F (ni)
N∏

k=1

N∏
l �=k

mk,l!H(1)
(
m

(1)
k,l

)
H(2)

(
m

(2)
k,l

)
.

(b) Performance analysis
Now we consider three key performance measures of the bike sharing system

in terms of the steady state joint probability π (−→n ) for −→n ∈ Ω.
(1) The steady state probability of problematic stations
In the study of bike sharing systems, it is a key task to compute the steady

state probability of problematic stations. To this end, our aim is to care for
the ith station with respect to its full or empty cases. Thus the steady state
probability 	 of problematic stations is given by

	 =
N∑

i=1

P {ni = 0 or ni = K} =
N∑

i=1

P {ni = 0} +
N∑

i=1

P {ni = K}

=
N∑

i=1

∑
−→n ∈Ω & ni=0

π (−→n ) +
N∑

i=1

∑
−→n ∈Ω & ni=K

π (−→n ) .

(2) The means of steady state queue lengths
The steady state mean of the number of bikes parked at the ith station is

given by
Qi =

∑
−→n ∈Ω & 1≤ni≤K

niπ (−→n ) , 1 ≤ i ≤ N,

and the steady state mean of the number of bikes ridden on the N (N − 1) roads
is given by

Q0 = NC −
N∑

i=1

⎡
⎣ ∑

−→n ∈Ω & 1≤ni≤K

niπ (−→n )

⎤
⎦ ,

or

Q0 =
∑

r=1,2

N∑
k=1

N∑
l �=k

∑
−→n ∈Ω & 1≤m

(r)
k,l≤NC

m
(r)
k,lπ (−→n ) .

5 Concluding Remarks

In this paper, we provide a unified framework for analyzing closed queueing
networks in the study of bike sharing systems, and show that this framework
of closed queueing networks is interesting, difficult and challenging. We describe
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and analyze a closed queueing network corresponding to a large-scale bike sharing
system, and specifically, we provide a product-form solution to the steady state
joint probabilities of N (2N − 1) queue lengths, which leads to being able to
calculate the steady state probability of problematic stations, and more generally,
to analyze performance measures of this bike sharing system. We hope that the
methodology and results of this paper can be applicable in the study of more
general bike sharing systems by means of closed queueing networks. Along these
lines, there are a number of interesting areas for potential future research, for
example:

• Developing effective algorithms for computing the routing matrix, the relative
arrival rates, and the steady state joint probabilities of queue lengths;

• analyzing bike sharing systems with Markovian arrival processes (MAPs) of
customers to rent bikes, and phase type (PH) riding-bike times on the roads;

• considering the heterogeneity of bike sharing systems with an irreducible
graph with stations, roads and their connections;

• discussing repositioning bikes by trucks in bike sharing systems with infor-
mation technologies; and

• applying periodic MAPs, periodic PH distributions, or periodic Markov
processes to studying time-inhomogeneous bike sharing systems.
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dation of China under grant No. 71271187 and No. 71471160, and the Fostering Plan of
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Abstract. In this paper we obtained the probability density function of
perishable goods stock under switch-hysteresis control and random sales.
The optimal parameters of algorithm control for the case of switch con-
trol of production and exponentially distributed purchase amounts were
found.

Keywords: Perishable goods · Hysteresis control · Probability density
function

1 Introduction

Models and methods of queueing theory [1] are widely used in various areas and,
in particular, can be used to analyze inventory management problems with a lim-
ited shelf life, which have been intensively studied in recent years. Let us cite, for
example, review articles on this subject – S.K. Goyal, B.C. Giri [2], M. Bakker,
J. Riezebos, R.H. Teunter [3]. Also worth noting are papers by V.K. Mishra [4],
R. Begum, S.K. Sahu, R. [5], where the authors consider models of inventory man-
agement of continuously deteriorating goods under the assumption of a known
demand function. In V. Sharma’s and R. R. Chaudhary’s paper [6] a model is con-
sidered where demand is a known function of time, while the deterioration process
is random and follows a Weibull distribution. In K. Tripathy’s and U. Mishra’s
paper [7] a model is considered where demand is a known function of price.
The relationship between the problems of queueing theory and inventory control
theory is clearly seen in the works of M. Schwarz and H. Daduna [8].

2 Mathematical Model of the Problem

We consider a single-line queueing system (Fig. 1) with arrival rate c of perishable
goods which are input to the system. We assume that the arrival process can be
approximated in such a way that c units arrive per unit time.

The goods continuously deteriorate as they are stored. Let S(t) be the amount
of goods at time t. We assume that in a small time interval Δt loss is equal to
kS(t)Δt. The service, which in the work will be called sales, is provided by the
parties with random size x, where the values of purchases x are an independent
c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 192–206, 2016.
DOI: 10.1007/978-3-319-44615-8 17
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Fig. 1. Mathematical model

random variable with a probability density function ϕ(x), mean M {x} = a and
the second moment M

{
x2

}
= a2. The selling times follow the Poisson process

with intensity λ that depends on a selling price b. For the given price b and, hence,
sales process intensity λ the average amount of goods S̄(t) is defined as

S̄(t) = S(0)e−kt +
c − λa

k

(
1 − e−kt

)
.

Thus if c − λa > 0 and t � 1 we have a constant stock of unsold goods which is
undesirable. If c − λa ≤ 0 we have an unsatisfied demand. Therefore, we need to
control either selling price b (this problem was considered in [9,10]), or the rate of
goods arrival c depending on the current stock.

In this paper we assume that production is controlled in the following way. The
two boundary values for the stock of goods are set, S1 and S2, besides S2 > S1. For
S < S1 a production rate c0 is established, for S > S2 a production rate c1 < c0
is established. For S1 ≤ S ≤ S2 the production rate will be either c = c0 or c = c1
depending on the trajectory which the process S(t) followed when it entered this
domain. If it crossed the lower bound S1 upwards then c = c0, while if it crossed
the upper bound S2 downwards, then c = c1. Thus the production rate c = c1
is set as soon as S(t) reaches S2 and lasts until the stock falls to S1. The domain
S1 ≤ S ≤ S2 is in fact what we call the domain of hysteresis stock control. In
accordance with this, the intensity of the production rate at any given moment is
given by

c(S) =

⎧⎨
⎩

c0, S < S1,
c0 or c1, S1 ≤ S ≤ S2,

c1, S > S2.

⎫⎬
⎭ (1)

It is natural to assume that c0 − λa > 0. Finally, there may be a situation
when the current demand cannot be fully satisfied by the current stock of goods.
In such case we assume that S(t) < 0. The orders are satisfied in order of arrival.

The main goal of this paper is to determine the probability density function of
the stock of goods in this model under several additional assumptions.

Let us denote

P0(S, t)dS = Pr {S ≤ S(t) < S + dS, c(t) = c0} , S < S1,
P2(S, t)dS = Pr {S ≤ S(t) < S + dS, c(t) = c1} , S > S2,
Pi1(S, t)dS = Pr {S ≤ S(t) < S + dS, c(t) = ci} , i = 0, 1, S1 ≤ S ≤ S2.
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Obviously, the probability density function of the stock of goods P (S, t) is deter-
mined by the relation

P (S, t) =

⎧⎨
⎩

P0(S, t), S < S1,
P01(S, t) + P11(S, t), S1 ≤ S ≤ S2,

P2(S, t), S > S2.

⎫⎬
⎭ (2)

Theorem 1. If Pi(S, t), Pi1(S, t) are differentiable in t, SPi(S, t), SPi1(S, t) are
differentiable in S, then functions Pi(S, t), Pi1(S, t) satisfy the following system of
Kolmogorov equations

∂P2(S, t)
∂t

= −λP2(S, t) − ∂

∂S

(
(c1 − kS)P2(S, t)

)

+λ

∞∫
0

P2(S + x, t)ϕ(x)dx, S > S2,
(3)

∂P11(S, t)
∂t

= −λP11(S, t) − ∂

∂S
((c1 − kS)P11(S, t))

+λ

S2−S∫
0

P11(S + x, t)ϕ(x)dx + λ

∞∫
S2−S

P2(S + x, t)ϕ(x)dx, S1 ≤ S ≤ S2,
(4)

∂P01(S, t)
∂t

= −λP01(S, t) − ∂

∂S
((c0 − kS)P01(S, t))

+λ

S2−S∫
0

P01(S + x, t)ϕ(x)dx, S1 ≤ S ≤ S2,
(5)

∂P0(S, t)
∂t

= −λP0(S, t) − ∂

∂S
((c0 − kI(S)S)P0(S, t))

+λ

S1−S∫
0

P0(S + x, t)ϕ(x)dx + λ

S2−S∫
S1−S

P01(S + x, t)ϕ(x)dx

+λ

S2−S∫
S1−S

P11(S + x, t)ϕ(x)dx + λ

∞∫
S2−S

P2(S + x, t)ϕ(x)dx, S < S1,

(6)

where I(x) is a step unit function.

Proof. Let us start with domain S > S2. We shall consider two close moments of
time t and t + Δt, where Δt � 1. Under the given assumptions the conditional
probability
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P {S2 ≤ S(t + Δt) < z, c(t + Δt) = c1 |S(t) = S, c(t) = c1 }
= (1 − λΔt)I(z − S − (c1 − kS)Δt)

+λΔt

S−S2∫
0

I(z − S + x)ϕ(x)dx + o(Δt).
(7)

Thus for z ≥ S2 probability

P {S2 ≤ S(t + Δt) < z, c(t + Δt) = c1}

= (1 − λΔt)

∞∫
S2

I(z − S − (c1 − kS)Δt)P2(S, t)dS

+λΔt

∞∫
S2

S−S2∫
0

I(z − S + x)ϕ(x)dxP2(S, t)dS + o(Δt).

(8)

For z ≥ S2 and a small Δt the integral

∞∫
S2

I(z − S − (c1 − kS)Δt)P2(S, t)dS =

z−(c1−kz)Δt+o(Δt)∫
S2

P2(S, t)dS

=

z∫
S2

P2(S, t)dS − P2(z, t)(c1 − kz)Δt + o(Δt)

and the integral

∞∫
S2

S−S2∫
0

I(z − S + x)ϕ(x)dxP2(S, t)dS =

∞∫
0

ϕ(x)

z+x∫
S2+x

P2(S, t)dSdx.

Substituting the expressions above into (8), differentiating with respect to z and
taking the limit Δt → 0 we derive Eq. (3).

Consider now the domain S1 ≤ S ≤ S2. In this domain two options are pos-
sible, c(S) = c1 and c(S) = c0. First, we will consider the case c(S) = c1. For
z < S2 conditional probabilities

P {S1 ≤ S(t + Δt) < z, c(t + Δt) = c1 |S(t) = S < S2, c(t) = c1 }

= (1 − λΔt)I(z − S − (c1 − kS)Δt) + λΔt

S−S1∫
0

I(z − S + x)ϕ(x)dx + o(Δt),

P {S1 ≤ S(t + Δt) < z, c(t + Δt) = c1 |S(t) = S > S2, c(t) = c1 }

= λΔt

S−S1∫
0

I(z − S + x)ϕ(x)dx + o(Δt).
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Therefore, the probability

P {S1 ≤ S(t + Δt) < z, c(t + Δt) = c1}

= (1 − λΔt)

S2∫
S1

I(z − S − (c1 − kS)Δt)P11(S, t)dS

+λΔt

S2∫
S1

S−S1∫
0

I(z − S + x)ϕ(x)dxP11(S, t)dS

+λΔt

∞∫
S2

S−S1∫
0

I(z − S + x)ϕ(x)dxP2(S, t)dS + o(Δt).

(9)

For z ≥ S1 and a small Δt the integral

S2∫
S1

I(z − S − (c1 − kS)Δt)P11(S, t)dS =

z−(c1−kz)+o(Δt)∫
S1

P11(S, t)dS

=

z∫
S1

P11(S, t)dS − P11(z, t)(c1 − kz)Δt + o(Δt),

the integrals

∞∫
S2

S−S1∫
0

I(z − S + x)ϕ(x)dxP2(S, t)dS =

∞∫
S2

S−S1∫
S−z

ϕ(x)dxP2(S, t)dS,

S2∫
S1

S−S1∫
0

I(z − S + x)ϕ(x)dxP11(S, t)dS

=

S2∫
S1

S−S1∫
0

ϕ(x)dxP11(S, t)dS −
S2∫
z

S−z∫
0

ϕ(x)dxP11(S, t)dS.

Substituting the expressions above into (9), differentiating with respect to z and
taking the limit Δt → 0 we derive Eq. (4).

Let us consider now the case, when c(S) = c0 In this case, the transitions from
the domain S > S2 are impossible, so they set to c(S) = c1. Therefore we have a
single conditional probability

P {S1 ≤ S(t + Δt) < z, c(t + Δt) = c0 |S(t) = S < S2, c(t) = c0 }

= (1 − λΔt)I(z − S − (c0 − kS)Δt) + λΔt

S−S1∫
0

I(z − S + x)ϕ(x)dx + o(Δt),
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Consequently, the probability

P {S1 ≤ S(t + Δt) < z, c(t + Δt) = c0}

= (1 − λΔt)

S2∫
S1

I(z − S − (c0 − kS)Δt)P01(S, t)dS

+λΔt

S2∫
S1

S−S1∫
0

I(z − S + x)ϕ(x)dxP01(S, t)dS + o(Δt).

(10)

Transforming the integrals in the expression (10), differentiating and taking the
limit Δt → 0, we derive Eq. (5).

Let us consider finally the domain z ≤ S1. The transitions in this domain are
possible from both the area S > S2 and S1 ≤ S ≤ S2. In this case the probability

P {S(t + Δt) < z, c(t + Δt) = c0}

= (1 − λΔt)

S1∫
−∞

I(z − S − (c0 − kI(S)S)Δt)P0(S, t)dS

+λΔt

S1∫
−∞

∞∫
0

I(z − S + x)ϕ(x)dxP0(S, t)dS

+λΔt

S2∫
S1

∞∫
S−S1

I(z − S + x)ϕ(x)dx [P01(S, t) + P11(S, t)] dS

+λΔt

∞∫
S2

∞∫
S−S1

I(z − S + x)ϕ(x)dxP2(S, t)dS + o(Δt),

(11)

because if S < 0 there is no products.
Given that

S1∫
−∞

∞∫
0

I(z − S + x)ϕ(x)dxP (S, t)dS =

z∫
−∞

P (S, t)dS +

S1∫
z

P (S, t)

∞∫
S−z

ϕ(x)dxdS,

transforming the integrals in the expression (11), differentiating and taking the
limit Δt → 0, we derive Eq. (6).

The solution of the system (3)–(6) must, apparently, satisfy the following nor-
malising condition

S1∫
−∞

P0(S, t)dS +

S2∫
S1

(P01(S, t) + P11(S, t))dS +

∞∫
S2

P2(S, t)dS = 1. (12)

and must satisfy additional conditions

P0(S1) = P01(S1), P11(S1) = 0, (13)
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which result from the following. On the trajectory with c(S) = c1 the point S = S1

is achievable only from above. Therefore

P {S1 ≤ S(t + Δt) < S1 + dz, c(t + Δt) = c1}

= λΔt

S2∫
S1

S−S1∫
0

I(S1 + dz − S + x)ϕ(x)dxP11(S, t)dS

+λΔt

∞∫
S2

S−S1∫
0

I(S1 + dz − S + x)ϕ(x)dxP2(S, t)dS + o(Δt).

whence under Δt → 0 follows, that P11(S1) = 0. The second relation (13) is a
consequence of

P01(S1 + 0, t + Δt) = (1 − λΔt)P0(S1 − 0, t) + O(Δt).

3 Asymptotic Expression for Probability Density Function
of the Stock of Goods

To obtain the exact solution for the system (3)–(6) is possible only in exceptional
cases. It is, therefore, of interest to construct an approximate solution of the sys-
tem (3)–(6) in the steady state under some additional asymptotic assumptions.
Let us introduce parameter ε � 1 and assume that the parameters c0, c1 and k
satisfy the following conditions:

c0 = (1 + αε)λa, c1 = (1 + βε)λa, k = k0ε
2, (14)

where β < α. The first two relations in (14) mean that the amount of products
produced per unit time almost equals the mean of sales per unit time for any S.
The last relation in (14) means that the ratio (c0 − λa)/k � 1, i.e. products in
storage deteriorate rather slowly. It is natural to assume that threshold values S1

and S2, which define the domain of hysteresis control of production, depend on
ε. More precisely we assume that under ε → 0 the threshold values S1(ε) and
S2(ε) → ∞, but there exist finite limits

lim
ε→0

S1(ε) = z1, lim
ε→0

S2(ε) = z2. (15)

Let us consider first the domain S > S2. Let us denote P2(S) = lim
t→∞ P2(S, t).

To find the solution of (3) we introduce the function f2(S, ε) by relation

P2(S) = εf2(εS, ε) (16)

and assume that the function f2(S, ε) is twice differentiable in S and is uniformly
continuous in ε. Substituting (16) into (3) and making the change of variables
εS = z, we see that function f2(z, ε) satisfies the equation

λf2(z, ε) = − d

dz
((εc1 − kz)f2(z, ε)) + λ

∞∫
0

f2(z + εx, ε)ϕ(x)dx = 0. (17)
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Taking Taylor expansion of f2(z+εx, ε) with respect to the first argument, consid-
ering the first three terms of the sum and taking into consideration relation (14),
we get

− d

dz
((βλa − k0z)f2(z, ε)) +

λa2

2
d2

dz2
f2(z, ε) +

o(ε2)
ε2

= 0. (18)

Let us denote
f2(z) = lim

ε→∞ f2(z, ε). (19)

Passing to the limit when ε → 0 in (18) we see that the function f2(z) satisfies the
equation

d2

dz2
f(z) − 2

λa2

d

dz
((βλa − k0z)f2(z) = 0. (20)

Boundary condition P2(+∞) = 0 yields f2(+∞) = 0, taking into account which,
we obtain

f2(z) = Ae− (βλa−k0z)2

λa2k0 . (21)

Wherefrom
f2(z, ε) = Ae

(βλa−k0z)2

λa2k0 + O(ε). (22)

The constant of integration A is to be determined from the conditions of cross-
linking solutions.

Let us consider the domainS1 ≤ S ≤ S2. Let us denotePi1(S) = lim
t→∞ Pi1(t, S).

To find the solution of Eqs. (4) and (5) we introduce the functions fi1(S, ε) by rela-
tion

Pi1 = εfi1(εS, ε), i = 0, 1, (23)

and assume that the functions fi1(S, ε) are twice differentiable in S and are uni-
formly continuous in ε. Substituting (23) into (4) and making the change of vari-
ables εS = z, we see that the function f11(z, ε) satisfies the equation

λf11(z, ε) = − d

dz
((εc1 − kz)f11(z, ε)) + λ

∞∫
0

f11(z + εx, ε)ϕ(x)dx

+R(z, ε) = 0.

(24)

where

R(z, ε) =

∞∫
z2−z

ε

f2(z + εx, ε)ϕ(x)dx − λ

∞∫
z2−z

ε

f11(z + εx, ε)ϕ(x)dx. (25)

The functions f2(z, ε) and f11(z, ε) are differentiable and hence bounded. There-
fore, as z �= z2

R(z, ε) ≤ const

∞∫
z2−z

ε

ϕ(x)dx ≤ const
ε2

(z2 − z)2

∞∫
z2−z

ε

x2ϕ(x)dx = O(ε2),
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since the second moment M{x2} = a2 exists by the assumptions of the model.
Hence we are not taking into account the member R(z, ε) in (24). Let us denote

f11(z) = lim
ε→0

f11(z, ε). (26)

Similarly the derivation of relation (20) we obtain, that function f11(z) satisfies
the equation

d2

dz2
f11(z) − 2

λa2

d

dz
((βλa − k0z)f11(z)) = 0. (27)

The solution of Eq. (27) has the following form

f11(z) =

⎡
⎣B1 + B2

z∫
z1

e
(βλa−k0x)2

λa2k0 dx

⎤
⎦ e

(βλa−k0z)2

λa2k0 . (28)

Constants B1 and B2 can be derived from the following consideration. There is,
firstly, P11(S1) = εf11(εS1, ε) = 0. Passing to the limit when ε → 0, we obtain
f11(z1) = 0. Therefore B1 = 0. Secondly, function f11(z, ε) must satisfy the initial
equation under z = z2. From Eqs. (3) and (4) under S = S2 we get

λP2(S2) +
d

dS
((c1 − kS)P2(S))

∣∣
S=S2

= λP11(S2) +
d

dS
((c1 − kS)P11(S))|

S=S2
.

(29)

By taking the limit as ε → 0 in (29) we have f2(z2) = f11(z2) or

A = B2

z2∫
z1

e
(βλa−k0x)2

λa2k0 dx. (30)

Let us consider now to the definition of the function f01(z, ε), which follows by
(5) satisfies the equation

λf01(z, ε) = − d
dz ((εc0 − kz)f01(z, ε) + λ

∞∫
0

f01(z + εx, ε)ϕ(x)dx

+R(z, ε) = 0,

(31)

where for z �= z2 R(z, ε) = o(ε2). Therefore this term in the Eq. (31) will not be
taken into account. Similarly to the above, we can show that

f01(z) = lim
ε→0

f01(z, ε) (32)
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satisfies a second-order differential equation

d2

dz2
f01(z) − 2

λa2

d

dz
((αλa − k0z)f01(z)) = 0, (33)

the general solution of which has the form

f01(z) =

⎡
⎣D1 + D2

z2∫
z

e
(αλa−k0x)2

λa2k0 dx

⎤
⎦ e− (αλa−k0z)2

λa2k0 . (34)

For S = S2 the Eq. (5) gives

λP01(S2) +
d

dS
((c0 − kS)P01(s))|S=S2

= 0. (35)

By taking the limit as ε → 0 in (35), we obtain f01(z2) = 0. Wherefrom D1 = 0.
Thus,

f01(z, ε) = D2

z2∫
z

e
(αλa−k0x)2

λa2k0 dxe− (αλa−k0z)2

λa2k0 + O(ε).

Finally, let us consider the domain S < S1. We introduce the function f0(S, ε)
by relation

P0(S) = εf0(εS, ε). (36)

Substituting (36) into (6) we obtain function f0(z, ε) in domain z < z1 defined by
the equation

λf0(z, ε) = − d
dz ((εc0 − kI(z)z)f0(z, ε) + λ

∞∫
0

f0(z + εx, ε)ϕ(x)dx

+R(z, ε) = 0,

(37)

where for z < z1 R(z, ε) = o(ε2) and therefore the last term in (37) will not be
taken into account. Similarly to the above, we can show that

f0(z) = lim
ε→0

f0(z, ε) (38)

satisfies the following equation

d2

dz2
f0(z) − 2

λa2

d

dz
((αλa − k0I(z)z)f0(z)) = 0. (39)

Boundary condition P0(−∞) = 0 yields f0(−∞) = 0. Therefore from Eq. (39) we
obtain

d

dz
f0(z) − 2

λa2
((αλa − k0I(z)z)f0(z)) = 0. (40)

Wherefrom

f0(z) =

⎧⎨
⎩

Fe− (αλa−k0z)2

λa2k0 , 0 < z < z1,

F e− (αλa)2

λa2k0 e
2αa
a2

z, z < 0.
(41)
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The condition P01(S1) = P0(S1) yields f01(z1) = F0(z1). Wherefrom

F = D2

z2∫
z1

e
(αλa−k0x)2

λa2k0 dx. (42)

Finally, for S = S1 from the system of Eqs. (4)–(6), taking into consideration that
P0(S1) = P01(S1) and P11(S1) = 0, we have

d

dz
((εc0 − kz)f0(z, ε)|z=z1

=
d

dz
(εc0 − kz)f01(z, ε))|z=z1

+
d

dz
((εc1 − kz)f11(z, ε))|z=z1

.
(43)

Computing the expressions included in (43) and taking the limit as ε → 0, we
obtain that D2 = B2. Thus, we finally get, that functions fi(z) and fij(z) are
defined by system of relations

f2(z) = B

z2∫
z1

e
(βλa−k0x)2

λa2k0 dxe− (βλa−k0z)2

λa2k0 , z > z2, (44)

f11(z) = B

z∫
z1

e
(βλa−k0x)2

λa2k0 dxe− (βλa−k0z)2

λa2k0 , z1 ≤ z ≤ z2, (45)

f01(z) = B

z2∫
z

e
(αλa−k0x)2

λa2k0 dxe− (αλa−k0z)2

λa2k0 , z1 ≤ z ≤ z2, (46)

f0(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

B

z2∫
z1

e
(αλa−k0x)2

λa2k0 dxe− (αλa−k0z)2

λa2k0 , 0 ≤ z ≤ z1,

B

z2∫
z1

e
(αλa−k0x)2

λa2k0 dxe− (αλa)2

λa2k0 e
2αa
a2

z, z < 0.

(47)

Constant B is defined from normalizing condition, which under ε → 0 takes the
form

z1∫
−∞

f0(z)dz +

z2∫
z1

(f01(z) + f11(z)) dz +

∞∫
z2

f2(z)dz = 1. (48)

Finally we obtain since ε � 1 the probability density function of the stock of goods
has the form
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P (S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εB

z2∫
z1

e
(βλa−k0x)2

λa2k0 dxe− (βλa−k0εS)2

λa2k0 + O(ε), S > S2,

εB

⎡
⎣

z2∫
εS

e
(αλa−k0x)2

λa2k0 dxe− (αλa−k0εS)2

λa2k0

+

εS∫
z1

e
(βλa−k0x)2

λa2k0 dxe− (βλa−k0εS)2

λa2k0

⎤
⎦ + O(ε), S1 ≤ S ≤ S2,

εB

z2∫
z1

e
(αλa−k0x)2

λa2k0 dxe− (αλa−k0εS)2

λa2k0 + O(ε), 0 ≤ S ≤ S1,

εB

z2∫
z1

e
(αλa−k0x)2

λa2k0 dxe− (αλa)2

λa2k0 e
2αa
a2

εS + O(ε), S < 0.

(49)

4 Switch Control of Production for the Case of
Exponentially Distributed Purchase Amounts

Let us consider the simplest case of switch control of production (threshold S1 =
S2) when sales are distributed exponentially

ϕ(x) =
1
a
e− x

a . (50)

In the steady state Eqs. (3)–(6), which define probability density function of the
stock of goods, take the form

λP2(S) +
d

dS
((c1 − kS)P2(S)) − λ

a
e

S
a

∞∫
S

P2(x)e− x
a dx = 0, S ≥ S1, (51)

λP0(S) +
d

dS
((c0 − kI(S)S)P0(S)) − λ

a
e

S
a

S1∫
S

P0(x)e− x
a dx

−λ

a
e

S
a

∞∫
S1

P2(x)e− x
a dx = 0, S < S1.

(52)

Equation (51) can be differentiated and represented as the following differential
equation

d2

dS2
((c1 − kS)P2(S)) − d

dS

(
c1 − kS − λa

a
P2(S)

)
= 0. (53)

The general solution of the Eq. (56) has the form

P2(S) =

⎡
⎣A + A1

S∫
S1

e− x
a (c1 − kx)− λ

k dx

⎤
⎦ e

S
a (c1 − kS)

λ
k −1. (54)
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Constants A and A1 must now be selected so that expression (54) satisfies the
initial Eq. (51). Substituting (54) into (51) and taking into account that by the
assumptions of the model the condition c1 − kS > 0, should be fulfilled, we are
convinced that A1 = 0.

Equation (54) can be differentiated and represented as the following differen-
tial equation

d2

dS2
((c0 − kI(S)S)P0(S)) − d

dS

(
c0 − kI(S)S − λa

a
P0(S)

)
= 0 . (55)

Wherefrom, the subject to boundary condition P0(−∞) = 0, we obtain

P0(S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Be

S

a (c0 − kS)

λ

k
− 1

, 0 ≤ S ≤ S1,

Bc

λ

k
− 1

0 e

c0 − λa

c0a
S

, S < 0.

(56)

To obtain the relationship between the constants A and B we may proceed as
follows. Equations (51) and (52) can be integrated in their domain and we sum up
the results. We obtain

(c1 − kS1)
λ
k P2(S1) = (c0 − kS1)P0(S1). (57)

Substituting the expressions (54) and (56) into (57), we obtain

A = Bγ, γ =
(c0 − kS1)

λ
k

(c1 − kS1)
λ
k

. (58)

The constant B now can be obtained from the normalizing condition.
Consider now the case, then c1 = 0. Obviously, in this case P2(S) = 0, and

probability density function P0(S) is determined by the equation

λP0(S) +
d

dS
((c0 − kI(S)S)P0(S)) − λ

a
e

S
a

S1∫
S

P0(x)e− x
a dx = 0, S < S1, (59)

the solution of which has the form (56).
Let c0 = (1 + θ)λa, where θ > 0. Let us denote μ = λ/k. Parameter μ shows

how the product sales rate exceeds the rate of its loss. Then

P0(S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

De

S

a

(
1 − S

μ(1 + θ)a

)μ−1

, 0 ≤ S ≤ S1,

De

θ

(1 + θ)a
S

, S < 0,

(60)

where

D =

⎡
⎣ (1 + θ)a

θ
+

S1∫
0

e
S
a

(
1 − S

μ(1 + θ)a

)μ−1

dS

⎤
⎦

−1

. (61)
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The dependence of probability density function P0(S) of S is given on the
Fig. 2. The parameters μ = 20, θ = 0.5, a = 1.5.

In the model considered mean profit R per unit time on the condition that the
product unit cost per unit time equals 1, will be equal to

R = λαb

∞∫
0

P0(S)dS − c0,

where b is the selling price of the product unit. Or

R = λab − λa

⎛
⎜⎜⎜⎝1 + θ +

b

1 + θ
(1+θ)a

S1∫
0

e
S
a

(
1 − S

μ(1+θ)a

)μ−1

dS

⎞
⎟⎟⎟⎠ . (62)

Fig. 2. Relationship between the proba-
bility density P0(S) and the stock size S.

Fig. 3. Relationship between R1 and
parameter θ.

From (62) it follows, that for all values of other parameters, the optimal value
S1opt. = μ(1+θ)a and for maximizing R we should minimize the following expres-
sion by θ

R1 = 1 + θ + b

⎛
⎝1 + μθ

1∫
0

eμ(1+θ)z(1 − z)μ−1dz

⎞
⎠

−1

. (63)

The relationship between R1 and θ is given in Fig. 3, the selling price b = 2.
Thus, the values of the considered parameters, the production rate c0 must be

about 30 % higher than the mean value of the sales λa.
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5 Conclusion

In this paper we have obtained equations for the probability density function of
perishable goods stock under switch-hysteresis control of the production rate.
Under arbitrary distribution values of sales we have obtained the approximate
solutions of these equations in the case when the rate of production “is almost
the same” as the rate of its sales and the products deteriorate rather slowly under
storage. In the case of the exponential distribution of sales and under the switch
control of the production rate the exact solution of equations was found and the
problem of selecting the optimal production rate was solved, thus maximizing the
average profit per unit time. A similar approach can be used to investigate other
models of the production and sales control of perishable goods, in particular, a
model with continuous dependence of the rate of production from the current
stock of products.
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Abstract. In spite of their low frequency, rare events often play a major
role in determining systems performance. In most cases they can be
analysed only through simulation with ad-hoc techniques since tradi-
tional Monte Carlo approaches are quite inefficient in terms of simulation
length and/or estimation accuracy. Among rare event simulation tech-
niques, conditional Monte Carlo is an interesting approach as it always
leads to variance reduction. Unfortunately, it is often impossible, or at
least very difficult, to find a suitable conditioning strategy. To tackle
this issue, the applicability of a bridge process is proposed in the case of
queueing systems with Gaussian inputs. In more detail, overflow proba-
bility and busy-period length are investigated and the analytical expres-
sions of the corresponding estimators are derived. Finally, the effective-
ness of the proposed approach is investigated through simulations.

Keywords: Gaussian processes · Conditional Monte Carlo · Bridge
process · Rare events

1 Introduction

By definition, rare events are events that occur with a low frequency and are
associated with large deviations from normal system behaviour. Such events typ-
ically determine severe consequences in several natural and societal frameworks,
such as major earthquakes, floods, solar flares, industrial accidents and financial
market crashes to name just a few. In teletraffic engineering, rare events are
related to packet losses in Quality of Service (QoS) supporting network archi-
tectures (see, for instance [8], where loss rates below 10−9 are considered for
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high–quality video) or to long lasting busy periods, that might lead to burst of
losses (unless suitable congestion control techniques are employed).

Even for elementary single server queueing systems, analytical results have
been derived only when a Markovian structure can be identified in the system.
Unfortunately, Joseph (long range dependence) and Noah (infinite variance syn-
drome) effects are well known features of packet traffic [21], for which Markovian
models cannot account (at least in a parsimonious and physically-understandable
way). Indeed, these effects can be better described by self-similar models, as orig-
inally highlighted by Mandelbrot (who proposed such terminology) in the frame-
work of hydrology [14], and have a deep impact in terms of network dimensioning
and QoS issues [2].

The first works on fractal queueing theory date back to the mid 1990s [16],
but in most cases only logarithmic asymptotics are available, typically derived
in the framework of Large Deviation Theory (LDT) [3], while exact asymptot-
ics have been found only in special cases and often depend on parameters (for
instance, Pickands’ constants) that can be estimated only numerically (see [15]
and references therein). Hence, discrete-event simulation often becomes the only
possible way for performance evaluation.

Simulation is a powerful tool to study the performance of complex systems
with an arbitrary level of detail, but the traditional approach, known in the
literature as crude Monte-Carlo (MC) and implemented by most of the network
simulators, becomes highly inefficient when the event of interest gets rarer and
rarer. Indeed, for a fixed accuracy of the estimates the length of the simulation
is inversely proportional to the target probability, that can assume values of the
order of 10−9 as mentioned above. Moreover, in practical situations one sample
may include generation of a huge amount (of the order of millions or more,
depending on the time horizon and the complexity of the system) of random
numbers.

Hence, in the literature special techniques have been proposed for rare event
simulation, including parallel/distributed simulation (that might become very
expensive to get significant speed-ups) and Variance Reduction techniques, aim-
ing at achieving the desired accuracy with a lower number of samples [18]. It is
well-known that, unlike crude MC simulation, the latter generally require some
additional information about the behaviour of the system, such as the one pro-
vided (although in an asymptotic and eventually approximate form) by LDT.
For instance, the optimal choice of the thresholds in RESTART (REpetitive Sim-
ulation Trials After Reaching Threshold) is based on the knowledge of the target
probability [20] and in Importance Sampling (IS) under an improper choice of the
change of measure [7] the variance may even grow infinitely [6], although, when
applied properly, enormous variance reduction (several orders of magnitude with
respect to crude MC) can be obtained. Moreover, optimal changes of measure
are known only for very simple queueing systems and heuristic approaches (such
as the exchange of arrival and service rates in Markovian tandem queues or the
use of the most-likely path in Gaussian queues) often work poorly for arbitrary
choices of the system parameters.
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In this paper we focus on an alternative approach, known as Conditional
Monte Carlo. In a nutshell, the target probability is expressed as a conditional
expectation and this always leads to variance reduction. Unfortunately, it is often
impossible, or at least very difficult, to find a suitable conditioning quantity. In
the case of Gaussian processes, it is easy to overcome this issue by expressing the
target probability as a function of the corresponding bridge process, as originally
proposed in [4] for the estimation of the overflow probability. Note that Gaus-
sianity of the input process is not a severe limitation, at least in the teletraffic
framework. Indeed, Gaussian processes can be seen as the resulting aggregate
process of many superimposed independent sources and are able to take into
account the long memory properties of real traffic, while keeping a relatively
simple and elegant description.

The contribution of the paper is two–fold: on the one hand, the properties of
the Bridge MC approach are presented as a direct consequence of general results
for Conditional MC, on the other hand the applicability and the effectiveness
of the method are investigated in two different scenarios of practical relevance:
packet overflow and duration of busy periods.

The rest of the paper is organized as follows. In Sect. 2 we introduce the
general theory beyond rare event simulation and recall the basic features of the
Conditional MC method, while in the following Section we present the Bridge
MC approach, deriving the analytical expressions for the estimators of overflow
probability and long duration of high activity periods. Then, simulation results
for both case studies are discussed in Sect. 4 and the main contributions of the
paper are summarized in the Conclusions.

2 Crude Monte Carlo vs. Conditional Monte Carlo

Given a random process X, let us consider estimating the probability

π = P(X ∈ A) := E I(X ∈ A) (1)

for some Borel set A of the paths of the process X, where I denotes the indi-
cator function. To estimate π by crude MC simulation, we should generate N
independent sample paths X1, ...,XN of the process X and calculate the sample
mean

π̃N :=
1
N

N∑
n=1

In , (2)

where In := I (Xn ∈ A). The estimator (2) is unbiased and its variance is given
by

Var [π̃N ] =
π(1 − π)

N
.
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Although the estimator variance decreases with the target probability π, this
does not imply an accurate estimate in the case of rare events. Indeed, a typ-
ical measure of the goodness of the estimator is represented by the relative
error (RE):

RE [π̃N )] :=

√
Var [π̃N ]
Eπ̃N

∼ 1√
πN

as π → 0 (3)

that diverges for small values of the target probability. In other words, the RE
of the standard MC estimator is unbounded when the event becomes rare and
the number of samples required to get a bounded RE is inversely proportional
to π.

To overcome this problem, different rare event simulation techniques have
been proposed in the literature [18]. In particular, as already discussed in Sect. 1,
variance reduction techniques aim at modifying the estimator (2) in order to
reduce its variance, hence requiring fewer samples for the desired accuracy.
Bounded RE represents the ideal case, in which the accuracy of the estima-
tion does not depend on the rarity of the event. However, such a criterion is
rarely verified and in many practical situations the RE grows, but not as fast as
in the crude MC case.

An approach that always leads to variance reduction is the method of sim-
ulation by conditioning, known in the literature as conditional MC [18]. Let us
denote by Z the indicator function of the target event, i.e.

Z = I(X ∈ A),

and assume that there is an auxiliary random variable Y correlated with Z such
that E[Z|Y ] is available in explicit form. Then, π can be rewritten as

π = P(X ∈ A) := E [E[Z|Y ]] , (4)

where the outer expectation is taken with respect to Y , while E[Z|Y ] is known
by hypothesis. Hence, the corresponding unbiased estimator of π becomes

π̂N =
1
N

N∑
n=1

E[Z|Yn], (5)

where Y1, ..., YN are N samples of Y .
It is easy to verify that the variance of (5) is always less than the variance

of (2) since
Var[Z] = E[Var[Z|Y ]] + Var[E[Z|Y ]]. (6)

The latter result is a really attractive feature of conditional MC, not valid, in
general, for variance reduction techniques (in spite of their name). For instance,
in case of IS a well-known heuristic is that changes of measure suggested by LDT
can reduce variance by many orders of magnitude (with speed-up factors higher
than conditional MC), but in some cases such estimators can have variance that
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decreases at a slower rate than the crude MC estimator, variance that increases
with the rarity of the event, and even infinite variance [6].

The main drawback of conditional MC is that, in general, it is not easy to
find a random variable Y for which E[Z|Y ] is available in explicit form. How-
ever, in the case of Gaussian processes, widely used in teletraffic modelling,
such a problem can be easily solved through the introduction of the correspond-
ing bridge process, as discussed in the next section.

In the rest of the paper, we will assume that {Xt, t ∈ R+} is a centered
Gaussian process with stationary increments and that its variance vt := VarXt

is an increasing function. Such assumptions are quite mild and do not limit
the practical applicability of our method: indeed, stationarity of the increments
is a standard prerequisite in traffic modelling and the condition on vt holds
for a wide range of processes, including the ones typically used in teletraffic
theory: Fractional Brownian Motion (FBM) [19], superposition of independent
FBMs [19] and Integrated Ornstein-Uhlenbeck process (IOU) [9]. It is also worth
mentioning that in the definition of the bridge process a key role is played by the
covariance function, which is unambiguously defined by the variance function vt:

Γs,t := E [XtXs] =
1
2

(
vt + vs − v|t−s|

)
. (7)

3 Bridge Monte Carlo Estimator

Bridge Monte Carlo (BMC) is a special case of the conditional MC method, in
which conditioning is expressed in terms of the bridge Y := {Yt} of the Gaussian
input process Xt. The bridge process is obtained by conditioning X to reach a
certain level at some fixed (deterministic) time τ :

Yt = Xt − ψtXτ , (8)

where ψt is expressed via the covariance function as

ψt :=
Γt,τ

Γτ,τ
.

It is easy to see that ψt > 0 for all t due to the assumption on vt; moreover,
we note that the process Y is independent of Xτ since they are jointly Gaussian
and uncorrelated:

E [Xτ Yt] = Γτ,t − Γt,τ

Γτ,τ
Γτ,τ = 0.

In the following subsections, it will be shown that the estimators of overflow
probability and the busy period length have the same structure, in accordance
with the general structure given by Eq. (4).
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3.1 Estimation of the Overflow Probability

BMC has been originally proposed by some of the authors in [4], where the
stationary overflow probability in a single server queue with constant service
rate C was written as the expectation of a function of the bridge. Indeed, by the
continuous–time version of the Lindley recursion, the overflow probability (i.e.,
the probability that the stationary workload Q exceeds some threshold level B)
can be written as

Poverflow := P(Q > B) = P

(
sup
t∈R+

(Xt − ϕt) > 0

)
, (9)

where ϕt := B + rt and r := C − m > 0, being m > 0 the average input rate.
Indeed, for sake of simplicity, we assumed that Xt is a centered process, which
describes the traffic fluctuation with respect to the average arrival rate and hence
the cumulative arrival process during the interval [0, t] can be written as

At = mt + Xt.

Taking advantage of the definition of the bridge process, we have (see [12] for a
detailed analysis)

Poverflow = P

(
sup
t∈R+

(Yt + ψtXτ − ϕt) > 0

)
= P

(
inf

t∈R+
(ϕt − Yt − ψtXτ ) < 0

)

which can be rewritten as

Poverflow = P
(
Xτ > Y

)
, (10)

where
Y := inf

t∈R+

ϕt − Yt

ψt
. (11)

3.2 Estimation of the Duration of High Activity Periods via BMC

As a second application of the BMC approach, we consider the estimation of the
following probability

π(T) := P (∀t ∈ T : Xt > t) , (12)

where T = [0, T ] ⊆ R+ for T → ∞. Persistence phenomena typical of self-similar
processes (Joseph effect) imply that the arrival rate can remain at relatively
high values for a considerable amount of time, making the estimation of such
probability, closely related to the duration of busy periods [17], particularly
relevant in the teletraffic framework.

Note that our target probability (12) is equivalent to the following probability

π(T) = P

(
inf
t∈T

(Xt − t) > 0
)

,
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which has the same structure as (9); hence, (10) still holds under a proper
definition of Y (see [13] for the detailed derivation of the result):

Y := sup
t∈T

t − Yt

ψt
. (13)

3.3 General Expression of the BMC Estimator

In this subsection we derive the common expression of the BMC estimator,
taking advantage of the Gaussianity of the input process. Since

Xt =d N (0, vt) =d
√

vt N (0, 1),

where =d stands for stochastic equivalence, it is easy to show that the considered
probabilities, denoted as π, can be rewritten as follows:

π = P
(
Xτ ≥ Y

)
= E

[
I(Xτ > Y )|Y ]

(14)

= E

[
Φ

(
Y√
vτ

)]
, (15)

where independence between Y and Xτ is used and Φ denotes the tail distribu-
tion of a standard normal variable.

Hence, given an i.i.d. sequence {Y
(i)

, i = 1, ..., N} distributed as Y (for a
proper choice of Y , depending on the considered target probability), the estima-
tor of π is defined as follows:

π̂BMC
N =

1
N

N∑
i=1

Φ

(
Y

(i)

√
vτ

)
. (16)

Note that, in accordance with (15), the BMC approach is actually a special
case of the conditional MC method. Hence,

Var[Z] ≥ Var
[
E[Z|Y ]

]

and we can expect that the BMC estimator implies variance reduction (compar-
ing to the Crude MC simulation) for any value of the target probability (and
not only in case of rare events!).

Moreover, as proved in [5] for the overflow probability, the BMC approach
leads to a variance reduction also with respect to single-twist IS (in which the
change of measure corresponds to a shift of the input process Xt by a determin-
istic path ηt) even when the twist is chosen as the most-likely path to overflow,
highlighting that the heuristic application of LDT-based approaches may not
lead to optimal solutions as already mentioned in Sect. 2.
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4 Simulation Results

BMC can be applied to any Gaussian process, whose variance vt is an increasing
function. In the following we present the simulation results for FBM, the most
widely used self-similar traffic model [16]. In this case

vt = t2H H ∈ (0, 1)

where H denotes the Hurst parameter and, for H ∈ (0.5, 1), the increments
process is LRD. FBM is widely used in traffic modelling for its simplicity and
for the theoretical motivations, originally presented in [19]: indeed, FBM arises
as the scaled limit process when the cumulative workload is a superposition of
on-off sources with mutually independent heavy-tailed on and/or off periods.

Note that in all simulations we have to consider realizations of the input
process on a discrete grid; moreover, the overflow probability cannot be esti-
mated over an infinite horizon and the set R+ is actually replaced by a discrete
lattice {1, ..., T} for some finite T . The proper choice of discretization step and
simulation horizon goes beyond the goal of this paper; for a detailed analysis of
such issues see Chap. 8 of [15] and [11].

In the following subsections, simulation results are presented to highlight the
effectiveness and accuracy of the BMC estimator in both scenarios. In all cases
we considered H = 0.8 (a typical value for traffic traces) and, unless otherwise
stated, the estimation is carried over N = 104 sample paths.

4.1 Overflow Probability

It is well–known that no explicit expressions are available for the overflow prob-
ability in the case of general (correlated) Gaussian input. The only analytical
results deal with asymptotic conditions, known in the literature as “large buffer
regime” (when B → ∞) and “many source regime” (when a large number n of
i.i.d. flows are merged and queueing resources – buffer size and service rate –
are scaled accordingly). Such results are typically derived in the LDT framework
and provide just logarithmic asymptotics (see [12] and references therein), while
the calculation of exact asymptotics is a much more complicated problem and
some results have been drawn only for special processes, such as FBM (see [15]
and references therein).

Figures 1 and 2 refer to the “many sources regime” with buffer size B = nb
(where b = 0.3) and r = 0.1. In this case N = 106 sample paths have been
used for the estimations and the results are compared with the exact asymptotic
(in discrete time) derived in [10]:

Pn ∼ Φ
(
V (t∗)

√
n
)

n → ∞, (17)

where
V (t) =

b + rt√
vt

(18)
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Fig. 1. Many sources regime: simulation vs. asymptotic

Fig. 2. Many sources regime: relative Error
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and
t∗ =

H

1 − H
· b

r

denotes the most-likely time to overflow. Heuristic arguments suggest setting
the conditioning point τ in the BMC algorithm equal to t∗; indeed, it can be
seen that the values of τ in a neighbourhood of t∗ minimize the variance of the
estimator [12], and so in the following simulations τ = t∗ is used.

In more detail, Fig. 1 highlights the good consistency between theoretical
values and simulation results over a wide range of the overflow probability values,
while Fig. 2 shows the behavior of the RE of the BCM estimator: although the
latter is not bounded, it grows slowly, and for probabilities of the order of 10−12

is still less than 1% (compare the values in the above mentioned Figures).

Fig. 3. Large buffer regime: simulation vs. asymptotic

Figure 3 refers to the large buffer regime (with r = 1) and compares the
simulation results with the classical LDT bound [15]

logPB ∼ −V 2(τ)
2

B → ∞, (19)

where the expression of V (τ) is given by (18) with B instead on b. The slightly
larger distance between the curves (with respect to Fig. 1) is not surprising since
LDT provides only logarithmic asymptotics, which may differ from the real val-
ues by some subexponential (at ∞) function.
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4.2 Duration of High Activity Periods

The distribution of high activity periods duration is less investigated than the
overflow probability and it is not surprising that only a few asymptotic results
based on LDT are available. For instance in the case of FBM input

lim
T→∞

1
T 2−2H

logP (∀t ∈ (0, T ] : Xt > t)

= lim
n→∞

1
n

logP
(

∀t ∈ (0, 1] :
Xt√

n
> t

)
= − inf

f∈B
I(f), (20)

where
B := {f ∈ R : f(r) > r, ∀r ∈ (0, 1]},

I denotes the rate function and R is the reproducing kernel Hilbert space asso-
ciated with the distribution of FBM (see [1] for more details).

Fig. 4. Effect of T on π(T)

Figure 4 shows the dependence of π(T ) on the time duration T : in accordance
with (20), the target probability exhibits an exponential decay. Also in this case
(see Fig. 5), the relative error grows very slowly, and even for target probabilities
of the order of 10−20 is still less than 30%.

Finally, Fig. 6 highlights that the relative error decreases when the condition-
ing point τ approaches the interval length T (in our case T = 5000), as can be
easily expected since our estimations cover long intervals and the event becomes
rare as T → ∞.
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Fig. 5. Effect of the interval length on the relative error

Fig. 6. Effect of the conditioning point on the relative error
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5 Conclusions

Rare event simulation is an important research framework that lies between pure
simulation and analytical techniques. Indeed, some additional knowledge of the
underlying processes is needed in order to define efficient approaches that lead to
variance reduction with respect to crude MC. In this paper, we analysed a variant
of the conditional MC method based on the use of the bridge process (hence
named Bridge MC) and showed how the BMC method, originally proposed for
the estimation of the overflow probability, can be applied to the distribution of
the length of high-activity periods.

The BMC simulation approach exploits the Gaussian nature of the input
process (independence is equivalent to uncorrelatedness) and relies on the prop-
erties of bridges. Indeed, the bridge is independent of the random value of
the original process at the conditioning time; hence, the target probability is
obtained through a classical MC estimator, applied to an adequate conditional
expectation (whose expression depends on the specific problem under investiga-
tion) of the bridge, that can be calculated via the tail function.

Several simulation experiments have been carried out to highlight the effec-
tiveness of the BMC estimator in the various scenarios involving overflow events
(in different asymptotic regimes) as well as long periods of high activity. As fur-
ther research steps, it is possible to study the influence of the discretization step
on simulation results (it is known in the literature that discrete and continuous
time asymptotics may differ) and the asymptotic efficiency of the estimator.
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Abstract. Stationary distribution of a queueing network with countable
set of types of batch negative customer arrivals is analyzed. The sufficient
condition for ergodicity of the isolated node is established. Stationary
product-form distribution of network states is found. The given network
model is a generalization of a classic G-network model on the case of
countable types of negative customers.
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1 Isolated Node

The queueing system (isolated node) and the queueing network with finite quan-
tity of the negative customer types were studied in [1]. The aim of this paper
is to transfer the results of paper [1] on the case of countable quantity of the
negative customer types. We consider a queueing system with an exponential
single server and countable mutually independent arriving Poisson flows: pos-
itive customers with intensity λ+ and negative customers of countable types
with intensities λ−

1 , λ−
2 , . . . respectively. An arriving negative customer flow with

number l instantly deletes (kills) exactly l positive customers if there is such a
quantity in the system and deletes all positive customers if there are fewer than
l customers in the system (l = 1, 2, . . .). Negative customers and deleted positive
customers instantly leave the system and do not exert influence on the system’s
behavior. We suppose that

∞∑
t=1

tλ−
t < ∞.

System state n(t) at moment t is the quantity of the positive customers in the
system. Obviously n(t) is a Markov chain with continuous time and state space
Z+. If its stationary distribution {p(n), n = 0, 1, . . .} exists then it satisfies the
system of equilibrium equations

λ+p(0) = (μ + λ−
1 + λ−

2 + . . .)p(1) + (λ−
2 + λ−

3 + . . .)p(2) + (λ−
3 + λ−

4 + . . .)p(3) + . . . ,

(λ+ + μ + λ−
1 + λ−

2 + . . .)p(n) = λ+p(n − 1) + (μ + λ−
1 )p(n + 1)

+λ−
2 p(n + 2) + λ−

3 p(n + 3) + . . . , n = 1, 2, . . . .

c© Springer International Publishing Switzerland 2016
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It is easy to check that these equilibrium equations are equivalent to equilibrium
equations for vertical sections in a transition graph:

λ+p(n) = (μ + λ−
1 + λ−

2 + . . .)p(n + 1) + (λ−
2 + λ−

3 + . . .)p(n + 2)
+(λ−

3 + λ−
4 + . . .)p(n + 3) + . . . , n = 0, 1, . . . . (1)

This is a homogenous linear difference equation of infinite order. The partial solu-

tion to (1) we are looking for in the form p(n) = zn. Denoting Λ−(z) =
∞∑

t=1
λ−

t zt

and substituting p(n) = zn in Eq. (1) we obtain the characteristic equation

g(z) =
∞∑

l=1

zl
∞∑
s=l

λ−
s + μz − λ+ =

∞∑
s=1

λ−
s

s∑
l=1

zl + μz − λ+

= z
Λ−(z) − Λ−(1)

z − 1
+ μz − λ+ = 0, (2)

We will prove the sufficiency of condition

ρ =
λ+

μ +
∞∑

t=1
tλ−

t

< 1 (3)

for ergodicity of the process n(t). By this g(0) = −λ+ < 0 and

g(1) =
[
Λ−(z)

]′

z=1
+ μ − λ > 0 on the strength (3). The function g(z) is con-

tinuous in segment [0, 1]. So the root of Eq. (2) z0 ∈ (0, 1). Hence equilibrium
equation (1) has the solution p(n) = Czn

0 . From normalization condition one
coincides with geometric distribution:

p(n) = (1 − z0)zn
0 , n = 0, 1, . . . . (4)

We will use Foster ergodic theorem [2]. For an irreducible conservative regular
Markov chain with continuous time to be ergodic it is necessary and sufficient

that the system of equilibrium equations has a nonzero solution
∞∑

n=0
|p(n)| < ∞.

Equation (2) as we have seen has root z0 ∈ (0, 1) when condition (3) is satisfied
and it is being that (4) is the partial solution to equilibrium equations (1).

The series
∞∑

n=0
|p(n)| converges as a sum of the geometric progression members

with a ratio less than one. Obviously the chain is irreducible and conservative.
Regularity follows from leaving rate q(n) of process n(t) from state n bounded

by λ+ + μ +
∞∑

t=1
tλ−

t [3]. Hence the condition (3) is sufficient for ergodicity n(t)

and when (3) holds then ergodic distribution has the form (4).
The condition (3) is also necessary for ergodicity of process n(t). To show this

we can use reasonings analogous to reasonings in paper [1]. But to establish that
we must base a point of great nicety of passage to the limit as T → ∞. An alter-

native approach is research of the zeros of generating function P (z) =
∞∑

n=1
p(n)zn
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denominator in circle |z| < 1, using Rouche’s theorem and its Klimenok modifi-
cation [4] and the Bernshtein theorem conserning absolute monotonicity of the
generating function. But we will not prove the necessity of condition (3) for the
ergodicity of process n(t) because our general aim concerns the queueing network
process.

We resume proved result.

Theorem 1. The Markov chain n(t) is regular. It is ergodic if inequality (3)
holds. The stationary distribution of chain has a geometric distribution form (4)
in this case. ��

2 Queueing Network

We consider a queueing network consisting of N single-line exponential nodes
with service rate μi for the server of node i (i = 1, N). An infinite (countable)
quantity of mutually independent Poisson flows arrive from outside to the net-
work. More specifically a positive (usual) customer flow with parameter Λi and
a countable number of negative customer flows with parameters λil arrive in
node i (i = 1, N, l = 1, 2, . . .). The negative customers do not demand service.
The arriving negative customer flow l instantly deletes (kills) exactly l positive
customers if there is such a quantity in the node i and deletes all the positive
customers if there are fewer than l customers in node i (i = 1, N, l = 1, 2, . . .).
Negative customers and deleted positive customers instantly leave the network
and do not exert influence on the network behavior. The positive customer served
in node i instantly and independently of other customers moves to node j as pos-
itive with probability p+ij , as negative customer flow with number l with proba-
bility p−

ijl, or arrives to the network with probability pi0 (i, j = 1, N, l = 1, 2, . . .)

and
∑N

j=1

(
p+ij +

∑∞
l=1 p−

ijl

)
+ pi0 = 1 (i = 1, N). The quantity of places for the

waiting of positive customers is unbounded. For distinctness we suppose that
the positive customers are served in order of their arrival moments. We assume

∞∑
t=1

tλ−
it < ∞, i = 1, N.

We will describe the state of network by random vector

n(t) = (n1(t), n2(t), . . . , nN (t)),

where ni(t) is a quantity of positive customers in node i at time t. Because
primitive assumptions about entering flows and service times distributions n(t) is
a multidimensional Markov chain with continuous time and state space X = ZN

+

where Z+ = {0, 1, . . .}. Assume n(t) is irreducible. For example we can assume
all Λi > 0 and for every i exists l such that λil > 0. Our purpose is to establish
the ergodic condition and to determine the stationary distribution.

We consider an isolated node believing customer flows arrive with rates like
those rates of corresponding flows in the network (which is not Poisson). We add
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index i as first index corresponding to the node number to all notations for an
isolated node of Sect. 1. The characteristic equation (2) with substituting of root
zi0 of (2) become identity

∞∑
l=1

∞∑
s=l

λ−
isz

l
0i + μizi0 − λ+

i = 0. (9)

If ergodic condition

ρi =
λ+

i

μi +
∞∑

t=1
tλ−

it

< 1, i = 1, N, (10)

holds it follows according to the results of Sect. 1 that the stationary distribution
of isolated node has the form

pi(ni) = (1 − zi0)zni
i0 , ni = 0, 1, . . . . (11)

Hence the probability of full server employment in steady-state is zi0. So flow
intensities of positive and negative customers in the network satisfy the next
traffic equations system:

λ+
i = Λi +

N∑
j=1

μjzj0p
+
ji, i = 1, N, (12)

λ−
il = λil +

N∑
j=1

μjzj0p
−
jil, l = 1, 2, . . . , i = 1, N. (13)

By the continuity theorem of implicit function and Shauder generalization of
Brauer fixed point theorem on the infinite dimensional case we can prove a
positive solution to the traffic equations system (12) and (13) exists.

If the steady-state distribution {p(n} of Markov chain n(t) exists then one
satisfies the global balance equations

p(n)

N∑
i=1

[
Λi + (μi + λi1 + λi2 + . . .)I{ni �=0}

]

=

N∑
i=1

{
p(n − ei)ΛiI{ni �=0} + p(n+ ei)

[
μipi0 + λi1 + (λi2 + λi3 + . . .+)I{ni=0}

]

+

∞∑
l=2

p(n+ lei)
[
λil + (λil+1 + λil+2 + . . .)I{ni=0}

]
+

N∑
j=1

[
p(n+ ej − ei)μjp

+
jiI{ni �=0}

+

∞∑
l=1

p(n+ ej + lei)μj(p
−
jil + (p−

jil+1 + p−
jil+2 + . . .)I{ni=0})

+p(n+ ej)μj(p
−
ji1 + p−

ji2 + . . .)I{ni=0}
]}

, n ∈ ZN
+ . (14)

Here ei is a unit vector of direction i and IA is an indicator of event A equal to
1 if event A occurs and to 0 if event A does not occur.

The main result has the next form.
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Theorem 2. Markov process n(t) is regular and if inequalities (10) hold then
it is ergodic. Its stationary distribution {p(n} is defined by

p(n) =
n∏

i=1

pi(ni), n ∈ ZN
+ ,

where pi(ni) and ρi are defined by equalities (11) and (10) respectively, zi0,
i = 1, N , are the roots of Eq. (9) belonging to interval (0, 1).

Proof. We have I{ni=0} = 1 − I{ni �=0}, so (14) shapes

p(n)

N∑
i=1

[
Λi + (μi + λi1 + λi2 + . . .)I{ni �=0}

]

=

N∑
i=1

{
p(n − ei)ΛiI{ni �=0} + p(n+ ei)(μipi0 + λi1 + λi2 + . . .)

−p(n+ ei)(λi2 + λi3 + . . .)I{ni �=0} +
∞∑
l=2

p(n+ lei)(λil + λil+1 + . . .)

−
∞∑
l=2

p(n+ lei)(λil+1 + λil+2 + . . .)I{ni �=0}

+

N∑
j=1

[
p(n+ ej − ei)μjp

+
jiI{ni �=0} +

∞∑
l=1

p(n+ ej + lei)μj(p
−
jil + p−

ji2 + . . .)

−
∞∑
l=1

p(n+ ej + lei)μj(p
−
jil+1 + p−

jil+2 + . . .)I{ni �=0} + p(n+ ej)μj(p
−
ji1 + p−

ji2 + . . .)

−p(n+ ej)μj(p
−
ji1 + p−

ji2 + . . .)I{ni �=0}
]}

, n ∈ ZN
+ . (15)

We partition this equation into local balance equations. The sum of terms in the
left side of (15) including factor I{ni �=0} equates to the same sum on the right
side of (15). After the sum of terms on the left side of (15) not containing factor
I{ni �=0} equates to the same sum on the right side of (15):

p(n)
N∑
i=1

Λi =
N∑
i=1

{
p(n+ ei)(μipi0 + λi1 + λi2 + . . .) +

∞∑
l=2

p(n+ lei)(λil + λi2 + . . .)

+
N∑

j=1

[ ∞∑
l=1

p(n+ej+lei)μj(p
−
jil + p−

ji2 + . . .)+p(n+ej)μj(p
−
ji1 + p−

ji2 + . . .)
]}

. (16)

p(n)
N∑

i=1

(μi + λi1 + λi2 + . . .) =
N∑

i=1

{
p(n − ei)Λi − p(n + ei)(λi2 + λi3 + . . .)

−
∞∑

l=2

p(n + lei)(λil+1 + λil+2 + . . .) +
N∑

j=1

[
p(n + ej − ei)μjp

+
ji

−
∞∑

l=1

p(n + ej + lei)μj(p−
jil+1 + p−

jil+2 + . . .) − p(n + ej)μj(p−
ji1 + p−

ji2 + . . .)
]}

.
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We partition the previous equations into more detailed balance equations:

p(n)(μi + λi1 + λi2 + . . .) = p(n− ei)Λi − p(n + ei)(λi2 + λi3 + . . .)

−
∞∑
l=2

p(n + lei)(λil+1 + . . . + λiT ) +
N∑

j=1

[
p(n+ej−ei)μjp

+
ji

−
∞∑
l=1

p(n+ej+lei)μj(p
−
jil+1+p−

jil+2 + . . .)−p(n+ej)μj(p
−
ji1+p−

ji2+. . .)
]
. (17)

Let probabilities pi(ni) be defined by equalities (13). We will prove that

p(n) = p1(n1)p2(n2) . . . pN (nN ), n ∈ ZN
+ , (18)

is solution of local balance equations (16) and (17), that is global balance equa-
tions (14). We will divide both sides of (16) on p(n) and use (10), (11), (13)–(15):

N∑
i=1

Λi =

N∑
i=1

{
zi0(μipi0 + λi1 + λi2 + . . .) +

∞∑
l=2

zl
i0(λil + λil+1 + . . .)

+
N∑

j=1

[ ∞∑
l=1

zj0zl
i0μj(p

−
jil + p−

jil+1 + . . .) + zj0μj(p
−
ji1 + p−

ji2 + . . .)
]}

=
N∑

i=1

[
zi0μipi0 +

∞∑
l=1

zl
i0(λil + λil+1 + . . .)

+

∞∑
l=1

zl
i0(λ

−
il − λil + λ−

il+1 − λil+1 + . . .+) + λ−
i1 − λi1 + λ−

i2 − λi2 + . . .
]

=

N∑
i=1

[
zi0μipi0 +

∞∑
l=1

zl
i0(λil + λil+1 + . . .) + λ−

i1 − λi1 + λ−
i2 − λi2 + . . .

]

=
N∑

i=1

[
zi0μipi0 + λ+

i − μizi0 + λ−
i1 − λi1 + λ−

i2 − λi2 + . . .
]

=
N∑

i=1

[
zi0μipi0 + Λi +

N∑
j=1

zj0μjp+
ji − μizi0 + λ−

i1 − λi1 + λ−
i2 − λi2 + . . .

]

=
N∑

i=1

[
zi0μipi0 + Λi +

N∑
j=1

zj0μj

(
1 −

∞∑
l=1

p−
jil − pj0

)
− μizi0 + λ−

i1 − λi1 + λ−
i1+1 − λi1+1 + . . .

]

=

N∑
i=1

[
Λi + λ−

i1 − λi1 + λ−
i2 − λi2 + . . . −

∞∑
l=1

N∑
j=1

zj0μjp−
jil

]

=

N∑
i=1

[
Λi + λ−

i1 − λi1 + λ−
i2 − λi2 + . . . −

∞∑
l=1

(λ−
il − λil)

]
=

N∑
i=1

Λi,

that is (17) becomes identity. In much the same way we check the implementation
of local balance equation (18):
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μi + λi1 + λi1+1 + . . . =
Λi

zi0
− zi0(λi2 + λi3 + . . .) −

∞∑
l=2

zli0(λil+1 + λil+2 + . . .)

+
N∑

j=1

[ zj0
zi0

μjp
+
ji −

∞∑
l=1

zj0zli0μj(p
−
jil+1 + p−

jil+2 + . . .) − zj0μj(p
−
ji1 + p−

ji1+1 + . . .)
]

=
Λi

zi0
−

∞∑
l=1

zli0(λil+1 + λil+2 + . . .) +
λ+
i − Λi

zi0

−
∞∑
l=1

zli0(λ
−
il+1 − λil+1 + λ−

il+2 − λil+2 + . . .) − (λ−
i1 − λi1 + λ−

i1+1 − λi1+1 + . . .)

=
λ+
i

zi0
−

∞∑
l=0

zli0(λil+1 + λil+2 + . . .) + λi1 + λi2 + . . .

= μi +
1

zi0

∞∑
l=1

∞∑
s=l

λ−
isz

l
i0 −

∞∑
l=0

∞∑
s=l+1

λ−
isz

l
i0 + λi1 + λi2 + . . . = μi + λi1 + λi2 + . . . .

Using Foster ergodic theorem [2] completes the proof. ��

3 Conclusion

We have considered the stationary functioning of an open queueing network with
batch arrivals of negative customers. The expression for stationary distribution
has been derived in product form. The given network model is a generalization of
a classic G-network model [5] on the case of infinite (countable) types of negative
customers. The research results have practical importance and may be used for
real networks investigation.
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Abstract. The processes of short-term interest rates generate changes
in most market indices, as well as form the basis of determining the value
of marketable assets and commercial contracts. They play a special role
in calculating the term structure of the yield. Therefore, the develop-
ment of mathematical models of these processes is extremely interesting
for financial analysts and researchers of market issues. There are many
versions of change of short-term risk-free interest rates in the framework
of the theory of diffusion processes. However, there is still no such model,
which would be the basis for building a term structure of yields close to
that existing in a real financial market. It is interesting to analyze the
existing models in order to clarify features of models in a probabilistic
sense in more detail than has been done by their creators and users.
Such an analysis will be made here for the family of models used by the
authors in three well-known papers [1–3], where they were applied for
the fitting of the real time series of yield.

Keywords: Yield · Short-term risk-free interest rates · Term structure

1 Introduction

All the models considered belong to the class of diffusion models, that generate
processes X(t), described by the equation

dX(t) = μ(X(t))dt + σ(X(t))dW (t), t > t0, X(t0) = X0, (1)

where a specific determination of drift μ(x) and volatility σ(x) defines one or
another particular model. Some models, such as models: Vasicek, Cox-Ingersoll-
Ross, geometric Brownian motion, Ahn-Gao, are well documented in the liter-
ature, but nevertheless their properties are listed here for convenience of com-
parison with other, less well-known or not investigated models. The analysis is
the first part of the work devoted to the explanation of the most suitable short-
term rate models to determine the term structure of a zero-coupon yield that is
reproducing the actually observed yield, as far as possible, the best way.

2 The Vasicek Model [4]

For μ(x) = k(θ − x), σ2(x) = σ2 the Eq. (1) generates the Ornstein-Uhlenbeck
process that is known in finance literature as the Vasicek model. Probability
c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 228–237, 2016.
DOI: 10.1007/978-3-319-44615-8 20
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density for this process is normal with the expectation E[X] = θ and the variance

Var [X] =
σ2

2k
:

f(x) =

√
k

π

1
σ

e
−k

(x−θ)2

σ2 . (2)

3 The CIR Model [5]

When the functions of drift and volatility are μ(x) = k(θ − x) and σ2(x) = σ2x
from (1) for the short-term interest rate r(t) a nonnegative process is obtained.
In financial literature such a process is named the Cox-Ingersoll-Ross model (the
CIR model).

dr(t) = k(θ − r(t))dt +

√
2kD

r(t)
θ

dW (t),

where θ and D are the stationary expectation and variance respectively.

The CIR process has a gamma distribution with the scale parameter c =
2k

σ2

and the form parameter q =
2kθ

σ2
. So

f(x) =
cqxq−1

Γ (q)
e−cx, q > 0, x > 0. (3)

The moments of this distribution are calculated by the formula

E[Xm] =
Γ (m + q)
cmΓ (q)

,

and important numerical characteristics are the expectation E[X], the variance
Var [X], the skewness S and the kurtosis K:

E[X] =
q

c
= θ,

Var [X] ≡ D =
q

c2
=

σ2θ

2k
,

S ≡ E
[
(X − E[X])3

]
Var [X]

3
2

= 2
√

q,

K ≡ E
[
(X − E[X])4

]
Var [X]2

= 3 +
6
q
.

4 The Duffie-Kan Model [6]

In the Duffie-Kan model the rate r(t) is generated by Eq. (1) with functions

μ(x) = k(θ − x) and σ(x) =
√

γx + δ ≡
√

2kD
x − r0
θ − r0

:

dr(t) = (αr(t) + β)dt +
√

γr(t) + δdW (t), γr(0) + δ > 0,
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where k = −α > 0, θ = −β

α
> 0, D =

βγ − αδ

2α2
> 0, r0 = − δ

γ
< θ.

The process r(t) has the stationary probability density f(x) which is a shifted
gamma density with the shift parameter r0, the scale parameter c and the form
parameter q, i.e.

f(x) =
cq(x − r0)q−1

Γ (q)
e−c(x−r0), r0 < x < ∞, (4)

where q =
(θ − r0)2

D
, c =

(θ − r0)
D

> 0, r0 is the limit bottom value of interest

rate r(t).
The important numerical characteristics of the stationary density

E[X] =
q

c
= θ,

Var [X] ≡ D =
q

c2
,

S = 2
√

q,

K = 3 +
6
q
.

5 The Ahn-Gao Model [2]

In the Ahn-Gao model it is assumed that drift and volatility are nonlinear func-
tions μ(x) = k(θ − x)x and σ2(x) = σ2x3. Such a process has the stationary
probability density f(x) of form

f(x) =
cq

Γ (q)x1+q
e− c

x , x > 0, (5)

where the scale parameter c =
2kθ

σ2
and the form parameter q = 2 +

2k

σ2
. The

process of the Ahn-Gao model can be obtained from the CIR process by transfor-

mation XAG =
1

XCIR
. The important numerical characteristics of the stationary

density of process are determined by formulae

E[X] =
c

q − 1
=

2kθ

2k + σ2
,

Var [X] =
c2

(q − 1)2(q − 2)
=

2kσ2θ2

(2k + σ2)2
,

S = 4
√

q − 2
q − 3

,

K = 3
(q − 2)(q + 5)
(q − 3)(q − 4)

.
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6 The BDT Model [7]

The Black-Derman-Toy (BDT) model

dr(t) = [α1r(t) − α2r(t) ln r(t)]dt + βr(t)dW (t), α2 > 0,

by transformation Y (t) = ln r(t) reduces to linear form

dY (t) =
(

α1 − β2

2
− α2Y (t)

)
dt + βdW (t).

This equation allows a stationary solution and process Y (t) that is found in
explicit form

Y (t) =
1
α2

(
α1 − β2

2

)
+ ξ(t), ξ(t) = β

t∫
−∞

e−α2sdW (s),

where ξ(t) is a stochastic Gaussian process with zero expectation, variance

Var [ξ(t)] =
β2

2α2
and covariance Cov [t1, t2] =

β2

2α2
e−α2|t2−t1|. Thus the BDT

model generates a log-normal process and allows a stationary regime. The lead-
ing stationary moments of the interest rate are calculated by formulae

E[r] = e
1

α2

(
α1− β2

4

)

,

Var [r] = (λ − 1)e
2

α2

(
α1− β2

4

)

, λ = e
β2

2α2 ,

S = (λ + 2)
√

λ − 1,

K = λ4 + 2λ3 + 3λ2 − 3.

7 The Ait-Sahalia Model [8]

Ait-Sahalia has tested the based models of short interest rates (including those
described here) by fitting them to the actually time series of rates. It was found
that an acceptable level of goodness-of-fit of all these rates was rejected because
of the drift and volatility properties. As a result he proposed the following func-
tions of drift and diffusion

μ(r) = α0 + α1r + α2r
2 + α−1

1
r
, σ2(r) = β0 + β1r + β2r

2.

In this model, the non-linear functions of drift and diffusion allow a wide variety
of forms. To σ2(r) > 0 for any r, it is necessary that the diffusion function
parameters ensure the fulfilment of inequalities

β0 > 0, β2 > 0, γ2 ≡ 4β0β2 − β2
1 � 0.
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Relevant to this function a probability density is given by the expression

f(x) = NxB(β0 + β1x + β2x
2)C−1eAx+Garctg (E+Fx), x > 0,

where N is the normalization constant,

A =
2α2

β2
< 0, B =

2α−1

β0
> 0, C =

α1

β2
− α2β1

β2
2

− α−1

β0
,

G =
2
(

2α0 +
α2β

2
1

β2
2

− α1β1

β2
− 2α2β0

β2
− α−1β1

β0

)

γ
, E =

β1

γ
, F =

β2

γ
.

Since the density f(x) at x → 0 has order O(xB), B > 0, and at x → ∞ its
order is O(xB+CeAx), A < 0, then for every finite m the moments E[Xm] exist,
but their analytical expressions cannot be obtained, and they can be calculated
only numerically.

8 The CKLS Model [1]

In the Chan-Karolyi-Longstaff-Sanders (CKLS) model it is assumed that
μ(x) = k(θ − x), σ2(x) = σ2x3. It turns out that a random process correspond-
ing to this model has a stationary density

f(x) =
n

x3
e
−c

((
θ
x

)2−2 θ
x

)

, x > 0, (6)

where c =
k

θσ2
, n is normalization constant. Note that such random process has

only the first stationary moment E[X] = θ.

9 The Unrestricted Model I [2]

In “unrestricted model I”

dr = (α1 + α2r + α3r
2)dt +

√
α4 + α5r + α6r3dW (7)

all the preceding models are embedded, that is, at a certain setting parameters
{α} can get any of the previous models. The table in this case has the form

Restrictions of parameters Model Equation of processes

α3 = α5 = α6 = 0 Vasicek dr = k(θ − r)dt + σdW

α3 = α4 = α6 = 0 CIR dr = k(θ − r)dt + σ
√

rdW

α3 = α6 = 0 Duffie-Kan dr = k(θ − r)dt +
√

α + βrdW

α1 = α4 = α5 = 0 Ahn-Gao dr = k(θ − r)rdt + σr1.5dW

α3 = α4 = α5 = 0 CKLS dr = k(θ − r)dt + σr1.5dW
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Stationary probability density “unrestricted I” process has the form

f(x) =
c(w)
σ2(x)

e

x∫
w

2μ(u)
σ2(u)du

=
c(w)

α4 + α5x + α6x3
e

x∫
w

2(α1+α2u+α3u2)
α4+α5u+α6u3 du

,

where c(w) is the normalization constant, w is a fixed number from the set of
possible values of a random process, the specific value of which does not play
some role.

Getting the explicit form of expression for f(x) is possible, but it will be
quite cumbersome in a general case, and we restrict ourselves to the case when
the values of the parameters {α} provide the performance properties of the
probability density f(x). First, we note that the volatility of the real process
needs to be a real function, so σ2(r) = α4 + α5r + α6r

3 � 0 for all values of r.
At the same time analytic properties of the probability density depend on the
type of the roots of equation α4 + α5r + α6r

3 = 0, α6 > 0. The sign of the

discriminant Δ =
(

α5

3α6

)3

+
(

α4

2α6

)2

specifies the number of real and complex

roots of the equation. When Δ > 0, there is one real and two complex conjugate
roots. When Δ < 0, there are three different real roots. When Δ = 0, real roots
are multiples.

Let Δ > 0 and the real root is r = r0, then we can write

α4 + α5r + α6r
3 = α6(r − r0)

(
r2 + pr + q

)
,

where r0, p and q are a relatively sophisticated analytical expression and because
of that are not listed here. However, if α4 = 0, then r0 = 0, p = 0, q =

α5

α6
. In

this case, the probability density is given by

f(x) =
c(w)

α6x

(
x2 +

α5

α6

)e

x∫
w

2(α1+α2u+α3u2)
α6u(u2+α5

α6 ) du

= nx
2α1
α5

−1
(
α6x

2 + α5

) α3
α6

− α1
α5

−1e
2α2√
α5α6

arctg
[
x
√

α6
α5

]
, (8)

where n is the normalization constant. For the existence of the probability den-
sity its parameters must satisfy the inequalities:

α1

α5
> 1,

α3

α6
< 1. In order to at

the same time there exist stationary moments it is necessary for the expectation
α3

α6
< 0.5, for variance

α3

α6
< 0, for the third moment

α3

α6
< −0.5 and for the

fourth moment
α3

α6
< −1.

If Δ < 0, denote the roots of the equation r0 > r1 > r2 so

α4 + α5r + α6r
3 = α6(r − r0)(r − r1)(r − r2).
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Then the probability density is expressed in the form

f(x) = n(x − r0)
2(α1+α2r0+α3r2

0)
α6(r0−r1)(r0−r2)

−1

×(x − r1)
− 2(α1+α2r1+α3r2

1)
α6(r0−r1)(r1−r2)

−1
(x − r2)

2(α1+α2r2+α3r2
2)

α6(r0−r2)(r1−r2)
−1

. (9)

In this case the inequalities must be performed

2(α1 + α2r0 + α3r
2
0) > α6(r0 − r1)(r0 − r2),

α3

α6
< 1.

For the existence of the m-th moment other than that necessary to perform
the conditions

m

2
+

α3

α6
< 1. Unfortunately, the analytical expression of the

normalization constant n and moments E[rm] is very cumbersome and they
includes hypergeometric functions. Under these assumptions the process with
such a density has a bottom line equal to the largest root, i.e. r(t) � r0.

10 The Unrestricted Model II [1]

In the “unrestricted model II” process of short rate follows the equation

dr = k(θ − r)dt + σrγdW, γ > 0. (10)

Therefore μ(x) = k(θ − x), σ2(x) = σ2x2γ and the stationary density f(x)
has form

f(x) =
n

x2γ
e

1

x2γ

(
qx

1−2γ − cx2

2−2γ

)

, x > 0, (11)

where q =
2kθ

σ2
, c =

2k

σ2
, n is the normalization constant. The values of para-

meter γ, allowing the convergence of the integral of f(x) on the interval (0,∞),
determined by the inequality γ > 0.5. At the same time, there are two critical
points: γ = 0.5 (in this case, the model is transformed into a short-term rate
model CIR) and γ = 1, when the probability density is reduced to a form that
corresponds to process of the Brennan-Schwartz model [9]

f(x) =
q1+c

x2+cΓ (1 + c)
e− q

x , x > 0. (12)

When γ = 1.5, the “unrestricted model II” is known as the CKLS model. The
Vasicek model is also a model embedded in the “unrestricted model II” at γ = 0.
For existence of moments of order m, it is necessary the fulfilment of inequality
2γ > m+1. Unfortunately, the expression for the probability density in the gen-
eral case does not allow the calculation of moments in analytical form, although
for referred particular cases they are simply calculated. For the model CIR

E[Xm] =
Γ (m + q)
cmΓ (q)

,
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for Brennan-Schwartz model

E[Xm] = qm Γ (1 + c − m)
Γ (1 + c)

,

the moments of order m exist if the inequality m < 1 + c is fulfilled. So that

Model γ E[X] Var [X] Skewness Kurtosis

Vasicek 0 θ
σ2

2k
0 3

CIR 0.5
q

c
= θ

q

c2
=

σ2θ

2k
2
√

q 3 +
6

q

Brennan-Schwartz 1.0
q

c
= θ

θ2

c − 1

4
√

c − 1

c − 2

3(c − 1)(c + 6)

(c − 2)(c − 3)

CKLS 1.5
q

c
= θ not exist not exist not exist

Even before the appearance of the “unrestricted model II” models were used,
which then turned out to be special cases of this model. This is the model of the
CIR (1980) [10], which is obtained from the Eq. (10), if we assume that γ = 1.5
and k = 0. Another particular version is the CEV model, i.e. the model of
constant elasticity of variance that was proposed J. Cox and S. Ross (1976) [11],
as in Eq. (10) made θ = 0. The properties of the processes generated by these
models can be understood by considering the limiting transition k → 0 in the
first model or θ → 0 in the second. When k and θ are still finite the stationary
regimes in the models exist and the probability density of processes for these
models is expressed in the form (11). However, in the limiting case k = 0 or
θ = 0 stationary regimes of processes no longer exist, and the probability density
cannot be expressed in the form (11), and can be obtained as solutions of partial
differential equations

∂f(x, t|y, s)
∂t

− 1
2

∂2[σ2x3f(x, t|y, s)]
∂x2

= 0

for the CIR model (1980) and

∂f(x, t|y, s)
∂t

+ β
∂[xf(x, t|y, s)]

∂x
− σ2

2
∂2[x2γf(x, t|y, s)]

∂x2
= 0

for the CEV model at the boundary condition for both equations

lim
t→s

f(x, t|y, s) = δ(x − y).

Unfortunately, these equations cannot be solved analytically, but we can say that
for k = 0 or θ = 0 the process generated by the Eq. (10) becomes unsteady for
the CIR model (1980) with the constant expectation and increasing with time
variance, and for the CEV model changing with time both the expectation and
the variance.

The other non-stationary models are as following.



236 G. Medvedev

11 The Merton Model [12]

dr(t) = αdt + σdW (t)

generates a nonstationary Gaussian process

r(t) = r(0) + αt + σW (t)

with a linearly varying expectation and linearly increasing variance

E [r|r(0)] = r(0) + αt, Var [r] = σ2t.

12 The Dothan Model [13]

The equation of the Dothan model

dr = σrdW

is solved in explicit form:

r(t) = r(0)e−0.5σ2t+σW (t),

which implies that a random process generated by the model has a log-normal
distribution and is non-stationary. The expectation is steady, but the variance
increases exponentially with time

E[r|r(0)] = r(0), Var [r|r(0)] = r(0)2
(
eσ2t − 1

)
.

13 The GBM Model [14]

The GBM model is a model of process geometric Brownian motion

dr = βrdt + σrdW

was introduced into the modern financial analysis by P. Samuelson (1965). It
generates a non-stationary process of geometric Brownian motion

r(t) = r(0)e(β−0.5σ2)t+σW (t).

In this case, the probability density of the interest rate is log-normal. Unlike
BDT model, which also generates a log-normal process, moments of r(t) in the
GBM model is not constant but increases exponentially with time, in particular,

E[r|r(0)] = r(0)eβt,

Var [r|r(0)] = r(0)2(λ − 1)e2βt, λ = eσ2t,

S = (λ + 2)
√

λ − 1,

K = λ4 + 2λ3 + 3λ2 − 3.

Expressions for skewness and kurtosis formally coincide with the expressions of
these characteristics of the BDT model, but parameter λ here is not constant
and increases exponentially with time.
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14 Conclusion

As mentioned above, the process of short-term rates is the basis for building
a term structure of the yield of zero-coupon bonds. This explains the interest
in the analysis of the processes of short-term rates. In the literature there are
many articles that made empirical attempts to find a model of short-term rates,
for which a term structure closest to the actual observed structure is obtained
[1–3]. On the other hand there is also empirical evidence in the literature that the
famous model of short-term rates do not provide an acceptable level of goodness-
of-fit [8]. Therefore there is a need for analytical studies to determine the degree
of risk in the use of a particular model of short-term rates of the yield. As a
necessary basis for this information is needed about the probability properties
of the short-term rate processes, expressed analytically. This is the subject of
this paper that shall be considered as the first stage of this work.
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Abstract. A Markov model of two stage queuing network with feed-
back is proposed. Poisson flows arriving to both stages from outside and
part of already serviced calls in the first node instantaneously enter to
the second node (if there is free space here) while the remaining part
leaves the network. At the completion of call processing in the second
node there are three possibilities: (1) it leaves the network; (2) it instan-
taneously feeds back to the first node (if there is free space here); (3) it
feeds back to the first node after some delay in orbit. All feedbacks are
determined by known probabilities. Both nodes have finite capacities.
The mathematical model of the investigated network is a three dimen-
sional Markov chain (3-D MC) and hierarchical space merging algorithm
to calculate its steady-state probabilities is developed. This algorithm
allows asymptotic analysis of the quality of service (QoS) metrics of the
investigated network as well.

Keywords: Two stage queueing network · Instantaneous and delayed
feedback · Three-dimensional Markov chain · Space merging algorithm

1 Introduction

In the queueing networks, upon the completion of service in a particular node
each call either is instantly sent to another node, or returns to the same node
according to the routing matrix. Namely, if the network allows re-serving of
c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 238–249, 2016.
DOI: 10.1007/978-3-319-44615-8 21
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the calls in the same node, then we can assume that this network is an instan-
taneous feedback one. However the concept of “feedback” initially (historically)
was introduced for single-station queueing systems [1], and they have been inten-
sively studied in recent years (for further literature on work in this area, see, e.g.,
[2,3]).

There are several studies which investigated the two-phase model of an open
queueing network with instantaneous feedback [4–8]. In these studies, the authors
show that analysis of the characteristics of the integrated cellular networks and
WLANs (Wireless Local Area Network, WLAN) needs to investigate similar
models. However, in the queueing networks the delayed feedback is not taken
into account when the already-served calls return back for repeating service after
some random delay in orbit. In the available literature almost all the authors
did not analyze the mentioned models in queueing networks with both types of
feedback – instantaneous and delayed.

In this paper we study the model of a two-phase open queueing network with
instantaneous and delayed feedback. It should be noted that taking into account
the delayed feedback leads to the necessity of analyzing the three-dimensional
Markov chain (3-D Markov Chain, 3-D MC). We developed an effective method
for the calculation of state probabilities of the large dimension 3-D MC. There is
much research on solving similar problems for the large dimension 2-D MC [9–
20]. However, almost all of them have similar problems related to ill-conditioned
matrices which arise during computational procedures. In this regard, we have
developed a new method that uses simple explicit formulas for the calculation
of the state probabilities of the constructed 3-D MC. The proposed method is
based on the fundamental ideas of the theory of phase merging of stochastic
systems [21]. Furthermore its counterpart for the 2-D MC was successfully used
in the study of various models of single-phase queueing systems [22–25].

2 The Model

The structure of a two stage queueing network with feedback is shown in Fig. 1.
For simplicity in the model it is assumed that both nodes of the network con-
tain a single channel (server) but their service rates are not identical, i.e. the
channel occupancy times of calls in node i are assumed to be independent and
have identical exponential distribution with a mean 1/μi, i = 1, 2 and generally
speaking μ1 �= μ2. Total capacity of node i (the total number of calls in the
channel and buffer) is Ri and to node i from outside arrives a Poisson flow of
calls with intensity λi, i = 1, 2. If the node i, i = 1, 2, is full upon the arrival of
a call then the arrived call will be lost with probability 1.

After completion of the service of the call in the first node it either leaves
the network with probability θ1 or it enters the second node with probability
θ2 = 1 − θ1. If at the moment of completion of the service of the call in the
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Fig. 1. The structure of the proposed model

first node the second node is full then this call will leave the network with
probability 1.

After completion of the service of the call in the second node the following
decisions might be made: (i) it feeds back instantaneously to the first node with
probability σ1; (ii) it enters orbit with probability σ2; (iii) it leaves the network
with probability σ3 = 1 − σ2 − σ1 The orbit size is R0, 0 < R0 <∝. It means
that call arriving to orbit from the second node will be accepted if upon its
arrival the number of calls in orbit is less than R0; otherwise an arriving call will
be lost. The sojourn times of calls in the orbit are independent and identically
distributed random variables and they have common exponential distribution
with mean 1/η. It is assumed that calls from the orbit are not persistent, i.e. if
upon arrival of the call the first node is full then this call is eventually lost.

3 Proposed Method for the Calculation of Steady-State
Probabilities

The investigated network is described by the three-dimensional MC (3-D MC)
and its states are described as 3-D vector n = (n1, n2, n3) where the first (n1)
and second components (n2), respectively, indicate the number of calls in the
first and second nodes, and the third component (n3) indicates the number of
calls in orbit. The state space of the given 3-D MC is defined as follows:

S = {n : n1 = 0, 1, ..., R1;n2 = 0, 1, ..., R2;n3 = 0, 1, ..., R0}. (1)

Therefore, the geometric form of state space is depicted with integer values
inside the parallelepiped whose base is a rectangle with length of sides (R1) and
(R2); the height of the parallelepiped equal to (R0) (see. Fig. 2).

The intensity of transition from n one state to n′ is denoted as q(n,n′),
n,n′ ∈ S. These parameters involve the generating matrix (Q-matrix) of the
given 3-D MC. They are determined as follows:



Hierarchical Space Merging Algorithm for Analysis 241

Fig. 2. The state space of the proposed model

q(n,n′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1, if n′ = n + e1

μ1θ1, if n′ = n − e1

μ1θ2, if n′ = n − e1 + e2

λ2, if n′ = n + e2

μ2σ3, if n′ = n − e2

μ2σ1, if n′ = n − e2 + e1

μ2σ2, if n′ = n − e2 + e3

η, if n1 < R1,n
′ = n − e3 + e1or n1 = R1,n

′ = n − e3

0, in other cases.

(2)

where e1 = (1, 0),e2 = (0, 1).
Here ei is the i-th unit vector of the 3-D Euclidean space, i = 1, 2, 3. The

given 3-D MC with finite-state is irreducible since a stationary regime exists. Let
p(n) mean a steady-state probability of the state n ∈ S. These probabilities are
uniquely determined by solving the appropriate system of equilibrium equations
(SEE) completed with a normalization condition (due to evidence of constructing
the explicit form of SEE not being shown here). Unfortunately, due to the com-
plex structure of the Q-matrix it is too complicated to find an analytical solution
to the above indicated SEE. The dimension of the SEE is determined based on
the dimension of the state space (1) which consists of (R0 + 1)(R1 + 1)(R2 + 1)
states. Therefore, the above-given exact method makes it possible to calculate
the steady-state probabilities only in moderate dimensions of state space (1),
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but in its large values it encounters great computational difficulties. Therefore
the only way to solve them is to use numerical methods of linear algebra (for
computational difficulties of these methods see the Introduction).

Here a hierarchical space merging algorithm (HSMA) for calculating the
steady-state probabilities of the studied 3-D MC subject to the following con-
dition is proposed: σ3 << σ1 + σ2. In other words, it is assumed that upon
completion of service in the second node, the call rarely (in comparison with
the intensity of leaving the system and instantaneous return to the node 1) goes
into orbit. In other words, the intensity of the call from the orbit is substantially
less rather than the intensity of calls from the outside to the network nodes, i.e.,
η << min{λ1, λ2}. Then, having this assumption we can say that the transition
intensity between states inside the planes that are parallel to the base of the
parallelepiped is much greater than the transition intensity between states of
different planes (see Fig. 2). In that case we can consider the following splitting
of the state space (1):

S =
R0⋃
k=0

Sk, Sk

⋂
Sk′ = ∅, k �= k′, (3)

where Sk = {n ∈ S : n3 = k}, k = 0, 1, 2, ..., R0. In other words, it is considered
that the entire state space of the network is split into different planes that are
parallel to the base of the parallelepiped (see Fig. 2).

The merge function is determined based on the splitting (3) as follows:

U1(n) = <k>, if n ∈ Sk (4)

where <k> is a merged state, which includes all states of class Sk. Let
Ω1 = <k> : k = 0, 1, ..., R0.

According to SMA [21] the steady-state probabilities of the given model are
defined as follows

p(n) ≈ ρk(n1, n2)π1(<k>), (5)

where ρk(n1, n2) denote the probability of the state (n1, n2) within the splitting
model with state space Sk, and π(<k>) denote the probability of the merged
state (<k>) ∈ Ω1.

From (5) we conclude that for the calculation of the steady-state probabilities
given 3-D MC we need to find probability distributions of 2-D MCs (its number
is R0 + 1) and one 1-D MC. For large capacities of the nodes computational
difficulties arise when calculating the stationary distribution of these 2-D MC
with state space Sk, k = 0, 1, ..., R0. Therefore in order to calculate stationary
distributions within the classes Sk, k = 0, 1, ..., R0, it is necessary to apply SMA
to each class, in other words, we consider the hierarchy of the merged models.

All the splitting models with state spaces Sk, k = 0, 1, ..., R0 involve identical
2-D MCs (see Fig. 3) since below the value of k is fixed and a splitting model
with state space Sk is analyzed.
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Fig. 3. The state diagram of the split model with state space Sk

The proposed method allows us to find the approximate values of state proba-
bilities in the splitting model with state space Sk, k = 0, 1, ..., R0, with asymmet-
ric load, i.e., we distinguish two cases: (1) λ1 >> λ2, μ1 >> μ2; (2) λ1 << λ2,
μ1 << μ2.

First of all let us analyze case 1. In this case, we can split the state space of
Sk into the columns, i.e., in the state space Sk following splitting is considered
(see Fig. 3):

S =
R2⋃
k=0

Si
k, Si

k

⋂
Sj

k = ∅, i �= j, (6)

where Si
k = {n ∈ Sk : n2 = i}, i = 0, 1, 2, ..., R2.

Based on the splitting (6) in the state space Sk the new merged function is
determined:

U2(n) = <i>, if n ∈ Si
k (7)

where <i> is a merged state, which includes all states of class Si
k. Let

Ω2 = <i> : i = 0, 1, ..., R2.
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According to the SMA we have:

ρk(n1, n2) ≈ ρk
n2

(n1)πk
2 (<n2>), (8)

where ρk
n2

(n1) is the state probability of (n1, n2) within a splitting model
with state space Sn2

k , and πk
2 (<n2>) is the probability of the merged state

<n2> ∈ Ω2.
Let us consider the problem of calculating the state probabilities within the

classes Si
k. In the class Si

k the second component is constant since the micro-
state (n1, i) ∈ Si

k can be defined only by the first component, i.e. (n1, i) ∈ Si
k

micro-state is just referred as n1, n1 = 0, 1, ..., R1. From (2) we conclude that
the transition intensities between the states n1 and n1′ of the splitting model
with state space Si

k does not depend on k. Therefore in the remaining part of
the paper the subscription k is omitted in the notation of the state probabilities.

Also, from (2) we conclude that the probabilities ρn1
n2

, n2 = 0, 1, ..., R2 − 1
coincide with the state probabilities of the model M(λ1)/M(μ1θ1)/1/R1, and
when n2 = R2 then these probabilities coincide with the state probabilities of
the model M(λ1)/M(μ1)/1/R1 (here and later we used a modified version of the
Kendall notation where the values in brackets denote appropriate intensities).

Hence, the desired state probabilities ρi(j), j = 0, 1, ..., R1 are calculated as
follows:

ρi(j) =

⎧⎨
⎩

1−ν1

1−ν
R1+1
1

νj
1 , if i = 0, 1, ..., R2 − 1

1−ν2

1−ν
R1+1
2

νj
2 , if i = R2

(9)

where ν1 = λ1/μ1θ1, ν2 = λ1/μ1.
Then after certain mathematical transformations we find the following rela-

tions to calculate the transition intensities q(<i>,<j>), <i>,<j> ∈ Ω2.

q(<i>,<j>) =

⎧⎪⎨
⎪⎩

λ2 + μ1θ2(1 − ρi(0)), if i = 0, 1, ..., R2 − 1, j = i + 1
μ2(σ3 + σ1(1 − ρi(R1))), if i = 0, 1, ..., R1, j = i − 1
0, in other cases.

(10)

where Λ1 = μ2σ2(1 − π2(<0>)).
Note 1. In calculating the stationary distribution of the splitting model with

the state space Si
R0

it is necessary to set σ2 = 0.
Thus, from (10) we get the following expression in order to calculate the

probabilities of merged states π2(<n2>), <n2> ∈ Ω2.

π2(<n2>) =
n2−1∏
i=0

q(<i>,<i + 1>)
q(<i + 1>,<i>)

π2(<0>), n2 = 1, ..., R2, (11)

where π(<0>) is derived from the normalizing condition, i.e.
π(<0>) =

(∑R2
n2=0 π2(<n2>)

)
= 1.



Hierarchical Space Merging Algorithm for Analysis 245

The transition intensities between classes Sk and Sk′ are determined by the
relations (2), (9) and (11) and after certain mathematical transformations we
get:

q(SkSk′) =

⎧⎪⎨
⎪⎩

Λ1, if k′ = k + 1
kη, if k′ = k − 1
0, in other cases.

(12)

where Λ1 = μ2σ2(1 − π2(<0>)).
Hence, from (12) we see that the required probabilities of the merged states

π(<k>), <k> ∈ Ω1 are defined as state probabilities of a classical Erlang’s model
M(Λ1)/M(η)/R0/0), i.e.,

π1(<k>) =
φk

k!

(
R0∑
i=0

φi

i!

)−1

, k = 1, ..., R0, (13)

where φ = Λ1/η.
Finally, the state probabilities of the given 3-D MC are determined as follows:

p(n1, n2, n3) ≈ ρn2(n1)π2(<n2>)π1(<n3>) (14)

Likewise, we study case 2, where we considered λ1 << λ2, μ1 << μ2 assump-
tion. In this case it is necessary to split the state space Sk into rows, i.e., in the
state space Sk following splitting is considered (see Fig. 3):

S =
R1⋃
i=0

Si
k, Si

k

⋂
Sj

k = ∅, i �= j, (15)

where Si
k = {n ∈ Sk : n1 = i}, i = 0, 1, 2, ..., R1.

Note 2. Here for simplicity of presentation it is better to use the same notation
as used in case 1.

Next, we can implement all of the steps in the above-developed algorithm.
Without repeating these steps, we describe briefly the key point of the calcula-
tion of the state probabilities. Thus, the state probabilities inside all of classes
Si

k coincide with the state probabilities of the model M(λ2)/M(μ2σ3)/1/R2.
Transition intensities q(<i>,<j>), i, j ∈ {0, 1, ..., R} in this case are calculated
as follows:

q(<i>,<j>) =

⎧⎪⎨
⎪⎩

λ1 + μ2σ1(1 − ρ(0)), if j = i + 1
μ1(ρ(R2) + θ1(1 − ρ(R2))), if j = i − 1
0, in other cases.

(16)

where ρ(0) and ρ(R2) denotes the probability that system M(λ2)/M(μ2σ3)/1/R2

is empty and fully respectively.
So, from (16) we conclude that the probabilities of merged states in the second

stage of hierarchy π2(<n1>), n1 ∈ 0, 1, ..., R1 are calculated as state probabilities
of the model M(λ1 + μ2σ1(1 − ρ(0)))/M(μ1(ρ(R2)) + θ1(1 − ρ(R2))))/1/R1.
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The transition intensities between classes Sk and Sk′ in this case are deter-
mined similarly to (12), but in this case the quantity Λ1 is substituted by the
quantity Λ2 = μ2σ2(1 − ρ(0)). In other words, the probabilities of the merged
states in the first stage of hierarchy π(<k>), k ∈ {0, 1, ..., R0} are calculated by
using the Erlang’s formula (13).

4 QoS Metrics

After finding steady-state probabilities of the initial 3-D MC the exact values
of QoS metrics of the investigated network might be determined. Thus, since
the flow of calls to both nodes are Poisson ones, then the exact values of loss
probabilities of calls in node 1 (P1) and node 2 (P2) are determined as follows:

Pi =
∑
n∈S

p(n)δ(ni, Ri), i = 1, 2 (17)

where δ(i, j) are Kronecker’s symbols.
The exact values of the average number of calls in nodes (L1 and L2) and

retrial calls in the orbit (L0) are defined as the expected values of the appropriate
discrete random variables:

Li =
Ri∑
j=1

jΦi(j),where Φi(j) =
∑
n∈S

p(n)δ(ni, j), i = 1, 2. (18)

L0 =
R0∑
j=1

jΦi(j),where Φi(j) =
∑
n∈S

p(n)δ(n3, j). (19)

To calculate the approximate values of the above indicated QoS metrics the
following expressions are determined: For case λ1 >> λ2, μ1 >> μ2:

P1 ≈ ρ0(R1)(1 − π2(<R2>)) + ρR2(R1)π2(<R2>); (20)

P2 ≈ π2(<R2>); (21)

P0 ≈ ρ0(R1)(1 − π2(<R2>)) + ρR2(R1)π2(<R2>)(1 − π1(<0>)); (22)

L1 ≈
R1∑
k=1

k(ρ0(k)(1 − π2(<R2>)) + ρR2(k)π2(<R2>); (23)

L2 ≈
R2∑
k=1

kπ2(<k>). (24)

For case λ1 << λ2, μ1 << μ2:

P1 ≈ π2(<R1>); (25)

P1 ≈ ρ(R2); (26)
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P0 ≈ π2(<R1>)(1 − π1(<0>)); (27)

L1 ≈
R1∑
k=1

kπ2(<k>). (28)

In this case L2 is calculated as the average queue length in the system
M(λ2)/M(μ2σ3)/1/R2, i.e.

L2 =

{
ω

1−ω − R2+1
1−ωR2+1 ωR2+1, if ω �= 1

R2
2 , if ω = 1.

(29)

where ω = λ2/μ2σ3.

5 Conclusion

The proposed approximate method allows calculating the steady-state probabil-
ities of the network of arbitrary dimension while the exact method might be used
only for the models with a moderate size. In addition, the approximate method
allows analyzing the behavior of the QoS metrics versus network parameters as
well.

Note that the proposed approximate method has high accuracy for a large
scale network (in order to be brief here the results which demonstrate the high
accuracy of the approximate formulas are not presented). The accuracy of the
proposed method is estimated by norm

Δ = max
n∈S

|p(n) − p̃(n)|

where p̃(n) denotes the approximate value of probability of the state n ∈ S. In a
large interval for changing of the parameters of the network the indicated norm
is acceptable in engineering practice. Moreover, numerical experiments showed
that this norm asymptotically approaches zero as the dimension of the network
is increased. The last fact is important since the main advantage of the proposed
method is that it is developed especially for large scale networks.
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Abstract. A model for the transit node of a data communication net-
work, which aggregates multiple incoming flows to be routed via a single
outgoing direction, in the form of a single-line queuing system with dis-
crete time, a finite buffer, non-ordinary incoming flow and batch applica-
tion service is proposed. The influence of the quality of communication
channels and blocks of the limited buffer memory of the transit node on
the throughput of the network fragment with varying speeds of incoming
and outgoing interfaces is studied.

Keywords: Traffic aggregation · Star-shaped network fragment ·
Throughput · Queuing system

1 Introduction

Subscriber access subnets are principal elements of computer networks. They
are implemented through star-shaped routed network fragments and technolo-
gies for building wired and wireless local area networks. The most common tech-
nologies for building modern wired local area networks (LANs) are based on the
method of random multiple access to the data transmission environment shared
by multiple subscribers [1]. This method provides for a simple network topol-
ogy; however, the network performance is deteriorated dramatically under high
loads and a large number of subscribers [2]. To increase the actual LAN speed,
a method of logical network structuring is applied, which is based on network
segmentation using dial-up access technology [1]. In addition to the improved
LAN performance, logical structuring via switches simplifies network manage-
ment, increases its flexibility and security of operating with application data
in different network segments. Technical implementation of switches allows for
the architectures based on switching matrices, shared multiport memory, shared
bus, and the arrangement of different architectures. Three modes of switching
protocol data units are recognized: store-and-forward switching (intermediate
and full buffering), cut-through switching with buffering frame header to the
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destination address (on the fly) and hybrid cut-through switching with buffer-
ing of the entire header and data field of the frame of minimum standard size
that provides the ability to filter conflicts [1]. Switching devices are specifically
used as hubs to accumulate traffic from desktops to file servers, database servers
and application servers. A balanced selection of channel speed with reference
to general-purpose server systems with applications, the number of subscribers
connected to such applications, as well as technical parameters of switching com-
munication devices, are crucial to the synthesis of structure and parameters of
the local data transmission networks. One of the main factors that determine the
operational characteristics of the network structures is blocking of the limited
buffer memory of switching nodes (at the second level of network architecture) [3]
and routing nodes (at the third level) [4]. Mathematical models for a local area
network, which multiplexes subscriber streams to the customer service, make
possible the analysis of influence of client traffic parameters on the throughput
of aggregation switch ports with limited memory, computation of the amount of
buffer memory and study strategies to ensure quality of provided network ser-
vices. Since the functioning of computer networks is essentially discrete in nature
[5–7], the study of the influence of buffer memory blocks on the speed of network
fragments using QS with finite buffer and discrete time was proposed in [8,9].
These findings were developed further in [10], where the influence of blocking
buffer memory of the transit node on the proportion of the load processed by
a star-shaped network fragment with traffic distribution was analyzed in terms
of the discrete-time QS. This article presents a model for a star-shaped network
fragment with traffic aggregation and investigates the speed of a routed star-
shaped network fragments, where each subscriber has permanent access packets
to the backbone network via a transit router.

2 A Mathematical Model for the Aggregating
Star-Shaped Network Fragment

Let us consider a fragment of a local computer network that includes clients
connected to the server via the network node. We assume that the subscribers are
connected to M ports of the transit node, homogeneous in transmit-receive rate,
and generate a stream of frames of equal length to the server platform connected
to the node via (M + 1)-th port with a speed of S ≥ 1 times greater than that
of the subscriber ports. We also assume that the reliability of the subscriber
connections to the network node is set by probabilities Fm, m = 1,M , and the
reliability of server connection — by probability F . At the same time, all clients
data sources are independent and operate in synch, with a period t. Duration
of this period is determined by the speed of ports connecting the subscribers
and the overheads associated with frame processing in the transit node. Hence,
during a full cycle of frame t transmission via the subscriber ports 0 ≤ i ≤ S
frames could be sent to the server port. Moreover, we assume that the transit



252 P. Mikheev and S. Suschenko

node operates fully in the intermediate buffering mode and the frame received
by the node in the current cycle t, will be transferred via the outgoing (server)
port only in the next cycle. We suppose that subscriber ports always have data
frames to be transmitted to the server platform. We suppose also that there
is a dedicated buffer memory pool of volume K ≥ M for storing frames in the
output queue from the network node to the server port. Then the behavior of the
network fragment under consideration can be represented as a Markov Queuing
System (QS) with discrete time, finite buffer size, non-ordinary incoming flow
and a single batch service unit [11]. The non-ordinary incoming stream in the
QS are determined by the reliability of client connections to the transit node
Fm, m = 1,M , and the number of processed applications — by the speed of
the server port S and reliability of server connection F . Dynamics of queuing to
the outgoing communication channel in a given QS are described by the Markov
chain. A set of probable states of the Markov chain is determined by the size of
buffer memory.

The number of arrivals, or downloads, represents the most important char-
acteristic of QS with limited storage capacity [12]. In the present case, this
operating characteristic is defined as a proportion of the server connection speed
reached in the conditions of aggregating traffic from M customers:

Z(S,M,K,F,F ) = F

(
S∑

k=1

kPk + S

K∑
k=S+1

Pk

)
, (1)

where F = {F1; . . . ;FM} is a vector of reliability values of subscribers connec-
tions to the transit node Fm, m = 1,M , and Pk — state probabilities of the
Markov chain. In the case of homogeneous reliability across the client commu-
nication channels Fm = F∗, m = 1,M the number of arrivals is denoted as
Z(S,M,K,F, F∗).

We define the probability Uj of arrival at the transit node j = 0,M packets
per cycle t as the sum of all combinations of product probabilities of successful j
and unsuccessful M − j transmissions via the subscriber ports:

Uj =
Cj

M∑
k=1

∏
n∈A(k,j,M)

Fn

∏
m∈B(k,j,M)

(1 − Fm),

where Cj
M is the number of combinations of M elements by j, A(k, j,M) —

specific (k-th) combination of a subset of j elements (indices) of a set containing
M elements, B(k, j,M) = M̂ − A(k, j,M) — a subset reverse to a subset of
A(k, j,M), complementing it to the set M̂ = [1,M ].
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Then, the transition probability can be written as follows:

πj
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uj , i = 0; j = 0,M ;
i−1∑

n=i−j

Cn
SFn(1 − F )S−nUn+j−i

+ F iUj

S−i∑
n=0

Ci−1
n+i−1(1 − F )n, i = 1, S − 1; j = 0, i;

i−1∑
n=0

Cn
SFn(1 − F )S−nUn+j−i

+ F iUj

S−i∑
n=0

Ci−1
n+i−1(1 − F )n, i = 1, S − 1; j = i,M ;

i−(j−M)∑
n=0

Cn
SFn(1 − F )S−nUj−i+n,

i = 1, S − 1;

j = M + 1, i + M ;
j−(i−S)∑

n=0
Cn

SFS−n(1−F )nUj−(i−S)−n, i = S,K; j = i − S, i − 1;

S∑
n=0

Cn
SFn(1 − F )S−nUj−i+n,

i = S,K − M + S − 1;

j = i, i + M − S;
i−(j−M)∑

n=0
Cn

SFn(1 − F )S−nUj−i+n,
i = S,K − M ;

j = i + M − S, i + M ;
i−(j−M)∑

n=0
Cn

SFn(1 − F )S−n

×
(
1 −

j−i−1+n∑
k=0

Uk

)
, i = K−M,K−M+S; j =K;

S∑
n=0

Cn
SFn(1 − F )S−n

×
(
1 −

j−i−1+n∑
k=0

Uk

)
, i = K − M + S,K; j = K.

(2)

3 A Router with Server Connection Speed S = 2

When the speed of the server connection is twice as large as that of the router
client connection, the throughput capacity of a router (1) can be written as
follows:

Z(S,M,K,F,F ) = FP1 + 2F

K∑
k=2

Pk. (3)
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Let us consider a router that provides server access for two local computers
(M = 2) using the buffer memory of capacity K ≥ M . In this case and in view of
transition probabilities (2), the system of equilibrium equations for an arbitrary
finite-capacity buffer memory takes the following form:

P0(F1 + F2 − F1F2) = P1F (2 − F )(1 − F1)(1 − F2)

+ P2F
2(1 − F1)(1 − F2);

P1

[
F1+F2−F1F2+F (2−F )(1−2F1−2F2+3F1F2)

]
= P0(F1+F2

− 2F1F2) + P2

[
2F (1 − F )(1 − F1)(1 − F2)

+ F 2(F1 + F2 − 2F1F2)
]

+ P3F
2(1 − F1)(1 − F2);

P2

[
F1 + F2 − F1F2 + F (2 − F )(1 − 2F1 − 2F2 + 3F1F2)

+F 2(F1+F2−3F1F2)
]
=P0F1F2+P1

[
(1−F )2(F1+F2−2F1F2)

+ F (2 − F )F1F2

]
+ P3

[
2F (1 − F )(1 − F1)(1 − F2)

+ F 2(F1 + F2 − 2F1F2)
]

+ P4F
2(1 − F1)(1 − F2);

Pi

[
F1+F2−F1F2+F (2−F )(1−2F1−2F2+3F1F2)+F 2(F1+F2

− 3F1F2)
]
=Pi−2(1−F )2F1F2+Pi−1

[
(1−F )2(F1+F2−2F1F2)

+ 2F (1 − F )F1F2

]
+ Pi+1

[
2F (1 − F )(1 − F1)(1 − F2)

+F 2(F1+F2−2F1F2)
]
+Pi+2F

2(1−F1)(1−F2), i = 3,K−2;

PK−1

[
F1 + F2 − F1F2 + F (2 − F )(1 − 2F1 − 2F2 + 3F1F2)

+ F 2(F1 + F2 − 3F1F2)
]

= PK−3(1 − F )2F1F2

+ PK−2

[
(1 − F )2(F1 + F2 − 2F1F2) + 2F (1 − F )F1F2

]

+ PK

[
2F (1 − F )(1 − F1)(1 − F2) + F 2(F1 + F2 − 2F1F2)

]
;

PK

[
F (2 − F )(1 − F1)(1 − F2) + F 2(F1 + F2 − 2F1F2)

]

= PK−2(1 − F )2F1F2

+ PK−1

[
(1 − F )2(F1 + F2 − F1F2) + 2F (1 − F )F1F2

]
.
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When the amount of buffer memory K = 2, we derive the following values
for finite states of the Markov chain:

P0 =
F 2

G
(1−F1)(1−F2)

[
(2−F )2−(1−F )(3−F )(F1+F2−F1F2)

]
;

P1 =
F

G

[
(2−F )(F1+F2−F1F2)−FF1F2−2(1−F )(F1+F2−F1F2)2

]
;

P2 =
1
G

[
F (2 − F )F1F2 + (1 − F )2(F1 + F2 − F1F2)2

]
;

G = F 2(2 − F )2 + 2F (1 − F )(1 − 3F + F 2)(F1 + F2 − F1F2)

+ 2F (1 − F )F1F2 + (1 − F )4(F1 + F2 − F1F2)2.

Then, in line with (3), the throughput is transformed to:

Z(2, 2, 2, F,F ) =
F

G

[
F (2 − F )(F1 + F2 − F1F2) + F (4 − 3F )F1F2

+ 2(1 − F )(1 − 2F )(F1 + F2 − F1F2)2
]
. (4)

Hence, it can be easily demonstrated that when F = F1 = F2 = 1 the through-
put reaches the maximum value and becomes independent of the buffer storage
size Z(2, 2,K, 1, 1) = 2. For absolutely reliable server connections (F = 1), the
throughput expression is defined by the sum of data transmission reliability via
the client connection Z(2, 2, 2, 1,F ) = F1 + F2. Under absolutely reliable client
connections (F1 = F2 = 1), the throughput is determined only by the quality
of the output transmission link and does not depend on the size of the buffer
memory of the router Z(2, 2,K, F, 1) = 2F . In the absence of flow in one of the
client ports of the router (F = {F1; 0}), the throughput value makes:

Z(2, 2, 2, F,F ) =
FF1

[
F (2 − F ) + 2F1(1 − F )(1 − 2F )

]
F 2(2−F )2+2FF1(1−F )(1−3F +F 2)+F 2

1 (1−F )4
.

For statistically homogeneous client flows (F1 = F2 = F∗) the expression (4)
takes the form:

Z(2, 2, 2, F,F ) = FF∗
[
F (2−F )(2−F∗)+FF∗(4−3F )+2F∗(1−F )

× (1 − 2F )(2 − F∗)2
]/[

F 2(2 − F )2 + 2FF∗(1 − F )

× (1−3F +F 2)(2−F∗)+2FF 2
∗ (1−F )+F 2

∗ (1−F )4(2−F∗)2
]
.

Under fully homogeneous network connections of a router (F = F1 = F2), the
throughput expression becomes more simplified:

Z(2, 2, 2, F, F ) = 2F
6 − 16F + 20F 2 − 11F 3 + 2F 4

12 − 40F + 64F 2 − 56F 3 + 28F 4 − 8F 5 + F 6
.

Equations for the finite state probabilities of the Markov chain and the
throughput derived from (3) at K = 3 are similar to the case when K = 2,
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though more cumbersome. Therefore, for K = 3 we give only the through-
put formula for router connections with homogeneous reliability transmission
(F = F1 = F2):

Z(2, 2, 3, F, F ) =
[
80F − 424F 2 + 1160F 3 − 1966F 4 + 2241F 5

− 1714F 6+852F 7−240F 8
]/[

64−368F +1088F 2−2032F 3

+ 2618F 4−2382F 5+1535F 6−682F 7+200F 8−36F 9+3F 10
]
.

In addition to the analytical expressions for a router with two input channels
(M = 2) and the buffer memory K = 2, 3, we obtained numerical solutions for
K = 5, 7, 10, 15, 20, as well as for three input channels (M = 3) with buffer
memory K = 3, 5, 7, 10, 15, 20.

Figures 1, 2, 3 and 4 demonstrate the findings of the router performance
with the server connection speed twice exceeding that of the client ports (S =

2). Figure 1 shows that the throughput in the interval F ∈ [
0,
∑M

m=1 Fm

S

)
is

dominated by the line Z∗(F,F ) = SF , and in the interval F ∈ [∑M
m=1 Fm

S , 1
]

below the value of Z∗(F,F ) =
∑M

m=1 Fm is bounded by a parabolic curve, with
a minor minimum located at about the midpoint of the segment.

Z(2, 2,K, F,F )

F0 0,2 0,4 0,6 0,8

0,4

0,8

1,2

1,6

2

1

F1 + F2

K = 20
K = 5
K = 3
K = 2

a)

Z(2, 3,K, F,F )

F0 0,2 0,4 0,6 0,8

0,4

0,8

1,2

1,6

2

1

F1 + F2 + F3

K = 20
K = 10
K = 5
K = 3

b)

Fig. 1. Comparative curves for throughput-transmission reliability in the outgoing
router channel; (a) M = 2, F = {0,7; 0,5}; (b) M = 3, F = {0,5; 0,3; 0,1}

Theappearanceof curves inFig. 1 confirms the lowered efficiencyofbuffermem-
ory usage in the transit node at F >

∑M
m=1 Fm

S , because in this interval the input
channels fail to provide rapid server connection with the proper load. In the given
interval of F values, the state probabilities Pi, i = S,K, providing a full load on the
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Pi

F0 0,2 0,4 0,6 0,8

0,2

0,4

0,6

0,8

1

1

K

i=2

Pi

P0

P1

K = 20
K = 10
K = 2

Fig. 2. Dependence of state probabilities of the Markov chain on parameter F , at
M = 2, F = {0,9; 0,2} and varying K

output direction are dropped significantly (Fig. 2) and, on the contrary, state prob-
abilities P0 that leave the outgoing channels unloaded and Pi, i = 1, S − 1, that
provide only a partial load on the routers server connection increase. The greatest
gain in throughput against the increase in the buffer memory capacity is observed
under complying the

∑M
m=1 Fm = SF equation.

Numerical studies also reveal that the more statistically homogeneous client
flows in the router (the values of Fm, m = 1,M approaching each other) are,

the higher goes the dominating curve in the interval F ∈ [∑M
m=1 Fm

S , 1
]

(Fig. 3).
The deepest minimum of this curve is observed at statistically significant het-
erogeneous incoming channels (e.g., at F1 = 1, F2 = 0).

Figure 3 presents a set of throughput dependencies on the quality of server
connection at a given amount of a router’s buffer storage and different values
of Fm, m = 1,M , satisfying the condition

∑M
m=1 Fm = 1. The figures demon-

strate that the maximum throughput values are observed in the areas of varying
transmission reliability in the aggregating channel under significantly different
sets of Fm, m = 1,M with constant sum. Within the interval F ∈ [

0,
∑M

m=1 Fm

S

]
the dominating curve corresponds to the polar values of Fm, m = 1,M , and
for the major portion of the interval F ∈ (∑M

m=1 Fm

S , 1
]

— to the homogeneous
values: Fm = F∗, m = 1,M . This can also be explained by the fact that even a
perfectly reliable communication channel (Fn = 1) at any one incoming direc-
tion, against absolutely inferior remaining communication channels (Fm = 0,
m = 1,M , m �= n), is unable to provide a full load on the outgoing direction
with speed S ≥ 2 under a low level error in the communication channel of the
outgoing direction. Thus, Fig. 4 demonstrates that at polar values Fm, m = 1, 2
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Z(2, 2, 10, F,F )

F0 0,2 0,4 0,6 0,8

0,4

0,8

1,2

1,6

2

1

F = {1; 0}
F = {0,9; 0,1}
F = {0,8; 0,2}
F = {0,5; 0,5}

a)

Z(2, 3, 20, F,F )

F0 0,2 0,4 0,6 0,8

0,4

0,8

1,2

1,6

2

1

F = {1; 0; 0}
F = {0,8; 0,1; 0,1}
F = {0,34; 0,33; 0,33}
F = {0,5; 0,5; 0}

b)

Fig. 3. Throughput-transmission reliability in the outgoing communication channel;
(a) M = 2, K = 10; (b) M = 3, K = 20.

state probabilities Pi, i = 2,K, which ensure a full load of the outgoing direction,
tend to zero when the quality of the outgoing channel is improved.

Investigation of the aggregating router with an arbitrary speed in the main
channel, the number of incoming lines and the amount of buffer storage shows in
certain cases that if the absolute reliability of at least S ≤ M client connections
(Fm = 1, m = 1, S) is sustained, the throughput is invariant to the number
of aggregated channels and the buffer capacity, and it is determined by the
transmission rate and the quality of the outgoing retransmission link:

Z(S,M,K,F,F ) = SF.

Obviously, when F = 1, the throughput is determined only by the physical speed
of the server connection S.

For an absolutely reliable outgoing communication channel (F = 1) with
integral speed S, coinciding with the number of sources M , the throughput,
without exceeding the speed of aggregating direction, is determined by the qual-
ity of client connections, is invariant to the buffer capacity K ≥ S and is set by
the following expression:

Z(S, S,K, 1,F ) =
M∑

m=1

Fm.

Relying on the numerical results given in Figs. 1, 2, 3 and 4, we can conclude
that when constructing access networks, the similar (homogeneous) in quality
subscriber lines should be selected for the border router, since in the area of high
transmission reliability in the outgoing channel (F ∈ [∑M

m=1 Fm

S , 1
]
) this choice

leads to the absolutely best throughput parameter. Despite the fact that homo-
geneous subscriber lines provide a minimum throughput under a low-quality
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Fig. 4. Dependence of state probabilities of the Markov chain from F , parameter at
varying F , M = 2, K = 10

outgoing channel (F ∈ [
0,
∑M

m=1 Fm

S

]
) the deviation from the potentially achiev-

able throughput level within this range of varying F decreases rapidly with the
increasing buffer capacity of the transit node.

4 Conclusion

A model for the transit node of a data communication network, which aggre-
gates information flows from multiple sources and routes them to a single out-
going direction is proposed in the article. This study represents a continuation
of researches [13]. The router model with a service rate homogeneous to the
incoming and outgoing interfaces is generalized to the case when the speed of
the outgoing data transmission channel exceeds manifold that of the incoming
directions. A drop in the buffering efficiency of the transit node was observed
at the level of transmission reliability in server connections exceeding that of
the summarized reliable data transmission in incoming channels, normalized to
the speed parameter of the outgoing router interface F >

∑M
m=1 Fm

S , while the
drop in performance subsides against the increasing homogeneity of client flows
(Fm = F∗, m = 1,M). A dominant for evaluating the processed flow was derived
when the number of buffers exceeds manifold the number of active subscribers.
For an absolutely reliable outgoing communication channel (F = 1) with integral
speed S, coinciding with the number of sources M , the throughput is determined
by the quality of client connections, is invariant to the buffer capacity size K ≥ S,
and is set by the equation: Z(S, S,K, 1,F ) =

∑S
m=1 Fm.
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Abstract. We study a general multi-server system in which each cus-
tomer has service time and a random volume. We consider two main
cases: (i) the total volume of the present customers is unlimited and
(ii) this volume is upper bounded by a finite constant. For this system,
using the regenerative approach, we develop performance analysis. We
establish a solidarity property of the basic processes: accumulated vol-
ume, waiting time (workload) and queue size. In case (i), we prove an
analog of Little’s formula and, provided the system is single-server and
the input is Poisson, the Pollaczeck-Khintchine formula. In case (ii), we
suggest an approximation of the Pollaczeck-Khintchine formula, which
is then verified by simulation.

Keywords: Queueing system · Random volume customer · Regenera-
tive approach · Steady-state performance · Simulation · Approximation

1 Introduction

The finite volume of computer memory is a very important aspect of modern
high performance systems, which is not adequately covered by convenient queue-
ing models with a finite buffer for waiting customers. An important and difficult
feature of finite space systems is a possible dependence between service time
and the volume of a given customer. On the other hand, analysis of finite space
systems, where customers have both service time and a random volume, is quite
important to model different problems related to the effective functioning of high
performance computer and communication systems, see for instance, [7,8]. The
total accumulated volume in the system, together with queue size and workload
(waiting time in the queue), can be considered as the basic processes describing
the dynamics of such systems. This process is still less studied, and its further
analysis is a challenging problem. In this regard, we again mention previous
works [7,8], and also a recent paper [5], where an asymptotic analysis of the lim-
ited space system was developed. In particular, an important role in this analysis
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is played by an analogy between the process of the lost customers (caused by
limited space) and an associated renewal process generated by the customer
volumes. It has allowed a deducing of useful approximate relation between the
stationary loss probability and the limiting fraction of the lost volume. In this
paper, we first develop a performance analysis of a system with unlimited space.
We use a unified approach based on regenerative arguments, and it is the first
contribution of this paper. Moreover, we establish a solidarity property between
the basic processes embedded at the arrival instants. When the stability con-
dition holds, we obtain the tightness of all these processes. Furthermore, we
present a simple regenerative proof of an analog of Little’s formula, which unlike
classical formula, connects the mean stationary present volume and the mean
stationary waiting time in the queue. This proof covers a multiserver system
in which servers may be non-identical. For the system with limited space M , a
dependence between the waiting time and acceptance/rejection of a customer
makes analysis much more challenging, and for this case we suggest an approx-
imate Pollaczeck-Khintchine formula. It is another important contribution of
the paper. Finally, we develop regenerative simulation to estimate the unknown
acceptance probability and verify the proposed approximation. In particular, we
find the values of parameters (traffic intensity and the upper bound for the total
volume) when this approximation turns out to be the most accurate. We stress
that our approach is quite general and the only one limitation: the existence of
classical regenerations of the basic processes.

The paper is organized as follows. In Sect. 2 we describe the model, then,
in Sect. 3, we analyze the unlimited volume space system. For this system, in
Sect. 3.1, we establish the solidarity property of the basic processes, then in
Sect. 3.2, a simple proof of an analog of the famous Little’s formula is given.
A few examples are also presented. Then, in Sect. 4, we study the limited space
system. We establish the tightness of basic processes and suggest an approximate
Pollaczeck-Khintchine formula. Finally, in Sect. 5, we present simulation results
which demonstrate the accuracy of the proposed approximation depending on
the traffic intensity ρ, total volume space M , and for various distributions of
input, service time S and volume v.

2 Model Description

We consider a general multiserver GI/G/m-type queueing system with FIFO
service discipline and random volume customers. A distinctive feature of the
system is that the nth customer is described by two parameters, service time
Sn and volume vn, n ≥ 0. The pairs {Sn, vn} are assumed to be independent
identically distributed (i.i.d.), while, for given n, a dependence between Sn and
vn may exist. In particular, the volumes {vi} are i.i.d. with generic element v,
and the service times {Sn} are i.i.d. as well, with generic element S. We consider
two main cases: (i) unlimited space for the buffered customers, and (ii) the total
space of customers in the system is upper bounded by a finite constant M . The
arrival instants {tn} form the i.i.d (renewal) sequence of the interarrival times
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τn = tn+1 − tn, n ≥ 0 (t0 = 0) with the rate λ := 1/Eτ ∈ (0, ∞), where τ
is a generic interarrival time. We introduce the accumulated volume V (t), the
workload (waiting time in queue) W (t) and the number of customers in system
(queue size) ν(t), at instant t.

3 Unlimited Space System

First we consider the system with unlimited space for the total volume of the
customers in the system. We denote Wn the waiting time and νn the number
of customers in the system at instant t−n , and assume (for simplicity only) zero
initial state, W0 = ν0 = 0. Also let Vn be the total accumulated volume in
the system at instant t−n . In this section, we establish an intuitively expected
asymptotic solidarity property between the accumulated volume Vn, queue size
νn and workload Wn. Below ⇒ stands for the convergence in probability.

Theorem 1. In the system, Wn ⇒ ∞ iff νn ⇒ ∞ iff Vn ⇒ ∞.

Proof. First of all we remark that the first part of the statement, Wn ⇒ ∞ iff
νn ⇒ ∞, has been established in [4]. Thus it remains to establish the second
part, νn ⇒ ∞ iff Vn ⇒ ∞. For any n ≥ 0, k ≥ 1 and any fixed x ≥ 0 we have:

P(Vn > x) = P(

νn−1∑
j=0

vj > x) = P
( νn−1∑

j=0

vj > x, νn > k
)

+ P
( νn−1∑

j=0

vj > x, νn ≤ k
)

≥ P
( k−1∑

j=0

vj > x, νn > k
)

≥ P
( k−1∑

j=0

vj > x
)

− P(νn ≤ k). (1)

(i) Let us assume νn ⇒ ∞. By the Strong Law of Large Numbers
∑k−1

j=0 vj

k
→ Ev > 0, k → ∞, (2)

and thus
∑k−1

j=0 vj → ∞ as k → ∞, with probability 1 (w.p.1). Then by (1),

for arbitrary fixed x, there exists k0 such that the probability P(
∑k0

j=0 vj > x)
becomes arbitrary close to 1. On the other hand, by the assumption νn ⇒ ∞,
the probability P(νn < k0) can be made arbitrarily small for sufficiently large n.
Because x is arbitrary, then Vn ⇒ ∞ by (1), and part (i) is proved.
(ii) Let us assume Vn ⇒ ∞. For each x, n, k we have the inequality,

P(Vn > x) ≤ P
( νn−1∑

j=0

vj > x, νn > k
)

+ P(
k−1∑
j=0

vj > x), (3)

implying

P(νn > k) ≥ P(
νn−1∑
j=0

vj > x, νn > k) ≥ P(Vn > x) − P(
k−1∑
j=0

vj > x). (4)
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Because Ev < ∞, the last term in (4) with a fixed k, can be made arbitrarily
small for some (sufficiently large) x := x0, see (2). On the other hand, by the
assumption Vn ⇒ ∞, the probability P(Vn > x0) becomes arbitrary close to 1
for all sufficiently large n. It now follows from (4) that, for each fixed k, the
probability P(νn > k) → 1 as n → ∞, and it completes the proof. �

Remark 1. The statement of Theorem 1 holds true also for a system with non-
identical servers. (The description and stability analysis of this system can be
found in [3].)

Now we define recursively the instants

βn+1 = min{k > βn : Vk = νk = Wk = 0}, n ≥ 0, β0 := 0, (5)

which are the regeneration points of discrete-time processes {Wn}, {νn}, {Vn},
while Tn =: tβn

, n ≥ 0, T0 = t0 = 0 are regenerations of continuous-time
processes {V (t)}, {W (t)}, {ν(t)}. We denote as T, β the generic regeneration
period in continuous time and discrete time (at arrival instants), respectively.
Under an extra stability assumption the statement of Theorem 1 becomes
stronger.

Theorem 2. If the stability condition ρ := λES < m holds and P(τ > S) > 0,
then all three processes {Vn}, {νn}, {Wn} are tight.

Proof. We will use the well-known fact that, under assumed conditions, the
queue-size process {νn} (as well as the process {Wn}) is tight. Moreover, these
processes are positive recurrent regenerative, that is ET < ∞, Eβ < ∞ [1,3].
Then, for any k ≥ 0, x ≥ 0,

P(νn ≤ k) = P(Vn ≤ x, νn ≤ k) + P(
νn−1∑
j=0

vj > x, νn ≤ k)

≤ P(Vn ≤ x) + P(
k−1∑
j=0

vj > x), (6)

implying

P(Vn ≤ x) ≥ P(νn ≤ k) − P(
k−1∑
j=0

vj > x). (7)

Now, for any ε > 0, we take k0 such that P(νn ≤ k0) ≥ 1 − ε/2 for all n (it is
possible by the tightness of the process {νn}). Then we can find x0 such that
P(

∑k0−1
j=0 vj > x0) ≤ ε/2, see (2). It gives

inf
n

P(Vn ≤ x) ≥ 1 − ε, x ≥ x0,

and, because ε is arbitrary, the tightness of {Vn} follows. �
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It is worth noting that solidarity and tightness are quite important for stability
analysis.

Remark 2. If the number of servers m = 1, then we need not assume P(τ >
S) > 0 to construct classical regenerations (5).

Remark 3. In the above given statements, a dependence between Sn and vn is
allowed.

3.1 An Analog of Little’s Formula

Keeping the previous notation, we now give a regenerative proof of an analog of
the celebrated Little’s formula, which in our case connects the mean stationary
accumulated volume and the mean stationary workload. This result has been
proved in [6] in another setting. We denote the input rate λ = 1/Eτ . For the
zero initial state, β1 =st β (stochastically), and by Wald’s identity,

ET = Etβ = Eβ Eτ =
Eβ

λ
. (8)

We introduce the weak limits Wn ⇒ W∞, νn ⇒ ν∞ and Vn ⇒ V∞ as n → ∞,
and W (t) ⇒ W (∞), ν(t) ⇒ ν(∞) and V (t) ⇒ V (∞), as t → ∞, when exist. In
the following statement servers may be non-identical.

Theorem 3. Let us assume that the assumptions of Theorem2 hold true. Then
the following analog of Little’s formula holds

EV (∞) = λ[EW∞Ev + E(Sv)]. (9)

Proof. Under the assumptions of Theorem 2, the weak limits W∞, ν∞, V∞
exist, and we assume the existence of the limits in continuous time, W (∞),
ν(∞), V (∞). (It is the case, when interarrival time τ is non-lattice, see [1].) Let
us recall that discrete-time regeneration period β equals the number of arrivals
during the regeneration cycle and all customers arrived within a cycle depart
system in that cycle. In particular, the time customer j spends in the system
during the regeneration cycle is his sojourn time Wj + Sj . It now follows by
regenerative arguments that w. p. 1, as t → ∞,

EV (∞) := lim
t→∞

1
t

∫ t

0

V (u)du → λ
E
[∑β−1

j=0 vj(Wj + Sj)
]

Eβ

= λ
[
Ev EW∞ + E(S v)

]
, (10)

where the independence between the waiting time in a queue and the volume of
a newly arrived customer is used. �

The distribution of service time is assumed to be known but for non-identical
servers it depends on the assigned server.
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If the service time and volume are independent, then (10) becomes

EV (∞) = λ(EW∞ + ES)Ev. (11)

Finally, if vn ≡ 1, then νn = Vn and (10) becomes the classical Little’s formula:

Eν(∞) = λ(EW∞ + ES).

Similar arguments allow us to obtain the mean stationary volume EV̂ of cus-
tomers being served. Let V̂ (t) be the summary volume of customers present in
servers at instant t. Then it follows that

EV̂ = lim
t→∞

1
t

∫ t

0

V̂ (u)du = λ
E[

∑β−1
n=0 Sn vn]
Eβ

= λE(Sv), (12)

giving, for independent Sn and vn,

EV̂ = λES Ev := ρEv. (13)

Remark 4. It is well-known that, for the single-server system, ρ = λES is the
stationary busy probability.

In some cases, when Sn and vn are dependent, it is possible to calculate the
term E(Sv) in an explicit form. For instance, if the service time is proportional
to the volume, that is S = cv where c > 0 is a constant, we obtain E(Sv) =
E(cv2) = cEv2, implying

EV (∞) = λ(EW∞Ev + cEv2).

As another example, let S = cv + φ, with independent v and φ. Then E(Sv) =
cEv2 + EφEv, and (9) becomes

EV (∞) = λ
[
(EW∞ + Eφ)Ev + cEv2

]
.

3.2 Pollaczeck-Khintchine Formula

Let us consider an unlimited space single-server system with renewal input with
the rate λ and condition ρ < 1. Then the weak limit Wn ⇒ W∞ exists. The
Pollaczeck-Khintchine formula for this system has the same form as for the
classical M/G/1 system because in this analysis only service times are involved.
Nevertheless, we present a short and instructive (conventional) proof because
it is used below for analysis of the limited space system. First, by geometrical
considerations, regenerative arguments and (8), we obtain

EW (∞) =: lim
t→∞

1
t

∫ t

0

W (u)du =
E

∫ T

0
W (u)du

ET

=
1
ET

E
[ β−1∑

i=0

( (Wn + Sn)2

2
− W 2

n+1

2

)]

= λ
E
[ ∑β−1

i=0 (Wn Sn + Sn/2)
]

Eβ
= λ(EW∞ ES +

ES2

2
). (14)
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Then, for the Poisson input, the weak limit W (t) ⇒ W exists as well, and by
PASTA property, W (∞) =st W∞ =: W (stochastically). Thus we obtain the
classical Pollaczeck-Khintchine formula:

EW =
λES2

2(1 − ρ)
. (15)

An interesting and practically important case is proportionality, Sn = cvn, where
c > 0 is a constant, in which case we obtain from (15)

EW =
λc2Ev2

2(1 − cλEv)
. (16)

4 Limited Space System

Now we consider the same m-server system in which the total accumulated
volume V (t) at (any) instant t is upper bounded by a finite constant M . (We
call M volume space.) Such systems have been used to model and solve various
problems occurring in computer and communication systems design, see [7,8].
Note that there is no limitation for the number of customers waiting in the
queue. Thus, in this system customer n is lost if and only if

V (t−n ) + vn > M. (17)

In this system, the accumulated volume V (t) ≤ M , and we establish the tightness
of queue size and workload.

Theorem 4. In the limited space system, the queue-size process and the work-
load process are tight.

Proof. Take any n ≥ 0, k ≥ 1, and write

0 = P(Vn > M) ≥ P(
νn−1∑
j=0

vj > M, νn > k) ≥ P(νn > k) − P(
k−1∑
j=0

vj > M),

implying

P(νn > k) ≤ P(
k−1∑
j=0

vj > M) := Qk. (18)

However the probability Qk can be made arbitrarily small for all sufficiently
large k, because

∑k−1
j=0 vj → ∞, k → ∞, w.p.1. Since the upper bound Qk in

(18) is independent of n, the required tightness of the queue-size process {νn}
follows.

To prove the tightness of the workload, we denote as Si(t) the remaining
service time at instant t in server i = 1, . . . ,m. Let us note that the number of
customers waiting in the queue at instant t−n is defined as Qn = (νn − m)+. Let
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us denote J (n) the set of occupied servers at instant t−n . Now we can write, for
any n, k and x ≥ 0,

P(Wn ≤ x) = P
( Qn∑

j=0

Sj +
∑

i∈J (n)

Si(t−n ) ≤ x
)

≥ P
( k∑

j=0

Sj +
∑

i∈J (n)

Si(t−n ) ≤ x, Qn ≤ k
)

≥ P
( k∑

j=0

Sj +
∑

i∈J (n)

Si(t−n ) ≤ x
)

− P(Qn > k). (19)

We notice that Qn ≤ νn and thus the process {Qn} is tight. It has been
proved that the remaining service time process {Si(t−n ), n ≥ 1} is tight for
each i [2]. Moreover, the cardinality of the set |J (n)| ≤ m. Hence, the sum
of the remaining service times,

∑
i∈J (n) Si(t−n ), n ≥ 1, is a tight process as

well. Now taking sufficiently large k0 we can make P(Qn > k0) arbitrarily close
to 0, and then making sufficiently large x = x0 we can make the probability
P
( ∑k0

j=0 Sj +
∑

i∈J (n) Si(t−n ) ≤ x0

)
arbitrarily close to 1. It shows that the

probability P(Wn ≤ x) becomes arbitrarily close to 1 for x ≥ x0, implying the
required tightness of the workload process. �

A modified Pollaczeck-Khintchine formula holds for this (single-server) system
with a Poisson input, however the definition of the input rate is changed. Namely,
let N(t), A(t) be the number of arrivals and accepted arrivals, respectively, in
interval [0, t]. Let indicator 1n = 1 if customer n be accepted (1n = 0, otherwise).
Then in particular,

A(t) =
N(t)∑
n=0

1n, N(t)/t → λ w.p.1, as t → ∞.

One can show that the basic regenerative processes are positive recurrent, that
is ET < ∞, Eβ < ∞ [3]. Then, by the regenerative arguments, the following
effective input rate, exists w.p.1,

lim
t→∞

A(t)
t

=
Eβ

ET
=: λa.

On the other hand,

λa = lim
t→∞

A(t)
N(t)

N(t)
t

= λPa, (20)

where the limiting fraction of the accepted customers, limt→∞ A(t)/N(t) = Pa,
exists and there is also stationary acceptance probability Pa = E1a (because the
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weak limit 1n ⇒ 1a exists by condition P(τ > S) > 0, see Theorem 2). The same
geometrical arguments as in (14) together with (20) lead to the expression

EW (∞) = λa(EW∞ ES +
ES2

2
). (21)

The input of accepted customers is a result of a thinning of the original Poisson
input (with given rate λ), and is no longer a Poisson process because the indi-
cators {1n} are dependent. Nevertheless, we assume that the PASTA property
holds, implying equality W (∞) =st W∞ := W . Then by (21), the following
(approximate) Pollaczeck-Khintchine formula holds:

EW =
λaES2

2(1 − λaES)
. (22)

This result allows us to estimate the mean stationary waiting time in the original
limited space system as the mean stationary waiting time in a standard M/G/1
system with a Poisson input with the rate λa. Thus we first must estimate Pa

and then verify the accuracy of approximation (22). In Sect. 5 we demonstrate
the accuracy for different parameters of the system.

Remark 5. One can deduce an analog of Little’s formula (9) for a limited space
system replacing λ by λa and generic volume v by the (unknown) volume of the
accepted customer, however an applicability of this result is very limited.

5 Simulation Results

In this section we present simulation results to verify the accuracy of approxi-
mation (22), depending on the given parameters of the system. We notice that
simulations have been carried out by means of the system R [10] and high per-
formance cluster of the Karelian Research Centre [9].

We develop regenerative simulation of an M/G/1 limited space system com-
bining exponential distribution, Pareto distribution,

F (x) = 1 − (xm/x)α, x ≥ xm > 0, α > 0, F (x) = 0, x ≤ xm,

and Weibull distribution,

F (x) = 1 − e−(x/s)i , s > 0, i > 0, x ≥ 0,

both for service time and volume, which are assumed to be independent. More-
over, we simulate the system depending on the traffic intensity ρ in the range
[0.700, 0.999] and space size M (expressed in the term of mean volume size Ev),
in range [4Ev, 20Ev]. To estimate rate λa, we must take into account the rate
of losses. Because a loss is typically a rare event (for sufficiently large M), we
apply a special construction to accumulate a sufficient number of losses. Namely,
in each experiment, for fixed ρ and M , we construct 300 extended regenera-
tion cycles. To obtain an extended cycle, we accumulate ordinary regeneration
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cycles (see (5)) until 100 losses appear. (In our setting, the ordinary cycles are
typically less informative because of the rarity of losses.) We recall that (any)
regeneration cycle is generated by the customers meeting an empty system. In
each experiment, we calculate the sample mean EŴ to estimate the stationary
mean workload EW in (22). Moreover, we calculate ES, ES2 and estimate the
probability Pa to obtain an alternative estimate EW̄ of EW based on the right
hand side of (22). Then we compare the obtained estimates using the (percent)
relative error (RE)

|EW̄ − EŴ |
EŴ

× 100%. (23)

Figure 1 represents the results for the system with exponential service time with
parameter 1 and exponential volume with parameter 0.5. Figure 2 shows the
results for Pareto service time with parameters xm = 4, α = 3.5 and Weibull
volume with parameters s = 7, i = 2. Finally, Fig. 3 shows the results for Weibull
service time with parameters s = 7, i = 2 and Pareto volumes with parameters
xm = 4, α = 3.5.

These results confirm that approximation (22) is very accurate when space
size sufficiently large M is and the system is not heavily loaded, implying a
rarity of losses. For instance, in the scenario described in Fig. 1, RE belongs to
interval [1.14%, 5.35%], when M = 20Ev and ρ ∈ [0.7, 0.8]; in the scenario
presented in Fig. 2, RE ∈ [1.35%, 5.47%], when M = 20Ev and ρ ∈ [0.7, 0.8];
and, for the system described by Fig. 3, RE ∈ [0.38%, 3.94%], if M = 20Ev and
ρ ∈ [0.7, 0.85]. Thus under these parameters the thinning input of the accepted

Fig. 1. Exponential S, v
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Fig. 2. Weibull S, Pareto v

Fig. 3. Pareto S, Weibull v
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customers approaches the Poisson process with the rate λa with high accuracy,
and approximation (22) works well. For other parameters, the results become
worse, and it indicates that the dependence between losses cannot be ignored.
Approximation (22) is useful if the workload process is unavailable, while the
process of losses is observable, however estimation of Pa may a need special
speed-up simulation technique to be effective.

6 Conclusion

In this work, we apply the regenerative approach to study multiserver queue-
ing systems in which each customer has service time and a random volume.
The service time and volume of each customer may be dependent. We develop
a unified analysis of this system and establish some results known for conven-
tional queueing systems in which the volumes of customers are not considered.
In particular, we establish a solidarity property of all basic processes describing
the system: queue size, workload and accumulated volume. Moreover, for the
system with unlimited space, we present simple proofs of an analog of the cele-
brated Little’s formula and (for the single-server system with Poisson input) a
Pollaczeck-Khintchine formula. For the system with limited space, we deduce an
approximate Pollaczeck-Khintchine formula, and verify its accuracy by regener-
ative simulation.
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Abstract. The inventory management model with On/Off control of
the inventory level is considered. Input product flow is continuous with
a fixed rate. Demands are a Poisson process with constant intensity
and the value of purchases are independent and identically-distributed
random variables having Erlang Distribution. For this model we find
explicit expression for the stationary distribution of the inventory level
and numerical results are given.

Keywords: Inventory management · On/off control · Erlang
distribution · Mathematical modeling

1 The Problem Statement

Over the last half century, various inventory control problem are considered.
There are many articles about the newsvendor problem [1–4]. It has been stud-
ied since the eighteenth century and widely used to analyse systems with per-
ishable products in such different fields as, for example, health insurances, air-
lines, sports and fashion industries. Also classical single-period problem [5,6] are
widely-known, and other mathematical inventory control models [7].

In this article we consider a mathematical model of inventory management
(Fig. 1). Let the product flow be continuous with fixed rate ν = 1.

Let s(t) be the inventory level at time t. Demand occurs according to a
Poisson process with piecewise constant intensity λ(s)

λ(s) =
{

λ1, s < S,
λ2, s ≥ S,

(1)

where S is the threshold inventory level of s(t).
The values of purchases are independent and identically distributed random

variables having an Erlang Distribution.

B(x) = 1 −
n−1∑
k=0

e−μx (μx)k

k!
, k ≥ 1. (2)

This work is performed under the state order No. 1.511.2014/K of the Ministry of
Education and Science of the Russian Federation.

c© Springer International Publishing Switzerland 2016
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Fig. 1. Inventory management system

Note that the process s(t) can be negative s(t) < 0, in this case the system
works, and customers wait for the resource. The condition for the existence of a
stationary distribution has the form

λ1b < 1 < λ2b, (3)

where b is the mean of the probability distribution (2).
Accordingly, if λ1 < 1/b < λ2 and s(t) < S then the stock level increases in

the mean, i.e., the resources are accumulated. Otherwise s(t)S and this condition
means that the stock level decreases in the mean.

Taking into account (2) the mean b can be expressed as

b =
n

μ
. (4)

Based on the mathematical model analysis we conclude that s(t) is a Markov-
ian process with continuous time t and continuous state space ∞ < s < ∞.

Let us denote the stationary density

P (s, t) =
∂P {s(t) < s}

∂s
.

The equation holds

P (s + Δt) = P (s)(1 − λ(s)Δt) + Δt

∞∫
0

λ(s + x)P (s + x)dB(x) + o(Δt),

we get

P ′(s) + λ(s)P (s) =

∞∫
0

λ(s + x)P (s + x)dB(x), (5)

where the boundary conditions have the form

P (−∞) = P (∞) = 0. (6)

Let us find a solution P (s) of the Eq. (5) in an explicit form, using Erlang
distribution (2) as the distribution of values of purchase function. Let us denote

P (s) =
{

P1(s), s < S,
P2(s), s > S,

(7)
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then we can rewrite the Eq. (6) as two equations

P2
′(s) + λ2P2(s) = λ2

∞∫
0

P2(s + x)dB(x), s > S, (8)

P1
′(s) + λ1P1(s) = λ1

S−s∫
0

P1(s + x)dB(x) + λ2

∞∫
S−s

P2(s + x)dB(x), s < S. (9)

We find solutions of Eqs. (8) and (9) that satisfy the boundary conditions

P1(−∞) = 0, P2(∞) = 0. (10)

2 The Solution P2(s) of Equation (8)

Let solution P2(s), s > S of Eq. (8) have the form

P2(s) = Ce−γ(s−S), s > S. (11)

Substituting (11) into (8), we obtain the equation

λ2 − γ = λ2

∞∫
0

e−γxdB(x), (12)

Finding the integral in the right part (12), we have the expression

λ2 − γ = λ2

(
μ

μ + γ

)n

. (13)

It is obvious that a zero root γ = 0 of Eq. (13) exists and it is an extraneous
root because we have the boundary condition (10) P2(∞) = 0.

It is easy to see that under the condition (3) λ2b > 1 unique positive root
γ > 0 of Eq. (13) for any distribution function B(x) exists, then the solution of
the Eq. (8) is a function (11) defined with multiplicative constant C accuracy,
which value will be find later.

3 The Solution P1(s) of Equation (9)

Substituting (11) into (9), we obtain the following expression

P1
′(s) + λ1P1(s) = λ1

S−s∫
0

P1(s + x)dB(x) + λ2Ce−γ(s−S)

∞∫
S−s

e−γxdB(x). (14)
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Using (2), we get

∞∫
S−s

e−γxdB(x) =

∞∫
S−s

e−γxμe−μx (μx)n−1

(n − 1)!
dx =

∞∫
S−s

e−(γ+μ)x (μx)n−1

(n − 1)!
dμx.

We make the change of variable z = μx

∞∫
S−s

e−γxdB(x) =

∞∫
μ(S−s)

e
−(γ+μ)

μ z (z)n−1

(n − 1)!
dz = Fn−1.

Let w = μ(S − s) and α = (μ + γ)/μ, then

Fn =

∞∫
w

e−αz zn

n!
dz = − 1

α

zn

n!
e−αz|∞z=w +

1
α

∞∫
w

e−αz zn−1

(n − 1)!
dz

=
1
α

wn

n!
e−αw +

1
α

Fn−1.

Assuming Fn = 1
αn C(n) and F0 = 1

αn e−αw = C(0) we obtain

1
αn

C(n) =
1
α

1
αn−1

C(n − 1) +
1
α

wn

n!
e−αw,

and
C(n) = C(n − 1) + αn−1 wn

n!
e−αw.

Then, we find

C(n) = C(0) +
n∑

m=1

αm−1wm

m!
e−αw =

1
α

e−αw
n∑

m=0

(αw)n

m!

and

Fn =
1

αn+1
e−αw

n∑
m=0

(αw)n

m!
.

So, the equation holds

∞∫
S−s

e−γxdB(x) =
1(

μ+γ
μ

)n e
μ+γ

μ μ(s−S)
n−1∑
k=0

[(μ + γ)(S − s)]k

k!
.

From (14) we get

P1
′(s) + λ1P1(s)

= λ1

S−s∫
0

P1(s + x)b(x)dx + λ2e
−μ(S−s)

(
μ

μ+γ

)n n−1∑
k=0

[(μ+γ)(S−s)]k

k! .
(15)
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Theorem 1. Solution P1(s) of Eq. (15) has the form

P1(s) = C

n∑
ν=1

xνezν(s−S), s < S, (16)

where z = zν , ν = 1, n is a nonzero roots of equation

z + λ1 = λ1

(
μ

μ − z

)n

, (17)

xν are components of the vector X, X is a solution to a system of linear algebraic
equations

AX = E (18)

where E single column vector and Akν are elements of matrix A

Akν =
(

μ − zν

μ + γ

)k−n−1
λ1

λ2
, k, ν = 1, n, (19)

normalizing constant C is determined by the equation

C =

(
1
γ

+
n∑

ν=1

xν

zν

)−1

(20)

Proof. Solution P1(s) of the Eq. (14) will be found in the form (16).
Substituting (16) into (14) we obtain the equation

n∑
ν=1

xνezν(s−S)

{
zν + λ1 − λ1

(
μ

μ − zν

)n}

= eμ(s−S)

{
λ2

(
μ

μ + γ

)n n−1∑
m=0

[(μ + γ)(S − s)]m

m!

−λ1

n∑
ν=1

xν

(
μ

μ − zν

)n n−1∑
m=0

[(μ − zν)(S − s)]m

m!

}
.

Denote y = (μ + γ)(S − s), (μ − zν)(S − s) = μ−zν

μ+γ y, we get

n∑
ν=1

xνezν(s−S)

{
zν + λ1 − λ1

(
μ

μ − zν

)n}

=
n∑

ν=1

xνezν(s−S)

{
zν + λ1 − λ1

(
μ

μ − zν

)n}
.

Equating to zero the coefficients in the linear combination of exponents
ezν(s−S) in this expression, we obtain the equality

zν + λ1 = λ1

(
μ

μ − zν

)n

, ν = 1, n.
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It is easy to see that this expression coincides with (17). Therefore, zν are the
roots of the Eq. (17).

Similarly, for eμ(s−S)ym we obtain
n∑

ν=1

xν
λ1

λ2

(
μ − zν

μ + γ

)m−n

= 1,m = 0, n.

These equations are a non-homogeneous system of linear algebraic equations
for xν , coinciding with the system (18), where the elements Akν matrix A defined
by (19).

The value of the constant C can be found from the normalization condition

1 =

∞∫
−∞

P (s)ds =

S∫
−∞

P1(s)ds +

∞∫
S

P2(s)ds

= C

n∑
ν=1

xν

S∫
−∞

ezν(s−S)ds + C

∞∫
S

e−γ(s−S)ds

= C

n∑
ν=1

xν

0∫
−∞

ezνxdx + C

∞∫
0

e−γxdx = C

{
n∑

ν=1

xν

zν
+

1
γ

}
.

We get

C =

(
n∑

ν=1

xν

zν
+

1
γ

)−1

.

It is easy to see that this expression and (20) have the same form.

The theorem is proved.
From (16) and (11), density P (s) has the form

P (s) =

(
n∑

ν=1

xν

zν
+

1
γ

)−1

·
⎧⎨
⎩

n∑
ν=1

xνezν(s−S), s < S,

e−γ(s−S), s > S,
(21)

where zν is a nonzero root of Eq. (17), γ is unique positive root of Eq. (13), xν

are components of the vector X, X is a solution to a system of linear algebraic
Eq. (18).

The explicit expression (21) for P (s) of the Eq. (6) solves the problem of the
study of mathematical models of inventory control with relay control and Erlang
distribution batch sizes completely.

4 Numerical Results

Random demand has third-order Erlang distribution with parameter μ = 3 and
mean b = 1.
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For the following values of the parameters λ1 = 0.8 λ2 = 1.2, S = 10 We
found the roots of Eqs. (13) and (17).

Thus, the Eq. (13) has a unique positive solution γ, the Eq. (17) has one (z1)
real and two (z2, z3) complex conjugate roots with positive real parts. Let us
find the density of the inventory level for the given parameters.

Fig. 2. Probability density function of process P (s)

Table 1. The numerical results

n 3 4 5 6 7

γ 0,291 0,309 0,320 0,328 0,334

z1 0,311 0,335 0,350 0,362 0,370

x1 1.077 1.092 1.103 1.110 1.116

z2 3.94 − 1.35i 4.28 + 2.44i 4.34 + 3.26i 4.29 − 3.82i 4.20 − 4.35i

x2 −0.038 + 0.028i −0.028 − 0.04i −0.021 − 0.046i −0.015 + 0.049i −0.011 + 0.051i

z3 3.94 + 1.35i 4.28 − 2.44i 4.34 − 3.26i 4.29 + 3.82i 4.20 + 4.35i

x3 −0.038 − 0.028i −0.028 + 0.04i −0.021 + 0.046 −0.015 − 0.049i −0.011 − 0.051i

z4 6.32 7.59 + 1.73i 8.12 + 3.13i 8.40 + 4.65i

x4 −0.036 −0.031 − 0.012i −0.026 − 0.018i −0.022 + 0.022i

z5 7.59 − 1.73i 8.12 − 3.13i 8.40 − 4.65i

x5 −0.031 + 0.012i −0.026 + 0.018i −0.022 + 0.022i

z6 9.895 11.32 + 1.96i

x6 −0.028 −0.025 − 0.006i

z7 11.32 − 1.96i

x7 −0.025 + 0.006i
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The parameters xν , ν = 1, n, of distribution (16), have the form

x1 = 1.077;x2 = −0.038 + 0.028i;x3 = −0.038 − 0.028i,

and normalizing constant C = 0.146, the resulting distribution is shown in Fig. 2.
For different orders of Erlang distribution we compute parameters for distri-

bution P (s). Results are shown in Table 1.
Obviously, the distribution P (s) of values of process s(t) is continuous for all

values of s �= S, but also at the point s = S, it is not obvious.
In this work a mathematical model of the inventory management system is

considered. We obtain an explicit expression for the stationary distribution of
inventory levels under the following conditions: Erlang distribution of purchase
values and relay control of the inventory level.

Acknowledgments. The work is supported by Tomsk State University Competitive-
ness Improvement Program.
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Abstract. We propose Markov and non-Markov probabilistic models of
how flows of annihilating particles interact, find the probability distribu-
tion of the number of positive applications in the model, and we present
asymptotic results for the case of high intensity incoming flows. Then
we study a system with non-exponential service where, using asymp-
totic analysis, we show that as the intensity of incoming flows grows, the
probability distribution becomes Gaussian and find the parameters of
the distribution. We also investigate flows of interacting particles as an
infinitely linear queuing system with positive and negative applications
of different systems and the probability distribution of the number of
positive stationary applications in a system with exponential service is
found. We also studied a case of arbitrary service by means of asymp-
totic analysis. We demonstrate that these systems are asymptotically
equivalent.

Keywords: Queuing system · Method of asymptotic analysis · Flows
of annihilating particles · Negative application

1 Introduction

We investigate the problem of interacting flows of elementary particles which
annihilate in two ways. Flows of particles and antiparticles are counter flows; a
positive particle stays in the interaction zone for a random time. The particle
gets annihilated with an antiparticle that is located within the interaction zone
and moves in the opposite direction. The antiparticle is not delayed in the inter-
action zone if positive particles are absent in it. The second case is when positive
particles stay in the interaction zone for a random time. Antiparticles move into
the interaction zone and enter a so-called “trap”, where they are unable to con-
tinue their motion. The next positive particles that come inside the interaction
zone, get annihilated with the antiparticles located in the “trap”. If there are no
c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 281–291, 2016.
DOI: 10.1007/978-3-319-44615-8 25
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antiparticles, a positive particle stays in the interaction zone for a random time,
and then leaves the system.

We propose Markov and non-Markovian probabilistic models of such
processes of particle interactions. For the Markov model, we find the proba-
bility distribution of the number of positive applications. Asymptotic results
are obtained for incoming flows of high intensity. Next, we investigate a system
with non-exponential service by means of asymptotic analysis [1]. As the incom-
ing flow grows in intensity, we see that the probability distribution tends to a
Gaussian and find the parameters of the distribution.

2 Model

Let us take the following system as a model of interacting flows of annihilating
particles: an infinitely linear queuing system with positive and negative appli-
cations, where the flow of particles is defined as the Poisson flow of positive
applications with parameter λ+ and an antiparticle flow as the Poisson flow of
negative applications with parameter γ−. The concept of negative applications
was first introduced by Gelenbe in 1991 [2] and also in several other papers such
as [10,11]. Finite linear QS with negative applications were also investigated by
P.P. Bocharov, Ch.D. Apiche, R. Manzo, A.V. Pechinkin, R.V. Razumchik [3–5],
Yang Woo S. [6], Quan-Lin L., Yiqiang Q.Z. [7]. According to these models, we
investigate the following two classes of systems:

1. A system without waiting.
2. A system where negative applications wait for new positive ones.

In the first system, illustrated in Fig. 1, the positive and negative applications
are counter flows. Any positive application that comes into the system immedi-
ately gets treated, taking any of the available instruments; a positive application
gets serviced exponentially with parameter μ. If the system is empty, negative
applications just leave it. On the other hand, if the system is non-empty, that is,
in cases when there is at least one positive application, the positive application
is destroyed by the negative one and together they leave the system.

Fig. 1. System without waiting
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In the second system, shown in Fig. 2, the positive and negative applications
come in parallel. Any positive application that comes into the system with-
out negative applications, immediately gets treated, taking any of the available
instruments. As a negative application comes in, it waits for a new positive one
to arrive, “kills” it and both leave the system. If there are no positive applica-
tions, the negative application waits for a positive application to arrive and this
procedure repeats.

Fig. 2. System where negative applications wait for positive ones

3 System Without Waiting

Let us look at the Fig. 1, where this system is depicted. Let i(t) be the number of
positive applications in the system at time t. Since this process i(t) is a Markov
chain, the probability distribution

Pi(t) = P{i(t) = i}, i = 0,∞

is governed by a system of Kolmogorov equations. In the stationary mode, where
Pi(t) = Pi, the system of equations is as follows:

{
−λ+P0 + (μ + γ−)P1 = 0,

λ+Pi−1 − (λ+ + iμ + γ−)Pi + [(i + 1)μ + γ−]Pi+1 = 0.

The solution of this system is

Pi = P0

i∏
n=1

λ+

nμ + γ− . (1)
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The normalization condition gives P0:

P0 =
(

1 −
∞∑

i=1

i∏
n=1

λ+

nμ + γ−

)−1

. (2)

Thus we obtained the stationary distribution of the number of positive applica-
tions in our system without waiting, with negative applications in the system
(formulas (1) and (2)).

We introduce the characteristic function

H(u) =
∞∑

i=0

ejuiPi, j =
√−1.

If the incoming flows are of high intensity, we examine our system by asymptotic
analysis.

The condition of high intensity of the incoming flows is described by the
formula

λ+ = λN, γ− = γN,

where λ, γ are some finite variables, while N → ∞. Then asymptotic analysis of
this system gives

h(u) = exp
{

juN
λ − γ

μ
− u2

2
λ

μ
N

}
, (3)

where h(u) is the asymptotic characteristic function of the number of positive
applications in the system.

4 System with Waiting and Arbitrary Service

We consider a queuing system with an unlimited number of devices (Fig. 2);
the system includes two incoming flows: a simple flow of positive applications
with parameter λ+ and a simple flow of negative applications with parameter
γ−. Positive applications have random service time with distribution function
in B(x).

Let i(t) be the number of positive application in the system, while l(t) is the
number of negative one at time t, The process {i(t), l(t)} is non-Markov.

4.1 Method of Sieved Flow

We investigate the following version of the sieved flow method [1]. Let
S(τ) = 1 − B(T − τ) be the probability that a positive application, which
arrived at time τ , gets sieved into the flow. The applications that are still in
the system by the time T are sieved.

Let us denote n(t) as the number of positive applications arrived with the
sieved flow up until time t < T . That is the number of events of the positive
application flow that has not been “killed” by negative applications and has got
sieved up until time t.
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Also let us take a look at the sieved flow of negative applications m(t), which
is the number of events of the negative application flow that have not been
“killed” by positive applications up until time t.

Notice also that i(T ) = n(T ), l(T ) = m(T ), where the relation holds true in
probability.

Our method of sieved flow is illustrated in Fig. 3.

Fig. 3. Illustration of the sieved flow method, applied to our system with waiting

For our queuing system with waiting, the Δt method gives the following
system of Kolmogorov equations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (n,m, t + Δt) = P (n,m, t)(1 − λ+Δt)(1 − γ−Δt)
+P (n,m − 1, t)γ−Δt + P (n,m + 1, t)λ+Δt + o(Δt), n ≥ 0,

P (n, 0, t + Δt) = P (n, 0, t)[(1 − λ+Δt)(1 − γ−Δt) + λ+Δt(1 − S(t))]
+P (n − 1, 0, t)λ+S(t)Δt + P (n, 1, t)λ+Δt + o(Δt), n ≥ 1,

P (0, 0, t + Δt) = P (0, 0, t)[(1 − λ+Δt)(1 − γ−Δt) + λ+Δt(1 − S(t))]
+P (0, 1, t)λ+Δt + o(Δt).

Doing the necessary transformations and taking the limit Δt → 0, the system
of Kolmogorov differential equations becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P (n,m, t)
∂t

= −(λ+ + γ−)P (n,m, t) + γ−P (n,m − 1, t)

+λ+P (n,m + 1, t), n ≥ 0,
∂P (n, 0, t)

∂t
= −(λ+S(t) + γ−)P (n, 0, t) + λ+S(t)P (n − 1, 0, t)

+λ+P (n, 1, t), n ≥ 1,
∂P (0, 0, t)

∂t
= −(λ+S(t) + γ−)P (0, 0, t) + λ+P (0, 1, t).

(4)
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4.2 First Order Asymptotics

Let us introduce the following partial characteristic functions

H(u,m, t) =
∞∑

n=0

ejunP (n,m, t).

With this taken into account, the system (4) becomes
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂H(u,m, t)
∂t

= −(λ+ + γ−)H(u,m, t)

+γ−H(u,m − 1, t) + λ+H(u,m + 1, t),
∂H(u, 0, t)

∂t
= −(λ+S(t) + γ−)H(u, 0, t)

+λ+S(t)H(u, 0, t)eju + λ+H(u, 1, t).

(5)

Let the limiting condition of high intensity flow be λ+ = λN , γ− = γN ,

where λ, γ are some finite variables, and N → ∞. Let us denote
1
N

= ε and

substitute u = εω, H(u,m, t) = F (ω,m, t, ε). Then, with the introduced nota-
tions taken into consideration, the system (5) becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε
∂F (ω,m, t, ε)

∂t
= −(λ + γ)F (ω,m, t, ε)

+γF (ω,m − l, t, ε) + λF (ω,m + 1, t, ε), m ≥ 1,

ε
∂F (ω, 0, t, ε)

∂t
= −(λS(t) + γ)F (ω, 0, t, ε)

+λS(t)F (ω, 0, t, ε)ejωε + λF (ω, l, t, ε).

(6)

Taking the limit ε → 0, we get
{

−(λ + γ)F (ω,m, t) + γF (ω,m − 1, t) + λF (ω,m + 1, t) = 0,
−γF (ω, 0, t) + λF (ω, 1, t) = 0,

(7)

where
F (ω,m, t) = lim

ε→0
F (ω,m, t, ε).

Let us set F (ω,m, t) to F (ω,m, t) = Φ(ω, t)R(m) and substitute this product
into (7). We get:

{
−(λ + γ)R(m) + γR(m − 1) + λR(m + 1) = 0,
−γR(0) + λR(1) = 0.

(8)

The system has the following solution:

R(m) = R(0)
(γ

λ

)m

, R(0) = 1 − γ

λ
, (9)

as γ < λ.
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To find Φ(ω, t), we use the consistency condition and get

Φ(ω, t) =
∞∑

m=0

F (ω,m, t) = lim
ε→0

∞∑
m=0

F (ω,m, t, ε) = lim
ε→0

F (ω, t, ε) = F (ω, t).

Let us take a look at this function

F (ω, t, ε) =
∞∑

m=0

F (ω,m, t, ε).

Summing up all of the Eq. (6) over m = 0,∞, we get

ε
∂F (ω, t, ε)

∂t
= λS(t)F (ω, 0, t, ε)(ejωε − 1).

Expanding the exponent in a series, dividing over ε, and taking the limit
ε → 0, we get the following equation for the function

F (ω, t) = lim
ε→0

F (ω, t, ε),
∂F (ω, t)

∂t
= λS(t)F (ω, 0, t)jω.

Taking into account the condition (9), it comes out that

∂Φ(ω, t)
∂t

= λS(t)Φ(ω, t)R(0)jω. (10)

The solution of (10) is of the form Φ(ω, t) = exp{jk1(t)ω}, where

k1(t) = (λ − γ)

1∫
0

S(τ)dτ. (11)

Let us return to our characteristic functions H(u,m, t). For them we get

H(u,m, t) = F (ω,m, t, ε) ≈ F (ω,m, t) = Φ(ω, t)R(m)

= exp{juNk1(t)}
(
1 − γ

λ

)(γ

λ

)m

. (12)

We call the expression of H(u,m, t), which is (12), the first order asymptotics
for the QS under consideration.

4.3 Second Order Asymptotics

Let us look at the function H(u,m, t) rewritten in the form

H(u,m, t) = H(2)(u,m, t) exp{juNk1(t)}.
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The system (5) can be rewritten as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
N

∂H(2)(u,m, t)
∂t

+ jk′
1(t)uH(2)(u,m, t)

= −(λ + γ)H(2)(u,m, t) + γH(2)(u,m − 1, t) + λH(2)(u,m + 1, t), m ≥ 1,

1
N

∂H(2)(u, 0, t)
∂t

+ jk′
1(t)uH(2)(u, 0, t)

= −(λS(t) + γ)H(2)(u, 0, t) + λS(t)H(2)(u, 0, t)eju + λH(2)(u, 1, t).

Let us denote
1
N

= ε2 and substitute u = εω, H(2)(u,m, t) = F (2)(ω,m, t, ε).

Then the system of equations for F (2)(u,m, t, ε) can be rewritten as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2
∂F (2)(ω,m, t, ε)

∂t
+ jωε(λ − γ)S(t)F (2)(ω,m, t, ε)

= −(λ + γ)F (2)(ω,m, t, ε) + γF (2)(ω,m − 1, t, ε)
+λF (2)(ω,m + 1, t, ε), m ≥ 1,

ε2
∂F (2)(ω, 0, t, ε)

∂t
+ jωε(λ − γ)S(t)F (2)(ω, 0, t, ε)

= −(λS(t) + γ)F (2)(ω, 0, t, ε) + λS(t)F (2)(ω, 0, t, ε)ejωε

+λF (2)(ω, 1, t, ε).

(13)

F (2)(ω,m, t, ε) can be expanded as

F (2)(ω,m, t, ε) = Φ(2)(ω, t){R(m) + jεωS(t)f(m)} + o(ε2), (14)

where R(m) is determined in (9). We are yet to obtain f(m).
Let us substitute (14) into the system (13), take into account (8), and take

the limit ε → 0. We get{
−(λ + γ)f(m) + γf(m − 1) + λf(m + 1) = (λ − γ)R(m),m ≥ 1,

λf(1) − γf(0) = −γR(0).
(15)

The system (15) is a system of nonhomogeneous finite difference equations
in respect to f(m), where m is a discrete argument.

The general solution of the corresponding homogeneous system is of the form

fo(m) = CR(m),

where C is an arbitrary constant.
The solution of the nonhomogeneous system is the sum of the general solu-

tion of the homogeneous system and the particular integral of the nonhomoge-
neous system (15): f(m) = fo(m) + f(m). The particular integral is of the form
f(m) = −mR(m).

Let us consider the functions

F (2)(ω, t, ε) =
∞∑

m=0

F (2)(ω,m, t, ε).
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Summing up the Eq. (13) over m = 0,∞, we get:

ε2
∂F (2)(ω, t, ε)

∂t
+jεω(λ − γ)S(t)F (2)(ω, t, ε) = λS(t)F (2)(ω, 0, t, ε)(ejωε − 1). (16)

Let us denote

f =
∞∑

m=0

f(m).

It follows that

F (2)(ω, t, ε) =
∞∑

m=0

F (2)(ω,m, t, ε)

=
∞∑

m=0

{Φ(2)(ω, t)(R(m) + jωεS(t)f(m)) + o(ε2)}

= Φ(2)(ω, t)(1 + jωεS(t)f) + o(ε2).

Then (16) can be rewritten as

ε2
∂Φ(2)(ω, t)

∂t
+ j2ε2ω2(λ − γ)S2(t)Φ(2)(ω, t)f

= j2ω2ε2λS2(t)Φ(2)(ω, t)f(0) +
j2ω2ε2

2
λR(0)S(t)Φ(2)(ω, t) + o(ε3).

Dividing over ε2 and taking the limit ε → 0, we get

∂Φ(2)(ω, t)
∂t

= − (jω)2(λ − γ)S2(t)Φ(2)(ω, t)f + λ(jω)2S2(t)Φ(2)(ω, t)f(0)

+
(jω)2

2
λR(0)S(t)Φ(2)(ω, t).

The solution of this equation is of the form

Φ(2)(ω, t) = exp{− (jω)2

2
k2(t)},

where

k2(t) =
[
(λ − γ)

1∫
0

S(τ)dτ + 2γ

1∫
0

S2(τ)dτ
]
. (17)

The expression for the characteristic function H(u, t) becomes:

H(u, t) =
∞∑

m=0

H(u,m, t) = exp{jk1(t)uN}
∞∑

m=0

H(2)(u,m, t)

= exp{jk1(t)uN}
∞∑

m=0

F (2)(ω,m, t, ε)

= exp{jk1(t)uN}F (2)(ω, t, ε) ≈ exp{jk1(t)uN}F (2)(ω, t)

= exp{jk1(t)uN}Φ(2)(ω, t) = exp{jk1(t)uN − k2(t)u2N}.

We call this relation the second order asymptotics of our system.
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4.4 Asymptotics of Our Model with Waiting and Exponential
Service Time

Let us investigate our model with waiting in case of exponential service time [9]
with parameter μ, where B(x) = 1−e−μx. The functions k1(T ), k2(T ), obtained
in (11) and (17), are as follows:

k1(T ) = (λ − γ)

T∫
0

S(τ)dτ = (λ − γ)

T∫
0

(1 − B(x))dx,

k2(T ) = (λ − γ)

T∫
0

S(τ)dτ + 2γ

T∫
0

S2(τ)dτ

= (λ − γ)

T∫
0

(1 − B(x))dx + 2γ

T∫
0

(1 − B(x))2dx.

Taking the limit T → ∞, we get the following relation

k1 = lim
T→∞

k1(T ) = (λ − γ)b, k2 = lim
T→∞

k2(T ) = (λ − γ)b + 2γβ,

where

β =

∞∫
0

(1 − B(x))2dx, b =

∞∫
0

(1 − B(x))dx

is the average service time.

For our system with waiting and exponential service time b =
1
μ

, β =
1
2μ

,

the characteristic function becomes

H(u, t) = exp
{
ju

(λ − γ)
μ

N − u2 λ

2μ
N

}
.

The function is identical to the characteristic function (3) of the system
without waiting that was investigated in part 1. This, in turn, demonstrates that
these two models are asymptotically equivalent in case of exponential service.

5 Conclusion

In this work we investigated two models of interacting flows of annihilating
particles. In the first model, that is without waiting, we obtained a pre-limit sta-
tionary probability distribution of applications (particles) in the model, as well
as gaining asymptotic results, namely the first and second asymptotic behavior
of the distribution in case of high intensity of incoming flows. The second model
with expectation and arbitrary service was analyzed asymptotically. We find
the first and second order asymptotics, that, if the service time is exponentially
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distributed, coincide with the asymptotic behavior of the first model. Thus we
demonstrated that the two models are asymptotically equivalent if the service is
exponential.

Similar results were obtained in [12].
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Abstract. This paper deals with a retrial queueing system in which
the arrival flow is described by a stationary Poisson process, the service
time is random with a given distribution function, hyper exponential
distribution of the delay time of customers in the orbit and exclusion
of alternative customers. We examine a retrial queueing system using
the method of asymptotic analysis under the condition of long delay in
the orbit. For use of this method we write the system of Kolmogorov’s
equations for the probability distribution of the number of customers in
the orbit and the server state. We have completed the transition to the
system of differential equations for partial characteristic function. Using
the method of asymptotic analysis we obtain two-dimensional distrib-
ution of the number of customers in the orbit in the first and second
phases. This distribution can be approximated by the two-dimensional
Gaussian distribution. The values of the parameters are found.

Keywords: Retrial queueing system · Hyper exponential distribution
the delay time of customers in the orbit · Exclusion of alternative cus-
tomers · Asymptotic analysis

1 Introduction

Retrial queueing systems are characterized by the feature that arrivals who find
the server unavailable are obliged to leave the service area and to try again for
their requests in random order and at random intervals [1–3]. For recent works
on retrial queues, see [4–6]. Between trials a customer is called being in “orbit”.
This feature plays a special role in several computer, communications networks,
and call centers [7]. In paper [8], the authors assume that intervals between there
retrials are exponentially distributed. In real system intervals between retrials
can be no exponentially distribution. S.R. Chakravarthy, A. Dudin assume that

This work is performed under the state order No. 1.511.2014/K of the Ministry of
Education and Science of the Russian Federation.
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the probability of a repeated attempt is independent of the number of orbiting
customers (constant retrial policy) [9]. In [10] intervals retrial times are expo-
nentially distributed with intensity depending on the number of customers in the
orbit. In the paper [11] a retrial queue system M/M/1 with phase-type retrial
times was studied. In this paper, we consider a retrial queueing system in which
intervals between retrials are hyper exponentially distributed. We assume that
a customer who finds the server to be busy then replaces the customer who is
being served. We have a priority mechanism of new customers [12].

A priority mechanism is an invaluable scheduling method that allows cus-
tomers to receive different qualities of service. Service priority is nowadays today
a main feature of the operation of any manufacturing system. For this reason,
priority queues have received considerable attention in the literature [13,14].
A review of the main results of such retrial models can be found in the survey
paper of B.D. Choi and Y. Chang [15], K.B. Choi and Y.W. Lee [16].

The remainder of this paper is organized as follows. A model description
is given in Sect. 2. In Sect. 3 we write a system of differential Kolmogorov’s
equations for the probability distribution of the number of customers in the
orbit and the server state. In Sect. 4 we have obtained the system equations for
the partial characteristic function. We examine a retrial queueing system using
the method of asymptotic analysis [17] under the condition of long delay in the
orbit. A solution of the system equations under this condition allows building an
approximation for two-dimensional distribution of the system state (see Sects. 5
and 6). Some numerical examples are shown in Sect. 7. Finally, Sect. 8 concludes
the paper.

2 The Mathematical Model

We consider a retrial queueing system M/GI/1 with hyper exponential distrib-
ution of the delay time in the orbit. The structure of the system is depicted in
Fig. 1.

We assume that the arrival flow to the system is described by stationary
Poisson process with intensity λ. A customer who finds the server to be free
occupies it for service during a random time with distribution function B(x). If
the server is busy, then an arriving customer replaces the customer who is being
served and occupies the server. The customer who was being served, moves to a
so-called customer’s orbit, where it performs a random delay with the duration
determined by hyper exponential distribution with parameters q, σ1, σ2. A cus-
tomer performs the exponentially random delay with intensity σ1 (first phase)
with probability q. And a customer performs the exponentially random delay
with parameter σ2 (second phase) with probability 1 − q. From the orbit, after
the random delay, the customer occupies the device again. The same goes for
the customer from the orbit.
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Fig. 1. Mathematical model

Let

B∗(α) =
∞∫
0

exp(−αx) dB(x)

be a Laplace-Stieltjes transform of the distribution function B(x). Let i1(t) be
the number of customers in the orbit in the first phase and i2(t) be the number
of customers in the orbit in the second phase, k(t) define the server state in the
following way:

k(t) =

{
0, if server is free,
1, if server is busy.

We would like to solve a problem of computation of two-dimensional station-
ary probability distribution of the number of customers i1, i2 in the orbit for
each phase and server state.

3 System of Kolmogorov Equations

We consider Markovian process {k(t), i1(t), i2(t)}.
Let us denote by P {k(t) = 0, i1(t) = i1, i2(t) = i2} = P0(i1, i2, t) a probabil-

ity that, at the moment t, the server in the state 0 and i1 customers are in the
orbit in the first phase, i2 customers are in the orbit in the second phase.

Let us denote by P {k(t) = 1, i1(t) = i1, i2(t) = i2, z(t) < z} = P1(i1, i2, z, t),
a probability that, at the moment t, the server in the state 1, residual service
time is less than z and the i1 customers are in the orbit in the first phase, i2
customers are in the orbit in the second phase.

We obtain the following system of Kolmogorov equations for probabilities
{P0(i1, i2, t), P1(i1, i2, z, t)}
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∂P1(i1, i2, 0)
∂z = (λ + i1σ1 + i2σ2)P0(i1, i2),

∂P1(i1, i2, 0)
∂z

− ∂P1(i1, i2, z)
∂z

= −(λ + i1σ1 + i2σ2)P1(i1, i2, z)

+λB(z)P0(i1, i2) + (i1 + 1)σ1B(z)P0(i1 + 1, i2)
+(i2 + 1)σ2B(z)P0(i1, i2 + 1) + λqB(z)P1(i1 − 1, i2)
+λ(1 − q)B(z)P1(i1, i2 − 1) + i1σ1qB(z)P1(i1, i2)

+(i1 + 1)σ1B(z)(1 − q)P1(i1 + 1, i2 − 1)
+i2σ2(1 − q)B(z)P1(i1, i2) + (i2 + 1)σ2B(z)qP1(i1 − 1, i2 + 1).

(1)

4 System of Kolmogorov Equations for Partial
Characteristic Function

We introduce partial characteristic functions as follows

H0(u1, u2) =
∞∑

i1=0

∞∑
i2=0

eju1i1eju2i2P0(i1, i2),

H1(u1, u2, z) =
∞∑

i1=0

∞∑
i2=0

eju1i1eju2i2P0(i1, i2, z).

Here j =
√−1 is an imaginary unit.

Let us denote

H1(u1, u2,∞) = H1(u1, u2),
∂H1(u1, u2, 0)

∂z
=

∂H1(u1, u2, z)
∂z

∣∣∣∣
z=0

.

Using (1) write the system of equations for the partial characteristic functions
in the following form

−∂H1(u1, u2, 0)
∂z

= −λH0(u1, u2) + jσ1
∂H0(u1, u2)

∂u1
+ jσ2

∂H0(u1, u2)
∂u2

,

−∂H1(u1, u2, z)
∂z

+
∂H1(u1, u2, 0)

∂z
= −λH1(u1, u2, z)

+jσ1
∂H1(u1, u2, z)

∂u1
+ jσ2

∂H1(u1, u2, z)
∂u2

+ λB(z)H0(u1, u2)

−je−ju1σ1B(z)
∂H0(u1, u2)

∂u1
− je−ju2σ2B(z)

∂H0(u1, u2)
∂u2

+λqB(z)eju1H1(u1, u2) + λ(1 − q)B(z)eju2H1(u1, u2)

−jqσ1B(z)
∂H1(u1, u2)

∂u1
− j(1 − q)σ2B(z)

∂H1(u1, u2)
∂u2

−j(1 − q)σ1B(z)ej(u2−u1) ∂H1(u1,u2)
∂u1

− jej(u1−u2)qσ2B(z)
∂H1(u1, u2)

∂u2
.

(2)
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In the following subsections we will solve system (2) using the method of asymp-
totic analysis under the condition of long delay (σ → 0), believing that σ1 = σγ1,
σ2 = σγ2.

5 The First-Order Asymptotic Form

Let us denote σ = ε.
Introducing following substitute

u1 = εw1, u2 = εw2,H0(u1, u2) = F0(w1, w2, ε),
H1(u1, u2, z) = F1(w1, w2, z, ε).

We can transform system (2) to the form

−∂F1(w1, w2, 0)
∂z

= −λF0(w1, w2, ε)

+jγ1
∂F0(w1, w2, ε)

∂w1
+ jγ2

∂F0(w1, w2, ε)
∂w2

,

−∂F1(w1, w2, z, ε)
∂z

+
∂F1(w1, w2, 0, ε)

∂z
= −λF1(w1, w2, z, ε)

+jγ1
∂F1(w1, w2, z, ε)

∂w1
+ jγ2

∂F1(w1, w2, z, ε)
∂w2

+ λB(z)F0(w1, w2, ε)

−je−jεw1γ1B(z)
∂F0(w1, w2, ε)

∂w1
− je−jεw2γ2B(z)

∂F0(w1, w2, ε)
∂w2

+λqB(z)ejεw1F1(w1, w2, ε) + λ(1 − q)B(z)ejεw2F1(w1, w2, ε)

−jqγ1B(z)
∂F1(w1, w2, ε)

∂w1
− j(1 − q)γ2B(z)

∂F1(w1, w2, ε)
∂w2

−j(1 − q)γ1B(z)ejε(w2−w1)
∂F1(w1, w2, ε)

∂w1

−jejε(w1−w2)qγ2B(z)
∂F1(w1, w2, ε)

∂w2
.

(3)

Let xm, m = 1, 2 be the asymptotic mean of the number of customers in the
orbit in the first and second phase, respectively. Let us denote by Rk, k = 0, 1 the
stationary probability distribution of the server state. As will be shown below
Rk, k = 0, 1 depend on xm, m = 1, 2, we will take the keys Rk(x1, x2), k = 0, 1.
Let us write the following statement for an asymptotic approximation.

Theorem 1. Limiting values (ε → 0, z → ∞) {F0(w1, w2), F1(w1, w2)} of
the solution {F0(w1, w2, ε), F1(w1, w2, z, ε)} of the system (3) have the follow-
ing form:

F0(w1, w2) = R0(x1, x2) exp{jw1x1 + jw2x2},

F1(w1, w2) = R1(x1, x2) exp{jw1x1 + jw2x2},

where values x1, x2 are the solution to the system equations
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−γ1x1R0(x1, x2) + λqR1(x1, x2) − γ1x1(1 − q)R1(x1, x2)
+γ2x2qR1(x1, x2) = 0,

−γ2x2R0(x1, x2) + λ(1 − q)R1(x1, x2) + γ1x1(1 − q)R1(x1, x2)
−γ2x2qR1(x1, x2) = 0,

(4)

and R0(x1, x2), R1(x1, x2) are defined as follows

R0(x1, x2) = B∗(λ + γ1x1 + γ2x2), R1(x1, x2) = 1 − B∗(λ + γ1x1 + γ2x2). (5)

6 The Second-Order Asymptotic Form

Let us denote by Hk(u1, u2), k = 1, 2 the function which is determined by the
following formula

Hk(u1, u2) = Hk
(2)(u1, u2) exp

{
j
u1

σ
x1 + j

u2

σ
x2

}
, k = 1, 2.

Substituting this expression into Eq. (2), we obtain the following system equa-
tions

−∂H1
(2)(u1, u2, 0)

∂z
= −λH0

(2)(u1, u2) + jσ1
∂H0

(2)(u1, u2)
∂u1

+jσ2
∂H0

(2)(u1, u2)
∂u2

− γ1x1H0
(2)(u1, u2) − γ2x2H0

(2)(u1, u2),

−∂H1
(2)(u1, u2, z)

∂z
+

∂H1
(2)(u1, u2, 0)

∂z
= −λH1

(2)(u1, u2, z)

+jσ1
∂H1

(2)(u1, u2, z)
∂u1

+ jσ2
∂H1

(2)(u1, u2, z)
∂u2

+ λB(z)H0
(2)(u1, u2)

−je−ju1σ1B(z)
∂H0

(2)(u1, u2)
∂u1

− je−ju2σ2B(z)
∂H0

(2)(u1, u2)
∂u2

+λqB(z)eju1H1
(2)(u1, u2) + λ(1 − q)B(z)eju2H1

(2)(u1, u2)

−jqσ1B(z)
∂H1

(2)(u1, u2)
∂u1

− j(1 − q)σ2B(z)
∂H1

(2)(u1, u2)
∂u2

−j(1 − q)σ1B(z)ej(u2−u1) ∂H1
(2)(u1,u2)
∂u1

−jej(u1−u2)qσ2B(z)
∂H1

(2)(u1, u2)
∂u2

− γ1x1H1
(2)(u1, u2, z)

−γ2x2H1
(2)(u1, u2, z) + e−ju1γ1x1B(z)H0

(2)(u1, u2)
+e−ju2γ2x2B(z)H0

(2)(u1, u2) + qB(z)γ1x1H1
(2)(u1, u2)

+(1 − q)B(z)γ2x2H1
(2)(u1, u2) + (1 − q)ej(u2−u1)B(z)γ1x1H1

(2)(u1, u2)
+ej(u1−u2)qB(z)γ2x2H1

(2)(u1, u2).

(6)
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Performing here the following changes of variables

σ = ε2, u1 = εw1, u2 = εw2, H0
(2)(u1, u2) = F0(w1, w2, ε),

H1
(2)(u1, u2, z) = F1(w1, w2, z, ε),

we write the system equations

−∂F1(w1, w2, 0)
∂z

= −λF0(w1, w2, ε) + jγ1
∂F0(w1, w2, ε)

∂w1

+jγ2
∂F0(w1, w2, ε)

∂w2
− γ1x1F0(w1, w2, ε) − γ2x2F0(w1, w2, ε),

−∂F1(w1, w2, z, ε)
∂z

+
∂F1(w1, w2, 0, ε)

∂z
= −λF1(w1, w2, z, ε)

+jγ1ε
∂F1(w1, w2, z, ε)

∂w1
+ jγ2ε

∂F1(w1, w2, z, ε)
∂w2−γ1x1F1(w1, w2, z, ε) − γ2x2F1(w1, w2, z, ε) + λB(z)F0(w1, w2, ε)

−je−jεw1γ1εB(z)
∂F0(w1, w2, ε)

∂w1
+ e−jεw1γ1x1B(z)F0(w1, w2, ε)

−je−jεw2γ2εB(z)
∂F0(w1, w2, ε)

∂w2
+ e−jεw2γ2x2B(z)F0(w1, w2, ε)

+λqB(z)ejεw1F1(w1, w2, ε) + λ(1 − q)B(z)ejεw2F1(w1, w2, ε)

−jqγ1εB(z)
∂F1(w1, w2, ε)

∂w1
+ γ1x1qB(z)F1(w1, w2, ε)

+γ2x2(1 − q)B(z)F1(w1, w2, ε) − j(1 − q)γ2εB(z)
∂F1(w1, w2, ε)

∂w2

−j(1 − q)γ1εB(z)ejε(w2−w1)
∂F1(w1, w2, ε)

∂w1

−jejε(w1−w2)qγ2εB(z)
∂F1(w1, w2, ε)

∂w2

+γ1x1(1 − q)B(z)ejε(w2−w1)F1(w1, w2, ε)
+γ2x2qB(z)ejε(w1−w2)F1(w1, w2, ε).

(7)

Let us denote a = λ + γ1x1 + γ2x2. We write the following statement.

Theorem 2. Limiting values {F0(w1, w2), F1(w1, w2)} of the solution
{F0(w1, w2, ε), F1(w1, w2, z, ε)} to the system (7) have the following form:

F0(w1, w2) = R0(x1, x2)Φ(w1, w2),

F1(w1, w2) = R1(x1, x2)Φ(w1, w2),

where values x1, x2 are the solution of the system (4), R0(x1, x2), R1(x1, x2) are
given by the formulas (5). We write function Φ(w1, w2) in the following form:

Φ(w1, w2) = exp

{
(jw1)

2

2
K11 + jw1jw2K12 +

(jw2)
2

2
K22

}
, (8)
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where values K11, K12, K22 are the solution to heterogeneous system linear alge-
braic equations:

K11 (qγ1R0 − qγ1B
∗(a) + qγ1R1

∗(a) − (1 − q)γ1R1 − γ1R0)

+K12 (qγ2R0 − qγ2B
∗(a) + qγ2R1

∗(a) + γ2qR1) = −1
2
(1 − q)γ1x1R1

−1
2
γ1x1R0 − qγ1x1B

∗(a) + q2aR1B
∗(a) − 1

2
λqR1 − 1

2
qR1γ2x2,

K11 ((1 − q)γ1R0 − (1 − q)γ1B∗(a) + (1 − q)γ1R1
∗(a) + (1 − q)γ1R1)

+K12 (qγ1R0 − qγ1B
∗(a) + qγ1R1

∗(a) + (1 − q)γ2R0 − (1 − q)γ2B∗(a)
+ (1 − q)γ2R1

∗(a) − γ1R0 − γ2R0 − (1 − q)γ1R1 − γ2qR1)
+K22 (qγ2R0 − qγ2B

∗(a) + qγ2R1
∗(a) + qγ2R1) = (1 − q)γ1x1R1

+qγ2x2R1 − (1 − q)γ1x1B
∗(a) − qγ2x2B

∗(a) + 2aq(1 − q)R1B
∗(a),

K12 ((1 − q)γ1R0 − (1 − q)γ1B∗(a) + (1 − q)γ1R1
∗(a) + (1 − q)γ1R1)

+K22((1 − q)γ2R0 − (1 − q)γ2B∗(a) + (1 − q)γ2R1
∗(a) − qγ2R1

−γ2R0) = −1
2
(1 − q)γ1x1R1 − 1

2
γ2x2R0 − (1 − q)γ2x2B

∗(a)

+(1 − q)2aR1B
∗(a) − 1

2
λ(1 − q)R1 − 1

2
(1 − q)R1γ1x1.

(9)

We can write the following expression for the approximation of the charac-
teristic function.

H(u1, u2) = exp
{

(ju1)
2

2σ K11 + (ju2)
2

2σ K22 + ju1ju2
σ K12

}
× exp

{
j
u1

σ
x1 + j

u2

σ
x2

}
.

Thus

H(u1, u2) = exp

{
j
u1

σ
x1 + j

u2

σ
x2 +

(ju1)
2

2σ
K11 +

(ju2)
2

2σ
K22 +

ju1ju2

σ
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}
.

So, under a condition of long delay of the customers in the orbit, the two-
dimensional probability distribution of the number of customers in the orbit in
the first and second phase can be approximated by the two-dimensional normal
distribution with parameters x1, x2,K11,K12,K22.

7 Numerical Results

In this section, we discuss some interesting numerical examples that qualitatively
describe the model under study. We find the values of the parameters of the two-
dimensional Gaussian distribution of the number of the customers in the orbit
in the first phase and second phase using numerical results.

In particular, we analyze the gamma distribution. Let

B∗(x) =
(

1 +
x

β

)−α

,
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be a Laplace-Stieltjes transform of the distribution function of the gamma dis-
tribution, where α, β are positive parameters.

E.g., if the parameters of distribution of service time are fixed as it follows
that

α = 0.7, β = 1.

All other parameters are fixed as:

σ1 = 0.02, σ2 = 0.03, q = 0.6.

From system Eqs. (4) and (9), we find means, variances and covariance. We
obtain

x1 = 0.298, x2 = 0.132, K11 = 0.463, K22 = 0.171, K12 = 0.079. (10)

Graph of distribution P (x, y), which is given by (10), λ = 0.9 is given in Fig. 2.

P (x, y) =
1

2πK11K22

√
1 − r2

× exp

{
− 1

2 (1 − r2)

[
(x − x1)

2

K11
2 − 2r

(x − x1)(y − x2)
K11K22

+
(y − x2)

2

K22
2

]}
.

(11)

Here r =
K12√

K11K22

is a correlation coefficient.

Fig. 2. Graph of distribution P (x, y)

Using (11) for two-dimensional distribution, we can find some characteristics
of number of customers in the orbit. In particular, we could find one-dimensional
distribution of the total number of customers in the orbit.
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8 Conclusion

In this paper, we consider a retrial queueing system in which the arrival flow is
described by the stationary Poisson process, the service time is a random with
a given distribution function, hyper exponential distribution the delay time of
customers in the orbit and exclusion of alternative customers. The stationary
distribution of the server state has been obtained. We have found the means of
the number of customers in the orbit, variances and covariance. Two-dimensional
distribution of the number of the customers in the orbit is asymptotically normal
with parameters x1, x2, K11, K12, K22.

We consider the gamma distribution where α, β are positive parameters. We
plan to consider the distribution of phase type in the future (PH-distribution).
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Abstract. This article describes the real time imitation model of
Time-Triggered Ethernet. The model allows us to analyze the algorithm
of functioning of a main parts system (synchronization of a global time
block, the communication channel, the switch, the client). The model is
created using mathematical modeling language hierarchical time colored
Petri net and CPN Tools package. The authors propose verification rules
for describing the fullness of the work of Time-Triggered Ethernet.
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1 Introduction

Embedded systems are used in avionics, home electronics, spaceships and
automobile production. Complexes of embedded systems use distributed con-
trol architecture and Time-Triggered Ethernet [1,2] advanced communication
protocols.

The Time-Triggered Ethernet (TTE) is a distributed safety-critical real-time
system. The TTE is based on the Ethernet Protocol. It introduces two concepts:
time and event. The protocol, which is developed in the TTE, is called Time-
Triggered Protocol (TTP) [3–5].

Hardware real-time systems must quickly react to the error states in the
system. Additionally, the correctness of results in such systems depends on the
time, allocated within the system for solving the problem.

Modeling of the TTE system plays an important role in research and improve-
ment of the TTE technology. The main emphasis was placed on safe-critical and
fault-tolerant features of the system and the principle of clock synchronization
between all network nodes.

Modeling and verification of the TTE as a entire real-time system using Petri
nets have not previously been described and researched. Furthermore, many
works research only the individual parts of the TTE [6,7]. This article describes
a simulation of the entire system.

c© Springer International Publishing Switzerland 2016
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2 The Main Statements of a Time-Triggered Ethernet

The TTE is an extension of normal Ethernet technology (IEEE 802.3). Therefore,
the TTE can be easily integrated into the architecture of existing networks. In
this technology there are 3 types of traffic: time-triggered (TT), rate-constrained
(RC) and best-effort (BE) traffic. TT-traffic has a higher priority of service,
minimal latency and minimal jitter. RC-traffic has a lower priority than the
TT-traffic, thereby getting a larger frame delay and jitter, in addition to non-
availability of clock synchronization when exchanging messages. BE-traffic is
compatible with the standard traffic of Ethernet technology [8,9].

The basic principle of the TTE is an allocation of a time slice for every
node, while this node should accept or transfer data, i.e. create temporal parts
for all nodes of the network. Message exchange is implemented with multiple
access with time division (TDMA), i.e., TDMA-rounds [10]. This is achieved by
synchronizing the clocks of all the network participants. There are the following
main properties of TTE:

1. Fault-tolerant global time it is required for all objects that interact through
a global time in the whole time interval;

2. Mixed configuration it allows the handling of the traffic as real time and
standard of the Ethernet technology without the use of additional equipment;

3. Strong fault isolation if fault occurred in the network, that it is considered
its processing and the system operates in normal mode;

4. Naming - each message has its name.

A clock synchronization function ensures the initialization of synchronization.
All local clocks of the network must be synchronized with the global time. The
mechanism of clock synchronization is based on the compression function. The
compression function calculates the network delay based on the local delay of
the node in order to synchronize all the nodes [1].

3 Modeling a Time-Triggered Ethernet

The TTE system can have two configurations: a standard (Fig. 1a) and a fault-
tolerant (Fig. 1b). In the article a model of the TTE system only a standard
configuration is built, in which each client connects to the server through a
single switch to send messages to the server. In this case the client and server
could be any couple of connected devices. When exchanging client-server the
possibility of client error is considered, which leads to the regular sending of
frames to the network.

The TTE model is developed using the mathematical apparatus of the hier-
archical temporal colored Petri nets [11], which features the following dignities:

– A Petri net is universal algorithmic system, providing a description of almost
any algorithm;

– colors allow the description and modeling of algorithms, which depends on
content data being processed;
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Fig. 1. The TTE configuration: a - standard, b - fault-tolerant

– the hierarchy allows the building of complex multicomponent models;
– the time property allows the modelling of dynamic properties of objects.

A CPN Tools package was selected as a freeware tool system, which allows
the modelling of different aspects of the complex telecommunication systems
behaviour [12–14].

The TTE model should reproduce the functioning of the system, consisting
of the following parts: the block of global time synchronization, the commu-
nication channel, the client and the switch-server. This article describes only
one client and one switch; however, the model can be continually expanded and
complemented with n number of clients and switches.

Real time periods are not used while modeling, instead abstract time periods
are used. It is convenient because this model describes the functioning of the
system and is used for identifying inaccessible parts of the algorithms.

The top level of hierarchy of the TTE model is presented in Fig. 2 and con-
sists of the parts described above – block of synchronization of global time, the
communication channel, the switch, the client.

The model uses the following main colors, constants and variables:

– color GlobTime, which allows a variable to have a range from 0 to n, where
n is equal to the sum of the number of clients and number of switches. In this
case, n = 2, as it is described as colset GlobTime = int with 0..2 timed;

– variable var globtime: GlobTime, which refers to the color GlobTime and
is a key variable in the development of the TTE model, since this variable is
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responsible for the clock synchronization of the nodes of the communication
network, being transferred to the clients and the switch, thereby providing
synchronization of the local clock of each node;

– the constant, which is used for defining the sum of the number of clients and
the number of switches in the model: val numberpart = 2;

Fig. 2. Model of the TTE system

The algorithm of the system is simulated as the following sequence of events
marked by tokens.

Start - to start the TTE system; Start is transmitted to the communica-
tion channel, so the work had begun and synchronization had been established
between the client and the switch.

The communication channel produces four tokens indicating the events: the
sending of the switch, the receiving of the switch, the sending of the client and
the receiving of the client. The detailed algorithm of the communication channel
will be described below.

In parallel with the generation of tokens from the communication channel, a
global time is formed. The basis of the TTE systems is the definition of trans-
mission real-time and time intervals. Therefore, the formation of a global time is
a very important part of the TTE systems. The formation of the global time is
obtained as follows: in the position of the Timer is the stored global time used
for all nodes in the TTE system. The initial token of position Timer equals 0.
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The calculation of the value of the global time is carried out on the transi-
tion Get Global Time, which provides an actually cyclic increment of variable
globtime described above. The limit cycle is a constant numberpart described
above. The algorithm for computing the global time is as follows: if the value of
the global time is less than the number of nodes in the system, it is incrementing
the value of the global time, or global time is reset, in the language CPN ML is:
if globtime < numberpart then 1‘(globtime + 1) else 1‘0.

If the value of the global time is 0, then the processing of the switch is started,
but only if two tokens of receiving/sending from a communication channel are
ready. If the value of the global time is equal to 2, then the processing of the client
starts, but only if two tokens of receiving/sending from a communication channel
are ready. The value of the global time is equal to 1, this is an intermediate state
used for research. After synchronization, all the objects will be global time.

When synchronization between the client and the switch happens, transmis-
sion of frames from the client to the switch starts. In the case of processing the
last frame of switch generates the end flag of transmission and it is kept in the
position End of Program. This flag is also one of the verification rules for the
functioning of the TTE system, as will be described below. If this flag is set, a
token of the start of the TTE system is produced again and the operation of the
TTE system is repeated again.

We consider in more detail three subnets called Channel01, Switch1,
Client. The subnet Channel01 emulates a communication channel between
the client and the switch; it is presented in Fig. 3.

Fig. 3. Subnet of the communication channel
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The model works as follows: the channel is initiated by the token at the posi-
tion Start. A token at the position of Failure client sets a variable indicating
the presence of an error in frame transmission. Therefore it is important that the
TTE system should include the availability and handling of errors in the system.
The probabilistic nature of the error function plays a special language CPN ML
the function for calculating the probability according to Bernoulli’s law. Thus,
the initial marking in the position Failure client equal to 1 - bernoulli(0.95).

The error can take two integer values: 0 no error, 1 errors. The transition
of Normal work or failure determines the normal or the erroneous work of
the TTE system. The output positions of the subnet correspond to the following
events:

– State Master Send 1 the sending of the switch;
– State Master receive 1 the receiving of the switch;
– State Client receive 1 the receiving of the client;
– State Client send 1 the sending of the client.

The subnet of the switch is presented in Fig. 4.

Fig. 4. Subnet of the switch
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If there is no error in the channel, the colors of the tokens will have the
following values in appropriate positions: 1- State Master Send 1, 4 - State
Master receive 1, 2 - State Client receive 1, 3 - State Client send 1.
Otherwise, all the colors of the tokens in the described positions are reset to
zero, except for the color of the token of the sending client State Client send
1, which is set to 1. The process with an error is called “babbling idiot” [1] when
the client begins to transmit frames to the network, but the network does not
respond to recognized errors in the client.

The ports for subnet Switch1 are:

– the position of Global Time, containing the value of the global time (the
input/output port);

– the position of the Master send1, containing the event token of the sending
of the switch (input port);

– the position of the Master receive1, containing the event token of the receiv-
ing of the switch (input port);

– the position Help, containing the token of help from the client (input port);
– the position Synch, containing the flag of a successful synchronization

between the switch and the client (output port);
– the position Busy Master, containing the busy flag of the switch (output

port);
– the position State Node, containing the value to transfer: 0 free node, 5 node

free after the transfer (input port);
– the position Number frames, containing the number of frames that the client

sends to the switch (input port);
– the position End Program, containing the end flag of the work of the TTE

system (output).

Due to the synchronization with the communication channel a deterministic
communication is provided, i.e. two messages cannot be sent at the same time,
as indicated in the Time-Triggered Protocol.

Subnet Switch1 operates as follows:
after the occurrence of the token Master send1 and global time is equal to

zero (the start of the switch), the first transmission in the network is emulated
by triggering of the transition First Broadcast, after that an occurrence of the
token Master receive1 the acknowledgement (Ack) is accepted;

by triggering of the transition Sending Clock Synch the token is sent for
the clock synchronization and the acknowledgement of synchronization (Ack) is
received;

the token of the control frame is sent from the position Send control frame
and the acknowledgement of control frame is accepted and the flag of the suc-
cessful synchronization synch is set, which will also be analyzed on the client
side;

the busy flag of the switch busy is reset, so the switch is ready to receive
transmitted frames from the client. If busy and SNode equal zero (the node is
free), and there is the flag help, the switch is in the transmission state;
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the subnet Client is informed about the connection through the position
Run Transmission and after the acknowledgement (Ack) the token of permis-
sion to transfer for the client is sent;

the subnet Switch1 starts to receive frames sent from the client and their
acknowledgements from the switch, but when the last frame is received, the token
of the end of transmission is generated in the position End of transmission;

at the end of the subnet flag End Program is set to a true value.
The generation of two tokens of the send/receive of the switch provides a

namespace of the TTE system. It is necessary to identify frames that match the
format of the TTE. In this model, the actual frame format of the TTE system
is ignored.

The subnet of the client Client is similar to the subnet of the switch. Each
client has its own identification number ID, the ID is stored in the variable
SNode. When the transmission starts, the network recognizes which client is
active by using its ID. The subnet of the client is presented in Fig. 5.

The main ports on the subnet of the client Client: − the position Client
send1, containing the token of sending of the client (input port); − the position
Client receive1, containing the token of receiving of the client (input port).

This client works when global time is equal to two. Subnet Client operates
as follows:

after receipt of the first transmission from the switch the token is sent in syn-
chronization the frame on the clock synchronization is received with the issuance
of receiving the acknowledgement;

the control frame with the issuance of the acknowledgement is received. Then
the client can send the frame or can skip its turn. If the client skips its turn,
then it is in a position State send or skip, otherwise the client sends a frame;

after setting the flags busy and help in 1 the client sends to the switch an
active client’s ID with receipt of the acknowledgement from the switch, i.e. in
the position of the State Node the value is set equal to one. This position is
read of the switch and is analyzed to the variable SNode. Thus, it provides
the detection mechanism of one active client in the network. After sending the
client’s ID, the client receives the acknowledgement from the switch;

the token of permission to transfer is sent and sending frames begins;
when the last frame is sent, in the position State Node the value 5 is written

(the completed transmission and the node is released).

4 Verification of the Time-Triggered Ethernet Using
the Model

Verification of the TTE system could be done using verification rules, that allow
us to measure the reach and the occurrence of deadlock condition in the simu-
lated TTE system. Description of the verification rules was made using logical
operations and triggering events on transitions in the model. Triggering events
on transitions are described using the variable S, the index variable will have the
name of the transition and the name of the subnet (client - C, the switch - M).
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Fig. 5. Subnet of the client

Let us consider the verification rules:

1. Transmission begins after a successful synchronization of the node.

SSynch happened,M and SRequest to send or skip,C → SBusy master,M

If the event SSynch happened,M happens, then the flag is set to the true value
at the position Flag synch in the subnet of the switch. Otherwise this branch
of the algorithm is unreachable.
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2. The sent frame needs to achieve its address and be accepted.

SReceive frames,M → SFree Signal,M

This rule means that if the event SReceive frames,M happens and provided
that the last frame is received from the client, then the flag is set to the true
value at the position Flag receive in the subnet of the switch. Otherwise
this branch of the algorithm is unreachable.

3. Transmission of frames of the client starts after the enable token for trans-
mission.

SPemission to send,C and SSend frames,C → SGo idle,C

This rule means that if the event of token of permission to transmission and
transmission of frames starts, then the flag is set to the true value at the
position Flag send in the subnet of the client. Otherwise this branch of the
algorithm is unreachable.

4. Each node has its own time partition.

In this rule are added variables denoted by P. The index at the variable will
have the variable name and the name of the subnet.

SSynch token,C and Pglobtime,C = PTimeA,C → PTime partition flag,C

This rule means that if the event SSynch token,C happens and the variable of
global time Pglobtime,C is equal to the variable PTimeA,C (in this case the
variable of the first client PTimeA,C is equal to constant 2), then the variable
PTime partition flag,C is set to the true value at the position Time partition
flag. Otherwise this branch of the algorithm is unreachable.

5. The transmission is carried out after the detection of an active client through
its identification number ID.

STransmitting flag,C → PTransmitting flag,C

This rule means that if the transition worked STransmitting flag,C , considering
only the active value of the position State Node (0 client is not active), then
the flag PTransmitting flag,C is set to the true value. Otherwise this branch
of the algorithm is unreachable.

6. Each transmission must be completed.

SEnd program,M → PEnd program,M

This rule means that if the transition worked SEnd program,M , then the flag
PEnd program,M is set to the true value. Otherwise this branch of the algorithm
is unreachable.
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5 Discussion of Verification Rules

Verification rules were applied to the developed model of the TTE system and
were introduced either in the subnet of the client or in the subnet of the switch
as measurement components of model that provide a visual verification. For
convenience, the verification rules were placed on the higher level of the model
hierarchy and are presented in Fig. 2.

A similar task verification of the TTE system was solved using the PRISM
and built in programming language [15]. However, the verification rules accepted
in this article were treated separately from the model and have a lack of visibility;
there was a need for the development of additional software created with C++
language for processing these rules. Besides, it is not possible for the developer
of this model to identify during the simulation if the rules are true or false.

The verification rules in this presented article are easy to percept and are
included in the developed model of the TTE system, so the result of flags could
be immediately seen during the simulation.

During the simulation the algorithm of functioning of the TTE system per-
formed successfully and thereby the identification of deadlock parts is confirmed
in the work of the TTE.

6 Conclusions

The model of Time-Triggered Ethernet was developed using the mathematical
apparatus of hierarchical temporal colored Petri nets.

The possibility of using the model for verification of TTE protocols for inac-
cessibility and detection of deadlock conditions has been confirmed.

The results of research can be applied in the study and improvement of
technology Time-Triggered Ethernet.

A further stage of the research is TTE system timing component account-
ing (delay and jitter) and traffic characteristics of switched traffic, which will
perform not only as system functioning logical analysis, but also to measure its
probabilistic time characteristics.
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Abstract. In the paper an approach to the analysis of business process
efficiency is proposed. A method for the estimation of a business
process execution time as an important performance measure of business
processes efficiency is developed. It represents a combination of queuing
networks modelling and simplex algorithm of linear programming. The
method allows the calculating of the minimum business processes exe-
cution time. A method of optimizing activity of the telecommunication
company at a predetermined threshold for the business processes exe-
cution time is given. The developed technique was illustrated with an
end-to-end business process flow “Request-to-Answer” with initial data
close to reality.

Keywords: Optimization · Business process · Queueing theory ·
Execution time · Delay · Simplex algorithm

1 Introduction

In a volatile and challenging complex environment organizations have to be
agile and flexible in their response to increasingly changing market conditions.
To achieve and to sustain business performance the company should have an
instrument to analyze and optimize their business processes in terms of perfor-
mance. Optimization of business processes is a powerful feature for increasing
the competitive advantage of any enterprise. After a complex analysis of an
enterprise’s activities, new business processes can be applied and old ones can
be reorganized. Innovations are aimed to improve the performance measures of
business processes, such as cost metrics and quality of service. Traditionally,
for optimization of business processes the simulation approach is used including
the General Purpose Simulation System (GPSS) and Petri net framework [1].
The disadvantage of this approach is the necessity for special software tools as
Oracle Crystal Ball toolkits [2,3] or ARIS Business Simulator [4]. In this paper

The reported study was partially supported by the RFBR, research projects No.
14-07-00090, 15-07-03051, 15-07-03608; Vladimir Potanin Foundation.

c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 315–326, 2016.
DOI: 10.1007/978-3-319-44615-8 28



316 K. Samouylov et al.

we examine analytical approaches to business process modelling based on the
theory of queuing networks [5], and dynamic and linear programming [6,7].

The subject of our study is enterprise activity; the problem is the estima-
tion of efficiency of enterprise business processes; the goal is the development
of a method for business process analysis and optimization in terms of process
execution time. For illustration a telecommunication company is chosen as an
enterprise. An end-to-end business-process flow “Request-to-Answer” is used as
the example of a business process. The business process is analyzed according
to Business Process Framework eTOM (enhanced Telecom Operations Map),
a standard maintained by the global industry association for digital business
TeleManagement Forum (TMForum) [8].

The paper is organized as follows. Section 2 is devoted to the description
of the business process “Request-to-Answer” in BPMN 2.0 (Business Process
Model and Notation) [9]. In Sect. 3 we built a business process model as an
open queueing network with multiple classes of customers [5] and develop for-
mulas for average process execution time calculation. In Sect. 4 we offer the
method of estimating the total execution time of the above mentioned busi-
ness process using a simplex algorithm (SA) [3]. Section 5 contains an algorithm
for optimizing the execution time of the process flow “Request-to-Answer” at
a predetermined threshold for the business processes execution time using the
developed technique. The conclusion gives some recommendations on business
process optimization and further study.

2 Process Flow Description Diagram

We begin with a description of the end-to-end business process flow “Request-
to-Answer” using Business Process Model and Notation (BPMN) [9], a standard
for business process modeling providing a graphical notation for specifying busi-
ness processes in a Business Process Diagram (Fig. 1). Activity flow objects of
the diagram represented with a rounded-corner rectangle depict the processes
of 3rd and 4th levels of decomposition numerated according to Business Process
Framework GB921, Release 15.0 [10]. The circles in the Business Process Dia-
gram denote the event subjects such as process initiation or process termination.
Diamond shapes represent gateways to determine forking and merging of paths,
depending on the conditions expressed. In Fig. 1 some rectangles or combinations
of rectangles are denoted as nodes; this notation will be explained in Sect. 3.

The process flow “Request-to-Answer” comprises of activities relevant to
managing customer requests across all customer interfaces. The purpose of the
“Request-to-Answer” process flow is to qualify and address specific information
requests or product requests (sales requests) from the customer. The process
could lead to the preparation of a pre-sales offer if the customer shows interest
in a particular product (telecommunication service).

The subprocess “Manage contact” (1.11.1) begins an interaction between a
customer and the telecommunication company. It deals with the identification
of a contact, its development, enhancement and update. For queueing network
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Fig. 1. Business process diagram for “Request-to-Answer” process flows

modelling in Sect. 3 two communication channels – web-interface and direct com-
munication with a company’s manager – are considered as customer interfaces.

The purpose of subprocess “Manage request” (3.5.9.2) is to manage all
requests made by potential and existing customers. After receiving the request
the subprocess either enables its originator to automatically fulfill it, or identifies
and activates the opportune process to accomplish the request. The subprocess
formally closes the request when all related activities have been terminated.

The subprocesses chain in the process flow “Request-to-Answer” includes the
subprocesses aimed to increase profits at the expense of new marketing offers.
They are “Issue & distribute marketing collaterals” (1.10.1) to issue and distrib-
ute marketing collateral directly to a customer, “Manage prospect” (1.11.3) to
match an assigned lead with the most appropriate products and ensure that a
prospect is handled appropriately, “Determine customer order feasibility” (3.3.1)
to check the availability and the feasibility of providing and supporting a stan-
dard and customized product offerings where specified to a customer.

The three above-mentioned subprocesses are grouped into a single unit as a
preliminary step to perform queueing network modeling in Sect. 3. The following
two subprocesses can also be combined for further queueing network modeling.

The subprocess “Develop sales proposal” (1.9.4) includes selecting a service or
a product in response to the customer’s sales request. The Subprocess “Validate
customer satisfaction” (3.4.1.4) validates that the predicted/expected value is
delivered by the solution and initializes the after-sales processes (billing and
assurance).

Based on the built Business Process Diagram in Sect. 3 we develop the queue-
ing network model of end-to-end process flow “Request-to-Answer”.



318 K. Samouylov et al.

3 Queueing Network Model

We propose a mathematical model of end-to-end process flow “Request-to-
Answer” as an open exponential queueing network (QN) with multiple class
of customers 〈M,Θ0, λ0 ;μi , i ∈ M〉. The set of queueing network nodes M
includes nodes of two types: single-server queueing system with infinite queue
M | M | 1| ∞ and infinite server queueing system M | M |∞. A customer in this
network corresponds to a request of a telecommunication company’s client, each
node of the network is a subprocess or a group of subprocesses (Fig. 1).

The QN model for process flow “Request-to-Answer” is shown in Fig. 2.

Fig. 2. Queueing network model for process flow “Request-to-Answer”

The set of queueing network nodes is determined as M = {1, 2, ..., 5}, node 0
represents external source (Table 1). The set R = {1, 2, 3} of customers’ classes
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Table 1. Nodes of queueing network

No. Name of node Processes

0 External source —

1 Customer service manager Identify type of request

Provide required information

Issue & distribute marketing collaterals

Request to CRM systems

2 Web-interface Identify type of request

Provide required information

Issue & distribute marketing collaterals

Request to CRM systems

3 CRM Customer identification

Output of required information

4 Customer subscription inventory Execute marketing suggestion

Determine customer order feasibility

5 Call-center operators Validate customer satisfaction

Table 2. Customers’ classes

No. Name of type Example

1 Information request Balance enquiry

2 Sales request Access to service request

3 Request closed —

is represented in Table 2. The set of customers’ request types is determined
as follows:

L = {(1, 1) , (1, 2) , (2, 1) , (2, 2) , (3, 1) , (3, 2) (4, 2) , (5, 2) , (0, 3)} .

The routing matrix Θ0 of the queueing network is shown in Table 3.
We get the arrival flow rate λ(i,r) for each customer’s request type from the

following system of linear equations:

λ(j,s) =
∑

(i,r)∈L λ(i,r)θ(i,r),(j,s) + λ0θ0,(j,s), (j, s) ∈ L. (1)

The arrival flow rate λi for each node is defined as follows:

λi =
∑

r∈R λ(i,r) (2)

with stationary balance condition [11–13]

λi ≤ μi, i ∈ M. (3)
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Table 3. The routing matrix of queueing network

Θ0 0 (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,2) (5,2)

0 0 a b d 1 − a − b − d 0 0 0 0

(1,1) 0 0 0 0 0 1 0 0 0

(1,2) 0 0 0 0 0 0 1 0 0

(2,1) 0 0 0 0 0 1 0 0 0

(2,2) 0 0 0 0 0 0 1 0 0

(3,1) 1 0 0 0 0 0 0 0 0

(3,2) 0 0 0 0 0 0 0 1 0

(4,2) f 0 0 0 0 0 0 0 1 − f

(5,2) 1 0 0 0 0 0 0 0 0

The average sojourn time of a customer in the queueing system M | M | 1| ∞
can be found by the formula

Mνi = 1
μi−λi

, i ∈ {1, 5} . (4)

The average sojourn time of a customer in the queueing system M | M |∞
can be defined as follows:

Mνi = μ−1
i , i ∈ {2, 3, 4} . (5)

An average sojourn time of a customer in the queueing network – by the
formula

Mν =
1
λ0

⎡
⎣ ∑

i∈{1,5}

λi

μi − λi
+

∑
i∈{2,3,4}

λi

μi

⎤
⎦ .

The average sojourn time of a customer corresponds to an average execution
time of process flow “Request-to-Answer”. This performance measure is related
to QoE (Quality of Experience) parameters. A high delay in the provision of
services to company’s customer demonstrates the necessity for business processes
reorganization. One of the ways to reduce business process execution time is to
reduce the execution time of one or more subprocesses by additional resources of
the company. The simplex algorithm presented in Sect. 4 allows for estimating
the minimum business process execution time.

4 A Simplex Algorithm for Minimum Execution Time
Estimation

Employing a simplex algorithm (SA) for the optimization of business processes is
shown in [3]. Firstly, we convert the Business Process Diagram into the network
graph 〈V,E〉, where
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– the vertexes from the set V correspond to the states of the business process
after completion of the step relevant to the subprocess or the group of sub-
processes,

– the arcs (state transitions) of the set E determine the order of the steps,
– the weight of the arc corresponds to the transition time to the next state of

the business process.

Let us consider the differences between the Business Process Diagram and
the network graph in the simplex algorithm. The rectangles in BPMN sequence
diagram (Fig. 1) are responsible for the activities – the subprocesses of the 3rd
or 4th level (steps of the business process). The arrows indicate the transition
from one step to another. For the network graph the vertexes represent states
and the arcs denote activities.

The following notation shows correspondence between the vertexes of the
network graph (Fig. 3), the Business Process Diagram and nodes of the QN
model (Fig. 2):

1. vertex A – the state of process after execution of “Manage contact” for an
information request (customer leaves Node 1 in QN model);

2. vertex B – the state of process after execution of “Manage contact” for a
sales request (customer leaves Node 2 in QN model);

3. vertex C – the state of process after execution of “Manage request” for both
information and sales request requests (customer leaves Node 3 in QN model);

4. vertex D – the state of process after execution of “Execute marketing sug-
gestion” (customer leaves Node 4 in QN model);

5. vertex E – the state of process after execution “Validate customer satisfac-
tion” (customer leaves Node 5 and the network in QN model).

In terms of the network planning, we need to find out the critical (longest)
path on the network graph. Each subprocess of the process flow “Request-to-
Answer” means individual activities. The activities belonging to the critical path
determine the business process execution time TΣ [3].

As a result, we get a network graph with following set of vertexes:
V = {0, A,B,C,D,E}.

Fig. 3. Network graph for the process flow “Request-to-Answer”
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The graph in Fig. 3 has 6 paths from the node 0 to the node E:

1. 0 → A → E
2. 0 → A → C → E
3. 0 → A → C → D → E
4. 0 → B → E
5. 0 → B → C → E
6. 0 → B → C → D → E

Let us introduce the following notation:
τij – the start time of the activity ij, i, j ∈ V;
Tij – the end time of the activity ij; i, j ∈ V;
tij – the duration of the activity ij, i, j ∈ V;
TΣ - the total execution time of business process “Request-to-Answer”.

We note that the duration of the activity ij is equal to the state i execu-
tion time, according to the network graph. The activities must be completed
respectively

Tij = τij + tij , i, j ∈ V. (6)

Subprocesses are performed one after the other. The inequality (7) means
that the activity ij does not start unless its predecessor activity li has finished.
So we get the restrictions for optimization problem:

τij ≥ Tli, TΣ ≥ Tli, i, j, l ∈ V. (7)

We formulate the task of optimizing the total execution time of the process
flow “Request-to-Answer” as follows: find

min TΣ (8)

subject to
Ax ≤ b, xk ≥ 0, k ∈ [1; 10] . (9)

The components of the vector x = (x1, x2, ..., x10) =
= (τ0A, τ0B , τAC , τBC , τCD, τAE , τBE , τCE , τDE , TΣ), the matrix A and the vec-
tor b are shown in Table 4.

The solution of (9) vector x defines the activities start time and the business
process total execution time TΣ = x10.

So formulas (8)–(9) determine the method for calculating the total execution
time of the process flow “Request-to-Answer” with the given duration of all
component activities of the process. Note that we use the simplex algorithm on
the assumption that the number of the activity executors is unlimited. Thus,
the activities can start as soon as it is required. That is why as the duration
of the activity in the SA model not the service time but the sojourn time of a
customer in the appropriate node for QN model was used. The combination of
QN and SA techniques gives us the method for business process optimization in
terms of process execution time.
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Table 4. Parameters of the problem

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ≤ b

0 0 −1 0 0 0 0 0 0 0 −t0A

0 0 0 0 0 −1 0 0 0 0 −t0A

0 0 0 −1 0 0 0 0 0 0 −t0B

0 0 0 0 0 0 −1 0 0 0 −t0B

0 0 1 0 −1 0 0 0 0 0 −tAC

0 0 1 0 0 0 0 −1 0 0 −tAC

0 0 0 1 −1 0 0 0 0 0 −tBC

0 0 0 1 0 0 0 −1 0 0 −tBC

0 0 0 0 1 0 0 0 −1 0 −tCD

0 0 0 0 0 1 0 0 0 −1 −tAE

0 0 0 0 0 0 0 0 1 −1 −tDE

0 0 0 0 0 0 0 1 0 −1 −tCE

0 0 0 0 0 0 1 0 0 −1 −tBE

5 Algorithm for the Estimation of Business Process Total
Execution Time

The developed method for optimizing the activity of the company at a predeter-
mined threshold for the business process execution time represents a combination
of the queuing networks modelling and simplex algorithm of linear programming.
The sojourn time for the appropriate node of a QN model is used in the sim-
plex algorithm as the duration of activity. First, using a QN model for a given
average throughputs μi of QN nodes we get the average sojourn time νi for the
nodes of the QN model from (4) and (5). Second, we substitute the sojourn
times as the durations of activities into SA to (8)–(9). Eventually we get the
minimum total execution time TΣ of the process flow Request-to-Answer for a
given flow rate λmax

0 of requests to “Request-to-Answer”. If the obtained value
TΣ exceeds the threshold Tmax specified by company regulations, it is necessary
to increase the throughputs of one or more sub-processes composing the process
flow “Request-to-Answer”.

Thus, in terms of the QN model the problem is to choose those average
throughputs (μ1, μ2, μ3, μ4, μ5) such that TΣ ≤ Tmax with a given flow rate λmax

0 .
A restriction for the QN model is the stationary balance condition (3), which
does not allow queues in the nodes with the expectation to grow indefinitely.

The Algorithm 1 below represents the approach of solving this problem.
The inputs to the algorithm are the flow rate λmax

0 , average throughputs
(μ1, μ2, μ3, μ4, μ5) and the predetermined threshold time Tmax for the total exe-
cution time of “Request-to-Answer”. There are two outputs of the algorithm: new
average throughputs, in which the execution time will not exceed the threshold,
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and corresponding total execution time TΣ . The obtained average throughputs
can be used as guidelines when optimizing telecommunication company activity.

Algorithm 1. Get BP throughput values

k = 0

Λ(k) = λmax
0

if λmax
0 < Λ(k) then

i = 1
repeat

QN: find ν
(k)
i = ν

(k)
i (λmax

0 )
i = i + 1

until i <= M

SA: find T (k) = TΣ

(
λmax
0 , ν

(k)
1 , ..., ν

(k)
M

)

if T (k) <= Tmax then

output BP throughput values
(
μ
(k)
1 , ..., μ

(k)
M

)
and T (k)

end if
k = k + 1
i = 1
repeat

increase μi

i = i + 1
until i <= M

QN: find Λ(k) = Λ
(
μ(k)
)

end if

The example of the performance analysis of the process flow “Request-to-
Answer” is based on the initial data close to the real one:
a = 0, 1 – the proportion of information requests received by the manager as the
total number of requests;
b = 0, 05 – the proportion of information requests received through Web-interface
as the total number of requests;
d = 0, 55 – the proportion of sales requests received by the manager as the total
number of requests;
f = 0, 1 – the probability of unavailability of a service or a product;
μ1 = 1

5 – requests per minute, μ2 = 3
4 requests per minute, μ3 = 6 requests

per minute, μ4 = 60 requests per minute, μ5 = 1 request per minute– average
throughputs of QN nodes;
λmax
0 = 1 request per minute – the flow rate of requests to “Request-to-Answer”.

The problem is solved for the two variants of threshold for the total execution
time of “Request-to-Answer”: Tmax

1 = 3 min., Tmax
2 = 6 min.

For these initial data the restriction on the input flow rate λ0 from (1)–(3)
is Λ = 1, (3) requests per minute, thus the stationary balance condition is given
by λ0 < 1, (3).

Figure 4 shows the total execution time TΣ vs the input flow rate λ0.
For λmax

0 = 1 the execution time calculated by the Algorithm 1 TΣ=3,64 min.
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Fig. 4. Execution time for the process flow “Request-to-Answer”

With the threshold Tmax
2 = 6 min the obtained execution time TΣ is less

than the threshold value, so there is no need to change the throughputs μi

of subprocesses. With the threshold Tmax
1 = 3 min the execution time TΣ of

“Request-to-Answer” does not match telecommunication company regulations,
so it is necessary to increase the throughputs μi of one or more sub-processes.
After changing the throughputs it is necessary to repeat the procedure for check-
ing the efficiency of the business process. Note that in this paper we will not
specify the rules by which, if necessary, the throughputs should be increased.
The development of such rules is one of the tasks of further research.

6 Conclusion

The proposed technique can be applied to analyze the efficiency of business
processes of a telecommunication company. In this case, the analysis of the exe-
cution time of the business process should take into account the rise in the
intensities of the incoming flows in QN model nodes. The reason is the increas-
ing of the number of subprocesses under consideration for the QN model of a
company in comparison with the QN model of a stand-alone process [14].

Development of a method for grouping subprocesses for association with cor-
responding QN model nodes is a task for future research. The method should
take into account the performance targets for process analysis and throughputs
for groups of subprocesses. Another task of further research is to develop rec-
ommendations for finding the optimal solution for throughputs of subprocesses
with the iterative procedure in Algorithm 1.

The reported study was partially supported by RFBR, research projects No.
14-07-00090, 15-07-03051, 15-07-03608 and Vladimir Potanin Foundation.
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Abstract. Machine type communications (MTC) or machine-to-
machine (M2M) services become one of the drivers towards 5th genera-
tion (5G) wireless network. Various MTC devices such as smart meters
and sensors form the basis of smart cites and homes. The question is how
to efficiently transmit the information from MTC devices via a wireless
network, which is primarily used for human-to-human (H2H) commu-
nications. Nevertheless, one of the important qualities of service (QoS)
measure is still blocking probability. In the simplest case, the Erlang
B formula is used to calculate the blocking probability. A more precise
value can be obtained considering the MTC devices positons within a
cell and applied radio resource management (RRM) mechanisms. First
of all, it is expressed in the distances from the devices to eNodeB. In the
paper, following the approach of including the stochastic distance in the
queuing system, we propose formulas for calculating stationary probabil-
ity distribution in product form considering a channel quality indicator
(CQI) reported by MTC devices. Two RRM schedulers working accord-
ing to the round robin policy (RRP) and full power policy (FPP) are
considered. The former assumes full occupation of a time frame by all
MTC devices and a variable devices’ power such that to achieve a needed
uplink bit rate. The latter assumes a constant power and variable time
frame occupation.
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1 Introduction

According to the ITU [1], mobile technology transforms our experience of com-
munications, entertainment, and the Internet. In May 2015, the world’s pop-
ulation was about 7.3 billion, and there were about 7.5 billion mobile sub-
scriptions (including machine-to-machine, M2M) and about 3.7 billion people
connected. M2M devices and applications are one of the most dynamically
growing segments. Many M2M devices will be connected to a smartphone or
another device for their own communication; each device could have different
charges/subscriptions. It is estimated that the number of mobile connected M2M
devices will be around 7 billion in 2020, which is equivalent to the world’s pop-
ulation in January 2015. By 2030, there may be 97 billion of M2M devices, and
it would be more than ten times more than the estimated human population.

Consequently, the use of M2M communications will cut a good figure in
everyday life, and therefore we face a need for technological development for
better quality service of M2M applications, which generate a large volume of
traffic. It is to be noted that different M2M applications need different technolo-
gies [2]. The first application type includes smart measurements, device position
measurement, e-healthcare, etc. Such kinds of applications are defined by a small
volume of data and long delay, low cost, and energy demand. The second appli-
cation type is associated with the connection to a car and is characterized by
a small data volume, short delay, and high reliability. The third type is related
the video monitoring and is characterized by a large data volume and high data
rate. These applications and services will provide a high traffic load on a wireless
network.

A possible solution to the frequency coverage problem, associated with the
hasty growth in the data volume generated by the M2M devices is more efficient
usage of the frequency spectrum – the usage of the high frequencies range [3,4].
Also, different schedulers of radio resource management (RRM) [5], such as round
robin policy (RRP) and full power policy (FPP), help to allocate the spectrum
more efficiently [6–10]. These considered schedulers operate in power, frequency,
and time domains and assume a constant frequency band and variable power
and share of time slot. Using the RRP, the share of time slot and the power are
variable resources. The time slot is divided equally between all M2M devices and
the transmit power is set such as to achieve a guaranteed bit rate (GBR). Using
FPP, only the share of time slot is the variable resource, but transmit power is
fixed and equal to maximum transmit power of the M2M device.

An important parameter for M2M wireless networks is the distance between
the device and eNodeB. Therefore, describing such a kind of networks with
streaming traffic, which is characterized by GBR and fixed service duration, or
with elastic traffic, which is characterized by non-guaranteed bit rate (non-GBR)
and variable service duration, in case of the queuing theory we have to modify
the arriving flow from active M2M devices in such a way as to take into account
the distance to the eNodeB. According to the 3GPP [11], 15 different Channel
Quality Indicator (CQI) levels are set for Long Term Evolution (LTE) networks.
The CQI is related to the maximum Modulation and Coding Scheme (MCS)
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supported by the M2M device (Table 1). In this case, we may divide the cell to
15 CQI levels, and the M2M devices with the same reported CQI levels could be
combined in 15 groups. All devices in the group have the same characteristics
– the distance to eNodeB, the achievable bit rate, etc. We underscore that in
this case the maximum distance from each device of the group to eNodeB is the
same and is defined by the reported CQI level.

Table 1. CQI-MCS mapping [12]

CQI index Modulation scheme Code rate Spectral efficiency [bit/s/Hz]

1 QPSK 0.076 0.1523

2 QPSK 0.120 0.2344

3 QPSK 0.190 0.3770

4 QPSK 0.300 0.6016

5 QPSK 0.440 0.8770

6 QPSK 0.590 1.1758

7 16-QAM 0.370 1.4766

8 16-QAM 0.480 1.9141

9 16-QAM 0.600 2.4063

10 64-QAM 0.450 2.7305

11 64-QAM 0.550 3.3223

12 64-QAM 0.650 3.9023

13 64-QAM 0.750 4.5234

14 64-QAM 0.850 5.1152

15 64-QAM 0.930 5.5547

The remainder of this paper is organized as follows. In Sect. 2, we propose a
model of a cell of a wireless LTE network with stationary M2M devices, which
generate streaming traffic. The devices may be in an active or in a passive mode,
and randomly get one of the 15 CQI levels, which define their positions in the
cell. We also describe a tie between the spectrum resource and the achievable
bit rate and schedulers – RRP and FPP. In Sect. 3, we propose a mathematical
model for two cases – the cases of infinite and finite transmit power of the active
M2M devices. In Sect. 4, we conduct an analysis of a model quality of service
(QoS) parameter – blocking probability – by using RRP. Finally, we conclude
the paper in Sect. 5.

2 System Model

2.1 General Assumptions and Parameters

We consider a single wireless network cell of radius R and stationary M2M
devices uniformly distributed within it. Let random variable η = 1, . . . , L be
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the CQI (channel quality indicator) level reported by an M2M device, then the
maximum distance from it to eNodeB is ξd (η) = RL−1η. The transmit power
of the M2M device is a random variable ξp ≤ pmax. M2M devices transmit data
on GBR r0 via uplink channel. Let us suppose the maximum transmit power is
the same for all the devices. We consider an ideal conditions, which are called
free space. All necessary notations are given in Table 2.

Table 2. Parameters

Notation Parameter

Cell parameters

R Cell radius [m]

L Number of the CQI levels

ω Bandwidth of uplink channel [Hz]

M2M device parameters

η Reported CQI level (random variable)

pl = 2L−2l−1
L2 Probability that the reported CQI level is equal to η = l

ξd (η) Maximum distance to eNodeB when the reported CQI level is equal
to η (random variable) [m]

pmax Maximum transmit power [Hz]

ξp Current transmit power (random variable) [Hz]

r0 Guaranteed bit rate [bps]

r (ξd (η) , ξp) Achievable bit rate when an M2M device reported CQI level η and
has transmit power ξp

λ Arrival rate of sessions to transmit data [1/s]

μ−1 Mean session duration (time interval when device is active) [s]

Space parameters

Free space

N0 Noise power [Hz]

G Propagation constant

κ Propagation exponent

2.2 Achievable Bit Rate

According to Shannon’s formula (1), the achievable bit rate r (ξd (η) , ξp) for an
M2M device depends on bandwidth ω of the uplink channel, transmit power ξp,
and distance ξd (η) to eNodeB and is defined as follows:

r (ξd (η) , ξp) = ω ln
(

1 +
Gξp

ξκ
d (η) N0

)
= ω ln

(
1 +

Gξp(
R
L η
)κ

N0

)
. (1)
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Let us suppose the M2M devices are uniformly distributed within the cell,
then the cumulative distribution function (CDF) of random variable ξd (η) is the
following:

Fξd(η) (d) = P {ξd (η) ≤ d} =

⎧⎨
⎩

0, d < 0,
d2

R2 , d ∈ [0, R] ,
1, d > R,

(2)

and the corresponding probability density function (PDF) is f
ξd(η) (d) = 2d

R2 ,
0 ≤ d ≤ R.

2.3 Schedulers: Round Robin and Full Power

So the achievable bit rate depends first of all on three parameters – the fre-
quency band (bandwidth of uplink channel), the transmit power and the pro-
vided share of time slot, which is defined according to the distance from the
device to eNodeB. These parameters changes depend on different schedulers for
RRM. We consider two schedulers with a constant frequency band and vari-
able share of time slot and transmit power – RRP and FPP. To gain a better
understanding let us consider an example (Fig. 1).

Fig. 1. The example of functioning RRP and FPP for both variants of M2M device
position in the cell

Let there be placed three active M2M devices with different reported CQI
levels in the cell. The first and the second are placed at the distances ξd (η1) = d1,
ξd (η2) = d2 from eNodeB. The third device may be placed either near eNodeB
on the distance ξd

(
ηA
1

)
= dA

3
, or far – ξd

(
ηB
1

)
= dB

3
.
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Using RRP, a time slot is divided equally between all active M2M devices and
the transmit power is set such as to achieve GBR r

0
. In both considered cases

when the third device turns to an active mode, the first two devices regulate
their power to achieve the GBR. In case A, the device is placed near the eNodeB
and the available power is enough for all the devices to achieve the bit rate r

0
,

and the device is getting served (Fig. 2).

Fig. 2. RRP, case A

In case B, the device is far from the eNodeB and the power is not enough for
starting the service of the third device and its data transmission will be blocked
(Fig. 3).

Fig. 3. RRP, case B

Unlike the RRP, using FPP all the M2M devices work with a maximum
transmit power, but have a different share of the time slot, which is proportional
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Fig. 4. FPP, case A

Fig. 5. FPP, case B

to the achievable bit rate r
i
, i = 1, 2, 3. In case A the third device is getting a

sufficient share of time slot to achieve the GBR r
0

and is being served (Fig. 4).
In case B the device is far away and is not able to get enough share of the

time resource and it is blocked (Fig. 5).

3 Mathematical Model

We introduce the following general notation ξ (t) – is the number of active M2M
devices, ηi (t) , i = 1, . . . , ξ (t) – is the CQI level reported by M2M device i in
moment t ≥ 0. Then the behavior of the system is defined by the continuous
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Fig. 6. The state transition diagram

Markov chain (CMC)
{
ξ (t) , η1 (t) , . . . , ηξ(t) (t) , t ≥ 0

}
. Accordingly, the state

of the system is defined as follows (k, l1, . . . , lk) , li = 1, . . . , L, k = 0, 1, . . ..

3.1 The Case of Infinite Device Transmit Power

Let us consider a case when the transmit power of active M2M devices has no
restriction. Then the system state space is the following:

L̃ = {(0), (1, 1), . . . , (1, L), (2, 1, 1), . . . , (2, L, L), . . . ,⎛
⎝k, 1, . . . , 1︸ ︷︷ ︸

k

⎞
⎠ , . . . ,

⎛
⎝k, L, . . . , L︸ ︷︷ ︸

k

⎞
⎠ , . . .

⎫⎬
⎭

={(0), (k, l1, l2, . . . , lk), li ∈ {1, ..., L}, i = 1, . . . , k, k = 1, 2, . . .}.

(3)

Let us denote π̃ (k, l1, l2, . . . , lk) – the steady state probability that there are
k active M2M devices reported CQI level li, i = 1, . . . , k. Let us assume that the
reported CQI level is equal to η = l with probability pl, l ∈ {1, ..., L} which, with
regard to the uniform distribution, is defined by the following: pl = 2l−1

L2 , l =
1, . . . , L (Fig. 6).

Proposition 1. The stationary probability distribution π̃ (k, l1, l2, . . . , lk),
(k, l1, l2, . . . , lk) ∈ L̃ that there are k active M2M devices reported CQI level
li, i = 1, . . . , k is calculated by the formula:

π̃ (k, l1, l2, . . . , lk) = π̃ (0) ·
(

λ

μ

)k ∏k
i=1 pli∏I(k,l1,...,lk)

i=1 Ni (k, l1, . . . , lk)!
, (4)
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Fig. 7. The state transition diagram for agregated states of system state space L̃

where (k, l1, l2, . . . , lk) ∈ L̃,

π̃ (0) =

⎛
⎝ ∑

(k,l1,l2,...,lk)∈L̃

∏k
i=1 λpli

μk
∏I(k,l1,l2,...,lk)

i=1 Ni (k, l1, l2, . . . , lk)!

⎞
⎠

−1

= G,

I (k, l1, l2, . . . , lk), Ni (k, l1, l2, . . . , lk) are defined as follows:(
k, l1, . . . , lN1 , lN1+1, . . . , lN1+N2 , . . . , lN1+N2+...NI−1+1, . . . , lN1+...+NI

= lk
)

such that l1 = . . . = lN1 , lN1+1 = . . . = lN1+N2 , . . . , lN1+N2+...NI−1+1 = . . .
= lN1+...+NI

= lk.

The system state space L̃ may be divided by the number of the served M2M
devices k, L̃ =

⋃∞
n=0 L̃ (k) , L̃ (k) =

{
(k, l1, l2, . . . , lk) ∈ L̃

}
, then the state tran-

sition diagram will be the following (Fig. 7):
Writing out the local balance equations for the aggregated states, we get

Note 1.

Note 1. The stationary probability distribution p̃ (k) of the aggregated states
is defined by the formula: p̃ (k) = ρk

k! e
−ρ, where ρ = λ

μ .

3.2 The Case of Finite Device Power

Practically, the transmit power of M2M devices is not infinite and
depends on the chosen scheduler. Let us consider the restriction of CMC
{ξ(t), η1(t), . . . , ηξ(t)(t), t ≥ 0} to the set L ⊂ L̃. Certain type of L, defined
accordingly with the RRP or FPP, is shown in Chap. 4.3. Let us divide the
system state space L by the number of the served M2M devices k, L =⋃∞

k=0 L (k) , L (k) = {(k, l1, . . . , lk) ∈ L}. Then the system probability distri-
bution for (k, l1, l2, . . . , lk) ∈ L
π (k, l1, . . . , lk) = π̃ (k, l1, . . . , lk)

(∑∞
i=0

∑
(i,l1,...,li)∈L(i) π̃ (k, l1, . . . , lk)

)−1

.
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Proposition 2. The system probability distribution π (k, l1, l2, . . . , lk),
(k, l1, l2, . . . , lk) ∈ L is calculated by the formula:

G
(
μk
∏I(k,l1,l2,...,lk)

i=1 Ni (k, l1, l2, . . . , lk)!
)−1∏k

i=1 λpli

∑∞
i=0

∑
(i,l1,...,li)∈L(i) G

(
μk
∏I(k,l1,l2,...,lk)

i=1 Ni (k, l1, l2, . . . , lk)!
)−1∏k

i=1 λpli

.

(5)

With regard to the state transition diagram, shown in Fig. 6, let us compose
the local balance equations.

π (0)
∑

(1,l1)∈L(1)

λpl1 = μ
∑

(1,l1)∈L(1)

π (1, l1) ,

∑
(1,l1)∈L(1)

π (1, l1)
∑

(2,l1,l2)∈L(2)

λpl2 = 2μ
∑

(2,l1,l2)∈L(2)

∑
(2,l1,l2)∈L(2)

π (2, l1, l2) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)∑
(1,l1)∈L(1)

. . .
∑

(k−1,l1,l2,...,lk−1)∈L(k−1)

π (k − 1, l1, . . . , lk−1)
∑

(k,l1,l2,...,lk)∈L(k)

λplk

= kμ
∑

(k,l1,l2,...,lk)∈L(k)

. . .
∑

(k,l1,l2,...,lk)∈L(k)

π (k, l1, . . . , lk)

Let us denote pk – probability, that there are k active M2M devices in the
system, k = 1, 2, . . ., then the local balance Eq. (6) are the following:

λ
∑

(1,l1)∈L(1)

. . .
∑

(k,l1,l2,...,lk)∈L(k)

π (k, l1, . . . , lk) λplk = kμpk, k = 1, 2, . . . , (7)

where
∑

(1,l1)∈L(1) . . .
∑

(k,l1,l2,...,lk)∈L(k) π (k, l1, . . . , lk) λplk = P { ( k − 1, l1,

l2, . . . , lk−1 ) ∈ L (k − 1) , (k, l1, l2, . . . , lk) ∈ L (k) }.
With regard to the formula of total probability:

λP {(k, l1, l2, . . . , lk) ∈ L (k) | (k − 1, l1, l2, . . . , lk−1) ∈ L (k − 1)}
·P {(k − 1, l1, l2, . . . , lk−1) ∈ L (k − 1)} = kμpk,

(8)

since P {(k − 1, l1, l2, . . . , lk−1) ∈ L (k − 1)} = 1, then

λP {(k, l1, l2, . . . , lk) ∈ L (k) | (k − 1, l1, l2, . . . , lk−1) ∈ L (k − 1)} · pk−1 = kμpk.
(9)

Let us denote P (k − 1) – the conditional probability P{(k, l1, l2, . . . , lk) ∈
L (k) | (k, l1, l2, . . . , lk−1) ∈ L (k − 1)} that the M2M device with the number k
will be served under the condition that k − 1 M2M devices are already served
in the system. Then the local balance equation and state transition diagram are
the following (Fig. 8):

λP (k − 1) · pk−1 = kμpk, k = 1, 2, . . . . (10)
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Fig. 8. The state transition diagram for the agregated states of state space L

Proposition 3. The stationary probability distribution pk, k = 1, 2, . . . that
there are k active M2M devices is calculated by the formula:

pk = p0 ·
(

λ

μ

)k ∏k−1
i=0 P (i)

k!
, k = 1, 2, . . . , (11)

where p0 =
(∑k

j=0

(
λ
μ

)j ∏j−1
i=0 P(i)

j!

)−1

.

Probability P (k − 1) that one more M2M device could transfer data under
the condition that there are already k − 1 active M2M devices is defined by the
formula of total probability:

P (k − 1) = P {(k, l1, . . . , lk) ∈ L (k) | (k − 1, l1, . . . , lk−1) ∈ L (k − 1)}

=
P {(k, l1, . . . , lk) ∈ L (k) , (k − 1, l1, . . . , lk−1) ∈ L (k − 1)}

P {(k − 1, l1, . . . , lk−1) ∈ L (k − 1)} .
(12)

Note 2. The main probability characteristic of CQI-based RRM scheme model
for M2M transmissions – blocking probability B that data transmission from an
M2M device will be blocked could be computed as follows:

B =
∞∑

k=0

(1 − P (k)) pk. (13)

3.3 Restriction of the CMC According to the Schedulers

Let us introduce the access function for the considering schedulers. For the RRP
the access function is

gξd(η) (k, l1, l2, . . . , lk) =
{

1, r0
r(ξd(η),pmax)

≤ 1
k+1 , i = 1, . . . , k + 1;

0, otherwise,
(14)

for the FPP it is

gξd(η) (k, l1, l2, . . . , lk) =
{

1,
∑n

i=1
r0

r(ξd(η),pmax)
≤ 1;

0, otherwise.
(15)
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Then the system state spaces LRR (k) ⊂ L̃ or LFP (k) ⊂ L̃, are defined with
the formula (16) or (17) respectively.

LRR (k) =

⎧
⎨
⎩0 ≤ d1 ≤ R, . . . , 0 ≤ dk ≤ R :

r0

ω ln
(
1 + Gpmax

dκ
i N0

) ≤ 1

k
, i = 1, . . . , k

⎫
⎬
⎭ ;

(16)

LFP (k) =

⎧⎨
⎩0 ≤ d1 ≤ R, . . . , 0 ≤ dk ≤ R :

k∑
i=1

r0

ω ln
(
1 + Gpmax

dκ
i N0

) ≤ 1

⎫⎬
⎭ . (17)

4 The Queue System Analysis for the RRP

4.1 The Probability Calculation of the New M2M Device
to Be Served

With regard to the access function (14) and the system state space (16) the
conditional probability P (k) (12) of M2M device k to be served, if there are k−1
M2M devices in the system and the RRP is used, is defined by the formula:

P (k) =
(

P
{

r0
r (ξd (η) , pmax)

≤ 1
k + 1

})k+1

·
(

P
{

r0
r (ξd (η) , pmax)

≤ 1
k

})−k

.

(18)
The random variable ξd (η) is uniformly distributed and has a distribution

function defined by the formula (1), then let us consider Proposition 4.

Proposition 4. The conditional probability P (k) that one more M2M device
could transfer data under the condition that there are already k active M2M
devices, using the RRP, is defined by the formula:

P (k) =
1

R2

(
Gpmax

N0

) 2
κ (

e
r0k
ω − 1

) 2k
κ
(
e

r0k+1
ω − 1

)−2(k+1)
κ

. (19)

4.2 The Numerical Analysis of the Blocking Probability

Let us consider the numerical analysis of the blocking probability for the queue
system with the RRP.

Corollary 1. The blocking probability BRR for the M2M device with the num-
ber k, using the RRP, is defined by the formula (13), with regard to the formulas
(11) and (19).

Let us consider 2 cases of blocking probability dependence on the cell radius.
In the first case (Fig. 9) and second case (Fig. 10) we use different values of
guaranteed bit rate. We watch the system behavior with the increasing of the
arrival rate of M2M requests. Also we consider different cell radiuses. All input
parameters are shown in Table 3.
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Fig. 9. The blocking probability dependence on cell radius, r0 = 100000 kbit/s

Fig. 10. The blocking probability dependence on the cell radius, r0 = 10000 kbit/s

Table 3. Parameters

Figure 9 Figure 10

R, m 80, 100, 120, 150 100, 120, 150, 175

r0, kbit/s 100000 10000

N0, W 10 ∗ 10−10 10 ∗ 10−10

pmax, W 3.98 ∗ 10−3 3.98 ∗ 10−3

μ, s−1 1/0.14 0.33

κ 5 5

G 197.43 197.43

ω, MHz 10 10
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5 Conclusion

The paper discusses a model of a wireless LTE network with M2M devices, which
are uniformly distributed in the cell and grouped by the distance to the eNodeB,
defined by the reported CQI level. The devices generate streaming traffic and
transmit data via an uplink channel on GBR. We considered 2 radio resource
management schedulers.
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Abstract. In this paper synergetic effects in queuing systems and net-
works are investigated. In the systems M |M |n|0 with failures phase
transition is established in cases when competition between servers for
customers is present and when it is absent. In the systems M |M |n|∞
and M |G|n|∞ with heavy traffic, where distribution of service times are
hyperexponential, for some stationary characteristics phase transitions
are established. The critical parameters of these phase transitions are
defined by load coefficients. The obtained results are spread onto queu-
ing networks with nodes which have the type M |G|n|∞ and the effect of a
queue disappearence is investigated. The main approach of these systems
and networks analysis is their transformation into Jackson networks.

Keywords: Hyper exponential distribution · Queuing network · Prod-
uct theorem

1 Introduction

The problem of calculation, analysis and application of infinite server queuing
systems and networks with nodes of this type is considered in manifold articles
and monographs. Now this area of research is developing intensively.

Research is devoted to information-computing networks [1], transportation
systems, systems of cloud computing [2], systems of computer network design
[3], systems of distributed data mining [4] and etc.

A large number of articles and monographs are devoted to mathematical
methods of these systems and networks calculation and analysis: methods of
accuracy calculations [5,6], and asymptotic methods [7–10] and their manifold
generalizations and applications [11–14].

In this paper synergetic effects and phase transition phenomena are investi-
gated in queuing networks with multiserver systems in their nodes. The syner-
getic effects and phase transitions in these networks are closer to the asymptotic
analysis technique. The paper consists of four parts.

In the first part synergetic effects and phase transitions connected with these
effects are analyzed for the system M |M |n|∞ with heavy traffic and large input
c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 341–353, 2016.
DOI: 10.1007/978-3-319-44615-8 30



342 G. Tsitsiashvili and M. Osipova

flow intensity nλ. If the load coefficient ρ satisfies the equality 1 − ρ = n−α,
α > 0, then for the stationary mean waiting time and the stationary mean queue
length and the stationary probability that all servers are busy we obtain a phase
transitions from zero to infinity. A critical parameter of these transitions depends
on the type of efficiency index. So we obtain not only synergetic effects (a queue
disappearance in the system M |M |n|∞ for n → ∞) but the conditions when it
is true.

In the second part the obtained result is spread onto multiserver queuing sys-
tems M |G|n|∞ in which the service time distribution is hyperexponential. Such
distributions approximates are widely used in queuing theory with heavy tails
distributions. For this aim the M |G|n|∞ system is transformed into a network
of the Jackson type with the same service times distribution and conditions of
synergetic effects and phase transitions are established.

In the third part we consider a queuing network with multiserver nodes and
hyperexponential distributions of service times. This network is transformed
into a network of the Jackson type with the same service times distributions,
and conditions of synergetic effects and phase transitions are also established.
These results are generalized onto queuing networks with multiserver nodes and
equal load coefficients.

In the fourth part the problem of maximizing the output flow intensity in
an aggregated queuing system is considered. For an oneserver queuing system
with service distribution function G(t) and with failures a culmination of a max-
imal output flow intensity is accompanied by the directing of a stationary failure
probability to one. But in aggregation of m oneserver systems with or without
competition of servers it is possible to maximize this characteristic practically
to one. When a number of aggregated systems in an aggregation without com-
petition increases then a maximal possible output flow intensity tends to service
intensity. But in an aggregation with competition it tends to an intensity of
input flow.

2 Multiserver Queuing System M |M |n|∞
For an n-server queuing system M |M |n|∞ with the input flow intensity nλ and
the service intensity μ at a single channel the stationary probability pn(k) of k
customers queue in the system is defined by the formulas [17]:

pn(k) = pn(0)
nkρk∏k

j=1 min(j, n)
, ρ =

λ

μ
, p−1

n (0) = 1 +
∞∑

k=1

nkρk∏k
j=1 min(j, n)

. (1)

Our problem is to calculate the stationary mean waiting time An, the stationary
mean queue length Bn and the stationary probability Cn that all servers are
busy.
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Theorem 1. If ρ = 1 − n−α, 0 < α < ∞, then for the stationary mean waiting
time An we have the following phase transition for n → ∞ :

An →
⎧⎨
⎩

0, α < 1,
1/μ, α = 1,
∞, α > 1.

Proof. For the stationary mean waiting time An the limit equality

An =
∑
k≥n

pn(k)(k − n + 1)
nμ

=
pn(0)
nμn!

∑
k≥n

nkρk

nk−n
(k − n + 1)

=
pn(0)nnρn

nμn!
(1 + 2ρ + 3ρ2 + . . .) =

pn(0)nnρn

n!nμ(1 − ρ)2
(2)

is true. From Formula (1) we obtain that

∑
k≥n

nkρk

n!nk−n
=

nnρn

n!(1 − ρ)
≤ p−1

n (0) ≤
∑
k≥0

nkρk

k!
= enρ ≤ enρ +

nnρn

n!(1 − ρ)
. (3)

For 0 < α < 1 from Formula (3) we obtain that

An ≤ 1
μn1−α

→ 0, n → ∞. (4)

And for α > 1 we have

An ≥ nnρn

n!(1 − ρ)2nμ

(
enρ +

nnρn

n!(1 − ρ)

)−1

=
1

nμ(1 − ρ)
· 1
1 + Tn

,

where from the Stirling formula [18, Chap. I, Sect. 2]

n! = nne−n
√

2πn exp
(

ψ(n)
12n

)
, 0 < ψ(n) < 1, (5)

Tn = PnQn, Pn = exp
(

ψ(n)
12n

)
(1−ρ)

√
2πn, Qn = exp(nRn), Rn = ρ−ln ρ−1.

We take ρ = 1 − n−α and using the Taylor series of Rn we obtain:

Rn = −n−α + n−α +
n−2α

2
+

n−3α

3
+ . . . ∼ n−2α

2(1 − n−α)
, n → ∞, α > 0, (6)

consequently,

nRn ∼ n1−2α

2(1 − n−α)
→ 0, Qn = exp(nRn) → 1, Pn → 0, n → ∞. (7)
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So Tn = PnQn → 0, n → ∞, and

An ≥ 1
μn1−α(1 + Tn)

→ ∞, n → ∞. (8)

From the upper (4) and low (8) bounds of the stationary mean waiting time An

it is easy to obtain that An → 1/μ, n → ∞. Theorem is proved.

Theorem 2. If ρ = 1 − n−α, 0 < α < ∞, then for the stationary mean queue
length Bn and for the stationary probability Cn that all servers are busy the
following limit relations are true:

Bn →
{

0, α < 1/2,
∞, α ≥ 1/2,

Cn →
{

0, α < 1/2,
1, α > 1/2.

For α = 1/2 we have:

1
1 + e1/2

√
2π

≤ lim inf Cn ≤ lim sup Cn ≤ 1
e1/2

√
2π

.

Proof. We calculate

Bn =
∑
k>n

pn(k)(k − n) =
∑
k>n

pn(0)nkρk

n!nk−n
(k − n)

=
pn(0)nnρn

n!

∑
k>n

ρk−n(k − n) =
pn(0)nnρn

n!
(ρ + 2ρ2 + 3ρ3 + . . .)

=
pn(0)nnρn

n!

(
1

(1 − ρ)2
− 1

)
=

pn(0)nnρn

n!
· (2 − ρ)ρ
(1 − ρ)2

, (9)

Cn =
∑
k≥n

pn(k) =
∑
k≥n

pn(0)nkρk

n!nk−n
=

pn(0)nnρn

n!
· 1
(1 − ρ)

. (10)

Let us denote γn =
pn(0)nnρn

n!
then Formulas (9) and (10) may be rewritten as

follows

Bn = γn
(2 − ρ)ρ
(1 − ρ)2

, Cn = γn
1

(1 − ρ)
. (11)

For 0 < α < 1/2 we construct upper bounds of Bn, Cn using Formulas
(3) and (5):

γn ≤ exp(−nρ)nnρn

nne−n
√

2πn exp(ψ(n)/12n)
=

exp(n(−ρ + ln ρ + 1))√
2πn exp(ψ(n)/12n)

=
exp(n(n−α + ln(1 − n−α)))√

2πn exp(ψ(n)/12n)
=

exp
(
n

(
n−α−n−α − n−2α/2 − n−3α/3 − . . .

))
√

2πn exp(ψ(n)/12n)

≤ exp
(−n1−2α/2 − n1−3α/22 − n1−4α/23 − . . .

)
√

2πn exp(ψ(n)/12n)
≤ exp(−n1−2α/(2 − n−α))√

2πn exp(ψ(n)/12n)
.
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So from Formula (9) we have

Bn ≤ exp(−n1−2α/(2 − n−α))√
2πn exp(ψ(n)/12n)

· 1 − n−2α

n−2α
→ 0, n → ∞. (12)

Analogously from Formula (10) we obtain

Cn ≤ exp(−n1−2α/(2 − n−α))√
2πn exp(ψ(n)/12n)

· 1
n−α

→ 0, n → ∞. (13)

Let us assume now that α ≥ 1/2 then from Formula (3) we have

Bn ≥ nnρnρ(1 − ρ)
n!(1 − ρ)(exp(nρ) + nnρn/n!(1 − ρ))

=
nα(1 − n−2α)

(1 + Tn)
.

We repeat for α > 1/2 a verification of Formula (7). Using Formula (6) we obtain
that Tn → 0, n → ∞ and consequently

Bn ≥ nα(1 − n−2α)
(1 + Tn)

→ ∞, n → ∞. (14)

In turn it is not complicated to prove that for α = 1/2 there is the convergence
Tn → e1/2

√
2π, Bn → ∞, n → ∞. Analogously for α > 1/2 we have

Cn ≥ 1
(1 + Tn)

→ 1, n → ∞. (15)

If α = 1/2 then using the limit relation Tn → e1/2
√

2π, n → ∞, and Formu-
las (13) and (15), we end the Theorem 2 proof.

A comparison of Theorems 1 and 2 shows not only a presence of phase tran-
sitions and synergetic effects but their dependence from the system efficiency
indexes.

3 Multiserver Queuing System M |G|n|∞
Let us consider a multiserver queuing system in which the distribution F (t)
of the service times is hyperexponential, that is, the probability mixture of r
exponential distributions:

F (t) =
r∑

k=1

pk(1 − exp(−μkt)), a =
∫ ∞

0

F (x)dx =
r∑

k=1

pk

μk
, pk > 0,

r∑
k=1

pk = 1.

We assume that all positive numbers Rk =
pk

μka
, k = 1, . . . , r, are rational and

are represented by the equalities Rk =
Ak

Bk
in which the nominator Ak and the
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denominator Bk are mutually simple integers. We denote N the least common
multiple of the integers Bk, k = 1, . . . , r, and define the integers

nk = nNRk, k = 1, . . . , r,

r∑
k=1

nk = Nn. (16)

Let us consider an nN -server queuing system with a Poisson input flow which
has the intensity nNλ and the distribution function of service times F (t). We
denote ρ = λa and suppose that ρ < 1.

Let us transform this nN -server system into opened network G′ with r nodes
as follows. The input flow to the network G′ is Poisson with the intensity nNλ.
The network G′ consists of r nodes k with nk parallel servers which have the
exponential distribution functions 1 − exp(−μkt), k = 1, . . . , r. Each customer
of the input flow is directed to the node k with the probability pk.

It is obvious that the service time distribution of each customer arriving
into the network G′ equals F (t) and the load coefficient of each node equals ρ.
The network G′ is opened and has the Jackson type and so for any input flow
intensity nNλ there is a single solution to a balance linear equations system
for stationary intensities of input flows to nodes of this network. So from the
product theorem [15] the stationary probability P (j1, . . . , jr) that j1, . . . , jr are
numbers of customers in the network nodes

P (j1, . . . , jr) =
r∏

i=1

pni
(ji),

where pni
(ji) are calculated by Formula (1).

In this network the stationary mean waiting time An, the stationary mean
queue length Bn and the stationary probability Cn that all servers are busy
are probability mixtures of appropriate characteristics An,k, Bn,k, Cn,k, k =
1, . . . , r of this network nodes:

An =
r∑

k=1

pkAn,k, Bn =
r∑

k=1

pkBn,k, Cn =
r∑

k=1

pkCn,k. (17)

Theorem 3. If ρ = 1 − n−α, 0 < α < ∞, then the stationary mean waiting
time An satisfies Theorem1 and the stationary mean queue length Bn and the
stationary probability Cn that all servers are busy satisfy Theorem2.

Proof. As load coefficients of all network G′ nodes equal ρ so the characteristics
Ank

, Bnk
, Cnk

, k = 1, . . . , r, satisfy Theorems 1 and 2. Then from Formula (17)
we have that An, Bn, Cn satisfy Theorems 1 and 2 also.

Remark 1. Conditions for numbers of servers in this network may be weaken
assuming that the proportionality condition on Rk, k = 1, . . . , r, is satisfied
asymptotically.
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Remark 2. The construction considered in this section may be spread to cases
when service times distribution functions are completely monotone [19]. Com-
pletely monotone distributions are distributions with the density f(t), which

satisfy the inequalities (−1)k dkf (t)

dtk
≥ 0, t > 0, k ≥ 1. Using [20, Theorem 1,

Lemma 2] and their manifold generalizations it is proved that any for completely
monotone distribution F (t) and any ε > 0 there is hyperexponential distribu-
tion G(t) which satisfies the inequality sup

t≥0
|F (t) − G(t)| ≤ ε. Very important

completely monotone distributions are Weibull, Pareto and many others dis-
tributions with heavy tails [21,22]. An approximation of a probability that all
servers are busy in the network may be realized using stability theorems for
queuing networks [23].

4 A Queuing Network with Large Number
of Servers in Nodes

Let us consider the opened queuing network G with a Poisson input flow which
has the intensity λ0, with m internal nodes, the indecomposable route matrix
Θ = ||θij ||mi,j=0 and the service times distribution functions Fi(t), i = 1, . . . , m,
in the network nodes. Service times in the node i are independent and identically
distributed with the common distribution

Fi(t) =
ri∑

k=1

pi,k(1 − exp(−μi,kt)), ai =
∫ ∞

0

F i(x)dx =
ri∑

k=1

pi,k

μi,k
, i = 1, . . . , m,

which is hyperexponential and is the probability mixture of ri exponential dis-

tributions, pi,k > 0,

ri∑
k=1

pi,k = 1. Here θij is the probability to go to the node j

after service at the node i, θ0i is the probability that a customer arriving into
the network comes to the node i, θ00 = 0.

Let us define the vector (λ1, . . . , λm) as a single solution to the system of
linear algebraic equations (λ0, . . . , λm) = (λ0, . . . , λm)Θ and assume that

ρi = λiai < 1, i = 1, . . . , m. (18)

We suppose that all positive numbers Ri,k =
pi,k

μi,kai
, k = 1, . . . , ri, i = 1, . . . , m,

are rational and are represented by the equalities Ri,k =
Ai,k

Bi,k
, where their

nominators and denominators are mutually simple integers. We denote N the
least common multiple of the integers Bi,k, k = 1, . . . , ri, i = 1, . . . ,m, and put

ni,k = nNRi,k, k = 1, . . . , ri,

ri∑
k=1

ni,k = Nn, i = 1, . . . ,m. (19)
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Let us transform the network G with m nodes into the network G′′ with
m∑

i=1

ri

nodes as follows. The input flow to the network G′′ is Poisson with the intensity
nNλ0. The node i of the network G is replaced by the block (i) containing
ri nodes (i, k) with ni,k servers which have the exponential distributions 1 −
exp(−μi,kt), k = 1, . . . , ri. It is obvious that the distribution function of a
service time of a customer arriving the block (i) equals Fi(t). From Formula (19)
we obtain that the number of servers in this block equals nN.

Let us assume that on a finishing of a service in the node (i, k) a customer
arrives into the node (j, l) with the probability θi,jpj,l and departs from the
network with the probability θi,0. A customer of the input flow arrives into the
node (i, k) with the probability θ0,ipi,k. It is obvious that the route matrix of
the network G′ is indecomposable also.

Then in all nodes of this network from Formula (18) we have the inequalities

nNλipi,k

ni,kμi,k
= ρi < 1, k = 1, . . . , ri, i = 1, . . . ,m. (20)

Consequently for any n the network G′′ has the Jackson type. And from the
conditions (20) we obtain that the limit distribution of customers numbers in
the nodes (i, k), k = 1, . . . , ri, i = 1, . . . ,m, satisfy the product theorem [15,16]:

P (ti,k, k = 1, . . . , ri, i = 1, . . . ,m) =
m∏

i=1

ri∏
k=1

Pi,k(ti,k), (21)

where Pi,k(ti,k) is the limit distribution of numbers ti,k of customers in ni,k-
server queuing system (i, k) with the type M |M |n|∞ and with the input flow
intensity nNλipi,k and the serving intensity μi,k.

Let us denote P ′′
i,k(n) the stationary probability that all servers in the node

(i, k) of the network G′′ are busy and denote P ′′(n) the stationary probability
that all servers in some node (i, k) of the network G′ are busy.

Theorem 4. In the conditions (18) the relation P ′′(n) → 0, n → ∞, is true.

Proof. For the n-server queuing system M |M |n|∞ with the input flow intensity
nλ and with the serving intensity μ the stationary probability pn(k) that there
is k in the system satisfies Formula (1). From the Stirling formula and from
the inequality f(ρ) = 1 + ln ρ − ρ < 0, 0 < ρ < 1, and from Formula (3) we
have obtain the stationary probability Cn that all servers are busy satisfies the
relation

Cn = pn(0)
∑
k≥n

nkρk

n!nk−n
≤ en pn(0)√

2πn

∑
k≥n

ρk ≤ exp(nf(ρ))
(1 − ρ)

√
2πn

→ 0, n → ∞. (22)

From the condition (20) and the relations (21), (22) it is possible to obtain
that

P ′′
i,k(n) → 0, k = 1, . . . , ri, i = 1, . . . ,m,
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P ′′(n) = 1 −
m∏

i=1

ri∏
k=1

(1 − P ′′
i,k(n)) → 0, n → ∞. (23)

Remark 3. Consequently the network G′′ satisfies the relations (23) which char-
acterizes synergetic effect in all its blocks. it is possible to prove analogous
statements for maximal stationary waiting time and for summarized number
of customers in nodes queues.

Remark 4. If ρ1 = . . . = ρm then is possible to spread Theorems 1 and 2 onto
the network G′′ with heavy traffic also.

5 Multiserver Queuing Systems with Failures

Let us consider the single server queuing system M |M |m|∞ with failures and

with the service time distribution G(t), b1 =
∫ ∞

0

tdG(t) and with the intensity

λ of Poisson input flow. We denote this system B1. We divide the time axis t ≥ 0
into cycles consisting of intervals when a server is busy and intervals when it is
free. A length of each such interval equals the sum of two independent random
variables. The first of them has exponential distribution with the parameter
λ and the second summand has distribution G(t). From the integral renewal
theorem [24, Chap. 9] we obtain that the stationary intensity of the output flow
equals

I(λ) =
(

1
λ

+ b1

)−1

. (24)

and the stationary failure probability satisfies the equality

P (λ) = 1 − I(λ)
λ

. (25)

For the system A1 = M |M |1|0 in which the service time has exponential
distribution with the parameter μ the stationary failure probability and the
stationary intensity of output flow equal:

P (λ) =
λ

λ + μ
, I(λ) =

μλ

λ + μ
,

where the functions P (λ), I(λ) are monotonically increasing. Then the max-
imal intensity of output flow J = sup(I(λ) : λ > 0) = lim

λ→∞
I(λ) = μ, and

lim
λ→∞

P (λ) = 1. So when output flow intensity in the system A1 tends to its

maximal value the stationary failure probability tends to one. But an aggrega-
tion of the systems A1 allows us to decrease the loss of input flow customers.

Let us consider the queuing system Am = M |M |m|0 with input flow inten-
sity mλ and with service intensity μ on all m servers. The system Am is the
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aggregation of m single server systems A1. A number of customers in the sys-
tem Am is described by the birth and death process xm(t) with birth and death
intensities

λm(k) = mλ, 0 ≤ k < m, μm(k) = kμ, 0 < k ≤ m.

Let us denote P (m)(λ) the stationary failure probability in the system Am and
put I(m)(λ) the stationary intensity of output flow (in a recalculation for a single
server), we designate

J (m) = sup(I(m)(λ) : λ > 0).

Theorem 5. The following relations take place for m → ∞

J (m) → μ, P (m)(λ) →
{

0, λ ≤ μ,
1 − μ/λ, λ > μ.

Proof. Let us denote pm(k) = lim
t→∞ P (xm(t) = k), 0 ≤ k ≤ m. Then

pm(m − 1) = pm(m)
μ

λ

m

m
, pm(m − 2) = pm(m)

(μ

λ

)2 m(m − 1)
m2

, . . .

Consequently the stationary failure probability P (m) from the integral renewal
theorem and from the law of large numbers [24, Chap. 9, Sects. 4, 5] satisfies the
equality

P (m)(λ) = pm(m) =

⎛
⎝1 +

m∑
k=1

(μ

λ

)k k−1∏
j=0

(
1 − j

m

)⎞
⎠

−1

. (26)

The stationary output flow intensity in the system Am (in a recalculation for
one server) is

I(m)(λ) = λ(1 − P (m)(λ)), λ > 0. (27)

From Formulas (26) and (27) we obtain that

I(m)(μ) ≤ J (m) ≤ μ. (28)

Let us fix ε, 0, 5 < ε < 1, and denote c = − ln(1 − ε)
1 − ε

, then

e−cx ≤ 1 − x, 0 < x < 1 − ε,

(P (m)(μ))−1 ≥ 1 +
∑

1≤k≤m(1−ε)

exp

⎛
⎝−c

k−1∑
j=0

j

m

⎞
⎠ > 1 +

∑
1≤k≤m(1−ε)

exp
(

−ck2

2m

)

≥
∫ m(1−ε)+1

0

exp
(

−cx2

2m

)
dx ∼

√
πm

2c
, m → ∞. (29)
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Consequently from Formulas (27), (28) and (29) we obtain the relations:

J (m) → μ, P (m)(μ) → 0, m → ∞. (30)

From Formulas (26) and (30) we obtain that P (m)(λ) → 0, m → ∞, λ ≤ μ.
Then as

P (m)(λ) >

(
m∑

k=0

(μ

λ

)k
)−1

=
1 − μ/λ

1 − (μ/λ)m+1

so from Formula (29) for any 0 < γ < 1/2

P (m)(λ)<

⎛
⎝ ∑

0≤k≤m1/2−γ

(μ

λ

)k

exp
(

−ck2

2m

)⎞
⎠
−1

≤
√

exp(cm−γ)(1 − μ/λ)
1 − (μ/λ)m1/2−γ

.

Consequently we obtain P (m)(λ) → 1 − μ/λ, m → ∞, λ > μ. Theorem 5 is
proved.

Let us consider the queuing system Bm with the intensity mλ of Poisson input
flow and with a competition between m servers. The servers competition is
described as follows. Let us assume that the i-th customer arrives in the moment
ti to the system Bm, if the system is empty then the customer receives the infor-
mation η

(1)
i , . . . , η

(m)
i of possible services at different servers and chooses a server

with minimal service time

ζi = min(η(1)
i , . . . , η

(m)
i ), i ≥ 1,

else it receives a failure. During this customer service all the other servers do not
work and do not accept other customers. Random variables η

(j)
i , 1 ≤ j ≤ m, i ≥

1, are independent and have the distribution G(t).

Theorem 6. Let us assume that for some a > 0, b > 0 G(x) ∼ axb, x → 0.
Then for the system Bm and for m → ∞ we have

I(m)(λ) →
{

0, b > 1,
λ, 0 < b ≤ 1,

P (m)(λ) →
{

1, b > 1,
0, 0 < b ≤ 1.

Proof. So the system Bm may be considered as single server system with Poisson
input flow with the intensity mλ and with independent and identically distrib-
uted service times ζ1, ζ2, . . . , which have the means

bm =
∫ ∞

0

G
m

(t)dt > 0.

From Formulas (24) and (25) in the system Bm the stationary intensity of
output flow (in a recalculation for single server) I(m)(λ) and the stationary
failure probability P (m)(λ) satisfy the equalities

I(m)(λ)=
(

1
λ

+ Km

)−1

, P (m)(λ) = 1−I(m)(λ)
λ

, Km = mbm. (31)
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It is simple to prove that if the Theorem 6 condition is true then for m → ∞
the following formulas occur:

Km = O(m1−1/b), 0 < b ≤ 1, 1/Km = O(1/m1−1/b), b ≤ 1. (32)

Consequently from Formulas (31) and (32) we obtain the Theorem 6 statement.
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Abstract. In the paper characteristics of an open queueing network
with correlated input Markovian arrival processes and phase type distri-
bution of service time in the nodes are studied. The developed method-
ology is used for the performance evaluation of broadband wireless
networks with linear topology. A comparison study of numeric results of
analytic modelling and simulation is carried out. To study open queueing
networks with MAP input a pyQuMo library has been developed using
Python 3 language. The library provides a means for model description,
model properties computations by taking advantage of an analytical app-
roach, and simulation as well as results visualisation.

Keywords: Markovian arrival process · Batch MAP · PH-distribution ·
Open queueing network · Wireless network

1 Introduction

The designing of a backbone network is a topical task for the systems which are
as follows: intellectual transport systems (ITS), road safety systems, pico- and
femtocells access systems, as well as for the development of telecommunications
infrastructure along railways and pipelines. For the performance evaluation and
optimal design of networks of this rank there is a need for new mathematical
models describing the functionality of wireless networks. In this paper we propose
a model of open homogeneous queueing networks with a correlated input arrival
process (MAP), PH-distribution of service time in the network nodes and a
routing matrix ‖tij‖, where tij is the probability of packet arrival at the j-th
node after its serving at the i-th node is completed.

The state space and transmission intensities of the Markovian process are
described. The results of numerical computation of the queues length, packet
loss probabilities and other network parameters are presented. Such results are
achieved by making use of a precise analytical approach as well as simulation
modelling.

c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 354–365, 2016.
DOI: 10.1007/978-3-319-44615-8 31



An Open Queueing Network with a Correlated Input Arrival Process 355

2 The Model of an Open Homogeneous Network
with Correlated Input Arrivals and PH-Distribution
of Service Time

It is not enough to make use of traditional approaches, which are based on
the models of BCMP-networks [1,2] being used extensively for the performance
evaluation and optimization of computer networks characteristics, and for taking
into account a number of significant features of functioning of wireless network
considered. Such features are as follows:

– correlated nature of input arrival process of packets;
– limited buffer memory of base stations and respective packet loss;
– the ability to transmit packets repeatedly when the packet losses occurred as

a result of, for instance, interference or strong signal attenuation;
– the service and transmission time of packets being produced by different appli-

cations can vary significantly and have various distributions.

To take account of the correlated nature of the traffic let us consider MAP
(Markovian Arrival Process) and BMAP (Batch MAP) to arrive into an open
homogeneous queueing network [3,4]. Let us denote MAP A ∼ MAP (D0,D1),
where D = D0 + D1 is an infinitesimal generator of an appropriate Markovian
chain, i.e.

∀i :
∑
j=1

dij = 0, ∀i �= j : dij ≥ 0, ∀i : dii ≤ 0.

D0 and D1 are constrained matrices:

∀i, j : {D1}ij ≥ 0, ∀i �= j : {D0}ij ≥ 0, ∀i : {D0}ii ≤ 0.

The aim of such partitioning is to divide invisible transitions leading only
to a change of state and determined by matrix D0 and visible ones determined
by matrix D1 that cause packet generation. In the case of BMAP a sequence
of matrices {Di : i ≥ 1} is set up instead of a single D1 matrix. Each matrix
from this sequence defines transition intensities resulting to packet generating.
Applications of MAP and BMAP to telecommunication traffic modelling are well
studied and available in the literature. It has been shown that one can simulate
real traffic with sufficient precision using these arrivals [5,6]. Batch MAP allows
us to describe the simultaneous arrival of an arbitrary amount of packets while
MAP does not. To simplify the formulas of the suggested model, MAP is made
use of, but all this reasoning is also valid for BMAP.

To take into account the errors and losses arising during transitions let us
associate the error probability pei

with each station, thus a packet being served
returns into the queue or leaves it irretrievably with that probability.

Service time can be modelled by PH-distribution [7]. Phase type distrib-
ution is made extensive use of and allows us to describe the service process
as part of a Markovian model. Let us denote B PH-distributed random value,
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B ∼ PH(S, τ), S ∈ R
W×W , τ ∈ R

W , that depicts the time elapsed until arrival
to the accepting state. Let us define the generator of the chain as

[
S −S1
0 0

]
.

It has W + 1 states, the last state is accepting. Vector τ specifies the initial
distribution of probabilities of the modulating chain.

To make allowance for the limited station memory the queue of each station
is supposed to have a capacity of Mi packets and each station can contain up to
Ki = Mi + 1 packets.

Let us consider each station as associated with a user which contributes to the
network with the arrival process Ai ∼ MAP (D(i)

0 ,D
(i)
1 ) and can be treated as

the traffic sink as well: each packet accepted by the station with the probability
ri is transmitted to the user and leaves the network or it arrives to the queue
with complementary probability 1 − ri. If the queue is full, the packet is lost
irretrievably. The service time is PH-distributed: B ∼ PH(Si, τ i).

Finally, the packet routing is carried out according to the stochastic matrix
T ∈ R

N×N , where N is the number of stations. Element tij of the matrix equals
the conditional probability of packet transmission to the j-th station after serving
at the i-th station on condition of successful transmission. Since the ability to
transmit the packet back to the queue having been considered, it is reasonable
to suppose tii = 0 for all i.

Unconditional probabilities of packet transmission from the i-th to the j-th
station, to its user as well as packet loss and packet retransmission probabilities
are shown in Fig. 1.

The functioning of the whole network is described by a Markovian process
C ∼ Markov(Q), that is defined by a Markovian process modulating MAP and
PH-distributions. Having the infinitesimal generator Q of such a process one
can compute the stationary probability distribution of its states and then the
distribution of queue lengths, busy coefficients of stations and other character-
istics. Moreover, it is easy to build matrices D̂

(i)
0 , D̂

(i)
1 of the MAP of packets

served by the i-th station and also Ď
(i)
0 , Ď

(i)
1 of overall MAP incoming at the

Fig. 1. The queueing network modelling wireless network with linear topology.
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i-th station. Knowing these matrices allows us to compute the probability that
the next packet is lost due to memory overflow.

So, the space of states and transition intensities between the states are
required to be defined to describe the process C. It is possible to completely
define any state of the chain given the following values:

– the number of packets ki at the i-th station, ki = 0..Ki;
– the state ai of a user input MAP Ai, ai ∈ 1..Vt;
– the state bi of a server (of its PH-distribution modulating chain), bi ∈ 1..Wi.

It is not difficult to see that the state space of the process has size Z =∏N
i=1(Vi + KiViWi) and grows exponentially with the growth of N . It is not

feasible to express the generator matrix in explicit form due to its size. Instead
of this let us take advantage of the notion of transition classes (e.g., see [8]) and
describe them. Each class defines the set of transitions of the same type in which
some subset of states changes equally while other states remain immutable.

The change of the state of the chain C can be caused by both the state change
of a user MAP or PH-distribution of a server. If the transition does not cause
either packet arrival or service completion, then the change is localized in the
corresponding process. Otherwise, both the state of the corresponding process
and the number of packets in one or two nodes can be changed.

Let triplet 〈ki, vi, wi〉 describe the state of the i-th node, where ki is the
number of packets in the node, vi — the state of a user input MAP, wi — the
state of a server. For the reason that the last component is meaningless when
ki = 0, we can omit it from time to time: 〈0, vi〉. The transition class is depicted
by the expression of the form:

〈ki, vi, wi〉, 〈kj , vj , wj〉 λ−→ 〈ḱi, v́i, ẃi〉, 〈ḱj , v́j , ẃj〉

where the left side of the expression describes the states of the nodes before
transition and the right side — the states after transition (the state with a dash
sign is modified); the transition intensity is above the arrow. Other states not
mentioned in the expression remain unmodified.

The transitions appearing due to the change of the state of modulating chain
of input MAP-flow of the i-th node Ai ∼ MAP (D(i)

0 ,D
(i)
1 ):

〈ki, vi, wi〉,
{D

(i)
1 }viv́i−−−−−−−→ 〈min(ki + 1,Ki), v́i, wi〉 (1)

〈0, vi〉,
τ(i)
wi

{D
(i)
1 }viv́i−−−−−−−−−→ 〈1, v́i, wi〉 (2)

〈ki, vi, wi〉,
{D

(i)
0 }viv́i−−−−−−−→ 〈ki, v́i, wi〉 (3)

〈0, vi〉,
{D

(i)
0 }viv́i−−−−−−−→ 〈0, v́i〉 (4)
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The transition appearing due to the change of the state of the modulating
chain of PH-distribution of a server Bi ∼ PH(S(i), τ (i)):

〈ki, vi, wi〉, 〈kj , vj , wj〉
tij(1−rj)(1−pei

)τ(i)
wi

{−S(i)1}wi−−−−−−−−−−−−−−−−−−−−−→
〈ki − 1, vi, ẃi〉, 〈min(kj + 1,Kj), vj , wj〉

(5)

〈ki, vi, wi〉, 〈0, vj〉
tij(1−rj)(1−pei

)τ
(i)
ẃi

τ(j)
wj

{−S(i)1}wi−−−−−−−−−−−−−−−−−−−−−−−→ 〈ki − 1, vi, ẃi〉, 〈1, vj , wj〉 (6)

〈1, vi, wi〉, 〈kj , vj , wj〉
tij(1−rj)(1−pei

){−S(i)1}wi−−−−−−−−−−−−−−−−−−→
〈0, vi〉, 〈min(kj + 1,Kj), vj , wj〉

(7)

〈1, vi, wi〉, 〈0, vj〉
tij(1−rj)(1−pei

)τ(j)
wj

{−S(i)1}wi−−−−−−−−−−−−−−−−−−−−−→ 〈0, vi〉, 〈1, vj , wj〉 (8)

〈ki, vi, wi〉,
τ
(i)
ẃi

(tijrj(1−pei
)+pei

pli
){−S(i)1}wi−−−−−−−−−−−−−−−−−−−−−−−−→ 〈ki − 1, vi, ẃi〉, (9)

〈1, vi, wi〉,
(tijrj(1−pei

)+pei
pli

){−S(i)1}wi−−−−−−−−−−−−−−−−−−−−−→ 〈0, vi〉, (10)

〈ki, vi, wi〉,
τ
(i)
ẃi

pei
(1−pli

){−S(i)1}wi
+S

(i)
wiẃi−−−−−−−−−−−−−−−−−−−−−−→ 〈ki, vi, ẃi〉, (11)

The classes (1) and (2) correspond to the appearing of a packet in MAP,
(3) and (4) — transition of the chain of MAP-flow without packet generating.
The classes (5)–(8) correspond to transition of the chain of PH-distribution of
the i-th device into an accepting state and transmission of the packet to the
j-th node. The classes (9) and (10) correspond to the transition of the chain
of PH-distribution into the accepting state with the error of transmission or
transmission of the packet to the user of the i-th node – anyway, the packet leaves
the network irretrievably. Finally, the class (11) corresponds to the transitions of
the chain of PH-distribution which leads the chain into the accepting state, but
the packet is retransmitted (the first summand) or the transition of the chain
is carried out into a non-accepting state (the second summand) and service is
continued - the amount of packets in the node is not changed.

Let x = (x1, · · · ,xi, · · · ,xN ) be the state of the chain C, where

xi =

{
〈ki, vi, wi〉 if ki = 1 · · · Ki

〈0, vi〉 if ki = 0

— the state of the i-th node, X the set of all states of the chain, ‖X‖ =
∏N

i=1(Vi+
KiViWi). The stationary distribution of the chain C can be found as the solution
of the system:

πQ = 0,π1 = 1,

where π ∈ [0, 1]|X|. Let q
(i)
l = P{ki = l} =

∑
x:ki=l πx — the stationary prob-

ability that the i-th node has l packets. In particular, q
(i)
0 — the probability of
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the fact that the node is vacant and q
(i)
Ki

— the probability that the queue is

full. Knowing the probabilities {q
(i)
K } allows us to compute the mean number of

packets li =
∑Ki

k=0 kq
(i)
k in the i-th station, from which the loss probability of

the arrival packet can be achieved:

p
(i)
ql = v(i) Ď

(i)
1

λ(i)
1,

where v(i) is a projection of the vector π in which ki = Ki, Ď
(i)
1 is the matrix of

visible transitions of input MAP, and λ(i) = φ(i)Ď
(i)
1 is a mean arrival intensity

of this process, φ(i) is its stationary probability distribution. The probability
φ(i) and v(i) can be achieved from π by summing up over the states from which
the input arrival process is independent.

Knowing the mean intensity of packet arrival λ(i) and the mean number of
packets in the system makes it possible to compute the mean packet delay in
the station by Little’s formula: Ti = li/[(1− p

(i)
ql )λ(i)] . Here an additional factor

in the denominator appears due to the fact that the input process turns out
to be filtered with the probability being equal complementary loss probability
resulting from the queue overflow.

To study other characteristics of the model the expression of MAP incoming
to the station (both from the user and from other stations) as well as of MAP
departure may be required. Due to the existence of feedback in the general case
the modulating chains will depend on the states of all network nodes. Therefore
let us consider the modulating chain of the arrival process that is to be found,
to have the same space of the state X as the process operating the system does.
Obviously, chain C performs control over MAP as well, however from different
points of observation the transitions being in an intensity matrix of packet gen-
erating Di will differ. So, to determine a MAP A(i,j) ∼ MAP (D(i,j)

0 ,D
(i,j)
1 )

describing the arriving of the packets at the j-th node after being served at the
i-th node, the intensities defined by expressions (5)–(8) for the given pair (i, j)
should be placed into matrix D

(i,j)
1 and the other intensities — into matrix D0.

If the MAP Ǎj ∼ MAP (Ď(j)
0 , Ď

(j)
1 ) arriving at the station j from all other sta-

tions (excluding packet retransmission as it actually does not affect the amount
of packets in the network) is in a region of interest, then all intensities (5)–(8)
for all i �= j should be placed into matrix D1. An other arrival process can be
achieved similarly.

It should be noted that the matrices of the arrival process have an enor-
mous size, which makes it difficult or even impossible to use them for analytical
computations. However, it is possible to achieve more simple expressions for the
arrival process matrices in some special cases. In particular, it is possible to build
MAP for a tandem network that is described below as an example, with the help
of the following theorems [4,9,10]:

Theorem 1. The result of sifting of MAP A ∼ MAP (D0,D1) with probability
p is MAP Ap ∼ MAP (D0 + (1 − p)D1, pD1) (further we will denote it as pA).



360 V. Vishnevski et al.

Theorem 2. The composition of a MAP A1 ∼ MAP (D(1)
0 ,D

(1)
1 ) and a MAP

A2 ∼ MAP (D(2)
0 ,D

(2)
1 ) is a MAP B = A1 ⊕ A2 ∼ MAP (D(1)

0 ⊕ D
(2)
0 ,D

(1)
1 ⊕

D
(2)
1 ), where ⊕ is a Kronecker sum.

Theorem 3. A MAP of served packets in the system MAP/PH/1/M , where
the interval between arrivals is distributed by A ∼ MAP (D0,D1), service time -
B ∼ PH(S, τ ), M is the capacity of the queue, V is an order of matrix S, W is
a number of input MAP states, service discipline is FIFO, is B ∼ MAP (D̂0, D̂1)
and its matrices are defined as:

D̂0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D0 ⊗ IV R0 0 · · · 0 0
0 D0 ⊗ S D1 ⊗ IV · · · 0 0
0 0 D0 ⊗ S · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · D0 ⊗ S D1 ⊗ IV

0 0 0 · · · 0 RA

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

D̂1 =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0
IW ⊗ Ct · · · 0 0 0

...
. . .

...
...

...
0 · · · IW ⊗ Ct 0 0
0 · · · 0 IW ⊗ Ct 0

⎤
⎥⎥⎥⎥⎥⎦

,

where
R0 = D1 ⊗ (τ ⊗ 1V ),

RA = (D0 + D1) ⊗ S,

Ct = (−S1V ) ⊗ τ

There are no state components corresponding to the number of packets in
the i-th and further stations of the input MAP in construction of MAP as
consistent with the given theorems. At the expense of this fact the computation is
significantly simplified, in particular the computation of vectors φ(i) and v(i): the
first one turns out to be a projection of the stationary distribution of generators
states of the i-th station that corresponds to a full queue and the second one —
the stationary distribution of the states of an input MAP generator.

Due to the exponential growth and enormously large dimension of the state
space it is extremely difficult to find precise analytical expressions even for small
dimensions. For practical applications of the suggested model approximation
methods can be exploited. Such methods approximate both MAP and PH-
distributions by the arrival process and distributions of lower dimensions and
replace the large fragments of the network by much more simple chains that
approximate such fragments [11]. The method of iterative search can be applied
for an approximate solution by using multiplicative representation according to
paper [8]. The other way to explore such systems is to apply the method of iter-
ative modelling presented in the current work as well to simulate the networks
of enormous dimensions.
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3 Simulation of a Wireless Network with Linear Topology
and Hot Standby Links

Wireless networks with linear topology are often used to organize connections
along long-length objects (highways, railways, pipeline) when the optical fibre
is not available. Up-to-date wireless communication systems allows us to build
networks consisting of a large amount of retransmitters being placed from 100 m
to tens of kilometres from each other and providing transmission rate from
150 Mbps (e.g. IEEE 802.11) to 1 Gbps (e.g. mmwave relay link).

The network suffers from packet losses as it is wireless. In the case of outage
of one of the stations its neighbours can connect with each other if visibility
conditions and the strength of the signal allow to do it. Such connections are
acceptable in the case of the station working correctly as well. An example of
such a network is shown in Fig. 2.

Fig. 2. The queueing network modelling wireless network with linear topology.

A special case of a wireless network with linear topology is an uplink aggrega-
tion network where the traffic is generated by the users (e.g. video cameras) and
being transmitted to a control centre. In particular, such networks are applied
in road safety systems. We have studied this network in the model mentioned
above as an example. The analytical computations have been performed for a
simple network where the transmissions occur between neighbouring stations
only, and the same network to calibrate the results as well as a network where
transmissions escaping neighbouring stations are allowed is computed with the
help of simulation.

As was mentioned above the construction of a chain generator faces the prob-
lem of exponential growth of the state space. In the case of an open queueing
system without routing loops the scheme of chain construction can be simplified.
To achieve the analytical solution of the problem the scheme of iterative con-
struction of served packets MAP was employed [10]. This scheme is similar to
the one being used to explore a more simple open network with linear topology
that takes advantage of consecutive transmission without transmission losses and
losses due to transmission errors. According to this scheme, starting from the
first station, MAP matrices are build, that describe the intervals between the
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outage of served packets of each station. Output arrival processes are computed
as a composition of input MAP. The iterative procedure using Theorems 1–3
mentioned above is made use of.

One of the most important characteristics of the network functioning is an
end-to-end delay being equal to the time passed from the packet arrival into the
network until it leaves the network in a destination node. As all packets of a data
aggregation network are transmitted into the center connected with the N -th
station the delay of packet transmission in the network from the i-th station
can be computed as the sum of delays

∑N
j=i Tj , where Tj is a delay in the j-th

station, the computation of it having been described above. Let us note that in
case of a computation of the mean residence time the loss probabilities must be
taken into account. At the same time keeping computation of end-to-end delays
we actually consider only the packets arriving successfully and take advantage
of conditional probabilities of successful arrival. In the studied models the same
cross-traffic arrived into all stations. Therefore a mean delay throughout the
whole network is supposed to be equal to the arithmetic average of delay from
each station.

The characteristics of a network with linear topology without the ability to
transmit over the neighbour (i.e. all traffic is directed to the next station) have
been studied with the help of an analytical model. The computation has been
performed iteratively according to the scheme mentioned above. A more general
case has been studied with the help of simulation. In that case the routing matrix
of a data aggregation network with linear topology has an upper triangular form
with zero main diagonal:

T =

⎡
⎢⎢⎢⎣

0 t12 · · · t1N

0 0 · · · t2N

...
...

. . .
...

0 0 · · · 0

⎤
⎥⎥⎥⎦

To simplify the computation we make a natural assumption that the station
can transmit data to its neighbour or the station next to the neighbour only (that
is nonzero elements of matrix T are ti,i+1 and ti,i+2) and these probabilities are
equal for all stations excluding two border stations: p = ti,i+1∀i < N − 1. The
input MAP A0 ∼ MAP (D0,D1) are as follows:

D0 =

⎡
⎣−1.724 0 0

0.172 −1.552 1.293
0.086 1.724 −1.811

⎤
⎦ D1 =

⎡
⎣0.862 0.862 0

0 0 0.086
0 0 0

⎤
⎦

Fig. 3. A graphic representation of input MAP being used (transitions corresponding
to the D0 matrix marked by dashed lines and transitions corresponding to the D1

matrix marked by solid lines)
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The graph depicting this MAP is shown in Fig. 3. Such MAP arrives at each
station as a cross-traffic. In different experiments MAP is scaled using the mean.

To simplify the computation the serving is performed according to the expo-
nential distribution with rate μ = 5 in all experiments. The number of stations
in the network is supposed to be equal to N = 5 and the capacity of all queues
is supposed to be K = 2.

Fig. 4. Mean time of end-to-end delay depending on the mean rate of input cross-traffic.
The value of the p parameter is a fraction of traffic transmitted to direct neighbour
after service completion

In Fig. 4 end-to-end delays for different arrived rates of input MAP and
different value of the probability p of packet transmission to the direct neighbour
(the less p, the greater a fraction of the traffic transmitted escaping the direct
neighbour) are shown. As we can see in the figure the delay decreases when
the fraction of the traffic transmitted into direct neighbour drops. The result
is expected and related to reduction of the mean path length that packet is
transmitted over to the last station.

Let us note that the delay tendency to an asymptote when the intensity
growths (instead of an unbound increase in the case of systems with an infinite
queue) related to memory limitation — starting from some moment the stations
are in a high-loaded state, all the extra packets are discarded and the delay of
served packets stops increasing. The result is also confirmed by the change of
delivery and loss probabilities over different stations and the change in the mean
number of packets in stations as well (see Fig. 5).

As in the case of delays the losses drops when parameter p reduces, which is
also related to the reduction of route lengths and, as a consequence, the reduction
of input arrivals rates (see Fig. 5). At the same time starting from some moment
the stations accumulate at input the maximum arrivals that they can serve
whereupon the studied parameters change slightly; but if the p is small this
moment comes later.

The dependence of delivery probability on the mean intensity of input outer
traffic and parameter p is illustrated in the form of a heatmap in Fig. 6. Here
the brighter the colour, the lower the successful delivery probability.
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Fig. 5. The delivery and loss probabilities as well as the mean queueing lengths (left).
The mean intensities of input and served arrivals over stations (right).

To carry out the calculations, analysis of results and their visualisation a
pyQuMo library allowing us to work effectively with Markovian queueing models
of large dimensions was developed. It is implemented in Python 3 languages and
based on SciPy, NumPy and Pandas libraries. One of the advantages of pyQuMo is
the storing and handling of chain generators in the form of sparse matrices which
allows the handling of models having up to several million states using an ordi-
nary laptop. As simulation requires the handling of a large amount of events the
OMNeT++ system is used. The work with a simulation model is performed by
pyQuMo, making it possible to compare the results of analytical modelling and
simulation using a single program. A vast bulk of statistics is collected during the
program work and to meet this problem SQLite is made use of.

Fig. 6. The dependence of delivery probability on cross-traffic mean arrival rate (ordi-
nate, rises from bottom to top) and the fraction of traffic transmitted to its direct
neighbour (abscissa, rises from left to right).
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4 Conclusion

In this paper a model of an open queueing network with correlated input Markov-
ian arrival processes and phase type distribution of service time is presented. A
network with linear topology that adequately describes wireless long-distance
networks with the ability to transmit data over several stations is studied spe-
cially. A comparison study of numeric results of analytic modelling and simula-
tion has been carried out. It is shown that to drop transmission delays as well as
the fraction of packet losses it is rational to divide traffic and transmit as small a
fraction as possible to the direct neighbour. We developed a pyQuMo library in
Python 3 language to compute queueing systems with correlated input arrivals.
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49-02021 for the joint research project by the V.A. Trapeznikov Institute of control
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Optimization of Uniform Non-Markov Queueing
Networks Using Resources and Transition
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Abstract. An efficient analytic-imitational method for optimization of
uniform non-Markov queueing networks is proposed. The optimization is
performed through resources and transition probabilities redistribution
by the minimal mean time of the request staying in the network. The
convergence rate and precision of the method are evaluated experimen-
tally. The method allows the optimization of the networks with hundreds
of single- and multi-channel nodes with precision comparable to the one
of the numerical methods for deterministic problems solution. Examples
of the method’s application in transport modeling are given. Practical
application recommendations are provided.

Keywords: Queueing networks · Optimization · Gradient methods ·
Analytic-imitational modeling

1 Introduction

The productivity of organizational technical systems intended to process or ser-
vice discrete flows of some uniform units (requests) is often measured by the
time it takes for the requests to pass through the system. A unified formalized
representation of such systems is a queueing network (QN) with statistically
uniform requests – a uniform network [1].

Transport systems (TS) and information computation systems are tradition-
ally represented as QNs [1–5]. In this case the requests are treated as moving
cars in a TS or transmitted messages in an information computation network, i.e.
user requests processed by system resources. The time it takes for the request to
pass through the QN is herein referred to as response time. The mean response
time E depends on:

– the distribution of the available resources among the network nodes;
– the distribution of the transition probability values at the network node out-

put.

Recently, optimization methods for Markov QNs [1,2] – networks with expo-
nential distributions of request servicing time and (if the network is not closed)
c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 366–381, 2016.
DOI: 10.1007/978-3-319-44615-8 32
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with Poisson input flows – have been successfully developing. The problem of
optimal resource distribution for closed Markov networks with several classes of
messages is solved in [6].

In [7], approximate computation methods are considered for non-Markov
networks, based on approximating arbitrary distributions with those admitting
the rational Laplace transform. However, this path presents many computa-
tional obstacles even for single-variant network computation with a small num-
ber of nodes (especially if one has to approximate distributions for random values
restricted by a narrow range of possible values [8]). In [9], an attempt was made
to solve the optimization problems for non-Markov QNs by approximating their
nodes with analytic expressions that include two first moments of the servicing
time and the intervals of the requests entering the nodes, considering also the
node interactions. However, this work does not solve the optimization problems.

Thus, in the general case, in order to optimize non-Markov networks one has
to use imitational modeling (IM). If the optimization problem contains more than
7–9 independent variables, it becomes virtually impossible to solve it without
gradient methods. But computing gradients in IM is seriously impeded by the
stochastic error in computed estimates Ê of the response time E [7,10]. Known
approaches [7,11–13] for this problem’s solution are either applicable only for
IM of isolated queueing systems [7,12,13] and do not extend to QN, or their
theoretically possible application to QN in practice leads to substantial problems.
For example, using methods that imitate a large number of regeneration periods
[11–14] faces the obstacle that in QN, as a rule, these periods are virtually
infinite. Successful applications of such methods are restricted to classes of QNs
that take into account the specifics of certain network objects in certain ranges
of their parameters [3].

The application of analytic approaches towards the response E minimization
is hindered by the absence of practical analytic expressions of E with varied
parameters of non-Markov networks.

A similar problem is solved with analytic methods in [15]: a routing matrix
allowing maximal QN throughput is found for an open non-Markov QN. The
constraints for varied transition probabilities are expressed as those for the fre-
quency of the requests visiting the network nodes. The problem is solved in terms
of cooperation and competition effects that correspond to the efficient resource
distribution problem.

For optimal (in terms of minimal time E) distribution of a resource on the
nodes of a uniform non-Markov QN and optimal distribution of transition prob-
abilities, we propose an analytic-imitational method that allows us to efficiently
compute and use the gradients by applying special but simple separable approx-
imation of the target function.

The problem in question is formulated in the following way.

2 Formulation of the Problem

First, let us consider an open network that receives a recurrent flow of requests
with intensity Λ. The intervals between requests are independent random
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variables (r.v.) with distribution function (d.f.) A(t). From the input flow, a
request with probability p0i proceeds to the i-th node, i = 1, n. In any of the
Ki channels of the i-th node, the request servicing time (an independent r.v.)
has d.f. Bi(t). After servicing at the i-th node, the request, randomly and inde-
pendently, selects another node j with the given transition probabilities pij , to
continue its route or, with the probability pi0, the request leaves the network.
Probabilities pij (i, j = 0, n) are given with an indecomposable stochastic matrix
P = ‖pij‖.

The mean stationary time E of a request passing through the network (the
mean response time) can be represented as:

E =
n∑

i=1

αiui =
n∑

i=1

αi(wi + bi) =
n∑

i=1

αi

(
wi +

1
μ i

)
, (1)

where αi is the average number of visits at the i-th node a claim makes during
its path through the network,
ui is the average time a request stays at the i-th node,
wi is the average waiting time in the queue at the i-th node,
bi is the average servicing time at the i-th node,
μi = b−1

i is the intensity of the request servicing by the i-th node channel.
Coefficients αi are uniquely determined by the system of balance equations:

αi =
n∑

j=0

αjpji, i = 0, n, α0 ≡ 1.

With αi the following values are defined successively: intensities λi = Λ · αi

of the nodes input flows, their load coefficients ρi = λi/(μi · Ki), and stationary
conditions ρi ≤ 1 (or μi ≥ λi/Ki), i = 1, n are checked. The values wi for (1)
are determined with IM.

Let us now consider the following generalized version of the optimization
problem for a uniform non-Markov network formulated in [16].

The cost (resource) M of a uniform network as a function of the vector−→μ = (μ1, . . . , μn) of servicing intensities in nodes i = 1, n is given as M(−→μ ) =∑n
i=1 ciμ

βi

i , where ci are cost coefficients, βi > 0 are nonlinearity coefficients.
The varied transition probabilities (not equal 0 or 1) being in fixed order

determine some vector −→p v with the dimension m. Usually m is limited by a
linear function of n, since the QN nodes degree of connectedness is restricted by
a constant in practice.

We need to find the vectors −→μ = −→μ opt and −→p v = −→p vopt that realize the
minimum of the function E = E(−→μ ,−→p v):

E(−→μ ,−→p v) =
n∑

i=1

αi(−→p v)
(

wi(−→μ ,−→p v) +
1
μ i

)
→ min−→μ ,−→p v

(2)



Optimization of Uniform Non-Markov Queueing Networks 369

and lie in the following admissible solutions region (ASR):

M(−→μ ) =
n∑

i=1

ciμ
βi

i = M∗, μi ≥ μimin;
n∑

j=0

pij = 1, (i = 0, n);

0 ≤ pvi ≤ 1, (i = 1,m); (3)

where for an open network μimin ≥ λi/Ki (stationarity region boundary), and
for a closed one μimin = 0.

For the resource M∗ in (3) it should hold that M∗ ≥ Mmin, where for an
open network Mmin =

∑n
i=1 ciμ

βi

imin =
∑n

i=1 ci(λi/Ki)βi , and for a closed one
Mmin = 0. In the problems (2) and (3) we mean that changing any intensity μi

leads to a change in the mean bi = μ−1
i and the corresponding scale change in

the d.f. Bi(t). The form of the d.f. Bi(t) does not change because it is associated
with a random complexity of the requests, while the varied parameter μi is
determined by the efficiency of the i-th node channels. As a rule, the variability
of transition probabilities in −→p v is additionally restricted by some narrow limits
that can be expressed with the intensity Λ · αi, nodes load coefficient, or set as
variability intervals for each probability pvi.

3 General Method Structure

To find a solution (−→μ opt,
−→p opt) to the problems (2) and (3), is an iteration

process. Each iteration starts with the sensitivity coefficient (SC) computation
with the help of the advanced reduction method (ARM) [16] and the optimization
of resource M distribution among QN nodes with the directing hyperbole (DH)
method [17], resulting in distribution −→μ = −→μ opt at fixed transition probabilities
pjk. Then QN optimization due to probabilities at fixed −→μ follows. After that
either the transition to the next iteration or the completion of the optimization
process (if the breakpoint condition is met) is performed. However, an analysis of
the time E sensitivity to changes in transition probabilities ∂E/∂pjk, is necessary
for optimization due to probabilities, and this analysis is a complicated task
for IM itself. Such computation with the help of the small increments method
faces extreme difficulties and is almost impossible in most cases. Moreover, the
imitation model precludes from one probability pjk increment with transition
probabilities staying unchanged on alternative arcs, simultaneous changing of
several varied parameters destroying the universal interpretation of SC as partial
derivatives.

The possibility of fast and precise computation of SC ∂E/∂pjk with analytic
means is found due to the application of ARM [16]. Differentiation of the last
expression in (1) for E with respect to any transition probability results in

∂E

∂pjk
=

n∑
i=1

∂(αi/μi)
∂pjk

+
n∑

i=1

∂(αiwi)
∂pjk

=
n∑

i=1

1
μi

· ∂αi

∂pjk
+

n∑
i=1

∂αi

∂pjk
· wi +

n∑
i=1

αi · ∂wi

∂pjk
. (4)
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It should be noted that ARM computes time E derivatives for the delay graph
from the transition probabilities with precision [16], but in determining these
derivatives the changes in the probabilities pjk are supposed not to affect the
changes in the graph nodes delays. In other words ARM computed the following
“virtual” SC ∂EV /∂pjk, that are determined by the omission of the third sum
on the right side of the expression (4):

∂EV

∂pjk
=

∂E

∂pjk

∣∣∣∣
wi=const

=
n∑

i=1

1
μi

· ∂αi

∂pjk
+

n∑
i=1

wi · ∂αi

∂pjk
. (5)

The value of expression (5) is calculated with ARM from the given (ascribed
to the graph vertices) values ti, usually interpreted as the mean delays at the
vertices. For instance, to compute SC (5) the delays ti = 1/μi (at channels
vertices) and ti = μi (at queues vertices) are given. But such interpretation of
parameters ti is unnecessary, and the convolutions of the form (5) with partial
derivatives ∂αi/∂pjk are calculated with the help of ARM (with precision) at
any ti. This is to be used later.

However, applying ARM to computing SC of QN, one should take into con-
sideration that the changes in probability pjk of any arc lead to changes in the
intensity of the corresponding arc flow, and consequently, affect the waiting wi

of most queues. The effect of pjk on wi, represented by the last sum in (4) is not
taken into account by virtual SC (5) at ARM input.

Adjusting ARM to computation of complete SCs (4) is possible due to the
relation between derivatives ∂wi/∂λi and ∂wi/∂μi, that was determined in [16]
for isolated queueing systems:

λ

w
· ∂w

∂λ
+

μ

w
· ∂w

∂μ
= −1. (6)

Using this expression it is possible to find the value of a partial derivative
from the known value of the other partial derivative.

In the case of network nodes (if a partial derivative changes slightly), unlike
the isolated queueing system, this expression holds only approximately, since
generally the change ∂λi in the intensity λi, caused by the change ∂pjk of any
partial derivative, slightly changes the static structure of the flows at the node
inputs. Generally speaking, errors of expression (6), when applied to the analysis
of increment ∂pjk consequences are higher when d.f. Ai(t) and Bi(t) have a
larger range of variation coefficient. If these d.f. are exponential, then formula
(6) holds for the network nodes with precision. In all other cases, considering the
approximate numerical values of derivatives ∂wi/∂μi are known (at each step
of the DH method they are the components of the gradient being computed),
formula (6) allows us to calculate (estimate) the derivatives ∂wi/∂λi from these
known ∂wi/∂μi without numerical differentiation. And as numerous tests of the
DH method have shown, the solution errors are quite low: the obtained estimated
minimum E differs from the precise one only by a fraction of a percent in a wide
range of the method applications.
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The last sum in expression (4) for complete SC is transformed as the following

n∑
i=1

αi · ∂wi

∂pjk
=

n∑
i=1

αi · ∂wi

∂αi
· ∂αi

∂pjk
=

n∑
i=1

λi · ∂wi

∂λi
· ∂αi

∂pjk
,

with αi = λi · Λ−1. Having inserted this expression in (4) and taking (6) into
account, we get the following formula for complete SC:

∂E

∂pjk
=

n∑
i=1

(
1
μi

)
· ∂αi

∂pjk
+

n∑
i=1

(wi) · ∂αi

∂pjk
+

n∑
i=1

(
λi · ∂wi

∂λi

)
· ∂αi

∂pjk

=
n∑

i=1

(
1
μi

)
· ∂αi

∂pjk
+

n∑
i=1

(wi) · ∂αi

∂pjk
−

n∑
i=1

(
wi + μi

∂wi

∂μi

)
· ∂αi

∂pjk
. (7)

After an imitation experiment at any step of the DH method, all components
of expression (7) become known except derivatives ∂αi/∂pjk. However the last
ones are precisely determined with ARM. Therefore, using formula (7) and ARM,
it is possible to compute partial derivatives of the mean response time from the
transition network probabilities effectively.

To this we can add that in general ARM automatically computes convo-
lutions in the summation form in (7) of any values attributed to delay graph
vertices i, with all corresponding derivatives ∂αi/∂pjk, i = 1, n, forming as a
result an SC matrix of the time E to the changes in varied network probabilities.
Consequently, formula (7) allows us to compute and use at least three types
of SC. If one flags vertices-queues as zero and vertices-channels as mean delays
1/μi, in the delay graph, partial SCs corresponding to the first sum in (7) will
be computed. If one substitutes the zero delays at vertices-queues by values wi,
found in the imitation experiment, ARM will determine virtual SCs. In adding
to the delays at the vertices-queues of summand λi · ∂wi/∂λi, complete SCs are
calculated that take into account the effect of the change in the transition prob-
abilities, induced not only by the changes in frequencies αi of requests arriving
at each node but by the changes in the mean delays wi at each queue (depending
on the intensity of the requests arriving at the nodes) as well.

All these three SC sets (partial, virtual and complete) provide plentiful infor-
mation to estimate the sensitivity of the mean response time E to the changes
in the transition probabilities. These SCs can be computed at any point of the
factor space (FS) and used as a gradient component in solving the problem of
transition probabilities optimization.

4 The Description of the QN Optimization Algorithm

4.1 General Structure of the Method

The description of the algorithm for solving problems (2) and (3), when each
probability has narrow variability intervals in addition to general constraints (3),
may be presented by the following sequence of steps.
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The start of the algorithm.
We set iterations number N = 1, and the number of failed iterations γ = 0.
(1) The procedure for optimizing the distribution of resource M among QN

nodes
At fixed −→p v vector −→μ is optimized with the DH method (see Subsect. 4.2),

as a result we obtain optimal −→μ = −→μ opt and E = Eopt1.
(2) The procedure for optimizing the probabilities −→p v at fixed −→μ
For each varied probability pjk:
(2.1) By the sign of derivative ∂E/∂pjk one can determine the direction of

the changes in the current value of pjk, where time E decreases. We determine
the border of the variability range pjk, lying in the given direction and keep
its value in the variable djk. If ∂E/∂pjk = 0, then with a probability of 0.5 we
choose and keep any of the two borders (top or bottom).

(2.2) Then we compute the steps hjk = (djk − pjk)/(∂E/∂pjk).
(2.3) We take step H equal to the least of all calculated hjk, being nonzero.

If all hjk = 0, we move on to the end of the algorithm.
(The value of step H is the same at all transition probabilities pjk).
(2.4) For each varied probability pjk we give increment: −H · ∂E/∂pjk, cal-

culate new value E = Eopt2 and set −→p vopt = −→p v.
(3) If Eopt2 < Eopt1, then we set Eopt = Eopt2, N = N + 1 and move on to

step (1). Otherwise we set γ = γ + 1. If γ ≤ 2, then move on to step (1).
The end of the algorithm
To repeat all the manipulations according to the given description of the

algorithm exactly, it is necessary to supplement the algorithm with a short but
precise description of the optimization procedure for resource distribution carried
out at step (1).

4.2 The Procedure of Optimizing Resourse Distribution Among
QN Nodes

The procedure solves problems (2) and (3) at fixed transition probabilities. It
includes the following two steps.

Step I: accelerated gradient search for the point −→μ opt by the “directing hyper-
bole” method (DH) that uses IM of the network and a separable approximation
of the target function (the method’s name reflects the role and the form of func-
tions of one variable that are terms in this approximation).

Step II (optional): refining the obtained solution by cyclic coordinate wise (mod-
ified) descent [18] that does not use approximations.

4.3 Basic Elements of the “Directing Hyperbole” Method

The approach to solving (2) and (3) proposed in this work uses a refined version
of the approximation of E(−→μ ). On each iteration k ≥ 2 of the optimal solution−→μ opt search, the approximation Eap(−→μ ) of the average response time E(−→μ ) is
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computed by the network’s IM results in points −→μ = −→μ k−1 and −→μ = −→μ k and
is used to determine the next point −→μ = −→μ k+1.

Let us find the base elements of the DH method.
The center −→μ c ASR (3) for a resource M∗ > Mmin is determined by

the equal load condition for the nodes: ρi = λi/(μiKi) = αiλ0/(μiKi) = ρc,
(i = 1, n), where λ0 is the intensity on the terminal arc (for an open net-
work, λ0 = Λ). This implies μi = (αiλ0)/(Kiρc), μi/μ1 = (αi/Ki)(K1/α1) and
μi = (αi/Ki)(K1/α1)μ1. Substituting the latter expression μi into (3), we get

n∑
i=1

ci

(
αi

Ki
· K1

α1
· μ1

)βi

= M∗, μi = (αi/Ki)(K1/α1)μ1, i = 2, n. (8)

From this equation, numerical methods can easily find the unique positive
root μ1 that defines all the other coordinates μi of the ASR center −→μ c. If the
network is open, we can immediately find all ρi = ρc ≤ 1, i = 1, n in the
center −→μ c.

If all βi = 1, then, by (8), the ASR center coordinates can be found explicitly:

μi = M∗ · (αi/Ki) ·
⎛
⎝ n∑

j=1

cj · αj/Kj

⎞
⎠

−1

, i = 1, n.

At the center −→μ c an open network has a maximum of the throughput V (−→μ ),
defined as V (−→μ ) = max{Λ : ρi = αiΛ/(μiKi) ≤ 1, i = 1, n}.

The ASR diameter D we define as the maximal length of the ranges in
which the variables μi lie: D = max{li}, where li = μimax − μimin and, by (3),
μimax = [(M∗ − ∑

j �=i cjμ
βi

j min) · c−1
i ]1/βi , i = 1, n.

A small step of size, say, D ·10−4 we will use for constructing and scanning
trajectories on the constraint surface defined by (3). The step is chosen with
regard to the optimization precision requirements.

The approximation Eap(−→μ ) of the target function E(−→μ ), used for approx-
imate gradient computations, is a separable function of varying variables μi:

Eap(−→μ ) =
n∑

i=1

αi

(
Wi(μi) +

1
μi

)
, where Wi(μi) =

{
Ri

μi−Si
, if ŵk

i �= ŵk−1
i ,

ŵk
i , if ŵk

i = ŵk−1
i ,

(9)

and on each optimization step k it is tuned anew (via the coefficients Ri and Si)
by the average response time estimates ŵk−1

i and ŵk
i computed for the nodes

i = 1, n with network IM at points −→μ = −→μ k−1 and −→μ = −→μ k. For ŵk
i �= ŵk−1

i , the
expression Ri/(μi−Si) in (9) approximates the corresponding function wi(−→μ ) in
(2) in such a way that its value at points −→μ = −→μ k−1 and −→μ = −→μ k coincides with
points ŵk−1

i ≈ ŵi(−→μ k−1) and ŵk
i ≈ ŵi(−→μ k). Thus, we have Ri/(μk−1

i − Si) =
ŵk−1

i , and Ri/(μk
i − Si) = ŵk

i , which implies

Si =
ŵk

i μk
i − ŵk−1

i μk−1
i

ŵk
i − ŵk−1

i

, Ri = ŵk−1
i · (μk−1

i − Si), (i = 1, n), (10)
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(the superscript everywhere corresponds to the optimization step).
For ŵk

i = ŵk−1
i , we do not have to compute the values Ri and Si in (9),

but to determine [L] (see below) we set Si = ∞. This tuning of the function
Eap(−→μ ) guarantees that it coincides with E(−→μ ) at points −→μ k−1 and −→μ k (up to
the stochastic error of IM estimates). In other points −→μ the approximation error
Eap(−→μ ) grows as they move farther from the points −→μ k−1 and −→μ k, and the “less
separable” E(−→μ ) is, i.e., the more intensities μi change in some nodes, influences
the average time wj in other nodes (i �= j).

The gradient ∇Eap(−→μ ) in point −→μ = −→μ k is an approximation of the gra-
dient ∇E(−→μ ) in this point, and it is computed with the following expression,
obtained by differentiating (9):

∇Eap(−→μ k) =
(

α1
∂W1

∂μ1
− α1

(μ1)2
, . . . , αn

∂Wn

∂μn
− αn

(μn)2

)
, (11)

where

∂Wi

∂μi
=

{ −Ri

(μk
i −Si)2

, ŵk
i �= ŵk−1

i ,

0, ŵk
i = ŵk−1

i ,
(i = 1, n).

The valid part [L] of a trajectory L outgoing from a point −→μ k that searches
for the point −→μ k+1 lies between −→μ k and the first point −→μ of L for which some
coordinate μi reaches the ASR boundary μi = μimin or a pole μi = Si of the
approximation (9).

We next give a step-by-step description of the DH method with formulas for
computation.

4.4 Step I of the “Directing Hyperbole” Method

Initial optimization step. We fix the number of iterations N > 2 (selected with
regard to available CPU time) and two points −→μ 1 = −→μ c and −→μ 2 �= −→μ 1 that
belong to ASR (3). With IM, we compute at the points −→μ 1, −→μ 2 estimates for
the mean response time Ê1 and Ê2, and, correspondingly, mean waiting time
estimates (ŵ1

1, . . . , ŵ
1
n), (ŵ2

1, . . . , ŵ
2
n) at the node 1, . . . , n. We set k = 2.

Base cycle. Points −→μ k−1 and −→μ k are known, together with the estimates
(ŵk−1

1 , . . . , ŵk−1
n ), Êk−1 and (ŵk

1 , . . . , ŵk
n), Êk of the responses (wk−1

1 , . . . , wk−1
n ),

Ek−1 and (wk
1 , . . . , wk

n), Ek.
(1) Using the estimates (ŵk−1

1 , . . . , ŵk−1
n ) and (ŵk

1 , . . . , ŵk
n), we find, by for-

mulas (10), coefficients Ri and Si (i = 1, n), and approximations Eap(−→μ ).
We compute the gradient ∇Eap(−→μ k) (11) of the function Eap. The direction

−∇Eap(−→μ k) of the fastest decrease of the function Eap(−→μ ) is projected onto the
constraint surface (3). If βi = 1 for all i = 1, n, the surface (3) is a hyperplane,
and the projection L of the vector direction −∇Eap(−→μ k) on it is the direction
−∇Eap

pr (−→μ k) = −∇Eap(−→μ k) + −→n · (−→n · ∇Eap(−→μ k)) = −→e , where −→n = −→c / |−→c |
is normal to the constraints hyperplane, −→c = (c1, . . . , cn) is the vector of cost
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coefficients, |−→x | is the length of −→x . The valid part [L] of the projection L is
bounded by the points −→μ k and −→μ = −→μ k + h · −→e , where h = min{h1, h2},

h1 = min{h1i : h1i > 0; i = 1, n}, h2 = min{h2i : h2i > 0; i = 1, n},
h1i = −(μk

i − μimin)/ei, h2i = −(μk
i − Si)/ei, i = 1, n.

If not all βi are equal to 1, then the projection L of the antigradient direction
can be computed step by step, as a polyline outgoing from the point −→μ k whose
nodes −→μ are projections on the surface (3) of the points of direction −∇Eap(−→μ k)
equidistant for some small step. For each node −→μ , we check its validity conditions
μi > μimin and (μi − Si) · (μk

i − Si) > 0, i = 1, n. If the differences (μi − Si) and
(μk

i −Si) have the same signs, it means that the coordinate μi of the current node−→μ of the trajectory L and the coordinate μk
i of its initial point −→μ k are on one

side of the approximation pole Si. The construction of [L] is completed either
by finding and discarding the first invalid node or by finding out that the next
point along the antigradient direction −∇Eap(−→μ k) does not have a projection
on the constraint surface.

(2) As the next point −→μ k+1 we select a solution (found by scanning) of the
one-dimensional optimization problem Eap(−→μ ) → min, −→μ ∈ [L].

(3) We set k = k + 1. With IM, we compute estimates (ŵk
1 , . . . , ŵk

n) and Êk.
If k < N we proceed to step (1), otherwise–to step (4).

(4) The point −→μ ∗ ∈ {−→μ 1, . . . ,−→μ N} with estimate Ê(−→μ ∗) =
min{Ê1, . . . , ÊN} we take as the approximate solution of the problem. End of
the algorithm.

4.5 Step II – Accelerated Coordinate Descent

The error of the first step (the DH method) consists of two components: sto-
chastic and deterministic. The stochastic component is controlled by computing
confidence intervals for the estimates (ŵk

1 , . . . , ŵk
n) and Êk, and it can be reduced

by lengthening model runs. The deterministic component is caused by using the
separable approximation Eap(−→μ ) for the (in general) inseparable function E(−→μ ).
This leads to the fact that the solution −→μ ∗ found by the DH method differs from
the desired −→μ opt even if we completely the avoid stochastic error of the IM esti-
mates. Therefore, it is reasonable to enhance (or check) the solution −→μ ∗ with an
approach that does not employ approximation Eap(−→μ ).

To do so, at the second optimization step we define 2(n − 1) test points in the
neighborhood of −→μ ∗ each of which differs from −→μ ∗ only in one of the (n−1) “free”
coordinates μi (for example, in one of the coordinates μ1, . . . , μn−1) by the value
±�μ. The “bound” coordinate of a test point (e.g. μn) is defined via its known
“free” coordinates by solving Eq. (3) in order to guarantee that all the test points
belong to the ASR. The difference �μ is chosen with regard to admissible solution
error and the possibility of reliable comparison of the responses E(−→μ ) in corre-
sponding points by their estimates Ê(−→μ ). Further, solution −→μ ∗ is enhanced by
performing network IM at the test points and replacing −→μ ∗ with a test solution −→μ
for which E(−→μ ) < E(−→μ ∗). If there is no such solution, the process ends, otherwise
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the local search step is repeated for the new solution. To avoid cycles, a return to
the previous solutions is forbidden. To speed up the comparison of responses E(−→μ )
and E(−→μ ∗) with given precision by their estimates Ê(−→μ ) and Ê(−→μ ∗), we use the
“generalized random numbers” approach [10].

5 Testing Optimization Method

Let us consider the application of the proposed method by the example of QN
optimization (Fig. 1, left side). The total resource M = 20 is distributed here for−→c = (c1, . . . , cn) = (K1, . . . ,K9) = (1, 2, 1, 1, 1, 1, 1, 3, 1), i.e., for each queueing
network the cost coefficient equals the number of its channels. Distribution types
Bi(t) for the nodes i = 1, . . . , 9 are defined as D, M, D, M, D, M, M, D, D
respectively, where M is the exponential distribution, D is the deterministic one.
The input flow of QN is assumed to be Poisson with intensity Λ = 1. Transition
probabilities are shown in Fig. 1. (on the right there is the structure of a larger
test network used in [17], having 100 single- and multiple-channel nodes).

Fig. 1. QN test case

The initial values of service intensity are given in Table 1.

Table 1. Initial values of service intensity and time E

Initial values µ (at centerpoint) E

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

0.2575 0.1931 0.6437 1.7596 7.5965 0.5278 0.7038 2.278 1.2875 25.544
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Variability ranges for each transition probability are determined as given in
Table 2. Optimal probabilities values found at the 4th iteration are given as well,
along with the optimal resource distribution among the network nodes.

Table 2. Optimal values of transition probabilities

Probability Initial value Left border Right border Optimal value

p0,1 0.2 0.1 0.3 0.2286

p0,2 0.3 0.2 0.4 0.3159

p0,3 = 1 − p0,1 − p0,2 0.5 - 0.4554

p2,4 0.7 0.6 0.8 0.7075

p2,5 = 1 − p2,4 0.3 - 0.2924

p4,6 0.3 0.2 0.4 0.2

p4,7 0.4 0.3 0.5 0.3

p4,9 = 1 − p4,6 − p4,7 0.3 - 0.5

p5,8 0.9 0.5 0.99 0.5

p5,9 = 1 − p5,8 0.1 - 0.5

Approximately optimal values of the resource (service intensities) are given
in the 4th row of Table 3. The values of the target function E obtained at each
iteration are also given.

Table 3. The obtained optimal values of service intensities and time E

Iteration Obtained approximations to the optimum point E

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

1 0.470 0.354 0.716 1.828 6.721 0.626 1.182 2.154 1.289 23.646

2 1.173 0.902 1.926 3.054 3.214 1.311 1.635 0.922 3.115 3.5535

3 1.112 0.901 2.047 2.799 3.778 1.016 1.259 0.938 3.368 3.1152

4 1.250 0.923 1.902 2.526 3.732 1.238 1.296 0.954 3.348 3.0993

Figure 2 shows a typical trajectory of the changes in the target function
during the optimization process due to the method in question.

At each iteration the approximation to the optimum point undergoes the
number of steps comparable to the dimension (m+n) of FS. The solution deter-
mined in 4 iterations provides the decrease in the mean response time E from
25.5 to 3.1 (Table 3). For each effective iteration the number of steps in FS is
less than its dimension (m + n).
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Fig. 2. The changes in time E during optimization of test QN

6 Application Example

The high efficiency of the developed method allows for it to be used for the
optimization of large computation and transport networks.

An example of the modeled transport network is given in Fig. 3. The problem
of optimal resource distribution for road repair (at fixed routing matrix) was
being solved.

Additional experiments have shown that in transport network optimization
the results of the optimization obtained with the developed method are verified
(Fig. 4) by the imitation of these networks with the help of transport modeling
system VISSIM, as well as by the imitation with transport cellular automation
(TCA). The left part of Fig. 4 is QN with a virtual input node corresponding to
the road network in Fig. 3.

In modeling road networks, the roads are represented by QN nodes. The
transport delay at nodes depends on the traffic density and the features of its
stochastic dynamics reproduced by the imitation model. Thanks to the fact that
with an increase of the dedicated resource (improvement of the road surface)
the mean delay at the nodes declines upon an approximate hyperbole, the pro-
posed analytic-imitational method finds an approximate optimal distribution for
a small number of iterations.

In road network optimization, the road (in a large range of loads) can be
approximated as an infinite linear queueing system [19,20]. The optimal resource
distribution for such a system is easily computed with an analytic method [21].
This distribution is convenient for use as an initial approximation for a solution
to problems (2) and (3).

The efficiency of simultaneous optimization of resource and transition prob-
abilities distribution is ensured by two key features of the developed method:
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Fig. 3. Road network sector, Omsk, Russia

Fig. 4. Transport QN (TQN) and the testing results for its optimization with VISSIM
and TCA (right side)

(a) effective separable approximation of the response surface taking into
account the character of the resource effect on the mean delay time at nodes, and

(b) high precision (based on analytic transformations) of the gradient com-
putation with the advanced graph reduction method.
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7 Conclusion

In general, to optimize non-Markov QNs by the mean response time through
resource and transition probabilities redistribution, one has to use IM char-
acterized by a high complexity of gradient computation due to the stochastic
character of the estimates obtained with IM. The gradients problem is effec-
tively solved with the analytic-imitational method of optimization proposed
herein. The method is characterized by a high precision and acceptable com-
putational complexity which allows us to recommend it for practical application
in the design and modernization of queueing networks (information computation,
transport, etc.), having dozens and hundreds of nodes.
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Abstract. Important problems of correct organization of simulation
experiments for calculating fractal queueing systems are considered.
Fractal systems are described asymptotically by power laws of arrival
interval distribution and service time of requests and are adequate math-
ematical models of network devices of telecommunication systems with
fractal (self-similar) traffic. We propose an effective solution to the prob-
lem for the correct realization of heavy-tailed distributions. Accuracy
control techniques for calculating fractal queues by means of consecu-
tive or repeated “parallel” runs of simulation models are developed. The
application examples of the developed methods are given.

Keywords: Queueing systems · Heavy-tailed distributions · Errors ·
Random number generators · Estimates · Simulation

1 Introduction

Research on telecommunication systems has shown that the traffic of modern
data transmission networks has a fractal (self-similar) structure [1]. In such traffic
we can see a long-term dependence describing its random variables, and these
variables are described by heavy-tailed distributions (HTD). Generally, the HTD
tail decreases according to the power law P [x > t] = t−αL(t) where L(t) is a
slow changing function [2]. The characteristic feature of HTD is that we can not
neglect the probability of large observations x.

HTD properties create difficulties faced while measuring traffic and designing
network devices. One of such problems is long transition processes [3], which
interfere with measuring and practical application of steady-state indicators
of traffic service quality by network devices. In simulation of fractal random
processes, significant difficulties are referred to the HTD correct realization.
Work [4] shows that HTD realized in simulation have shifted moments and
you have to use random number generators (RNG) with an infinite number of
digit positions, or to develop a special (for example, cascade) RNG to solve this
problem.

In designing network devices at a system level, they are presented in a form
of queueing systems [5,6]. Fractal systems are GI/GI/n/m systems in which
intervals of request arrival and/or their service time belong to HTD and have
c© Springer International Publishing Switzerland 2016
A. Dudin et al. (Eds.): ITMM 2016, CCIS 638, pp. 382–396, 2016.
DOI: 10.1007/978-3-319-44615-8 33
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infinite variance. The load rate ρ of the examined systems does not exceed one:
ρ = x̄/(nτ̄) ≤ 1 where x̄ < ∞ is a request service average time, τ̄ < ∞ is an
average time between request arrivals, n is a number of channels in the system.
We shall call the GI/GI/n/m systems set only by light-tailed distributions (LTD)
classical systems.

Typical representatives of fractal queueing systems are Pa/M/n/m,
M/Pa/n/m and Pa/Pa/n/m [4] systems. Here the Pa symbol corresponds to
Pareto distribution (PD):

F (t) = 1 − (K/t)α, α > 0, K > 0, t ≥ K, (1)

where α is a shape parameter, K is the smallest value of a random variable
(r.v.) and simultaneously, a scale parameter. In abbreviated form we designate
PD with K, α parameters as Pa(K,α). The range of α values, typical for fractal
traffic, is defined by inequation 1 < α ≤ 2. From (1) it is easy to find that
with such α PD has a finite mathematical expectation (m.e.), which is equal
to αK/(α − 1), and the infinite variance. The main method of fractal system
calculation is simulation [7–9].

In the article, we have elaborated a number of basic statements distinguishing
the organization of simulation experiments with fractal systems from the organi-
zation of experiments with classical queues. We derive the relations allowing one to
control the accuracy of fractal system calculation and to plan the duration (scope)
of experiments to achieve the set accuracy.Wepropose theARANDmethod (Accu-
rateRAND)which is a simple anduniversalmethodof solving theproblem forHTD
correct realization, the method generalizing and simplifying the principles of cas-
cadeRNG.Examples of effective application of the developed statements,methods
and algorithms for modeling of fractal queues are presented.

2 Asymptotic Confidence Intervals in Simulation
of Queueing Systems

Generally in queues simulation to calculate the estimate ξ̂ of some m.e. ξ̄ = E(ξ)
(“indicator”) we use the sample ξ1, . . . , ξN of dependent realizations for random
variable ξ at the output of a simulation model. The estimate ξ̂ is calculated as
a sample average:

ξ̂ =
1
N

N∑
i=1

ξi. (2)

Variance Var(ξ̂) of estimate ξ̂ can be expressed in terms of σ2 =Var(ξ) vari-
ance and correlation coefficients between realizations ξ1, . . . , ξN in the following
way:

Var(ξ̂) = Var

(
1
N

N∑
i=1

ξi

)
=

1
N2

⎡
⎣E

(
N∑

i=1

ξi

)2

− E2

(
N∑

i=1

ξi

)⎤
⎦ =

=
1
N

[
σ2 +

2
N

N−1∑
i=1

N∑
j=i+1

rijσ
2

]
=

σ2

N
(1 + 2RN ), (3)
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where σ2 =Var(ξ) =Var(ξi) is a variance of sample value ξi does not depend
on i, as we consider a steady-state sequence of ξ1, . . . , ξN realizations; rij =
corr(ξi, ξj) = E(ξiξj)−E2(ξ)

σ2 is a correlation coefficient of ξi, ξj elements, which
depends only on s = |j − i| distance between these elements; the RN is an
aftereffect coefficient:

RN =
1
N

N−1∑
i=1

N∑
j=i+1

rij .

This coefficient characterizes a cumulative “direct” effect of ξ1, . . . , ξN elements
on the sample elements, which follow them. We designate rij through r(s), then
the expression of coefficient RN looks like

RN =
1
N

N−1∑
i=1

N∑
j=i+1

rij =
1
N

N−1∑
s=1

(N − s)r(s), (4)

where r(s) is a correlation coefficient for a couple of elements, being spaced s
steps apart; (N − s) is a number of such couples in a sample.

The coefficient (1 + 2RN ) in the Formula (3) is interpreted as the coefficient
of variance increase of estimate Var(ξ̂) which in case of independent realiza-
tions ξ1, . . . , ξN , would merely equal σ2/N . Considering that |r(s)| ≤ 1 and
Var(ξ̂) ≥ 0, from (3) and (4) it is easy to conclude that the variance increase
coefficient (1 + 2RN ) ranges from 0 to N. However while modeling queues we
are usually interested in indicator ξ̄ (for example, it can be an average waiting
time or a request loss probability) when all correlation coefficients r(s) are pos-
itive, thus the coefficient (1 + 2RN ) of variance increase takes a value greater
than one. Therefore, the correlation of sampling results in the variance increase
Var(ξ̂) = σ2

ξ̂
and, respectively, to an increase in the confidence interval of the

estimate ξ̂, constructed by the three-sigma rule:

ξ̄ = ξ̂ ± 3σξ̂, (5)

where σξ̂ =
√

Var(ξ̂) = (σ/
√

N)
√

1 + 2RN is a root-mean-square deviation

(r.m.s.) of the estimate ξ̂,
√

1 + 2RN is an increase coefficient of the confidence
interval.

The calculation of confidence intervals (5) for large scopes of N samples is
considerably simplified, as the asymptotics of correlation coefficients r(s) when
calculating classical and fractal queues is not of great variety. It is defined asymp-
totically by the exponential decrease r(s) with s growing, for classical queueing
systems, for fractal systems it is defined asymptotically by the power decrease
of r(s). It allows us due to moderate-sized samples to find approximate analyt-
ical expressions suitable for the construction of asymptotic confidence intervals
as functions of sample N volume. It also enables us to plan correctly the run
length, which provides the set accuracy of results when calculating queues by
the method of a long consecutive model run [10].
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3 Confidence Intervals in Systems with Light Tails

Let us examine the calculation of steady-state average time w̄ of request waiting
in an M/M/1 system with arrival density λ = 1 and load rate ρ = 0.75 and
ρ = 0.99 as an example of forming confidence intervals when calculating classical
queues.

A statistical estimate r̂(s) of correlation coefficient r(s) between the time
wi of waiting i-th request and the time wi+s of waiting (i + s)-th request can
be calculated on a steady-state sample w1, . . . , wN of a large enough size N ,
applying formula

r̂(s) =
Ê(wiwi+s) − Ê

2
(w)

V̂ar(w)
, (6)

where

Ê(wiwi+s) =
1

N − s

N−s∑
i=1

wiwi+s, Ê(w) =
1
N

N∑
i=1

wi,

V̂ar(w) = Ê(w2) − Ê
2
(w), Ê(w2) =

1
N

N∑
i=1

w2
i .

Estimates r̂(s) of correlation coefficients r(s) = r(wi, wi+s), calculated for
two classical queues according to the Formula (6) with a model run length N =
10 million requests are presented as plots in Fig. 1. The relation r(s) with the
load rate ρ = 0.75 is shown on the left, on the right there is the relation with
ρ = 0.99.

Fig. 1. Correlation of values wi and wi+s depending on s in the M/M/1 system

Generally in any classical systems the correlation coefficient r(s) between
two sample elements w1, . . . , wN shifted by s steps is described by asymptotics

r(s) ∼ ae−bs, (7)
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where a, b are constants. The relationship of the r(s) function to the ae−bs

exponent with growing s rapidly converges to one and with large N in practice
we can neglect the relative deviations r(s) of ae−bs. Considering (4) and (7), the
aftereffect coefficient RN can be expressed as:

RN =
1
N

N−1∑
s=1

(N − s)r(s) ∼ 1
N

N−1∑
s=1

(N − s)ae−bs ∼ a

N

∫ N−1

1

(N − s)ae−bs =

=
a

Nb

{
e−b(N−1)

(
1
b

− 1
)

+ e−b

(
N − 1 − 1

b

)}
∼ a

b
e−b. (8)

For length runs N = 100 thousand and more requests with those a, b, shown
in Fig. 1 (see the trend line equations), we can use the latter asymptotic formula
from (8), which represents a constant independent of s. If ρ = 0.75 we have
a ≈ 0.681, b ≈ −0.031 (see Fig. 1), the aftereffect coefficient RN ≈ a

b e−b ≈ 22,
and the confidence interval for the large N can be written as follows:

w̄ = ŵ ± 3
σ√
N

√
1 + 2RN ≈ ŵ ± 3σ̂√

N
· 6.7, (9)

where ŵ and σ̂ are sample estimates of m.e. and r.m.s. of waiting time w in
a steady-state condition. Similarly for ρ = 0.99 we define according to the
Formula (8), that with the large N the aftereffect coefficient RN ≈ 8000 and
the confidence interval looks like

w̄ = ŵ ± 3σ̂√
N

· 130, (10)

Expressions (9) and (10) of confidence intervals are verified by additional
checks. In particular, while modeling the M/M/1 system with the load rate ρ =
0.99 (and the arrival density λ = 1) as a result of three runs with N = 100 million
requests, we obtained the estimates of average service time ŵ = 96.71, ŵ = 96.02
and ŵ = 99.11, and also the r.m.s. estimate of waiting time is σ̂ ≈ 86. The
confidence interval (10) with this r.m.s. is w̄ = ŵ ± 3.37. Indeed, this interval
with any of the three obtained estimates ŵ covers an accurate value of average
waiting time w̄ = ρ2/(1−ρ)/λ = 98.01, known for the examined M/M/1 system.
The confidence intervals constructed for ρ = 0.75 (and also for ρ = 0.9) case have
withstood a similar test by practical simulation.

An essentially important conclusion is that when calculating queues with
light tails the correlation of sample elements at the model output does not affect
the estimate convergence rate to the required accurate values of indicators. The
estimate error (a half of the confidence interval length) decreases in proportion
to N0.5 and to reduce an error k-fold, the length N of a model run needs to be
increased k2 fold.

At the same time, a high correlation of sampling under the same requirements
to accuracy can result in a need for a repeated length increase for the sample
compared to a case of independent sample elements.
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In the following section of the article the test is carried out having “the back-
ward focus” – we examine the operation correctness of a widespread simulation
system GPSS World [11] by means of correctly constructed confidence intervals.
Unfortunately, in general the GPSS system has not withstood the test.

4 Accuracy Control and Model Time Defects

Let us consider GPSS World modeling results of the queue M/M/1 with the
arrival density λ = 1 and the load rate ρ = 0.9, using asymptotic confidence
intervals of estimates. The average queue length L= 8.1 and the average waiting
time w̄ = 8.1 for this system are accurately known. The simulation results of
the system with a various run length expressed by (average) number N of the
requests arriving for modeling time TM are presented in Table 1. The last line of
the table shows a permissible error defined as a size of the asymptotic confidential
half-interval, which is 3σ

√
1+2RN√

N
≈ 500N−0.5 (to obtain it we use an accurate

value and the estimates a = 0.95, b = −0.0054 found by simulation).

Table 1. Simulation results of M/M/1 using GPSS World

Characteristic Number of runs N = λTM

106 107 108 109 2 · 109

Estimate of the average waiting time 8.332 8.061 8.087 8.043 7.799

Actual error of estimate 0.232 0.039 0.013 0.057 0.301

Permissible error 0.50 0.16 0.05 0.016 0.005

A comparison of permissible and actual errors for simulation estimates of
average time w̄ = 8.1 obtained in various length runs leads to an unambiguous
conclusion about the inconsistency of simulation estimates obtained in case of
large N .

To clarify the reasons of estimate shift increasing with the growth of run
length N we have performed a number of special experiments resulting in an
unpleasant discovery: the time advance mechanism in GPSS World has latent
defects.

Figure 2 shows the program whoose implementation proves the existence of
time defects in GPSS World. The memory cell 1 accumulates a sum of all negative
values wi of requests waiting time in the course of running the program modeling
the M/M/1 system. The number of negative wi is counted in cell 2. An average
value of negative wi is calculated in cell W NEG. The values of cells are derived
after each of 10 pieces of a long run, executed by START. In each piece of the
run the model time AC1 moves ahead per 100 mln. units of time.

The program execution results are presented in Table 2.
A small program extension allows one to find out that the first request with

a negative waiting time is the request with number 21 693 107. It enters the
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Fig. 2. The program revealing the existance of reverse time motion

queue at the moment of modeling time 21 693 041,901 257, then quits it at the
moment 21 693 041.894 325, which is �1 = 0.006932 less than the entrance
time (i.e. time “goes backward”). Note that the negative wi on average grow
(modulus) in proportion to the time AC1 (Table 2), and frequency of negative
wi emergence and their sum’s modulus grow approximately proportional to the
fourth or fifth degree of the time AC1. The existence of negative wi proves the
incorrect work of the request scheduler with lists of events. The experiments
show that together with the run length the distortions of estimates and other
indicators such as queue average length, request loss probability (with a limited
run length), etc. also grow.

Table 2. Characteristics of negative values of waiting time

Absolute clock AC1 The number of wi < 0 Sum of wi < 0 values The average value of wi < 0

1 · 108 344 −9.87597 −0.028709

2 · 108 4961 −294.378 −0.059338

3 · 108 23470 −2085.86 −0.088873

4 · 108 69841 −8161.87 −0.116864

5 · 108 161040 −23295.5 −0.144657

6 · 108 317228 −54594.3 −0.172098

7 · 108 557714 −110980 −0.198991

8 · 108 901127 −202575 −0.224802

9 · 108 1354436 −337396 −0.249104

108 1920013 −522135 −0.271943
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The GPSS World developers, apparently, faced external aspects of the
described defect, but did not distinguish the defect itself. We can understand
it, for example, due to a vague hint in [11] that the use of RESET “can lead to
some systematic mistake in the field of the smallest values”. However, Table 2
clearly shows that the first 344 negative wi appeared in our test long before the
use of the first RESET thus it is not the RESET’s fault here. The tests show
that the reverse time motion is not also caused by rounding errors.

Thus, a rather simple technique of practical construction for asymptotic con-
fidence intervals presented in the previous section allows us to elicit a fact of
GPSS incorrect work at the long runs. It results in investigating and estab-
lishing the true reason of the unpleasant situation, which consists in the latent
defects of the advance and accounting mechanism of the model time. The restric-
tions in the runs length used while modeling queues (no more than 100 million
requests in each independent consecutive run) allow us to avoid a tangible
effect of model time defects. It is expedient to increase the necessary scope of
samples by enhancing the number of independent parallel runs. These restric-
tions are formulated, proved and brought to a wide range of the GPSS [12]
system users. It is also necessary to control the total number of accesses to the
RNG of the GPSS system which should not exceed 2 billion 48 million. To remove
the last restriction we have developed in the GPSS language the MtRand pro-
cedure [13], which allows us to use a high-quality external RNG based on the
“Mersenne twister” algorithm with a period length of random numbers sequence
219 937 − 1 ≈ 106000. Thereby the total amount of samples in queues simulation
becomes almost unlimited: it should not exceed 106000.

We have also established experimentally that there are no such model time
defects in simulation system AnyLogic [14], as in GPSS.

5 Confidence Intervals in Systems with HTD

Coefficients r(s) of correlation elements ξi of processed samples in computation
of fractal queueing systems are asymptotically power functions of s. This leads
to the significant difference between methods for planning of experiments with
fractal queues and experiments with classical queues that have the corresponding
exponential asymptotics. Figure 3 shows the plot of the function r(s) obtained
by simulation of Pa/Pa/1 system at steady-state conditions, which is reached
by running about 40 million requests. In this case, the implementations γi ∈
{0, 1} of failure indicators of requests with numbers i = 1, 2, . . . are the sample
elements. At steady-state conditions, the indicators mean value γ̄ equals the
required probability P of a request loss. The transient period was calculated by
means of a large number of independent model runs.

Generally, in the calculating of any indicators as failure probability, the aver-
age waiting time, etc. of the function r(s) in fractal queues computing has the
following asymptotics:

r(s) ∼ as−b, (11)
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Fig. 3. Asymptotics of correlation coefficients r(s) between failure indicators of i-th
and (i + s)-th requests in Pa/Pa/1/100 system for α1 = α2 = 1.1, K1 = 1, K2 = 0.5

where a and b are some constants defined by test model runs
(a > 0 and 0 < b < 1).

Using the Eq. (4) and asymptotic representation (11), we define the following
simple expression for confidence intervals

RN =
1
N

N−1∑
s=1

(N − s)r(s) =
1
N

N−1∑
s=1

(N − s)as−b ∼ 1
N

∫ N−1

1

(N − s)as−bds

=
a

1 − b
(N − 1)1−b − a

1 − b
− a

N

1
2 − b

(N − 1)2−b +
a

N

1
2 − b

∼ a

(1 − b)(2 − b)
N1−b. (12)

Therefore, in accordance with (5), we obtain the formula for confidence
interval

ξ̄ = ξ̂ ± 3σ

(
1 + 2RN

N

)1/2

∼ ξ̂ ± 3σ · CN−b/2 ≈ ξ̂ ± 3σ̂ · CN−b/2, (13)

where the constant C =
√

2a
(1−b)(2−b) which is independent of N ; σ̂ is the r.m.s.

estimate of sample elements ξi.
From (13) it follows that the value of confidence half-interval declines slower

than N−1/2 as b < 1. For instance, if we calculate the probability P of request loss
in the system with the parameters shown in Fig. 3, then the parameter b within
the confidence interval (13) is equal to 0.15 (see the trend equation in Fig. 3);
therefore, the value of half-interval declines in proportion to N−0.075. For the
error (half-interval) to be decreased 10-fold the run length N is to be increased
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101/0.075 ≈ 1013 – fold in this case. Usually, such a way of improving accuracy
is almost unacceptable, and, thus, the development of accelerated methods of
probability calculation is of great relevance in simulation systems with heavy
tails [6–8].

The performed analysis let us conclude that in calculation of HTD systems a
correlation of sample elements decreases the rate of estimates convergence; this
rate becomes less than cN−1/2 for any parameters a, b of power asymptotics of
coefficients r(s). This fact makes a great difference in the simulation of fractal
and classical queueing systems. As a result, it is necessary to use independent
parallel model runs [10], producing a large number of independent samples of
requests coming through the system, for any simulation experiments of calculat-
ing fractal queues.

Besides, parallel runs allow us to solve relevant problems related to fractal
queues calculation such as the determining of transient periods, detecting of
convergence lack for various estimates, etc.

6 Calculation of Fractal Queues and the ARAND Method

However, before developing and testing recommendations for calculating HTD
queues we should have complete awareness of the problem of HTD distortions
realized in simulation [4]. To solve this problem the cascade method for gen-
eration of r.v. with HTD is proposed in [4]. We shall now give the simplest,
most accurate and universal version (which was not found in [4]) of this method
for the generating of standard random numbers (Fig. 4) – the ARAND method
(Accurate RAND).

Fig. 4. The flowhchart of ARAND method for GPSS World

The ARAND method transforms ordinary n-digits uniformly distributed in
the interval [0, 1] random numbers z′ to those uniformly distributed random
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numbers z ∈ [0, 1], which, no matter how small they are, have n accurate sig-
nificant digits. Due to it, r.v. with LTD realized by the inverse transformation
of a distribution tail have also n accurate significant digits, and the problem
of LTD distortion is eliminated (confirming calculations performed for cascade
RNG are given in [4]). For example, reversing PD tail F̄ (t) = 1−F (t) = (K/t)α,
we obtain formula x = Kz−1/α for generation r.v. x with Pareto’s distribution,
and if z is generated by the ARAND method, then the r.v. x moments are not
displaced. The tails F̄ (t) of HTD are realized by the ARAND method with the
same number of accurate significant digits, both for big t and small t (within t
reaching 10 of several hundred or thousand in power). From this point of view,
the use of ARAND is equivalent to the use of those ordinary RNG, which would
give random numbers with hundreds/thousands of decimal digits after a deci-
mal point. However, this accuracy enhance does not result in a ten/hundred-fold
increase in losses concerning time or equipment, the loss is only 10 % of numbers
at the outcome of the ordinary standard RNG and the rate of random numbers
generation approximately decreases by 1.1-fold.

Figure 5 shows the procedure implementing the ARAND method in Plus
language (here the argument Arg is the number RNG Uniform) for GPSS World.

Fig. 5. Plus procedure implementing the ARAND method for GPSS World

Access to the ARAND procedure is carried out the same way as to other
PLUS-procedures [11]. For instance, we can write the statement GENERATE for
the generation of a request stream with time intervals between them, distributed
by Pareto with parameters K = 1, α = 1.1 as follows:

GENERATE (1#ARAND(1)^(-1/1.1)); incoming stream generation.

If there is a need to generate more than 1–2 billion random numbers, the
Uniform generators of the GPSS system turn out to be inefficient because of their
limited period length. In this case, in the ARAND procedure we use access to the
RNG MtRand (“Mersenne twister”) whose procedure of connection is described
in [13] instead of access to the RNG Uniform (see Fig. 5). The correct HTD
implementation with a possibility of obtaining high-quality unlimited samples
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allows us to perform simulation experiments, controlling and providing indeed
the necessary accuracy of fractal queues calculation.

The method of a single long run in the simulation of fractal queues, as a
rule, is inefficient because of the low rate of estimates convergence. Therefore, it
can lead to conceptually erratic conclusions, even with a very large run length.
Thus, in Fig. 6, we can see the tail of empirical distribution for a waiting time
of requests in Pa/Pa/1 system with Pareto distribution parameters of intervals
for requests arrival α1 = 1.1, K1 = 1 and Pareto distribution parameters of
service time α2 = 1.1, K2 = 0.1. In this system τ̄ = 11, x̄ = 1.1, its load
rate is ρ = 0.1 
 1. The empirical distribution of waiting time whose tail is
given in the figure is obtained in a sequential model run according to the values
of 100 million requests waiting time. The diagram rectification in Fig. 6 in a
logarithmic scale on both axes of coordinates, high reliability ratio R2 and a
considerable sample length lead to the conclusion that the tail is asymptotically
powerful and the parameter α = 1.188 of the tail for the approximate equation
in Fig. 6 is estimated accurately enough. As α > 1, then the distribution has
m.e., i.e. the average waiting time in the simulated system is finite. However, it
is a wrong conclusion.

Fig. 6. Results of sequential run data processing (left) and the results of parallel runs
for Pa/Pa/1 system if α1 = α2 = 1.1, K1 = 1, K2 = 0.1

Actually this is not the case. Having performed and processed several quite
short runs, we can obtain graphic information (Fig. 6, to the right) that the aver-
age requests waiting time converges to infinity. This figure shows the dependence
of a waiting time request on number i averaged according to n = 10 thousand
independent process implementations (parallel runs). There is a steady-state
mode in the system (ρ < 1), but it is not reached for the finite time. The plot of
the average waiting time growth has specific jumps caused by the heavy tails of
Pareto distributions, setting the system. However, the growth of average value of
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elements wi for the sample with the growth of their number i has a characteristic
logarithmic rate (a logarithmic trend line is a smooth curve in the right figure).

At the same time, employing parallel runs will not provide automatic obtain-
ment of appropriate results in simulation of fractal queues unless the problem of
HTD correct realization is solved. Wrong conclusions, though, could be obtained
not only for α ↓ 1 when HTD tails are “particularly heavy”, but also for α ↑ 2
when these tails are lighter in interval 1 < α ≤ 2. The simulation for α ↑ 2 of
M/Pa/1 queue using the ordinary standard random number generator should
lead to principally mistaken results in the calculation of an average waiting time
as shown in [4]. The results of such a simulation M/Pa/1 system with a large
number of parallel tests is shown to the left in Fig. 7.

Fig. 7. Results of simulation M/Pa/1 system for τ̄ = 4, K = 1, α = 2

Each estimate ŵi to the left in Fig. 7 is obtained by averaging the random
variable wi values. This averaging was performed for the specific i, when the
number of independent runs of the model is big. If the ARAND method is not
used, then the moments of realized HTD will displace [4] and the estimate ŵi

will converge to 3.6 with the growth of i.
The curve on the right hand side in Fig. 7 shows the estimates obtained in the

same experiment by using the ARAND method instead of the ordinary standard
RNG. Now, we see that the dependence of ŵi on i does not converge to any finite
value. The curve on the right has typical jumps for non-convergent estimates.
These jumps result in the growth of estimate approximately with a logarithmic
speed (axis of abscissas is in the logarithmic scale in Fig. 7). The ARAND method
allows us to see the true state of affairs, when there is a steady-state average
waiting time and when this time is equal to infinity (because the estimate ŵi

grows as Ln(i) and is not proportionate to i). The example demonstrates the
complementarity of ARAND and parallel run methods. These methods com-
plement each other and their combined usage provides a real opportunity for
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calculating fractal queues with control of errors and achieving appropriate accu-
racy of calculations.

7 Conclusion

The analysis of fractal queues simulation errors and recommendations based on
that analysis provide a real opportunity for fractal queues calculation with an
appropriate accuracy. However, computational efforts increase noticeably in com-
parison with the simulation of classical queues, but they are within acceptable
limits.

The main feature of fractal queues simulation is the need to use systematically
the multiple parallel independent runs of the model (including test runs) along
with the methods of correct HTD realization (the ARAND method described in
the article is one of the most effective).

The technique proposed in the article of asymptotic confidence intervals cal-
culation allows us not only to plan experiments providing given calculation accu-
racy but also to test simulation systems used. In particular, by such means the
hidden defects of model time in the GPSS system were revealed.

In general, the research performed in the article, the recommendations devel-
oped, and the examples of their usage make it possible to reduce the calculation
of fractal queues by means of their simulation to the sequence of operations
though relatively difficult, but typical for applying numerical analysis methods.
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