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Heart failure (HF) progresses through a process of structural 
remodeling of the heart to which neurohormonal and cyto-
kine activation makes an important contribution. The term 
ventricular remodeling refers to deviation in ventricular 
architecture from normal, with changes in volume, wall 
thickness, and/or shape. This term was initially applied to the 
pathologic changes related to myocardial hypertrophy, fibro-
sis, and associated chamber dilation seen following a large 
myocardial infarction (MI) [1–3]. The term has also been 
used in other conditions associated with ventricular dilation 
and eccentric myocardial hypertrophy, referred to as dilated 
cardiomyopathy, and to conditions associated with concen-
tric left ventricular (LV) hypertrophy with a normal or 
reduced chamber volume, as is seen in hypertensive heart 
disease. A large body of evidence now indicates that these 
forms of pathologic ventricular remodeling are indepen-
dently associated with adverse clinical outcomes and, more 
importantly, that interventions that attenuate or reverse these 
changes are usually associated with improved clinical out-
comes [4].

 Remodeling Concept of Heart Failure

It is well known that the heart can enlarge or shrink in 
response to hemodynamic demands (. Fig. 17.1) [5]. Critical 
to our understanding of HF are observations that HF is 
related to progressive alterations in the heart’s structure and 
function. The earliest reference to the role of cardiac structure 
in development of HF dates back to the nineteenth century 
[6]. In The Principles and Practice of Medicine, William Osler 
pointed to hypertrophy as a step in the development of HF, 
since it is followed by a “period of broken compensation … 
that commonly takes place slowly and results from degenera-
tion and weakening of the heart muscle” [7]. However, in the 
modern era, Linzbach has been credited for being the first to 
recognize that alterations in cardiac structure are the primary 
determinants of HF and that LV weight of about 200 g was 
critical in the natural history of the disorder [8].

In the 1960s, a different view of LV hypertrophy and 
enlargement began to emerge. In accordance with Laplace’s 
law, which dictates that afterload-induced increases in 

 . Fig. 17.1 Conditions leading to remodeling of the heart and resulting in atrophy or hypertrophy. Depending on the circumstances, 
remodeling can be normal or pathologic. Pathologic remodeling is associated with a propensity toward decompensation, ventricular dilatation, 
systolic dysfunction, and electrophysiologic changes leading to malignant ventricular arrhythmia. Source: Hill JA, Olson EN. Cardiac plasticity. N 
Engl J Med. 2008;358:1370–80
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 systolic wall stress are offset by increases in wall thickness, 
hypertrophic growth of the heart was seen as “compensa-
tory” and, hence, beneficial [9, 10]. Animal models of pres-
sure overload led Meerson to suggest that cardiac growth 
induced by biomechanical stress plays a protective role, at 
least in the short term [11]. Moreover, in the 1970s and 1980s, 
hemodynamic measurements in patients with valvular heart 
disease provided support for the concept of adaptive hyper-
trophic growth which, when “inadequate,” could lead to sys-
tolic dysfunction [12–14].

Recent clinical studies have called into question the idea 
that structural changes of the ventricle are adaptive and pro-
tective. Progressive LV hypertrophy, enlargement, and cavity 
distortion over time have consistently been shown to be 
directly related to the deterioration of LV performance and 
an increase in mortality and morbidity [15–19], irrespective 
of the etiology of HF [20].

Current concepts of ventricular remodeling are largely 
derived from studies on patients and animal models of MI 
and hypertension [21–24]. Studies by Chanutin and Barsdale 
[25] on an experimental model of arterial hypertension dem-
onstrated that LV weight and myocyte fiber diameter 
increased in relation to the severity of hypertension. Janice 
Pfeffer and her colleagues [26, 27] studied the relationship 
between LV mass and function over time, in the spontane-
ously hypertensive rat model. They demonstrated that despite 
continuous and marked LV wall thickening, the LV eventu-
ally dilates and then fails. At this stage, the stimulus for LV 
hypertrophy is not only elevated arterial pressure but also 
chamber dilatation that further aggravates the hemodynamic 
load by increasing wall stress. This seminal finding laid the 
foundation for the concept that regardless of the initial insult, 
ventricular dilatation may become a self-sustaining process 
of deterioration in LV structure and function.

A consensus statement helped define remodeling as the 
“genomic expression resulting in molecular, cellular and 
interstitial changes that are manifested clinically as changes 
in size, shape and function of the heart after cardiac injury” 
[28]. Remodeling process is regulated by mechanical, genetic, 
and neurohormonal factors [29]. The importance of ventric-
ular remodeling has increased with the observation that 
agents such as inhibitors of the sympathetic and renin- 
angiotensin- aldosterone systems that have beneficial effects 
in HF also generally attenuate or reverse ventricular remod-
eling [30–34], whereas agents that fail to improve clinical 
outcomes either have no effect on remodeling or have been 
associated with adverse remodeling [4]. Ventricular remod-
eling has therefore emerged as a credible surrogate end point 
and an important therapeutic target in HF [35, 36].

 Mechanisms of Left Ventricular Remodeling

Although ventricular remodeling may occur following any 
form of myocardial injury [20], most of our knowledge has 
been acquired from the study of remodeling following 

MI. Acute coronary occlusion in the clinical setting or in the 
experimental animal leads to loss of myocardial tissue, 
depression of myocardial function, and hypotension. This 
causes baroreceptor-mediated activation of a number of neu-
rohormones that help stabilize the hemodynamics through 
an increase in heart rate, contractility, and fluid retention. 
However, continuous activation of these mechanisms, 
designed for short-term support of blood pressure [37], may 
lead to progressive LV remodeling and dysfunction. Two dis-
tinct phases have been identified following MI: early postin-
farct LV remodeling and late progressive LV remodeling.

 Early Postinfarct Left Ventricular 
Remodeling

Loss of regional wall function after acute MI results in an 
abrupt increase in loading conditions of the ventricle that 
brings on a unique pattern of remodeling involving the 
infarct area, the border zone, and the remote noninfarcted 
myocardium. Thinning and stretching of the acutely infarcted 
myocardium lead to infarct expansion, the first feature of LV 
remodeling [21, 22]. Although later thinning of the LV wall 
also occurs in the noninfarcted myocardium, the cellular 
mechanisms are different in the two regions. In the infarcted 
myocardium, wall thinning is pronounced and is a result of 
loss of myocytes, collapse of the intercellular space, and 
stretching of surviving myocytes [21–23, 38, 39]. This may 
lead to bulging of the infarct zone that can result in ventricu-
lar rupture, aneurysm, mitral insufficiency, and ventricular 
tachyarrhythmias. In the noninfarcted regions, myocardium 
thins because of a decrease in the number of myocytes across 
the wall [38, 39]. Two mechanisms—myocyte slippage [38] 
and myocyte loss from necrosis [40–42] and apoptosis [41, 
43]—have been proposed to explain this decrease.

It has been suggested that “myocyte slippage” plays a 
major role in progressive chamber dilation leading to failure 
[8, 38, 44], although much of the literature mentioning this 
phenomenon is rather vague. This concept usually refers to 
slippage of myocytes past one another transversely or linear 
slippage of individual myofibrils within myocytes [44, 45].

Increased myocardial collagenase activity (see discussion 
under Extracellular Matrix Remodeling below) is believed to 
disrupt intermyocyte collagen struts, leading to side-to-side 
slippage of myocytes [46]. Such a process could reduce wall 
thickness and increase the volume of the ventricle. Linzbach 
[44] and others [38] have noted reduced numbers of myocytes 
across the wall as evidence of myocyte slippage. However, this 
explanation may be too simplistic. For a meaningful discus-
sion of the slippage concept, we need to consider the three-
dimensional nature of myocyte-to-myocyte interconnections. 
Each myocyte is connected to an average of 5–10 neighboring 
myocytes via end-to-end and side-to-side intercalated disks  
(. Fig. 17.2) [47]. Slippage implies disruption of intercalated 
disks. Once the disks are disrupted, they may be unable to 
reconnect, resulting in poorly coordinated contractions.

 I.S. Anand and V.G. Florea
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 Factors Affecting the Magnitude 
of Remodeling after Myocardial Infarction

The magnitude of infarct expansion and development of LV 
remodeling largely depends on the extent of myocardial dam-
age and the loading conditions of the ventricle. In the rat 
infarct model, increase in LV diastolic volume is related to the 
size of the infarct and correlated with the extent of impaired 
systolic performance [48, 49]. A critical transmural infarct 
size of about 20 % of LV myocardium was necessary for sig-
nificant infarct expansion [22]. It was observed more fre-
quently in patients with a large anterior transmural infarction 
compared to an infarction in other regions of the LV [50–52]. 
Distortion of the ventricular contour leading to aneurysm 
formation is frequent in patients with infarct expansion and 
is associated with a much higher 1-year mortality than for 
patients with anterior infarction and comparably reduced 
ejection fraction (EF) but without aneurysm [53].

The loading conditions of the ventricle are also important 
in ventricular remodeling. Both early transient increase in 
afterload after an MI and sustained increase in afterload with 
aortic banding increased infarct expansion in animal models 
[54, 55]. Patients with hypertension and LV hypertrophy 
have increased morbidity and mortality after MI [56], and 
careful afterload reduction early in the course of MI may 
have important effects on LV remodeling by reducing infarct 
expansion and limiting infarct size [57].

Early establishment of patency of the infarct-related coro-
nary artery and restoration of antegrade flow may also confer 
a beneficial effect on ventricular remodeling and long-term 
survival in patients with acute MI, whether accomplished 
pharmacologically [58] or mechanically [59]. However, the 
open-artery hypothesis that the restoration of antegrade flow 
in the infarct-related artery days, weeks, or even several 
months after MI would improve survival with or without 
improvement of LV function was not proved in the Occluded 
Artery Trial [60] and the Total Occlusion Study of Canada 
(TOSCA)–2 Trial [61].

 Late Progressive Postinfarct Left  
Ventricular Remodeling

Early infarct expansion after MI may be followed by progres-
sive ventricular dilatation and dysfunction over subsequent 
months and years, involving predominantly the noninfarcted 
segments. The mechanisms responsible for this inexorable 
deterioration of LV structure and function are not entirely 
clear but are related to continued activation of neurohor-
mones and cytokines such as norepinephrine, angiotensin II, 
aldosterone, endothelin, and tumor necrosis factor. These 
factors, in combination with increased wall stress and 
mechanical stretch of the myocytes, upregulate a large num-
ber of signaling pathways, leading to structural and func-
tional changes in the myocyte and nonmyocyte compartments 
that underlay a reduction in LV function and the progression 
of HF. In the discussion that follows, changes in these indi-
vidual components will be described and their implications 
discussed.

 Alterations in the Myocyte Compartment

The remodeling process results in important changes in the 
cardiac myocytes. These include myocyte hypertrophy, myo-
cyte loss by necrosis [41, 42, 62] and apoptosis [41, 63–66], 
and changes in the structural proteins with downregulation 
of contractile and sarcomeric skeleton proteins and upregu-
lation of cytoskeletal and membrane-associated proteins 
[67]. In addition, loss of myofilaments, nuclear enlargement, 
development of multiple small mitochondria, decrease in the 
T-tubular system, and sarcoplasmic reticulum are common 
histological features of the failing myocardium [68].

 . Fig. 17.2 Scanning electron micrograph (top) and a drawing 
(bottom) of the cardiac myocardial fibers. The cardiocyte Ci connects 
with five neighboring cardiocytes (A1, A2, C1, C2, and C3). Source: 
Yamamoto S, James TN, Sawada K, Okabe M, Kawamura K. Generation 
of new intercellular junctions between cardiocytes. A possible 
mechanism compensating for mechanical overload in the 
hypertrophied human adult myocardium. Circ Res. 1996;78:362–70
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 Myocyte Hypertrophy

Grossman and coworkers proposed that alterations in myo-
cyte shape and size determine the type of cardiac hypertro-
phy [69]. In conditions with pressure overload such as aortic 
stenosis or hypertension, parallel addition of sarcomere 
causes an increase in myocyte cross-sectional area with no 
increase in myocyte length (. Fig. 17.3) [70–72]. This leads 
to an increase in wall thickness and concentric LV hypertro-
phy (increase in ratio of wall thickness to chamber dimen-
sion) [69, 73]. In conditions with volume overload such as 
aortic and mitral regurgitation, ventricular volume and wall 
thickness increase proportionally, and this is associated with 
a corresponding proportional increase in both myocyte 
length and cross-sectional area (addition of sarcomeres both 

in parallel and series) [74] (. Fig. 17.3). It appears that dur-
ing the compensated stage of concentric LV hypertrophy, 
wall stress does not increase.

After a large MI, progressive LV dilatation is due to an 
increase in myocyte size which occurs predominantly by lay-
ing of sarcomeres in series, resulting in an increase in myocyte 
length, with only mild increase in width and cross-sectional 
area [75–78] (. Fig. 17.4). This further increases cavity vol-
ume with no change or a decrease in wall thickness. Myocyte 
length is the major determinant of changes in LV size, and 
most of the increase in LV volume can be explained by an 
increase in myocyte length [75, 77–79]. Although LV mass 
increases, the increase in LV volume is proportionately greater, 
so that mass-to-volume ratio, an important determinant of 
wall stress, is reduced. The development of myocardial 

 . Fig. 17.3 Schematic representation of myocyte 
change in left ventricular concentric and eccentric 
hypertension. In pressure-overload hypertrophy, 
myocyte cross-sectional area (CSA) increases and the 
ventricular wall becomes thicker during the 
compensatory phase. In volume-overload hypertrophy, 
ventricular volume and wall thickness increase 
proportionally, and this is associated with a 
corresponding proportional increase in both myocyte 
length and CSA. CSA and L, cross-sectional area and 
length. Source: Gerdes AM. The use of isolated myocytes 
to evaluate myocardial remodeling. Trends Cardiovasc 
Med. 1992;2(4):152–5

 . Fig. 17.4 Cardiac myocyte remodeling in 
the rat infarct model. Myocyte length and 
width from rats at 2, 4, and 6 weeks after 
myocardial infarction are compared to those 
from a sham-operated animal. Note the 
predominant increase in myocyte length as 
the major determinant of the increase in 
ventricular volume. MI myocardial infarction. 
Source: Anand IS, Liu D, Chugh SS, Prahash AJ, 
Gupta S, John R, Popescu F, Chandrashekhar 
Y. Isolated myocyte contractile function is 
normal in postinfarct remodeled rat heart 
with systolic dysfunction. Circulation. 
1997;96(11):3974–84

 I.S. Anand and V.G. Florea



253 17

 hypertrophy after MI, therefore, results in eccentric hypertro-
phy (cavity dilation with a decrease in wall thickness to cham-
ber dimension ratio) that increases wall stress.

In volume-overload conditions such as mitral and aortic 
regurgitation, ventricular hypertrophy remains appropriate and 
helps to maintain normal wall stress for variable periods of time. 
Transition from a compensated to a decompensated state is 
associated with further increase in chamber volume but no 
increase in wall thickness. This results in a decrease in mass-to-
volume ratio and increase in wall stress. The cellular mecha-
nisms responsible for this are not entirely clear, but they could be 
related to an arrest in growth of the myocytes in the transverse 
diameter, resulting in myocyte lengthening without further 
change in myocyte cross-sectional area. Studies of mitral regur-
gitation in the dog, and in patients at the time of mitral valve 
surgery, also show a decrease in myocardial myosin content pro-
portional to the degree of LV dysfunction [74, 80]. Thus, reduced 
contractility in mitral regurgitation could, in part, be due to loss 
of contractile elements. Although aortic and mitral regurgita-
tion are often considered together as volume-overload condi-
tions, the two have their specific pathophysiologic features.

In aortic regurgitation, the sum of the regurgitant and 
forward stroke volume is ejected into the aorta in systole, 
resulting in a wide pulse pressure and systolic hypertension. 
Therefore, aortic regurgitation creates both volume and pres-
sure overload on the left ventricle. Systolic wall stress is 
always higher in aortic regurgitation than in mitral regurgita-
tion [81] and is often as high as in aortic stenosis (the classic 
pressure-overload condition) [82]. These different loading 
conditions in mitral and aortic regurgitation create two dif-
ferent types of ventricular geometry. In mitral regurgitation, 
there is an enlarged thin-walled left ventricle in which the 
mass-to-volume ratio is less than 1.0 [83]. In contrast, in aor-
tic regurgitation, the mass-to-volume ratio is normal at 1.0 
[84]. Whether the cellular hypertrophy at the onset of failure 
is different in these two conditions remains to be determined.

In pressure-overload conditions, concentric ventricular 
hypertrophy (thick wall, normal chamber volume, and high 
mass-to-volume ratio) helps to keep wall stress normal 
despite high ventricular pressure. Because systolic stress 
(afterload) is a major determinant of ejection performance, 
the normalization of systolic stress helps to maintain a nor-
mal stroke volume despite the need to generate high levels of 
systolic pressure [12]. Transition to failure is accompanied by 
progressive cavity enlargement and decline in the mass-to- 
volume ratio, resulting in eccentric ventricular hypertrophy. 
In spontaneously hypertensive rats, transition to failure is 
preceded by myocyte lengthening without an increase in 
myocyte cross-sectional area [70, 71].

 Myocyte Death

Cell death is an important determinant of progressive cardiac 
remodeling and LV wall thinning. A reduction of contractile 
material is a prominent feature in HF, and myocyte loss may 
occur either by necrosis or apoptosis [41].

Myocyte necrosis: Necrosis generally occurs in the setting 
of catastrophic events such as MI or inflammation and is 
characterized by severe membrane alterations, release of cell 
breakdown products, and polymorphonuclear infiltration. 
However, slow myocyte loss by necrosis is also a common 
feature of chronic HF [40–42, 85]. During the progression of 
HF, activation of several neurohormones occurs, including 
norepinephrine, angiotensin II, and endothelin. These neu-
rohormones are directly toxic to the myocardium and have 
been shown to cause myocyte necrosis in various animal 
models [86, 87]. Moreover, in patients with severe HF, circu-
lating levels of troponin are often increased, suggesting ongo-
ing myocyte necrosis [88, 89]. Myocyte loss through necrosis 
probably contributes to progressive LV dilatation and wall 
thinning. Even very low plasma concentrations of troponin 
are predictive of adverse outcomes in patients with chronic 
HF [88].

Myocyte apoptosis: Apoptosis or programmed cell death 
is an evolutionarily conserved process of cell death, wherein 
cells die without provoking significant inflammatory 
response. Evidence shows that apoptosis contributes to the 
progression of HF.  Apoptosis occurs through a cascade of 
subcellular events including cytochrome c release into the 
cytoplasm and activation of proteolytic caspases [90]. 
Activated caspases lead to fragmentation of cytoplasmic pro-
teins, including contractile apparatus [91]. Caspase-3 (the 
final executioner in the apoptotic cascade) overexpression or 
activation has been shown to directly reduce the contractile 
performance of the LV [92]. The degree of myosin cleavage 
with caspases correlated with the contractile performance of 
the heart [93]. It has been proposed that the release of cyto-
chrome c from mitochondria and contractile protein loss in 
living heart muscle cells contributes to systolic dysfunction 
[90]. Apoptosis is involved at multiple points in the natural 
history of HF.  This includes initial events like ischemia, 
infarction, and inflammation as well as those events occur-
ring later in established LV dysfunction. Several of the factors 
implicated in the pathogenesis of HF such as myocardial 
stretch [94], norepinephrine [95], angiotensin II [96, 97], 
tumor necrosis factor-α (TNF-α), and oxidative stress [98, 
99] may provoke apoptosis.

While the presence of myocardial apoptosis has been 
confirmed in end-stage human HF [65, 66] and in several 
animal models [41, 43, 63, 64], questions remain whether 
apoptosis is a cause or a consequence of HF. Myocyte apopto-
sis may be a factor in the transition from compensated to 
uncompensated HF [91]. This has been shown in several ani-
mal models of experimentally induced LV hypertrophy and 
HF [100–102]. Several studies have demonstrated the pres-
ence of apoptosis late after MI [103–105].

 Alterations in Myocyte Structural Proteins

The complexity of events involved in the pathogenesis of ven-
tricular remodeling cannot be solely attributed to myocyte 
hypertrophy and cell loss. The hypertrophied myocytes in the 
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remodeled failing heart also show alterations in most of the 
structural proteins (. Table 17.1) [67]. Following is a brief 
description of the structural protein (. Fig. 17.5), alterations 
that occur in HF proteins, and their functional consequences.

 Contractile Proteins

The contractile apparatus includes thick filament myosin and 
thin filament complexes composed of α-actin, α-tropomyosin, 
and troponins C, I, and T.  Ventricular remodeling involves 
transcriptional and translational downregulation of these pro-
teins [67]. One of the earliest changes is a decrease in α-myosin 
heavy chain and an increase in β-myosin heavy chain [106].

 Sarcomeric Skeleton Proteins

The contractile apparatus is kept in register by different pro-
teins localized in the Z-disk, M-band of the sarcomere, and 
the giant filament molecule titin, which spans the entire half- 
sarcomere from the Z-disk to the M-line. The Z-disk is a 
region of overlapping tails of actin microfilaments cross- 
linked by α-actinin. The M-line is the region where the myosin 
tails are linked and organized by the M-line proteins—myo-
mesin, M-line protein, and myosin-binding protein-C. Titin is 
anchored with its N-terminus at the Z-disk and reaches the 
M-line region with its C-terminal head portion where it inter-
acts with M-line protein and with myomesin [107]. It spans 
the Z-disk of the sarcomere [108] and overlaps in the M-line 
region of the sarcomere [109], thus functioning as a molecu-
lar spring and a source of elastic properties of the cardiomyo-
cyte (. Fig. 17.5). The interplay between titin and actomyosin 
suggests a possible role for titin in the Frank-Starling mecha-
nism of the heart [107]. Several studies have reported that the 
amount of titin is reduced in myocardium of patients with 
dilated cardiomyopathy, and this could be responsible for the 
altered ventricular compliance in this condition [110, 111]. 
Because titin is required for sarcomere formation, lack of 
titin may also contribute to contractile dysfunction of failing 
hearts [112].

 Cytoskeletal Proteins

The cytoskeleton is a complex network of microtubules (pri-
marily tubulin), nonsarcomeric actin, and intermediate fila-
ments (primarily desmin). Tubulin is the protein of 
microtubules, which are hollow tubes formed from α- and 

       . Table 17.1 Myocyte protein families

Contractile proteins Myosin, α-actin, α-tropomyosin, 
troponins C, I, and T

Sarcomeric skeleton Titin, α-actinin, M-line proteins: 
M-protein, myosin-binding 
protein-C

Cytoskeletal proteins Tubulin, desmin, nonsarcomeric 
actin

Membrane-associated 
proteins

Vinculin, talin, dystrophin, 
spectrin, integrins

Proteins of the intercalated 
disk

Connexins, cadherins, catenins

Source: Kostin S, Heling A, Hein S, Scholz D, Klovekorn W-P, 
Schaper J. The protein composition of the normal and diseased 
cardiac myocyte. Heart Fail Rev. 1998;2:245–60

Desmin

MyBP-C

M-protein

TITIN

I-band

Titin

Z-disc

Tropomyosin actin

Tn-T Tn-C

Myosin heads

Tn-I

Z-disc

A-band

Thick filament
Thin filament

MyBP-C

 . Fig. 17.5 Diagram of the 
myocyte sarcomeric proteins. 
(Courtesy of H. L. Granzier.) MyBP-C 
myosin-binding protein-C, Tn-C 
troponin C, Tn-I troponin I, Tn-T 
troponin T
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β-tubulin surrounding the nucleus and spreading mostly in a 
longitudinal direction throughout the entire cell. The multi-
functional roles of microtubules include mitosis, intracellu-
lar transport, organization of organelles, cell motility, 
determination of cell shape, receptor modulation, and signal-
ing [113]. Desmin surrounds the Z-disks and connects the 
sarcomeres so that they are kept in register during contrac-
tion. Desmin filaments also link myofibrils to one another, to 
the sarcolemma, and to the nuclear envelope [114]. The des-
min network plays a role in the underlying structural integ-
rity of the myocyte, as well as participating in the signaling 
processes needed for integration of cellular responses to 
external and internal stimuli [114].

In failing human myocardium, both tubulin and desmin 
are increased [115]. The increase in these proteins mainly 
occurs in cells that lack myofilaments and could, therefore, 
help maintain cellular stability. Tubulin accumulation plays a 
role in certain models of pressure-overload hypertrophy 
[116]. In feline right ventricular hypertrophy resulting from 
pulmonary artery banding, isolated myocytes show contrac-
tile dysfunction and loss of compliance. These changes are 
accompanied by an increase in total and polymerized tubulin 
[117–119].

Desmin-related cardiomyopathies that have, as a hall-
mark, abnormal deposits of desmin aggregates are increas-
ingly reported. A progressive increase of desmin protein and 
filaments was shown to accompany the transition from 
hypertrophy to HF [120]. Overexpression and altered distri-
bution of desmin were also observed in dilated cardiomyopa-
thy [115]. The absence of an intact desmin filament system 
may also be involved in cardiomyocyte hypertrophy and car-
diac dilation with compromised systolic function [121]. 
Whether alteration in desmin quantity is a cause or a conse-
quence of HF is not yet clear.

 Membrane-Associated Proteins

Membrane-associated proteins include dystrophin, vinculin, 
talin, spectrin, and integrins, which are involved in fixation 
of sarcomeres to the lateral sarcolemma and stabilization of 
the T-tubular system [67, 122, 123]. Mutations of these pro-
teins have been shown to cause dilated cardiomyopathy 
[124–126]. Dystrophin connects intracellular actin and 
extracellular laminin independent of integrin binding [127] 
and plays an important role in promoting the action of the 
cytoskeleton as a stabilizing force and as a mechanotransduc-
tor [128].

 Intercalated Disk Proteins

The intercalated disk consists of three different types of spe-
cialized membranes: fascia adherens, desmosomes, and gap 
junctions [129]. Fascia adherens establish the longitudinal 
connections with the contractile filaments. The desmosomes 
are connected to intracellular desmin via desmoplakins. 

Connexins are four-pass transmembrane proteins that are 
assembled in groups of six to form hemichannels, or connex-
ons, and two hemichannels combined to form a gap junction. 
Gap junctions are responsible for the orderly spread of elec-
trical excitation from one myocyte to the next in the heart. 
Remodeling of gap junction and connexin expression is a 
conspicuous feature of human congestive HF and other car-
diac conditions with a dysrhythmic tendency. Remodeling of 
gap junctions and reduced connexin43 levels may contribute 
to slowing of conduction [130, 131]. Evidence from experi-
mental animals strengthens the case that gap junction 
remodeling is a key determinant of arrhythmias in the dis-
eased heart [132, 133].

 Alterations in the Nonmyocyte 
Compartment

Apart from the myocyte compartment, the chronically fail-
ing heart is characterized by iterations in the extracellular 
matrix (ECM), particularly by fibrous tissue formation [62]. 
Such an adverse accumulation of ECM raises myocardial 
stiffness and impairs contractile behavior [134].

 Extracellular Matrix Remodeling

The extracellular matrix of the heart is made up of a number 
of structural proteins including fibrillar collagen, smaller 
amounts of elastin, laminin, fibronectin, and signaling pep-
tides. The complex collagen three-dimensional weave, mainly 
consisting of type I collagen, interconnects individual 
 myocytes through a collagen-integrin-cytoskeletal-myofibril 
arrangement. This network supports cardiac myocytes dur-
ing contraction and relaxation and also provides a mecha-
nism for translating individual myocyte shortening and force 
generation into ventricular contraction. It is also responsible 
for much of the ventricle’s passive diastolic stiffness [135]. In 
both human and animal studies, progressive LV remodeling 
and dysfunction are associated with significant changes in 
the ECM [136–139]. The specific changes in serological 
markers of collagen turnover occurring in HF with preserved 
versus reduced systolic function need to be clarified [140].

The structural hallmark of prolonged pressure-overload 
hypertrophy is increased collagen accumulation between 
individual myocytes and myocyte fascicles (. Fig. 17.6) [141, 
142]. Thus, the highly organized architecture of the ECM 
undergoes significant alterations in collagen structure, com-
position, and geometry caused by increased collagen synthe-
sis, postsynthetic processing, posttranslational modification, 
and decreased degradation and turnover. This “reactive” col-
lagen deposition is characterized by both perivascular and 
interstitial fibrosis [135, 143, 144]. The changes in collagen 
homeostasis that occur during the development of chronic 
pressure-overload hypertrophy are directly associated with 
increased myocardial diastolic stiffness properties, which in 
turn cause abnormal diastolic filling [142, 145, 146]. Indeed, 
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clinical evidence suggests that progressive ECM accumula-
tion and diastolic dysfunction are important underlying 
pathophysiological mechanisms for HF in patients with 
pressure- overload hypertrophy [147, 148].

Because of the persistently elevated preload in volume- 
overload hypertrophy, a much different pattern of ECM 
remodeling occurs. In large-animal models of volume- 
overload hypertrophy caused by chronic mitral regurgita-
tion, the LV remodeling process is accompanied by increased 
degradation of collagen fibrils surrounding individual myo-
cytes [80]. These changes in ECM support are associated with 
changes in isolated LV myocyte geometry where the cardiac 
cells increase in length. Representative scanning electron 
micrographs taken from a model of canine mitral regurgita-
tion [149] are shown in . Fig. 17.7 and show the profound 
differences in ECM structure and composition compared 
with normal myocardium. Increased ECM proteolytic activ-
ity likely contributes to the reduced ECM content and sup-
port and, thereby, facilitates the overall LV remodeling 
process [150].

Although the mechanisms by which increased degrada-
tion of collagen promotes LV dilatation and global LV dys-

function are not entirely clear, dissolution of the collagen 
weave may lead to increased elasticity and contribute to mus-
cle fiber slippage and, therefore, an increase in chamber size 
[145]. Loss of collagen struts connecting individual myocytes 
could prevent transduction of individual myocyte contrac-
tions into myocardial force development, resulting in reduced 
myocardial systolic performance.

The ECM and, particularly, collagen are under dynamic 
control of two sets of proteins: those that favor degradation 
and those that tend to inhibit it. The dissolution or degrada-
tion of collagen is predominantly related to the activation of 
matrix metalloproteinases (MMPs), a family of zinc- 
containing proteins that includes collagenases, gelatinases, 
stromelysins, and membrane-type MMPs [150]. A critical 
control point for MMP activity is through the inhibition of 
the activated enzyme by the action of a group of specific 

 . Fig. 17.6 Scanning electron micrographs taken from normal 
nonhuman primate left ventricular myocardium and following the 
induction of pressure-overload hypertrophy (POH). These microscopic 
studies demonstrate thickening of the collagen weave and overall 
increased relative content between myocytes with POH. Source: 
Abrahams C, Janicki JS, Weber KT. Myocardial hypertrophy in Macaca 
fascicularis. Structural remodeling of the collagen matrix. Lab Invest. 
1987;56(6):676–83

 . Fig. 17.7 Scanning electron micrographs taken from normal 
canine left ventricular myocardium following chronic mitral 
regurgitation that causes a volume-overload hypertrophy (VOH). In 
this model of VOH, a loss of normal ECM architecture was 
demonstrated between individual myocytes (arrows), and the collagen 
supporting network is poorly organized. Source: Spinale FG. Myocardial 
matrix remodeling and the matrix metalloproteinases: influence on 
cardiac form and function. Physiol Rev. 2007;87(4): 1285–342
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MMP inhibitors termed tissue inhibitors of metalloprotein-
ases (TIMPs) [150]. The TIMPs are low-molecular-weight 
proteins that can combine noncovalently to active MMPs, 
inhibiting their activity [151, 152].

While the contributory mechanisms for the changes in 
plasma MMP levels remain speculative, an association 
between changes in plasma MMP levels to adverse LV 
remodeling has emerged. A Framingham Heart substudy 
showed that increased plasma MMP-9 levels were associated 
with LV dilation [153]. Elevated TIMP-1 plasma levels have 
been associated with major cardiovascular risk factors and 
with the presence of LV hypertrophy [153]. Furthermore, 
changes in plasma TIMP-1 levels have been associated with 
increased mortality [154]. However, it is likely that the 
changes in plasma MMP and TIMP levels observed in these 
studies will be influenced by the underlying etiology of the 
cardiovascular disease process and, therefore, that future 
studies will be needed. Furthermore, these studies only 
measured MMP and TIMP plasma levels at one point in 
time, so the temporal relation to the natural history of the 
LV remodeling process and progression to HF remains to be 
established.

 Myocardial Fibrosis

Fibrosis in HF is an ongoing, active process of increasing col-
lagen concentration and not simply a response to myocyte 
injury [134]. There are two types of fibrosis: reparative and 
reactive. Reparative fibrosis occurs in response to a loss of 
myocardial cells and is mainly interstitial. In contrast, reac-
tive fibrosis is observed in the absence of cell loss as a reac-
tion to changes in myocardial load or inflammation and is 
primarily perivascular. During ventricular remodeling, reac-
tive and reparative fibrosis usually coexist. After MI, repara-
tive fibrosis is organized as a scar and is surrounded by 
reactive fibrosis and myocyte hypertrophy [135].

The mechanisms responsible for fibrosis are still contro-
versial. Fibrosis is not directly induced by myocardial stretch 
or mechanical overload. Chronic volume overload due to 
exercise training, atrial septal defect, or aortic insufficiency is 
not accompanied by ventricular fibrosis [155, 156]. In con-
trast, pressure overload is frequently associated with fibrosis. 
It has been proposed that ventricular fibrosis seen in arterial 
hypertension is caused by associated factors linked to this 
condition, such as ischemia [157] and neurohormones [134]. 
Humoral factors, particularly those of the renin-angiotensin- 
aldosterone system, are believed to be responsible for fibro-
sis. Angiotensin II and aldosterone have been implicated in 
the process as they stimulate collagen synthesis in cultured 
cardiac fibroblasts, and angiotensin II inhibits collagen deg-
radation [158, 159].

Myocardial fibrosis has a number of deleterious effects on 
cardiac function. A two- to threefold increase in myocardial 
collagen content alters ventricular filling properties particu-
larly by increasing diastolic stiffness; a fourfold or greater 
increase in fibrosis also affects systolic function [160]. 

Fibrosis contributes to ventricular arrhythmias because dis-
proportionate collagen accumulation creates myocardial 
electrical heterogeneity. Fibrosis is therefore one of the major 
biological determinants of fatal issues in cardiac remodeling, 
including congestive HF, severe arrhythmias, and sudden 
death.

 Changes in Global Structure and Function

The mechanical effects of LV remodeling set in motion sev-
eral self-sustaining deleterious consequences. As the ventri-
cle enlarges, LV geometry alters from a normal prolate ellipse 
to a mechanically disadvantageous spherical or globular 
shape. The result is an increase in meridional wall stress 
[161], abnormal distribution of fiber shortening, increase in 
oxygen consumption [161, 162], and abnormal myocardial 
bioenergetics [163]. The spherical shape of the LV leads to 
dilatation of the atrioventricular ring and stretching of the 
papillary muscles, resulting in functional mitral regurgita-
tion [164], which contributes to a further decrease in forward 
cardiac output. Moreover, the high LV end-diastolic volume 
and pressure promote subendocardial ischemia that aggra-
vates LV dysfunction and neurohormonal activation, 
decreases exercise capacity [165], and increases the risk of 
ventricular arrhythmias [166].

 Compensatory Versus Maladaptive 
Remodeling

A fundamental question that must be addressed before 
embarking on a strategy to reverse hypertrophic and structural 
myocardial remodeling is whether remodeling is good or bad. 
Distinction is often made between a compensatory (adaptive) 
and a maladaptive process. An adaptive component enables 
the heart to maintain function in response to pressure or vol-
ume overloading in the acute phase of cardiac injury [167]. 
Acute distension of the viable myocardium and the operation 
of the Frank-Starling mechanism through an increase in sarco-
mere length are, therefore, entirely appropriate beneficial 
responses. Likewise, augmentation of chronotropic and ino-
tropic activity through adrenergic receptor stimulation that 
tends to maintain pump function during the abrupt loss of 
contractile tissue can be considered compensatory.

Progressive LV dilatation after MI can also help to main-
tain stroke volume in the face of reduced contractile function 
and has been considered an adaptive and compensatory 
response [3, 168]. Under these circumstances, however, 
increased LV volume is not due to sarcomere stretch, but 
because of the addition of new sarcomeres in series [78]. 
Therefore, it is not a mechanism of enhancing contractility 
on the basis of Frank-Starling mechanism. Such a progressive 
remodeling and LV dilation does not normalize, but increases 
wall stress and is associated with a poor prognosis [19, 168].

Moreover, the prevention of very early LV dilation with 
the use of angiotensin-converting enzyme (ACE) inhibitors 
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and beta-blockers does not have any deleterious hemody-
namic consequence [169–171]. Indeed, Sharpe et  al. [169] 
have demonstrated that the attenuation of LV remodeling 
with early initiation of ACE inhibitors is associated with a 
greater increase in stroke volume as compared with a pla-
cebo. Furthermore, the prevention of remodeling by early 
initiation of an ACE inhibitor or beta-blocker, after MI, in 
selected populations with LV dysfunction [31, 34] and even 
in unselected populations [172] is associated with significant 
reduction in mortality and morbidity [34, 170, 173, 174]. 
Hence, ventricular remodeling and dilation after MI may be 
maladaptive from the very start and should be a target for 
aggressive antiremodeling therapy.

In contrast, an increase in ventricular mass that helps to 
normalize wall stress in aortic stenosis and hypertension may 
be an appropriate compensatory response. Because systolic 
stress (afterload) is a major determinant of ejection perfor-
mance, normalization of systolic stress helps to maintain a 
normal EF while generating high levels of systolic pressure 
[12]. However, LV hypertrophy has been shown to be an 
important independent risk factor for mortality and morbid-
ity [17]. Similarly, a proportional increase in chamber vol-
ume, wall thickness, and mass in mitral and aortic 
regurgitation normalizes wall stress and is an obligatory 
response to maintain a large stroke volume that is necessi-
tated by the regurgitant volume. Until the initial volume and 
pressure overload is matched by adequate hypertrophy, the 
process may be considered adaptive and compensatory. 
Eventually, a mismatch occurs with progressive dilation and 
the process becomes maladaptive and decompensatory, and 
HF becomes clinically manifest [175, 176]. There is no data 
to indicate when the transition from possible adaptive to 
maladaptive remodeling occurs; such a transition and its 
time course can vary greatly. However, once established 
beyond a certain phase, remodeling likely contributes to pro-
gression of HF. Thus, whether remodeling is beneficial or del-
eterious cannot be viewed as a stereotypical process. Today’s 
challenge is taking advantage of the adaptive features of the 
hypertrophic response while eliminating or at least minimiz-
ing the maladaptive consequences.

 Reverse Remodeling

“Reverse remodeling” is a concept, where progressive LV 
dilatation and deterioration in contractile function are not 
simply arrested, but partially reversed. Two important ques-
tions related to reverse remodeling are: “Do myocytes have 
the ability to remove sarcomeres?” and “Is there any time line 
beyond which reverse remodeling cannot be achieved?”

Surgical and pharmacological experiments have con-
firmed that the regression of myocyte hypertrophy with 
removal of sarcomeres is possible. But insufficient data exist 
to address the second question. Remodeling is believed to be 
reversible early in the natural transition from hypertrophy to 
failure, whereas later, with the development of extensive 
fibrosis, accumulation of cytoskeletal proteins, and loss of the 

contractile filaments, an irreversible process sets in [111]. 
Several therapeutic approaches for HF have been shown to 
halt or even reverse the remodeling process.

 Pharmacological Approaches

Numerous experimental studies have shown that modulating 
neurohormonal activation improves cardiac remodeling 
[177, 178]. McDonald et al. [179] showed that ACE inhibi-
tion and beta-adrenoreceptor blockade can reverse estab-
lished ventricular remodeling in a canine model of discrete 
myocardial damage [179]. A significant reduction of LV mass 
and a trend in reduction of end-diastolic volume were found 
in both captopril- and beta-blocker-treated groups compared 
with the control group [179]. Tamura et  al. [180] reported 
that the administration of angiotensin II type 1 receptor 
blockers produced significant reduction in myocyte volume, 
length, and cross-sectional area in rats with spontaneously 
hypertensive HF—below pretreatment values, suggesting 
true reverse remodeling, rather than simply arrested progres-
sion of myocyte hypertrophy [180]. Xu et  al. [181] studied 
the effect of angiotensin II receptor blocker losartan com-
bined with exercise training in a postinfarction rat model 
and demonstrated that exercise training after MI provides a 
beneficial effect on cardiac function and LV remodeling by 
altering the gene and protein expressions that regulate myo-
cardial fibrosis. In contrast, such effects were only slightly 
improved by combining exercise and losartan [181].

 ACE Inhibitors
The first class of medications shown to beneficially affect 
remodeling and clinical outcomes in patients with HF was 
the ACE inhibitors. In several trials performed in both 
asymptomatic and symptomatic patients with reduced EF, 
ACE inhibitors attenuated the progressive increase in end- 
diastolic and end-systolic volume compared with placebo- 
treated groups [32, 169, 182–184].

 Beta-Blockers
In contrast to ACE inhibitors that attenuate LV remodeling, 
the use of beta-blockers has been associated with significant 
reduction in ventricular volumes and improvement in global 
LV function (reverse remodeling) [30, 31, 33, 185]. Beta- 
blockers were shown to reduce myocardial apoptosis which, 
at least in part, could explain their favorable effect on ven-
tricular remodeling [186].

 Aldosterone Receptor Blockers
Aldosterone receptor blockers have been shown to reverse 
LV remodeling following MI and in patients with HF [187, 
188]. The 4E–Left Ventricular Hypertrophy Study [189] used 
cardiac magnetic resonance imaging (MRI) to compare LV 
mass regression by the selective aldosterone blocker eplere-
none to the ACE inhibitor enalapril and the combination of 
eplerenone/enalapril in hypertensive patients with LV 
hypertrophy. Eplerenone was as effective as enalapril in 
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regression of LV hypertrophy and control of blood pressure. 
The combination of eplerenone and enalapril was more 
effective in reducing LV mass and systolic blood pressure 
than eplerenone alone [189]. In a single-site clinical trial, 
Chan and  colleagues [190] demonstrated with serial cardiac 
magnetic resonance (CMR) that the addition of spironolac-
tone to candesartan has significant beneficial effects on LV 
reverse remodeling in patients with mild to moderate 
chronic systolic HF.

 Angiotensin Receptor Blockers
Several trials demonstrated the beneficial effect of angioten-
sin receptor blockers (ARBs) on LV remodeling. In the 
Valsartan Heart Failure Trial (Val-HeFT) [191, 192], valsar-
tan therapy attenuated LV remodeling [193]. Stratification by 
baseline severity of remodeling showed that patients with 
worse LV enlargement and systolic function are at highest 
risk for an event, yet appear to gain the most antiremodeling 
effect and clinical benefit with valsartan treatment [194]. The 
Losartan Intervention For Endpoint (LIFE) study [195] 
showed that reduction in LV mass by angiotensin II blockade 
was independent of blood pressure reduction, indicating that 
the inhibition of the renin-angiotensin-aldosterone system 
has added benefits beyond blood pressure control [195].

 Isosorbide Dinitrate-Hydralazine Combination
In the first Vasodilator-Heart Failure Trial (V-HeFT-I) [196], 
isosorbide dinitrate combined with hydralazine therapy com-
pared with placebo in patients with HF treated only with 
digoxin and diuretic resulted in a sustained increase in LV EF 
that was associated with improved survival [196]. The African 
American Heart Failure Trial (A-HeFT) confirmed these find-
ings, on top of ACE inhibitors and beta-blockers [197, 198].

 Role of Cell Transplantation and Surgical 
Approaches in Heart Failure

Since about 2000 there has been an explosion of activity in 
the field of cell transplantation and of advanced surgical 
approaches in HF.  These specialized areas are discussed in 
detail elsewhere in this book.

 Cardiac Resynchronization Approach

Beneficial effects of cardiac resynchronization therapy (CRT) 
on survival, New York Heart Association (NYHA) functional 
class, exercise capacity, and quality of life are associated with 
significant improvement in LV remodeling as early as 
1 month after device implantation [199–201] and with fur-
ther, progressive reduction in LV volumes beyond 1 year in 
selective patients [202, 203]. The Cardiac Resynchronization- 
Heart Failure (CARE-HF) study demonstrated an early and 
sustained reduction in NT-pro-BNP with CRT that corre-
lated with improvement in LV dimension and EF and mitral 
regurgitation [204].

 Cardiac Constraint Devices

Preclinical studies have shown that passive ventricular con-
tainment with cardiac constraint devices halts progressive 
ventricular remodeling [205–207] and improves myocyte 
function and structure, as characterized by enhanced myo-
cyte contraction and relaxation, decreased myocyte hyper-
trophy, and decreased interstitial fibrosis [205, 207]. 
Ventricular restraint prevents infarct expansion, improves 
borderzone function, and favorably modifies LV geometry 
and myocardial structure after MI [208–210]. Limited clini-
cal experience with the Acorn CorCap Cardiac Support 
Device and the Paracor HeartNet Device has shown amelio-
ration of symptoms and improvement in LV chamber dimen-
sions and EF. However, the implantation of these devices was 
not associated with improved survival [211–213].

 Conclusions

Ventricular remodeling is a complex process. It results from 
interactions between the initial myocardial injury and altera-
tion in loading conditions and multiple mechanical and neu-
rohormonal factors that are capable of modifying the 
cardiomyocyte phenotype and inducing changes in the extra-
cellular matrix. Myocyte hypertrophy, cellular necrosis and 
apoptosis, interstitial fibrosis, and degradation of collagen 
are the major features of myocardial remodeling. Each of 
these components of the remodeling process contributes 
importantly to the development and progression of HF.  At 
the level of the ventricular chamber, remodeling refers to 
changes in ventricular geometry, volume, and mass. 
Although, initially, it may be compensatory in certain pres-
sure and volume- overload conditions, progressive ventricu-
lar remodeling is ultimately a maladaptive process 
contributing to progression of symptomatic HF and to an 
adverse outcome. After acute MI, however, progressive 
hypertrophy and remodeling of noninfarcted myocardium 
may be harmful from the start.

Ventricular remodeling had emerged as an important 
therapeutic target in HF. Treatment with the goal of slowing 
or reversing remodeling has been shown to improve long- 
term outcome. Additional research is needed to identify the 
molecular processes responsible for remodeling and to 
improve ways to inhibit this maladaptive growth response.

 Future Directions

Enormous effort has been directed to identifying new thera-
peutic strategies with long-term efficacy in HF. The path is 
littered with successes and failures [4], yet advances in myo-
cardial biology, stem cell research, pharmacologic develop-
ments, and mechanical devices hold promise for future 
treatments. A comprehensive understanding of ventricular 
remodeling is obligatory, since it reflects the basic mecha-
nisms of HF development and progression.
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Although multiple studies have documented that inter-
ventions with beneficial effects on HF also generally attenu-
ate or reverse ventricular remodeling and that those failing to 
improve clinical outcomes either have no effect on remodel-
ing or have been associated with adverse remodeling, few 
studies have examined the mechanism by which LV reverse 
remodeling is mediated. Questions remain as to whether the 
reversal of myocyte structural remodeling is accompanied by 
normalization of the biology of the failing myocyte and what 
the mechanisms of changes are at the myocyte level. Further 
research should focus on the molecular and cellular mecha-
nisms involved in adverse and reverse remodeling, on opti-
mizing therapies to prevent remodeling, and on identifying 
appropriate patient groups to target.
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