
7Automata Theory

Key Topics

Finite State Automata
State transition
Deterministic FSA
Non-deterministic FSA
Pushdown automata
Turing Machine

7.1 Introduction

Automata Theory is the branch of computer science that is concerned with the study
of abstract machines and automata. These include finite-state machines, pushdown
automata, and Turing machines. Finite-state machines are abstract machines that
may be in one of a finite number of states. These machines are in only one state at a
time (current state), and the input symbol causes a transition from the current state
to the next state. Finite state machines have limited computational power due to
memory and state constraints, but they have been applied to a number of fields
including communication protocols, neurological systems and linguistics.

Pushdown automata have greater computational power than finite-state machi-
nes, and they contain extra memory in the form of a stack from which symbols may
be pushed or popped. The state transition is determined from the current state of the
machine, the input symbol and the element on the top of the stack. The action may
be to change the state and/or push/pop an element from the stack.

© Springer International Publishing Switzerland 2016
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
DOI 10.1007/978-3-319-44561-8_7

117

The Turing machine is the most powerful model for computation, and this
theoretical machine is equivalent to an actual computer in the sense that it can
compute exactly the same set of functions. The memory of the Turing machine is a
tape that consists of a potentially infinite number of one-dimensional cells. The
Turing machine provides a mathematical abstraction of computer execution and
storage, as well as providing a mathematical definition of an algorithm. However,
Turing machines are not suitable for programming, and therefore they do not
provide a good basis for studying programming and programming languages.

7.2 Finite-State Machines

The neurophysiologists Warren McCulloch and Walter Pitts published early work
on finite state automata in 1943. They were interested in modelling the thought
process for humans and machines. Moore and Mealy developed this work further,
and their finite-state machines are referred to as the ‘Mealy machine’ and the
‘Moore machine’. The Mealy machine determines its outputs through the current
state and the input, whereas the output of Moore’s machine is based upon the
current state alone.

Definition 7.1 (Finite State Machine) A finite state machine (FSM) is an abstract
mathematical machine that consists of a finite number of states. It includes a start
state q0 in which the machine is in initially; a finite set of states Q; an input alphabet
R; a state transition function d; and a set of final accepting states F (where F � Q).

The state transition function d takes the current state and an input symbol, and
returns the next state. That is, the transition function is of the form

d : Q � R ! Q

The transition function provides rules that define the action of the machine for
each input symbol, and its definition may be extended to provide output as well as a
transition of the state. State diagrams are used to represent finite state machines, and
each state accepts a finite number of inputs. A finite-state machine (Fig. 7.1) may be
deterministic or non-deterministic, and a deterministic machine changes to exactly
(or at most)1 one state for each input transition, whereas a non-deterministic
machine may have a choice of states to move to for a particular input symbol.

Finite state automata can compute only very primitive functions, and so they are
not adequate as a model for computing. There are more powerful automata such as
the Turing machine that is essentially a finite automaton with a potentially infinite
storage (memory). Anything that is computable is computable by a Turing machine.

1The transition function may be undefined for a particular input symbol and state.

118 7 Automata Theory

A finite-state machine can model a system that has a finite number of states, and
a finite number of inputs/events that can trigger transitions between states. The
behaviour of the system at a point in time is determined from the current state and
input, with behaviour defined for the possible input to that state. The system starts
in a particular initial state.

A finite-state machine (also known as finite-state automata) is a quintuple (R, Q,
d, q0, F). The alphabet of the FSM is given by R; the set of states is given by Q; the
transition function is defined by d: Q � R ! Q; the initial state is given by q0; and
the set of accepting states is given by F where F is a subset of Q. A string is given
by a sequence of alphabet symbols: i.e. s 2 R*, and the transition function d can be
extended to d*: Q � R* ! Q.

A string s 2 R* is accepted by the finite-state machine if d*(q0, s) = qf where
qf 2 F, and the set of all strings accepted by a finite-state machine is the language
generated by the machine. A finite-state machine is termed deterministic (Fig. 7.2)
if the transition function d is a function,2 and otherwise (where it is a relation) it is
said to be non-deterministic. A non-deterministic automata is one for which the next
state is not uniquely determined from the present state and input symbol, and the
transition may be to a set of states rather than a single state.

For the example above the input alphabet is given by R = {0, 1}; the set of states
by {A, B, C}; the start state by A; the final state by {C}; and the transition function
is given by the state transition table below (Table 7.1). The language accepted by
the automata is the set of all binary strings that end with a one that contain exactly
two ones.

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

Fig. 7.1 Finite state machine

A B C

0 0

1 1

Fig. 7.2 Deterministic FSM

2It may be a total or a partial function (as discussed in Chap. 2).

7.2 Finite-State Machines 119

http://dx.doi.org/10.1007/978-3-319-44561-8_2

A non-deterministic automaton (NFA) or non-deterministic finite state machine
is a finite state machine where from each state of the machine and any given input,
the machine may jump to several possible next states. However, a non-deterministic
automaton (Fig. 7.3) is equivalent to a deterministic automaton, in that they both
recognize the same formal language (i.e. regular languages as defined in Chomsky’s
classification). For any non-deterministic automaton, it is possible to construct the
equivalent deterministic automaton using power set construction.

NFAs were introduced by Scott and Rabin in 1959, and a NFA is defined
formally as a 5-tuple (Q, R, d, q0, F) as in the definition of a deterministic
automaton, and the only difference is in the transition function d.

d : Q� R ! PQ

The non-deterministic finite state machine M1 = (Q, R, d, q0, F) may be con-
verted to the equivalent deterministic machine M2 = (Q′, R, d′, q0′, F′) where

Q′ = ℙQ (the set of all subsets of Q)
q00 = {q0}
F′ = {q 2 Q′ and q \ F 6¼ ∅}
d′ (q, r) = [p2q d(p, r) for each state q 2 Q′ and r 2 R.

The set of strings (or language) accepted by an automaton M is denoted L(M).
That is, L(M) = {s:|d*(q0, s) = qf for some qf 2 F}. A language is termed regular if
it is accepted by some finite-state machine. Regular sets are closed under union,
intersection, concatenation, complement, and transitive closure. That is, for regular
sets A, B � R* then

• A [B and A \ B are regular.
• R*\A (i.e. Ac) is regular.
• AB and A* is regular.

Table 7.1 State transition
table

State 0 1

A A B

B B C

C – –

Fig. 7.3 Non-deterministic finite state machine

120 7 Automata Theory

The proof of these properties is demonstrated by constructing finite-state
machines to accept these languages. The proof for A \ B is to construct a machine
MA\B that mimics the execution of MA and MB and is in a final state if and only if
both MA and MB are in a final state. Finite-state machines are useful in designing
systems that process sequences of data.

7.3 Pushdown Automata

A pushdown automaton (PDA) is essentially a finite-state machine with a stack, and
its three components (Fig. 7.4) are an input tape; a control unit; and a potentially
infinite stack. The stack head scans the top symbol of the stack, and two operations
(push or pop) may be performed on the stack. The push operation adds a new
symbol to the top of the stack, whereas the pop operation reads and removes an
element from the top of the stack.

A pushdown automaton may remember a potentially infinite amount of infor-
mation, whereas a finite state automaton remembers only a finite amount of
information. A PDA also differs from a FSM in that it may use the top of the stack
to decide on which transition to take, and it may manipulate the stack as part of
performing a transition. The input and current state determine the transition in a
finite-state machine, and a FSM has no stack to work with.

A pushdown automaton is defined formally as a 7-tuple (R, Q, C, d, q0, Z, F).
The set R is a finite set which is called the input alphabet; the set Q is a finite set of
states; C is the set of stack symbols; d, is the transition function which maps
Q � {R [{e}}3 � C into finite subsets of Q � C*4; q0 is the initial state; Z is the
initial stack top symbol on the stack (i.e. Z 2 C); and F is the set of accepting states
(i.e. F � Q).

Stack

Stack head

Finite
Control
Unit

Takes input

Input Tape

Push/pop
Fig. 7.4 Components of
pushdown automata

3The use of{R [{e}}is to formalize that the PDA can either read a letter from the input, or
proceed leaving the input untouched.
4This could also be written as d:Q � {R [{e}} � C! ℙ(Q � C*). It may also be described as a
transition relation.

7.2 Finite-State Machines 121

Figure 7.5 shows a transition from state q1 to q2, which is labelled as a,
b ! c. This means that at if the input symbol a occurs in state q1, and the symbol
on the top of the stack is b, then b is popped from the stack and c is pushed onto the
stack. The new state is q2.

In general, a pushdown automaton has several transitions for a given input
symbol, and so pushdown automata are mainly non-deterministic. If a pushdown
automaton has at most one transition for the same combination of state, input
symbol, and top of stack symbol it is said to be a deterministic PDA (DPDA). The
set of strings (or language) accepted by a pushdown automaton M is denoted L(M).

The class of languages accepted by pushdown automata is the context free
languages, and every context free grammar can be transformed into an equivalent
non-deterministic pushdown automaton. Chapter 12 has more detailed information
on the classification of languages,

Example (Pushdown Automata)
Construct a non-deterministic pushdown automaton which recognizes the language
{0n 1n| n � 0}.

Solution
We construct a pushdown automaton M = (R, Q, C, d, q0, Z, F) where R = {0,1};
Q = {q0, q1, qf}; C = {A, Z}; q0 is the start state; the start stack symbol is Z; and the
set of accepting states is given by {qf}:. The transition function (relation) d is
defined by

1: ðq0; 0; ZÞ ! ðq0;AZÞ
2: ðq0; 0;AÞ ! ðq0;AAÞ
3: ðq0; e; ZÞ ! ðq1; ZÞ
4: ðq0; e;AÞ ! ðq1;AÞ
5: ðq1; 1;AÞ ! ðq1; eÞ
6: ðq1; e; ZÞ ! ðqf ; ZÞ

The transition function (Fig. 7.6) essentially says that whenever the value 0
occurs in state q0 then A is pushed onto the stack. Parts (3) and (4) of the transition
function essentially states that the automaton may move from state q0 to state q1 at
any moment. Part (5) states when the input symbol is 1 in state q1 then one symbol

q1 q2

a, b → c

Input symbol
Top stack
symbol Push symbol

Fig. 7.5 Transition in pushdown automata

122 7 Automata Theory

http://dx.doi.org/10.1007/978-3-319-44561-8_12

A is popped from the stack. Finally, part (6) states the automaton may move from
state q1 to the accepting state qf only when the stack consists of the single stack
symbol Z.

For example, it is easy to see that the string 0011 is accepted by the automaton,
and the sequence of transitions is given by

ðq0; 0011; ZÞ ‘ ðq0; 011;AZÞ ‘ ðq0; 11;AAZÞ ‘ ðq1; 11;AAZÞ
‘ ðq1; 1;AZÞ ‘ ðq1; e;ZÞ ‘ ðqf ; ZÞ:

7.4 Turing Machines

Turing introduced the theoretical Turing Machine in 1936, and this abstract
mathematical machine consists of a head and a potentially infinite tape that is
divided into frames (Fig. 7.7). Each frame may be either blank or printed with a
symbol from a finite alphabet of symbols. The input tape may initially be blank or
have a finite number of frames containing symbols. At any step, the head can read
the contents of a frame; the head may erase a symbol on the tape, leave it
unchanged, or replace it with another symbol. It may then move one position to the
right, one position to the left, or not at all. If the frame is blank, the head can either
leave the frame blank or print one of the symbols.

q0
q1

ε;Z/Zε
qf

0;Z/AZ
0;A/AA 1;A/ε

Fig. 7.6 Transition function for pushdown automata M

Tape Head (move left or right)

Control
Unit

Potentially Infinite Tape

Transition Function
Finite Set of States

Fig. 7.7 Turing machine

7.3 Pushdown Automata 123

Turing believed that a human with finite equipment and with an unlimited
supply of paper to write on could do every calculation. The unlimited supply of
paper is formalized in the Turing machine by a paper tape marked off in squares,
and the tape is potentially infinite in both directions. The tape may be used for
intermediate calculations as well as input and output. The finite number of con-
figurations of the Turing machine was intended to represent the finite states of mind
of a human calculator.

The transition function determines for each state and the tape symbol what the
next state to move to and what should be written on the tape, and where to move the
tape head.

Definition 7.2 (Turing Machine) A Turing machine M = (Q, C, b, R, d, q0, F) is a
7-tuple as defined formally in [1] as:

• Q is a finite set of states
• C is a finite set of the tape alphabet/symbols
• b 2 C is the blank symbol (This is the only symbol that is allowed to occur

infinitely often on the tape during each step of the computation)
• R is the set of input symbols and is a subset of C (i.e. C = R [{b}).
• d: Q � C ! Q � C � {L, R}5 is the transition function. This is a partial

function where L is left shift and R is right shift
• q0 2 Q is the initial state.
• F � Q is the set of final or accepting states.

The Turing machine is a simple machine that is equivalent to an actual physical
computer in the sense that it can compute exactly the same set of functions. It is
much easier to analyse and prove things about than a real computer, but it is not
suitable for programming and therefore does not provide a good basis for studying
programming and programming languages.

Figure 7.8 illustrates the behaviour when the machine is in state q1 and the
symbol under the tape head is a, where b is written to the tape and the tape head
moves to the left and the state changes to q2.

A Turing machine is essentially a finite-state machine (FSM) with an unbounded
tape. The tape is potentially infinite and unbounded, whereas real computers have a
large but finite store. The machine may read from and write to the tape. The FSM is
essentially the control unit of the machine, and the tape is essentially the store.
However, the store in a real computer may be extended with backing tapes and
disks, and in a sense may be regarded as unbounded. However, the maximum
amount of tape that may be read or written within n steps is n.

5We may also allow no movement of the tape head to be represented by adding the symbol ‘N’ to
the set.

124 7 Automata Theory

A Turing machine has an associated set of rules that defines its behaviour. Its
actions are defined by the transition function. It may be programmed to solve any
problem for which there is an algorithm. However, if the problem is unsolvable then
the machine will either stop or compute forever. The solvability of a problem may
not be determined beforehand. There is, of course, some answer (i.e. either the
machine halts or it computes forever). The applications of the Turing machine to
computability and decidability are discussed in Chap. 13.

Turing also introduced the concept of a Universal Turing Machine and this
machine is able to simulate any other Turing machine.

7.5 Review Questions

1. What is a finite state machine?
2. Explain the difference between a deterministic and non-deterministic finite

state machine.
3. Show how to convert the non-deterministic finite state automaton in

Fig. 7.3 to a deterministic automaton.
4. What is a pushdown automaton?
5. What is a Turing machine?
6. Explain what is meant by the language accepted by an automaton.
7. Give an example of a language accepted by a pushdown automaton but

not by a finite state machine.
8. Describe the applications of the Turing machine to computability and

decidability.

7.6 Summary

Automata Theory is concerned with the study of abstract machines and automata.
These include finite-state machines, pushdown automata and Turing machines.
Finite-state machines are abstract machines that may be in one of a finite number of

q1 q2

a / b L

Fig. 7.8 Transition on turing machine

7.4 Turing Machines 125

http://dx.doi.org/10.1007/978-3-319-44561-8_13

states. These machines are in only one state at a time (current state), and the state
transition function determines the new state from the current state and the input
symbol. Finite-state machines have limited computational power due to memory
and state constraints, but they have been applied to a number of fields including
communication protocols and linguistics.

Pushdown automata have greater computational power than finite-state machi-
nes, and they contain extra memory in the form of a stack from which symbols may
be pushed or popped. The state transition is determined from the current state of the
machine, the input symbol and the element on the top of the stack. The action may
be to change the state and/or push/pop an element from the stack.

The Turing machine is the most powerful model for computation, and it is
equivalent to an actual computer in the sense that it can compute exactly the same
set of functions. The Turing machine provides a mathematical abstraction of
computer execution and storage, as well as providing a mathematical definition of
an algorithm

Reference

1. Introduction to Automata Theory, Languages and Computation. Hopcroft, J.E., Ullman, J.D.:
Addison-Wesley, Boston (1979).

126 7 Automata Theory

	7 Automata Theory
	7.1 Introduction
	7.2 Finite-State Machines
	7.3 Pushdown Automata
	7.4 Turing Machines
	7.5 Review Questions
	7.6 Summary
	Reference

