
18Formal Methods

Key Topics

Vienna Development Method
Z Specification Language
B Method
Process Calculi
Model-oriented approach
Axiomatic approach
Usability of Formal Methods

18.1 Introduction

The term ‘formal methods’ refers to various mathematical techniques used for the
formal specification and development of software. They consist of a formal spec-
ification language, and employ a collection of tools to support the syntax checking
of the specification, as well as the proof of properties of the specification. They
allow questions to be asked about what the system does independently of the
implementation.

The use of mathematical notation avoids speculation about the meaning of
phrases in an imprecisely worded natural language description of a system. Natural
language is inherently ambiguous, whereas mathematics employs a precise rigorous
notation. Spivey [1] defines formal specification as:

© Springer International Publishing Switzerland 2016
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
DOI 10.1007/978-3-319-44561-8_18

299



Definition 18.1 (Formal Specification) Formal specification is the use of mathe-
matical notation to describe in a precise way the properties that an information
system must have, without unduly constraining the way in which these properties
are achieved.

The formal specification thus becomes the key reference point for the different
parties involved in the construction of the system. It may be used as the reference
point in the requirements; program implementation; testing and program docu-
mentation. It promotes a common understanding for all those concerned with the
system. The term ‘formal methods’ is used to describe a formal specification lan-
guage and a method for the design and implementation of computer systems.

The specification is written in a mathematical language, and the implementation
is derived from the specification via step-wise refinement.1 The refinement step
makes the specification more concrete and closer to the actual implementation.
There is an associated proof obligation to demonstrate that the refinement is valid,
and that the concrete state preserves the properties of the more abstract state. Thus,
assuming that the original specification is correct, and the proofs of correctness of
each refinement step are valid, then there is a very high degree of confidence in the
correctness of the implemented software.

Step-wise refinement is illustrated as follows: the initial specification S is the
initial model M0; it is then refined into the more concrete model M1, and M1 is then
refined into M2, and so on until the eventual implementation Mn = E is produced.

S ¼ M0�M1�M2�M3� � � � �Mn ¼ E

Requirements are the foundation of the system to be built, and irrespective of the
best design and development practices, the product will be incorrect if the
requirements are incorrect. The objective of requirements validation is to ensure
that the requirements reflect what is actually required by the customer (in order to
build the right system). Formal methods may be employed to model the require-
ments, and the model exploration yields further desirable or undesirable properties.
The ability to prove that certain properties are true of the specification is very
valuable, especially in safety critical and security critical applications. These
properties are logical consequences of the definition of the requirements, and,
where appropriate, the requirements may need to be amended. Thus, formal
methods may be employed in a sense to debug the requirements during require-
ments validation.

The use of formal methods generally leads to more robust software and to
increased confidence in its correctness. The challenges involved in the deployment

1It is debatable whether step-wise refinement is cost effective in mainstream software engineering,
as it involves re-writing a specification ad nauseam. It is time-consuming, as significant time is
required to prove that each refinement step is valid.

300 18 Formal Methods



of formal methods in an organization include the education of staff in formal
specification, as the use of these mathematical techniques may be a culture shock to
many staff.

Formal methods have been applied to a diverse range of applications, including
the security critical field; the safety critical field; the railway sector; microprocessor
verification; the specification of standards, and the specification and verification of
programs.

Parnas and others have criticized formal methods on the following grounds
(Table 18.1).

However, formal methods are potentially quite useful and reasonably easy to
use. The use of a formal method such as Z or VDM forces the software engineer to
be precise and helps to avoid ambiguities present in natural language. Clearly, a
formal specification should be subject to a peer review to provide confidence in its
correctness. New formalisms need to be intuitive to be usable by practitioners. The
advantage of classical mathematics is that it is familiar to students.

Table 18.1 Criticisms of formal methods

No. Criticism

1 Often the formal specification is as difficult to read as the programa

2 Many formal specifications are wrongb

3 Formal methods are strong on syntax but provide little assistance in deciding on what
technical information should be recorded using the syntaxc

4 Formal specifications provide a model of the proposed system. However, a precise
unambiguous mathematical statement of the requirements is what is neededd

5 Step-wise refinement is unrealistic.e It is like, for example, deriving a bridge from the
description of a river and the expected traffic on the bridge. There is always a need for a
creative step in design

6 Much unnecessary mathematical formalisms have been developed rather than using the
available classical mathematicsf

aOf course, others might reply by saying that some of Parnas’s tables are not exactly intuitive, and
that the notation he employs in some of his tables is quite unfriendly. The usability of all of the
mathematical approaches needs to be enhanced if they are to be taken seriously by industrialists
bObviously, the formal specification must be analysed using mathematical reasoning and tools to
provide confidence in its correctness. The validation may be carried out using mathematical proof
of key properties of the specification; software inspections; or specification animation
cVDM includes a method for software development as well as the specification language
dModels are extremely valuable as they allow simplification of the reality. A mathematical study of
the model demonstrates whether it is a suitable representation of the system. Models allow
properties of the proposed requirements to be studied prior to implementation
eStep-wise refinement involves rewriting a specification with each refinement step producing a
more concrete specification (that includes code and formal specification) until eventually the
detailed code is produced. However, tool support may make refinement easier
fApproaches such as VDM or Z are useful in that they add greater rigour to the software
development process. Classical mathematics is familiar to students and therefore it is desirable that
new formalisms are introduced only where absolutely necessary

18.1 Introduction 301



18.2 Why Should We Use Formal Methods?

There is a strong motivation to use best practice in software engineering in order to
produce software adhering to high-quality standards. Quality problems with soft-
ware may cause minor irritations or major damage to a customer’s business
including loss of life.2 Formal methods are a leading-edge technology that may help
companies to reduce the occurrence of defects in software products. Brown [2]
argues that for the safety critical field that:

Comment 18.1 (Missile Safety)Missile systems must be presumed dangerous until
shown to be safe, and that the absence of evidence for the existence of dangerous
errors does not amount to evidence for the absence of danger.

This suggests that companies in the safety critical field need to demonstrate that
every reasonable practice was taken to prevent the occurrence of defects. One such
practice is the use of formal methods, and its exclusion may need to be justified in
some domains. It is quite possible that a software company may be sued for
software which injures a third party,3 and this suggests that companies will need a
rigorous quality assurance system to prevent the occurrence of defects.

There is some evidence to suggest that the use of formal methods provides
savings in the cost of the project. For example, a 9 % cost saving is attributed to the
use of formal methods during the CICS project; the T800 project attributes a
12-month reduction in testing time to the use of formal methods. These are dis-
cussed in more detail in Chap. 1 of [3].

The use of formal methods is mandatory in certain circumstances. The Ministry
of Defence in the United Kingdom issued two safety-critical standards4 in the early
1990s related to the use of formal methods in the software development lifecycle.

The first is Defence Standard 00-55, “The Procurement of safety critical soft-
ware in defense equipment” [4] which makes it mandatory to employ formal
methods in safety-critical software development in the UK; and mandates the use of
formal proof that the most crucial programs correctly implement their
specifications.

The second is Def Stan 00-56 “Hazard analysis and safety classification of the
computer and programmable electronic system elements of defense equipment” [5].
The objective of this standard is to provide guidance to identify which systems or
parts of systems being developed are safety-critical and thereby require the use of
formal methods. This proposed system is subject to an initial hazard analysis to
determine whether there are safety-critical parts.

2We mentioned the serious problems with the Therac-25 radiotherapy machine in Chap. 17.
3A comprehensive disclaimer of responsibility for problems (rather than a guarantee of quality)
accompany most software products, and so the legal aspects of licensing software may protect
software companies from litigation. However, greater legal protection for the customer can be built
into the contract between the supplier and the customer for bespoke-software development.
4The U.K. Defence Standards 0055 and 0056 have been revised in recent years to be less
prescriptive on the use of formal methods.

302 18 Formal Methods

http://dx.doi.org/10.1007/978-3-319-44561-8_17


The reaction to these defence standards 00-55 and 00-56 was quite hostile
initially, as most suppliers were unlikely to meet the technical and organization
requirements of the standard [6]. The standards were subsequently revised to be less
prescriptive on the use of formal methods.

18.3 Applications of Formal Methods

Formal methods have been employed to verify correctness in the nuclear power
industry, the aerospace industry, the security technology area, and the railroad
domain. These sectors are subject to stringent regulatory controls to ensure safety
and security. Several organizations have piloted formal methods with varying
degrees of success. These include IBM, who developed VDM at its laboratory in
Vienna; IBM (Hursley) piloted the Z formal specification language on the CICS
(Customer Information Control System) project.

The mathematical techniques developed by Parnas (i.e., tabular expressions)
have been employed to specify the requirements of the A-7 aircraft as part of a
research project for the US Navy.5 Tabular expressions have also been employed
for the software inspection of the automated shutdown software of the Darlington
Nuclear power plant in Canada.6 These are two successful uses of mathematical
techniques in software engineering.

There are examples of the use of formal methods in the railway domain, and
examples dealing with the modeling and verification of a railroad gate controller
and railway signaling are described in [3]. Clearly, it is essential to verify safety
critical properties such as “when the train goes through the level crossing then the
gate is closed”.

18.4 Tools for Formal Methods

A key criticism of formal methods is the limited availability of tools to support the
software engineer in writing a formal specification or in conducting proof. Many of
the early tools were criticized as not being of industrial strength. However, in recent
years more advanced tools to support the software engineer’s work in formal
specification and formal proof have become available, and this should continue in
the coming years.

5However, the resulting software was never actually deployed on the A-7 aircraft.
6This was an impressive use of mathematical techniques and it has been acknowledged that formal
methods must play an important role in future developments at Darlington. However, given the
time and cost involved in the software inspection of the shutdown software some managers have
less enthusiasm in shifting from hardware to software controllers [7].

18.2 Why Should We Use Formal Methods? 303



The tools include syntax checkers that determine whether the specification is
syntactically correct; specialized editors which ensure that the written specification
is syntactically correct; tools to support refinement; automated code generators that
generate a high-level language corresponding to the specification; theorem provers
to demonstrate the presence or absence of key properties and to prove the cor-
rectness of refinement steps, and to identify and resolve proof obligations; and
specification animation tools where the execution of the specification can be
simulated.

The B-Toolkit from B-Core is an integrated set of tools that supports the
B-Method. These include syntax and type checking, specification animation, proof
obligation generator, an auto-prover, a proof assistor, and code generation. This
allows, in theory, a complete formal development from initial specification to final
implementation to be achieved, with every proof obligation justified, leading to a
provably correct program.

The IFAD Toolbox7 is a support tool for the VDM-SL specification language,
and it includes support for syntax and type checking, an interpreter and debugger to
execute and debug the specification, and a code generator to convert from VDM-SL
to C++. It also includes support for graphical notations such as the OMT/UML
design notations.

18.5 Approaches to Formal Methods

There are two key approaches to formal methods: namely the model-oriented
approach of VDM or Z, and the algebraic or axiomatic approach of the process
calculi such as the calculus communicating systems (CCS) or communicating
sequential processes (CSP).

18.5.1 Model-Oriented Approach

The model-oriented approach to specification is based on mathematical models, and
a model is a mathematical representation or abstraction of a physical entity or
system. The model aims to provide a mathematical explanation of the behaviour of
the physical world, and it is considered suitable if its properties closely match those
of the system being modeled. A model will allow predictions of future behaviour to
be made, and many models are employed in the physical world (e.g., weather
forecasting system).

It is fundamental to explore the model to determine its adequacy, and to
determine the extent to which it explains the underlying physical behaviour, and
allows predictions of future behaviour to be made. This will determine its

7The IFAD Toolbox has been renamed to VDMTools as IFAD sold the VDM Tools to CSK in
Japan.

304 18 Formal Methods



acceptability as a representation of the physical world. Models that are ineffective
will be replaced with models that offer a better explanation of the manifested
physical behaviour. There are many examples in science of the replacement of one
theory by a newer one. For example, the Copernican model of the universe replaced
the older Ptolemaic model, and Newtonian physics was replaced by Einstein’s
theories on relativity [8].

The model-oriented approach to software development involves defining an
abstract model of the proposed software system. The model acts as a representation
of the proposed system, and the model is then explored to assess its suitability. The
exploration of the model takes the form of model interrogation, i.e., asking ques-
tions and determining the effectiveness of the model in answering the questions.
The modeling in formal methods is typically performed via elementary discrete
mathematics, including set theory, sequences, functions and relations.

VDM and Z are model-oriented approaches to formal methods. VDM arose from
work done in the IBM laboratory in Vienna in formalizing the semantics for the
PL/1 compiler, and it was later applied to the specification of software systems. The
origin of the Z specification language is in work done at Oxford University in the
early 1980s.

18.5.2 Axiomatic Approach

The axiomatic approach focuses on the properties that the proposed system is to
satisfy, and there is no intention to produce an abstract model of the system. The
required properties and behaviour of the system are stated in mathematical notation.
The difference between the axiomatic specification and a model-based approach is
may be seen in the example of a stack.

The stack includes operators for pushing an element onto the stack and popping
an element from the stack. The properties of pop and push are explicitly defined in
the axiomatic approach. The model-oriented approach constructs an explicit model
of the stack and the operations are defined in terms of the effect that they have on
the model. The specification of the pop operation on a stack is given by axiomatic
properties, for example, pop(push(s, x)) = s.

Comment 18.2 (Axiomatic Approach) The property-oriented approach has the
advantage that the implementer is not constrained to a particular choice of
implementation, and the only constraint is that the implementation must satisfy the
stipulated properties.

The emphasis is on the required properties of the system, and implementation
issues are avoided. The focus is on the specification of the underlying behaviour,
and properties are typically stated using mathematical logic or higher-order logics.
Mechanized theorem-proving techniques may be employed to prove results.

One potential problem with the axiomatic approach is that the properties spec-
ified may not be satisfiable in any implementation. Thus, whenever a ‘formal

18.5 Approaches to Formal Methods 305



axiomatic theory’ is developed a corresponding ‘model’ of the theory must be
identified, in order to ensure that the properties may be realized in practice. That is,
when proposing a system that is to satisfy some set of properties, there is a need to
prove that there is at least one system that will satisfy the set of properties.

18.6 Proof and Formal Methods

A mathematical proof typically includes natural language and mathematical sym-
bols, and often many of the tedious details of the proof are omitted. The proof of a
conjecture may be by a ‘divide and conquer’ technique; i.e., breaking the conjecture
down into subgoals and then attempting to prove the subgoals. Many proofs in
formal methods are concerned with crosschecking the details of the specification, or
checking the validity of refinement steps, or checking that certain properties are
satisfied by the specification. There are often many tedious lemmas to be proved,
and theorem provers8 are essential in assisting with this. Machine proof needs to be
explicit, and reliance on some brilliant insight is avoided. Proofs by hand are
notorious for containing errors or jumps in reasoning, while machine proofs are
explicit but are often extremely lengthy and unreadable (e.g., the actual machine
proof of correctness of the VIPER microprocessor9 [6] consisted of several million
formulae).

A formal mathematical proof consists of a sequence of formulae, where each
element is either an axiom or derived from a previous element in the series by
applying a fixed set of mechanical rules.

Theorem provers are invaluable in resolving many of the thousands of proof
obligations that arise from a formal specification, and it is not feasible to apply
formal methods in an industrial environment without the use of machine-assisted
proof. Automated theorem proving is difficult, as often mathematicians prove a
theorem with an initial intuitive feeling that the theorem is true. Human intervention
to provide guidance or intuition improves the effectiveness of the theorem prover.

The proof of various properties about a program increases confidence in its
correctness. However, an absolute proof of correctness10 is unlikely except for the
most trivial of programs. A program may consist of legacy software that is assumed
to work; a compiler that is assumed to work correctly creates it. Theorem provers

8Many existing theorem provers are difficult to use and are for specialist use only. There is a need
to improve their usability.
9This verification was controversial with RSRE and Charter overselling VIPER as a chip design
that conforms to its formal specification.
10This position is controversial with others arguing that if correctness is defined mathematically
then the mathematical definition (i.e. formal specification) is a theorem, and the task is to prove
that the program satisfies the theorem. They argue that the proofs for non-trivial programs exist,
and that the reason why there are not many examples of such proofs is due to a lack of
mathematical specifications.

306 18 Formal Methods



are programs that are assumed to function correctly. The best that formal methods
can claim is increased confidence in correctness of the software, rather than an
absolute proof of correctness.

18.7 The Future of Formal Methods

The debate concerning the level of use of mathematics in software engineering is
still ongoing. Most practitioners are against the use of mathematics and avoid its
use. They tend to employ methodologies such as software inspections and testing to
improve confidence in the correctness of the software. Industrialists often need to
balance conflicting needs such as quality; cost; and aggressive time pressures. They
argue that commercial realities dictate that appropriate methodologies and tech-
niques are required that allow them to achieve their business goals in a timely
manner.

The other camp argues that the use of mathematics is essential in the delivery of
high-quality and reliable software, and that if a company does not place sufficient
emphasis on quality it will pay the price in terms of a poor reputation in the market
place.

It is generally accepted that mathematics and formal methods must play a role in
the safety critical and security critical fields. Apart from that the extent of the use of
mathematics is a hotly disputed topic. The pace of change in the world is
extraordinary, and companies face major competitive pressures in a global market
place. It is unrealistic to expect companies to deploy formal methods unless they
have clear evidence that it will support them in delivering commercial products to
the market place ahead of their competition, at the right price and with the right
quality. Formal methods need to prove that it can do this if it wishes to be taken
seriously in mainstream software engineering. The issue of technology transfer of
formal methods to industry is discussed in [9].

18.8 The Vienna Development Method

VDM dates from work done by the IBM research laboratory in Vienna. This group
was specifying the semantics of the PL/1 programming language using an opera-
tional semantic approach (discussed in Chap. 12). That is, the semantics of the
language were defined in terms of a hypothetical machine, which interprets the
programs of that language [10, 11]. Later work led to the Vienna Development
Method (VDM) with its specification language, Meta IV. This was used to give the
denotational semantics of programming languages; i.e., a mathematical object (set,
function, etc.) is associated with each phrase of the language [11]. The mathe-
matical object is termed the denotation of the phrase.

18.6 Proof and Formal Methods 307

http://dx.doi.org/10.1007/978-3-319-44561-8_12


VDM is a model-oriented approach and this means that an explicit model of the
state of an abstract machine is given, and operations are defined in terms of this
state. Operations may act on the system state, taking inputs, and producing outputs
as well as a new system state. Operations are defined in a precondition and
post-condition style. Each operation has an associated proof obligation to ensure
that if the precondition is true, then the operation preserves the system invariant.
The initial state itself is, of course, required to satisfy the system invariant.

VDM uses keywords to distinguish different parts of the specification, e.g.,
preconditions, postconditions, as introduced by the keywords pre and post,
respectively. In keeping with the philosophy that formal methods specifies what a
system does as distinct from how, VDM employs post-conditions to stipulate the
effect of the operation on the state. The previous state is then distinguished by
employing hooked variables, e.g., v¬, and the postcondition specifies the new state
which is defined by a logical predicate relating the pre-state to the post-state.

VDM is more than its specification language VDM-SL, and is, in fact, a software
development method, with rules to verify the steps of development. The rules
enable the executable specification, i.e., the detailed code, to be obtained from the
initial specification via refinement steps. Thus, we have a sequence S = S0, S1, …,
Sn = E of specifications, where S is the initial specification, and E is the final
(executable) specification.

Retrieval functions enable a return from a more concrete specification to the
more abstract specification. The initial specification consists of an initial state, a
system state, and a set of operations. The system state is a particular domain, where
a domain is built out of primitive domains such as the set of natural numbers, etc.,
or constructed from primitive domains using domain constructors such as Cartesian
product, disjoint union, etc. A domain-invariant predicate may further constrain the
domain, and a type in VDM reflects a domain obtained in this way. Thus, a type in
VDM is more specific than the signature of the type, and thus represents values in
the domain defined by the signature, which satisfy the domain invariant. In view of
this approach to types, it is clear that VDM types may not be ‘statically type
checked’.

VDM specifications are structured into modules, with a module containing the
module name, parameters, types, operations, etc. Partial functions occur frequently
in computer science as many functions, may be undefined, or fail to terminate for
some arguments in their domain. VDM addresses partial functions by employing
nonstandard logical operators, namely the logic of partial functions (LPFs), which
was discussed in Chap. 16.

VDM has been used in industrial projects, and its tool support includes the IFAD
Toolbox.11 There are several variants of VDM, including VDM++, the
object-oriented extension of VDM, and the Irish school of the VDM, which is
discussed in the next section.

11The VDM Tools are now available from the CSK Group in Japan.

308 18 Formal Methods

http://dx.doi.org/10.1007/978-3-319-44561-8_16


18.9 VDM♣, the Irish School of VDM

The Irish School of VDM is a variant of standard VDM, and is characterized by
[12] its constructive approach, classical mathematical style, and its terse notation.
This method aims to combine the what and how of formal methods in that its terse
specification style stipulates in concise form what the system should do; further-
more, the fact that its specifications are constructive (or functional) means that the
how is included with the what. However, it is important to qualify this by stating
that the how as presented by VDM♣ is not directly executable, as several of its
mathematical data types have no corresponding structure in high-level program-
ming languages or functional languages. Thus, a conversion or reification of the
specification into a functional or higher level language must take place to ensure a
successful execution. Further, the fact that a specification is constructive is no
guarantee that it is a good implementation strategy, if the construction itself is
naive.

The Irish school follows a similar development methodology as in standard
VDM, and is a model-oriented approach. The initial specification is presented, with
initial state and operations defined. The operations are presented with precondi-
tions; however, no postcondition is necessary as the operation is ‘functionally’ (i.e.,
explicitly) constructed.

There are proof obligations to demonstrate that the operations preserve the
invariant. That is, if the precondition for the operation is true, and the operation is
performed, then the system invariant remains true after the operation. The philos-
ophy is to exhibit existence constructively rather than a theoretical proof of exis-
tence that demonstrates the existence of a solution without presenting an algorithm
to construct the solution.

The school avoids the existential quantifier of predicate calculus and reliance on
logic in proof is kept to a minimum, and emphasis instead is placed on equational
reasoning. Structures with nice algebraic properties are sought, and one nice
algebraic structure employed is the monoid, which has closure, associativity, and a
unit element. The concept of isomorphism is powerful, reflecting that two structures
are essentially identical, and thus we may choose to work with either, depending on
which is more convenient for the task in hand.

The school has been influenced by the work of Polya and Lakatos. The former
[13] advocated a style of problem solving characterized by first considering an
easier sub-problem, and considering several examples. This generally leads to a
clearer insight into solving the main problem. Lakatos’s approach to mathematical
discovery [14] is characterized by heuristic methods. A primitive conjecture is
proposed and if global counter-examples to the statement of the conjecture are
discovered, then the corresponding hidden lemma for which this global coun-
terexample is a local counter example is identified and added to the statement of the
primitive conjecture. The process repeats, until no more global counterexamples are
found. A skeptical view of absolute truth or certainty is inherent in this.

18.9 VDM♣, the Irish School of VDM 309



Partial functions are the norm in VDM♣, and as in standard VDM, the problem
is that functions may be undefined, or fail to terminate for several of the arguments
in their domain. The logic of partial functions (LPFs) is avoided, and instead care is
taken with recursive definitions to ensure termination is achieved for each argu-
ment. Academic and industrial projects have been conducted using the method of
the Irish school, but at this stage tool support is limited.

18.10 The Z Specification Language

Z is a formal specification language founded on Zermelo set theory, and it was
developed by Abrial at Oxford University in the early 1980s. It is a model-oriented
approach where an explicit model of the state of an abstract machine is given, and
the operations are defined in terms of the effect on the state. It includes a mathe-
matical notation that is similar to VDM, and it employs the visually striking schema
calculus, which consists essentially of boxes, with these boxes or schemas used to
describe operations and states. The schema calculus enables schemas to be used as
building blocks and combined with other schemas. The Z specification language
was published as an ISO standard (ISO/IEC 13568:2002) in 2002.

The schema calculus is a powerful means of decomposing a specification into
smaller pieces or schemas. This helps to make Z specification highly readable, as
each individual schema is small in size and self-contained. The exception handling
is done by defining schemas for the exception cases, and these are then combined
with the original operation schema. Mathematical data types are used to model the
data in a system and these data types obey mathematical laws. These laws enable
simplification of expressions and are useful with proofs.

Operations are defined in a precondition/postcondition style. However, the
precondition is implicitly defined within the operation; i.e., it is not separated out as
in standard VDM. Each operation has an associated proof obligation to ensure that
if the precondition is true, then the operation preserves the system invariant. The
initial state itself is, of course, required to satisfy the system invariant. Postcondi-
tions employ a logical predicate which relates the pre-state to the post-state, and the
post-state of a variable v is given by priming, e.g., v′. Various conventions are
employed, e.g., v? indicates that v is an input variable and v! indicates that v is an
output variable. The symbol N Op operation indicates that this operation does not
affect the state, whereas D Op indicates that this operation that affects the state.

Many data types employed in Z have no counterpart in standard programming
languages. It is therefore important to identify and describe the concrete data
structures that will ultimately represent the abstract mathematical structures. The
operations on the abstract data structures may need to be refined to yield operations
on the concrete data structure that yield equivalent results. For simple systems,
direct refinement (i.e., one step from abstract specification to implementation) may
be possible; in more complex systems, deferred refinement is employed, where a
sequence of increasingly concrete specifications are produced to yield the

310 18 Formal Methods



executable specification eventually.Z has been successfully applied in industry, and
one of its well-known successes is the CICS project at IBM Hursley in England.
Z is described in more detail in Chap. 19.

18.11 The B Method

The B-Technologies [15] consist of three components: a method for software
development, namely the B-Method; a supporting set of tools, namely, the
B-Toolkit; and a generic program for symbol manipulation, namely, the B-Tool
(from which the B-Toolkit is derived). The B-Method is a model-oriented approach
and is closely related to the Z specification language. Abrial developed the
B specification language, and every construct in the language has a set theoretic
counterpart, and the method is founded on Zermelo set theory. Each operation has
an explicit precondition.

One key purpose [15] of the abstract machine in the B-Method is to provide
encapsulation of variables representing the state of the machine and operations that
manipulate the state. Machines may refer to other machines, and a machine may be
introduced as a refinement of another machine. The abstract machines are speci-
fication machines, refinement machines, or implementable machines. The
B-Method adopts a layered approach to design where the design is gradually made
more concrete by a sequence of design layers. Each design layer is a refinement that
involves a more detailed implementation in terms of abstract machines of the
previous layer. The design refinement ends when the final layer is implemented
purely in terms of library machines. Any refinement of a machine by another has
associated proof obligations, and proof is required to verify the validity of the
refinement step.

Specification animation of the Abstract Machine Notation (AMN) specification
is possible with the B-Toolkit, and this enables typical usage scenarios of the AMN
specification to be explored for requirements validation. This is, in effect, an early
form of testing, and it may be used to demonstrate the presence or absence of
desirable or undesirable behavior. Verification takes the form of a proof to
demonstrate that the invariant is preserved when the operation is executed within its
precondition, and this is performed on the AMN specification with the B-Toolkit.

The B-Toolkit provides several tools that support the B-Method, and these
include syntax and type checking; specification animation, proof obligation gen-
erator, auto prover, proof assistor, and code generation. Thus, in theory, a complete
formal development from initial specification to final implementation may be
achieved, with every proof obligation justified, leading to a provably correct
program.

The B-Method and toolkit have been successfully applied in industrial appli-
cations, including the CICS project at IBM Hursley in the United Kingdom. The
automated support provided has been cited as a major benefit of the application of
the B-Method and the B-Toolkit.

18.10 The Z Specification Language 311

http://dx.doi.org/10.1007/978-3-319-44561-8_19


18.12 Predicate Transformers and Weakest Preconditions

The precondition of a program S is a predicate, i.e., a statement that may be true or
false, and it is usually required to prove that if the precondition Q is true,; i.e., {Q}
S {R}, then execution of S is guaranteed to terminate in a finite amount of time in a
state satisfying R.

The weakest precondition of a command S with respect to a postcondition
R represents the set of all states such that if execution begins in any one of these
states, then execution will terminate in a finite amount of time in a state with R true
[16]. These set of states may be represented by a predicate Q′, so that wp(S,
R) = wpS (R) = Q′, and so wpS is a predicate transformer, i.e., it may be regarded as
a function on predicates. The weakest precondition is the precondition that places
the fewest constraints on the state than all of the other preconditions of (S,R). That
is, all of the other preconditions are stronger than the weakest precondition.

The notation Q{S}R is used to denote partial correctness and indicates that if
execution of S commences in any state satisfying Q, and if execution terminates,
then the final state will satisfy R. Often, a predicate Q which is stronger than the
weakest precondition wp(S,R) is employed, especially where the calculation of the
weakest precondition is nontrivial. Thus, a stronger predicate Q such that Q ) wp
(S, R) is sometimes employed.

There are many properties associated with the weakest preconditions, and these
may be used to simplify expressions involving weakest preconditions, and in
determining the weakest preconditions of various program commands such as
assignments, iterations, etc. Weakest preconditions may be used in developing a
proof of correctness of a program in parallel with its development [17].

An imperative program may be regarded as a predicate transformer. This is since
a predicate P characterizes the set of states in which the predicate P is true, and an
imperative program may be regarded as a binary relation on states, which may be
extended to a function F, leading to the Hoare triple P{F}Q. That is, the program
F acts as a predicate transformer with the predicate P regarded as an input assertion,
i.e., a Boolean expression that must be true before the program F is executed, and
the predicate Q is the output assertion, which is true if the program F terminates
(where F commenced in a state satisfying P).

18.13 The Process Calculi

The objectives of the process calculi [18] are to provide mathematical models that
provide insight into the diverse issues involved in the specification, design, and
implementation of computer systems which continuously act and interact with their
environment. These systems may be decomposed into sub-systems that interact
with each other and their environment.

312 18 Formal Methods



The basic building block is the process, which is a mathematical abstraction of
the interactions between a system and its environment. A process that lasts indef-
initely may be specified recursively. Processes may be assembled into systems; they
may execute concurrently; or communicate with each other. Process communica-
tion may be synchronized, and this takes the form of a process outputting a message
simultaneously to another process inputting a message. Resources may be shared
among several processes. Process calculi such as CSP [18] and CCS [19] have been
developed to enrich the understanding of communication and concurrency, and
these calculi obey a rich collection of mathematical laws.

The expression (a ? P) in CSP describes a process which first engages in event a,
and then behaves as process P. A recursive definition is written as (lX) � F(X), and
the example of a simple chocolate vending machine is given recursively as:

VMS ¼ lX : coin; chocf g � coin ? choc ?Xð Þð Þ

The simple vending machine has an alphabet of two symbols, namely, coin and
choc. The behaviour of the machine is that a coin is entered into the machine, and
then a chocolate selected and provided.

CSP processes use channels to communicate values with their environment, and
input on channel c is denoted by (c?.x Px). This describes a process that accepts any
value x on channel c, and then behaves as process Px. In contrast, (c!e P) defines a
process which outputs the expression e on channel c and then behaves as process P.

The p-calculus is a process calculus based on names. Communication between
processes takes place between known channels, and the name of a channel may be
passed over a channel. There is no distinction between channel names and data
values in the p-calculus. The output of a value v on channel a is given by āv; i.e.,
output is a negative prefix. Input on a channel a is given by a(x), and is a positive
prefix. Private links or restrictions are given by (x)P in the p-calculus.

18.14 The Parnas Way

Parnas has been influential in the computing field, and his ideas on the specification,
design, implementation, maintenance, and documentation of computer software
remain important. He advocates a solid classical engineering approach to devel-
oping software, and he argues that the role of an engineer is to apply scientific
principles and mathematics in designing and developing software products. His
main contributions to software engineering are summarized in Table 18.2.

18.13 The Process Calculi 313



18.15 Usability of Formal Methods

There are practical difficulties associated with the use of formal methods. It seems to
be assumed that programmers and customers are willing to become familiar with
the mathematics used in formal methods. There is little evidence to suggest that
customers in mainstream organizations would be prepared to use formal methods.12

Customers are concerned with their own domain and speak the technical language
of that domain.13 Often, the use of mathematics is an alien activity that bears little
resemblance to their normal work. Programmers are interested in programming
rather than in mathematics, and generally have no interest in becoming
mathematicians.14

Table 18.2 Parnas’s contributions to software engineering

Area Description

Tabular expressions These are mathematical tables for specifying requirements, and enable
complex predicate logic expressions to be represented in a simpler
form

Mathematical
documentation

He advocates the use of precise mathematical documentation

Requirements
specification

He advocates the use of mathematical relations to specify the
requirements precisely

Software design He developed information hiding which is used in object-oriented
designa, and allows software to be designed for change [21]. Every
information-hiding module has an interface that provides the only
means to access the services provided by the modules. The interface
hides the module’s implementation

Software inspections His approach requires the reviewers to take an active part in the
inspection. They are provided with a list of questions by the author and
their analysis involves the production of mathematical table to justify
the answers

Predicate logic He developed an extension of the predicate calculus to deal with
partial functions. This approach preserves the classical two-valued
logic and deals with undefined values that may occur in predicate logic
expressions

aIt is surprising that many in the object-oriented world seem unaware that information hiding goes
back to the early 1970s and many have never heard of Parnas

12The domain in which the software is being used will influence the willingness or otherwise of the
customers to become familiar with the mathematics required. There is very little interest from
customers in mainstream software engineering, and the perception is that formal methods are
difficult to use. However, in some domains such as the regulated sector there is a greater
willingness of customers to become familiar with the mathematical notation.
13The author’s experience is that most customers have a very limited interest in using mathematics.
14Mathematics that is potentially useful to software engineers was discussed in Chap. 17.

314 18 Formal Methods

http://dx.doi.org/10.1007/978-3-319-44561-8_17


However, the mathematics involved in most formal methods is reasonably ele-
mentary, and, in theory, if both customers and programmers are willing to learn the
formal mathematical notation, then a rigorous validation of the formal specification
can take place to verify its correctness. Both parties can review the formal speci-
fication to verify its correctness, and the code can be verified to be correct with
respect to the formal specification. It is usually possible to get a developer to learn a
formal method, as a programmer has some experience of mathematics and logic;
however, in practice, it is more difficult to get a customer to learn a formal method.

This means that often a formal specification of the requirements and an informal
definition of the requirements using a natural language are maintained. It is essential
that both of these documents are consistent and that there is a rigorous validation of
the formal specification. Otherwise, if the programmer proves the correctness of the
code with respect to the formal specification, and the formal specification is
incorrect, then the formal development of the software is incorrect. There are
several techniques to validate a formal specification (Table 18.3) and these are
described in [20]:

Why are Formal Methods difficult?
Formal methods are perceived as being difficult to use and of offering limited value
in mainstream software engineering. Programmers receive some training in math-
ematics as part of their education. However, in practice, most programmers who
learn formal methods at university never use formal methods again once they take
an industrial position.

It may well be that the very nature of formal methods is such that it is suited only
for specialists with a strong background in mathematics. Some of the reasons why
formal methods are perceived as being difficult are (Table 18.4)

Characteristics of a Usable Formal Method
It is important to investigate ways by which formal methods can be made more
usable to software engineers. This may involve designing more usable notations
and better tools to support the process. Practical training and coaching to employees
can help also. Some of the characteristics of a usable formal method are
(Table 18.5).

Table 18.3 Techniques for validation of formal specification

Technique Description

Proof This involves demonstrating that the formal specification adheres to key
properties of the requirements. The implementation will need to preserve
these properties also

Software
inspections

This involves a Fagan like inspection to perform the validation. It may
involve comparing an informal set of requirements (unless the customer
has learned the formal method) with the formal specification

Specification
animation

This involves program (or specification) execution as a way to validate
the formal specification. It is similar to testing

18.15 Usability of Formal Methods 315



18.16 Review Questions

1. What are formal methods and describe their potential benefits? How
essential is tool support?

2. What is stepwise refinement and is it realistic in mainstream software
engineering?

3. Discuss Parnas’s criticisms of formal methods and discuss whether his
views are justified.

Table 18.4 Factors in difficulty of formal methods

Factor Description

Notation/intuition The notation employed differs from that used in mathematics. Many
programmers find the notation in formal methods to be unintuitive

Formal specification It is easier to read a formal specification than to write one

Validation of formal
specification

The validation of a formal specification using proof techniques or a
Fagan like inspection is difficult

Refinementa The refinement of a formal specification into successive more
concrete specifications with proof of validity of each refinement
step is difficult and time consuming

Proof Proof can be difficult and time consuming

Tool support Many of the existing tools are difficult to use
aIt is highly unlikely that refinement is cost effective for mainstream software engineering.
However, it may be useful in the regulated environment

Table 18.5 Characteristics of a usable formal method

Characteristic Description

Intuitive A formal method should be intuitive

Teachable A formal method needs to be teachable to the average software engineer.
The training should include (at least) writing practical formal
specifications

Tool support Good tools to support formal specification, validation, refinement and
proof are required

Adaptable to
change

Change is common in a software engineering environment. A usable
formal method should be adaptable to change

Technology
transfer path

The process for software development needs to be defined to include
formal methods. The migration to formal methods needs to be managed

Costa The use of formal methods should be cost effective with a return on
investment. There should be benefits in time, quality and productivity

aA commercial company will expect a return on investment from the use of a new technology. This
may be reduced software development costs, improved quality, improved timeliness of projects or
improvements in productivity

316 18 Formal Methods



4. Discuss the applications of formal methods and which areas have bene-
fited most from their use? What problems have arisen?

5. Describe a technology transfer path for the potential deployment of for-
mal methods in an organization.

6. Explain the difference between the model-oriented approach and the
axiomatic approach.

7. Discuss the nature of proof in formal methods and tools to support proof.
8. Discuss the Vienna Development Method and explain the difference

between standard VDM and VDM♣.
9. Discuss Z and B. Describe the tools in the B-Toolkit.

10. Discuss process calculi such as CSP, CCS or p–calculus.

18.17 Summary

This chapter discussed formal methods, which are a rigorous approach to the
development of high-quality software. Formal methods employ mathematical
techniques for the specification and formal development of software, and are very
useful in the safety critical field. They consist of formal specification languages or
notations; a methodology for formal software development; and a set of tools to
support the syntax checking of the specification, as well as the proof of properties of
the specification.

Formal methods allow questions to be asked and answered about what the
system does independently of the implementation. The use of formal methods
generally leads to more robust software and to increased confidence in its cor-
rectness. There are challenges involved in the deployment of formal methods, as the
use of these mathematical techniques may be a culture shock to many staff.

Formalmethodsmay bemodel oriented or axiomatic oriented. Themodel-oriented
approach includes formal methods such as VDM, Z and B. The axiomatic approach
includes the process calculi such as CSP, CCS and the p calculus.

The usability of formal methods was considered as well as an examination of
why formal methods are difficult and what the characteristics of a usable formal
method would be.

References

1. The Z Notation. A Reference Manual. J.M. Spivey. Prentice Hall. International Series in
Computer Science. 1992.

2. Rational for the development of the U.K. Defence Standards for Safety Critical software. M.J.
D Brown. Compass Conference. 1990.

18.16 Review Questions 317



3. Applications of Formal Methods. Edited by Michael Hinchey and Jonathan Bowen. Prentice
Hall International Series in Computer Science. 1995.

4. 00-55 (Part 1)/ Issue 1. The Procurement of Safety Critical Software in Defence Equipment.
Part 1: Requirements. Ministry of Defence. Interim Defence Standard. UK. 1991.

5. 00-55 (Part 2)/ Issue 1. The Procurement of Safety Critical Software in Defence Equipment.
Part 2: Guidance. Ministry of Defence. Interim Defence Standard. UK. 1991.

6. The Evolution of Def Stan 00-55 and 00-56. An intensification of the formal methods debate
in the UK. Margaret Tierney. Research Centre for Social Sciences. University of Edinburgh.
1991.

7. Experience with Formal Methods in Critical Systems. Susan Gerhart, Dan Craighen and Ted
Ralston. IEEE Software. January 1994.

8. The Structure of Scientific Revolutions. Thomas Kuhn. University of Chicago Press. 1970.
9. Mathematical Approaches to Software Quality. Gerard O’ Regan.Springer. 2006.
10. The Vienna Development Method. The Meta language. Dines Bjørner and Cliff Jones. Lecture

Notes in Computer Science (61). Springer Verlag. 1978.
11. Formal Specification and Software Development. Dines Bjørner and Cliff Jones. Prentice Hall

International Series in Computer Science. 1982.
12. Computation Models and Computing. PhD Thesis. Mícheál Mac An Airchinnigh. Dept. of

Computer Science. Trinity College Dublin.
13. How to Solve It. A New Aspect of Mathematical Method. Georges Polya. Princeton

University Press. 1957.
14. Proof and Refutations. The Logic of Mathematical Discovery. Imre Lakatos. Cambridge

University Press. 1976.
15. MSc. Thesis. Eoin McDonnell. Dept. of Computer Science. Trinity College Dublin. 1994.
16. The Science of Programming. David Gries. Springer Verlag. Berlin. 1981.
17. A Disciple of Programming. E.W. Dijkstra. Prentice Hall. 1976.
18. Communicating Sequential Processes. C.A.R. Hoare. Prentice Hall International Series in

Computer Science. 1985.
19. A Calculus of Mobile Processes. Part 1. Robin Milner et al. LFCS Report Series.

ECS-LFCS-89-85. Department of Computer Science. University of Edinburgh.
20. A Personal View of Formal Methods. B.A. Wichmann. National Physical Laboratory. March

2000.
21. On the Criteria to be used in Decomposing Systems into Modules. David Parnas.

Communications of the ACM, 15(12). 1972.

318 18 Formal Methods


	18 Formal Methods
	18.1 Introduction
	18.2 Why Should We Use Formal Methods?
	18.3 Applications of Formal Methods
	18.4 Tools for Formal Methods
	18.5 Approaches to Formal Methods
	18.5.1 Model-Oriented Approach
	18.5.2 Axiomatic Approach

	18.6 Proof and Formal Methods
	18.7 The Future of Formal Methods
	18.8 The Vienna Development Method
	18.9 VDM♣, the Irish School of VDM
	18.10 The Z Specification Language
	18.11 The B Method
	18.12 Predicate Transformers and Weakest Preconditions
	18.13 The Process Calculi
	18.14 The Parnas Way
	18.15 Usability of Formal Methods
	18.16 Review Questions
	18.17 Summary
	References


