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15.1 Introduction

Logic is the study of reasoning and the validity of arguments, and it is concerned
with the truth of statements (propositions) and the nature of truth. Formal logic is
concerned with the form of arguments and the principles of valid inference. Valid
arguments are truth preserving, and for a valid deductive argument the conclusion
will always be true if the premises are true.

Propositional logic is the study of propositions, where a proposition is a state-
ment that is either true or false. Propositions may be combined with other propo-
sitions (with a logical connective) to form compound propositions. Truth tables are
used to give operational definitions of the most important logical connectives, and
they provide a mechanism to determine the truth values of more complicated logical
expressions.
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Propositional logic may be used to encode simple arguments that are expressed
in natural language, and to determine their validity. The validity of an argument
may be determined from truth tables, or using the inference rules such as modus
ponens to establish the conclusion via deductive steps.

Predicate logic allows complex facts about the world to be represented, and new
facts may be determined via deductive reasoning. Predicate calculus includes
predicates, variables and quantifiers, and a predicate is a characteristic or property
that the subject of a statement can have. A predicate may include variables, and
statements with variables become propositions once the variables are assigned
values.

The universal quantifier is used to express a statement such as that all members
of the domain of discourse have property P. This is written as (8x) P(x), and it
expresses the statement that the property P xð Þ is true for all x. The existential
quantifier states that there is at least one member of the domain of discourse that has
property P. This is written as (9x)P(x).

15.2 Propositional Logic

Propositional logic is the study of propositions where a proposition is a statement
that is either true or false. There are many examples of propositions such as
‘1 + 1 = 2’ which is a true proposition, and the statement that ‘Today is Wed-
nesday’ which is true if today is Wednesday and false otherwise. The statement
x > 0 is not a proposition as it contains a variable x, and it is only meaningful to
consider its truth or falsity only when a value is assigned to x. Once the variable x is
assigned a value it becomes a proposition. The statement ‘This sentence is false’ is
not a proposition as it contains a self-reference that contradicts itself. Clearly, if it
the statement is true it is false, and if is false it is true.

A propositional variable may be used to stand for a proposition (e.g. let the
variable P stand for the proposition ‘2 + 2 = 4’ which is a true proposition).
A propositional variable takes the value or false. The negation of a proposition
P (denoted ¬P) is the proposition that is true if and only if P is false, and is false if
and only if P is true.

A well-formed formula (wff) in propositional logic is a syntactically correct
formula created according to the syntactic rules of the underlying calculus.
A well-formed formula is built up from variables, constants, terms and logical
connectives such as conjunction (and), disjunction (or), implication (if… then…),
equivalence (if and only if) and negation. A distinguished subset of these well
formed formulae is the axioms of the calculus, and there are rules of inference that
allow the truth of new formulae to be derived from the axioms and from formulae
that have already demonstrated to be true in the calculus.
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A formula in propositional calculus may contain several propositional variables,
and the truth or falsity of the individual variables needs to be known prior to
determining the truth or falsity of the logical formula.

Each propositional variable has two possible values, and a formula with n-
propositional variables has 2n values associated with the n-propositional variables.
The set of values associated with the n variables may be used derive a truth table
with 2n rows and n + 1 columns. Each row gives each of the 2n truth values that the
n variables may take, and column n + 1 gives the result of the logical expression for
that set of values of the propositional variables. For example, the propositional
formula W defined in the truth table above (Table 15.1) has two propositional
variables A and B, with 22 = 4 rows for each of the values that the two propositional
variables may take. There are 2 + 1 = 3 columns with W defined in the third
column.

A rich set of connectives is employed in the calculus to combine propositions
and to build up the well-formed formulae. This includes the conjunction of two
propositions (A ^ B), the disjunction of two propositions (A _ B) and the impli-
cation of two propositions (A ! B). These connectives allow compound proposi-
tions to be formed, and the truth of the compound propositions is determined from
the truth values of its constituent propositions and the rules associated with the
logical connective. The meaning of the logical connectives is given by truth tables.1

Mathematical Logic is concerned with inference, and it involves proceeding in a
methodical way from the axioms and using the rules of inference to derive further
truths. The rules of inference allow new propositions to be deduced from a set of
existing propositions. A valid argument (or deduction) is truth preserving: i.e. for a
valid logical argument if the set of premises is true then the conclusion (i.e. the
deduced proposition) will also be true. The rules of inference include rules such as
modus ponens, and this rule states that given the truths of the proposition A, and the
proposition A ! B, then the truth of proposition B may be deduced.

The propositional calculus is employed in reasoning about propositions, and it
may be applied to formalize arguments in natural language. Boolean algebra is
used in computer science, and it is named after George Boole, who was the first
professor of mathematics at Queens College, Cork.2 His symbolic logic (discussed
in Chap. 14) is the foundation for modern computing.

Table 15.1 Truth table for
formula W

A B W (A, B)

T T T

T F F

F T F

F F T

1Basic truth tables were first used by Frege, and developed further by Post and Wittgenstein.
2This institution is now known as University College Cork and has approximately 18,000 students.
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15.2.1 Truth Tables

Truth tables give operational definitions of the most important logical connectives,
and they provide a mechanism to determine the truth values of more complicated
compound expressions. Compound expressions are formed from propositions and
connectives, and the truth values of a compound expression containing several
propositional variables is determined from the underlying propositional variables
and the logical connectives.

The conjunction of A and B (denoted A ^ B) is true if and only if both A and
B are true, and is false in all other cases (Table 15.2). The disjunction of two
propositions A and B (denoted A _ B) is true if at least one of A and B are true, and
false in all other cases (Table 15.3). The disjunction operator is known as the
‘inclusive or’ operator as it is also true when both A and B are true; there is also an
exclusive or operator that is true exactly when one of A or B is true, and is false
otherwise.

Example 15.1 Consider proposition A given by “An orange is a fruit” and the
proposition B given by “2 + 2 = 5” then A is true and B is false. Therefore

(i) A ^ B (i.e. An orange is a fruit and 2 + 2 = 5) is false
(ii) A _ B (i.e. An orange is a fruit or 2 + 2 = 5) is true

The implication operation (A ! B) is true if whenever A is true means that B is
also true; and also whenever A is false (Table 15.4). It is equivalent (as shown by a

Table 15.2 Conjunction A B A ^ B

T T T

T F F

F T F

F F F

Table 15.3 Disjunction A B A _ B

T T T

T F T

F T T

F F F

Table 15.4 Implication A B A ! B

T T T

T F F

F T T

F F T
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truth table) to ¬A _ B. The equivalence operation (A $ B) is true whenever both
A and B are true, or whenever both A and B are false (Table 15.5).

The not operator (¬) is a unary operator (i.e. it has one argument) and is such that
¬A is true when A is false, and is false when A is true (Table 15.6).

Example 15.2 Consider proposition A given by ‘Jaffa cakes are biscuits’ and the
proposition B given by ‘2 + 2 = 5’ then A is true and B is false. Therefore

(i) A ! B (i.e. Jaffa cakes are biscuits implies 2 + 2 = 5) is false
(ii) A $ B (i.e. Jaffa cakes are biscuits is equivalent to 2 + 2 = 5) is false
(iii) ¬B (i.e. 2 + 2 6¼ 5) is true.

Creating a Truth Table
The truth table for a well-formed formula W(P1, P2, …, Pn) is a table with 2n rows
and n + 1 columns. Each row lists a different combination of truth values of the
propositions P1, P2, …, Pn followed by the corresponding truth value of W.

The example above (Table 15.7) gives the truth table for a formula W with three
propositional variables (meaning that there are 23 = 8 rows in the truth table).

Table 15.5 Equivalence A B A $ B

T T T

T F F

F T F

F F T

Table 15.6 Not operation A ¬A

T F

F T

Table 15.7 Truth table for
W(P, Q, R)

P Q R W(P, Q, R)

T T T F

T T F F

T F T F

T F F T

F T T T

F T F F

F F T F

F F F F
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15.2.2 Properties of Propositional Calculus

There are many well-known properties of the propositional calculus such as the
commutative, associative and distributive properties. These ease the evaluation of
complex expressions, and allow logical expressions to be simplified.

The commutative property holds for the conjunction and disjunction operators,
and it states that the order of evaluation of the two propositions may be reversed
without affecting the resulting truth value: i.e.

A ^ B ¼ B ^ A

A _ B ¼ B _ A

The associative property holds for the conjunction and disjunction operators.
This means that order of evaluation of a sub-expression does not affect the resulting
truth value, i.e.

ðA ^ BÞ ^ C ¼ A ^ ðB ^ CÞ
ðA _ BÞ _ C ¼ A _ ðB _ CÞ

The conjunction operator distributes over the disjunction operator and vice
versa.

A ^ ðB _ CÞ ¼ ðA ^ BÞ _ ðA ^ CÞ
A _ ðB ^ CÞ ¼ ðA _ BÞ ^ ðA _ CÞ

The result of the logical conjunction of two propositions is false if one of the
propositions is false (irrespective of the value of the other proposition).

A ^ F ¼ F ^ A ¼ F

The result of the logical disjunction of two propositions is true if one of the
propositions is true (irrespective of the value of the other proposition).

A _ T ¼ T _ A ¼ T

The result of the logical disjunction of two propositions, where one of the
propositions is known to be false is given by the truth value of the other propo-
sition. That is, the Boolean value ‘F’ acts as the identity for the disjunction
operation.

A _ F ¼ A ¼ F _ A
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The result of the logical conjunction of two propositions, where one of the
propositions is known to be true, is given by the truth value of the other proposition.
That is, the Boolean value ‘T’ acts as the identity for the conjunction operation.

A ^ T ¼ A ¼ T ^ A

The ^ and _ operators are idempotent. That is, when the arguments of the
conjunction or disjunction operator are the same proposition A the result is A. The
idempotent property allows expressions to be simplified.

A ^ A ¼ A

A _ A ¼ A

The law of the excluded middle is a fundamental property of the propositional
calculus. It states that a proposition A is either true or false: i.e. there is no third
logical value.

A _ :A

We mentioned earlier that A ! B is logically equivalent to ¬A _ B (same truth
table), and clearly ¬A _ B is the same as ¬A _ ¬¬B = ¬¬B _ ¬A which is logically
equivalent to ¬B ! ¬A. Another words, A ! B is logically equivalent to ¬B! ¬A,
and this is known as the contrapositive.

De Morgan was a contemporary of Boole in the nineteenth century, and the
following law is known as De Morgan’s law.

:ðA ^ BÞ � :A _ :B
:ðA _ BÞ � :A ^ :B

Certain well-formed formulae are true for all values of their constituent vari-
ables. This can be seen from the truth table when the last column of the truth table
consists entirely of true values. A proposition that is true for all values of its
constituent propositional variables is known as a tautology. An example of a tau-
tology is the proposition A _ ¬A (Table 15.8)

A proposition that is false for all values of its constituent propositional variables
is known as a contradiction. An example of a contradiction is the proposition
A ^ ¬A.

Table 15.8 Tautology B _
¬B

B ¬B B _ ¬B

T F T

F T T
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15.2.3 Proof in Propositional Calculus

Logic enables further truths to be derived from existing truths by rules of inference
that are truth preserving. Propositional calculus is both complete and consistent.
The completeness property means that all true propositions are deducible in the
calculus, and the consistency property means that there is no formula A such that
both A and ¬A are deducible in the calculus.

An argument in propositional logic consists of a sequence of formulae that are
the premises of the argument and a further formula that is the conclusion of the
argument. One elementary way to see if the argument is valid is to produce a truth
table to determine if the conclusion is true whenever all of the premises are true.

Consider a set of premises P1, P2, … Pn and conclusion Q. Then to determine if
the argument is valid using a truth table involves adding a column in the truth table
for each premise P1, P2, … Pn, and then to identify the rows in the truth table for
which these premises are all true. The truth value of the conclusion Q is examined
in each of these rows, and if Q is true for each case for which P1, P2, … Pn are all
true then the argument is valid. This is equivalent to P1 ^ P2 ^ … ^ Pn ! Q is a
tautology.

An alternate approach to proof with truth tables is to assume the negation of the
desired conclusion (i.e. ¬Q) and to show that the premises and the negation of the
conclusion result in a contradiction (i.e. P1 ^ P2 ^… ^ Pn ^ ¬Q) is a contradiction.

The use of truth tables becomes cumbersome when there are a large number of
variables involved, as there are 2n truth table entries for n propositional variables.

Procedure for Proof by Truth Table

(i) Consider argument P1, P2, …, Pn with conclusion Q
(ii) Draw truth table with column in truth table for each premise P1, P2, …, Pn

(iii) Identify rows in truth table for when these premises are all true.
(iv) Examine truth value of Q for these rows.
(v) If Q is true for each case that P1, P2,… Pn are true then the argument is valid.
(vi) That is P1 ^ P2 ^ … ^ Pn ! Q is a tautology

Example 15.3 (Truth Tables) Consider the argument adapted from [1] and
determine if it is valid.

If the pianist plays the concerto then crowds will come if the prices are not too
high.

If the pianist plays the concerto then the prices will not be too high
Therefore, if the pianist plays the concerto then crowds will come.

Solution
We will adopt a common proof technique that involves showing that the negation of
the conclusion is incompatible (inconsistent) with the premises, and from this we
deduce the conclusion must be true. First, we encode the argument in propositional
logic:
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Let P stand for ‘The pianist plays the concerto’; C stands for ‘Crowds will
come’; and H stands for ‘Prices are too high’. Then the argument may be expressed
in propositional logic as

P ! ð:H ! CÞ
P ! :H
P ! C

Then we negate the conclusion P! C and check the consistency of P! (¬H!
C) ^ (P ! ¬H) ^ ¬ (P ! C)* using a truth table (Table 15.9).

It can be seen from the last column in the truth table that the negation of the
conclusion is incompatible with the premises, and therefore it cannot be the case
that the premises are true and the conclusion false. Therefore, the conclusion must
be true whenever the premises are true, and we conclude that the argument is valid.

Logical Equivalence and Logical Implication
The laws of mathematical reasoning are truth preserving, and are concerned with
deriving further truths from existing truths. Logical reasoning is concerned with
moving from one line in mathematical argument to another, and involves deducing
the truth of another statement Q from the truth of P.

The statement Q maybe in some sense be logically equivalent to P and this
allows the truth of Q to be immediately deduced. In other cases the truth of P is
sufficiently strong to deduce the truth of Q; in other words P logically implies
Q. This leads naturally to a discussion of the concepts of logical equivalence (W1 �
W2) and logical implication (W1 ├ W2).

Logical Equivalence
Two well-formed formulae W1 and W2 with the same propositional variables (P, Q,
R …) are logically equivalent (W1 � W2) if they are always simultaneously true or
false for any given truth values of the propositional variables.

If two well-formed formulae are logically equivalent then it does not matter
which of W1 and W2 is used, and W1 $ W2 is a tautology. In Table 15.10 above we
see that P ^ Q is logically equivalent to ¬(¬P _ ¬Q).

Table 15.9 Proof of argument with a truth table

P C H ¬H ¬H!C P!(¬H! C) P!¬H P!C ¬(P!C) *

T T T F T T F T F F

T T F T T T T T F F

T F T F T T F F T F

T F F T F F T F T F

F T T F T T T T F F

F T F T T T T T F F

F F T F T T T T F F

F F F T F T T T F F
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Logical Implication
For two well-formed formulae W1 and W2 with the same propositional variables (P,
Q, R …) W1 logically implies W2 (W1 ├ W2) if any assignment to the propositional
variables which makesW1 true also makesW2 true (Table 15.11). That is,W1 !W2

is a tautology.

Example 15.4 Show by truth tables that (P ^ Q) _ (Q ^ ¬R) ├ (Q _ R).
The formula (P ^ Q) _ (Q ^ ¬R) is true on rows 1, 2 and 6 and formula (Q _

R) is also true on these rows. Therefore (P ^ Q) _ (Q ^ ¬R) ├ (Q _ R).

15.2.4 Semantic Tableaux in Propositional Logic

We showed in example 15.3 how truth tables may be used to demonstrate the
validity of a logical argument. However, the problem with truth tables is that they
can get extremely large very quickly (as the size of the table is 2n where n is the
number of propositional variables), and so in this section we will consider an
alternate approach known as semantic tableaux.

The basic idea of semantic tableaux is to determine if it is possible for a con-
clusion to be false when all of the premises are true. If this is not possible, then the
conclusion must be true when the premises are true, and so the conclusion is
semantically entailed by the premises. The method of semantic tableaux is a
technique to expose inconsistencies in a set of logical formulae, by identifying
conflicting logical expressions.

Table 15.10 Logical
equivalence of two WFFs

P Q P ^ Q :P :Q :P _ :Q :P _ :Q
T T T F F F T

T F F F T T F

F T F T F T F

F F F T T T F

Table 15.11 Logical
implication of two WFFs

PQR ðP ^ Q) _ ðQ ^ :RÞ ðQ _ RÞ
TTT T T

TTF T T

TFT F T

TFF F F

FTT F T

FTF T T

FFT F T

FFF F F
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We present a short summary of the rules of semantic tableaux in Table 15.12,
and we then proceed to provide a proof for Example 15.3 using semantic tableaux
instead of a truth table.

Whenever a logical expression A and its negation ¬A appear in a branch of the
tableau, then an inconsistency has been identified in that branch, and the branch is
said to be closed. If all of the branches of the semantic tableaux are closed, then the
logical propositions from which the tableau was formed are mutually inconsistent,
and cannot be true together.

The method of proof is to negate the conclusion, and to show that all branches in
the semantic tableau are closed, and that therefore it is not possible for the premises
of the argument to be true and for the conclusion to be false. Therefore, the
argument is valid and the conclusion follows from the premises.

Example 15.5 (Semantic Tableaux) Perform the proof for Example 15.3 using
semantic tableaux.

Table 15.12 Rules of semantic tableaux

Rule No. Definition Description

1. A ^ B
A
B

If A ^ B is true then both A and B are true, and may be added to
the branch containing A ^ B

2. A ∨ B

A B

If A _ B is true then either A or B is true, and we add two new
branches to the tableaux, one containing A and one containing B

3. A → B

¬A B

If A ! B is true then either ¬A or B is true, and we add two new
branches to the tableaux, one containing ¬A and one containing
B

4. A ↔ B

A∧B ¬A ∧¬B

If A $ B is true then either A ^ B or ¬A ^ ¬B is true, and we
add two new branches, one containing A ^ B and one containing
¬A ^ ¬B

5. ¬¬A
A

If ¬¬A is true then A may be added to the branch containing
¬¬A

6. ¬(A ∧ B)

¬A ¬ B

If ¬(A ^ B) is true then either ¬A or ¬B is true, and we add two
new branches to the tableaux, one containing ¬A and one
containing ¬B

7. ¬(A _ B)
¬A
¬B

If ¬(A _ B) is true then both ¬A and ¬B are true, and may be
added to the branch containing ¬(A _ B)

8. ¬(A ! B)
A
¬B

If ¬(A ! B) is true then both A and ¬B are true, and may be
added to the branch containing ¬(A ! B)
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Solution
We formalized the argument previously as

Premise 1ð Þ P ! ð:H ! CÞ
Premise 2ð Þ P ! :H
Conclusionð Þ P ! C

We negate the conclusion to get ¬(P ! C) and we show that all branches in the
semantic tableau are closed, and that therefore it is not possible for the premises of
the argument to be true and for the conclusion false. Therefore, the argument is
valid, and the truth of the conclusion follows from the truth of the premises.

P → (¬H → C)
P → ¬H
¬(P → C)

|
P

¬C
/            \

¬P               ¬H
------ /         \

closed           ¬P           (¬H → C)
------ /                      \

closed    ¬¬H          C
| -----
H closed

-------
closed

We have showed that all branches in the semantic tableau are closed, and that
therefore it is not possible for the premises of the argument to be true and for the
conclusion false. Therefore, the argument is valid as required.

15.2.5 Natural Deduction

The German mathematician, Gerhard Gentzen (Fig. 15.1), developed a method for
logical deduction known as ‘Natural Deduction’, and his formal approach to natural
deduction aimed to be as close as possible to natural reasoning. Gentzen worked as
an assistant to David Hilbert at the University of Göttingen, and he died of mal-
nutrition in Prague at the end of the Second World War.

Natural deduction includes rules for ^, _, ! introduction and elimination and
also for reductio ab absurdum. There are ten inference rules in the Natural
Deduction system, and they include two inference rules for each of the five logical
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Fig. 15.1 Gerhard gentzen

Table 15.13 Natural deduction rules

Rule Definition Description

^ I P1;P2; . . .Pn
P1 ^ P2 ^ . . . ^ Pn

Given the truth of propositions P1, P2, … Pn then the
truth of the conjunction P1 ^ P2 ^ …^ Pn follows.
This rule shows how conjunction can be introduced

^ E P1 ^ P2 ^ . . . ^ Pn
Pi

where i 2 1; . . .; nf g

Given the truth the conjunction P1 ^ P2 ^…^ Pn then
the truth of proposition Pi follows. This rule shows
how a conjunction can be eliminated

_ I Pi
P1 _ P2 _ . . . _ Pn

Given the truth of propositions Pi then the truth of the
disjunction P1 _ P2 _ …_ Pn follows. This rule
shows how a disjunction can be introduced

_ E P1 _ . . . _ Pn; P1 ! E,. . .Pn ! E
E

Given the truth of the disjunction P1 _ P2 _ …_ Pn,
and that each disjunct implies E, then the truth of E
follows. This rule shows how a disjunction can be
eliminated

! I FromP1; P2; . . .Pn infer P
P1 ^ P2 ^ . . . ^ Pn ! P

This rule states that if we have a theorem that allows P
to be inferred from the truth of premises P1, P2, … Pn
(or previously proved) then we can deduce (P1 ^ P2 ^
…^ Pn) ! P. This is known as the Deduction
Theorem

! E Pi ! Pj,Pi
Pj

This rule is known as modus ponens. The
consequence of an implication follows if the
antecedent is true (or has been previously proved)

� I Pi ! Pj,Pj ! Pi
Pi $ Pj

If proposition Pi implies proposition Pj and vice versa
then they are equivalent (i.e. Pi $ Pj)

� E Pi $ Pj
Pi ! Pj,Pj ! Pi

If proposition Pi is equivalent to proposition Pj then
proposition Pi implies proposition Pj and vice versa

¬ I FromP infer P1 ^ :P1
:P

If the proposition P allows a contradiction to be
derived, then ¬P is deduced. This is an example of a
proof by contradiction

¬ E From:PinferP1^:P1

:P
If the proposition ¬P allows a contradiction to be
derived, then P is deduced. This is an example of a
proof by contradiction
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operators—^, _, ¬, ! and $. There are two inference rules per operator (an
introduction rule and an elimination rule), and the rules are defined in Table 15.13:

Natural deduction may be employed in logical reasoning and is described in
detail in [1, 2].

15.2.6 Sketch of Formalization of Propositional Calculus

Truth tables provide an informal approach to proof and the proof is provided in
terms of the meanings of the propositions and logical connectives. The formal-
ization of propositional logic includes the definition of an alphabet of symbols and
well-formed formulae of the calculus, the axioms of the calculus and rules of
inference for logical deduction.

The deduction of a new formulae Q is via a sequence of well-formed formulae
P1, P2, … Pn (where Pn = Q) such that each Pi is either an axiom, a hypothesis or
deducible from an earlier pair of formula Pj, Pk, (where Pk is of the form Pj ) Pi)
and modus ponens. Modus ponens is a rule of inference that states that given
propositions A, and A ) B then proposition B may be deduced. The deduction of a
formula Q from a set of hypothesis H is denoted by H ├ Q, and where Q is
deducible from the axioms alone this is denoted by ├ Q.

The deduction theorem of propositional logic states that if H [ {P} ├ Q, then
H ├ P ! Q, and the converse of the theorem is also true: i.e. if H ├ P ! Q then
H [ {P} ├ Q. Formalism (this approach was developed by the German mathe-
matician, David Hilbert) allows reasoning about symbols according to rules, and to
derive theorems from formulae irrespective of the meanings of the symbols and
formulae.

Propositional calculus is sound; i.e. any theorem derived using the Hilbert
approach is true. Further, the calculus is also complete, and every tautology has a
proof (i.e. is a theorem in the formal system). The propositional calculus is con-
sistent: (i.e. it is not possible that both the well-formed formula A and ¬A are
deducible in the calculus).

Propositional calculus is decidable: i.e. there is an algorithm (truth table) to
determine for any well-formed formula A whether A is a theorem of the formal
system. The Hilbert style system is slightly cumbersome in conducting proof and is
quite different from the normal use of logic in mathematical deduction.

15.2.7 Applications of Propositional Calculus

Propositional calculus may be employed in reasoning with arguments in natural
language. First, the premises and conclusion of the argument are identified and
formalized into propositions. Propositional logic is then employed to determine if
the conclusion is a valid deduction from the premises.

Consider, for example, the following argument that aims to prove that Superman
does not exist.
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If Superman were able and willing to prevent evil, he would do so. If Superman were
unable to prevent evil he would be impotent; if he were unwilling to prevent evil he would
be malevolent; Superman does not prevent evil. If superman exists he is neither malevolent
nor impotent; therefore Superman does not exist.

First, letters are employed to represent the propositions as follows:

a: Superman is able to prevent evil
w: Superman is willing to prevent evil
i: Superman is impotent
m: Superman is malevolent
p: Superman prevents evil
e: Superman exists

Then, the argument above is formalized in propositional logic as follows:

Premises

P1 (a ^w) ! p

P2 (¬a ! i) ^ (¬w ! m)

P3 ¬p

P4 e ! ¬ i ^¬ m

————————————

Conclusion P1 ^ P2^ P3 ^ P4 ) ¬ e

Proof that Superman does not exist

1. a ^ w ! p Premise 1

2. (¬ a !i) ^ (¬ w !m) Premise 2

3. ¬p Premise 3

4. e! (¬ i ^ ¬ m) Premise 4

5. ¬p ! ¬(a ^ w) 1, Contrapositive

6. ¬(a ^ w) 3, 5 Modus Ponens

7. ¬a _ ¬w 6, De Morgan’s Law

8. ¬ (¬ i ^ ¬ m) ! ¬e 4, Contrapositive

9. i _ m ! ¬e 8, De Morgan’s Law

10. (¬ a ! i) 2, ^ Elimination

11. (¬ w ! m) 2, ^ Elimination

12. ¬ ¬a _ i 10, A! B equivalent to ¬A_ B

13. ¬ ¬a _ i _ m 11, _ Introduction

14. ¬ ¬a _ (i _ m)

15. ¬a ! (i _ m) 14, A ! B equivalent to ¬A_ B

16. ¬ ¬w _ m 11, A ! B equivalent to ¬A_ B

17. ¬ ¬w _ (i _ m)

18. ¬w ! (i _ m) 17, A ! B equivalent to ¬A_ B

19. (i _ m) 7, 15, 18 _Elimination
20. ¬e 9, 19 Modus Ponens
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Second Proof

1. ¬p P3

2. ¬(a ^w) _ p P1 (A ! B � ¬A _ B)

3. ¬(a ^w) 1, 2 A _ B, ¬B ├ A

4. ¬a _ ¬w 3, De Morgan’s Law

5. (¬a ! i) P2 (^-Elimination)

6. ¬a ! i _ m 5, x ! y ├ x ! y _ z

7. (¬w ! m) P2 (^-Elimination)

8. ¬w ! i _ m 7, x ! y ├ x ! y _ z

9. (¬a _ ¬w) ! (i _ m) 8, x ! z, y! z ├ x _ y ! z

10. (i _ m) 4, 9 Modus Ponens

11. e ! ¬(i _ m) P4 (De Morgan’s Law)

12. ¬e _ ¬ (i _ m) 11, (A ! B � ¬A _ B)

13. ¬e 10, 12 A _ B, ¬B ├ A

Therefore, the conclusion that Superman does not exist is a valid deduction from
the given premises.

15.2.8 Limitations of Propositional Calculus

The propositional calculus deals with propositions only. It is incapable of dealing
with the syllogism ‘All Greeks are mortal; Socrates is a Greek; therefore Socrates is
mortal’. This would be expressed in propositional calculus as three propositions A,
B therefore C, where A stands for ‘All Greeks are mortal’, B stands for ‘Socrates is a
Greek’ and C stands for ‘Socrates is mortal’. Propositional logic does not allow the
conclusion that all Greeks are mortal to be derived from the two premises.

Predicate calculus deals with these limitations by employing variables and terms,
and using universal and existential quantification to express that a particular
property is true of all (or at least one) values of a variable. Predicate calculus is
discussed in the next section.

15.3 Predicate Calculus

Predicate logic is a richer system than propositional logic, and it allows complex
facts about the world to be represented. It allows new facts about the world to be
derived in a way that guarantees that if the initial facts are true then the conclusions
are true. Predicate calculus includes predicates, variables, constants and quantifiers.
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A predicate is a characteristic or property that an object can have, and we are
predicating some property of the object. For example, “Socrates is a Greek” could
be expressed as G(s), with capital letters standing for predicates and small letters
standing for objects. A predicate may include variables, and a statement with a
variable becomes a proposition once the variables are assigned values. For example,
G(x) states that the variable x is a Greek, whereas G(s) is an assignment of values to
x. The set of values that the variables may take is termed the universe of discourse,
and the variables take values from this set.

Predicate calculus employs quantifiers to express properties such as all members
of the domain have a particular property: e.g., (8x)P(x), or that there is at least one
member that has a particular property: e.g. (9x)P(x). These are referred to as the
universal and existential quantifiers.

The syllogism ‘All Greeks are mortal; Socrates is a Greek; therefore Socrates is
mortal’ may be easily expressed in predicate calculus by

ð8xÞðG xð Þ ! M xð ÞÞ
GðsÞ
� � � �������������
M sð Þ

In this example, the predicate G(x) stands for x is a Greek and the predicate M
(x) stands for x is mortal. The formula G(x)! M(x) states that if x is a Greek then
x is mortal, and the formula (8x)(G(x)! M(x)) states for any x that if x is a Greek
then x is mortal. The formula G(s) states that Socrates is a Greek and the formula M
(s) states that Socrates is mortal.

Example 15.6 (Predicates) A predicate may have one or more variables. A predi-
cate that has only one variable (i.e. a unary or 1-place predicate) is often related to
sets; a predicate with two variables (a 2-place predicate) is a relation; and a pred-
icate with n variables (a n-place predicate) is a n-ary relation. Propositions do not
contain variables and so they are 0-place predicates. The following are examples of
predicates:

(i) The predicate Prime(x) states that x is a prime number (with the natural
numbers being the universe of discourse).

(ii) Lawyer(a) may stand for a is a lawyer.
(iii) Mean(m, x, y) states that m is the mean
(iv) of x and y: i.e. m = ½(x + y).
(iv) LT(x, 6) states that x is less than 6.
(v) G(x, p) states that x is greater than p (where is the constant 3.14159)
(vi) G(x, y) states that x is greater than y.
(vii) EQ(x, y) states that x is equal to y.
(viii) LE(x, y) states that x is less than or equal to y.
(ix) Real(x) states that x is a real number.
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(x) Father(x, y) states that x is the father of y.
(xi) ¬(9x)(Prime(x) ^ B(x, 32, 36)) states that there is no prime number between

32 and 36.

Universal and Existential Quantification
The universal quantifier is used to express a statement such as that all members of
the domain have property P. This is written as (8x)P(x) and expresses the statement
that the property P(x) is true for all x. Similarly, (8x1, x2, …, xn) P(x1, x2, …, xn)
states that property P(x1, x2,…, xn) is true for all x1, x2,…, xn. Clearly, the predicate
(8x) P(a, b) is identical to P(a, b) since it contains no variables, and the predicate
(8y 2ℕ) (x � y) is true if x = 1 and false otherwise.

The existential quantifier states that there is at least one member in the domain of
discourse that has property P. This is written as (9x)P(x) and the predicate (9x1, x2,
…, xn) P(x1, x2, …, xn) states that there is at least one value of (x1, x2, …, xn) such
that P(x1, x2, …, xn) is true.

Example 15.7 (Quantifiers)

(i) (9p) (Prime(p) ^ p > 1,000,000) is true
It expresses the fact that there is at least one prime number greater than a
million, which is true as there are an infinite number of primes.

(ii) (8x) (9 y) x < y is true
This predicate expresses the fact that given any number x we can always find
a larger number: e.g. take y = x + 1.

(iii) (9 y) (8x) x < y is false
This predicate expresses the statement that there is a natural number y such
that all natural numbers are less than y. Clearly, this statement is false since
there is no largest natural number, and so the predicate (9 y) (8x) x < y is
false.

Comment 15.1
It is important to be careful with the order in which quantifiers are written, as the
meaning of a statement may be completely changed by the simple transposition of
two quantifiers.

The well-formed formulae in the predicate calculus are built from terms and
predicates, and the rules for building the formulae are described briefly in
Sect. 15.3.1. Examples of well-formed formulae include
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ð8xÞ x[ 2ð Þ
ð9xÞx2 ¼ 2

ð8xÞ ðx[ 2 ^ x\10Þ
ð9yÞx2 ¼ y

ð8xÞ ð8yÞ Love y; xð Þ everyone is loved by someoneð Þ
ð9yÞ ð8xÞLove y; xð Þ someone loves everyoneð Þ

The formula (8x)(x > 2) states that every x is greater than the constant 2;
(9x) x2 = 2 states that there is an x that is the square root of 2; (8x) (9y) x2 = y states
that for every x there is a y such that the square of x is y.

15.3.1 Sketch of Formalization of Predicate Calculus

The formalization of predicate calculus includes the definition of an alphabet of
symbols (including constants and variables), the definition of function and predicate
letters, logical connectives and quantifiers. This leads to the definitions of the terms
and well-formed formulae of the calculus.

The predicate calculus is built from an alphabet of constants, variables, function
letters, predicate letters and logical connectives (including the logical connectives
discussed in propositional logic, and universal and existential quantifiers).

The definition of terms and well-formed formulae specifies the syntax of the
predicate calculus, and the set of well-formed formulae gives the language of the
predicate calculus. The terms and well-formed formulae are built from the symbols,
and these symbols are not given meaning in the formal definition of the syntax.

The language defined by the calculus needs to be given an interpretation in order
to give a meaning to the terms and formulae of the calculus. The interpretation
needs to define the domain of values of the constants and variables, provide
meaning to the function letters, the predicate letters and the logical connectives.

Terms are built from constants, variables and function letters. A constant or
variable is a term, and if t1, t2, …, tk are terms, then f i

k(t1, t2, …, tk) is a term (where
f i
k is a k-ary function letter). Examples of terms include

x2 where x is a variable and square is a 1� ary function letter

x2 þ y2 where x2 þ y2 is shorthand for the function add square xð Þ; square yð Þð Þ
where add is a 2� ary function letter and square is a 1� ary function

The well-formed formulae are built from terms as follows. If Pi
k is a k-ary

predicate letter, t1, t2, …, tk are terms, then Pi
k (t1, t2, …, tk) is a well-formed

formula. If A and B are well-formed formulae then so are ¬A, A ^ B, A _ B, A! B,
A $ B, (8x)A and (9x)A.
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There is a set of axioms for predicate calculus and two rules of inference used for
the deduction of new formulae from the existing axioms and previously deduced
formulae. The deduction of a new formula Q is via a sequence of well-formed
formulae P1, P2, … Pn (where Pn = Q) such that each Pi is either an axiom, a
hypothesis or deducible from one or more of the earlier formulae in the sequence.

The two rules of inference are modus ponens and generalization. Modus ponens
is a rule of inference that states that given predicate formulae A, and A) B then the
predicate formula B may be deduced. Generalization is a rule of inference that states
that given predicate formula A, then the formula (8x)A may be deduced where x is
any variable.

The deduction of a formula Q from a set of hypothesis H is denoted by H ├ Q,
and where Q is deducible from the axioms alone this is denoted by ├ Q. The
deduction theorem states that if H [ {P} ├ Q then H ├ P ! Q3 and the converse
of the theorem is also true: i.e. if H ├ P ! Q then H [ {P} ├ Q.

The approach allows reasoning about symbols according to rules, and to derive
theorems from formulae irrespective of the meanings of the symbols and formulae.
Predicate calculus is sound: i.e. any theorem derived using the approach is true, and
the calculus is also complete.

Scope of Quantifiers
The scope of the quantifier (8x) in the well-formed formula (8x)A is A. Similarly,
the scope of the quantifier (9x) in the well-formed formula (9x)B is B. The variable
x that occurs within the scope of the quantifier is said to be a bound variable. If a
variable is not within the scope of a quantifier it is free.

Example 15.8 (Scope of Quantifiers)

(i) x is free in the well-formed formula 8y (x2 + y > 5)
(ii) x is bound in the well-formed formula 8x (x2 > 2)

A well-formed formula is closed if it has no free variables. The substitution of a
term t for x in A can only take place only when no free variable in t will become
bound by a quantifier in A through the substitution. Otherwise, the interpretation of
A would be altered by the substitution.

A term t is free for x in A if no free occurrence of x occurs within the scope of a
quantifier (8y) or (9y) where y is free in t. This means that the term t may be
substituted for x without altering the interpretation of the well-formed formula A.

For example, suppose A is 8y (x2 + y2 > 2) and the term t is y, then t is not free
for x in A as the substitution of t for x in A will cause the free variable y in t to
become bound by the quantifier 8y in A, thereby altering the meaning of the formula
to 8y (y2 + y2 > 2).

3This is stated more formally that if H [ {P} ├ Q by a deduction containing no application of
generalization to a variable that occurs free in P then H ├ P ! Q.
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15.3.2 Interpretation and Valuation Functions

An interpretation gives meaning to a formula and it consists of a domain of dis-
course and a valuation function. If the formula is a sentence (i.e. does not contain
any free variables) then the given interpretation of the formula is either true or false.
If a formula has free variables, then the truth or falsity of the formula depends on
the values given to the free variables. A formula with free variables essentially
describes a relation say, R(x1, x2,.… xn) such that R(x1, x2,.… xn) is true if (x1, x2, …
xn) is in relation R. If the formula is true irrespective of the values given to the free
variables, then the formula is true in the interpretation.

A valuation (meaning) function gives meaning to the logical symbols and
connectives. Thus, associated with each constant c is a constant cR in some universe
of values R; with each function symbol f of arity k, we have a function symbol fR in
R and fR: R

k ! R; and for each predicate symbol P of arity k a relation PR � R k.
The valuation function, in effect, gives the semantics of the language of the pred-
icate calculus L.

The truth of a predicate P is then defined in terms of the meanings of the terms,
the meanings of the functions, predicate symbols, and the normal meanings of the
connectives.

Mendelson [3] provides a technical definition of truth in terms of satisfaction
(with respect to an interpretationM). Intuitively a formula F is satisfiable if it is true
(in the intuitive sense) for some assignment of the free variables in the formula F. If
a formula F is satisfied for every possible assignment to the free variables in F, then
it is true (in the technical sense) for the interpretation M. An analogous definition is
provided for false in the interpretation M.

A formula is valid if it is true in every interpretation; however, as there may be
an uncountable number of interpretations, it may not be possible to check this
requirement in practice. M is said to be a model for a set of formulae if and only if
every formula is true in M.

There is a distinction between proof theoretic and model theoretic approaches in
predicate calculus. Proof theoretic is essentially syntactic, and there is a list of
axioms with rules of inference. The theorems of the calculus are logically derived
(i.e.├ A) and the logical truths are as a result of the syntax or form of the formulae,
rather than the meaning of the formulae. Model theoretical, in contrast is essentially
semantic. The truth derives from the meaning of the symbols and connectives,
rather than the logical structure of the formulae. This is written as ├ M A.

A calculus is sound if all of the logically valid theorems are true in the inter-
pretation, i.e. proof theoretic ) model theoretic. A calculus is complete if all the
truths in an interpretation are provable in the calculus, i.e. model theoretic ) proof
theoretic. A calculus is consistent if there is no formula A such that ├ A and ├ ¬A.

The predicate calculus is sound, complete and consistent. Predicate calculus is
not decidable: i.e. there is no algorithm to determine for any well-formed formula A
whether A is a theorem of the formal system. The undecidability of the predicate
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calculus may be demonstrated by showing that if the predicate calculus is decidable
then the halting problem (of Turing machines) is solvable. We discussed the halting
problem in Chap. 13.

15.3.3 Properties of Predicate Calculus

The following are properties of the predicate calculus.

ðiÞ ð8xÞP xð Þ � ð8yÞP yð Þ
ðiiÞ ð8xÞP xð Þ � :ð9xÞ:P xð Þ
ðiiiÞ ð9xÞP xð Þ � :ð8xÞ:P xð Þ
ðivÞ ð9xÞP xð Þ � ð9yÞP yð Þ
ðvÞ ð8xÞð8yÞP x; yð Þ � ð8yÞ ð8xÞP x; yð Þ
ðviÞ ð9xÞðP xð Þ _ Q xð ÞÞ � ð9xÞP xð Þ _ ð9yÞQ yð Þ
ðviiÞ ð8xÞP xð Þ ^ Q xð ÞÞ � ð8xÞPðxÞ ^ 8yð ÞQðyÞ

15.3.4 Applications of Predicate Calculus

The predicate calculus is may be employed to formally state the system require-
ments of a proposed system. It may be used to conduct formal proof to verify the
presence or absence of certain properties in a specification. It may also be employed
to define piecewise defined functions such as f(x, y) where f(x, y) is defined by

f ðx; yÞ ¼ x2 � y2 where x� 0 ^ y\0;
f ðx; yÞ ¼ x2 þ y2 where x[ 0 ^ y\0;
f ðx; yÞ ¼ xþ y where x� 0 ^ y ¼ 0;
f ðx; yÞ ¼ x� y where x\0 ^ y ¼ 0;
f ðx; yÞ ¼ xþ y wherex � 0 ^ y[ 0;
f ðx; yÞ ¼ x2 þ y2 where x[ 0 ^ y[ 0

The predicate calculus may be employed for program verification, and to show
that a code fragment satisfies its specification. The statement that a program F is
correct with respect to its precondition P and postcondition Q is written as P{F}
Q. The objective of program verification is to show that if the precondition is true
before execution of the code fragment, then this implies that the postcondition is
true after execution of the code fragment.
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A program fragment a is partially correct for precondition P and postcondition
Q if and only if whenever a is executed in any state in which P is satisfied and
execution terminates, then the resulting state satisfies Q. Partial correctness is
denoted by P{F}Q, and Hoare’s Axiomatic Semantics is based on partial correct-
ness. It requires proof that the postcondition is satisfied if the program terminates.

A program fragment a is totally correct for precondition P and postcondition Q,
if and only if whenever a is executed in any state in which P is satisfied then the
execution terminates and the resulting state satisfies Q. It is denoted by {P}F{Q},
and Dijkstra’s calculus of weakest preconditions is based on total correctness [2, 4].
It is required to prove that if the precondition is satisfied then the program termi-
nates and the postcondition is satisfied

15.3.5 Semantic Tableaux in Predicate Calculus

We discussed the use of semantic tableaux for determining the validity of argu-
ments in propositional logic earlier in this chapter, and its approach is to negate the
conclusion of an argument and to show that this results in inconsistency with the
premises of the argument.

The use of semantic tableaux is similar with predicate logic, except that there are
some additional rules to consider. As before, if all branches of a semantic tableau
are closed, then the premises and the negation of the conclusion are mutually
inconsistent, and all branches in the tableau are closed. From this, we deduce that
the conclusion must be true.

The rules of semantic tableaux for propositional logic were presented in
Table 15.12, and the additional rules specific to predicate logic are detailed in
Table 15.14.

Example 15.9 (Semantic Tableaux) Show that the syllogism ‘All Greeks are
mortal; Socrates is a Greek; therefore Socrates is mortal’ is a valid argument in
predicate calculus.

Table 15.14 Extra rules of semantic tableaux (for predicate calculus)

Rule
No.

Definition Description

1. (8x) A(x)
A(t) where t is a term

Universal instantiation

2. (9x) A(x)
A(t) where t is a term that has not been
used in the derivation so far

Rule of Existential instantiation. The
term “t” is often a constant “a”

3. ¬(8x) A(x)
(9x) ¬A(x)

4. ¬(9x) A(x)
(8x)¬A(x)
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Solution
We expressed this argument previously as (8x)(G(x)! M(x)); G(s); M(s). There-
fore, we negate the conclusion (i.e. ¬M(s)), and try to construct a closed tableau.

(∀x)(G(x)→ M(x))
G(s)

¬M(s).
G(s)→ M(s) Universal Instantiation

/\
¬G(s)   M(s)
----- --------

closed           closed

Therefore, as the tableau is closed we deduce that the negation of the conclusion
is inconsistent with the premises, and that therefore the conclusion follows from the
premises.

Example 15.10 (Semantic Tableaux) Determine whether the following argument
is valid.

All lecturers are motivated
Anyone who is motivated and clever will teach well
Joanne is a clever lecturer
Therefore, Joanne will teach well.

Solution
We encode the argument as follows

L(x) stands for ‘x is a lecturer’
M(x) stands for ‘x is motivated’
C(x) stands for ‘x is clever’
W(x) stands for ‘x will teach well’

We therefore wish to show that

ð8xÞðL xð Þ ! M xð ÞÞ ^ ð8xÞððM xð Þ ^ C xð ÞÞ
! W xð ÞÞ ^ L joanneð Þ ^ C joanneð Þ�W joanneð Þ

Therefore, we negate the conclusion (i.e. ¬W(joanne)) and try to construct a
closed tableau.
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1. (∀x)(L(x)→ M(x))
2. (∀x)((M(x) ∧ C(x)) → W(x))
3. L(joanne)
4. C(joanne)
5. ¬W(joanne)
6. L(joanne) → M(joanne) Universal Instantiation (line 1)
7. (M(joanne) ∧ C(joanne))→ W(joanne)      Universal Instantiation (line 2)

/ \
8. ¬L(joanne) M(joanne) From line 6

-----------
Closed          

/ \
9. ¬ (M(joanne) ∧ C(joanne)) W(joanne)    From line 7

------------
Closed

/  \
10. ¬ M(joanne) ¬ C(joanne)

-------------- -------------
Closed                   Closed

Therefore, since the tableau is closed we deduce that the argument is valid.

15.4 Review Questions

1. Draw a truth table to show that ¬ (P ! Q) � P ^¬ Q

2. Translate the sentence ‘Execution of program P begun with x < 0 will not
terminate’ into propositional form.

3. Prove the following theorems using the inference rules of natural
deduction

a. From b infer b _¬c
b. From b ) (c ^ d), b infer d

4. Explain the difference between the universal and the existential quantifier.
5. Express the following statements in the predicate calculus

a. All natural numbers are greater than 10
b. There is at least one natural number between 5 and 10
c. There is a prime number between 100 and 200.
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6. Which of the following predicates are true?

a. 8i 2 f10; . . .; 50g:i2\2000 ^ i\100
b. 9i 2 N:i[ 5 ^ i2 ¼ 25
c. 9i 2 N:i2 ¼ 25

7. Use semantic tableaux to show that (A ! A) _ (B ^ ¬B) is true
8. Determine if the following argument is valid.

If Pilar lives in Cork, she lives in Ireland. Pilar lives in Cork. Therefore,
Pilar lives in Ireland.

15.5 Summary

This chapter considered propositional and predicate calculus. Propositional logic is
the study of propositions, and a proposition is a statement that is either true or false.
A formula in propositional calculus may contain several variables, and the truth or
falsity of the individual variables, and the meanings of the logical connectives
determines the truth or falsity of the logical formula.

A rich set of connectives is employed in propositional calculus to combine
propositions and to build up the well-formed formulae of the calculus. This includes
the conjunction of two propositions (A ^ B), the disjunction of two propositions
(A _ B), and the implication of two propositions (A ) B). These connectives allow
compound propositions to be formed, and the truth of the compound propositions is
determined from the truth values of the constituent propositions and the rules
associated with the logical connectives. The meaning of the logical connectives is
given by truth tables.

Propositional calculus is both complete and consistent with all true propositions
deducible in the calculus, and there is no formula A such that both A and ¬A are
deducible in the calculus.

An argument in propositional logic consists of a sequence of formulae that are
the premises of the argument and a further formula that is the conclusion of the
argument. One elementary way to see if the argument is valid is to produce a truth
table to determine if the conclusion is true whenever all of the premises are true.
Other ways are to use semantic tableaux or natural deduction.

Predicates are statements involving variables and these statements become
propositions once the variables are assigned values. Predicate calculus allows
expressions such as all members of the domain have a particular property to be
expressed formally: e.g., (8x)Px, or that there is at least one member that has a
particular property: e.g., (9x)Px.
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Predicate calculus may be employed to specify the requirements for a proposed
system and to give the definition of a piecewise defined function. Semantic tableaux
may be used for determining the validity of arguments in propositional or predicate
logic, and its approach is to negate the conclusion of an argument and to show that
this results in inconsistency with the premises of the argument.
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