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Introduction

As a result of the continuing information explosion, many organizations are
experiencing what is now called the “Big Data” problem. This results in the
inability of organizations to effectively use massive amounts of their data in datasets
which have grown to big to process in a timely manner. Data-intensive computing
represents a new computing paradigm [1] which can address the big data problem
using high-performance architectures supporting scalable parallel processing to
allow government, commercial organizations, and research environments to process
massive amounts of data and implement new applications previously thought to be
impractical or infeasible.

The fundamental challenges of data-intensive computing are managing and
processing exponentially growing data volumes, significantly reducing associated
data analysis cycles to support practical, timely applications, and developing new
algorithms which can scale to search and process massive amounts of data.
Researchers at LexisNexis believe that the answer to these challenges are:

(1) a scalable, integrated computer systems hardware and software architecture
designed for parallel processing of data-intensive computing applications, and

(2) a new programming paradigm in the form of a high-level declarative
data-centric programming language designed specifically for big data
processing.

This chapter explores the challenges of data-intensive computing from a pro-
gramming perspective, and describes the ECL programming language and the open
source High-Performance Cluster Computing (HPCC) architecture designed for
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data-intensive exascale computing applications. ECL is also compared to Pig Latin,
a high-level language developed for the Hadoop MapReduce architecture.

Data-Intensive Computing Applications

High-Performance Computing (HPC) is used to describe computing environments
which utilize supercomputers and computer clusters to address complex compu-
tational requirements or applications with significant processing time requirements
or which require processing of significant amounts of data. Computing approaches
can be generally classified as either compute-intensive, or data-intensive [2–4].
HPC has generally been associated with scientific research and compute-intensive
types of problems, but more and more HPC technology is appropriate for both
compute-intensive and data-intensive applications. HPC platforms utilize a
high-degree of internal parallelism and tend to use specialized multi-processors
with custom memory architectures which have been highly-optimized for numerical
calculations [5]. Supercomputers also require special parallel programming tech-
niques to take advantage of its performance potential.

Compute-intensive is used to describe application programs that are compute
bound. Such applications devote most of their execution time to computational
requirements as opposed to I/O, and typically require small volumes of data. HPC
approaches to compute-intensive applications typically involves parallelizing
individual algorithms within an application process, and decomposing the overall
application process into separate tasks, which can then be executed in parallel on an
appropriate computing platform to achieve overall higher performance than serial
processing. In compute-intensive applications, multiple operations are performed
simultaneously, with each operation addressing a particular part of the problem.
This is often referred to as functional parallelism or control parallelism [6].

Data-intensive is used to describe applications that are I/O bound or with a need
to process large volumes of data [2, 3, 7]. Such applications devote most of their
processing time to I/O and movement of data. HPC approaches to data-intensive
applications typically use parallel system architectures and involves partitioning or
subdividing the data into multiple segments which can be processed independently
using the same executable application program in parallel on an appropriate com-
puting platform, then reassembling the results to produce the completed output data
[8]. The greater the aggregate distribution of the data, the more benefit there is in
parallel processing of the data. Gorton et al. [2] state that data-intensive processing
requirements normally scale linearly according to the size of the data and are very
amenable to straightforward parallelization. The fundamental challenges for
data-intensive computing according to Gorton et al. [2] are managing and pro-
cessing exponentially growing data volumes, significantly reducing associated data
analysis cycles to support practical, timely applications, and developing new
algorithms which can scale to search and process massive amounts of data.
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Data-Parallelism

According to Agichtein [9], parallelization is considered to be an attractive alter-
native for processing extremely large collections of data such as the billions of
documents on the Web [10]. Nyland et al. [8] define data-parallelism as a com-
putation applied independently to each data item of a set of data which allows the
degree of parallelism to be scaled with the volume of data. According to Nyland
et al. [8], the most important reason for developing data-parallel applications is the
potential for scalable performance, and may result in several orders of magnitude
performance improvement. The key issues with developing applications using
data-parallelism are the choice of the algorithm, the strategy for data decomposi-
tion, load balancing on processing nodes, message passing communications
between nodes, and the overall accuracy of the results [8, 11]. Nyland et al. [8] also
note that the development of a data-parallel application can involve substantial
programming complexity to define the problem in the context of available pro-
gramming tools, and to address limitations of the target architecture. Information
extraction from and indexing of Web documents is typical of data-intensive pro-
cessing which can derive significant performance benefits from data-parallel
implementations since Web and other types of document collections can typically
then be processed in parallel [10].

The “Big Data” Problem

The rapid growth of the Internet and World Wide Web has led to vast amounts of
information available online. In addition, business and government organizations
create large amounts of both structured and unstructured information which needs
to be processed, analyzed, and linked. Vinton Cerf of Google has described this as
an “Information Avalanche” and has stated “we must harness the Internet’s energy
before the information it has unleashed buries us” [12]. An IDC white paper
sponsored by EMC estimated the amount of information currently stored in a digital
form in 2007 at 281 exabytes and the overall compound growth rate at 57 % with
information in organizations growing at even a faster rate [13]. In another study of
the so-called information explosion it was estimated that 95 % of all current
information exists in unstructured form with increased data processing requirements
compared to structured information [14]. The storing, managing, accessing, and
processing of this vast amount of data represents a fundamental need and an
immense challenge in order to satisfy needs to search, analyze, mine, and visualize
this data as information [15]. These challenges are now simple described in the
literature as the “Big Data” problem. In the next section, we will enumerate some of
the characteristics of data-intensive computing systems which can address the
problems associated with processing big data.
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Data-Intensive Computing Platforms

The National Science Foundation believes that data-intensive computing requires a
“fundamentally different set of principles” than current computing approaches [16].
Through a funding program within the Computer and Information Science and
Engineering area, the NSF is seeking to “increase understanding of the capabilities
and limitations of data-intensive computing.” The key areas of focus are:

• Approaches to parallel programming to address the parallel processing of data
on data-intensive systems.

• Programming abstractions including models, languages, and algorithms which
allow a natural expression of parallel processing of data.

• Design of data-intensive computing platforms to provide high levels of relia-
bility, efficiency, availability, and scalability.

• Identifying applications that can exploit this computing paradigm and deter-
mining how it should evolve to support emerging data-intensive applications.

Pacific Northwest National Labs has defined data-intensive computing as
“capturing, managing, analyzing, and understanding data at volumes and rates that
push the frontiers of current technologies” [1, 17]. They believe that to address the
rapidly growing data volumes and complexity requires “epochal advances in
software, hardware, and algorithm development” which can scale readily with size
of the data and provide effective and timely analysis and processing results.
The ECL programming language and HPCC architecture developed by LexisNexis
represents such an advance in capabilities.

Cluster Configurations

Current data-intensive computing platforms use a “divide and conquer” parallel
processing approach combining multiple processors and disks configured in large
computing clusters connected using high-speed communications switches and
networks which allows the data to be partitioned among the available computing
resources and processed independently to achieve performance and scalability
based on the amount of data (Fig. 6.1). Buyya et al. [18] define a cluster as “a type
of parallel and distributed system, which consists of a collection of inter-connected
stand-alone computers working together as a single integrated computing resource.”
This approach to parallel processing is often referred to as a “shared nothing”
approach since each node consisting of processor, local memory, and disk resources
shares nothing with other nodes in the cluster. In parallel computing this approach
is considered suitable for data processing problems which are “embarrassingly
parallel”, i.e. where it is relatively easy to separate the problem into a number of
parallel tasks and there is no dependency or communication required between the
tasks other than overall management of the tasks. These types of data processing

162 6 The HPCC/ECL Platform for Big Data



problems are inherently adaptable to various forms of distributed computing
including clusters and data grids and cloud computing.

Common Platform Characteristics

There are several important common characteristics of data-intensive computing
systems that distinguish them from other forms of computing. First is the principle
of collocation of the data and programs or algorithms to perform the computation.
To achieve high performance in data-intensive computing, it is important to min-
imize the movement of data [19]. In direct contrast to other types of computing and
high-performance computing which utilize data stored in a separate repository or
servers and transfer the data to the processing system for computation,
data-intensive computing uses distributed data and distributed file systems in which
data is located across a cluster of processing nodes, and instead of moving the data,
the program or algorithm is transferred to the nodes with the data that needs to be
processed. This principle—“Move the code to the data”—is extremely effective
since program size is usually small in comparison to the large datasets processed by
data-intensive systems and results in much less network traffic since data can be
read locally instead of across the network. This characteristic allows processing
algorithms to execute on the nodes where the data resides reducing system overhead
and increasing performance [2].

A second important characteristic of data-intensive computing systems is the
programming model utilized. Data-intensive computing systems utilize a
machine-independent approach in which applications are expressed in terms of
high-level operations on data, and the runtime system transparently controls the
scheduling, execution, load balancing, communications, and movement of
programs and data across the distributed computing cluster [20]. The programming
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abstraction and language tools allow the processing to be expressed in terms of data
flows and transformations incorporating new dataflow programming languages and
shared libraries of common data manipulation algorithms such as sorting.
Conventional high-performance computing and distributed computing systems
typically utilize machine dependent programming models which can require
low-level programmer control of processing and node communications using
conventional imperative programming languages and specialized software packages
which adds complexity to the parallel programming task and reduces programmer
productivity. A machine dependent programming model also requires significant
tuning and is more susceptible to single points of failure. The ECL programming
language described in this chapter was specifically designed to address
data-intensive computing requirements.

A third important characteristic of data-intensive computing systems is the focus
on reliability and availability. Large-scale systems with hundreds or thousands of
processing nodes are inherently more susceptible to hardware failures, communi-
cations errors, and software bugs. Data-intensive computing systems are designed
to be fault resilient. This includes redundant copies of all data files on disk, storage
of intermediate processing results on disk, automatic detection of node or pro-
cessing failures, and selective re-computation of results. A processing cluster
configured for data-intensive computing is typically able to continue operation with
a reduced number of nodes following a node failure with automatic and transparent
recovery of incomplete processing.

A final important characteristic of data-intensive computing systems is the
inherent scalability of the underlying hardware and software architecture.
Data-intensive computing systems can typically be scaled in a linear fashion to
accommodate virtually any amount of data, or to meet time-critical performance
requirements by simply adding additional processing nodes to a system configu-
ration in order to achieve high processing rates and throughput. The number of
nodes and processing tasks assigned for a specific application can be variable or
fixed depending on the hardware, software, communications, and distributed file
system architecture. This scalability allows computing problems once considered to
be intractable due to the amount of data required or amount of processing time
required to now be feasible and affords opportunities for new breakthroughs in data
analysis and information processing.

HPCC Platform

HPCC System Architecture

The development of the open source HPCC computing platform by the Seisint
subsidiary of LexisNexis began in 1999 and applications were in production by late
2000. The conceptual vision for this computing platform is depicted in Fig. 6.2.
The LexisNexis approach also utilizes commodity clusters of hardware running the
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Linux operating system as shown in Figure 4.1. Custom system software and
middleware components were developed and layered on the base Linux operating
system to provide the execution environment and distributed filesystem support
required for data-intensive computing. Because LexisNexis recognized the need for
a new computing paradigm to address its growing volumes of data, the design
approach included the definition of a new high-level language for parallel data
processing called ECL (Enterprise Control Language). The power, flexibility,
advanced capabilities, speed of development, and ease of use of the ECL pro-
gramming language is the primary distinguishing factor between the
LexisNexis HPCC and other data-intensive computing solutions. The following
provides an overview of the HPCC systems architecture and the ECL language.

LexisNexis developers recognized that to meet all the requirements of
data-intensive computing applications in an optimummanner required the design and
implementation of two distinct processing environments, each of which could be
optimized independently for its parallel data processing purpose. The first of these
platforms is called a Data Refinery whose overall purpose is the general processing of
massive volumes of raw data of any type for any purpose but typically used for data
cleansing and hygiene, ETL processing of the raw data (extract, transform, load),
record linking and entity resolution, large-scale ad hoc analysis of data, and creation
of keyed data and indexes to support high-performance structured queries and data
warehouse applications. The Data Refinery is also referred to as Thor, a reference to
the mythical Norse god of thunder with the large hammer symbolic of crushing large
amounts of raw data into useful information. A Thor system is similar in its hardware
configuration, function, execution environment, filesystem, and capabilities to the
Hadoop MapReduce platform, but offers significantly higher performance in
equivalent configurations.

Fig. 6.2 LexisNexis vision for a data-intensive supercomputer
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The Thor processing cluster is depicted in Fig. 6.3. In addition to the Thor
master and slave nodes, additional auxiliary and common components are needed to
implement a complete HPCC processing environment. The actual number of
physical nodes required for the auxiliary components is determined during the
configurations process.

The second of the parallel data processing platforms designed and implemented
by LexisNexis is called the Data Delivery Engine. This platform is designed as an
online high-performance structured query and analysis platform or data warehouse
delivering the parallel data access processing requirements of online applications
through Web services interfaces supporting thousands of simultaneous queries and
users with sub-second response times. High-profile online applications developed
by LexisNexis such as Accurint utilize this platform. The Data Delivery Engine is
also referred to as Roxie, which is an acronym for Rapid Online XML Inquiry
Engine. Roxie uses a special distributed indexed filesystem to provide parallel
processing of queries. A Roxie system is similar in its function and capabilities to
Hadoop with HBase and Hive capabilities added, but provides significantly higher
throughput since it uses a more optimized execution environment and filesystem for
high-performance online processing. Most importantly, both Thor and Roxie sys-
tems utilize the same ECL programming language for implementing applications,
increasing continuity and programmer productivity. The Roxie processing cluster is
depicted in Fig. 6.4.

The implementation of two types of parallel data processing platforms (Thor and
Roxie) in the HPCC processing environment serving different data processing
needs allows these platforms to be optimized and tuned for their specific purposes
to provide the highest level of system performance possible to users. This is a
distinct advantage when compared to Hadoop where the MapReduce architecture
must be overlayed with additional systems such as HBase, Hive, and Pig which
have different processing goals and requirements, and don’t always map readily into
the MapReduce paradigm. In addition, the LexisNexis HPCC approach

Fig. 6.3 HPCC Thor processing cluster
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incorporates the notion of a processing environment which can integrate Thor and
Roxie clusters as needed to meet the complete processing needs of an organization.
As a result, scalability can be defined not only in terms of the number of nodes in a
cluster, but in terms of how many clusters and of what type are needed to meet
system performance goals and user requirements. This provides significant flexi-
bility when compared to Hadoop clusters which tend to be independent islands of
processing. For additional information and a detailed comparison of the HPCC
system platform to Hadoop, see [21].

HPCC Thor System Cluster

The Thor system cluster is implemented using a master/slave approach with a single
master node and multiple slave nodes which provides a parallel job execution
environment for programs coded in ECL. ECL is a declarative programming lan-
guage, developed at LexisNexis, which is easy to use, data-centric and optimized
for large-scale data management and query processing (Fig. 6.5). ECL is described
in detail in “ECL Programming Language”.

Each of the slave nodes is also a data node within the distributed file system for
the cluster. Multiple Thor clusters can exist in an HPCC system environment, and
job queues can span multiple clusters in an environment if needed. Jobs executing
on a Thor cluster in a multi-cluster environment can also read files from the dis-
tributed file system on foreign clusters if needed. The middleware layer provides
additional server processes to support the execution environment including ECL
Agents and ECL Servers. A client process submits an ECL job to the ECL Agent
which coordinates the overall job execution on behalf of the client process.

An ECL program is compiled by the ECL server which interacts with an
additional server called the ECL Repository which is a source code repository and

Fig. 6.4 HPCC Roxie processing cluster
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contains shared, reusable ECL code. ECL code can also be stored in local source
files and managed with a conventional version control system. ECL programs are
compiled into optimized C++ source code, which is subsequently linked into
executable code and distributed to the slave nodes of a Thor cluster by the Thor
master node. The Thor master monitors and coordinates the processing activities of
the slave nodes and communicates status information monitored by the ECL Agent
processes. When the job completes, the ECL Agent and client process are notified,
and the output of the process is available for viewing or subsequent processing.
Output can be stored in the distributed filesystem for the cluster or returned to the
client process.

The distributed filesystem (DFS) used in a Thor cluster is record-oriented which
is somewhat different from the block format used in MapReduce clusters. Records
can be fixed or variable length, and support a variety of standard (fixed record size,
CSV, XML) and custom formats including nested child datasets. Record I/O is
buffered in large blocks to reduce latency and improve data transfer rates to and
from disk Files to be loaded to a Thor cluster are typically first transferred to a
landing zone from some external location, then a process called “spraying” is used
to partition the file and load it to the nodes of a Thor cluster. The initial spraying
process divides the file on user-specified record boundaries and distributes the data
as evenly as possible with records in sequential order across the available nodes in
the cluster. Files can also be “desprayed” when needed to transfer output files to
another system or can be directly copied between Thor clusters in the same envi-
ronment. Index files generated on Thor clusters can also be directly copied to Roxie
clusters to support online queries.

Nameservices and storage of metadata about files including record format
information in the Thor DFS are maintained in a special server called the Dali
server. Thor users have complete control over distribution of data in a Thor cluster,
and can re-distribute the data as needed in an ECL job by specific keys, fields, or
combinations of fields to facilitate the locality characteristics of parallel processing.

Fig. 6.5 ECL declarative programming language
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The Dali nameserver uses a dynamic datastore for filesystem metadata organized in
a hierarchical structure corresponding to the scope of files in the system. The
Thor DFS utilizes the local Linux filesystem for physical file storage, and file
scopes are created using file directory structures of the local file system. Parts of a
distributed file are named according to the node number in a cluster, such that a file
in a 400-node cluster will always have 400 parts regardless of the file size. Each
node contains an integral number of records (individual records are not split across
nodes), and I/O is completely localized to the processing node for local processing
operations. The ability to easily redistribute the data evenly to nodes based on
processing requirements and the characteristics of the data during a Thor job can
provide a significant performance improvement over the blocked data and input
splits used in the MapReduce approach.

The Thor DFS also supports the concept of “superfiles” which are processed as a
single logical file when accessed, but consist of multiple Thor DFS files. Each file
which makes up a superfile must have the same record structure. New files can be
added and old files deleted from a superfile dynamically facilitating update pro-
cesses without the need to rewrite a new file. Thor clusters are fault resilient and a
minimum of one replica of each file part in a Thor DFS file is stored on a different
node within the cluster.

HPCC Roxie System Cluster

Roxie clusters consist of a configurable number of peer-coupled nodes functioning
as a high-performance, high availability parallel processing query platform. ECL
source code for structured queries is pre-compiled and deployed to the cluster. The
Roxie distributed filesystem is a distributed indexed-based filesystem which uses a
custom B+Tree structure for data storage. Indexes and data supporting queries are
pre-built on Thor clusters and deployed to the Roxie DFS with portions of the index
and data stored on each node. Typically the data associated with index logical keys
is embedded in the index structure as a payload. Index keys can be multi-field and
multivariate, and payloads can contain any type of structured or unstructured data
supported by the ECL language. Queries can use as many indexes as required for a
query and contain joins and other complex transformations on the data with the full
expression and processing capabilities of the ECL language. For example, the
LexisNexis Accurint® comprehensive person report which produces many pages of
output is generated by a single Roxie query.

A Roxie cluster uses the concept of Servers and Agents. Each node in a Roxie
cluster runs Server and Agent processes which are configurable by a System
Administrator depending on the processing requirements for the cluster. A Server
process waits for a query request from a Web services interface then determines the
nodes and associated Agent processes that have the data locally that is needed for a
query, or portion of the query. Roxie query requests can be submitted from a client
application as a SOAP call, HTTP or HTTPS protocol request from a Web

HPCC Platform 169



application, or through a direct socket connection. Each Roxie query request is
associated with a specific deployed ECL query program. Roxie queries can also be
executed from programs running on Thor clusters. The Roxie Server process that
receives the request owns the processing of the ECL program for the query until it is
completed. The Server sends portions of the query job to the nodes in the cluster
and Agent processes which have data needed for the query stored locally as needed,
and waits for results. When a Server receives all the results needed from all nodes, it
collates them, performs any additional processing, and then returns the result set to
the client requestor.

The performance of query processing on a Roxie cluster varies depending on
factors such as machine speed, data complexity, number of nodes, and the nature of
the query, but production results have shown throughput of 5000 transactions per
second on a 100-node cluster. Roxie clusters have flexible data storage options with
indexes and data stored locally on the cluster, as well as being able to use indexes
stored remotely in the same environment on a Thor cluster. Nameservices for Roxie
clusters are also provided by the Dali server. Roxie clusters are fault-resilient and
data redundancy is built-in using a peer system where replicas of data are stored on
two or more nodes, all data including replicas are available to be used in the
processing of queries by Agent processes. The Roxie cluster provides automatic
failover in case of node failure, and the cluster will continue to perform even if one
or more nodes are down. Additional redundancy can be provided by including
multiple Roxie clusters in an environment.

Load balancing of query requests across Roxie clusters is typically implemented
using external load balancing communications devices. Roxie clusters can be sized
as needed to meet query processing throughput and response time requirements, but
are typically smaller that Thor clusters.

ECL Programming Language

Several well-known companies experiencing the big data problem have imple-
mented high-level programming or script languages oriented toward data analysis.
In Google’s MapReduce programming environment, native applications are coded
in C++ [22]. The MapReduce programming model allows group aggregations in
parallel over a commodity cluster of machines similar to Figure 4.1. Programmers
provide a Map function that processes input data and groups the data according to a
key-value pair, and a Reduce function that performs aggregation by key-value on
the output of the Map function. According to Dean and Ghemawat [22, 23], the
processing is automatically parallelized by the system on the cluster, and takes care
of details like partitioning the input data, scheduling and executing tasks across a
processing cluster, and managing the communications between nodes, allowing
programmers with no experience in parallel programming to use a large parallel
processing environment. For more complex data processing procedures, multiple
MapReduce calls must be linked together in sequence.
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Google also implemented a high-level language named Sawzall for performing
parallel data analysis and data mining in the MapReduce environment and a
workflow management and scheduling infrastructure for Sawzall jobs called
Workqueue [24]. For most applications implemented using Sawzall, the code is
much simpler and smaller than the equivalent C++ by a factor of 10 or more. Pike
et al. [24] cite several reasons why a new language is beneficial for data analysis
and data mining applications: (1) a programming language customized for a specific
problem domain makes resulting programs “clearer, more compact, and more
expressive”; (2) aggregations are specified in the Sawzall language so that the
programmer does not have to provide one in the Reduce task of a standard
MapReduce program; (3) a programming language oriented to data analysis pro-
vides a more natural way to think about data processing problems for large dis-
tributed datasets; and (4) Sawzall programs are significantly smaller that equivalent
C++ MapReduce programs and significantly easier to program.

An open source implementation of MapReduce pioneered by Yahoo! called
Hadoop is functionally similar to the Google implementation except that the base
programming language for Hadoop is Java instead of C++. Yahoo! also imple-
mented a high-level dataflow-oriented language called Pig Latin and execution
environment ostensibly for the same reasons that Google developed the Sawzall
language for its MapReduce implementation—to provide a specific language
notation for data analysis applications and to improve programmer productivity and
reduce development cycles when using the Hadoop MapReduce environment.
Working out how to fit many data analysis and processing applications into the
MapReduce paradigm can be a challenge, and often requires multiple MapReduce
jobs [25]. Pig Latin programs are automatically translated into sequences of
MapReduce programs if needed in the execution environment.

Both Google with its Sawzall language and Yahoo with its Pig system and
language for Hadoop address some of the limitations of the MapReduce model by
providing an external dataflow-oriented programming language which translates
language statements into MapReduce processing sequences [24, 26, 27]. These
languages provide many standard data processing operators so users do not have to
implement custom Map and Reduce functions, improve reusability, and provide
some optimization for job execution. However, these languages are externally
implemented executing on client systems and not integral to the MapReduce
architecture, but still rely on the on the same infrastructure and limited execution
model provided by MapReduce.

ECL Features and Capabilities

The open source ECL programming language represents a new programming
paradigm for data-intensive computing. ECL was specifically designed to be a
transparent and implicitly parallel programming language for data-intensive
applications. It is a high-level, declarative, non-procedural dataflow-oriented
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language that allows the programmer to define what the data processing result
should be and the dataflows and transformations that are necessary to achieve the
result. Execution is not determined by the order of the language statements, but
from the sequence of dataflows and transformations represented by the language
statements. It combines data representation with algorithm implementation, and is
the fusion of both a query language and a parallel data processing language.

ECL uses an intuitive syntax which has taken cues from other familiar lan-
guages, supports modular code organization with a high degree of reusability and
extensibility, and supports high-productivity for programmers in terms of the
amount of code required for typical applications compared to traditional languages
like Java and C++. Similar to the benefits Sawzall provides in the Google envi-
ronment, and Pig Latin provides to Hadoop users, a 20 times increase in pro-
grammer productivity is typical which can significantly reduce development cycles.

ECL is compiled into optimized C++ code for execution on the HPCC system
platforms, and can be used for complex data processing and analysis jobs on a Thor
cluster or for comprehensive query and report processing on a Roxie cluster. ECL
allows inline C++ functions to be incorporated into ECL programs, and external
programs in other languages can be incorporated and parallelized through a PIPE
facility. External services written in C++ and other languages which generate DLLs
can also be incorporated in the ECL system library, and ECL programs can access
external Web services through a standard SOAPCALL interface.

The basic unit of code for ECL is called an attribute definition. An attribute can
contain a complete executable query or program, or a shareable and reusable code
fragment such as a function, record definition, dataset definition, macro, filter
definition, etc. Attributes can reference other attributes which in turn can reference
other attributes so that ECL code can be nested and combined as needed in a
reusable manner. Attributes are stored in ECL code repository which is subdivided
into modules typically associated with a project or process. Each ECL attribute
added to the repository effectively extends the ECL language like adding a new
word to a dictionary, and attributes can be reused as part of multiple ECL queries
and programs. ECL can also be stored in local source files as with other pro-
gramming languages. With ECL a rich set of programming tools is provided
including an interactive IDE similar to Visual C++, Eclipse (an ECL add-in for
Eclipse is available) and other code development environments.

The Thor system allows data transformation operations to be performed either
locally on each node independently in the cluster, or globally across all the nodes in
a cluster, which can be user-specified in the ECL language. Some operations such
as PROJECT for example are inherently local operations on the part of a distributed
file stored locally on a node. Others such as SORT can be performed either locally
or globally if needed. This is a significant difference from the MapReduce archi-
tecture in which Map and Reduce operations are only performed locally on the
input split assigned to the task. A local SORT operation in an HPCC cluster would
sort the records by the specified key in the file part on the local node, resulting in
the records being in sorted order on the local node, but not in full file order
spanning all nodes. In contrast, a global SORT operation would result in the full
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distributed file being in sorted order by the specified key spanning all nodes. This
requires node to node data movement during the SORT operation. Figure 6.6 shows
a sample ECL program using the LOCAL mode of operation.

Figure 6.7 shows the corresponding execution graph. Note the explicit pro-
grammer control over distribution of data across nodes. The colon-equals “:=”
operator in an ECL program is read as “is defined as”. The only action in this
program is the OUTPUT statement, the other statements are definitions.

An additional important capability provided in the ECL programming language
is support for natural language processing (NLP) with PATTERN statements and
the built-in PARSE function. The PARSE function cam accept an unambiguous
grammar defined by PATTERN, TOKEN, and RULE statements with penalties or
preferences to provide deterministic path selection, a capability which can signifi-
cantly reduce the difficulty of NLP applications. PATTERN statements allow
matching patterns including regular expressions to be defined and used to parse
information from unstructured data such as raw text. PATTERN statements can be
combined to implement complex parsing operations or complete grammars from
BNF definitions. The PARSE operation function across a dataset of records on a
specific field within a record, this field could be an entire line in a text file for
example. Using this capability of the ECL language it is possible to implement
parallel processing for information extraction applications across document files
including XML-based documents or Web pages.

ECL Compilation, Optimization, and Execution

The ECL language compiler takes the ECL source code and produces an output
with three main elements. The first is an XML representation of the execution
graph, detailing the activities to be executed and the dependencies between those
activities. The second is a C++ class for each of the activities in the graph, and the
third contains code and meta information to control the workflow for the ECL
program. These different elements are embedded in a single shared object that

Fig. 6.6 ECL code example
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contains all the information about the particular query. That shared object is passed
to the execution engines, which take that shared object and execute the program it
contains.

The process of compiling, optimizing, and executing the ECL is broken into
several stages: (1) parsing, (2) optimization, (3) transforming, (4) generating, and
(5) execution.

Parsing

The sources for an ECL program can come from a local directory tree, an external
repository, or a single-source archive. The ECL compiler reads the ECL source,
parses it, and converts it into an abstract graph representation of the program. The
representation is then normalized to resolve ambiguities and ensure is it is suitable
for subsequent processing. All of the subsequent operations within the compiler
work on, and create, this same abstract representation.

1

1

2

2

Fig. 6.7 ECL code example execution graph
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Optimizations

The design of the ECL language provides abundant scope for optimizations. When
reusable attributes are combined it often creates the scope for optimizations that
would be hard, if not impossible, to be spotted by a programmer. Its declarative
design allows many optimizations without the concerns about side-effects
associated with imperative languages. Many different optimizations are
performed on the program, some of the key ones are:

• Constant folding. This includes simple purely constant expressions like
12 * 3 => 36, and more complex changes e.g. IF(a, ‘b’, ‘c’) IN
[‘a’,‘c’] => NOT a

• Tracking and propagating constant field values. This can often lead to further
constant folding, or reduce the lifetime of a field. Minimizing the fields in a row
at each stage of the processing. This saves the programmer from unnecessary
optimization, and often benefits from the other optimizations (e.g., constant
propagation).

• Reordering operations. Sometimes changing the order of operations can sig-
nificantly reduce the data processed by complex activities. Examples include
ensuring a filter is done before a sort, or replacing a filter on a joined dataset
with a filter on one (or both) of the inputs.

• Tracking meta information including sort orders and record counts, and
removing redundant operations. This is an example of an optimization which
often comes into play when reusable attributes are combined. A particular sort
order may not be part of the specification of an attribute, but the optimizer can
make use of the current implementation.

• Minimizing data transferred between slave nodes. There is sufficient scope for
many additional optimizations. For example, a currently planned optimization
would analyze and optimize the distribution and sort activities used in a program
to maximize overlap and minimize data redistribution.

A key design goal is for the ECL programmer to be able to describe the problem,
and rely on the ECL compiler to solve the problem efficiently.

Transforming

The ECL compiler needs to transform the abstract declarative ECL (what it should
do) to a concrete imperative implementation (how it should do it). This again has
several different elements:

• Convert the logical graph into an execution graph. This includes introducing
activities to split the data stream, ensure dependencies between activities will be
executed in the correct order, and resolving any global resourcing constraints.
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• Extracting context-invariant expressions to ensure they are evaluated a minimal
number of times. This is similar to spotting loop invariant code in an imperative
language.

• Selecting between different implementations of a sequence of activities. For
example generating either inline code or a nested graph of activities.

• Common sub-expression elimination. Both globally across the whole program,
and locally the expressions used within the methods of the activity classes.

• Mapping complex ECL statements into the activities supported by the target
engine. For instance a JOIN may be implemented differently depending on how
the inputs are sorted, distributed, and the likely size of the datasets. Similarly an
ECL DEDUP operation may sometimes be implemented as a local dedup
activity followed by a global dedup activity.

• Combining multiple logical operations into a single activity. Compound activi-
ties have been implemented in the engines where it can significantly reduce the
data being copied, or because there are likely to be expressions shared between
the activities. One of the commonest examples is disk read, filter and project.

Generating

Following the transforming stage, the XML and C++ associated with the ECL
program is generated. The C++ code is built using a data structure that allows
peephole optimizations to be applied to the C++ that will be generated. Once the
processing is complete, the C++ is generated from the structure, and the generated
source files are passed to the system C++ compiler to create a shared object.

In practice, the optimization, transforming and generation is much more of an
iterative process rather than sequential.

Execution

The details of executing ECL program vary depending on the specific HPCC
system platform and its execution engine, but they follow the same broad sequence.

The engine extracts resources from the shared object that describe the workflow
of the query. The workflow can include waiting for particular events, conditionally
re-evaluating expressions, and executing actions in a particular order. Each work-
flow item is executed independently, but can have dependencies on other workflow
items. A workflow item may contain any number of activity graphs which evaluate
a particular part of the ECL program.

To execute a graph of activities the engine starts at the outputs and recursively
walks the graph to evaluate any dependencies. Once the graph is prepared the graph
of activities is executed. Generally multiple paths within the graph are executed in
parallel, and multiple slave nodes in a cluster will be executing the graphs on
different subsets of the data. Records are streamed through the graphs from the inputs
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to the outputs. Some activities execute completely locally, and others co-ordinate
their execution with other slave nodes.

ECL Development Tools and User Interfaces

The HPCC platform includes a suite of development tools and utilities for data
analysts, programmers, administrators, and end-users. These include ECL IDE, an
integrated programming development environment similar to those available for
other languages such as C++ and Java, which encompasses source code editing,
source code version control, access to the ECL source code repository, and the
capability to execute and debug ECL programs.

ECL IDE provides a full-featured Windows-based GUI for ECL program
development and direct access to the ECL repository source code. ECL IDE allows
you to create and edit ECL attributes which can be shared and reused in multiple
ECL programs or to enter an ECL query which can be submitted directly to a Thor
cluster as an executable job or deployed to a Roxie cluster. An ECL query can be
self-contained or reference other sharable ECL code in the attribute repository.
ECL IDE also allows you to utilize a large number of built-in ECL functions from
included libraries covering string handling, data manipulation, file handling, file
spray and despray, superfile management, job monitoring, cluster management,
word handling, date processing, auditing, parsing support, phonetic (metaphone)
support, and workunit services.

ECL Advantages and Key Benefits

ECL a heavily optimized, data-centric declarative programming language. It is a lan-
guage specifically designed to allow data operations to be specified in a manner which
is easy to optimize and parallelize. With a declarative language, you specify what you
want done rather than how to do it. A distinguishing feature of declarative languages is
that they are extremely succinct; it is common for a declarative language to require an
order of magnitude (10�) less code than a procedural equivalent to specify the same
problem [28]. The SQL language commonly used for data access and datamanagement
with RDBMS systems is also a declarative language. Declarative languages havemany
benefits including conciseness, freedom from side effects, parallelize naturally, and the
executable code generated can be highly optimized since the compiler can determine
the optimum sequence of execution instead of the programmer.

ECL extends the benefits of declarative in three important ways [28]: (1) It is
data-centric which means it addresses computing problems that can be specified by
some form of analysis upon data. It has defined a simple but powerful data algebra
to allow highly complex data manipulations to be constructed; (2) It is extensible.
When a programmer defines new code segments (called attributes) which can
include macros, functions, data definitions, procedures, etc., these essentially
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become a part of the language and can be used by other programmers. Therefore a
new ECL installation may be relatively narrow and generic in its initial scope, but
as new ECL code is added, its abilities expand to allow new problems and classes
of problems to be stated declaratively; and (3) It is internally abstract. The ECL
compiler generates C++ code and calls into many ‘libraries’ of code, most of which
are major undertakings in their own right. By doing this, the ECL compiler is
machine neutral and greatly simplified. This allows the ECL compiler writers to
focus on making the language relevant and good, and generating highly-optimized
executable code. For some coding examples and additional insights into declarative
programming with ECL, see [29].

One of the key issues which has confronted language developers is to find
solutions to the complexity and difficulty of parallel and distributed programming.
Although high-performance computing and cluster architectures such have
advanced to provide highly-scalable processing environments, languages designed
for parallel programming are still somewhat rare. Declarative, data-centric lan-
guages because the parallelize naturally represent solutions to this issue [30].
According to Hellerstein, declarative, data-centric languages parallelizes naturally
over large datasets, and programmers can benefit from parallel execution without
modifications to their code. ECL code, for example can be used on any size cluster
without modification to the code, so performance can be scaled naturally.

The key benefits of ECL can be summarized as follows:

• ECL is a declarative, data-centric, programming language which can expressed
concisely, parallelizes naturally, is free from side effects, and results in
highly-optimized executable code.

• ECL incorporates transparent and implicit parallelism regardless of the size of
the computing cluster and reduces the complexity of parallel programming
increasing the productivity of application developers.

• ECL enables implementation of data-intensive applications with huge volumes
of data previously thought to be intractable or infeasible. ECL was specifically
designed for manipulation of data and query processing. Order of magnitude
performance increases over other approaches are possible.

• ECL provides a more than 20 times productivity improvement for programmers
over traditional languages such as Java and C++. The ECL compiler generates
highly optimized C++ for execution.

• ECL provides a comprehensive IDE and programming tools that provide a
highly-interactive environment for rapid development and implementation of
ECL applications.

• ECL is a powerful, high-level, parallel programming language ideal for
implementation of ETL, Information Retrieval, Information Extraction, and
other data-intensive applications.
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HPCC High Reliability and High Availability Features

Thor and Roxie architectures of the HPCC system provide both high reliability and
availability. The HPCC system in Fig. 6.8 shows the highly available architecture.
In this architecture, Thor has several layers of redundancy:

1. Uses hardware RAID redundancy to isolate disk drive failure.
2. Two copies of the same data can exist on multiple nodes. This again is used to

isolate against disk failure in one node or a complete node failure.
3. Multiple independent Thor clusters (as shown in Fig. 6.8) can be configured to

subscribe to the same Job Queue. This is the highest form on redundancy
available within Thor and this isolates you from disk failure, node failure and
network failure within the same cluster.

Fig. 6.8 High availability HPCC system architecture
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Thor cluster accepts jobs from a job queue. If there are two Thor clusters
handling the queue, one will continue accepting jobs, if the other one fails. If a
single component (Thorslave or Thormaster) fails, the other will continue to process
requests. With replication enabled, it will be able to read data from the backup
location of the broken Thor. Other components (such as ECL Server, or ESP) can
also have multiple instances. The remaining components, such as Dali, or DFU
Server, work in a traditional shared storage high availability fail over model.

The Roxie cluster has the highest form of redundancy, as illustrated in Fig. 6.9.
Roxie will continue its operation even if half of the nodes are out of operation.

Conclusion

As a result of the continuing information explosion, many organizations are
drowning in data and are experiencing the “Big Data” problem making it harder and
harder to process and gain useful insights from their data. Data-intensive computing
represents a new computing paradigm which can address the big data problem and

Fig. 6.9 Redundant architecture of the Roxie cluster
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allow government and commercial organizations and research environments to
process massive amounts of data and implement applications previously thought to
be impractical or infeasible. Several organizations developed new
parallel-processing architectures using commodity computing clusters including
Google who initially developed the MapReduce architecture and LexisNexis who
developed the HPCC architecture and the ECL programming language. An open
source version of MapReduce called Hadoop was developed with additional
capabilities to enhance the platform including a data-oriented programming lan-
guage and execution environment called Pig. The open source HPCC platform and
the ECL programming language are described in this chapter, and a direct com-
parison of the Pig language of Hadoop to the ECL language was presented along
with a representative benchmark. Availability of a high-level declarative,
data-centric, dataflow-oriented programming language has proven to be a critical
success factor in data-intensive computing.

The LexisNexis HPCC platform is at the heart of a premier information services
provider and industry leader, and has been adopted by government agencies,
commercial organizations, and research laboratories because of its
high-performance cost-effective implementation. Existing HPCC applications
implemented using the ECL language include raw data processing, ETL, and
linking of enormous amounts of data to support online information services such as
LexisNexis and industry-leading information search applications such as Accurint;
entity extraction and entity resolution of unstructured and semi-structured data such
as Web documents to support information extraction; statistical analysis of Web
logs for security applications such as intrusion detection; online analytical pro-
cessing to support business intelligence systems (BIS); and data analysis of massive
datasets in educational and research environments and by state and federal gov-
ernment agencies.

There are many factors in choosing a new computer systems architecture and
programming language, and usually the best approach is to conduct a specific
benchmark test with a customer application to determine the overall system
effectiveness and performance. A comparison of the Hadoop MapReduce archi-
tecture using a public benchmark for the Pig programming language to the HPCC
architecture and ECL programming language on the same system hardware con-
figuration in this chapter reveals significant performance advantages for the HPCC
platform with ECL. Some additional advantages of choosing the LexisNexis HPCC
platform with ECL include: (1) an open source architecture which implements a
highly integrated system environment with capabilities from raw data processing to
high-performance queries and data analysis using a common language; (2) a
scalable architecture which provides equivalent performance at a much lower
system cost based on the number of processing nodes required compared to other
data-intensive computing architectures such as MapReduce; (3) an architecture
which has been proven to be stable and reliable on high-performance data pro-
cessing production applications for varied organizations over a 10-year period;
(4) an architecture that uses a declarative, data-centric programming language
(ECL) with extensive built-in capabilities for data-parallel processing, allows
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complex operations without the need for extensive user-defined functions, and
automatically optimizes execution graphs with hundreds of processing steps into
single efficient workunits; (5) an architecture with a high-level of fault resilience
and language capabilities which reduce the need for re-processing in case of system
failures; and (6) an architecture which is available in open source from and sup-
ported by a well-known leader in information services and risk solutions
(LexisNexis) who is part of one of the world’s largest publishers of information
ReedElsevier.
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