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Introduction

The field of data mining and machine learning has been widely and successfully used
in many applications where patterns from past information (training data) can be
extracted in order to predict future outcomes [1]. Traditional machine learning is
characterized by training data and testing data having the same input feature space
and the same data distribution.When there is a difference in data distribution between
the training data and test data, the results of a predictive learner can be degraded [2].
In certain scenarios, obtaining training data that matches the feature space and pre-
dicted data distribution characteristics of the test data can be difficult and expensive.
Therefore, there is a need to create a high-performance learner for a target domain
trained from a related source domain. This is the motivation for transfer learning.

Transfer learning is used to improve a learner from one domain by transferring
information from a related domain. We can draw from real-world non-technical
experiences to understand why transfer learning is possible. Consider an example of
two people who want to learn to play the piano. One person has no previous
experience playing music, and the other person has extensive music knowledge
through playing the guitar. The person with an extensive music background will be
able to learn the piano in a more efficient manner by transferring previously learned
music knowledge to the task of learning to play the piano [3]. One person is able to
take information from a previously learned task and use it in a beneficial way to
learn a related task.

Looking at a concrete example from the domain of machine learning, consider
the task of predicting text sentiment of product reviews where there exists an
abundance of labeled data from digital camera reviews. If the training data and the
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target data are both derived from digital camera reviews, then traditional machine
learning techniques are used to achieve good prediction results. However, in the
case where the training data is from digital camera reviews and the target data is
from food reviews, then the prediction results are likely to degrade due to the
differences in domain data. Digital camera reviews and food reviews still have a
number of characteristics in common, if not exactly the same. They both are written
in textual form using the same language, and they both express views about a
purchased product. Because these two domains are related, transfer learning can be
used to potentially improve the results of a target learner [3]. An alternative way to
view the data domains in a transfer learning environment is that the training data
and the target data exist in different sub-domains linked by a high-level common
domain. For example, a piano player and a guitar player are subdomains of a
musician domain. Further, a digital camera review and a food review are subdo-
mains of a review domain. The high-level common domain determines how the
subdomains are related.

As previously mentioned, the need for transfer learning occurs when there is a
limited supply of target training data. This could be due to the data being rare, the
data being expensive to collect and label, or the data being inaccessible. With big
data repositories becoming more prevalent, using existing datasets that are related
to, but not exactly the same as, a target domain of interest makes transfer learning
solutions an attractive approach. There are many machine learning applications that
transfer learning has been successfully applied to including text sentiment classi-
fication [4], image classification [5–7], human activity classification [8], software
defect classification [9], and multi-language text classification [10–12].

This survey paper aims to provide a researcher interested in transfer learning with
an overview of related works, examples of applications that are addressed by transfer
learning, and issues and solutions that are relevant to the field of transfer learning.
This survey paper provides an overview of current methods being used in the field of
transfer learning as it pertains to data mining tasks for classification, regression, and
clustering problems; however, it does not focus on transfer learning for reinforce-
ment learning (for more information on reinforcement learning see Taylor and Stone
[13]. Information pertaining to the history and taxonomy of transfer learning is not
provided in this survey paper, but can be found in the paper by Pan and Yang [3].
Since the publication of the transfer learning survey paper by Pan and Yang [3] in
2010, there have been over 700 academic papers written addressing advancements
and innovations on the subject of transfer learning. These works broadly cover the
areas of new algorithm development, improvements to existing transfer learning
algorithms, and algorithm deployment in new application domains. The selected
surveyed works in this paper are meant to be diverse and representative of transfer
learning solutions in the past five years. Most of the surveyed papers provide a
generic transfer learning solution; however, some surveyed papers provide solutions
that are specific to individual applications. This paper is written with the assumption
the reader has a working knowledge of machine learning. For more information on
machine learning see Witten and Frank [1]. The surveyed works in this paper are
intended to present a high-level description of proposed solutions with unique and
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salient points being highlighted. Experiments from the surveyed papers are descri-
bed with respect to applied applications, other competing solutions tested, and
overall relative results of the experiments. This survey paper provides a section on
heterogeneous transfer learning which, to the best of our knowledge, is unique.
Additionally, a list of software downloads for various surveyed papers is provided,
which is unique to this paper.

The remainder of this paper is organized as follows. In `̀ Definitions of Transfer
Learning'' section provides definitions and notations of transfer learning. In
`̀ Homogeneous Transfer Learning'' and `̀ Heterogeneous Transfer Learning'' sec-
tions provide solutions on homogeneous and heterogeneous transfer learning,
respectively. In Negative Transfer section provides information on negative transfer
as it pertains to transfer learning. In Transfer Learning Applications section pro-
vides examples of transfer learning applications. In Conclusion and Discussion
section summarizes and discusses potential future research work. The Appendix
provides information on software downloads for transfer learning.

Definitions of Transfer Learning

The following section lists the notation and definitions used for the remainder of
this paper. The notation and definitions in this section match those from the survey
paper by Pan and Yang [3], if present in both papers, to maintain consistency across
both surveys. To provide illustrative examples of the definitions listed below, a
machine learning application of software module defect classification is used where
a learner is trained to predict whether a software module is defect prone or not.

A domain D is defined by two parts, a feature space X and a marginal probability
distribution P(X), where X = {x1,…, xn} 2 X. For example, if the machine learning
application is software module defect classification and each software metric is taken
as a feature, then xi is the i-th feature vector (instance) corresponding to the i-th
software module, n is the number of feature vectors in X, X is the space of all
possible feature vectors, and X is a particular learning sample. For a given domain D,
a task T is defined by two parts, a label space Y, and a predictive function f(∙), which
is learned from the feature vector and label pairs {xi, yi} where xi 2 X and yi 2 Y.
Referring to the software module defect classification application, Y is the set of
labels and in this case contains true and false, yi takes on a value of true or false, and f
(x) is the learner that predicts the label value for the software module x. From the
definitions above, a domain D = {X, P(X)} and a task T = {Y, f(∙)}. Now, DS is
defined as the source domain data where DS = { (xS1, yS1)…, (xSn, ySn)}, where xSi
2 XS is the i-th data instance of DS and ySi 2 YS is the corresponding class label for
xSi. In the same way, DT is defined as the target domain data where DT = { (xT1, yT1)
…, (xTn, yTn)}, where xTi, 2 XT is the i-th data instance of DT and yTi, 2 YT is the
corresponding class label for xTi. Further, the source task is notated as TS, the target
task as TT, the source predictive function as fS(∙), and the target predictive function
as fT(∙).
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Transfer Learning is now formally defined. Given a source domain DS with a
corresponding source task TS and a target domain DT with a corresponding task TT,
transfer learning is the process of improving the target predictive function fT(∙) by
using the related information from DS and TS, where DS 6¼ DT or TS 6¼ TT. The
single source domain defined here can be extended to multiple source domains.
Given the definition of transfer learning, since DS = {XS, P(XS)} and DT = {XT, P
(XT)}, the condition where DS 6¼ DT means that XS 6¼ XT and/or P(XS) 6¼ P(XT).
The case where XS 6¼ XT with respect to transfer learning is defined as heteroge-
neous transfer learning. The case where XS = XT with respect to transfer learning is
defined as homogeneous transfer learning. Going back to the example of software
module defect classification, heterogeneous transfer learning is the case where the
source software project has different metrics (features) than the target software
project. Alternatively, homogeneous transfer learning is when the software metrics
are the same for both the source and the target software projects. Continuing with
the definition of transfer learning, the case where P(XS) 6¼ P(XT) means the mar-
ginal distributions in the input spaces are different between the source and the target
domains. Shimodaira [2] demonstrated that a learner trained with a given source
domain will not perform optimally on a target domain when the marginal distri-
butions of the input domains are different. Referring to the software module defect
classification application, an example of marginal distribution differences is when
the source software program is written for a user interface system and the target
software program is written for DSP signaling decoder algorithm. Another possible
condition of transfer learning (from the definition above) is TS 6¼ TT, and it was
stated that T = {Y, f(∙)} or to rewrite this, T = {Y, P(Y|X)}. Therefore, in a transfer
learning environment, it is possible that YS 6¼ YT and/or P(YS|XS) 6¼ P(YT|XT).
The case where P(YS|XS) 6¼ P(YT|XT) means the conditional probability distribu-
tions between the source and target domains are different. An example of a con-
ditional distribution mismatch is when a particular software module yields different
fault prone results in the source and target domains. The case of YS 6¼ YT refers to a
mismatch in the class space. An example of this case is when the source software
project has a binary label space of true for defect prone and false for not defect
prone, and the target domain has a label space that defines five levels of fault prone
modules. Another case that can cause discriminative classifier degradation is when
P(YS) 6¼ P(YT), which is caused by an unbalanced labeled data set between the
source and target domains. The case of traditional machine learning is DS = DT and
TS = TT. The common notation used in this paper is summarized in Table 3.1.

Table 3.1 Summary of commonly used notation

Notation Description Notation Description

X Input feature space P(X) Marginal distribution

Y Label space P(Y|X) Conditional distribution

T Predictive learning task P(Y) Label distribution

Subscript S Denotes source DS Source domain data

Subscript T Denotes target DT Target domain data
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To elaborate on the distribution issues that can occur between the source and
target domains, the application of natural language processing is used to illustrate.
In natural language processing, text instances are often modeled as a bag-of-words
where a unique word represents a feature. Consider the example of review text
where the source covers movie reviews and the target covers book reviews. Words
that are generic and domain independent should occur at a similar rate in both
domains. However, words that are domain specific are used more frequently in one
domain because of the strong relationship with that domain topic. This is referred to
as frequency feature bias and will cause the marginal distribution between the
source and target domains to be different (P(XS) 6¼ P(XT)). Another form of bias is
referred to as context feature bias and this will cause the conditional distributions to
be different between the source and target domains (P(YS|XS) 6¼ P(YT|XT)). An
example of context feature bias is when a word can have different meanings in two
domains. A specific example is the word “monitor” where in one domain it is used
as a noun and in another domain it is used as a verb. Another example of context
feature bias is with sentiment classification when a word has a positive meaning in
one domain and a negative meaning in another domain. The word “small” can have
a good meaning if describing a cell phone but a bad meaning if describing a hotel
room. A further example of context feature bias is demonstrated in the case of
document sentiment classification of reviews where the source domain contains
reviews of one product written in German and the target domain contains reviews of
a different product written in English. The translated words from the source doc-
ument may not accurately represent the actual words used in the target documents.
An example is the case of the German word “betonen”, which translates to the
English word “emphasize” by Google translator. However, in the target documents
the corresponding English word used is “highlight” [12].

Negative transfer, with regards to transfer learning, occurs when the information
learned from a source domain has a detrimental effect on a target learner. More
formally, given a source domain DS, a source task TS, a target domain DT, a target
task TT, a predictive learner fT1 (∙) trained only with DT, and a predictive learner
fT2 (∙) trained with a transfer learning process combining DT and DS, negative
transfer occurs when the performance of fT1 (∙) is greater than the performance of
fT2 (∙). The topic of negative transfer addresses the need to quantify the amount of
relatedness between the source domain and the target domain and whether an
attempt to transfer knowledge from the source domain should be made. Extending
the definition above, positive transfer occurs when the performance of fT2 (∙) is
greater than the performance of fT1 (∙).

Throughout the literature on transfer learning, there are a number of terminology
inconsistencies. Phrases such as transfer learning and domain adaptation are used to
refer to similar processes. The following definitions will be used in this paper.
Domain adaptation, as it pertains to transfer learning, is the process of adapting one
or more source domains for the means of transferring information to improve the
performance of a target learner. The domain adaptation process attempts to alter a
source domain in an attempt to bring the distribution of the source closer to that of
the target. Another area of literature inconsistencies is in characterizing the transfer

Definitions of Transfer Learning 57



learning process with respect to the availability of labeled and unlabeled data. For
example, Daumé [14] and Chattopadhyay et al. [15] define supervised transfer
learning as the case of having abundant labeled source data and limited labeled
target data, and semi-supervised transfer learning as the case of abundant labeled
source data and no labeled target data. In Gong et al. [16] and Blitzer et al. [17],
semi-supervised transfer learning is the case of having abundant labeled source data
and limited labeled target data, and unsupervised transfer learning is the case of
abundant labeled source data and no labeled target data. Cook et al. [18] and Feuz
and Cook [19] provide a different variation where the definition of supervised or
unsupervised refers to the presence or absence of labeled data in the source domain
and informed or uninformed refers to the presence or absence of labeled data in the
target domain. With this definition, a labeled source and limited labeled target
domain is referred to as informed supervised transfer learning. Pan and Yang [3]
refers to inductive transfer learning as the case of having available labeled target
domain data, transductive transfer learning as the case of having labeled source and
no labeled target domain data, and unsupervised transfer learning as the case of
having no labeled source and no labeled target domain data. This paper will
explicitly state when labeled and unlabeled data are being used in the source and
target domains.

There are different strategies and implementations for solving a transfer learning
problem. The majority of the homogeneous transfer learning solutions employ one
of three general strategies which include trying to correct for the marginal distri-
bution difference in the source, trying to correct for the conditional distribution
difference in the source, or trying to correct both the marginal and conditional
distribution differences in the source. The majority of the heterogeneous transfer
learning solutions are focused on aligning the input spaces of the source and target
domains with the assumption that the domain distributions are the same. If the
domain distributions are not equal, then further domain adaptation steps are needed.
Another important aspect of a transfer learning solution is the form of information
transfer (or what is being transferred). The form of information transfer is cate-
gorized into four general Transfer Categories [3]. The first Transfer Category is
transfer learning through instances. A common method used in this case is for
instances from the source domain to be reweighted in an attempt to correct for
marginal distribution differences. These reweighted instances are then directly used
in the target domain for training (examples in [20, 21]). These reweighting algo-
rithms work best when the conditional distribution is the same in both domains. The
second Transfer Category is transfer learning through features. Feature-based
transfer learning approaches are categorized in two ways. The first approach
transforms the features of the source through reweighting to more closely match the
target domain (e.g. Pan et al. [22]). This is referred to as asymmetric feature
transformation and is depicted in Fig. 3.1b. The second approach discovers
underlying meaningful structures between the domains to find a common latent
feature space that has predictive qualities while reducing the marginal distribution
between the domains (e.g. Blitzer et al. [17]). This is referred to as symmetric
feature transformation and is depicted in Fig. 3.1a. The third Transfer Category is to
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transfer knowledge through shared parameters of source and target domain learner
models or by creating multiple source learner models and optimally combining the
reweighted learners (ensemble learners) to form an improved target learner
(examples in [23, 24, 25]). The last Transfer Category (and the least used approach)
is to transfer knowledge based on some defined relationship between the source and
target domains (examples in [26, 27].

Detailed information on specific transfer learning solutions are presented in
`̀ Homogeneous Transfer Learning'', `̀ Heterogeneous Transfer Learning'', and
`̀ Negative Transfer'' sections. These sections represent the majority of the works
surveyed in this paper. In `̀ Homogeneous Transfer Learning'', `̀ Heterogeneous
Transfer Learning'', and `̀ Negative Transfer'' sections cover homogeneous transfer
learning solutions, heterogeneous transfer learning solutions, and solutions
addressing negative transfer, respectively. The section covering transfer learning
applications focuses on the general applications that transfer learning is applied to,
but does not describe the solution details.

Homogeneous Transfer Learning

This section presents surveyed papers covering homogeneous transfer learning
solutions and is divided into subsections that correspond to the Transfer Categories
of instance-based, feature-based (both asymmetric and symmetric), parameter-
based, and relational-based. Recall that homogeneous transfer learning is the case
where XS = XT. The algorithms surveyed are summarized in Table 3.2 at the end of
this section.

The methodology of homogeneous transfer learning is directly applicable to a big
data environment. As repositories of big data become more available, there is a
desire to use this abundant resource for machine learning tasks, avoiding the timely
and potentially costly collection of new data. If there is an available dataset that is
drawn from a domain that is related to, but does not an exactly match a target domain
of interest, then homogeneous transfer learning can be used to build a predictive
model for the target domain as long as the input feature space is the same.

Fig. 3.1 a Shows the symmetric transformation mapping (TS and TT) of the source (XS) and
target (XT) domains into a common latent feature space. b Shows the asymmetric transformation
(TT) of the source domain (XS) to the target domain (XT)
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Instance-Based Transfer Learning

The paper by Chattopadhyay et al. [15] proposes two separate solutions both using
multiple labeled source domains. The first solution is the Conditional Probability
based Multi-source Domain Adaptation (CP-MDA) approach, which is a domain
adaptation process based on correcting the conditional distribution differences

Table 3.2 Homogeneous transfer learning approaches surveyed in Sect. 3 listing different
characteristics of each approach

Approach Transfer
category

Source
data

Target
data

Multiple
sources

Generic
solution

Negative
transfer

CP-MDA [15] Parameter Labeled Limited
labels

✔ ✔

2SW-MDA [15] Instance Labeled Unlabeled ✔ ✔

FAM [14] Asymmetric
feature

Labeled Limited
labels

✔ ✔

DTMKL [28] Asymmetric
feature

Labeled Unlabeled ✔

JDA [29] Asymmetric
feature

Labeled Unlabeled ✔

ARTL [30] Asymmetric
feature

Labeled Unlabeled ✔

TCA [31] Symmetric
feature

Labeled Unlabeled ✔

SFA [32] Symmetric
feature

Labeled Limited
labels

✔ ✔

SDA [33] Symmetric
feature

Labeled Unlabeled ✔

GFK [16] Symmetric
feature

Labeled Unlabeled ✔ ✔

DCP [34] Symmetric
feature

Labeled Unlabeled ✔

TCNN [35] Symmetric
feature

Labeled Limited
labels

✔

MMKT [36] Parameter Labeled Limited
labels

✔ ✔ ✔

DSM [37] Parameter Labeled Unlabeled ✔ ✔

MsTrAdaBoost [38] Instance Labeled Limited
labels

✔ ✔ ✔

TaskTrAdaBoost [38] Parameter Labeled Limited
labels

✔ ✔ ✔

RAP [27] Relational Labeled Unlabeled

SSFE [39] Hybrid
(instance and
feature)

Labeled Limited
labels
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between the source and target domains. The CP-MDA approach assumes a limited
amount of labeled target data is available. The main idea is to use a combination of
source domain classifiers to label the unlabeled target data. This is accomplished by
first building a classifier for each separate source domain. Then a weight value is
found for each classifier as a function of the closeness in conditional distribution
between each source and the target domain. The weighted source classifiers are
summed together to create a learning task that will find the pseudo labels (estimated
labels later used for training) for the unlabeled target data. Finally, the target learner
is built from the labeled and pseudo labeled target data. The second proposed
solution is the Two Stage Weighting framework for Multi-source Domain
Adaptation (2SW-MDA) which addresses both marginal and conditional distribu-
tion differences between the source and target domains. Labeled target data is not
required for the 2SW-MDA approach; however, it can be used if available. In this
approach, a weight for each source domain is computed based on the marginal
distribution differences between the source and target domains. In the second step,
the source domain weights are modified as a function of the difference in the con-
ditional distribution as performed in the CP-MDA approach previously described.
Finally, a target classifier is learned based on the reweighted source instances and
any labeled target instances that are available. The work presented in Chattopadhyay
et al. [15] is an extension of Duan et al. [40] where the novelty is in calculating the
source weights as a function of conditional probability. Note, the 2SW-MDA
approach is an example of an instance-based Transfer Category, but the CP-MDA
approach is more appropriately classified as a parameter-based Transfer Category
(see `̀ Heterogeneous Transfer Learning'' section). Experiments are performed for
muscle fatigue classification using surface electromyography data where classifi-
cation accuracy is measured as the performance metric. Each source domain rep-
resents one person’s surface electromyography measurements. A baseline approach
is constructed using a Support Vector Machine (SVM) classifier trained on the
combination of seven sources used for this test. The transfer learning approaches that
are tested against include an approach proposed by Huang et al. [20], Pan et al. [31],
Zhong et al. [41], Gao et al. [23], and Duan et al. [40]. The order of performance
from best to worst is 2SW-MDA, CP-MDA, Duan et al. [40], Zhong et al. [41], Gao
et al. [23], Pan et al. [31], Huang et al. [20], and the baseline approach. All the
transfer learning approaches performed better than the baseline approach.

Asymmetric Feature-Based Transfer Learning

In an early and often cited work, Daumé [14] proposes a simple domain adaptation
algorithm, referred to as the Feature Augmentation Method (FAM), requiring only
10 lines of Perl script that uses labeled source data and limited labeled target data.
In a transfer learning environment, there are scenarios where a feature in the source
domain may have a different meaning in the target domain. The issue is referred to
as context feature bias, which causes the conditional distributions between the
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source and target domains to be different. To resolve context feature bias, a method
to augment the source and target feature space with three duplicate copies of the
original feature set is proposed. More specifically, the three duplicate copies of the
original feature set in the augmented source feature space represent a common
feature set, a source specific feature set, and a target specific feature set which is
always set to zero. In a similar way, the three duplicate copies of the original feature
set in the augmented target feature space represent a common feature set, a source
specific feature set which is always set to zero, and a target specific feature set. By
performing this feature augmentation, the feature space is duplicated three times.
From the feature augmentation structure, a classifier learns the individual feature
weights for the augmented feature set, which will help correct for any feature bias
issues. Using a text document example where features are modeled as a
bag-of-words, a common word like “the” would be assigned (through the learning
process) a high weight for the common feature set, and a word that is different
between the source and target like “monitor” would be assigned a high weight for
the corresponding domain feature set. The duplication of features creates feature
separation between the source and target domains, and allows the final classifier to
learn the optimal feature weights. For the experiments, a number of different natural
language processing applications are tested and in each case the classification error
rate is measured as the performance metric. An SVM learner is used to implement
the Daumé [14] approach. A number of baseline approaches with no transfer
learning techniques are measured along with a method by Chelba and Acero [42].
The test results show the Daumé [14] method is able to outperform the other
methods tested. However, when the source and target domains are very similar, the
Daumé [14] approach tends to underperform. The reason for the underperformance
is the duplication of feature sets represents irrelevant and noisy information when
the source and target domains are very similar.

Multiple kernel learning is a technique used in traditional machine learning
algorithms as demonstrated in the works of Wu et al. [43] and Vedaldi et al. [44].
Multiple kernel learning allows for an optimal kernel function to be learned in a
computationally efficient manner. The paper by Duan et al. [28] proposes to
implement a multiple kernel learning framework for a transfer learning environment
called the Domain Transfer Multiple Kernel Learning (DTMKL). Instead of
learning one kernel, multiple kernel learning assumes the kernel is comprised of a
linear combination of multiple predefined base kernels. The final classifier and the
kernel function are learned simultaneously which has the advantage of using
labeled data during the kernel learning process. This is an improvement over Pan
et al. [22] and Huang et al. [20] where a two-stage approach is used. The final
classifier learning process minimizes the structural risk functional [45] and the
marginal distribution between domains using the Maximum Mean Discrepancy
measure [46]. Pseudo labels are found for the unlabeled target data to take
advantage of this information during the learning process. The pseudo labels are
found as a weighted combination of base classifiers (one for each feature) trained
from the labeled source data. A regularization term is added to the optimization
problem to ensure the predicted values from the final target classifier and the base
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classifiers are similar for the unlabeled target data. Experiments are performed on
the applications of video concept detection, text classification, and email spam
detection. The methods tested against include a baseline approach using an SVM
classifier trained on the labeled source data, the feature replication method from
Daumé [14], an adaptive SVM method from Yang et al. [47], a cross-domain SVM
method proposed by Jiang et al. [48], and a kernel mean matching method by
Huang et al. [20]. The DTMKL approach uses an SVM learner for the experiments.
Average precision and classification accuracy are measured as the performance
metrics. The DTMKL method performed the best for all applications, and the
baseline approach is consistently the worst performing. The other methods showed
better performance over the baseline which demonstrated a positive transfer
learning effect.

The work by Long et al. [29] is a Joint Domain Adaptation (JDA) solution that
aims to simultaneously correct for the marginal and conditional distribution dif-
ferences between the labeled source domain and the unlabeled target domain.
Principal Component Analysis (PCA) is used for optimization and dimensionality
reduction. To address the difference in marginal distribution between the domains,
the Maximum Mean Discrepancy distance measure [46] is used to compute the
marginal distribution differences and is integrated into the PCA optimization
algorithm. The next part of the solution requires a process to correct the conditional
distribution differences, which requires labeled target data. Since the target data is
unlabeled, pseudo labels (estimated target labels) are found by learning a classifier
from the labeled source data. The Maximum Mean Discrepancy distance measure is
modified to measure the distance between the conditional distributions and is
integrated into the PCA optimization algorithm to minimize the conditional dis-
tributions. Finally, the features identified by the modified PCA algorithm are used
to train the final target classifier. Experiments are performed for the application of
image recognition and classification accuracy is measured as the performance
metric. Two baseline approaches of a 1-nearest neighbor classifier and a PCA
approach trained on the source data are tested. Transfer learning approaches tested
for this experiment include the approach by Pan [31], Gong et al. [16], and Si et al.
[49]. These transfer learning approaches only attempt to correct for marginal dis-
tribution differences between domains. The Long et al. [29] approach is the best
performing, followed by the Pan [31] and Si et al. [49] approaches (a tie), then the
Gong et al. [16] approach, and finally the baseline approaches. All transfer learning
approaches perform better than the baseline approaches. The possible reason behind
the underperformance of the Gong et al. [16] approach is the data smoothness
assumption that is made for the Gong et al. [16] solution may not be intact for the
data sets tested.

The paper by Long et al. [30] proposes an Adaptation Regularization based
Transfer Learning (ARTL) framework for scenarios of labeled source data and
unlabeled target data. This transfer learning framework proposes to correct the
difference in marginal distribution between the source and target domains, correct
the difference in conditional distribution between the domains, and improve clas-
sification performance through a manifold regularization [50] process (which

Homogeneous Transfer Learning 63



optimally shifts the hyperplane of an SVM learner). This complete framework
process is depicted in Fig. 3.2. The proposed ARTL framework will learn a clas-
sifier by simultaneously performing structural risk minimization [45], reducing the
marginal and conditional distributions between the domains, and optimizing the
manifold consistency of the marginal distribution. To resolve the conditional dis-
tribution differences, pseudo labels are found for the target data in the same way as
proposed by Long et al. [29]. A difference between the ARTL approach and Long
et al. [29] is ARTL learns the final classifier simultaneously while minimizing the
domain distribution differences, which is claimed by Long et al. [30] to be a more
optimal solution. Unfortunately, the solution by Long et al. [29] is not included in
the experiments. Experiments are performed on the applications of text classifica-
tion and image classification where classification accuracy is measured as the
performance metric. There are three baseline methods tested where different clas-
sifiers are trained with the labeled source data. There are five transfer learning
methods tested against, which include methods by Ling et al. [51], Pan et al. [32],
Pan et al. [31], Quanz and Huan [52], and Xiao and Guo [53]. The order of
performance from best to worst is ARTL, Xiao and Guo [53], Pan et al. [31], Pan
et al. [32], Quanz and Huan [52] and Ling et al. [51] (tie), and the baseline
approaches. The baseline methods underperformed all other transfer learning
approaches tested.

Symmetric Feature-Based Transfer Learning

The paper by Pan et al. [31] proposes a feature transformation approach for domain
adaptation called Transfer Component Analysis (TCA), which does not require
labeled target data. The goal is to discover common latent features that have the
same marginal distribution across the source and target domains while maintaining
the intrinsic structure of the original domain data. The latent features are learned
between the source and target domains in a Reproducing Kernel Hilbert Space [54]
using the Maximum Mean Discrepancy [46] as a marginal distribution measure-
ment criteria. Once the latent features are found, traditional machine learning is
used to train the final target classifier. The TCA approach extends the work of Pan
et al. [22] by improving computational efficiency. Experiments are conducted for

Fig. 3.2 ARTL overview showing marginal distribution adaptation (MDA), conditional distri-
bution adaptation (CDA), and manifold regularization (MR). Diagram adapted from Long [30]
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the application of WiFi localization where the location of a particular device is
being predicted. The source domain is comprised of data measured from different
room and building topologies. The performance metric measured is the average
error distance of the position of a device. The transfer learning methods tested
against are from Blitzer et al. [17] and Huang et al. [20]. The TCA method per-
formed the best followed by the Huang et al. [20] approach and the Blitzer et al.
[17] approach. For the Blitzer et al. [17] approach, the manual definition of the
pivot functions (functions that define the correspondence) is important to perfor-
mance and specific to the end application. There is no mention as to how the pivot
functions are defined for WiFi localization.

The work by Pan et al. [32] proposes a Spectral Feature Alignment (SFA) transfer
learning algorithm that discovers a new feature representation for the source and
target domain to resolve the marginal distribution differences. The SFA method
assumes an abundance of labeled source data and a limited amount of labeled target
data. The SFA approach identifies domain-specific and domain-independent features
and uses the domain-independent features as a bridge to build a bipartite graph
modeling the co-occurrence relationship between the domain-independent and
domain-specific features. If the graph shows two domain-specific features having
connections to common domain-independent feature, then there is a higher chance
the domain-specific features are aligned. A spectral clustering algorithm based on
graph spectral theory [55] is used on the bipartite graph to align domain-specific
features and domain-independent features into a set of clusters representing new
features. These clusters are used to reduce the difference between domain-specific
features in the source and the target domains. All the data instances are projected into
this new feature space and a final target classifier is trained using the new feature
representation. The SFA algorithm is a type of correspondence learning where the
domain-independent features act as pivot features (see Blitzer et al. [17] and
Prettenhofer and Stein [11] for further information on correspondence learning).
The SFA method is well-suited for the application of text document classification
where a bag-of-words model is used to define features. For this application there are
domain-independent words that will appear often in both domains and
domain-specific words that will appear often only in a specific domain. This is
referred to as frequency feature bias, which causes marginal distribution differences
between the domains. An example of domain-specific features being combined is the
word “sharp” appearing often in the source domain but not in the target domain, and
the word “hooked” appearing often in the target but not in the source domain. These
words are both connected to the same domain-independent words (for example
“good” and “exciting”). Further, when the words “sharp” or “hooked” appear in text
instances, the labels are the same. The idea is to combine (or align) these two features
(in this case “sharp” and “hooked”) to form a new single invariant feature. The
experiments are performed on sentiment classification where classification accuracy
is measured as the performance metric. A baseline approach is tested where a
classifier is trained only on source data. An upper limit approach is also tested where
a classifier is trained on a large amount of labeled target data. The competing transfer
learning approach tested against is by Blitzer et al. [17]. The order of performance
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for the tests from best to worst is the upper limit approach, SFA, Blitzer et al. [17],
and baseline approach. Not only does the SFA approach demonstrate better per-
formance than Blitzer et al. [17], the SFA approach does not need to manually define
pivot functions as in the Blitzer et al. [17] approach. The SFA approach only
addresses the issue of marginal distribution differences and does not address any
context feature bias issues, which would represent conditional distribution
differences.

The work by Glorot et al. [33] proposes a deep learning algorithm for transfer
learning called a Stacked Denoising Autoencoder (SDA) to resolve the marginal
distribution differences between a labeled source domain and an unlabeled target
domain. Deep learning algorithms learn intermediate invariant concepts between
two data sources, which are used to find a common latent feature set. The first step
in this process is to train the Stacked Denoising Autoencoders [56] with unlabeled
data from the source and target domains. This transforms the input space to discover
the common invariant latent feature space. The next step is to train a classifier using
the transformed latent features with the labeled source data. Experiments are per-
formed on text review sentiment classification where transfer loss is measured as
the performance metric. Transfer loss is defined as the classification error rate using
a learner only trained on the source domain and tested on the target minus the
classification error rate using a learner only trained on the target domain and tested
on the target. There are 12 different source and target domain pairs that are created
from four unique review topics. A baseline method is tested where an SVM clas-
sifier is trained on the source domain. The transfer learning approaches that are
tested include an approach by Blitzer et al. [17], Li and Zong [57], and Pan et al.
[32]. The Glorot et al. [33] approach performed the best with the Blitzer et al. [17],
Li and Zong [57], and Pan et al. [32] methods all having similar performance and
all outperforming the baseline approach.

In the paper by Gong et al. [16], a domain adaptation technique called the
Geodesic Flow Kernel (GFK) is proposed that finds a low-dimensional feature
space, which reduces the marginal distribution differences between the labeled
source and unlabeled target domains. To accomplish this, a geodesic flow kernel is
constructed using the source and target input feature data, which projects a large
number of subspaces that lie on the geodesic flow curve. The geodesic flow curve
represents incremental differences in geometric and statistical properties between
the source and target domain spaces. A classifier is then learned from the geodesic
flow kernel by selecting the features from the geodesic flow curve that are domain
invariant. The work of Gong et al. [16] directly enhances the work of Gopalan et al.
[58] by eliminating tuning parameters and improving computational efficiency. In
addition, a Rank of Domain (ROD) metric is developed to evaluate which of many
source domains is the best match for the target domain. The ROD metric is a
function of the geometric alignment between the domains and the Kullback–Leibler
divergence in data distributions between the projected source and target subspaces.
Experiments are performed for the application of image classification where clas-
sification accuracy is measured as the performance metric. The tests use pairs of
source and target data sets from four available data sets. A baseline approach is
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defined that does not use transfer learning, along with the approach defined by
Gopalan et al. [58]. Additionally, the Gong et al. [16] approach uses a 1-nearest
neighbor classifier. The results in order from best to worst performance are Gong
et al. [16], Gopalan et al. [58], and the baseline approach. The ROD measurements
between the different source and target domain pairs tested have a high correlation
to the actual test results, meaning the domains that are found to be more related with
respect to the ROD measurement had higher classification accuracies.

The solution by Shi and Sha [34], referred to as the Discriminative Clustering
Process (DCP), proposes to equalize the marginal distribution of the labeled source
and unlabeled target domains. A discriminative clustering process is used to dis-
cover a common latent feature space that is domain invariant while simultaneously
learning the final target classifier. The motivating assumptions for this solution are
the data in both domains form well-defined clusters which correspond to unique
class labels, and the clusters from the source domain are geometrically close to the
target clusters if they share the same label. Through clustering, the source domain
labels can be used to estimate the target labels. A one-stage solution is formulated
that minimizes the marginal distribution differences while minimizing the predicted
classification error in the target domain using a nearest neighbor classifier.
Experiments are performed for object recognition and sentiment classification
where classification accuracy is measured as the performance metric. The approach
described above is tested against a baseline approach taken from Weinberger and
Saul [59] with no transfer learning. Other transfer learning approaches tested
include an approach from Pan et al. et al. [31], Blitzer et al. [17], and Gopalan et al.
[58]. The Blitzer et al. [17] approach is not tested for the object recognition
application because the pivot functions are not easily defined for this application.
For the object recognition tests, the Shi and Sha [34] method is best in five out of
six comparison tests. For the text classification tests, the Shi and Sha [34] approach
is the best performing overall, with the Blitzer et al. [17] approach a close second.
An important point to note is the baseline method outperformed the Pan et al. [31]
and Gopalan et al. [58] methods in both tests. Both the Pan et al. [31] and Gopalan
et al. [58] methods are two-stage domain adaptation processes where the first stage
reduces the marginal distributions between the domains and the second stage trains
a classifier with the adapted domain data. This paper offers a hypothesis that
two-stage processes are actually detrimental to transfer learning (causes negative
transfer). The one-stage learning process is a novel idea presented by this paper.
The hypothesis that the two-stage transfer learning process creates low performing
learners does not agree with the results presented in the individual papers by
Gopalan et al. [58] and Pan et al. [31] and other previously surveyed works.

Convolutional Neural Networks (CNN) have been successfully used in tradi-
tional data mining environments [60]. However, a CNN requires a large amount of
labeled training data to be effective, which may not be available. The paper by
Oquab et al. [35] proposes a transfer learning method of training a CNN with
available labeled source data (a source learner) and then extracting the CNN
internal layers (which represent a generic mid-level feature representation) to a
target CNN learner. This method is referred to as the Transfer Convolutional Neural
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Network (TCNN). To correct for any further distribution differences between the
source and the target domains, an adaptation layer is added to the target CNN
learner, which is trained from the limited labeled target data. The experiments are
run on the application of object image classification where average precision is
measured as the performance metric. The Oquab et al. [35] method is tested against
a method proposed by Marszalek et al. [61] and a method proposed by Song et al.
[62]. Both the Marszalek et al. [61] and Song et al. [62] approaches are not transfer
learning approaches and are trained on the limited labeled target data. The first
experiment is performed using the Pascal VOC 2007 data set as the target and
ImageNet 2012 as the source. The Oquab et al. [35] method outperformed both
Song et al. [62] and Marszalek et al. [61] approaches for this test. The second
experiment is performed using the Pascal VOC 2012 data set as the target and
ImageNet 2012 as the source. In the second test, the Oquab et al. [35] method
marginally outperformed the Song et al. [62] method (the Marszalek et al. [61]
method was not tested for the second test). The tests successfully demonstrated the
ability to transfer information from one CNN learner to another.

Parameter-Based Transfer Learning

The paper by Tommasi et al. [36] addresses the transfer learning environment
characterized by limited labeled target data and multiple labeled source domains
where each source corresponds to a particular class. In this case, each source is able
to build a binary learner to predict that class. The objective is to build a target
binary learner for a new class using minimal labeled target data and knowledge
transferred from the multiple source learners. An algorithm is proposed to transfer
the SVM hyperplane information of each of the source learners to the new target
learner. To minimize the effects of negative transfer, the information transferred
from each source to the target will be weighted such that the most related source
domains receive the highest weighting. The weights are determined through a leave
out one process as defined by Cawley [63]. The Tommasi et al. [36] approach,
called the Multi-Model Knowledge Transfer (MMKT) method, extends the method
proposed by Tommasi and Caputo [64] that only transfers a single source domain.
Experiments are performed on the application of image recognition where classi-
fication accuracy is measured as the performance metric. Transfer learning methods
tested include an average weight approach (same as Tommasi et al. [36] but all
source weights are equal), and the Tommasi and Caputo [64] approach. A baseline
approach is tested, which is trained on the limited labeled target data. The best
performing method is Tommasi et al. [36], followed by the average weight,
Tommasi and Caputo [64], and the baseline approach. As the number of labeled
target instances goes up, the Tommasi et al. [36] and average weight methods
converge to the same performance. This is because the adverse effects of negative
transfer are lessened as the labeled target data increases. This result demonstrates
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the Tommasi et al. [36] approach is able to lessen the effects of negative transfer
from unrelated sources.

The transfer learning approach presented in the paper by Duan et al. [37],
referred to as the Domain Selection Machine (DSM), is tightly coupled to the
application of event recognition in consumer videos. Event recognition in videos is
the process of predicting the occurrence of a particular event or topic (e.g. “show”
or “performance”) in a given video. In this scenario, the target domain is unlabeled
and the source information is obtained from annotated images found via web
searches. For example, a text query of the event “show” for images on
Photosig.com represents one source and the same query on Flickr.com represents
another separate source. The Domain Selection Machine proposed in this paper is
realized as follows. For each individual source, an SVM classifier is created using
SIFT [65] image features. The final target classifier is made up of two parts. The
first part is a weighted sum of the source classifier outputs whose input is the SIFT
features from key frames of the input video. The second part is a learning function
whose inputs are Space-Time features [66] from the input video and is trained from
target data where the target labels are estimated (pseudo labels) from the weighted
sum of the source classifiers. To combat the effects of negative transfer from
unrelated sources, the most relevant source domains are selected by using an
alternating optimization algorithm that iteratively solves the target decision function
and the domain selection vector. Experiments are performed in the application of
event recognition in videos as described above where the mean average precision is
measured as the performance metric. A baseline method is created by training a
separate SVM classifier on each source domain and then equally combining the
classifiers. The other transfer learning approaches tested include the approach by
Bruzzone and Marconcini [67], Schweikert et al. [68], Duan et al. [40], and
Chattopadhyay et al. [15]. The Duan et al. [40] approach outperforms all the other
approaches tested. The other approaches all have similar results, meaning the
transfer learning methods did not outperform the baseline approach. The possible
reason for this result is the existence of unrelated sources in the experiment. The
other transfer learning approaches tested had no mechanism to guard against
negative transfer from unrelated sources.

The paper by Yao and Doretto [38] first presents an instance-based transfer
learning approach followed by a separate parameter-based transfer learning
approach. In the transfer learning process, if the source and target domains are not
related enough, negative transfer can occur. Since it is difficult to measure the
relatedness between any particular source and target domain, Yao and Doretto [38]
proposes to transfer knowledge from multiple source domains using a boosting
method in an attempt to minimize the effects of negative transfer from a single
unrelated source domain. The boosting process requires some amount of labeled
target data. Yao and Doretto [38] effectively extends the work of Dai et al. [69]
(TrAdaBoost) by expanding the transfer boosting algorithm to multiple source
domains. In the TrAdaBoost algorithm, during every boosting iteration, a so-called
weak classifier is built using weighted instance data from the previous iteration.
Then, the misclassified source instances are lowered in importance and the
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misclassified target instances are raised in importance. In the multi-source
TrAdaBoost algorithm (called MsTrAdaBoost), each iteration step first finds a
weak classifier for each source and target combination, and then the final weak
classifier is selected for that iteration by finding the one that minimizes the target
classification error. The instance reweighting step remains the same as in the
TrAdaBoost. An alternative multi-source boosting method (TaskTrAdaBoost) is
proposed that transfers internal learner parameter information from the source to the
target. The TaskTrAdaBoost algorithm first finds candidate weak classifiers from
each individual source by performing an AdaBoost process on each source domain.
Then an AdaBoost process is performed on the labeled target data, and at every
boosting iteration, the weak classifier used is selected from the candidate weak
source classifiers (found in the previous step) that has the lowest classification error
using the labeled target data. Experiments are performed for the application of
object category recognition where the area under the curve (AUC) is measured as
the performance metric. An AdaBoost baseline approach using only the limited
labeled target data is measured along with a TrAdaBoost approach using a single
source (the multiple sources are combined to one) and the limited labeled target
data. Linear SVM learners are used as the base classifiers in all approaches. Both
the MsTrAdaBoost and TaskTrAdaBoost approaches outperform the baseline
approach and TrAdaBoost approach. The MsTrAdaBoost and TaskTrAdaBoost
demonstrated similar performance.

Relational-Based Transfer Learning

The specific application addressed in the paper by Li et al. [27] is to classify words
from a text document into one of three classes (e.g. sentiments, topics, or neither).
In this scenario, there exists a labeled text source domain on one particular subject
matter and an unlabeled text target domain on a different subject matter. The main
idea is that sentiment words remain constant between the source and target
domains. By learning the grammatical and sentence structure patterns of the source,
a relational pattern is found between the source and target domains, which is used to
predict the topic words in the target. The sentiment words act as a common linkage
or bridge between the source and target domains. A bipartite word graph is used to
represent and score the sentence structure patterns. A bootstrapping algorithm is
used to iteratively build a target classifier from the two domains. The bootstrapping
process starts with defining seeds which are instances from the source that match
frequent patterns in the target. A cross domain classifier is then trained with the seed
information and extracted target information (there is no target information in the
first iteration). The classifier is used to predict the target labels and the top confi-
dence rated target instances are selected to reconstruct the bipartite word graph. The
bipartite word graph is now used to select new target instances that are added to the
seed list. This bootstrapping process continues over a selected number of iterations,
and the cross domain classifier learned in the bootstrapping process is now available
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to predict target samples. This method is referred to as the Relational Adaptive
bootstraPping (RAP) approach. The experiments tested the Li et al. [27] approach
against an upper bound method where a standard classifier is trained with a large
amount of target data. Other transfer learning methods tested include an approach
by Hu and Liu [70], Qiu et al. [71], Jakob and Gurevych [72], and Dai et al. [69].
The application tested is word classification as described above where the F1 score
is measured as the performance metric. The two domains tested are related to movie
reviews and product reviews. The Li et al. [27] method performed better than the
other transfer learning methods, but fell short of the upper bound method as
expected. In its current form, this algorithm is tightly coupled with its underlying
text application, which makes it difficult to use for other non-text applications.

Hybrid-Based (Instance and Parameter) Transfer Learning

The paper by Xia et al. [39] proposes a two step approach to address marginal
distribution differences and conditional distribution differences between the source
and target domains called the Sample Selection and Feature Ensemble (SSFE)
method. A sample selection process, using a modified version of Principal
Component Analysis, is employed to select labeled source domain samples such
that the source and target marginal distributions are equalized. Next, a feature
ensemble step attempts to resolve the conditional distribution differences between
the source and target domains. Four individual classifiers are defined corresponding
to parts of speech of noun, verb, adverb/adjective, and other. The four classifiers are
trained using only the features that correspond to that part of speech. The training
data is the limited labeled target and the labeled source selected in the previous
sample selection step. The four classifiers are weighted as a function of minimizing
the classification error using the limited labeled target data. The weighted output of
the four classifiers is used as the final target classifier. This work by Xia et al. [39]
extends the earlier work of Xia and Zong [73]. The experiments are performed for
the application of review sentiment classification using four different review cate-
gories, where each category is combined to create 12 different source and target
pairs. Classification accuracy is measured as the performance metric. A baseline
approach using all the training data from the source is constructed, along with a
sample selection approach (only using the first step defined above), a feature
ensemble approach (only using the second step defined above) and the complete
approach outlined above. The complete approach is the best performing, followed
by sample selection and feature ensemble approaches, and the baseline approach.
The sample selection and feature ensemble approaches perform equally as well in
head-to-head tests. The weighting of the four classifiers (defined by the corre-
sponding parts of speech) in the procedure above gives limited resolution in
attempting to adjust for context feature bias issues. A method of having more
classifiers in the ensemble step could yield better performance at the expense of
higher complexity.
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Discussion of Homogeneous Transfer Learning

The previous surveyed homogeneous transfer learning works (summarized in
Table 3.2) demonstrate many different characteristics and attributes. Which
homogeneous transfer learning solution is best for a particular application? An
important characteristic to evaluate in the selection process is what type of differ-
ences exist between a given source and target domain. The previous solutions
surveyed address domain adaptation by correcting for marginal distribution dif-
ferences, correcting for conditional distribution differences, or correcting for both
marginal and conditional distribution differences. The surveyed works of Duan
et al. [28], Gong et al. [16], Pan et al. [31], Li et al. [27], Shi and Sha [34], Oquab
et al. [35], Glorot et al. [33], and Pan et al. [32] are focused on solving the
differences in marginal distribution between the source and target domains. The
surveyed works of Daumé [14], Yao and Doretto [38], Tommasi et al. [36] are
focused on solving the differences in conditional distribution between the source
and target domains. Lastly, the surveyed works of Long et al. [30], Xia et al. [39],
Chattopadhyay et al. [15], Duan et al. [37], and Long et al. [29] correct the dif-
ferences in both the marginal and conditional distributions. Correcting for the
conditional distribution differences between the source and target domain can be
problematic as the nature of a transfer learning environment is to have minimal
labeled target data. To compensate for the limited labeled target data, many of the
recent transfer learning solutions create pseudo labels for the unlabeled target data
to facilitate the conditional distribution correction process between the source and
target domains. To further help determine which solution is best for a given transfer
learning application, the information in Table 3.2 should be used to match the
characteristics of the solution to that of the desired application environment. If the
application domain contains multiple sources where the sources are not mutually
uniformly distributed, a solution that guards against negative transfer may be of
greater benefit. A recent trend in the development of transfer learning solutions is
for solutions to address both marginal and conditional distribution differences
between the source and target domains. Another emerging solution trend is the
implementation of a one-stage process as compared to a two-stage process. In the
recent works of Long et al. [30], Duan et al. [28], Shi and Sha [34], and Xia et al.
[39], a one-stage process is employed that simultaneously performs the domain
adaptation process while learning the final classifier. A two-stage solution first
performs the domain adaptation process and then independently learns the final
classifier. The claim by Long et al. [30] is a one-stage solution achieves enhanced
performance because the simultaneous solving of domain adaptation and the
classifier establishes mutual reinforcement. The surveyed homogeneous transfer
learning works are not specifically applied to big data solutions; however, there is
nothing to preclude their use in a big data environment.
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Heterogeneous Transfer Learning

Heterogeneous transfer learning is the scenario where the source and target domains
are represented in different feature spaces. There are many applications where
heterogeneous transfer learning is beneficial. Heterogeneous transfer learning
applications that are covered in this section include image recognition [5–7, 74–76],
multi-language text classification [5, 10–12, 76], single language text classification
[4], drug efficacy classification [74], human activity classification [8], and software
defect classification [9]. Heterogeneous transfer learning is also directly applicable
to a big data environment. As repositories of big data become more available, there
is a desire to use this abundant resource for machine learning tasks, avoiding the
timely and potentially costly collection of new data. If there is an available dataset
drawn from a target domain of interest that has a different feature space from
another target dataset (also drawn from the same target domain), then heteroge-
neous transfer learning can be used to bridge the difference in the feature spaces and
build a predictive model for that target domain. Heterogeneous transfer learning is
still a relatively new area of study as the majority of the works covering this topic
have been published in the last five years. From a high-level view, there are two
main approaches to solving the heterogeneous feature space difference. The first
approach, referred to as symmetric transformation shown in Fig. 3.1a, separately
transforms the source and target domains into a common latent feature space in an
attempt to unify the input spaces of the domains. The second approach, referred to
as asymmetric transformation as shown in Fig. 3.1b, transforms the source feature
space to the target feature space to align the input feature spaces. The asymmetrical
transformation approach is best used when the same class instances in the source
and target can be transformed without context feature bias. Many of the hetero-
geneous transfer learning solutions surveyed make the implicit or explicit
assumption that the source and the target domain instances are drawn from the same
domain space. With this assumption there should be no significant distribution
differences between the domains. Therefore, once the differences in input feature
spaces are resolved, no further domain adaptation needs to be performed.

As is the case with homogeneous transfer learning solutions, whether the source
and target domains contain labeled data drives the solution formulation for
heterogeneous approaches. Data label availability is a function of the underlying
application. The solutions surveyed in this paper have different labeled data
requirements. For transfer learning to be feasible, the source and the target domains
must be related in some way. Some heterogeneous solutions require an explicit
mapping of the relationship or correspondence between the source and target
domains. For example, the solutions defined for Prettenhofer and Stein [11] and
Wei and Pal [77] require manual definitions of source and target correspondence.
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Symmetric Feature-Based Transfer Learning

The transfer learning approach proposed by Prettenhofer and Stein [11] addresses
the heterogeneous scenario of a source domain containing labeled and unlabeled
data, and a target domain containing unlabeled data. The structural correspondence
learning technique from Blitzer et al. [17] is applied to this problem. Structural
correspondence learning depends on the manual definition of pivot functions that
capture correspondence between the source and target domains. Effective pivot
functions should use features that occur frequently in both domains and have good
predictive qualities. Each pivot function is turned into a linear classifier using data
from the source and target domains. From these pivot classifiers, correspondences
between features are discovered and a latent feature space is learned. The latent
feature space is used to train the final target classifier. The paper by Prettenhofer and
Stein [11] uses this solution to solve the problem of text classification where the
source is written in one language and the target is written in a different language. In
this specific implementation referred to as Cross-Language Structural
Correspondence Learning (CLSCL), the pivot functions are defined by pairs of
words, one from the target and one from the source, that represent direct word
translations from one language to the other. The experiments are performed on the
applications of document sentiment classification and document topic classification.
English documents are used in the source and other language documents are used in
the target. The baseline method used in this test trains a learner on the labeled source
documents, then translates the target documents to the source language and tests the
translated version. An upper bound method is established by training a learner with
the labeled target documents and testing with the target documents. Average clas-
sification accuracy is measured as the performance metric. The average results show
the upper bound method performing the best and the Prettenhofer and Stein [11]
method performing better than the baseline method. An issue with using structural
correspondence learning is the difficulty in generalizing the pivot functions. For this
solution, the pivot functions need to be manually and uniquely defined for a specific
application, which makes it very difficult to port to other applications.

The paper by Shi et al. [74], referred to as Heterogeneous Spectral Mapping
(HeMap), addresses the specific transfer learning scenario where the input feature
space is different between the source and target (XS 6¼ XT), the marginal distri-
bution is different between the source and the target (P(XS) 6¼ P(XT)), and the
output space is different between the source and the target (YS 6¼ YT.). This
solution uses labeled source data that is related to the target domain and limited
labeled target data. The first step is to find a common latent input space between the
source and target domains using a spectral mapping technique. The spectral map-
ping technique is modeled as an optimization objective that maintains the original
structure of the data while minimizing the difference between the two domains. The
next step is to apply a clustering based sample selection method to select related
instances as new training data, which resolves the marginal distribution differences
in the latent input space. Finally, a Bayesian based method is used to find the
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relationship and resolve the differences in the output space. Experiments are per-
formed for the applications of image classification and drug efficacy prediction.
Classification error rate is measured as the performance metric. This solution
demonstrated better performance as compared to a baseline approach; however,
details on the baseline approach are not documented in the paper and no other
transfer learning solutions are tested.

The algorithm by Wang and Mahadevan [4], referred to as the Domain
Adaptation Manifold Alignment (DAMA) algorithm, proposes using a manifold
alignment [78] process to perform a symmetric transformation of the domain input
spaces. In this solution, there are multiple labeled source domains and a limited
labeled target domain for a total of K domains where all K domains share the same
output label space. The approach is to create a separate mapping function for each
domain to transform the heterogeneous input space to a common latent input space
while preserving the underlying structure of each domain. Each domain is modeled
as a manifold. To create the latent input space, a larger matrix model is created that
represents and captures the joint manifold union of all input domains. In this
manifold model, each domain is represented by a Laplacian matrix that captures the
closeness to other instances sharing the same label. The instances with the same
labels are forced to be neighbors while separating the instances with different labels.
A dimensionality reduction step is performed through a generalized eigenvalue
decomposition process to eliminate feature redundancy. The final learner is built in
two stages. The first stage is a linear regression model trained on the source data
using the latent feature space. The second stage is also a linear regression model
that is summed with the first stage. The second stage uses a manifold regularization
[50] process to ensure the prediction error is minimized when using the labeled
target data. The first stage is trained only using the source data and the second stage
compensates for the domain differences caused by the first stage to achieve
enhanced target predictions. The experiments are focused on the application of
document text classification where classification accuracy is measured as the per-
formance metric. The methods tested against include a Canonical Correlation
Analysis approach and a Manifold Regularization approach, which is considered
the baseline method. The baseline method uses the limited labeled target domain
data and does not use source domain information. The approach presented in this
paper substantially outperforms the Canonical Correlation Analysis and baseline
approach; however, these approaches are not directly referenced so it is difficult to
understand the significance of the test results. A unique aspect of this paper is the
modeling of multiple source domains in a heterogeneous solution.

There are scenarios where a large amount of unlabeled heterogeneous source
data is readily available that could be used to improve the predictive performance of
a particular target learner. The paper by Zhu et al. [7], which presents the method
called the Heterogeneous Transfer Learning Image Classification (HTLIC),
addresses this scenario with the assumption of having access to a sufficiently large
amount of labeled target data. The objective is to use the large supply of available
unlabeled source data to create a common latent feature input space that will
improve prediction performance in the target classifier. The solution proposed by
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Zhu et al. [7] is tightly coupled to the application of image classification and is
described as follows. Images with labeled categories (e.g. dog, cake, starfish, etc.)
are available in the target domain. To obtain the source data, a web search is
performed from Flickr for images that “relate” to the labeled categories. For
example, for the category of dog, the words dog, doggy, and greyhound may be
used in the Flickr search. As a reference point, the idea of using annotated images
from Flickr as unlabeled source data was first proposed by Yang et al. [79]. The
retrieved images from Flickr have one or more word tags associated with each
image. These tagged image words are then used to search for text documents using
Google search. Next, a two-layer bipartite graph is constructed where the first layer
represents linkages between the source images and the image tags. The second layer
represents linkages between the image tags and the text documents. If an image tag
appears in a text document, then a link is created, otherwise there is no link. Images
in both the source and the target are initially represented by an input feature set that
is derived from the pixel information using SIFT descriptors [65]. Using the initial
source image features and the bipartite graph representation derived only from the
source image tags and text data, a common latent semantic feature set is learned by
employing Latent Semantic Analysis [80]. A learner is now trained with the
transformed labeled target instances. Experiments are performed on the proposed
approach where 19 different image categories are selected. Binary classification is
performed testing different image category pairs. A baseline method is tested using
an SVM classifier trained only with the labeled target data. Methods by Raina et al.
[81] and by Wang et al. [82] are also tested. The approach proposed by Zhu et al.
[7] performed the best overall followed by Raina et al. [81], Wang et al. [82], and
baseline approach. The idea of using an abundant source of unlabeled data available
through an internet search to improve prediction performance is a very alluring
premise. However, this method is very specific to image classification and is
enabled by having a web site like Flickr, which essentially provides unlimited
labeled image data. This method is difficult to port to other applications.

The transfer learning solution proposed by Qi et al. [75] is another example of an
approach that specifically addresses the application of image classification. In the
paper by Qi et al. [75], the author claims the application of image classification is
inherently more difficult than text classification because image features are not
directly related to semantic concepts inherent in class labels. Image features are
derived from pixel information, which is not semantically related to class labels, as
opposed to word features that have semantic interpretability to class labels. Further,
labeled image data is more scarce as compared to labeled text data. Therefore, a
transfer learning environment for image classification is desired where an abun-
dance of labeled text data (source) is used to enhance a learner trained on limited
labeled image data (target). In this solution, text documents are identified by per-
forming a web search (from Wikipedia for example) on class labels. In order to
perform the knowledge transfer from the text documents (source) to the image
(target) domain, a bridge in the form of a co-occurrence matrix is used that relates
the text and image information. The co-occurrence matrix contains text instances
with the corresponding image instances that are found in that particular text
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document. The co-occurrence matrix can be programmatically built by crawling
web pages and extracting the relevant text and image feature information. Using the
co-occurrence matrix, a common latent feature space is found between the text and
image features, which is used to learn the final target classifier. This approach,
called the Text To Image (TTI) method, is similar to Zhu et al. [7]. However, Zhu
et al. [7] does not use labeled source data to enhance the knowledge transfer, which
will result in degraded performance when there is limited labeled target data.
Experiments are performed with the methods proposed by Qi et al. [75], Dai et al.
[83], Zhu et al. [7], and a baseline approach using a standard SVM classifier trained
on the limited labeled target data. The text documents are collected from Wikipedia,
and classification error rate is measured as the performance metric. The results show
the Zhu et al. [7] method performing the best in 15 % of the trials, the Dai et al. [83]
method being the best in 10 % of the trials, and the Qi et al. [75] method leading in
75 % of the trials. As with the case of Zhu et al. [7], this method is very specific to
the application of image classification and is difficult to port to other applications.

The scenario addressed in the paper by Duan et al. [5] is focused on heteroge-
neous domain adaptation with a single labeled source domain and a target domain
with limited labeled samples. The solution proposed is called Heterogeneous
Feature Augmentation (HFA). A transformation matrix P is defined for the source
and a transformation matrix Q is defined for the target to project the feature spaces
to a common latent space. The latent feature space is augmented with the original
source and target feature set and zeros where appropriate. This means the source
input data projection has the common latent features, the original source features,
and zeros for the original target features. The target input data projection has the
common latent features, zeros for the original source features, and the original
target features. This feature augmentation method was first introduced by Daumé
[14] and is used to correct for conditional distribution differences between the
domains. For computational simplification, the P and Q matrices are not directly
found but combined and represented by an H matrix. An optimization problem is
defined by minimizing the structural risk functional [45] of SVM as a function of
the H matrix. The final target prediction function is found using an alternating
optimization algorithm to simultaneously solve the dual problem of SVM and the
optimal transformation H matrix. The experiments are performed for the applica-
tions of image classification and text classification. The source contains labeled
image data and the target contains limited labeled image data. For the image fea-
tures, SURF [84] features are extracted from the pixel information and then clus-
tered into different dimension feature spaces creating the heterogeneous source and
target environment. For the text classification experiments, the target contains
Spanish language documents and the source contains documents in four different
languages. The experiments test against a baseline method, which is constructed by
training an SVM learner on the limited labeled target data. Other heterogeneous
adaptation methods that are tested include the method by Wang and Mahadevan [4],
Shi et al. [74], and Kulis et al. [6]. For the image classification test, the HFA method
outperforms all the methods tested by an average of one standard deviation with
respect to classification accuracy. The Kulis et al. [6] method has comparable
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results to the baseline method (possibly due to some uniqueness in the data set) and
the Wang and Mahadevan [4] method slightly outperforms the baseline method
(possibly due to a weak manifold structure in the data set). For the text classification
test, the HFA method outperforms all methods tested by an average of 1.5 standard
deviation. For this test, the Kulis et al. [6] method is second in performance,
followed by Wang and Mahadevan [4], and then the baseline method. The Shi et al.
[74] method performed worse than the baseline method in both tests. A possible
reason for this result is the Shi et al. [74] method does not specifically use the
labeled information from the target when performing the symmetric transformation,
which will result in degraded classification performance [76].

The work of Li et al. [76], called the Semi-supervised Heterogeneous Feature
Augmentation (SHFA) approach, addresses the heterogeneous scenario of an
abundance of labeled source data and limited target data, and directly extends the
work of Duan et al. [5]. In this work, the H transformation matrix, which is
described above by Duan et al. [5], is decomposed into a linear combination of a set
of rank-one positive semi-definite matrices that allow for Multiple Kernel Learning
solvers (defined by Kloft et al. [85]) to be used to find a solution. In the process of
learning the H transformation matrix, the labels for the unlabeled target data are
estimated (pseudo labels created) and used while learning the final target classifier.
The pseudo labels for the unlabeled target data are found from an SVM classifier
trained on the limited labeled target data. The high-level domain adaptation is
shown in Fig. 3.3. Experiments are performed for three applications which include
image classification (where 31 unique classes are defined), multi-language text
document classification (where six unique classes are defined), and multi-language
text sentiment classification. Classification accuracy is measured as the performance
metric. The method by Li et al. [76] is tested against a baseline method using an
SVM learner and trained on the limited labeled target data. Further, other hetero-
geneous methods tested include Wang and Mahadevan [4], Duan et al. [5], Kulis
et al. [6], Shi et al. [74]. By averaging the three different application test results, the
order of performance from best to worst is Li et al. [76], Duan et al. [5], Wang and
Mahadevan [4], baseline and Kulis et al. [6] (tie), and Shi et al. [74].

Fig. 3.3 Depicts algorithm approach by Li [76] where the heterogeneous source and target
features are transformed to an augmented latent feature space. TS and TT are transformation
functions. P and Q are projection matrices as described in Duan [5]. Diagram adapted from Li [76]
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Asymmetric Feature-Based Transfer Learning

The work of Kulis et al. [6], referred to as the Asymmetric Regularized
Cross-domain Transformation (ARC-t), proposes an asymmetric transformation
algorithm to resolve the heterogeneous feature space between domains. For this
scenario, there is an abundance of labeled source data and limited labeled target
data. An objective function is first defined for learning the transformation matrix.
The objective function contains a regularizer term and a cost function term that is
applied to each pair of cross-domain instances and the learned transformation
matrix. The construction of the objective function is responsible for the domain
invariant transformation process. The optimization of the objective function aims to
minimize the regularizer and the cost function terms. The transformation matrix is
learned in a non-linear Gaussian RBF kernel space. The method presented is
referred to as the Asymmetric Regularized Cross-domain transformation. Two
experiments using this approach are performed for image classification where
classification accuracy is measured as the performance metric. There are 31 image
classes defined for these experiments. The first experiment (test 1) is where
instances of all 31 image classes are included in the source and target training data.
In the second experiment (test 2), only 16 image classes are represented in the target
training data (all 31 are represented in the source). To test against other baseline
approaches, a method is needed to bring the source and target input domains
together. A preprocessing step called Kernel Canonical Correlation Analysis
(proposed by Shawe-Taylor and Cristianini [86]) is used to project the source and
target domains into a common domain space using symmetric transformation.
Baseline approaches tested include k-nearest neighbors, SVM, metric learning
proposed by Davis et al. [87], feature augmentation proposed by Daumé [14], and a
cross domain metric learning method proposed by Saenko et al. [88]. For test 1, the
Kulis et al. [6] approach performs marginally better than the other methods tested.
For test 2, the Kulis et al. [6] approach performs significantly better compared to the
k-nearest neighbors approach (note the other methods cannot be tested against as
they require all 31 classes to be represented in the target training data). The Kulis
et al. [6] approach is best suited for scenarios where all of the classes are not
represented in the target training data as demonstrated in test 2.

The problem domain defined by Harel and Mannor [8] is of limited labeled target
data and multiple labeled data sources where an asymmetric transformation is
desired for each source to resolve the mismatch in feature space. The first step in the
process is to normalize the features in the source and target domains, then group the
instances by class in the source and target domains. For each class grouping, the
features are mean adjusted to zero. Next, each individual source class group is paired
with the corresponding target class group, and a singular value decomposition
process is performed to find the specific transformation matrix for that class
grouping. Once the transformation is performed, the features are mean shifted back
reversing the previous step, and the final target classifier is trained using the
transformed data. Finding the transformation matrix using the singular value
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decomposition process allows for the marginal distributions within the class
groupings to be aligned while maintaining the structure of the data. This approach is
referred to as the Multiple Outlook MAPping algorithm (MOMAP). The experi-
ments use data taken from wearable sensors for the application of activity classifi-
cation. There are five different activities defined for the experiment which include
walking, running, going upstairs, going downstairs, and lingering. The source
domain contains similar (but different) sensor readings as compared to the target.
The method proposed by Harel and Mannor [8] is compared against a baseline
method that trains a classifier with the limited labeled target data and an upper bound
method that uses a significantly larger set of labeled target data to train a classifier.
An SVM learner is used as the base classifier and a balanced error rate (due to an
imbalance in the test data) is measured as the performance metric. The Harel and
Mannor [8] approach outperforms the baseline method in every test and falls short of
the upper bound method in every test with respect to the balanced error rate.

The heterogeneous transfer learning scenario addressed by Zhou et al. [10]
requires an abundance of labeled source data and limited labeled target data. An
asymmetric transformation function is proposed to map the source features to the
target features. To learn the transformation matrix, a multi-task learning method
based on Ando and Zhang [89] is adopted. The solution, referred to as the Sparse
Heterogeneous Feature Representation (SHFR), is implemented by creating a
binary classifier for each class in the source and the target domains separately. Each
binary classifier is assigned a weight term where the weight terms are learned by
combining the weighted classifier outputs, while minimizing the classification error
of each domain. The weight terms are now used to find the transformation matrix by
minimizing the difference between the target weights and the transformed source
weights. The final target classifier is trained using the transformed source data and
original target data. Experiments are performed for text document classification
where the target domain contains documents written in one language and the source
domain contains documents written in different languages. A baseline method using
a linear SVM classifier trained on the labeled target is established along with testing
against the methods proposed by Wang and Mahadevan [4], Kulis et al. [6], and
Duan et al. [5]. The method proposed by Zhou et al. [10] performed the best for all
tests with respect to classification accuracy. The results of the other approaches are
mixed as a function of the data sets used where the Duan et al. [5] method per-
formed either second or third best.

The application of software module defect prediction is usually addressed by
training a classifier with labeled data taken from the software project of interest. The
environment described in Nam and Kim [9] for software module defect prediction
attempts to use labeled source data from one software project to train a classifier to
predict unlabeled target data from another project. The source and target software
projects collect different metrics making the source and target feature spaces
heterogeneous. The proposed solution, referred to as the Heterogeneous Defect
Prediction (HDP) approach, is to first select the important features from the source
domain using a feature selection method to eliminate redundant and irrelevant
features. Feature selection methods used include gain ratio, chi-square, relief-F, and
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significance attribute evaluation (see Gao et al. [90] and Shivaji et al. [91]). The
next step is to statistically match the selected source domain features to ones in the
target using a Kolmogorov-Smirnov test that measures the closeness of the
empirical distribution between the two sources. A learner is trained with the source
features that exhibit a close statistical match to the corresponding target features.
The target data is tested with the trained classifier using the corresponding matched
features of the target. Even though the approach by Nam and Kim [9] is applied
directly to the application of software module defect prediction, this method can be
used for other applications. Experiments are performed using five different software
defect data sets with heterogeneous features. The proposed method by Nam and
Kim [9] uses Logistic Regression as the base learner. The other approaches tested
include a within project defect prediction (WPDP) approach where the learner is
trained on labeled target data, a cross project defect prediction (CPDP-CM)
approach where the source and target represent different software projects but have
homogeneous features, and a cross project defect prediction approach with
heterogeneous features (CPDP-IFS) as proposed by He et al. [92]. The results of the
experiment show the Nam and Kim [9] method significantly outperformed all other
approaches with respect to area under the curve measurement. The WPDP approach
is next best followed by the CPDP-CM approach and the CPDP-IFS approach.
These results can be misleading as the Nam and Kim [9] approach could only match
at least one or more input features between the source and target domains in 37 %
of the tests. Therefore, in 63 % of the cases, the Nam and Kim [9] method could not
be used and these cases are not counted. The WPDP method represents an upper
bound and it is an unexpected result that the Nam and Kim [9] approach would
outperform the WPDP method.

The paper by Zhou et al. [12] claims that previous heterogeneous solutions
assume the instance correspondence between the source and target domains are
statistically representative (distributions are equal), which may not always be the
case. An example of this claim is in the application of text sentiment classification
where the word bias problem previously discussed causes distribution differences
between the source and target domains. The paper by Zhou et al. [12] proposes a
solution called the Hybrid Heterogeneous Transfer Learning (HHTL) method for a
heterogeneous environment with abundant labeled source data and abundant
unlabeled target data. The idea is to first learn an asymmetric transformation from
the target to the source domain, which reduces the problem to a homogeneous
domain adaptation issue. The next step is to discover a common latent feature space
using the transformed data (from the previous step) to reduce the distribution bias
between the transformed unlabeled target domain and the labeled source domain.
Finally, a classifier is trained using the common latent feature space from the
labeled source data. This solution is realized using a deep learning method
employing a Marginalized Stacked Denoised Autoencoder as proposed by Chen
et al. [93] to learn the asymmetric transformation and the mapping to a common
latent feature space. The previous surveyed paper by Glorot et al. [33] demonstrated
a deep learning approach finding a common latent feature space for homogeneous
source and target feature set. The experiments focused on multiple language text
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sentiment classification where English is used in the source and three other lan-
guages are separately used in the target. Classification accuracy is measured as the
performance metric. Other methods tested include a heterogeneous spectral map-
ping approach proposed by Shi et al. [74], a method proposed by Vinokourov et al.
[94], and a multimodal deep learning approach proposed by Ngiam et al. [95].
An SVM learner is used as the base classifier for all methods. The results of the
experiment from best to worst performance are Zhou et al. [12], Ngiam et al. [95],
Vinokourov et al. [94], and Shi et al. [74].

Improvements to Heterogeneous Solutions

The paper by Yang et al. [96] proposes to quantify the amount of knowledge that
can be transferred between domains in a heterogeneous transfer learning environ-
ment. In other words, it attempts to measure the “relatedness” of the domains. This
is accomplished by first building a co-occurrence matrix for each domain. The
co-occurrence matrix contains the set of instances represented in every domain. For
example, if one particular text document is an instance in the co-occurrence matrix,
that text document is required to be represented in every domain. Next, Principal
Component Analysis is used to select the most important features in each domain
and assign the principal component coefficient to those features. The principal
component coefficients are used to form a directed cyclic network (DCN) where
each node represents a domain (either source or target) and each node connection
(edge weight) is the conditional dependence from one domain to another. The DCN
is built using a Markov Chain Monte Carlo method. The edge weights represent the
potential amount of knowledge that can be transferred between domains where a
higher value means higher knowledge transfer. These edge weights are then used as
tuning parameters in different heterogeneous transfer learning solutions, which
include works from Yang et al. [79], Ng et al. [97], and Zhu et al. [7] (the weights
are calculated first using Yang et al. [96] and then applied as tuning values in the
other solutions). Note, that integrating the edge weight values into a particular
approach is specific to the implementation of the solution and cannot be generically
applied. The experiments are run on the three different learning solutions comparing
the original solution against the solution using the weighted edges of the DCN as
the tuned parameters. In all three solutions, the classification accuracy is improved
using the DCN tuned parameters. One potential issue with this approach is the
construction of the co-occurrence matrix. The co-occurrence matrix contains many
instances; however, each instance must be represented in each domain. This may be
an unrealistic constraint in many real-world applications.
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Experiment Results

In reviewing the experiment results of the previous surveyed papers, there are
instances where one solution can show varying results over a range of different
experiments. There are many reasons why this can happen which include varying
test environments, different test implementations, different applications being tes-
ted, and different data sets being used. An interesting area of future work is to
evaluate the solutions presented to determine the best performing solutions as a
function of specific datasets. To facilitate that goal, a repository of open-source
software containing the software implementations for solutions used in each paper
would be extremely beneficial. Table 3.3 lists a compilation of head-to-head results
for the most commonly tested solutions contained in the Heterogeneous Transfer
Learning section. The results listed in Table 3.3 represent a win, loss, and tie
performance record of the head-to-head solution comparisons. Note, these results
are compiled directly from the surveyed papers. It is difficult to draw exact con-
clusions from this information because of the reasons just outlined; however, it
provides some interesting insight into the comparative performances of the
solutions.

Discussion of Heterogeneous Solutions

The previous surveyed heterogeneous transfer learning works demonstrate many
different characteristics and attributes. Which heterogeneous transfer learning
solution is best for a particular application? The heterogeneous transfer learning
solutions use either a symmetric transformation or an asymmetric transformation
process in an attempt to resolve the differences between the input feature space (as
shown in Fig. 3.1). The asymmetrical transformation approach is best used when
the same class instances in the source and target domains can be transformed

Table 3.3 Lists the head-to-head results of experiments performed in the heterogeneous transfer
learning works surveyed

Methods HeMap ARC-t DAMA HFA SHFR SHFA

HeMap [74] – 0-5-0 0-5-0 0-5-0 0-0-0 0-3-0

ARC-t [6] 5-0-0 – 4-2-0 1-7-0 0-3-0 0-3-0

DAMA [4] 5-0-0 2-4-0 – 0-8-0 0-3-0 0-3-0

HFA [5] 5-0-0 7-1-0 8-0-0 – 0-3-0 0-3-0

SHFR [10] 0-0-0 3-0-0 3-0-0 3-0-0 – 0-0-0

SHFA [76] 3-0-0 3-0-0 3-0-0 3-0-0 0-0-0 –

The numbers (x-y-z) in the table indicate the far left column method outperforms the top row
method x times, underperforms y times, and has similar performance z times
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without context feature bias. Many of the surveyed heterogeneous transfer learning
solutions only address the issue of the input feature space being different between
the source and target domains and do not address other domain adaptation steps
needed for marginal and/or conditional distribution differences. If further domain
adaptation needs to be performed after the input feature spaces are aligned, then an
appropriate homogeneous solution should be used. To further help determine which
solution is best for a given transfer learning application, the information in
Table 3.4 should be used to match the characteristics of the solution to that of the
desired application environment. None of the surveyed heterogeneous transfer
learning solutions have a means to guard against negative transfer effects. However,
the paper by Yang et al. [96] demonstrates that negative transfer guards can benefit
heterogeneous transfer learning solutions. It seems likely that future heterogeneous
transfer learning works will integrate means for negative transfer protection. Many
of the same heterogeneous transfer learning solutions are tested in the surveyed
solution experiments. These head-to-head comparisons are summarized in
Table 3.3 and can be used as a starting point to understand the relative performance
between the solutions. As observed as a trend in the previous homogeneous

Table 3.4 Heterogeneous transfer learning approaches surveyed in Sect. 4 listing various
characteristics of each approach

Approach Transfer
category

Source
data

Target
data

Multiple
sources

Generic
solution

Negative
transfer

CLSCL [11] Symmetric
feature

Labeled Unlabeled

HeMap [74] Symmetric
feature

Labeled Limited
labels

✔

DAMA [4] Symmetric
feature

Labeled Limited
labels

✔ ✔

HTLIC [7] Symmetric
feature

Unlabeled Abundant
labels

TTI [75] Symmetric
feature

Labeled Limited
labels

HFA [5] Symmetric
feature

Labeled Limited
labels

✔

SHFA [76] Symmetric
feature

Labeled Limited
labels

✔

ARC-t [6] Asymmetric
feature

Labeled Limited
labels

✔

MOMAP [8] Asymmetric
feature

Labeled Limited
labels

✔

SHFR [10] Asymmetric
feature

Labeled Limited
labels

✔

HDP [9] Asymmetric
feature

Labeled Unlabeled ✔

HHTL [12] Asymmetric
feature

Labeled Unlabeled ✔
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solutions, the recent heterogeneous solution by Duan et al. [5] employs a one-stage
solution that simultaneously performs the feature input space alignment process
while learning the final classifier. As is the case for the surveyed homogeneous
transfer learning works, the surveyed heterogeneous transfer learning works are not
specifically applied to big data solutions; however, there is nothing to preclude their
use in a big data environment.

Negative Transfer

The high-level concept of transfer learning is to improve a target learner by using
data from a related source domain. But what happens if the source domain is not
well-related to the target? In this case, the target learner can be negatively impacted
by this weak relation, which is referred to as negative transfer. In a big data
environment, there may be a large dataset where only a portion of the data is related
to a target domain of interest. For this case, there is a need to divide the dataset into
multiple sources and employ negative transfer methods when using transfer
learning algorithm. In the scenario where multiple datasets are available that ini-
tially appear to be related to the target domain of interest, it is desired to select the
datasets that provide the best information transfer and avoid the datasets that cause
negative transfer. This allows for the best use of the available large datasets. How
related do the source and target domains need to be for transfer learning to be
advantageous? The area of negative transfer has not been widely researched, but the
following papers begin to address this issue.

An early paper by Rosenstein et al. [98] discusses the concept of negative
transfer in transfer learning and claims that the source domain needs to be suffi-
ciently related to the target domain; otherwise, the attempt to transfer knowledge
from the source can have a negative impact on the target learner. Cases of negative
transfer are demonstrated by Rosenstein et al. [98] in experiments using a hierar-
chical Naive Bayes classifier. The author also demonstrates the chance of negative
transfer goes down as the number of labeled target training samples goes up.

The paper by Eaton et al. [99] proposes to build a target learner based on a
transferability measure from multiple related source domains. The approach first
builds a Logistic Regression learner for each source domain. Next, a model transfer
graph is constructed to represent the transferability between each source learner. In
this case, transferability from a first learner to a second learner is defined as the
performance of the second learner with learning from the first learner minus the
performance of the second learner without learning from the first learner. Next, the
model transfer graph is modified by adding the transferability measures between the
target learner and all the source learners. Using spectral graph theory [55] on the
model transfer graph, a transfer function is derived that maintains the geometry of
the model transfer graph and is used in the final target learner to determine the level
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of transfer from each source. Experiments are performed in the applications of
document classification and alphabet classification. Source domains are identified
that are either related or unrelated to the target domain. The method by Eaton et al.
[99] is tested along with a handpicked method where the source domains are
manually selected to be related to the target, an average method that uses all sources
available, and a baseline method that does not use transfer learning. Classification
accuracy is the performance metric measured in the experiments. The source and
target domains are represented by a homogeneous feature input space. The results
of the experiments are mixed. Overall, the Eaton et al. [99] approach performs the
best; however, there are certain instances where Eaton et al. [99] performed worse
than the handpicked, average, and baseline methods. In the implementation of the
algorithm, the transferability measure between two sources is required to be the
same; however, the transferability from source 1 to source 2 is not always equal to
the transferability from source 2 to source 1. A suggestion for future improvement
is to use directed graphs to specify the bidirectional nature of the transferability
measure between two sources.

The paper by Ge et al. [100] claims that knowledge transfer can be inhibited due
to the existence of unrelated or irrelevant source domains. Further, current transfer
learning solutions are focused on transferring knowledge from source domains to a
target domain, but are not concerned about different source domains that could
potentially be irrelevant and cause negative transfer. In the model presented by Ge
et al. [100], there is a single target domain with limited labeled data and multiple
labeled source domains for knowledge transfer. To reduce negative transfer effects
from unrelated source domains, each source is assigned a weight (called the
Supervised Local Weight) corresponding to how related the source is with the target
(the higher the weight the more it is related). The Supervised Local Weight is found
by first using a spectral clustering algorithm [55] on the unlabeled target infor-
mation and propagating labels to the clusters from the labeled target information.
Next, each source is separately clustered and labels assigned to the clusters from the
labeled source. The Supervised Local Weight of each source cluster is computed by
comparing the source and target clusters. This solution further addresses the issue of
imbalanced class distribution in source domains by preventing a high-weight class
assignment in the case of high-accuracy predictions in a minority target class. The
final target learner uses the Supervised Local Weights to attenuate the effects of
negative transfer. Experiments are performed in three application areas including
Cardiac Arrhythmia Detection, Spam Email Filtering, and Intrusion Detection. Area
under the curve is measured as the performance metric. The source and target
domains are represented by a homogeneous feature input space. The method pre-
sented in this paper is compared against methods by Luo et al. [101], by Gao et al.
[102], by Chattopadhyay et al. [15], and by Gao et al. [23]. The Luo et al. [101] and
Gao et al. [102] methods are the worst performing, most likely due to the fact that
these solutions do not attempt to combat negative transfer effects. The
Chattopadhyay et al. [15] and Gao et al. [23] methods are the next best performing,
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which have means in place to reduce the effects of negative transfer from the source
domains. The Chattopadhyay et al. [15] and Gao et al. [23] methods do address the
negative transfer problem but do not address the imbalanced distribution issue. The
Ge et al. [100] method does exhibit the best overall performance due to the handling
of negative transfer and imbalanced class distribution.

The paper by Seah et al. [103] claims the root cause of negative transfer is
mainly due to conditional distribution differences between source domains
(PS1 (y|x) 6¼ PS2 (y|x)) and a difference in class distribution (class imbalance)
between the source and target (PS(y) 6¼ PT(y)). Because the target domain usually
contains a small number of labeled instances, it is difficult to find the true class
distribution of the target domain. A Predictive Distribution Matching
(PDM) framework is proposed to align the conditional distributions of the source
domains and target domain in an attempt to minimize negative transfer effects.
A positive transferability measure is defined that measures the transferability of
instance pairs with the same label from the source and target domains. The first step
in the PDM framework is to assign pseudo labels to the unlabeled target data. This
is accomplished by an iterative process that forces source and target instances which
are similar (as defined by the positive transferability measure) to have the same
label. Next, irrelevant source data are removed by identifying data that does not
align with the conditional distribution of the pseudo labeled target data for each
class. Both Logistic Regression and SVM classifiers are implemented using the
PDM framework. Experiments are performed on document classification using the
PDM method described in this paper, the approach from Daumé [14], the approach
from Huang et al. [20], and the approach from Bruzzone and Marconcini [67].
Classification accuracy is measured as the performance metric. The source and
target domains are represented by a homogeneous feature input space. The PDM
approach demonstrates better performance as compared to the other approaches
tested as these solutions do not attempt to account for negative transfer effects.

A select number of previously surveyed papers contain solutions addressing
negative transfer. The paper by Yang et al. [96] addresses the negative transfer
issue, which is presented in the Heterogeneous Transfer Learning section. The
homogeneous solution by Gong et al. [16] defines an ROD value that measures the
relatedness between a source and target domain. The work presented in
Chattopadhyay et al. [15] is a multiple source transfer learning approach that cal-
culates the source weights as a function of conditional probability differences
between the source and target domains attempting to give the most related sources
the highest weights. Duan et al. [37] proposes a transfer learning approach that only
uses source domains that are deemed relevant and test data demonstrates better
performance compared to methods with no negative transfer protection.

The previous papers attempt to measure how related source data is to the target
data in a transfer learning environment and then selectively transfer the information
that is highly related. The experiments in the above papers demonstrate that
accounting for negative transfer effects from source domain data can improve target
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learner performance. However, most transfer learning solutions do not attempt to
account for negative transfer effects. Robust negative transfer measurements are
difficult to define. Since the target domain typically has limited labeled data, it is
inherently difficult to find a true measure of the relatedness between the source and
target domains. Further, by selectively transferring information that seems related to
the limited labeled target domain, a risk of overfitting in the target learner is a
concern. The topic of negative transfer is a fertile area for further research.

Transfer Learning Applications

The surveyed works in this paper demonstrate that transfer learning has been
applied to many real-world applications. There are a number of application
examples pertaining to natural language processing, more specifically in the areas
of sentiment classification, text classification, spam email detection, and multiple
language text classification. Other well-represented transfer learning applications
include image classification and video concept classification. Applications that are
more selectively addressed in the previous papers include WiFi localization clas-
sification, muscle fatigue classification, drug efficacy classification, human activity
classification, software defect classification, and cardiac arrhythmia classification.

The majority of the solutions surveyed are generic, meaning the solution can be
easily applied to applications other than the ones implemented and tested in the
papers. The application-specific solutions tend to be related to the field of natural
language processing and image processing. In the literature, there are a number of
transfer learning solutions that are specific to the application of recommendation
systems. Recommendation systems provide users with recommendations or ratings
for a particular domain (e.g. movies, books, etc.), which are based on historical
information. However, when the system does not have sufficient historical infor-
mation (referred to as the data sparsity issue presented in [104], then the recom-
mendations are not reliable. In the cases where the system does not have sufficient
domain data to make reliable predictions (for example when a movie is just
released), there is a need to use previously collected information from a different
domain (using books for example). The aforementioned problem has been directly
addressed using transfer learning methodologies and captured in papers by Moreno
et al. [104], Cao et al. [105], Li et al. [106, 107], Pan et al. [108, 110], Zhang et al.
[109], Roy et al. [111], Jiang et al. [112], and Zhao et al. [113].

Transfer learning solutions continue to be applied to a diverse number of
real-world applications, and in some cases the applications are quite obscure. The
application of head pose classification finds a learner trained with previously cap-
tured labeled head positions to predict a new head position. Head pose classification
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is used for determining the attentiveness of drivers, analyzing social behavior, and
human interaction with robots. Head positions captured in source training data will
have different head tilt ranges and angles than that of the predicted target. The paper
by Rajagopal et al. [114] addresses the head pose classification issues using transfer
learning solutions.

Other transfer learning applications include the paper by Ma et al. [115] that uses
transfer learning for atmospheric dust aerosol particle classification to enhance
global climate models. Here the TrAdaBoost algorithm proposed by Dai et al. [69]
is used in conjunction with an SVM classifier to improve on classification results.
Being able to identify areas of low income in developing countries is important for
disaster relief efforts, food security, and achieving sustainable growth. To better
predict poverty mapping, Xie et al. [116] proposes an approach similar to Oquab
et al. [35] that uses a convolution neural network model. The first prediction model
is trained to predict night time light intensity from source image data. The final
target prediction model predicts the poverty mapping from source night time light
intensity data. In the paper by Ogoe et al. [117], transfer learning in used to enhance
disease prediction. In this solution, a rule-based learning approach is formulated to
use abstract source domain data to perform modeling of multiple types of gene
expression data. Online display web advertising is a growing industry where
transfer learning is used to optimally predict targeted ads. In the paper by Perlich
et al. [118], a transfer learning approach is employed that uses the weighted outputs
of multiple source classifiers to enhance a target classifier trained to predict targeted
online display advertising results. The paper by Kan et al. [119] addresses the field
of facial recognition and is able to use face image information from one ethnic
group to improve the learning of a classifier for a different ethnic group. The paper
by Farhadi et al. [120] is focused on the application of sign language recognition
where the model is able to learn from different people signing at various angles.
Transfer learning is applied to the field of biology in the paper by Widmer and
Ratsch [121]. Specifically, a multi-task learning approach is used in the prediction
of splice sites in genome biology. Predicting if patients will contract a particular
bacteria when admitted to a hospital is addressed in the paper by Wiens et al. [122].
Information taken from different hospitals is used to predict the infection rate for a
different hospital. In the paper by Romera-Paredes et al. [123], a multi-task transfer
learning approach is used to predict pain levels from an individual’s facial
expression by using labeled source facial images from other individuals. The paper
by Deng et al. [124] applies transfer learning to the application of speech emotion
recognition where information is transferred from multiple labeled speech sources.
The application of wine quality classification is implemented in Zhang and Yeung
[125] using a multi-task transfer learning approach. As a reference, the survey paper
by Cook et al. [18] covers transfer learning for the application of activity recog-
nition and the survey papers by Patel et al. [126] and Shao et al. [127] address
transfer learning in the domain of image recognition.
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Conclusion and Discussion

The subject of transfer learning is a well-researched area as evidenced with more
than 700 academic papers addressing the topic in the last five years. This survey
paper presents solutions from the literature representing current trends in transfer
learning. Homogeneous transfer learning papers are surveyed that demonstrate
instance-based, feature-based, parameter-based, and relational-based information
transfer techniques. Solutions having various requirements for labeled and unla-
beled data are also presented as a key attribute. The relatively new area of
heterogeneous transfer learning is surveyed showing the two dominant approaches
for domain adaptation being asymmetric and symmetric transformations. Many
real-world applications that transfer learning is applied to are listed and discussed in
this survey paper. In some cases, the proposed transfer learning solutions are very
specific to the underlying application and cannot be generically used for other
applications. A list of software downloads implementing a portion of the solutions
surveyed is presented in the appendix of this paper. A great benefit to researchers is
to have software available from previous solutions so experiments can be per-
formed more efficiently and more reliably. A single open-source software repository
for published transfer learning solutions would be a great asset to the research
community.

In many transfer learning solutions, the domain adaptation process performed is
focused either on correcting the marginal distribution differences or the conditional
distribution differences between the source and target domains. Correcting the
conditional distribution differences is a challenging problem due to the lack of
labeled target data. To address the lack of labeled target data, some solutions
estimate the labels for the target data (called pseudo labels), which are then used to
correct the conditional distribution differences. This method is problematic because
the conditional distribution corrections are being made with the aid of pseudo
labels. Improved methods for correcting the conditional distribution differences is a
potential area of future research. A number of more recent works attempt to correct
both the marginal distribution differences and the conditional distribution differ-
ences during the domain adaptation process. An area of future work is to quantify
the advantage of correcting both distributions and in what scenarios it is most
effective. Further, Long et al. [30] states that the simultaneous solving of marginal
and conditional distribution differences is preferred over serial alignment as it
reduces the risk of overfitting. Another area of future work is to quantify any
performance gains for simultaneously solving both distribution differences. In
addition to solving for distribution differences in the domain adaptation process,
exploring possible data preprocessing steps using heuristic knowledge of the
domain features can be used as a method to improve the target learner performance.
The heuristic knowledge would represent a set of complex rules or relations that
standard transfer learning techniques cannot account for. In most cases, this
heuristic knowledge would be specific to each domain, which would not lead to a

90 3 Transfer Learning Techniques



generic solution. However, if such a preprocessing step leads to improved target
learner performance, it is likely worth the effort.

A trend observed in the formulation of transfer learning solutions is in the
implementation of a one-stage process as opposed to a two-stage process.
A two-stage solution first performs the domain adaptation process and then inde-
pendently learns the final classifier. A one-stage process simultaneously performs
the domain adaptation process while learning the final classifier. Recent solutions
employing a one-stage solution include Long et al. [30], Duan et al. [28], Shi and
Sha [34], Xia et al. [39], and Duan et al. [5]. With respect to the one-stage solution,
Long et al. [30] claims the simultaneous solving of domain adaptation and the
classifier establishes mutual reinforcement for enhanced performance. An area of
future work is to better quantify the effects of a one-stage approach over a two-stage
approach.

This paper surveys a number of works addressing the topic of negative transfer.
The subject of negative transfer is still a lightly researched area. The expanded
integration of negative transfer techniques into transfer learning solutions is a
natural extension for future research. Solutions supporting multiple source domains
enabling the splitting of larger source domains into smaller domains to more easily
discriminate against unrelated source data are a logical area for continued research.
Additionally, optimal transfer is another fertile area for future research. Negative
transfer is defined as a source domain having a negative impact on a target learner.
The concept of optimal transfer is when select information from a source domain is
transferred to achieve the highest possible performance in a target learner. There is
overlap between the concepts of negative transfer and optimal transfer; however,
optimal transfer attempts to find the best performing target learner, which goes well
beyond the negative transfer concept.

With the recent proliferation of sensors being deployed in cell phones, vehicles,
buildings, roadways, and computers, larger and more diverse information is being
collected. The diversity in data collection makes heterogeneous transfer learning
solutions more important moving forward. Larger data collection sizes highlight the
potential for big data solutions being deployed concurrent with current transfer
learning solutions. How the diversity and large size of sensor data integrates into
transfer learning solutions is an interesting topic of future research. Another area of
future work pertains to the scenario where the output label space is different
between domains. With new data sets being captured and being made available, this
topic could be a needed area of focus for the future. Lastly, the literature has very
few transfer learning solutions addressing the scenario of unlabeled source and
unlabeled target data, which is certainly an area for expanded research.
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Appendix

The majority of transfer learning solutions surveyed are complex and implemented
with non-trivial software. It is a great advantage for a researcher to have access to
software implementations of transfer learning solutions so comparisons with
competing solutions are facilitated more quickly and fairly. Table 3.5 provides a list
of available software downloads for a number of the solutions surveyed in this
paper. Table 3.6 provides a resource for useful links that point to transfer learning
tutorials and other interesting articles on the topic of transfer learning.

Table 3.5 Software downloads for various transfer learning solutions

Approach Location

Prettenhofer and Stein
[11]

https://github.com/pprett/bolt [128]

Zhu et al. [7] http://www.cse.ust.hk/*yinz/ [129]

Dai et al. [69] https://github.com/BoChen90/machine-learning-matlab/blob/master/
TrAdaBoost.m [130]

Daumé [14] http://hal3.name/easyadapt.pl.gz [131]

Duan et al. [5] https://sites.google.com/site/xyzliwen/publications/HFA_release_
0315.rar [132]

Kulis et al. [6] http://vision.cs.uml.edu/adaptation.html [133]

Qi et al. [75] http://www.eecs.ucf.edu/*gqi/publications.html [134]

Li et al. [76] http://www.lxduan.info/#sourcecode_hfa [135]

Gong [16] http://www-scf.usc.edu/*boqinggo/ [136]

Long et al. [30] http://ise.thss.tsinghua.edu.cn/*mlong/ [137]

Oquab et al. [35] http://leon.bottou.org/papers/oquab-2014 [138]

Long et al. [29] http://ise.thss.tsinghua.edu.cn/*mlong/ [137]

Other transfer
learning code

http://www.cse.ust.hk/TL/ [139]

Table 3.6 Useful links for transfer learning information

Item Location

Slides for Nam and
Kim [9]

http://www.slideshare.net/hunkim/heterogeneous-defect-prediction-
esecfse-2015 [140]

Code for SVMLIB http://www.csie.ntu.edu.tw/*cjlin/libsvm [141]

Slide for Kulis et al. [6] https://www.eecs.berkeley.edu/*jhoffman/domainadapt/ [142]

Tutorial on transfer
learning

http://tommasit.wix.com/datl14tutorial [143]

Tutorial on transfer
learning

http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/survey/da_survey.
html [144]

Overview of Duan
et al. [37]

http://lxduan.info/papers/DuanCVPR2012_poster.pdf [145]
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