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Preface

The scope of this book includes leading edge in big data systems, architectures, and
applications. Big data computing refers to capturing, managing, analyzing, and
understanding the data at volumes and rates that push the frontiers of current
technologies. The challenge of big data computing is to provide the hardware
architectures and related software systems and techniques which are capable of
transforming ultra large data into valuable knowledge. Big data and data-intensive
computing demand a fundamentally different set of principles than mainstream
computing. Big data applications typically are well suited for large-scale parallelism
over the data and also require extremely high degree of fault tolerance, reliability,
and availability. In addition, most big data applications require relatively fast
response. The objective of this book is to introduce the basic concepts of big data
computing and then to describe the total solution to big data problems developed by
LexisNexis Risk Solutions.

This book comprises of three parts, which consists of 15 chapters. Part I on Big
Data Technologies includes the chapters dealing with introduction to big data
concepts and techniques, big data analytics and relating platforms, and visualization
techniques and deep learning techniques for big data. Part II on LexisNexis Risk
Solution to Big Data focuses on specific technologies and techniques developed at
LexisNexis to solve critical problems that use big data analytics. It covers the open
source high performance computing cluster (HPCC Systems®) platform and its
architecture, as well as, parallel data languages ECL and KEL, developed to
effectively solve big data problems. Part III on Big Data Applications describes
various data-intensive applications solved on HPCC Systems. It includes applica-
tions such as cyber security, social network analytics, including insurance fraud,
fraud in prescription drugs, and fraud in Medicaid, and others. Other HPCC
Systems applications described include Ebola spread modeling using big data
analytics and unsupervised learning and image classification.

With the dramatic growth of data-intensive computing and systems and big data
analytics, this book can be the definitive resource for persons working in this field
as researchers, scientists, programmers, engineers, and users. This book is intended
for a wide variety of people including academicians, designers, developers,
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educators, engineers, practitioners, and researchers and graduate students. This
book can also be beneficial for business managers, entrepreneurs, and investors.

The main features of this book can be summarized as follows:

1. This book describes and evaluates the current state of the art in the field of big
data and data-intensive computing.

2. This book focuses on LexisNexis’ platform and its solutions to big data.
3. This book describes the real-life solutions to big data analytics.

Boca Raton, FL, USA Borko Furht
Alpharetta, GA, USA Flavio Villanustre
2016
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Chapter 1
Introduction to Big Data

Borko Furht and Flavio Villanustre

Concept of Big Data

In this chapter we present the basic terms and concepts in Big Data computing. Big
data is a large and complex collection of data sets, which is difficult to process using
on-hand database management tools and traditional data processing applications.
Big Data topics include the following activities:

• Capture
• Storage
• Search
• Sharing
• Transfer
• Analysis
• Visualization

Big Data can be also defined using three Vs: Volume, Velocity, and Variety.
Volume refers to size of the data from Terabytes (TB) to Petabytes (PB), and

related big data structures including records, transactions, files, and tables. Data
volumes are expected to grow 50 times by 2020.

Velocity refers to ways of transferring big data including batch, near time, real
time, and streams. Velocity also includes time and latency characteristics of data
handling. The data can be analyzed, processed, stored, and managed in a fast rate,
or with a lag time between events.

Variety of big data refers to different formats of data including structured,
unstructured, semi-structured data, and the combination of these. The data format
can be in the forms of documents, emails, text messages, audio, images, video,
graphics data, and others.

In addition to these three main characteristics of big data, there are two addi-
tional features: Value, and Veracity [1]. Value refers to benefits/value obtained by
the user from the big data. Veracity refers to the quality of big data.

© Springer International Publishing Switzerland 2016
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Sources of big data can be classified to: (1) various transactions, (2) enterprise
data, (3) public data, (4) social media, and (5) sensor data. Table 1.1 illustrates the
difference between traditional data and big data.

Big Data Workflow

Big data workflow consists of the following steps, as illustrated in Fig. 1.1.
These steps are defined as:

Collection—Structured, unstructured and semi-structured data from multiple
sources
Ingestion—loading vast amounts of data onto a single data store
Discovery and Cleansing—understanding format and content; clean up and
formatting
Integration—linking, entity extraction, entity resolution, indexing and data fusion
Analysis—Intelligence, statistics, predictive and text analytics, machine learning
Delivery—querying, visualization, real time delivery on enterprise-class
availability

Table 1.1 Comparison between traditional and big data (adopted from [2])

Traditional data Big data

Volume In GBs TBs and PBs

Data generation rate Per hour; per day More rapid

Data structure Structured Semi-structured or Unstructured

Data source Centralized Fully distributed

Data integration Easy Difficult

Data store RDBMS HDFS, NoSQL

Data access Interactive Batch or near real-time

Fig. 1.1 Big data workflow
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Big Data Technologies

Big Data technologies is a new generation of technologies and architectures
designed to economically extract value from very large volumes of a wide variety
of data by enabling high-velocity capture, discovery, and analysis. Big Data
technologies include:

• Massively Parallel Processing (MPP)
• Data mining tools and techniques
• Distributed file systems and databases
• Cloud computing platforms
• Scalable storage systems

Big Data Layered Architecture

As proposed in [2], the big data system can be represented using a layered archi-
tecture, as shown in Fig. 1.2. The big data layered architecture consists of three
levels: (1) infrastructure layer, (2) computing layer, and (3) application layer.

The infrastructure layer consists of a pool of computing and storage resources
including cloud computer infrastructure. They must meet the big data demand in
terms of maximizing system utilization and storage requirements.

The computing layer is a middleware layer and includes various big data tools
for data integration, data management, and the programming model.

The application layer provides interfaces by the programming models to
implement various data analysis functions including statistical analyses, clustering,
classification, data mining, and others and build various big data applications.

Fig. 1.2 Layered architecture
of big data (adopted from [2]
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Big Data Software

Hadoop (Apache Foundation)

Hadoop is open source software framework for storage and large scale data pro-
cessing on clusters computers. It is used for processing, storing and analyzing large
amount of distributed unstructured data Hadoop consists of two components:
HDFS, distributive file system, and Map Reduce, which is programming frame-
work. In Map Reduce programming component large task is divided into two
phases: Map and Reduce, as shown in Fig. 1.3. The Map phase divides the large
task into smaller pieces and dispatches each small piece onto one active node in the
cluster. The Reduce phase collects the results from the Map phase and processes the
results to get the final result. More details can be found in [3].

Splunk

Captures, indexes and correlates real-time data in a searchable repository from
which it can generate graphs, reports, alerts, dashboards and visualizations.

LexisNexis’ High-Performance Computer Cluster (HPCC)

HPCC system and software are developed by LexisNexis Risk Solutions.
A software architecture, shown in Fig. 1.4, implemented on computing clusters

Map Map Map Map

Storage

Synchronization: Aggregate intermediate results

Reduce Reduce Reduce

Final Results

Fig. 1.3 MapReduce framework
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provides data parallel processing for applications with Big Data. Includes a
data-centric programming language for parallel data processing—ECL. The part II
of the book is focused on details of the HPCC system and Part III describes various
HPCC applications.

Big Data Analytics Techniques

We classify big data analytics in the following five categories [4]:

• Text analytics
• Audio analytics
• Video analytics
• Social media analytics
• Predictive analytics.

Text analytics or text mining refers to the process of analyzing unstructured
text to extract relevant information. Text analytics techniques use statistical anal-
ysis, computational linguistics, and machine learning. Typical applications include
extracting textual information from social network feeds, emails, blogs, online
forums, survey responses, and news.

Audio analytics or speech analytic techniques are used to analyze and extract
information from unstructured audio data. Typical applications of audio analytics
are customer call centers and healthcare companies.

Video analytics or video content analysis deals with analyzing and extracting
meaningful information from video streams. Video analytics can be used in various
video surveillance applications.

Social media analytics includes the analysis of structured and unstructured data
from various social media sources including Facebook, Linkedin, Twitter,
YouTube, Instagram, Wikipedia, and others.

Fig. 1.4 The architecture of the HPCC system
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Predictive analytics includes techniques for predicting future outcomes based
on past and current data. The popular predictive analytic techniques include NNs,
SVMs, decision trees, linear and logistic regression, association rules, and
scorecards.

More details about big data analytics techniques can be found in [2, 4] as well as
in the chapter in this book on “Big Data Analytics.”

Clustering Algorithms for Big Data

Clustering algorithms are developed to analyze large volume of data with the main
objective to categorize data into clusters based on the specific metrics. An excellent
survey of clustering algorithms for big data is presented in [5]. The authors pro-
posed the categorization of the clustering algorithms into the following five
categories:

• Partitioning-based algorithms
• Hierarchical-based algorithms
• Density-based algorithms
• Grid-based algorithms, and
• Model-based clustering algorithms.

The clustering algorithms were evaluated for big data applications with respect
to three Vs defied earlier and the results of evaluation are given in [5] and the
authors proposed the candidate clustering algorithms for big data that meet the
criteria relating to three V.

In the case of clustering algorithms, Volume refers to the ability of a clustering
algorithm to deal with a large amount of data. Variety refers to the ability of a
clustering algorithm to handle different types of data, and Velocity refers to the
speed of a clustering algorithm on big data. In [5] the authors selected the following
five clustering algorithms as the most appropriate for big data:

• Fuzzy-CMeans (FCM) clustering algorithm
• The BIRCH clustering algorithm
• The DENCLUE clustering algorithm
• Optimal Grid (OPTIGRID) clustering algorithm, and
• Expectation-Maximization (EM) clustering algorithm.

Authors also performed experimental evaluation of these algorithms on real data
[5].
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Big Data Growth

Figure 1.5 shows the forecast in big data growth by Reuter (2012) that today there
are less than 10 zettabytes of data. They estimate that by 2020 there will be more
than 30 Zettabyte of data, with the big data market growth of 45 % annually.

Big Data Industries

Media and entertainment applications include digital recording, production, and
media delivery. Also, it includes collection of large amounts of rich content and
user viewing behaviors.

Healthcare applications include electronic medical records and images, public
health monitoring programs, and long-term epidemiological research programs.

Life science applications include low-cost gene sequencing that generates tens of
terabytes of information that must be analyzed for genetic variations.

Video surveillance applications include big data analysis received from cameras
and recording systems.

Applications in transportation, logistics, retails, utilities and telecommunications
include sensor data generated from GPS transceivers, RFID tag readers, smart

Fig. 1.5 Big data growth (Source Reuter 2012)
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meters, and cell phones. Data is analyzed and used to optimize operations and drive
operational business intelligence.

Challenges and Opportunities with Big Data

In 2012, a group of prominent researchers from leading US universities including
UC Santa Barbara, UC Berkeley, MIT, Cornell University, University of Michigan,
Columbia University, Stanford University and a few others, as well as researchers
from leading companies including Microsoft, HP, Google, IBM, and Yahoo!,
created a white paper on this topic [6]. Here we present some conclusions from this
paper.

One of the conclusions is that Big Data has the potential to revolutionize
research; however it has also potential to revolutionize education. The prediction is
that big database of every student’s academic performance can be created and this
data can be then used to design the most effective approaches to education, starting
from reading, writing, and math, to advanced college-level courses [6].

The analysis of big data consists of various phases as shown in Fig. 1.6, and
each phase introduces challenges, which are discussed in detail in [6]. Here we
summarize the main challenges.

In the Data Acquisition and Recording phase the main challenge is to select data
filters, which will extract the useful data. Another challenge is to automatically
generate the right metadata to describe what data is recorded and measured.

In the Information Extraction and Clustering phase the main challenge is to
convert the original data in a structured form, which is suitable for analysis.

Fig. 1.6 The big data analysis pipeline [6]
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Methods for querying and mining Big Data are fundamentally different from
traditional statistical analysis on small data samples. The characteristics of Big Data
is that it is often noisy, dynamic, heterogeneous, inter-related, and untrustworthy.
These is another challenge.

The interpretation of the obtained results from big data analysis is another
challenge. Usually, the interpretation involves examining all the assumptions made
and retracting the analysis.
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Introduction

As the information technology spreads fast, most of the data were born digital as
well as exchanged on internet today. According to the estimation of Lyman and
Varian [1], the new data stored in digital media devices have already been more
than 92 % in 2002, while the size of these new data was also more than five
exabytes. In fact, the problems of analyzing the large scale data were not suddenly
occurred but have been there for several years because the creation of data is
usually much easier than finding useful things from the data. Even though computer
systems today are much faster than those in the 1930s, the large scale data is a strain
to analyze by the computers we have today.

In response to the problems of analyzing large-scale data, quite a few efficient
methods [2], such as sampling, data condensation, density-based approaches,
grid-based approaches, divide and conquer, incremental learning, and distributed
computing, have been presented. Of course, these methods are constantly used to
improve the performance of the operators of data analytics process.1 The results of
these methods illustrate that with the efficient methods at hand, we may be able to
analyze the large-scale data in a reasonable time. The dimensional reduction
method (e.g., principal components analysis; PCA [3]) is a typical example that is
aimed at reducing the input data volume to accelerate the process of data analytics.
Another reduction method that reduces the data computations of data clustering is
sampling [4], which can also be used to speed up the computation time of data
analytics.

Although the advances of computer systems and internet technologies have
witnessed the development of computing hardware following the Moore’s law for
several decades, the problems of handling the large-scale data still exist when we
are entering the age of big data. That is why Fisher et al. [5] pointed out that big
data means that the data is unable to be handled and processed by most current
information systems or methods because data in the big data era will not only
become too big to be loaded into a single machine, it also implies that most
traditional data mining methods or data analytics developed for a centralized data
analysis process may not be able to be applied directly to big data. In addition to the
issues of data size, Laney [6] presented a well-known definition (also called 3Vs) to
explain what is the “big” data: volume, velocity, and variety. The definition of 3Vs
implies that the data size is large, the data will be created rapidly, and the data will
be existed in multiple types and captured from different sources, respectively. Later
studies [7, 8] pointed out that the definition of 3Vs is insufficient to explain the big
data we face now. Thus, veracity, validity, value, variability, venue, vocabulary,
and vagueness were added to make some complement explanation of big data [8].

1In this chapter, by the data analytics, we mean the whole KDD process, while by the data
analysis, we mean the part of data analytics that is aimed at finding the hidden information in the
data, such as data mining.
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The report of IDC [9] indicates that the marketing of big data is about $16.1
billion in 2014. Another report of IDC [10] forecasts that it will grow up to $32.4
billion by 2017. The reports of [11] and [12] further pointed out that the marketing
of big data will be $46.34 billion and $114 billion by 2018, respectively. As shown
in Fig. 2.1, even though the marketing values of big data in these researches and
technology reports [9–15] are different, these forecasts usually indicate that the
scope of big data will be grown rapidly in the forthcoming future.

In addition to marketing, from the results of disease control and prevention [16],
business intelligence [17], and smart city [18], we can easily understand that big
data is of vital importance everywhere. A numerous researches are therefore
focusing on developing effective technologies to analyze the big data. To discuss in
deep the big data analytics, this paper gives not only a systematic description of
traditional large-scale data analytics but also a detailed discussion about the dif-
ferences between data and big data analytics framework for the data scientists or
researchers to focus on the big data analytics.

Moreover, although several data analytics and frameworks have been presented
in recent years, with their pros and cons being discussed in different studies, a
complete discussion from the perspective of data mining and knowledge discovery
in databases still is needed. As a result, this paper is aimed at providing a brief
review for the researchers on the data mining and distributed computing domains to
have a basic idea to use or develop data analytics for big data.

Figure 2.2 shows the roadmap of this paper, and the remainder of the paper is
organized as follows. “Data analytics” begins with a brief introduction to the data
analytics, and then “Big data analytics” will turn to the discussion of big data
analytics as well as stateof-the-art data analytics algorithms and frameworks. The
open issues are discussed in “The open issues” while the conclusions and future
trends are drawn in “Conclusions”.

Fig. 2.1 Expected trend of
the marketing of big data
between 2012 and 2018. Note
that yellow, red, and blue of
different colored box
represent the order of
appearance of reference in
this paper for particular year
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Data Analytics

To make the whole process of knowledge discovery in databases (KDD) more
clear, Fayyad and his colleagues summarized the KDD process by a few operations
in [19], which are selection, preprocessing, transformation, data mining, and
interpretation/evaluation. As shown in Fig. 2.3, with these operators at hand we will
be able to build a complete data analytics system to gather data first and then find
information from the data and display the knowledge to the user. According to our
observation, the number of research articles and technical reports that focus on data
mining is typically more than the number focusing on other operators, but it does
not mean that the other operators of KDD are unimportant. The other operators also
play the vital roles in KDD process because they will strongly impact the final result
of KDD. To make the discussions on the main operators of KDD process more
concise, the following sections will focus on those depicted in Fig. 2.3, which were
simplified to three parts (input, data analytics, and output) and seven operators
(gathering, selection, preprocessing, transformation, data mining, evaluation, and
interpretation).

Fig. 2.2 Roadmap of this paper

Fig. 2.3 The process of
knowledge discovery in
databases
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Data Input

As shown in Fig. 2.3, the gathering, selection, preprocessing, and transformation
operators are in the input part. The selection operator usually plays the role of
knowing which kind of data was required for data analysis and select the relevant
information from the gathered data or databases; thus, these gathered data from
different data resources will need to be integrated to the target data. The prepro-
cessing operator plays a different role in dealing with the input data which is aimed
at detecting, cleaning, and filtering the unnecessary, inconsistent, and incomplete
data to make them the useful data. After the selection and preprocessing operators,
the characteristics of the secondary data still may be in a number of different data
formats; therefore, the KDD process needs to transform them into a
data-mining-capable format which is performed by the transformation operator. The
methods for reducing the complexity and downsizing the data scale to make the
data useful for data analysis part are usually employed in the transformation, such
as dimensional reduction, sampling, coding, or transformation.

The data extraction, data cleaning, data integration, data transformation, and data
reduction operators can be regarded as the preprocessing processes of data analysis
[20] which attempts to extract useful data from the raw data (also called the primary
data) and refine them so that they can be used by the following data analyses. If the
data are a duplicate copy, incomplete, inconsistent, noisy, or outliers, then these
operators have to clean them up. If the data are too complex or too large to be
handled, these operators will also try to reduce them. If the raw data have errors or
omissions, the roles of these operators are to identify them and make them con-
sistent. It can be expected that these operators may affect the analytics result of
KDD, be it positive or negative. In summary, the systematic solutions are usually to
reduce the complexity of data to accelerate the computation time of KDD and to
improve the accuracy of the analytics result.

Data Analysis

Since the data analysis (as shown in Fig. 2.3) in KDD is responsible for finding the
hidden patterns/rules/information from the data, most researchers in this field use
the term data mining to describe how they refine the “ground” (i.e., raw data) into
“gold nugget” (i.e., information or knowledge). The data mining methods [20] are
not limited to data problem specific methods. In fact, other technologies (e.g.,
statistical or machine learning technologies) have also been used to analyze the data
for many years. In the early stages of data analysis, the statistical methods were
used for analyzing the data to help us understand the situation we are facing, such as
public opinion poll or TV programme rating. Like the statistical analysis, the
problem specific methods for data mining also attempted to understand the meaning
from the collected data.
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After the data mining problem was presented, some of the domain specific
algorithms are also developed. An example is the apriori algorithm [21] which is
one of the useful algorithms designed for the association rules problem. Although
most definitions of data mining problems are simple, the computation costs are
quite high. To speed up the response time of a data mining operator, machine
learning [22], metaheuristic algorithms [23], and distributed computing [24] were
used alone or combined with the traditional data mining algorithms to provide more
efficient ways for solving the data mining problem. One of the well-known com-
binations can be found in [25], Krishna and Murty attempted to combine genetic
algorithm and k-means to get better clustering result than k-means alone does. As
Fig. 2.4 shows, most data mining algorithms contain the initialization, data input
and output, data scan, rules construction, and rules update operators [26]. In
Fig. 2.4, D represents the raw data, d the data from the scan operator, r the rules, o
the predefined measurement, and v the candidate rules. The scan, construct, and
update operators will be performed repeatedly until the termination criterion is met.
The timing to employ the scan operator depends on the design of the data mining
algorithm; thus, it can be considered as an optional operator. Most of the data
algorithms can be described by Fig. 2.4 in which it also shows that the represen-
tative algorithms—clustering, classification, association rules, and sequential pat-
terns—will apply these operators to find the hidden information from the raw data.
Thus, modifying these operators will be one of the possible ways for enhancing the
performance of the data analysis.

Clustering is one of the well-known data mining problems because it can be used
to understand the “new” input data. The basic idea of this problem [27] is to
separate a set of unlabeled input data2 to k different groups, e.g., such as k-means
[28]. Classification [20] is the opposite of clustering because it relies on a set of
labeled input data to construct a set of classifiers (i.e., groups) which will then be
used to classify the unlabeled input data to the groups to which they belong. To
solve the classification problem, the decision tree-based algorithm [29], naïve
Bayesian classification [30], and support vector machine (SVM) [31] are widely
used in recent years.

Fig. 2.4 Data mining
algorithm

2In this chapter, by an unlabeled input data, we mean that it is unknown to which group the input
data belongs. If all the input data are unlabeled, it means that the distribution of the input data is
unknown.
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Unlike clustering and classification that attempt to classify the input data to k
groups, association rules and sequential patterns are focused on finding out the
“relationships” between the input data. The basic idea of association rules [21] is
find all the co-occurrence relationships between the input data. For the association
rules problem, the apriori algorithm [21] is one of the most popular methods.
Nevertheless, because it is computationally very expensive, later studies [32] have
attempted to use different approaches to reducing the cost of the apriori algorithm,
such as applying the genetic algorithm to this problem [33]. In addition to con-
sidering the relationships between the input data, if we also consider the sequence
or time series of the input data, then it will be referred to as the sequential pattern
mining problem [34]. Several apriori-like algorithms were presented for solving it,
such as generalized sequential pattern [34] and sequential pattern discovery using
equivalence classes [35].

Output the Result

Evaluation and interpretation are two vital operators of the output. Evaluation
typically plays the role of measuring the results. It can also be one of the operators
for the data mining algorithm, such as the sum of squared errors which was used by
the selection operator of the genetic algorithm for the clustering problem [25].

To solve the data mining problems that attempt to classify the input data, two of
the major goals are: (1) cohesion—the distance between each data and the centroid
(mean) of its cluster should be as small as possible, and (2) coupling—the distance
between data which belong to different clusters should be as large as possible. In
most studies of data clustering or classification problems, the sum of squared errors
(SSE), which was used to measure the cohesion of the data mining results, can be
defined as

SSE ¼
Xk
i¼1

Xni
j¼1

Dðxij � ciÞ; ð2:1Þ

ci ¼
1
ni

Xni
j¼1

xij; ð2:2Þ

where k is the number of clusters which is typically given by the user; ni the number
of data in the ith cluster; xij the jth datum in the ith cluster; ci is the mean of the ith
cluster; and n ¼

Pk
i¼1 ni is the number of data. The most commonly used distance

measure for the data mining problem is the Euclidean distance, which is defined as

Data Analysis 19



Dðpi; pjÞ ¼
Xd
l¼1

pil; pjl
�� ��2 !1=2

; ð2:3Þ

where pi and pj are the positions of two different data. For solving different data
mining problems, the distance measurement D(pi, pj) can be the Manhattan dis-
tance, the Minkowski distance, or even the cosine similarity [36] between two
different documents.

Accuracy (ACC) is another well-known measurement [37] which is defined as

ACC ¼ Number of cases correctly classified
Total number of test cases

: ð2:4Þ

To evaluate the classification results, precision (p), recall (r), and F-measure can
be used to measure how many data that do not belong to group A are incorrectly
classified into group A; and how many data that belong to group A are not classified
into group A. A simple confusion matrix of a classifier [37] as given in Table 2.1
can be used to cover all the situations of the classification results. In Table 2.1, TP
and TN indicate the numbers of positive examples and negative examples that are
correctly classified, respectively; FN and FP indicate the numbers of positive
examples and negative examples that are incorrectly classified, respectively. With
the confusion matrix at hand, it is much easier to describe the meaning of precision
(p), which is defined as

p ¼ TP
TPþ FP

; ð2:5Þ

and the meaning of recall (r), which is defined as

r ¼ TP
TPþ FN

: ð2:6Þ

The F-measure can then be computed as

F ¼ 2pr
pþ r

: ð2:7Þ

In addition to the above-mentioned measurements for evaluating the data mining
results, the computation cost and response time are another two well-known
measurements. When two different mining algorithms can find the same or similar

Table 2.1 Confusion matrix
of a classifier [37]

Classified positive Classified negative

Actual positive TP FN

Actual negative FP TN
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results, of course, how fast they can get the final mining results will become the
most important research topic.

After something (e.g., classification rules) is found by data mining methods, the
two essential research topics are: (1) the work to navigate and explore the meaning
of the results from the data analysis to further support the user to do the applicable
decision can be regarded as the interpretation operator [38], which in most cases,
gives useful interface to display the information [39] and (2) a meaningful sum-
marization of the mining results [40] can be made to make it easier for the user to
understand the information from the data analysis. The data summarization is
generally expected to be one of the simple ways to provide a concise piece of
information to the user because human has trouble of understanding vast amounts
of complicated information. A simple data summarization can be found in the
clustering search engine, when a query “oasis” is sent to Carrot2 (http://search.
carrot2.org/stable/search), it will return some keywords to represent each group of
the clustering results for web links to help us recognize which category needed by
the user, as shown in the left side of Fig. 2.5.

A useful graphical user interface is another way to provide the meaningful
information to an user. As explained by Shneiderman in [39], we need “overview
first, zoom and filter, then retrieve the details on demand”. The useful graphical user
interface [38, 41] also makes it easier for the user to comprehend the meaning of the
results when the number of dimensions is higher than three. How to display the
results of data mining will affect the user’s perspective to make the decision. For
instance, data mining can help us find “type A influenza” at a particular region, but
without the time series and flu virus infected information of patients, the govern-
ment could not recognize what situation (pandemic or controlled) we are facing
now so as to make appropriate responses to that. For this reason, a better solution to

Fig. 2.5 Screenshot of the result of clustering search engine
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merge the information from different sources and mining algorithm results will be
useful to let the user make the right decision.

Summary

Since the problems of handling and analyzing large-scale and complex input data
always exist in data analytics, several efficient analysis methods were presented to
accelerate the computation time or to reduce the memory cost for the KDD process,
as shown in Table 2.2. The study of [42] shows that the basic mathematical con-
cepts (i.e., triangle inequality) can be used to reduce the computation cost of a
clustering algorithm. Another study [43] shows that the new technologies (i.e.,
distributed computing by GPU) can also be used to reduce the computation time of
data analysis method. In addition to the well-known improved methods for these
analysis methods (e.g., triangle inequality or distributed computing), a large pro-
portion of studies designed their efficient methods based on the characteristics of
mining algorithms or problem itself, which can be found in [32, 44, 45], and so
forth. This kind of improved methods typically was designed for solving the
drawback of the mining algorithms or using different ways to solve the mining
problem. These situations can be found in most association rules and sequential

Table 2.2 Efficient data
analytics methods for data
mining

Problem Method References

Clustering BIRCH [44]

DBSCAN [45]

Incremental DBSCAN [46]

RKM [47]

TKM [42]

Classification SLIQ [50]

TLAESA [51]

FastNN [52]

SFFS [53]

CPU-based SVM [43]

Association rules CLOSET [54]

FP-tree [32]

CHARM [55]

MAFIA [56]

FAST [57]

Sequential patterns SPADE [35]

CloSpan [58]

PrefixSpan [59]

SPAM [60]

ISE [61]
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patterns problems because the original assumption of these problems is for the
analysis of large-scale dataset. Since the earlier frequent pattern algorithm (e.g.,
apriori algorithm) needs to scan the whole dataset many times which is computa-
tionally very expensive. How to reduce the number of times the whole dataset is
scanned so as to save the computation cost is one of the most important things in all
the frequent pattern studies. The similar situation also exists in data clustering and
classification studies because the design concept of earlier algorithms, such as
mining the patterns on-the-fly [46], mining partial patterns at different stages [47],
and reducing the number of times the whole dataset is scanned [32], are therefore
presented to enhance the performance of these mining algorithms. Since some of
the data mining problems are NP-hard [48] or the solution space is very large,
several recent studies [23, 49] have attempted to use metaheuristic algorithm as the
mining algorithm to get the approximate solution within a reasonable time.

Abundant research results of data analysis [20, 27, 62] show possible solutions
for dealing with the dilemmas of data mining algorithms. It means that the open
issues of data analysis from the literature [2, 63] usually can help us easily find the
possible solutions. For instance, the clustering result is extremely sensitive to the
initial means, which can be mitigated by using multiple sets of initial means [64].
According to our observation, most data analysis methods have limitations for big
data, that can be described as follows:

• Unscalability and centralization Most data analysis methods are not for
large-scale and complex dataset. The traditional data analysis methods cannot be
scaled up because their design does not take into account large or complex
datasets. The design of traditional data analysis methods typically assumed they
will be performed in a single machine, with all the data in memory for the data
analysis process. For this reason, the performance of traditional data analytics
will be limited in solving the volume problem of big data.

• Non-dynamic Most traditional data analysis methods cannot be dynamically
adjusted for different situations, meaning that they do not analyze the input data
on-the-fly. For example, the classifiers are usually fixed which cannot be
automatically changed. The incremental learning [65] is a promising research
trend because it can dynamically adjust the the classifiers on the training process
with limited resources. As a result, the performance of traditional data analytics
may not be useful to the problem of velocity problem of big data.

• Uniform data structure Most of the data mining problems assume that the
format of the input data will be the same. Therefore, the traditional data mining
algorithms may not be able to deal with the problem that the formats of different
input data may be different and some of the data may be incomplete. How to
make the input data from different sources the same format will be a possible
solution to the variety problem of big data.

Because the traditional data analysis methods are not designed for large-scale
and complex data, they are almost impossible to be capable of analyzing the big
data. Redesigning and changing the way the data analysis methods are designed are
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two critical trends for big data analysis. Several important concepts in the design of
the big data analysis method will be given in the following sections.

Big Data Analytics

Nowadays, the data that need to be analyzed are not just large, but they are com-
posed of various data types, and even including streaming data [66]. Since big data
has the unique features of “massive, high dimensional, heterogeneous, complex,
unstructured, incomplete, noisy, and erroneous,” which may change the statistical
and data analysis approaches [67]. Although it seems that big data makes it possible
for us to collect more data to find more useful information, the truth is that more
data do not necessarily mean more useful information. It may contain more
ambiguous or abnormal data. For instance, a user may have multiple accounts, or an
account may be used by multiple users, which may degrade the accuracy of the
mining results [68]. Therefore, several new issues for data analytics come up, such
as privacy, security, storage, fault tolerance, and quality of data [69].

The big data may be created by handheld device, social network, internet of
things, multimedia, and many other new applications that all have the character-
istics of volume, velocity, and variety. As a result, the whole data analytics has to
be re-examined from the following perspectives:

• From the volume perspective, the deluge of input data is the very first thing that
we need to face because it may paralyze the data analytics. Different from
traditional data analytics, for the wireless sensor network data analysis, Baraniuk
[70] pointed out that the bottleneck of big data analytics will be shifted from
sensor to processing, communications, storage of sensing data, as shown in
Fig. 2.6. This is because sensors can gather much more data, but when
uploading such large data to upper layer system, it may create bottlenecks
everywhere.

• In addition, from the velocity perspective, real-time or streaming data bring up
the problem of large quantity of data coming into the data analytics within a
short duration but the device and system may not be able to handle these input
data. This situation is similar to that of the network flow analysis for which we
typically cannot mirror and analyze everything we can gather.

• From the variety perspective, because the incoming data may use different types
or have incomplete data, how to handle them also bring up another issue for the
input operators of data analytics.

In this section, we will turn the discussion to the big data analytics process.
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Big Data Input

The problem of handling a vast quantity of data that the system is unable to process
is not a brand-new research issue; in fact, it appeared in several early approaches [2,
21, 71], e.g., marketing analysis, network flow monitor, gene expression analysis,
weather forecast, and even astronomy analysis. This problem still exists in big data
analytics today; thus, preprocessing is an important task to make the computer,
platform, and analysis algorithm be able to handle the input data. The traditional
data preprocessing methods [72] (e.g., compression, sampling, feature selection,
and so on) are expected to be able to operate effectively in the big data age.
However, a portion of the studies still focus on how to reduce the complexity of the
input data because even the most advanced computer technology cannot efficiently
process the whole input data by using a single machine in most cases. By using
domain knowledge to design the preprocessing operator is a possible solution for
the big data. In [73], Ham and Lee used the domain knowledge, B-tree,
divide-and-conquer to filter the unrelated log information for the mobile web log
analysis. A later study [74] considered that the computation cost of preprocessing
will be quite high for massive logs, sensor, or marketing data analysis. Thus,
Dawelbeit and McCrindle employed the bin packing partitioning method to divide
the input data between the computing processors to handle this high computations
of preprocessing on cloud system. The cloud system is employed to preprocess the
raw data and then output the refined data (e.g., data with uniform format) to make it
easier for the data analysis method or system to preform the further analysis work.

Sampling and compression are two representative data reduction methods for big
data analytics because reducing the size of data makes the data analytics compu-
tationally less expensive, thus faster, especially for the data coming to the system

Fig. 2.6 The comparison
between traditional data
analysis and big data analysis
on wireless sensor network
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rapidly. In addition to making the sampling data represent the original data effec-
tively [75], how many instances need to be selected for data mining method is
another research issue [76] because it will affect the performance of the sampling
method in most cases.

To avoid the application-level slow-down caused by the compression process, in
[77], Jun et al. attempted to use the FPGA to accelerate the compression process.
The I/O performance optimization is another issue for the compression method. For
this reason, Zou et al. [78] employed the tentative selection and predictive dynamic
selection and switched the appropriate compression method from two different
strategies to improve the performance of the compression process. To make it
possible for the compression method to efficiently compress the data, a promising
solution is to apply the clustering method to the input data to divide them into
several different groups and then compress these input data according to the clus-
tering information. The compression method described in [79] is one of this kind of
solutions, it first clusters the input data and then compresses these input data via the
clustering results while the study [80] also used clustering method to improve the
performance of the compression process.

In summary, in addition to handling the large and fast data input, the research
issues of heterogeneous data sources, incomplete data, and noisy data may also
affect the performance of the data analysis. The input operators will have a stronger
impact on the data analytics at the big data age than it has in the past. As a result,
the design of big data analytics needs to consider how to make these tasks (e.g.,
data clean, data sampling, data compression) work well.

Big Data Analysis Frameworks and Platforms

Various solutions have been presented for the big data analytics which can be
divided [81] into (1) Processing/Compute: Hadoop [82], Nvidia CUDA [83], or
Twitter Storm [84], (2) Storage: Titan or HDFS, and (3) Analytics: MLPACK [85]
or Mahout [86]. Although there exist commercial products for data analysis [82–
85], most of the studies on the traditional data analysis are focused on the design
and development of efficient and/or effective “ways” to find the useful things from
the data. But when we enter the age of big data, most of the current computer
systems will not be able to handle the whole dataset all at once; thus, how to design
a good data analytics framework or platform3 and how to design analysis methods
are both important things for the data analysis process. In this section, we will start
with a brief introduction to data analysis frameworks and platforms, followed by a
comparison of them.

3In this paper, the analysis framework refers to the whole system, from raw data gathering, data
reformat, data analysis, all the way to knowledge representation.
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Researches in Frameworks and Platforms

To date, we can easily find tools and platforms presented by well-known organi-
zations. The cloud computing technologies are widely used on these platforms and
frameworks to satisfy the large demands of computing power and storage. As
shown in Fig. 2.7, most of the works on KDD for big data can be moved to cloud
system to speed up the response time or to increase the memory space. With the
advance of these works, handling and analyzing big data within a reasonable time
has become not so far away. Since the foundation functions to handle and manage
the big data were developed gradually; thus, the data scientists nowadays do not
have to take care of everything, from the raw data gathering to data analysis, by
themselves if they use the existing platforms or technologies to handle and manage
the data. The data scientists nowadays can pay more attention to finding out the
useful information from the data even thought this task is typically like looking for
a needle in a haystack. That is why several recent studies tried to present efficient
and effective framework to analyze the big data, especially on find out the useful
things.

Performance-oriented From the perspective of platform performance, Huai [87]
pointed out that most of the traditional parallel processing models improve the
performance of the system by using a new larger computer system to replace the old
computer system, which is usually referred to as “scale up”, as shown in Fig. 2.8a.
But for the big data analytics, most researches improve the performance of the
system by adding more milar computer systems to make it possible for a system to
handle all the tasks that cannot be loaded or computed in a single computer system
(called “scale out”), as shown in Fig. 2.8b where M1, M2, and M3 represent
computer systems that have different computing power, respectively. For the scale
up based solution, the computing power of the three systems is in the order of

Fig. 2.7 The basic idea of
big data analytics on cloud
system
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M3 > M2 > M1; but for the scale out based system, all we have to do is to keep
adding more similar computer systems to to a system to increase its ability. To build
a scalable and fault-tolerant manager for big data analysis, Huai et al. [87] presented
a matrix model which consists of three matrices for data set (D), concurrent data
processing operations (O), and data transformations (T), called DOT. The big data
is divided into n subsets each of which is processed by a computer node (worker) in
such a way that all the subsets are processed concurrently, and then the results from
these n computer nodes are collected and transformed to a computer node. By using
this framework, the whole data analysis framework is composed of several DOT
blocks. The system performance can be easily enhanced by adding more DOT
blocks to the system.

Another efficient big data analytics was presented in [88], called generalized
linear aggregates distributed engine (GLADE). The GLADE is a multi-level
tree-based data analytics system which consists of two types of computer nodes that
are a coordinator workers. The simulation results [89] show that the GLADE can
provide a better performance than Hadoop in terms of the execution time. Because
Hadoop requires large memory and storage for data replication and it is a single
master,4 Essa et al. [90] presented a mobile agent based framework to solve these
two problems, called the map reduce agent mobility (MRAM). The main reason is
that each mobile agent can send its code and data to any other machine; therefore,
the whole system will not be down if the master failed. Compared to Hadoop, the

Fig. 2.8 The comparisons
between scale up and scale
out

4The whole system may be down when the master machine crashed for a system that has only one
master.
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architecture of MRAM was changed from client/server to a distributed agent. The
load time for MRAM is less than Hadoop even though both of them use the
map-reduce solution and Java language. In [91], Herodotou et al. considered issues
of the user needs and system workloads. They presented a selftuning analytics
system built on Hadoop for big data analysis. Since one of the major goals of their
system is to adjust the system based on the user needs and system workloads to
provide good performance automatically, the user usually does not need to
understand and manipulate the Hadoop system. The study [92] was from the per-
spectives of data centric architecture and operational models to presented a big data
architecture framework (BDAF) which includes: big data infrastructure, big data
analytics, data structures and models, big data lifecycle management, and big data
security. According to the observations of Demchenko et al. [92], cluster services,
Hadoop related services, data analytics tools, databases, servers, and massively
parallel processing databases are typically the required applications and services in
big data analytics infrastructure.

Result-oriented Fisher et al. [5] presented a big data pipeline to show the
workflow of big data analytics to extract the valuable knowledge from big data,
which consists of the acquired data, choosing architecture, shaping data into
architecture, coding/debugging, and reflecting works. From the perspectives of
statistical computation and data mining, Ye et al. [93] presented an architecture of
the services platform which integrates R to provide better data analysis services,
called cloud-based big data mining and analyzing services platform (CBDMASP).
The design of this platform is composed of four layers: the infrastructure services
layer, the virtualization layer, the dataset processing layer, and the services layer.
Several large-scale clustering problems (the datasets are of size from 0.1 G up to
25.6 G) were also used to evaluate the performance of the CBDMASP. The sim-
ulation results show that using map-reduce is much faster than using a single
machine when the input data become too large. Although the size of the test dataset
cannot be regarded as a big dataset, the performance of the big data analytics using
mapreduce can be sped up via this kind of testings. In this study, map-reduce is a
better solution when the dataset is of size more than 0.2 G, and a single machine is
unable to handle a dataset that is of size more than 1.6 G.

Another study [94] presented a theorem to explain the big data characteristics,
called HACE: the characteristics of big data usually are large-volume,
Heterogeneous, Autonomous sources with distributed and decentralized control,
and we usually try to find out some useful and interesting things from complex and
evolving relationships of data. Based on these concerns and data mining issues, Wu
and his colleagues [94] also presented a big data processing framework which
includes data accessing and computing tier, data privacy and domain knowledge
tier, and big data mining algorithm tier. This work explains that the data mining
algorithm will become much more important and much more difficult; thus, chal-
lenges will also occur on the design and implementation of big data analytics
platform. In addition to the platform performance and data mining issues, the
privacy issue for big data analytics was a promising research in recent years. In
[95], Laurila et al. explained that the privacy is an essential problem when we try to
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find something from the data that are gathered from mobile devices; thus, data
security and data anonymization should also be considered in analyzing this kind of
data. Demirkan and Delen [96] presented a service-oriented decision support sys-
tem (SODSS) for big data analytics which includes information source, data
management, information management, and operations management.

Comparison Between the Frameworks/Platforms
of Big Data

In [97], Talia pointed out that cloud-based data analytics services can be divided
into data analytics software as a service, data analytics platform as a service, and
data analytics infrastructure as a service. A later study [98] presented a general
architecture of big data analytics which contains multi-source big data collecting,
distributed big data storing, and intra/inter big data processing. Since many kinds of
data analytics frameworks and platforms have been presented, some of the studies
attempted to compare them to give a guidance to choose the applicable frameworks
or platforms for relevant works. To give a brief introduction to big data analytics,
especially the platforms and frameworks, in [99], Cuzzocrea et al. first discuss how
recent studies responded the “computational emergency” issue of big data analytics.
Some open issues, such as data source heterogeneity and uncorrelated data filtering,
and possible research directions are also given in the same study. In [100], Zhang
and Huang used the 5Ws model to explain what kind of framework and method we
need for different big data approaches. Zhang and Huang further explained that the
5Ws model represents what kind of data, why we have these data, where the data
come from, when the data occur, who receive the data, and how the data are
transferred. A later study [101] used the features (i.e., owner, workload, source
code, low latency, and complexity) to compare the frameworks of Hadoop [82],
Storm [84] and Drill [102]. Thus, it can be easily seen that the framework of
Apache Hadoop has high latency compared with the other two frameworks. To
better understand the strong and weak points of solutions of big data, Chalmers
et al. [81] then employed the volume, variety, variability, velocity, user
skill/experience, and infrastructure to evaluate eight solutions of big data analytics.

In [103], in addition to defining that a big data system should include data
generation, data acquisition, data storage, and data analytics modules, Hu et al. also
mentioned that a big data system can be decomposed into infrastructure, computing,
and application layers. Moreover, a promising research for NoSQL storage systems
was also discussed in this study which can be divided into key-value, column,
document, and row databases. Since big data analysis is generally regarded as a high
computation cost work, the high performance computing cluster system (HPCC) is
also a possible solution in early stage of big data analytics. Sagiroglu and Sinanc
[104] therefore compare the characteristics between HPCC and Hadoop. They then
emphasized that HPCC system uses the multikey and multivariate indexes on
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distributed file system while Hadoop uses the column-oriented database. In [17],
Chen et al. give a brief introduction to the big data analytics of business intelligence
(BI) from the perspective of evolution, applications, and emerging research topics. In
their survey, Chen et al. explained that the revolution of business intelligence and
analytics (BI&I) was from BI&I 1.0, BI&I 2.0, to BI&I 3.0 which are DBMS-based
and structured content, web-based and unstructured content, and mobile and sensor
based content, respectively.

Big Data Analysis Algorithms

Mining Algorithms for Specific Problem

Because the big data issues have appeared for nearly 10 years, in [105], Fan and
Bifet pointed out that the terms “big data” [106] and “big data mining” [107] were
first presented in 1998, respectively. The big data and big data mining almost
appearing at the same time explained that finding something from big data will be
one of the major tasks in this research domain. Data mining algorithms for data
analysis also play the vital role in the big data analysis, in terms of the computation
cost, memory requirement, and accuracy of the end results. In this section, we will
give a brief discussion from the perspective of analysis and search algorithms to
explain its importance for big data analytics.

Clustering algorithms In the big data age, traditional clustering algorithms will
become even more limited than before because they typically require that all the
data be in the same format and be loaded into the same machine so as to find some
useful things from the whole data. Although the problem [63] of analyzing
large-scale and high-dimensional dataset has attracted many researchers from var-
ious disciplines in the last century, and several solutions [2, 108] have been pre-
sented presented in recent years, the characteristics of big data still brought up
several new challenges for the data clustering issues. Among them, how to reduce
the data complexity is one of the important issues for big data clustering. In [109],
Shirkhorshidi et al. divided the big data clustering into two categories:
single-machine clustering (i.e., sampling and dimension reduction solutions), and
multiple-machine clustering (parallel and MapReduce solutions). This means that
traditional reduction solutions can also be used in the big data age because the
complexity and memory space needed for the process of data analysis will be
decreased by using sampling and dimension reduction methods. More precisely,
sampling can be regarded as reducing the “amount of data” entered into a data
analyzing process while dimension reduction can be regarded as “downsizing the
whole dataset” because irrelevant dimensions will be discarded before the data
analyzing process is carried out.

CloudVista [110] is a representative solution for clustering big data which used
cloud computing to perform the clustering process in parallel. BIRCH [44] and
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sampling method were used in CloudVista to show that it is able to handle
large-scale data, e.g., 25 million census records. Using GPU to enhance the per-
formance of a clustering algorithm is another promising solution for big data
mining. The multiple species flocking (MSF) [111] was applied to the CUDA
platform from NVIDIA to reduce the computation time of clustering algorithm in
[112]. The simulation results show that the speedup factor can be increased from 30
up to 60 by using GPU for data clustering. Since most traditional clustering
algorithms (e.g., k-means) require a computation that is centralized, how to make
them capable of handling big data clustering problems is the major concern of
Feldman et al. [113] who use a tree construction for generating the coresets in
parallel which is called the “merge-and-reduce” approach. Moreover, Feldman et al.
pointed out that by using this solution for clustering, the update time per datum and
memory of the traditional clustering algorithms can be significantly reduced.

Classification algorithms Similar to the clustering algorithm for big data mining,
several studies also attempted to modify the traditional classification algorithms to
make them work on a parallel computing environment or to develop new classi-
fication algorithms which work naturally on a parallel computing environment. In
[114], the design of classification algorithm took into account the input data that are
gathered by distributed data sources and they will be processed by a heterogeneous
set of learners.5 In this study, Tekin et al. presented a novel classification algorithm
called “classify or send for classification” (CoS). They assumed that each learner
can be used to process the input data in two different ways in a distributed data
classification system. One is to perform a classification function by itself while the
other is to forward the input data to another learner to have them labeled. The
information will be exchanged between different learners. In brief, this kind of
solutions can be regarded as a cooperative learning to improve the accuracy in
solving the big data classification problem. An interesting solution uses the quan-
tum computing to reduce the memory space and computing cost of a classification
algorithm. For example, in [115], Rebentrost et al. presented a quantumbased
support vector machine for big data classification and argued that the classification
algorithm they proposed can be implemented with a time complexity O(log NM)
where N is the number of dimensions and M is the number of training data. There
are bright prospects for big data mining by using quantum-based search algorithm
when the hardware of quantum computing has become mature.

Frequent pattern mining algorithms Most of the researches on frequent pattern
mining (i.e., association rules and sequential pattern mining) were focused on
handling large-scale dataset at the very beginning because some early approaches of
them were attempted to analyze the data from the transaction data of large shopping
mall. Because the number of transactions usually is more than “tens of thousands”,
the issues about how to handle the large scale data were studied for several years,

5The learner typically represented the classification function which will create the classifier to help
us classify the unknown input data.
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such as FP-tree [32] using the tree structure to include the frequent patterns to
further reduce the computation time of association rule mining. In addition to the
traditional frequent pattern mining algorithms, of course, parallel computing and
cloud computing technologies have also attracted researchers in this research
domain. Among them, the map-reduce solution was used for the studies [116–118]
to enhance the performance of the frequent pattern mining algorithm. By using the
map-reduce model for frequent pattern mining algorithm, it can be easily expected
that its application to “cloud platform” [119, 120] will definitely become a popular
trend in the forthcoming future. The study of [118] no only used the map-reduce
model, it also allowed users to express their specific interest constraints in the
process of frequent pattern mining. The performance of these methods by using
map-reduce model for big data analysis is, no doubt, better than the traditional
frequent pattern mining algorithms running on a single machine.

Machine Learning for Big Data Mining

The potential of machine learning for data analytics can be easily found in the early
literature [22, 49]. Different from the data mining algorithm design for specific
problems, machine learning algorithms can be used for different mining and
analysis problems because they are typically employed as the “search” algorithm of
the required solution. Since most machine learning algorithms can be used to find
an approximate solution for the optimization problem, they can be employed for
most data analysis problems if the data analysis problems can be formulated as an
optimization problem. For example, genetic algorithm, one of the machine learning
algorithms, can not only be used to solve the clustering problem [25], it can also be
used to solve the frequent pattern mining problem [33]. The potential of machine
learning is not merely for solving different mining problems in data analysis
operator of KDD; it also has the potential of enhancing the performance of the other
parts of KDD, such as feature reduction for the input operators [71].

A recent study [67] shows that some traditional mining algorithms, statistical
methods, preprocessing solutions, and even the GUI’s have been applied to several
representative tools and platforms for big data analytics. The results show clearly
that machine learning algorithms will be one of the essential parts of big data
analytics. One of the problems in using current machine learning methods for big
data analytics is similar to those of most traditional data mining algorithms which
are designed for sequential or centralized computing. However, one of the most
possible solutions is to make them work for parallel computing. Fortunately, some
of the machine learning algorithms (e.g., population-based algorithms) can essen-
tially be used for parallel computing, which have been demonstrated for several
years, such as parallel computing version of genetic algorithm [121]. Different from
the traditional GA, as shown in Fig. 2.9a, the population of island model genetic
algorithm, one of the parallel GA’s, can be divided into several subpopulations, as
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shown in Fig. 2.9b. This means that the sub-populations can be assigned to different
threads or computer nodes for parallel computing, by a simple modification of the
GA.

For this reason, in [122], Kiran and Babu explained that the framework for
distributed data mining algorithm still needs to aggregate the information from
different computer nodes. As shown in Fig. 2.10, the common design of distributed
data mining algorithm is as follows: each mining algorithm will be performed on a
computer node (worker) which has its locally coherent data, but not the whole data.
To construct a globally meaningful knowledge after each mining algorithm finds its
local model, the local model from each computer node has to be aggregated and
integrated into a final model to represent the complete knowledge. Kiran and Babu
[122] also pointed out that the communication will be the bottleneck when using
this kind of distributed computing framework.

Bu et al. [123] found some research issues when trying to apply machine
learning algorithms to parallel computing platforms. For instance, the early version
of map-reduce framework does not support “iteration” (i.e., recursion). But the
good news is that some recent works [86, 124] have paid close attention to this
problem and tried to fix it. Similar to the solutions for enhancing the performance of
the traditional data mining algorithms, one of the possible solutions to enhancing
the performance of a machine learning algorithm is to use CUDA, i.e., a GPU, to

Fig. 2.9 The comparisons between basic idea of traditional GA (TGA) and parallel genetic
algorithm (PGA)
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reduce the computing time of data analysis. Hasan et al. [125] used CUDA to
implement the self-organizing map (SOM) and multiple back-propagation
(MBP) for the classification problem. The simulation results show that using
GPU is faster than using CPU. More precisely, SOM running on a GPU is three
times faster than SOM running on a CPU, and MPB running on a GPU is
twenty-seven times faster than MPB running on a. Another study [126] attempted to
apply the ant-based algorithm to grid computing platform. Since the proposed
mining algorithm is extended by the ant clustering algorithm of Deneubourg et al.
[127],6 Ku-Mahamud modified the ant behavior of this ant clustering algorithm for
big data clustering. That is, each ant will be randomly placed on the grid. This
means that the ant clustering algorithm then can be used on a parallel computing
environment.

The trends of machine learning studies for big data analytics can be divided into
twofold: one attempts to make machine learning algorithms run on parallel plat-
forms, such as Radoop [128], Mahout [86], and PIMRU [123]; the other is to
redesign the machine learning algorithms to make them suitable for parallel com-
puting or to parallel computing environment, such as neural network algorithms for
GPU [125] and ant-based algorithm for grid [126]. In summary, both of them make
it possible to apply the machine learning algorithms to big data analytics although
still many research issues need to be solved, such as the communication cost for
different computer nodes [85] and the large computation cost most machine
learning algorithms require [125].

Fig. 2.10 A simple example of distributed data mining framework [85]

6The basic idea of [128] is that each ant will pick up and drop data items in terms of the similarity
of its local neighbors.
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Output the Result of Big Data Analysis

The benchmarks of PigMix [129], GridMix [130], TeraSort and GraySort [131],
TPC-C, TPC-H, TPC-DS [132], and yahoo cloud serving benchmark (YCSB) [133]
have been presented for evaluating the performance of the cloud computing and big
data analytics systems. Ghazal et al. [134] presented another benchmark (called
BigBench) to be used as an end-to-end big data benchmark which covers the
characteristics of 3V of big data and uses the loading time, time for queries, time for
procedural processing queries, and time for the remaining queries as the metrics. By
using these benchmarks, the computation time is one of the intuitive metrics for
evaluating the performance of different big data analytics platforms or algorithms.
That is why Cheptsov [135] compered the high performance computing (HPC) and
cloud system by using the measurement of computation time to understand their
scalability for text file analysis. In addition to the computation time, the throughput
(e.g., the number of operations per second) and read/write latency of operations are
the other measurements of big data analytics [136]. In the study of [137], Zhao et al.
believe that the maximum size of data and the maximum number of jobs are the two
important metrics to understand the performance of the big data analytics platform.
Another study described in [138] presented a systematic evaluation method which
contains the data throughput, concurrency during map and reduce phases, response
times, and the execution time of map and reduce. Moreover, most benchmarks for
evaluating the performance of big data analytics typically can only provide the
response time or the computation cost; however, the fact is that several factors need
to be taken into account at the same time when building a big data analytics system.
The hardware, bandwidth for data transmission, fault tolerance, cost, power con-
sumption of these systems are all issues [69, 103] to be taken into account at the
same time when building a big data analytics system. Several solutions available
today are to install the big data analytics on a cloud computing system or a cluster
system. Therefore, the measurements of fault tolerance, task execution, and cost of
cloud computing systems can then be used to evaluate the performance of the
corresponding factors of big data analytics.

How to present the analysis results to a user is another important work in the
output part of big data analytics because if the user cannot easily understand the
meaning of the results, the results will be entirely useless. Business intelligent and
network monitoring are the two common approaches because their user interface
plays the vital role of making them workable. Zhang et al. [139] pointed out that the
tasks of the visual analytics for commercial systems can be divided into four
categories which are exploration, dashboards, reporting, and alerting. The study
[140] showed that the interface for electroencephalography (EEG) interpretation is
another noticeable research issue in big data analytics. The user interface for cloud
system [141, 142] is the recent trend for big data analytics. This usually plays vital
roles in big data analytics system, one of which is to simplify the explanation of the
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needed knowledge to the users while the other is to make it easier for the users to
handle the data analytics system to work with their opinions. According to our
observations, a flexible user interface is needed because although the big data
analytics can help us to find some hidden information, the information found
usually is not knowledge. This situation is just like the example we mentioned in
“Output the result”. The mining or statistical techniques can be employed to know
the flu situation of each region, but data scientists sometimes need additional ways
to display the information to find out the knowledge they need or to prove their
assumption. Thus, the user interface can be adjusted by the user to display the
knowledge that is needed urgently for big data analytics.

Summary of Process of Big Data Analytics

This discussion of big data analytics in this section was divided into input, analysis,
and output for mapping the data analysis process of KDD. For the input (see also in
“Big data input”) and output (see also “Output the result of big data analysis”) of
big data, several methods and solutions proposed before the big data age (see also
“Data input”) can also be employed for big data analytics in most cases.

However, there still exist some new issues of the input and output that the data
scientists need to confront. A representative example we mentioned in “Big data
input” is that the bottleneck will not only on the sensor or input devices, it may also
appear in other places of data analytics [70]. Although we can employ traditional
compression and sampling technologies to deal with this problem, they can only
mitigate the problems instead of solving the problems completely. Similar situa-
tions also exist in the output part. Although several measurements can be used to
evaluate the performance of the frameworks, platforms, and even data mining
algorithms, there still exist several new issues in the big data age, such as infor-
mation fusion from different information sources or information accumulation from
different times.

Several studies attempted to present an efficient or effective solution from the
perspective of system (e.g., framework and platform) or algorithm level. A simple
comparison of these big data analysis technologies from different perspectives is
described in Table 2.3, to give a brief introduction to the current studies and trends
of data analysis technologies for the big data. The “Perspective” column of this
table explains that the study is focused on the framework or algorithm level; the
“Description” column gives the further goal of the study; and the “Name” column is
an abbreviated names of the methods or platform/framework. From the analysis
framework perspective, this table shows that big data framework, platform, and
machine learning are the current research trends in big data analytics system. For
the mining algorithm perspective, the clustering, classification, and frequent pattern
mining issues play the vital role of these researches because several data analysis
problems can be mapped to these essential issues.
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Table 2.3 The big data analysis frameworks and methods

P Name References Year Description T
Analysis
framework

DOT [87] 2011 Add more computation
resources via scale out solution

Framework

GLADE [88] 2011 Multi-level tree-based system
architecture

Starfish [91] 2012 Self-turning analytics system

ODT-MDC [95] 2012 Privacy issues

MRAM [90] 2013 Mobile agent technologies

CBDMASP [93] 2013 Statistical computation and data
mining approaches

SODSS [96] 2013 Decision support system issues

BDAF [92] 2014 Data centric architecture

HACE [94] 2014 Data mining approaches

Hadoop [82] 2011 Parallel computing platform Platform

CUDA [83] 2007 Parallel computing platform

Storm [84] 2014 Parallel computing platform

Pregel [124] 2010 Large-scale graph data analysis

MLPACK [85] 2013 Scalable machine learning
library

ML

Mahout [86] 2011 Machine-learning algorithms

MLAS [123] 2012 Machine-learning algorithms

PIMRU [123] 2012 Machine Learning algorithms

Radoop [128] 2011 Data analytics, machine
learning algorithms, and R
statistical tool

Mining
algorithm

DBDC [143] 2004 Parallel clustering CLU

PKM [144] 2009 Map-reduce-based k means
clustering

CloudVista [110] 2012 Cloud computing for clustering

MSFUDA [112] 2013 GPU for clustering

BDCAC [126] 2013 Ant on grid computing
environment for clustering

Corest [113] 2013 Use a tree construction for
generating the coresets in
parallel for clustering

SOM-MBP [125] 2013 Neural network with CGP for
clas sification

CLA

CoS [114] 2013 Parallel computing for
classification

SVMGA [71] 2014 Using GA for reduce the
number of dimensions

Quantum
SVM

[115] 2014 Quantum computing for
classification

(continued)
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A promising trend that can be easily found from these successful examples is to
use machine learning as the search algorithm (i.e., mining algorithm) for the data
mining problems of big data analytics system. The machine learning-based methods
are able to make the mining algorithms and relevant platforms smarter or reduce the
redundant computation costs. That parallel computing and cloud computing tech-
nologies have a strong impact on the big data analytics can also be recognized as
follows: (1) most of the big data analytics frameworks and platforms are using
Hadoop and Hadoop relevant technologies to design their solutions; and (2) most of
the mining algorithms for big data analysis have been designed for parallel com-
puting via software or hardware or designed for Map-Reduce-based platform.

From the results of recent studies of big data analytics, it is still at the early stage
of Nolan’s stages of growth model [145] which is similar to the situations for the
research topics of cloud computing, internet of things, and smart grid. This is
because several studies just attempted to apply the traditional solutions to the new
problems/platforms/environments. For example, several studies [113, 144] used
k-means as an example to analyze the big data, but not many studies applied the
state-of-the-art data mining algorithms and machine learning algorithms to the
analysis the big data. This explains that the performance of the big data analytics
can be improved by data mining algorithms and metaheuristic algorithms presented
in recent years [146]. The relevant technologies for compression, sampling, or even
the platform presented in recent years may also be used to enhance the performance
of the big data analytics system. As a result, although these research topics still have
several open issues that need to be solved, these situations, on the contrary, also
illustrate that everything is possible in these studies.

Table 2.3 (continued)

P Name References Year Description T
DPSP [120] Applied frequent pattern

algorithm to cloud platform
FP

DHTRIE [119] 2011 Applied frequent pattern
algorithm to cloud platform

SPC, FPC,
and DPC

[116] 2012 Map-reduce model for frequent
pat-tern mining

MFPSAM [118] 2014 Concerned the specific interest
con- straints and applied
map-reduce model

P perspective, T taxonomy,ML machine learning CLU clustering, CLA classification, FP frequent
pattern
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The Open Issues

Although the data analytics today may be inefficient for big data caused by the
environment, devices, systems, and even problems that are quite different from
traditional mining problems, because several characteristics of big data also exist in
the traditional data analytics. Several open issues caused by the big data will be
addressed as the platform/framework and data mining perspectives in this section to
explain what dilemmas we may confront because of big data. Here are some of the
open issues:

Platform and Framework Perspective

Input and Output Ratio of Platform

A large number of reports and researches mentioned that we will enter the big data
age in the near future. Some of them insinuated to us that these fruitful results of big
data will lead us to a whole new world where “everything” is possible; therefore,
the big data analytics will be an omniscient and omnipotent system. From the
pragmatic perspective, the big data analytics is indeed useful and has many pos-
sibilities which can help us more accurately understand the so-called “things.”
However, the situation in most studies of big data analytics is that they argued that
the results of big data are valuable, but the business models of most big data
analytics are not clear. The fact is that assuming we have infinite computing
resources for big data analytics is a thoroughly impracticable plan, the input and
output ratio (e.g., return on investment) will need to be taken into account before an
organization constructs the big data analytics center.

Communication Between Systems

Since most big data analytics systems will be designed for parallel computing, and
they typically will work on other systems (e.g., cloud platform) or work with other
systems (e.g., search engine or knowledge base), the communication between the
big data analytics and other systems will strongly impact the performance of the
whole process of KDD. The first research issue for the communication is that the
communication cost will incur between systems of data analytics. How to reduce
the communication cost will be the very first thing that the data scientists need to
care. Another research issue for the communication is how the big data analytics
communicates with other systems. The consistency of data between different sys-
tems, modules, and operators is also an important open issue on the communication
between systems. Because the communication will appear more frequently between
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systems of big data analytics, how to reduce the cost of communication and how to
make the communication between these systems as reliable as possible will be the
two important open issues for big data analytics.

Bottlenecks on Data Analytics System

The bottlenecks will be appeared in different places of the data analytics for big data
because the environments, systems, and input data have changed which are different
from the traditional data analytics. The data deluge of big data will fill up the
“input” system of data analytics, and it will also increase the computation load of
the data “analysis” system. This situation is just like the torrent of water (i.e., data
deluge) rushed down the mountain (i.e., data analytics), how to split it and how to
avoid it flowing into a narrow place (e.g., the operator is not able to handle the input
data) will be the most important things to avoid the bottlenecks in data analytics
system. One of the current solutions to the avoidance of bottlenecks on a data
analytics system is to add more computation resources while the other is to split the
analysis works to different computation nodes. A complete consideration for the
whole data analytics to avoid the bottlenecks of that kind of analytics system is still
needed for big data.

Security Issues

Since much more environment data and human behavior will be gathered to the big
data analytics, how to protect them will also be an open issue because without a
security way to handle the collected data, the big data analytics cannot be a reliable
system. In spite of the security that we have to tighten for big data analytics before
it can gather more data from everywhere, the fact is that until now, there are still not
many studies focusing on the security issues of the big data analytics. According to
our observation, the security issues of big data analytics can be divided into
fourfold: input, data analysis, output, and communication with other systems. For
the input, it can be regarded as the data gathering which is relevant to the sensor, the
handheld devices, and even the devices of internet of things. One of the important
security issues on the input part of big data analytics is to make sure that the sensors
will not be compromised by the attacks. For the analysis and input, it can be
regarded as the security problem of such a system. For communication with other
system, the security problem is on the communications between big data analytics
and other external systems. Because of these latent problems, security has become
one of the open issues of big data analytics.
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Data Mining Perspective

Data Mining Algorithm for Map-Reduce Solution

As we mentioned in the previous sections, most of the traditional data mining
algorithms are not designed for parallel computing; therefore, they are not partic-
ularly useful for the big data mining. Several recent studies have attempted to
modify the traditional data mining algorithms to make them applicable to
Hadoop-based platforms. As long as porting the data mining algorithms to Hadoop
is inevitable, making the data mining algorithms work on a map-reduce architecture
is the first very thing to do to apply traditional data mining methods to big data
analytics. Unfortunately, not many studies attempted to make the data mining and
soft computing algorithms work on Hadoop because several different backgrounds
are needed to develop and design such algorithms. For instance, the researcher and
his or her research group need to have the background in data mining and Hadoop
so as to develop and design such algorithms. Another open issue is that most data
mining algorithms are designed for centralized computing; that is, they can only
work on all the data at the same time. Thus, how to make them work on a parallel
computing system is also a difficult work. The good news is that some studies [144]
have successfully applied the traditional data mining algorithms to the map-reduce
architecture. These results imply that it is possible to do so. According to our
observation, although the traditional mining or soft computing algorithms can be
used to help us analyze the data in big data analytics, unfortunately, until now, not
many studies are focused on it. As a consequence, it is an important open issue in
big data analytics.

Noise, Outliers, Incomplete and Inconsistent Data

Although big data analytics is a new age for data analysis, because several solutions
adopt classical ways to analyze the data on big data analytics, the open issues of
traditional data mining algorithms also exist in these new systems. The open issues
of noise, outliers, incomplete, and inconsistent data in traditional data mining
algorithms will also appear in big data mining algorithms. More incomplete and
inconsistent data will easily appear because the data are captured by or generated
from different sensors and systems. The impact of noise, outliers, incomplete and
inconsistent data will be enlarged for big data analytics. Therefore, how to mitigate
the impact will be the open issues for big data analytics.
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Bottlenecks on Data Mining Algorithm

Most of the data mining algorithms in big data analytics will be designed for
parallel computing. However, once data mining algorithms are designed or modi-
fied for parallel computing, it is the information exchange between different data
mining procedures that may incur bottlenecks. One of them is the synchronization
issue because different mining procedures will finish their jobs at different times
even though they use the same mining algorithm to work on the same amount of
data. Thus, some of the mining procedures will have to wait until the others finished
their jobs. This situation may occur because the loading of different computer nodes
may be different during the data mining process, or it may occur because the
convergence speeds are different for the same data mining algorithm. The bottle-
necks of data mining algorithms will become an open issue for the big data ana-
lytics which explains that we need to take into account this issue when we develop
and design a new data mining algorithm for big data analytics.

Privacy Issues

The privacy concern typically will make most people uncomfortable, especially if
systems cannot guarantee that their personal information will not be accessed by the
other people and organizations. Different from the concern of the security, the
privacy issue is about if it is possible for the system to restore or infer personal
information from the results of big data analytics, even though the input data are
anonymous. The privacy issue has become a very important issue because the data
mining and other analysis technologies will be widely used in big data analytics, the
private information may be exposed to the other people after the analysis process.
For example, although all the gathered data for shop behavior are anonymous (e.g.,
buying a pistol), because the data can be easily collected by different devices and
systems (e.g., location of the shop and age of the buyer), a data mining algorithm
can easily infer who bought this pistol. More precisely, the data analytics is able to
reduce the scope of the database because location of the shop and age of the buyer
provide the information to help the system find out possible persons. For this
reason, any sensitive information needs to be carefully protected and used. The
anonymous, temporary identification, and encryption are the representative tech-
nologies for privacy of data analytics, but the critical factor is how to use, what to
use, and why to use the collected data on big data analytics.
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Conclusions

In this paper, we reviewed studies on the data analytics from the traditional data
analysis to the recent big data analysis. From the system perspective, the KDD
process is used as the framework for these studies and is summarized into three
parts: input, analysis, and output. From the perspective of big data analytics
framework and platform, the discussions are focused on the performance-oriented
and results-oriented issues. From the perspective of data mining problem, this paper
gives a brief introduction to the data and big data mining algorithms which consist
of clustering, classification, and frequent patterns mining technologies. To better
understand the changes brought about by the big data, this paper is focused on the
data analysis of KDD from the platform/framework to data mining. The open issues
on computation, quality of end result, security, and privacy are then discussed to
explain which open issues we may face. Last but not least, to help the audience of
the paper find solutions to welcome the new age of big data, the possible high
impact research trends are given below:

• For the computation time, there is no doubt at all that parallel computing is one
of the important future trends to make the data analytics work for big data, and
consequently the technologies of cloud computing, Hadoop, and map-reduce
will play the important roles for the big data analytics. To handle the compu-
tation resources of the cloudbased platform and to finish the task of data analysis
as fast as possible, the scheduling method is another future trend.

• Using efficient methods to reduce the computation time of input, comparison,
sampling, and a variety of reduction methods will play an important role in big
data analytics. Because these methods typically do not consider parallel com-
puting environment, how to make them work on parallel computing environ-
ment will be a future research trend. Similar to the input, the data mining
algorithms also face the same situation that we mentioned in the previous
section, how to make them work on parallel computing environment will be a
very important research trend because there are abundant research results on
traditional data mining algorithms.

• How to model the mining problem to find something from big data and how to
display the knowledge we got from big data analytics will also be another two
vital future trends because the results of these two researches will decide if the
data analytics can practically work for real world approaches, not just a theo-
retical stuff.

• The methods of extracting information from external and relative knowledge
resources to further reinforce the big data analytics, until now, are not very
popular in big data analytics. But combining information from different
resources to add the value of output knowledge is a common solution in the area
of information retrieval, such as clustering search engine or document sum-
marization. For this reason, information fusion will also be a future trend for
improving the end results of big data analytics.
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• Because the metaheuristic algorithms are capable of finding an approximate
solution within a reasonable time, they have been widely used in solving the
data mining problem in recent years. Until now, many state-of-the-art meta-
heuristic algorithms still have not been applied to big data analytics. In addition,
compared to some early data mining algorithms, the performance of meta-
heuristic is no doubt superior in terms of the computation time and the quality of
end result. From these observations, the application of metaheuristic algorithms
to big data analytics will also be an important research topic.

• Because social network is part of the daily life of most people and because its
data is also a kind of big data, how to analyze the data of a social network has
become a promising research issue. Obviously, it can be used to predict the
behavior of a user. After that, we can make applicable strategies for the user. For
instance, a business intelligence system can use the analysis results to encourage
particular customers to buy the goods they are interested.

• The security and privacy issues that accompany the work of data analysis are
intuitive research topics which contain how to safely store the data, how to make
sure the data communication is protected, and how to prevent someone from
finding out the information about us. Many problems of data security and pri-
vacy are essentially the same as those of the traditional data analysis even if we
are entering the big data age. Thus, how to protect the data will also appear in
the research of big data analytics.
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Chapter 3
Transfer Learning Techniques

Karl Weiss, Taghi M. Khoshgoftaar and DingDing Wang

Introduction

The field of data mining and machine learning has been widely and successfully used
in many applications where patterns from past information (training data) can be
extracted in order to predict future outcomes [1]. Traditional machine learning is
characterized by training data and testing data having the same input feature space
and the same data distribution.When there is a difference in data distribution between
the training data and test data, the results of a predictive learner can be degraded [2].
In certain scenarios, obtaining training data that matches the feature space and pre-
dicted data distribution characteristics of the test data can be difficult and expensive.
Therefore, there is a need to create a high-performance learner for a target domain
trained from a related source domain. This is the motivation for transfer learning.

Transfer learning is used to improve a learner from one domain by transferring
information from a related domain. We can draw from real-world non-technical
experiences to understand why transfer learning is possible. Consider an example of
two people who want to learn to play the piano. One person has no previous
experience playing music, and the other person has extensive music knowledge
through playing the guitar. The person with an extensive music background will be
able to learn the piano in a more efficient manner by transferring previously learned
music knowledge to the task of learning to play the piano [3]. One person is able to
take information from a previously learned task and use it in a beneficial way to
learn a related task.

Looking at a concrete example from the domain of machine learning, consider
the task of predicting text sentiment of product reviews where there exists an
abundance of labeled data from digital camera reviews. If the training data and the
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target data are both derived from digital camera reviews, then traditional machine
learning techniques are used to achieve good prediction results. However, in the
case where the training data is from digital camera reviews and the target data is
from food reviews, then the prediction results are likely to degrade due to the
differences in domain data. Digital camera reviews and food reviews still have a
number of characteristics in common, if not exactly the same. They both are written
in textual form using the same language, and they both express views about a
purchased product. Because these two domains are related, transfer learning can be
used to potentially improve the results of a target learner [3]. An alternative way to
view the data domains in a transfer learning environment is that the training data
and the target data exist in different sub-domains linked by a high-level common
domain. For example, a piano player and a guitar player are subdomains of a
musician domain. Further, a digital camera review and a food review are subdo-
mains of a review domain. The high-level common domain determines how the
subdomains are related.

As previously mentioned, the need for transfer learning occurs when there is a
limited supply of target training data. This could be due to the data being rare, the
data being expensive to collect and label, or the data being inaccessible. With big
data repositories becoming more prevalent, using existing datasets that are related
to, but not exactly the same as, a target domain of interest makes transfer learning
solutions an attractive approach. There are many machine learning applications that
transfer learning has been successfully applied to including text sentiment classi-
fication [4], image classification [5–7], human activity classification [8], software
defect classification [9], and multi-language text classification [10–12].

This survey paper aims to provide a researcher interested in transfer learning with
an overview of related works, examples of applications that are addressed by transfer
learning, and issues and solutions that are relevant to the field of transfer learning.
This survey paper provides an overview of current methods being used in the field of
transfer learning as it pertains to data mining tasks for classification, regression, and
clustering problems; however, it does not focus on transfer learning for reinforce-
ment learning (for more information on reinforcement learning see Taylor and Stone
[13]. Information pertaining to the history and taxonomy of transfer learning is not
provided in this survey paper, but can be found in the paper by Pan and Yang [3].
Since the publication of the transfer learning survey paper by Pan and Yang [3] in
2010, there have been over 700 academic papers written addressing advancements
and innovations on the subject of transfer learning. These works broadly cover the
areas of new algorithm development, improvements to existing transfer learning
algorithms, and algorithm deployment in new application domains. The selected
surveyed works in this paper are meant to be diverse and representative of transfer
learning solutions in the past five years. Most of the surveyed papers provide a
generic transfer learning solution; however, some surveyed papers provide solutions
that are specific to individual applications. This paper is written with the assumption
the reader has a working knowledge of machine learning. For more information on
machine learning see Witten and Frank [1]. The surveyed works in this paper are
intended to present a high-level description of proposed solutions with unique and
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salient points being highlighted. Experiments from the surveyed papers are descri-
bed with respect to applied applications, other competing solutions tested, and
overall relative results of the experiments. This survey paper provides a section on
heterogeneous transfer learning which, to the best of our knowledge, is unique.
Additionally, a list of software downloads for various surveyed papers is provided,
which is unique to this paper.

The remainder of this paper is organized as follows. In `̀ Definitions of Transfer
Learning'' section provides definitions and notations of transfer learning. In
`̀ Homogeneous Transfer Learning'' and `̀ Heterogeneous Transfer Learning'' sec-
tions provide solutions on homogeneous and heterogeneous transfer learning,
respectively. In Negative Transfer section provides information on negative transfer
as it pertains to transfer learning. In Transfer Learning Applications section pro-
vides examples of transfer learning applications. In Conclusion and Discussion
section summarizes and discusses potential future research work. The Appendix
provides information on software downloads for transfer learning.

Definitions of Transfer Learning

The following section lists the notation and definitions used for the remainder of
this paper. The notation and definitions in this section match those from the survey
paper by Pan and Yang [3], if present in both papers, to maintain consistency across
both surveys. To provide illustrative examples of the definitions listed below, a
machine learning application of software module defect classification is used where
a learner is trained to predict whether a software module is defect prone or not.

A domain D is defined by two parts, a feature space X and a marginal probability
distribution P(X), where X = {x1,…, xn} 2 X. For example, if the machine learning
application is software module defect classification and each software metric is taken
as a feature, then xi is the i-th feature vector (instance) corresponding to the i-th
software module, n is the number of feature vectors in X, X is the space of all
possible feature vectors, and X is a particular learning sample. For a given domain D,
a task T is defined by two parts, a label space Y, and a predictive function f(∙), which
is learned from the feature vector and label pairs {xi, yi} where xi 2 X and yi 2 Y.
Referring to the software module defect classification application, Y is the set of
labels and in this case contains true and false, yi takes on a value of true or false, and f
(x) is the learner that predicts the label value for the software module x. From the
definitions above, a domain D = {X, P(X)} and a task T = {Y, f(∙)}. Now, DS is
defined as the source domain data where DS = { (xS1, yS1)…, (xSn, ySn)}, where xSi
2 XS is the i-th data instance of DS and ySi 2 YS is the corresponding class label for
xSi. In the same way, DT is defined as the target domain data where DT = { (xT1, yT1)
…, (xTn, yTn)}, where xTi, 2 XT is the i-th data instance of DT and yTi, 2 YT is the
corresponding class label for xTi. Further, the source task is notated as TS, the target
task as TT, the source predictive function as fS(∙), and the target predictive function
as fT(∙).
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Transfer Learning is now formally defined. Given a source domain DS with a
corresponding source task TS and a target domain DT with a corresponding task TT,
transfer learning is the process of improving the target predictive function fT(∙) by
using the related information from DS and TS, where DS 6¼ DT or TS 6¼ TT. The
single source domain defined here can be extended to multiple source domains.
Given the definition of transfer learning, since DS = {XS, P(XS)} and DT = {XT, P
(XT)}, the condition where DS 6¼ DT means that XS 6¼ XT and/or P(XS) 6¼ P(XT).
The case where XS 6¼ XT with respect to transfer learning is defined as heteroge-
neous transfer learning. The case where XS = XT with respect to transfer learning is
defined as homogeneous transfer learning. Going back to the example of software
module defect classification, heterogeneous transfer learning is the case where the
source software project has different metrics (features) than the target software
project. Alternatively, homogeneous transfer learning is when the software metrics
are the same for both the source and the target software projects. Continuing with
the definition of transfer learning, the case where P(XS) 6¼ P(XT) means the mar-
ginal distributions in the input spaces are different between the source and the target
domains. Shimodaira [2] demonstrated that a learner trained with a given source
domain will not perform optimally on a target domain when the marginal distri-
butions of the input domains are different. Referring to the software module defect
classification application, an example of marginal distribution differences is when
the source software program is written for a user interface system and the target
software program is written for DSP signaling decoder algorithm. Another possible
condition of transfer learning (from the definition above) is TS 6¼ TT, and it was
stated that T = {Y, f(∙)} or to rewrite this, T = {Y, P(Y|X)}. Therefore, in a transfer
learning environment, it is possible that YS 6¼ YT and/or P(YS|XS) 6¼ P(YT|XT).
The case where P(YS|XS) 6¼ P(YT|XT) means the conditional probability distribu-
tions between the source and target domains are different. An example of a con-
ditional distribution mismatch is when a particular software module yields different
fault prone results in the source and target domains. The case of YS 6¼ YT refers to a
mismatch in the class space. An example of this case is when the source software
project has a binary label space of true for defect prone and false for not defect
prone, and the target domain has a label space that defines five levels of fault prone
modules. Another case that can cause discriminative classifier degradation is when
P(YS) 6¼ P(YT), which is caused by an unbalanced labeled data set between the
source and target domains. The case of traditional machine learning is DS = DT and
TS = TT. The common notation used in this paper is summarized in Table 3.1.

Table 3.1 Summary of commonly used notation

Notation Description Notation Description

X Input feature space P(X) Marginal distribution

Y Label space P(Y|X) Conditional distribution

T Predictive learning task P(Y) Label distribution

Subscript S Denotes source DS Source domain data

Subscript T Denotes target DT Target domain data

56 3 Transfer Learning Techniques



To elaborate on the distribution issues that can occur between the source and
target domains, the application of natural language processing is used to illustrate.
In natural language processing, text instances are often modeled as a bag-of-words
where a unique word represents a feature. Consider the example of review text
where the source covers movie reviews and the target covers book reviews. Words
that are generic and domain independent should occur at a similar rate in both
domains. However, words that are domain specific are used more frequently in one
domain because of the strong relationship with that domain topic. This is referred to
as frequency feature bias and will cause the marginal distribution between the
source and target domains to be different (P(XS) 6¼ P(XT)). Another form of bias is
referred to as context feature bias and this will cause the conditional distributions to
be different between the source and target domains (P(YS|XS) 6¼ P(YT|XT)). An
example of context feature bias is when a word can have different meanings in two
domains. A specific example is the word “monitor” where in one domain it is used
as a noun and in another domain it is used as a verb. Another example of context
feature bias is with sentiment classification when a word has a positive meaning in
one domain and a negative meaning in another domain. The word “small” can have
a good meaning if describing a cell phone but a bad meaning if describing a hotel
room. A further example of context feature bias is demonstrated in the case of
document sentiment classification of reviews where the source domain contains
reviews of one product written in German and the target domain contains reviews of
a different product written in English. The translated words from the source doc-
ument may not accurately represent the actual words used in the target documents.
An example is the case of the German word “betonen”, which translates to the
English word “emphasize” by Google translator. However, in the target documents
the corresponding English word used is “highlight” [12].

Negative transfer, with regards to transfer learning, occurs when the information
learned from a source domain has a detrimental effect on a target learner. More
formally, given a source domain DS, a source task TS, a target domain DT, a target
task TT, a predictive learner fT1 (∙) trained only with DT, and a predictive learner
fT2 (∙) trained with a transfer learning process combining DT and DS, negative
transfer occurs when the performance of fT1 (∙) is greater than the performance of
fT2 (∙). The topic of negative transfer addresses the need to quantify the amount of
relatedness between the source domain and the target domain and whether an
attempt to transfer knowledge from the source domain should be made. Extending
the definition above, positive transfer occurs when the performance of fT2 (∙) is
greater than the performance of fT1 (∙).

Throughout the literature on transfer learning, there are a number of terminology
inconsistencies. Phrases such as transfer learning and domain adaptation are used to
refer to similar processes. The following definitions will be used in this paper.
Domain adaptation, as it pertains to transfer learning, is the process of adapting one
or more source domains for the means of transferring information to improve the
performance of a target learner. The domain adaptation process attempts to alter a
source domain in an attempt to bring the distribution of the source closer to that of
the target. Another area of literature inconsistencies is in characterizing the transfer

Definitions of Transfer Learning 57



learning process with respect to the availability of labeled and unlabeled data. For
example, Daumé [14] and Chattopadhyay et al. [15] define supervised transfer
learning as the case of having abundant labeled source data and limited labeled
target data, and semi-supervised transfer learning as the case of abundant labeled
source data and no labeled target data. In Gong et al. [16] and Blitzer et al. [17],
semi-supervised transfer learning is the case of having abundant labeled source data
and limited labeled target data, and unsupervised transfer learning is the case of
abundant labeled source data and no labeled target data. Cook et al. [18] and Feuz
and Cook [19] provide a different variation where the definition of supervised or
unsupervised refers to the presence or absence of labeled data in the source domain
and informed or uninformed refers to the presence or absence of labeled data in the
target domain. With this definition, a labeled source and limited labeled target
domain is referred to as informed supervised transfer learning. Pan and Yang [3]
refers to inductive transfer learning as the case of having available labeled target
domain data, transductive transfer learning as the case of having labeled source and
no labeled target domain data, and unsupervised transfer learning as the case of
having no labeled source and no labeled target domain data. This paper will
explicitly state when labeled and unlabeled data are being used in the source and
target domains.

There are different strategies and implementations for solving a transfer learning
problem. The majority of the homogeneous transfer learning solutions employ one
of three general strategies which include trying to correct for the marginal distri-
bution difference in the source, trying to correct for the conditional distribution
difference in the source, or trying to correct both the marginal and conditional
distribution differences in the source. The majority of the heterogeneous transfer
learning solutions are focused on aligning the input spaces of the source and target
domains with the assumption that the domain distributions are the same. If the
domain distributions are not equal, then further domain adaptation steps are needed.
Another important aspect of a transfer learning solution is the form of information
transfer (or what is being transferred). The form of information transfer is cate-
gorized into four general Transfer Categories [3]. The first Transfer Category is
transfer learning through instances. A common method used in this case is for
instances from the source domain to be reweighted in an attempt to correct for
marginal distribution differences. These reweighted instances are then directly used
in the target domain for training (examples in [20, 21]). These reweighting algo-
rithms work best when the conditional distribution is the same in both domains. The
second Transfer Category is transfer learning through features. Feature-based
transfer learning approaches are categorized in two ways. The first approach
transforms the features of the source through reweighting to more closely match the
target domain (e.g. Pan et al. [22]). This is referred to as asymmetric feature
transformation and is depicted in Fig. 3.1b. The second approach discovers
underlying meaningful structures between the domains to find a common latent
feature space that has predictive qualities while reducing the marginal distribution
between the domains (e.g. Blitzer et al. [17]). This is referred to as symmetric
feature transformation and is depicted in Fig. 3.1a. The third Transfer Category is to
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transfer knowledge through shared parameters of source and target domain learner
models or by creating multiple source learner models and optimally combining the
reweighted learners (ensemble learners) to form an improved target learner
(examples in [23, 24, 25]). The last Transfer Category (and the least used approach)
is to transfer knowledge based on some defined relationship between the source and
target domains (examples in [26, 27].

Detailed information on specific transfer learning solutions are presented in
`̀ Homogeneous Transfer Learning'', `̀ Heterogeneous Transfer Learning'', and
`̀ Negative Transfer'' sections. These sections represent the majority of the works
surveyed in this paper. In `̀ Homogeneous Transfer Learning'', `̀ Heterogeneous
Transfer Learning'', and `̀ Negative Transfer'' sections cover homogeneous transfer
learning solutions, heterogeneous transfer learning solutions, and solutions
addressing negative transfer, respectively. The section covering transfer learning
applications focuses on the general applications that transfer learning is applied to,
but does not describe the solution details.

Homogeneous Transfer Learning

This section presents surveyed papers covering homogeneous transfer learning
solutions and is divided into subsections that correspond to the Transfer Categories
of instance-based, feature-based (both asymmetric and symmetric), parameter-
based, and relational-based. Recall that homogeneous transfer learning is the case
where XS = XT. The algorithms surveyed are summarized in Table 3.2 at the end of
this section.

The methodology of homogeneous transfer learning is directly applicable to a big
data environment. As repositories of big data become more available, there is a
desire to use this abundant resource for machine learning tasks, avoiding the timely
and potentially costly collection of new data. If there is an available dataset that is
drawn from a domain that is related to, but does not an exactly match a target domain
of interest, then homogeneous transfer learning can be used to build a predictive
model for the target domain as long as the input feature space is the same.

Fig. 3.1 a Shows the symmetric transformation mapping (TS and TT) of the source (XS) and
target (XT) domains into a common latent feature space. b Shows the asymmetric transformation
(TT) of the source domain (XS) to the target domain (XT)
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Instance-Based Transfer Learning

The paper by Chattopadhyay et al. [15] proposes two separate solutions both using
multiple labeled source domains. The first solution is the Conditional Probability
based Multi-source Domain Adaptation (CP-MDA) approach, which is a domain
adaptation process based on correcting the conditional distribution differences

Table 3.2 Homogeneous transfer learning approaches surveyed in Sect. 3 listing different
characteristics of each approach

Approach Transfer
category

Source
data

Target
data

Multiple
sources

Generic
solution

Negative
transfer

CP-MDA [15] Parameter Labeled Limited
labels

✔ ✔

2SW-MDA [15] Instance Labeled Unlabeled ✔ ✔

FAM [14] Asymmetric
feature

Labeled Limited
labels

✔ ✔

DTMKL [28] Asymmetric
feature

Labeled Unlabeled ✔

JDA [29] Asymmetric
feature

Labeled Unlabeled ✔

ARTL [30] Asymmetric
feature

Labeled Unlabeled ✔

TCA [31] Symmetric
feature

Labeled Unlabeled ✔

SFA [32] Symmetric
feature

Labeled Limited
labels

✔ ✔

SDA [33] Symmetric
feature

Labeled Unlabeled ✔

GFK [16] Symmetric
feature

Labeled Unlabeled ✔ ✔

DCP [34] Symmetric
feature

Labeled Unlabeled ✔

TCNN [35] Symmetric
feature

Labeled Limited
labels

✔

MMKT [36] Parameter Labeled Limited
labels

✔ ✔ ✔

DSM [37] Parameter Labeled Unlabeled ✔ ✔

MsTrAdaBoost [38] Instance Labeled Limited
labels

✔ ✔ ✔

TaskTrAdaBoost [38] Parameter Labeled Limited
labels

✔ ✔ ✔

RAP [27] Relational Labeled Unlabeled

SSFE [39] Hybrid
(instance and
feature)

Labeled Limited
labels
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between the source and target domains. The CP-MDA approach assumes a limited
amount of labeled target data is available. The main idea is to use a combination of
source domain classifiers to label the unlabeled target data. This is accomplished by
first building a classifier for each separate source domain. Then a weight value is
found for each classifier as a function of the closeness in conditional distribution
between each source and the target domain. The weighted source classifiers are
summed together to create a learning task that will find the pseudo labels (estimated
labels later used for training) for the unlabeled target data. Finally, the target learner
is built from the labeled and pseudo labeled target data. The second proposed
solution is the Two Stage Weighting framework for Multi-source Domain
Adaptation (2SW-MDA) which addresses both marginal and conditional distribu-
tion differences between the source and target domains. Labeled target data is not
required for the 2SW-MDA approach; however, it can be used if available. In this
approach, a weight for each source domain is computed based on the marginal
distribution differences between the source and target domains. In the second step,
the source domain weights are modified as a function of the difference in the con-
ditional distribution as performed in the CP-MDA approach previously described.
Finally, a target classifier is learned based on the reweighted source instances and
any labeled target instances that are available. The work presented in Chattopadhyay
et al. [15] is an extension of Duan et al. [40] where the novelty is in calculating the
source weights as a function of conditional probability. Note, the 2SW-MDA
approach is an example of an instance-based Transfer Category, but the CP-MDA
approach is more appropriately classified as a parameter-based Transfer Category
(see `̀ Heterogeneous Transfer Learning'' section). Experiments are performed for
muscle fatigue classification using surface electromyography data where classifi-
cation accuracy is measured as the performance metric. Each source domain rep-
resents one person’s surface electromyography measurements. A baseline approach
is constructed using a Support Vector Machine (SVM) classifier trained on the
combination of seven sources used for this test. The transfer learning approaches that
are tested against include an approach proposed by Huang et al. [20], Pan et al. [31],
Zhong et al. [41], Gao et al. [23], and Duan et al. [40]. The order of performance
from best to worst is 2SW-MDA, CP-MDA, Duan et al. [40], Zhong et al. [41], Gao
et al. [23], Pan et al. [31], Huang et al. [20], and the baseline approach. All the
transfer learning approaches performed better than the baseline approach.

Asymmetric Feature-Based Transfer Learning

In an early and often cited work, Daumé [14] proposes a simple domain adaptation
algorithm, referred to as the Feature Augmentation Method (FAM), requiring only
10 lines of Perl script that uses labeled source data and limited labeled target data.
In a transfer learning environment, there are scenarios where a feature in the source
domain may have a different meaning in the target domain. The issue is referred to
as context feature bias, which causes the conditional distributions between the
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source and target domains to be different. To resolve context feature bias, a method
to augment the source and target feature space with three duplicate copies of the
original feature set is proposed. More specifically, the three duplicate copies of the
original feature set in the augmented source feature space represent a common
feature set, a source specific feature set, and a target specific feature set which is
always set to zero. In a similar way, the three duplicate copies of the original feature
set in the augmented target feature space represent a common feature set, a source
specific feature set which is always set to zero, and a target specific feature set. By
performing this feature augmentation, the feature space is duplicated three times.
From the feature augmentation structure, a classifier learns the individual feature
weights for the augmented feature set, which will help correct for any feature bias
issues. Using a text document example where features are modeled as a
bag-of-words, a common word like “the” would be assigned (through the learning
process) a high weight for the common feature set, and a word that is different
between the source and target like “monitor” would be assigned a high weight for
the corresponding domain feature set. The duplication of features creates feature
separation between the source and target domains, and allows the final classifier to
learn the optimal feature weights. For the experiments, a number of different natural
language processing applications are tested and in each case the classification error
rate is measured as the performance metric. An SVM learner is used to implement
the Daumé [14] approach. A number of baseline approaches with no transfer
learning techniques are measured along with a method by Chelba and Acero [42].
The test results show the Daumé [14] method is able to outperform the other
methods tested. However, when the source and target domains are very similar, the
Daumé [14] approach tends to underperform. The reason for the underperformance
is the duplication of feature sets represents irrelevant and noisy information when
the source and target domains are very similar.

Multiple kernel learning is a technique used in traditional machine learning
algorithms as demonstrated in the works of Wu et al. [43] and Vedaldi et al. [44].
Multiple kernel learning allows for an optimal kernel function to be learned in a
computationally efficient manner. The paper by Duan et al. [28] proposes to
implement a multiple kernel learning framework for a transfer learning environment
called the Domain Transfer Multiple Kernel Learning (DTMKL). Instead of
learning one kernel, multiple kernel learning assumes the kernel is comprised of a
linear combination of multiple predefined base kernels. The final classifier and the
kernel function are learned simultaneously which has the advantage of using
labeled data during the kernel learning process. This is an improvement over Pan
et al. [22] and Huang et al. [20] where a two-stage approach is used. The final
classifier learning process minimizes the structural risk functional [45] and the
marginal distribution between domains using the Maximum Mean Discrepancy
measure [46]. Pseudo labels are found for the unlabeled target data to take
advantage of this information during the learning process. The pseudo labels are
found as a weighted combination of base classifiers (one for each feature) trained
from the labeled source data. A regularization term is added to the optimization
problem to ensure the predicted values from the final target classifier and the base
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classifiers are similar for the unlabeled target data. Experiments are performed on
the applications of video concept detection, text classification, and email spam
detection. The methods tested against include a baseline approach using an SVM
classifier trained on the labeled source data, the feature replication method from
Daumé [14], an adaptive SVM method from Yang et al. [47], a cross-domain SVM
method proposed by Jiang et al. [48], and a kernel mean matching method by
Huang et al. [20]. The DTMKL approach uses an SVM learner for the experiments.
Average precision and classification accuracy are measured as the performance
metrics. The DTMKL method performed the best for all applications, and the
baseline approach is consistently the worst performing. The other methods showed
better performance over the baseline which demonstrated a positive transfer
learning effect.

The work by Long et al. [29] is a Joint Domain Adaptation (JDA) solution that
aims to simultaneously correct for the marginal and conditional distribution dif-
ferences between the labeled source domain and the unlabeled target domain.
Principal Component Analysis (PCA) is used for optimization and dimensionality
reduction. To address the difference in marginal distribution between the domains,
the Maximum Mean Discrepancy distance measure [46] is used to compute the
marginal distribution differences and is integrated into the PCA optimization
algorithm. The next part of the solution requires a process to correct the conditional
distribution differences, which requires labeled target data. Since the target data is
unlabeled, pseudo labels (estimated target labels) are found by learning a classifier
from the labeled source data. The Maximum Mean Discrepancy distance measure is
modified to measure the distance between the conditional distributions and is
integrated into the PCA optimization algorithm to minimize the conditional dis-
tributions. Finally, the features identified by the modified PCA algorithm are used
to train the final target classifier. Experiments are performed for the application of
image recognition and classification accuracy is measured as the performance
metric. Two baseline approaches of a 1-nearest neighbor classifier and a PCA
approach trained on the source data are tested. Transfer learning approaches tested
for this experiment include the approach by Pan [31], Gong et al. [16], and Si et al.
[49]. These transfer learning approaches only attempt to correct for marginal dis-
tribution differences between domains. The Long et al. [29] approach is the best
performing, followed by the Pan [31] and Si et al. [49] approaches (a tie), then the
Gong et al. [16] approach, and finally the baseline approaches. All transfer learning
approaches perform better than the baseline approaches. The possible reason behind
the underperformance of the Gong et al. [16] approach is the data smoothness
assumption that is made for the Gong et al. [16] solution may not be intact for the
data sets tested.

The paper by Long et al. [30] proposes an Adaptation Regularization based
Transfer Learning (ARTL) framework for scenarios of labeled source data and
unlabeled target data. This transfer learning framework proposes to correct the
difference in marginal distribution between the source and target domains, correct
the difference in conditional distribution between the domains, and improve clas-
sification performance through a manifold regularization [50] process (which
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optimally shifts the hyperplane of an SVM learner). This complete framework
process is depicted in Fig. 3.2. The proposed ARTL framework will learn a clas-
sifier by simultaneously performing structural risk minimization [45], reducing the
marginal and conditional distributions between the domains, and optimizing the
manifold consistency of the marginal distribution. To resolve the conditional dis-
tribution differences, pseudo labels are found for the target data in the same way as
proposed by Long et al. [29]. A difference between the ARTL approach and Long
et al. [29] is ARTL learns the final classifier simultaneously while minimizing the
domain distribution differences, which is claimed by Long et al. [30] to be a more
optimal solution. Unfortunately, the solution by Long et al. [29] is not included in
the experiments. Experiments are performed on the applications of text classifica-
tion and image classification where classification accuracy is measured as the
performance metric. There are three baseline methods tested where different clas-
sifiers are trained with the labeled source data. There are five transfer learning
methods tested against, which include methods by Ling et al. [51], Pan et al. [32],
Pan et al. [31], Quanz and Huan [52], and Xiao and Guo [53]. The order of
performance from best to worst is ARTL, Xiao and Guo [53], Pan et al. [31], Pan
et al. [32], Quanz and Huan [52] and Ling et al. [51] (tie), and the baseline
approaches. The baseline methods underperformed all other transfer learning
approaches tested.

Symmetric Feature-Based Transfer Learning

The paper by Pan et al. [31] proposes a feature transformation approach for domain
adaptation called Transfer Component Analysis (TCA), which does not require
labeled target data. The goal is to discover common latent features that have the
same marginal distribution across the source and target domains while maintaining
the intrinsic structure of the original domain data. The latent features are learned
between the source and target domains in a Reproducing Kernel Hilbert Space [54]
using the Maximum Mean Discrepancy [46] as a marginal distribution measure-
ment criteria. Once the latent features are found, traditional machine learning is
used to train the final target classifier. The TCA approach extends the work of Pan
et al. [22] by improving computational efficiency. Experiments are conducted for

Fig. 3.2 ARTL overview showing marginal distribution adaptation (MDA), conditional distri-
bution adaptation (CDA), and manifold regularization (MR). Diagram adapted from Long [30]
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the application of WiFi localization where the location of a particular device is
being predicted. The source domain is comprised of data measured from different
room and building topologies. The performance metric measured is the average
error distance of the position of a device. The transfer learning methods tested
against are from Blitzer et al. [17] and Huang et al. [20]. The TCA method per-
formed the best followed by the Huang et al. [20] approach and the Blitzer et al.
[17] approach. For the Blitzer et al. [17] approach, the manual definition of the
pivot functions (functions that define the correspondence) is important to perfor-
mance and specific to the end application. There is no mention as to how the pivot
functions are defined for WiFi localization.

The work by Pan et al. [32] proposes a Spectral Feature Alignment (SFA) transfer
learning algorithm that discovers a new feature representation for the source and
target domain to resolve the marginal distribution differences. The SFA method
assumes an abundance of labeled source data and a limited amount of labeled target
data. The SFA approach identifies domain-specific and domain-independent features
and uses the domain-independent features as a bridge to build a bipartite graph
modeling the co-occurrence relationship between the domain-independent and
domain-specific features. If the graph shows two domain-specific features having
connections to common domain-independent feature, then there is a higher chance
the domain-specific features are aligned. A spectral clustering algorithm based on
graph spectral theory [55] is used on the bipartite graph to align domain-specific
features and domain-independent features into a set of clusters representing new
features. These clusters are used to reduce the difference between domain-specific
features in the source and the target domains. All the data instances are projected into
this new feature space and a final target classifier is trained using the new feature
representation. The SFA algorithm is a type of correspondence learning where the
domain-independent features act as pivot features (see Blitzer et al. [17] and
Prettenhofer and Stein [11] for further information on correspondence learning).
The SFA method is well-suited for the application of text document classification
where a bag-of-words model is used to define features. For this application there are
domain-independent words that will appear often in both domains and
domain-specific words that will appear often only in a specific domain. This is
referred to as frequency feature bias, which causes marginal distribution differences
between the domains. An example of domain-specific features being combined is the
word “sharp” appearing often in the source domain but not in the target domain, and
the word “hooked” appearing often in the target but not in the source domain. These
words are both connected to the same domain-independent words (for example
“good” and “exciting”). Further, when the words “sharp” or “hooked” appear in text
instances, the labels are the same. The idea is to combine (or align) these two features
(in this case “sharp” and “hooked”) to form a new single invariant feature. The
experiments are performed on sentiment classification where classification accuracy
is measured as the performance metric. A baseline approach is tested where a
classifier is trained only on source data. An upper limit approach is also tested where
a classifier is trained on a large amount of labeled target data. The competing transfer
learning approach tested against is by Blitzer et al. [17]. The order of performance
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for the tests from best to worst is the upper limit approach, SFA, Blitzer et al. [17],
and baseline approach. Not only does the SFA approach demonstrate better per-
formance than Blitzer et al. [17], the SFA approach does not need to manually define
pivot functions as in the Blitzer et al. [17] approach. The SFA approach only
addresses the issue of marginal distribution differences and does not address any
context feature bias issues, which would represent conditional distribution
differences.

The work by Glorot et al. [33] proposes a deep learning algorithm for transfer
learning called a Stacked Denoising Autoencoder (SDA) to resolve the marginal
distribution differences between a labeled source domain and an unlabeled target
domain. Deep learning algorithms learn intermediate invariant concepts between
two data sources, which are used to find a common latent feature set. The first step
in this process is to train the Stacked Denoising Autoencoders [56] with unlabeled
data from the source and target domains. This transforms the input space to discover
the common invariant latent feature space. The next step is to train a classifier using
the transformed latent features with the labeled source data. Experiments are per-
formed on text review sentiment classification where transfer loss is measured as
the performance metric. Transfer loss is defined as the classification error rate using
a learner only trained on the source domain and tested on the target minus the
classification error rate using a learner only trained on the target domain and tested
on the target. There are 12 different source and target domain pairs that are created
from four unique review topics. A baseline method is tested where an SVM clas-
sifier is trained on the source domain. The transfer learning approaches that are
tested include an approach by Blitzer et al. [17], Li and Zong [57], and Pan et al.
[32]. The Glorot et al. [33] approach performed the best with the Blitzer et al. [17],
Li and Zong [57], and Pan et al. [32] methods all having similar performance and
all outperforming the baseline approach.

In the paper by Gong et al. [16], a domain adaptation technique called the
Geodesic Flow Kernel (GFK) is proposed that finds a low-dimensional feature
space, which reduces the marginal distribution differences between the labeled
source and unlabeled target domains. To accomplish this, a geodesic flow kernel is
constructed using the source and target input feature data, which projects a large
number of subspaces that lie on the geodesic flow curve. The geodesic flow curve
represents incremental differences in geometric and statistical properties between
the source and target domain spaces. A classifier is then learned from the geodesic
flow kernel by selecting the features from the geodesic flow curve that are domain
invariant. The work of Gong et al. [16] directly enhances the work of Gopalan et al.
[58] by eliminating tuning parameters and improving computational efficiency. In
addition, a Rank of Domain (ROD) metric is developed to evaluate which of many
source domains is the best match for the target domain. The ROD metric is a
function of the geometric alignment between the domains and the Kullback–Leibler
divergence in data distributions between the projected source and target subspaces.
Experiments are performed for the application of image classification where clas-
sification accuracy is measured as the performance metric. The tests use pairs of
source and target data sets from four available data sets. A baseline approach is
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defined that does not use transfer learning, along with the approach defined by
Gopalan et al. [58]. Additionally, the Gong et al. [16] approach uses a 1-nearest
neighbor classifier. The results in order from best to worst performance are Gong
et al. [16], Gopalan et al. [58], and the baseline approach. The ROD measurements
between the different source and target domain pairs tested have a high correlation
to the actual test results, meaning the domains that are found to be more related with
respect to the ROD measurement had higher classification accuracies.

The solution by Shi and Sha [34], referred to as the Discriminative Clustering
Process (DCP), proposes to equalize the marginal distribution of the labeled source
and unlabeled target domains. A discriminative clustering process is used to dis-
cover a common latent feature space that is domain invariant while simultaneously
learning the final target classifier. The motivating assumptions for this solution are
the data in both domains form well-defined clusters which correspond to unique
class labels, and the clusters from the source domain are geometrically close to the
target clusters if they share the same label. Through clustering, the source domain
labels can be used to estimate the target labels. A one-stage solution is formulated
that minimizes the marginal distribution differences while minimizing the predicted
classification error in the target domain using a nearest neighbor classifier.
Experiments are performed for object recognition and sentiment classification
where classification accuracy is measured as the performance metric. The approach
described above is tested against a baseline approach taken from Weinberger and
Saul [59] with no transfer learning. Other transfer learning approaches tested
include an approach from Pan et al. et al. [31], Blitzer et al. [17], and Gopalan et al.
[58]. The Blitzer et al. [17] approach is not tested for the object recognition
application because the pivot functions are not easily defined for this application.
For the object recognition tests, the Shi and Sha [34] method is best in five out of
six comparison tests. For the text classification tests, the Shi and Sha [34] approach
is the best performing overall, with the Blitzer et al. [17] approach a close second.
An important point to note is the baseline method outperformed the Pan et al. [31]
and Gopalan et al. [58] methods in both tests. Both the Pan et al. [31] and Gopalan
et al. [58] methods are two-stage domain adaptation processes where the first stage
reduces the marginal distributions between the domains and the second stage trains
a classifier with the adapted domain data. This paper offers a hypothesis that
two-stage processes are actually detrimental to transfer learning (causes negative
transfer). The one-stage learning process is a novel idea presented by this paper.
The hypothesis that the two-stage transfer learning process creates low performing
learners does not agree with the results presented in the individual papers by
Gopalan et al. [58] and Pan et al. [31] and other previously surveyed works.

Convolutional Neural Networks (CNN) have been successfully used in tradi-
tional data mining environments [60]. However, a CNN requires a large amount of
labeled training data to be effective, which may not be available. The paper by
Oquab et al. [35] proposes a transfer learning method of training a CNN with
available labeled source data (a source learner) and then extracting the CNN
internal layers (which represent a generic mid-level feature representation) to a
target CNN learner. This method is referred to as the Transfer Convolutional Neural
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Network (TCNN). To correct for any further distribution differences between the
source and the target domains, an adaptation layer is added to the target CNN
learner, which is trained from the limited labeled target data. The experiments are
run on the application of object image classification where average precision is
measured as the performance metric. The Oquab et al. [35] method is tested against
a method proposed by Marszalek et al. [61] and a method proposed by Song et al.
[62]. Both the Marszalek et al. [61] and Song et al. [62] approaches are not transfer
learning approaches and are trained on the limited labeled target data. The first
experiment is performed using the Pascal VOC 2007 data set as the target and
ImageNet 2012 as the source. The Oquab et al. [35] method outperformed both
Song et al. [62] and Marszalek et al. [61] approaches for this test. The second
experiment is performed using the Pascal VOC 2012 data set as the target and
ImageNet 2012 as the source. In the second test, the Oquab et al. [35] method
marginally outperformed the Song et al. [62] method (the Marszalek et al. [61]
method was not tested for the second test). The tests successfully demonstrated the
ability to transfer information from one CNN learner to another.

Parameter-Based Transfer Learning

The paper by Tommasi et al. [36] addresses the transfer learning environment
characterized by limited labeled target data and multiple labeled source domains
where each source corresponds to a particular class. In this case, each source is able
to build a binary learner to predict that class. The objective is to build a target
binary learner for a new class using minimal labeled target data and knowledge
transferred from the multiple source learners. An algorithm is proposed to transfer
the SVM hyperplane information of each of the source learners to the new target
learner. To minimize the effects of negative transfer, the information transferred
from each source to the target will be weighted such that the most related source
domains receive the highest weighting. The weights are determined through a leave
out one process as defined by Cawley [63]. The Tommasi et al. [36] approach,
called the Multi-Model Knowledge Transfer (MMKT) method, extends the method
proposed by Tommasi and Caputo [64] that only transfers a single source domain.
Experiments are performed on the application of image recognition where classi-
fication accuracy is measured as the performance metric. Transfer learning methods
tested include an average weight approach (same as Tommasi et al. [36] but all
source weights are equal), and the Tommasi and Caputo [64] approach. A baseline
approach is tested, which is trained on the limited labeled target data. The best
performing method is Tommasi et al. [36], followed by the average weight,
Tommasi and Caputo [64], and the baseline approach. As the number of labeled
target instances goes up, the Tommasi et al. [36] and average weight methods
converge to the same performance. This is because the adverse effects of negative
transfer are lessened as the labeled target data increases. This result demonstrates
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the Tommasi et al. [36] approach is able to lessen the effects of negative transfer
from unrelated sources.

The transfer learning approach presented in the paper by Duan et al. [37],
referred to as the Domain Selection Machine (DSM), is tightly coupled to the
application of event recognition in consumer videos. Event recognition in videos is
the process of predicting the occurrence of a particular event or topic (e.g. “show”
or “performance”) in a given video. In this scenario, the target domain is unlabeled
and the source information is obtained from annotated images found via web
searches. For example, a text query of the event “show” for images on
Photosig.com represents one source and the same query on Flickr.com represents
another separate source. The Domain Selection Machine proposed in this paper is
realized as follows. For each individual source, an SVM classifier is created using
SIFT [65] image features. The final target classifier is made up of two parts. The
first part is a weighted sum of the source classifier outputs whose input is the SIFT
features from key frames of the input video. The second part is a learning function
whose inputs are Space-Time features [66] from the input video and is trained from
target data where the target labels are estimated (pseudo labels) from the weighted
sum of the source classifiers. To combat the effects of negative transfer from
unrelated sources, the most relevant source domains are selected by using an
alternating optimization algorithm that iteratively solves the target decision function
and the domain selection vector. Experiments are performed in the application of
event recognition in videos as described above where the mean average precision is
measured as the performance metric. A baseline method is created by training a
separate SVM classifier on each source domain and then equally combining the
classifiers. The other transfer learning approaches tested include the approach by
Bruzzone and Marconcini [67], Schweikert et al. [68], Duan et al. [40], and
Chattopadhyay et al. [15]. The Duan et al. [40] approach outperforms all the other
approaches tested. The other approaches all have similar results, meaning the
transfer learning methods did not outperform the baseline approach. The possible
reason for this result is the existence of unrelated sources in the experiment. The
other transfer learning approaches tested had no mechanism to guard against
negative transfer from unrelated sources.

The paper by Yao and Doretto [38] first presents an instance-based transfer
learning approach followed by a separate parameter-based transfer learning
approach. In the transfer learning process, if the source and target domains are not
related enough, negative transfer can occur. Since it is difficult to measure the
relatedness between any particular source and target domain, Yao and Doretto [38]
proposes to transfer knowledge from multiple source domains using a boosting
method in an attempt to minimize the effects of negative transfer from a single
unrelated source domain. The boosting process requires some amount of labeled
target data. Yao and Doretto [38] effectively extends the work of Dai et al. [69]
(TrAdaBoost) by expanding the transfer boosting algorithm to multiple source
domains. In the TrAdaBoost algorithm, during every boosting iteration, a so-called
weak classifier is built using weighted instance data from the previous iteration.
Then, the misclassified source instances are lowered in importance and the
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misclassified target instances are raised in importance. In the multi-source
TrAdaBoost algorithm (called MsTrAdaBoost), each iteration step first finds a
weak classifier for each source and target combination, and then the final weak
classifier is selected for that iteration by finding the one that minimizes the target
classification error. The instance reweighting step remains the same as in the
TrAdaBoost. An alternative multi-source boosting method (TaskTrAdaBoost) is
proposed that transfers internal learner parameter information from the source to the
target. The TaskTrAdaBoost algorithm first finds candidate weak classifiers from
each individual source by performing an AdaBoost process on each source domain.
Then an AdaBoost process is performed on the labeled target data, and at every
boosting iteration, the weak classifier used is selected from the candidate weak
source classifiers (found in the previous step) that has the lowest classification error
using the labeled target data. Experiments are performed for the application of
object category recognition where the area under the curve (AUC) is measured as
the performance metric. An AdaBoost baseline approach using only the limited
labeled target data is measured along with a TrAdaBoost approach using a single
source (the multiple sources are combined to one) and the limited labeled target
data. Linear SVM learners are used as the base classifiers in all approaches. Both
the MsTrAdaBoost and TaskTrAdaBoost approaches outperform the baseline
approach and TrAdaBoost approach. The MsTrAdaBoost and TaskTrAdaBoost
demonstrated similar performance.

Relational-Based Transfer Learning

The specific application addressed in the paper by Li et al. [27] is to classify words
from a text document into one of three classes (e.g. sentiments, topics, or neither).
In this scenario, there exists a labeled text source domain on one particular subject
matter and an unlabeled text target domain on a different subject matter. The main
idea is that sentiment words remain constant between the source and target
domains. By learning the grammatical and sentence structure patterns of the source,
a relational pattern is found between the source and target domains, which is used to
predict the topic words in the target. The sentiment words act as a common linkage
or bridge between the source and target domains. A bipartite word graph is used to
represent and score the sentence structure patterns. A bootstrapping algorithm is
used to iteratively build a target classifier from the two domains. The bootstrapping
process starts with defining seeds which are instances from the source that match
frequent patterns in the target. A cross domain classifier is then trained with the seed
information and extracted target information (there is no target information in the
first iteration). The classifier is used to predict the target labels and the top confi-
dence rated target instances are selected to reconstruct the bipartite word graph. The
bipartite word graph is now used to select new target instances that are added to the
seed list. This bootstrapping process continues over a selected number of iterations,
and the cross domain classifier learned in the bootstrapping process is now available
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to predict target samples. This method is referred to as the Relational Adaptive
bootstraPping (RAP) approach. The experiments tested the Li et al. [27] approach
against an upper bound method where a standard classifier is trained with a large
amount of target data. Other transfer learning methods tested include an approach
by Hu and Liu [70], Qiu et al. [71], Jakob and Gurevych [72], and Dai et al. [69].
The application tested is word classification as described above where the F1 score
is measured as the performance metric. The two domains tested are related to movie
reviews and product reviews. The Li et al. [27] method performed better than the
other transfer learning methods, but fell short of the upper bound method as
expected. In its current form, this algorithm is tightly coupled with its underlying
text application, which makes it difficult to use for other non-text applications.

Hybrid-Based (Instance and Parameter) Transfer Learning

The paper by Xia et al. [39] proposes a two step approach to address marginal
distribution differences and conditional distribution differences between the source
and target domains called the Sample Selection and Feature Ensemble (SSFE)
method. A sample selection process, using a modified version of Principal
Component Analysis, is employed to select labeled source domain samples such
that the source and target marginal distributions are equalized. Next, a feature
ensemble step attempts to resolve the conditional distribution differences between
the source and target domains. Four individual classifiers are defined corresponding
to parts of speech of noun, verb, adverb/adjective, and other. The four classifiers are
trained using only the features that correspond to that part of speech. The training
data is the limited labeled target and the labeled source selected in the previous
sample selection step. The four classifiers are weighted as a function of minimizing
the classification error using the limited labeled target data. The weighted output of
the four classifiers is used as the final target classifier. This work by Xia et al. [39]
extends the earlier work of Xia and Zong [73]. The experiments are performed for
the application of review sentiment classification using four different review cate-
gories, where each category is combined to create 12 different source and target
pairs. Classification accuracy is measured as the performance metric. A baseline
approach using all the training data from the source is constructed, along with a
sample selection approach (only using the first step defined above), a feature
ensemble approach (only using the second step defined above) and the complete
approach outlined above. The complete approach is the best performing, followed
by sample selection and feature ensemble approaches, and the baseline approach.
The sample selection and feature ensemble approaches perform equally as well in
head-to-head tests. The weighting of the four classifiers (defined by the corre-
sponding parts of speech) in the procedure above gives limited resolution in
attempting to adjust for context feature bias issues. A method of having more
classifiers in the ensemble step could yield better performance at the expense of
higher complexity.
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Discussion of Homogeneous Transfer Learning

The previous surveyed homogeneous transfer learning works (summarized in
Table 3.2) demonstrate many different characteristics and attributes. Which
homogeneous transfer learning solution is best for a particular application? An
important characteristic to evaluate in the selection process is what type of differ-
ences exist between a given source and target domain. The previous solutions
surveyed address domain adaptation by correcting for marginal distribution dif-
ferences, correcting for conditional distribution differences, or correcting for both
marginal and conditional distribution differences. The surveyed works of Duan
et al. [28], Gong et al. [16], Pan et al. [31], Li et al. [27], Shi and Sha [34], Oquab
et al. [35], Glorot et al. [33], and Pan et al. [32] are focused on solving the
differences in marginal distribution between the source and target domains. The
surveyed works of Daumé [14], Yao and Doretto [38], Tommasi et al. [36] are
focused on solving the differences in conditional distribution between the source
and target domains. Lastly, the surveyed works of Long et al. [30], Xia et al. [39],
Chattopadhyay et al. [15], Duan et al. [37], and Long et al. [29] correct the dif-
ferences in both the marginal and conditional distributions. Correcting for the
conditional distribution differences between the source and target domain can be
problematic as the nature of a transfer learning environment is to have minimal
labeled target data. To compensate for the limited labeled target data, many of the
recent transfer learning solutions create pseudo labels for the unlabeled target data
to facilitate the conditional distribution correction process between the source and
target domains. To further help determine which solution is best for a given transfer
learning application, the information in Table 3.2 should be used to match the
characteristics of the solution to that of the desired application environment. If the
application domain contains multiple sources where the sources are not mutually
uniformly distributed, a solution that guards against negative transfer may be of
greater benefit. A recent trend in the development of transfer learning solutions is
for solutions to address both marginal and conditional distribution differences
between the source and target domains. Another emerging solution trend is the
implementation of a one-stage process as compared to a two-stage process. In the
recent works of Long et al. [30], Duan et al. [28], Shi and Sha [34], and Xia et al.
[39], a one-stage process is employed that simultaneously performs the domain
adaptation process while learning the final classifier. A two-stage solution first
performs the domain adaptation process and then independently learns the final
classifier. The claim by Long et al. [30] is a one-stage solution achieves enhanced
performance because the simultaneous solving of domain adaptation and the
classifier establishes mutual reinforcement. The surveyed homogeneous transfer
learning works are not specifically applied to big data solutions; however, there is
nothing to preclude their use in a big data environment.
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Heterogeneous Transfer Learning

Heterogeneous transfer learning is the scenario where the source and target domains
are represented in different feature spaces. There are many applications where
heterogeneous transfer learning is beneficial. Heterogeneous transfer learning
applications that are covered in this section include image recognition [5–7, 74–76],
multi-language text classification [5, 10–12, 76], single language text classification
[4], drug efficacy classification [74], human activity classification [8], and software
defect classification [9]. Heterogeneous transfer learning is also directly applicable
to a big data environment. As repositories of big data become more available, there
is a desire to use this abundant resource for machine learning tasks, avoiding the
timely and potentially costly collection of new data. If there is an available dataset
drawn from a target domain of interest that has a different feature space from
another target dataset (also drawn from the same target domain), then heteroge-
neous transfer learning can be used to bridge the difference in the feature spaces and
build a predictive model for that target domain. Heterogeneous transfer learning is
still a relatively new area of study as the majority of the works covering this topic
have been published in the last five years. From a high-level view, there are two
main approaches to solving the heterogeneous feature space difference. The first
approach, referred to as symmetric transformation shown in Fig. 3.1a, separately
transforms the source and target domains into a common latent feature space in an
attempt to unify the input spaces of the domains. The second approach, referred to
as asymmetric transformation as shown in Fig. 3.1b, transforms the source feature
space to the target feature space to align the input feature spaces. The asymmetrical
transformation approach is best used when the same class instances in the source
and target can be transformed without context feature bias. Many of the hetero-
geneous transfer learning solutions surveyed make the implicit or explicit
assumption that the source and the target domain instances are drawn from the same
domain space. With this assumption there should be no significant distribution
differences between the domains. Therefore, once the differences in input feature
spaces are resolved, no further domain adaptation needs to be performed.

As is the case with homogeneous transfer learning solutions, whether the source
and target domains contain labeled data drives the solution formulation for
heterogeneous approaches. Data label availability is a function of the underlying
application. The solutions surveyed in this paper have different labeled data
requirements. For transfer learning to be feasible, the source and the target domains
must be related in some way. Some heterogeneous solutions require an explicit
mapping of the relationship or correspondence between the source and target
domains. For example, the solutions defined for Prettenhofer and Stein [11] and
Wei and Pal [77] require manual definitions of source and target correspondence.
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Symmetric Feature-Based Transfer Learning

The transfer learning approach proposed by Prettenhofer and Stein [11] addresses
the heterogeneous scenario of a source domain containing labeled and unlabeled
data, and a target domain containing unlabeled data. The structural correspondence
learning technique from Blitzer et al. [17] is applied to this problem. Structural
correspondence learning depends on the manual definition of pivot functions that
capture correspondence between the source and target domains. Effective pivot
functions should use features that occur frequently in both domains and have good
predictive qualities. Each pivot function is turned into a linear classifier using data
from the source and target domains. From these pivot classifiers, correspondences
between features are discovered and a latent feature space is learned. The latent
feature space is used to train the final target classifier. The paper by Prettenhofer and
Stein [11] uses this solution to solve the problem of text classification where the
source is written in one language and the target is written in a different language. In
this specific implementation referred to as Cross-Language Structural
Correspondence Learning (CLSCL), the pivot functions are defined by pairs of
words, one from the target and one from the source, that represent direct word
translations from one language to the other. The experiments are performed on the
applications of document sentiment classification and document topic classification.
English documents are used in the source and other language documents are used in
the target. The baseline method used in this test trains a learner on the labeled source
documents, then translates the target documents to the source language and tests the
translated version. An upper bound method is established by training a learner with
the labeled target documents and testing with the target documents. Average clas-
sification accuracy is measured as the performance metric. The average results show
the upper bound method performing the best and the Prettenhofer and Stein [11]
method performing better than the baseline method. An issue with using structural
correspondence learning is the difficulty in generalizing the pivot functions. For this
solution, the pivot functions need to be manually and uniquely defined for a specific
application, which makes it very difficult to port to other applications.

The paper by Shi et al. [74], referred to as Heterogeneous Spectral Mapping
(HeMap), addresses the specific transfer learning scenario where the input feature
space is different between the source and target (XS 6¼ XT), the marginal distri-
bution is different between the source and the target (P(XS) 6¼ P(XT)), and the
output space is different between the source and the target (YS 6¼ YT.). This
solution uses labeled source data that is related to the target domain and limited
labeled target data. The first step is to find a common latent input space between the
source and target domains using a spectral mapping technique. The spectral map-
ping technique is modeled as an optimization objective that maintains the original
structure of the data while minimizing the difference between the two domains. The
next step is to apply a clustering based sample selection method to select related
instances as new training data, which resolves the marginal distribution differences
in the latent input space. Finally, a Bayesian based method is used to find the
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relationship and resolve the differences in the output space. Experiments are per-
formed for the applications of image classification and drug efficacy prediction.
Classification error rate is measured as the performance metric. This solution
demonstrated better performance as compared to a baseline approach; however,
details on the baseline approach are not documented in the paper and no other
transfer learning solutions are tested.

The algorithm by Wang and Mahadevan [4], referred to as the Domain
Adaptation Manifold Alignment (DAMA) algorithm, proposes using a manifold
alignment [78] process to perform a symmetric transformation of the domain input
spaces. In this solution, there are multiple labeled source domains and a limited
labeled target domain for a total of K domains where all K domains share the same
output label space. The approach is to create a separate mapping function for each
domain to transform the heterogeneous input space to a common latent input space
while preserving the underlying structure of each domain. Each domain is modeled
as a manifold. To create the latent input space, a larger matrix model is created that
represents and captures the joint manifold union of all input domains. In this
manifold model, each domain is represented by a Laplacian matrix that captures the
closeness to other instances sharing the same label. The instances with the same
labels are forced to be neighbors while separating the instances with different labels.
A dimensionality reduction step is performed through a generalized eigenvalue
decomposition process to eliminate feature redundancy. The final learner is built in
two stages. The first stage is a linear regression model trained on the source data
using the latent feature space. The second stage is also a linear regression model
that is summed with the first stage. The second stage uses a manifold regularization
[50] process to ensure the prediction error is minimized when using the labeled
target data. The first stage is trained only using the source data and the second stage
compensates for the domain differences caused by the first stage to achieve
enhanced target predictions. The experiments are focused on the application of
document text classification where classification accuracy is measured as the per-
formance metric. The methods tested against include a Canonical Correlation
Analysis approach and a Manifold Regularization approach, which is considered
the baseline method. The baseline method uses the limited labeled target domain
data and does not use source domain information. The approach presented in this
paper substantially outperforms the Canonical Correlation Analysis and baseline
approach; however, these approaches are not directly referenced so it is difficult to
understand the significance of the test results. A unique aspect of this paper is the
modeling of multiple source domains in a heterogeneous solution.

There are scenarios where a large amount of unlabeled heterogeneous source
data is readily available that could be used to improve the predictive performance of
a particular target learner. The paper by Zhu et al. [7], which presents the method
called the Heterogeneous Transfer Learning Image Classification (HTLIC),
addresses this scenario with the assumption of having access to a sufficiently large
amount of labeled target data. The objective is to use the large supply of available
unlabeled source data to create a common latent feature input space that will
improve prediction performance in the target classifier. The solution proposed by
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Zhu et al. [7] is tightly coupled to the application of image classification and is
described as follows. Images with labeled categories (e.g. dog, cake, starfish, etc.)
are available in the target domain. To obtain the source data, a web search is
performed from Flickr for images that “relate” to the labeled categories. For
example, for the category of dog, the words dog, doggy, and greyhound may be
used in the Flickr search. As a reference point, the idea of using annotated images
from Flickr as unlabeled source data was first proposed by Yang et al. [79]. The
retrieved images from Flickr have one or more word tags associated with each
image. These tagged image words are then used to search for text documents using
Google search. Next, a two-layer bipartite graph is constructed where the first layer
represents linkages between the source images and the image tags. The second layer
represents linkages between the image tags and the text documents. If an image tag
appears in a text document, then a link is created, otherwise there is no link. Images
in both the source and the target are initially represented by an input feature set that
is derived from the pixel information using SIFT descriptors [65]. Using the initial
source image features and the bipartite graph representation derived only from the
source image tags and text data, a common latent semantic feature set is learned by
employing Latent Semantic Analysis [80]. A learner is now trained with the
transformed labeled target instances. Experiments are performed on the proposed
approach where 19 different image categories are selected. Binary classification is
performed testing different image category pairs. A baseline method is tested using
an SVM classifier trained only with the labeled target data. Methods by Raina et al.
[81] and by Wang et al. [82] are also tested. The approach proposed by Zhu et al.
[7] performed the best overall followed by Raina et al. [81], Wang et al. [82], and
baseline approach. The idea of using an abundant source of unlabeled data available
through an internet search to improve prediction performance is a very alluring
premise. However, this method is very specific to image classification and is
enabled by having a web site like Flickr, which essentially provides unlimited
labeled image data. This method is difficult to port to other applications.

The transfer learning solution proposed by Qi et al. [75] is another example of an
approach that specifically addresses the application of image classification. In the
paper by Qi et al. [75], the author claims the application of image classification is
inherently more difficult than text classification because image features are not
directly related to semantic concepts inherent in class labels. Image features are
derived from pixel information, which is not semantically related to class labels, as
opposed to word features that have semantic interpretability to class labels. Further,
labeled image data is more scarce as compared to labeled text data. Therefore, a
transfer learning environment for image classification is desired where an abun-
dance of labeled text data (source) is used to enhance a learner trained on limited
labeled image data (target). In this solution, text documents are identified by per-
forming a web search (from Wikipedia for example) on class labels. In order to
perform the knowledge transfer from the text documents (source) to the image
(target) domain, a bridge in the form of a co-occurrence matrix is used that relates
the text and image information. The co-occurrence matrix contains text instances
with the corresponding image instances that are found in that particular text
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document. The co-occurrence matrix can be programmatically built by crawling
web pages and extracting the relevant text and image feature information. Using the
co-occurrence matrix, a common latent feature space is found between the text and
image features, which is used to learn the final target classifier. This approach,
called the Text To Image (TTI) method, is similar to Zhu et al. [7]. However, Zhu
et al. [7] does not use labeled source data to enhance the knowledge transfer, which
will result in degraded performance when there is limited labeled target data.
Experiments are performed with the methods proposed by Qi et al. [75], Dai et al.
[83], Zhu et al. [7], and a baseline approach using a standard SVM classifier trained
on the limited labeled target data. The text documents are collected from Wikipedia,
and classification error rate is measured as the performance metric. The results show
the Zhu et al. [7] method performing the best in 15 % of the trials, the Dai et al. [83]
method being the best in 10 % of the trials, and the Qi et al. [75] method leading in
75 % of the trials. As with the case of Zhu et al. [7], this method is very specific to
the application of image classification and is difficult to port to other applications.

The scenario addressed in the paper by Duan et al. [5] is focused on heteroge-
neous domain adaptation with a single labeled source domain and a target domain
with limited labeled samples. The solution proposed is called Heterogeneous
Feature Augmentation (HFA). A transformation matrix P is defined for the source
and a transformation matrix Q is defined for the target to project the feature spaces
to a common latent space. The latent feature space is augmented with the original
source and target feature set and zeros where appropriate. This means the source
input data projection has the common latent features, the original source features,
and zeros for the original target features. The target input data projection has the
common latent features, zeros for the original source features, and the original
target features. This feature augmentation method was first introduced by Daumé
[14] and is used to correct for conditional distribution differences between the
domains. For computational simplification, the P and Q matrices are not directly
found but combined and represented by an H matrix. An optimization problem is
defined by minimizing the structural risk functional [45] of SVM as a function of
the H matrix. The final target prediction function is found using an alternating
optimization algorithm to simultaneously solve the dual problem of SVM and the
optimal transformation H matrix. The experiments are performed for the applica-
tions of image classification and text classification. The source contains labeled
image data and the target contains limited labeled image data. For the image fea-
tures, SURF [84] features are extracted from the pixel information and then clus-
tered into different dimension feature spaces creating the heterogeneous source and
target environment. For the text classification experiments, the target contains
Spanish language documents and the source contains documents in four different
languages. The experiments test against a baseline method, which is constructed by
training an SVM learner on the limited labeled target data. Other heterogeneous
adaptation methods that are tested include the method by Wang and Mahadevan [4],
Shi et al. [74], and Kulis et al. [6]. For the image classification test, the HFA method
outperforms all the methods tested by an average of one standard deviation with
respect to classification accuracy. The Kulis et al. [6] method has comparable
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results to the baseline method (possibly due to some uniqueness in the data set) and
the Wang and Mahadevan [4] method slightly outperforms the baseline method
(possibly due to a weak manifold structure in the data set). For the text classification
test, the HFA method outperforms all methods tested by an average of 1.5 standard
deviation. For this test, the Kulis et al. [6] method is second in performance,
followed by Wang and Mahadevan [4], and then the baseline method. The Shi et al.
[74] method performed worse than the baseline method in both tests. A possible
reason for this result is the Shi et al. [74] method does not specifically use the
labeled information from the target when performing the symmetric transformation,
which will result in degraded classification performance [76].

The work of Li et al. [76], called the Semi-supervised Heterogeneous Feature
Augmentation (SHFA) approach, addresses the heterogeneous scenario of an
abundance of labeled source data and limited target data, and directly extends the
work of Duan et al. [5]. In this work, the H transformation matrix, which is
described above by Duan et al. [5], is decomposed into a linear combination of a set
of rank-one positive semi-definite matrices that allow for Multiple Kernel Learning
solvers (defined by Kloft et al. [85]) to be used to find a solution. In the process of
learning the H transformation matrix, the labels for the unlabeled target data are
estimated (pseudo labels created) and used while learning the final target classifier.
The pseudo labels for the unlabeled target data are found from an SVM classifier
trained on the limited labeled target data. The high-level domain adaptation is
shown in Fig. 3.3. Experiments are performed for three applications which include
image classification (where 31 unique classes are defined), multi-language text
document classification (where six unique classes are defined), and multi-language
text sentiment classification. Classification accuracy is measured as the performance
metric. The method by Li et al. [76] is tested against a baseline method using an
SVM learner and trained on the limited labeled target data. Further, other hetero-
geneous methods tested include Wang and Mahadevan [4], Duan et al. [5], Kulis
et al. [6], Shi et al. [74]. By averaging the three different application test results, the
order of performance from best to worst is Li et al. [76], Duan et al. [5], Wang and
Mahadevan [4], baseline and Kulis et al. [6] (tie), and Shi et al. [74].

Fig. 3.3 Depicts algorithm approach by Li [76] where the heterogeneous source and target
features are transformed to an augmented latent feature space. TS and TT are transformation
functions. P and Q are projection matrices as described in Duan [5]. Diagram adapted from Li [76]
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Asymmetric Feature-Based Transfer Learning

The work of Kulis et al. [6], referred to as the Asymmetric Regularized
Cross-domain Transformation (ARC-t), proposes an asymmetric transformation
algorithm to resolve the heterogeneous feature space between domains. For this
scenario, there is an abundance of labeled source data and limited labeled target
data. An objective function is first defined for learning the transformation matrix.
The objective function contains a regularizer term and a cost function term that is
applied to each pair of cross-domain instances and the learned transformation
matrix. The construction of the objective function is responsible for the domain
invariant transformation process. The optimization of the objective function aims to
minimize the regularizer and the cost function terms. The transformation matrix is
learned in a non-linear Gaussian RBF kernel space. The method presented is
referred to as the Asymmetric Regularized Cross-domain transformation. Two
experiments using this approach are performed for image classification where
classification accuracy is measured as the performance metric. There are 31 image
classes defined for these experiments. The first experiment (test 1) is where
instances of all 31 image classes are included in the source and target training data.
In the second experiment (test 2), only 16 image classes are represented in the target
training data (all 31 are represented in the source). To test against other baseline
approaches, a method is needed to bring the source and target input domains
together. A preprocessing step called Kernel Canonical Correlation Analysis
(proposed by Shawe-Taylor and Cristianini [86]) is used to project the source and
target domains into a common domain space using symmetric transformation.
Baseline approaches tested include k-nearest neighbors, SVM, metric learning
proposed by Davis et al. [87], feature augmentation proposed by Daumé [14], and a
cross domain metric learning method proposed by Saenko et al. [88]. For test 1, the
Kulis et al. [6] approach performs marginally better than the other methods tested.
For test 2, the Kulis et al. [6] approach performs significantly better compared to the
k-nearest neighbors approach (note the other methods cannot be tested against as
they require all 31 classes to be represented in the target training data). The Kulis
et al. [6] approach is best suited for scenarios where all of the classes are not
represented in the target training data as demonstrated in test 2.

The problem domain defined by Harel and Mannor [8] is of limited labeled target
data and multiple labeled data sources where an asymmetric transformation is
desired for each source to resolve the mismatch in feature space. The first step in the
process is to normalize the features in the source and target domains, then group the
instances by class in the source and target domains. For each class grouping, the
features are mean adjusted to zero. Next, each individual source class group is paired
with the corresponding target class group, and a singular value decomposition
process is performed to find the specific transformation matrix for that class
grouping. Once the transformation is performed, the features are mean shifted back
reversing the previous step, and the final target classifier is trained using the
transformed data. Finding the transformation matrix using the singular value
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decomposition process allows for the marginal distributions within the class
groupings to be aligned while maintaining the structure of the data. This approach is
referred to as the Multiple Outlook MAPping algorithm (MOMAP). The experi-
ments use data taken from wearable sensors for the application of activity classifi-
cation. There are five different activities defined for the experiment which include
walking, running, going upstairs, going downstairs, and lingering. The source
domain contains similar (but different) sensor readings as compared to the target.
The method proposed by Harel and Mannor [8] is compared against a baseline
method that trains a classifier with the limited labeled target data and an upper bound
method that uses a significantly larger set of labeled target data to train a classifier.
An SVM learner is used as the base classifier and a balanced error rate (due to an
imbalance in the test data) is measured as the performance metric. The Harel and
Mannor [8] approach outperforms the baseline method in every test and falls short of
the upper bound method in every test with respect to the balanced error rate.

The heterogeneous transfer learning scenario addressed by Zhou et al. [10]
requires an abundance of labeled source data and limited labeled target data. An
asymmetric transformation function is proposed to map the source features to the
target features. To learn the transformation matrix, a multi-task learning method
based on Ando and Zhang [89] is adopted. The solution, referred to as the Sparse
Heterogeneous Feature Representation (SHFR), is implemented by creating a
binary classifier for each class in the source and the target domains separately. Each
binary classifier is assigned a weight term where the weight terms are learned by
combining the weighted classifier outputs, while minimizing the classification error
of each domain. The weight terms are now used to find the transformation matrix by
minimizing the difference between the target weights and the transformed source
weights. The final target classifier is trained using the transformed source data and
original target data. Experiments are performed for text document classification
where the target domain contains documents written in one language and the source
domain contains documents written in different languages. A baseline method using
a linear SVM classifier trained on the labeled target is established along with testing
against the methods proposed by Wang and Mahadevan [4], Kulis et al. [6], and
Duan et al. [5]. The method proposed by Zhou et al. [10] performed the best for all
tests with respect to classification accuracy. The results of the other approaches are
mixed as a function of the data sets used where the Duan et al. [5] method per-
formed either second or third best.

The application of software module defect prediction is usually addressed by
training a classifier with labeled data taken from the software project of interest. The
environment described in Nam and Kim [9] for software module defect prediction
attempts to use labeled source data from one software project to train a classifier to
predict unlabeled target data from another project. The source and target software
projects collect different metrics making the source and target feature spaces
heterogeneous. The proposed solution, referred to as the Heterogeneous Defect
Prediction (HDP) approach, is to first select the important features from the source
domain using a feature selection method to eliminate redundant and irrelevant
features. Feature selection methods used include gain ratio, chi-square, relief-F, and
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significance attribute evaluation (see Gao et al. [90] and Shivaji et al. [91]). The
next step is to statistically match the selected source domain features to ones in the
target using a Kolmogorov-Smirnov test that measures the closeness of the
empirical distribution between the two sources. A learner is trained with the source
features that exhibit a close statistical match to the corresponding target features.
The target data is tested with the trained classifier using the corresponding matched
features of the target. Even though the approach by Nam and Kim [9] is applied
directly to the application of software module defect prediction, this method can be
used for other applications. Experiments are performed using five different software
defect data sets with heterogeneous features. The proposed method by Nam and
Kim [9] uses Logistic Regression as the base learner. The other approaches tested
include a within project defect prediction (WPDP) approach where the learner is
trained on labeled target data, a cross project defect prediction (CPDP-CM)
approach where the source and target represent different software projects but have
homogeneous features, and a cross project defect prediction approach with
heterogeneous features (CPDP-IFS) as proposed by He et al. [92]. The results of the
experiment show the Nam and Kim [9] method significantly outperformed all other
approaches with respect to area under the curve measurement. The WPDP approach
is next best followed by the CPDP-CM approach and the CPDP-IFS approach.
These results can be misleading as the Nam and Kim [9] approach could only match
at least one or more input features between the source and target domains in 37 %
of the tests. Therefore, in 63 % of the cases, the Nam and Kim [9] method could not
be used and these cases are not counted. The WPDP method represents an upper
bound and it is an unexpected result that the Nam and Kim [9] approach would
outperform the WPDP method.

The paper by Zhou et al. [12] claims that previous heterogeneous solutions
assume the instance correspondence between the source and target domains are
statistically representative (distributions are equal), which may not always be the
case. An example of this claim is in the application of text sentiment classification
where the word bias problem previously discussed causes distribution differences
between the source and target domains. The paper by Zhou et al. [12] proposes a
solution called the Hybrid Heterogeneous Transfer Learning (HHTL) method for a
heterogeneous environment with abundant labeled source data and abundant
unlabeled target data. The idea is to first learn an asymmetric transformation from
the target to the source domain, which reduces the problem to a homogeneous
domain adaptation issue. The next step is to discover a common latent feature space
using the transformed data (from the previous step) to reduce the distribution bias
between the transformed unlabeled target domain and the labeled source domain.
Finally, a classifier is trained using the common latent feature space from the
labeled source data. This solution is realized using a deep learning method
employing a Marginalized Stacked Denoised Autoencoder as proposed by Chen
et al. [93] to learn the asymmetric transformation and the mapping to a common
latent feature space. The previous surveyed paper by Glorot et al. [33] demonstrated
a deep learning approach finding a common latent feature space for homogeneous
source and target feature set. The experiments focused on multiple language text
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sentiment classification where English is used in the source and three other lan-
guages are separately used in the target. Classification accuracy is measured as the
performance metric. Other methods tested include a heterogeneous spectral map-
ping approach proposed by Shi et al. [74], a method proposed by Vinokourov et al.
[94], and a multimodal deep learning approach proposed by Ngiam et al. [95].
An SVM learner is used as the base classifier for all methods. The results of the
experiment from best to worst performance are Zhou et al. [12], Ngiam et al. [95],
Vinokourov et al. [94], and Shi et al. [74].

Improvements to Heterogeneous Solutions

The paper by Yang et al. [96] proposes to quantify the amount of knowledge that
can be transferred between domains in a heterogeneous transfer learning environ-
ment. In other words, it attempts to measure the “relatedness” of the domains. This
is accomplished by first building a co-occurrence matrix for each domain. The
co-occurrence matrix contains the set of instances represented in every domain. For
example, if one particular text document is an instance in the co-occurrence matrix,
that text document is required to be represented in every domain. Next, Principal
Component Analysis is used to select the most important features in each domain
and assign the principal component coefficient to those features. The principal
component coefficients are used to form a directed cyclic network (DCN) where
each node represents a domain (either source or target) and each node connection
(edge weight) is the conditional dependence from one domain to another. The DCN
is built using a Markov Chain Monte Carlo method. The edge weights represent the
potential amount of knowledge that can be transferred between domains where a
higher value means higher knowledge transfer. These edge weights are then used as
tuning parameters in different heterogeneous transfer learning solutions, which
include works from Yang et al. [79], Ng et al. [97], and Zhu et al. [7] (the weights
are calculated first using Yang et al. [96] and then applied as tuning values in the
other solutions). Note, that integrating the edge weight values into a particular
approach is specific to the implementation of the solution and cannot be generically
applied. The experiments are run on the three different learning solutions comparing
the original solution against the solution using the weighted edges of the DCN as
the tuned parameters. In all three solutions, the classification accuracy is improved
using the DCN tuned parameters. One potential issue with this approach is the
construction of the co-occurrence matrix. The co-occurrence matrix contains many
instances; however, each instance must be represented in each domain. This may be
an unrealistic constraint in many real-world applications.
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Experiment Results

In reviewing the experiment results of the previous surveyed papers, there are
instances where one solution can show varying results over a range of different
experiments. There are many reasons why this can happen which include varying
test environments, different test implementations, different applications being tes-
ted, and different data sets being used. An interesting area of future work is to
evaluate the solutions presented to determine the best performing solutions as a
function of specific datasets. To facilitate that goal, a repository of open-source
software containing the software implementations for solutions used in each paper
would be extremely beneficial. Table 3.3 lists a compilation of head-to-head results
for the most commonly tested solutions contained in the Heterogeneous Transfer
Learning section. The results listed in Table 3.3 represent a win, loss, and tie
performance record of the head-to-head solution comparisons. Note, these results
are compiled directly from the surveyed papers. It is difficult to draw exact con-
clusions from this information because of the reasons just outlined; however, it
provides some interesting insight into the comparative performances of the
solutions.

Discussion of Heterogeneous Solutions

The previous surveyed heterogeneous transfer learning works demonstrate many
different characteristics and attributes. Which heterogeneous transfer learning
solution is best for a particular application? The heterogeneous transfer learning
solutions use either a symmetric transformation or an asymmetric transformation
process in an attempt to resolve the differences between the input feature space (as
shown in Fig. 3.1). The asymmetrical transformation approach is best used when
the same class instances in the source and target domains can be transformed

Table 3.3 Lists the head-to-head results of experiments performed in the heterogeneous transfer
learning works surveyed

Methods HeMap ARC-t DAMA HFA SHFR SHFA

HeMap [74] – 0-5-0 0-5-0 0-5-0 0-0-0 0-3-0

ARC-t [6] 5-0-0 – 4-2-0 1-7-0 0-3-0 0-3-0

DAMA [4] 5-0-0 2-4-0 – 0-8-0 0-3-0 0-3-0

HFA [5] 5-0-0 7-1-0 8-0-0 – 0-3-0 0-3-0

SHFR [10] 0-0-0 3-0-0 3-0-0 3-0-0 – 0-0-0

SHFA [76] 3-0-0 3-0-0 3-0-0 3-0-0 0-0-0 –

The numbers (x-y-z) in the table indicate the far left column method outperforms the top row
method x times, underperforms y times, and has similar performance z times
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without context feature bias. Many of the surveyed heterogeneous transfer learning
solutions only address the issue of the input feature space being different between
the source and target domains and do not address other domain adaptation steps
needed for marginal and/or conditional distribution differences. If further domain
adaptation needs to be performed after the input feature spaces are aligned, then an
appropriate homogeneous solution should be used. To further help determine which
solution is best for a given transfer learning application, the information in
Table 3.4 should be used to match the characteristics of the solution to that of the
desired application environment. None of the surveyed heterogeneous transfer
learning solutions have a means to guard against negative transfer effects. However,
the paper by Yang et al. [96] demonstrates that negative transfer guards can benefit
heterogeneous transfer learning solutions. It seems likely that future heterogeneous
transfer learning works will integrate means for negative transfer protection. Many
of the same heterogeneous transfer learning solutions are tested in the surveyed
solution experiments. These head-to-head comparisons are summarized in
Table 3.3 and can be used as a starting point to understand the relative performance
between the solutions. As observed as a trend in the previous homogeneous

Table 3.4 Heterogeneous transfer learning approaches surveyed in Sect. 4 listing various
characteristics of each approach

Approach Transfer
category

Source
data

Target
data

Multiple
sources

Generic
solution

Negative
transfer

CLSCL [11] Symmetric
feature

Labeled Unlabeled

HeMap [74] Symmetric
feature

Labeled Limited
labels

✔

DAMA [4] Symmetric
feature

Labeled Limited
labels

✔ ✔

HTLIC [7] Symmetric
feature

Unlabeled Abundant
labels

TTI [75] Symmetric
feature

Labeled Limited
labels

HFA [5] Symmetric
feature

Labeled Limited
labels

✔

SHFA [76] Symmetric
feature

Labeled Limited
labels

✔

ARC-t [6] Asymmetric
feature

Labeled Limited
labels

✔

MOMAP [8] Asymmetric
feature

Labeled Limited
labels

✔

SHFR [10] Asymmetric
feature

Labeled Limited
labels

✔

HDP [9] Asymmetric
feature

Labeled Unlabeled ✔

HHTL [12] Asymmetric
feature

Labeled Unlabeled ✔
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solutions, the recent heterogeneous solution by Duan et al. [5] employs a one-stage
solution that simultaneously performs the feature input space alignment process
while learning the final classifier. As is the case for the surveyed homogeneous
transfer learning works, the surveyed heterogeneous transfer learning works are not
specifically applied to big data solutions; however, there is nothing to preclude their
use in a big data environment.

Negative Transfer

The high-level concept of transfer learning is to improve a target learner by using
data from a related source domain. But what happens if the source domain is not
well-related to the target? In this case, the target learner can be negatively impacted
by this weak relation, which is referred to as negative transfer. In a big data
environment, there may be a large dataset where only a portion of the data is related
to a target domain of interest. For this case, there is a need to divide the dataset into
multiple sources and employ negative transfer methods when using transfer
learning algorithm. In the scenario where multiple datasets are available that ini-
tially appear to be related to the target domain of interest, it is desired to select the
datasets that provide the best information transfer and avoid the datasets that cause
negative transfer. This allows for the best use of the available large datasets. How
related do the source and target domains need to be for transfer learning to be
advantageous? The area of negative transfer has not been widely researched, but the
following papers begin to address this issue.

An early paper by Rosenstein et al. [98] discusses the concept of negative
transfer in transfer learning and claims that the source domain needs to be suffi-
ciently related to the target domain; otherwise, the attempt to transfer knowledge
from the source can have a negative impact on the target learner. Cases of negative
transfer are demonstrated by Rosenstein et al. [98] in experiments using a hierar-
chical Naive Bayes classifier. The author also demonstrates the chance of negative
transfer goes down as the number of labeled target training samples goes up.

The paper by Eaton et al. [99] proposes to build a target learner based on a
transferability measure from multiple related source domains. The approach first
builds a Logistic Regression learner for each source domain. Next, a model transfer
graph is constructed to represent the transferability between each source learner. In
this case, transferability from a first learner to a second learner is defined as the
performance of the second learner with learning from the first learner minus the
performance of the second learner without learning from the first learner. Next, the
model transfer graph is modified by adding the transferability measures between the
target learner and all the source learners. Using spectral graph theory [55] on the
model transfer graph, a transfer function is derived that maintains the geometry of
the model transfer graph and is used in the final target learner to determine the level

Heterogeneous Transfer Learning 85



of transfer from each source. Experiments are performed in the applications of
document classification and alphabet classification. Source domains are identified
that are either related or unrelated to the target domain. The method by Eaton et al.
[99] is tested along with a handpicked method where the source domains are
manually selected to be related to the target, an average method that uses all sources
available, and a baseline method that does not use transfer learning. Classification
accuracy is the performance metric measured in the experiments. The source and
target domains are represented by a homogeneous feature input space. The results
of the experiments are mixed. Overall, the Eaton et al. [99] approach performs the
best; however, there are certain instances where Eaton et al. [99] performed worse
than the handpicked, average, and baseline methods. In the implementation of the
algorithm, the transferability measure between two sources is required to be the
same; however, the transferability from source 1 to source 2 is not always equal to
the transferability from source 2 to source 1. A suggestion for future improvement
is to use directed graphs to specify the bidirectional nature of the transferability
measure between two sources.

The paper by Ge et al. [100] claims that knowledge transfer can be inhibited due
to the existence of unrelated or irrelevant source domains. Further, current transfer
learning solutions are focused on transferring knowledge from source domains to a
target domain, but are not concerned about different source domains that could
potentially be irrelevant and cause negative transfer. In the model presented by Ge
et al. [100], there is a single target domain with limited labeled data and multiple
labeled source domains for knowledge transfer. To reduce negative transfer effects
from unrelated source domains, each source is assigned a weight (called the
Supervised Local Weight) corresponding to how related the source is with the target
(the higher the weight the more it is related). The Supervised Local Weight is found
by first using a spectral clustering algorithm [55] on the unlabeled target infor-
mation and propagating labels to the clusters from the labeled target information.
Next, each source is separately clustered and labels assigned to the clusters from the
labeled source. The Supervised Local Weight of each source cluster is computed by
comparing the source and target clusters. This solution further addresses the issue of
imbalanced class distribution in source domains by preventing a high-weight class
assignment in the case of high-accuracy predictions in a minority target class. The
final target learner uses the Supervised Local Weights to attenuate the effects of
negative transfer. Experiments are performed in three application areas including
Cardiac Arrhythmia Detection, Spam Email Filtering, and Intrusion Detection. Area
under the curve is measured as the performance metric. The source and target
domains are represented by a homogeneous feature input space. The method pre-
sented in this paper is compared against methods by Luo et al. [101], by Gao et al.
[102], by Chattopadhyay et al. [15], and by Gao et al. [23]. The Luo et al. [101] and
Gao et al. [102] methods are the worst performing, most likely due to the fact that
these solutions do not attempt to combat negative transfer effects. The
Chattopadhyay et al. [15] and Gao et al. [23] methods are the next best performing,
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which have means in place to reduce the effects of negative transfer from the source
domains. The Chattopadhyay et al. [15] and Gao et al. [23] methods do address the
negative transfer problem but do not address the imbalanced distribution issue. The
Ge et al. [100] method does exhibit the best overall performance due to the handling
of negative transfer and imbalanced class distribution.

The paper by Seah et al. [103] claims the root cause of negative transfer is
mainly due to conditional distribution differences between source domains
(PS1 (y|x) 6¼ PS2 (y|x)) and a difference in class distribution (class imbalance)
between the source and target (PS(y) 6¼ PT(y)). Because the target domain usually
contains a small number of labeled instances, it is difficult to find the true class
distribution of the target domain. A Predictive Distribution Matching
(PDM) framework is proposed to align the conditional distributions of the source
domains and target domain in an attempt to minimize negative transfer effects.
A positive transferability measure is defined that measures the transferability of
instance pairs with the same label from the source and target domains. The first step
in the PDM framework is to assign pseudo labels to the unlabeled target data. This
is accomplished by an iterative process that forces source and target instances which
are similar (as defined by the positive transferability measure) to have the same
label. Next, irrelevant source data are removed by identifying data that does not
align with the conditional distribution of the pseudo labeled target data for each
class. Both Logistic Regression and SVM classifiers are implemented using the
PDM framework. Experiments are performed on document classification using the
PDM method described in this paper, the approach from Daumé [14], the approach
from Huang et al. [20], and the approach from Bruzzone and Marconcini [67].
Classification accuracy is measured as the performance metric. The source and
target domains are represented by a homogeneous feature input space. The PDM
approach demonstrates better performance as compared to the other approaches
tested as these solutions do not attempt to account for negative transfer effects.

A select number of previously surveyed papers contain solutions addressing
negative transfer. The paper by Yang et al. [96] addresses the negative transfer
issue, which is presented in the Heterogeneous Transfer Learning section. The
homogeneous solution by Gong et al. [16] defines an ROD value that measures the
relatedness between a source and target domain. The work presented in
Chattopadhyay et al. [15] is a multiple source transfer learning approach that cal-
culates the source weights as a function of conditional probability differences
between the source and target domains attempting to give the most related sources
the highest weights. Duan et al. [37] proposes a transfer learning approach that only
uses source domains that are deemed relevant and test data demonstrates better
performance compared to methods with no negative transfer protection.

The previous papers attempt to measure how related source data is to the target
data in a transfer learning environment and then selectively transfer the information
that is highly related. The experiments in the above papers demonstrate that
accounting for negative transfer effects from source domain data can improve target
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learner performance. However, most transfer learning solutions do not attempt to
account for negative transfer effects. Robust negative transfer measurements are
difficult to define. Since the target domain typically has limited labeled data, it is
inherently difficult to find a true measure of the relatedness between the source and
target domains. Further, by selectively transferring information that seems related to
the limited labeled target domain, a risk of overfitting in the target learner is a
concern. The topic of negative transfer is a fertile area for further research.

Transfer Learning Applications

The surveyed works in this paper demonstrate that transfer learning has been
applied to many real-world applications. There are a number of application
examples pertaining to natural language processing, more specifically in the areas
of sentiment classification, text classification, spam email detection, and multiple
language text classification. Other well-represented transfer learning applications
include image classification and video concept classification. Applications that are
more selectively addressed in the previous papers include WiFi localization clas-
sification, muscle fatigue classification, drug efficacy classification, human activity
classification, software defect classification, and cardiac arrhythmia classification.

The majority of the solutions surveyed are generic, meaning the solution can be
easily applied to applications other than the ones implemented and tested in the
papers. The application-specific solutions tend to be related to the field of natural
language processing and image processing. In the literature, there are a number of
transfer learning solutions that are specific to the application of recommendation
systems. Recommendation systems provide users with recommendations or ratings
for a particular domain (e.g. movies, books, etc.), which are based on historical
information. However, when the system does not have sufficient historical infor-
mation (referred to as the data sparsity issue presented in [104], then the recom-
mendations are not reliable. In the cases where the system does not have sufficient
domain data to make reliable predictions (for example when a movie is just
released), there is a need to use previously collected information from a different
domain (using books for example). The aforementioned problem has been directly
addressed using transfer learning methodologies and captured in papers by Moreno
et al. [104], Cao et al. [105], Li et al. [106, 107], Pan et al. [108, 110], Zhang et al.
[109], Roy et al. [111], Jiang et al. [112], and Zhao et al. [113].

Transfer learning solutions continue to be applied to a diverse number of
real-world applications, and in some cases the applications are quite obscure. The
application of head pose classification finds a learner trained with previously cap-
tured labeled head positions to predict a new head position. Head pose classification
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is used for determining the attentiveness of drivers, analyzing social behavior, and
human interaction with robots. Head positions captured in source training data will
have different head tilt ranges and angles than that of the predicted target. The paper
by Rajagopal et al. [114] addresses the head pose classification issues using transfer
learning solutions.

Other transfer learning applications include the paper by Ma et al. [115] that uses
transfer learning for atmospheric dust aerosol particle classification to enhance
global climate models. Here the TrAdaBoost algorithm proposed by Dai et al. [69]
is used in conjunction with an SVM classifier to improve on classification results.
Being able to identify areas of low income in developing countries is important for
disaster relief efforts, food security, and achieving sustainable growth. To better
predict poverty mapping, Xie et al. [116] proposes an approach similar to Oquab
et al. [35] that uses a convolution neural network model. The first prediction model
is trained to predict night time light intensity from source image data. The final
target prediction model predicts the poverty mapping from source night time light
intensity data. In the paper by Ogoe et al. [117], transfer learning in used to enhance
disease prediction. In this solution, a rule-based learning approach is formulated to
use abstract source domain data to perform modeling of multiple types of gene
expression data. Online display web advertising is a growing industry where
transfer learning is used to optimally predict targeted ads. In the paper by Perlich
et al. [118], a transfer learning approach is employed that uses the weighted outputs
of multiple source classifiers to enhance a target classifier trained to predict targeted
online display advertising results. The paper by Kan et al. [119] addresses the field
of facial recognition and is able to use face image information from one ethnic
group to improve the learning of a classifier for a different ethnic group. The paper
by Farhadi et al. [120] is focused on the application of sign language recognition
where the model is able to learn from different people signing at various angles.
Transfer learning is applied to the field of biology in the paper by Widmer and
Ratsch [121]. Specifically, a multi-task learning approach is used in the prediction
of splice sites in genome biology. Predicting if patients will contract a particular
bacteria when admitted to a hospital is addressed in the paper by Wiens et al. [122].
Information taken from different hospitals is used to predict the infection rate for a
different hospital. In the paper by Romera-Paredes et al. [123], a multi-task transfer
learning approach is used to predict pain levels from an individual’s facial
expression by using labeled source facial images from other individuals. The paper
by Deng et al. [124] applies transfer learning to the application of speech emotion
recognition where information is transferred from multiple labeled speech sources.
The application of wine quality classification is implemented in Zhang and Yeung
[125] using a multi-task transfer learning approach. As a reference, the survey paper
by Cook et al. [18] covers transfer learning for the application of activity recog-
nition and the survey papers by Patel et al. [126] and Shao et al. [127] address
transfer learning in the domain of image recognition.
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Conclusion and Discussion

The subject of transfer learning is a well-researched area as evidenced with more
than 700 academic papers addressing the topic in the last five years. This survey
paper presents solutions from the literature representing current trends in transfer
learning. Homogeneous transfer learning papers are surveyed that demonstrate
instance-based, feature-based, parameter-based, and relational-based information
transfer techniques. Solutions having various requirements for labeled and unla-
beled data are also presented as a key attribute. The relatively new area of
heterogeneous transfer learning is surveyed showing the two dominant approaches
for domain adaptation being asymmetric and symmetric transformations. Many
real-world applications that transfer learning is applied to are listed and discussed in
this survey paper. In some cases, the proposed transfer learning solutions are very
specific to the underlying application and cannot be generically used for other
applications. A list of software downloads implementing a portion of the solutions
surveyed is presented in the appendix of this paper. A great benefit to researchers is
to have software available from previous solutions so experiments can be per-
formed more efficiently and more reliably. A single open-source software repository
for published transfer learning solutions would be a great asset to the research
community.

In many transfer learning solutions, the domain adaptation process performed is
focused either on correcting the marginal distribution differences or the conditional
distribution differences between the source and target domains. Correcting the
conditional distribution differences is a challenging problem due to the lack of
labeled target data. To address the lack of labeled target data, some solutions
estimate the labels for the target data (called pseudo labels), which are then used to
correct the conditional distribution differences. This method is problematic because
the conditional distribution corrections are being made with the aid of pseudo
labels. Improved methods for correcting the conditional distribution differences is a
potential area of future research. A number of more recent works attempt to correct
both the marginal distribution differences and the conditional distribution differ-
ences during the domain adaptation process. An area of future work is to quantify
the advantage of correcting both distributions and in what scenarios it is most
effective. Further, Long et al. [30] states that the simultaneous solving of marginal
and conditional distribution differences is preferred over serial alignment as it
reduces the risk of overfitting. Another area of future work is to quantify any
performance gains for simultaneously solving both distribution differences. In
addition to solving for distribution differences in the domain adaptation process,
exploring possible data preprocessing steps using heuristic knowledge of the
domain features can be used as a method to improve the target learner performance.
The heuristic knowledge would represent a set of complex rules or relations that
standard transfer learning techniques cannot account for. In most cases, this
heuristic knowledge would be specific to each domain, which would not lead to a
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generic solution. However, if such a preprocessing step leads to improved target
learner performance, it is likely worth the effort.

A trend observed in the formulation of transfer learning solutions is in the
implementation of a one-stage process as opposed to a two-stage process.
A two-stage solution first performs the domain adaptation process and then inde-
pendently learns the final classifier. A one-stage process simultaneously performs
the domain adaptation process while learning the final classifier. Recent solutions
employing a one-stage solution include Long et al. [30], Duan et al. [28], Shi and
Sha [34], Xia et al. [39], and Duan et al. [5]. With respect to the one-stage solution,
Long et al. [30] claims the simultaneous solving of domain adaptation and the
classifier establishes mutual reinforcement for enhanced performance. An area of
future work is to better quantify the effects of a one-stage approach over a two-stage
approach.

This paper surveys a number of works addressing the topic of negative transfer.
The subject of negative transfer is still a lightly researched area. The expanded
integration of negative transfer techniques into transfer learning solutions is a
natural extension for future research. Solutions supporting multiple source domains
enabling the splitting of larger source domains into smaller domains to more easily
discriminate against unrelated source data are a logical area for continued research.
Additionally, optimal transfer is another fertile area for future research. Negative
transfer is defined as a source domain having a negative impact on a target learner.
The concept of optimal transfer is when select information from a source domain is
transferred to achieve the highest possible performance in a target learner. There is
overlap between the concepts of negative transfer and optimal transfer; however,
optimal transfer attempts to find the best performing target learner, which goes well
beyond the negative transfer concept.

With the recent proliferation of sensors being deployed in cell phones, vehicles,
buildings, roadways, and computers, larger and more diverse information is being
collected. The diversity in data collection makes heterogeneous transfer learning
solutions more important moving forward. Larger data collection sizes highlight the
potential for big data solutions being deployed concurrent with current transfer
learning solutions. How the diversity and large size of sensor data integrates into
transfer learning solutions is an interesting topic of future research. Another area of
future work pertains to the scenario where the output label space is different
between domains. With new data sets being captured and being made available, this
topic could be a needed area of focus for the future. Lastly, the literature has very
few transfer learning solutions addressing the scenario of unlabeled source and
unlabeled target data, which is certainly an area for expanded research.
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Appendix

The majority of transfer learning solutions surveyed are complex and implemented
with non-trivial software. It is a great advantage for a researcher to have access to
software implementations of transfer learning solutions so comparisons with
competing solutions are facilitated more quickly and fairly. Table 3.5 provides a list
of available software downloads for a number of the solutions surveyed in this
paper. Table 3.6 provides a resource for useful links that point to transfer learning
tutorials and other interesting articles on the topic of transfer learning.

Table 3.5 Software downloads for various transfer learning solutions

Approach Location

Prettenhofer and Stein
[11]

https://github.com/pprett/bolt [128]

Zhu et al. [7] http://www.cse.ust.hk/*yinz/ [129]

Dai et al. [69] https://github.com/BoChen90/machine-learning-matlab/blob/master/
TrAdaBoost.m [130]

Daumé [14] http://hal3.name/easyadapt.pl.gz [131]

Duan et al. [5] https://sites.google.com/site/xyzliwen/publications/HFA_release_
0315.rar [132]

Kulis et al. [6] http://vision.cs.uml.edu/adaptation.html [133]

Qi et al. [75] http://www.eecs.ucf.edu/*gqi/publications.html [134]

Li et al. [76] http://www.lxduan.info/#sourcecode_hfa [135]

Gong [16] http://www-scf.usc.edu/*boqinggo/ [136]

Long et al. [30] http://ise.thss.tsinghua.edu.cn/*mlong/ [137]

Oquab et al. [35] http://leon.bottou.org/papers/oquab-2014 [138]

Long et al. [29] http://ise.thss.tsinghua.edu.cn/*mlong/ [137]

Other transfer
learning code

http://www.cse.ust.hk/TL/ [139]

Table 3.6 Useful links for transfer learning information

Item Location

Slides for Nam and
Kim [9]

http://www.slideshare.net/hunkim/heterogeneous-defect-prediction-
esecfse-2015 [140]

Code for SVMLIB http://www.csie.ntu.edu.tw/*cjlin/libsvm [141]

Slide for Kulis et al. [6] https://www.eecs.berkeley.edu/*jhoffman/domainadapt/ [142]

Tutorial on transfer
learning

http://tommasit.wix.com/datl14tutorial [143]

Tutorial on transfer
learning

http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/survey/da_survey.
html [144]

Overview of Duan
et al. [37]

http://lxduan.info/papers/DuanCVPR2012_poster.pdf [145]
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Chapter 4
Visualizing Big Data

Ekaterina Olshannikova, Aleksandr Ometov, Yevgeni Koucheryavy
and Thomas Olsson

Introduction

The whole history of humanity is an enormous accumulation of data. Information
has been stored for thousands of years. Data has become an integral part of history,
politics, science, economics and business structures, and now even social lives. This
trend is clearly visible in social networks such as Facebook, Twitter and Instagram
where users produce an enormous stream of different types of information daily
(music, pictures, text, etc.) [1]. Now, government, scientific and technical labora-
tory data as well as space research information are available not only for review, but
also for public use. For instance, there is the 1000 Genomes Project [2, 3], which
provide 260 terabytes of human genome data. More than 20 terabytes of data are
publicly available at Internet Archive [4, 5], ClueWeb09 [6], among others.

Lately, Big Data processing has become more affordable for companies from
resource and cost points of view. Simply put, revenues generated from it are higher
than the costs, so Big Data processing is becoming more and more widely used in
industry and business [7]. According to International Data Corporation (IDC), data
trading is forming a separate market [8]. Indeed, 70 % of large organizations
already purchase external data, and it is expected to reach 100 % by the beginning
of 2019.

Simultaneously, Big Data characteristics such as volume, velocity, variety [9],
value and veracity [10] require quick decisions in implementation, as the infor-
mation may become less up to date and can lose value fast. According to IDC [11],
data volumes have grown exponentially, and by 2020 the number of digital bits will
be comparable to the number of stars in the universe. As the size of bits geminates
every 2 years, for the period from 2013 to 2020 worldwide data will increase from
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4.4 to 44 zettabytes. Such fast data expansion may result in challenges related to
human ability to manage the data, extract information and gain knowledge from it.

The complexity of Big Data analysis presents an undeniable challenge: visual-
ization techniques and methods need to be improved. Many companies and
open-source projects see the future of Big Data Analytics via Visualization, and are
establishing new interactive platforms and supporting research in this area. Husain
et al. [12] in their paper provide a wide list of contemporary and recently developed
visualization platforms. There are commercial Big Data platforms such as
International Business Machines (IBM) Software [13], Microsoft [14], Amazon
[15] and Google [16]. There exists an open-source project, Socrata [17], which
deals with dynamic data from public, government and private organizations.
Another platform is a JavaScript library D3 [18] for dynamic data visualizations.
This list can be extended with Cytoscape [19], Tableau [20], Data Wrangler [21]
and others. Intel [22] and Statistical Analysis System (SAS) [23] are performing
research in data visualization as well but more from a business perspective.

Organizations and social media generate enormous amounts of data every day
and, traditionally, represent it in a format consistent with the poorly structured
databases: web blogs, text documents, or machine code, such as geospatial data that
may be collected in various stores even outside of a company/organization [24]. On
the other hand, information stored in a multitude repository and the use of cloud
storage or data centers is also widely common [25]. Furthermore, companies have the
necessary tools to establish the relationship between data segments in addition to the
process of making the basis for meaningful conclusions. As data processing rates are
growing continuously, a situation may appear when traditional analytical methods
would not be able to stay up to date, especially with the growing amount of constantly
updated data, which ultimately opens the way for Big Data technologies [26].

This paper provides information about various types of existing data to which
certain techniques are useful for the analysis. Recently, many visualization methods
have been developed for a quick representation of data that is already preprocessed.
There has been a step away from planar images towards multi-dimensional volu-
metric visualizations. However, Big Data visualization evolution cannot be con-
sidered as finished, inasmuch as new techniques generate new research challenges
and solutions that will be discussed in the following paper.

Current activity in the field of Big Data visualization is focused on the invention
of tools that allow a person to produce quick and effective results working with
large amounts of data. Moreover, it would be possible to assess the analysis of the
visualized information from all the angles in novel, scalable ways. Based on Big
Data related literature, we identify the main visualization challenges and propose a
novel technical approach to visualize Big Data based on the understandings of
human perception and new Mixed Reality (MR) technologies. From our perspec-
tive, one of the more promising methods for improving upon current Big Data
visualization techniques is in its correlation with Augmented Reality (AR) and
Virtual Reality (VR) that are suitable for the limited perception capabilities of
humans. We identify important steps for the research agenda to implement this
approach.
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This paper covers various issues and topics, but there are three main directions of
this survey:

• Human cognitive limitations in terms of Big Data Visualization.
• Applying Augmented and Virtual reality opportunities towards Big Data

Visualization.
• Challenges and benefits of the proposed visualization approach.

The rest of paper is organized as follows: The first section provides a definition
of Big Data and looks at currently used methods for Big Data processing and their
specifications. Also it indicates the main challenges and issues in Big Data analysis.
Next, in the section Visualization methods, the historical background of this field is
given, modern visualization techniques for massive amounts of information are
presented and the evolution of visualization methods is discussed. Further in the last
section, Integration with Augmented and Virtual Reality, the history of AR and VR
is detailed with respect to its influence on Big Data. These developmental processes
are supported by the proposed oncoming Big Data visualization extension for VR
and AR, which can solve actual perception and cognition challenges. Finally,
important data visualization challenges and future research agenda are discussed.

Big Data: An Overview

Today large data sources are ubiquitous throughout the world. Data used for pro-
cessing may be obtained from measuring devices, radio frequency identifiers, social
network message flows, meteorological data, remote sensing, location data streams
of mobile subscribers and devices, and audio and video recordings. So, as Big Data
is more and more used all over the world, a new and important research field is
being established. The mass distribution of the technology and innovative models
that utilize these different kinds of devices and services, appeared to be a starting
point for the penetration of Big Data in almost all areas of human activity, including
the commercial sector and public administration [27].

Nowadays, Big Data and the continuing dramatic increase in human and
machine generated data associated with it are quite evident. However, do we
actually know what Big Data is, and how close are the various definitions put
forward for this term? For instance, there was an article in Forbes in 2014 which is
related to this controversial question [28]. It gave a brief history of the establish-
ment of the term, and provided several existing explanations and descriptions of
Big Data to improve the core understanding of the phenomenon. On the other hand,
Berkeley School of Information published a list with more than 40 definitions of the
term [29].

As Big Data covers various fields and sectors, the meaning of this term should be
specifically defined in accordance with the activity of the specific organization/
person. For instance, in contrast to industry-driven Big Data “Vs” definitions,
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Dr. Ivo Dinov for his research scope listed another data’s multi-dimensional
characteristics [30] such as data size, incompleteness, incongruency, complex
representation, multiscale nature and heterogeneity of its sources [31, 32].

In this paper the modified Gartner Inc. definition [33, 34] is used: Big Data is a
technology to process high-volume, high-velocity, high-variety data or data-sets to
extract intended data value and ensure high veracity of original data and obtained
information that demand cost-effective, innovative forms of data and information
processing (analytics) for enhanced insight, decision making, and processes control
[35].

Big Data Processing Methods

Currently, there exist many different techniques for data analysis [36], mainly based
on tools used in statistics and computer science. The most advanced techniques to
analyze large amounts of data include: artificial neural networks [37–39]; models
based on the principle of the organization and functioning of biological neural
networks [40, 41]; methods of predictive analysis [42]; statistics [43, 44]; Natural
Language Processing [45]; etc. Big Data processing methods embrace different
disciplines including applied mathematics, statistics, computer science and eco-
nomics. Those are the basis for data analysis techniques such as Data Mining [39,
46–49], Neural Networks [41, 50–52], Machine Learning [53–55], Signal
Processing [56–58] and Visualization Methods [59–61]. Most of these methods are
interconnected and used simultaneously during data processing, which increases
system utilization tremendously (see Fig. 4.1).

Fig. 4.1 Big Data processing
methods interconnection.
Applied mathematics,
statistics, economics and
computer science are
foundation of the Bid Data
processing methods.
Meanwhile, data mining,
signal processing, neural
networks, visualization and
machine learning are strongly
connected to each other
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We would like to familiarize reader with the primary methods and techniques in
Big Data processing. As this topic is not a focus of the paper, this list is not
exhaustive. Nevertheless, the main interconnections between these methods are
shown and application examples are given.

Optimization methods are mathematical tools for efficient data analysis.
Optimization includes numerical analysis focused on problem solving in various
Big Data challenges: volume, velocity, variety and veracity [62] that will be dis-
cussed in more detail later. Some widely used analytical techniques are genetic
programming [63–65], evolutionary programming [66] and particle swarm opti-
mization [67, 68]. Optimization is focused on the search of the optimal set of
actions needed to improve system performance. Notably, genetic algorithms are
also a specific part of machine learning direction [69]. Moreover, statistical testing,
predictive and simulation models are applied also as for Statistics methods [70].

Statistics methods are used to collect, organize and interpret data, as well as to
outline interconnections between realized objectives. Data-driven statistical analysis
concentrates on implementation of statistics algorithms [71, 72]. A/B testing [73]
technique is an example of a statistics method. In terms of Big Data there is a
possibility to perform a variety of tests. The aim of A/B tests is to detect statistically
important differences and regularities between groups of variables to reveal
improvements. Besides, statistical techniques contain cluster analysis, data mining
and predictive modelling methods. Some techniques in spatial analysis [74] origi-
nate from the field of statistics as well. It allows analysis of topological, geometric
or geographic characteristics of data sets.

Data mining includes cluster analysis, classification, regression and association
rule learning techniques. This method is aimed at identifying and extracting ben-
eficial information from extensive data or datasets. Cluster analysis [75, 76] is based
on principles of similarities to classify objects. This technique belongs to unsu-
pervised learning [77, 78] where training data [79] is used. Classification [80] is a
set of techniques which are aimed at recognizing categories with new data points. In
contrast to cluster analysis, a classification technique uses training data sets to
discover predictive relationships. Regression [81] is a set of a statistical techniques
that are aimed at determining changes between dependent and independent vari-
ables. This technique is mostly used for prediction or forecasting. Association rule
learning [82, 83] is set of techniques designed to detect valuable relationships or
association rules among variables in databases.

Machine Learning is a significant area in computer science which aims to create
algorithms and protocols. The main goal of this method is to improve computers’
behaviors on the basis of empirical data. Its implementation allows recognition of
complicated patterns and automatic application of intelligent decision-making
based on. Pattern recognition, natural language processing, ensemble learning and
sentiment analysis are examples of machine learning techniques. Pattern recogni-
tion [84, 85] is a set of techniques that use a certain algorithm to associate an output
value with a given input value. Classification technique is an example of this.
Natural language processing [86] takes its origins from computer science within the
fields of artificial intelligence and linguistics. This set of techniques performs
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analysis of human language. Sometimes it uses a sentiment analysis [87] that is able
to identify and extract specific information from text materials evaluating words,
degree and strength of a sentiment. Ensemble learning [88, 89] in automated
decision-making systems is a useful technique for diminishing variance and
increase accuracy. It aims to solve diverse machine learning issues such as confi-
dence estimation, missing feature and error correction, etc.

Signal processing consists of various techniques that are part of electrical
engineering and applied mathematics. The key aspect of this method is the analysis
of discrete and continuous signals. In other words, it enables the analog repre-
sentation of physical quantities (e.g. radio signals or sounds, etc.). Signal detection
theory [90] is applied to evaluate the capacity for distinguishing between signal and
noise in some techniques. A time series analysis [91, 92] includes techniques from
both statistics and signal processing. Primarily, it is designed to analyze sequences
of data points with a demonstration of data values at consistent times. This tech-
nique is useful to predict future data values based on knowledge of past ones.
Signal processing techniques can be applied to implement some types of data fusion
[93]. Data fusion combines multiple sources to obtain improved information that is
more relevant or less expensive and has higher quality [94].

Visualization methods concern the design of graphical representation, i.e. to
visualize the innumerate amount of the analytical results as diagrams, tables and
images. Visualization for Big Data differs from all of the previously mentioned
processing methods and also from traditional visualization techniques. To visualize
large-scale data, feature extraction and geometric modelling can be implemented.
These processes are needed to decrease the data size before actual rendering [95].
Intuitively, visual representation is more likely to be accepted by a human in
comparison with unstructured textual information. The era of Big Data has been
rapidly promoting the data visualization market. According to Mordor Intelligence
[96] the visualization market will increase at a compound annual growth rate
(CAGR) of 9.21 % from $4.12 billions in 2014 to $6.40 billions by the end of
2019. SAS Institute provides results of an International Data Group (IDG) research
study in the white paper [97]. The research is focused on how companies are
performing Big Data analysis. It shows that 98 % of the most effective companies
working with Big Data are presenting results of the analysis via visualization.
Statistical data from this research provides evidence of the visualization benefits in
terms of decision making improvement, better ad hoc data analysis, improved
collaboration and information sharing inside/outside an organization.

Nowadays, different groups of people including designers, software developers
and scientists are in the process of searching for new visualization tools and
opportunities. For example, Amazon, Twitter, Apple, Facebook and Google are
companies that utilize data visualization in order to make appropriate business
decisions [98]. Visualization solutions can provide insights from different business
perspectives. First of all, implementation of advanced visualization tools enables
rapid exploration of all customers/users data to improve customer-company rela-
tionships. It allows marketers to create more precise customer segments based on
data from purchasing history or life stage and other factors. Besides, correlation

106 4 Visualizing Big Data



mapping may assist in the analysis of customer/user behavior to identify and
analyze the most profitable of them. Secondly, visualization capabilities allow
companies opportunities to reveal correlations between product, sales and customer
profiles. Based on gathered metrics, organizations may provide novel special offers
to their customers. Moreover, visualization enables tracking of revenue trends and
can be useful for risk analysis. Thirdly, visualization as a tool provides better
understanding of data. Higher efficiency is reached by obtaining relevant, consistent
and accurate information. So, visualized data could assist organizations to find
different effective marketing solutions. In this section we familiarized the reader
with the main techniques of data analysis and described their strong correlation to
each other. Nevertheless, the Big Data era is still in the beginning stage of its
evolution. Therefore, Big Data processing methods are evolving to solve the
problems of Big Data and new solutions are continuously being developed. By this
statement we mean that big world of Big Data requires multiple multidisciplinary
methods and techniques that lead to better understanding of the complicated
structures and interconnections between them.

Big Data Challenges

Big Data has some inherent challenges and problems that can be primarily divided
into three groups according to Akerkar [36]: (1) data, (2) processing, and (3) man-
agement challenges (see Fig. 4.2). While dealing with large amounts of information
we face such challenges as volume, variety, velocity and veracity that are also known
as 5 V of Big Data. As those Big Data characteristics are well examined in scientific
literature [99–101] we will only discuss them briefly. Volume refers to the large
amount of data, especially, machine-generated. This characteristic defines a size of
the data set that makes its storage and analysis problematic utilizing conventional
database technology. Variety is related to different types and forms of data sources:
structured (e.g. financial data) and unstructured (social media conversations, photos,
videos, voice recordings and others). Multiplicity of the various data results in the
issue of its handling. Velocity refers to the speed of new data generation and dis-
tribution. This characteristic requires the implementation of real-time processing for
the streaming data analysis (e.g. on social media, different types of transactions or
trading systems, etc.). Veracity refers to the complexity of data which may lead to a
lack of quality and accuracy. This characteristic reveals several challenges: uncer-
tainty, imprecision, missing values, misstatement and data availability. There is also
a challenge regarding data discovery that is related to the search of high quality data
in data sets.

The second branch of Big Data challenges is called processing challenges. It
includes data collection, resolving similarities found in different sources, modifi-
cation data to a type acceptable for the analysis, the analysis itself and output
representation, i.e. the results visualization in a form most suitable for human
perception.
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The last type of challenge offered by this classification is related to data man-
agement. Management challenges usually refer to secured data storage, its pro-
cessing and collection. Here the main focuses of study are: data privacy, its security,
governance and ethical issues. Most of them are controlled based on policies and
rules provided by information security institutes on state or international levels.

Over past generations, the results of analyzed data were represented as visualized
plots and graphs. It is evident that collections of complex figures are sometimes
hard to perceive, even by well-trained minds. Nowadays, the main factors causing
difficulties in data visualization continue to be the limitations of human perception
and new issues related to display sizes and resolutions. This question is studied in
detail further in the section “Integration with Augmented and Virtual Reality”.
Preparatory to the visualization, the main interaction problem is in the extraction of
the useful portion of information from massive volumes. Extracted data is not
always accurate and mostly overloaded with excrescent information. Visualization
technique is useful for simplifying information and transforming it into a more
accessible form for human perception.

In the near future, petascale data may cause analysis failures because of tradi-
tional approaches in usage, i.e. when the data is stored on a memory disk contin-
uously waiting for further analysis. Hence, the conservative approach of data
compressing may become ineffective in visualization methods. To solve this issue,
developers should create a flexible tool for the practice of data collection and
analysis. Increases in data size make the multilevel hierarchy approach incapable in

Fig. 4.2 Big Data challenges. The picture illustrates three main categories of Big Data challenges
that are associated with data, its management and processing issues
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data scalability. Hierarchy becomes complex and intensive, making navigation
difficult for user perception. In this case, a combination of analytics and Data
Visualization may enable more accessible data exploration and interaction, which
would allow improving insights, outcomes and decision-making.

Contemporary methods, techniques and tools for data analysis are still not
flexible enough to discover valuable information in the most efficient way. The
question of data perception and presentation remains open. Scientists face the task
of uniting the abstract world of data and the physical world through visual repre-
sentation. Meanwhile, visualization-based tools should fulfill three requirements
[102, 103]: expressiveness (demonstrate exactly the information contained in the
data), effectiveness (related to cognitive capabilities of human visual system) and
appropriateness (cost-value ratio for visualization benefit assessment). Experience
of previously used techniques can be repurposed to achieve more beneficial and
novel goals in Big Data perception and representation.

Visualization Methods

Historically, the primary areas of visualization were Science Visualization and
Information Visualization. However, during recent decades, the field of Visual
Analytics was actively developing.

As a separate discipline, visualization emerged in 1980 [104] as a reaction to the
increasing amount of data generated by computer calculations. It was named
Science Visualization [105–107], as it displays data from scientific experiments
related to physical processes. This is primarily a realistic three-dimensional visu-
alization, which has been used in architecture, medicine, biology, meteorology, etc.
This visualization is also known as Spatial Data visualization, which focuses on the
visualization of volumes and surfaces.

Information Visualization [108–111] emerged as a branch of the Human-
Computer Interaction field in the end of 1980s. It utilizes graphics to assist people
in comprehending and interpreting data. As it helps to form mental models of the
data, for humans it is easier to reveal specific features and patterns of the obtained
information.

Visual Analytics [112–114] combines visualization and data analysis. It has
absorbed features of Information Visualization as well as Science Visualization.
The main difference from other fields is the development and provision of visual-
ization technologies and tools.

Efficient visualization tools should consider cognitive and perceptual properties
of the human brain. Visualization aims to improve the clarity and aesthetic appeal
of the displayed information and allows a person to understand large amount of data
and interact with it. Significant purposes of Big Data visual representation are: to
identify hidden patterns or anomalies in data; to increase flexibility while searching
of certain values; to compare various units in order to obtain relative difference in
quantities; to enable realtime human interaction (touring, scaling, etc.).
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Visualization methods have evolved much over the last decades (see Fig. 4.3),
the only limit for novel techniques being human imagination. To anticipate the next
steps of data visualization development, it is necessary to take into account the
successes of the past. It is considered that quantitative data visualization appeared in
the field of statistics and analytics quite recently. However, the main precursors
were cartography and statistical graphics, created before the nineteenth century for
the expansion of statistical thinking, business planning and other purposes [115].
The evolution in the knowledge of visualization techniques resulted in mathemat-
ical and statistical advances as well as in drawing and reproducing images.

By the sixteenth century, tools for accurate observation and measurement were
developed. Precisely, in those days the first steps were done in the development of
data visualization. The seventeenth century was swept by the problem of space,
time and distance measurements. Furthermore, the study of the world’s population
and economic data had started.

The eighteenth century was marked by the expansion of statistical theory, ideas
of data graphical representation and the advent of new graphic forms. At the end of
the century thematic maps displaying geological, medical and economic data was
used for the first time. For example, Charles de Fourcroy used geometric figures and
cartograms to compare areas or demographic quantities [116]. Johann Lambert
(1728–1777) was a revolutionary person, who used different types of tables and line
graphs to display variable data [117]. The first methods were performed as simple
plots followed by onedimensional histograms [118]. Still, those examples are useful
only for small amounts of data. By introducing more information, this type of
diagram would reach a point of worthlessness.

Fig. 4.3 The evolution of visualization methodology. Development of visualization methods
originates from eighteenth century and its is rapidly improving today due to technical
sophistication
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At the turn of twenty to twenty-first centuries, steps were taken in the devel-
opment of interactive statistical computing [119] and new paradigms for data
analysis [120]. Technological progress was certainly a significant prerequisite for
the rapid development of visualization techniques, methods and tools. More pre-
cisely, large-scale statistical and graphics software engineering was invented, and
computer processing speed and capacity vastly increased [121].

However, the next step presenting a system with the addition of a time
dimension appeared as a significant breakthrough. In the beginning of the present
century few dimensional visualization methods were in use as a part 2D/3D
node-link diagram [122]. Already at this level of abstraction, any user may classify
the goal and specify further analytical steps for the research, but unfortunately, data
scaling became an essential issue.

Moreover, currently used technologies for data visualization are already causing
enormous resource demands which include high memory requirements and extre-
mely high deployment cost. However, the currently existing environment faces a
new limitation based on the large amounts of data to be visualized in contrast to
past imagination issue. Modern effective methods are focused on representation in
specified rooms equipped with widescreen monitors or projectors [123].

Nowadays, there are a fairly large number of data visualization tools offering
different possibilities. These tools can be classified based on three factors: by the
data type, by visualization technique type and by the interoperability. The first
refers to the different types of data to be visualized [124]:

• Univariate data One dimensional arrays, time series, etc.
• Two-dimensional data Point two-dimensional graphs, geographical coordinates,

etc.
• Multidimensional data Financial indicators, results of experiments, etc.
• Texts and hypertexts Newspaper articles, web documents, etc.
• Hierarchical and links The structure subordination in the organization, e-mails,

documents and hyperlinks, etc.
• Algorithms and programs Information flows, debug operations, etc.

The second factor is based on visualization techniques and samples to represent
different types of data. Visualization techniques can be both elementary (line
graphs, charts, bar charts) and complex (based on the mathematical apparatus).
Furthermore, visualization can be performed as a combination of various methods.
However, visualized representation of data is abstract and extremely limited by
one’s perception capabilities and requests (see Fig. 4.4).

Types of visualization techniques are listed below:

1. 2D/3D standard figure [125]. May be implemented as bars, line graphs, various
charts, etc. (see Fig. 4.5). The main drawback of this type is the complexity of
the acceptable visualization for complicated data structures;

2. Geometric transformations [126]. This technique represents information as
scatter diagram (see Fig. 4.6). This type is geared towards a multi-dimensional
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data set’s transformation in order to display it in Cartesian and non-Cartesian
geometric spaces. This class includes methods of mathematical statistics;

3. Display icons [127]. Ruled shapes (needle icons) and star icons. Basically, this
type displays the values of elements of multidimensional data in properties of
images (see Fig. 4.7). Such images may include human faces, arrows, stars, etc.
Images can be grouped together for holistic analysis. The result of the visual-
ization is a texture pattern, which varies according to the specific characteristics
of the data;

Fig. 4.4 Human perception capability issue. Human perceptional capabilities are not sufficient to
embrace large amount of data

Fig. 4.5 An example of the 2D/3D standard figures visualization techniques. a The simple line
graph and b example of a bar chart
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Fig. 4.6 An example of the geometric transformations visualization techniques. a Example of a
parallel coordinates and b the scatter plot

Fig. 4.7 An example of the display icons visualization techniques. Picture demonstrates the
visualization of various social connections in Australia
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4. Methods focused on the pixels [128]. Recursive templates and cyclic segments.
The main idea is to display the values in each dimension into the colored pixel
and to merge some of them according to specific measurements (see Fig. 4.8).
Since one pixel is used to display a single value, therefore visualization of large
amounts of data can be reachable with this methodology;

5. Hierarchical images [129]. Tree maps and overlay measurements (see Fig. 4.9).
These type methods are used with the hierarchical structured data.

Fig. 4.8 An example of the methods focused on the pixels. Picture demonstrates an amount of
data visualized in pixels. Each color has its specific meaning

Fig. 4.9 An example of the hierarchical images. Picture illustrates a tree map of data
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The third factor is related to the interoperability with visual imagery and tech-
niques for better data analysis. The application used for the visualization should
present visual forms that capture the essence of data itself. However, it is not always
enough for a complete analysis. Data representation should be constructed in order
to allow a user to have different visual points of view. Thus, the appropriate
compatibility should be performed:

1. Dynamic projection [130]. Non-static change of projections in multidimensional
data sets is used. An example of the dynamic projection in two-dimensional
plane of multidimensional data in a scatter plots. It is necessary to note that the
number of possible projections increases exponentially with the number of
measurements and, thus, perception suffers more.

2. Interactive filtering [131]. In the investigation of large amounts of data there is a
need to share data sets and highlight significant subsets in order to filter images.
Significantly, that there should be an opportunity to have a visual representation
in real time. A subset can be chosen either directly from a list or by determining
a subset of the properties of interest;

3. Scaling images [132]. Scaling is a well-known method of interaction used in
many applications. Especially for Big Data processing, this method is very
useful due to the ability to represent data in a compressed form. It provides the
ability to simultaneously display any part of an image in a more detailed form.
Nevertheless, a lower level entity may be represented by a pixel at a higher
level, a certain visual image or an accompanying text label;

4. Interactive distortion [133] supports the research process data using distortion
scale with partial detail. The basic idea of this method is that a part of the fine
granularity displayed data is shown in addition to one with a low level of details.
The most popular methods are hyperbolic and spherical distortion;

5. Interactive combination [134, 135] brings together a combination of different
visualization techniques to overcome specific deficiencies by their conjugation.
For example, different points of the dynamic projection can be combined with
the techniques of coloring.

To summarize, any visualization method can be classified by data type, visu-
alization technique and interoperability. Each method can support different types of
data, various images and varied methods for interaction.

A visual representation of Big Data analysis is crucial for its interpretation. As it
was already mentioned, it is evident that human perception is limited. The main
purpose of modern data representation methods is related to improvement in forms
of images, diagrams or animation. Examples of well known techniques for data
visualization are presented below [136]:

• Tag cloud [137] is used in text analysis, with a weighting value dependent on
the frequency of use (citation) of a particular word or phrase (see Fig. 4.10). It
consists of an accumulation of lexical items (words, symbols or combination of
the two). This technique is commonly integrated with web sources to quickly
familiarize visitors with the content via key words.
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• Clustergram [138] is an imaging technique used in cluster analysis by means of
representing the relation of individual elements of the data as they change their
number (see Fig. 4.11). Choosing the optimal number of clusters is also an
important component of cluster analysis.

• Motion charts allow effective exploration of large and multivariate data and
interact with it utilizing dynamic 2D bubble charts (see Fig. 4.12). The blobs
(bubbles—central objects of this technique) can be controlled due to variable
mapping for which it is designed. For instance, motion charts graphical data
tools are provided by Google [139], amCharts [140] and IBM Many Eyes [141].

Fig. 4.10 An example of the tag cloud. This picture illustrates visualization of the paper abstract

Fig. 4.11 An example of the
clustergram. This picture
illustrates different state of
data in several clusters

116 4 Visualizing Big Data



• Dashboard [142] enables the display of log files of various formats and filter
data based on chosen data ranges (see Fig. 4.13). Traditionally, dashboard
consists of three layers [143]: data (raw data), analysis (includes formulas and
imported data from data layer to tables) and presentation (graphical represen-
tation based on the analysis layer)

Fig. 4.12 An example of the motion chart. This picture illustrates the data in forms of bubbles
that have various meaning based on color and size

Fig. 4.13 An example of the dashboard. This picuture illustrates pie chart, visualization of data in
pixels, line graph and bar chart
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Nowadays, there are many publicly available tools to create meaningful and
attractive visualizations. For instance, there is a chart of open visualization tools for
data visualization and analysis published by Machils [144]. The author provides a
list, which contains more than 30 tools from easiest to most difficult: Zoho Reports,
Weave, Infogr. am, Datawrapper and others.

All of these modern methods and tools follow fundamental cognitive psychology
principles and use the essential criteria of data successful representation [145] such
as manipulation of size, color and connections between visual objects (see
Fig. 4.14). In terms of human cognition, the Gestalt Principles [146] are relevant.
The basis of Gestalt psychology is a study of visual perception. It suggests that
people tend to perceive the world in a form of holistic ordered configuration rather
than constituent fragments (e.g. at first, person perceives forest and after that can
identify single trees as part of the whole). Moreover, our mind fills in the gaps,
seeks to avoid uncertainty and easily recognizes similarities and differences. The
main Gestalt principles such as law of proximity (collection of objects forming a
group), law of similarity (objects are grouped perceptually if they are similar to each
other), symmetry (people tend to perceive object as symmetrical shapes), closure
(our mind tends to close up objects that are not complete) and figure-ground law
(prominent and recessed roles of visual objects) should be taken into account in Big
Data Visualization.

To this end, the most effective visualization method is the one that uses multiple
criteria in the optimal manner. Otherwise, too many colors, shapes, and intercon-
nections may cause difficulties in the comprehension of data, or some visual ele-
ments may be too complex to recognize.

After observation and discussion about existing visualization methods and tools
for Big Data, we can clarify and outline its important disadvantages that are suf-
ficiently discussed by specialists from different fields [147–149]. Various ways of
data interpretation make them meaningful. It is easy to distort valuable information
in its visualization, because a picture convinces people more effectively than textual

Fig. 4.14 Fundamental cognitive psychology principles. Color is used to catch significant
differences in the data sets by view; manipulation of visual object sizes may assist persons to
identify the most important elements of the information; representation of connections improves
patterns identifications and aims to facilitate data analysis; Grouping objects using similarity
principle decreases cognitive load
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content. Existing visualization tools aim to create as simple and abstract images as
possible, which can lead to a problem when significant data can be interpreted as
disordered information and important connections between data units will be hid-
den from the user. It is a problem of visibility loss, which also refers to display
resolution, where the quality of represented data depends on number of pixels and
their density. A solution may be in the use of larger screens [150]. However, this
concept brings a problem of human brain cognitive perceptual limitations, as will be
discussed in detail in the section Integration with Augmented and Virtual Reality.

Using visual and automated methods in Big Data processing gives a possibility
to use human knowledge and intuition. Moreover, it becomes possible to discover
novel solutions for complex data visualization [151]. Vast amounts of information
motivate researchers and developers to create new tools for quick and accurate
analysis. As an example, the rapid development of visualization techniques may be
concerned. In the world of interconnected research areas, developers need to
combine existing basic, effective visualization methods with new technological
opportunities to solve the central problems and challenges of Big Data analysis.

Integration with Augmented and Virtual Reality

It is well known that the vision perception capabilities of the human brain are
limited [152]. Furthermore, handling a visualization process on currently used
screens requires high costs in both time and health. This leads to the need of its
proper usage in the case of image interpretation. Nevertheless, the market is in the
process of being flooded with countless numbers of wearable devices [153, 154] as
well as various display devices [155, 156].

The term Augmented Reality was invented by Tom Caudell and David Mizel in
1992 and meant to describe data produced by a computer that is superimposed to
the real world [157]. Nevertheless, Ivan Sutherland created the first AR/VR system
already in 1968. He developed the optical see-through head-mounted display that
can reveal simple three-dimensional models in real time [158]. This invention was a
predecessor to the modern VR displays and AR helmets [159] that seem to be an
established research and industrial area for the coming decade [160]. Applications
for use have already been found in military [161], education [162], healthcare [163],
industry [164] and gaming fields [165]. At the moment, the Oculus Rift [166]
helmet gives many opportunities for AR practice. Concretely, it will make it pos-
sible to embed virtual content into the physical world. William Steptoe has already
done research in this field. The use of it in the visualization area might solve many
issues from narrow visual angle, navigation, scaling, etc. For example, offering a
way to have a complete 360° view with a helmet can solve an angle problem. On
the other hand, a solution can be obtained with help of specific widescreen rooms,
which by definition involves enormous budgets. Focusing on the combination of
dynamic projection and interactive filtering visualization methods, AR devices in
combination with motion recognition tools might solve a significant scaling
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problem especially for multidimensional representations that comes to this area
from the field of Architecture. Speaking more precisely, designers (specialized in
3D-visualization) work with flat projections in order to produce a visual model
[167]. However, the only option to present a final image is in moving around it and
thus navigation inside the model seems to be another influential issue [168].

From the Big Data visualization point of view, scaling is a significant issue
mainly caused by multidimensional systems where a need to delve into a branch of
information in order to obtain some specific value or knowledge takes its place.
Unfortunately, it cannot be solved from a static point of view. Likewise, integration
with motion detection wearables [169] would highly increase such visualization
system usability. For example, the additional use of an MYO armband [170] may
be a key to the interaction with visualized data in the most native way. Similar
comparison may be given as a pencil-case in which one tries to find a sharpener and
spreads stationery with his/her fingers.

However, the use of AR displays and helmets is also limited by specific char-
acteristics of the human eye (visual system), such as field of view and/or diseases
like scotoma [171] and blind spots [172]. Central vision [173] is most significant
and necessary for human activities such as reading or driving. Additionally, it is
responsible for accurate vision in the pointed direction and takes most of the visual
cortex in the brain but its retinal size is <1 % [174]. Furthermore, it captures only
two degrees of the vision field, which stays the most considerable for text and
object recognition. Nevertheless, it is supported with Peripheral vision which is
responsible for events outside the center of gaze. Many researchers around the
world are currently working with virtual and AR to train young professionals [175–
177], develop new areas [178, 179] and analyze the patient’s behavior [180].

Despite the well known topics like colorblindness, natural field of view and
other physiological abnormalities, recent research by Israel Abramov et al. [181] is
over viewing physiological gender and age differences based on the cerebral cortex
and its large number of testosterone receptors [182], as a basis for the variety in
perception procedures. The study was mainly about the focused image onto the
retina at the back of the eyeball and its visual system processing. We overview the
main reasons for those differences, starting from prehistoric times, when African
habitats in forest regions had limited distance for object detection and identification,
thus obtained higher acuity for males may be explained. Also, sex differences might
be related to different roles in the survival commune. So that males were mainly
hunting (hunter-gatherer hypothesis)—they had to detect enemies and predators
much faster [183]. Moreover, there are significant gender differences for far- and
near-vision: males have their advantage in a far-space [184]. On the other hand,
females are much more susceptible for brightness and color changes in addition to
static objects in near-space [185]. However, we can conclude that male/female
differences in the sensory capacities are adaptive but should be considered in order
to optimize represented and visualized data for end-uses. Additionally, there exists a
research area focusing on the human eye movement patterns during the perception
of scenes and objects. It can be based on different factors starting from particular
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culture peculiar properties [186] and up to specific search tasks [187] being in high
demand for Big Data visualization purposes.

Further studies shall be focused on the usage of ophthalmology and neurology
for the development of the new visualization tools. Basically, such cross-discipline
collaboration would support decision making for the image position selection,
which is mainly related to the problem of the significant information losses due to
the vision angle extension. Moreover, it is highly important to take in account
current hardware quality and screens resolution in addition to the software
part. Nevertheless, there is a need of the improvement for multicore GPU proces-
sors besides the address bus throughput refinement between CPU and GPU or even
replacement for wireless transfer computations on cluster systems. Never the less, it
is significant to discuss current visualization challenges to support future research.

Future Research Agenda and Data Visualization Challenges

Visualized data can significantly improve the understanding of the preselected
information for an average user. In fact, people start to explore the world using
visual abilities since birth. Images are often more easier to perceive in comparison
to text. In the modern world, we can see clear evolution towards visual data rep-
resentation and imagery experience. Moreover, visualization software becomes
ubiquitous and publicly available for ordinary user. As a result, visual objects are
widely distributed—from social media to scientific papers and, thus, the role of
visualization while working with large amount of data should be reconsidered. In
this section, we overview important challenges and possible solutions related to
future agenda for Big Data visualization with AR and VR usage:

1. Application development integration In order to operate with visualized objects,
it is necessary to create a new interactive system for the user. It should support
such actions as: scaling; navigating in visualized 3D space; selecting sub-spaces,
objects, groups of visual elements (flow/path elements) and views; manipulating
and placing; planning routes of view; generating, extracting and collecting data
(based on the reviewed visualized data). A novel system should allow multi-
modal control by voice and/or gestures in order to make it more intuitive for
users as it is shown in [188, 190, 191]. Nevertheless, one of the main issues
regarding this direction of development is the fact that implementing effective
gestural and voice interaction is not a trivial matter. There is a need to develop a
machine learning system and to define basic intuitive gestures that are currently
in research for general [192–194] and more specific (medical) purposes [195].

2. Equipment and virtual interface It is necessary to apply certain equipment for
the implementation of such an interactive system in practice. Currently, there are
optical and video see-trough head-mounted displays (HMD) [196] that merge
virtual objects into the real scene view. Both have the following issues: dis-
tortion and resolution of the real scene; delay of a system; viewpoint matching;
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engineering and cost factors. As for the interaction issue, for an appropriate
haptic feedback in an MR environment there is a need to create a framework that
would allow an interaction with intuitive gesture. As it is revealed in the section
Integration with Augmented and Virtual Reality, glove-based systems [197] are
mainly used for virtual object manipulation. The disadvantage of hand-tracking
input is so that there is no tactile feedback. In summary, the interface should be
redesigned or reinvented in order to simplify user interaction. Software engi-
neers should create new approaches, principles and methods in User Interface
Design to make all instruments easily accessible and intuitive to use.

3. Tracking and recognition system Objects and tools have to be tracked in virtual
space. The position and orientation values of virtual items are dynamic and have
to be re-estimated during presentation. Tracking head movement is another
significant challenge. It aims to avoid mismatch of the real view scene and
computer generated objects. This challenge may be solved by using more
flexible software platforms.

4. Perception and cognition Actually, the level of computer operation is high but
still not sufficiently effective in comparison to human brain performance even in
cases of neural networks. As was mentioned earlier in the section Integration
with Augmented and Virtual Reality, human perception and cognition have their
own characteristics and features, and the consideration of this issue by devel-
opers during hardware and interface design for AR is vital. In addition, the
user’s ability to recognize and understand the data is a central issue. Tasks such
as browsing and searching require a certain cognitive activity. Also, there can be
issues related to different users’ reactions with regard to visualized objects
depending on their personal and cultural backgrounds. In this sense, simplicity
in information visualization has to be achieved in order to avoid misperceptions
and cognitive overload [198]. Psychophysical studies would provide answers to
questions regarding perception and would give the opportunity to improve
performance by motion prediction.

5. Virtual and physical objects mismatch In an Augmented Reality environment,
virtual images integrate with real world scenery at the static distance in the
display while the distance to real objects varies. Consequently, a mismatch of
virtual and physical distances is irreversible and it may result in incorrect focus,
contrast and brightness of virtual objects in comparison to real ones. The human
eye is capable of recognizing many levels of brightness, saturation and contrast
[199], but most contemporary optical technologies cannot display all levels
appropriately. Moreover, potential optical illusions arise from conflicts between
computer-generated and real environment objects. Using modern equipment
would be a solution for this challenge.

6. Screen limitations With the current technology development level, visualized
information is presented mainly on screens. Even a VR helmet is equipped with
two displays. Unfortunately, and because of the close-to-the-eye proximity,
users can experience lack of comfort while working with it. It is mainly based on
a low display resolution and high graininess and, thus, manufacturers should
take it into consideration for further improvement.
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7. Education As this concept is relatively new, there is a need to specify the value
of the data visualization and its contribution to the users’ work. The value
cannot be so obvious; that is why compelling showcase examples and publicly
available tutorials can reveal AR and VR potential in visual analytics. Moreover,
users need to be educated and trained for the oncoming interaction with this
evolving technology. The visual literacy skill should be improved in order to
have high performance while working with visualized objects. A preferable
guideline can be chosen as Visual Information-Seeking Mantra: overview first,
zoom and filter, then details on demand [200].

Despite all the challenges, the main benefit from the implementation of MR
approach is human experience improvement. At the same time, such visualization
allows convenient access to huge amounts of data and provides a view from dif-
ferent angles. The navigation is smooth and natural via tangible and verbal inter-
action. It also minimizes perceptional inaccuracy in data analysis and makes
visualization powerful at conveying knowledge to the end user. Furthermore, it
ensures actionable insights that improves decision making.

In conclusion, challenges of data visualization for AR and VR are associated not
only with current technology development but also with human-centric issues.
Interestingly, some researchers are already working on the conjugation of such
complex fields as massive data analysis, its visualization and complex control of the
visualized environment [201]. It is worthwhile to note that those factors should be
taken into account simultaneously in order to achieve the best outcome for the
established industrial field.

Conclusion

In practice, there are a lot of challenges for Big Data processing and analysis. As all
the data is currently visualized by computers, it leads to difficulties in the extraction
of data, followed by its perception and cognition. Those tasks are time-consuming
and do not always provide correct or acceptable results.

In this paper we have obtained relevant Big Data Visualization methods clas-
sification and have suggested the modern tendency towards visualization-based
tools for business support and other significant fields. Past and current states of data
visualization were described and supported by analysis of advantages and disad-
vantages. The approach of utilizing VR, AR and MR for Big Data Visualization is
presented and the advantages, disadvantages and possible optimization strategies of
those are discussed.

For visualization problems discussed in this work, it is critical to understand the
issues related to human perception and limited cognition. Only after that, the field
of design can provide more efficient and useful ways to utilize Big Data. It can be
concluded that data visualization methodology may be improved by considering
fundamental cognitive psychological principles and by implementing most natural
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interaction with visualized virtual objects. Moreover, extending it with functions to
exclude blind spots and decreased vision sectors would highly improve recognition
time for people with such a disease. Furthermore, a step towards wireless solutions
would extend device battery life in addition to computation and quality
improvements.
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Chapter 5
Deep Learning Techniques in Big
Data Analytics

Maryam M. Najafabadi, Flavio Villanustre, Taghi M. Khoshgoftaar,
Naeem Seliya, Randall Wald and Edin Muharemagc

Introduction

The general focus of machine learning is the representation of the input data and
generalization of the learnt patterns for use on future unseen data. The goodness of
the data representation has a large impact on the performance of machine learners
on the data: a poor data representation is likely to reduce the performance of even
an advanced, complex machine learner, while a good data representation can lead to
high performance for a relatively simpler machine learner. Thus, feature engi-
neering, which focuses on constructing features and data representations from raw
data [1], is an important element of machine learning. Feature engineering con-
sumes a large portion of the effort in a machine learning task, and is typically quite
domain specific and involves considerable human input. For example, the
Histogram of Oriented Gradients (HOG) [2] and Scale Invariant Feature Transform
(SIFT) [3] are popular feature engineering algorithms developed specifically for the
computer vision domain. Performing feature engineering in a more automated and
general fashion would be a major breakthrough in machine learning as this would
allow practitioners to automatically extract such features without direct human
input.

Deep Learning algorithms are one promising avenue of research into the auto-
mated extraction of complex data representations (features) at high levels of
abstraction. Such algorithms develop a layered, hierarchical architecture of learning
and representing data, where higher-level (more abstract) features are defined in
terms of lower-level (less abstract) features. The hierarchical learning architecture
of Deep Learning algorithms is motivated by artificial intelligence emulating the
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deep, layered learning process of the primary sensorial areas of the neocortex in the
human brain, which automatically extracts features and abstractions from the
underlying data [4–6]. Deep Learning algorithms are quite beneficial when dealing
with learning from large amounts of unsupervised data, and typically learn data
representations in a greedy layer-wise fashion [7, 8]. Empirical studies have
demonstrated that data representations obtained from stacking up nonlinear feature
extractors (as in Deep Learning) often yield better machine learning results, e.g.,
improved classification modeling [9], better quality of generated samples by gen-
erative probabilistic models [10], and the invariant property of data representations
[11]. Deep Learning solutions have yielded outstanding results in different machine
learning applications, including speech recognition [12–16], computer vision [7, 8,
17], and natural language processing [18–20]. A more detailed overview of Deep
Learning is presented in “Deep Learning in Data Mining and Machine Learning”
section.

Big Data represents the general realm of problems and techniques used for
application domains that collect and maintain massive volumes of raw data for
domain-specific data analysis. Modern data-intensive technologies as well as
increased computational and data storage resources have contributed heavily to the
development of Big Data science [21]. Technology based companies such as
Google, Yahoo, Microsoft, and Amazon have collected and maintained data that is
measured in exabyte proportions or larger. Moreover, social media organizations
such as Facebook, YouTube, and Twitter have billions of users that constantly
generate a very large quantity of data. Various organizations have invested in
developing products using Big Data Analytics to addressing their monitoring,
experimentation, data analysis, simulations, and other knowledge and business
needs [22], making it a central topic in data science research.

Mining and extracting meaningful patterns from massive input data for decision
making, prediction, and other inferencing is at the core of Big Data Analytics. In
addition to analyzing massive volumes of data, Big Data Analytics poses other
unique challenges for machine learning and data analysis, including format varia-
tion of the raw data, fast moving streaming data, trustworthiness of the data anal-
ysis, highly distributed input sources, noisy and poor quality data, high
dimensionality, scalability of algorithms, imbalanced input data, unsupervised and
un-categorized data, limited supervised/labeled data, etc. Adequate data storage,
data indexing/tagging, and fast information retrieval are other key problems in Big
Data Analytics. Consequently, innovative data analysis and data management
solutions are warranted when working with Big Data. For example, in a recent work
we examined the high-dimensionality of bioinformatics domain data and investi-
gated feature selection techniques to address the problem [23]. A more detailed
overview of Big Data Analytics is presented in “Big Data Analytics” section.

The knowledge learnt from (and made available by) Deep Learning algorithms
has been largely untapped in the context of Big Data Analytics. Certain Big Data
domains, such as computer vision [17] and speech recognition [13], have seen the
application of Deep Learning largely to improve classification modeling results.
The ability of Deep Learning to extract high-level, complex abstractions and data
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representations from large volumes of data, especially unsupervised data, makes it
attractive as a valuable tool for Big Data Analytics. More specifically, Big Data
problems such as semantic indexing, data tagging, fast information retrieval, and
discriminative modeling can be better addressed with the aid of Deep Learning.
More traditional machine learning and feature engineering algorithms are not
efficient enough to extract the complex and non-linear patterns generally observed
in Big Data. By extracting such features, Deep Learning enables the use of rela-
tively simpler linear models for Big Data analysis tasks, such as classification and
prediction, which is important when developing models to deal with the scale of
Big Data. The novelty of this study is that it explores the application of Deep
Learning algorithms for key problems in Big Data Analytics, motivating further
targeted research by experts in these two fields.

The paper focuses on two key topics: (1) how Deep Learning can assist with
specific problems in Big Data Analytics, and (2) how specific areas of Deep
Learning can be improved to reflect certain challenges associated with Big Data
Analytics. With respect to the first topic, we explore the application of Deep
Learning for specific Big Data Analytics, including learning from massive volumes
of data, semantic indexing, discriminative tasks, and data tagging. Our investigation
regarding the second topic focuses on specific challenges Deep Learning faces due
to existing problems in Big Data Analytics, including learning from streaming data,
dealing with high dimensionality of data, scalability of models, and distributed and
parallel computing. We conclude by identifying important future areas needing
innovation in Deep Learning for Big Data Analytics, including data sampling for
generating useful high-level abstractions, domain (data distribution) adaption,
defining criteria for extracting good data representations for discriminative and
indexing tasks, semi-supervised learning, and active learning.

The remainder of the paper is structured as follows: “Deep Learning in Data
Mining and Machine Learning” section presents an overview of Deep Learning for
data analysis in data mining and machine learning; “Big Data Analytics” section
presents an overview of Big Data Analytics, including key characteristics of Big
Data and identifying specific data analysis problems faced in Big Data Analytics;
“Applications of Deep Learning in Big Data Analytics” section presents a targeted
survey of works investigating Deep Learning based solutions for data analysis, and
discusses how Deep Learning can be applied for Big Data Analytics problems;
“Deep Learning Challenges in Big Data Analytics” section discusses some chal-
lenges faced by Deep Learning experts due to specific data analysis needs of Big
Data; “Future Work on Deep Learning in Big Data Analytics” section presents our
insights into further works that are necessary for extending the application of Deep
Learning in Big Data, and poses important questions to domain experts; and in
“Conclusion” section we reiterate the focus of the paper and summarize the work
presented.
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Deep Learning in Data Mining and Machine Learning

The main concept in deep leaning algorithms is automating the extraction of rep-
resentations (abstractions) from the data [5, 24, 25]. Deep learning algorithms use a
huge amount of unsupervised data to automatically extract complex representation.
These algorithms are largely motivated by the field of artificial intelligence, which
has the general goal of emulating the human brain’s ability to observe, analyze,
learn, and make decisions, especially for extremely complex problems. Work
pertaining to these complex challenges has been a key motivation behind Deep
Learning algorithms which strive to emulate the hierarchical learning approach of
the human brain. Models based on shallow learning architectures such as decision
trees, support vector machines, and case-based reasoning may fall short when
attempting to extract useful information from complex structures and relationships
in the input corpus. In contrast, Deep Learning architectures have the capability to
generalize in non-local and global ways, generating learning patterns and rela-
tionships beyond immediate neighbors in the data [4]. Deep learning is in fact an
important step toward artificial intelligence. It not only provides complex repre-
sentations of data which are suitable for AI tasks but also makes the machines
independent of human knowledge which is the ultimate goal of AI. It extracts
representations directly from unsupervised data without human interference.

A key concept underlying Deep Learning methods is distributed representations
of the data, in which a large number of possible configurations of the abstract
features of the input data are feasible, allowing for a compact representation of each
sample and leading to a richer generalization. The number of possible configura-
tions is exponentially related to the number of extracted abstract features. Noting
that the observed data was generated through interactions of several
known/unknown factors, and thus when a data pattern is obtained through some
configurations of learnt factors, additional (unseen) data patterns can likely be
described through new configurations of the learnt factors and patterns [5, 24].
Compared to learning based on local generalizations, the number of patterns that
can be obtained using a distributed representation scales quickly with the number of
learnt factors.

Deep learning algorithms lead to abstract representations because more abstract
representations are often constructed based on less abstract ones. An important
advantage of more abstract representations is that they can be invariant to the local
changes in the input data. Learning such invariant features is an ongoing major goal
in pattern recognition (for example learning features that are invariant to the face
orientation in a face recognition task). Beyond being invariant such representations
can also disentangle the factors of variation in data. The real data used in AI-related
tasks mostly arise from complicated interactions of many sources. For example an
image is composed of different sources of variations such a light, object shapes, and
object materials. The abstract representations provided by deep learning algorithms
can separate the different sources of variations in data.
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Deep learning algorithms are actually Deep architectures of consecutive layers.
Each layer applies a nonlinear transformation on its input and provides a repre-
sentation in its output. The objective is to learn a complicated and abstract repre-
sentation of the data in a hierarchical manner by passing the data through multiple
transformation layers. The sensory data (for example pixels in an image) is fed to
the first layer. Consequently the output of each layer is provided as input to its next
layer.

Stacking up the nonlinear transformation layers is the basic idea in deep learning
algorithms. The more layers the data goes through in the deep architecture, the more
complicated the nonlinear transformations which are constructed. These transfor-
mations represent the data, so Deep Learning can be considered as special case of
representation learning algorithms which learn representations of the data in a Deep
Architecture with multiple levels of representations. The achieved final represen-
tation is a highly non-linear function of the input data.

It is important to note that the transformations in the layers of deep architecture
are non-linear transformations which try to extract underlying explanatory factors in
the data. One cannot use a linear transformation like PCA as the transformation
algorithms in the layers of the deep structure because the compositions of linear
transformations yield another linear transformation. Therefore, there would be no
point in having a deep architecture. For example by providing some face images to
the Deep Learning algorithm, at the first layer it can learn the edges in different
orientations; in the second layer it composes these edges to learn more complex
features like different parts of a face such as lips, noses and eyes. In the third layer it
composes these features to learn even more complex feature like face shapes of
different persons. These final representations can be used as feature in applications
of face recognition. This example is provided to simply explain in an understand-
able way how a deep learning algorithm finds more abstract and complicated
representations of data by composing representations acquired in a hierarchical
architecture. However, it must be considered that deep learning algorithms do not
necessarily attempt to construct a pre-defined sequence of representations at each
layer (such as edges, eyes, faces), but instead more generally perform non-linear
transformations in different layers. These transformations tend to disentangle factors
of variations in data. Translating this concept to appropriate training criteria is still
one of the main open questions in deep learning algorithms [5].

The final representation of data constructed by the deep learning algorithm
(output of the final layer) provides useful information from the data which can be
used as features in building classifiers, or even can be used for data indexing and
other applications which are more efficient when using abstract representations of
data rather than high dimensional sensory data.

Learning the parameters in a deep architecture is a difficult optimization task,
such as learning the parameters in neural networks with many hidden layers. In
2006 Hinton proposed learning deep architectures in an unsupervised greedy
layer-wise learning manner [7]. At the beginning the sensory data is fed as learning
data to the first layer. The first layer is then trained based on this data, and the
output of the first layer (the first level of learnt representations) is provided as
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learning data to the second layer. Such iteration is done until the desired number of
layers is obtained. At this point the deep network is trained. The representations
learnt on the last layer can be used for different tasks. If the task is a classification
task usually another supervised layer is put on top of the last layer and its
parameters are learnt (either randomly or by using supervised data and keeping the
rest of the network fixed). At the end the whole network is fine-tuned by providing
supervised data to it.

Here we explain two fundamental building blocks, unsupervised single layer
learning algorithms which are used to construct deeper models: Autoencoders and
Restricted Boltzmann Machines (RBMs). These are often employed in tandem to
construct stacked Autoencoders [8, 26] and Deep belief networks [7], which are
constructed by stacking up Autoencoders and Restricted Boltzmann Machines
respectively. Autoencoders, also called autoassociators [27], are networks con-
structed of 3 layers: input, hidden and output. Autoencoders try to learn some
representations of the input in the hidden layer in a way that makes it possible to
reconstruct the input in the output layer based on these intermediate representations.
Thus, the target output is the input itself. A basic Autoencoder learns its parameters
by minimizing the reconstruction error. This minimization is usually done by
stochastic gradient descent (much like what is done in Multilayer Perceptron). If the
hidden layer is linear and the mean squared error is used as the reconstruction
criteria, then the Autoencoder will learn the first k principle components of the data.
Alternative strategies are proposed to make Autoencoders nonlinear which are
appropriate to build deep networks as well as to extract meaningful representations
of data rather than performing just as a dimensionality reduction method. Bengio
et al. [5] have called these methods “regularized Autoencoders”, and we refer an
interested reader to that paper for more details on algorithms.

Another unsupervised single layer learning algorithm which is used as a building
block in constructing Deep Belief Networks is the Restricted Boltzmann machine
(RBM). RBMs are most likely the most popular version of Boltzmann machine
[28]. They contains one visible layer and one hidden layer. The restriction is that
there is no interaction between the units of the same layer and the connections are
solely between units from different layers. The Contrastive Divergence algorithm
[29] has mostly been used to train the Boltzmann machine.

Big Data Analytics

Big Data generally refers to data that exceeds the typical storage, processing, and
computing capacity of conventional databases and data analysis techniques. As a
resource, Big Data requires tools and methods that can be applied to analyze and
extract patterns from large-scale data. The rise of Big Data has been caused by
increased data storage capabilities, increased computational processing power, and
availability of increased volumes of data, which give organization more data than
they have computing resources and technologies to process. In addition to the
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obvious great volumes of data, Big Data is also associated with other specific
complexities, often referred to as the four Vs: Volume, Variety, Velocity, and
Veracity [22, 30, 31]. We note that the aim of this section is not to extensively
cover Big Data, but present a brief overview of its key concepts and challenges
while keeping in mind that the use of Deep Learning in Big Data Analytics is the
focus of this paper.

The unmanageable large Volume of data poses an immediate challenge to
conventional computing environments and requires scalable storage and a dis-
tributed strategy to data querying and analysis. However, this large Volume of data
is also a major positive feature of Big Data. Many companies, such as Facebook,
Yahoo, Google, already have large amounts of data and have recently begun tap-
ping into its benefits [21]. A general theme in Big Data systems is that the raw data
is increasingly diverse and complex, consisting of largely
un-categorized/unsupervised data along with perhaps a small quantity of
categorized/supervised data. Working with the Variety among different data rep-
resentations in a given repository poses unique challenges with Big Data, which
requires Big Data preprocessing of unstructured data in order to extract
structured/ordered representations of the data for human and/or downstream con-
sumption. In today’s data-intensive technology era, data Velocity—the increasing
rate at which data is collected and obtained—is just as important as the Volume and
Variety characteristics of Big Data. While the possibility of data loss exists with
streaming data if it is generally not immediately processed and analyzed, there is the
option to save fast-moving data into bulk storage for batch processing at a later
time. However, the practical importance of dealing with Velocity associated with
Big Data is the quickness of the feedback loop, that is, process of translating data
input into useable information. This is especially important in the case of
time-sensitive information processing. Some companies such as Twitter, Yahoo,
and IBM have developed products that address the analysis of streaming data [22].
Veracity in Big Data deals with the trustworthiness or usefulness of results obtained
from data analysis, and brings to light the old adage “Garbage-In-Garbage-Out” for
decision making based on Big Data Analytics. As the number of data sources and
types increases, sustaining trust in Big Data Analytics presents a practical
challenge.

Big Data Analytics faces a number of challenges beyond those implied by the
four Vs. While not meant to be an exhaustive list, some key problem areas include:
data quality and validation, data cleansing, feature engineering, high-dimensionality
and data reduction, data representations and distributed data sources, data sampling,
scalability of algorithms, data visualization, parallel and distributed data processing,
real-time analysis and decision making, crowdsourcing and semantic input for
improved data analysis, tracing and analyzing data provenance, data discovery and
integration, parallel and distributed computing, exploratory data analysis and
interpretation, integrating heterogenous data, and developing new models for
massive data computation.
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Applications of Deep Learning in Big Data Analytics

As stated previously, Deep Learning algorithms extract meaningful abstract rep-
resentations of the raw data through the use of an hierarchical multi-level learning
approach, where in a higher-level more abstract and complex representations are
learnt based on the less abstract concepts and representations in the lower level(s) of
the learning hierarchy. While Deep Learning can be applied to learn from labeled
data if it is available in sufficiently large amounts, it is primarily attractive for
learning from large amounts of unlabeled/unsupervised data [4, 5, 25], making it
attractive for extracting meaningful representations and patterns from Big Data.

Once the hierarchical data abstractions are learnt from unsupervised data with
Deep Learning, more conventional discriminative models can be trained with the
aid of relatively fewer supervised/labeled data points, where the labeled data is
typically obtained through human/expert input. Deep Learning algorithms are
shown to perform better at extracting non-local and global relationships and pat-
terns in the data, compared to relatively shallow learning architectures [4]. Other
useful characteristics of the learnt abstract representations by Deep Learning
include: (1) relatively simple linear models can work effectively with the knowl-
edge obtained from the more complex and more abstract data representations,
(2) increased automation of data representation extraction from unsupervised data
enables its broad application to different data types, such as image, textural, audio,
etc., and (3) relational and semantic knowledge can be obtained at the higher levels
of abstraction and representation of the raw data. While there are other useful
aspects of Deep Learning based representations of data, the specific characteristics
mentioned above are particularly important for Big Data Analytics.

Considering each of the four Vs of Big Data characteristics, i.e., Volume,
Variety, Velocity, and Veracity, Deep Learning algorithms and architectures are
more aptly suited to address issues related to Volume and Variety of Big Data
Analytics. Deep Learning inherently exploits the availability of massive amounts of
data, i.e., Volume in Big Data, where algorithms with shallow learning hierarchies
fail to explore and understand the higher complexities of data patterns. Moreover,
since Deep Learning deals with data abstraction and representations, it is quite
likely suited for analyzing raw data presented in different formats and/or from
different sources, i.e., Variety in Big Data, and may minimize need for input from
human experts to extract features from every new data type observed in Big Data.
While presenting different challenges for more conventional data analysis approa-
ches, Big Data Analytics presents an important opportunity for developing novel
algorithms and models to address specific issues related to Big Data. Deep Learning
concepts provide one such solution venue for data analytics experts and practi-
tioners. For example, the extracted representations by Deep Learning can be con-
sidered as a practical source of knowledge for decision-making, semantic indexing,
information retrieval, and for other purposes in Big Data Analytics, and in addition,
simple linear modeling techniques can be considered for Big Data Analytics when
complex data is represented in higher forms of abstraction.
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In the remainder of this section, we summarize some important works that have
been performed in the field of Deep Learning algorithms and architectures,
including semantic indexing, discriminative tasks, and data tagging. Our focus is
that by presenting these works in Deep Learning, experts can observe the novel
applicability of Deep Learning techniques in Big Data Analytics, particularly since
some of the application domains in the works presented involve large scale data.
Deep Learning algorithms are applicable to different kinds of input data; however,
in this section we focus on its application on image, textual, and audio data.

Semantic Indexing

A key task associated with Big Data Analytics is information retrieval [21].
Efficient storage and retrieval of information is a growing problem in Big Data,
particularly since very large-scale quantities of data such as text, image, video, and
audio are being collected and made available across various domains, e.g., social
networks, security systems, shopping and marketing systems, defense systems,
fraud detection, and cyber traffic monitoring. Previous strategies and solutions for
information storage and retrieval are challenged by the massive volumes of data and
different data representations, both associated with Big Data. In these systems,
massive amounts of data are available that needs semantic indexing rather than
being stored as data bit strings. Semantic indexing presents the data in a more
efficient manner and makes it useful as a source for knowledge discovery and
comprehension, for example by making search engines work more quickly and
efficiently.

Instead of using raw input for data indexing, Deep Learning can be used to
generate high-level abstract data representations which will be used for semantic
indexing. These representations can reveal complex associations and factors
(especially when the raw input was Big Data), leading to semantic knowledge and
understanding. Data representations play an important role in the indexing of data,
for example by allowing data points/instances with relatively similar representations
to be stored closer to one another in memory, aiding in efficient information
retrieval. It should be noted, however, that the high-level abstract data represen-
tations need to be meaningful and demonstrate relational and semantic association
in order to actually confer a good semantic understanding and comprehension of the
input.

While Deep Learning aids in providing a semantic and relational understanding
of the data, a vector representation (corresponding to the extracted representations)
of data instances would provide faster searching and information retrieval. More
specifically, since the learnt complex data representations contain semantic and
relational information instead of just raw bit data, they can directly be used for
semantic indexing when each data point (for example a given text document) is
presented by a vector representation, allowing for a vector-based comparison which
is more efficient than comparing instances based directly on raw data. The data
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instances that have similar vector representations are likely to have similar semantic
meaning. Thus, using vector representations of complex high-level data abstractions
for indexing the data makes semantic indexing feasible. In the remainder of this
section, we focus on document indexing based on knowledge gained from Deep
Learning. However, the general idea of indexing based on data representations
obtained from Deep Learning can be extended to other forms of data.

Document (or textual) representation is a key aspect in information retrieval for
many domains. The goal of document representation is to create a representation
that condenses specific and unique aspects of the document, e.g., document topic.
Document retrieval and classification systems are largely based on word counts,
representing the number of times each word occurs in the document. Various
document retrieval schemas use such a strategy, e.g., TF-IDF [32] and BM25 [33].
Such document representation schemas consider individual words to be dimen-
sions, with different dimensions being independent. In practice, it is often observed
that the occurrence of words are highly correlated. Using Deep Learning techniques
to extract meaningful data representations makes it possible to obtain semantic
features from such high-dimensional textual data, which in turn also leads to the
reduction of the dimensions of the document data representations.

Hinton and Salakhutdinov [34] describe a Deep Learning generative model to
learn the binary codes for documents. The lowest layer of the Deep Learning
network represents the word count vector of the document which accounts as
high-dimensional data, while the highest layer represents the learnt binary code of
the document. Using 128-bit codes, the authors demonstrate that the binary codes of
the documents that are semantically similar lay relatively closer in the Hamming
space. The binary code of the documents can then be used for information retrieval.
For each query document, its Hamming distance compared to all other documents
in the data is computed and the top D similar documents are retrieved. Binary codes
require relatively little storage space, and in addition they allow relatively quicker
searches by using algorithms such as fast-bit counting to compute the Hamming
distance between two binary codes. The authors conclude that using these binary
codes for document retrieval is more accurate and faster than semantic-based
analysis.

Deep Learning generative models can also be used to produce shorter binary
codes by forcing the highest layer in the learning hierarchy to use a relatively small
number of variables. These shorter binary codes can then simply be used as
memory addresses. One word of memory is used to describe each document in such
a way that a small Hammingball around that memory address contains semantically
similar documents—such a technique is referred as “semantic hashing” [35]. Using
such a strategy, one can perform information retrieval on a very large document set
with the retrieval time being independent of the document set size. Techniques such
as semantic hashing are quite attractive for information retrieval, because docu-
ments that are similar to the query document can be retrieved by finding all the
memory addresses that differ from the memory address of the query document by a
few bits. The authors demonstrate that “memory hashing” is much faster than
locality-sensitive hashing, which is one of the fastest methods among existing

142 5 Deep Learning Techniques in Big Data Analytics



algorithms. In addition, it is shown that by providing a document’s binary codes to
algorithms such as TF-IDF instead of providing the entire document, a higher level
of accuracy can be achieved. While Deep Learning generative models can have a
relatively slow learning/training time for producing binary codes for document
retrieval, the resulting knowledge yields fast inferences which is one major goal of
Big Data Analytics. More specifically, producing the binary code for a new doc-
ument requires just a few vector matrix computations performing a feed-forward
pass through the encoder component of the Deep Learning network architecture.

To learn better representations and abstractions, one can use some supervised
data in training the Deep Learning model. Ranzato and Szummer [36] present a
study in which parameters of the Deep Learning model are learnt based on both
supervised and unsupervised data. The advantages of such a strategy are that there
is no need to completely label a large collection of data (as some unlabeled data is
expected) and that the model has some prior knowledge (via the supervised data) to
capture relevant class/label information in the data. In other words, the model is
required to learn data representations that produce good reconstructions of the input
in addition to providing good predictions of document class labels. The authors
show that for learning compact representations, Deep Learning models are better
than shallow learning models. The compact representations are efficient because
they require fewer computations when used in indexing, and in addition, also need
less storage capacity.

Google’s “word2vec” tool is another technique for automated extraction of
semantic representations from Big Data. This tool takes a large-scale text corpus as
input and produces the word vectors as output. It first constructs a vocabulary from
the training text data and then learns vector representation of words, upon which the
word vector file can be used as features in many Natural Language Processing
(NLP) and machine learning applications. Miklov et al. [37] introduce techniques to
learn high-quality word vectors from huge datasets with hundreds of millions of
words (including some datasets containing 1.6 billion words), and with millions of
distinct words in the vocabulary. They focus on artificial neural networks to learn
the distributed representation of words. To train the network on such a massive
dataset, the models are implemented on top of the large-scale distributed framework
“DistBelief” [38]. The authors find that word vectors which are trained on massive
amounts of data show subtle semantic relationships between words, such as a city
and the country it belongs to—for example, Paris belongs to France and Berlin
belongs to Germany. Word vectors with such semantic relationships could be used
to improve many existing NLP applications, such as machine translation, infor-
mation retrieval, and question response systems. For example, in a related work,
Miklov et al. [39] demonstrate how word2vec can be applied for natural language
translation.

Deep Learning algorithms make it possible to learn complex nonlinear repre-
sentations between word occurrences, which allow the capture of high-level
semantic aspects of the document (which could not normally be learned with linear
models). Capturing these complex representations requires massive amounts of data
for the input corpus, and producing labeled data from this massive input is a
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difficult task. With Deep Learning one can leverage unlabeled documents (unsu-
pervised data) to have access to a much larger amount of input data, using a smaller
amount of supervised data to improve the data representations and make them more
related to the specific learning and inference tasks. The extracted data representa-
tions have been shown to be effective for retrieving documents, making them very
useful for search engines.

Similar to textual data, Deep Learning can be used on other kinds of data to
extract semantic representations from the input corpus, allowing for semantic
indexing of that data. Given the relatively recent emergence of Deep Learning,
additional work needs to be done on using its hierarchical learning strategy as a
method for semantic indexing of Big Data. A remaining open question is what
criteria is used to define “similar” when trying to extract data representations for
indexing purposes (recall, data points that are semantically similar will have similar
data representations in a specific distance space).

Discriminative Tasks and Semantic Tagging

In performing discriminative tasks in Big Data Analytics one can use Deep
Learning algorithms to extract complicated nonlinear features from the raw data,
and then use simple linear models to perform discriminative tasks using the
extracted features as input. This approach has two advantages: (1) extracting fea-
tures with Deep Learning adds nonlinearity to the data analysis, associating the
discriminative tasks closely to Artificial Intelligence, and (2) applying relatively
simple linear analytical models on the extracted features is more computationally
efficient, which is important for Big Data Analytics. The problem of developing
efficient linear models for Big Data Analytics has been extensively investigated in
the literature [21]. Hence, developing nonlinear features from massive amounts of
input data allows the data analysts to benefit from the knowledge available through
the massive amounts of data, by applying the learnt knowledge to simpler linear
models for further analysis. This is an important benefit of using Deep Learning in
Big Data Analytics, allowing practitioners to accomplish complicated tasks related
to Artificial Intelligence, such as image comprehension, object recognition in
images, etc., by using simpler models. Thus discriminative tasks are made relatively
easier in Big Data Analytics with the aid of Deep Learning algorithms.

Discriminative analysis in Big Data Analytics can be the primary purpose of the
data analysis, or it can be performed to conduct tagging (such as semantic tagging)
on the data for the purpose of searching. For example, Li et al. [40] explore the
Microsoft Research Audio Video Indexing System (MAVIS) that uses Deep
Learning (with Artificial Neural Networks) based speech recognition technology to
enable searching of audio and video files with speech. To converting digital audio
and video signals into words, MAVIS automatically generates closed captions and
keywords that can increase accessibility and discovery of audio and video files with
speech content.
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Considering the development of the Internet and the explosion of online users in
recent years, there has been a very rapid increase in the size of digital image
collections. These come from sources such as social networks, global positioning
satellites, image sharing systems, medical imaging systems, military surveillance,
and security systems. Google has explored and developed systems that provide
image searches (e.g., the Google Images search service), including search systems
that are only based on the image file name and document contents and do not
consider/relate to the image content itself [41, 42]. Towards achieving artificial
intelligence in providing improved image searches, practitioners should move
beyond just the textual relationships of images, especially since textual represen-
tations of images are not always available in massive image collection repositories.
Experts should strive towards collecting and organizing these massive image data
collections, such that they can be browsed, searched, and retrieved more efficiently.
To deal with large scale image data collections, one approach to consider is to
automate the process of tagging images and extracting semantic information from
the images. Deep Learning presents new frontiers towards constructing complicated
representations for image and video data as relatively high levels of abstractions,
which can then be used for image annotation and tagging that is useful for image
indexing and retrieval. In the context of Big Data Analytics, here Deep Learning
would aid in the discriminative task of semantic tagging of data.

Data tagging is another way to semantically index the input data corpus. However,
it should not be confused with semantic indexing as discussed in the prior section. In
semantic indexing, the focus is on using the Deep Learning abstract representations
directly for data indexing purposes. Here the abstract data representations are con-
sidered as features for performing the discriminative task of data tagging. This tagging
on data can also be used for data indexing as well, but the primary idea here is that
Deep Leaning makes it possible to tag massive amounts of data by applying simple
linear modeling methods on complicated features that were extracted by Deep
Learning algorithms. The remainder of this section focuses largely on some results
from using Deep Leaning for discriminative tasks that involve data tagging.

At the ImageNet Computer Vision Competition, Krizhevsky et al. [17]
demonstrated an approach using Deep Learning and Convolutional Neural
Networks which outperformed other existing approaches for image object recog-
nition. Using the ImageNet dataset, one of the largest for image object recognition,
Hinton’s team showed the importance of Deep Learning for improving image
searching. Dean et al. [38] demonstrated further success on ImageNet by using a
similar Deep Learning modeling approach with a large-scale software infrastructure
for training an artificial neural network.

Some other approaches have been tried for learning and extracting features from
unlabeled image data, include Restricted Boltzmann Machines (RBMs) [7],
autoencoders [26], and sparse coding [43]. However, these were only able to extract
low-level features, such as edge and blob detection. Deep Learning can also be used
to build very high-level features for image detection. For example, Google and
Stanford formulated a very large deep neural network that was able to learn very
high-level features, such as face detection or cat detection from scratch (without any
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priors) by just using unlabeled data [44]. Their work was a large scale investigation
on the feasibility of building high-level features with Deep Learning using only
unlabeled (unsupervised) data, and clearly demonstrated the benefits of using Deep
Learning with unsupervised data. In Google’s experimentation, they trained a
9-layered locally connected sparse autoencoder on 10 million 200 � 200 images
downloaded randomly from the Internet. The model had 1 billion connections and
the training time lasted for 3 days. A computational cluster of 1000 machines and
16,000 cores was used to train the network with model parallelism and asyn-
chronous SGD (Stochastic Gradient Descent). In their experiments they obtained
neurons that function like face detectors, cat detectors, and human body detectors,
and based on these features their approach also outperformed the state-of-the-art
and recognized 22,000 object categories from the ImageNet dataset. This demon-
strates the generalization ability of abstract representations extracted by Deep
Learning algorithms on new/unseen data, i.e., using features extracted from a given
dataset to successfully perform a discriminative task on another dataset. While
Google’s work involved the question of whether it is possible to build a face feature
detector by just using unlabeled data, typically in computer vision labeled images
are used to learn useful features [45]. For example, a large collection of face images
with a bounding box around the faces can be used to learn a face detector feature.
However, traditionally it would require a very large amount of labeled data to find
the best features. The scarcity of labeled data in image data collections poses a
challenging problem.

There are other Deep Learning works that have explored image tagging. Socher
et al. [46] introduce recursive neural networks for predicting a tree structure for
images in multiple modalities, and is the first Deep Learning method that achieves
very good results on segmentation and annotation of complex image scenes. The
recursive neural network architecture is able to predict hierarchical tree structures
for scene images, and outperforms other methods based on conditional random
fields or a combination of other methods, as well as outperforming other existing
methods in segmentation, annotation and scene classification. Socher et al. [46] also
show that their algorithm is a natural tool for predicting tree structures by using it to
parse natural language sentences. This demonstrates the advantage of Deep
Learning as an effective approach for extracting data representations from different
varieties of data types. Kumar et al. [47] suggest that recurrent neural networks can
be used to construct a meaningful search space via Deep Learning, where the search
space can then be used for a designed-based search.

Le et al. [48] demonstrate that Deep Learning can be used for action scene
recognition as well as video data tagging, by using an independent variant analysis
to learn invariant spatio-temporal features from video data. Their approach out-
performs other existing methods when combined with Deep Learning techniques
such as stacking and convolution to learn hierarchical representations. Previous
works used to adapt hand designed feature for images like SIFT and HOG to the
video domain. The Le et al. [48] study shows that extracting features directly from
video data is a very important research direction, which can be also generalized to
many domains.
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Deep Learning has achieved remarkable results in extracting useful features (i.e.,
representations) for performing discriminative tasks on image and video data, as
well as extracting representations from other kinds of data. These discriminative
results with Deep Learning are useful for data tagging and information retrieval and
can be used in search engines. Thus, the high-level complex data representations
obtained by Deep Learning are useful for the application of computationally fea-
sible and relatively simpler linear models for Big Data Analytics. However, there is
considerable work that remains for further exploration, including determining
appropriate objectives in learning good representations for performing discrimi-
native tasks in Big Data Analytics [5, 25].

Deep Learning Challenges in Big Data Analytics

The prior section focused on emphasizing the applicability and benefits of Deep
Learning algorithms for Big Data Analytics. However, certain characteristics
associated with Big Data pose challenges for modifying and adapting Deep
Learning to address those issues. This section presents some areas of Big Data
where Deep Learning needs further exploration, specifically, learning with
streaming data, dealing with high-dimensional data, scalability of models, and
distributed computing.

Incremental Learning for Non-stationary Data

One of the challenging aspects in Big Data Analytics is dealing with streaming and
fast-moving input data. Such data analysis is useful in monitoring tasks, such as
fraud detection. It is important to adapt Deep Learning to handle streaming data, as
there is a need for algorithms that can deal with large amounts of continuous input
data. In this section, we discuss some works associated with Deep Learning and
streaming data, including incremental feature learning and extraction [49],
denoising autoencoders [50], and deep belief networks [51].

Zhou et al. [49] describe how a Deep Learning algorithm can be used for
incremental feature learning on very large datasets, employing denoising autoen-
coders [50]. Denoising autoencoders are a variant of autoencoders which extract
features from corrupted input, where the extracted features are robust to noisy data
and good for classification purposes. Deep Learning algorithms in general use
hidden layers to contribute towards the extraction of features or data representa-
tions. In a denoising autoencoder, there is one hidden layer which extracts features,
with the number of nodes in this hidden layer initially being the same as the number
of features that would be extracted. Incrementally, the samples that do not conform
to the given objective function (for example, their classification error is more than a
threshold, or their reconstruction error is high) are collected and are used for adding
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new nodes to the hidden layer, with these new nodes being initialized based on
those samples. Subsequently, incoming new data samples are used to jointly retrain
all the features. This incremental feature learning and mapping can improve the
discriminative or generative objective function; however, monotonically adding
features can lead to having a lot of redundant features and overfitting of data.
Consequently, similar features are merged to produce a more compact set of fea-
tures. Zhou et al. [49] demonstrate that the incremental feature learning method
quickly converges to the optimal number of features in a large-scale online setting.
This kind of incremental feature extraction is useful in applications where the
distribution of data changes with respect to time in massive online data streams.
Incremental feature learning and extraction can be generalized for other Deep
Learning algorithms, such as RBM [7], and makes it possible to adapt to new
incoming stream of an online large-scale data. Moreover, it avoids expensive
cross-validation analysis in selecting the number of features in large-scale datasets.

Calandra et al. [51] introduce adaptive deep belief networks which demonstrates
how Deep Learning can be generalized to learn from online non-stationary and
streaming data. Their study exploits the generative property of deep belief networks
to mimic the samples from the original data, where these samples and the new
observed samples are used to learn the new deep belief network which has adapted
to the newly observed data. However, a downside of an adaptive deep belief
network is the requirement for constant memory consumption.

The targeted works presented in this section provide empirical support to further
explore and develop novel Deep Learning algorithms and architectures for ana-
lyzing large-scale, fast moving streaming data, as is encountered in some Big Data
application domains such as social media feeds, marketing and financial data feeds,
web click stream data, operational logs, and metering data. For example, Amazon
Kinesis is a managed service designed to handle real-time streaming of Big Data—
though it is not based on the Deep Learning approach.

High-Dimensional Data

Some Deep Learning algorithms can become prohibitively computationally-
expensive when dealing with high-dimensional data, such as images, likely due
to the often slow learning process associated with a deep layered hierarchy of
learning data abstractions and representations from a lower-level layer to a
higher-level layer. That is to say, these Deep Learning algorithms can be stymied
when working with Big Data that exhibits large Volume, one of the four Vs
associated with Big Data Analytics. A high-dimensional data source contributes
heavily to the volume of the raw data, in addition to complicating learning from the
data.

Chen et al. [52] introduce marginalized stacked denoising autoencoders
(mSDAs) which scale effectively for high-dimensional data and is computationally
faster than regular stacked denoising autoencoders (SDAs). Their approach
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marginalizes noise in SDA training and thus does not require stochastic gradient
descent or other optimization algorithms to learn parameters. The marginalized
denoising autoencoder layers to have hidden nodes, thus allowing a closed-form
solution with substantial speed-ups. Moreover, marginalized SDA only has two free
meta-parameters, controlling the amount of noise as well as the number of layers to
be stacked, which greatly simplifies the model selection process. The fast training
time, the capability to scale to large-scale and high dimensional data, and imple-
mentation simplicity make mSDA a promising method with appeal to a large
audience in data mining and machine learning.

Convolutional neural networks are another method which scales up effectively
on high dimensional data. Researchers have taken advantages of convolutional
neural networks on ImageNet dataset with 256 � 256 RGB images to achieve state
of the art results [17, 26]. In convolutional neural networks, the neurons in the
hidden layers units do not need to be connected to all of the nodes in the previous
layer, but just to the neurons that are in the same spatial area. Moreover, the
resolution of the image data is also reduced when moving toward higher layers in
the network.

The application of Deep Learning algorithms for Big Data Analytics involving
high dimensional data remains largely unexplored, and warrants development of
Deep Learning based solutions that either adapt approaches similar to the ones
presented above or develop novel solutions for addressing the high-dimensionality
found in some Big Data domains.

Large-Scale Models

From a computation and analytics point of view, how do we scale the recent
successes of Deep Learning to much larger-scale models and massive datasets?
Empirical results have demonstrated the effectiveness of large-scale models [53–
55], with particular focus on models with a very large number of model parameters
which are able to extract more complicated features and representations [38, 56].

Dean et al. [38] consider the problem of training a Deep Learning neural network
with billions of parameters using tens of thousands of CPU cores, in the context of
speech recognition and computer vision. A software framework, DistBelief, is
developed that can utilize computing clusters with thousands of machines to train
large-scale models. The framework supports model parallelism both within a
machine (via multithreading) and across machines (via message passing), with the
details of parallelism, synchronization, and communication managed by DistBelief.
In addition, the framework also supports data parallelism, where multiple replicas
of a model are used to optimize a single objective. In order to make large-scale
distributed training possible an asynchronous SGD as well as a distributed batch
optimization procedure is developed that includes a distributed implementation of
L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno, a quasi-Newton
method for unconstrained optimization). The primary idea is to train multiple
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versions of the model in parallel, each running on a different node in the network
and analyzing different subsets of data. The authors report that in addition to
accelerating the training of conventional sized models, their framework can also
train models that are larger than could be contemplated otherwise. Moreover, while
the framework focuses on training large-scale neural networks, the underlying
algorithms are applicable to other gradient-based learning techniques. It should be
noted, however, that the extensive computational resources utilized by DistBelief
are generally unavailable to a larger audience. Coates et al.

Coates et al. [56] leverage the relatively inexpensive computing power of a
cluster of GPU servers. More specifically, they develop their own system (using
neural networks) based on Commodity Off-The-Shelf High Performance
Computing (COTS HPC) technology and introduce a high-speed communication
infrastructure to coordinate distributed computations. The system is able to train 1
billion parameter networks on just 3 machines in a couple of days, and it can scale
to networks with over 11 billion parameters using just 16 machines and where the
scalability is comparable to that of DistBelief. In comparison to the computational
resources used by DistBelief, the distributed system network based on COTS HPC
is more generally available to a larger audience, making it a reasonable alternative
for other Deep Learning experts exploring large-scale models.

Large-scale Deep Learning models are quite suited to handle massive volumes of
input associated with Big Data, and as demonstrated in the above works they are
also better at learning complex data patterns from large volumes of data.
Determining the optimal number of model parameters in such large-scale models
and improving their computational practicality pose challenges in Deep Learning
for Big Data Analytics. In addition to the problem of handling massive volumes of
data, large-scale Deep Learning models for Big Data Analytics also have to contend
with other Big Data problems, such as domain adaptation (see next section) and
streaming data. This lends to the need for further innovations in large-scale models
for Deep Learning algorithms and architectures.

Future Work on Deep Learning in Big Data Analytics

In the prior sections, we discussed some recent applications of Deep Learning
algorithms for Big Data Analytics, as well as identified some areas where Deep
Learning research needs further exploration to address specific data analysis
problems observed in Big Data. Considering the low-maturity of Deep Learning,
we note that considerable work remains to be done. In this section, we discuss our
insights on some remaining questions in Deep Learning research, especially on
work needed for improving machine learning and the formulation of the high-level
abstractions and data representations for Big Data.

An important problem is whether to utilize the entire Big Data input corpus
available when analyzing data with Deep Learning algorithms. The general focus is
to apply Deep Learning algorithms to train the high-level data representation
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patterns based on a portion of the available input corpus, and then utilize the
remaining input corpus with the learnt patterns for extracting the data abstractions
and representations. In the context of this problem, a question to explore is what
volume of input data is generally necessary to train useful (good) data represen-
tations by Deep Learning algorithms which can then be generalized for new data in
the specific Big Data application domain.

Upon further exploring the above problem, we recall the Variety characteristic of
Big Data Analytics, which focuses on the variation of the input data types and
domains in Big Data. Here, by considering the shift between the input data source
(for training the representations) and the target data source (for generalizing the
representations), the problem becomes one of domain adaptation for Deep Learning
in Big Data Analytics. Domain adaptation during learning is an important focus of
study in Deep Learning [57, 58], where the distribution of the training data (from
which the representations are learnt) is different from the distribution of the test data
(on which the learnt representations are deployed).

Glorot et al. [57] demonstrate that Deep Learning is able to discover intermediate
data representations in a hierarchical learning manner, and that these representations
are meaningful to, and can be shared among, different domains. In their work, a
stacked denoising autoencoder is initially used to learn features and patterns from
unlabeled data obtained from different source domains. Subsequently, a support
vector machine (SVM) algorithm utilizes the learnt features and patterns for
application on labeled data from a given source domain, resulting in a linear
classification model that outperforms other methods. This domain adaptation study
is successfully applied on a large industrial strength dataset consisting of 22 source
domains. However, it should be noted that their study does not explicitly encode the
distribution shift of the data between the source domain and the target domains.
Chopra et al. [58] propose a Deep Learning model (based on neural networks) for
domain adaptation which strives to learn a useful (for prediction purposes) repre-
sentation of the unsupervised data by taking into consideration information avail-
able from the distribution shift between the training and test data. The focus is to
hierarchically learn multiple intermediate representations along an interpolating
path between the training and testing domains. In the context of object recognition,
their study demonstrates an improvement over other methods. The two studies
presented above raise the question about how to increase the generalization capacity
of Deep Learning data representations and patterns, noting that the ability to gen-
eralize learnt patterns is an important requirement in Big Data Analytics where
often there is a distribution shift between the input domain and the target domain.

Another key area of interest would be to explore the question of what criteria is
necessary and should be defined for allowing the extracted data representations to
provide useful semantic meaning to the Big Data. Earlier, we discussed some
studies that utilize the data representations extracted through Deep Learning for
semantic indexing. Bengio et al. [5] present some characteristics of what constitutes
good data representations for performing discriminative tasks, and point to the open
question regarding the definition of the criteria for learning good data representa-
tions in Deep Learning. Compared to more conventional learning algorithms where
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misclassification error is generally used as an important criterion for model training
and learning patterns, defining a corresponding criteria for training Deep Learning
algorithms with Big Data is unsuitable since most Big Data Analytics involve
learning from largely unsupervised data. While availability of supervised data in
some Big Data domains can be helpful, the question of defining the criteria for
obtaining good data abstractions and representations still remains largely unex-
plored in Big Data Analytics. Moreover, the question of defining the criteria
required for extracting good data representations leads to the question of what
would constitute a good data representation that is effective for semantic indexing
and/or data tagging.

In some Big Data domains, the input corpus consists of a mix of both labeled
and unlabeled data, e.g., cyber security [59], fraud detection [60], and computer
vision [45]. In such cases, Deep Learning algorithms can incorporate semi-
supervised training methods towards the goal of defining criteria for good data
representation learning. For example, following learning representations and pat-
terns from the unlabeled/unsupervised data, the available labeled/supervised data
can be exploited to further tune and improve the learnt representations and patterns
for a specific analytics task, including semantic indexing or discriminative mod-
eling. A variation of semi-supervised learning in data mining, active learning
methods could also be applicable towards obtaining improved data representations
where input from crowd sourcing or human experts can be used to obtain labels for
some data samples which can then be used to better tune and improve the learnt
data representations.

Conclusion

In contrast to more conventional machine learning and feature engineering algo-
rithms, Deep Learning has an advantage of potentially providing a solution to
address the data analysis and learning problems found in massive volumes of input
data. More specifically, it aids in automatically extracting complex data represen-
tations from large volumes of unsupervised data. This makes it a valuable tool for
Big Data Analytics, which involves data analysis from very large collections of raw
data that is generally unsupervised and un-categorized. The hierarchical learning
and extraction of different levels of complex, data abstractions in Deep Learning
provides a certain degree of simplification for Big Data Analytics tasks, especially
for analyzing massive volumes of data, semantic indexing, data tagging, informa-
tion retrieval, and discriminative tasks such a classification and prediction.

In the context of discussing key works in the literature and providing our insights
on those specific topics, this study focused on two important areas related to Deep
Learning and Big Data: (1) the application of Deep Learning algorithms and
architectures for Big Data Analytics, and (2) how certain characteristics and issues
of Big Data Analytics pose unique challenges towards adapting Deep Learning
algorithms for those problems. A targeted survey of important literature in Deep

152 5 Deep Learning Techniques in Big Data Analytics



Learning research and application to different domains is presented in the paper as a
means to identify how Deep Learning can be used for different purposes in Big
Data Analytics.

The low-maturity of the Deep Learning field warrants extensive further research.
In particular, more work is necessary on how we can adapt Deep Learning algo-
rithms for problems associated with Big Data, including high dimensionality,
streaming data analysis, scalability of Deep Learning models, improved formulation
of data abstractions, distributed computing, semantic indexing, data tagging,
information retrieval, criteria for extracting good data representations, and domain
adaptation. Future works should focus on addressing one or more of these problems
often seen in Big Data, thus contributing to the Deep Learning and Big Data
Analytics research corpus.
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Chapter 6
The HPCC/ECL Platform for Big Data

Anthony M. Middleton, David Alan Bayliss, Gavin Halliday,
Arjuna Chala and Borko Furht

Introduction

As a result of the continuing information explosion, many organizations are
experiencing what is now called the “Big Data” problem. This results in the
inability of organizations to effectively use massive amounts of their data in datasets
which have grown to big to process in a timely manner. Data-intensive computing
represents a new computing paradigm [1] which can address the big data problem
using high-performance architectures supporting scalable parallel processing to
allow government, commercial organizations, and research environments to process
massive amounts of data and implement new applications previously thought to be
impractical or infeasible.

The fundamental challenges of data-intensive computing are managing and
processing exponentially growing data volumes, significantly reducing associated
data analysis cycles to support practical, timely applications, and developing new
algorithms which can scale to search and process massive amounts of data.
Researchers at LexisNexis believe that the answer to these challenges are:

(1) a scalable, integrated computer systems hardware and software architecture
designed for parallel processing of data-intensive computing applications, and

(2) a new programming paradigm in the form of a high-level declarative
data-centric programming language designed specifically for big data
processing.

This chapter explores the challenges of data-intensive computing from a pro-
gramming perspective, and describes the ECL programming language and the open
source High-Performance Cluster Computing (HPCC) architecture designed for
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data-intensive exascale computing applications. ECL is also compared to Pig Latin,
a high-level language developed for the Hadoop MapReduce architecture.

Data-Intensive Computing Applications

High-Performance Computing (HPC) is used to describe computing environments
which utilize supercomputers and computer clusters to address complex compu-
tational requirements or applications with significant processing time requirements
or which require processing of significant amounts of data. Computing approaches
can be generally classified as either compute-intensive, or data-intensive [2–4].
HPC has generally been associated with scientific research and compute-intensive
types of problems, but more and more HPC technology is appropriate for both
compute-intensive and data-intensive applications. HPC platforms utilize a
high-degree of internal parallelism and tend to use specialized multi-processors
with custom memory architectures which have been highly-optimized for numerical
calculations [5]. Supercomputers also require special parallel programming tech-
niques to take advantage of its performance potential.

Compute-intensive is used to describe application programs that are compute
bound. Such applications devote most of their execution time to computational
requirements as opposed to I/O, and typically require small volumes of data. HPC
approaches to compute-intensive applications typically involves parallelizing
individual algorithms within an application process, and decomposing the overall
application process into separate tasks, which can then be executed in parallel on an
appropriate computing platform to achieve overall higher performance than serial
processing. In compute-intensive applications, multiple operations are performed
simultaneously, with each operation addressing a particular part of the problem.
This is often referred to as functional parallelism or control parallelism [6].

Data-intensive is used to describe applications that are I/O bound or with a need
to process large volumes of data [2, 3, 7]. Such applications devote most of their
processing time to I/O and movement of data. HPC approaches to data-intensive
applications typically use parallel system architectures and involves partitioning or
subdividing the data into multiple segments which can be processed independently
using the same executable application program in parallel on an appropriate com-
puting platform, then reassembling the results to produce the completed output data
[8]. The greater the aggregate distribution of the data, the more benefit there is in
parallel processing of the data. Gorton et al. [2] state that data-intensive processing
requirements normally scale linearly according to the size of the data and are very
amenable to straightforward parallelization. The fundamental challenges for
data-intensive computing according to Gorton et al. [2] are managing and pro-
cessing exponentially growing data volumes, significantly reducing associated data
analysis cycles to support practical, timely applications, and developing new
algorithms which can scale to search and process massive amounts of data.
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Data-Parallelism

According to Agichtein [9], parallelization is considered to be an attractive alter-
native for processing extremely large collections of data such as the billions of
documents on the Web [10]. Nyland et al. [8] define data-parallelism as a com-
putation applied independently to each data item of a set of data which allows the
degree of parallelism to be scaled with the volume of data. According to Nyland
et al. [8], the most important reason for developing data-parallel applications is the
potential for scalable performance, and may result in several orders of magnitude
performance improvement. The key issues with developing applications using
data-parallelism are the choice of the algorithm, the strategy for data decomposi-
tion, load balancing on processing nodes, message passing communications
between nodes, and the overall accuracy of the results [8, 11]. Nyland et al. [8] also
note that the development of a data-parallel application can involve substantial
programming complexity to define the problem in the context of available pro-
gramming tools, and to address limitations of the target architecture. Information
extraction from and indexing of Web documents is typical of data-intensive pro-
cessing which can derive significant performance benefits from data-parallel
implementations since Web and other types of document collections can typically
then be processed in parallel [10].

The “Big Data” Problem

The rapid growth of the Internet and World Wide Web has led to vast amounts of
information available online. In addition, business and government organizations
create large amounts of both structured and unstructured information which needs
to be processed, analyzed, and linked. Vinton Cerf of Google has described this as
an “Information Avalanche” and has stated “we must harness the Internet’s energy
before the information it has unleashed buries us” [12]. An IDC white paper
sponsored by EMC estimated the amount of information currently stored in a digital
form in 2007 at 281 exabytes and the overall compound growth rate at 57 % with
information in organizations growing at even a faster rate [13]. In another study of
the so-called information explosion it was estimated that 95 % of all current
information exists in unstructured form with increased data processing requirements
compared to structured information [14]. The storing, managing, accessing, and
processing of this vast amount of data represents a fundamental need and an
immense challenge in order to satisfy needs to search, analyze, mine, and visualize
this data as information [15]. These challenges are now simple described in the
literature as the “Big Data” problem. In the next section, we will enumerate some of
the characteristics of data-intensive computing systems which can address the
problems associated with processing big data.
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Data-Intensive Computing Platforms

The National Science Foundation believes that data-intensive computing requires a
“fundamentally different set of principles” than current computing approaches [16].
Through a funding program within the Computer and Information Science and
Engineering area, the NSF is seeking to “increase understanding of the capabilities
and limitations of data-intensive computing.” The key areas of focus are:

• Approaches to parallel programming to address the parallel processing of data
on data-intensive systems.

• Programming abstractions including models, languages, and algorithms which
allow a natural expression of parallel processing of data.

• Design of data-intensive computing platforms to provide high levels of relia-
bility, efficiency, availability, and scalability.

• Identifying applications that can exploit this computing paradigm and deter-
mining how it should evolve to support emerging data-intensive applications.

Pacific Northwest National Labs has defined data-intensive computing as
“capturing, managing, analyzing, and understanding data at volumes and rates that
push the frontiers of current technologies” [1, 17]. They believe that to address the
rapidly growing data volumes and complexity requires “epochal advances in
software, hardware, and algorithm development” which can scale readily with size
of the data and provide effective and timely analysis and processing results.
The ECL programming language and HPCC architecture developed by LexisNexis
represents such an advance in capabilities.

Cluster Configurations

Current data-intensive computing platforms use a “divide and conquer” parallel
processing approach combining multiple processors and disks configured in large
computing clusters connected using high-speed communications switches and
networks which allows the data to be partitioned among the available computing
resources and processed independently to achieve performance and scalability
based on the amount of data (Fig. 6.1). Buyya et al. [18] define a cluster as “a type
of parallel and distributed system, which consists of a collection of inter-connected
stand-alone computers working together as a single integrated computing resource.”
This approach to parallel processing is often referred to as a “shared nothing”
approach since each node consisting of processor, local memory, and disk resources
shares nothing with other nodes in the cluster. In parallel computing this approach
is considered suitable for data processing problems which are “embarrassingly
parallel”, i.e. where it is relatively easy to separate the problem into a number of
parallel tasks and there is no dependency or communication required between the
tasks other than overall management of the tasks. These types of data processing
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problems are inherently adaptable to various forms of distributed computing
including clusters and data grids and cloud computing.

Common Platform Characteristics

There are several important common characteristics of data-intensive computing
systems that distinguish them from other forms of computing. First is the principle
of collocation of the data and programs or algorithms to perform the computation.
To achieve high performance in data-intensive computing, it is important to min-
imize the movement of data [19]. In direct contrast to other types of computing and
high-performance computing which utilize data stored in a separate repository or
servers and transfer the data to the processing system for computation,
data-intensive computing uses distributed data and distributed file systems in which
data is located across a cluster of processing nodes, and instead of moving the data,
the program or algorithm is transferred to the nodes with the data that needs to be
processed. This principle—“Move the code to the data”—is extremely effective
since program size is usually small in comparison to the large datasets processed by
data-intensive systems and results in much less network traffic since data can be
read locally instead of across the network. This characteristic allows processing
algorithms to execute on the nodes where the data resides reducing system overhead
and increasing performance [2].

A second important characteristic of data-intensive computing systems is the
programming model utilized. Data-intensive computing systems utilize a
machine-independent approach in which applications are expressed in terms of
high-level operations on data, and the runtime system transparently controls the
scheduling, execution, load balancing, communications, and movement of
programs and data across the distributed computing cluster [20]. The programming

Master
Switch

Slave
Switch

Slave
Switch

Disks

Node

Link Link

Li
nk

LinkLink

Li
nk

Trunk Trunk

Tr
un

k

Slave
Switch

Disks

Node

Disks

Node

Disks

Node

Disks

Node

Disks

Node

Fig. 6.1 Commodity hardware cluster [31]

Data-Intensive Computing Platforms 163



abstraction and language tools allow the processing to be expressed in terms of data
flows and transformations incorporating new dataflow programming languages and
shared libraries of common data manipulation algorithms such as sorting.
Conventional high-performance computing and distributed computing systems
typically utilize machine dependent programming models which can require
low-level programmer control of processing and node communications using
conventional imperative programming languages and specialized software packages
which adds complexity to the parallel programming task and reduces programmer
productivity. A machine dependent programming model also requires significant
tuning and is more susceptible to single points of failure. The ECL programming
language described in this chapter was specifically designed to address
data-intensive computing requirements.

A third important characteristic of data-intensive computing systems is the focus
on reliability and availability. Large-scale systems with hundreds or thousands of
processing nodes are inherently more susceptible to hardware failures, communi-
cations errors, and software bugs. Data-intensive computing systems are designed
to be fault resilient. This includes redundant copies of all data files on disk, storage
of intermediate processing results on disk, automatic detection of node or pro-
cessing failures, and selective re-computation of results. A processing cluster
configured for data-intensive computing is typically able to continue operation with
a reduced number of nodes following a node failure with automatic and transparent
recovery of incomplete processing.

A final important characteristic of data-intensive computing systems is the
inherent scalability of the underlying hardware and software architecture.
Data-intensive computing systems can typically be scaled in a linear fashion to
accommodate virtually any amount of data, or to meet time-critical performance
requirements by simply adding additional processing nodes to a system configu-
ration in order to achieve high processing rates and throughput. The number of
nodes and processing tasks assigned for a specific application can be variable or
fixed depending on the hardware, software, communications, and distributed file
system architecture. This scalability allows computing problems once considered to
be intractable due to the amount of data required or amount of processing time
required to now be feasible and affords opportunities for new breakthroughs in data
analysis and information processing.

HPCC Platform

HPCC System Architecture

The development of the open source HPCC computing platform by the Seisint
subsidiary of LexisNexis began in 1999 and applications were in production by late
2000. The conceptual vision for this computing platform is depicted in Fig. 6.2.
The LexisNexis approach also utilizes commodity clusters of hardware running the
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Linux operating system as shown in Figure 4.1. Custom system software and
middleware components were developed and layered on the base Linux operating
system to provide the execution environment and distributed filesystem support
required for data-intensive computing. Because LexisNexis recognized the need for
a new computing paradigm to address its growing volumes of data, the design
approach included the definition of a new high-level language for parallel data
processing called ECL (Enterprise Control Language). The power, flexibility,
advanced capabilities, speed of development, and ease of use of the ECL pro-
gramming language is the primary distinguishing factor between the
LexisNexis HPCC and other data-intensive computing solutions. The following
provides an overview of the HPCC systems architecture and the ECL language.

LexisNexis developers recognized that to meet all the requirements of
data-intensive computing applications in an optimummanner required the design and
implementation of two distinct processing environments, each of which could be
optimized independently for its parallel data processing purpose. The first of these
platforms is called a Data Refinery whose overall purpose is the general processing of
massive volumes of raw data of any type for any purpose but typically used for data
cleansing and hygiene, ETL processing of the raw data (extract, transform, load),
record linking and entity resolution, large-scale ad hoc analysis of data, and creation
of keyed data and indexes to support high-performance structured queries and data
warehouse applications. The Data Refinery is also referred to as Thor, a reference to
the mythical Norse god of thunder with the large hammer symbolic of crushing large
amounts of raw data into useful information. A Thor system is similar in its hardware
configuration, function, execution environment, filesystem, and capabilities to the
Hadoop MapReduce platform, but offers significantly higher performance in
equivalent configurations.

Fig. 6.2 LexisNexis vision for a data-intensive supercomputer
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The Thor processing cluster is depicted in Fig. 6.3. In addition to the Thor
master and slave nodes, additional auxiliary and common components are needed to
implement a complete HPCC processing environment. The actual number of
physical nodes required for the auxiliary components is determined during the
configurations process.

The second of the parallel data processing platforms designed and implemented
by LexisNexis is called the Data Delivery Engine. This platform is designed as an
online high-performance structured query and analysis platform or data warehouse
delivering the parallel data access processing requirements of online applications
through Web services interfaces supporting thousands of simultaneous queries and
users with sub-second response times. High-profile online applications developed
by LexisNexis such as Accurint utilize this platform. The Data Delivery Engine is
also referred to as Roxie, which is an acronym for Rapid Online XML Inquiry
Engine. Roxie uses a special distributed indexed filesystem to provide parallel
processing of queries. A Roxie system is similar in its function and capabilities to
Hadoop with HBase and Hive capabilities added, but provides significantly higher
throughput since it uses a more optimized execution environment and filesystem for
high-performance online processing. Most importantly, both Thor and Roxie sys-
tems utilize the same ECL programming language for implementing applications,
increasing continuity and programmer productivity. The Roxie processing cluster is
depicted in Fig. 6.4.

The implementation of two types of parallel data processing platforms (Thor and
Roxie) in the HPCC processing environment serving different data processing
needs allows these platforms to be optimized and tuned for their specific purposes
to provide the highest level of system performance possible to users. This is a
distinct advantage when compared to Hadoop where the MapReduce architecture
must be overlayed with additional systems such as HBase, Hive, and Pig which
have different processing goals and requirements, and don’t always map readily into
the MapReduce paradigm. In addition, the LexisNexis HPCC approach

Fig. 6.3 HPCC Thor processing cluster
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incorporates the notion of a processing environment which can integrate Thor and
Roxie clusters as needed to meet the complete processing needs of an organization.
As a result, scalability can be defined not only in terms of the number of nodes in a
cluster, but in terms of how many clusters and of what type are needed to meet
system performance goals and user requirements. This provides significant flexi-
bility when compared to Hadoop clusters which tend to be independent islands of
processing. For additional information and a detailed comparison of the HPCC
system platform to Hadoop, see [21].

HPCC Thor System Cluster

The Thor system cluster is implemented using a master/slave approach with a single
master node and multiple slave nodes which provides a parallel job execution
environment for programs coded in ECL. ECL is a declarative programming lan-
guage, developed at LexisNexis, which is easy to use, data-centric and optimized
for large-scale data management and query processing (Fig. 6.5). ECL is described
in detail in “ECL Programming Language”.

Each of the slave nodes is also a data node within the distributed file system for
the cluster. Multiple Thor clusters can exist in an HPCC system environment, and
job queues can span multiple clusters in an environment if needed. Jobs executing
on a Thor cluster in a multi-cluster environment can also read files from the dis-
tributed file system on foreign clusters if needed. The middleware layer provides
additional server processes to support the execution environment including ECL
Agents and ECL Servers. A client process submits an ECL job to the ECL Agent
which coordinates the overall job execution on behalf of the client process.

An ECL program is compiled by the ECL server which interacts with an
additional server called the ECL Repository which is a source code repository and

Fig. 6.4 HPCC Roxie processing cluster
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contains shared, reusable ECL code. ECL code can also be stored in local source
files and managed with a conventional version control system. ECL programs are
compiled into optimized C++ source code, which is subsequently linked into
executable code and distributed to the slave nodes of a Thor cluster by the Thor
master node. The Thor master monitors and coordinates the processing activities of
the slave nodes and communicates status information monitored by the ECL Agent
processes. When the job completes, the ECL Agent and client process are notified,
and the output of the process is available for viewing or subsequent processing.
Output can be stored in the distributed filesystem for the cluster or returned to the
client process.

The distributed filesystem (DFS) used in a Thor cluster is record-oriented which
is somewhat different from the block format used in MapReduce clusters. Records
can be fixed or variable length, and support a variety of standard (fixed record size,
CSV, XML) and custom formats including nested child datasets. Record I/O is
buffered in large blocks to reduce latency and improve data transfer rates to and
from disk Files to be loaded to a Thor cluster are typically first transferred to a
landing zone from some external location, then a process called “spraying” is used
to partition the file and load it to the nodes of a Thor cluster. The initial spraying
process divides the file on user-specified record boundaries and distributes the data
as evenly as possible with records in sequential order across the available nodes in
the cluster. Files can also be “desprayed” when needed to transfer output files to
another system or can be directly copied between Thor clusters in the same envi-
ronment. Index files generated on Thor clusters can also be directly copied to Roxie
clusters to support online queries.

Nameservices and storage of metadata about files including record format
information in the Thor DFS are maintained in a special server called the Dali
server. Thor users have complete control over distribution of data in a Thor cluster,
and can re-distribute the data as needed in an ECL job by specific keys, fields, or
combinations of fields to facilitate the locality characteristics of parallel processing.

Fig. 6.5 ECL declarative programming language
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The Dali nameserver uses a dynamic datastore for filesystem metadata organized in
a hierarchical structure corresponding to the scope of files in the system. The
Thor DFS utilizes the local Linux filesystem for physical file storage, and file
scopes are created using file directory structures of the local file system. Parts of a
distributed file are named according to the node number in a cluster, such that a file
in a 400-node cluster will always have 400 parts regardless of the file size. Each
node contains an integral number of records (individual records are not split across
nodes), and I/O is completely localized to the processing node for local processing
operations. The ability to easily redistribute the data evenly to nodes based on
processing requirements and the characteristics of the data during a Thor job can
provide a significant performance improvement over the blocked data and input
splits used in the MapReduce approach.

The Thor DFS also supports the concept of “superfiles” which are processed as a
single logical file when accessed, but consist of multiple Thor DFS files. Each file
which makes up a superfile must have the same record structure. New files can be
added and old files deleted from a superfile dynamically facilitating update pro-
cesses without the need to rewrite a new file. Thor clusters are fault resilient and a
minimum of one replica of each file part in a Thor DFS file is stored on a different
node within the cluster.

HPCC Roxie System Cluster

Roxie clusters consist of a configurable number of peer-coupled nodes functioning
as a high-performance, high availability parallel processing query platform. ECL
source code for structured queries is pre-compiled and deployed to the cluster. The
Roxie distributed filesystem is a distributed indexed-based filesystem which uses a
custom B+Tree structure for data storage. Indexes and data supporting queries are
pre-built on Thor clusters and deployed to the Roxie DFS with portions of the index
and data stored on each node. Typically the data associated with index logical keys
is embedded in the index structure as a payload. Index keys can be multi-field and
multivariate, and payloads can contain any type of structured or unstructured data
supported by the ECL language. Queries can use as many indexes as required for a
query and contain joins and other complex transformations on the data with the full
expression and processing capabilities of the ECL language. For example, the
LexisNexis Accurint® comprehensive person report which produces many pages of
output is generated by a single Roxie query.

A Roxie cluster uses the concept of Servers and Agents. Each node in a Roxie
cluster runs Server and Agent processes which are configurable by a System
Administrator depending on the processing requirements for the cluster. A Server
process waits for a query request from a Web services interface then determines the
nodes and associated Agent processes that have the data locally that is needed for a
query, or portion of the query. Roxie query requests can be submitted from a client
application as a SOAP call, HTTP or HTTPS protocol request from a Web
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application, or through a direct socket connection. Each Roxie query request is
associated with a specific deployed ECL query program. Roxie queries can also be
executed from programs running on Thor clusters. The Roxie Server process that
receives the request owns the processing of the ECL program for the query until it is
completed. The Server sends portions of the query job to the nodes in the cluster
and Agent processes which have data needed for the query stored locally as needed,
and waits for results. When a Server receives all the results needed from all nodes, it
collates them, performs any additional processing, and then returns the result set to
the client requestor.

The performance of query processing on a Roxie cluster varies depending on
factors such as machine speed, data complexity, number of nodes, and the nature of
the query, but production results have shown throughput of 5000 transactions per
second on a 100-node cluster. Roxie clusters have flexible data storage options with
indexes and data stored locally on the cluster, as well as being able to use indexes
stored remotely in the same environment on a Thor cluster. Nameservices for Roxie
clusters are also provided by the Dali server. Roxie clusters are fault-resilient and
data redundancy is built-in using a peer system where replicas of data are stored on
two or more nodes, all data including replicas are available to be used in the
processing of queries by Agent processes. The Roxie cluster provides automatic
failover in case of node failure, and the cluster will continue to perform even if one
or more nodes are down. Additional redundancy can be provided by including
multiple Roxie clusters in an environment.

Load balancing of query requests across Roxie clusters is typically implemented
using external load balancing communications devices. Roxie clusters can be sized
as needed to meet query processing throughput and response time requirements, but
are typically smaller that Thor clusters.

ECL Programming Language

Several well-known companies experiencing the big data problem have imple-
mented high-level programming or script languages oriented toward data analysis.
In Google’s MapReduce programming environment, native applications are coded
in C++ [22]. The MapReduce programming model allows group aggregations in
parallel over a commodity cluster of machines similar to Figure 4.1. Programmers
provide a Map function that processes input data and groups the data according to a
key-value pair, and a Reduce function that performs aggregation by key-value on
the output of the Map function. According to Dean and Ghemawat [22, 23], the
processing is automatically parallelized by the system on the cluster, and takes care
of details like partitioning the input data, scheduling and executing tasks across a
processing cluster, and managing the communications between nodes, allowing
programmers with no experience in parallel programming to use a large parallel
processing environment. For more complex data processing procedures, multiple
MapReduce calls must be linked together in sequence.
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Google also implemented a high-level language named Sawzall for performing
parallel data analysis and data mining in the MapReduce environment and a
workflow management and scheduling infrastructure for Sawzall jobs called
Workqueue [24]. For most applications implemented using Sawzall, the code is
much simpler and smaller than the equivalent C++ by a factor of 10 or more. Pike
et al. [24] cite several reasons why a new language is beneficial for data analysis
and data mining applications: (1) a programming language customized for a specific
problem domain makes resulting programs “clearer, more compact, and more
expressive”; (2) aggregations are specified in the Sawzall language so that the
programmer does not have to provide one in the Reduce task of a standard
MapReduce program; (3) a programming language oriented to data analysis pro-
vides a more natural way to think about data processing problems for large dis-
tributed datasets; and (4) Sawzall programs are significantly smaller that equivalent
C++ MapReduce programs and significantly easier to program.

An open source implementation of MapReduce pioneered by Yahoo! called
Hadoop is functionally similar to the Google implementation except that the base
programming language for Hadoop is Java instead of C++. Yahoo! also imple-
mented a high-level dataflow-oriented language called Pig Latin and execution
environment ostensibly for the same reasons that Google developed the Sawzall
language for its MapReduce implementation—to provide a specific language
notation for data analysis applications and to improve programmer productivity and
reduce development cycles when using the Hadoop MapReduce environment.
Working out how to fit many data analysis and processing applications into the
MapReduce paradigm can be a challenge, and often requires multiple MapReduce
jobs [25]. Pig Latin programs are automatically translated into sequences of
MapReduce programs if needed in the execution environment.

Both Google with its Sawzall language and Yahoo with its Pig system and
language for Hadoop address some of the limitations of the MapReduce model by
providing an external dataflow-oriented programming language which translates
language statements into MapReduce processing sequences [24, 26, 27]. These
languages provide many standard data processing operators so users do not have to
implement custom Map and Reduce functions, improve reusability, and provide
some optimization for job execution. However, these languages are externally
implemented executing on client systems and not integral to the MapReduce
architecture, but still rely on the on the same infrastructure and limited execution
model provided by MapReduce.

ECL Features and Capabilities

The open source ECL programming language represents a new programming
paradigm for data-intensive computing. ECL was specifically designed to be a
transparent and implicitly parallel programming language for data-intensive
applications. It is a high-level, declarative, non-procedural dataflow-oriented
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language that allows the programmer to define what the data processing result
should be and the dataflows and transformations that are necessary to achieve the
result. Execution is not determined by the order of the language statements, but
from the sequence of dataflows and transformations represented by the language
statements. It combines data representation with algorithm implementation, and is
the fusion of both a query language and a parallel data processing language.

ECL uses an intuitive syntax which has taken cues from other familiar lan-
guages, supports modular code organization with a high degree of reusability and
extensibility, and supports high-productivity for programmers in terms of the
amount of code required for typical applications compared to traditional languages
like Java and C++. Similar to the benefits Sawzall provides in the Google envi-
ronment, and Pig Latin provides to Hadoop users, a 20 times increase in pro-
grammer productivity is typical which can significantly reduce development cycles.

ECL is compiled into optimized C++ code for execution on the HPCC system
platforms, and can be used for complex data processing and analysis jobs on a Thor
cluster or for comprehensive query and report processing on a Roxie cluster. ECL
allows inline C++ functions to be incorporated into ECL programs, and external
programs in other languages can be incorporated and parallelized through a PIPE
facility. External services written in C++ and other languages which generate DLLs
can also be incorporated in the ECL system library, and ECL programs can access
external Web services through a standard SOAPCALL interface.

The basic unit of code for ECL is called an attribute definition. An attribute can
contain a complete executable query or program, or a shareable and reusable code
fragment such as a function, record definition, dataset definition, macro, filter
definition, etc. Attributes can reference other attributes which in turn can reference
other attributes so that ECL code can be nested and combined as needed in a
reusable manner. Attributes are stored in ECL code repository which is subdivided
into modules typically associated with a project or process. Each ECL attribute
added to the repository effectively extends the ECL language like adding a new
word to a dictionary, and attributes can be reused as part of multiple ECL queries
and programs. ECL can also be stored in local source files as with other pro-
gramming languages. With ECL a rich set of programming tools is provided
including an interactive IDE similar to Visual C++, Eclipse (an ECL add-in for
Eclipse is available) and other code development environments.

The Thor system allows data transformation operations to be performed either
locally on each node independently in the cluster, or globally across all the nodes in
a cluster, which can be user-specified in the ECL language. Some operations such
as PROJECT for example are inherently local operations on the part of a distributed
file stored locally on a node. Others such as SORT can be performed either locally
or globally if needed. This is a significant difference from the MapReduce archi-
tecture in which Map and Reduce operations are only performed locally on the
input split assigned to the task. A local SORT operation in an HPCC cluster would
sort the records by the specified key in the file part on the local node, resulting in
the records being in sorted order on the local node, but not in full file order
spanning all nodes. In contrast, a global SORT operation would result in the full
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distributed file being in sorted order by the specified key spanning all nodes. This
requires node to node data movement during the SORT operation. Figure 6.6 shows
a sample ECL program using the LOCAL mode of operation.

Figure 6.7 shows the corresponding execution graph. Note the explicit pro-
grammer control over distribution of data across nodes. The colon-equals “:=”
operator in an ECL program is read as “is defined as”. The only action in this
program is the OUTPUT statement, the other statements are definitions.

An additional important capability provided in the ECL programming language
is support for natural language processing (NLP) with PATTERN statements and
the built-in PARSE function. The PARSE function cam accept an unambiguous
grammar defined by PATTERN, TOKEN, and RULE statements with penalties or
preferences to provide deterministic path selection, a capability which can signifi-
cantly reduce the difficulty of NLP applications. PATTERN statements allow
matching patterns including regular expressions to be defined and used to parse
information from unstructured data such as raw text. PATTERN statements can be
combined to implement complex parsing operations or complete grammars from
BNF definitions. The PARSE operation function across a dataset of records on a
specific field within a record, this field could be an entire line in a text file for
example. Using this capability of the ECL language it is possible to implement
parallel processing for information extraction applications across document files
including XML-based documents or Web pages.

ECL Compilation, Optimization, and Execution

The ECL language compiler takes the ECL source code and produces an output
with three main elements. The first is an XML representation of the execution
graph, detailing the activities to be executed and the dependencies between those
activities. The second is a C++ class for each of the activities in the graph, and the
third contains code and meta information to control the workflow for the ECL
program. These different elements are embedded in a single shared object that

Fig. 6.6 ECL code example
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contains all the information about the particular query. That shared object is passed
to the execution engines, which take that shared object and execute the program it
contains.

The process of compiling, optimizing, and executing the ECL is broken into
several stages: (1) parsing, (2) optimization, (3) transforming, (4) generating, and
(5) execution.

Parsing

The sources for an ECL program can come from a local directory tree, an external
repository, or a single-source archive. The ECL compiler reads the ECL source,
parses it, and converts it into an abstract graph representation of the program. The
representation is then normalized to resolve ambiguities and ensure is it is suitable
for subsequent processing. All of the subsequent operations within the compiler
work on, and create, this same abstract representation.

1

1

2

2

Fig. 6.7 ECL code example execution graph
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Optimizations

The design of the ECL language provides abundant scope for optimizations. When
reusable attributes are combined it often creates the scope for optimizations that
would be hard, if not impossible, to be spotted by a programmer. Its declarative
design allows many optimizations without the concerns about side-effects
associated with imperative languages. Many different optimizations are
performed on the program, some of the key ones are:

• Constant folding. This includes simple purely constant expressions like
12 * 3 => 36, and more complex changes e.g. IF(a, ‘b’, ‘c’) IN
[‘a’,‘c’] => NOT a

• Tracking and propagating constant field values. This can often lead to further
constant folding, or reduce the lifetime of a field. Minimizing the fields in a row
at each stage of the processing. This saves the programmer from unnecessary
optimization, and often benefits from the other optimizations (e.g., constant
propagation).

• Reordering operations. Sometimes changing the order of operations can sig-
nificantly reduce the data processed by complex activities. Examples include
ensuring a filter is done before a sort, or replacing a filter on a joined dataset
with a filter on one (or both) of the inputs.

• Tracking meta information including sort orders and record counts, and
removing redundant operations. This is an example of an optimization which
often comes into play when reusable attributes are combined. A particular sort
order may not be part of the specification of an attribute, but the optimizer can
make use of the current implementation.

• Minimizing data transferred between slave nodes. There is sufficient scope for
many additional optimizations. For example, a currently planned optimization
would analyze and optimize the distribution and sort activities used in a program
to maximize overlap and minimize data redistribution.

A key design goal is for the ECL programmer to be able to describe the problem,
and rely on the ECL compiler to solve the problem efficiently.

Transforming

The ECL compiler needs to transform the abstract declarative ECL (what it should
do) to a concrete imperative implementation (how it should do it). This again has
several different elements:

• Convert the logical graph into an execution graph. This includes introducing
activities to split the data stream, ensure dependencies between activities will be
executed in the correct order, and resolving any global resourcing constraints.
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• Extracting context-invariant expressions to ensure they are evaluated a minimal
number of times. This is similar to spotting loop invariant code in an imperative
language.

• Selecting between different implementations of a sequence of activities. For
example generating either inline code or a nested graph of activities.

• Common sub-expression elimination. Both globally across the whole program,
and locally the expressions used within the methods of the activity classes.

• Mapping complex ECL statements into the activities supported by the target
engine. For instance a JOIN may be implemented differently depending on how
the inputs are sorted, distributed, and the likely size of the datasets. Similarly an
ECL DEDUP operation may sometimes be implemented as a local dedup
activity followed by a global dedup activity.

• Combining multiple logical operations into a single activity. Compound activi-
ties have been implemented in the engines where it can significantly reduce the
data being copied, or because there are likely to be expressions shared between
the activities. One of the commonest examples is disk read, filter and project.

Generating

Following the transforming stage, the XML and C++ associated with the ECL
program is generated. The C++ code is built using a data structure that allows
peephole optimizations to be applied to the C++ that will be generated. Once the
processing is complete, the C++ is generated from the structure, and the generated
source files are passed to the system C++ compiler to create a shared object.

In practice, the optimization, transforming and generation is much more of an
iterative process rather than sequential.

Execution

The details of executing ECL program vary depending on the specific HPCC
system platform and its execution engine, but they follow the same broad sequence.

The engine extracts resources from the shared object that describe the workflow
of the query. The workflow can include waiting for particular events, conditionally
re-evaluating expressions, and executing actions in a particular order. Each work-
flow item is executed independently, but can have dependencies on other workflow
items. A workflow item may contain any number of activity graphs which evaluate
a particular part of the ECL program.

To execute a graph of activities the engine starts at the outputs and recursively
walks the graph to evaluate any dependencies. Once the graph is prepared the graph
of activities is executed. Generally multiple paths within the graph are executed in
parallel, and multiple slave nodes in a cluster will be executing the graphs on
different subsets of the data. Records are streamed through the graphs from the inputs
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to the outputs. Some activities execute completely locally, and others co-ordinate
their execution with other slave nodes.

ECL Development Tools and User Interfaces

The HPCC platform includes a suite of development tools and utilities for data
analysts, programmers, administrators, and end-users. These include ECL IDE, an
integrated programming development environment similar to those available for
other languages such as C++ and Java, which encompasses source code editing,
source code version control, access to the ECL source code repository, and the
capability to execute and debug ECL programs.

ECL IDE provides a full-featured Windows-based GUI for ECL program
development and direct access to the ECL repository source code. ECL IDE allows
you to create and edit ECL attributes which can be shared and reused in multiple
ECL programs or to enter an ECL query which can be submitted directly to a Thor
cluster as an executable job or deployed to a Roxie cluster. An ECL query can be
self-contained or reference other sharable ECL code in the attribute repository.
ECL IDE also allows you to utilize a large number of built-in ECL functions from
included libraries covering string handling, data manipulation, file handling, file
spray and despray, superfile management, job monitoring, cluster management,
word handling, date processing, auditing, parsing support, phonetic (metaphone)
support, and workunit services.

ECL Advantages and Key Benefits

ECL a heavily optimized, data-centric declarative programming language. It is a lan-
guage specifically designed to allow data operations to be specified in a manner which
is easy to optimize and parallelize. With a declarative language, you specify what you
want done rather than how to do it. A distinguishing feature of declarative languages is
that they are extremely succinct; it is common for a declarative language to require an
order of magnitude (10�) less code than a procedural equivalent to specify the same
problem [28]. The SQL language commonly used for data access and datamanagement
with RDBMS systems is also a declarative language. Declarative languages havemany
benefits including conciseness, freedom from side effects, parallelize naturally, and the
executable code generated can be highly optimized since the compiler can determine
the optimum sequence of execution instead of the programmer.

ECL extends the benefits of declarative in three important ways [28]: (1) It is
data-centric which means it addresses computing problems that can be specified by
some form of analysis upon data. It has defined a simple but powerful data algebra
to allow highly complex data manipulations to be constructed; (2) It is extensible.
When a programmer defines new code segments (called attributes) which can
include macros, functions, data definitions, procedures, etc., these essentially
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become a part of the language and can be used by other programmers. Therefore a
new ECL installation may be relatively narrow and generic in its initial scope, but
as new ECL code is added, its abilities expand to allow new problems and classes
of problems to be stated declaratively; and (3) It is internally abstract. The ECL
compiler generates C++ code and calls into many ‘libraries’ of code, most of which
are major undertakings in their own right. By doing this, the ECL compiler is
machine neutral and greatly simplified. This allows the ECL compiler writers to
focus on making the language relevant and good, and generating highly-optimized
executable code. For some coding examples and additional insights into declarative
programming with ECL, see [29].

One of the key issues which has confronted language developers is to find
solutions to the complexity and difficulty of parallel and distributed programming.
Although high-performance computing and cluster architectures such have
advanced to provide highly-scalable processing environments, languages designed
for parallel programming are still somewhat rare. Declarative, data-centric lan-
guages because the parallelize naturally represent solutions to this issue [30].
According to Hellerstein, declarative, data-centric languages parallelizes naturally
over large datasets, and programmers can benefit from parallel execution without
modifications to their code. ECL code, for example can be used on any size cluster
without modification to the code, so performance can be scaled naturally.

The key benefits of ECL can be summarized as follows:

• ECL is a declarative, data-centric, programming language which can expressed
concisely, parallelizes naturally, is free from side effects, and results in
highly-optimized executable code.

• ECL incorporates transparent and implicit parallelism regardless of the size of
the computing cluster and reduces the complexity of parallel programming
increasing the productivity of application developers.

• ECL enables implementation of data-intensive applications with huge volumes
of data previously thought to be intractable or infeasible. ECL was specifically
designed for manipulation of data and query processing. Order of magnitude
performance increases over other approaches are possible.

• ECL provides a more than 20 times productivity improvement for programmers
over traditional languages such as Java and C++. The ECL compiler generates
highly optimized C++ for execution.

• ECL provides a comprehensive IDE and programming tools that provide a
highly-interactive environment for rapid development and implementation of
ECL applications.

• ECL is a powerful, high-level, parallel programming language ideal for
implementation of ETL, Information Retrieval, Information Extraction, and
other data-intensive applications.
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HPCC High Reliability and High Availability Features

Thor and Roxie architectures of the HPCC system provide both high reliability and
availability. The HPCC system in Fig. 6.8 shows the highly available architecture.
In this architecture, Thor has several layers of redundancy:

1. Uses hardware RAID redundancy to isolate disk drive failure.
2. Two copies of the same data can exist on multiple nodes. This again is used to

isolate against disk failure in one node or a complete node failure.
3. Multiple independent Thor clusters (as shown in Fig. 6.8) can be configured to

subscribe to the same Job Queue. This is the highest form on redundancy
available within Thor and this isolates you from disk failure, node failure and
network failure within the same cluster.

Fig. 6.8 High availability HPCC system architecture
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Thor cluster accepts jobs from a job queue. If there are two Thor clusters
handling the queue, one will continue accepting jobs, if the other one fails. If a
single component (Thorslave or Thormaster) fails, the other will continue to process
requests. With replication enabled, it will be able to read data from the backup
location of the broken Thor. Other components (such as ECL Server, or ESP) can
also have multiple instances. The remaining components, such as Dali, or DFU
Server, work in a traditional shared storage high availability fail over model.

The Roxie cluster has the highest form of redundancy, as illustrated in Fig. 6.9.
Roxie will continue its operation even if half of the nodes are out of operation.

Conclusion

As a result of the continuing information explosion, many organizations are
drowning in data and are experiencing the “Big Data” problem making it harder and
harder to process and gain useful insights from their data. Data-intensive computing
represents a new computing paradigm which can address the big data problem and

Fig. 6.9 Redundant architecture of the Roxie cluster
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allow government and commercial organizations and research environments to
process massive amounts of data and implement applications previously thought to
be impractical or infeasible. Several organizations developed new
parallel-processing architectures using commodity computing clusters including
Google who initially developed the MapReduce architecture and LexisNexis who
developed the HPCC architecture and the ECL programming language. An open
source version of MapReduce called Hadoop was developed with additional
capabilities to enhance the platform including a data-oriented programming lan-
guage and execution environment called Pig. The open source HPCC platform and
the ECL programming language are described in this chapter, and a direct com-
parison of the Pig language of Hadoop to the ECL language was presented along
with a representative benchmark. Availability of a high-level declarative,
data-centric, dataflow-oriented programming language has proven to be a critical
success factor in data-intensive computing.

The LexisNexis HPCC platform is at the heart of a premier information services
provider and industry leader, and has been adopted by government agencies,
commercial organizations, and research laboratories because of its
high-performance cost-effective implementation. Existing HPCC applications
implemented using the ECL language include raw data processing, ETL, and
linking of enormous amounts of data to support online information services such as
LexisNexis and industry-leading information search applications such as Accurint;
entity extraction and entity resolution of unstructured and semi-structured data such
as Web documents to support information extraction; statistical analysis of Web
logs for security applications such as intrusion detection; online analytical pro-
cessing to support business intelligence systems (BIS); and data analysis of massive
datasets in educational and research environments and by state and federal gov-
ernment agencies.

There are many factors in choosing a new computer systems architecture and
programming language, and usually the best approach is to conduct a specific
benchmark test with a customer application to determine the overall system
effectiveness and performance. A comparison of the Hadoop MapReduce archi-
tecture using a public benchmark for the Pig programming language to the HPCC
architecture and ECL programming language on the same system hardware con-
figuration in this chapter reveals significant performance advantages for the HPCC
platform with ECL. Some additional advantages of choosing the LexisNexis HPCC
platform with ECL include: (1) an open source architecture which implements a
highly integrated system environment with capabilities from raw data processing to
high-performance queries and data analysis using a common language; (2) a
scalable architecture which provides equivalent performance at a much lower
system cost based on the number of processing nodes required compared to other
data-intensive computing architectures such as MapReduce; (3) an architecture
which has been proven to be stable and reliable on high-performance data pro-
cessing production applications for varied organizations over a 10-year period;
(4) an architecture that uses a declarative, data-centric programming language
(ECL) with extensive built-in capabilities for data-parallel processing, allows
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complex operations without the need for extensive user-defined functions, and
automatically optimizes execution graphs with hundreds of processing steps into
single efficient workunits; (5) an architecture with a high-level of fault resilience
and language capabilities which reduce the need for re-processing in case of system
failures; and (6) an architecture which is available in open source from and sup-
ported by a well-known leader in information services and risk solutions
(LexisNexis) who is part of one of the world’s largest publishers of information
ReedElsevier.
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Chapter 7
Scalable Automated Linking Technology
for Big Data Computing

Anthony M. Middleton, David Bayliss and Bob Foreman

Introduction

The massive amount of data being collected at many organizations has led to what
is now being called the “Big Data” problem, which limits the capability of orga-
nizations to process and use their data effectively and makes the record linkage
process even more challenging [1, 2]. New high-performance data-intensive com-
puting architectures supporting scalable parallel processing such as Hadoop
MapReduce and HPCC allow government, commercial organizations, and research
environments to process massive amounts of data and solve complex data pro-
cessing problems including record linkage.

SALT (Scalable Automated Linking Technology), developed by LexisNexis
Risk Solutions (a subsidiary of Reed Elsevier, one of the world’s largest publishers
of information), is a tool which automatically generates code in the ECL language
for the open source HPCC scalable data-intensive computing platform based on a
simple specification to address most common data integration tasks including data
profiling, data cleansing, data ingest, and record linkage. Record linkage, one of the
most complex tasks in a data processing environment, is the data integration pro-
cess of accurately matching or clustering records or documents from multiple data
sources containing information which refer to the same entity such as a person or
business. A fundamental challenge of data-intensive computing is developing new
algorithms which can scale to search and process big data [3].

SALT incorporates some of the most advanced technology and best practices of.
LexisNexis, and currently has over 30 patents pending related to record linkage and
other technology included in SALT, including innovative new approaches to
approximate string matching (a.k.a. fuzzy matching), automated calculation of
matching weights and thresholds, automated selection of blocking criteria,
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automated calculation of best values for fields in an entity, propagation of field
values in entities to increase likelihood of matching, automated calculation of
secondary relationships between entities, automated splitting of entity clusters to
remove bad links, automated cleansing of data to improve match quality, and
automated generation of batch and online applications for entity resolution and
search applications including an online search application including a Uber key
which allows searches on any combination of field input data.

SALT is provided as an executable program that can be executed automatically
from the ECL IDE (Integrated Development Environment), or run from a Windows
command prompt. The input to the SALT tool is a user-defined specification stored
as a text file with a .spc or .salt file extension which includes declarative statements
describing the user input data and process parameters. The output of SALT is a text
(.mod) file containing ECL code which can be imported and executed in an HPCC
system environment. The SALT tool can be used to generate complete applications
ready-to-execute for data profiling, data hygiene (also called data cleansing, the
process of cleaning data), data source consistency monitoring (checking consis-
tency of data value distributions among multiple sources of input), data file delta
changes, data ingest, and record linking and clustering. SALT record linking and
clustering capabilities include (1) internal linking—the batch process of linking
records from multiple sources which refer to the same entity to a unique entity
identifier; (2) external linking—also called entity resolution, the batch process of
linking information from an external file to a previously linked base or authority file
in order to assign entity identifiers to the external data, or an online process where
information entered about an entity is resolved to a specific entity identifier, or an
online process for searching for records in an authority file which best match
entered information about an entity; and (3) remote linking, an online capability that
allows SALT record matching to be incorporated within a custom user application.

This chapter describes how the SALT tool can be used to automatically generate
executable code for the complete data integration process including record linkage.
All data examples used in this chapter are fictitious and do not represent real
information on any person, place, or business unless stated otherwise.

SALT—Basic Concepts

SALT is designed to run on the open source HPCC scalable data-intensive com-
puting platform. It functions as an ECL code generator on the HPCC platform to
automatically produce ECL code for a variety of applications. Although the primary
use of SALT is for record linkage and clustering applications, SALT offers other
capabilities including data profiling, data hygiene, data source consistency moni-
toring, data ingest and updating of base data files, data parsing, and file comparison
to determine delta changes between versions of a data file.

SALT is an executable program coded in C++ which can be run from a
Windows command prompt or built in directly from the ECL IDE in the HPCC
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environment. The SALT program reads as its input a text file containing
user-defined specification statements, and produces an output file containing the
generated ECL code to import into the user ECL code repository. SALT provides
many command line options to control its execution, and to determine the type of
ECL code to produce for a target application.

SALT offers many advantages when developing a new data-intensive applica-
tion. SALT encapsulates a significant amount of ECL programming knowledge,
experience, and best practices gained at LexisNexis for the types of applications
supported, and can result in significant increases in developer productivity. It
affords significant reductions in implementation time and cost over a hand-coded
approach. SALT can be used with any type of data in any format supported by the
ECL programming language to create new applications, or to enhance existing
applications.

SALT Process

The SALT process begins with a user defined specification file for which an
example is shown in Fig. 7.1. This is a text file with declarative statements and
parameters that define the data file and fields to be processed, and associated
processing options such as the module into which the generated code is imported.

Fig. 7.1 SALT specification file example
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Figure 7.2 shows the basic steps in using SALT: (1) a specification file for the
data and application is created by the user; (2) the SALT program is executed using
a command line with specific options depending on the type of application for
which the code is being generated and includes an input file with a .spc extension
and an output file with a .mod extension; (3) the SALT program produces an output
file in a special .mod format with the ECL coded needed for the application; (4) the
generated code is imported into the ECL code repository; and (5) the ECL code is
now available for execution using the ECL IDE.

Specification File Language

The SALT specification language is a declarative language which describes the
input file data and the process parameters to be used in a SALT generated ECL
language application. Each specification file language statement must appear on a
single line of text in the specification file. The basic syntax for language statements
is as follows:

KEYWORD:parameter:KEYWORD(parameter)[:OPTIONAL|WORD]

Keywords are not case-sensitive and Optional parameters can appear in any
order within a specification file statement. Keywords are shown in caps for
emphasis in all examples in this chapter. Although statements can generally appear
in any order, definitions are usually ordered in a similar manner to the example in
Fig. 7.2 for readability and consistency. A complete language reference is not
presented here, but can be found in the SALT installation.

.spc file

SALT Specification
File SALT Command Line

  C:> SALT -ga in.spc >out.mod

SALT Generated ECL 
Code

out.mod

ECL Code

OPEN
out.mod

ECL IDE Import
To ECL Repository

Module
(Folder)

Executable
ECL Code

ECL Code Repository 
(Directory)

1 2 3

4 5

Fig. 7.2 SALT basic process
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MODULE:modulename[.submodule]

The MODULE statement specifies a module name (folder) in the ECL repository
(directory) where the source code generated by SALT will reside. The code gen-
erated by SALT uses the specified modulename with optional submodule as the
base for the ECL code generated and is used for external references the code.

OPTIONS:option_switches

The OPTIONS statement allows the .spc file to override or add in command line
options normally specified on the SALT command line when using SALT directly
from the ECL IDE.

FILENAME:name]

The FILENAME statement allows a logical name for the input file to be spec-
ified and processed by the code generated by SALT. The name parameter is
incorporated into various attribute names including attributes which identify the
input dataset and the input record layout for the process, and additional temporary
and output filenames in the ECL code generated by SALT.

PROCESS:processname[:UBER(ALWAYS|REQUIRED|NEVER)]

The PROCESS statement specifies an overall name for an external linking or
remote linking process generated by SALT, but is not required for other processes.
The processname is arbitrary and used for symbol naming in the generated code.
The UBER option defines how the UBER key is used in an external linking
process. The default is the UBER key is used if searching using all of the
LINKPATHs specified for external linking could satisfy the query.

IDFIELD:
IDFIELD:EXISTS:fieldname

The IDFIELD identifies the field to be used as the entity ID for record linkage. If
IDFIELD: is specified with nothing following, then it is assumed that no ID exists
and the generated code will be used to cluster the input file records and assign a
clustering ID based on the record id field specified in the RIDFIELD statement. If
IDFIELD:EXISTS:fieldname is specified, then the input file is assumed to have a
field previously defined identifying matching records for entity clusters. When used
in an record linkage process, this allows additional records to be clustered with the
existing IDs.

IDNAME:fieldname

The IDNAME statement specifies the fieldname to be used for the ID field in the
output of a record linkage process. If an ID field does not already exist in the input
data, then IDFIELD: is used with IDNAME:fieldname which specifies the name of
the output field for the ID.
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RIDFIELD:fieldname

The RIDFIELD statement specifies the name of the numeric field containing the
record identifier or RID. Each record in the input dataset should have a unique RID
value. The RIDFIELD is used as the basis for the record linkage process when no
IDFIELD:EXISTS is specified. The entity cluster ID for each matched set of
records will be the lowest value RID in the group at the end of the record linkage
process.

RECORDS:record_count

The RECORDS statement specifies the expected number of records at the end of
a record linkage process. The record_count value is the expected number of records
at the end of the process which initially can be specified as the input record count.
The RECORDS statement in combination with the NINES and POPULATION
statements in a specification file allow SALT to compute a suitable matching score
threshold for record linkage as well as a block size for the number of records to
compare for the blocking process.

POPULATION:entity_count

The POPULATION statement specifies the expected number of entities at the
end of a record linkage process. When the matching process is complete, entity
clusters or records are formed, each identified by a unique entity ID. The
entity_count value is the expected number of entities or unique entity IDs that will
be generated by the matching process.

NINES:precision_value

The NINES statement specifies the precision required for a SALT generated
record linkage process. The precision_value parameter specifies the precision
required expressed as a number of nines such that a value of 2 means 2 nines or a
precision of 99 %. A value of 3 means 3 nines or 99.9 %.

FIELDTYPE:typename:[ALLOW(chars):] [SPACES(chars):]
[IGNORE(chars):][LEFTTRIM:][CAPS:][LENGTHS
(length_list):]
[NOQUOTES():][LIKE(fieldtype):][ONFAIL(IGNORE|CLEAN|
BLANK|
REJECT):][CUSTOM(functionname[<|>n][,funcparam1,
funcparam2,
…funcparamn]:]

The FIELDTYPE statement allows field editing and validity checking require-
ments used for data hygiene processing to be defined and grouped into common
definitions which can then be associated with any field. A FIELDTYPE field does
not really exist; it is used to assign editing constraints to a field. The FIELDTYPE
parameters are essentially assertions defining what the given field must look like.
The LIKE parameter specifies a base or parent for the field type allowing
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FIELDTYPEs to be nested. All of the restrictions of the parent field type are then
applied in addition to those of the field type being specified. The ONFAIL
parameter allows the user to select what occurs when an editing constraint is
violated. These include ignoring the error, cleaning the data according to the
constraint, blanking or zeroing the field, or rejecting the record. The CUSTOM
parameter allows a user defined function to be referenced to perform validity
checking.

BESTTYPE:name:BASIS(fixed_fields:[?|!]:optional_fields):
construction_method:construction_modifiers:
propagation_method

The BESTTYPE statement is used to define a best value computation for a field
or concept for a given basis for an entity. The calculated best value can be used for
propagation during record linkage, and is available for external application use. The
basis is typically the entity identifier specified by the IDFIELD, but a more complex
basis can be specified consisting of multiple fields. Multiple BESTTYPEs can be
associated with a field or concept, and all are evaluated, but the leftmost non-null
best value is considered the overall best value for the field. SALT generates code
for calculating the best values in the Best module and exported dataset definitions
are provided which allow output of a dataset of best values for each field or concept
and associated BESTYPE definitions. In addition SALT provides several aggregate
files using whatever fields are defined in the basis.

BESTTYPE construction methods provided are COMMONEST (most fre-
quently appearing value), VOTED (a user-defined function is provided to weight
the field value by source type), UNIQUE (best value is produced if there is only one
unique value for the field in the entity cluster), RECENT (uses the most recent
value specified by a date field parameter), LONGEST (picks the longest value for a
field). Construction modifiers include MINIMUM (candidates must have a mini-
mum number of occurrences in an entity cluster), FUZZY (specifies that the fuzzy
matching criteria of the target field are used to allow less common values to support
candidates for best value), and VALID (specifies that only those values considered
valid will be considered available for BEST computation). Propagation methods
include PROP (copy the best value into null fields with a matching basis),
EXTEND (copy the best value into null fields and those that are partial exact
matches to the best value), FIX (copy the best value onto null fields and overwrite
those fields which are fuzzy matches to the best value), and ENFORCE (copy the
best value into the field regardless of the original data content).

Note that the BESTTYPE statement is a powerful capability and interested
readers are referred to the SALT User’s Guide for a more in-depth explanation.

FIELD:fieldname[:PROP][:CONTEXT(context_fieldname)]
[:BAGOFWORDS[(MANY|ALL|ANY|MOST|TRIGRAM)]][:CARRY]
[:TYPE(datatype)][:LIKE(fieldtype)] [:EDIT1][:EDIT2]
[:PHONETIC][:INITIAL][:ABBR][:HYPHEN1[(n)]][:HYPHEN2
[(n)]]
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[:fuzzy_function…[:fuzzy_function]]
[:MULTIPLE][:RECORDDATE(FIRST|LAST[,YYYYMM])]
[:besttype…[:besttype]] [:FLAG][:OWNED]
[:FORCE[(+|–[n])]:specificity,switch_value1000

The FIELD statement defines a data field in the input file record including its
type and other characteristics which affect hygiene, validity, and matching.
The PROP parameter specifies a default propagation for the field if there is no
associated BESTTYPE. If the CONTEXT parameter is specified, then a match
occurs only if both the values in fieldname and the context_fieldname match. If the
BAGOFWORDS parameter is specified then the string field is treated as a sequence
of space delimited tokens. The LIKE parameter specifies additional editing char-
acteristics of the field defined by the named FIELDTYPE statement. EDIT1 and
EDIT2 specify edit-distance fuzzy matching, PHONETIC specifies phonetic fuzzy
matching, INITIAL allows a partial string to match the first characters of another
string, ABBR allows the first character of tokens in one string appended together to
match another string, HYPHEN1 and HYPHEN2 provide for partial and reverse
matching of hyphenated fields, MULTIPLE allows multiple values to be specified
for entity resolution, RECCORDATE allows a date field to be specified as FIRST
or LAST in context and YYYYMM allows dates to be year and month only.
fuzzy_function specifies the name of a custom fuzzy matching function defined by
the FUZZY statement.

The besttype parameters refer to BESTTTYPE definitions associated with the
field, FLAG allows statistics to be calculated about the fields when using
BESTTYPE, OWNED with FLAG implies the best value should only appear in a
single entity cluster. The FORCE parameter is used to require a match on the field
for a record match, or specify the minimum field match score needed for a record
match, and can also specify that no negative contribution to the record score is
allowed. The specificity and switch_value1000 are computed by SALT and added
to the FIELD statements prior to record linkage. Specificity is the weighted average
field score for matching and the switch_value1000 is the average variability of field
values across all entity clusters (fraction * 1000).

FUZZY: name:RST:TYPE(FuzzyType):CUSTOM(FunctionName)

The FUZZY statement specifies a custom user-supplied fuzzy matching function
for a FIELD. SALT automatically handles other requirements such as scaling of the
field value specificity. The name parameter associates a name with the custom fuzzy
processing. Once defined, the name can be used as a parameter of a FIELD defi-
nition. The FuzzyType parameter allows the return type of the fuzzy function to be
specified as a valid ECL datatype. The FunctionName parameter defines an ECL
function which performs the fuzzy processing.

DATEFIELD:fieldname[:PROP][:SOFT1][:YEARSHIFT][:MDDM]
[:CONTEXT(context_fieldname)][:FORCE[(+|–[n]
[,GENERATION])]:specificity,switch_value1000
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The DATEFIELD statement specifies a numeric string field in the format
YYYYMMDD. It functions in an identical manner to the FIELD statement except
for requiring the specific date format. The FORCE parameter includes a special
option GENERATION which applies only to a DATEFIELD. If used the YEAR
portion of the date has to be within 13 years of the other (or null). The SOFT1,
YEARSHIFT, and MDDM options provide some fuzzy matching capabilities for
dates.

SOURCEFIELD:fieldname[:CONSISTENT[(checkfieldname,checkfieldname,
…)]]

The SOURCFIELD statement specifies the name of the field containing the input
data source type. The source field is not processed as a normal field definition for
matching, but is used for the data source consistency checking process. If the
CONSISTENT parameter is provided then SALT generates code into the hygiene
module to check for consistency of field values between the various sources rep-
resented in the input file.

SOURCERIDFIELD:fieldname

The SOURCERIDFIELD statement specifies the name of a field in the input file
which contains a unique identifier for a corresponding record in source or ingest file
which has been merged into the base file. This value in combination with the value
of the SOURCEFIELD provides a link to the original source record for the data.

LATLONG:name:LAT(latitude_field):LONG(longitude_field):
[DISTANCE(n)][DIVISIONS(n)]

The LATLONG statement specifies a geo-point field for the location associated
with a record based on latitude and longitude fields included in the specification file.
If a LATLONG is specified, the geo-point is made up of the combined latitude field
and longitude field and is treated as one single ‘pin-point’ location instead of the
two separate measures during a record linkage process. LATLONG field values are
treated fuzzily for matching records. The LATLONG geo-points must also be
within DISTANCE(n) as defined above from each other to make a positive con-
tribution to the match score, otherwise it can make a negative contribution. The
population density of entities in the grid as defined by the DISTANCE and
DIVISIONS parameters for the grid around all geo-points is calculated giving the
field match score for a given distance from a geo-point.

CONCEPT:fieldname[:+]:child1[+]:child2[+]:childn[+]…
[:FORCE[(+|–[n])]:[:SCALE(NEVER|ALWAYS|MATCH)][:
BAGOFWORDS]:
specificity,switch_value1000

The CONCEPT statement allows a group of related or dependent fields to be
defined and is used so that dependent fields are not over weighted in the record
linkage process. SALT makes an implicit assumption of field independence which
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can lead to under or over weighting during the matching process when the fields
only really have meaning in the context of other fields. This can be corrected by
appropriately defining CONCEPT fields. A CONCEPT replaces the child fields
only if matched between records during the record matching process. If the Concept
field does not match, the child fields are independently evaluated in the record
matching and scoring process. A Concept field is a computed field and does not
appear in the input file.

ATTRIBUTEFILE:name[:NAMED(modulename.filename)]:IDFIELD
(id_field_name):VALUES(attribute_field_name[,LIST])[:KEEP
(n|ALL)][:WEIGHT(value)][SEARCH(list_of_fields)][:speci-
ficity,switch_value1000]

An ATTRIBUTEFILE statement defines a special type of field which provides a
set of values for matching from an external file, child dataset which is part of the
main input file, or a child dataset which is part of the external file. Each matching
value must be paired with an ID value of the same type as defined for the input file
in the IDFIELD or IDNAME statement. During the matching process, if attribute
values match between records being compared, the match will contribute to the
overall score of the record match. The VALUES field list allows additional fields to
be included which can then be used in search applications. The KEEP parameter
allows the user to specify how many matching attribute values are allowed to
contribute to a record match.

INGESTFILE:name:NAMED(module.attribute_name)

The INGESTFILE statement specifies the name to be used for an ingest file to be
appended/merged with the base file as part of a SALT record linkage process. The
module.attribute_name specified in the NAMED() parameter specifies the module
and attribute name of a dataset attribute. The dataset is assumed to be in the same
format as the base file. Ingest files are appended to and merged with the base file
specified in the FILENAME attribute for a record linkage process. Typically these
files are generated from external source files or base files for other types of entities.

LINKPATH:pathname[:fieldname:fieldname:fieldname…:
fieldname]

The LINKPATH statement specifies the name of a search path for an external
linking entity resolution process generated by SALT. The pathname is arbitrary and
used for symbol naming. A fieldname references either a field defined in the
specification file, an ATTRIBUTEFILE value field, or is a ‘?’ or ‘+’ character
separating groups of fields. A linkpath can be divided into 3 groups: required fields
which immediately follow the pathname and must match, optional fields which
follow the ‘?’ character used as a fieldname and must match if data is present in
both records for the field, and extra credit fields which follow a ‘+’ character used
as a fieldname and are not required to match but will add to the match score if they
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do. The fieldnames used in a linkpath typically correspond to field combinations
used frequently in user queries.

RELATIONSHIP:relationshipname:BASIS(FieldList):DEDUP
(FieldList)[:SCORE(FieldList)][:MULTIPLE(n)][:SPLIT(n)]
[:THRESHOLD(n)]
RELATIONSHIP:relationshipname:RelationshipList)][:
MULTIPLE(n)] [:THRESHOLD(n)]

SALT record linkage provides the capability to cluster together records to form
an entity. In some situations, the objective is not to determine that two records or
clusters are close enough to become part of the same entity, but to determine if a
statistically significant link exists between the two clusters and to record this
relationship. The RELATIONSHIP statement provides this function. Relationships
provide a way to record instances when multiple occurrences of specific set of fields
(the BASIS field list) matching between clusters provide information that a specific
relationship exists or evidence that the clusters may need to be linked. The second
form of the RELATIONSHIP statement definition above allows a relationship to be
formed as the sum of other relationships.

THRESHOLD:threshold_value

The THRESHOLD statement overrides the default record matching threshold
calculated by the SALT code generation process. The threshold_value specifies a
new value for the specificity matching threshold which is the minimum amount of
total specificity needed for a record match.

BLOCKLINK:NAMED(modulename.attribute)

The BLOCKLINK statement is used to define a file which will be used to block
linking of specific matching records during an internal linking process.
BLOCKLINK provides a user-specified unlink capability which prevents certain
records from being combined in an entity cluster. This may be required as part of a
linking process for compliance or other reasons.

SALT—Applications

The starting point for utilizing the SALT tool is creating a specification file which
defines your input data file, the fields in your input data file to be used, as well as
additional statements and parameters to direct the ECL code generation process
including the module name to be used for the generated ECL. The content of your
specification file varies depending on the specific type of process for which you
need ECL code generated by SALT.
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SALT can be used for processes including:

• Internal linking/record matching/clustering
• External record matching
• Data hygiene
• Data profiling
• Data source consistency checking
• Data source cluster diagnostics
• Delta file comparisons
• Data Parsing and Classification
• Generation of inverted index records for Boolean search.

Figure 7.3 shows the SALT user data integration process and application flow.

Data Profiling

Data profiling or exploratory data analysis [2] is a step usually performed by data
analysts on raw input data to determine the characteristics of the data including
type, statistical, and pattern information as well as field population counts. The goal
of profiling is to fully understand the characteristics of the data and identify any bad
data or validity issues and any additional cleansing, filtering, or de-duplication that
may be needed before the data is processed further. Data profiling can also provide
information on the changing characteristics of data over time as new data is linked.
Data profiling can occur prior to the parsing step if needed to identify raw data
fields which need to be parsed, but is usually performed once the input data has
been projected into a structured format for the record linkage process.

SALT data profiling is a process which provides important type, statistical, and
pattern information on the data fields and concepts and their contents in any input
data file. This information is essential in analyzing the content and shape (patterns)
of the data in the source data files and facilitates important decisions concerning
data quality, cleansing, de-duping, and linking of records, and to provide infor-
mation on the changing characteristics of data over time. Data profiling is a task
usually performed by data analysts as exploratory data analysis [2], and is an
important preparatory step for the record linkage process.

SALT data profiling provides by field breakdowns of all the characters, string
lengths, field cardinality (the number of unique values a field contains), top data
values, and word counts for every data field or concept (dependent groups of data
fields) defined in the specification file. In addition, SALT calculates and displays the
top data patterns to help analyze the shape of the data. The data profiling capability
also provides summary statistical data such as the number of records in the input file,
and the percentage of non-blank data, maximum field length, and average field
length for every field and concept. This summary information provides a quick view
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which can be compared with previous versions of a data file to identify anomalies or
to verify anticipated changes in the content of a data file.

The data profiling information can also be used as input data to a change
tracking system. If any of the data profiling information is not consistent with
expectations, it may be an indication of bad data in the source file which may need
further cleansing. Figure 7.4 shows a partial data profiling summary report
produced by SALT for a sample input file of business data.

Data Profiling
• FIELD definition
• Summary Report
• Detail Report
• Data Source Consistency Report
• Statistics

Data Hygiene
• FIELDTYPE Definitions
• Hygiene Report
• Statistics

Data Ingest
• New/Updated Data
• Merge to Base File
• Statistics

Linking?
No

Delta Compare
• Compare to previous cycle
• Delta Change Reports
• Statistics

Yes

Generate Specificities
• Specific Field Value Weights
• Average Field Value Weights

Internal Linking

External Linking Remote Linking
• LINKPATH defintion
• Entity Resolution
• Base File Searching

• CONCEPT definition
• BESTTYPE defintion
• RELATIONSHIP definition
• BLOCKLINK definition
• Entity ID clustering

• Custom user record matching
• Weights calculated from base 

file

Data Preparation

Record Linking

Fig. 7.3 SALT data integration process
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Figure 7.5 shows a partial data profiling detail field report for the phone field in
the same sample file. SALT can run data profiling field profiles on all fields or
selected fields.

SALT data profiling also provides the capability to analyze fields existing in an
external file which correspond to fields in an internal base file. When executed, a
report is produced which shows the top combinations of fields which are non-blank
sorted by frequency. The output of this report is an indicator of which fields may be
more sparsely populated in the external file which could indicate problems with the
data source and can also help identify the type of data represented in the external
file. If the external file is representative of typical data requiring entity resolution
using the base file, this report helps determine the best field combinations to use to
define the linkpaths required, and SALT can automatically generated suggested
linkpaths using the data from this report. Figure 7.6 shows partial sample output
from this report.

Fig. 7.4 SALT data profiling summary report example

Fig. 7.5 SALT data profiling field detail report example
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Data Hygiene

Data cleansing, also called data hygiene, is the process of cleaning the raw input
data so that it can be used effectively in a subsequent process like record linkage.
The cleanliness of data is determined by whether or not a data item is valid within
the constraints specified for a particular field. For example, if a particular data field
is constrained to the numeric characters 0–9, then any data item for the field which
contains characters other than 0–9 would fail a cleansing validity check for the data
field. So 5551212 would be a valid value for a data item, but 555-1212 would not.
Data which has not been cleansed properly can have adverse effects on the outcome
of the record linkage process [4]. Some data issues can be identified and corrected
through the cleansing process, for others such as misspellings or character trans-
positions or deletions, the record linkage process will need to support comparison
methods such as edit-distance, phonetic, and other forms of fuzzy matching to allow
for common typographical errors and then scale match weights appropriately.

Once the initial data profiling process is complete, SALT can be used to check
the cleanliness of the data. SALT uses the term data hygiene to refer to both the
cleanliness of the data and the process by which data is cleansed so that it can be
used effectively in a subsequent data integration process such as record linkage.
Cleanliness of data is determined by whether or not a data item is valid within the
constraints specified for a particular data field. For example, if a particular data field
is constrained to the numeric characters 0–9, then any data item for the field which
contains characters other than 0–9 would fail a hygiene validity check for the data
field.

SALT includes capabilities to define hygiene constraints on its input data,
identify invalid data in fields, and cleanse the data if needed. However, by default,
no error checking will occur unless specified for field definitions in the specification
file. SALT includes standard syntax using the FIELDTYPE statement to support

Fig. 7.6 SALT field combination analysis report example
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most common types of validity checks on data in fields. Custom user-defined
functions which perform user-specific validity checks can also be included.

SALT data hygiene can be used as an independent process to check the input
data, and if appropriate, the user can correct any problems identified to create a
cleansed input file before continuing with other SALT processes like record link-
age. SALT can also automatically cleanse bad data before proceeding in which is
controlled by the ONFAIL parameter of the FIELDTYPE statement. If the value in
a field is not valid according to the editing constraints imposed, ONFAIL actions
include: IGNORE (data is accepted as is), BLANK (the value in the data field is
changed to blank or zero depending on the type of the field), CLEAN (removes any
invalid characters), or REJECT (removes/filter out records with the invalid field
data).

The following are sample FIELDTYPE statements:

FIELDTYPE:DEFAULT:LEFTTRIM:NOQUOTES('''):
FIELDTYPE:NUMBER:ALLOW(0123456789):
FIELDTYPE:ALPHA:CAPS:ALLOW(ABCDEFGHIJKLMNOPQRSTUVWXYZ):
FIELDTYPE:WORDBAG:CAPS:ALLOW
(ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789’):SPACES(<>{}[]-
^=!+&,./):ONFAIL(CLEAN):
FIELDTYPE:CITY:LIKE(WORDBAG):LENGTHS(0,4..):ONFAIL
(BLANK):

The DEFAULT fieldtype applies to all fields unless overridden, and the LIKE
parameter allows fieldtypes to be nested in a hierarchical manner. If the name of a
FIELDTYPE also matches the name of a field like CITY, then the field automat-
ically assumes the hygiene constraints of the FIELDTYPE with the same name.
This facilitates building a library of FIELDTYPE statements which can be used to

Fig. 7.7 SALT data hygiene report example
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insure consistency across data models. Figure 7.7 shows a partial example of the
SALT data hygiene report.

Data Source Consistency Checking

SALT has the capability to check the field value consistency between different
sources of data for an input file. This capability requires that the input file being
checked has a field on each record designating from which unique source the data
was provided for the record. The SALT specification file includes a special
SOURCEFIELD statement which provides the information needed to perform the
consistency checking. Consistency checking can be specified for all fields in the
record, or only specific fields. Typically consistency checking is used only on
specific fields where a consistent distribution of data values across all sources is
expected. For example, for an input file containing person names, we expect data
values in the last name field would generally be consistently represented in terms of
its distribution within sources. For example, the last name Smith would be repre-
sented in all sources and no source would have this data value in abnormally high
numbers compared to the average across all sources.

The output of the data source consistency checking process is a list of outliers,
data values whose distribution is not consistently represented across all sources.
This list contains the name of the data field(s) being checked, the data value of the
outlier, the unique source identifier, and the number of records containing the
outlier. These outliers could represent bad data values being introduced from a
specific source, missing data, or other anomalies and inconsistencies related to the
data source containing the outliers. Some outliers may be legitimate, for example if
the source field contains a geographic identifier, there may be high concentrations
of a particular last names in certain geographical areas which could be flagged by
the consistency checking. Figure 7.8 shows partial sample output from a data
source consistency report.

Fig. 7.8 SALT data source consistency report example
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Delta File Comparison

SALT includes the capability to compare two versions of a file and provides two
reports showing the differences. A differences summary report which outputs five
records similar to the data profiling summary report for the records in the new file,
records in the old file, updated/changed records in the new file, records added to the
new file, and records deleted from the old file. The differences summary provides
the number of records for each of these categories (New, Old, Updates, Additions,
Deletions), and the percentage of non-blank data, maximum field length, and
average field length for every field for each of the categories. The Changed category
is only available if an RIDFIELD statement is included in the specification file.
A differences detail report which outputs any record (Added, Deleted, Changed)
which is different in the new file from the old file with additional columns to flag
the type of change. Added and Changed records are shown from the new file, and
Deleted records are shown from the old file. The Changed category is only available
if an RIDFIELD statement is included in the specification file and otherwise a
change is shown as an addition and deletion.

The delta difference reports show the differences between two versions of the
same file which has been updated through an ETL type of process, for example a
monthly update of a data source. Even though summary statistics are normally
generated in a typical ETL update process, the statistics for the delta difference
reports may highlight smaller errors that may be obscured by the statistics on the
full files. Figure 7.9 shows partial sample output from delta difference summary and
detail reports.

Data Ingest

The data ingest step is the merging of additional standardized input data source files
with an existing base file or with each other to create the base file on which the
record linkage process will be performed. If a linked base or authority already file
exists, the data ingest process functions as an update and merges the new or updated
record information into the base file. The subsequent record linkage process can add
any new records to existing entity clusters, form new entity clusters, splitting and
collapsing entity clusters as required based on the matching results and new
information included in the input files to create a new linked version of the base file.

Data processing applications which maintain a base or authority file with
information on an entity typically require periodic updates with new or updated
information. The reading and processing of new information to add or update the
base file is usually referred to as a data ingest process. The SALT data ingest
process applies the ingest records to the base file and determines which records are:
new, never seen before; updates, identical record to an existing record in the base
file but with newer record dates; unchanged, identical to an existing record in the
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base file but not altering a record date; and old, records exist in the base file but not
in the ingest file. SALT can generate code which will automatically perform data
ingest operations as an independent process, or as part of and combined with an
internal record linking process described later in this chapter.

The SALT data ingest process requires the ingest file format to match the record
layout of the base file. The base file record must include a numeric record id field
specified by the RIDFIELD statement which uniquely identifies any record in the
base file. The GENERATE option on the RIDFIELD statement allows fresh record
IDs to be automatically generated by the data ingest process. The base file may also
include a field which indicates the external source file type for a record and a field
which is the unique identifier of the record from the data ingest file identified by the
source type specified by the SOURCEFIELD and SOURCERIDFIELD statements
in the specification file. Including these fields allows SALT to provide additional
functionality including enhanced statistics. The base file and ingest file records may
also include specific date fields which indicate the first date and the last date that the
data meets some condition such as being valid for the specified source, or when the
data first added entered and last entered the base file for the specified source.

Fig. 7.9 SALT delta difference summary and detail reports
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Three reports are produced by the data ingest process in addition to the updated
base file: (1) statistics by ingest change type and source defined by the
SOURCEFIELD statement with record counts where type indicates old, new, up-
dated, or unchanged as described previously; (2) field change statistics between old
and new records where the source field as defined by the SOURCEFIELD state-
ment and the unique id as defined by the SOURCERIDFIELD statement (vendor_id
for the sample data example shown below) match between old and new records;
and (3) record counts by ingest file source defined by the SOURCEFIELD state-
ment. The updated base file will be identical in format to the previous base file but
can include an additional field which will contain a numeric value corresponding to
the ingest change type: 0-unknown, 1-Unchanged, 2-updated, 3-old, 4-new.

Figure 7.10 shows a partial sample of an updated base file for a data ingest
operation.

Fig. 7.10 SALT data ingest sample updated base file
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Record Linkage—Process

Record linkage fits into a general class of data processing known as data inte-
gration, which can be defined as the problem of combining information from
multiple heterogeneous databases [5]. Data integration can include data preparation
[6] steps such as parsing, profiling, cleansing, normalization, and parsing and
standardization of the raw input data prior to record linkage to improve the quality
of the input data [2] and to make the data more consistent and comparable [1, 7]
(these data preparation steps are sometimes referred to as ETL or extract, transform,
load). The data preparation steps are followed by the actual record matching or
clustering process which can include probability and weight computation, data
ingest of source data, blocking/searching, weight assignment and record compar-
ison, and weight aggregation and match decision to determine if records are
associated with the same entity [4–6, 8–11]. Figure 7.11 shows the phases typical in
a data integration processing model.

The record linking approach used by SALT is similar to the classic probabilistic
record linkage approach. However, the SALT approach has some significant
advantages over the typical probabilistic record linkage approach. The amount of
specificity added per field for a match is variable, based on the actual matching field
value. This effectively assigns higher weights automatically to the more rare values
which have higher specificity. This in turn allows record matches to occur even
when the data in a record is sparse or inconsistent (i.e. fields with missing values)
increasing recall significantly, when the remaining matching field values are suf-
ficiently rare. In addition, field specificities are automatically scaled for fuzzy
matches and other editing constraints specified for a field improving overall pre-
cision. Since specificities are also effectively trained on all the available data, and
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Fig. 7.11 Data integration process model

SALT—Applications 205



not just a hand-labeled sample of the data, the SALT approach can provide higher
precision and recall than other machine learning approaches.

Record Matching Field Weight Computation

SALT calculates record matching field weights based the concept of term specificity
and matching weights are referred to within SALT as specificities. The measure of
term specificity for documents was first proposed by Karen Spärk Jones in 1972 in a
paper titled “A Statistical Interpretation of Term Specificity and its Application in
Retrieval” [12], but later became known as inverse document frequency (IDF) [13].
It is based on counting the documents in a collection or set of documents which
contain a particular term (indexed by the term). The basic idea is that a term that
occurs in many documents is less specific as an index term and should be given less
weight than a term which occurs in only a few documents. The IDF is frequently
used in combination with the term frequency or TF which is the frequency of a term
within a single document. The combination called TF-IDF is used as a weight or
statistical measure to evaluate how important a term is to a document that is part of
a set of documents. The use of frequencies in calculating weights for record
matching was first proposed by Newcombe et al. [14], formalized in a mathematical
model by Fellegi and Sunter [15], and extended by Winkler [16]. TF-IDF calcu-
lations for matching weights have also been used by Cohen [8], Cohen et al. [17],
Koudas et al. [18], Bilenko and Mooney [19], and Gravano et al. [7].

SALT applies the concept of term specificity to the unique field values for a field
defined for a record in the input dataset(s) to be matched to calculate a field value
specificity for each unique value contained in the field across all records in the
dataset. The rarer a field value is in the input dataset, the higher the specificity
value. SALT also calculates a weighted average field specificity taking into account
the distribution of unique values for each field which is used when individual field
values are not available during processing and for internal code generation and
processing decisions. The field value specificities are calculated by dividing the
total number of unique entities in the dataset by the number of entities containing a
non-null unique field value in a field and taking the logarithm base 2 (log2) of the
quotient. Note that initially in an unlinked dataset the number of entities is equal to
the number of records. SALT recalculates field value specificities and the weighted
average field value specificity which are used directly as matching weights for each
iteration of linking based on all available data. The weight computation for field
value specificity is represented by the following equation:

wfvs ¼ log2
nent
nval

where wfvs is the field value specificity, nent is the number of unique entities in the
dataset, and nval is the number of entities containing a non-null unique field value

206 7 Scalable Automated Linking Technology for Big Data Computing



for the field for the current iteration of linking. The average field specificity is
calculated by the following equation:

wavg ¼ log2

Pn
i¼1 nvali

� �2

Pn
i¼1 nval2i

SALT uses the field value specificities as weights for determining record mat-
ches in a record linking/clustering process. For example, when two separate records
are being matched, SALT compares each field in the two records for similarity
based on the definition of the field in the SALT specification file. If the field values
match between the two records, the specificity for the field value (scaled for fuzzy
matches and otherwise adjusted based on the editing options for the field) is added
to a total specificity to help determine a record match. Each field defined in the
specification file for the record can make a positive, negative, or no contribution to
the total specificity. If the total specificity exceeds a pre-determined record
matching threshold, then the two records are considered a match. The SALT record
linking/clustering technology operates on a dataset of records containing informa-
tion about a specific entity type. As records are linked in an iterative process to form
entity clusters, specificities are recalculated based on the number of entities that
have a field value as a proportion of the total entities represented in the dataset. As
clustering occurs specificities converge to a more accurate value based on the
number of entities represented. Figure 7.12 shows an example of the specificity

Fig. 7.12 Example average and field value specificities for state
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values for state codes calculated on a large dataset. Note that the state code with the
largest count of records (CA—California) has the lowest specificity, and the state
code with the fewest records (MH—Marshall Islands) has the highest specificity.

Generating Specificities

The first step in running a SALT record linking process is to generate the field value
and average field specificities described in the last section that will be used as
weights for matching during the linking process. There are two different modes
which can be used: (1) a single-step mode in which specificity values are stored in
persisted files on the HPPC processing cluster, and (2) a two-step mode in which
specificity values are stored in key/index files. Specificities can take a large amount
of time to calculate when the base data is extremely large depending on the size
(number of nodes) of the processing cluster. The two-step mode allows the option
of not recalculating specificities each time a process like internal or external linking
is run based on updates to the base data. This can save a significant amount of
processing time when data is updated and linked on a processing cycle such as a
monthly build to add new or changed data.

Intially in the SALT specification file, the specificity and switch value infor-
mation is unknown for the FIELD, CONCEPT, and ATTRIBUTEFILE stetements
(refer to the description of the FIELD statement in `̀ Specification File Language''
section for a further description). Once specificities have been calculated using the
SALT generation process, the average field specificity and switch values can be
added to the specification file. This information allows SALT to generate optimized
code and set various thresholds appropriately for the record linkage processes.
SALT produces two reports when specificities are generated: (1) the specificites
report displays an average field specificity value, maximum specificity value, and
switch value for each FIELD, CONCEPT, and ATTRIBUTE statement in the
specification file. In addition, SALT shows which values if any for each field will
also be treates as nulls (other than blanks and zeros) by SALT in the matching
process. The specificities shift report shows the change (positive or negative) in
specificity from the previous value in specification file. The field value specificities
are stored in either persisted data files or index/key files depending on the gener-
ation mode selected. Persisted files are an HPCC and ECL feature that allow
datasets generated by ECL code to be stored, and if a process is run again, and the
code or other data affecting the persisted file has not changed, it will not be
recomputed. Figure 7.13 shows a partial specificities and specificities shift report
example for a sample data file.

208 7 Scalable Automated Linking Technology for Big Data Computing



Internal Linking

SALT includes three types of record linkage processes: Internal, External, and
Remote.

Internal linking is the classic process of matching and clustering records that
refer to the same entity and to assign entity identifiers to create a base or authority
file. An entity is typically a real-world object such as a person or business, but can
be anything about which information is collected in fields in a record where each
record refers to a specific entity. The goal is to identify all the records in a file that
are related to the same entity. This process is useful in many information processing
applications including identifying duplicate records in a database and consolidating
account information for example. Input records are matched using the fields and
process parameters defined by FIELD, CONCEPT, ATTRIBUTEFILE and other
statements in the specification SALT specification file.

The goal of the internal linking process is SALT is to match records containing
data about a specific entity type in an input file and to assign a unique identifier to
records in the file which refer to the same entity. For example, in a file of records
containing customer information such as a customer order file, internal linking
could be used to assign a unique customer identifier to all the records belonging to
each unique customer. Internal linking can also be thought of as clustering, so that
records referring to the same entity are grouped into clusters, with each cluster
having a unique identifier.

SALT uses the field value specificities as weights for determining record mat-
ches in the internal linking process. For example, when two separate records are
being matched, SALT will compare each field, concept, and attribute file in the two
records for similarity based on the definition of the field specified by the FIELD,
CONCEPT, and ATTRIBUTEFILE statements in the SALT specification file. If the
values match between the two records, the specificity for the value (scaled for fuzzy
matches and otherwise adjusted based on the editing options for the field) will be
added to a total specificity to help determine a record match. Each field defined in
the specification file for the record can make a positive, negative, or no contribution
to the total specificity. If the total specificity exceeds the pre-determined matching
threshold, then the two records are considered a match.

Fig. 7.13 SALT specificities and specificity shift sample reports
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The tendency is to think of the record match decision as a yes/no question as in
many rule-based systems. However, since SALT uses specificity values for match
scores based on every field value available in the input data, a record match score of
n + 1 denotes a link which is 2� less likely to be false than a score of n. In addition,
during an iteration of SALT internal linking, entity links are only generated (a) if
they are above the calculated threshold (either the default automatically calculated
by SALT or user-specified); and (b) are the highest scoring linkage for both records
involved in the link.

The internal matching process is iterative beginning with the input base file and
any additional ingest files which are merged with the input base file, with each
processing iteration attempting additional matches of records to records and entity
clusters formed in the previous iteration. As new entity clusters are formed or
expanded during each iteration, more information becomes available about an
entity. In a successive iteration, this may allow additional records or entire clusters
to be merged with an existing cluster. The output of each iteration effectively
becomes the training set for the next iteration, effectively learning from the previous
iteration, as new entity clusters are formed or extended and matching weights are
recalculated. Multiple iterations are usually required for convergence (no additional
matches occur) and to achieve high levels of precision and recall for a given
population of entities. A typical SALT-generated record linkage system will be
iterated quite extensively initially, but may only need additional iterations once or
twice a month as new or updated data is ingested.

The results from each iteration should be reviewed to determine if the record
matching results have met precision and recall goals or if under-matching or
over-matching has occurred. Adjustments may need to be made to field and concept
definitions or the specificity matching threshold and the entire process repeated. If
the goals of the linking process have been met, the result of final iteration becomes
the new linked base file. This result will contain the same number of records as the
original input file, but the entity identifier field specified by the IDFIELD or
IDNAME statement on each record will now contain a unique identifier for the
entity cluster to which the record belongs.

SALT produces a wealth of information to assess the quality of the results for
each iteration of the internal linking process. This information includes match
sample records, field specificities used in the current iteration, pre- and
post-iteration field population stats, pre- and post-iteration clustering stats showing
the number of clusters formed by record count for the cluster, the number of
matches that occurred, rule efficacy stats showing how many matches occurred as a
result of each blocking/matching rule (each rule is implemented as an ECL join
operation), confidence level stats showing total specificity levels for matches and
how many matches for each level, percentages of records where propagation
assisted or was required for a match, validity error flags which can indicate an
internal problem with the process or data, a match candidates debug file which
contains all the records in the input file with individual field value specificities
appended and propagation flags appended, a match_sample_debug file which
contains a record for each match attempted with both left and right field data and
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scores for field matches and the total match score, an iteration result file sorted in
order of the entity identifier, and a patched match candidates file with the entity
identifier appended to each record. SALT also produces various debug key files and
a ID compare online service which can be deployed to a HPCC Roxie cluster (refer
to Chap. 4 for more information on Roxie and the HPCC technology) that allows
you to compare the data for two entity identifiers to debug matches and
non-matches. Figure 7.14 shows an example of the output results produced for each
iteration of linking.

Figure 7.15 shows a partial result example of the post iteration cluster statistics
after the first iteration of internal linking.

The input base file for the internal linking process is specified by the
FILENAME statement in the specification file. Other data ingest files can also be
included which will be appended and merged with the base file prior to the linking
process. The INGESTFILE statement allows you to define a dataset which provides
records to be ingested in the same format of the base file. Typically these files are
generated from external source files or base files for other types of entities. The data
ingest is executed automatically if the specification file includes INGESTFILE
statements.

After analyzing match sample records generated by the internal linking process
on each iteration, the results may indicate the system is overmatching (too many
false positives), or under matching (too many false negatives). False positive
matches are evidenced by entity clusters that have records which should not have
been included. False negative matches are evidenced by records which should have
been matched and included in an entity cluster, but were not. There are many
reasons why either of these conditions could be occurring including the need or
adjustment of parameters in the specification file such as the FORCE on the FIELD
statements, and the overall definition of statements and concepts. If the matching

Fig. 7.14 SALT internal linking output results
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criteria in you specification file appears to be correct, then the match threshold value
may need to be adjusted manually using the THRESHOLD statement.

The match sample records generated by the internal linking process include
samples of record matches at and above the match threshold, and also matches in
the range of the match threshold value within 3 points of specificity. If matches
below the threshold appear to actually be valid, then the match threshold may need
to be lowered. If records above the current match threshold appear to be invalid,
then you may need to raise the match threshold. A sufficient number of records
needs to be examined at the match threshold, below, and above before making a
decision. It is not uncommon to have some false positives and false negatives in a
linking process.

SALT automatically generates an ID Compare Service for use with internal
linking. Once the service has been deployed to a HPCC Roxie cluster, the query can
be accessed manually through the WsECL interface. The query allows you to look
at all the data associated with two identifiers to see if they should be joined. It is
also useful for looking at all the data associated with a specific entity identifier if
you only enter one identifier. SALT also automatically generates an ID sliceout
service for use with internal linking. This query allows examination of records
which the internal linking process has identified as sliceouts.

Fig. 7.15 SALT internal
linking cluster statistics
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External Linking

External linking is the process of matching an external file or an online query to an
existing, linked base or authority file which has been previously linked by an
internal linking process, or some other linking process. The goal of external linking
is to determine if a record in the external file is a match to an entity cluster in the
internal base file and assign it the unique identifier for the matching entity. This
process is also referred to as entity resolution. External linking is useful in estab-
lishing foreign key relationships between an external file and an existing file based
on the unique entity identifier. For example, a person may have a unique identifier
in a base file that contains general information about the person entity, and the
external file may have information on vehicles which are or have been owned or
leased by a person entity. SALT external linking also supports a base file search
mode in which all records which are similar to the search criteria are returned.

The goal of the external linking process of SALT is to match records containing
data about a specific entity type in an external file or online query to a previously
linked base file of entities and to assign a unique entity identifier from the base file
to records in the external file or to the query which refer to the same entity. External
linking is also useful in establishing foreign key relationships between an external
file and an existing file based on the unique entity identifier. For example, in an
external file of records containing property information for people, external linking
could be used to assign a unique person entity identifier to all the property records
associated with a base file of people. External linking can also be thought of as
entity resolution, so that records or onlilne queries containing information about an
entity are resolved by matching the records to a specific entity in an authority file,
and assigning the corresponding unique entity identifier.

The external linking capability requires a previously linked input file in which all
the records have been clustered for a specific entity type. The linked input file is
used to build keys required for external matching. The linked file is a single flat file
that functions as the authority or base file to be used for matching corresponding
fields from an external file to perform the entity resolution process. The records in
this authority file should contain all the fields to be used for matching with an entity
identifier (unique ID for the associated entity cluster) assigned to each record. The
authority file can be the output of a previous SALT internal linking process.

External linking in SALT requires the definition of fields to be used for searching
for candidate records for matching. In SALT, these search definitions are called
linkpaths and defined in the SALT specification file using the LINKPATH state-
ment. Linkpaths define various combinations of fields which are used to inform the
external linking process how the internal data should be searched for a potential
match. Linkpaths are analogous to defining indexes on a data base, and result in the
generation of an index on the base file data to support the external linking process.

User-defined linkpaths are specified using the LINKPATH statement with a
name and a field list. The field list can be grouped into required fields, optional
fields, and extra-credit fields. The required fields defined in a linkpath must match
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exactly during external linking. Optional fields must match if provided, and fuzzy
matches are acceptable. Extra-credit fields do not need to match, but add to the total
matching score if they do and can also include any of the fuzzy matching edit
characteristics. Each linkpath defined results in the creation of an HPCC ECL index
(key) file which is used in the matching process.

Although the user is primarily responsible for defining appropriate linkpaths
based on knowledge of the data and user query patterns, SALT includes a capability
to suggest possible linkpaths based on the data in the base file and a sample external
file or files. The output of the Data Profiling Field Combination Analysis report on
an external file can be used as an additional input file to the SALT tool along with a
specification file defining the fields in the base file to create a Linkpath Generation
Report with suggested linkpaths.

The key to implementing an efficient external linking capability with high pre-
cision and recall using SALT is the choice of linkpaths defined by the LINKPATH
statement in the specification file. Figure 7.16 shows an example of LINKPATH
statements used for external linking of a base file of person entities.

Each LINKPATH statement will result in the creation of an ECL Index (key) file
which is used in the external matching process. The ultimate responsibility for
choosing linkpaths to be used for external linking entity resolution rests with the
developer. Linkpath definitions in the specification file can be divided into required
(compulsory for a match) and non-required fields. User-defined linkpaths are
specified using the LINKPATH statement beginning with a linkpath name, fol-
lowed by a specific field list with the required fields first, followed by optional fields
and then extra-credit fields as described earlier in this section.

Each field in the authority file to be used for external linking is defined in the
specification file using either the FIELD or CONCEPT statement, or can be a value
field in an attribute file specified in an ATTRIBUTEFILE statement, and the entity
identifier is defined using the IDFIELD statement. The specificity of each field,
concept, or attribute file value field must be included, so specificities on the
authority file need to be generated if the specificities are not already known from a
previous internal linking process. If the field definition includes a BESTTYPE
definition with a propagation method, propagation of fields within entity clusters in
the authority file will be automatically handled to improve matching results. Field
definitions used for external linking can include the MULTIPLE parameter which
specifies that the external file matching field contains multiple values. FIELDTYPE
statements can also be used in a specification file used for external linking, and if

Fig. 7.16 SALT LINKPATH definitions example
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included are used to clean the data for the external linking keybuild process, and
also to clean external file data or queries for the search process.

The required fields defined in a linkpath must match exactly during external
linking. Optional fields must match if provided, and if the field is not defined as
MULTIPLE, then fuzzy matches are adequate. Extra-credit fields do not need to
match, but add to the total matching score if they do and can also included any of
the fuzzy matching edit characteristics.

SALT also automatically creates an additional key called the UBER key using
all the fields and concepts defined in your specification file. By default, UBER key
is not used unless an external record or query fails to match any records using the
linkpaths you have defined, essentially providing a “fallback” alternative for
searching. The default behavior can be changed by using a parameter on the
PROCESS statement in your specification file. The parameters include ALWAYS
(the search process will always use the UBER key as well as any other linkpath
specified), REQUIRED (same as the default, the UBER key will be used if none of
the other linkpaths could satisfy the query), and NEVER (the UBER key is not used
for external linking or searching). The UBER key can provide recall lift when the
data in the external record or query does not match any existing linkpath, but at a
higher processing cost. The UBER key does not support any form of fuzzy
matching, all fields provided much match exactly for a search to be successful.

Another interesting feature of the UBER key which can raise recall significantly
is that it works entirely at the entity level. Thus if any entity record has a particular
middle name and any entity record has a particular address, then the entity will be
returned; even if both did not originally appear on the same record. This feature
allows an UBER key search to work with many multiple fields. You can search, for
example, for someone with two different last names who have lived in two different
counties.

The SALT external linking process will mandate that some fields defined for a
linkpath become required for a link to occur based on the total specificity required
for a match. The SALT external linking process will also automatically divide the
non-required fields in a linkpath into optional and extra-credit fields if the speci-
fication file has not done that already.

Before the SALT external linking capability can be used, a keybuild process on
the internal base file must be run. The specification file must be edited to ensure that
all FIELD, CONCEPT, ATTRIBUTEFILE, and LINKPATH statements required
for the matching process are defined and field specificities are included. Figure 7.17
shows the results of a keybuild process. Figure 7.18 is a partial sample of a key file
built for a LINKPATH which begins with CITY and STATE as required fields and
COMPANY_NAME as an optional field.

Once the external linking keybuild is completed, record matching using an
external file to your internal/base file can be processed. Batch mode external linking
allows you to perform the external linking function on a HPCC Thor cluster as a
batch process. SALT automatically generates a macro which can be used in ECL
code implemented to perform the actual matching process.
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The output dataset from the external linking batch process contains a corre-
sponding record for any external file record which contained sufficient data for
matching to a defined linkpath. This is determined by filtering the external file
records to ensure that the records contained data in the required fields in the
linkpath. Each record in the output dataset contains a parent record with a reference
field corresponding to a unique id assigned to the external input file prior to the
external linking process, a set of Boolean result flags, and a child dataset named
results containing the results of the matching process. Resolved records (successful
linking to an entity in the base file) in the output dataset are indicated by the
Boolean resolved flag set to true. The reference field for each record in the child
dataset is the same as the reference on the parent record. The matching process will
return one or more result records with scores in the child dataset depending on how
many viable matches to different entities in the internal base are found. The iden-
tifier specified by the IDFIELD statement in your specification file will contain the
matching entity identifier. The output recordset can be used to append resolved
entity identifiers to the external input file based on the reference field, or for other
application uses such as to display the candidate matches for a query when the
record is not resolved.

Fig. 7.17 SALT external linking keybuild results

Fig. 7.18 SALT City, State, Company_Name LINKPATH key example file
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SALT external linking automatically generates two deployable Roxie services to
aid in debugging the external linking process which also can be used for manual
examination of data to evaluate linkpaths, as well as to support the online mode
external linking capability described later in this section. These services also pro-
vide an example for incorporating online external linking and searching the base file
into other online queries and services.

Online mode external linking allows the external linking function to be per-
formed as part of an online query on a HPCC Roxie cluster. This capability can be
utilized to incorporate external linking into other Roxie-based online queries and
applications or you can use the provided online service for batch mode linking from
a Thor. SALT automatically generates a macro can be used in the ECL code
implemented to perform the actual matching process for an online mode batch
external linking application. Figure 7.19 shows an example of the automatically
generated online service and manual query for entity resolution. Figure 7.20 shows
the entity resolution result for this query.

The same Boolean flags used for batch mode external linking including the
resolved flag are displayed along with the weight field which contains the score for
the match and ID field for the resolved entity (bdid in this example).

Fig. 7.19 SALT external linking online query example input
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Base File Searching

SALT provides an additional query which displays all the entity records from the
internal base file matching the input information. This query is useful in debugging
the external linking process to assess how a particular record was resolved or not
resolved to an entity. The ECL function called by this service provides a base file
search capability that can be incorporated into other HPCC online applications.

The base file search is intended to return records organized with the records
which best match the search criteria first. All data returning from the search is
graded against the search criteria, and for each field in the data a second field is
appended which will contain one of the following values (Table 7.1).

Figure 7.21 shows an example of the base file search results using the same
query shown in Fig. 7.19. Each record will have two scores. Weight is the speci-
ficity score allocated to the IDFIELD identifier (bdid for the example). The
record_score is the sum of all the values listed above for each field. Records with
the highest record_score are sorted and displayed first. Additional Boolean status
fields show if the record is a full match to the search criteria if true, and if the value
for the IDFIELD has at least 1 record which fully matches the search criteria.

Depending on the search criteria, the SALT will use the defined LINKPATHs
and the UBER key to perform the search. Specifying extra credit fields in the
LINKPATH statements is beneficial to ensure that the best records are included in
the search results and returned first. If attribute files have been included in the
external linking process, their contents are also displayed by the base file search.
The base file search can also be run using only an entity id, and all records matching
the entity id are displayed.

Fig. 7.20 SALT external linking entity resolution result example

Table 7.1 Search criteria field match grading

Value Description

−2 Search criteria supplied, but does not match this record

−1 Search criteria supplied, but this record has a blank

0 Search criteria not supplied

1 Search criteria is fuzzy match to this record

2 Search criteria is a match to this record
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Remote Linking

SALT can be used to generate code to perform record matching and scoring and
link together records that are completely independent from a base file without
directly using the base file during the linking process. This capability is called
remote linking. For remote linking, SALT still generates statistics from the base file
data which can be used to significantly improve the quality of record to record
matching/linking for any application assuming the records contain fields with the
same type of data in the base file. The remote linking capability is implemented as a
compare service, which compares the fields in two records and generates scoring
information similar to SALT internal linking.

For remote linking, SALT still generates specificity weights from the base file
data which can be used to significantly improve the quality of record to record
matching/linking assuming the records contain fields with the same type of data in
the base file.

The remote linking capability is implemented as an online compare service for
the HPCC Roxie cluster, which compares the fields in two records and generates
scoring information similar to SALT internal linking. This allows user-defined
matching to be implemented in a Roxie query, using the power of SALT generated
statistics, specificity weights, and field editing features on the independent records
to improve the matching result. Remote linking requires the definition of a speci-
fication file for the fields that will be matched from the base file. The base file is

Fig. 7.21 SALT sample base file search results
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used only for calculating the specificities needed for remote matching, the base is
not actually used during the remote linking process.

The remote linking code works by constructing two input records from input
data to the service which are then passed to the internal linking process to determine
if they would link using the following steps: (1) the normal cleaning process is
performed as required on input data for fields defined with editing constraints using
FIELDTYPE statements in the specification file; and (2) the weighting and scoring
is done exactly as if an internal linking process was executed without any propa-
gation. In this manner, remote linking can be added to a conventional record linking
application to provide improved matching decisions.

Attribute Files

Sometimes there are additional fields related to an entity identifier which may help
in record linkage except these fields do not exist in the input file being linked.
Examples from the LexisNexis public records are properties, vehicles, and
bankruptcies which contain information relating to person entities. These are files
external to the linking process that contain a person entity identifier and some form
of data or attribute that is associated with that entity identifier. For example, a
unique property id, vehicle identification number (VIN), or bankruptcy filing
number. SALT refers to these external files as attribute files and they are defined in
the SALT specification file using an ATTRIBUTEFILE statement.

The properties needed for these external fields are that they have high specificity
(usually a unique identifier about something like a vehicle which could be asso-
ciated with more than one entity) and low variability (some variability in value for a
given entity is permissible, i.e., one person entity could be associated with multiple
vehicles). This implies looking for things which are associated with an entity and
which are shared by relatively few entities (one vehicle hasn’t had too many
owners), and where a single entity doesn’t have too many. By default only the best
of the matching entity identifiers from each attribute file is allowed to score towards
matching one pair of entity identifiers in the input file. Attribute files can contain
additional fields from the external file which can be used by SALT in search
applications. For example if appropriate fields are included, a search for persons
who own or have owned red Corvette convertibles living in Florida could be done.

Summary and Conclusions

Data integration and data analysis are fundamental data processing requirements for
organizations. Organizations now collect massive amounts of data which has led to
the Big Data problem and the resulting need for data-intensive computing archi-
tectures, systems, and application solutions. Scalable platforms such as Hadoop and
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HPCC which use clusters of commodity processors are now available which can
address data-intensive computing requirements. One of the most complex and
challenging data integration applications is record linkage [2]. Record linkage
allows information from multiple sources that refer to the same entity such as a
person or business to be matched and identified or linked together. The record
linkage process is used by organiztions in many types of applications ranging from
maintaining customer files for customer relationship management, to merging of all
types of data into a data warehouse for data analysis, to fraud detection.

This chapter introduced SALT, a code generation tool for the open source HPCC
data-intensive computing platform, which can automatically generate executable
code in the ECL language for common data integration applications including data
profiling, data hygiene, record linking and entity resolution. SALT provides a
simple, high-level, declarative specification language to define the data and process
parameters in a user-defined specification file. From the specification file, SALT
generates ECL code which can then be executed to perform the desired application.
SALT encapsulates some of the most advanced technology and best practices of
LexisNexis Risk Solutions, a leading aggregator of data and provider of informa-
tion services significantly increasing programmer productivity for the applications
supported. For example, in one application used in LexisNexis Risk Solutions for
processing insurance data, a 42-line SALT specification file generates 3980 lines of
ECL code, which in turn generates 482,410 lines of C++. ECL code is compiled
into C++ for efficient execution on the HPCC platform.

SALT specific record linking capabilities presented in this chapter include
internal linking, a batch process to link records from multiple sources which refer to
the same entity to a unique entity identifier; external linking, the batch process of
linking information from an external file to a previously linked base or authority file
in order to assign entity identifiers to the external data (entity resolution), or an
online process where information entered about an entity is resolved to a specific
entity identifier, or an online process for searching for records in an authority file
which best match entered information about an entity; and remote linking, an online
capability that allows SALT record matching to be incorporated within a custom
user application. The key benefits of using SALT can be summarized as follows:

• SALT automatically generates executable code for the open source HPCC
data-intensive computing platform to address the Big Data problems of data
integraton.

• SALT provides important data preparation applications including data profiling,
data hygiene, and data source consistency checking which can significantly
reduce bugs related to data cleanliness and consistency.

• SALT provides record linking applications to support clustering of data refer-
ring to the same entity, entity resolution of external data to a base or authority
file, and advanced searching capabilties to find data related to an entity, and
generates code for both batch and online access.
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• SALT automatically generates field matching weights from all the available
data, and calculates default matching thresholds and blocking criteria for record
linking applications.

• SALT incorporates patent-pending innovations to enhance all aspects the record
linkage process including new approaches to approximate string matching such
as BAGOFWORDS which allows matching to occur with no order dependency
of word tokens and using the specificity of the individual words contained in the
field as weights for matching.

• SALT data hygiene supports standard and custom validity checking and auto-
matic cleansing of data using field editing constraints defined by FIELDTYPE
statements which can be standardized for specific data fields..

• SALT record linking applications are data neutral and support any data type
available in the ECL programming language, support both real-world and
abstract entity types, can provide higher precision and recall than hand-coded
approaches in most cases, can handle relationships and dependencies between
individual fields using CONCEPT statements, support calculation of best values
for a field in an entity cluster using the BESTTYPE statement which can be used
to propagate field values to increase matching precision and recall, support
additional relationship detection for non-obvious relationships between entity
clusters using the RELATIONSHIP statement, provide many built-in fuzzy
matching capabilities, and allow users to define custom fuzzy-matching funtions
using the FUZZY statement.

• SALT applications are defined using a simple, declarative specification language
edited in a standard text file, significantly enhancing programmer productivity
for data integration applications.

• SALT automatically generates statistics for processes which can be utilized to
analyze cyclical changes in data for repeating processes and quickly identify
problems.

• SALT is provided and supported by LexisNexis Risk Solutions, a subsidiary of
Reed Elsevier, one of the largest information companies in the world.

Using SALT in combination with the HPCC high-performance data-intensive
computing platform can help organizations solve the complex data integration and
processing issues resulting from the Big Data problem, helping organizations
improve data quality, increase productivity, and enhance data analysis capabilities,
timeliness, and effectiveness.
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Chapter 8
Aggregated Data Analysis in HPCC
Systems

David Bayliss

Introduction

The HPCC (High Performance Cluster Computing) architecture is driven by a
proprietary data processing language: Enterprise Control Language (ECL). When
considered briefly, the proprietary nature of ECL may be perceived as a disad-
vantage when compared to a widespread query language such as SQL.

The following chapter compares and contrasts the traditional Relationship
Database Management System (DBMS)/Structured Query Language
(SQL) solution to the one offered by the HPCC ECL platform. It is shown that ECL
is not simply an adjunct to HPCC, but is actually a vital technological lynchpin then
ensures that the HPCC offering achieves performance levels that an SQL system is
not even capable of as a theoretical ideal. While many of the points made are
applicable to data processing in general, the particular setting for this paper is the
integration of huge amounts of heterogeneous data. It will be argued that the
relational data model is excellent for data which is generated, collected and stored
under relational constraints. However for data which is not generated or collected
under relational constraints, the attempt to force the data into the relational model
involves crippling compromises. The model-neutral nature of ECL obviates these
concerns.

The capabilities of the HPCC ECL platform are sufficiently disruptive in that
certain algorithms can be considered that are not realistic using a traditional
RDBMS/SQL solution. The paper ends by considering a couple of case studies
illustrating the new horizons that are opened by the HPCC and ECL combination.

The relational database is the most prevalent database management system
available today; however, it is not the most suitable system for the integration and
analysis of massive amounts of data from heterogeneous data sources. This
unsuitability does not stem from a defect in the design of the RDBMS but is instead

This chapter has been adopted from the white paper authored by David Bayliss, Lexis Nexis.
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a feature of the engineering priorities that went into their creation. The object of this
paper is to contrast an idealized RDBMS processing model with the model
employed within the HPCC platform in the context of the integration and analysis
of massive volumes of disparate data.

The RDBMS as a theoretical concept is distinct from SQL which is just one
manifestation of an RDBMS. However, the reality is that almost every RDBMS out
there supports SQL either natively or indirectly. Thus in the following SQL will be
used interchangeably with RDBMS.

The RDBMS Paradigm

Relational databases are built upon the principle that the physical data represen-
tation should be entirely disjointed from the way that the data is viewed by people
accessing the database. An SQL system has a notion of a table which is an unsorted
bag of records where each record contains columns. An SQL query can then return
a sub-set of that table and may perform simple operations to alter some of the
columns of that table. An SQL system then, at least theoretically, allows any two
tables to be compared or joined together to produce a new composite table. The
values in those fields are pure strings or pure numbers with an SQL defined
behavior. Thus the application coder can use data in an extremely neat and clean
format without any thought to the underlying data structures.

The underlying data structures are then managed by the database
architect/administrator. It is the architect’s job to map the underlying physical data
within the warehouse to the logical view of the data that has been agreed between
the architect and the programmers. In particular, the architect chooses the keys that
are needed to allow data to be filtered and to allow tables to be joined together.

The idealized model is shown in Fig. 8.1. Please note: in this model it is
assumed that the visualization logic is separate from the application (or analysis)

Fig. 8.1 The idolized model of the relational database system
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logic. However the visualization logic may not have been placed on this diagram. It
would naturally be located to the right-hand side of the Application Logic discussed
in this chapter.

The other significant factor in this design which is not mandated but is extremely
common is the notion of normal form. The premise behind normal form is that no
scrap of data should appear in the system twice and that the database should be able
to maintain and enforce its own integrity. Thus, for example, the ‘city’ column of a
relational database will not typically contain the characters of the city name. Instead
they contain a foreign key that is a link into a city file that contains a list of valid
city names. Most RDBMS systems allow logic to be defined in the physical layer to
enforce that only valid records enter the system. The beauty of removing the burden
of data validation from the application logic is that the programmers cannot ‘infect’
the database with bad data.

The Reality of SQL

Even within the domains for which the SQL paradigm was designed there are some
flaws in the Fig. 8.1 model that render the system practically unusable. For
example, the SQL system allows for any columns in a table to act as a filter upon
the result set. Thus theoretically, every query coming into an SQL system requires
the system to read every one of the records on the systems hard disk. For a large
system that would require terabytes of data to be read hundreds of times a second.

The database administrator (DBA) therefore produces keys for those filters he or
she believes are likely to be required. Then as long as the coders happen to use the
filters the administrator happens to have guessed they wanted the query will execute
rapidly. If either side misguesses then a table scan is performed and the system
grinds to a halt which is not unacceptable in the business world. So what actually
happens is that the encapsulation which is supposed to exist between the three
boxes in Fig. 8.1 is actually circumvented by a series of memos and design
meetings between the programmers and the DBAs.

It is important to realize that modern, significant SQL applications are not
independent of the underlying physical data architecture; they just don’t have a
systematic way of specifying the dependence that exists.

A consequence of Fig. 8.1 is that many SQL vendors have extended the SQL
system to allow the application codes to specify ‘hints’ or ‘methods’ to the
underlying database to try to enforce some of the semantic correlations that really
need to exist. Unfortunately, these extensions are not covered by the SQL standard
and thus the implementation of them differs from SQL system to SQL system and
sometimes even within different releases of a given SQL system.

This can result in a tie between the application logic and the SQL system itself
that would prevent database portability. Thus a layer of logic has been inserted to
recreate that database independence. Two famous examples of this logic are Open
Database Connectivity (ODBC) and Java Database Connectivity (JDBC). However,
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there is a tradeoff. While an application using ODBC can port between different
SQL vendors, it can only take advantage of those extensions that are supported by
all, or most, of the SQL vendors. Furthermore, while some SQL vendors support
certain extensions the quality of that support can vary from feature to feature. Even
when the support is high quality there is usually some performance overhead
involved in the insertion of another layer of data processing.

It should be noted that ODBC and JDBC interface come in different forms:

• Those in which the ODBC is a native interface of the SQL system and executes
on the database servers, and

• Those where the ODBC layer is actually a piece of middleware acting either
upon dedicated middleware servers or in the application layer itself.

Normalizing an Abnormal World

A premise of the RDBMS concept is that the data is generated, stored and delivered
according to the same data model. For those in the business of collecting data from
external sources, this premise is fundamentally broken.

Each data source that is collected will, at best, have been generated according to
a different data model. Far more commonly, the data has not really been collected
according to a data model at all. The procedures in place to ensure a RDBMS has
integrity simply do not apply for the majority of data that is available today.

Here are some examples of constraints placed upon a well-designed RDBMS
that are violated by most data that is ingested:

(1) Required fields—When ingesting real world data, you cannot assume ANY
of the fields will always be populated.

(2) Unique fields are unique—Consider the SSN on a customer record. Often
these will be mis-typed or a person will use a family member’s SSN, resulting
in duplications.

(3) Entity can be represented by a single foreign key—Many of the fields
relating to a person can have multiple valid values meaning the same thing.
Therefore, if you wish to store not just what was referenced but how it was
referenced you need at least two Tables

(4) A single foreign key can refer to only one entity—Consider the city name.
A city can be replicated in many different states.

(5) A field can take one of a discrete set of values—Again misspellings and
variations between different systems mean that the standard field lookup is
invalid.

A result of the above is that it is impossible to construct a normalized relational
model that accurately reflects the data that is being ingested without producing a
model that will entirely destroy the performance of the host system.
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The above assertion is very strong and there seems to be wars between teams of
data architects that will argue for or against the above. However the following
example has convinced anyone that has spent the time to look at the issue.

Consider the fields: city, zip and state. Try to construct a relational model for
those three fields that accurately reflects

(a) A single location can validly have multiple city names (vanity city and postal
city).

(b) A vanity city can exist in multiple postal cities.
(c) A postal city contains multiple vanity cities.
(d) A zip code can span between vanity cities and postal cities even if a given

vanity city of which the zip code is a part does not span the postal cities.
(e) There are multiple valid abbreviations for given vanity cities and postal cities.
(f) The range of valid abbreviations for a given city name can vary, dependent

upon the state of which the city is a part.
(g) The same city can span states, but two states can also have different cities with

the same name.
(h) The geographical mapping of zip codes has changed over time.
(i) City names are often misspelled.
(j) A single collection of words could be a misspelling of multiple different cities.

From our experience, the best seen anyone has been able to tackle the above still
took eight tables, and it relied upon some extensions in one particular data vendor.

There are a number of pragmatic solutions that are usually adopted:

(a) Normalize the data fully, investing in enough hardware and manpower to get
the required performance. This is the theoretically correct solution. However,
it can result in a single but large file of ingested data producing multiple
terabytes of data into tens or even hundreds of sub-files. Further the data
architecture team potentially has to alter the model for every new ingested file.

(b) Abandon normalization and move the data manipulation logic down into the
application layer. With this approach, the fields contain the data as collected
and the task of interpreting the data is moved down to the programmers. The
application typically has to fetch a lot of data in multiple steps for a process
that should have been executed atomically on the database server.

(c) Insert a significant data ingest phase where the data is ‘bashed’ into a format
that has been predefined by the data architects. This is the best in terms of
performance of the query system but has the twin downsides of creating a
significant delay during the data ingest phase and also throwing away
potentially vital data that was not compatible with the pre-defined ingest data
architecture.

(d) Hybridize the above three approaches on a largely ad hoc file by file basis
dependent upon the particular restrictions that were uppermost in the pro-
grammers mind at the point the data came in through the door.
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While each of the first three of the above solutions has been heralded in design
documents, most functioning systems evolve towards the fourth solution—the
hybrid approach, as illustrated in Fig. 8.2.

A Data Centric Approach

In 1999, Seisint (now a LexisNexis Company) and LexisNexis independently
conducted an evaluation of existing database technology and both concluded that
the RDBMS was an unsuitable solution for large scale, disparate data integration.

After coming to this conclusion, in 2000, a team of Seisint employees that had
been world leaders in the field of utilizing RDBMS technology was handed a blank
sheet of paper and asked to construct a model to handle huge amounts of real-world
data. The result was almost diametrically opposed to the diagram presented above.

Remember, the basic premise of the RDBMS is that the physical and logical data
models are entirely disjoint. This was necessary in the late eighties as programming
languages lacked the ability to adequately support multiple programmers from
cooperating upon a task. Therefore processes had to be produced that allowed for
teams to operate. By 2000 procedural encapsulation was well understood; these
layers did not need to be kept distinct for programmatic reasons. In fact, as has been
discussed previously, the separation of these two layers would routinely be violated
by implicit usage agreements to boost performance to acceptable levels.

Fig. 8.2 Hybrid RDBMS model
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Another observation is that a key factor in the integration of disparate datasets is
the disparity of the datasets. Attempting to fix those disparities in three different
layers with three different skill sets is entirely counterproductive. The skills need to
be developed around the data, not specifically around the processes that are used to
manipulate the data. The layers in a data process should represent the degree of data
integration not the particular representation used by the database.

The next decision was that compiler optimization theory had progressed to the
point where a well specified problem was more likely to be correctly optimized
automatically than by hand. This is especially true in the field of parallel execution
and sequencing. Therefore a commitment was made to invest whatever resources
were required to ensure that performance could be tuned by an expert system;
leaving the data programmer with the responsibility to correctly specify the correct
manipulation of the data.

In particular implicit agreements between execution layers are not tolerated; they
are explicitly documented in the code to allow the optimizer to ensure optimal
performance.

The final piece of the puzzle was a new programming language: Enterprise
Control Language (ECL). This was designed to have all of the data processing
capabilities required by the most advanced SQL or ETL systems but also to have
the code encapsulation mechanisms demanded by systems programmers.

There some advantages of the system in Fig. 8.3 that may not be immediately
obvious from the diagram.

(1) The data sources are stored unmodified, even though they are modified as part
of delivery. Thus there is never any “loss” of information or significant pain in
re-mapping the incoming files to the target formats

Fig. 8.3 Data centric RDBMS model
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(2) The data teams can be segmented by data type rather than language skill. This
allows for every file type to be handled by individuals skilled in that field.

(3) If required, a storage point between a batch ingest facility and a real-time
delivery mechanism is available without a need to significantly recode the
processing logic.

(4) Introducing parallelism is natural and can even be done between remote
processing sites.

Data Analysis

The model in Fig. 8.3 essentially allows for huge scale data ingest and integration.
It allows for scaling of hardware and personnel. It encourages deep data compre-
hension and code reuse, which enhances development productivity and improves
the quality of the results. However, it does not significantly improve either the
quality or the performance of any analysis that is performed. This should not be
surprising; the data analysis is being performed outside of the ECL system.

Data analysis is one of those terms that everyone claims to perform, although
very few can define what it really is. Most will claim that it somehow involves the
translation of data into knowledge, although exactly what that translation means is
ill defined. In particular, some would suggest that analysis is occurring if data is
simply presented on screen for an analyst to review. Others would say analysis has
occurred if the data is aggregated or summarized. Others may consider data analysis
if it has be represented in some alternative format.

For the purposes of this document, a much simpler definition will be used:
Analysis is the process of concentrating information from a large data stream

with low information content to a small data stream with high information content.
Large, small, low and high are deliberately subjective terms the definition of

which changes from application to application. However, the following terms need
to be defined that are crucial to the following.

• The integrity of the analysis is the extent to which the analysis process accu-
rately reflects the underlying data. For data searching these are often measured
by precision and recall.

• The strength of the analysis is the ratio of the about of data considered to the
size of the result.

• The complexity of the analysis is the reciprocal of the number of entirely
independent pieces that the data can be divided into prior to analysis whilst
maintaining full analytic integrity.

A few examples might illustrate the previous terms:

• Entity extraction is a strong analytic process. The entity stream from a document
is typically very small. As implemented today, entity extraction has very low

232 8 Aggregated Data Analysis in HPCC Systems



complexity; typically every document is extracted independently of every other
one.

• The LexisNexis process that ascertains whether or not people are using their
correct SSN is not a strong process. The number of SSNs coming out is very
similar to the number going in. Yet the process is complex in that every record
in the system is compared to every other.

• The LexisNexis process that computes associates and relatives for every indi-
vidual in the US is both strong and complex.

• Result summarization (such as sorting records by priority and counting how
many of each kind you have) is a weak, non-complex process.

• Fuzzy matching is a strong, non-complex process.
• Pattern matching is a complex, weak process.
• Non-obvious relationship finding is a strong, complex process.

If the application data analysis being performed by the system is weak and
simple then the fact that the data analysis has not been improved by this architecture
is insignificant.1 In such a scenario, well over 90 % of the system performance is
dominated by the time taken to retrieve the data.

A system where the application analysis is strong will probably find that a
bottleneck develops in the ability of the application server to absorb the data
generated from the supercomputer. If the application code is outside of the control
of the developer, then this problem may be insurmountable. If the application code
is within the developer’s control, then movement of the strength of the analysis
down into the ECL layer will produce a corresponding improvement in system
performance.

Case Study: Fuzzy Matching

A classic example of the above occurs millions of times each day on our LexisNexis
servers. We allow sophisticated fuzzy matching of the underlying records. This includes
edit distance, nick-naming, phonetic matching, zip-code radius, city-aliasing, street aliasing
and partial address matching—all of which can happen at the same time. The integrity of
the fuzzy match is directly proportional to the percentage of the underlying data that you
perform the fuzzy scoring up. The LexisNexis HPCC system will often scan hundreds of
records for every one that is returned. By moving this logic down into the ECL layer the
optimizer is able to execute this code with negligible performance degradation compared to
a hard match. Had the filtering logic not been moved down into the ECL layer then the
fuzzy fetch would have been hundreds of times slower than a simple fetch because the
application logic (on a different server) would have been receiving hundreds of times as
much data.

1In such a situation, the main strength of the analysis will have been performed during the record
selection process.
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A complex system will suffer performance degradation that is exponential in the
complexity of the query. This is because complexity implicitly strengthens a query.
If the database is one terabyte in size, then a one-record result that requires all data
to be considered requires the full terabyte to be exported from the system. Of course
this proves unacceptable, so the application typically settles upon reducing the
integrity of the system by using less than the full dataset for the analysis.

The LexisNexis HPCC system is designed to completely remove the barriers to
high complexity, strong data analysis. However to leverage this capability the
analysis code has to be entirely ported into the ECL layer so that the optimizer can
move the code down into the data servers. This fact actually produces an extremely
simple and accurate way to characterize the engineering decision involved:

You either have to move the code to the data or move the data to the code.
The LexisNexis HPCC system, utilizing ECL, has been designed on the premise

that the dataset is huge and the code is relatively simplistic. Therefore, moving code
into the ECL system generally results in performance improvement that is measured
in orders of magnitude. The cost is that the algorithms have to be ported out of their
existing format. For algorithms that don’t yet exist, the modular, structured and data
centric ECL language will actually speed up the development of the algorithm.

Case Study: Non-obvious Relationship Discovery

The original implementation of relatives within the LexisNexis Accurint product was
performed in the application layer. Going to three levels of relationship involved hundreds
and sometimes thousands of fetches per query. The result, even on high performance
hardware, was that many relationship trees would fail the systems default timeout.The logic
was moved into an ECL process that simultaneously computes the associates and relatives
for every person in the US. The process at one point is evaluating seven hundred and fifty
billion simultaneous computations stored in a sixteen terabyte data file. The result is pre-
sented across the SOAP layer as a simplistic relatives table which can now be delivered up
with a sub-second response time. Further these relationships now exist as facts which can
themselves be utilized in other non-obvious relationship computations.

The work of LexisNexis in the fields of law enforcement and anti-terrorism has
all been achieved using the processing model shown in Fig. 8.4.

It should be noted that some third-party data analysis tools are low complexity
by this definition. In this situation LexisNexis has an integration mechanism
whereby we can actually execute within the ECL environment. In this situation,
HPCC acts as an operating environment to manage the parallelization of the
third-party software. The lift provided by HPCC will be directly proportional to the
number of blades the system is running upon. For those third parties that do not
offer a parallel blade solution, this is a significant win. For those that do have a
server farm solution, the HPCC architecture will represent an improvement in the
ease of system management for a modest reduction in performance.
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Conclusion

This chapter has described, in stages, the premises behind the RDBMS engines, the
data architectures of those engines and the problems associated with deploying
either to the problem of high volume, real world, disparate data integration and
analysis. It then detailed a platform architecture that allows teams to integrate large
volumes of data quickly and efficiently while retaining third-party tools for analysis.
Finally, it documented the pitfalls of external data analysis that is either strong or
complex and outlined with case studies and architecture that solves this problem in
a maintainable and efficient manner.

Fig. 8.4 Processing model applied by LexisNexis in the fields of law enforcement and
anti-terrorism
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Chapter 9
Models for Big Data

David Bayliss

The principal performance driver of a Big Data application is the data model in
which the Big Data resides. Unfortunately most extant Big Data tools impose a data
model upon a problem and thereby cripple their performance in some applications.1

The aim of this chapter is to discuss some of the principle data models that exist and
are imposed; and then to argue that an industrial strength Big Data solution needs to
be able to move between these models with a minimum of effort.

As each data model is discussed various products which focus upon that data
model will be described and generalized pros and cons will be detailed. It should be
understood that many commercial products when utilized fully will have tricks,
features and tweaks designed to mitigate some of the worst of the cons. This chapter
attempts to show that those embellishments are a weak substitute for basing the
application upon the correct data model.

Structures Data

Perhaps the dominant format for data throughout the latter part of the twentieth
century and still today the dominant format for corporate data is the data table.2

Essentially structured data has records of columns and each column has a value the

This chapter has been adopted from the LexisNexis’ white paper authored by David Bayliss.

1In fact, the performance is so crippled that the application just “doesn’t happen”. It is impossible
to ‘list all the things that didn’t happen’ although our paper “Math and the Multi-Component Key”
does give a detailed example of a problem that would take 17 h in a key-value model and which
runs at about 60 transactions per second in a structured model. It is easy to imagine that the
key-value version would not happen.
2This is changing very rapidly in some areas. The other models are tackled later; but it is probably
still true that today this one deserves to be tackled first.
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meaning of which is consistent from record to record. In such a structure, vehicles
could be represented as:

Make Model Color Year Mileage

Dodge Caravan Blue 2006 48,000

Toyota Camry Blue 2009 12,000

Many professional data modelers would immediately wince when handed the
above. This is because the proposed structure did not allow for a very common
feature of structured databases: normalization. Normalization is a topic which can
(and does) fill many university Computer Science courses. For brevity3 we shall
define normalization as occurring when two or more columns are found to be
dependent and the combinations of field values occurring are placed into a separate
table that is accessed via a foreign key.

Thus looking at the above we might decide that the Make and Model of a car are
related facts (only Toyota makes a Camry)—the other three columns are not. Thus
the above could be defined as:

Vehicle type Color Year Mileage

1 Blue 2006 48,000

2 Blue 2009 12,000

Key Make Model

1 Dodge Caravan

2 Toyota Camry

The advantage of the above may not be immediately apparent. But we have
reduced the width of the vehicle file by two strings at the cost of one fairly small
integer column. There is also a secondary table but that will have relatively few
entries (hundreds) compared to the millions of entries one may have in a vehicle
file. Better yet we can add new information about each vehicle type (such as
Weight, Horsepower et cetera) in one place and all the other data referring to it is
‘automatically right’.

The real power of structured data becomes apparent at the point you wish to use
it. For example; if you wanted to find out how many miles travelled by all vehicles
you simply need to sum the fourth column of the first table. If you want to find the
ratio of vehicle colors in any given year—or trend it over time—a simple aggregate
on the second and third table suffice.

3A rather longer and more formal treatment is given here: http://en.wikipedia.org/wiki/Database_
normalization.
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Things start to get a little more interesting if you want to count the number of
miles driven in cars for a given manufacturer for a given model year. The issue is
that the key in the vehicle file no longer identifies manufacturer; rather it identifies
manufacturer AND model. Put another way the required result wants information
spanning two tables. To get this result efficiently some clever tricks need to be
performed. If you use a high level language such as SQL4 and if the database
administrators predicted this query then the cleverness should be hidden from you.
However, under the hood one of the following will be happening:

1. The Tables can be JOINed back together to create a wider table (the first table)
and then the required statistic is an aggregate on three columns.

2. The aggregate can be formed on the larger table to produce summaries for
manufacturer and model and then that table can be joined to the vehicle type
table and a second aggregate performed

3. The vehicle type table can be scanned to produce SETs of vehicle-type ID for
each manufacturer, these sets can then be used to produce a temporary ‘man-
ufacturer’ column for the main table which is then aggregated.

4. Perhaps something else that an SQL vendor found that works in some cases

As can be seen, aggregating and querying data across the entire database can get
very complicated even with two files; as the number of data files grows then the
problem becomes exponentially5 more complex. It is probably fair to say that one
of the key indicators of a quality of an SQL optimizer is the way it handles
cross-file queries.

The other key feature of an SQL system to keep in mind is that in its purest form
the performance is dismal. The reason is simply that each query, however simple,
requires the entire dataset to be read. As the data becomes larger this becomes
prohibitive. For this reason almost every SQL system out there has the notions of
KEYs (or Indexes) built in. A key is an access path that allows records matching on
one or more columns to be retrieved without reading the whole dataset. Thus, for
example, if our vehicle dataset had been indexed by Color it would be possible to
retrieve all of the red vehicles without retrieving vehicles of any other Color.

A critical extra feature of most SQL systems is the concept of multi-component
keys; this is simply a key that contains multiple columns. For example, one could
construct a key on Color/Year. This allows for two extremely fast access paths into

4Structured data does NOT need to imply SQL—but SQL is, without doubt, the leading method
through which structured data is accessed.
5Many people use ‘exponentially’ as an idiom for ‘very’. In this paper the term is used correctly to
denote a problem that grows as a power of the scaling factor. In this case if you have three choices
as to how to perform a join between two files, then between 10 files you have at least 310 = 59,049
choices. In fact you have rather more as you can also choose the order in which the files are
processed; and there are 3,628,800 orders of 10 files giving a total of 2.14 � 1011 ways to
optimize a query across 10 files.
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the vehicle file: Color and Color/Year.6 The criticality of this feature comes from an
understanding of how the Color/Year value is found. The index system does NOT
have to fetch all of the records with a matching color looking for a matching year.
Rather the index itself is able to resolve the match on both color and year in one
shot. This can give a performance lift of many orders of magnitude.7

Naturally a performance lift of orders of magnitude is always going to come at a
price; in this case the price is the double whammy of build cost and flexibility. For
these multiple-component keys to be useful they have to exist; in order to exist you
have to predict that they are going to be useful and you have to have spent the time
building the key. The visible manifestations of this cost are the high price attached
to good system DBAs and also the slow data ingest times of most SQL systems.

The final, though obvious, flaw in the structured data model is that not all data is
structured. If data is entered and gathered electronically then it has probably been
possible to force the data to be generated in amodel that fits the schema.Unfortunately
there are two common reasons for data not existing easily in this model:

1. The data is aggregated. In the examples I have used vehicles as an example of a
structured data file. In fact vehicle data is gathered, at least in the USA, inde-
pendently by each state. They have different standards for field names and field
contents. Even when they have the same column-name that is supposed to
represent the same thing, such as color, they will have different words they use
to represent the same value. One state might categorize color using broad
strokes (Blue, Green, Red) others can be highly detailed (Turquoise, Aqua,
Cyan). Either the data has to be brutalized into a common schema (at huge effort
and losing detail), or left unintegrated (making genuine cross-source queries
infeasible) or the schema has to get extremely complicated to capture the detail
(making queries extremely complex and the performance poor).

2. Data cannot be readily split into independent columns. Consider any novel,
white paper or even email. It doesn’t represent a readily quantified transaction. It
can contain detail that is not known or understood a priori; no structured model
exists to represent it. Even if a structured model were available for one particular
record (say Pride and Prejudice) then it would not fit other records (say War and
Peace) in the same file.

In closing the structured data section we would like to mention one important but
often overlooked advantage of SQL—it allows the user of the data to write (or
generate) queries that are related to the problem (question being asked) rather than
to the vagaries of the underlying data. The user only has to know the declared data

6Because of the way most Key systems work it does not in general provide a fast access path for
Year only. Some good structured systems can access year quickly if the earlier component has low
cardinality.
7Again, this is not an idiomatic expression. If a field is evenly distributed with a cardinality of N
then adding it as a component of a key in the search path reduces the amount of data read by a
factor of N. Thus if you add two or three fields each with a cardinality of 100 then one has
produced a system that will go 4–6 orders of magnitude (10,000–1,000,000�) faster.
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model—the data has already been translated into the data model by the time the user
is asking questions.

Text (and HTML)

At the complete opposite end of the scale you have text. Within text the data has
almost no explicit structure and meaning.8 A slightly more structured variant is
HTML which theoretically imposes some form of order upon the chaos but in
reality the generations of evolving specifications and browsers which do not comply
to any specifications mean that HTML documents cannot even be assumed to be
well formed. The beauty of text is that anyone can generate it and it often contains
useful information. The World Wide Web is one example of a fairly large and
useful text repository.

The downside of text, at least at the moment, is that it has no computer
understandable semantic content. A human might be able to read it, and a thought
or impression or even sets of facts might be conveyed quite accurately—but it is not
really possible to analyze the text using a computer to answer meaningful
questions.9

For this reason query systems against Text tend to be very primitive analytically.
The most famous interface is that presented by the internet search engines.
Typically these will take a list of words, grade them by how common the words are,
and then search for documents in which those words are prevalent.10 This work all
stems from term and document frequency counts first proposed in 1972.11

An alternative approach, used in fields where precision is more important and the
users are considered more capable, is the Boolean search. This method allows
sophisticated expressions to be searched for. The hope or presumption is that the
query constructor will be able to capture ‘all the ways’ a given fact might have been
represented in the underlying text.

Text databases such as Lucene are extremely flexible and require very little
knowledge of the data to construct. The downside is that actually extracting

8Many people refer to text as ‘unstructured data’. I have generally avoided that term as good text
will usually follow the structure of the grammar and phonetics of the underlying language. Thus
text is not genuinely unstructured so much as ‘structured in a way that is too complex and subtle to
be readily analyzed by a computer using the technology we have available today.’ Although see
the section on semi-structured data.
9Of course, people are researching this field. Watson is an example of a system that appears to be
able to derive information from a broad range of text. However if one considers that ‘bleeding
edge’ systems in this field are correct about 75 % of the time it can immediately be seen that this
would be a very poor way to represent data that one actually cared about (such as a bank balance!).
10Google pioneered a shift from this model; the ‘page ranking’ scheme effectively places the
popularity of a page ahead of the relevance of the page to the actual search. Notwithstanding the
relevance ranking of a page is still computed as discussed.
11Of course one can build multi-billion dollar empires by ‘tweaking’ this formula correctly.
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aggregated information from them is the field of data-mining; which is generally a
PhD level pursuit.

Semi-structures Data

Almost by definition it is impossible to come up with a rigorous and comprehensive
definition of semi-structured data. For these purposes we shall define
Semi-Structured data as that data which ought to have been represented in a
structured way but which wasn’t.

Continuing our vehicle example; consider this used car classified:

2010 Ferrari 599 GTB HGTE, FERRARI APPROVED, CERTIFIED PRE-OWNED
WITH WARRANTY, Don’t let this exceptional 599 GTB HGTE pass you by. This car is
loaded with desirable options such as black brake calipers, carbon ceramic brake system,
heat insulating windscreen, front and rear parking sensors, full recaro seats, and a Bose hifi
system., The HGTE package comes with a retuned suspension consisting of stiffer springs,
a thicker rear anti-roll bar, returned adjustable shocks, and wider front wheels. In addition,
the car sits 0.4 of an inch lower to the ground and has a retuned exhaust note, and is fitted
with the stickier Pirelli P Zero rubber. Inside, the HGTE package includes every possible
carbon-fiber option., This vehicle has been Ferrari Approved as a Certified Pre Owned
vehicle. It has passed our 101 point inspection by our Ferrari Factory trained technicians.,
100 % CARFAX, CERTIFIED!!!

All of the text is free form and without pre-processing it would need to be stored
as a variable length string. None of the queries of our structured section could be
applied to this file. As it stands one would be limited to one or more ‘string find’ or
‘search’ statements in the hope of keying to text in the description. In an aggregated
database this restriction results in a crucial shift of responsibility. The person asking
the question (or writing the query) now has to understand all the possible ways a
given piece of information might have been represented.12 Of course, many internet
search engines operate exactly this way.

However, with even some simplistic pre-processing it should be possible to turn
the text above into:

Make Model Year Other

Ferrari 599 GTB
HGTE

2010 FERRARI APPROVED, CERTIFIED PRE-OWNED
WITH WARRANTY, Don’t let this exceptional 599
GTB HGTE pa…

Of course if one were clever and dedicated then even more information could be
taken. In general, one could write a suite of routines to parse car classifieds and

12Or not care; if one is just ‘surfing the web’ then as long as the page offered is ‘interesting
enough’ then one is happy—whether or not it was the ‘best’ response to the question is immaterial.
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build up a fairly strong data model. This process of transforming from unstructured
to semi-structured text requires up-front processing but the pay-off is that structured
techniques can be used upon those facts that have been extracted; with all of the
inherent performance and capability advantages that have been mentioned. Exactly
how much data is ‘parsed out’ and how much is left unparsed is (of course!) ill
defined; however for the process of classification we shall define semi structured
data as data in which one or more (but not all) of the fields have been parsed into
columns.

Thus far the presumption has been that the data is starting unstructured and that
we are ‘creating’ some fields from nothing. In fact many structured databases
contained semi-structured components. At the most extreme these are represented
as BLOBs inside an SQL database. Rather more usefully there may be text strings
which appear free-format but which realistically have a limited range of values.
These are often the ‘comment’ fields stored in relational databases and used as a
catch-all for fields that the modelers omitted from the original data model and which
no-one has ever fixed.

Bridging the Gap—The Key-Value Pair

Whilst the processing paradigm of Map-Reduce is much vaunted, the equally
significant enabler, the Key-Value pair, has gone relatively unheralded. In the
context of the foregoing it may be seen that it is the data model underlying
Map-Reduce (and thus Hadoop) that is actually the fundamental driver of perfor-
mance. In fact those with a sharp eye may notice that key-value pairs derive their
power from their position part-way between semi-structured and textual data.

A file of key value pairs has exactly two columns. One is structured—the KEY.
The other, the value, is unstructured—at least as far as the system is concerned. The
Mapper then allows you to move (or split) the data between the structured and
unstructured sections at will. Thus our vehicle table could be:

Key Value

Dodge | Caravan Blue | 2006 | 48,000

Toyota | Camry Blue | 2009 | 48,000

The reducer then allows data to be collated and aggregated provided it has an
identical key. Thus with the Mapper I used above it would be very easy to perform
statistics aggregated by Make and Model. Aggregating by Color and Year would be
extremely painful; in fact the best idea would probably be to re-map the data so that
Color and Year were the key and then perform a different reduce. The advantage of
this system over a keyed and structured SQL system is that the sort-order required is
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defined at query time (no prediction is required) and until that sort order is used then
there is no overhead: in other words data ingest is quick.

In pure map reduce any query requires at least one full table scan of every file
involved; Hadoop has no keys. Of course, a number of add-ons have been written
that allow Key-Value pairs to be stored and quickly retrieved. These function in a
very similar way to SQL keys except that the keys can only have one component,
they must contain the payload of the record, and there is no existing support for
normalization or the concept of foreign keys. In other words, if you have one or two
access paths there is no problem—but you cannot access your data using a wide
range of queries.

It should now be evident why Key-Value (and Map-Reduce) has been able to
achieve general purpose popularity. It can read data in either structured, text or
semi-structured form and dynamically translate it into a semi-structured data model
for further processing. The restrictions within the current implementations are:

1. A single map-reduce only supports one semi-structured data model
2. Multiple map-reduces require multiple-maps (and thus reprocessing of the data)
3. Either: all queries require a full data scan (Hadoop) OR all data-models require

their own (potentially slimmer) copy of the data (Hive etc.)
4. The work of constructing the semi-structured model is entirely the responsibility

of the programmer
5. If the data is at all normalized then optimizing any joins performed is entirely

the responsibility of the programmer

XML—Structured Text

It is really incorrect to speak of XML as a data model. It is really a data transmission
format that allows a plethora of different data models to be defined and utilized. In
particular many if not all of the preceding data models can be expressed and utilized
from within XML. That said, XML databases are usually thought of in the context
of the storage of hierarchical databases where each record has a different but
conformant format. An example might be a personnel database where the person is
the outer container and various nested details are provided about that person, some
of which themselves have nested details. Another very common usage of an XML
database is document storage where the annotations upon and structure of the
document is expressed in XML. In this model it is very common for the XML to
also have an HTML rendering generated via XSLT.

From the perspective of data access and summarization the key to an XML
document is epitomized by the name of the most common query language for them:
XPATH.13 Each element of an XML document is identified by a path which defined

13XQuery has probably surpassed XPATH in more modern installations.
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from the root; the ‘navigation path’ to the individual element or elements. Along the
route various filters and conditions based upon the elements and tags encountered
along the route may be executed; it is even possible to include data derived from
routes into other parts of the data within the expressions.

Thus the pain of any given query; both in terms of encoding and execution is
directly proportional to the extent to which that query can be expressed as a linear
path. Simple fetches of one or more columns are easy; queries that rely upon the
relationship between the columns of a record, or between columns of different
records are harder to express and execute.14 In short, whilst XML supports almost
any data model; its features, search syntax, and performance footprint encourage, if
not mandate, a hierarchical data model. Hierarchical data models are ‘great if it is
true’. If the data naturally fits a model whereby every element has a single parent
and that the children of different parents are logically independent then the model is
efficient in both usage and expression. If, however, it is the relationship between
child elements that is interesting then the imposition of a rigid hierarchy will simply
get in the way.15 One might conclude that XML/XPATH provides most of the
features of SQL but with an antithetical data model.

A hierarchical view of vehicles might be:

Parent Child

Vehicle one FactType Value

Make Dodge

Model Caravan

Year 2006

Color Blue

Mileage 48,000

Vehicle two FactType Value

Make Toyota

Model Camry

Year 2009

Color Blue

Mileage 12,000

14A good XML database such as MarkLogic will allow for optimization of complex queries
provided the access paths can be predicted and declared to the system.
15Within the academic literature there have been numerous attempts to extend XPATH towards
more relational or graph-based data.
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RDF

Given the characterization of XML data as ‘typically’ hierarchical it is probably
wise to mention one extremely nonhierarchical ‘data model’ based upon XML
which is RDF (Resource Description Framework). Like many things designed by
committee this standard has many features and purposes; however at the data model
level it is a method of describing data entirely using triples. Put another way RDF is
a method of describing data as a collection of typed relationships between two
objects. Our vehicle file could be represented using:

Object 1 Relationship Object 2

Vehicle 1a MadeBy Dodge

Vehicle 1 ModelName Caravan

Vehicle 1 Color Blue

Vehicle 1 Mileage 48,000

Vehicle 1 Year 2006

Vehicle 2 MadeBy Toyota

Vehicle 2 ModelName Camry

Vehicle 2 Color Blue

Vehicle 2 Mileage 12,000

Vehicle 2 Year 2009
aThe labels I am using here are for illustration; RDF contains a range of specifications to ensure
unique naming, integrity etc

Viewed at the level of a single entity this appears to be a painful way of
expressing a simple concept. The power comes from the fact that the objects in the
third column are ‘first class’ objects; exactly the same as those on the left. Therefore
this table, or another, could be expressing various facts and features of them.
Viewed holistically data is no longer a series of heterogeneous tables that may or
may not be linked; rather it is a homogenous web of information.

While not mandated by the data model RDF is often queried using declarative
languages such as SPARQL. These languages take advantage of the simplicity and
homogeneity of the data model to produce elegant and succinct code. The challenge
here is that every query has been transformed into a graph query against a graph
database. These queries represent some of the most computationally intensive
algorithms that we know. To return all ‘Blue Toyota Camry’ we need to retrieve
three lists—all blue things, all Toyota things, all Camry things and then look for
any objects appear on all three huge lists. Compared to a structured data
multi-component fetch, we have turned one key fetch into three; each of which
would be at least two orders of magnitude slower.
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Data Model Summary

Big Data owners typically adopt one of three approaches to the above issue:

(1) Adopt one model that excels in their core need and either accept that alter-
native forms of application run slowly; or simply ignore alternative forms of
data usage. As long as the ‘other uses’ weren’t really that important; this is
probably optimal.

(2) Adopt a model that isn’t too bad across a range of potential applications—
typically this results in ‘lowest common denominatorism’—but it allows the
data to be used to its fullest extent. This gets the most out of your data—but
the cost of hardware—or lack of performance may be an issue.

(3) Replicate some or all of the data from a core system into one or more
data-marts; each in a slightly different data model. If the cost of maintaining
multiple systems, and training staff for multiple systems can be justified then at
an ‘external’ data level this appears optimal.

Data Abstraction—An Alternative Approach

A driving goal behind the HPCC16 system was the abstraction of the data model
from both the language and the system. As each of the previous data models was
discussed the ‘typical query language’ was discussed alongside the model.
The HPCC system language, ECL, allows all of the supported data models to be
queried using the same language. Further most, if not all, of the previous data
models have an engine built around them that is designed for one particular data
model. HPCC offers two different execution engines each of which is designed to
support each of the data models. Finally, and most importantly, much of the
technology built into the HPCC is focused upon the translation of one data model to
another as efficiently as possible—in terms of both programmer and system
resources.

Of course, in a whitepaper such as this, it is always easy to conclude ‘we do
everything better than everyone without any compromises’; it is much harder to
develop a system that renders the claim true. The truth is that HPCC has been used
to implement all of the above data models and in some aspects17 we beat all the
existing systems we have been measured against; of course any system that spe-
cializes in only one data model will usually have some advantage within that data
model.18 Where we believe HPCC is untouchable is in its ability to natively support
a broad range of models and in the speed with which we can translate between
models.

16http://en.wikipedia.org/wiki/HPCC.
17Usually including performance.
18Usually speed of update or standards conformance.
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As an aid to further research this paper will now review some of the system
features available for each of the stated data models, the extent of the work done,
and some features available for translation in and out of the data model.

Structured Data

The ECL19 handling of structured data is based upon the RECORD structure and
corresponding DATASET declarations. ECL has a huge range of data types from
INTEGERs of all sizes from 1 to 8 bytes, packed decimals, fixed and variable
length strings, floating point numbers and user defined types. ECL also supports
variant records and arrays of structured types.20 Like SQL, columns are accessed by
name and type conversions occur to allow columns to be compared and treated at a
logical level (rather than low-level). Unlike SQL it is also possible to define an
ordering of records within a file; this allows for records to be iterated over in
sequence. ECL also has NORMALIZE and DENORMALIZE functions built in so
that questions regarding ‘just how much to normalize data’ can be changed and
modified even once the system is in place.

By default ECL files are flat and they have to be fully scanned to obtain data
(like Hadoop). However ECL also has the ability to create indexes with single or
multiple components and it also allows for variant degrees of payload to be
imbedded within the key. Thus an ECL programmer can choose to have a large
number of highly tuned keys (similar to SQL) or one or two single component keys
with a large payload (like Key-Value) whichever they prefer (including both21).

There are many, many ECL features to support structured data but some of the
most important are PROJECT, JOIN (keyed and global variants) and INDEX.
Simple ingest of structured data is handled via DATASET which can automatically
translated from flat-file, CSV22 and well-structured XML. More complex (and
partial) ingest of other data models will be handled under the section
‘Semi-Structured Data’.

19http://en.wikipedia.org/wiki/ECL,_data-centric_programming_language_for_Big_Data.
20For those familiar with COBOL this was a method of having narrower records whereby col-
lections of fields would only exist based upon a ‘type’ field in the parent record.
21Our premier entity resolution system uses multi-component keys to handle the bulk of queries
and falls back to a system similar to key value if the multi-components are not applicable.
22Referred to as ‘comma separated variable’ although there are many variants; most of which don’t
include commas!.
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Text

ECL handles Text in two different ways depending upon requirements. At the most
basic level variable length strings23 are native within ECL and a full set of string
processing functions are available in the Std.Str module of the ECL standard
library. For text which needs to be ‘carried around’ or ‘extracted from’ this is
usually adequate.

For text that needs to be rigorously searched, an ECL programmer typically
utilizes an inverted index. An inverted index is a key that has a record for every
word in a document and a marker for where in the document the word occurs.24

This index can then be accessed to perform searches across documents in the
manner described in the text section. Our ‘Boolean Search’ add-on module
exemplifies this approach. At a low level ECL has two technologies, global smart
stepping and local smart stepping,25 to improve the performance of this form of
search.

Text can be brought into ECL as a ‘csv’ dataset; if it currently exists as a series
of independent documents then a utility exists to combine that into one file of
records. It will be covered in greater depth in the semi-structured section but it
should be noted that ECL has an extremely strong PATTERN definition and
PARSE capability that is designed to take text and extract information from it.

Semi-structured Data

We firmly believe that the next big ‘sweet spot’ in Big Data exists in
Semi-Structured data. The action of turning data which is otherwise inaccessible
into accessible information is a major competitive differentiator. ECL has extensive
support at both a high and low level for this process.

Firstly, at a high level, ECL is a data processing language, not a storage and
retrieval language. The two execution engines (one batch, one online), coupled with
PERSIST, WORKFLOW and INDEX capability all push towards a model where
data goes through an extensive and important processing stage prior to search and
retrieval.

23In standard ASCII and UNICODE formats.
24There may be other flags and weights for some applications.
25When accessing inverted indexes naively you need to read every entry for every value that is
being searched upon; this can require an amount of sequential data reading that would cripple
performance. ‘Smart stepping’ is a technique whereby the reading of the data is interleaved with
the merging of the data allowing, on occasions, vast quantities of the data for one or more values to
be skipped (or stepped) over. The ‘local’ case is where this is done on a single machine; ‘global’ is
the case where we achieve this even when the merge is spread across multiple machines.
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Secondly, at a lower level, the ECL PARSE statement makes available two
different text parsing capabilities that complement each other to extract information
in whichever form it is in. One capability is essentially a superset of regular
expressions; wrapped in an easy-to-read and re-use syntax. This is ideal where the
data is highly unstructured26 and particular patterns are being ‘spotted’ within in.
Examples applications include screen scraping and entity extraction. The other
capability follows a Tomita27 methodology; it is designed for the instance where
textual document follows a relatively rigorous grammar.28 This is suitable for
rapidly processing text which is expected to be well formed.

Thirdly, again at a higher level, the ECL support for Text and Structured data are
BOTH built upon the same ECL record structure. Thus, once some information has
been extracted from the text, it can still reside in the same record structure awaiting
additional processing. Further, as keys can contain arbitrary payloads, and as joins
can be made across arbitrary keys, it is even possible to combine structured and
inverted index fetches within the same query.

Key-Value Pairs

Key-Value pairs are a degenerative-sub case of normal ECL batch processing. If
required a Key-Value pair can be declared as:

KVPair : = RECORD

STRING KeyValue;
STRING Value;
END;

The map-reduce paradigm can then be implemented using:

(1) PROJECT/TRANSFORM statement returning a KVPair—this is equivalent to
a Mapper

(2) DISTRIBUTE(KVPairFile,HASH(KeyValue))—the equivalent of the first
stage of the Hadoop shuffle

(3) SORT(DistributedKVPairFile,KeyValue,LOCAL)—second stage of Hadoop
shuffle

(4) ROLLUP(SortedPairFile,KeyValue,LOCAL)—the reduce.

This usage of ECL is ‘degenerative’ insofar as data can be distributed, sorted and
rolled up using any of the fields of a record, any combination of fields of a record

26Specifically the case where linguistic rules of grammar not followed uniformly and thus the data
really is ‘unstructured’.
27A brief treatment of these is given here: http://en.wikipedia.org/wiki/GLR_parser.
28This case works particularly well (and easily) in the case where the text being parsed is generated
against a BNF grammar.
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and even any expressions involving combinations of fields of a record. Thus the
‘normal’ ECL case only has values29 and any number of different keys ‘appear
upon demand’.

XML

XML probably represents the biggest stretch for ECL in terms of native support of
a data model. ECL does have very strong support for XML which is well specified
and gently nested. Specifically it has:

(1) XML on a dataset to allow the importing of XML records that can be rea-
sonably represented as structured data

(2) XMLPARSE to allow the extraction of sub-sections of more free-form XML
into structured data

(3) Extensive support for child datasets within record structures to allow some
degree of record and file nesting on a hierarchical basis

(4) An XML import utility that will construct a good ECL record structure from
an XML schema.

Unfortunately there are XML schemas out there that really do not have sane and
rational structural equivalents. More specifically; they may have equivalents but
they are not the best representation of the data. For this reason we have been
actively researching the construction of an XPATH equivalent within ECL. This
essentially extends upon our work supporting arbitrary text processing and utilizes
our ability to have multiple component indexes in an inversion and to blend the
results of inverted and structured index lookups. The result is the ability to store
XML documents in an extremely efficient shredded form and then process XPATH
queries using the index prior to performing the fetch of those parts of the document
required.30

29Although it has any number of values; not just one per record.
30Fuller details of this will be published in due course; probably accompanied by a product Module
offering.
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RDF

Much like Key-Value pairs RDF is simply a degenerative31 case of standard ECL
processing. Pleasingly the global smart stepping technology developed for Text
searching can also be utilized to produce relatively rapid RDF query processing.
Unfortunately being ‘relatively quick’ does not avoid the fundamental issue that
graph problems are extremely compute intensive and the transformation of all
queries into graph queries loses a lot of academic elegance once it is appreciated
that we are transforming all queries into graph queries that we cannot, in general,
solve.

From an execution standpoint ECL has an immediate solution that yields many
orders of magnitude performance32 improvement. You do not restrict yourself to
triples; you allow the data store to be an arbitrary n-tuple. By doing this each fetch
returns much less data (reduced by the cardinality of the fourth and subsequent
columns) and the joins required are reduced by the products of those reductions.33

This performance boost is achieved for the same reason that multi-component keys
yield staggering lift over single component keys (see the description of structural
data).34

The downside is that the query programmer now has to adapt their coding to the
more heterogeneous data layout. As an area of active research a second language
KEL (Knowledge Engineering Language) has been proposed and prototyped35

which allows the programmer to work in a homogenous environment but then
translates the queries into ECL that in turn uses an execution optimal heterogeneous
data model. More information will be made available as the project nears fruition.

31This term is being used technically; not in the pejorative. ECL works naturally with any com-
bination of N-tuples. Asserting everything must be triples (or 3-tuples) is one very simple case of
that.
32Again, this is a mathematical claim, not a marketing one.
33If we can find it—we could reference the Lawrence Livermore study here.
34Yoo and Kaplan from Lawrence Livermore have produced an excellent study and independent
on the advantages of DAS for graph processing: http://dsl.cs.uchicago.edu/MTAGS09/a05-yoo-
slides.pdf.
35A team led by LexisNexis Risk Solutions, including Sandia National Labs and Berkeley Labs
has an active proposal for further development of this system.
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Model Flexibility in Practice

If ECL is compared in a genuine ‘apples to apples’ comparison against any of the
technologies here on their own data model it tends to win by somewhere between a
factor of 2 and 5. There are a variety of reasons for this, and they differ from data
model to data model and from competitor to competitor but the reasons usually
include some of:

(1) HPCC/ECL Generates C++ which executes natively; this has a simple
low-level advantage over Java based solutions

(2) The ECL compiler is heavily optimizing; it will re-arrange and modify the
code to minimize operations performed and data moved

(3) The HPCC contains over a dozen patented or patent-pending algorithms that
give a tangible performance boost to certain activities—sorting and keyed
fetch being the two most significant

(4) Whilst ECL supports all of these data models it does not (always) support all
of the standards contained in the languages that usually wrap these models.
Sometimes standards written a priori in a committee room impose low-level
semantics on a solution that result in significant performance degradation36

(5) Whilst continually evolving, the core of the HPCC has been around for over a
decade and has been tweaked and tuned relentlessly since creation

(6) The ECL language has explicit support for some feature that needs to be
manufactured using a combination of capabilities of the other system.37 In this
situation the extra knowledge of the intent that the HPCC system has usually
gives a performance advantage.

The above is a pretty impressive list; and going 2–5� faster allows you to use
less hardware, or process more data, or get the results faster or even a little bit of all
three. However, a factor of two to five is not really game-changing, it just lowers
the cost of playing.38

Those occasions when ECL is game-changing, when it delivers performance
which is one or more orders of magnitude faster than the competition, usually stem
from the data model. External evidence and support for this claim can be gleaned

36As a recent example: ECL provides two sets of string libraries, one which is UNICODE com-
plaint, one of which is not. The non-compliant libraries execute five times faster than the compliant
ones. That said; string library performance is not usually the dominant factor in Big Data
performance.
37Put simply—if you can write it in one line of ECL the ECL compiler knew exactly what you
were trying to do—if you write the same capability in 100 lines of Java then the system has no
high level understanding of what you were doing.
38As an aside, the HPCC was one of the first systems available that could linearly scale work
across hundreds of servers. As such it could often provide two orders of magnitude (100�)
performance uplift over the extant single-server solutions; which clearly is game changing. For this
paper, given the title includes ‘Big Data’, it is presumed that HPCC is being contrasted to other
massively parallel solutions.
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from the websites of many of the solutions mentioned in this paper. They all claim,
and cite examples, where their solution to a data problem produces a result three to
ten times faster than their competitors. Can they all claim this without deception?39

Yes; they are citing examples where a customer with a given problem switched to
them and they were providing a more suitable data model to the underlying
problem. It is quite conceivable that two data solution vendors could swap cus-
tomers and both customers get a performance enhancement!

Given the preceding paragraph one might naturally expect data owners to be
swapping and changing vendors with very high frequency to continually benefit
from the ‘best model for this problem’ factor. Unfortunately the reality is that many
data systems have been in the same model for years (even decades) even once it is
abundantly clear it is the wrong model. The reason, as described previously, is that
changing model usually involves a change of language, vendor and format; all of
which are high risk, high cost, and disruptive changes. The ECL/HPCC system
allows for model-change without any of those factors changing. Of course, the first
time ECL is used many of those changes do occur; but once within the HPCC
system data can transition from one model to another on a case by case basis with
zero disruption.40

To understand all aspects of the ECL impact one does need to accept that zero
disruption is not the same thing as zero effort. Data will generally come to an ECL
system in a natural or native41 model. For reasons of time and encouragement the
data will usually be made available in the original model through the ECL system.
This will garner any ‘ECL is quick’ benefits immediately but it may not be
game-changing. At that point a skilled data architect (or aspiring amateur!) is
needed that can explore the options for alternative data models for the data. This
might be as big as a completely different core model or it might be a change of
model as the data is used for certain new or existing processes. The exploration is
performed alongside the service of the data using the extant model. Then, if and
when these opportunities are found and the results are shown to be as good or
better, then the game can be changed.

One note of caution needs to be sounded; giving people the ability to choose also
gives them the ability to choose poorly. As the data models were discussed it should
have become apparent that some of them were extreme, niche models and others
were more general purpose and middle of the road. ECL is flexible enough to allow

39One subtle form of deception is ‘measuring something else’; the overall performance of a system
needs to include latency, transaction throughput, startup time, resource requirements and system
availability. There are systems that are highly tuned to one of those; this is legitimate—provided it
is declared.
40This is a mathematical zero, not a marketing one. ECL/HPCC supports all of these models and
hybrids of them within the same system and code. Many, if not all, ECL deployments run data in
most of these models simultaneously and will often run the same data in different models at the
same time on the same machine!.
41Where a native model is an extremely un-natural model imposed upon the data by an earlier
system.
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the most horrific extremes to be perpetrated in any direction. For this reason ECL
operates best and produces its most dramatically good results when early design
decisions are made by one or more experienced data personnel. If these are not
available it is probably wise to mandate that the existing data model is adhered to;
at least initially.

Conclusion

In many ways this entire chapter is a conclusion; any one of the subject headings
could have been the title for a 100 page paper. I am sure that as each of the data
models was discussed, the zealots of the model could have listed a dozen extra
advantages and detractors could list a dozen extra flaws. Notwithstanding the
purpose of the descriptions was simply to detail that there are many alternative
models and that they each have lists of pros and cons. Further, most of them have
languages, standards, and vendors wrapped around them, designed to make data
processing in that particular model as proficient as possible.

Next, under the title of data abstraction, we proposed that the optimal system
would allow for the problem to dictate the model to be used; rather than the model
used dictating the problems which are soluble. We then detailed how the
ECL/HPCC system supports each of the data models mentioned and also the large
array of features and tools provided to assist in the transition between models. It was
also noted that whilst ECL/HPCC generally executed against a given model more
efficiently than alternative implementations it did not always support all of the
standards or language features associated with a given model.

Finally the paper ended by suggesting that ECL gains performance lift from
general efficiencies but that for the performance lift to reach the level of dramatic
then generally a data-model shift was required. It was noted that data models can be
shifted without ECL by changing vendors; the unique advantage of ECL is the
ability to shift model (or even hybridize models) within the same language and
system. This advantage reduces the cost and risk of model shift and therefore
increases the chances of one occurring.
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Chapter 10
Data Intensive Supercomputing Solutions

Anthony M. Middleton

Introduction

As a result of the continuing information explosion, many organizations are
drowning in data and the resulting “data gap” or inability to process this infor-
mation and use it effectively is increasing at an alarming rate. Data-intensive
computing represents a new computing paradigm which can address the data gap
using scalable parallel processing and allow government and commercial organi-
zations and research environments to process massive amounts of data and
implement applications previously thought to be impractical or infeasible.

The fundamental challenges of data-intensive computing are managing and
processing exponentially growing data volumes, significantly reducing associated
data analysis cycles to support practical, timely applications, and developing new
algorithms which can scale to search and process massive amounts of data.
LexisNexis believes that the answer to these challenges is a scalable, integrated
computer systems hardware and software architecture designed for parallel pro-
cessing of data-intensive computing applications. This paper explores the chal-
lenges of data-intensive computing and offers an in-depth comparison of
commercially available system architectures including the LexisNexis Data
Analytics Supercomputer (DAS) also referred to as the LexisNexis
High-Performance Computing Cluster (HPCC), and Hadoop, an open source
implementation of Google’s MapReduce architecture.

The MapReduce architecture and programming model pioneered by Google is
an example of a systems architecture specifically designed for processing and
analyzing large datasets. This architecture was designed to run on large clusters of
commodity machines and utilizes a distributed file system in which files are divided
into blocks and stored on nodes in the cluster. In a MapReduce application, input
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data blocks are processed in parallel by Map tasks assigned to each data block to
perform specific operations and transformations on the data and Reduce tasks which
aggregate results and write output data blocks. Multiple MapReduce sequences are
typically required to implement more complex data processing procedures. The
Hadoop architecture is functionally similar to the Google implementation but uses
Java as the base programming language instead of C++. Both Google and Hadoop
implemented high-level parallel dataflow languages for data analysis to improve
programmer productivity. For Hadoop, this language is called Pig Latin and the
associated execution environment is called Pig.

LexisNexis, an industry leader in data content, data aggregation, and information
services independently developed and implemented a solution for data-intensive
computing called HPCC. The LexisNexis approach also utilizes commodity clusters
of hardware running the Linux operating system and includes custom system
software and middleware components developed and layered on the base Linux
operating system to provide the execution environment and distributed filesystem
support required for data-intensive computing. Because LexisNexis recognized the
need for a new computing paradigm to address its growing volumes of data, the
design approach included the definition of a new high-level dataflow language for
parallel data processing called ECL (Enterprise Data Control Language). The
power, flexibility, advanced capabilities, speed of development, and ease of use of
the ECL programming language is the primary distinguishing factor between the
LexisNexis HPCC and other data-intensive computing solutions.

LexisNexis developers recognized that to meet all the requirements of
data-intensive computing applications in an optimum manner required the design
and implementation of two distinct processing environments, each of which could
be optimized independently for its parallel data processing purpose. The first of
these platforms is called a Data Refinery whose overall purpose is the general
processing of massive volumes of raw data of any type for any purpose but typi-
cally used for data cleansing and hygiene, ETL processing of the raw data (extract,
transform, load), record linking and entity resolution, large-scale ad hoc analysis of
data, and creation of keyed data and indexes to support high-performance structured
queries and data warehouse applications. The second platform is called the Data
Delivery Engine. This platform is designed as an online high-performance struc-
tured query and analysis platform or data warehouse delivering the parallel data
access processing requirements of online applications through Web services
interfaces supporting thousands of simultaneous queries and users with sub-second
response times. Both platforms can be integrated in the same processing environ-
ment, and both platforms utilize the same ECL programming language increasing
continuity and programmer productivity.

This chapter presents a detailed analysis and feature comparison of the HPCC
system architecture versus Hadoop, and the ECL programming language versus
Pig. Results of head-to-head system performance tests based on the Terabyte sort
benchmark are presented and show that HPCC is up to 4 times faster than Hadoop
when using the same hardware configuration. This paper concludes that the
advantages of selecting a LexisNexis HPCC architecture for data-intensive
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computing include: (1) an architecture which implements a highly integrated system
environment with capabilities from raw data processing to high-performance
queries and data analysis using a common language; (2) an architecture which
provides equivalent performance at a much lower system cost based on the number
of processing nodes required resulting in significantly lower total cost of ownership
(TCO); (3) an architecture which has been proven to be stable and reliable on
high-performance data processing production applications for varied organizations
over a 10-year period; (4) an architecture that uses a mature, declarative, dataflow
programming language (ECL) with extensive built-in capabilities for data-parallel
processing, allows complex operations without the need for extensive user-defined
functions significantly increasing programmer productivity (an important perfor-
mance factor in application development), and automatically optimizes execution
graphs with hundreds of processing steps into single efficient work units; (5) an
architecture with a high-level of fault resilience and language capabilities which
reduce the need for re-processing in case of system failures; and (6) an architecture
which is available from and supported by a well-known leader in information
services and risk solutions (LexisNexis) who is part of one of the world’s largest
publishers of information ReedElsevier.

Parallel processing approaches can be generally classified as either
compute-intensive, or data-intensive [1–3]. Compute-intensive is used to describe
application programs that are compute bound. Such applications devote most of
their execution time to computational requirements as opposed to I/O, and typically
require small volumes of data. Parallel processing of compute-intensive applica-
tions typically involves parallelizing individual algorithms within an application
process, and decomposing the overall application process into separate tasks, which
can then be executed in parallel on an appropriate computing platform to achieve
overall higher performance than serial processing. In compute-intensive applica-
tions, multiple operations are performed simultaneously, with each operation
addressing a particular part of the problem. This is often referred to as functional
parallelism or control parallelism [4].

Data-Intensive Computing Applications

Data-intensive is used to describe applications that are I/O bound or with a need to
process large volumes of data [1, 2, 5]. Such applications devote most of their
processing time to I/O and movement of data. Parallel processing of data-intensive
applications typically involves partitioning or subdividing the data into multiple
segments which can be processed independently using the same executable appli-
cation program in parallel on an appropriate computing platform, then reassembling
the results to produce the completed output data [6]. The greater the aggregate
distribution of the data, the more benefit there is in parallel processing of the data.
Gorton et al. state that data-intensive processing requirements normally scale lin-
early according to the size of the data and are very amenable to straightforward
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parallelization. The fundamental challenges for data-intensive computing according
to Gorton et al. are managing and processing exponentially growing data volumes,
significantly reducing associated data analysis cycles to support practical, timely
applications, and developing new algorithms which can scale to search and process
massive amounts of data.

Data-Parallelism

Computer system architectures which can support data-parallel applications are a
potential solution to terabyte scale data processing requirements [6, 7]. According
to Agichtein [8], parallelization is an attractive alternative for processing extremely
large collections of data such as the billions of documents on the Web. Nyland et al.
define data-parallelism as a computation applied independently to each data item of
a set of data which allows the degree of parallelism to be scaled with the volume of
data. According to Nyland et al., the most important reason for developing
data-parallel applications is the potential for scalable performance, and may result
in several orders of magnitude performance improvement. The key issues with
developing applications using data-parallelism are the choice of the algorithm, the
strategy for data decomposition, load balancing on processing nodes, message
passing communications between nodes, and the overall accuracy of the results [6,
9]. Nyland et al. also note that the development of a data-parallel application can
involve substantial programming complexity to define the problem in the context of
available programming tools, and to address limitations of the target architecture.
Information extraction from and indexing of Web documents is typical of
data-intensive processing which can derive significant performance benefits from
data-parallel implementations since Web and other types of document collections
can typically then be processed in parallel [8].

The “Data Gap”

The rapid growth of the Internet and World Wide Web has led to vast amounts of
information available online. In addition, business and government organizations
create large amounts of both structured and unstructured information which needs
to be processed, analyzed, and linked. Vinton Cerf of Google has described this as
an “Information Avalanche” and has stated “we must harness the Internet’s energy
before the information it has unleashed buries us” [10]. An IDC white paper
sponsored by EMC estimates the amount of information currently stored in a digital
form at 281 exabytes and the overall compound growth rate at 57 % (Fig. 10.1)
with information in organizations growing at even a faster rate [11]. In another
study of the so-called information explosion it was estimated that 95 % of all
current information exists in unstructured form with increased data processing

260 10 Data Intensive Supercomputing Solutions



requirements compared to structured information [12]. The storing, managing,
accessing, and processing of this vast amount of data represents a fundamental need
and an immense challenge in order to satisfy needs to search, analyze, mine, and
visualize this data as information [13]. LexisNexis has defined this issue as the
“Data Gap”: the ability to gather information is far outpacing organizational
capacity to use it effectively.

Organizations build the applications to fill the storage they have available, and
build the storage to fit the applications and data they have. But will organizations be
able to do useful things with the information they have to gain full and innovative
use of their untapped data resources? As organizational data grows, how will the
“Data Gap” be addressed and bridged? LexisNexis believes that the answer is a
scalable computer systems hardware and software architecture designed for
data-intensive computing applications which can scale to processing billions of
records per second (BORPS). What are the characteristics of data-intensive com-
puting systems and what commercially available system architectures are available
to organizations to implement data-intensive computing applications? This paper
will explore those issues and offer a comparison of commercially available system
architectures including the LexisNexis Data Analytics Supercomputer (DAS) also
referred to as the LexisNexis High-Performance Computing Cluster (HPCC).

Characteristics of Data-Intensive Computing Systems

The National Science Foundation believes that data-intensive computing requires a
“fundamentally different set of principles” than current computing approaches [14].
Through a funding program within the Computer and Information Science and
Engineering area, the NSF is seeking to “increase understanding of the capabilities
and limitations of data-intensive computing.” The key areas of focus are:

Fig. 10.1 The information explosion (Source IDC [11])
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• Approaches to parallel programming to address the parallel processing of data
on data-intensive systems.

• Programming abstractions including models, languages, and algorithms which
allow a natural expression of parallel processing of data.

• Design of data-intensive computing platforms to provide high levels of relia-
bility, efficiency, availability, and scalability.

• Identifying applications that can exploit this computing paradigm and deter-
mining how it should evolve to support emerging data-intensive applications.

Pacific Northwest National Labs has defined data-intensive computing as
“capturing, managing, analyzing, and understanding data at volumes and rates that
push the frontiers of current technologies” [15]. They believe that to address the
rapidly growing data volumes and complexity requires “epochal advances in
software, hardware, and algorithm development” which can scale readily with size
of the data and provide effective and timely analysis and processing results.

Processing Approach

Current data-intensive computing platforms use a “divide and conquer” parallel
processing approach combining multiple processors and disks in large computing
clusters connected using high-speed communications switches and networks which
allows the data to be partitioned among the available computing resources and
processed independently to achieve performance and scalability based on the
amount of data (Fig. 10.2). This approach to parallel processing is often referred to
as a “shared nothing” approach since each node consisting of processor, local
memory, and disk resources shares nothing with other nodes in the cluster. In
parallel computing this approach is considered suitable for data processing prob-
lems which are “embarrassingly parallel”, i.e. where it is relatively easy to separate

Fig. 10.2 Shared nothing computing cluster
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the problem into a number of parallel tasks and there is no dependency or com-
munication required between the tasks other than overall management of the tasks.
These types of data processing problems are inherently adaptable to various forms
of distributed computing including clusters and data grids.

Common Characteristics

There are several important common characteristics of data-intensive computing
systems that distinguish them from other forms of computing. First is the principle
of collocation of the data and programs or algorithms to perform the computation.
To achieve high performance in data-intensive computing, it is important to min-
imize the movement of data. In direct contrast to other types of computing and
supercomputing which utilize data stored in a separate repository or servers and
transfer the data to the processing system for computation, data-intensive com-
puting uses distributed data and distributed file systems in which data is located
across a cluster of processing nodes, and instead of moving the data, the program or
algorithm is transferred to the nodes with the data that needs to be processed. This
principle—“Move the code to the data”—is extremely effective since program size
is usually small in comparison to the large datasets processed by data-intensive
systems and results in much less network traffic since data can be read locally
instead of across the network. This characteristic allows processing algorithms to
execute on the nodes where the data resides reducing system overhead and
increasing performance [1].

A second important characteristic of data-intensive computing systems is the
programming model utilized. Data intensive computing systems utilize a
machine-independent approach in which applications are expressed in terms of
high-level operations on data, and the runtime system transparently controls the
scheduling, execution, load balancing, communications, and movement of pro-
grams and data across the distributed computing cluster [16]. The programming
abstraction and language tools allow the processing to be expressed in terms of data
flows and transformations incorporating new dataflow programming languages and
shared libraries of common data manipulation algorithms such as sorting.
Conventional supercomputing and distributed computing systems typically utilize
machine dependent programming models which can require low-level programmer
control of processing and node communications using conventional imperative
programming languages and specialized software packages which adds complexity
to the parallel programming task and reduces programmer productivity. A machine
dependent programming model also requires significant tuning and is more sus-
ceptible to single points of failure.

A third important characteristic of data-intensive computing systems is the focus
on reliability and availability. Largescale systems with hundreds or thousands of
processing nodes are inherently more susceptible to hardware failures, communi-
cations errors, and software bugs. Data-intensive computing systems are designed
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to be fault resilient. This includes redundant copies of all data files on disk, storage
of intermediate processing results on disk, automatic detection of node or pro-
cessing failures, and selective re-computation of results. A processing cluster
configured for data-intensive computing is typically able to continue operation with
a reduced number of nodes following a node failure with automatic and transparent
recovery of incomplete processing.

A final important characteristic of data-intensive computing systems is the
inherent scalability of the underlying hardware and software architecture.
Data-intensive computing systems can typically be scaled in a linear fashion to
accommodate virtually any amount of data, or to meet time-critical performance
requirements by simply adding additional processing nodes to a system configu-
ration in order to achieve billions of records per second processing rates (BORPS).
The number of nodes and processing tasks assigned for a specific application can be
variable or fixed depending on the hardware, software, communications, and dis-
tributed file system architecture. This scalability allows computing problems once
considered to be intractable due to the amount of data required or amount of
processing time required to now be feasible and affords opportunities for new
breakthroughs in data analysis and information processing.

Grid Computing

A similar computing paradigm known as grid computing has gained popularity
primarily in research environments [4]. A computing grid is typically heteroge-
neous in nature (nodes can have different processor, memory, and disk resources),
and consists of multiple disparate computers distributed across organizations and
often geographically using wide-area networking communications usually with
relatively low-bandwidth. Grids are typically used to solve complex computational
problems which are compute-intensive requiring only small amounts of data for
each processing node. A variation known as data grids allow shared repositories of
data to be accessed by a grid and utilized in application processing, however the
low-bandwidth of data grids limit their effectiveness for largescale data-intensive
applications. In contrast, data-intensive computing systems are typically homoge-
neous in nature (nodes in the computing cluster have identical processor, memory,
and disk resources), use high-bandwidth communications between nodes such as
gigabit Ethernet switches, and are located in close proximity in a data center using
high-density hardware such as rack-mounted blade servers. The logical file system
typically includes all the disks available on the nodes in the cluster and data files are
distributed across the nodes as opposed to a separate shared data repository such as
a storage area network which would require data to be moved to nodes for pro-
cessing. Geographically dispersed grid systems are more difficult to manage, less
reliable, and less secure than data-intensive computing systems which are usually
located in secure data center environments.

264 10 Data Intensive Supercomputing Solutions



Data-Intensive System Architectures

A variety of system architectures have been implemented for data-intensive and
large-scale data analysis applications including parallel and distributed relational
database management systems which have been available to run on shared nothing
clusters of processing nodes for more than two decades [17]. These include data-
base systems from Teradata, Netezza, Vertica, and Exadata/Oracle and others which
provide high-performance parallel database platforms. Although these systems have
the ability to run parallel applications and queries expressed in the SQL language,
they are typically not general-purpose processing platforms and usually run as a
back-end to a separate front-end application processing system. Although this
approach offers benefits when the data utilized is primarily structured in nature and
fits easily into the constraints of a relational database, and often excels for trans-
action processing applications, most data growth is with data in unstructured form
[11] and new processing paradigms with more flexible data models were needed.
Internet companies such as Google, Yahoo, Microsoft, Facebook, and others
required a new processing approach to effectively deal with the enormous amount
of Web data for applications such as search engines and social networking. In
addition, many government and business organizations were overwhelmed with
data that could not be effectively processed, linked, and analyzed with traditional
computing approaches.

Several solutions have emerged including the MapReduce architecture pioneered
by Google and now available in an open-source implementation called Hadoop
used by Yahoo, Facebook, and others. LexisNexis, an acknowledged industry
leader in information services, also developed and implemented a scalable platform
for data-intensive computing which is used by LexisNexis and other commercial
and government organizations to process large volumes of structured and
unstructured data. These approaches will be explained and contrasted in terms of
their overall structure, programming model, file systems in the following sections.

Google MapReduce

The MapReduce architecture and programming model pioneered by Google is an
example of a modern systems architecture designed for processing and analyzing
large datasets and is being used successfully by Google in many applications to
process massive amounts of raw Web data [18]. The MapReduce architecture
allows programmers to use a functional programming style to create a map function
that processes a key-value pair associated with the input data to generate a set of
intermediate key-value pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key [18]. According to Dean and
Ghemawat, the MapReduce programs can be used to compute derived data from
documents such as inverted indexes and the processing is automatically parallelized
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by the system which executes on large clusters of commodity type machines, highly
scalable to thousands of machines. Since the system automatically takes care of
details like partitioning the input data, scheduling and executing tasks across a
processing cluster, and managing the communications between nodes, program-
mers with no experience in parallel programming can easily use a large distributed
processing environment.

The programming model for MapReduce architecture is a simple abstraction
where the computation takes a set of input key-value pairs associated with the input
data and produces a set of output key-value pairs. The overall model for this process
is shown in Fig. 10.3. In the map phase, the input data is partitioned into input splits
and assigned to Map tasks associated with processing nodes in the cluster. The Map
task typically executes on the same node containing its assigned partition of data in
the cluster. These Map tasks perform user-specified computations on each input
key-value pair from the partition of input data assigned to the task, and generates a
set of intermediate results for each key. The shuffle and sort phase then takes the
intermediate data generated by each Map task, sorts this data with intermediate data
from other nodes, divides this data into regions to be processed by the reduce tasks,
and distributes this data as needed to nodes where the Reduce tasks will execute.
All Map tasks must complete prior to the shuffle and sort and reduce phases. The
number of Reduce tasks does not need to be the same as the number of Map tasks.
The Reduce tasks perform additional user-specified operations on the intermediate
data possibly merging values associated with a key to a smaller set of values to
produce the output data. For more complex data processing procedures, multiple
MapReduce calls may be linked together in sequence.

Figure 10.4 shows the MapReduce architecture and key-value processing in
more detail. The input data can consist of multiple input files. Each Map task will
produce an intermediate output file for each key region assigned based on the
number of Reduce tasks R assigned to the process (hash (key) modulus R). The
reduce function then “pulls” the intermediate files, sorting and merging the files for

Fig. 10.3 MapReduce processing architecture [29]
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a specific region from all the Map tasks. To minimize the amount of data transferred
across the network, an optional Combiner function can be specified which is
executed on the same node that performs a Map task. The combiner code is usually
the same as the reducer function code which does partial merging and reducing of
data for the local partition, then writes the intermediate files to be distributed to the
Reduce tasks. The output of the Reduce function is written as the final output file. In
the Google implementation of MapReduce, functions are coded in the C++ pro-
gramming language.

Underlying and overlayed with the MapReduce architecture is the Google File
System (GFS). GFS was designed to be a high-performance, scalable distributed
file system for very large data files and data-intensive applications providing fault
tolerance and running on clusters of commodity hardware [19]. GFS is oriented to
very large files dividing and storing them in fixed-size chunks of 64 Mb by default
which are managed by nodes in the cluster called chunkservers. Each GFS consists
of a single master node acting as a nameserver and multiple nodes in the cluster
acting as chunkservers using a commodity Linux-based machine (node in a cluster)
running a user-level server process. Chunks are stored in plain Linux files which are
extended only as needed and replicated on multiple nodes to provide
high-availability and improve performance. Secondary name servers provide
backup for the master node. The large chunk size reduces the need for MapReduce
clients programs to interact with the master node, allows filesystem metadata to be
kept in memory in the master node improving performance, and allows many
operations to be performed with a single read on a chunk of data by the MapReduce

Fig. 10.4 MapReduce key-value processing [30]
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client. Ideally, input splits for MapReduce operations are the size of a GFS chunk.
GFS has proven to be highly effective for data-intensive computing on very large
files, but is less effective for small files which can cause hot spots if many
MapReduce tasks are accessing the same file.

Google has implemented additional tools using the MapReduce and GFS
architecture to improve programmer productivity and to enhance data analysis and
processing of structured and unstructured data. Since the GFS filesystem is pri-
marily oriented to sequential processing of large files, Google has also implemented
a scalable, high availability distributed storage system for structured data with
dynamic control over data format with keyed random access capabilities [20]. Data
is stored in Bigtable as a sparse, distributed, persistent multi-dimensional sorted
map structured which is indexed by a row key, column, key and a timestamp. Rows
in a Bigtable are maintained in order by row key, and row ranges become the unit of
distribution and load balancing called a tablet. Each cell of data in a Bigtable can
contain multiple instances of the same data indexed by the timestamp. Bigtable uses
GFS to store both data and log files. The API for Bigtable is flexible providing data
management functions like creating and deleting tables, and data manipulation
functions by row key including operations to read, write, and modify data. Index
information for Bigtables utilize tablet information stored in structures similar to a
B + Tree. MapReduce applications can be used with Bigtable to process and
transform data, and Google has implemented many large-scale applications which
utilize Bigtable for storage including Google Earth.

Google has also implemented a high-level language for performing parallel data
analysis and data mining using the MapReduce and GFS architecture called Sawzall
and a workflow management and scheduling infrastructure for Sawzall jobs called
Workqueue [21]. According to Pike et al., although C++ in standard MapReduce
jobs is capable of handling data analysis tasks, it is more difficult to use and requires
considerable effort by programmers. For most applications implemented using
Sawzall, the code is much simpler and smaller than the equivalent C++ by a factor
of 10 or more. A Sawzall program defines operations on a single record of the data,
the language does not allow examining multiple input records simultaneously and
one input record cannot influence the processing of another. An emit statement
allows processed data to be output to an external aggregator which provides the
capability for entire files of records and data to be processed using a Sawzall
program. The system operates in a batch mode in which a user submits a job which
executes a Sawzall program on a fixed set of files and data and collects the output at
the end of a run. Sawzall jobs can be chained to support more complex procedures.
Sawzall programs are compiled into an intermediate code which is interpreted
during runtime execution. Pike et al. cite several reasons why a new language is
beneficial for data analysis and data mining applications: (1) a programming lan-
guage customized for a specific problem domain makes resulting programs “clearer,
more compact, and more expressive”; (2) aggregations are specified in the Sawzall
language so that the programmer does not have to provide one in the Reduce task of
a standard MapReduce program; (3) a programming language oriented to data
analysis provides a more natural way to think about data processing problems for
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large distributed datasets; and (4) Sawzall programs are significantly smaller that
equivalent C++ MapReduce programs and significantly easier to program.

Hadoop

Hadoop is an open source software project sponsored by The Apache Software
Foundation (http://www.apache.org). Following the publication in 2004 of the
research paper describing Google MapReduce [18], an effort was begun in con-
junction with the existing Nutch project to create an open source implementation of
the MapReduce architecture [22]. It later became an independent subproject of
Lucene, was embraced by Yahoo! after the lead developer for Hadoop became an
employee, and became an official Apache top-level project in February of 2006.
Hadoop now encompasses multiple subprojects in addition to the base core,
MapReduce, and HDFS distributed filesystem. These additional subprojects pro-
vide enhanced application processing capabilities to the base Hadoop implemen-
tation and currently include Avro, Pig, HBase, ZooKeeper, Hive, and Chukwa.
More information can be found at the Apache Web site.

The Hadoop MapReduce architecture is functionally similar to the Google
implementation except that the base programming language for Hadoop is Java
instead of C++. The implementation is intended to execute on clusters of com-
modity processors (Fig. 10.5) utilizing Linux as the operating system environment,
but can also be run on a single system as a learning environment. Hadoop clusters
also utilize the “shared nothing” distributed processing paradigm linking individual
systems with local processor, memory, and disk resources using high-speed com-
munications switching capabilities typically in rack-mounted configurations. The
flexibility of Hadoop configurations allows small clusters to be created for testing
and development using desktop systems or any system running Unix/Linux

Fig. 10.5 Commodity hardware cluster [29]
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providing a JVM environment, however production clusters typically use homo-
geneous rack-mounted processors in a data center environment.

The Hadoop MapReduce architecture is similar to the Google implementation
creating fixed-size input splits from the input data and assigning the splits to Map
tasks. The local output from the Map tasks is copied to Reduce nodes where it is
sorted and merged for processing by Reduce tasks which produce the final output as
shown in Fig. 10.6. Hadoop implements a distributed data processing scheduling
and execution environment and framework for MapReduce jobs. A MapReduce job
is a unit of work that consists of the input data, the associated Map and Reduce
programs, and user-specified configuration information [22]. The Hadoop frame-
work utilizes a master/slave architecture with a single master server called a
job-tracker and slave servers called task-trackers, one per node in the cluster. The
job-tracker is the communications interface between users and the framework and
coordinates the execution of MapReduce jobs. Users submit jobs to the job-tracker,
which puts them in a job queue and executes them on a first-come/first-served basis.
The job-tracker manages the assignment of Map and Reduce tasks to the
taskt-racker nodes which then execute these tasks. The task-trackers also handle
data movement between the Map and Reduce phases of job execution. The Hadoop
framework assigns the Map tasks to every node where the input data splits are
located through a process called data locality optimization. The number of Reduce
tasks is determined independently and can be user-specified and can be zero if all of
the work can be accomplished by the Map tasks. As with the Google MapReduce
implementation, all Map tasks must complete before the shuffle and sort phase can
occur and Reduce tasks initiated. The Hadoop framework also supports Combiner
functions which can reduce the amount of data movement in a job. The Hadoop

Fig. 10.6 Hadoop MapReduce [31]
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framework also provides an API called Streaming to allow Map and Reduce
functions to be written in languages other than Java such as Ruby and Python and
provides an interface called Pipes for C++.

Hadoop includes a distributed file system called HDFS which is analogous to
GFS in the Google MapReduce implementation. A block in HDFS is equivalent to
a chunk in GFS and is also very large, 64 Mb by default but 128 Mb is used in
some installations. The large block size is intended to reduce the number of seeks
and improve data transfer times. Each block is an independent unit stored as a
dynamically allocated file in then Linux local filesystem in a datanode directory. If
the node has multiple disk drives, multiple datanode directories can be specified. An
additional local file per block stores metadata for the block. HDFS also follows a
master/slave architecture which consists of a single master server that manages the
distributed filesystem namespace and regulates access to files by clients called the
Namenode. In addition, there are multiple Datanodes, one per node in the cluster,
which manage the disk storage attached to the nodes and assigned to Hadoop. The
Namenode determines the mapping of blocks to Datanodes. The Datanodes are
responsible for serving read and write requests from filesystem clients such as
MapReduce tasks, and they also perform block creation, deletion, and replication
based on commands from the Namenode. An HDFS system can include additional
secondary Namenodes which replicate the filesystem metadata, however there are
no hot failover services. Each datanode block also has replicas on other nodes based
on system configuration parameters (by default there are 3 replicas for each
datanode block). In the Hadoop MapReduce execution environment it is common
for a node in a physical cluster to function as both a Tasktracker and a datanode
[23]. The HDFS system architecture is shown in Fig. 10.7.

The Hadoop execution environment supports additional distributed data pro-
cessing capabilities which are designed to run using the Hadoop MapReduce
architecture. Several of these have become official Hadoop subprojects within the
Apache Software Foundation. These include HBase, a distributed column-oriented

Fig. 10.7 HDFS architecture [32]
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database which provides similar random access read/write capabilities as and is
modeled after Bigtable implemented by Google. HBase is not relational, and does
not support SQL, but provides a Java API and a command-line shell for table
management. Hive is a data warehouse system built on top of Hadoop that provides
SQL-like query capabilities for data summarization, ad hoc queries, and analysis of
large datasets. Other Apache sanctioned projects for Hadoop include Avro—A data
serialization system that provides dynamic integration with scripting languages,
Chukwa—a data collection system for managing large distributed systems,
ZooKeeper—a high-performance coordination service for distributed applications,
and Pig—a high-level data-flow language and execution framework for parallel
computation.

Pig is high-level dataflow-oriented language and execution environment origi-
nally developed at Yahoo! ostensibly for the same reasons that Google developed
the Sawzall language for its MapReduce implementation—to provide a specific
language notation for data analysis applications and to improve programmer pro-
ductivity and reduce development cycles when using the Hadoop MapReduce
environment. Working out how to fit many data analysis and processing applica-
tions into the MapReduce paradigm can be a challenge, and often requires multiple
MapReduce jobs [22]. Pig programs are automatically translated into sequences of
MapReduce programs if needed in the execution environment. In addition Pig
supports a much richer data model which supports multi-valued, nested data
structures with tuples, bags, and maps. Pig supports a high-level of user cus-
tomization including userdefined special purpose functions and provides capabili-
ties in the language for loading, storing, filtering, grouping, de-duplication,
ordering, sorting, aggregation, and joining operations on the data [24]. Pig is an
imperative dataflow-oriented language (language statements define a dataflow for
processing). An example program is shown in Fig. 10.8. Pig runs as a client-side
application which translates Pig programs into MapReduce jobs and then runs them
on an Hadoop cluster. Figure 10.9 shows how the program listed in Fig. 10.8 is
translated into a sequence of MapReduce jobs. Pig compilation and execution

Fig. 10.8 Sample Pig Latin Program [24]
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stages include a parser, logical optimizer, MapReduce compiler, MapReduce
optimizer, and the Hadoop Job Manager [25].

According to Yahoo! where more than 40 % of Hadoop production jobs and
60 % of ad hoc queries are now implemented using Pig, Pig programs are 1/20th
the size of the equivalent MapReduce program and take 1/16th the time to develop
[26]. Yahoo! uses 12 standard benchmarks (called the PigMix) to test Pig perfor-
mance versus equivalent MapReduce performance from release to release. With the
current release, Pig programs take approximately 1.5 times longer than the equiv-
alent MapReduce (http://wiki.apache.org/pig/PigMix). Additional optimizations are
being implemented that should reduce this performance gap further.

LexisNexis HPCC

LexisNexis, an industry leader in data content, data aggregation, and information
services independently developed and implemented a solution for data-intensive
computing called the HPCC (High-Performance Computing Cluster) which is also
referred to as the Data Analytics Supercomputer (DAS). The LexisNexis vision for
this computing platform is depicted in Fig. 10.10. The development of this com-
puting platform by the Seisint subsidiary of LexisNexis began in 1999 and appli-
cations were in production by late 2000. The LexisNexis approach also utilizes
commodity clusters of hardware running the Linux operating system as shown in
Figs. 10.2 and 10.5. Custom system software and middleware components were
developed and layered on the base Linux operating system to provide the execution

Fig. 10.9 Pig program translation to MapReduce [24]
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environment and distributed filesystem support required for data-intensive com-
puting. Because LexisNexis recognized the need for a new computing paradigm to
address its growing volumes of data, the design approach included the definition of
a new high-level language for parallel data processing called ECL (Enterprise Data
Control Language). The power, flexibility, advanced capabilities, speed of devel-
opment, and ease of use of the ECL programming language is the primary dis-
tinguishing factor between the LexisNexis HPCC and other data-intensive
computing solutions. The following will provide an overview of the HPCC sys-
tems architecture and the ECL language and a general comparison to the Hadoop
MapReduce architecture and platform.

LexisNexis developers recognized that to meet all the requirements of
data-intensive computing applications in an optimum manner required the design
and implementation of two distinct processing environments, each of which could
be optimized independently for its parallel data processing purpose. The first of
these platforms is called a Data Refinery whose overall purpose is the general
processing of massive volumes of raw data of any type for any purpose but typi-
cally used for data cleansing and hygiene, ETL processing of the raw data (extract,
transform, load), record linking and entity resolution, large-scale ad hoc analysis of
data, and creation of keyed data and indexes to support high-performance structured
queries and data warehouse applications. The Data Refinery is also referred to as

Fig. 10.10 LexisNexis vision for a data analytics supercomputer
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Thor, a reference to the mythical Norse god of thunder with the large hammer
symbolic of crushing large amounts of raw data into useful information. A Thor
system is similar in its function, execution environment, filesystem, and capabilities
to the Hadoop MapReduce platform, but offers significantly higher performance in
equivalent configurations. The second of the parallel data processing platforms
designed and implemented by LexisNexis is called the Data Delivery Engine. This
platform is designed as an online high-performance structured query and analysis
platform or data warehouse delivering the parallel data access processing require-
ments of online applications through Web services interfaces supporting thousands
of simultaneous queries and users with sub-second response times. High-profile
online applications developed by LexisNexis such as Accurint utilize this platform.
The Data Delivery Engine is also referred to as Roxie, which is an acronym for
Rapid Online XML Information Exchange. Roxie uses a special distributed indexed
filesystem to provide parallel processing of queries. A Roxie system is similar in its
function and capabilities to Hadoop with HBase and Hive capabilities added, but
provides significantly higher throughput since it uses a more optimized execution
environment and filesystem for high performance online processing. Most impor-
tantly, both Thor and Roxie systems utilize the same ECL programming language
for implementing applications, increasing continuity and programmer productivity.

The Thor system cluster is implemented using a master/slave approach with a
single master node and multiple slave nodes for data parallel processing. Each of
the slave nodes is also a data node within the distributed file system for the cluster.
This is similar to the Jobtracker, Tasktracker, and Datanode concepts in an Hadoop
configuration. Multiple Thor clusters can exist in an HPCC environment, and job
queues can span multiple clusters in an environment if needed. Jobs executing on a
Thor cluster in a multi-cluster environment can also read files from the distributed
file system on foreign clusters if needed. The middleware layer provides additional
server processes to support the execution environment including ECL Agents and
ECL Servers. A client process submits an ECL job to the ECL Agent which
coordinates the overall job execution on behalf of the client process. An ECL Job is
compiled by the ECL server which interacts with an additional server called the
ECL Repository which is a source code repository and contains shared ECL code.
ECL programs are compiled into optimized C++ source code, which is subse-
quently compiled into executable code and distributed to the slave nodes of a Thor
cluster by the Thor master node. The Thor master monitors and coordinates the
processing activities of the slave nodes and communicates status information
monitored by the ECL Agent processes. When the job completes, the ECL Agent
and client process are notified, and the output of the process is available for viewing
or subsequent processing. Output can be stored in the distributed filesystem for the
cluster or returned to the client process. ECL is analogous to the Pig language
which can be used in the Hadoop environment.

The distributed filesystem used in a Thor cluster is record-oriented which is
different from the block format used by Hadoop clusters. Records can be fixed or
variable length, and support a variety of standard (fixed record size, CSV, XML)
and custom formats including nested child datasets. Record I/O is buffered in large
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blocks to reduce latency and improve data transfer rates to and from disk Files to be
loaded to a Thor cluster are typically first transferred to a landing zone from some
external location, then a process called “spraying” is used to partition the file and
load it to the nodes of a Thor cluster. The initial spraying process divides the file on
user-specified record boundaries and distributes the data as evenly as possible in
order across the available nodes in the cluster. Files can also be “desprayed” when
needed to transfer output files to another system or can be directly copied between
Thor clusters in the same environment. Nameservices and storage of metadata about
files including record format information in the Thor DFS are maintained in a
special server called the Dali server (named for the developer’s pet Chinchilla),
which is analogous to the Namenode in HDFS. Thor users have complete control
over distribution of data in a Thor cluster, and can re-distribute the data as needed in
an ECL job by specific keys, fields, or combinations of fields to facilitate the
locality characteristics of parallel processing. The Dali nameserver uses a dynamic
datastore for filesystem metadata organized in a hierarchical structure correspond-
ing to the scope of files in the system. The Thor DFS utilizes the local Linux
filesystem for physical file storage, and file scopes are created using file directory
structures of the local file system. Parts of a distributed file are named according to
the node number in a cluster, such that a file in a 400-node cluster will always have
400 parts regardless of the file size. The Hadoop fixed block size can end up
splitting logical records between nodes which means a node may need to read some
data from another node during Map task processing. With the Thor DFS, logical
record integrity is maintained, and processing I/O is completely localized to the
processing node for local processing operations. In addition, if the file size in
Hadoop is less than some multiple of the block size times the number of nodes in
the cluster, Hadoop processing will be less evenly distributed and node to node disk
accesses will be needed. If input splits assigned to Map tasks in Hadoop are not
allocated in whole block sizes, additional node to node I/O will result. The ability to
easily redistribute the data evenly to nodes based on processing requirements and
the characteristics of the data during a Thor job can provide a significant perfor-
mance improvement over the Hadoop approach. The Thor DFS also supports the
concept of “superfiles” which are processed as a single logical file when accessed,
but consist of multiple Thor DFS files. Each file which makes up a superfile must
have the same record structure. New files can be added and old files deleted from a
superfile dynamically facilitating update processes without the need to rewrite a
new file. Thor clusters are fault resilient and a minimum of one replica of each file
part in a Thor DFS file is stored on a different node within the cluster.

Roxie clusters consist of a configurable number of peer-coupled nodes func-
tioning as a high-performance, high availability parallel processing query platform.
ECL source code for structured queries is pre-compiled and deployed to the cluster.
The Roxie distributed filesystem is a distributed indexed-based filesystem which
uses a custom B + Tree structure for data storage. Indexes and data supporting
queries are pre-built on Thor clusters and deployed to the Roxie DFS with portions
of the index and data stored on each node. Typically the data associated with index
logical keys is embedded in the index structure as a payload. Index keys can be
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multi-field and multivariate, and payloads can contain any type of structured or
unstructured data supported by the ECL language. Queries can use as many indexes
as required for a query and contain joins and other complex transformations on the
data with the full expression and processing capabilities of the ECL language. For
example, the Accurint comprehensive person report which produces many pages of
output is generated by a single Roxie query.

A Roxie cluster uses the concept of Servers and Agents. Each node in a Roxie
cluster runs Server and Agent processes which are configurable by a System
Administrator depending on the processing requirements for the cluster. A Server
process waits for a query request from a Web services interface then determines the
nodes and associated Agent processes that have the data locally that is needed for a
query, or portion of the query. Roxie query requests can be submitted from a client
application as a SOAP call, HTTP or HTTPS protocol request from a Web appli-
cation, or through a direct socket connection. Each Roxie query request is asso-
ciated with a specific deployed ECL query program. Roxie queries can also be
executed from programs running on Thor clusters. The Roxie Server process that
receives the request owns the processing of the ECL program for the query until it is
completed. The Server sends portions of the query job to the nodes in the cluster
and Agent processes which have data needed for the query stored locally as needed,
and waits for results. When a Server receives all the results needed from all nodes, it
collates them, performs any additional processing, and then returns the result set to
the client requestor. The performance of query processing varies depending on
factors such as machine speed, data complexity, number of nodes, and the nature of
the query, but production results have shown throughput of a thousand results a
second or more. Roxie clusters have flexible data storage options with indexes and
data stored locally on the cluster, as well as being able to use indexes stored
remotely in the same environment on a Thor cluster. Name services for Roxie
clusters are also provided by the Dali server. Roxie clusters are fault-resilient and
data redundancy is built-in using a peer system where replicas of data are stored on
two or more nodes, all data including replicas are available to be used in the
processing of queries by Agent processes. The Roxie cluster provides automatic
failover in case of node failure, and the cluster will continue to perform even if one
or more nodes are down. Additional redundancy can be provided by including
multiple Roxie clusters in an environment.

Load balancing of query requests across Roxie clusters is typically implemented
using external load balancing communications devices. Roxie clusters can be sized
as needed to meet query processing throughput and response time requirements, but
are typically smaller that Thor clusters. Figure 10.11 shows the various methods of
accessing a Roxie cluster.

The implementation of two types of parallel data processing platforms (Thor and
Roxie) in the HPCC processing environment serving different data processing
needs allows these platforms to be optimized and tuned for their specific purposes
to provide the highest level of system performance possible to users. This is a
distinct advantage when compared to the Hadoop MapReduce platform and
architecture which must be overlayed with different systems such as HBase, Hive,
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and Pig which have different processing goals and requirements, and don’t always
map readily into the MapReduce paradigm. In addition, the LexisNexis HPCC
approach incorporates the notion of a processing environment which can integrate
Thor and Roxie clusters as needed to meet the complete processing needs of an
organization. As a result, scalability can be defined not only in terms of the number

Fig. 10.11 Roxie cluster client access methods

Fig. 10.12 HPCC environment system component relationships
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of nodes in a cluster, but in terms of how many clusters and of what type are needed
to meet system performance goals and user requirements. This provides a distinct
advantage when compared to Hadoop clusters which tend to be independent islands
of processing. The basic relationships between Thor and Roxie clusters and various
middleware components of the HPCC architecture is shown in Fig. 10.12.

Programming Language ECL

The ECL programming language is a key factor in the flexibility and capabilities of
the HPCC processing environment. ECL was designed to be a transparent and
implicitly parallel programming language for data-intensive applications. It is a
high-level, declarative, non-procedural dataflow-oriented language that allows the
programmer to define what the data processing result should be and the dataflows
and transformations that are necessary to achieve the result. Execution is not
determined by the order of the language statements, but from the sequence of
dataflows and transformations represented by the language statements. It combines
data representation with algorithm implementation, and is the fusion of both a query
language and a parallel data processing language. ECL uses an intuitive syntax
which has taken cues from other familiar languages, supports modular code orga-
nization with a high degree of reusability and extensibility, and supports
high-productivity for programmers in terms of the amount of code required for
typical applications compared to traditional languages like Java and C++. Similar to
the benefits Sawzall provides in the Google environment, and Pig provides to
Hadoop users, a 20 times increase in programmer productivity is typical. ECL is
compiled into optimized C++ code for execution on the HPCC system platforms,
and can be used for complex data processing and analysis jobs on a Thor cluster or
for comprehensive query and report processing on a Roxie cluster. ECL allows
inline C++ functions to be incorporated into ECL programs, and external programs
in other languages can be incorporated and parallelized through a PIPE facility.
External services written in C++ and other languages which generate DLLs can also
be incorporated in the ECL system library, and ECL programs can access external
Web services through a standard SOAPCALL interface.

The basic unit of code for ECL is called an attribute. An attribute can contain a
complete executable query or program, or a shareable and reusable code fragment
such as a function, record definition, dataset definition, macro, filter definition, etc.
Attributes can reference other attributes which in turn can reference other attributes
so that ECL code can be nested and combined as needed in a reusable manner.
Attributes are stored in ECL code repository which is subdivided into modules
typically associated with a project or process. Each ECL attribute added to the
repository effectively extends the ECL language like adding a new word to a
dictionary, and attributes can be reused as part of multiple ECL queries and pro-
grams. With ECL a rich set of programming tools is provided including an
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interactive IDE similar to Visual C++, Eclipse and other code development
environments.

The ECL language includes extensive capabilities for data definition,filtering, data
management, and data transformation, and provides an extensive set of built-in
functions to operate on records in datasets which can include user-defined transfor-
mation functions. Transform functions operate on a single record or a pair of records
at a time depending on the operation. Built-in transform operations in the ECL
language which process through entire datasets include PROJECT, ITERATE,
ROLLUP, JOIN, COMBINE, FETCH, NORMALIZE, DENORMALIZE, and
PROCESS. The transform function defined for a JOIN operation for example receives
two records, one from each dataset being joined, and can perform any operations on
the fields in the pair of records, and returns an output record which can be completely
different from either of the input records. Example syntax for the JOIN operation from
the ECL Language Reference Manual is shown in Fig. 10.13. Other important data

Fig. 10.13 ECL sample syntax for JOIN operation
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operations included in ECL which operate across datasets and indexes include
TABLE, SORT, MERGE, MERGEJOIN, DEDUP, GROUP, APPLY, ASSERT,
AVE, BUILD, BUILDINDEX, CHOOSESETS, CORRELATION, COUNT,
COVARIANCE, DISTRIBUTE, DISTRIBUTION, ENTH, EXISTS, GRAPH,
HAVING, KEYDIFF, KEYPATCH, LIMIT, LOOP, MAX, MIN, NONEMPTY,
OUTPUT, PARSE, PIPE, PRELOAD, PULL, RANGE, REGROUP, SAMPLE,
SET, SOAPCALL, STEPPED, SUM, TOPN, UNGROUP, and VARIANCE.

The Thor system allows data transformation operations to be performed either
locally on each node independently in the cluster, or globally across all the nodes in
a cluster, which can be user-specified in the ECL language. Some operations such
as PROJECT for example are inherently local operations on the part of a distributed
file stored locally on a node. Others such as SORT can be performed either locally
or globally if needed. This is a significant difference from the MapReduce archi-
tecture in which Map and Reduce operations are only performed locally on the
input split assigned to the task. A local SORT operation in an HPCC cluster would
sort the records by the specified key in the file part on the local node, resulting in
the records being in sorted order on the local node, but not in full file order
spanning all nodes. In contrast, a global SORT operation would result in the full
distributed file being in sorted order by the specified key spanning all nodes. This
requires node to node data movement during the SORT operation. Figure 10.14
shows a sample ECL program using the LOCAL mode of operation which is the
equivalent of the sample PIG program for Hadoop shown in Fig. 10.8. Note the
explicit programmer control over distribution of data across nodes. The
colon-equals “:=” operator in an ECL program is read as “is defined as”. The only
action in this program is the OUTPUT statement, the other statements are
definitions.

An additional important capability provided in the ECL programming language
is support for natural language processing with PATTERN statements and the
built-in PARSE operation. PATTERN statements allow matching patterns includ-
ing regular expressions to be defined and used to parse information from
unstructured data such as raw text. PATTERN statements can be combined to
implement complex parsing operations or complete grammars from BNF

Fig. 10.14 ECL code example
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definitions. The PARSE operation operates across a dataset of records on a specific
field within a record, this field could be an entire line in a text file for example.
Using this capability of the ECL language is possible to implement parallel pro-
cessing form information extraction applications across document files including
XML-based documents or Web pages. The key benefits of ECL can be summarized
as follows:

• ECL incorporates transparent and implicit data parallelism regardless of the size
of the computing cluster and reduces the complexity of parallel programming
increasing the productivity of application developers.

• ECL enables implementation of data-intensive applications with huge volumes
of data previously thought to be intractable or infeasible. ECL was specifically
designed for manipulation of data and query processing. Order of magnitude
performance increases over other approaches are possible.

• ECL provides a comprehensive IDE and programming tools that provide a
highly-interactive environment for rapid development and implementation of
ECL applications.

• ECL is a powerful, high-level, parallel programming language ideal for
implementation of ETL, Information Retrieval, Information Extraction, and
other data-intensive applications.

• ECL is a mature and proven language but still evolving as new advancements in
parallel processing and data-intensive computing occur.

Hadoop Versus HPCC Comparison

Hadoop and HPCC can be compared directly since it is possible for both systems to
be executed on identical cluster hardware configurations. This permits head-to-head
system performance benchmarking using a standard workload or set of application
programs designed to test the parallel data processing capabilities of each system.
Currently the only standard benchmark available for data-intensive computing
platforms is the Terasort benchmark managed by an industry group led by
Microsoft and HP. The Terabyte sort has evolved to be the GraySort which mea-
sures the number of terabytes per minute that can be sorted on a platform which
allows clusters with any number of nodes to be utilized. However, in comparing the
effectiveness and equivalent cost/performance of systems, it is useful to run
benchmarks on identical system hardware configurations. A head-to-head com-
parison of the original Terabyte sort on a 400-node cluster will be presented here.
An additional method of comparing system platforms is a feature and functionality
comparison, which is a subjective evaluation based on factors determined by the
evaluator. Although such a comparison contains inherent bias, it is useful in
determining strengths and weaknesses of systems.
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Terabyte Sort Benchmark

The Terabyte sort benchmark has its roots in benchmark tests sorting conducted on
computer systems since the 1980s. More recently, a Web site originally sponsored
by Microsoft and one of its research scientists Jim Gray has conducted formal
competitions each year with the results presented at the SIGMOD (Special Interest
Group for Management of Data) conference sponsored by the ACM each year
(http://sortbenchmark.org). Several categories for sorting on systems exist including
the Terabyte sort which was to measure how fast a file of 1 Terabyte of data
formatted in 100 byte records (10,000,000 total records) could be sorted. Two
categories were allowed called Daytona (a standard commercial computer system
and software with no modifications) and Indy (a custom computer system with any
type of modification). No restrictions existed on the size of the system so the sorting
benchmark could be conducted on as large a system as desired. The current 2009
record holder for the Daytona category is Yahoo! using a Hadoop configuration
with 1460 nodes with 8 GB Ram per node, 8000 Map tasks, and 2700 Reduce tasks
which sorted 1 TB in 62 s [27]. In 2008 using 910 nodes, Yahoo! performed the
benchmark in 3 min 29 s. In 2008, LexisNexis using the HPCC architecture on
only a 400node system performed the Terabyte sort benchmark in 3 min 6 s. In
2009, LexisNexis again using only a 400-node configuration performed the
Terabyte sort benchmark in 102 s.

However, a fair and more logical comparison of the capability of data-intensive
computer system and software architectures using computing clusters would be to
conduct this benchmark on the same hardware configuration. Other factors should
also be evaluated such as the amount of code required to perform the benchmark
which is a strong indication of programmer productivity, which in itself is a sig-
nificant performance factor in the implementation of data-intensive computing
applications.

On August 8, 2009 a Terabyte Sort benchmark test was conducted on a
development configuration located at LexisNexis Risk Solutions offices in Boca
Raton, FL in conjunction with and verified by Lawrence Livermore National Labs
(LLNL). The test cluster included 400 processing nodes each with two local
300 MB SCSI disk drives, Dual Intel Xeon single core processors running at
3.00 GHz, 4 GB memory per node, all connected to a single Gigabit ethernet
switch with 1.4 TB/s throughput. Hadoop Release 0.19 was deployed to the cluster
and the standard Terasort benchmark written in Java included with the release was
used for the benchmark. Hadoop required 6 min 45 s to create the test data, and the
Terasort benchmark required a total of 25 min 28 s to complete the sorting test as
shown in Fig. 10.15. The HPCC system software deployed to the same platform
and using standard ECL required 2 min and 35 s to create the test data, and a total
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of 6 min and 27 s to complete the sorting test as shown in Fig. 10.16. Thus the
Hadoop implementation using Java running on the same hardware configuration
took 3.95 times longer than the HPCC implementation using ECL.

The Hadoop version of the benchmark used hand-tuned Java code including
custom TeraSort, TeraInputFormat and TeraOutputFormat classes with a total of
562 lines of code required for the sort. The HPCC system required only 10 lines of
ECL code for the sort, a 50-times reduction in the amount of code required.

Fig. 10.15 Hadoop terabyte sort benchmark results

Fig. 10.16 HPCC terabyte sort benchmark results
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Pig Versus ECL

Although many Hadoop installations implement applications directly in Java, the
Pig Latin language is now being used to increase programmer productivity and
further simplify the programming of data-intensive applications at Yahoo! and other
major users of Hadoop [25]. Google also added a high-level language for similar
reasons called Sawzall to its implementation of MapReduce to facilitate data
analysis and data mining [21]. The HPCC platform includes a high-level language
discussed previously which is analogous to Pig and Sawzall called ECL. ECL is the
base programming language used for applications on the HPCC platform even
though it is compiled into C++ for execution. When comparing the Hadoop and
HPCC platforms, it is useful to compare the features and functionality of these
high-level languages.

Both Pig and ECL are intrinsically parallel, supporting transparent
data-parallelism on the underlying platform. Pig and ECL are translated into pro-
grams that automatically process input data for a process in parallel with data
distributed across a cluster of nodes. Programmers of both languages do not need to
know the underlying cluster size or use this to accomplish data-parallel execution of
jobs. Both Pig and ECL are dataflow-oriented, but Pig is an imperative program-
ming language and ECL is a declarative programming language. A declarative
language allows programmers to focus on the data transformations required to solve
an application problem and hides the complexity of the underlying platform and
implementation details, reduces side effects, and facilitates compiler optimization of
the code and execution plan. An imperative programming language dictates the
control flow of the program which may not result in an ideal execution plan in a
parallel environment. Declarative programming languages allow the programmer to
specify “what” a program should accomplish, instead of “how” to accomplish it.
For more information, refer to the discussions of declarative (http://en.wikipedia.
org/wiki/Declarative_programming) and imperative (http://en.wikipedia.org/wiki/
Imperative_programming) programming languages on Wikipedia.

The source code for both Pig and ECL is compiled or translated into another
language—Pig source programs are translated into Java language MapReduce jobs
for execution and ECL programs are translated into C++ source code which is then
compiled into a DLL for execution. Pig programs are restricted to the MapReduce
architecture and HDFS of Hadoop, but ECL has no fixed framework other than the
DFS (Distributed File System) used for HPCC and therefore can be more flexible in
implementation of data operations. This is evident in two key areas: (1) ECL allows
operations to be either global or local, where standard MapReduce is restricted to
local operations only in both the Map and Reduce phases. Global operations pro-
cess the records in a dataset in order across all nodes and associated file parts in
sequence maintaining the records in sorted order as opposed to only the records
contained in each local node which may be important to the data processing pro-
cedure; (2) ECL has the flexibility to implement operations which can process more
than one record at a time such as its ITERATE operation which uses a sliding
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window and passes two records at a time to an associated transform function. This
allows inter-record field-by-field dependencies and decisions which are not avail-
able in Pig. For example the DISTINCT operation in Pig which is used to remove
duplicates does not allow this on a subset of fields. ECL provides both DEDUP and
ROLLUP operations which are usually preceded by a SORT and operate on
adjacent records in a sliding window mode and any condition relating to the field
contents of the left and right record of adjacent records can be used to determine if
the record is removed. ROLLUP allows a custom transformation to be applied to
the de-duplication process.

An important consideration of any software architecture for data is the under-
lying data model. Pig incorporates a very flexible nested data model which allows
non-atomic data types (atomic data types include numbers and strings) such as set,
map, and tuple to occur as fields of a table [28]. Tuples are sequences of fields, bags
are collections of tuples, and maps are a collection of data items where each data
item has a key with which it can be looked up. A data record within Pig is called a
relation which is an outer bag, the bag is a collection of tuples, each tuple is an
ordered set of fields, and a field is a piece of data. Relations are referenced by a
name assigned by a user. Types can be assigned by the user to each field, but if not
assigned will default to a bytearray and conversions are applied depending on the
context in which the field is used. The ECL data model also offers a nested data
structure using child datasets. A user-specified RECORD definition defines the
content of each record in a dataset which can contain fixed or variable length fields
or child datasets which in turn contain fields or child datasets etc. With this format
any type of data structure can be represented. ECL offers specific support for CSV
and XML formats in addition to flat file formats. Each field in a record has a
user-specified identifier and data type and an optional default value and optional
field modifiers such as MAXLENGTH that enhance type and use checking during
compilation. ECL will perform implicit casting and conversion depending on the
context in which a field is used, and explicit user casting is also supported. ECL
also allows in-line datasets allowing sample data to be easily defined and included
in the code for testing rather than separately in a file.

The Pig environment offers several programmer tools for development, execu-
tion, and debugging of Pig Latin programs (Pig Latin is the formal name for the
language, and the execution environment is called Pig, although both are commonly
referred to as Pig). Pig provides command line execution of scripts and an inter-
active shell called Grunt that allows you to execute individual Pig commands or
execute a Pig script. Pig programs can also be embedded in Java programs.
Although Pig does not provide a specific IDE for developing and executing PIG
programs, add-ins are available for several program editing environments including
Eclipse, Vim, and Textmate to perform syntax checking and highlighting [22].
PigPen is an Eclipse plug-in that provides program editing, an example data gen-
erator, and the capability to run a Pig script on a Hadoop cluster. The HPCC
platform provides an extensive set of tools for ECL development including a
comprehensive IDE called QueryBuilder which allows program editing, execution,
and interactive graph visualization for debugging and profiling ECL programs. The
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common code repository tree is displayed in QueryBuilder and tools are provided
for source control, accessing and searching the repository. ECL jobs can be laun-
ched to an HPCC environment or specific cluster, and execution can be monitored
directly from QueryBuilder. External tools are also provided including ECLWatch
which provides complete access to current and historical work units (jobs executed
in the HPCC environment are packaged into work units), queue management and
monitoring, execution graph visualization, distributed filesystem utility functions,
and system performance monitoring and analysis.

Although Pig Latin and the Pig execution environment provide a basic
high-level language environment for dataintensive processing and analysis and
increases the productivity of developers and users of the Hadoop MapReduce
environment, ECL is a significantly more comprehensive and mature language that
generates highly optimized code, offers more advanced capabilities in a robust,
proven, integrated data-intensive processing architecture. Table 10.1 provides a
feature to feature comparison between the Pig and ECL languages and their exe-
cution environments.

Architecture Comparison

Hadoop MapReduce and the LexisNexis HPCC platform are both scalable archi-
tectures directed towards dataintensive computing solutions. Each of these system
platforms has strengths and weaknesses and their overall effectiveness for any
application problem or domain is subjective in nature and can only be determined
through careful evaluation of application requirements versus the capabilities of the
solution. Hadoop is an open source platform which increases its flexibility and
adaptability to many problem domains since new capabilities can be readily added
by users adopting this technology. However, as with other open source platforms,
reliability and support can become issues when many different users are con-
tributing new code and changes to the system. Hadoop has found favor with many
large Web-oriented companies including Yahoo!, Facebook, and others where
data-intensive computing capabilities are critical to the success of their business.
A company called Cloudera was recently formed to provide training, support and
consulting services to the Hadoop user community and to provide packaged and
tested releases. Although many different application tools have been built on top of
the Hadoop platform like Pig, HBase, Hive, etc., these tools tend not to be
well-integrated offering different command shells, languages, and operating char-
acteristics that make it more difficult to combine capabilities in an effective manner.

However, Hadoop offers many advantages to potential users of open source
software including readily available online software distributions and documenta-
tion, easy installation, flexible configurations based on commodity hardware, an
execution environment based on a proven MapReduce computing paradigm, ability
to schedule jobs using a configurable number of Map and Reduce tasks, availability
of add-on capabilities such as Pig, HBase, and Hive to extend the capabilities of the
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Table 10.1 Pig versus ECL feature comparison

Language feature
or capability

Pig ECL

Language type Data-flow oriented, imperative, parallel
language for data-intensive computing.
All Pig statements perform actions in
sequentially ordered steps. Pig programs
define a sequence of actions on the data

Data-flow oriented, declarative,
non-procedural, parallel language for
data-intensive computing. Most ECL
statements are definitions of the desired
result which allows the execution plan to
be highly optimized by the compiler. ECL
actions such as OUTPUT cause execution
of the data flows to produce the result
defined by the ECL program

Complier Translated into a sequence of MapReduce
Java programs for execution on a Hadoop
Cluster. Runs as a client application

Compiled and optimized into C++ source
code which is compiled into DLL for
execution on an HPCC cluster. Runs as a
server application

User-defined
functions

Written in Java to perform custom
processing and transformations as needed
in Pig language statements. REGISTER is
used to register a JAR file so that UDFs
can be used

Processing functions or TRANSFORM
functions are written in ECL. ECL
supports inline C++ in functions and
external Services compiled into DLL
libraries written in any language

Macros Not supported Extensive support for ECL macros to
improve code reuse of common
procedures. Additional template language
for use in macros provides unique naming
and conditional capabilities

Data model Nested data model with named relations
to define data records. Relations can
include nested combinations of bags,
tuples, and fields. Atomic data types
include int, long, float, double, chararray,
bytearray, tuple, bag, and map. If types
not specified, default to bytearray then
converted during expressions evaluation
depending on the context as needed

Nested data model using child datasets.
Datasets contain fields or child datasets
containing fields or additional child
datasets. Record definitions describe the
fields in datasets and child datasets.
Indexes are special datasets supporting
keyed access to data. Data types can be
specified for fields in record definitions
and include Boolean, integer, real,
decimal, string, qstring, Unicode, data,
varstring, varunicode, and related
operators including set of (type), typeof
(expression) and recordof(dataset) and
ENUM (enumeration). Explicit type
casting is available and implicit type
casting may occur during evaluation of
expressions by ECL depending on the
context. Type transfer between types is
also supported. All datasets can have an
associated filter express to include only
records which meet the filter condition, in
ECL a filtered physical dataset is called a
recordset

(continued)
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Table 10.1 (continued)

Language feature
or capability

Pig ECL

Distribution of
data

Controlled by Hadoop MapReduce
architecture and HDFS, no explicit
programmer control provided.
PARALLEL allows number of Reduce
tasks to be specified. Local operations
only are supported, global operations
require custom Java MapReduce
programs

Explicit programmer control over
distribution of data across cluster using
DISTRIBUTE function. Helps avoid data
skew. ECL supports both local
(operations are performed on data local to
node) and global (operations performed
across nodes) modes

Operators Standard comparison operators; standard
arithmetic operators and modulus
division, Boolean operators AND, OR,
NOT; null operators (is null, is not null);
dereference operators for tuples and
maps; explicit cast operator; minus and
plus sign operators; matches operator

Supports arithmetic operators including
normal division, integer division, and
modulus division; bitwise operators for
AND, OR, and XOR; standard
comparison operators; Boolean operators
NOT, AND, OR; explicit cast operator;
minus and plus sign operators; set and
record set operators; string concatenation
operator; sort descending and ascending
operator; special operators IN,
BETWEEN, WITHIN

Conditional
expression
evaluation

The bincond operator is provided
(condition? true_value: false_value)

ECL includes an IF statement for single
expression conditional evaluation, and
MAP, CASE, CHOOSE, WHICH, and
REJECTED for multiple expression
evaluation. The ASSERT statement can
be used to test a condition across a
dataset. EXISTS can be used to determine
if records meeting the specified condition
exist in a dataset. ISVALID determines if
a field contains a valid value

Program loops No capability exists other than the
standard relation operations across a
dataset. FOREACH … GENERATE
provides nested capability to combine
specific relation operations

In addition to built-in data transform
functions, ECL provides LOOP and
GRAPH statements which allow looping
of dataset operations or iteration of a
specified process on a dataset until a
loopfilter condition is met or a loopcount
is satisfied

Indexes Not supported directly by Pig. HBase and
Hive provide indexed data capability for
Hadoop MapReduce which are accessible
through custom user-defined functions in
Pig

Indexes can be created on datasets to
support keyed access to data to improve
data processing performance and for use
on the Roxie data delivery engine for
query applications

Language
statement types

Grouped into relational operators,
diagnostic operators, UDF (user-defined
function) statements, Eval functions, and
load/store functions. The Grunt shell
offers additional interactive file
commands

Grouped into dataset, index and record
definitions, built-in functions to define
processing and dataflows, and actions
which trigger execution. Functions
include transform functions such as JOIN
which operate on data records, and
aggregation functions such as SUM.
Action statements result in execution
based on specified ECL definitions
describing the dataflows and results for a
process

(continued)
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Table 10.1 (continued)

Language feature
or capability

Pig ECL

External program
calls

PIG includes the STREAM statement to
send data to an external script or program.
The SHIP statement can be used to ship
program binaries, jar files, or data to the
Hadoop cluster compute nodes.
The DEFINE statement, with INPUT,
OUTPUT, SHIP, and CACHE clauses
allow functions and commands to be
associated with STREAM to access
external programs

ECL includes PIPE option on DATASET
and OUTPUT and a PIPE function to
execute external 3rd-party programs in
parallel on nodes across the cluster. Most
programs which receive an input file and
parameters can adapted to run in the
HPCC environment

External web
services access

Not supported directly by the Pig
language. User-defined functions written
in Java can provide this capability

Built-in ECL function SOAPCALL for
SOAP calls to access external Web
Services. An entire dataset can be
processed by a single SOAPCALL in an
ECL program

Data aggregation Implemented in Pig using the GROUP,
and FOREACH … GENERATE
statements performing EVAL functions
on fields. Built-in EVAL functions
include AVG, CONCAT, COUNT, DIFF,
ISEMPTY, MAX, MIN, SIZE, SUM,
TOKENIZE

Implemented in ECL using the TABLE
statement with group by fields specified
and an output record definition that
includes computed fields using
expressions with aggregation functions
performed across the specified
group. Built-in aggregation functions
which work across datasets or groups
include AVE, CORRELATION,
COUNT, COVARIANCE, MAX, MIN,
SUM, VARIANCE

Natural language
processing

The TOKENIZE statement splits a string
and outputs a bag of words. Otherwise no
direct language support for parsing and
other natural language processing.
User-defined functions are required

Includes PATTERN, RULE, TOKEN,
and DEFINE statements for defining
parsing patterns, rules, and grammars.
Patterns can include regular expression
definitions and user-defined validation
functions. The PARSE statement provides
both regular expression type parsing or
Tomita parsing capability and recursive
grammars. Special parsing syntax is
included specifically for XML data

Scientific function
support

Not supported directly by the Pig
language. Requires the definition and use
of a userdefined function

ECL provides built-in functions for ABS,
ACOS, ASIN, ATAN, ATAN2, COS,
COSH, EXP, LN, LOG, ROUND,
ROUNDUP,SIN, SINH, SQRT, TAN,
TANH

Hashing functions
for dataset
distribution

No explicit programmer control for
dataset distribution. PARALLEL option
on relational operations allows the
number of Reduce tasks to be specified

Hashing functions available for use with
the DISTRIBUTE statement include
HASH, HASH32 (32-bit FNV), HASH64
(64-bit FNV), HASHCRC, HASHMD5
(128-bit MD5)

(continued)
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Table 10.1 (continued)

Language feature
or capability

Pig ECL

Creating sample
datasets

The SAMPLE operation selects a random
data sample with a specified sample size

ECL provides ENTH which selects every
nth record of a dataset, SAMPLE which
provides the capability to select
non-overlapping samples on a specified
interval, CHOOSEN which selects the
first n records of a dataset and
CHOOSESETS which allows multiple
conditions to be specified and the number
of records that meet the condition or
optionally a number of records that meet
none of the conditions specified. The base
dataset for each of the ENTH, SAMPLE,
CHOOSEN, and CHOOSETS can have a
associated filter expression

Workflow
management

No language statements in Pig directly
affect Workflow. The Hadoop cluster
does allow Java MapReduce programs
access to specific workflow information
and scheduling options to manage
execution

Workflow Services in ECL include the
CHECKPOINT and PERSIST statements
allow the dataflow to be captured at
specific points in the execution of an ECL
program. If a program must be rerun
because of a cluster failure, it will resume
at last Checkpoint which is deleted after
completion. The PERSIST files are stored
permanently in the filesystem. If a job is
repeated, persisted steps are only
recalculated if the code has changed, or
any underlying data has changed. Other
workflow statements include FAILURE
to trap expression evaluation failures,
PRIORITY, RECOVERY, STORED,
SUCCESS, WHEN for processing events,
GLOBAL and INDEPENDENT

PIG relation operations

COGROUP The COGROUP operation is similar to
the JOIN operation and groups the data in
two or more relations (datasets) based on
common field values. COGROUP creates
a nested set of output tuples while JOIN
creates a flat set of output tuples. INNER
and OUTER joins are supported. Fields
from each relation are specified as the join
key. No support exists for conditional
processing other than field equality

In ECL, this is accomplished using the
DENORMALIZE function joining to
each dataset and adding all records
matching the join key to a new record
format with a child dataset for each child
file. The DENORMALIZE function is
similar to a JOIN and is used to form a
combined record out of a parent and any
number of children

CROSS Creates the cross product of two or more
relations (datasets)

In ECL the JOIN operation can be used to
create cross products using a join
condition that is always true

(continued)
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Table 10.1 (continued)

Language feature
or capability

Pig ECL

DISTINCT Removes duplicate tuples in a relation.
All fields in the tuple must match. The
tuples are sorted prior to this operation.
Cannot be used on a subset of fields.
A FOREACH … GENERATE statement
must be used to generate the fields prior to
a DISTINCT operation in this case

The ECL DEDUP statement compares
adjacent records to determine if a
specified conditional expression is met, in
which case the duplicate record is
dropped and the remaining record is
compared to the next record in a sliding
window manner. This provides a much
more flexible deduplication capability
than the Pig DISTINCT operation.
A SORT is required prior to a DEDUP
unless using the ALL option. Conditions
can use any expression and can reference
values from the left and right adjacent
records. DEDUP can use any subset of
fields

DUMP Displays the contents of a relation ECL provides an OUTPUT statement that
can either write files to the filesystem or
for display. Display files can be named
and are stored in the Workunit associated
with the job. Workunits are archived on a
management server in the HPCC platform

FILTER Selects tuples from a relation based on a
condition. Used to select the data you
want or conversely to filter out remove
the data you don’t want

Filter expressions can be used any time a
dataset or recordset is referenced in any
ECL statement with the filter expression
in parenthesis following the dataset name
as dataset_name (filter_ expression).
The ECL compiler optimizes filtering of
the data during execution based on the
combination of filtering expressions

ROREACH…
GENERATE

Generates data transformations based on
columns of data. This action can be used
for projection, aggregation, and
transformation, and can include other
operations in the generation clause such
as FILTER, DISTINCT, GROUP, etc.

Each ECL transform operation such as
PROJECT, JOIN, ROLLUP, etc. include
a TRANSFORM function which
implicitly provides the FOREACH …
GENERATE operation as records are
processed by the TRANSFORM function.
Depending on the function, the output
record of the transform can include fields
from the input and computed fields
selectively as needed and does not have to
be identical to the input record

GROUP Groups together the tuples in a single
relation that have the same group key
fields

The GROUP operation in ECL fragments
a dataset into a set of sets based on the
break criteria which is a list of fields or
expressions based on fields in the record
which function as the group by keys. This
allows aggregations and transform
operations such as ITERATE, SORT,
DEDUP, ROLLUP and others to occur
within defined subsets of the data as it
executes on each subset individually

(continued)
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Table 10.1 (continued)

Language feature
or capability

Pig ECL

JOIN Joins two or more relations based on
common field values. The JOIN operator
always performs an inner join. If one
relation is small and can be held in
memory, the “replicated” option can be
used to improve performance

The ECL JOIN operation works on two
datasets or a set of datasets. For two
datasets INNER, FULL OUTER,
LEFT OUTER, RIGHT OUTER,
LEFT ONLY and RIGHT ONLY joins
are permitted. For the set of datasets
JOIN, INNER, LEFT OUTER,
LEFT ONLY, and MOFN(min, max)
joins are permitted. Any type of
conditional expression referencing fields
in the datasets to be joined can be used as
a join condition. JOIN can be used in both
a global and local modes also provides
additional options for distribution
including HASH which distributes the
datasets by the specified join keys, and
LOOKUP which copies one dataset if
small to all nodes and is similar to the
“replicated” join feature of Pig. Joins can
also use keyed indexes to improve
performance and self-joins (joining the
same dataset to itself) is supported.
Additional join-type operations provided
by ECL include MERGEJOIN which
joins and merges in a single operation,
and smart stepping using STEPPED
which provides a method of doing n-ary
join/merge-join operations

LIMIT Used to limit the number of output tuples
in a relation. However, there is no
guarantee of which tuples will be output
unless preceded by an ORDER statement

The LIMIT function in ECL is to restrict
the output of a recordset resulting from
processing to a maximum number or
records, or to fail the operation if the limit
is exceeded. The CHOOSEN function can
be use to select a specified number of
records in a dataset

LOAD Loads data from the filesystem Since ECL is declarative, the equivalent
of the Pig LOAD operation is a
DATASET definition which also includes
a RECORD definition. The examples
shown in Figs. 10.8 and 10.14
demonstrate this difference

ORDER Sorts a relation based on one or more
fields. Both ascending and descending
sorts are supported. Relations will be in
order for a DUMP, but if the result of an
ORDER is further processed by another
relation operation, there is no guarantee
the results will be processed in the order
specified. Relations are considered to be
unordered in Pig

The ECL SORT function sorts a dataset
according to a list of expressions or key
fields. The SORT can be global in which
the dataset will be ordered across the
nodes in a cluster, or local in which the
dataset will be ordered on each node in
the cluster individually. For grouped
datasets, the SORT applies to each group
individually. Sorting operations can be
performed using a quicksort,
insertionsort, or heapsort, and can be
stable or unstable for duplicates

(continued)
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Table 10.1 (continued)

Language feature
or capability

Pig ECL

SPLIT Partitions a relation into two or more
relations

Since ECL is declarative, partitions are
created by simply specifying filter
expressions on the base dataset. Example
for dataset DS1, you could define DS2
: = DS1(filter_expression _1), DS3
: = DS1(filter_ expression _2), etc.

STORE Stores data to the file system The OUTPUT function in ECL is used to
write a dataset to the filesystem or to store
it in the workunit for display. Output files
can be compressed using LZW
compression. Variations of OUTPUT
support flat file, CSV, and XML formats.
Output can also be written to a PIPE as
the standard input to the command
specified for the PIPE operation. Output
can write not only the filesystem on the
local cluster, but to any cluster filesystem
in the HPCC processing environment

UNION The UNION operator is used to merge the
contents of two or more relations into a
single relation. Order of tuples is not
preserved, both input and output relations
are interpreted as an unordered bag of
tuples. Does not eliminate duplicate
tuples

The MERGE function returns a single
dataset or index containing all the datasets
or indexes specified in a list of datasets.
Datasets must have the same record
format. A SORTED option allows the
merge to be ordered according to a field
list that specifies the sort order.
A DEDUP option causes only records
with unique keys to be included.
The REGROUP function allows multiple
datasets which have been grouped using
the same fields to be merged into a single
dataset

Additional ECL
transformation
functions

ECL includes many additional functions
providing important data transformations
that are not available in Pig without
implementing custom user-defined
processing

COMBINE Not available The COMBINE function combines two
datasets into a single dataset on a
record-by-record basis in the order in
which they appear in each. Records from
each are passed to the specified transform
function, and the record format of the
output dataset can contain selected fields
from both input datasets and additional
fields as needed

(continued)
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Table 10.1 (continued)

Language feature
or capability

Pig ECL

FETCH Not available The FETCH function processes through
all the records in an index dataset in the
order specified by the index fetching the
corresponding record from the base
dataset and passing it through a specified
transform function to create a new dataset

ITERATE Not available The ITERATE function processes
through all records in a dataset one pair of
records at a time using a sliding window
method performing the transform record
on each pair in turn. If the dataset is
grouped, the ITERATE processes each
group individually. The ITERATE
function is useful in propagating
information and calculating new
information such as running totals since it
allows inter-record dependencies to be
considered

NORMALIZE Use of FOREACH … GENERATE is
required

The NORMALIZE function normalizes
child records out of a dataset into a
separate dataset. The associated transform
and output record format does not have to
be the same as the input

PROCESS Not available The PROCESS function is similar to
ITERATE and processes through all
records in a dataset one pair of records at
a time (left record, right record) using a
sliding window method performing the
associated transform function on each pair
of records in turn. A second transform
function is also specified that constructs
the right record for the next comparison

PROJECT Use of FOREACH … GENERATE is
required

The PROJECT processes through all the
records in a dataset performing the
specified transform on each record in turn

ROLL UP Not available The ROLLUP function is similar to the
DEDUP function but includes a specified
transform function to process each pair of
duplicate records. This allows you to
retrieve and use valuable information
from the duplicate record before it is
thrown away. Depending on how the
ROLLUP is defined, either the left or
right record passed to the transform can
be retained, or any mixture of data from
both

(continued)
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Table 10.1 (continued)

Language feature
or capability

Pig ECL

Diagnostic
operators

Pig includes diagnostic operators to aid in
the visualization of data structures.
The DESCRIBE operator returns the
schema of a relation. The EXPLAIN
operator allows you to review the logical,
physical, and MapReduce execution plans
that are used to compute an operation in a
Pig script. The ILLUSTRATE operator
displays a step-by-step execution of a
sequence of statements allow you to see
how data is transformed through a
sequence of Pig Latin statements
essentially dumping the output of each
statement in the script

The DISTRIBUTION action produces a
crosstab report in XML format indicating
how many records there are in a dataset
for each value in each field in the dataset
to aid in the analysis of data distribution
in order to avoid skews. The
QueryBuilder and ECLWatch program
development environment tools provide a
complete visualization tool for analyzing,
debugging, and profiling execution of
ECL jobs. During the execution of a job,
the ECL graph can be viewed which
shows the execution plan, dataflows as
they occur, and the results of each
processing step. Users can double click on
the graph to drill down for additional
information. An example of the graph
corresponding to the ECL code shown in
Fig. 10.14 is shown in Fig. 10.17

Fig. 10.17 ECL code examples execution graph
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base platform and improve programmer productivity, and a rapidly expanding user
community committed to open source. This has resulted in dramatic growth and
acceptance of the Hadoop platform and its implementation to support data-intensive
computing applications.

The LexisNexis HPCC platform is an integrated set of systems, software, and
other architectural components designed to provide data-intensive computing
capabilities from raw data processing and ETL applications, to high-performance
query processing and data mining. The ECL language was specifically implemented
to provide a high-level dataflow parallel processing language that is consistent
across all system components and has extensive capabilities developed and opti-
mized over a period of almost 10 years. The LexisNexis HPCC is a mature, reli-
able, well-proven, commercially supported system platform used in government
installations, research labs, and commercial enterprises. The comparison of the Pig
Latin language and execution system available on the Hadoop MapReduce platform
to the ECL language used on the HPCC platform presented here reveals that ECL
provides significantly more advanced capabilities and functionality without the
need for extensive user-defined functions written in another language or resorting to
a native MapReduce application coded in Java.

The following comparison of overall features provided by the Hadoop and
HPCC system architectures reveals that the HPCC architecture offers a higher level
of integration of system components, an execution environment not limited by a
specific computing paradigm such as MapReduce, flexible configurations and
optimized processing environments which can provide data-intensive applications
from data analysis to data warehousing and high performance online query pro-
cessing, and high programmer productivity utilizing the ECL programming lan-
guage and tools. Table 10.2 provides a summary comparison of the key features of
the hardware and software architectures of both system platforms based on the
analysis of each architecture presented in this paper.

Table 10.2 Hadoop versus HPCC feature comparison

Architecture
characteristics

Hadoop HPCC

Hardware
type

Processing clusters using commodity
off-theshelf (COTS) hardware.
Typically rack-mounted blade servers
with Intel or AMD processors, local
memory and disk connected to a
high-speed communications switch
(usually Gigabit Ethernet
connections) or hierarchy of
communications switches depending
on the total size of the cluster.
Clusters are usually homogenous (all
processors are configured identically),
but this is not a requirement

Same

(continued)
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Table 10.2 (continued)

Architecture
characteristics

Hadoop HPCC

Operating
system

Unix/Linux Linux/Windows. Typically Linux is
used due to the additional cost of
licensing Windows

System
configurations

Hadoop system software implements
cluster with MapReduce processing
paradigm. The cluster also functions
as a distributed file system running
HDFS. Other capabilities are layered
on top of the Hadoop MapReduce and
HDFS system software including
HBase, Hive, etc.

HPCC clusters can be implemented in
two configurations: Data Refinery
(Thor) is analogous to the Hadoop
MapReduce Cluster; Data Delivery
Engine (Roxie) provides separate
highperformance online query
processing and data warehouse
capabilities. Both configurations also
function as distributed file systems
but are implemented differently based
on the intended use to improve
performance. HPCC environments
typically consist of multiple clusters
of both configuration types. Although
filesystems on each cluster are
independent, a cluster can access files
the filesystem on any other cluster in
the same environment

Licensing
cost

None. Hadoop is an open source
platform and can be freely
downloaded and used

License fees currently depend on size
and type of system configurations.
Does not preclude a future open
source offering

Core software Core software includes the operating
system and Hadoop MapReduce
cluster and HDFS software Each
slave node includes a Tasktracker
service and Datanode service.
A master node includes a Jobtracker
service which can be configured as a
separate hardware node or run on one
of the slave hardware nodes.
Likewise, for HDFS, a master
Namenode service is also required to
provide name services and can be run
on one of the slave nodes or a
separate node

For a Thor configuration, core
software includes the operating
system and various services installed
on each node of the cluster to provide
job execution and distributed file
system access. A separate server
called the Dali server provides
filesystem name services and
manages Workunits for jobs in the
HPCC environment. A Thor cluster is
also configured with a master node
and multiple slave nodes. A Roxie
cluster is a peercoupled cluster where
each node runs Server and Agent
tasks for query execution and key and
file processing. The filesystem on the
Roxie cluster uses a distributed
B + Tree to store index and data and
provides keyed access to the data.
Additional middleware components
are required for operation of Thor and
Roxie clusters

(continued)
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Table 10.2 (continued)

Language
feature
component or
capability

Pig ECL

Language
feature
component or
capability

Pig ECL

Middleware
components

None. Client software can submit
jobs directly to the Jobtracker on the
master node of the cluster.
A Hadoop Workflow Scheduler
(HWS) which will run as a server is
currently under development to
manage jobs which require multiple
MapReduce sequences

Middleware components include an
ECL code repository implemented
on a MySQL server, and ECL server
for compiling of ECL programs and
queries, an ECLAgent acting on
behalf of a client program to manage
the execution of a job on a Thor
cluster, an ESPServer (Enterpise
Services Platform) providing
authentication, logging, security,
and other services for the job
execution and Web services
environment, and the Dali server
which functions as the system data
store for job workunit information
and provides naming services for the
distributed filesystems. Flexibility
exists for running the middleware
components on one to several nodes.
Multiple copies of these servers can
provide redundancy and improve
performance

System tool The dfsadmin tool provides
information about the state of the
filesystem; fsck is a utility for
checking the health of files in HDFS;
datanode block scanner periodically
verifies all the blocks stored on a
datanode; balancer re-distributes
blocks from over-utilized datanodes
to underutilized datanodes as
needed. The MapReduce Web UI
includes the JobTracker page which
displays information about running
and completed jobs, drilling down
on a specific job displays detailed
information about the job. There is
also a Tasks page that displays info
about Map and Reduce tasks

HPCC includes a suite of client and
operations tools for managing,
maintaining, and monitoring HPCC
configurations and environments.
These include QueryBuilder the
program development environment,
an Attribute Migration Tool,
Distributed File Utility (DFU), an
Environment Configuration Utility,
Roxie Configuration Utility.
Command line versions are also
available. ECLWatch is a Web
based utility program for monitoring
the HPCC environment and includes
queue management, distributed file
system management, job
monitoring, and system performance
monitoring tools. Additional tools
are provided through Web services
interfaces

(continued)
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Table 10.2 (continued)

Language
feature
component or
capability

Pig ECL

Ease of
deployment

Assisted by online tools provided by
Cloudera utilizing Wizards.
Requires a manual RPM deployment

Environment configuration tool.
A Genesis servier provides a central
repository to distribute OS level
settings, services, and binaries to all
netbooted nodes in a configuration

Distributed file
system

Block-oriented, uses large 64 MB or
128 MB blocks in most
installations. Blocks are stored as
independent units/local files in the
local Unix/Linux filesystem for the
node. Metadata information for
blocks is stored in a separate file for
each block. Master/Slave
architecture with a single Namenode
to provide name services and block
mapping and multiple Datanodes.
Files are divided into blocks and
spread across nodes in the cluster.
Multiple local files (1 containing the
block, 1 containing metadata) for
each logical block stored on a node
are required to represent a
distributed file

The Thor DFS is record-oriented,
uses local Linux filesystem to store
file parts. Files are initially loaded
(Sprayed) across nodes and each
node has a single file part which can
be empty for each distributed file.
Files are divided on even
record/document boundaries
specified by the user. Master/Slave
architecture with name services and
file mapping information stored on a
separate server. Only one local file
per node required to represent a
distributed file. Read/write access is
supported between clusters
configured in the same environment.
Utilizing special adaptors allows
files from external databases such as
MySQL to be accessed, allowing
transactional data to be integrated
with DFS data and incorporated into
batch jobs. The Roxie DFS utilizes
distributed B + Tree index files
containing key information and data
stored in local files on each node

Fault resilience HDFS stores multiple replicas
(userspecified) of data blocks on
other nodes (configurable) to protect
against disk and node failure with
automatic recovery. MapReduce
architecture includes speculative
execution, when a slow or failed
Map task is detected, additional Map
tasks are started to recover from
node failures

The DFS for Thor and Roxie stores
replicas of file parts on other nodes
(configurable) to protect against disk
and node failure. Thor system offers
either automatic or manual node
swap and warm start following a
node failure, jobs are restarted from
last checkpoint or persist. Replicas
are automatically used while
copying data to the new node. Roxie
system continues running following
a node failure with a reduced
number of nodes

(continued)
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Table 10.2 (continued)

Language
feature
component or
capability

Pig ECL

Job execution
environment

Uses MapReduce processing
paradigm with input data in
key-value pairs. Master/Slave
processing architecture.
A Jobtracker runs on the master
node, and a TaskTracker runs on
each of the slave nodes. Map tasks
are assigned to input splits of the
input file, usually 1 per block. The
number of Reduce tasks is assigned
by the user. Map processing is local
to assigned node. A shuffle and sort
operation is done following Map
phase to distribute and sort
key-value pairs to Reduce tasks
based on key regions so that pairs
with identical keys are processed by
same Reduce tasks. Multiple
MapReduce processing steps are
typically required for most
procedures and must be sequenced
and chained separately by the user or
language such as Pig

Thor utilizes a Master/Slave
processing architecture. Processing
steps defined in an ECL job can
specify local (data processed
separately on each node) or global
(data is processed across all nodes)
operation. Multiple processing steps
for a procedure are executed
automatically as part of a single job
based on an optimized execution
graph for a compiled ECL dataflow
program. A single Thor cluster can
be configured to run multiple jobs
concurrently reducing latency if
adequate CPU and memory
resources are available on each
node. Middleware components
including an ECLAgent,
ECLServer, and DaliServer provide
the client interface and manage
execution of the job which is
packaged as a Workunit. Roxie
utilizes a multiple Server/Agent
architecture to process ECL
programs accessed by queries using
Server tasks acting as a manager for
each query and multiple Agent tasks
as needed to retrieve and process
data for the query

Programming
languages

Hadoop MapReduce jobs are
usually written in Java. Other
languages are supported through a
streaming or pipe interface. Other
processing environments execute on
top of Hadoop MapReduce such as
HBase and Hive which have their
own language interface. The Pig
Latin language and Pig execution
environment provides a high-level
dataflow language which is then
mapped into multiple Java
MapReduce jobs

ECL is the primary programming
language for the HPCC
environment. ECL is compiled into
optimized C++ which is then
compiled into DLLs for execution
on the Thor and Roxie platforms.
ECL can include inline C++ code
encapsulated in functions. External
services can be written in any
language and compiled into shared
libraries of functions callable from
ECL. A Pipe interface allows
execution of external programs
written in any language to be
incorporated into jobs

(continued)
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Table 10.2 (continued)

Language
feature
component or
capability

Pig ECL

Integrated
program
development
environment

Hadoop MapReduce utilizes the
Java programming language and
there are several excellent program
development environments for Java
including Netbeans and Eclipse
which offer plug-ins for access to
Hadoop clusters. The Pig
environment does not have its own
IDE, but instead uses Eclipse and
other editing environments for
syntax checking. A PigPen add-in
for Eclipse provides access to
Hadoop Clusters to run Pig
programs and additional
development capabilities

The HPPC platform is provided with
QueryBuilder, a comprehensive IDE
specifically for the ECL language.
QueryBuilder provides access to
shared source code repositories and
provides a complete development
and testing environment for
developing ECL dataflow programs.
Access to the ECLWatch tool is
built-in, allowing developers to
watch job graphs as they are
executing. Access to current and
historical job Workunits is provided
allowing developers to easily
compare results from one job to the
next during development cycles

Database
capabilities

The basic Hadoop MapReduce
system does not provide any keyed
access indexed database capabilities.
An add-on system for Hadoop called
HBase provides a columnoriented
database capability with keyed
access. A custom script language
and Java interface is provided.
Access to HBase is not directly
supported by the Pig environment
and requires user-defined functions
or separate MapReduce procedures

The HPCC platform includes the
capability to build multi-key,
multivariate indexes on DFS files.
These indexes can be used to
improve performance and provide
keyed access for batch jobs on a
Thor system, or be used to support
development of queries deployed to
Roxie systems. Keyed access to data
is supported directly in the ECL
language

Online query
and data
warehouse
capabilities

The basic Hadoop MapReduce
system does not provide any data
warehouse capabilities. An add-on
system for Hadoop called Hive
provides data warehouse capabilities
and allows HDFS data to be loaded
into tables and accessed with an
SQL-like language. Access to Hive
is not directly supported by the Pig
environment and requires
userdefined functions or separate
MapReduce procedures

The Roxie system configuration in
the HPCC platform is specifically
designed to provide data warehouse
capabilities for structured queries
and data analysis applications.
Roxie is a highperformance platform
capable of supporting thousands of
users and providing sub-second
response time depending on the
application

(continued)
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Conclusion

As a result of the continuing information explosion, many organizations are
drowning in data and the data gap or inability to process this information and use it
effectively is increasing at an alarming rate. Data-intensive computing represents a
new computing paradigm which can address the data gap and allow government
and commercial organizations and research environments to process massive
amounts of data and implement applications previously thought to be impractical or
infeasible. Some organizations with foresight recognized early that new

Table 10.2 (continued)

Language
feature
component or
capability

Pig ECL

Scalability 1 to thousands of nodes. Yahoo! has
production clusters as large as 4000
nodes

1 to several thousand nodes. In
practice, HPCC configurations
require significantly fewer nodes to
provide the same processing
performance as a Hadoop cluster.
Sizing of clusters may depend
however on the overall storage
requirements for the distributed file
system

Performance Currently the only available
standard performance benchmarks
are the sort benchmarks sponsored
by http://sortbenchmark.org. Yahoo!
has demonstrated sorting 1 TB on
1460 nodes in 62 s, 100 TB using
3452 nodes in 173 min, and 1 PB
using 3658 nodes in 975 min

The HPPC platform has
demonstrated sorting 1 TB on a
high-performance 400-node system
in 102 s. In a recent head-to-head
benchmark versus Hadoop on a
another 400-node system conducted
with LLNL, The HPPC performance
was 6 min 27 s and the Hadoop
performance was 25 min 28 s. This
result on the same hardware
configuration showed that HPCC
was 3.95 times faster than Hadoop
for this benchmark

Training Hadoop training is offered through
Cloudera. Both beginning and
advanced classes are provided. The
advanced class includes Hadoop
add-ons including HBase and Pig.
Cloudera also provides a VMWare
based learning environment which
can be used on a standard laptop or
PC. Online tutorials are also
available

Basic and advanced training classes
on ECL programming are offered
monthly in several locations or can
be conducted on customer premises.
A system administration class is also
offered and scheduled as needed.
A CD with a complete HPCC and
ECL learning environment which
can be used on a single PC or laptop
is also available
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parallel-processing architectures were needed including Google who initially
developed the MapReduce architecture and LexisNexis who developed the HPCC
architecture. More recently the Hadoop platform has emerged as an open source
alternative for the MapReduce approach. Hadoop has gained momentum quickly,
and additional add-on capabilities to enhance the platform have been developed
including a dataflow programming language and execution environment called Pig.
These architectures and their relative strengths and weaknesses are described in this
paper, and a direct comparison of the Pig language of Hadoop to the ECL language
used with the LexisNexis HPCC platform was presented.

The suitability of a processing platform and architecture for an organization and
its application requirements can only be determined after careful evaluation of
available alternatives. Many organizations have embraced open source platforms
while others prefer a commercially developed and supported platform by an
established industry leader. The Hadoop MapReduce platform is now being used
successfully at many so-called Web companies whose data encompasses massive
amounts of Web information as its data source. The LexisNexis HPCC platform is
at the heart of a premier information services provider and industry leader, and has
been adopted by government agencies, commercial organizations, and research
laboratories because of its high-performance cost-effective implementation.
Existing HPCC applications include raw data processing, ETL, and linking of
enormous amounts of data to support online information services such as
LexisNexis and industry-leading information search applications such as Accurint;
entity extraction and entity resolution of unstructured and semi-structured data such
as Web documents to support information extraction; statistical analysis of Web
logs for security applications such as intrusion detection; online analytical pro-
cessing to support business intelligence systems (BIS); and data analysis of massive
datasets in educational and research environments and by state and federal gov-
ernment agencies. There are many tradeoffs in making the right decision in
choosing a new computer systems architecture, and often the best approach is to
conduct a specific benchmark test with a customer application to determine the
overall system effectiveness and performance. The relative cost-performance
characteristics of the system in additional to suitability, flexibility, scalability,
footprint, and power consumption factors which impact the total cost of ownership
(TCO) must be considered.

A comparison of the Hadoop MapReduce architecture to the HPCC architecture
in this paper reveals many similarities between the platforms including the use of a
high-level dataflow-oriented programming language to implement transparent
data-parallel processing. The advantages of choosing a LexisNexis HPCC platform
include: (1) an architecture which implements a highly integrated system envi-
ronment with capabilities from raw data processing to high-performance queries
and data analysis using a common language; (2) an architecture which provides
equivalent performance at a much lower system cost based on the number of
processing nodes required as demonstrated with the Terabyte Sort benchmark
where the HPCC platform was almost 4 times faster than Hadoop running on the
same hardware resulting in significantly lower total cost of ownership (TCO); (3) an
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architecture which has been proven to be stable and reliable on high-performance
data processing production applications for varied organizations over a 10-year
period; (4) an architecture that uses a dataflow programming language (ECL) with
extensive built-in capabilities for data-parallel processing which allows complex
operations without the need for extensive user-defined functions and automatically
optimizes execution graphs with hundreds of processing steps into single efficient
workunits; (5) an architecture with a high-level of fault resilience and language
capabilities which reduce the need for re-processing in case of system failures; and
(6) an architecture which is available from and supported by a well-known leader in
information services and risk solutions (LexisNexis) who is part of one of the
world’s largest publishers of information ReedElsevier.
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Chapter 11
Graph Processing with Massive Datasets:
A Kel Primer

David Bayliss and Flavio Villanustre

Introduction

Graph theory and the study of networks can be traced back to Leonhard Euler’s
original paper on the Seven Bridges of Konigsberg, in 1736 [1]. Although the
mathematical foundations to understanding graphs have been laid out over the last
few centuries [2–4], it wasn’t until recently, with the advent of modern computers,
that parsing and analysis of large-scale graphs became tractable [5]. In the last
decade, graph theory gained mainstream popularity following the adoption of graph
models for new applications domains, including social networks and the web of
data, both generating extremely large and dynamic graphs that cannot be adequately
handled by legacy graph management applications [6].

Two data models and methodologies are prevalent to store and process graphs:
graph databases using a property graph data model, storing graphs in index-free
adjacency representations and using real-time path traversal as a querying
methodology; and more traditional relational databases that use relational data
models, store representations of graphs in rows and use real-time joins to perform
queries [7].

Unfortunately, these two approaches are not exempt from drawbacks, particu-
larly when graph scales exceed from millions of nodes and billions of edges, which
is not uncommon in many problem domains. Exploring hundreds of thousands of
edges and nodes in real-time in graph database can be very time consuming, unless
the entire graph can be stored in RAM in a unified memory architecture. Relational
databases, with the potential for the combinatorial explosion of intermediate can-
didate sets resulting from joins are in no better position to handle large graphs; to
cope with this issue, alternative approaches using summarization have been pro-
posed, with varying degrees of success [8].
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More recently, other computational models for graph processing have arisen,
including the storage of graphs as adjacency matrices and modeling graph algo-
rithms as a composition of linear algebra operations, and even BSP models such as
Map/Reduce and Pregel [9].

In this article, we’ll cover a novel methodology to store and process very
large-scale graphs, using a distributed architecture and a high level denotational
programming model that can efficiently handle hybrid storage (hard-disk/
flash/RAM), partitioning and parallel and distributed execution, and still exhibit
adequate real-time performance at query processing.

Motivation

Social Network Analysis (SNA) is the use of Network Theory to analyze Social
Networks [10]. Its relevance has increased significantly partly due to the abundance
of data that can be used to identify networks of individuals and the indication of
correlation between individual behavior and the surrounding network of relation-
ships [11, 12]. Moreover, Social Network Analysis has demonstrated usefulness
across a broad range of disciplines, which has driven numerous research initiatives
and practical applications, from law enforcement to modelling of consumer
behavior [13]. Unfortunately, the size of the generated graph in many of these
networks can be substantially larger than what it can fit in RAM in a single
computer, creating challenges to the traditional approaches that graph databases,
using index-free adjacency representations, utilize. Partitioning these graphs to
scale out graph databases is complex and can be quite inefficient due to the sig-
nificant increase of internode communication and consequent processing latencies
and/or the need to create redundant sections of the graph to decrease the amount of
network traffic [14, 15]. The use of relational models to process un-partitioned and
partitioned graphs poses other challenges, mainly due to the exponential growth in
intermediate results as a consequence of the very large self-join operations required
to parse the table-based representation of these networks.

Besides the tractability aspect of the processing of very large graphs, there is the
complexity behind expressing the algorithms needed to perform the actual parsing,
matching, segmentation or metric calculation. Efficient graph algorithms are
non-trivial, and require deep knowledge of graph theory, computer architecture,
algorithms and data structures, which severely limits in practice the number of
people that can perform this analysis. In this article, we will describe both, a
systems architecture to process large-scale graphs and a novel declarative pro-
gramming model that can be used for effective Social Network Analysis in very
large graphs.

308 11 Graph Processing with Massive Datasets: A Kel Primer



Background

The Open Source HPCC Systems Platform Architecture

The Open Source HPCC Systems platform is a distributed data intensive computing
platform originally developed by LexisNexis circa 2000 [16]. The platform utilizes
a cluster of commodity nodes, each consisting of one or more x86-64 processors,
local RAM, local persistent storage (Hard Drives, SSD) and an IP based inter-
connect, and runs as a user-space application on the GNU Linux Operating System.
Data is usually partitioned and distributed across all the nodes and the platform
parallelizes the execution of data parallel algorithms across the entire cluster. There
are two distinct components in this platform: a batch oriented data processing
system called Thor and a real-time data retrieval and analytics system called Roxie;
both of these components are programmed using a declarative dataflow language
called ECL. Data transformations and data queries are declaratively expressed using
ECL, which is compiled into C++ and natively executed by the platform.
Parallelism, partitioning and hardware architecture are all abstracted out from the
data analyst perspective, who can express algorithms in terms of operations over
data records. Different from imperative programming paradigms, control-flow is
implicitly determined by the data dependencies, rather than by direct indication by
the programmer, increasing the overall programming efficiency and code suc-
cinctness, and minimizing the opportunity for bugs.

Before ECL is compiled, a compiler parses the declarations, and an optimizer
identifies opportunities for improved execution time efficiencies leveraging the fact
that the declarative nature of ECL gives the optimizer the ability to more easily
comprehend the ultimate goal of the programmer.

KEL—Knowledge Engineering Language
for Graph Problems

Even though ECL is a high level data oriented language, it can still be considered
low-level from the perspective of an analyst operating at a Social Graph level.
While manipulating graphs, the programmer is concerned with entities and asso-
ciations rather than with specific data records and even simple operations on graphs
can require multiple steps when approached at a low data level. To increase pro-
grammers’ efficiencies, one of the authors designed a new graph oriented declar-
ative programming language called KEL (Knowledge Engineering Language). In a
way similar to how ECL abstracts out underlying details of system architecture,
data partitioning, parallel execution and low-level data structures, KEL detaches the
analyst from the details of data layouts and data operations, focusing on the graph
itself. In ECL, data records are first class citizens of the language; in KEL, entities
and associations are the first class citizens over which algorithms are built.
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KEL, like ECL, is a compiled language, but KEL compiles into ECL, which can
then be optimized and compiled into C++ utilizing the standard machinery available
in the HPCC Systems platform. By stacking abstractions, code reuse is maximized
and the benefits already built into the underlying layers can be leveraged by the
upper ones. More important, improvements to any of the bottom layers instantly
benefit every upper layer relying on it.

KEL—A Primer

The basic premise underlying KEL is that there is an important distinction between
a “Graph Language” and a “language for solving graph problems”. The purpose of
this section is to detail this distinction and then outline the proposed features of
KEL that would enable it to claim the title of “Language to Solve Graph Problems”.

The first assertion that underlies KEL is that most ‘graph problems’ are not
themselves graph problems but are problems which are considered to be isomorphic
to a graph problem. Typically one has real world data about real world entities and
perhaps information regarding potential associations between those entities. The
real problem of concern is defining further information based upon this real world
information. Therefore before one really has a ‘graph’ problem to solve one is
actually performing two or three separate mappings a priori. Firstly the world view
that is of interest is mapped onto a data model (or ontology). Then all of the real
world data is mapped into that data structure. Finally the ‘important question’ that is
of interest is mapped into a query against that data structure.

Even once the real world problem has been mapped into a ‘pure graph’ problem
there are still important decisions to be made prior to encoding in the ‘graph
language’. Even the simplest of graph queries, such as “find the shortest path
between two nodes” yield themselves to a number of different algorithms and the
best algorithm based upon the data model and the data being queried has to be
selected. Finally that algorithm can be encoded in the “Graph Language” and then
executed. A good graph language will have isolated the graph programmer from the
vagaries of the underlying hardware; a poorer one may not have.

The real picture is therefore shown in Fig. 11.1.
Some of the arrows have been given letter labels because exactly what occurs in

there is open to discussion:
Arrow A: In a language such as the “Semantic Graph Query Language” pro-

posed by Ian Kaplan of LLNL the language is composed of low level primitives;
therefore if a “depth first search” is required then someone has to code that search
up in terms of the underlying data model. If the Graph Language in question has the
facility to encapsulate query segments then that code may be re-usable; provided
the data model doesn’t change. Of course the query writer still has to know which
libraries to use in which situation. Further it is the quality of the encoding of these
libraries that will drive performance.
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Arrow B: The performance of the query is going to hinge largely upon the
mapping from the graphical primitives to the underlying machine. At a simple level
this is driven by whether or not the primitives have easily executed machine
equivalents. Rather more subtly it also hinges upon whether or not the primitives
allow the algorithms of arrow ‘A’ to be readily expressed. If the graph algorithm
writer had to use long sequences of graph primitives to express a function that could
have been coded easily outside of a graph language then a large amount of inef-
ficiency has been introduced. In a worst case scenario a larger number of inefficient
graph primitives will have replaced a single efficient primitive in some other
language.

Arrow R: Of course the performance of the query will also be driven by the
efficiency of the run time systems that are available on the target machine. The
machine architecture including the availability of memory, processors and threading
will also drive the performance of the query.

Whilst fully acknowledging, and offering innovative solutions to each of the
three arrows above, the driving distinctive behind KEL is the belief that none of
them are quite as critical to the ultimate efficiency of programmer and processor as
the selection of data model and the encoding of the real world problem as a
graphical problem. The reason is simple: many graph algorithms are combinatory or
worse in depth of the tree being traversed. Thus any data model or algorithm that
increases the amount of tree walking being done catastrophically degrades the
performance of the system. Similarly any modeling method which increases the
branching factor of each node will swamp any linear performance gain from the
underlying machinery. Conversely any data model or algorithm that manages to
decrease the walk depth or branching factor will achieve performance gains well
beyond a linear speed up.

The second driving reason for believing that having the real world mapping
close to the heart of the language is that it is an area in which real world devel-
opment will otherwise do the opposite of that which is needful. The data model has

Real World Ques on?

Real World Data

Abstract Graph Query

Query as Graphical 
Primi ves 

Data Model or Ontology Execu ng Code
ET

Analyst Level Encoding
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B

R

Fig. 11.1 The proposed KEL system
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to exist before any significant work on a data driven system can occur; therefore it is
typically developed early. Once the data model exists then large amounts of ETL1

code are written to map the actual data into the required data model. Further if
productivity efficiencies are to be gleaned from arrow ‘A’ then libraries of graph
algorithms will be developed to the underlying data model. Both of these activities
essentially ‘lock’ a very early and possibly damaging decision into the architecture.
Even if the data model is evolved a little it is quite common for the graph libraries to
not be re-coded to take advantage of the altered performance profile.

The third driving reason for an insistence upon focusing on the real world
mapping is that alterations to the data model are required if one wishes to allow the
system to benefit from information that has already been gleaned from it. Suppose
one analyst has produced a sub-graph pattern to identify a person exhibiting a
particular terrorist threat. A second analyst has produced a different sub-graph
pattern to reveal a weakness to a particular threat. The detection of either pattern is
an NP-Complete problem in its own right. A third analyst now wishes to run a
query looking for two ‘suspects’ that are linked to any potential weakness by up to
three degrees of separation. We now have a combinatory problem executing against
the graph where every one of the individual nodes is itself an NP-Complete
problem. Even leaving aside the pain inflicted on the machinery the third analyst
has to find and coral three different algorithms into the same piece of code. A key
principle that we wish to build into our solution is that accepted and known ‘facts’
or ‘models’ can be burned (or learned) back into the data model to allow the system
to be faster and more efficient to use as time progresses. *** This is one of their
cases of needing a dynamic data model from their example—I don’t know if we
should call that out that a little ***

The fourth and final driving reason for insisting that real world mapping is
essential is that the nature of a new query might fundamentally alter the require-
ments on the underlying data model. Worse many crucial real-world queries may
not fit into a purely graphical data model. In the example above the third analyst
was happy to look for links by two degrees of separation. Suppose she instead
wanted to look for those within a twenty mile radius of each other? Unless the
‘twenty mile radius’ relation had been burned in from day one then that query
simply could not have been answered. Even if ‘twenty mile radius’ had been burned
in; what happens when she wants to expand to twenty five? In fact geo-spatial
clustering is one of those tasks that best yields itself to a non-graphical data model
as the ‘graphical’ model requires either a fixed and pre-defined radius or a rela-
tionship from every entity to every entity. *** This is a sub-case of their second
‘dynamic’ data model requirement***

1Extract Transform and Load; a generic term in the data industry for data manipulation that occurs
prior to the exercise of real interest.
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Proposed Solution

The proposed solution thus embodies designing a language which allows the real
world problem to be expressed accurately yet succinctly and that allows a rich data
model to be produced over the life of the project. The ‘architecture’ will then map
that problem onto a library of graph algorithms which will in turn be mapped onto a
series of graph and data primitives which will in turn be mapped onto a machine
executable to run against the current data model. The succession of mappings may
have given cause for concern except that LexisNexis already has a decade of
experience in the latter two mappings. Further LexisNexis believes it has demon-
strated that a well written expert system is capable of performing those mappings at
a level consistently ahead of a human programmer (Fig. 11.2).

In the diagram above everything to the right of the vertical line constitutes the
proposed KEL system; the lower right-hand corner represents Lexis’ existing area
of expertise in the field of very large scale data manipulation on clustered com-
modity hardware. In the following each box and arrow will be discussed in some
depth calling out what is believed and what is yet to be researched. Finally some
tentative ideas will be shared regarding the KEL language itself.

Data Primitives with Graph Primitive Extensions

Lexis’ experience of large scale data manipulation suggests that there is a fairly
small set of fundamental operations that can be performed upon data. Recent
research with Lawrence Livermore has shown that Kaplan’s graph primitives can
all be built upon the ECL data operations. More recently the PIG language from
Yahoo has emerged which implements a sub-set of the ECL operations. The recent
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Hadoop conference revealed that many are already trying to perform Graph work
based upon these Hadoop primitives. We do not assert that the existing data
operations will efficiently achieve all that is required for graph algorithms but
believe them to be a strong starting point from which to begin. Our proposal
therefore includes time to identify and efficiently implement new data operations as
required to support all graph operations and also to develop any specific graph
traversal primitives that are required to efficiently support graph algorithms.

For the purposes of this proposal the ECL run-time also suffers from two sig-
nificant draw-backs; it is not open source and it is not optimized towards highly
threaded shared memory architectures. The proposal therefore calls for the team to
collaborate to develop a highly optimized open-source run-time to implement these
data operations on shared memory architectures. Preliminary work in such a run-
time exists in the MAESTRO and qthreads runtime systems from RENCI and
Sandia. This run-time will then be wrapped in an Open Source ‘Bootstrap-ECL’
language. This Bootstrap language will be a small sub-set of ECL that supports
KEL. It is envisaged that this bootstrap language can then be ported to any
back-end that wishes to support KEL. Using this technique a very high level
language (KEL) becomes portable with a minimum of effort (Table 11.1).

Table 11.1 Comparison between ECL and Pig

Operation ECL PIG

SORT—render a relation (or set of
tuples) in a particular sequence

SORT—includes a patented
algorithm for dealing with
highly skewed data

ORDER

JOIN—allows all nodes with
certain common attributes to be
compared

JOIN—allows for hard
(equivalence) and fuzzy
comparisons between nodes

JOIN—only hard
comparison allowed

AGGREGATE—allows
information regarding node trends
to be computed

TABLE—many different
optimized forms allowed

GROUP/FOREACH
—requires
redistribution of data

DENORMALIZE—allows a set of
records to form one record

DENORMALIZE or ROLLUP GROUP

FILTER Any record set can be filtered
by following the set name with
a filter condition

FILTER

ITERATE—process records in
sequence allowing data to be
copied from one record to the next

ITERATE—both node local
and global forms

Not supported by
MAP-REDUCE
paradigm

DEDUP—allows multiple copies
of records to be removed

DEDUP—both local and global
allowing both hard and fuzzy
conditions on any number of
fields

DISTINCT—only
allows for removal of
fully identical records

LOOP—allows a process to iterate LOOP—allows for a fixe d
number of iterations or iterating
until a condition is met. Also
allows for iterations happening
sequentially or in parallel

Not supported by
MAP-REDUCE
paradigm
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Generated Code and Graph Libraries

One key research question of the KEL proposal is the construction of the graph
algorithm libraries. This is deliberate, new graph algorithms are being developed
yearly and the intent is to allow KEL to become a repository in which the very best
of shared knowledge can be stored. The proposal therefore allows for a number of
these algorithms to be coded but is relying upon the open source nature of the
project to encourage others to supplement an ever growing library of these algo-
rithms that will become part of the KEL system. Sandia’s experience developing the
Multithreaded Graph Library (MTGL) and working in collaboration on the Parallel
Boost Graph Library (PBGL) will be utilized in the creation of KEL’s new runtime
system.

Finding the correct way to specify, implement and select these algorithms is the
major new field of research that the KEL project aims to extend. The proposition is
as follows:

(a) There are fewer graph problems2 than there are algorithms. Therefore each
different graph problem will be given a logical name with defined logical
parameters at the KEL level.

(b) For each logical name at the KEL level one or more algorithmic interfaces will
exist. The different interfaces will exist to allow a given problem to be solved
for differing physical data structures. The KEL compiler will be responsible
for mapping the actual data model to the algorithm interface prior to calling.

(c) Each graph algorithm will then implement one or more algorithmic interfaces
for each problem that it is believed to solve.

(d) Each interface to each algorithm will need a description or parameter file
which describes to the KEL compiler the circumstances under which it per-
forms best. Number of nodes, branching factors, ability to fit into memory etc.
The compiler will then take this information, along with the availability of an
algorithmic interface suitable for the underlying data structure, into account
which selecting the algorithm for a particular problem. It will also be possible
to override the selection from within KEL.

Another related field of research is discovering the correct language for these
algorithms to be written in. It might at first appear than any good graph language
should be the correct language to write graph algorithms in; however this may not
be true. The fundamental data structure for a “best first” search is a prioritorized
queue; not a graph. The best data structure for finding global shortest paths in a
densely connected graph is an array; not a graph. It is currently expected that many
of these algorithms will be coded in a sub-set of ECL implemented on top of the
data operation libraries discussed above. For those that need more control it is

2Examples of ‘problem’ are minimal closure, shortest path, subgraph-matching,
graph-isomorphism, etc.
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proposed that a mechanism exist to allow the graph algorithms to be integrated into
the data-operation layer itself.

KEL Compiler

The KEL compiler is not a compiler in the traditional sense; it will not be tied to
any particular processor or executable format. In fact the KEL compiler is really a
language translator as it will produce output in another high-level language which
will then be converted to a machine executable. That said, it would also be mis-
leading to call the KEL compiler a translator as it is translating code from a
language operating at a very high level to a rather lower level language; typically it
produces3 5–10 lines of ECL for every line of KEL. Some may refer to a program
of this form as a source-to-source compiler. For brevity, from here forward, the
program which takes in KEL and outputs ECL will be described as a compiler.

As the diagram above shows the principle responsibilities of the KEL
compiler are:

(a) Syntax checking and providing useful error reporting for the KEL language
itself

(b) Selecting suitable graph algorithms to solve the required graphical problems.
(c) Mapping from the presented data format to the required data model.
(d) Marshalling the data model in order to apply the graphical algorithms.
(e) Generating code to handle those graphical and other primitives that are not

explicitly coded within the graph libraries.

The compiler still represents a significant undertaking; however it is believed
that the abstraction out of the actual data operation piece has rendered the problem
tractable.

KEL Language—Principles

Of course the design of the KEL language is one of the major areas of proposed
research and thus anything discussed below should be considered extremely ten-
tative. That said our experience of large scale informatics (both in terms of data,
time and programmers) combined with some earlier research has given us some
strong yet flexible ideas regarding how we want the language to look and behave.
Whilst the exact syntax may well change some language principles are primary
drivers and so are called out here:

3Based upon a very early prototype of a small sub-set of the proposed KEL language.
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Productivity is driven by the speed the data can be mastered; not by the
brevity of the tutorial exercises: many scripting languages such as PIG aim to
garner productivity by skimping on detail as the data is declared to the system.4 We
believe that the collection of large datasets is a time consuming process and that the
extra few seconds taken to declare the precise data structure to the system is time
well spent. It allows the optimizer to work and for the syntax checking to be more
thorough. Further the productivity can be reclaimed by allow the data declaration
phase to be reused (leveraged) from one query to the next.

It is much more productive to catch a semantic error in the compiler than in
the run-time: In a real world graph the nodes will not all have the same type;
neither will the edges. Ensuring that the correct type of node/edge is being con-
sidered at any given point can be done one of three ways:

1. Simply ignore the typing issues and hope the programmer got it right. Optimal
in terms of machine cycles and possibly even in terms of programmer cycles
until the first time the programmer gets it wrong. Once the programmer gets it
wrong debugging a huge complex graph algorithm could take days or even
weeks.

2. Move the type checking into run-time. This still allows the programmer to
ignore the typing issues and allows the run-time to trap any miss-matches. The
problem here is that it slows the run-time considerably and doesn’t allow the
programmer to compare apples and oranges if he wants to.

3. Enforce strong, clear and overrideable type checking in the compiler. This is
efficient at run-time (0 overhead) and catches errors early whilst allowing the
programmer full and explicit control.

For this reason KEL will be strongly typed.
No query is genuinely and completely one off: This may seem like a bold and

even ludicrous assertion. However, we would argue that if a query provided a valid
answer then it will almost certainly spawn a derivative query (to discover more
along the same line) or it will spawn a query with certain key components changed
(to try a different approach). Of course if the query provided an invalid answer then
another similar query will almost certainly be issued to try to get the correct answer.
Even if a particular line of query is now dead one would expect the analyst to be
going forward to write queries along a different line of questioning. All of the
foregoing is there to argue that easy and natural code reuse combined with ease of
code maintainability are the keys to long-term radical productivity gains—not the
terseness of trivial queries.

Be nice to your compiler and it will be nice to you: any detailed study of
compiler optimization theory will quickly show that the nemesis of strong opti-
mization is sloppiness of expression in the compiled language. If the compiler
cannot accurately predict the expected behavior of a given primitive then it cannot

4In PIG you do not need to provide data types or even declare the schema for data although the
PIG manual warns “it may not work very well if you don’t”.
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optimize it. To quote Martin Richards5: “once they assign to a pointer—all bets are
off”. Conversely by producing a tightly specified and predictable language the
optimizer is able to produce game-changing optimizations.

The best encoding of a particular problem is the one in which it is thought:
it is possible to produce an extremely elegant language using some academic
abstraction such as a lambda calculus or regular expression.6 The problem is that
unless the coder naturally thinks at the same level of abstraction as the language
designer then the elegance of the language will be lost in the clumsiness of the
encoding. Therefore we aim to encapsulate the thoughts of the encoder using the
terminology and at the level of granularity in which the encoder is thinking. Put
differently; KEL is designed to allow the encoders to develop their own
abstractions.

KEL Language—Syntax

A KEL program consists of four distinct phases or sections although it is envisaged
that the first two and most of the third will be shared between many of the same
programs or queries running upon the same system.

Section One—Model Description
The job of the first section is to declare the logical data model for all of the
following graph work. The two principle data types are Entity (node or vertex) and
Association (link). Both Entity and Association can have an arbitrary number of
properties. Explicit support will exist for unique identifiers for each entity existing
in data or being created during data load. Support will exist at run time for those
identifiers being replaced by memory pointers when that is possible and
appropriate.

The entity declaration principally declares the properties of an entity which come
directly from the underlying data. It also defines the default mapping expected from
that data if it is coming from FLAT, XML or PARSE7 (natural language) files.

Here are some examples generated during some earlier research:

Address := ENTITY( UID8( prim_range,prim_name,zip ) );

5The man that created BCPL which eventually led to C; and a great ‘Compiler Theory’ lecturer
too!.
6In fact some of the elements and benefits of both appear within KEL. However, at all points we
believe that the thought process of the encoder should be paramount rather than the academic
purity of a particular abstraction.
7The PARSE format allows entities and facts which have been extracted from text files to appear
within the knowledge base.
8Here the UID does not exist and so is generated based upon those fields
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Person := ENTITY( FLAT(UID9=DID,First_Name=fname,string30
Last_Name=lname, Address At) )
Company := ENTITY( XML(UID=’\ORG\BDID’,Company_Name=’\ORG
\company_name’) )
Vehicle := ENTITY( UID(vin), INT value );
WorksFor := ASSOCIATION(Person10 Who, Company What, TEXT
CompanyType,CALLED(works_for,employs));
Relatives := ASSOCIATION(Person Who, Person WhoElse,CALLED
(Related_To));
LivesAt := ASSOCIATION(Person Who, Address Where, CALLED
(Lives_At,Has_Living_At));
Owns := ASSOCIATION(Person Who, Vehicle What, CALLED11(Owns,
Owned_By));

In addition to specifying the fields of an entity it is possible to express the
MODEL in which the entity is represented. The essentially comes down to speci-
fying which unique combinations of fields are interesting. By default every unique
combination of every field is stored. The MODEL attribute allows you to specify
those patterns which are interesting.

Consider, for example, an entity with the fields FNAME, MNAME, LNAME,
DOB, PRIM_RANGE, PRIM_NAME then by default there will be one record
stored for every different combination of those fields that exist in the underlying
data. This corresponds to

MODEL({FNAME, MNAME, LNAME, DOB, PRIM_RANGE, PRIM_NAME})

Suppose however that you were only interested in the different names and
different addresses and were not concerned about whether they co-occurred. Then a
model of:

MODEL(NAME{FNAME, MNAME, LNAME}, DOB,{PRIM_RANGE, PRIM_
NAME})

Would be more appropriate. It is also possible to specify a logical or conceptual
field name for these combinations: thus—

MODEL(NAME{FNAME, MNAME, LNAME}, DOB,ADDRESS{PRIM_
RANGE, PRIM_NAME})

Section 2—Model Mapping
Provided the model is declared with all the default mappings in place for the various
file types and provided the data to be ingested actually conforms to the default

9Here the UID is existing and called UID in the underlying data
10Once an entity with a UID has been declared then the type can be used to implicitly declare a
foreign key existing within another part of the data.
11Called allows for both bi-directional and unidirectional links to be used in text
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mappings then the second section can be very thin indeed. It simply declares those
files from which the data is going to be taken and the entities and associations that
are to be taken from each file. Thus given the model above one may have:

USE header.File_Headers(FLAT,Person,Address), Business_
Header.File_Header(XML,Company,Address), header.
Relatives(FLAT,Relatives)

Which states that for this query the file header.File_Headers will provide Person
and Address entities, Business.File_Header will provide Company and Address
entities and that the Relatives associate will come from header.Relatives. The USE
clause will also allow for explicit field-by-field overriding of the default field
mappings if the data is mal-formed.

Section 3—Logic Phase
Perhaps the heart of a KEL program is the third phase; this is where new infor-
mation is declared to exist based upon logic that exists already. Every ‘line’ of the
logic phase (called an ‘assertion’) consists of three parts: the scope, the predicate
and the production. Again this is best understood by example:

Here we are asserting that ‘for all COMPANY’ (the scope) if the CompanyType
is within a particular list then the following property is also true. Essentially this
allows for property derivation within a single entity.

COMPANY: CompanyType IN [‘CHEMICAL’,’FERTILIZER’,
’AGRICULTURAL’] => SELF.ExplosiveMaterial = TRUE;

It is important to note that the predicate and production refer to a single entity; it
is the scope that applies them to every entity within the scope.

All the immediate associations of an entity are also available within the scope of
that entity; thus the below would be a way to define a person as being orphaned if
they have no recorded relatives.

PERSON: *EXISTS(Relatives(Who=SELF)) => SELF.Orphaned = TRUE;

In fact KEL would make SELF the default scope of an assertion and the first
matching field of any associate would be deemed to refer to self unless overridden.
Thus the line above would more normally be coded as:

PERSON: *EXISTS(Relatives) => Orphaned = TRUE;

A large part of the point and power of KEL comes from the ability to cascade
assertions; thus the below defines a risky person as an orphan working for a
company that provides explosive materials.

PERSON: Orphaned AND EXISTS(WorksFor(Company(ExplosiveMaterial)))
=>Risky = TRUE;

Of course KEL is designed to support mathematics as well as logic. It is also
possible to view an aggregation of neighboring nodes as a property of a local node.
Thus the value of someone’s vehicles could be garnered using:
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PERSON: EXISTS(Owns) => VehicleWorth = SUM(Owns.What.Value);

Of course some productions are valid upon the entire scope; in this case the
predicate can be omitted.

PERSON:=> VehicleWorth = SUM(Owns.What.Value);

The aggregations can be performed based upon computed as well as original
field values. Thus the vehicle value of all of the vehicles of all the people in a
building could be:

ADDRESS: EXISTS(Has_Living_At) => TotalWorth = SUM(Has_Living_At.
Who.VehicleWorth);

*** Should I mention the need to have ‘iterative’ computation to solve cyclic
dependencies here ??? ***

It is important to realize that whilst no explicit graph primitives have yet been
considered or discussed it is already possible to express complex and derivative
facts about graph areas and nodes. The syntax covers the same logic as the union,
intersect, diff, filter and pattern primitives in Kaplan’s Semantic Graph Query
Language (*** should I give a detailed proof of this?***). In particular the syntax
already detailed covers the sub-graph matching problem.

If one is seeking to develop a pragmatic language which still has the power to
express the full range of graphical algorithms then the next important task to tackle
is the fuzzy sub-graph matching problem. An alternative way of viewing this is that
one is replacing a particular combination of constrained relationships with a single
concrete relationship. As a gentle example lets express that two people are ‘linked’
if they have lived at two or more of the same addresses; for good measure we will
store the strength of the link too.

Linked := ASSOCIATION(Person Who, Person WhoElse, INT Weight);
GLOBAL: LivesAt(#1,#2),LivesAt(#3,#2) ,#1<>#3,COUNT(#2)>1 => Linked(#1,
#3,COUNT(#2));

This introduces the pattern matching elements; #1, #2 etc. They function simi-
larly to Prolog. Starting left to right the system finds all unique solutions to the
primitives that are expressed for the entire scope although the predicate and pro-
duction are still referring to one entity (or really solution) at a time.

A special and important case of this allows for far more flexible paths to be
found between two entities. These are problems usually characterized as search or
path-finding algorithms and more colloquially as the ‘Kevin Bacon Problem’. We
believe this problem to be fundamental enough to be the first of the graph algo-
rithms baked directly into the language: as the LINK predicate.

At its simplest this allows for a path up to a certain length to be specified:

GLOBAL: LINK(#1,Linked*3,#3) => Networked(#1,#3)

It is also possible to use heterogeneous associations as the links and also to
constrain aggregate properties of those associations. Thus—
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Colleague := ASSOCIATION(Person Who, Person WhoElse, INT Weight);
GLOBAL: WorksAt(#1,#2),WorksAt(#3,#2) => Colleague(#1,#3,COUNT(#2));
GLOBAL: LINK(#1,#2=[Linked,Colleague]*3,#3),SUM(#2,Weight)>1 =>
Networked(#1,#3);

*** There are a bunch of other important cases of LINK—should I call
them out ??? ****

What is not handled in the foregoing are algorithms that can only be solved
viewing the graph (or sub-graph) as a whole; classical examples are the travelling
salesman problem, graph coloring and graph-partitioning. It is quite possible that
some of these algorithms will prove sufficiently fundamental that some more
sophisticated syntax is useful to handle them. Notwithstanding KEL also aims to
have a generic ‘graph function calling’ syntax to allow the system to be fully
extensible. This syntax is based upon the observation that graph functions, with
graph results, either partition, sequence or sequence and partition the nodes and
edges of a graph.12 Thus the scope is the graph the algorithm acts upon, the
predicate lists the algorithm and any parameters required. The predicate should
succeed for all of those entities for which a data change is required and the output of
the algorithm is then recorded in the production. Thus:

PERSON: GRAPHCOLORING([Colleague,Linked],4) => MyColor = #113

Section 4—Query Phase
It cannot be stressed enough that a primary indicator of the success of KEL will be
the extent to which logic exists within the Logic Phase and not Query Phase. That
said, with the exception of ‘scope’ much of the syntax is common between the two
phases. The object of the query phase is to define one or more parameterized
questions to which answers are required. Thus:

//Finds all occurrences of a person with a particular name and brings back some
information for them aggregated from moderately complex local graph operations

QUERY: MyQueryName(string fname1,string lname1) <= Person(fname=fname1,
lname=lname1){fname,lname,VehicleWorth,Count(Linked)};

//Does a much fuzzier match using derived linkage information and also the
output of a global graph algorithm.

//Notice that the => (production) syntax has been reversed <=. This is to express
the conceptual difference between A&B => C and if you want to know C then look
for A&B.

12There is a separate category of graph function which returns scalar results; these are covered by
the syntax discussed already.
13At the moment it is envisaged that the outputs of an algorithm are only recorded in the algorithm
declaration and implicitly appear as #1, #2 etc. in the production. This may prove too sloppy if
algorithms with many, many outputs are invented.
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QUERY: MyQueryName(string fname1,string fname2) <= Person(fname=fname1,
MyColor=’Blue’,Networked(Person(fname=fname2),MyColor=’Pink’));

It is possible for a query to have multiple outputs and for second and subsequent
outputs to reference earlier ones.

It is important to understand that the fact that two queries are defined at the same
time and the fact that they are parameterized is one of the most important, and
painful, aspects of the KEL implementation. The job of the KEL optimizer is to
load and execute as much of the logic phase as is necessary to service the two
queries with as low latency as possible. In the instance given here it would probably
decide that VehicleWorth was worthy of pre-computation and storage; it would also
probably compute the Linked association and perform the global graph coloring
algorithm putting the result into temporary storage. A rather more controversial and
interesting question is whether or not it should also construct an index of the nodes
by first name and even a Pink/Blue index of networked pairs.

It is possible that the QUERY statement will need to grow some ‘hint’ syntax to
allow the expected frequency and variety of query calls to be evaluated to ascertain
the value of precomputation.

KEL—The Summary

It cannot be stressed enough that the foregoing is the result of detailed experienced
in data and data operations but only exploratory research into the best syntax and
semantics for the KEL language itself. That said it is believed that the basic
structure and framework described above is sound and will prove useful for
expressing knowledge engineering problems. An extremely simple prototype of
KEL has been produced and was deployed against the IMDB database which
essentially consists of pairs of Actor/Movie name. The KEL program was:

Actor := ENTITY( FLAT(UID(ActorName),Actor=ActorName) )
Movie := ENTITY( FLAT(UID(MovieName),Title=MovieName) )
Appearance := ASSOCIATION( FLAT(Actor Who,Movie What) )
USE IMDB.File_Actors(FLAT,Actor,Movie,Appearance)
CoStar := ASSOCIATION( FLAT(Actor Who,Actor WhoElse) )
GLOBAL: Appearance(#1,#2) Appearance(#3,#2) => CoStar
(#1,#3)
QUERY:FindActors(_Actor) <= Actor(_Actor)
QUERY:FindMovies(_Actor) <= Movie(UID IN Appearance(Who IN
Actor(_Actor){UID}){What})
QUERY:FindCostars(_Actor) <= Actor(UID IN CoStar(Who IN
Actor(_Actor){UID}){WhoElse})
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QUERY:FindAll(_Actor) <= Actor(_Actor),Movie(UID IN
Appearance(Who IN $1{UID}){What}),Actor(UID IN CoStar(Who
IN $1{UID}){WhoElse})

This (working) ten line program produced just over 150 lines of ECL:

//KEL V0.1alpha generated ECL 

//Layout for ENTITY type actor 
actor_layout := RECORD 
  UNSIGNED8 uid; // Usually comes from  a list of values 
  STRING actor {MAXLENGTH(2048)}; // Usually comes from 
actorname
  KEL_Instances := 1; 
END;

MAC_actor_Into_Default(i,o) := MACRO 
#uniquename(into)
actor_layout %into%(i le) := TRANSFORM 
  SELF.uid := HASH(le.actorname); // Produces HASH of values in 
'unique' field combo 
  SELF.actor := le.actorname;
END;
o := PROJECT(i,%into%(LEFT)); 
ENDMACRO;

MAC_actor_Into_Default(imdb.file_actors,imdb_file_actors_as_acto
r) // Cast imdb.file_actors into type actor 

//Layout for ENTITY type movie 

movie_layout := RECORD 
  UNSIGNED8 uid; // Usually comes from  a list of values 
  STRING title {MAXLENGTH(2048)}; // Usually comes from 
moviename
  KEL_Instances := 1; 
END;

MAC_movie_Into_Default(i,o) := MACRO 
#uniquename(into)
movie_layout %into%(i le) := TRANSFORM 
  SELF.uid := HASH(le.moviename); // Produces HASH of values in 
'unique' field combo 
  SELF.title := le.moviename;
END;
o := PROJECT(i,%into%(LEFT)); 
ENDMACRO;

MAC_movie_Into_Default(imdb.file_actors,imdb_file_actors_as_movi
e) // Cast imdb.file_actors into type movie 
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//Layout for ENTITY type appearance 
appearance_layout := RECORD 
  UNSIGNED8 who; // Usually comes from  a list of values 
  UNSIGNED8 what; // Usually comes from  a list of values 
  KEL_Instances := 1; 
END;

MAC_appearance_Into_Default(i,o) := MACRO 
#uniquename(into)
appearance_layout %into%(i le) := TRANSFORM 
  SELF.who := HASH(le.actorname); // Produces HASH of values in 
'unique' field combo 
  SELF.what := HASH(le.moviename); // Produces HASH of values in 
'unique' field combo 
END;
o := PROJECT(i,%into%(LEFT)); 
ENDMACRO;

MAC_appearance_Into_Default(imdb.file_actors,imdb_file_actors_as
_appearance) // Cast imdb.file_actors into type appearance 

actor_before_dedup := imdb_file_actors_as_actor; 
actor_layout actor_roll_transform(actor_layout le,actor_layout 
ri) := transform 
  self.kel_instances := le.kel_instances+ri.kel_instances; 

  self := le; 
end;
actor_value := rollup( sort( distribute( actor_before_dedup, 
hash(uid) ), RECORD, local), actor_roll_transform(left,right), 
RECORD, EXCEPT KEL_Instances,local); 

findactors(STRING _actor) := MODULE 
  EXPORT Q1_value := actor_value(_actor = actor); 
  EXPORT D1 := output(Q1_value,NAMED('findactors1')); 
  EXPORT DoAll := PARALLEL(D1); 
END;

movie_before_dedup := imdb_file_actors_as_movie; 
movie_layout movie_roll_transform(movie_layout le,movie_layout 
ri) := transform 
  self.kel_instances := le.kel_instances+ri.kel_instances; 
  self := le; 
end;
movie_value := rollup( sort( distribute( movie_before_dedup, 
hash(uid) ), RECORD, local), movie_roll_transform(left,right), 
RECORD, EXCEPT KEL_Instances,local); 
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appearance_before_dedup := imdb_file_actors_as_appearance; 
appearance_layout appearance_roll_transform(appearance_layout 
le,appearance_layout ri) := transform 
  self.kel_instances := le.kel_instances+ri.kel_instances; 
  self := le; 
end;
appearance_value := rollup( 
sort(appearance_before_dedup,RECORD),
appearance_roll_transform(left,right), RECORD, EXCEPT 
KEL_Instances,local);

findmovies(STRING _actor) := MODULE 
  EXPORT Q1_value := movie_value(uid IN 
SET(TABLE(appearance_value(who IN SET(TABLE(actor_value(_actor = 
actor),{uid}),uid)),{what}),what));
  EXPORT D1 := output(Q1_value,NAMED('findmovies1')); 
  EXPORT DoAll := PARALLEL(D1); 
END;

//Layout for ENTITY type costar 
costar_layout := RECORD 
  UNSIGNED8 who; // Usually comes from  a list of values 
  UNSIGNED8 whoelse; // Usually comes from  a list of values 
  KEL_Instances := 1; 
END;

MAC_costar_Into_Default(i,o) := MACRO 
#uniquename(into)
costar_layout %into%(i le) := TRANSFORM 
  SELF.who := HASH(le.actorname); // Produces HASH of values in 
'unique' field combo 
  SELF.whoelse := HASH(le.actorname); // Produces HASH of values 
in 'unique' field combo 
END;
o := PROJECT(i,%into%(LEFT)); 
ENDMACRO;

// Make a value for Production_3 
// Prepare those entity expressions used in the assertions 
//Now the encapsulated function itself .... 
Production_3 := FUNCTION 
  // First move all of the assertion data into a format that 
matches the #templates used 
  Production_3_j0 := 
TABLE(appearance_value(true,true),{UNSIGNED8 Value_1 := 
who,UNSIGNED8 Value_2 := what}); 
  Production_3_assert_1 := 
TABLE(appearance_value(true,true),{UNSIGNED8 Value_3 := 
who,UNSIGNED8 Value_2 := what}); 
  //Now build up the production; one assertion at a time left to 
right
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  Production_3_after_2_asserts := RECORD 
    typeof(Production_3_j0.Value_1) Value_1; 
    typeof(Production_3_assert_1.Value_3) Value_3; 
  END; 
  Production_3_after_2_asserts Production_3_jt2(Production_3_j0 
le,Production_3_assert_1 ri) := TRANSFORM 
    SELF := le; 
    SELF := ri; 
  END; 
  Production_3_j1 := 
JOIN(Production_3_j0,Production_3_assert_1,left.Value_2 = 
right.Value_2,Production_3_jt2(left,right));
  //Finally the intermediate format of the assertions needs to 
be mapped to the production 
  RETURN PROJECT(Production_3_j1,TRANSFORM(costar_layout, 
SELF.who := LEFT.Value_1; SELF.whoelse := LEFT.Value_3)); 
END;
Production_3_as_costar := Production_3; 

costar_before_dedup := Production_3_as_costar; 
costar_layout costar_roll_transform(costar_layout 
le,costar_layout ri) := transform 
  self.kel_instances := le.kel_instances+ri.kel_instances; 
  self := le; 
end;
costar_value := rollup( sort(costar_before_dedup,RECORD), 
costar_roll_transform(left,right), RECORD, EXCEPT 
KEL_Instances,local);

findcostars(STRING _actor) := MODULE 
  EXPORT Q1_value := actor_value(uid IN 
SET(TABLE(costar_value(who IN SET(TABLE(actor_value(_actor = 
actor),{uid}),uid)),{whoelse}),whoelse));
  EXPORT D1 := output(Q1_value,NAMED('findcostars1')); 
  EXPORT DoAll := PARALLEL(D1); 
END;

findall(STRING _actor) := MODULE 
  EXPORT Q1_value := actor_value(_actor = actor); 
  EXPORT D1 := output(Q1_value,NAMED('findall1')); 
  EXPORT Q2_value := movie_value(uid IN 
SET(TABLE(appearance_value(who IN 
SET(TABLE(Q1_value,{uid}),uid)),{what}),what));
  EXPORT D2 := output(Q2_value,NAMED('findall2')); 
  EXPORT Q3_value := actor_value(uid IN 
SET(TABLE(costar_value(who IN 
SET(TABLE(Q1_value,{uid}),uid)),{whoelse}),whoelse));
  EXPORT D3 := output(Q3_value,NAMED('findall3')); 
  EXPORT DoAll := PARALLEL(D1,D2,D3); 
END;
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KEL Present and Future

KEL version 0.4 has been released, and version 0.5 is underway. The first
LexisNexis production systems relying on KEL for graph processing are being
developed and the interest on KEL from the HPCC Systems Open Source com-
munity is slowly growing. An interface to support RDFS and SPARQL has been
proposed and the work on this is about to start. While the language is still in
development, most general aspects have been defined and additional optimizations
are being constantly introduced into the KEL and ECL compilers to introduce
further efficiencies. For those readers that are interested in additional information
about KEL, there is a very good blog series by one of the authors, which includes a
general tutorial on the basic functionality of the language [17].
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Part III
Big Data Applications



Chapter 12
HPCC Systems for Cyber Security
Analytics

Flavio Villanustre and Mauricio Renzi

Many of the most daunting challenges in today’s cyber security world stem from a
constant and overwhelming flow of raw network data. The volume, variety, and
velocity at which this raw data is created and transmitted across networks is
staggering; so staggering in fact, that the vast majority of data is typically regarded
as background noise, often discarded or ignored, and thus stripped of the immense
potential value that could be realized through proper analysis. When an organiza-
tion is capable of comprehending this data in its totality—whether it originates from
firewall logs, IDS alerts, server event logs, or other sources—then it can begin to
identify and trace the markers, clues, and clusters of activity that represent threat-
ening behavior (Fig. 12.1).

Today’s biggest cyber challenges, which include the emergence of the advanced
persistent threat, take advantage of the data deluge described above to establish
long-term footholds, exploit multiple vulnerabilities, and deliver malicious pay-
loads, all while avoiding detection. This white paper will focus on the big data
processing platform from LexisNexis called HPCC Systems, (High Performance
Computing Cluster) as a technology platform to ingest and analyze massive data
that can offer meaningful indicators and warnings of malicious intent.

In contrast to current approaches, the effectiveness of the HPCC Systems
solution increases as data volumes grow into the hundreds of terabytes to petabyte
range. Not only does this solution provide the ability to fuse an organization’s own
network data (e.g. firewall logs, access logs, IDS alert logs, etc.), but also it delivers
enrichment routines that can automatically incorporate and fuse any relevant 3rd
party data set, including blacklists, known bad domains, geo-location data, etc.
Finally, HPCC Systems delivers this capability at speeds that cannot be achieved by

This chapter has been adopted from the LexisNexis white paper on “HPCC Systems for Cyber
Security Analytics: See through patterns, hidden relationships and networks to find threats in Big
Data”, LexisNexis.
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typical database-oriented approaches. The results of HPCC Systems large-scale
analytics can provide an administrator with a significant forensic advantage and a
tremendous head start in quickly verifying the significance of a potential incident
(Fig. 12.2).

The Advanced Persistent Threat

Consider the following situation: the young man emerged from his supervisor’s
office with a job to do. This man—a systems administrator at a large laboratory in
on the west coast—was asked to investigate a minuscule accounting error in his

Fig. 12.1 Continuous monitoring technologies alone cannot perform long-term contextual
analysis. When deployed in conjunction with the Deep Analysis Cyber Solution, new alerts
from these technologies can be linked to historical behavior and attack patterns to identify
persistent, “low and slow” attacks

Fig. 12.2 While real-time
monitoring tools continuously
analyze network traffic, the
Deep Analysis Cyber
Solution collects raw data,
and routinely applies a series
of long-term analytics. The
results of these queries are
made available to
(1) continuous monitoring
tools to enrich and validate
alerts, and (2) end users via
web-based searches or other
applications
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lab’s computer usage accounts. He likely had more interesting things to do on a
sunny August day than research a $0.75 discrepancy, but the more he pored over
access logs and system files, the more curious—and suspicious—he became. As he
followed the faint trail of electronic breadcrumbs, he realized that this seemingly
benign “accounting error” was the result of intentionally malicious activity. It was,
in fact, the first of many subtle clues left behind by a hacker who had gained access
to the administrator’s network by exploiting a vulnerability in the lab’s email
system.

Was this simply a prank? Could it have been a bored college student with too
much free time and a mischievous streak? This seemingly minor incident turned out
to be the start of a 10-month journey that would take the systems administrator from
his network’s data center all the way to the heart of several U.S. military networks.
He would employ all his accumulated knowledge to monitor, analyze, and deploy
various kinds of electronic bait for the hacker. Over time, he was able to discover
not only the root of these intrusions, but the motivation behind them as well. He
traced the attacks to a hacker living in central Europe. Using a persistent,
methodical approach—over a period of months—this hacker had not only gained
access into the laboratory’s network, but was able to exploit a number of inter-
connections between national labs, government agencies, and government con-
tractors to gain root level access to military computers around the United States.
Furthermore, the hacker used this access to download hundreds of sensitive doc-
uments related to nuclear weapons and defense programs. This hacker, as it turned
out, had been systematically exploiting network vulnerabilities to access these
facilities and was selling the information he had illegally obtained to agents of a
foreign government.

While this tale reads like a cyber attack that might have been pulled from today’s
headlines, these events actually unfolded in a year remembered more for
Chernobyl, the Iran-Contra affair, and the Space Shuttle Challenger disaster—1986.
This was an early form of a network attack now referred to as “Advanced Persistent
Threat” (APT). Like this example, a typical modern day APT is characterized by:

• Attackers who are typically funded and directed by external entities, organiza-
tions and governments.

• Attackers who utilize the full spectrum of intelligence collection methods, which
may include computer intrusion technologies as well as coordinated human
involvement and social engineering techniques to reach and compromise their
target.

• An attack that is conducted through continuous monitoring and interaction in
order to achieve the defined objectives.

• An attack that, rather than relying on a barrage of continuous intrusions and
malware, employs a “low-and-slow” approach.

As our world grows increasingly more connected, LexisNexis recognizes that
Advanced Persistent Threats have the potential to cause increasingly significant
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damage to critical infrastructure, financial systems, and to sensitive military oper-
ations. Examples are frighteningly numerous, and include well-publicized incidents
such as Stuxnet,1 Titan Rain,2 and Operation Aurora.3 While the basic features of
the threat are not much different than they were in 1986, the potential for damage
has been greatly magnified.

Try as we might, these attacks are difficult to detect. Why? The attackers are
careful, patient, well funded, and highly motivated. They tend to apply methodical
techniques that keep their activities under the radar. Whereas an attack such as a
distributed denial of service is generally hard to miss; the probes, connections, and
malicious downloads performed by sophisticated actors over the course of months
or years are easily obscured by huge volumes of routine network activity.

Therein lies the crux of the problem. With the rise of mobile computing, dis-
tributed data storage, cloud infrastructures, and Internet-enabled telecommuting, we
are witnessing three phenomena which provide attackers tremendous opportunities
to do harm:

1. Multimedia, networked collaboration, and mass participation have resulted in a
constant deluge of heterogeneous network activity, both within private networks
and across the public Internet. This provides constant “cover” to the activities of
malicious users.

2. Through technologies like connected mobile devices, virtual private networks,
and cloud computing, the notion of a corporate network has expanded well
beyond the traditional firewall-based perimeter. This provides significantly more
vulnerabilities and access points through which malicious users can gain entry
to protected resources.

3. The combination of increased activity and expanded network architectures has
complicated network security. Maintaining a secure posture is a result of con-
stant vigilance and mitigating one’s risk through vulnerability management and
continuous monitoring. However, security technologies are unable to keep pace
with the evolving threat landscape, and as a result traditional approaches have
shown severe limitations. These limitations, and the ability to overcome them,
are the focus of this chapter.

1Stuxnet is a Microsoft Windows computer worm discovered in July 2010 that targets industrial
software and equipment. Source: http://en.wikipedia.org/wiki/Stuxnet.
2Titan Rain was the U.S. government’s designation given to a series of coordinated attacks on
American computer systems since 2003. Source: http://en.wikipedia.org/wiki/Titan_Rain.
3Operation Aurora is a cyber-attack that originated in China, and occurred from mid-2009 through
December 2009. The attack targeted dozens of major corporations, including Google. Source:
http://en.wikipedia.org/wiki/Operation_Aurora.
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LexisNexis HPPS Systems for Deep Forensic Analysis

HPCC Systems is a massively parallel analytics platform that delivers two
large-scale, long-term data fusion capabilities. When applied to the cyber security
domain, HPCC Systems provides network security teams the ability to transform
massive data to intelligence in a manner that would be impossible for traditional
data mining and analysis technologies. The HPCC Systems technology is optimized
for aggregating, fusing, and analyzing massive, multi-source, multi-format data
sets. It delivers an analytics capability that bridges the data gap between today’s
short-term operational data analysis and the deep situational understanding that only
comes with large-scale data analytics.

The two core capabilities of the HPCC Systems include:

1. Pre-computed Analytics—combined with continuous monitoring tools such as
IDS and SIEM, pre-computed analytics improve the quality and accuracy of
alerts by instantly comparing alert metadata against a comprehensive repository
of historical network patterns and computed behaviors. This adds relevance and
context to real-time alerts to not only identify and tag false positives, but to also
associate seemingly benign activity with longer term, more serious threats,
thereby addressing the “false negative” dilemma.

2. Deep Forensics Analysis—using an advanced query engine, security analysts
with deep domain expertise and technical skills can routinely perform highly
customized, sophisticated analysis as needed—against massively complex data
sets. For instance, an analyst might want to execute a complex correlation across
months’ worth of log files originating from dozens of device types. For a typ-
ically large network, not only would this analysis need to fuse data of multiple
formats, but it would also be required to correlate potentially hundreds of
Terabytes (or more) of raw data. HPCC Systems delivers this capability at
speeds that cannot be achieved by typical database oriented approaches.

Combined, these capabilities are meant to tackle the challenge of “big data” in
order to eliminate the cover attackers rely on and to provide better visibility into the
increasing number of network entry points and vulnerabilities.

Pre-computed Analytics for Cyber Security

There is a compelling need for new types of analytics, focused on massive,
long-term data sets. The federal government is pressing its agencies for “continuous
monitoring” of government networks. However, traditional approaches to contin-
uous monitoring are limited by the amount of data they can analyze. As a result,
systems such as Intrusion Detection Systems are restricted to performing “selective
analysis”—either looking at some metadata subset (selected fields from packet
headers or netflow messages, for instance), or sampling network data to seek
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statistically significant patterns (analyze one of every thousand packets).
Additionally, signature-based detection algorithms typically analyze data over rel-
atively small time windows (hours or days), and so tend only to be able to detect
short-term activities. In contrast to these technologies, LexisNexis approach to
automated information analysis:

• Processes all data, regardless of the overall volume.
• Merges data from many sources, whether they are structured data sets,

unstructured text, or feeds from external sources.
• Performs full-text analysis on all fields in the data.
• Executes large scale analysis in a timely fashion, thanks to a massively paral-

lelized data processing technology.

HPCC Systems delivers a default library of configurable input adapters and
pre-computed cyber security analytics. The computed results of these analytics can
be called by end users through a web-based search interface, or automatically
queried by 3rd party solutions such as Intrusion Detection Systems (IDS) and
Security Information Event Managers (SIEM). They are “pre-computed” in that
analytic results are routinely calculated over all available data, and prepared for
consumption by end users or third party systems.

The solution works by routinely analyzing all collected data from relevant
sources, and then computing a series of analytical results. While real-time network
data is fed to continuous monitoring systems via techniques such as packet capture;
the HPCC Systems can routinely operate on aggregated log output from network
devices (firewalls, routers, servers, etc.) and security systems (vulnerability man-
agement, NIDS, HIDS, antivirus, etc.). When this aggregated output is ingested,
HPCC Systems can fuse all data, and re-computes a series of cyber analytics against
either the entire set of data, or just incremental portions. Once the analytics have
been applied to the target data, computed results are persisted, indexed and prepared
for delivery via standard web services or web-based interfaces.

From a forensics perspective, this query library comprises a comprehensive set
of long term patterns that a cyber security operator would want to identify as part of
an investigation into any potential exploit or alert.

Unlike typical analytical approaches, these queries are asked at scale, across a
period of months and against tremendous volumes of data. The combined results of
these queries can provide an administrator with a significant forensic advantage and
a tremendous head start in concluding the significance of a potential incident.

Some of these default queries include:
Wavelet transforms. This mathematically derived set of functions was devel-

oped to analyze data across both frequency and temporal scales. This type of
algorithm is especially useful for recovering a “true signal” from very noisy data
sets, without requiring prior knowledge of anomalous patterns or needing explicit
signatures to be defined. Standard wavelet algorithms can be effectively distributed
across the Deep Analysis Cyber Solution’s distributed computing cluster, and
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therefore can be applied to uncover a “true signal” within tens or hundreds of TBs
of network “noise”.

Information theory. This is a technique for distinguishing malicious network
scan traffic from normal activity using general data compression tools. This method
is particularly effective when a malicious user employs techniques that cause
repetitive communication patterns, such as port scans occurring over large time
periods utilizing multiple IP addresses to obfuscate malicious activities.

Slow oscillators. This query identifies groups of suspicious hosts by detecting
communications patterns characterized by a small number of packets being sent
between two hosts, or infrequent and irregular communications intervals.

Low hitters. This query identifies groups of suspicious hosts by detecting small
numbers of systems in a large network that are suddenly making large quantities of
DNS queries for new/previously unseen DNS entries. This can be representative of
compromised machines trying to communicate back to command and control nodes
that utilize “fast flux” techniques to constantly change the IP address.

Network activity clustering. Clustering can be used to find groups of features in
the data. These might be IP addresses that demonstrate similar traffic patterns such
as beacons, botnets and Trojans or groups of email servers. Various clustering
techniques are employed, including K-means and leader clustering for processing
IP packet data and NetFlow data.

Data exfiltration. This query identifies hosts, for any given time period, that are
transmitting above or below a bytes per packet threshold for traffic on a given port.

Session hijacking detection. This query analyzes activity over every network
connection to identify anomalies, such as a changing user-agent string, that are
indicative of session hijacking activity.

Rare targets. This query seeks out long-term activities that are limited to a small
number of hosts. For instance, it may look for external domains that are targeted by
fewer than 10 different IP addresses, or oscillators that have targeted only rare
domains.

Given a combination of search parameters (e.g. source IP, destination IP, source
port, etc.), these queries can be executed and the results merged with the output of a
traditional alerting system, such as IDS. This enhanced intelligence layer is used to
enrich the IDS alert and to more effectively validate and prioritize it.

The Benefits of Pre-computed Analytics

This capability improves an organization’s continuous monitoring capability by
allowing security administrators to relax tuning constraints on their alerting sys-
tems. Today, there is a tendency to over-tune continuous monitoring tools, like IDS,
to reduce alert volumes to a manageable amount. The consequence of this, how-
ever, is that the monitoring system is then only able to detect major violations and
blatant exploits, allowing nearly any action that is part of an APT to go unnoticed.
By relaxing IDS rules to trigger on more events, and relying on deep, historical
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context to prioritize the resulting alerts, this solution delivers a twofold benefit: first,
deep historical context helps eliminate false positives so security administrators are
left with a manageable workload, and more importantly, it reduces the number of
false negatives, or malicious activity which would otherwise have gone unnoticed
by an over-tuned continuous monitoring system.

Deep Forensics Analysis

While the pre-computed analytical routines of HPCC Systems represent an
important capability, the key to effectively detecting and responding to Advanced
Persistent Threats is in persistent vigilance and continuous human analysis. In fact,
there are many cases when certain indicators and warnings push security experts
into action, and when those experts are required to perform unique, “one off”
analyses to make sense of malicious behavior. In these cases, a security analyst is
expected to behave more like a traditional intelligence analyst, performing very
deep, multi-dimensional analysis of their data.

Today’s data mining technologies do not support the kind of improvisational
analysis that’s required to fully comprehend the nature and extent of an attack. The
reasons for this vary; from the rigid relational database models that restrict the kinds
of queries an investigator can perform to the inability to execute such queries
against massive amounts of data within a desired timeframe (e.g. being able to
perform calculations in minutes or hours instead of days).

This is where HPCC Systems shines. The technology is exceptional at this type
of ad hoc usage—it is currently leveraged in multiple Federal programs specifically
to fuse and link disparate structured and unstructured datasets and discover
non-obvious relationships and anomalous patterns across truly massive content sets.
It allows subject matter experts, possessed of deep technical skills, to write any kind
of query against multi-terabyte, multi-source data sets.

The solution’s non-relational storage architecture frees analysts from the
shackles of traditional database-oriented approaches, where the kinds of analysis
they can perform are restricted by how the data was modeled, and which individual
fields the data modeler determined needed to be searchable.

In addition to fully customizing and re-purposing any of the included analytics,
cyber analysts can develop, share, and reuse highly complex, custom analyses such as:

• Graph analytics to identify “hubs” of activity within massive data sets.
• Multi-watch list analysis and fusion against all-source network data.
• N2 analysis where, for instance, every internal IP address might be compared

against every other internal IP address that connected to the same external host
on the same day. This kind of analysis can be performed by the Deep Analysis
Cyber Solution in a fraction of the time it could be performed on a traditional
relational database system. In fact, this kind of query at this scale will typically
fail on most relational database servers.
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As new threats emerge, analysts leverage the data-oriented, declarative pro-
gramming language of HPCC Systems to model new attack patterns. These routines
are executed against any size data set across the system’s distributed computing
cluster—so the analyst can run a custom query against 1 weeks’ worth of data, or
6 months’ worth of data without having to worry about how to optimize the query
for the target data set.

Conclusion

As more and more critical systems and mission operations become interconnected,
the nature of national security and corporate threats is quickly shifting. It seems
increasingly likely that the next major terrorist attack will be launched through an
infected network host or a compromised industrial process rather than a suicide
bomber or explosives-laden truck. Likewise the nature of conflict itself is evolving,
as armies of hackers continually attempt to penetrate our most sensitive networks to
steal classified information, trade secrets, intellectual property; or worse. Attacks of
this nature require time, resources, and a motivated party to successfully execute.
HPCC Systems has been developed to provide cyber security experts one of the
tools they need to uncover the markers of an Advanced Persistent Threat before it
has the opportunity to achieve its intended objectives. The HPCC Systems platform
provides the capability to perform sophisticated analysis against all data over a long
period of time. This comprehensive analysis—where no potential clue is ignored—
is what allows the detection of subtle activities and “low and slow” attack patterns.
The combination of pre-computed analytics and an ad hoc deep forensics analysis
capability allows cyber security teams to both improve the quality of their ongoing
automated monitoring and to quickly react to and understand new threats in an
improvisational fashion.
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Chapter 13
Social Network Analytics: Hidden
and Complex Fraud Schemes

Flavio Villanustre and Borko Furht

Introduction

In this chapter we briefly describe several case studies of using HPCCC systems in
social network analytics.

Case Study: Insurance Fraud

LexisNexis HPCC system has been applied to detect fraud insurance claims and
additional linked claim. In this example, the insurance company was able to find a
connection between two of the seven claims, and identified only one other claim as
being weekly connected, as illustrated in Fig. 13.1.

However, LexisNexis HPCC system explored two additional degrees of relative
separation, and the results showed two family groups interconnected on all of these
seven claims, as shown in Fig. 13.2. The links were much stronger than the carrier
data previously supported.

Case Study: Fraud in Prescription Drugs

Healthcare insurers need better analytics to identify drug seeking behavior and
schemes that recruit members to use their membership fraudulently. Groups of
people collude to source schedule drugs through multiple members to avoid being
detected by rules based systems. Providers recruit members to provide and escalate
services that are not rendered.

This chapter has been developed by Flavio Villanustre and Borko Furht.
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We used LexisNexis HPCC technology to resolve the following task. For a
given a large set of prescriptions, we calculated normal social distributions of each
brand to detect where there is an unusual socialization of prescriptions and services.

The analysis detected social groups that are sourcing Vicodin and other schedule
drugs, as illustrated in Fig. 13.3. The system identified prescribers and pharmacies
involved to help the insurer focus investigations and intervene strategically to
mitigate risk.

Case Study: Fraud in Medicaid

The HPCC system was applied to proof of concept for Office of the Medicaid
Inspector Generation (OMIG) of large Northeastern state.

The task was set as follows: for given large list of names and addresses, identify
social clusters of Medicaid recipients living in expensive houses and driving
expensive cars.

Fig. 13.1 Insurance company was able to find a connection two of seven claims
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Interesting recipients were identified using asset variables, revealing hundreds of
high-end automobiles and properties. Leveraging the Public Data Social Graph,
shown in Fig. 13.4, large social groups of interesting recipients were identified along
with links to provider networks. Table 13.1 illustrates the number of Medicaid
recipients identified by the HPCC system, who were driving expensive cars.

The analysis identified key individuals not in the data supplied along with
connections to suspicious volumes of “property flipping” potentially indicative of
mortgage fraud and money laundering.

Case Study: Network Traffic Analysis

Conventional network sensor and monitoring solutions are constrained by inability
to quickly ingest massive data volumes for analysis. Typically 15 min of network
traffic can generate 4 Terabytes of data, which can take 6 h to process. Similarly,
90 days of network traffic can add up to 300+ Terabytes.

Fig. 13.2 HPCC system identified two family groups interconnected on all of the seven claims
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Fig. 13.3 The HPCC system identified the members in the same group receiving the same brand
for prescription

Fig. 13.4 Public Data Social Graph used in the HPCC system to identify medicaid recipients with
expensive house and driving expensive cars
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In this project we analyzed all the data to see if any US government systems
have communicated with any suspect systems of foreign organizations in the last
6 months. In this scenario, we look specifically for traffic occurring at unusual
hours of the day.

In seconds, HPCC Systems sorted through months of network traffic to identify
patterns and suspicious behavior, as illustrated in Fig. 13.5.

Table 13.1 The HPCC
system identified the
Medicaid recipients who were
driving expensive cars

Make description # Make description #

Mercedes-Benz 46 Chevrolet 2

Lexus 41 Hummer 2

BMW 27 Jeep 2

Infiniti 13 Nissan 2

Acura 9 Toyota 2

Lincoln 8 Aston Martin 1

Audi 7 Bentley 1

Land Rover 7 Cadillac 1

Porsche 6 GMC 1

Jaguar 5 Honda 1

Mercedes Benz 3 Volkswagen 1

Saab 3 Volvo 1

Fig. 13.5 Identifying patterns and suspicious behavior of network traffic
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Case Study: Property Transaction Risk

The objective of this project was to perform large scale measurement of influences
to identify suspicious transactions. The HPCC system used big data measuring over
a decade of property transfers nationwide. Large Scale Graph Analytics was applied
to identify suspicious equity stripping clusters. Three core transaction variables that
were measured included velocity, profit, and buyer to seller relationship distance.

Based on the derived public data relationships from about 50 Terabytes database,
the Collusion Graph Analytics has been performed providing chronological anal-
ysis of all property sales. Based on this analysis, large scale suspicious cluster
ranking has been done, and persons and network indicators were counted.

The system was able to identify known ringleaders in flipping and equity
stripping schemes; they were typically not connected directly to suspicious trans-
actions. The system also identified clusters offloading property and generating
defaults and clusters with high levels of potential collusion.
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Chapter 14
Modeling Ebola Spread and Using
HPCC/KEL System

Jesse Shaw, Flavio Villanustre, Borko Furht, Ankur Agarwal
and Abhishek Jain

Introduction

Epidemics have disturbed human lives for centuries causing massive numbers of
deaths and illness among people and animals. Due to increase in urbanization, the
possibility of worldwide epidemic is growing too. Infectious diseases like Ebola
remain among the world’s leading causes of mortality and years of life lost.
Addressing the significant disease burdens, which mostly impact the world’s
poorest regions, is a huge challenge which requires new solutions and new tech-
nologies. This paper describes some of the models and mobile applications that can
be used in determining the transmission, predicting the outbreak and preventing
from an Ebola epidemic.

Infections can be caused by various infectious agents like viruses, viroids, pri-
ons, bacteria, nematodes and many other macro parasites. Infectious disease if are
easily transmitted to others by contact with an ill person or their secretions it is
referred to as contagious disease. There are many contagious diseases like
HIV/AIDS, Tuberculosis, Pneumonia, Malaria, Ebola. Table 14.1 shows the death
tolls of some of the contagious diseases.

As can be seen from the above table, contagious diseases are one of the major
cause of deaths in many regions. An outbreak of a communicable disease associated
with a high fatality rate in the rural forest communities of Guinea has spiraled into
an epidemic that is ravaging West Africa and evoking fear around the globe. Ebola
virus (EBOV, formerly Zaire ebolavirus), one of the five species of genus
Ebolavirus in the family Filoviridae, has been identified as the causative agent of
this unprecedented epidemic, in terms of initial geographic occurrence, magnitude,
complexity and persistence. EBOV was involved in previous outbreaks in remote
regions of Central Africa, with the largest, in the Democratic Republic of Congo in
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1976, accounting merely 318 cases, including 280 deaths [1]. The first case of
current West African Epidemic of Ebola virus disease was reported on March 22,
2014 with the report of 49 cases in Guinea [2]. By February 28, 2016, the World
Health Organization had reported, 28,639 probable, confirmed and suspected cases
out of which 15,484 in Liberia, 18,080 in Sierra Leone and 6340 in Guinea.

Five different Ebola virus strains have been identified, namely Zaire Ebola virus
(EBOV), Sudan ebolavirus (SUDV), Tai Forest Ebola virus (TAFV), Bundibugyo
Ebola virus (BDBV) and Reston Ebola virus (RESTV), with fruits bats considered as
the most likely reservoir host. The great majority of past Ebola outbreaks in humans
have been linked to three Ebola strains: EBOV, SUDV and BDBV [3]. EBOV is
identified as the deadliest of the five Ebola virus strains [3] and its name was derived
from the Ebola River located near the source of the first outbreak. Ebola is char-
acterized by a high case fatality ratio which was nearly 90 % in a past outbreak.

After an incubation period mostly ranging from 2 to 21 days, influenza like
symptoms appear, including sudden onset of fever, weakness, vomiting, diarrhea,
decreased appetite, muscular pain, joint pain, headache and a sore throat. Fever is
usually higher than 101 °F [4]. In some cases, skinmay even develop amaculopapular
rash within 5–7 days. A fraction of patients may later develop severe internal and
external hemorrhagic manifestations and experience multiple organ failures.

Human epidemics subsequently take off by direct human-to-human contact via
bodily fluids or indirect contact with contaminated surfaces. Body fluids that may
contain Ebola viruses include saliva, mucus, vomit, feces, sweat, tears, breast milk,
urine and semen [4]. Unsafe burials that involve direct contact with Ebola-infected
bodies also pose a major infection risk [CH NI 14]. Entry point for the virus include
nose, mouth, eyes, open wounds, cuts and abrasions. Healthcare workers treating
people with Ebola infection are at greatest risk, which is increased if the workers do
not have proper protective clothing such as masks, gowns, gloves and eye pro-
tection. Human-to-human transmission of EBOV through air has not been reported
to occur during the Ebola outbreaks. However, it has been demonstrated in very
strict laboratory conditions [4].

After the outbreak various models have been developed to predict and prevent
the spread of the disease. Since social media has become one of the primary means
by which people learn about worldwide developments, characterization of both
news and rumors on Twitter about Ebola has been done in order to understand the
popularity of misinformation. Tweets about Ebola peaked in late September
through mid-October 2014, when there was extensive reporting on the disease in
the US and Europe. On September 30, 2014, the Centers for Disease Control and
Prevention (CDC) confirmed first importation of Ebola in US when Thomas Eric

Table 14.1 Death tolls of
some of the infectious disease
till date

Disease Death tolls

HIV/AIDS 34 million [21]

Tuberculosis 1.5 million [22]

Malaria 438,000 [23]

Ebola 11,315
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Duncan exposed to virus in Monrovia travelled to Dallas. On October 8, Duncan
died at Texas Health Presbyterian Hospital in Dallas and few days later a healthcare
worker who was attending Duncan tested positive for the disease. On October 14,
another healthcare worker at the hospital reported low grade fever and was isolated.

In the last decade, digital health tools like mobile apps have become very useful
tool in stopping these infectious diseases from spreading. As said by Dr. Hussain to
New York Times “Physicians are becoming more knowledgeable in this area. Apps
are going to be most effective when used in conjunction with your physician” [5].
During the Ebola outbreak in 2014, many different mobile apps were developed in
order to inform and educate people to prevent people from future outbreak
occurrences. When Ebola was first discovered in Nigeria, Google trends was the
first app used to stop the spread the deadly virus. It was also used by journalist to
pin point the most frequently asked questions about Ebola and provided answers to
them in order to educate the public [6].

Survey of Ebola Modeling Techniques

In the following section, we provide a detailed analysis of various contributions
done towards the Ebola transmission, prediction, and prevention.

Basic Reproduction Number (R0)

The basic reproduction number also known as basic reproductive ratio is the
number of cases one case generates on average over the course of its infectious
period. This metric is very useful in determining whether an infectious disease can
spread through the population [7]. If R0 is less than 1, the transmission chain is not
self-sustaining and is unable to generate any major epidemic. But if R0 is greater
than 1, an epidemic is likely to occur. When measured over time t, the effective
reproduction number Rt, can be helpful to quantify the time-dependent transmission
potential and evaluate the effect of control interventions in almost ‘real time’ [3].

The incidence can be modelled as:

iðtÞ ¼ k expðrtÞ

where k is constant. This equation is integrated from starting time t0 to the latest
time t,

IðtÞ ¼ k=r½expðrtÞ� expðrt0Þ�

The growth rate of Sierra Leone is divided into two phases i.e. early phase and
late phase for which R0 is 3.07 and 1.30 respectively and for Liberia it is 1.96 [3].
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The comparison growth trends for past outbreaks in Central Africa with the current
outbreak in Liberia is shown in Fig. 14.1.

There are some limitations with R0, especially when calculated from mathe-
matical models, particularly ordinary differential equations do not provide a true
value of R0 as they cannot compare different diseases [7]. Therefore, these values
should be used with caution, especially if the values are calculated from mathe-
matical models.

Case Fatality Rate (CFR)

Case Fatality rate or case fatality risk is calculated by dividing the total number of
deaths that have occurred due to a certain condition by total number of cases. For
infectious disease, this is very important measure to estimate because it tells us the
probability of dying after infection [8]. The so-called Zaire strain is considered to be
slightly more fatal than the Sudan strain. While the CFR for the Sudan strain ranges
from 41 to 65 %, the CFR for the Zaire strain ranges from 61 to 89 %. The CFR of
the ongoing epidemic among cases with definitive recorded clinical outcomes for

Fig. 14.1 Comparison of the growth trends for past outbreaks in Central Africa (Congo 1995 and
Uganda 2000) with the ongoing Ebola epidemic in Liberia [3]
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Guinea, Liberia and Sierra Leone has been consistently estimated at 70.8 %, which
is in good agreement with estimates from prior outbreaks. It is important to follow
up the reasons why the estimated 53 % in real-time has been much lower than the
published estimate of 70.8 % among a portion of cases [3].

The case fatality rate is not a reliable calculation for an ongoing epidemic as
firstly, it doesn’t take into account the infections that have yet to run their course
and if many few cases are being reported then it is under estimate of the CFR.
Secondly, there can be bias in reporting and diagnosing towards severe cases of the
disease which will give the overestimate of CFR. With Ebola virus, bias can occur
if patients are being looked at home or are hospitalized only if severe or if patient
dies [9].

SIR Model

Individuals in these model are labelled in three compartments: Susceptible (S),
Infected (I) and Recovered (R). The model is based on the following assumptions:
(1) the networks are homogenous which means that all nodes have same linkage
and the probability that there is a link between any two nodes are equal, (2) sus-
ceptible individuals can get infected from infected individuals via contacts, and
(3) an infected individual becomes immune after recovering from the disease [10].

When there is a significant number of infected individuals in a community, the
effected contacts become susceptible and infected individuals do not grow quickly.
This phenomenon is called “crowding” or “protection effect”. The particular SIR
model ignores the crowding effect and hence have some unrealistic assumptions.
Figure 14.2 shows the schematic description of the model [10].

PSI and PRI are the probabilities with which an individual can transmit from
Susceptible to Infected and from Infected to Recovered respectively. The basic SIR
model can be represented mathematically by the following nonlinear Ordinary
Differential Equations (ODE) [ZH WA 15]:

dS=dt ¼ �PSIS

dI=dt ¼ PSIS� PIRI

dR=dt ¼ PIRI

where S(t) + I(t) + R(t) = N, N is the total number of individuals in the
community.

Suscep ble
(S)

Infected
(I)

Recovered
(R)

PSI PIR

Fig. 14.2 Schematic representation of the model [10]
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Improved SIR (ISIR) Model

In the standard SIR model, it is assumed that community is fully fixed with each
individual having equal probability to come in contact with others. However, many
recent studies have shown that social contact network is heterogeneous in nature
and not homogenous [10]. In social contact networks, the contact number per unit
time can be reduced by the “crowding effect” and hence the force of infection
should include the adaptation of individuals to the infection risk. In this improved
SIR model (ISIR) infection rate is not fixed but is a function of the number of
infected individuals k = PSI(I). Hence the ISIR model can be represented mathe-
matically as [10]:

dS=dt ¼ �kðIÞS
dI=dt ¼ kðIÞS� PIRI

dR=dt ¼ PIRI

The force of infection k(I) can be represented as f(I), [ZH WA 15]:

fðIÞ ¼ PSI=ð1þ aIÞ

where a is the parameter defining the level of “crowding effect”. Figure 14.3 shows
an example solution of the above mentioned ODE for ISIR model.

Fig. 14.3 Example solution of the ODE in ISIR model [10]
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SIS Model

This model divides individuals in only two compartments: susceptible and infected.
The infected individuals can return to susceptible class on recovery as the disease
confers no immunity against reinfection [JI DO]. In order to adapt this model to the
social networking, these terms are given new meaning: an individual is identified as
infected (I) if he/she post about the topic of interest, and susceptible (S) if he/she
has not posted regarding the topic. Figure 14.4 shows the schematic representation
of the model.

This model can be represented in mathematical form by the following ODE’s
[11]:

dS=dt ¼ �PSISIþ PISI

dI=dt ¼ PSISI� PISI

There is a consequence in this interpretation, that if an individual post about a
topic he/she is remained in the infected compartment i.e. he/she cannot propagate
back to susceptible class which is possible in epidemiological application.

SEIZ Model

One drawback with SIS model once a susceptible user gets exposed to the disease,
he/she is directly transitioned to the infected state. Once a user is exposed to a
news/rumor he/she may take time to adopt an idea or may be skeptical to some
facts. It is even possible that the user is exposed to the news or rumor but never
posted about it. Based on this reasoning a more robust and applicable model is
introduced known as SEIZ model which compartmentalizes the users into the
following classes: Susceptible (S), where user have not heard about the news yet;
Infected (I), are the users who have posted about the news; Skeptic (Z), represent
the users who have heard about the news but have not posted about it and Exposed
(E), are the users who have heard about the news and have taken some time
(exposure delay) prior to posting it [JI DO]. Figure 14.5 shows the SEIZ model
framework [11].

The different parameter definitions used in representing the SEIZ model math-
ematically as ODE are shown in Table 14.2.

Suscep ble
(S)

Infected
(I)

PSI

PIS

Fig. 14.4 SIS Model framework [11]
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This model can be represented mathematically by the following ODE’s [11]:

dS=dt ¼ �bSðI=NÞ�bSðZ=NÞ
dE=dt ¼ ð1� pÞbSðI=NÞþ ð1� IÞbSðZ=NÞ�qEðI=NÞ � eE

dI=dt ¼ pbSðI=NÞþ qEðI=NÞþ eE

dZ=dt ¼ lbSðZ=NÞ

There were many constraints during the adoption of SIS and SEIZ model like:
transition rate between different compartments and also the initial value of these
compartments was unknown. Another limitation was the inability to quantify the
total population size. The total population size appears to be simply the total
number of social accounts however, the value truly needed is the number of users
who could be exposed to the news or rumor. For example, if we take a total of 175
million registered Twitter accounts, out of these 90 million have no followers and
56 million follow no one. Also, there are many fake accounts which are used just to
enhance the popularity. Taking all these factors into consideration, estimating the
users receiving the tweet is quite difficult.

Fig. 14.5 SEIZ model
Framework [11]

Table 14.2 Parameter
definitions in the SEIZ model

Parameter Definition

N Total population

b S–I contact rate

b S–Z contact rate

q E–I contact rate

ε Incubation rate

1/ε Average incubation rate

bl Effective rate of S–Z

bq Effective rate S–I

b(1-l) Effective rate of S–E via contact with Z

b(1-p) Effective rate S–E via contact with I

l S–Z probability given contact with skeptics

1-l S–E probability given contact with skeptics

p S–I probability given contact with adopters

1-p S–E probability given contact with adopters
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Agent-Based Model

Mathematical models are very useful in providing future projections of the ongoing
health crises and also in assessing the impact interventions might have towards
transmission control. The model was developed with N individuals that interact
through a small network having variable edge density which can be defined as the
number of links divided by the total possible links [1].

Individuals can be in one of the following five discrete states: Susceptible (S),
Exposed (E), Infected (I); Dead of disease but not yet buried (DI) and Dead of the
disease and safely buried (Db). The DI infectious state includes agents who die but
whose burial entails risk for onward virus transmission [1], while virus transmission
stops with dead individuals that have been buried safely (Db).

Figure 14.6 depicts the model scheme, where:
PSE is the probability of an individual being transmitted from Susceptible to

Exposed compartment.
PEI is the probability of an individual being transmitted from Exposed to Infected

compartment.
PID is the probability of an individual being transmitted from Infected to Dead

compartment.
PIR is the probability of an individual being transmitted from Infected to

Recovered compartment.
The inverse of the probability PEI that determines the rate by which an exposed

individual becomes infectious that is incubation period which is set to a constant
value of 1/9 as reported by WHO Ebola Response Team. There are many rules
governing the system dynamics from time to time [1], like:

pðYvkðtþ 1ÞÞ ¼ DbjYvkðt� 1Þ ¼ DI ¼ 1

Suscep ble
(S)

Exposed
(E)

Infected
(I)

Recovered
(R)

Dead
(D)

Unburied
(DI)

Buried
(Db)

PSE PEI

PIR

PID

Fig. 14.6 Schematic representation of the model [1]
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This rule sets the time period from death to burial to two days during which family
members can get infected due to physical contact with the dead.

pðYvkðtþ 1ÞÞ ¼ EjYv1ðtÞ ¼ I;Yv1ðtÞ ¼ DI ¼ PSE;V1 2 Rvk

This rules tells that a susceptible individual can get exposed to a disease with a rate
determined by the probability PSE.

pðYvkðtþ 1ÞÞ ¼ IjYvkðtÞ ¼ E ¼ PEI

The third rule implies that an exposed individual can become infectious with a rate
determined by the probability PEI, inverse of this gives the incubation period.

pðYvkðtþ 1ÞÞ ¼ DIjYvkðtÞ ¼ I ¼ PID

The fourth rule implies that an individual die with a rate determined by the prob-
ability PID

pðYvkðtþ 1ÞÞ ¼ RjYvkðtÞ ¼ I ¼ PIR

The final rule tells that an individual can recover from infection at a rate determined
by the probability PIR.

Figures 14.7 and 14.8 show the cumulative number of infected and dead pre-
dicted by the model which are compared with the cases reported in Liberia and
Sierra Leone, respectively.

Fig. 14.7 Results for Liberia from May 27 to December 21, 2014 [1]

356 14 Modeling Ebola Spread and Using HPCC/KEL System



A Contact Tracing Model

Along with features of the standard model, this model includes some additional
features like rate of transmission to susceptible from infectious and improperly
handled deceased cases, rates of reporting and isolating these cases and rates of
recovery and mortality of these cases [BR HU 14].

Individuals are compartmentalized into six compartments at any given time t,
like Susceptible S(t), capable of being infected; Exposed E(t), individuals who are
exposed to infection and can grow the infection; I(t), who are infected with the
disease; Contaminated deceased C(t), improperly handled corpses of infected;
Isolated infectious II(t), exposed and infectious infected who have been identified
and isolated from susceptible population; and Removed R(t), infectious individuals
who have been recovered or are dead. Classes II(t) and R(t) can be separated from
other classes and can be obtained from S(t), C(t), I(t) and E(t) [BR HU 14].
Figure 14.9 shows the schematic diagram of the model.

The model can be explained with the differential equations as follows [12]:

SðtÞ ¼ �ðbSðtÞðIðtÞ=NÞÞ�ðeSðtÞðCðtÞ=NÞÞ

Fig. 14.8 Results for Sierra Leone from May 27 to December 21, 2014 [1]
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where:

bSðtÞðIðtÞ=NÞ is infection rate of susceptible
eSðtÞðCðtÞ=NÞ is infection rate due to improper handling of the deceased

EðtÞ ¼ ðbSðtÞðIðtÞ=NÞÞþ ðeSðtÞðCðtÞ=NÞÞ�rEðtÞ�jðaIðtÞþwCðtÞÞPExEðEðtÞ=NÞ

where,
rEðtÞ is rate of progression of infectiousness
jðaIðtÞþwCðtÞÞPExEðEðtÞ=NÞ is removal of exposed individual due to contact

tracing

IðtÞ ¼ rEðtÞ � aIðtÞ�cIðtÞ�mI(t) � j aIðtÞþwCðtÞð ÞPIxIðIðtÞ=NÞ

aIðtÞ is the general rate of identifying and isolating infection
cIðtÞ is rate of recovery
vIðtÞ is the rate of mortality outside hospital
jðaIðtÞþwCðtÞÞPIxIðIðtÞ=NÞ is the rate of identifying and isolating infectious

individual due to contact tracing

CðtÞ ¼ mIðtÞ � wCðtÞ

As the data is available in cumulative manner as per the definitions given by
WHO, the cumulative reported cases at time t and (t + Δt) can be given as [BR HU
14]:

CUM(tþDt) ¼ CUM(t)þ
Z ðtþDtÞ

t
aI(s)dsþ

Z ðtþDtÞ

t
wC(s)ds

Suscep ble
S

Exposed
E

Infec ous
I

Contaminated
C

Removed
R

Isolated
II

E E I I

H

H

Fig. 14.9 Schematic diagram of the model [12]
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where:
RtþDt

t
aIðsÞds is the number of identified/isolated infectious individuals in the time

interval of t to (t + Δt)
RtþDt

t
wCðsÞds is the number of deceased identified and properly handled in the

time interval of t to (t + Δt)
The different parameter definitions used in representing this model are shown in

Table 14.3.
Figures 14.10, 14.11 and 14.12 show the simulation of cumulative cases in

Sierra Leone, Liberia and Guinea, respectively from May 27 to September 23, 2014
[12].

The entire tracing process is dependent on the public health resources and
changes with different location and epidemic stages.

Table 14.3 Model parameters [12]

Parameter Definition

N Total population (assumed to be constant)

S(t) Number of susceptible individuals at a given time t

E(t) Number of exposed individuals at a given time t

I(t) Number of infectious individuals at given time t

C(t) Number of individuals deceased but improperly handled at time t

Q(t) Number of susceptible individuals under quarantine at time t

II(t) Number if infectious individuals under isolation at time t

R(t) Number of individuals recovered or are deceased and properly handled at t

b Transmission rate excluding the improper handling of the deceased

ε Transmission rate due to improper handling of the deceased

к Average number of contacts traced per identified/isolated infectious individuals

1/a Average time for symptoms onset to isolation of individuals independent of
contact tracing

PI Probability of contact traced infectious individuals isolated without causing new
case

xI Ratio of the probability of contact traced infectious individuals to probability of
random infectious individual

PE Probability of contact traced exposed isolated individual without causing a new
case

xE Ratio of probability of contact traced exposed isolated individual to probability of
random exposed individual

1/c Average time from symptoms onset to recovery

1/m Average time from symptoms onset to death

1/r Average incubation period

1/w Average time until improperly handled deceased is handled properly
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Spatiotemporal Spread of 2014 Outbreak of Ebola Virus
Disease

This model is generated to overcome the limitations of the standard models like
homogenous mixing assumption and lack of spatial structure. In this model, indi-
viduals are in susceptible state if they acquire infection from an infectious

Fig. 14.10 Simulation of cumulative cases in Sierra Leone without contact tracing. The parameter
values are N = 6,000,000; b = 0.32; ε = 0.0078; w = 0.2; a = 0.1; r = 1/9; c = 1/30; m = 1/8.
The initial conditions are S(0) = N; E(0) = 47; I(0) = 26; C(0) = 12 and R0 = 1.26 [12]

Fig. 14.11 Simulation of cumulative cases in Liberia without contact tracing. The parameter
values are N = 4,000,000; b = 0.3; ε = 0.316; w = 0.18; a = 0.18; r = 1/9; c = 1/30; m = 1/8.
The initial conditions are S(0) = N; E(0) = 40; I(0) = 22; C(0) = 12 and R0 = 1.54 [12]
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individual and become exposed without symptoms; after some amount of time this
infectious individual can transmit infection to home. This individual then might be
admitted to hospital, or die or may even recover. Also the individuals admitted to
hospitals may die or recover. Deceased individuals may transmit the infection
during their funeral and are then removed from the model [2].

For the spatial spread of the infection, movements of individuals which included
patients not infected with Ebola virus, individuals seeking assistance in the health
care facilities, health care workers taking care of these individuals and also the
attendance of funerals was modelled.

It is assumed that infectious individuals can transmit infection to general com-
munity on a daily basis which is restricted to individuals living within a 10 km
radius of the infected individual. Although, local population movement cannot be
ruled out and can be used as a possible factor in Ebola virus disease dynamics in the
future [2].

Quarantine Model

If no cure is found for Ebola, it will become out of control and hence a way has to
be defined to prevent this spread and this is quarantine. In the standard SIER model
another compartment is added Quarantine (Q) which indicates the number of
individuals being hospitalized by government and other medical organizations
along with Susceptible, Infected, Exposed and Removed compartments and a
variable a to denote the rate of infectious individuals being hospitalized. Now the
new system can be represented as [13]:

Fig. 14.12 Simulation of
cumulative cases in Guinea
without contact tracing. The
parameter values are
N = 12,000,000; b = 0.24;
ε = 0.224; w = 0.18; a = 0.2;
r = 1/7; c = 1/32; m = 1/8.
The initial conditions are S
(0) = N; E(0) = 6; I(0) = 3; C
(0) = 15 and R0 = 1.12 [12]
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dS=dt ¼ � b=cð ÞS 1� að ÞI
dE=dt ¼ b=cð ÞS 1� að ÞI� d=cð ÞE
dI=dt ¼ d=cð ÞE� I

dR=dt ¼ I

dQ=dt ¼ aI

It is assumed in this model, that the individuals hospitalized have the same
probability of death as the other infectious individuals but they do not infect other
exposed or susceptible individuals. It is not possible to have as many quarantine
places as there are infected individuals, but in order to prevent the disease spread it
is necessary to have satisfactory amount of these spots. This sufficient amount is
reached when the growth rate of infectious individuals is not greater than that of
removed population [13].

Global Epidemic and Mobility Model

Global Epidemic and Mobility Model (GLEAM) produces a realistic simulations of
global spread of infectious disease and is integrated in three layers namely: real
world data on global population, real world data on mobility of this population and
individual based stochastic mathematical model of infection dynamics [14].

The real-world population and mobility data is used to determine when and
where people will interact and potentially transmit the infection. This data divides
the world into a grid of small square cells and assigned an estimated population
value. GLEAM uses cells that are approximately 25 � 25 km, dividing the globe
into over 250,000 populated cells.

GLEAM uses set of twelve different flight networks which contains more than
3800 commercial airports in about 230 countries [14]. There are some airports with
lots of connections and large volumes and many airports with few connections and
low volumes. This characteristic is sometimes called the “long tail”, and has a
significant impact on how infections spread around the globe.

The GLEAM engine simulates the infection dynamics according to the char-
acteristics of the disease coupled with any prevention and intervention measures.
The characteristics of the infection are defined in the compartmental model and
each individual fits into these compartmental models at any given time. These
compartments are connected to each other with paths that define how an individual
can travel from one compartment to another and associated parameters tells the
probability of such a transition. GLEAM uses stochastic algorithms mathematically
defined through individual based stochastic chain binomial and multinomial pro-
cesses to calculate the proportion of the population within each compartment for
each subpopulation, and how these proportions change over time as individuals
transition from one compartment to the next [14].
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Table 14.4 below depicts the models that are used in predicting and preventing
the transmission of Ebola virus disease along with some of the characteristics of
these models.

Table 14.4 Different models used to predict and stop the Ebola spread

Models Characteristics

Basic reproduction
number

This is the number of cases one case generates on average over the
course of its infectious period. This is useful in determining whether
the infectious disease can spread throughout the population

Case fatality ratio This is the ratio of total number of deaths to the number of cases and
helps in estimating the [probability of dying after the infection]

SIR model There are three compartments: Susceptible, Infected and Recovered.
This model works on some assumptions like, all networks are
homogenous, susceptible individuals can get infected from infectious
individuals via contact and infected individuals become immune after
recovering. This model also ignores the crowding effect

Improved SIR
(ISIR) model

This is an improved version of SIR model and takes crowding effect
into consideration. Therefore, force of infection includes the adaptation
to individuals to infection risk and is a function of number if infectious
individuals

SIS model In this model there are only two compartments: Susceptible and
Infected. According to this an infectious individual can return to
susceptible class on recovery as the virus confers no immunity against
reinfection

SEIZ model This model overcomes the drawback of SIS model that once a user is
exposed to the disease, he/she is directly transitioned to infected state.
This model has four compartments: Susceptible, Exposed, Infected and
Skeptic. There are some constraints in this model like transition rate
between different compartments and also the initial rate of these
compartments are unknown. There is also an inability to quantify the
total population size

Agent based model This model is developed with N individuals who interact through a
small network having variable edge density. This model has five
discrete stages: Susceptible, Exposed, Infected, Dead of disease but not
yet buried and Dead of disease and safely buried

Contact tracing
model

Some of the features of this model are rate of transmission to
susceptible from infectious and improperly handled deceased cases,
rate of reporting and isolating these cases and rates of recovery and
mortality of these cases. There are six compartments in this model:
Susceptible, Exposed, Infected, Contaminated deceased, Isolated
infectious and Removed

Spatiotemporal
model

This model overcomes the limitation of some models like homogenous
assumption of networks and also the lack of spatial structure. Infection
can be transmitted to general community from an infected individual
living within 10 km radius of that individual and hence this model can
be used as a possible factor in Ebola virus disease dynamics

(continued)
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Other Critical Issues in Ebola Study

Delays in Outbreak Detection

There are several factors which hampers the identification of Ebola outbreaks in
Africa. Firstly, only a small number of Ebola outbreaks have occurred in East and
Central Africa since the first outbreak in 1976 compared to other infectious disease
like Malaria. There is also a limitation to community level knowledge of the dis-
eases some areas at risk of Ebola have yet to experience Ebola outbreak. Secondly,
early symptoms of Ebola are not specific which tends to misdiagnosing Ebola with
malaria or other locally infectious epidemic disease. Thirdly, lack of epidemio-
logical surveillance systems and diagnostic testing in poor countries increases the
delay in detecting outbreaks. Longer the delay in detecting the outbreak and
implementing control interventions, more are the chances that the virus spreads
from remote and sparsely populated areas into higher populated areas [CH NI 14].
Ebola outbreak is directly dependent on the initiation of the control interventions
which is depicted in Fig. 14.13.

As seen from above figure, a 5-day delay is highly unlikely to result in a major
outbreak but if this delay exceeds to 2 weeks it may lead to a major Ebola outbreak
[3].

The timely detection of an outbreak will minimize transmission in healthcare
facility and in community by reducing the case fatality due to epidemic,
strengthening coordination for the response, and building capacity for ongoing
surveillance and control [15].

Table 14.4 (continued)

Models Characteristics

Quarantine model This model along with standard SIER model has another compartment
namely Quarantine. It is important to have maximum number of
quarantine spots in order to stop the disease spread and this number
can be reached when the growth rate of infectious individuals is not
greater than that of removed population

GLEAM This model is integrated in three layers: real world data on global
population, real world data on mobility of this population and
individual based stochastic mathematical model of infection dynamics.
The real world population and mobility data determines when and
where people will interact and potentially transmit the infection and the
model determines the rate at which an individual transition from one
compartment to another
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Lack of Public Health Infrastructure

Basic infection control measures in health care settings are essential to avoid further
spread of disease. However, under-resourced African regions from a low ratio of
health-care worker’s total population, but also lack in personal protective equip-
ment and local capacity to effectively trace contacts and isolate infectious indi-
viduals. Therefore, Ebola outbreak has been amplified in health care settings. In
Guinea, it took nearly 3 months for the health officials to identify Ebola [16] and by
that time there were already few scattered cases which were imported to Liberia and
Sierra Leone from Guinea. Most of the aid allocated is given to combat human
immunodeficiency virus, malaria and tuberculosis and the rest going to maternal
and child health services [17], which leaves very less or almost zero to support
development of health systems. This lack of balanced investment is a continuous
challenge in controlling the current Ebola outbreak. Also, individuals need to be
screened for Ebola and the ones tested negative still needs to be treated. National
government along with the external partners need to implement strategies to make
health systems stronger and meet the essential health needs of the population in
order to address the outbreak.

Fig. 14.13 Effects of size of baseline isolation effectiveness and timing of control interventions on
likelihood of observing an outbreak [3]
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Health Worker Infections

The first health worker infected by Ebola was from Gueckedou, Guinea in January
2014. It is seen that based on health workers position they were 21–32 times at
greater risk of Ebola infection than the general adult population out of which the
most affected were the nursing workers with 52 % of the cases [18]. There were
some gaps in implementing the Infection Prevention and Control (IPC) standards in
the area where transmission took place. It is difficult to pin point the area where the
health worker got infected. It may be in the health facility or the health worker
would have been infected while providing care for Ebola-infected patient
unknowingly.

From January 2014 to March 31, 2015, 815 confirmed and probable health
worker cases were recorded in VHF (Viral Haemorrhagic Fever) database with 328
in Sierra Leone, 288 in Liberia and 199 in Guinea.

61 % of health workers infected with the disease were males, nearly 50 % of the
infections occurred between the age of 30–44 years and 22 % of health workers
infected were aged between 15–29 years old. 77 % of the health workers were
hospitalized compare to 62 % non-health workers which reflects a greater aware-
ness and access to care among health workers.

Table 14.5 shows the total number of health worker cases updated on November
4, 2015 in various countries. This number includes all the confirmed, probable and
suspected cases. It is evident from the table that out of the cases that are reported
many of them are from the heath workers hence it is necessary first to prevent the
heath workers from getting infected from this virus so that pubic and patient safety
can be improved.

WHO and partners have worked actively with managers and health workers to
put IPC and Occupational Health and Safety (OHS) strategies and supplies in place
to prevent health worker infection and improve patient safety.

Table 14.5 Total health
worker cases from different
countries as on November 4,
2015 [24]

Country Total cases

Guinea 196

Liberia 378

Mali 2

Nigeria 11

Sierra Leone 307

Spain 1

United Kingdom 1

USA 3
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Misinformation Propagation in Social Media

In conjunction with news reports about Ebola, rumors about the disease began to
propagate wildly on Twitter. Some tweets were gathered from late September through
late October 2014 which were filtered by the keyword “Ebola” or relevant hash-
tags such as #ebola, #EbolaVirus, #EbolaOutbreak, #EbolaWatch, #EbolaEthics,
#EbolaChat, #nursesfightebola, #ebolafacts, #StopEbola, #FightingEbola and
#UHCRevolution. Several widespread rumors were circulating on twitter, top 10 of
which are described in Table 14.6.

Since social media has become one of the primary means by which people learn
about worldwide developments, characterization of both news and rumors on social
media about Ebola has been done in order to understand the popularity of misin-
formation. Since the first diagnosed case of Ebola in US, public has been curious to
gain more knowledge about Ebola and hence has been leaned towards social media.
Social media is a platform to reach millions of users, hence public health officials
and medical experts are using it to educate and inform. But, some users share the
same platform to share half-truths and rumors which increases the number of
irrational fears about Ebola. Also because of the poor Internet and lack of roads for
communication, the outbreak is believed to be three times worse than all the pre-
vious outbreaks.

Hence many models have been developed in order to study the rumor propa-
gation and how users respond to the ideas, whether they adopt it readily or skeptical
initially about it.

Table 14.6 Top 10 Ebola related rumors by tweet volume from September 28 to October 18,
2014

Rumor No. Content Label

1. Ebola vaccine only works on white people White

2. Ebola patients have risen from dead Zombie

3. Ebola could be airborne in some cases Airborne

4. Health officials might inject Ebola patients with lethal substances Inject

5. There will be no 2016 elections and complete anarchy Vote

6. The US government owns a patent on the Ebola virus Patent

7. Terrorists will purposely contract Ebola and spread it around Terrorists

8. The new iPhone 6is infecting people with Ebola iPhone

9. There is a suspected Ebola case in Kansas City Kansas

10. Ebola has been detected in hair extensions Hair
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Risk Score Approach in Modeling and Predicting Ebola
Spread

Modern disease compartmental models are developed to the point where the most
significant factors controlling propagation make up components in the name. For
example: Susceptible-exposed-infectious-recovered/removed (SEIR). Since propa-
gation varies from disease to disease, this model naming convention can loosely
serve as a classification for disease type which represents simple diseases: from the
common cold or influenza (SIS) to pathogens more complex in nature such as Ebola
(SEIR). Compartmental models produce efficient estimates for pathogen prevalence
and duration, and this insight is vital in stopping highly contagious diseases like
Ebola. This infections period would also be marked with an asymptomatic char-
acteristic meaning: a host is infected but no symptoms are presenting (SEIaR).

Because of its protracted1 asymptomatic period and virulence, Ebola can spread
quickly unless strategic precautions are taken, including re-examining the com-
partmental model to account for newly observed spread characteristics. During the
2014 West African outbreak, it was observed surviving males carried live Ebola in
seminal fluid for more than 30 days. While the US Center for Disease Control2 and
the World Health Organization3 have not published definitive proof Ebola may be
contracted as an STI, pathogen screening guidance has been provided for survivors.

Beyond Compartmental Modeling

The basis for compartmental models are making assumptions about social networks
or graphs. Common assumptions can include: number of individuals, infection
probability, incubation period, infected recovery time, etc. These phenomenological
assumptions limit the scope of the model while preserving the most realistic aspects
of it, but some model dimension assumptions are necessary because actual social
network data does not exist. In the era of “big data” this is quickly changing.

Corporations across the globe are becoming experts at the collection of trans-
actional data. While some of the data captured is specifically to enhance automated
decision-making systems, the majority of data collected is still in a raw, unlever-
aged form making knowledge extraction the next field to experience an explosion
of growth. On the forefront of knowledge extraction, LexisNexis Risk has produced
the RELX Social Graph consisting of over 4 billion relationships built from applied
identity analytics on a 4 petabyte core of content.
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Physical and Social Graphs

Unlike user curated social graphs such as Facebook, the RELX graph coalesces as
people experience life events. Sharing employers, addresses, insurance policies, and
vehicle or property ownership are examples of the life events linking two people
together. Applied graph analytics appends useful measures to help describe the
quality of clusters. For the purposes of measuring the risk of a cluster
contracting/propagating a disease, physical proximity of nodes (regardless of social
connection) also plays a critical role. The physical proximity calculation between
nodes is a simple distance calculation for each of the subject’s most current address.
A traditional social network does not imply a physical network, but a physical
network may imply the sub-set of a social network. A physical network is con-
structed by proximity resulting in a ‘nearest neighbor’ linking, as illustrated in
Fig. 14.14. Proximity, however, does not guarantee contact, therefore, a combi-
nation of proximity and social linking should be considered.

Graph Knowledge Extraction

Tools such as Gephi, NodeXL, or SVAT offer intuitive visual searches and a basic
set of network measures, but to move beyond superficial graph descriptors to
real-world application a different approach must be taken. Similar in nature to
Neo4j, the RELX Knowledge Engineering Language (KEL) provides the ability to
blend massive graph databases (billions of records) and derive dimensions beyond
simple relational properties. As mentioned earlier, performing a distance calculation
between nodes creates an additional edge weight distance. KEL can not only cal-
culate the most recent difference in addresses, but also a chronology of addresses
providing metrics such as cluster mobility, average move distance, physical cluster
expansion/contraction, address density, occupant density, and many others.

Fig. 14.14 A physical network is constructed by proximity resulting in a ‘nearest neighbor’
linking
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Since the SEIR model places emphasis on physical proximity and social cohe-
sivity, can the spread of information about the disease outpace the spread of the
disease, thereby slowing its progression? Is disease transmission highest when a
cluster is highly proximal, but non-cohesive socially? Do friendly people keep us
safe from diseases like Ebola by serving as connectors helping to propagate
awareness between disparate social groups faster than the disease can spread?
Research conducted by Damon Centola from the University of Pennsylvania titled
“The Social Origins of Networks and Diffusion” suggests the diffusion of ideas is as
sensitive to the homogeneity of the network as was Little Red Riding Hood to
porridge [29]. Idea diffusion requires a network to be “just right”: moderately
homogenous and moderately connected. A highly homogenous or under-connected
graph population results in poor idea propagation.

Applying this idea on the national scoped RELX Graph: “Which clusters have:
the largest first degree count, the lowest average degree (cohesivity measure), the
highest neighbor count, the highest colleague count, haven’t moved in 5 years, and
live in an area where there are few single family dwellings and car ownership is
1:10?” These people are highly connected, live in a metro area, rely on public
transportation, commute to work, and know their neighbors.

The nodes identified by this filter are key influencers and could be leveraged to
proactively slow the propagation of a physically communicable disease like Ebola,
potentially limiting the exposure to health care workers and their networks. Future
refinements could include the incorporation of a health care worker flag or prox-
imity to a health care facility; homogeneity dimensions such as: political affiliation,
economic trajectory, or migration velocity; or proximity to public transportation
hubs: bus and train stations or airports.

Graph Propagation

Points of intervention can also be identified by simulating the propagation of a
disease based on SEIR model dimensions as edge characteristics. The node selected
for intervention would be the first non-exposed node found on the most infectious,
shortest path. The most infectious, shortest path is defined as: the shortest path in a
sub-graph through which the number of first degree nodes is maximized. KEL does
not have native graph traversal rules distinguishing between a walk and a path;
however, KEL does allow for the creation of such rules. To control backtracking, or
double counting nodes as nth degree relatives, the GLOBAL primitive is used.

A first degree relatives with a distance edge weight:

GLOBAL : Relations #1; #2; #dist1ð Þ¼[D1 #1; #2ð Þ;
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A second degree relationship excluding backtracking:

GLOBAL : Relationsð#1; #2; #dist1Þ;Relationsð#2; #3; #dist2Þ;
1\[ #3 ¼[D2ð#1; #2; #dist1; COUNTð#3ÞÞ;

A second degree path based on the second degree pattern including the calcu-
lation of total traversed distance and first degree node count:

GLOBAL : D2ð#1; #2; #dist1; #cnt1Þ; D2ð#2; #3; #dist2; #cnt2Þ;
#1\[ #3; NOT D2ð#1; #3Þ
¼[D2Pathsð#1; #3; #dist1þ #dist2; #cnt1þ #cnt2; #2Þ;

KEL will then apply the D2Paths pattern rule to each node in the entire graph
aggregating: root, intermediate node, sink, edge distance, and first degree nodes
encountered, as illustrated in Fig. 14.15.

The resulting rules produce an interim output as follows:

Node 1 Node 2 Node 3 Distance Count

A B D 5 4

A C D 4 4

Expanding the rules out to eight degrees exceeds the largest inter-cluster
diameter found in the RELX graph. Applying these rules to a sample data set
produced the desired results. Graph traversal rules identifies the root, sink, inter-
mediate nodes, total distance traveled, the number of unique first degree nodes
encountered along the path, the total path length, and percent of nodes encountered
during traversal, as shown in Fig. 14.16. Shortest path does not guarantee most
infectious.

With the most virulent path discovered, proactive steps can be taken to interrupt
the transmission of the disease by contacting the best connected person on the

X
#1 #2 #4

1
4

#3
2 2

When calcula ng D2 Count, 
do not include {121}.

Fig. 14.15 Using the
GLOBAL primitive to define
graph traversal rules
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shortest path, most infectious path. In this case, node 9 would be an effective
intervention point.

With the most virulent path discovered, proactive steps can be taken to interrupt
the transmission of the disease by contacting the best connected person on the
shortest path, most infectious path. In this case, node 9 would be an effective
intervention point.

With each outbreak, disease compartmental models become more sophisticated
as new dimensions are added, but even the most sophisticated models make many
assumptions impacting their real-world application. Due to the lack of actual social
network data, modeling has been restricted to hypothetical populations, but two
emerging RELX technologies could accelerate the accumulation of knowledge
around disease propagation in the United States. As the RELX Social Graph and
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4 18 4, 8, 12, 16, 18 7 6 5 61%
4 18 4, 8, 15, 18 15 6 4 56%

Fig. 14.16 Graph traversal rules identifies the root, sink, intermediate nodes, total distance
traveled, the number of unique first degree nodes encountered along the path, the total path length,
and percent of nodes encountered during traversal
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KEL continue to evolve, disease spread simulations may move past hypothetical
scenarios to identifying individuals key to hindering disease propagation based on
an array of dimensions from blending: demographical, geographical, and social.

Mobile Applications Related to Ebola Virus Disease

As the mobile technology is taking a prominent role in the healthcare systems, it is
necessary to have some mobile apps which can spread knowledge on the Ebola
virus disease. In this section, we present a list of apps on which one can rely in
preparing and responding to Ebola.

ITU Ebola—Info—Sharing

The International Telecommunication Unit (ITU) has made a freely available
“Ebola—Info—Sharing” smartphone application which has the inputs of the
organization who were involved in the fight against Ebola, organizations who were
directly working on the ground in Ebola-affected countries. This app focuses on
sharing precise information on Ebola with public and organizations, official news
and key points on the map is also one of the feature in the app. Also, organizations
have specific feature of sharing useful information with the staff on the ground [19].

Ebola Prevention App

This is a free mobile app which help users from the prevention of the disease
anywhere he/she goes around the affected or unaffected regions. Some of the fea-
tures of the app include affected area mapping where app shows the user location
with respect to the affected areas in a map, Ebola hot zone detection where the app
notifies the user if his/her region has been affected by Ebola virus disease,
Preventive Measures in which app gives the user preventive measures based on
his/her proximity of current location to affected areas, Latest info keeps up to date
information on Ebola from all regions.

Ebola Guidelines

This app was created by Medical eGuides using the contents from WHO and CDC.
It is a free of charge app which helps in improving the patient outcome by updating
the healthcare workers with correct information at any point in an easy to use
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format. The healthcare workers are always up to date as the updates are pushed
automatically to the app.

About Ebola

This app provides the knowledge and simple precautions one can take to protect
his/her family and friends from this disease. This app mainly focuses on educating
people about the information, prevention and risk regarding Ebola disease.

Stop Ebola WHO Official

This is official mobile application World Health Organization Africa to fight against
Ebola. This app host features like preventive measures against Ebola, Testimonies
from Ebola survivors, FAQS about Ebola, Symptoms of Ebola, reporting of a
suspected case of Ebola to trigger an investigation, Awareness feedback survey,
updates on Ebola, WHO contacts in countries and Local Ebola treatment centers
detailed and updated information. User will also receive WHO alerts for important
information in his/her area.

HealthMap

This app tracks disease outbreak information in real time and let him see all the
current outbreaks around him. This app has been credited with spotting Ebola
outbreak 9 days before the WHO.

#ISurvivedEbola

It is a global campaign which places the stories of Ebola survivors in order to
inform, protect and spread hope among others. The #ISurvivedEbola website
houses the stories of a growing community of Ebola survivors from Liberia, Sierra
Leone, and Guinea and is part of the #TackleEbolainitiative.

Ebola Report Center

This app was created as an emergency response mechanism to prevent Ebola from
spreading in West African region. This app takes relevant data about Ebola from
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growing mobile density which acts as information center for health and health care
workers and also builds history of Ebola occurrence for future reference.

What is Ebola

This app is created to educate everyone about Ebola so that it can be stopped. This
app tells everyone about the risks of the disease and also the preventive measures
that are needed to be taken to protect oneself.

Ebola

This app presents the information pertaining to Ebola like how it is transmitted,
what are the signs and symptoms of this disease, the risk of exposure, diagnosis,
various treatments options available and also tells the user the preventive methods
of the disease.

Stop Ebola

This app gives all information about Ebola, history of the disease, transmission
modes, statistics of all the affected countries, conditions under which one can be
infected from this disease, treatments, various signs and symptoms of the disease,
preventive measures of the disease. This app also gives real time notifications to
protect the users from this disease in everyday activities.

Virus Tracker

This is an educational game which simulates the spread of virus and illustrates the
need of vaccination in controlling the outbreak. Players start with an infected state
and can return to normal “HUMAN” state once they are vaccinated. Vaccinated
players can seek other infected players and vaccinate them in order to earn more
points. Virus mutations occurs periodically requiring players to obtain the latest
vaccine before they return to the infected state. Players can transit between infected
and vaccinated state throughout the game cycle depending on the responsiveness to
mutations and their interactions with other players.

Mobile Applications Related to Ebola Virus Disease 375



Ebola Virus News Alert

This app provides latest news about the Ebola virus disease worldwide. Other apps
similar to this are Ebola virus which gives the news about Ebola in French, English,
Espanola and Dutch, Ebola news update, Breaking news Ebola virus, Ebola news
alert.

Sierra Leone Ebola Trends

This app gives an insight of how Ebola spread in the people of Sierra Leone and
West Africa. This app tells all the trends, awareness, alerts about the disease in
Sierra Leone.

The Virus Ebola

This is an informative app which includes topics like what is Ebola, its signs and
symptoms, information about the previous disease outbreak, transmission, diag-
nosis, its vaccine and treatments, natural host of the virus, Ebola virus in animals
and also the preventive measures one can take to protect themselves from this
disease.

MSF Guidance

It is an easily searchable app with latest MSF protocols and essential drug infor-
mation for the healthcare workers which can be downloaded and accessed anytime.
The main aim of this app is to improve the access of clinical information to the
healthcare workers to improve the patient care. This is done by constantly taking
inputs from the healthcare workers on the field and also asking for any additional
features that can be added to the app. This app includes MSF guidelines on Ebola
and Marburg.

Novarum Reader

This is a mobile application, which reads and shares the result of Ebola test from a
defense diagnostic manufacturer BBI Detection. The main aim of the app is to solve
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the problem of human error and also to stop the delay which occurs in sending tests
to a lab for confirmation [5].

Table 14.7 below gives a brief description of the various mobile application that
have been launched for the prevention and information sharing of this Ebola virus
along with some of the main features of the application.

Table 14.7 Some of the mobile applications related to Ebola virus prevention and education

Application name Characteristics

ITU Ebola—Info—
Sharing

Launched by ITU (International Telecommunication Unit) on
December 2014 and focuses on sharing information on Ebola with
public and various organizations

Ebola Prevention
App

Was created by CloudWare Technologies which has features of
showing the user location with respect to affected areas in map, and
latest information from all Ebola infected regions

Ebola Guidelines This app is created by Medical eGuides and helps in improving the
patient outcome by updating the healthcare workers with correct
information at any time

About Ebola This app is launched by CODE LLC and mainly focuses on educating
people about information, prevention and risks regarding this virus

Stop Ebola WHO
official

This WHO Africa official application launched by Sikiwis which has
features like preventive measure about Ebola, testimonies from Ebola
survivors, FAQS about Ebola. Users will also get WHO alerts for any
important information in his/her area

HealthMap This application is launched by HealthMap and tracks disease
outbreaks in real time

#ISurvivedEbola It houses the stories of Ebola survivors from Sierra Leone, Liberia and
Guinea

Ebola Report
Center

This application is launched by Mobile Software Solutions and has all
the relevant data about Ebola which acts as an information center for
health and health care workers and also builds a history for future
references

ebola It contains information pertaining to Ebola like how is it transmitted,
signs and symptoms, risk of exposure, diagnosis and etc.

Virus Tracker This is an educational game which simulates the spread of virus and
illustrates the need of vaccination in controlling the outbreaks

Ebola Virus New
Alert

This app is launched by qrcodings and has all the latest news about the
Ebola virus disease worldwide

Sierra Leone Ebola
Trends

This application is launched by Teleficient Communication in
September 2014 which tells all the trends, awareness and alerts about
the disease in Sierra Leone

MSF Guidance This app is launched by Open Medicine Project and has latest MSF
protocols and essential drug information which can be downloaded and
accessed anytime

Novarum Reader This app reads and shares results of Ebola test from a defense
diagnostic manufacturer BBI Detection. The main aim is to solve the
problem of human error and also to stop the delay that occurs in
sending samples to lab for confirmation
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Work Done by Government

The U.S. has built, coordinated and led a worldwide response to the Ebola outbreak
while strengthening the preparedness in U.S. U.S. has sent more than 3000 DOD,
CDC, USAID, and other US officials to Liberia, Sierra Leone, and Guinea to assist
with the0020resposne efforts [20]. With the help of these officials they have:

• Constructed 15 Ebola treatment units (ETUs) [20]
• Provided more than 400 metric tons if personal protective equipment and other

medical supplies [20]
• Operated more than 190 burial teams in the region. [20]
• Conducted aggressive contact tracing to identify the chain of transmission [20]
• Trained healthcare workers [20]
• Worked with international partners to identify travelers who may have Ebola

before they leave the region [20]

CDC and Homeland Security have conducted screening of around 7700 adults
and children [20] to detect signs of Ebola among all the passengers arriving in the
U.S. Each passenger is asked to forward his/her medical information to the state or
local health authorities and they are kept under 21 days compulsory monitoring to
ensure any signs of Ebola. If the individual displays any signs or symptoms of the
disease they are isolated, diagnosed and are treated. The United States has already
committed more than $921 million [20] towards fighting for Ebola in West Africa
and will continue to use a strategy that meets the evolving conditions on the ground
until there are zero cases of Ebola in the regions.

The Democratic and Republican lawmakers have come with $5.4 billion funding
from President’s emergency funding which will be used to [20]:

• Prepare US healthcare system for Ebola cases
• Development of Ebola vaccines and treatments.
• Enable detection and prevent the spread of this disease to other countries.

CDC is developing an introductory safety training course for licensed clinicians
who wants to work in an Ebola Treatment Unit in Africa.

Innovative Mobile Application for Ebola Spread

Infectious disease spread across population usually follows a well-defined patterns
determined by the transmission mechanism that the pathogen can use and the
network of relationship that the pathogenic agent can follow to spread throughout
the community. Ebola virus is transmissible through contact with vital fluids and
secretions and only present in these after the 21 days’ incubation period is com-
pleted and the patient exhibits the symptoms of the disease.
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Identifying and tracking individuals affected by this virus in densely populated
areas is a unique and urgent set of challenges in the public health sector. Currently,
mapping the spread of the Ebola virus is done manually, however with the help of
this Innovative Mobile Application which will use massive amounts of data from
various sources like Twitter and Facebook being fed into the decision support
system that will model the spread pattern of Ebola virus and create dynamic graphs
and predictive diffusion models on the outcome and impact on either a specific
person or a specific community. With the help of this model, we can make more
precise forward predictions of the disease propagations and to identify possibly
infected individuals which will help perform trace—back analysis to locate the
possible source of infection for a particular social group. This model will visualize
and identify the families and tightly connected social groups who have had contact
with an Ebola patient and is a proactive approach to reduce the risk of exposure of
Ebola spread within a community or geographic location.

This system will query the movement of a person and possible contacts in the
areas affected by Ebola and will send notification notifying the user about the level
of alert in their specific areas and caution them as to where there is a disease
outbreak within the geographic location. For example, if a person affected with the
virus was in movie theatre the previous day, a monitoring alert will be issued to
other people who came in contact with that person or who were in the vicinity and
advise them to take precautionary measures and watch for any signs of symptoms
such as fever or headache.

We describe some of the features that are included in this mobile application like
registering a new user, login with help of twitter or Facebook, basic information
about the virus, symptoms of the disease, precautionary measures an individual can
take, spread map of the disease and alert notification system.

Registering a New User

This is a straight forward method of registering a new as is done in many appli-
cations when a new user start using any application. The individual will be asked to
put in some basic information like his/her name. email address which will be used
for verification purposes. Users need to mention unique username and password
which he/she will be using at a later stage to login in the application. On successful
registration, a confirmation email will be sent to the registered email address for
verification.

All these details are stored in database using SQLite which is a relational
database management system. In contrast to many other database management
systems, SQLite is not a server–client database engine, rather it is embedded into
the end program and it implements most of standard SQL queries.
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Login the Application

The user will have various options to login into the application like login through
social media such as Twitter and Facebook or he/she can also login via the user-
name and password created during registration process. When user logs in with the
username and password created during registration process it queries from the
database created and once the username and password matches from the database
he/she will be directed to the home page.

For twitter login TwitterCore Kit is used which provides login with Twitter and
enables application users to authenticate with twitter. When attempting to obtain an
authentication token, this Kit will use the locally installed Twitter application to
offer a single sign-on experience. If the kit is unable to access the authentication
token through the Twitter app, it falls back to using a web view to finish the OAuth
process. Once the login is completed successfully, a TwitterSession is provided in
the success result which contain token secret, username and userId of the user and
the session becomes active and is automatically persisted.

Facebook SDK for Android is used to allow users to login the application via
Facebook. When the users login the app via Facebook they grant permissions to the
app to retrieve information. To add this functionality firstly the Facebook SDK has
to be initialized and then a call back manager has to be created to handle the login
responses and finally the login results are passed to the login manger via the call
back manager. If the login succeeds, the login result will have a new Access token
with all the new granted and declined permissions.

Basic Information

Once the user has successfully logged in wither via Facebook or Twitter or using
his/her credentials they will be redirected to the home screen which contains all the
basic information about Ebola virus like the history of the disease, symptoms, how
the disease can be transmitted from one individual to another, what are the pre-
ventive methods one can adopt. The user can use the slide menu option to go to
various links for more information as shown in Fig. 14.15.

Geofencing

This is a feature in a software program that uses the global positioning system
(GPS) to define geographical boundaries. With the help of this feature triggers can
be set up so when the device enters or exits the boundary defined by the admin-
istrator, the user will be notified either via a text message or by email or by push
notification.
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The interested location in our case the Ebola affected sites are specified using the
longitude and latitude and the proximity of these locations are adjusted by adding a
radius of 500 m as shown in Fig. 14.17.

Fig. 14.17 Some features of innovative mobile application
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Firstly, to use geofence feature our mobile application requested to access fine
location by adding this permission in the manifest file of the application. To use the
intent service for listening the geofence transitions, the IntentService element was
added. The geofences are created using the API’s class builder which also helps in
the setting the desired radius, duration and transition types for the geofence. We
have set two triggers one for entering the geofence and the other for exiting. These
triggers tell the location services that the respective trigger should be fired if the
device is within the geofence. Stopping geofence monitoring when it is no longer
needed or desired can help save battery power and CPU cycles on the device. The
Geofencing can be stopped by removing the geofence from location service.
Figure 14.18 below shows the geofence created around a particular location with a
radius of 500 m.

As you can see from the above image the user is currently present in the
geofence area and hence will receive a notification alerting him/her that they have
entered an Ebola infected area and another notification will be pushed as soon as the
user exits the geofence alerting him/her that they have left the Ebola infected area.
This feature will help the users by keeping them aware of the infected areas and so
to take necessary precautions when entering these areas.

Web Service Through ECL

A SOAP enabled service is created using ECL which is a declarative, data centric
programming language designed in 2000 by the organization LexisNexis Risk
Solutions to allow developers to process big data across high performance com-
puting cluster. For the current purpose we are using a dummy data with 1000,000
records which has attributes like PersonID, FirstName, LastName, MiddleName,
Gender, Street, City, State, Zip. We have designed a Roxie query, Roxie is an
HPCC Systems cluster specifically designed to service standard queries, providing a
throughput rate of thousand-plus responses per second. This service has been
published on hThor which is an R&D platform designed for iterative, interactive
development and testing of Roxie queries.

Fig. 14.18 Sample query for returning data of users having last name as VED
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Image below shows a sample xml query created to return the details of all users
having a particular LastName (Fig. 14.18).

This query returned 1000 users having last name as VED in milliseconds.
A sample of the result is shown in Fig. 14.19.

This service can be parsed with the mobile application and will help in handling
big data with a high throughput rate.

Conclusion

The ongoing epidemic in West Africa offers a unique opportunity to improve our
current understanding of the transmission characteristics of the Ebola virus disease
in humans, including the duration of immunity among Ebola survivors and the case
fatality ratio, as well as the effectiveness of various control interventions. Ending
the epidemic requires approximately 70 % of the persons with Ebola to be treated
either in an ETU or at home or in community setting such that there is a reduced
risk for disease transmission. There are a lot of public health challenges faced
during the prediction of number of future cases and if the preventive measures are
not scaled-up cases will continue to double in approximately every 20 days.
However, this epidemic can be controlled using various models described in the
paper. As many consumers are now receiving news from real-time social media
platforms, it is important to have quantitative methods like SIR, ISIR, SIS and SEIZ
to distinguish news from rumors as misinformation on social platform can some-
time resemble as a genuine news.

There was an argument that digital health tech could have played a better role in
stopping the Ebola outbreak had there been a quick ground response. With this
outbreak, many developers and manufacturers were able to test their apps in the
field and had a very positive results. Now the developers have to analyze the data
and find better and innovative ideas to bring these technologies together in the fight
against Ebola.

Innovative mobile application uses large amount of data from various different
sources which are fed into the decision support system that will model the spread

Fig. 14.19 Sample output of the service
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pattern of Ebola virus and create dynamic graphs and predictive diffusion models of
the impact of virus on either a specific person or a specific community. LexisNexis
has provided the big data needed to develop and model this program with the help
of their expertise in big data analytics. The data provided by LexisNexis is com-
pletely secured and are in compliance with the Centers for Disease Control and
Prevention and the National Institute of Standards and Technology for transmission
of public health information. The model created leads to more precise predictions of
disease propagation, it also helps in identifying the individuals who are possibly
infected by the virus and perform a trace back analysis to locate the possible source
of infection in a particular social group. All the data is being presented in form of
report to the responsible government agencies.
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Chapter 15
Unsupervised Learning and Image
Classification in High Performance
Computing Cluster

I. Itauma, M.S. Aslan, X.W. Chen and Flavio Villanustre

Introduction

Representing objects using lower dimensional, representative, and discriminative
features is an ongoing research topic that has many important rami cations. This
concept leads to important questions that need to be answered. For example:

How to design an optimal and fast optimization method that can avoid local
minimums and converge?

• How to speed up the computational process using hardware systems?
• How to choose system/network parameters?
• How to use unlabeled data more efficiently?
• How to normalize the learned features before classification?
• How to avoid over-fitting?
• How to extract features from labeled data?

In this chapter, some of these questions are answered. Hand-engineering
approaches have been proposed to extract good features from data to be used in the
classification stages. In addition to the labor-intensive techniques that do not scale
well to new problems, there have been many methods proposed (such as sparse
coding [2] and sparse auto-encoders [3]) that can automatically learn better feature
representations compared to the hand-engineered ones. Although those unsuper-
vised methods achieve good performance if required settings are satisfied, one of
the major drawbacks is their complexity. Many of those methods also require
careful selection of multiple hyper parameters like learning rates, momentum,
sparsity penalties, weight decay, and many other parameters that must be chosen
through cross-validation, thus increasing running times dramatically. Coates et al.
[1] compared sparse auto-encoders, sparse restricted Boltzmann ma-chines,
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Gaussian mixture models, and K-means learning methods. Surprisingly, the best
results were achieved using the K-means method that has been used in image
processing, but that has not been widely practiced for deep unsupervised feature
learning. To obtain the best results of the K-means method, a selection of the best
number of centroids from the data is needed. In this study, we extend the use of the
K-means algorithm with multimodal learning and recognition framework in the
High Performance Computing Cluster environment for any dimensional data.

There is a high demand for new ideas to deal with the feature learning and
classification stages on high dimensional data. The high dimensionality of
un-labeled data requires new developments in learning methods. In spite of recent
advances in representation learning, most of the current methods are limited when
dealing with large scale unlabeled data. Complex deep architecture and expensive
training time are mostly responsible for lack of good feature representations for
large scale data. As a solution to dealing with high dimensional data, researchers in
the machine learning community have adopted the use of GPUs and parallel pro-
gramming techniques to speed up computationally intensive algorithms.
Furthermore, important studies have been carried out to propose more efficient
optimization methods to speed up the convergence (such as [4]). In response to
these various ideas and platforms, we investigate High Performance Computing
Cluster (HPCC SystemsR) as a new environment to assess our framework’s
effectiveness in terms of computation time and classification accuracy.

Background and Advantages of HPCC SystemsR

HPCC SystemsR is a massively parallel processing computing platform used for
solving Big Data problems. A multi-node system leverages the full power of
massively parallel processing (MPP). While the single-node system is fully func-
tional, it does not take advantage of the true power of an HPCC SystemsR platform
which has the ability to perform operations using MPP. Algorithms are imple-
mented in HPCC SystemsR with a language called Enterprise Control Language
(ECL). ECL compiler generates highly optimized C ++ for execution. It is open
source and easy to setup. Figure 15.1 shows an HPCC SystemsR multi-cluster
setup. The figure shows a THOR processing cluster which is similar to Google and
Hadoop MapReduce platforms with respect to its function, filesystem, execution,
and capabilities but o ers higher performance [5].

In [6], Payne et al. discussed the challenges of academic data in heterogeneous
formats and diverse data sources. They assessed HPCC SystemsR in the analysis of
academic big data. Based on their evaluation, HPCC SystemsR pro-vides mecha-
nisms for ingesting and managing simple data such as CSV data as well as complex
data.
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We chose HPCC SystemsR because of its scalability with respect to code reuse
irrespective of the size of the dataset and number of clusters. It provides pro-
gramming abstraction and parallel runtime to hide complexities of fault tolerance
and data parallelism.

One of the goals of this study is to show that researchers are able to run their
proposed methods on HPCC SystemsR even using a single core computer. We
expect a faster training time if the algorithms are tested on a multinode HPCC
SystemsR platform. We leave the use of a system combining multiple computers for
our future studies.

Contributions

The use of HPCC SystemsR is adopted in the implementation of the feature learning
and object classification tasks. We show that (i) HPCC SystemsR enables
researchers to leverage a multi-cluster environment to speed up the running time of
any computationally intensive algorithm; (ii) it lowers the budget costs by using
existing computers instead of designing an expensive system with GPUs; and (iii) it
is scalable with respect to code reuse irrespective of the size of the dataset and
number of clusters.

We implement a new feature learning and recognition framework using a
multimodal strategy. Our novel idea is to use the HPCC SystemsR platform that can
handle identity recognition with high recognition accuracy rates. For instance, by
dividing a face image into several subunits, we can extract intra-region information
more precisely. We will discuss this in the next sections.

Fig. 15.1 HPCC systems
THOR cluster
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Methods

In this section, we describe the learning of object representations as well as the
recognition framework. Our framework consists of image reading in HPCC
SystemsR platform, feature learning from unlabeled data, feature extraction from
labeled data using the learned bases, and classification stages. Our framework is
shown in Fig. 15.2. This figure shows the specific framework that we follow for the
face databases such as Caltech-101, AR databases, and a subset of wild PubFig83
data with multimedia content. For the Caltech-101 data, we use patches instead of
facial regions. We give details for each stage in the following sections.

Image Reading in HPCC Systems Platform

This work is the first study on image classification using HPCC SystemsR, to the
best of our knowledge. First, we explain how we integrate databases into the HPCC
SystemsR in which images are represented as Binary Large OBject (BLOB). BLOB
support in ECL begins with the DATA value type which makes it perfect for
housing BLOB data. There are essentially three issues around working with this
type of data: (i) How to get the data into the HPCC Systems THOR Cluster
(Spraying). (ii) How to work with the data, once it is in HPCC. (iii) How to get the
data back out of HPCC SystemsR THOR Cluster (Despraying).

Fig. 15.2 The framework that we follow for the classification of AR data
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The BLOB spray is described in [7, 8]. The image dataset should be sprayed in
BLOB format. There are different formats for spraying data such as delimited for
Comma Separable Value (CSV), fixed for texts and blob for images. We explored
the BLOB spray option which will result in a dataset on the cluster where each
record is one of the image datasets. Typically, we use a pre x of both the name and
length to de ne the record structure of the image dataset. Since we use grayscale
images, we convert all images to Comma Separable Value.

The following steps are followed to use the image database: (i) Extract patches
or regions from images. (ii) Normalize the patches. (iii) Convert these patches to
CSV. (iv) Spray the CSV to HPCC SystemsR platform. The next section describes
how we learn the features from the data.

Feature Learning

Most applications in image processing involve the use of high dimensional data.
The goal of unsupervised learning is to find a lower dimensional projection of the
unlabeled data that preserves all the information in the data while reducing
redundant dimension. The problem in unsupervised learning is to find hidden
structures in unlabeled data.

We implement a multimodal feature learning framework that runs the K-means
learning method for each region of the data. Using the multimodal learning, we are
able to extract representations that capture intra-region changes more precisely. The
K-means clustering method obtains specialized bases for the corresponding region
of the data. Instead of estimating a single centroid of an image/data, feature learning
for each divided region increases the deep representation that learns more repre-
sentative information as we assess this point in our experimental results.

Coates et al. [1] proved that the K-means method can achieve comparative or
better results than other possible unsupervised learning methods. In view of this,
one objective was to extend the K-means method for multimodal learning and
classification framework in HPCC Systems. The algorithm takes the dataset X and
outputs a function f: Rn!Rk that maps an input vector x(i) to a new feature vector of k
features. To extract high quality features in order to obtain a high classification
accuracy, we ran the methods with respect to the key points of this stage such as
using: (i) a good number of samples, (ii) choice of parameters, and (iii) number of
bases.

K-means is a partitioning algorithm in which we construct various bases or
centroids and evaluate based on specific criteria. It is an unsupervised clustering
method and partitioning algorithm where data are assigned in clusters defined by
their centroid, based on their features and distance from the centroids. The goal is to
minimize the sum of the square errors (SSE) as can be seen in Eq. (15.1). The SSE
is used to make partitions and it is the sum of squared differences between each
observation in its cluster as a centroid over all the k clusters. The SSE strictly
decreases after re-computing new centers in the K-means algorithm. The new center
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of a cluster comes from the average of all data points in this cluster, which
minimizes the SSE [9]; as follows:

SSE ¼
Xk

i¼1

X

i2Ci

x� mij jj j2 ð15:1Þ

where mi is the mean of points in Ci and x is the data point in cluster Ci. Given two
partitions, we choose the one with the smallest error. Each cluster is represented by
the center of the cluster which is the centroid. Points are assigned to the cluster with
the nearest centroid. The distance between clusters is based on their centroids:

dis Ki; Kj
� �

¼ dis Ci; Cj
� �

; ð15:2Þ

where Ki and Kj are two groups of points or information, and Ci and Cj are the
corresponding centroids. Given k, the number of clusters, the K-means clustering
algorithm is outlined as:

• Select k points as initial centroids repeat

• Form k clusters by assigning each point to its closest centroid
• Re-compute the centroids of each cluster until convergence criterion is

satisfied

In order to specify the best k, we run a range of values. The computational
complexity is O(tkn) where n is the number of data points, k is the number of
clusters and t is the number of iterations. It is an efficient method since usually, k;
t � n. The work [10] summarizes recent results and technical points that are
needed to make elective use of K-means clustering for learning large-scale
representations of images. Figure 15.3 shows the centroids learned by K-means
implemented in ECL from the AR dataset without whitening as an example.

\(AR Left eye Base)" \(AR Right eye Base)"

Fig. 15.3 Selected bases (or centroids) trained on AR images using K-means in HPCC systems
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Feature Extraction

For each region, we train one K-means algorithm. The learned and specialized
bases are able to capture nonlinear structure of the corresponding image regions.
We use these bases for the feature extraction and dimensionality reduction of the
labeled data. The new projected data is calculated using the correlation information
between the labeled data and estimated bases or centroid.

Let Xi be any image region and Ci is the corresponding learned bases using the
K-means method. The feature of labeled data corresponding to image regions is
calculated as Yi = XiCi

t. Then, these extracted features are fused together through
concatenating one by one to get the multimodal representation as

Y ¼ Y1; Y2; . . .; YM½ �; ð15:3Þ

where M equals to the number of image region (and sometimes equals to the
number of image region and multimedia data such as speech in addition to image
information). The multimodal learning and classification idea improves the
recognition rates as seen in the results. A reason for this is that the extraction of
intra-region information is estimated more precisely when the learning method
focuses on a specific image regions separately.

Classification

Classification is a supervised learning process that aims at accurately predicting
some value or attribute of an object based on known facts about the object. It
involves deriving a rule or model from a training set which is then used to predict a
test set. In machine learning, all classification algorithms follow three logical steps.
Learning the model from a training set, testing with respect to obtaining measures
of how well the classifier fits, and classifying which involves testing the model on
new data in order to compute a classification accuracy.

We apply our multimodal object representation learning method to the object
classification task. To do this, we train classification methods and configurations in
our experiments. Once the framework is trained, it can be used to identify a testing
object. The testing data should undergo the same procedure that the training data
goes through.

Experiments and Results

In this study, we assess our design on a subset of the Caltech-101 [11], AR [12], and a
subset of PubFig83 database [13] that we add speech content in addition to face
images. Our goal is to assess our feature learning and classification framework in the
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HPCC Systems platform. Note that all data in our experiments are locally normalized
to have the Gaussian distribution.

Evaluation on Caltech-101. The Caltech-101 database consists of 102 cat-
egories. As a subset of Caltech-101, we use 10 classes (which have more than
60 images per class) for both unsupervised and supervised learning steps. We
randomly select up to 60 images per class and pre-process them as in [14]: The
images are converted to gray-scale, then down-sampled and zero padded to
143 � 143 pixels. Finally, we normalize the images to have the standard
Gaussian distribution.

In our study, we assess the performance of our method in HPCC Systems and
compare directly with [1]. We run methods using 3; 000 randomly selected patches
of 16 � 16 dimensional pixels. In the unsupervised learning part, we train the entire
unlabeled training set of images before the classification step. We learn 32 bases in
the unsupervised learning of all methods in two platforms.

For the supervised learning, we use 30 training and 30 testing images for each
category. To extract features from the labeled training samples, we follow the
convolutional extraction process of Coates et al. [1]. We use stride 1 with 16 � 16
patches to obtain a dense feature extraction. The non-linear mapping transforms the
input patches into a new representation with 32 features using the learned bases.
Then we use pooling for dimensionality reduction. 132 pooled features are used to
train the classifiers.

We show the visualizations of the bases (or centroids) learned by K-means in
Fig. 15.4. We achieve 83:5 % identification accuracy using the C4.5 Decision tree
classification method; whereas Coates et al. [1] achieves only 80:7 % rate using the
linear SVM.

Evaluation on AR Face Database We also test our proposed idea on AR [12]
face database. The aligned AR database contains 100 subjects (50 men and 50
women), with 26 different images per subject which totals 2; 600 images taken in
two sessions. In this database, there are facial expression (neutral, smile, anger,
scream), illumination and occlusion (sunglass, scarf) challenges. In our study, we
use images without the occlusion challenges which totals to 1; 400 images for both
the unsupervised learning and classification steps. Figure 15.5 shows some example
images from a subject.

First, we learn the base for each facial region separately. We segment four
essential facial regions with sizes of 39 � 51 (left eye and right eye), 30 � 60
(mouth), and 45 � 42 (nose). We believe that better representations are obtained
by running unsupervised learning for each region. We also obtain the features of
the labeled facial regions using the corresponding learned bases separately. To
do this, we calculate the correlation between each labeled sample and each
center vector (base) to get a vector of features. We combine the features
extracted from the four facial regions (and other possible modalities), and train
the classifiers.

For the AR database, we follow a scenario described in [15] which reported one
of the state-of-the-art recognition rates. Each subject has 14 images with facial
expression and illumination changes. Various train-test image partitions are tested.
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We conduct 10 runs for train-test procedure to get the average recognition rate for
each partition. Table 15.1 shows the face classification results of our proposed
framework (using K-means and C4.5 Decision tree methods) in HPCC Systems and
[1]. We improve the classification results of [1] by 4:6 %. From this result, we can

8 centroid 12 centroid

12 centroid (another run) 16 centroid

Fig. 15.4 Selected bases (or centroids) trained on Caltech101 images using K-means in HPCC
Systems

Fig. 15.5 Example images from one subject in AR database with various facial expressions and
illumination
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infer that we learn more representative features and our classification method is
better than [1]. This proves that our framework developed in HPCC Systems
achieves at least comparative or better results than its alternative.

Our preliminary results show that more research studies on HPCC Systems are
beneficial to the machine learning society.

Identity Recognition on the Wild and Multimedia Database In recent years,
several unconstrained databases have emerged in the literature for face identifica-
tion or verification. Unlike the traditional face databases which are com-posed of
images taken in controlled environments, face images in unconstrained databases
are generally collected from Internet sources. In particular, these images contain
unrestricted varieties of expression, pose, lighting, occlusion, resolution, etc.
Therefore, unconstrained face recognition is a very challenging task.

We prepare a data set from aligned version of wild PubFig83 database [13]. We
select 10 subjects which totals to 1; 000 face images. Some example images are
shown in Fig. 15.6. For the images, we randomly select 50 images per subject as
the training set, and the rest of the images are used as the testing set in the
supervised learning step. Four essential facial regions are used for facial repre-
sentation learning. We segment four essential facial regions with sizes of 32 � 52
(left eye and right eye), 48 � 76 (mouth), and 60 � 48 (nose), which are further
reduced by half, using bicubic interpolation.

Table 15.1 Comparison of
face recognition rates on AR
database

Methods Acc. (%) with train

5 train

Coates et al. [1] 74.3

Ours 78.9

Fig. 15.6 Example images of 10 celebrities with various real-world changes on facial expression,
pose, illumination, occlusion, resolution, etc
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Table 15.2 shows the classification results across 10 runs using various classi-
fication configurations. We run the K-means method in HPCC Systems plat-form,
then the learned bases are used to extract features from labeled data. Our method
achieves 91:5 %. As we observe from the two databases that we reported above, the
C4.5 decision tree achieves the best and most superior classification rate.

To assess the feasibility of the proposed framework on the multimedia data, we
downloaded several videos for 10 subjects from YouTube to extract 5 min speech
information. There have been research e orts to show that it is beneficial to leverage
the knowledge from multimedia data [16]. For instance, multimedia entertainment
companies have started to order information on cast and characters for movies and
shows during playback, presumably via a combination of visual and sound contents
[17]. It is also beneficial to borrow knowledge from some other related tasks for
feature extraction.

We employ the Mel frequency cepstral coefficients (MFCCs) [18], and their first
and second derivatives to represent the acoustic features. Note that the content and
quality of the speech data are heterogeneous. These features are calculated every
10 ms using 25 ms Hamming-window,1 and their first 12 elements are selected to
form a 36-dimensional feature vector for each frame. In this study, features
extracted from every 40 consecutive frames are concatenated to be a
1440-dimensional feature vector which is considered as one training/test example.
The unsupervised generic features are learned over 5000 examples (500 per sub-
ject). Half of the samples are randomly selected to train the classifiers and the rest
are used for the testing.

In addition to the experiments on the visual content, Table 15.2 shows the
identity recognition across 10 runs using speech only and multimedia representation
with visual and speech contents. For these two cases, we run the C4.5 decision tree

Table 15.2 Identity
recognition results using
visual and/or speech contents
on multimedia database. Note
that we use the K-means in
the HPCC Systems platform
for all cases

Methods Acc. (%)

50 train

Only visual content

Naive Bayes (HPCC) 55.5

Linear SVM (MATLAB) [1] 71.6

Random forest (HPCC)—maxLevel = 10 74.2

Random forest (HPCC)—maxLevel = 15 75.5

Softmax classification (HPCC) 83.0

C4.5 decision tree (HPCC)—maxLevel = 25 91.5

Only speech content

C4.5 decision tree (HPCC) 91.6

Multimedia (visual + speech)

C4.5 decision tree (HPCC) 94.0

1We used Dan Ellis' implementation for MFCC which is available at http://www.ee.columbia.edu/
dpwe/resources/matlab/rastamat/.
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classification method. We achieved 91:6 % recognition rate only using the speech
information. When we combine the visual and speech information together in a
multimodal way, we achieved 94:0 % recognition accuracy. By combining different
features of various facial regions and corresponding speech content, we increase the
classification accuracy by 2:5 %.

Discussion

We successfully performed feature learning and object classification in HPCC
Systems platform. Although we used considerably smaller dimensional features
such as 16 for AR and 32 for Caltech-101 databases, we achieved very promising
classification results. A faster training time is expected when a multinode HPCC
Systems platform cluster is used. We leave the use of a system combining multiple
computers for our future studies. Further evaluations with higher dimensional
features would be straightforward using an HPCC Systems platform with multiple
CPUs.

We observed that the C4.5 decision tree classification method achieves higher
accuracy compared to other alternatives. When we increased the depth of the C4.5
decision tree algorithm, we obtained a higher classification accuracy. Hence, the
deeper the tree, the more complex the decision rules and the fitter the model. The
C4.5 decision tree is also less variant to the parameter and structure selection than
some of the classification methods such as deep neural networks.

In addition to visual information, our multimodal learning framework is also
capable of integrating other multimedia content, e.g., speech, by treating individual
sources as a unique modality. Representations of multimedia data are learned in a
similar way to face images and then fused together with face descriptors to feed the
identity recognition step.

The K-means learning can be used for engineering complex features. A potential
application of this project would be in the area of medical imaging. It can be used in
finding distinct features that could lead to improved diagnostic accuracy.
Considering medical databases, patients may have a unique real-value measure for
certain tests such as glucose or cholesterol. Clustering patients first would help us
understand how binning should be done on real-value features to improve accuracy
on classification.

Conclusion

We have presented an interesting and novel idea to analyze feature learning and
object classification problems in a considerably new platform (HPCC SystemsR)
that can lead to faster optimization/calculation of algorithms and low cost of
hardware designs. We have assessed our idea on several databases such as
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CALTECH-101, AR databases, and a subset of wild PubFig83 data with multi-
media content. Our framework developed in ECL programming language in HPCC
Systems is compared with a well cited method [1] developed using MAT-LAB. We
observed that the results obtained using the HPCC Systems plat-form are at least
comparable with the outcome from this alternative method. Our novel identity
recognition algorithm can lead to further exploration of face recognition problems.
We increased the classification accuracy of AR database to 78:6 % when compared
with the method described in Coates et al. [1]. We analyzed several supervised
learning methods and observed that the C4.5 decision tree classification method
boosts the recognition rates. We also prove that our learning framework leverages
new representations that are learned over multi-media data automatically.

We plan to integrate an improved method to select the feature or cluster number
automatically to obtain a higher accuracy. We also plan to integrate multiple CPUs
in the HPCC system to speed up the process, compete with GPU hardware and
handle larger dimensional calculations.
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