
Speeding up Dynamic Programming
in the Line-Constrained k-median

Pawe�l Gawrychowski1 and �Lukasz Zatorski2(B)

1 University of Haifa, Haifa, Israel
2 Institute of Computer Science, University of Wroc�law, Wroclaw, Poland

lzatorski@gmail.com

Abstract. In the planar k-median problem we are given a set of demand
points and want to open up to k facilities as to minimize the sum of the
transportation costs from each demand point to its nearest facility. In the
line-constrained version the medians are required to lie on a given line.
We present a new dynamic programming formulation for this problem,
based on constructing a weighted DAG over a set of median candidates.
We prove that, for any convex distance metric and any line, this DAG
satisfies the concave Monge property. This allows us to construct effi-
cient algorithms in L∞ and L1 and any line, while the previously known
solution (Wang and Zhang, ISAAC 2014) works only for vertical lines.
We also provide an asymptotically optimal O(n) solution for the case
of k = 1.

Keywords: k-median · Dynamic programming · Monge property

1 Introduction

The planar k-median problem is a variation of the well-known facility location
problem. For a given set P of demand points, we want to find a set Q of k
facilities, such that the sum of all transportation costs from a demand point to
its closest facility is minimized. Each p ∈ P is associated with its own (positive)
cost per unit of distance to assigned facility, denoted w(p). Formally, we want
to minimize:

S(P) =
∑

p∈P

min
q∈Q

w(p) · d(p, q)

Because the problem is NP-hard for many metrics [7], we further restrict it by
introducing a line-constraint on the set Q. We require that all facilities should
belong to a specified facility line χ defined by an equation ax + by = c, where
a, b, c ∈ R and a · b �= 0. Such a constraint is natural when all facilities are by
design placed along a path that can be locally treated as linear, e.g., pipeline,
railroad, highway, country border, river, longitude or latitude.

For k = 1 we obtain the line-constrained 1-median problem. Despite the
additional restriction, the complexity of this simplest variant strongly depends

c© Springer International Publishing Switzerland 2016
V. Mäkinen et al. (Eds.): IWOCA 2016, LNCS 9843, pp. 293–305, 2016.
DOI: 10.1007/978-3-319-44543-4 23

294 P. Gawrychowski and �L. Zatorski

on the metric. For a point p ∈ R
2, let x(p) and y(p) denote its x- and y-

coordinate. The most natural metric is the Euclidean distance, where L2(p, q) =√
(x(p) − x(q))2 + (y(p) − y(q))2. It is known that even for 5 points, it is not pos-

sible to construct the 1-median with a ruler and compass. It can also be proven
that the general, line-constrained and 3-dimension versions of the k-median prob-
lem are not solvable over the field of rationals [2]. Hence it is natural to consider
also other distance functions, for example:

Chebyshev distance L∞(p, q) = max{|x(p) − x(q)|, |y(p) − y(q)|},
Manhattan distance L1(p, q) = |x(p) − x(q)| + |y(p) − y(q)|,
squared Euclidean distance L2

2(p, q) = (x(p) − x(q))2 + (y(p) − y(q))2.1

All these distances functions have been recently considered by Wang and Zhang
[10] in the context of line-constrained k-median problem. They designed efficient
algorithms based on a reduction to the minimum weight k-link path problem.
However, their L1 and L∞ solutions work only in the special case of a horizontal
facility line.

We provide a different dynamic programming formulation of the problem that
works for any facility line χ in L1 and L∞. The new formulation can also be
seen as a minimum weight k-link path in a DAG, where the weights are Monge.
However, looking up the weight of an edge in this DAG is more expensive. We
show how to implement edge lookups in O(log n) after O(n log n) time and space
preprocessing which then allows us to apply the SMAWK algorithm [1] or, if
k = Ω(log n), the algorithm of Schieber [9] to obtain the following complexities.

Metric Facility line Time complexity

Wang and Zhang [10]

L1 horizontal min{O(nk), n2O(
√
log k log logn) logn}

L∞ horizontal min{O(nk logn), n2O(
√
log k log logn) log2 n}

Our results

L1 general min{O(nk logn), n2O(
√
log k log logn) log n}

L∞ general min{O(nk logn), n2O(
√
log k log logn) log n}

In L∞, our general solution is faster than the one given by Wang and Zhang
for the special case of horizontal facility line. We also provide a specialized pro-
cedure solving the problem for k = 1 in linear time.

2 Preliminaries

A basic tool for speeding up dynamic programming is the so-called Monge prop-
erty. It can often be used to improve the time complexity by an order of magni-
tude, especially in geometric problems.
1 This is not a metric.

Speeding up Dynamic Programming in the Line-Constrained k-median 295

Definition 1. A weight function w is concave Monge if, for all a < b and c < d,
w(a, c) + w(b, d) ≤ w(b, c) + w(a, d).

Dynamic programming can often be visualized as finding the row minima
in a n × n matrix. Naively, this takes O(n2) time. However, Aggarwal et al. [1]
showed how to decrease the time complexity to O(n) if the matrix has the so-
called total monotonicity property, which is often established through the Monge
property. Their method is usually referred to as the SMAWK algorithm. There is
a deep connection between SMAWK and other methods for speeding up dynamic
programming, such as the Knuth-Yao inequality used for building optimal binary
search trees, as observed by Bein et al. [3].

Let D be a DAG on n nodes 0, 1, . . . , n − 1 with a concave Monge weight
function w(i, j) defined for 0 ≤ i < j < n that corresponds to the weight of
the edge 〈i, j〉. A minimum diameter path in D is a path from 0 to n − 1 with
the minimum weight. Galil and Park showed how to find such path in optimal
O(n) time using the SMAWK algorithm [5]. A minimum weight k-link path is a
minimum weight path from 0 to n − 1 consisting of exactly k edges (links).

Lemma 2. Minimum weight k-link path can be found in O(nk) and, for k =
Ω(log n), n2O(

√
log k log log n) time.

Proof. To obtain O(nk) time complexity, we iteratively compute minimum
weight 1-link, 2-link, . . . , (k−1)-link and finally k-link paths from 0 to every other
node. This can be seen as k layers of dynamic programming, each requiring only
O(n) time thanks to the SMAWK algorithm. Alternatively, n2O(

√
log k log log n)

time algorithm for k = Ω(log n) was given by Schieber [9]. ��
The weights of the edges in our DAG will be computed on-the-fly with orthog-

onal queries. We will use the following tool: preprocess a given set of n weighted
points in a plane for computing the sum of the weights of all points in a given
query range [x,+∞]× [y,+∞]. We call this problem orthogonal range sum. The
following is well-known.

Lemma 3. There exists a data structure for the orthogonal range sum problem
that can be built in O(n log n) time and answers any query in O(log n) time.

Proof. We convert the points into a sequence by sorting them according to their
x-coordinates (without losing the generality, these coordinates are all distinct)
and writing down the corresponding y-coordinates. The y-coordinates are further
normalized by replacing with the ranks on a sorted list of all y-coordinates (again,
we assume that they are all distinct). Hence we obtain a sequence of length n
over an alphabet [n], where each character has its associated weight. We build a
wavelet tree [6] of this sequence in O(n log n) time. Each node of the wavelet tree
is augmented with an array of partial sums of the prefixes of its subsequence.
Given an orthogonal query, we first normalize it by looking at the sorted list
of all x- and y-coordinates. Then we traverse the wavelet tree starting from the
root and accumulate appropriate partial sums. The details can be found in [8]. ��

296 P. Gawrychowski and �L. Zatorski

3 Normalizing Problem Instances

L1 and L∞ metrics are equivalent, which can be seen by rotating the plane by
45◦. Hence from now on we will work in L1 metric. This simplification was not
possible in the previous approach [10], since it required the facility line to be
horizontal, which is no longer true after rotation.

We further modify the problem instance so that the line χ is expressed in
a slope intercept form y = ax, where a ∈ [0, 1], and all coordinates of points
in P are non-negative. This is always possible by reflecting along the horizontal
axis, then along the line y = x, and finally translating. Such transformations
do not modify the distances in L1, so computing the k-median solution Q for
the transformed instance gives us the answer for the original instance. Because
any solution Q can be transformed so that the x-coordinates of all facilities are
distinct without increasing the cost, we will consider only such solutions and
identify each facility with its x-coordinate.

4 Computing 1-median

Let D(p, x) be the weighted distance between p ∈ P and (x, a · x) ∈ χ:

D(p, x) = w(p) · d(p, (x, a · x))

Whenever we say that p ∈ P is closer to coordinate xi than xj , we mean that
D(p, xi) < D(p, xj). For a set of points A ⊆ P , D(A, x) is the sum of weighted
distances:

D(A, x) =
∑

p∈A

w(p) · d(p, (x, a · x))

The 1-median is simply min
x∈R

D(P, x).

A function f : R → R is convex if the line segment between any two points on
its graph lies above or on the graph. Such functions have the following properties:

1. f(x) = |x − y| is convex for any y.
2. if f(x) is convex, then g(x) = c · f(x) is convex for any positive c.
3. if f(x) and g(x) are convex, then h(x) = f(x) + g(x) is also convex.

Lemma 4. For any point p, D(p, x) is convex. For any set of points P , D(P, x)
is also convex.

Proof. Consider any point p ∈ P . From the definition:

D(p, x) = w(p) · L1(p, (x, a · x)) = w(p) · (|x(p) − x| + |y(p) − a · x|) .

This is a sum of absolute values functions multiplied by the (positive) weight
of p. Hence by the properties of convex functions D(p, x) is convex. Then D(P, x)
is also convex since it is a sum of convex functions over p ∈ P . ��

Speeding up Dynamic Programming in the Line-Constrained k-median 297

Since D(p, x) is convex, any of its local minima is a global minimum. Similarly
to the function f(x) = |x|, it is only semi-differentiable. Its derivative D′(p, x) is
a staircase nondecreasing function, undefined for at most two values x = x1 and
x = x2. We call x1 and x2 the median candidates and for convenience assume
that D′(p, x) is equal to its right derivative there. When a = 0 or p ∈ χ, D′(p, x)
has exactly one median candidate x1 = x(p), that is the minimum. Otherwise,
there are two median candidates x1 = x(p) and x2 = y(p)

a . For a ∈ (0, 1), x1 is
the only minimum, whereas for a = 1 every value in range [x1, x2] is a minimum.
Because the derivative of a sum of functions is the sum of their derivatives,
D′(P, x) can only change at a median candidate of some p ∈ P . This means
that a minimum of D(p, x) corresponds to one of at most 2n median candidates
of P . In other words, there exists a solution (x, y) ∈ χ, such that x = x(p) or
y = y(p) for some p ∈ P . From now on, we use M(P) to denote the set of median
candidates of P . M(P) can be computed in O(n) time by simply iterating over
p ∈ P and adding x = x(p) and x = y(p)

a to the result (note that this might give
us a multiset, i.e., some median candidates might be included multiple times).

Theorem 5. We can solve line-constrained 1-median problem in O(n) time.

Proof. Because D′(p, x) is nondecreasing, we can binary search for the largest
x such that D′(p, x) ≤ 0. Then we return x as the solution. In every step of
the binary search we use the median selection algorithm [4] to narrow down the
current search range X = (xleft, xright). At the beginning of every step:

1. M is a multiset of all median candidates of P that are in X.
2. S contains all points from P with at least one median candidate in M .
3. r = D′(P \ S, x) for some x ∈ X.

We select the median xm of M and compute D′(P, xm). If D′(p, xm) > 0, we
continue the search in (xleft, xm), and otherwise in (xm, xright), updating S and
M accordingly. Eventually xleft = xright and we return xleft.

The key observation is that when a point p is removed from S, it does no
longer have a median candidate within X and its D′(p, x) remains constant in
all further computations. This means that D′(P \ S, x) is constant for all x ∈ X
and r can be updated after removing every point p from S in O(1) time. xm

can be found in O(|M |) time. Calculating D′(P, xm) = r +D′(S, xm) then takes
O(1 + |S|) time. For a point p to be in S, one of its median candidates must
belong to M , so |S| ≤ |M |. Hence the complexity of a single iteration is O(|M |).
After each iteration the size of M decreases by a factor of two, so the running
time is described by T (n) = O(n) + T (n/2), which solves to O(n). ��
Theorem 6. We can calculate D(P, x) for every x ∈ M(P) in O(n log n) time.

Proof. The elements of M(P) can be sorted in O(n log n) time, and we can
assume that every point generates exactly two median candidates. Let M(P) =
{x1, x2, . . . , x2n}, where xi ≤ xi+1 for all i = 1, 2, . . . , 2n − 1. Recall that
D′(P, x) = D′(P, xi) for any x ∈ (xi, xi+1). We compute D(p, x1) together with

298 P. Gawrychowski and �L. Zatorski

D′(P, x1) in O(n) time. Then all other D(p, xi) are computed sequentially for
i = 2, 3, . . . , 2n in O(1) time each using the formula:

D(P, xi) = D(P, xi−1) + D′(P, xi−1) · (xi − xi−1)
D′(P, xi) = D′(P, xi−1) + 2 · w(p) · σ

where xi is generated by the point p, σ = 1 if xi = x(p) and σ = a otherwise. ��

5 Computing k-median

Consider now any optimal solution Q of the k-median problem for the given set
of weighted points P . For any facility q ∈ Q, let Pq be the set of points of P
assigned to q. By interchanging the order of the summation, Q should minimize

∑

q∈Q

∑

p∈Pq

w(p) · d(p, q).

Hence q must be an optimal solution of the 1-median problem for Pq. Since
replacing q will not increase the sum of distances of points in P \ Pq, q can be
chosen to be a median candidate of Pq. We deduce that there exists an optimal
solution Q′ such that

∀
q∈Q′

q ∈ M(Pq) ⊆ M(P).

For k ≥ min(n, |M(P)|), every p ∈ P can be assigned to its closest possible
facility. Such an assignment can be easily computed in O(n) time. If we are
required to return exactly k medians, then we add enough additional points to
M(P). From now on, we assume that k < min(n, |M(P)|). Thus there exists an
optimal k-median solution, where all facilities are 1-median candidates of P .

xi

Fig. 1. Path in the DAG ending at the candidate xi. Dashed lines represent current
assignment of points from P to the closest chosen facility.

Speeding up Dynamic Programming in the Line-Constrained k-median 299

xi

xj

Fig. 2. We follow the edge 〈i, j〉. All (black) points now assigned to xj were previously
assigned to xi, see Fig. 1.

By arranging all median candidates in a sequence according to their x-
coordinates, we can view choosing k facilities as selecting a (k + 1)-link path
in a DAG between two artificial elements infinitely to the left and to the right
of the sequence, called source and sink, respectively.

Imagine that we traverse the sequence from left to right while deciding if we
should open a new facility at the current median candidate, see Fig. 1. Initially,
all points are assigned to the artificial facility source and the cost of the current
solution S is set to +∞. If we decide to open a new facility at the current median
candidate xj , for every p ∈ P we check if xj is closer to p than the facility p is
currently assigned to. If so, we reassign p to xj , see Fig. 2.

We claim that p ∈ P can be closer to xj than the facility p is currently
assigned to only if the currently assigned facility is the most recently chosen
facility xi, that is, the current solution does not contain any facilities between xi

and xj . Assuming that the claim holds, we define the weight of an edge 〈source, i〉
to be D(P, xi), and the weight of an internal edge 〈i, j〉 to be total decrease of
the cost after giving each point p ∈ P the possibility to switch from xi to xj .
Finally, the weight of an edge 〈j, sink〉 is 0. Then selecting k medians corresponds
to selecting an (k + 1)-link from source to sink in the DAG. However, we need
to show the claim. To this end we consider the following properties of convex
functions:

Proposition 7. For any convex function f and a < b < c:

(a) If f(c) < f(b) then f(b) < f(a).
(b) If f(c) < f(a) then f(b) < f(a).

Proof. Assume otherwise for any of the two implications. This means that f(a) ≤
f(b) > f(c) and the segment AC where A = (a, f(a)) and C = (c, f(c)) lies below
f(b), contradicting the assumption that the function f is convex. ��

Now we can prove the claim. Consider a point p ∈ P such that its currently
assigned facility is xi and, for some k > i, facility xk was not selected as a better
option. Then, for any j > k, facility xj cannot be a better option either, because

300 P. Gawrychowski and �L. Zatorski

xi < xk < xj so by Proposition 7(a) D(p, xi) ≤ D(p, xk) implies D(p, xj) ≥
D(p, xk). This means that if xi was the most recently opened facility and xj

is the current median candidate, opening a new facility at xj changes the total
cost by ∑

p∈P

min(D(p, xj) − D(p, xi), 0).

Definition 8. Let x1, x2, . . . , xn−1, x2n be the sorted sequence of median candi-
dates of P . We define its median DAG over nodes 0, 1, . . . , 2n, 2n + 1 with edge
weight function w(i, j) as follows:

w(i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞ if i = 0 and j = 2n + 1,

0 if i > 0 and j = 2n + 1,

D(P, xj) if i = 0 and j ∈ {1, 2, . . . , 2n},∑
p∈P

min(D(p, xj) − D(p, xi)), 0) otherwise.

The total cost of any k-median solution is equal to the sum of weights on its
corresponding path of length k + 1 between 0 and 2n + 1, so finding k-median
reduces to finding the minimum weight (k + 1)-link path in the median DAG.

Because a sum of Monge functions is also Monge, to prove that w(i, j) is
Monge we argue that wp(i, j) is Monge, where w(i, j) =

∑
p∈P

wp(i, j) and:

wp(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞ if i = 0 and j = 2n + 1,

0 if i > 0 and j = 2n + 1,

D(p, xj) if i = 0 and j ∈ {1, 2, . . . , 2n},

min(D(p, xj) − D(p, xi)), 0) otherwise.

Proposition 9. For any convex function f , if a < b < c then:

min(f(c) − f(a), 0) ≤ min(f(c) − f(b), 0).

Proof. If f(c) ≥ f(b) then the right side of the equation is equal to 0 and left
side is non-positive. If f(c) < f(b) then by Proposition 7(a) also f(b) < f(a), so

min(f(c) − f(a), 0) ≤ f(c) − f(a) < f(c) − f(b) = min(f(c) − f(b), 0)

so the claim holds. ��
Proposition 10. For any convex function f , if a < b < c then

f(b) + min(f(c) − f(a), 0) ≤ f(c) + min(f(b) − f(a), 0).

Proof. If f(b) ≥ f(a) then by Proposition 7(a) also f(c) ≥ f(b). Hence also
f(c) ≥ f(a) and

f(b) + min(f(c) − f(a), 0) = f(b) ≤ f(c) = f(c) + min(f(b) − f(a), 0)

Speeding up Dynamic Programming in the Line-Constrained k-median 301

so the property holds. Otherwise, f(b) < f(a) and the property becomes

f(b) + min(f(c) − f(a), 0) ≤ f(c) + f(b) − f(a)

which is always true due to min(f(c) − f(a), 0) ≤ f(c) − f(a). ��
Proposition 11. For any convex function f , if a < b < c < d then

min(f(c)−f(a), 0)+min(f(d)−f(b), 0) ≤ min(f(d)−f(a), 0)+min(f(c)−f(b), 0).

Proof. If f(d) ≥ f(a), then

min(f(d) − f(b), 0) ≤ 0 = min(f(d) − f(a), 0).

Combined with Proposition 9 applied to a < b < c we obtain the claim. Other-
wise, f(d) < f(a) and by Proposition 7(b) applied to a < c < d also f(c) < f(a),
so the property becomes

f(c) + min(f(d) − f(b), 0) ≤ f(d) + min(f(c) − f(b), 0)

which holds by Proposition 10 applied to b < c < d. ��
Theorem 12. For any point p, wp(i, j) is concave Monge.

Proof. Consider any s, t, u, v ∈ [0, 2n + 1] such that s < t < u < v. We need to
prove that for any p ∈ P :

wp(s, u) + wp(t, v) ≤ wp(s, v) + wp(t, u).

Case 1. s = 0 and v = 2n + 1
Straightforward, since wp(s, v) = ∞ and all other edges have finite weights.
Case 2. s > 0 and v = 2n + 1

wp(s, u) + wp(t, v) = wp(s, u) + 0
= min(D(p, u) − D(p, s), 0)
9≤ min(D(p, u) − D(p, t), 0)
= 0 + wp(t, u)
= wp(s, v) + wp(t, u)

Case 3. s = 0 and v < 2n + 1

wp(s, u) + wp(t, v) = D(p, u) + min(D(p, v) − D(p, t), 0)
10≤ D(p, v) + min(D(p, u) − D(p, t), 0)
= wp(s, v) + wp(t, u)

302 P. Gawrychowski and �L. Zatorski

Case 4. s > 0 and v < 2n + 1

wp(s, u) + wp(t, v) = min(D(p, u) − D(p, s), 0) + min(D(p, v) − D(p, t), 0)
11≤ min(D(p, v) − D(p, s), 0) + min(D(p, u) − D(p, t), 0)
= wp(s, v) + wp(t, u)

So in all cases wp(s, u) + wp(t, v) ≤ wp(s, v) + wp(t, u) and hence wp(i, j) is
concave Monge. ��

In order to apply the known algorithms for finding minimum weight k-link
path in the k-median problem, we need to answer queries for w(i, j).

Lemma 13. After O(n log n) time and space preprocessing, we can answer
queries for w(i, j) in O(log n) time per query.

Proof. All edges from the source can be computed in O(n log n) time via
Theorem 6. All edges to sink have zero weight. It remains to show how to calcu-
late the weight of an internal edge 〈i, j〉. Consider the set of points p ∈ P that
are closer to xj than to xi:

V (i, j) = {(x, y) ∈ P : |x − xi| + |y − a · xi| > |x − xj | + |y − a · xj |}

By definition, w(i, j) = D(V (i, j), xj) − D(V (i, j), xi). We describe how to com-
pute D(V (i, j), xi). D(V (i, j), xj) can be computed using the formula:

D(V (i, j), xj) = D(P, xj) − D(P \ V (i, j), xj)

where D(P, xj) is the already preprocessed weight of the edge 〈source, j〉, and
D(P \ V (i, j), xj) can be calculated by rotating the plane by 180◦ and using the
same method as the one described below.

First we argue that if (x, y) ∈ V (i, j) then x > xi. Otherwise

|y − a · xi| − |y − a · xj | > xj − xi ≥ a · xj − a · xi ≥ 0

and we obtain a contradiction in each of the three cases:

1. y < a · xi then the inequality becomes a · xi − a · xj > 0 but xi < xj .
2. y ∈ [a · xi, a · xj) then the inequality becomes 2y > 2a · xj but y < a · xj .
3. y > a · xj then the inequality becomes a · xj − a · xi > a · xj − a · xi.

We partition V (i, j) into V1(i, j) and V2(i, j) with a horizontal line y = a · xi:

V1(i, j) = V (i, j) ∩ {(x, y) : y ≥ a · xi}
V2(i, j) = V (i, j) ∩ {(x, y) : y < a · xi}.

The median candidate (xi, a ·xi) is on the left and bottom of all points in V1(i, j)
and on the left and top of all points in V2(i, j). Consider the minimum area
rectangle enclosing P with sides parallel to the coordinate axes, and enumerate

Speeding up Dynamic Programming in the Line-Constrained k-median 303

c1

c4

c2

c3

p1

p2

xi

xj

V1(i, j)

V2(i, j)

Fig. 3. Shortest route in L1 from p2 to c1 and from p1 to c4 passing through the median
candidate xi.

its corners clockwise starting from the top left as c1, c2, c3, c4. In L1 metric, one
of the shortest routes from any point in V1(i, j) to the bottom left corner point
c4 goes via xi, see Fig. 3. Therefore our desired sum of distances to xi can be
described in respect to c4 as:

D(V1(i, j), xi) =
∑

p∈V1(i,j)

w(p) · d(p, (xi, a · xi))

=

⎛

⎝
∑

p∈V1(i,j)

w(p) · d(p, c4)

⎞

⎠ −
⎛

⎝d(c4, (xi, a · xi)) ·
∑

p∈V1(i,j)

w(p)

⎞

⎠.

Similarly, one of the shortest routes from any point in V2(i, j) to c1 goes via xi:

D(V2(i, j), xi) =

⎛

⎝
∑

p∈V2(i,j)

w(p) · d(p, c1)

⎞

⎠ −
⎛

⎝d(c1, (xi, a · xi)) ·
∑

p∈V2(i,j)

w(p)

⎞

⎠.

V4(i, j)

V3(i, j)
xi

xj

Fig. 4. V1 represented as the gray V3 minus the striped V4.

304 P. Gawrychowski and �L. Zatorski

The distances d(c1, (xi, a ·xi)) and d(c4, (xi, a ·xi)) can be computed in O(1)
time. The expressions

∑
p∈V2(i,j)

w(p) · d(p, c1) and
∑

p∈V2(i,j)
w(p) can be eval-

uated in O(log n) with orthogonal queries. To calculate
∑

p∈V1(i,j)
w(p) · d(p, c4)

and
∑

p∈V1(i,j)
w(p), we represent V1(i, j) as V3(i, j) \ V4(i, j), see Fig. 4 where

δx = xj − xi, δy = a(xj − xi) and

V3(i, j) =
{

(x, y) ∈ P : y > axi ∧
(

x + y >
(δx + δy)

2

)}

V4(i, j) =
{

(x, y) ∈ P : x ≤ xi + δx − δy ∧
(

x + y >
(δx + δy)

2

)}
.

Now each of V2(i, j), V3(i, j) and V4(i, j) is defined by an intersection of two half-
planes. By transforming every point p ∈ P into (x(p)+y(p), y(p)) for V3(i, j) and
into (x(p)+y(p), x(p)) for V4(i, j), we can assume that the lines defining the half-
planes are parallel to the coordinate axes. Hence each sum can be calculated with
orthogonal queries in O(log n) time and O(n log n) time and space preprocessing
by Lemma 3. ��

We reduced the line-constrained k-median problem in L1 to the minimum
k-link path problem. The weight of any edge can be retrieved in O(log n) time
by decomposing it into a constant number of orthogonal queries. By plugging in
an appropriate algorithm for the minimum k-link path problem, we obtain the
final theorem.

Theorem 14. We can solve the line-constrained k-median problem in L1 and
L∞ using O(kn log n) time or, if k = Ω(log n), n2O(

√
log k log log n) log n time.

References

1. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applica-
tions of a matrix-searching algorithm. Algorithmica 2(1–4), 195–208 (1987)

2. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete &
Computational Geometry 3(1), 177–191 (1988)

3. Bein, W., Golin, M.J., Larmore, L.L., Zhang, Y.: The Knuth-Yao quadrangle-
inequality speedup is a consequence of total monotonicity. ACM Transactions on
Algorithms (TALG) 6(1), 17 (2009)

4. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

5. Galil, Z., Park, K.: A linear-time algorithm for concave one-dimensional dynamic
programming. Information Processing Letters 33(6), 309–311 (1990)

6. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algo-
rithms. pp. 841–850. Society for Industrial and Applied Mathematics (2003)

7. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location
problems. SIAM journal on computing 13(1), 182–196 (1984)

Speeding up Dynamic Programming in the Line-Constrained k-median 305

8. Navarro, G., Russo, L.M.S.: Space-Efficient Data-Analysis Queries on Grids. In:
Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS,
vol. 7074, pp. 323–332. Springer, Heidelberg (2011)

9. Schieber, B.: Computing a minimum weight k-link path in graphs with the concave
Monge property. Journal of Algorithms 29(2), 204–222 (1998)

10. Wang, H., Zhang, J.: Line-Constrained k-Median, k-Means, and k-Center Problems
in the Plane. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp.
3–14. Springer, Heidelberg (2014)

	Speeding up Dynamic Programming in the Line-Constrained k-median
	1 Introduction
	2 Preliminaries
	3 Normalizing Problem Instances
	4 Computing 1-median
	5 Computing k-median
	References

