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Abstract. A string s is said to be a gapped palindrome iff s = xyxR for
some strings x, y such that |x| ≥ 1, |y| ≥ 2, and xR denotes the reverse
image of x. In this paper we consider two kinds of gapped palindromes,
and present efficient online algorithms to compute these gapped palin-
dromes occurring in a string. First, we show an online algorithm to find
all maximal g-gapped palindromes with fixed gap length g ≥ 2 in a string
of length n in O(n log σ) time and O(n) space, where σ is the alphabet
size. Second, we show an online algorithm to find all maximal length-
constrained gapped palindromes with arm length at least A ≥ 1 and gap
length in range [gmin, gmax] in O(n( gmax−gmin

A
+ log σ)) time and O(n)

space. We also show that if A is a constant, then there exists a string
of length n which contains Ω(n(gmax − gmin)) maximal LCGPs, which
implies we cannot hope for a significant speed-up in the worst case.

1 Introduction

A palindrome is a string of form xaxR, where x is a string called the left arm,
a is either the empty string or a single character, and xR is the reversed string
of x called the right arm. Finding palindromic substrings in a given string w
is a classical problem on string processing. The earliest work on this problem
dates back to at least 1970’s when Manacher [10] proposed an online algorithm
to find all prefix palindromes in w in O(n) time, where n is the length of w.
Later, Apostolico et al. [1] pointed out that Manacher’s algorithm can be used
to find all maximal palindromes in w in O(n) time, where a maximal palindrome
is a substring palindrome w[i..j] = w[i..j]R of w whose arms cannot be further
extended based on the same center i+j

2 .
A natural generalisation of palindromes is gapped palindromes of form xyxR,

where y is a string of length at least 2 called a gap1. Finding gapped palindromes
has applications in bioinformatics, e.g.; RNA secondary structures called hairpins
can be regarded as a kind of gapped palindrome xyxR, where x represents the
complement of x (x is obtained by exchanging A with U and exchanging C with
G in x). The most basic type of gapped palindromes is g-gapped palindromes,
where g ≥ 2 is a pre-defined fixed length of the gaps. For three parameters gmin,
1 If y is a single character, then xyxR is a palindrome of odd length. Thus we here

assume y is of length at least 2.
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gmax, and A such that 2 ≤ gmin ≤ gmax and A ≥ 1, Kolpakov and Kucherov [8]
introduced length-constrained gapped palindromes (LCGPs) which has arms of
length at least A and gaps of length in range [gmin, gmax]. This is a natural
generalisation of g-gapped palindromes with gmin = gmax = g and A = 1.

In this paper, we consider the problems of finding these gapped palindromes
in a string in an online manner. Namely, our input is a growing string to which
new characters can be appended, and each character of the string arrives one by
one, from left to right. Let n be the length of the final string w. We propose:

(1) An online algorithm to compute all maximal g-gapped palindromes in w in
O(n log σ) time and O(n) space, where σ is the alphabet size. This algorithm
can be modified to output only distinct maximal g-gapped palindromes in
an online manner, in the same complexity.

(2) An online algorithm to compute all maximal LCGPs in w in O(n(m+log σ))
time and O(n) space, where m = max{ gmax−gmin

A , 1}.

Formal definitions of the maximality of these gapped palindromes will be given
in Sects. 3 and 4, respectively.

We remark that using a slightly modified version of Solution (1), it is trivial
to obtain an O(n(gmax − gmin + log σ))-time solution for finding all maximal
LCGPs, by simply testing gap lengths gmin, gmin +1, . . . , gmax separately. Hence,
in the case where A is not a constant and log σ is not a dominating term, then
Solution (2) speeds up this trivial method by a factor of A. On the other hand,
in the case where A is a constant, then we show that there exists a string of
length n which contains Ω(nm) maximal LCGPs, meaning that we cannot hope
significant speed-up in the worst case.

Solution (2) is based on Solution (1) and is quite different from the offline
solution by Kolpakov and Kucherov [8]. To our knowledge, these are the first
efficient online algorithms that compute any kind of gapped palindromes.

Related work. A number of efficient offline algorithms for computing various
kinds of gapped palindromes have been proposed in the literature.

Let w be an input string w of length n over the integer alphabet. There exists
a folklore O(n)-time algorithm (see e.g. [6]) which finds all maximal g-gapped
palindromes for a given fixed gap length g; the suffix tree [4,12] of string wR#w$
and a constant-time LCA data structure [2] over the suffix tree are constructed
during preprocessing, and then computing each maximal g-gapped palindrome
reduces to an outward longest common extension (LCE) query, which can be
answered by an LCA query on the tree. Our algorithm for computing all maximal
g-gapped palindromes can be regarded as an online version of this algorithm.

Kolpakov and Kucherov [8] proposed an O(n + L)-time offline algorithm to
find all maximal LCGPs, where L is the number of outputs. Their algorithm
consists of the following two steps: In the first step, it computes all (not neces-
sarily outward maximal) LCGPs whose arms are of length exactly A. Let (i, j)
be the pair of the ending position i and the beginning position j of the left and
right arms of each of the above LCGPs, respectively. In the second step, for each
LCGP computed above, the algorithm performs an outward LCE query from
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i and j, using the same suffix-tree based data structure as for the maximal g-
gapped palindromes above. However, each time a new character is appended to
the growing string, the LCE value from the same pair of positions may increase,
and it is impossible to know beforehand when the growth of the LCE value
for each pair of positions stops. Thus, it seems difficult to apply Kolpakov and
Kucherov’s solution to our online setting.

There exist efficient offline solutions for finding other kinds of gapped palin-
dromes. Kolpakov and Kucherov [8] also proposed an O(n)-time2 offline algo-
rithm to compute all maximal long-armed palindromes (those whose arms are
longer than their gap) in a given string w of length n. Kolpakov and Kucherov’s
algorithm uses a variant of Lempel-Ziv factorisation called the reversed LZ fac-
torisation of strings. Let f1, . . . , fk be the reversed LZ factorisation of w. Then,
for each pair fi of adjacent factors, their algorithm focuses on positions |fi|

2k
for

every 1 ≤ k ≤ � |fi|
2 � in fi. This implies that the length of each fi needs to be pre-

computed. However, in the online setting, the length of the last factor that is a
suffix of the current string can extend each time a new character is appended. It
is therefore unclear whether we can extend their solution to the online scenario.

Very recently, Gawrychowski et al. [5] considered a generalisation of long-
armed palindromes called α-gapped palindromes; For a parameter α > 1, a
gapped palindrome xyxR is said to be an α-gapped palindrome iff |xy| ≤ α|y|.
Gawrychowski et al. [5] proposed an O(αn)-time offline algorithm which com-
putes all maximal α-gapped palindromes in an input string w of length n. This
algorithm requires a preprocessing of the input w for integer c ≥ 2 such that the
occurrences of a substring of length 2k (called a basic factor therein) in another
substring of length c2k can be computed efficiently. Thus, it seems difficult to
apply their result to the online setting.

2 Preliminaries

2.1 Strings

Let Σ be an ordered alphabet of size σ. An element of Σ∗ is called a string.
The length of string w is denoted by |w|. The empty string is denoted by ε.
For any non-empty string w, w[i] denotes the character at position i of w for
1 ≤ i ≤ |w|, and w[i..j] denotes the substring of w that begins at position i and
ends at position j in w for 1 ≤ i ≤ j ≤ |w|. For convenience, let w[i..j] = ε
for i > j. For 0 ≤ i ≤ |w| + 1, w[1..i] and w[i..|w|] are called a prefix and
a suffix of w, respectively. Let wR denotes the reversed image of w, namely,
wR = x[|x|] · · · x[1]. For instance, if w = desserts, then wR = stressed. For
any strings x and y, let lcp(x, y) denote the length of the longest common prefix
of x and y.

2 Originally, Kolpakov and Kucherov [8] stated their algorithm works in O(n+S) time,
where S is the number of outputs. It follows from a recent work by Gawrychowski
et al. [5] that S = O(n).
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2.2 Gapped Palindromes

A string p is said to be a gapped palindrome iff p = xyxR for some non-empty
strings x, y with |y| > 1. The intervals [1, |x|], [|y| + 1, |xy|], and [|xy| + 1, |xyx|]
in p are called the left arm, gap, and right arm of gapped palindrome p = xyxR.
Note that in general the choice of arms and gap are not unique for the same
string p. For instance, if p = abccbba, then we can take x = ab and y = ccb, or
x = a and y = bccbb.

A gapped palindrome xyxR is said to be a length-constrained palindrome
(LCGP) iff |x| ≥ A and gmin ≤ |y| ≤ gmax for some fixed integer parame-
ters A ≥ 1 and 1 < gmin ≤ gmax. A gapped palindrome xyxR is said to be a
g-gapped palindrome iff |y| = g for some fixed integer g > 1. Note that any
g-gapped palindrome is a special case of a length-constrained palindrome with
gmin = gmax = g and A = 1.

An occurrence of a gapped palindrome p = xyxR in a string w is identified
by a triple (i, j, a) such that a denotes the length of each arm, and i, j denote
the ending and beginning positions of the left and right arms of p, respectively.
Namely, w[i − a + 1..i] = x, w[i + 1..j − 1] = y, and w[j..j + a − 1] = xR. The
center of an occurrence (i, j, a) of a gapped palindrome in w is i+j

2 .

2.3 Suffix Trees and LCE Queries

The suffix tree of a string w, denoted STree(w), is a path-compressed trie which
represents all suffixes of w. More formally, STree(w) is an edge-labelled rooted
tree such that (1) Every internal node is branching; (2) The out-going edges
of every internal node begin with mutually distinct characters; (3) Each edge
is labelled by a non-empty substring of w; (4) For each suffix s of w, there is
a unique path from the root which spells out s (the path possibly ends on an
edge). It follows from the definition of STree(w) that if n = |w| then the number
of nodes and edges in STree(w) is O(n). By representing every edge label x by
a pair (i, j) of integers such that x = w[i..j], STree(w) can be represented with
O(n) space.

For any node v of STree(w), let str(v) denotes the substring of w that is
obtained by concatenating the edge labels in the path from the root to v. Each
node v stores the length |str(v)| of the string it represents. For each non-root
node v, let slink(v) = (v, u) be a reversed edge called the suffix link of v, such that
str(u) = str(v)[2..|str(v)|]. It is well-known that STree(w) with the suffix links
of all nodes can be constructed online in O(n log σ) time and O(n) space [11].

The locus of a substring x of w in STree(w) is the ending point of the path
Px that spells out x from the root. If the ending point of Px lies on an edge
label, then the locus is represented by triple 〈u, s, t〉 such that u is the deepest
node in the path Px and s, t are positions of w with str(u)w[s..t] = x.

Given an ordered pair (i, j) of positions in a string w of length n, a reversed
longest common extension query rlcew(i, j) returns lcp((w[1..i])R, w[j..n]). Com-
puting rlcew(i, j) reduces to the lowest common ancestor (LCA) problem on
STree(w′), where w′ = wR#w and # is a special delimiter which does not



Finding Gapped Palindromes Online 195

occur in w. Let vi,j be the LCA of the two leaves which represent the suf-
fixes w′[n − i + 1..2n + 1] and w′[n + j + 1..2n + 1]. Then, we have that
|str(vi,j)| = rlcew(i, j). Using an LCA data structure (e.g. [2]), we can answer
rlcew(i, j) query for any pair (i, j) of positions in O(1) time after an O(n)-time
preprocessing on STree(w′).

3 Online Algorithms to Compute All Maximal g-gapped
Palindromes

An occurrence (i, j, a) of a g-gapped palindrome xyxR in a string w is said to be
maximal, if the arms x, xR cannot be extended outward, i.e., if w[b−1] �= w[e+1],
b = 1, or e = n, where b = i − a + 1 and e = j + a − 13.

Example 1. Consider string aabaacabbcaabb and let g = 3. This string has
3-gapped maximal palindromes (1, 5, 1) = a · aba · a, (6, 10, 4) = baac · ab
b · caab, (7, 11, 1) = a · bbc · a, and (9, 13, 2) = bb · caa · bb.

3.1 Computing all Maximal g-gapped Palindromes Online

In this subsection, we propose online algorithms to compute all maximal
g-gapped palindromes in a string w of length n, where g > 1 is a given fixed
integer parameter (since g = 1 gives odd palindromes, we set g > 1).

As was mentioned in Sect. 1, there exists an offline algorithm which computes
all g-gapped maximal palindromes in O(n) time and space for an input string w
of length n over an integer alphabet. However, in our scenario the input string
w is given online, and we wish to process each character from left to right. In
the sequel, we will show our online algorithm which can deal with this setting.

For each k = 1, . . . , n, our algorithm maintains the longest g-gapped suffix
palindrome of w[1..k] (if it exists). For each g-gapped palindrome to compute,
we maintain two variables i, j (i < j < k) that represent the ending position
of the left arm and the beginning position of the right arm of g-gapped palin-
drome, respectively. Assume (i, j, ai,j) is the longest g-gapped suffix palindrome
of w[1..k], where the gap of length g is w[i + 1..j − 1], j = i + g + 1 and
j +ai,j −1 = k. In case there are no g-gapped suffix palindromes of w[1..k], then
let ai,j = 0, i = k − g and j = k + 1. Depending on the next character w[k + 1],
we have two cases:

1. If w[i − ai,j ] = w[k + 1], then there exists a longer g-gapped palindrome
centered at i+j

2 . We then näıvely extend the arm length by ai,j ← ai,j + 1,
and proceed to the forthcoming character by updating k ← k + 1.

3 Since the gap length is fixed to g and since it simplifies the description of the algo-
rithm, here we do not consider inward maximality of the arms. However, it is easy
to modify our algorithm so that it outputs all g-gapped palindromes that are both
outward and inward maximal with the same efficiency.
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2. If w[i−ai,j ] �= w[k+1], then it appears that (i, j, ai,j) is the longest g-gapped
maximal palindrome ending at position k, and hence we output it. We then
shift the gap to the right by updating i ← i + 1 and j ← j + 1. There are
two-sub cases.
(a) If j > k+1, then it appears that there is no g-gapped suffix palindrome of

w[1..k+1]. We therefore update k ← k+1 and proceed to the forthcoming
character, with the current values of i and j.

(b) If j ≤ k+1, then we compute ai,j (we will later describe how to efficiently
compute it for updated i and j). There are two sub-cases:
i. If j + ai,j − 1 = k + 1, then (i, j, ai,j) is the longest g-gapped suffix

palindrome of w[1..k + 1]. We proceed to the forthcoming character
by updating k ← k + 1.

ii. If j + ai,j − 1 < k + 1, then (i, j, ai,j) is the maximal g-gapped palin-
drome with the gap beginning at position i + 1, and hence we output
it. We then shift the gap to the right by updating i ← i + 1 and
j ← j + 1, and go to either Case 2a or Case 2b depending on the
value of j.

In order to efficiently compute ai,j of Case 2 above in our online scenario, we
utilize the following results:

Theorem 1 ([7]). There exists an O(n log σ)-time O(n)-space algorithm to
maintain the suffix tree with suffix links for a bidirectionally growing string to
which new characters can be prepended and appended, where n is the length of
the final string.

Theorem 2 ([3]). There exists a linear-space algorithm for a rooted tree that
supports the following operations and query in O(1) worst-case time: which sup-
ports the following operations and query in O(1) worst-case time: (1) Insert a
new node; (2) Delete an existing node; (3) LCA query for any pair of nodes in
the current tree.

We are ready to show the main result of this section:

Theorem 3. For a growing string to which new characters are appended, we can
compute all maximal g-gapped palindromes in an online manner, in O(n log σ)
time and O(n) space, where n is the length of the final string.

Proof. The correctness immediately follows from the above arguments.
The time complexity is shown as follows. In the sequel, we consider the

amortised time cost for each k = 1, . . . , n. For each k that falls into Case 1, it
clearly takes O(1) time. For each k that falls into Case 2b, we output several
maximal g-gapped palindromes. It takes O(1) time to output the longest max-
imal g-gapped palindrome. The key is how to compute the arm lengths ai,j of
shorter maximal g-gapped palindromes. For this sake we maintain STree(w′

k)
where w′

k = (w[1..k])R#w[1..k], where # is a special delimiter which does not
appear elsewhere in w′

k (see also Fig. 1 for an example).
Note that computing ai,j is equivalent to computing rlcew[1..k](i, j), and thus
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Fig. 1. STree(w′
k) with w[1..k] = abacabcabc and w′

k = cbacbacaba#abacabcabc. The
label strings after # are omitted for simplicity.

is equivalent to computing |str(vi,j)|, where vi,j is the LCA of the nodes of
STree(w′

k) which represent the suffixes w′
k[k−i+1..2k+1] and w′

k[k+j+1..2k+1]
of w′

k. Since # is unique in w′
k, the suffix w′

k[k−i+1..2k+1] is always represented
by a leaf of STree(w′

k) and hence can easily be accessed in O(1) time. However,
notice that the other suffix w′

k[k + j + 1..2k + 1] is not represented by a node
when the path that spells out w′

k[k + j + 1..2k + 1] from the root ends on an
edge (this can happen when w′

k[k + j + 1..2k + 1] = w[j..k] is a prefix of another
suffix of w[1..k]). Consider such a case, and let 〈uj , sj , tj〉 be the locus for the
suffix w′

k[k + j + 1..2k + 1]. Since uj is the nearest ancestor to the locus, we can
use uj for the LCA query instead of the locus for w′

k[k + j + 1..2k + 1].
What remains is how to quickly find the loci for increasing j. For this we

can use a similar technique to Ukkonen’s online suffix tree construction algo-
rithm [11]: Assume that the locus 〈uj , sj , tj〉 for the suffix w′

k[k+ j +1..2k+1] =
w[j..k] in STree(w′

k) is given. To find the locus for 〈uj+1, sj+1, tj+1〉 for the next
suffix w′

k[k + j + 2..2k + 1] = w[j + 1..k], we first follow the suffix link of uj

and arrive at z = slink(uj). We then traverse the path from z which spells out
w′

k[sj+1..tj+1]. The last piece of this path gives the locus 〈uj+1, sj+1, tj+1〉 (see
also Fig. 2).

Using a similar analysis to [11], the cost to find this locus is amortised to
O(log σ). Since the total number of outputs (maximal g-gapped palindromes)
is linear in n, the amortised cost per output is O(log σ). The cost to update
STree(w′

k) to STree(w′
k+1) is amortised to O(log σ) by Theorem 1. Each LCA

query can be answered in O(1) time by Theorem 2. Hence, the total time com-
plexity is O(n log σ). The total space requirement is clearly O(n). This completes
the proof. 
�
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3.2 Computing all Distinct Maximal g-gapped Palindromes Online

Fig. 2. Illustration of how to find
the locus 〈uj+1, sj+1, tj+1〉 of the
next suffix w′

k[k + j + 2..2k + 1] =
w[j+1..k] using the suffix link of uj ,
where 〈uj , sj , tj〉 is the locus of the
previous suffix w′

k[k + j + 1..2k +
1] = w[j..k]. The cost for walking
down from node z to the locus for
〈uj+1, sj+1, tj+1〉 is O(log σ) amor-
tised.

Consider a g-gapped palindrome p = xyxR

which has at least two maximal occurrences
in a string w. When considering “distinct-
ness” of two maximal occurrences (i, j, a) and
(i′, j′, a) of p, we take into account the left
and right neighbouring characters for a tech-
nical reason. Namely, two maximal occur-
rences (i, j, a) and (i′, j′, a) of a g-gapped
palindromes are said to be distinct iff (1)
w[b−1] �= w[b′ −1] or (2) w[e+1] �= w[e′ +1],
where b = i−a+1, e = j+a−1, b′ = i′−a+1,
and e′ = j′ + a − 1.

Our online algorithm of Sect. 3.1 can be
modified to output all distinct maximal g-
gapped palindromes in an online manner.

For any string w, let lusuf (w) denote the
longest suffix of w which appears at least
twice in w (we assume that the empty string ε
appears |w|+1 times in w so lusuf (w) always
exists). We make use of the following simple
observation:

Observation 1. Let (i, j, a) be an occurrence of a maximal g-gapped palindrome
xyxR in a string w, and let c� = w[i − a] and cr = w[j + a]. Then, it is the first
(i.e. left-most) maximal occurrence of xyxR in w iff |c�xyxRcr| = j−i+2a+1 >
|lusuf (w[1..j + a − 1])|.
Theorem 4. For a growing string to which new characters are appended, we
can compute all distinct maximal g-gapped palindromes in an online manner, in
O(n log σ) time and O(n) space, where n is the length of the final string.

Proof. On top of STree(w′
k) used in Theorem 3, we build another suffix tree

STree(w[1..k]) for increasing k = 1, . . . , n using Ukkonen’s online algorithm [11].
For each k, Ukkonen’s algorithm maintains an invariant called the active point
which indicates the locus of lusuf (w[1..k]). When we process the kth character
w[k], we store |lusuf (w[1..h])| for all 1 ≤ h ≤ k. Let (i, j, ai,j) be an occurrence
of a maximal g-maximal found at the k-th stage of the algorithm where we have
processed w[1..k]. Then, we can determine in O(1) time whether or not it is the
first maximal occurrence of the g-gapped palindrome using Observation 1 (recall
that the right mismatched position j + ai,j never exceeds k and hence we know
|lusuf (w[1..j+ai,j ])|). Since Ukkonen’s online algorithm works in O(n log σ) time
and O(n) space, the theorem holds. 
�

We note that a similar technique was used by Kosolobov et al. [9] in their
online algorithm to find all distinct palindromes (without gaps) in a given string.



Finding Gapped Palindromes Online 199

4 Online Algorithms to Compute all Maximal LCGPs

An occurrence (i, j, a) of an LCGP in a string w of length n is said to be outward-
maximal iff w[i − a] �= w[j + a], i − a + 1 = 1, or j + a − 1 = n, and it is said to
be inward-maximal iff w[i + 1] �= w[j − 1]. It is said to be maximal iff it is both
outward-maximal and inward-maximal4.

Example 2. Consider string aabaacabbcaabb and let gmin = 1, gmax = 4, and
A = 2. All the maximal LCGPs in this string are (2, 4, 2) = aa · b · aa, (4, 7, 2) =
ba · ac · ab, (6, 10, 4) = baac · abb · caab, and (9, 13, 2) = bb · caa · bb.

4.1 Computing all Maximal LCGPs Online

In this section, we present an online algorithm to compute all maximal LCGPs
of a given string w. This algorithm works in O(n(m + log σ)) time and O(n)
space, where n = |w| and m = max{ gmax−gmin

A , 1}.
Let d = gmax−gmin

2 . For ease of explanation, we assume that d mod A = 0 and
we will describe our algorithm for this case. However, the algorithm can easily
be extended to a general case with d mod A �= 0, retaining the same efficiency.

For each k = 1, . . . , n in increasing order, we maintain a pair (i, j) of positions
such that j−i = gmin+1 and the longest inward-maximal suffix LCGP of w[1..k]
is centered at i+j

2 (if it exists). If it does not exist, then let i = k − gmax and
j = k − gmax + gmin + 1. For 1 ≤ l ≤ d

A , we consider the positions i − l · A and
j+ l ·A in w[1..k], called sampled positions. The following simple lemma suggests
how we can use these sampled positions for efficient computation of LCGPs.

Lemma 1. Let (i′, j′, a′) be any maximal LCGP whose center is i+j
2 (i.e.,

i′+j′

2 = i+j
2 ). Then, there exists l (1 ≤ l ≤ d

A) such that j + l ·A ∈ [j′, j′ +a′ −1]
and i − l · A ∈ [i′ − a′ + 1, i′]. Moreover, for each such l, (i′, j′, a′) is the unique
maximal LCGP satisfying the above conditions.

Proof. The existence of l is clear from the fact that the arms of LCGPs must be
at least A long (see also Fig. 3). By definition, the arms of two different maximal
LCGPs with the same center cannot overlap. Thus, for each l, there exists at
most one LCGP whose left and right arms contain sampled positions i − l · A
and j + l · A, respectively. This completes the proof. 
�

Let l (1 ≤ l ≤ d
A ) be the smallest integer such that i − l · A (resp. j + l · A)

is contained in the left arm (resp. the right arm) of the longest suffix inward-
maximal LCGP of w[1..k] that is centered at i+j

2 , and let al be the length of the
arm of this LCGP. Also, let il, jl be the ending position of the left arm and the
beginning position of the right arm of this LCGP, respectively. Note il+jl

2 = i+j
2

and jl +al −1 = k. Depending on the next character w[k+1], we have two cases:

4 Since the gap length varies in range [gmin, gmax], we here consider both outward and
inward maximality of the arms.
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Fig. 3. Illustration for Lemma 1. Since any LCGP centered at i+j
2

with gap length in
range [gmin, gmax] contains a pair (i − l · A, j + l · A) of sampled positions for some l,
we can compute it by two LCEs from the sampled positions.

1. If w[il −al] = w[k+1], then (il, jl, al +1) is the longest suffix inward-maximal
LCGP of w[1..k +1] centered at i+j

2 . Thus, we näıvely extend the arm length
outward by al ← al+1, and proceed to the forthcoming character by updating
k ← k + 1.

2. If w[il − al] �= w[k + 1], then it appears that (il, jl, al) is a maximal LCGP
centered at i+j

2 and ending at position k, and hence we output it. To com-
pute other maximal LCGPs centered at i+j

2 , we do the following: We update
l ← l + 1, and consider a pair (i − l · A, j + l · A) of the sampled positions
and compute the outward LCE aout

l = rlcew[1..k+1](i − l · A, j + l · A) and the
inward LCE ain

l = rlcew[1..k+1](j + l · A − 1, i − l · A + 1) from these sampled
positions (see also Fig. 3). There are three sub-cases depending on the LCE
values:
(a) If aout

l + ain
l < A or ain

l > l · A, then there is no maximal LCGP with
gap length in range [gmin, gmax] that is centered at i+j

2 and contains the
sampled positions i − l · A and j + l · A. We update l ← l + 1, and go to
one of the following sub-cases.
i. If l ≤ d

A , then we compute the outward and inward LCEs from the
pair of sampled positions with l.

ii. If l > d
A , then there is no suffix gapped palindrome of w[1..k] that

is centered at i+j
2 and has a gap length in range [gmin, gmax]. We

therefore update i ← i + 1, j ← j + 1, l ← 1, k ← k + 1 and proceed
to the forthcoming character.

(b) If aout
l + ain

l ≥ A, ain
l ≤ l · A, and j + l · A + aout

l ≤ k, then (il, j′l, al) is a
maximal LCGP centered at i+j

2 where il = i − l · A + ain
l , j + l · A + aout

l ,

and al = aout
l + ain

l . We output it and update l ← l + 1 + aout
l

A � (this is
to skip the subsequent sampled positions which are also contained in the
same LCGP due to Lemma 1).
i. If l ≤ d

A , then we compute the outward and inward LCEs from the
pair of sampled positions with l.

ii. If l > d
A , then there is no inward-maximal suffix gapped palindrome

of w[1..k] that is centered at i+j
2 and has a gap length in range

[gmin, gmax]. We therefore update i ← i+1, j ← j+1, l ← 1, k ← k+1
and proceed to the forthcoming character.
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(c) If aout
l +ain

l ≥ A, ain
l ≤ l ·A, and j+l ·A+aout

l = k+1, then (il, jl, al) is an
inward-maximal gapped suffix palindrome of w[1..k + 1] with gap length
in range [gmin, gmax]. Moreover, since we have processed l in increasing
order, it is guaranteed that (il, jl, al) is the longest such one. Hence, we
proceed to the next character by updating k ← k + 1.

Theorem 5. For a growing string to which new characters are appended, we
can compute all LCGPs in an online manner, in O(n(m+log σ)) time and O(n)
space, where n is the length of the final string and m = max{ gmax−gmin

A , 1}.
Proof. The correctness should be clear from the above arguments.

For each k = 1, . . . , n, we consider a fixed center i+j
2 and compute all LCGPs

with this center. We perform at most 2d
A LCE queries for each k, as there are

d
A sampled positions for each k. Since each LCE query can be answered in
O(1) time as in the proof of Theorem 3, the total time cost of the LCE queries
for all k = 1, . . . , n is O( d

An) = O(mn). We use additional O(n log σ) time
to maintain the suffix tree augmented with the dynamic LCA data structure
for bidirectionally growing string w′

k = (w[1..k])R#w[1..k]. Thus the total time
complexity is O(n(m + log σ)).

The total space requirement is dominated by the suffix tree and the dynamic
LCA data structure, and hence is O(n). 
�

4.2 Optimality of our Algorithm

The following corollary is immediate from Theorem 5.

Corollary 1. For constant parameters gmin, gmax, A and a constant-size alpha-
bet, we can compute all maximal LCGPs in a string of length n in an online
manner, in optimal O(n) time and space.

We can show that even for non-constant gap constraints gmin and gmax, the
running-time of our algorithm is optimal in the worst case. For any string w,
let Lw denote the number of all maximal LCGPs in w w.r.t. given parameters
gmin, gmax, and A. It immediately follows from Lemma 1 that Lw is upper-
bounded by the total number of sampled positions in w. Hence Lw = O(mn),
where n = |w| and m = max{ gmax−gmin

A , 1}. It is also true that there is an
instance w for which Lw = Ω(mn) if A is a constant: For example, consider
string z = (abc)

n
3 . This string z contains maximal gapped palindromes of form

a(bc(abc)p)a with arm a, b(c(abc)pa)b with arm b, and c((abc)pab)c with arm
c for all 0 ≤ p ≤ n

3 − 2. Thus, for A = 1 and for any 2 ≤ gmin ≤ gmax, the
string z contains Lz = Θ((gmax − gmin)n) = Θ( gmax−gmin

A n) = Θ(mn) maximal
LCGPs. Hence the running time O(m(n + log σ)) of our algorithm is optimal in
the worst case, for a constant-size alphabet.

5 Conclusions

In this paper, we presented an online algorithm which finds all maximal g-gapped
palindromes occurring in a string w of length n in O(n log σ) time, where σ is the
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alphabet size. We also showed that the above online algorithm can be extended
to find more general length-constrained gapped palindromes (LCGPs) occurring
in w in O(n( gmin−gmax

A + log σ)) time, for given parameters 2 ≤ gmin ≤ gmax and
A ≥ 1. We also showed that if A is a constant, then there exists a string which
contains Ω((gmin−gmax)n) maximal LCGPs. This implies that for a constant-size
alphabet the running time of our algorithm is optimal in the worst case.

To our knowledge, the proposed methods are the first online algorithms to
find any kind of gapped palindromes in strings. Therefore, there remain many
open problems. In particular, we are interested in the following:

– Is there a string of length n which contains Ω( gmin−gmax
A n) maximal LCGPs

for non-constant A?
– Can we reduce the n gmin−gmax

A factor to Lw in the O(n( gmin−gmax
A + log σ))-

time algorithm for finding all maximal LCGPs, thereby obtaining an optimal
algorithm?

– Can the maximal α-gapped palindromes [5] of a given string be computed
online efficiently?
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