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Preface

This volume contains revised versions of papers presented at the 27th International
Workshop on Combinatorial Algorithms (IWOCA 2016), held August 17–19, 2016, in
Helsinki, Finland.

IWOCA 2016 continued a long and well-established tradition of encouraging high-
quality research in theoretical computer science, providing an opportunity to bring
together specialists and young researchers working in the area. The IWOCA conference
series grew out of a 17-year history of the Australasian Workshop on Combinatorial
Algorithms (AWOCA). Previous AWOCA and IWOCA meetings have been held in
Australia, Indonesia, South Korea, Japan, Czech Republic, Canada, UK, India, France,
the USA, and Italy.

We solicited papers in the broad area of combinatorial algorithms. The Program
Committee decided to accept 35 papers, out of a total of 87 submissions. Each sub-
mission received at least three reviews. Papers were submitted and reviewed using the
EasyChair online system. Authors of accepted papers come from 21 countries, across
three continents (Asia, Europe, North America).

The scientific program included three invited lectures, given by:

– Leslie Anne Goldberg on “Approximately Counting list H-Colourings”
– Giuseppe F. Italiano on “2-Connectivity Problems in Directed Graphs”
– Petteri Kaski on “Polynomial Representations in Algorithm Design”

We thank the invited speakers for accepting our invitation and for their excellent
presentations at the conference. The program also included an open problem session,
chaired by Gabriele Fici. The open problems presented can be found at the open
problem collection of IWOCA at http://iwoca.org. This year for the second year run-
ning, IWOCA had a Best Student Paper Award, sponsored by the European Associ-
ation for Theoretical Computer Science (EATCS). It was decided to assign this award
to the paper “Online Chromatic Number Is PSPACE-Complete” by Martin Böhm and
Pavel Veselý.

We thank all authors who submitted their work for consideration to IWOCA 2016.
We wish to thank the Program Committee and the external reviewers, whose many
thorough reviews helped us select the papers presented. The success of the scientific
program is due to their hard work. We also thank the EATCS (European Association
for Theoretical Computer Science), Federation of Finnish Learned Societies, and the
Helsinki Institute for Information Technology for their support of the conference.

IWOCA 2016 was organized by the Department of Computer Science of the
University of Helsinki, whose administrative and financial support we gratefully
acknowledge.

August 2016 Simon Puglisi
Veli Mäkinen
Leena Salmela

http://iwoca.org
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Approximately Counting List H-Colourings

Leslie Ann Goldberg

Department of Computer Science, University of Oxford, Oxford, UK
leslie.goldberg@cs.ox.ac.uk

An H-colouring of a graph G is a homomorphism from G to H (a map from the vertices
of G to the vertices of H that maps edges of G to edges of H). The “classification
programme” in computational complexity aims to classify graphs H according to the
difficulty of algorithmic problems, for example, the problem of constructing a homo-
morphism from an input graph G to H, or the problem of counting homomorphisms
from G to H or (more recently) the problem of approximately counting these homo-
morphisms. I will explain the classifications that are known, focussing especially on
“list H-colouring,” which generalises H-colouring in the same way that “list colouring”
generalises ordinary (proper) vertex colouring. We still don’t know a complete clas-
sification for approximately counting H-colourings, but for approximately counting list
H-colourings, there is more progress. Here it turns out that there is a trichotomy in the
approximation complexity, based on hereditary graph classes. The talk will describe
joint work with Andreas Galanis and Mark Jerrum.



2-Connectivity Problems in Directed Graphs

Giuseppe F. Italiano

Università di Roma “Tor Vergata,” Rome, Italy
giuseppe.italiano@uniroma2.it

We survey some recent results on 2-edge and 2-vertex connectivity problems in
directed graphs. Despite being complete analogs of the corresponding notions on
undirected graphs, in digraphs 2-vertex and 2-edge connectivity have a much richer and
more complicated structure. It is thus not surprising that 2-connectivity problems on
directed graphs appear to be more difficult than on undirected graphs. For undirected
graphs it has been known for over 40 years how to compute all bridges, articulation
points, 2-edge- and 2-vertex-connected components in linear time, by simply using
depth first search. In the case of digraphs, however, the very same problems have been
much more challenging and have been tackled only recently.



Polynomial Representations in Algorithm
Design

Petteri Kaski

Department of Computer Science,
Helsinki Institute for Information Techonlogy HIIT,

Aalto University, Helsinki, Finland
petteri.kaski@aalto.fi

Currently the asymptotically fastest known algorithm designs for a number of a priori
purely combinatorial problems are based on algebraic techniques. This talk gives a
brief survey on the use of polynomials and implicit polynomial representations in such
designs. We start by recalling some of the classics and proceed towards recent mul-
tivariate polynomial sieving and batch evaluation frameworks that yield the state of the
art for a range of problems including k-clique counting, graph coloring, Hamiltonian
path, motif search, and so forth. Designs based on polynomials not only can give the
fastest known and often embarrassingly parallel algorithms, the polynomial represen-
tation in itself may serve as a proof that the computation was correctly executed.
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Computational Complexity



On the Complexity of Computing Treebreadth

Guillaume Ducoffe1,2(B), Sylvain Legay3, and Nicolas Nisse1,2

1 Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271,
06900 Sophia Antipolis, France
guillaume.ducoffe@inria.fr

2 Inria, Sophia Antipolis, France
3 LRI, Univ. Paris Sud, Université Paris-Saclay, 91405 Orsay, France

Abstract. During the last decade, metric properties of the bags of tree-
decompositions of graphs have been studied. Roughly, the length and the
breadth of a tree-decomposition are the maximum diameter and radius
of its bags respectively. The treelength and the treebreadth of a graph are
the minimum length and breadth of its tree-decompositions respectively.
Pathlength and pathbreadth are defined similarly for path-decompositions.
In this paper, we answer open questions of [Dragan and Köhler, Algo-
rithmica 2014] and [Dragan, Köhler and Leitert, SWAT 2014] about the
computational complexity of treebreadth, pathbreadth and pathlength.
Namely, we prove that computing these graph invariants is NP-hard. We
further investigate graphs with treebreadth one, i.e., graphs that admit
a tree-decomposition where each bag has a dominating vertex. We show
that it is NP-complete to decide whether a graph belongs to this class.
We then prove some structural properties of such graphs which allows
us to design polynomial-time algorithms to decide whether a bipartite
graph, resp., a planar graph, has treebreadth one.

1 Introduction

Tree-decompositions [20] aim at decomposing graphs into pieces, called bags,
organized in a tree-like manner (formal definitions are postponed to Sect. 1.3).
Roughly, the width of a tree-decomposition is the maximum size of its bags.
A lot of work has been dedicated to compute tree-decompositions with small
width since such decompositions can be efficiently exploited for algorithmic pur-
poses [4]. Computing the corresponding graph invariant, the treewidth of a graph
G (i.e., the minimum width among all tree-decompositions of G), is NP-hard [2]
and no constant-approximation algorithm is likely to exist [22]. Moreover, real-
life networks generally have a large treewidth [11]. These drawbacks motivated
the study of other optimization criteria for tree-decompositions.

In particular, the metric properties of the bags have been studied. Roughly,
the length and the breadth of a tree-decomposition are the maximum diameter

This work is partially supported by ANR project Stint under reference ANR-13-
BS02-0007 and ANR program “Investments for the Future” under reference ANR-
11-LABX-0031-01.

c© Springer International Publishing Switzerland 2016
V. Mäkinen et al. (Eds.): IWOCA 2016, LNCS 9843, pp. 3–15, 2016.
DOI: 10.1007/978-3-319-44543-4 1



4 G. Ducoffe et al.

and radius of its bags respectively. The corresponding graph parameters are the
treelength [13] and the treebreadth [14] respectively. Recent studies suggest that
some classes of real-life networks – including biological networks and social net-
works – have bounded treebreadth [1]. This metric tree-likeness can be exploited
in algorithms. For instance, bounded treebreadth graphs admit a PTAS for the
Traveling Salesman problem [18]. They also admit compact distance labeling
schemes [12]. Furthermore, the diameter and the radius of bounded treebreadth
graphs can be approximated up to an additive constant in linear time [9]. In con-
trast to the above result, we emphasize that under classical complexity assump-
tions the diameter of general graphs cannot be approximated up to an additive
constant in subquadratic time, that is prohibitive for large graphs [8].

On the computational side, it is known that computing the treelength is
NP-hard [19]. However, contrary to the treewidth, there exists a 3-approximation
algorithm for computing the treelength [13]. In [14], a 3-approximation algorithm
for computing the treebreadth is presented but the computational complexity of
this problem is left open. Note that, because treelength and treebreadth differ
by at most a factor 2 [14], any polynomial-time algorithm for computing the
treebreadth, or an α-approximation algorithm for some α < 3/2, would improve
the 3-approximation algorithm for treelength [13].

A path-decomposition of a graph is a tree-decomposition where the bags are
organized according to a path structure. Treelength and treebreadth have their
“path counterpart”, namely the pathlength and the pathbreadth. In [15], they
have been shown to be useful in the design of approximation algorithms for
bandwidth and line-distortion. A 2-approximation (resp., a 3-approximation)
algorithm is given for computing the pathlength (resp., the pathbreadth) but
the computational complexity of both problems is left open.

The main contributions of this paper are to answer the open problems of [14]
and [15]. Namely, we prove that computing the treebreadth, pathlength and
pathbreadth of graphs are all NP-hard problems.

1.1 Related Work

In contrast with treewidth [5], deciding whether a graph has treelength at most
k is NP-complete for every fixed k ≥ 2 [19]. However, the reduction used for tree-
length goes through weighted graphs and then goes back to unweighted graphs
using rather elegant gadgets. It does not seem to us these gadgets can be easily
generalized in order to apply to the treebreadth.

Relationship between treewidth and treelength (and so, treebreadth) has
been investigated in [10]. The two parameters are uncomparable in general
graphs. For instance, cycles have treewidth at most two but treelength �n/3�,
while cliques have treewidth n − 1 but treelength equal to one [13]. However,
they differ by at most a constant ratio in the graphs with bounded genus and
bounded isometric cycles [10]. Hence we are also motivated in this work to better
understand the structure of tree-decompositions with small width for bounded
genus graphs, and to improve their computation.
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Recently, the minimum eccentricity shortest-path problem – close to
the problem of computing the pathlength and pathbreadth – has been proved
NP-hard [16]. Let us point out that for every fixed k, it can be decided in
polynomial time whether a graph admits a shortest-path with eccentricity at
most k [16]. Our results will show the situation is different for pathlength and
pathbreadth.

1.2 Our Contributions

On the negative side, we prove in Sect. 2 that computing the treebreadth is NP-
hard. More precisely, we first prove that recognizing graphs with treebreadth
one is NP-complete. The latter may be a bit surprising since in comparison,
graphs with treelength one are exactly the chordal graphs [19], and so, they can
be recognized in linear time. Our reduction has distant similarities with the one
for treelength. However, it does not need any detour through weighted graphs.
Then, we show that the problem of deciding whether a graph has treebreadth
one is polynomially equivalent to the problem of deciding whether a graph has
treebreadth at most k, for every fixed k ≥ 1.

Next, we show that deciding if a graph has pathlength at most 2 is
NP-hard even in the class of graphs with pathlength at most 3. We also show
that deciding if a graph has pathbreadth at most 1 is NP-hard even in the class
of graphs with pathbreadth at most 2. Hence, for any ε > 0, the pathlength
and the pathbreadth cannot be approximated within a factor 3

2 − ε and 2 − ε
respectively unless P = NP .

On the positive side, we present polynomial-time algorithms for deciding
whether a graph has treebreadth at most one, in the class of bipartite graphs and
in the class of planar graphs. Precisely, we prove that a bipartite graph has tree-
breadth one if and only if it can be clique-decomposed in tree-convex bipartite
graphs [21]. Furthermore, while the planar graphs of treebreadth one are quite spe-
cific (in particular, we prove that they have treewidth at most 4), the algorithm is
intricate and relies on structural properties of graphs with treebreadth one.

Due to lack of space, several proofs are only sketched or even omitted. They
can be found in our technical report [17].

1.3 Definitions and Notations

Graphs in this study are finite, simple, connected and unweighted. Given a graph
G = (V,E), the set NG(v) denotes the set of neighbors of v ∈ V in G. Further-
more, let NG[v] = NG(v) ∪ {v}. The distance distG(u, v) between two vertices
u, v ∈ V in G is the minimum length (number of edges) of a path between u and
v in G. We will omit the subscript when no ambiguity occurs.

A tree-decomposition (T,X ) of G is a pair consisting of a tree T and of a
family X = (Xt)t∈V (T ) of subsets of V indexed by the nodes of T and satisfying:
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–
⋃

t∈V (T ) Xt = V ;
– for any edge e = {u, v} ∈ E, there exists t ∈ V (T ) such that u, v ∈ Xt;
– for any v ∈ V , {t ∈ V (T ) | v ∈ Xt} induces a subtree, denoted by Tv, of T .

The sets Xt are called the bags of the decomposition. For any t ∈ V (T ), the diame-
ter of the bag Xt equals maxv,w∈Xt

distG(v, w). We emphasize that the distance is
the one in G (not in G[Xt]). The radius of Xt equals minv∈V maxw∈Xt

distG(v, w).
We point out that the vertex v in previous definition does not necessarily belong
to Xt. The length of (T,X ) is the maximum diameter of its bags, while the breadth
of (T,X ) is the maximum radius of its bags.

The treelength and the treebreadth of G, respectively denoted by tl(G) and
tb(G), are the minimum length and breadth of its tree-decompositions, respec-
tively. Pathlength and pathbreadth are defined similarly in the case of path
decompositions, that is, when T is a path. It has been observed in [14,15] that
the four above parameters are contraction-closed invariants.

A tree-decomposition is called reduced if nobag is included inanother one. Start-
ing from any tree-decomposition, a reduced tree-decomposition can be obtained in
polynomial time by contracting any two adjacent bags with one contained in the
other until it is no more possible to do that. Note that such a process does not mod-
ify the width, the length nor the breadth of the decomposition.

In the following we will make use of the well-known Helly property in our
proofs: any family of pairwise intersecting subtrees in a tree has a nonempty
intersection.

2 Hardness of Treebreadth, Pathlength and Pathbreadth

The main result of this section is the NP-completeness of deciding whether
tb(G) ≤ k, for any fixed k ≥ 1. We first prove that the problem is NP-complete
for k = 1. Then, we show that the problem of deciding the treebreadth of a
graph is polynomially equivalent to the problem of recognizing graphs with tree-
breadth one. Using similar techniques, we prove that computing pathlength,
resp., pathbreadth, is NP-hard.

We start by a structural result on graphs with treebreadth one which will
be a key lemma used throughout the paper. A tree-decomposition (T,X ) of a
graph is a star-decomposition if for each t ∈ V (T ), Xt ⊆ N [v] for some v ∈ Xt.
That is, star-decompositions are similar to decompositions of breadth one, but
the dominator of each bag has to belong to the bag itself. Lemma 1 shows that
both definitions are actually equivalent.

Lemma 1. For any graph G with tb(G) ≤ 1, every reduced tree-decomposition
of G of breadth one is a star-decomposition.

Proof. Let (T,X ) be any reduced tree-decomposition of G of breadth one. We
will prove it is a star-decomposition. To prove it, let Xt ∈ X be arbitrary and
let v ∈ V be such that maxw∈Xt

distG(v, w) = 1, which exists because Xt has
radius one. We now show that v ∈ Xt. Indeed, since the subtree Tv and the
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subtrees Tw, w ∈ Xt, pairwise intersect, then it comes by the Helly Property
that Tv ∩ (⋂

w∈Xt
Tw

) 
= ∅ i.e., there is some bag containing {v} ∪ Xt. As a
result, we have that v ∈ Xt because (T,X ) is a reduced tree-decomposition. The
latter implies that (T,X ) is a star-decomposition because Xt is arbitrary. �

We then show the main result of this section.

Theorem 1. Deciding whether a graph has treebreadth one is NP-complete.

In order to prove Theorem1, we reduce the following particular instance of
Chordal Sandwich (proved to be NP-hard in [6]) to our problem. In [19], the
author also proposed a reduction from Chordal Sandwich in order to prove
that computing treelength is NP-hard. However, we will need different gadgets
than in [19], and we will need different arguments to prove correctness of the
reduction.

Problem 1 (Chordal Sandwich with nK2).

Input: graphs G1 = (V,E1) and G2 = (V,E2) such that E1 ⊆ E2, |V | is
even and the complementary Ḡ2 of G2 induces a perfect matching.

Question: Is there a chordal graph H = (V,E) such that E1 ⊆ E ⊆ E2 ?

Perhaps surprisingly, the restriction on the structure of Ḡ2 is a key element
in our reduction. Indeed, we will need the following technical lemma whose proof
can be found in [17].

Lemma 2. Let G1 = (V,E1), G2 = (V,E2) such that E1 ⊆ E2 and Ḡ2 is a per-
fect matching. Suppose that 〈G1, G2〉 is a yes-instance of Chordal Sandwich

with nK2.
There exists a tree-decomposition (T,X ) of G1 with |X | = |V |/2+1 bags such

that for every {u, v} /∈ E2, Tu ∩ Tv = ∅ and there are two adjacent bags Bu ∈ Tu

and Bv ∈ Tv such that Bu\u = Bv\v.

Proof of Theorem 1. The problem is in NP. To prove the NP-hardness, let
〈G1, G2〉 be any instance of Chordal Sandwich with nK2. Let G′ be the
graph constructed from G1 as follows. First, a clique V ′ of 2n = |V | vertices
is added to G1. Vertices v ∈ V are in one-to-one correspondance with vertices
v′ ∈ V ′. Then, for every {u, v} /∈ E2, u and v are respectively made adjacent
to all vertices in V ′\v′ and V ′\u′. Finally, we add a copy of the gadget Fuv,
depicted in Fig. 1(a), and the vertices suv and tuv are made adjacent to the four
vertices u, v, u′, v′.

We will prove tb(G′) = 1 if and only if 〈G1, G2〉 is a yes-instance of Chordal

Sandwich with nK2.
In one direction, assume tb(G′) = 1, let (T,X ) be a star-decomposition of G′

(which exists by Lemma 1). We prove that the triangulation of G1 obtained from
this star-decomposition is the desired chordal sandwich. Let H = (V, {{u, v} |
Tu ∩ Tv 
= ∅}). H is a chordal graph such that E1 ⊆ E(H). To prove that
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〈G1, G2〉 is a yes-instance of Chordal Sandwich with nK2, it suffices to
prove that Tu ∩ Tv = ∅ for every {u, v} /∈ E2. We claim that it is implied
by Tsuv

∩ Ttuv

= ∅. Indeed, assume Tsuv

∩ Ttuv

= ∅ and Tu ∩ Tv 
= ∅. Since

suv, tuv ∈ N(u) ∩ N(v), Tu, Tv, Tsuv
, Ttuv

pairwise intersect, there is a bag with
u, v, suv, tuv by the Helly property. The latter contradicts that (T,X ) is a star-
decomposition because no vertex dominates the four vertices. Hence the claim is
proved. So, let us prove that Tsuv

∩Ttuv

= ∅. By contradiction, if Tsuv

∩Ttuv
= ∅

then every bag B onto the path between Tsuv
and Ttuv

must contain cuv, xuv.
Since N [cuv]∩N [xuv] = {suv, tuv} and (T,X ) is a star-decomposition, it implies
either suv ∈ B and B ⊆ N [suv] or tuv ∈ B and B ⊆ N [tuv]. So, there are two
adjacent bags Bs ∈ Tsuv

, Bt ∈ Ttuv
such that Bs ⊆ N [suv] and Bt ⊆ N [tuv]. In

particular, Bs ∩Bt must intersect the path (yuv, wuv, zuv) because yuv ∈ N(suv)
and zuv ∈ N(tuv). However, N [suv] ∩ N [tuv] ∩ {yuv, wuv, zuv} = ∅, that is a
contradiction. As a result, Tsuv

∩Ttuv

= ∅ and so, Tu∩Tv = ∅ for any {u, v} /∈ E2.

Fig. 1. Construction of the star-decomposition in the proof of Theorem 1

Conversely, assume that 〈G1, G2〉 is a yes-instance of Chordal Sandwich

with nK2. Since Ḡ2 is a perfect matching by the hypothesis, let (T,X ) be as
stated in Lemma 2. We will modify (T,X ) in order to obtain a star-decomposition
of G′. To do so, we will use the fact that there are |V |/2 = n edges in E(T ) and
the properties stated by Lemma 2. Indeed, this implies that there is a one-to-one
mapping α : E(T ) → E(Ḡ2) between the edges of T and the non-edges of G2.
Precisely, for any edge e = {t, s} ∈ E(T ), let α(e) = {u, v} ∈ E(Ḡ2) be the
non-edge of G2 such that u ∈ Xt, v ∈ Xs and Xt\u = Xs\v.

Intuitively, the star-decomposition (T ′,X ′) of G′ is obtained as follows. For
any t ∈ V (T ) with incident edges e1, · · · , ed, we first replace Xt by a path-
decomposition (Yt,e1 , · · · , Yt,ed

). Then, for any edge e = {t, s} ∈ E(T ), an edge is
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added between Yt,e and Ys,e. Finally, the center-bag of some star-decomposition
of the gadget Fα(e) is made adjacent to Yt,e (see Fig. 1(b) for an illustration).

More formally, let t ∈ V (T ) and e ∈ E(T ) incident to t, and let {u, v} = α(e).
Let Yt,e = V ′ ∪ Xt ∪ {suv, tuv} (note that Yt,e is dominated by u′ ∈ V ′). Let
e1, · · · , ed be the edges incident to t in T , in any order. For 1 ≤ i < d, add an edge
between Yt,ei

and Yt,ei+1 . For any edge e = {t, s} ∈ E(T ), add an edge between
Yt,e and Ys,e. Finally, add the star-decomposition (T e,X e) for the gadget Fα(e)

as depicted in Fig. 1(a) and add an edge between its center and Yt,e.
The resulting (T ′,X ′) is a star-decomposition of G′, hence tb(G′) = 1. �

We next show that computing the treebreadth is polynomially equivalent to
the recognition of graphs with treebreadth one.

Lemma 3. For every graph G, for every positive integer r, there exists a graph
G′

r computable in polynomial time such that tb(G) ≤ r if and only if tb(G′
r) ≤ 1.

Proof. Let G have vertices v1, v2, . . . , vn, and let r > 0. The graph G′
r is obtained

from G by adding a clique U = {u1, u2, . . . , un} so that for every 1 ≤ i ≤ n, ui

is adjacent to all vertices in BG(vi, r) = {x ∈ V (G) | distG(vi, x) ≤ r}.
If tb(G) ≤ r then we claim that given a tree-decomposition (T,X ) of G with

breadth at most r, one obtains a star-decomposition of G′
r by adding the clique

U in every bag in X . Indeed, for every bag Xt ∈ X , by the hypothesis there
is vi ∈ V (G) such that maxx∈Xt

distG(vi, x) ≤ r, hence Xt ∪ U ⊆ NG′
r
[ui].

Conversely, if tb(G′
r) ≤ 1 then we claim that given a star-decomposition (T ′,X ′)

of G′
r, one obtains a tree-decomposition of G with breadth at most r by removing

every vertex of the clique U from every bag in X ′. Indeed, for every bag X ′
t ∈

X ′, by the hypothesis there is y ∈ X ′
t such that X ′

t ⊆ NG′
r
[y]. Furthermore,

y ∈ {ui, vi} for some 1 ≤ i ≤ n, and so, since NG′
r
[vi] ⊆ NG′

r
[ui] by construction,

X ′
t\U ⊆ NG′

r
(ui)\U = {x ∈ V (G) | distG(vi, x) ≤ r}. �

Lemma 4. For every graph G, for every positive integer r, there exists a graph
G′ computable in polynomial time such that tb(G) ≤ 1 if and only if tb(G′) ≤ r.

Proof. For every {u, v} ∈ E(G), let F r
uv be obtained from Fuv in Fig. 1(a) by

adding an edge {suv, tuv} then subdividing each edge r − 1 times. The graph G′

is obtained from G by substituting each edge {u, v} ∈ E(G) with a distinct copy
of F r

uv then identifying u, v with suv, tuv.
If tb(G) ≤ 1 then let us modify a star-decomposition (T,X ) of G in a tree-

decomposition (T ′,X ′) of G′ of breadth at most r. Clearly, every bag in X has
radius at most r in G′. Furthermore, let (Tuv,X uv) be the star-decomposition
of Fuv in Fig. 1(a), with three leaf-bags and one central bag. It can be modified
in a tree-decomposition of F r

uv by (i) adding in each bag containing both end-
vertices of an edge in Fuv the r−1 vertices in F r

uv that result from its subdivision,
and (ii) adding a new leaf-bag with {u, v} and the r−1 vertices that result from
its subdivision. Finally, let (T ′,X ′) be obtained from (T,X ) by adding an edge
between some bag in Tu ∩Tv and the central bag of Tuv for every {u, v} ∈ E(G).
Since (T ′,X ′) has breadth r, tb(G′) ≤ r.
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Conversely, if tb(G′) ≤ r then we claim that given a tree-decomposition
(T ′,X ′) of G′ of breadth at most r, one obtains a tree-decomposition of G of
breadth one by removing every vertex of V (G′)\V (G) from the bags in X ′. Before
proving the claim, observe that no vertex in V (G′)\V (G) can be at distance at
most r from three vertices in V (G), and in case it is at distance at most r from
two vertices u, v ∈ V (G) then {u, v} ∈ E(G). Therefore, in order to prove the
claim it suffices to prove that u = suv and v = tuv are in a common bag of X ′

for every {u, v} ∈ E(G). The latter can be proved by elaborating on the same
arguments as for Theorem 1. �

From Lemmas 3, 4 and Theorem 1, it follows that:

Theorem 2. For any fixed k ≥ 1, deciding whether a graph G has treebreadth
at most k is NP-complete.

To conclude this section, we consider pathlength and pathbreadth. Due to
lack of space, the proofs are postponed in [17].

Theorem 3. For any ε > 0, the pathlength (resp., the pathbreadth) cannot be
approximated within a factor 3

2 − ε (resp., 2 − ε) unless P = NP .

3 Graphs with Treebreadth One: Some Polynomial Cases

In this section, we investigate further the class of graphs with treebreadth one.
It strictly contains chordal graphs and dually chordal graphs, well-studied graph
classes in algorithmic graph theory [7]. We first show some useful lemmas that
somehow state that we can restrict our study on graphs without clique-separator.
Then, we show that the problem of recognizing graphs with treebreadth one can
be solved in polynomial time in the class of bipartite graphs and in the class of
planar graphs.

Let G = (V,E) be a connected graph. Recall that a set S ⊂ V is a separator
if G\S is disconnected. It is called a clique-separator if S induces a complete
graph. A full component for S is any connected component C of G\S such that
N(C) = S. If C is a full component for S then we call the induced subgraph
G[C ∪S] a block. Finally, S is a minimal separator if there exist at least two full
components for S.

Our objective is to prove that if a graph G has treebreadth one then so do
all its blocks. In fact, we will prove a slightly more general result:

Lemma 5. Let G = (V,E), S be a separator and W be the union of some
connected components of G\S. If tb(G) = 1 and W contains a full component
for S, then tb(G[W ∪ S]) = 1.

Proof. Let (T,X ) be a star-decomposition of G. We remove vertices in V \(W∪S)
from bags in X , that yields a tree-decomposition (T,X ′) of G[W ∪ S]. We will
prove that (T,X ′) has breadth one (but is not necessarily a star-decomposition).
Indeed, let X ′

t ∈ X ′. By construction, X ′
t ⊆ Xt with Xt ∈ X . Let v ∈ Xt satisfy
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Xt ⊆ NG[v]. If v ∈ X ′
t, then we are done. Else, since for all x /∈ S ∪ W,N(x) ∩

(S ∪ W ) ⊆ S (because S is a separator by the hypothesis), we must have that
Xt ⊆ S. Let A ⊆ W be a full component for S, that exists by the hypothesis, let
TA be induced by the bags intersecting A. Since TA and the subtrees Tx, x ∈ Xt

pairwise intersect — because for all x ∈ Xt, x ∈ S and so, x has a neighbour in A
—, then by the Helly property there is a bag in X containing Xt and intersecting
A. Furthermore, any u ∈ V dominating this bag must be either in S or in A, so,
in particular there is u ∈ A ∪ S such that Xt ⊆ N [u]. �

The converse of Lemma 5 does not hold in general (see Fig. 2), yet there are
interesting cases when it does.

Fig. 2. S = {u, v} separates G in two subgraphs of treebreadth 1. However, tb(G) = 2.

Lemma 6. Let G = (V,E) with a minimal clique-separator S and A be a full
component. Then, tb(G) = 1 if and only if tb(G[A∪S]) = 1 and tb(G[V \A]) = 1.

The proof of Lemma 6 is deferred to [17]. Recall that computing the clique-
minimal-decomposition of a graph G takes O(nm)-time, where m denotes the
number of edges [3]. By doing so, one replaces a graph G with the maximal
subgraphs of G that have no clique-separator, a.k.a. atoms. So, in the following
we will only consider graphs without a clique-separator, a.k.a., prime graphs.

3.1 Bipartite Graphs

Bipartite graphs with treebreadth one are an interesting subclass of their own
since they contain the convex bipartite graphs and the chordal bipartite graphs
(i.e., bipartite graphs with no induced cycle of length at least six). In this section,
we present a linear-time algorithm that decides whether a prime bipartite graph
has treebreadth one, and computes a corresponding decomposition if any. Since
the clique-decomposition of a given bipartite graph can be computed in linear
time, this proves combined with Lemma 6 that it can be decided in linear time
whether a bipartite graph has treebreadth one.

More precisely, we show that prime bipartite graphs with treebreadth one
coincide with tree-convex bipartite graphs, a generalization of convex bipar-
tite graphs [21]. A bipartite graph is called tree-convex if it admits a tree-
decomposition where the bags are the close neighbourhoods of any one side
of its bipartition. By definition, tree-convex graphs have treebreadth one. The
following lemma is a converse of this result.
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Lemma 7. Let G = (V0∪V1, E) be a prime bipartite graph with treebreadth one.
There is (T,X ) a star-decomposition of G such that either X = {N [v0] | v0 ∈
V0}, or X = {N [v1] | v1 ∈ V1}.
Proof. Let (T,X ) be a star-decomposition of G minimizing |X |. Suppose there
is some v0 ∈ V0, there is t ∈ V (T ) such that Xt ⊆ NG[v0] (the case when
there is some v1 ∈ V1, there is t ∈ V (T ) such that Xt ⊆ NG[v1] is symmetrical
to this one). We claim that for every t′ ∈ V (T ), there is v′

0 ∈ V0 such that
Xt′ ⊆ NG[v′

0]. By contradiction, let v0 ∈ V0, v1 ∈ V1, let t, t′ ∈ V (T ) be such that
Xt ⊆ NG[v0],Xt′ ⊆ NG[v1]. By connectivity of the tree T we may assume w.l.o.g.
that {t, t′} ∈ E(T ). Moreover, NG(v0) ∩ NG(v1) = ∅ because G is bipartite.
Therefore, Xt ∩ Xt′ ⊆ {v0, v1}, and in particular if Xt ∩ Xt′ = {v0, v1} then
v0, v1 are adjacent in G. However, by the properties of a tree-decomposition this
implies that Xt ∩ Xt′ is a clique-separator (either an edge or a single vertex),
thus contradicting the fact that G is prime.

Let v0 ∈ V0 be arbitrary. We claim that there is a unique bag Xt, t ∈ V (T ),
containing v0. Indeed, any such bag Xt must satisfy Xt ⊆ NG[v0], hence the
subtree Tv0 can be contracted into a single bag

⋃
t∈Tv0

Xt without violating the
property for the tree-decomposition to be a star-decomposition. As a result, the
uniqueness of the bag Xt follows from the minimality of |X |. Since Xt is unique
and Xt ⊆ NG[v0], therefore Xt = NG[v0] and so, X = {N [v0] | v0 ∈ V0}. �

As shown in [21], tree-convex graph recognition can be reduced to hyper-
tree recognition, that can be done in linear time [7]. Altogether, we obtain the
following characterization of bipartite graphs with treebreadth one.

Corollary 1. A bipartite graph has treebreadth one if and only if every of its
atoms is tree-convex, which can be decided in linear time.

3.2 Planar Graphs

In this section, we sketch a quadratic algorithm to recognize prime planar graphs
of treebreadth one. Combined with Lemma 6, this shows that planar graphs of
treebreadth one can be recognized in quadratic time. Our algorithm also allows
to compute a corresponding decomposition in cubic time. Since the full analysis
is lengthy, all proofs in this section are deferred to [17].

Our work in this section brings more insights on tree-decompositions with
small width for planar graphs. Indeed, we prove the following.

Lemma 8. For every planar graph G, tb(G) ≤ 1 implies tw(G) ≤ 4.

The algorithm is recursive. Given G = (V,E), we search for a specific ver-
tex, called a leaf-vertex, whose closed neighborhood must be a leaf-bag of a
star-decomposition if tb(G) = 1. Basing on Lemma 5 and a delicate case-by-
case analysis of the structure of star-decompositions, we define three types of
leaf-vertices (e.g., see Fig. 3). A vertex v is a leaf-vertex if one of the following
conditions hold.
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Type 1. N(v) induces an avbv-path for some av, bv ∈ V \{v}, denoted by Πv,
of length at least 3 and there is dv ∈ V \{v} such that N(v) ⊆ N(dv).

Type 2. N(v) induces a path, denoted by Πv = (av, bv, cv), of length 2.
Type 3. N(v) consists of two non adjacent vertices av and cv, and there is

bv ∈ (N(av) ∩ N(cv))\{v}.

Fig. 3. The three kinds of leaf-vertices.

Ideally, we would like to remove v from G and apply recursively our algorithm
on G\v. However, in some case tb(G\v) = 1 while tb(G) > 1 (see Fig. 2). So,
we must also add edges between vertices that must be in a common bag of a
star-decomposition of G if tb(G) = 11. The choice of the edges to add is made
more difficult by the need for the resulting graph G′ to stay prime and planar in
order to apply our algorithm recursively on G′. To show that tb(G) = 1 if and
only if the resulting graph has treebreadth one also requires tedious lemmas.

Theorem 4. Recognizing planar graphs of treebreadth one can be done in
quadratic time. Moreover, a star-decomposition (if any) can be computed in cubic
time.

Sketch proof. Let G = (V,E) be a prime planar graph. We can assume |V | ≥ 8
and G has no star-decomposition with two bags (both cases are treated sep-
arately by exhaustive search). In such case, tb(G) = 1 implies there exists a
leaf-vertex v, that can be found in linear time.

If G\v is prime then we prove tb(G) = 1 if and only if tb(G\v) = 1, except
in the special case when v is of Type 2 or 3 and |(N(av) ∩ N(cv))\v| ≤ 2.
Furthermore, we prove for the latter case that av, cv must have two common
neighbours uv, bv in G\v (else, tb(G) > 1) and G′, obtained from G by adding
the edges {v, uv}, {v, bv}, is planar and prime, and it satisfies tb(G) = 1 if and
only if tb(G′) = 1. So, we call the algorithm either on G′ or on G\v2.

The most difficult situation is when G\v contains a clique-separator. This
case is reduced to the one when v is of Type 2, there is an edge-separator (bv, uv)
of G\v, and {av, uv} /∈ E. Then, we aim at applying the algorithm recursively
1 We aim at turning the separator N(v) into a clique. However, we cannot do that

directly since it would break the distances in G, and the graph needs to stay planar.
2 When v is of Type 1 we call the algorithm on G′, obtained from G\v by contracting

the internal nodes of Πv to an edge, in order to obtain a quadratic complexity.
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on G′, obtained from G\v by adding the edge {av, cv}. However, tb(G′) = 1 does
not imply tb(G) = 1 in general. We prove it is the case if uv, cv are nonadjacent
or N(uv) ∩ N(av) does not disconnect av from uv in G\(cv, v).

Else, we compute a plane embedding of G, and a vertex x ∈ N(av) ∩ N(uv)
such that: v, cv and all other common neighbours of av, uv are in a same region
R, bounded by (av, x, uv, bv). We wish to create an avuv-path in V \R by adding
edges in N(bv) ∩ N(x). In doing so, we go back to the previous subcase as now
N(av) ∩ N(uv) is no more a avuv-separator of G\(cv, v). However, we have to
ensure that it is possible to add such a path in V \R, and that its addition
does not affect the value of treebreadth for the graph. We prove it is the case
unless V ⊆ R (in which case we apply the algorithm recursively on G′, obtained
from G by identifying bv with x), or if there is a leaf-vertex l ∈ N(bv) ∩ N(x).
Furthermore, in the latter case we replace v with l in the above analysis, i.e., l
becomes the actual leaf-vertex to be considered.

Additional properties are needed in order to prove the algorithm terminates,
and that it does so in a linear number of steps. �

Conclusion. We conclude this paper by some questions that remain open. First,
it would be interesting to know the complexity of deciding the treebreadth of
planar graphs. Second, all the reductions presented in this paper rely on con-
structions containing large clique or clique-minor. We left open the problem of
recognizing graphs with tree-breadth one in the class of graphs with bounded
treewidth or bounded clique-number. More generally, is the problem of comput-
ing the treebreadth Fixed-Parameter Tractable when it is parameterized by the
treewidth or by the size of a largest clique-minor?
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Abstract. In the online graph coloring problem, vertices from a graph
G, known in advance, arrive in an online fashion and an algorithm must
immediately assign a color to each incoming vertex v so that the revealed
graph is properly colored. The exact location of v in the graph G is not
known to the algorithm, since it sees only previously colored neighbors
of v. The online chromatic number of G is the smallest number of colors
such that some online algorithm is able to properly color G for any
incoming order. We prove that computing the online chromatic number
of a graph is PSPACE-complete.

1 Introduction

In the classical graph coloring problem we assign a color to each vertex of a given
graph such that the graph is properly colored, i.e., no two adjacent vertices have
the same color. The chromatic number χ of a graph G is the smallest k such
that G can be colored with k distinct colors. Deciding whether the chromatic
number of a graph is at most k is well known to be NP-complete, even in the
case with three colors.

The online variant of graph coloring can be defined as follows: The vertices of
G arrive one by one, and an online algorithm must color vertices as they arrive so
that the revealed graph is properly colored at all times. When a vertex arrives,
the algorithm sees edges to previously colored vertices. The online algorithm may
use additional knowledge of the whole graph G; more precisely, a copy of G is sent
to the algorithm at the start of the input. However, the exact correspondence
between the incoming vertices and the vertices of the copy of G is not known to
the algorithm. This problem is called Online Graph Coloring.

In this paper we focus on a graph parameter called the online chromatic num-
ber χO(G) of a graph G. This parameter is analogous to the standard chromatic
number of a graph: It denotes the smallest number k such that there exists a
deterministic online algorithm which is able to color the specified graph G using
k colors.

The online chromatic number has been studied since 1990 [3]. One of the
main open problems in the area is the computational complexity of deciding
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whether χO(G) ≤ k for a specified simple graph G, given G and k on input;
see e.g. Kudahl [10]. We denote this decision problem as Online Chromatic

Number. In this paper, we fully resolve this problem:

Theorem 1. The decision problem Online Chromatic Number is PSPACE-
complete.

As is usual in the online computation model, we can view Online Graph

Coloring as a game between two players, which we call Painter (representing
the online algorithm) and Drawer (often called Adversary in the online algo-
rithm literature). In each round Drawer chooses an uncolored vertex v from
G and sends it to Painter without telling him to which vertex of G it corre-
sponds, only revealing the edges to the previously sent vertices. Then Painter

must properly color (“paint”) v, i.e., Painter cannot use a color of a neighbor
of v. We stress that in this paper Painter is restricted to be deterministic. The
game continues with the next round until all vertices of G are colored.

Deciding the outcome of many two-player games is PSPACE-complete;
among those are Amazons, Checkers and Hex, to name a few. However, in most
of these games both players have roughly the same power. This does not hold
for Online Graph Coloring which is highly asymmetric, since Drawer has
perfect information (knows which vertices are sent and how they are colored),
but Painter does not. Painter may only guess to which part of the graph
does the colored subgraph really belong. This is the main difficulty in proving
PSPACE-hardness.

Examples. Consider a path P4 on four vertices. Initially, Drawer sends two
nonadjacent vertices. If Painter assigns different colors to them, then these are
the first and the third vertex of P4, thus the second vertex must get a third
color; otherwise they obtained the same color a and they are the endpoints of
P4, therefore the second and the third vertex get different colors which are not
equal to a. In both cases, there are three colors on P4 and thus χO(P4) = 3,
while χ(P4) = 2.

Note also that we may think of Drawer deciding where an incoming vertex
belongs at some time after it is colored provided that the choice still allows for at
least one isomorphism to the original G. This is possible only for a deterministic
Painter.

A particularly interesting class of graphs in terms of χO is the class of bino-
mial trees. A binomial tree of order k is defined inductively: The binomial tree
of order 0 is a single vertex (the root) and the binomial tree of order k is created
by taking two disjoint copies of binomial trees of order k − 1, adding an edge
between their roots and choosing one of their roots as the root for the resulting
tree. Thus P4 is a binomial tree of order 2 with root on the second vertex of P4.

It is not hard to generalize the example of P4 and show that the online
chromatic number of the binomial tree of order k is k + 1 [3]. This shows that
the ratio between χO and χ may be arbitrarily large even for the class of trees.

History and Related Work. The online problem Online Graph Color-

ing has been known since 1976 [1], originally studied in the variant where the
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algorithm has no extra information at the start of the input. Bean [1] showed
that no online algorithm that is compared to an offline algorithm can perform
well under this metric. The notion of online chromatic number was first defined
in 1990 by [3].

For the online problem, Lovász, Saks and Trotter [11] show an algorithm
with a competitive ratio O(n/ log∗ n), where the competitive ratio is a ratio of
the number of colors used by the online algorithm to the (standard) chromatic
number. This was later improved to O(n log log log n/ log log n) by Kierstad [8]
using a deterministic algorithm. There is a better O(n/ log n)-competitive ran-
domized algorithm against an oblivious adversary by Halldórsson [5]. A lower
bound on the competitive ratio of Ω(n/ log2 n) was shown by Halldórsson and
Szegedy [7].

Our variant of Online Graph Coloring, where the algorithm receives a
copy of the graph at the start, was suggested by Halldórsson [6], where it is
shown that the lower bound Ω(n/ log2 n) also holds in this model. (Note that
the previously mentioned algorithmic results are valid for this model also.)

Kudahl [9] recently studied Online Chromatic Number as a complexity
problem. The paper shows that the problem is coNP-hard and lies in PSPACE.
Later [10] he proved that if some part of the graph is precolored, i.e., some
vertices are assigned some colors prior to the coloring game between Drawer

and Painter and Drawer also reveals edges to the precolored vertices for each
incoming vertex, then deciding whether χO(G) ≤ k is PSPACE-complete. We
call this decision problem Online Chromatic Number with Precoloring.
The paper [10] conjectures that Online Chromatic Number (with no pre-
colored part) is PSPACE-complete too. Interestingly, it is possible to decide
χO(G) ≤ 3 in polynomial time [4].

Keep in mind that while Online Graph Coloring is an online prob-
lem, Online Chromatic Number is an (offline) decision problem of checking
whether χO(G) ≤ k.

Proof Outline. It is not hard to see that Online Chromatic Number belongs
to PSPACE: The online coloring is represented by a game tree which is evaluated
using the Minimax algorithm. This can be done in polynomial space, since the
number of rounds in the game is bounded by n, i.e., the number of vertices, and
possible moves of each player can be enumerated in polynomial space: Painter
has at most n possible moves, because it either uses a color already used for a
vertex, or it chooses a new color, and Drawer has at most 2s moves where s is
the number of colored vertices, since it chooses which colored vertices shall be
adjacent to the incoming vertex. Drawer must ensure that sent vertices form
an induced subgraph of G, but this can be checked in polynomial space.

Inspired by [10], we prove the PSPACE-hardness of Online Chromatic

Number by a reduction to Q3DNF-SAT, i.e., the satisfiability of a fully quan-
tified formula in the 3-disjunctive normal form (3-DNF). An example of such a
formula is

∀x1∃x2∀x3∃x4... : (x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x4) ∨ . . .
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The similar problem of satisfiability of a fully quantified formula in the 3-
conjunctive normal form is well known to be PSPACE-complete. Since PSPACE
is closed under complement, Q3DNF-SAT is PSPACE-complete as well. Note
that by an easy polynomial reduction, we can assume that each 3-DNF clause
contains exactly three literals.

We show the hardness in several iterative steps. First, in Sect. 2, we present a
new, simplified proof of the PSPACE-hardness of Online Chromatic Number

with Precoloring in which the sizes of both precolored and non-precolored
parts of our construction are linear in the size of the formula.

Then, in Sect. 3, we strengthen the result by reducing the size of the precol-
ored part to be logarithmic in the size of the formula. This is achieved by adding
linearly many vertices to our construction.

Finally, in Sect. 4, we show how to remove one precolored vertex and replace
it by a non-precolored part, while keeping the PSPACE-hardness proof valid.
The cost for removing one vertex is that the size of the graph is multiplied by
a constant, but since we apply it only logarithmically many times, we obtain a
graph of polynomial size and with no precolored vertex. This will complete the
proof of Theorem1.

We remark that removing the last precolored vertex is the most difficult
part of proving PSPACE-hardness of Online Chromatic Number. Still, our
technique for removing a precolored vertex can be used for any graph satisfying
a few assumptions.

We omit some proofs and some technical aspects of our construction due to
space restrictions. A preprint version [2] with full details can be found at https://
arxiv.org/abs/1604.05940.

In our analysis, Painter often uses the natural greedy algorithm FirstFit,
which is ubiquitous in the literature (see [6,11]):

Definition 1. The online algorithm FirstFit colors an incoming vertex u
using the smallest color not present among colored vertices adjacent to u.

2 Construction with a Large Precolored Part

Our first construction will reduce the PSPACE-complete problem Q3DNF-SAT

to Online Coloring with Precoloring with a large precolored part. Given
a fully quantified formula Q in the 3-disjunctive normal form, we will create a
graph G1 that will simulate this formula. We assume that the formula contains
n variables xi, (1 ≤ i ≤ n) and m clauses Ca, (1 ≤ a ≤ m), and that variables
are indexed in the same order as they are quantified.

Our main resource will be a large precolored clique Kcol on k vertices and
naturally using k colors; the number k will be specified later. Using such a
precolored clique, we can restrict the allowed colors on a given uncolored vertex
v by connecting it with the appropriate vertices in Kcol, i.e., we connect v to all
vertices in Kcol which do not have a color allowed for v.

For simplicity we use the precoloring in the strong sense, i.e., Painter is able
to recognize which vertex in Kcol is which. We use this to easily recognize colors.

https://arxiv.org/abs/1604.05940
https://arxiv.org/abs/1604.05940


20 M. Böhm and P. Veselý

However, it is straightforward to avoid the strong precoloring by modifying the
precolored part; for example by creating i independent and identical copies of
the i-th vertex in Kcol, each having the same color and the same edges to other
vertices in Kcol and the rest of the graph. With such a modification, Painter
would able to recognize each color by the number of its vertices in Kcol.

Each vertex in Kcol thus corresponds to a color. Colors used by Painter are
naturally denoted by numbers 1, 2, 3, . . . , k, but we shall also assign meaningful
names to them.

We want to construct a graph G1 that has the online chromatic number k
if and only if the quantified 3-DNF formula can be satisfied. See Fig. 1 for an
example of G1 and an overview of our construction. We use the following gadgets
for variables and clauses:

1. For a variable xi which is quantified universally, we will create a gadget
consisting of universal vertices xi,t and xi,f , connected by an edge. The vertex
xi,t represents the positive literal xi, while xi,f represents the negative literal
¬xi. Both vertices have exactly two allowed colors: seti and unseti. If xi,t is
assigned the color seti, it corresponds to setting the variable xi to 1, and vice
versa.
Note that if Drawer presents a vertex xj,t to Painter, Painter is able to
recognize that it is a vertex corresponding to the variable xj , but it is not
able to recognize whether it is the vertex xj,t or xj,f .

2. For a variable xj which is quantified existentially, we will create a gadget
consisting of three existential vertices xj,t (for the positive literal xj), xj,f

(for the literal ¬xj) and xj,h (the helper vertex), connected as a triangle.
Coloring of the first two variables also corresponds to setting the variable
xj to true or false, but in a different way: xj,t has allowed colors setj,t and
unsetj , while xj,f has allowed colors setj,f and unsetj . We want to avoid both
xj,t and xj,f to have the color of type set, and so the “helper” vertex xj,h can
be colored only by setj,t or setj,f .
Note that the color choice for the vertices of xj means that if Painter is
presented any vertex of this variable, Painter can recognize it and decide
whether to set xj to 1 (and color accordingly) or to 0.
We call existential and universal vertices together variable vertices.

3. For each clause Ca, we will add four new vertices. First, we create a vertex la,i
for each literal in the clause, which is connected to one of the vertices xi,t and
xi,f corresponding to the sign of the literal. For example if Ca = (xi∧¬xj∧xk),
then la,i is connected to xi,t, la,j is connected to xj,f and la,k to xk,t. The
allowed colors on a vertex la,i are {fa,unseti}.
Finally, we add a fourth vertex da connected to the three vertices la,i, la,j , la,k.
This vertex can be colored only using the color fa or the color falsea. The
color falsea is used to signal that this particular clause is evaluated to be 0. If
the color fa is used for the vertex da, this means that the clause is evaluated
to 1, because fa is not present on any of la,i, la,j , la,k, thus they have colors
of type unseti and their neighbors corresponding to literals have colors of
type set.
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4. The last vertex we add to the construction will be F , a final vertex. The
vertex F is connected to all the vertices da corresponding to the clauses. The
allowed colors of the vertex F are false1, false2, false3, ..., falsem. This final
vertex corresponds to the final evaluation of the formula. If all clauses are
evaluated to 0, the vertex F has no available color left and must use a new
color.

We have listed all the vertices and colors in our graph G1 and the functioning
of our gadgets, but we will need slightly more edges. The reasoning for the edges
is as follows: If Drawer presents any vertex of the type la,i, da or F before
presenting the variable vertices, or in the case when the variable vertices are
presented out of the quantifier order, we want to give an advantage to Painter

so it can finalize the coloring.
This will be achieved by allowing Painter to treat all remaining universal

vertices as existential vertices, i.e., Painter can recognize which of the two
universal vertices xj,t, xj,f corresponds to setting xj to 1.

To be precise, we add the following edges to G1:

– Every existential vertex xj,t, xj,f , xj,h is connected to all previous universal
vertices xi,t, that is to all such xi,t for which i < j.

– Every universal vertex xj,t, xj,f is connected to all previous universal vertices
xi,t such that i < j.

– Every vertex of type la,i is connected to all the universal vertices xi′t for i′ �= i.
Note that la,i is connected either to xi,t, or to xi,f ; we do not add an edge to
such vertices.

– Every vertex of type da is connected to all universal vertices xi,t for all i.
– The vertex F is connected to all the universal vertices xi,t for all i.

x1,t x1,f xix3,t x3,fx2,t x2,f

∀x1∃x2∀x3 : (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

l1,1 l1,2 l1,3 l2,1 l2,2 l2,3

x2,h

d1 d2

F

Fig. 1. The construction for a sample formula. The thick black edges are the normal
edges of the construction, and the dashed orange edges are the additional edges that
guarantee precedence of vertices. The lists of allowed colors of each vertex are not listed
in the figure. (Color figure online)
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We call all non-precolored vertices the gadgets for variables and clauses.
The number of colors allowed for Painter (the same as the size of Kcol)

is k = 2m + 2n∀ + 3n∃ where m is the number of clauses, n∀ the number of
universally quantified variables and n∃ the number of existentially quantified
variables.

The analysis of our construction is fairly straightforward (see [2] for details).

3 Construction with a Precolored Part
of Logarithmic Size

We now make a step to the general case without precoloring by reducing the
size of the precolored part so that it has only logarithmic size. Our construc-
tion is based on the one with a large precolored part; namely, all the vertices
xi,t, xi,f , xj,t, xj,f , xj,h, la,i, da, F (the gadgets for variables and clauses) and the
whole color clique Kcol will be connected the same way. Let G1 denote the
gadgets for variables and clauses and Kcol.

Since Kcol is now not precolored and Drawer may send it after the gadgets,
we help Painter by a structure for recognizing vertices in G1 or for saving
colors.

We remark that there is also a simpler construction with a logarithmic num-
ber of precolored vertices. If we just add precolored vertices to recognize vertices
in G1, the following proof would work and be easier. However, when we replace
a precolored vertex v by some non-precolored graph in Sect. 4, we will use some
conditions on the graph G2 that this construction would not satisfy.

3.1 Nodes

Our structure will consist of many small nodes, all of them have the same internal
structure, only their adjacencies with other vertices vary.

p3

p2 p1

Fig. 2. Node

Each node consists of three vertices and a single edge; vertices
are denoted by p1, p2, p3 and the edge leads between p2 and p3.
We call the vertices p1 and p2 the lower partite set of the node,
p3 form the upper partite set. See Fig. 2 for an illustration of a
node. Clearly, the online chromatic number of a node is two. The
intuition behind the nodes is as follows:

– If Drawer presents vertices of a node in the correct way, Painter needs to
use two colors in the lower partite set of every node.

– No color can be used in two different nodes.
– Each vertex v ∈ G1 (in the gadgets and in Kcol) has its own associated node

A. If the vertex p3 from A does not arrive before v is sent, Painter can color
p3 and v with the same color, thus save a color. Otherwise, Painter can use
the node to recognize v.

– Universal vertices xi,t, xi,f for each universally quantified variable xi should be
distinguishable only by the same vertices as in the previous section. Therefore
they are both associated with the same two nodes.
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Let N be the number of vertices in G1. We create N nodes, denoted by
A1, . . . , AN , one for each vertex in G1. For any two distinct nodes Ai and Aj

(i �= j), there is an edge between each vertex in Ai and each vertex in Aj .
Therefore, no color can be used in two nodes.

We have noted above that each node is associated with a vertex; we now
make the connection precise. Let v1, . . . , vN be the vertices in G1 (in an arbitrary
order). Then we say that Ai identifies the vertex vi. Moreover, if vi is a vertex
xk,t or xk,f for a universally quantified variable xk and vj is the other vertex,
then Aj also identifies vi and Ai also identifies vj . Thus each node identifies one
or two vertices and each vertex is identified by one or two nodes.

Edges between a vertex v in the original construction G1 and a node depend
on whether the node identifies v, or not. For a vertex v ∈ G1 and for a node A,
if A identifies v, we connect only the whole lower partite set of A to v, i.e., we
add two edges from v to both p1 and p2 of A. Otherwise, we add three edges –
one between v and every vertex in A.

3.2 Precolored Vertices

The only precolored part P of the graph is intended for distinguishing nodes.
Since there are N nodes in total, we have p = 	log2 N
 precolored vertices
z1, z2, . . . zp with no edges among them. Precolored vertices have a color that
may be used later for coloring G1 (the gadgets and Kcol). For simplicity, we
again use the precoloring in the strong sense, i.e., Painter is able to recognize
which precolored vertex is which.

We connect all vertices in the node Ai to zj if the j-th bit in the binary
notation of i is 1; otherwise zj is not adjacent to any vertex in Ai.

Clearly, the node to which an incoming vertex belongs can be recognized
by its adjacency to the precolored vertices. Note that a vertex from nodes is
connected to at least one precolored vertex and there is no edge between G1 and
precolored vertices.

So far, we have introduced all vertices and edges in our construction of the
graph G2. We omit the rest of the analysis due to space restrictions; see [2] for
details.

4 Removing Precoloring

In this section we show how to replace one precolored vertex by a large nonpre-
colored graph whose size is a constant factor of the size of the original graph,
while keeping Painter’s winning strategy in the case of a satisfiable formula.
Drawer’s winning strategy in the other case is of course preserved also and
easier to see. We prove the following lemma which holds for all graphs with
precolored vertices satisfying a few assumptions.

Lemma 1. Let G be a graph with precolored subgraph Gp created from a fully
quantified formula φ, and let vp ∈ Gp be a precolored vertex of G.
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Let D be the induced subgraph with all nonprecolored vertices that are not
connected to vp and let E be the induced subgraph with all nonprecolored vertices
that are connected to vp.

Let k be an integer. Assume that the following holds:

1. χO(G) ≤ k if and only if φ is satisfiable,
2. in the winning strategy of Painter in the case if φ is satisfiable, Painter

can color E using FirstFit before two nonadjacent vertices from D arrive.
Moreover, in this case if FirstFit assigns the same color to a vertex in D
and to a vertex in E before two nonadjacent vertices from D arrive, Painter
can still color G using k colors.

Then there exists an integer k′ and a graph G′ with the following properties:

– G′ has only |V (Gp)| − 1 precolored vertices, and |V (G′)| ≤ 25|V (G)|,
– G′ can be constructed from G in polynomial time,
– it holds that χO(G′) ≤ k′ if and only if φ is satisfiable.

Theorem 1 follows by an iterative application of Lemma1; the details of this
application can be found in [2].

Construction of G′. Let N be the total number of vertices in D and E and
let S = 8N . Our graph G′ consists of precolored part G′

p := Gp\{vp}, graphs D
and E and three huge cliques A,B and C of size S; cliques A,B and C together
form a supernode. We keep the edges inside and between D and E and the edges
between G′

p and D ∪ E as they are in G.
We add a complete bipartite graph between cliques B and C, i.e., B ∪ C

forms a clique of size 2S. No vertex in A is connected to B or C. In other words,
the supernode is created from a node by replacing each vertex by a clique of size
S and the only edge in the node by a complete bipartite graph.

C

B A

D E

Fig. 3. Our construction
G′. (The remaining pre-
colored vertices are not
shown.)

There are no edges between the supernode (cliques
A and B∪C) and a precolored vertex in G′

p. It remains
to add edges between the supernode and D ∪ E. There
is an edge between each vertex in E and each vertex
in the supernode, while every vertex in D is connected
only to the whole A and B, but not to any vertex in
C. The fact that D and C are not adjacent at all is
essential in our analysis. Our construction is depicted
in Fig. 3.

Proof (Proof of Lemma 1). Let G′ be the graph defined as above. Note that the
number of vertices in G′ is at most 25|V (G)|, G′ can be constructed from G in
polynomial time and G′ has only |V (Gp)| − 1 precolored vertices. Therefore, it
remains to prove χO(G′) ≤ k′ if and only if φ is satisfiable for some k′. We set
k′ to k + 2S, since there will be at most 2S colors used in the supernode.

Assuming that φ is not satisfiable, it is straightforward to design a winning
strategy for Drawer on G′; we only need to adapt the approach of Sects. 2 and
3. See [2] for a full description of the strategy.
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In the rest of this section we focus on the opposite direction: assuming that
φ is satisfiable, we show that Painter can color G′ with k′ colors regardless
of the strategy of Drawer. In the following, when we refer to the colored part
of G′, we do not take precolored vertices into account. Painter actually does
not look at precolored vertices unless it uses its winning strategy for coloring G,
which exists by the assumptions.

Intuition. At the beginning Painter has too little data to infer anything about
the vertices. Therefore, Painter shall wait for two nonadjacent vertices from
D and for two large cliques (larger than S/2) with a small intersection. Before
such vertices arrive, it will color greedily.

Note that the greedy coloring algorithm eventually stops before everything
is colored. Having two large cliques, one mostly from A and the other mostly
from B ∪C, and two nonadjacent vertices from D, Painter is able to recognize
where an incoming vertex belongs. Therefore, Painter can use the supernode
like a precolored vertex and colors the remaining vertices from D and E by its
original winning strategy on G.

This approach may fail if a part of D is already colored by Painter’s appli-
cation of the greedy strategy. To remedy this, we prove that colors used on D
so far are also used in C or E, or will be used on C later.

The other obstacle is that Painter might not be able to distinguish between
one clique from D and vertices in A if nothing from B arrives. Nevertheless, each
vertex u in such a “hidden” clique is connected to all other colored vertices in D
and to the whole colored part of E, otherwise it would be distinguishable from
vertices in A. Hence, it does not matter on the color of u.

In summation, the sheer size of the supernode should allow Painter to be
able to use it as if it would be precolored. Still, we need to allow for some small
margin of error. This leads us to the following definition:

Definition 2. Let N be the number of vertices of D ∪ E as in the construction
of G′. For subgraphs X,Y ⊆ G′, we say that X is practically a subgraph of Y if
|V (X)\V (Y )| ≤ N , and X is practically disjoint with Y if |V (X) ∩ V (Y )| ≤ N .

We also say that a vertex v is practically universal to a subgraph X ⊆ G′ if
it is adjacent to all vertices in X except at most N of them. Similarly, we say
a vertex v is practically independent of a subgraph X ⊆ G′ if v has at most N
neighbors in X.

At first, the player Painter uses the following algorithm for coloring incom-
ing vertices, which may stop when it detects two useful vertices d1 and d2:

Algorithm WaitForD: For an incoming vertex u sent by Drawer:

1. Let G′
A be the revealed part of G′ (i.e., colored vertices and u, but not precol-

ored vertices)
2. Find a maximum clique in G′

A and denote it as K1.
3. Find a maximum clique in G′

A practically disjoint with K1 and denote it as K2.
4. If |K2| ≥ S/2 and there are two nonadjacent vertices d1 and d2 in G′

A which are
both not practically universal to K1 or both not practically universal to K2:

5. Stop the algorithm.
6. Otherwise, color u using FirstFit.
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While the algorithm may seem to use a huge amount of computation for one step,
we should realize that we are not concerned with time complexity when designing
the strategy for Painter. In fact, even a non-constructive proof of existence of
a winning strategy would be enough to imply existence of a PSPACE algorithm
for finding it – we have observed already in Sect. 1 that Online Chromatic

Number lies in PSPACE.
Let v be the incoming vertex u when WaitForD stops; note that v is not

colored by the algorithm and v can be from any part of G′.
One of the cliques K1 and K2 is practically a subgraph of B ∪ C and we

denote this clique by KBC . The other clique must be practically a subgraph of
A and we denote it by KA. (Keep in mind that both cliques may contain up to N
vertices from D ∪ E.) We remark that some vertices from C must have arrived,
as A and B alone are indistinguishable by Step 4 of WaitForD . By the same
argument, the player Painter knows whether K1 = KA or K1 = KBC .

Let d1 and d2 be the nonadjacent vertices that caused the algorithm to stop.
We observe that d1, d2 ∈ D by eliminating all other possibilities:

– Neither of d1 and d2 can be from E, since any vertex of E is practically
universal to both cliques.

– Both d1 and d2 cannot be from B ∪ C or both from A, as they would be
adjacent.

– If d1 is in B ∪ C and d2 in A, then we have a contradiction with the fact that
d1 and d2 are not practically universal to the same clique.

– If d1 ∈ D and d2 would be from A or B, then d1 and d2 are adjacent.
– Finally, if d1 ∈ D and d2 ∈ C, then the clique to which they are not practically

universal cannot be the same for both, since d1 is universal to the whole A
and d2 to the whole B ∪ C.

Having cliques KA and KBC and vertices d1, d2 ∈ D, Painter uses the
following rules to recognize where an incoming or a colored vertex u belongs:

– If u is practically universal to both KBC and KA, then u ∈ E.
– If u is practically universal to KBC and practically independent of KA and u

is adjacent to d1, then u ∈ B.
– If u is practically universal to KBC and practically independent of KA, but

there is no edge between d1 and u, then u ∈ C.
– If u is not practically universal to KBC , but it is practically universal to KA,

then u ∈ A or u ∈ D.
• Among such vertices, if there is a vertex not adjacent to u or u is not

adjacent to a vertex in E or u is adjacent to a vertex in B, then u ∈ D;
we say that such u is surely in D.

• Otherwise, Painter cannot yet recognize whether u ∈ A or u ∈ D.

The reader should take a moment to verify that indeed, the set of rules covers
all possible cases for u.

Let Ã, B̃, C̃, D̃, Ẽ be the colored parts of G′ when WaitForD stops. We
observe that in the last case of the recognition the vertices from D̃ which are
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indistinguishable from A form a clique; we denote it by KD. Note that all vertices
in KD are connected to all vertices surely from D that arrived and KD contains
all vertices in D̃ that are not surely in D. We stress that Painter does not know
KD or even its size.

Intuition for the Next Step. Since Painter can now recognize the parts of
the construction (with an exception of KD), we may basically use the winning
strategy for Painter on G and FirstFit on the rest. More precisely, Painter
creates a virtual copy of G, adds vertices into it and simulates the winning
strategy on this virtual graph.

Our main problem is that some part of D (namely D̃) is already colored. We
shall prove that if D̃ is not a clique, Painter can ignore colors used in D̃ (but
not the colors that it will use on D), as they are already present in C or E or
they may be used later in C. If D̃ is a clique, it may be the case that C and A
arrived fully and have the same colors, thus Painter cannot ignore colors on D̃.

Another obstacle in the simulation is KD, the hidden part of D. To overcome
this, Painter tries to detect vertices in KD and reclassify them as surely in D.
Painter shall keep that all vertices in KD are connected to all currently colored
vertices in D and E, therefore it does not matter much on colors in KD.

When Painter discovers a vertex from KD, it adds the vertex immediately
to its simulation of G. On the other hand, the size of KD increases when Drawer

sends a vertex from D which is indistinguishable from A.
The details of the algorithm used by Painter to finish the coloring of G′

using k′ colors are omitted due to space restrictions and can be found in [2]. ��
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Sgall for useful discussions on the problem.

References

1. Bean, D.R.: Effective coloration. J. Symbolic Logic 41(2), 469–480 (1976)
2. Böhm, M., Veselý, P.: Online chromatic number is PSPACE-complete, arXiv

preprint (2016). https://arxiv.org/abs/1604.05940
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Bounded Embeddings of Graphs in the Plane
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Abstract. A drawing in the plane (R2) of a graph G = (V, E) equipped
with a function γ : V → N is x-bounded if (i) x(u) < x(v) whenever
γ(u) < γ(v) and (ii) γ(u) ≤ γ(w) ≤ γ(v), where uv ∈ E and γ(u) ≤ γ(v),
whenever x(w) ∈ x(uv), where x(.) denotes the projection to the x-
axis. We prove a characterization of isotopy classes of embeddings of
connected graphs equipped with γ in the plane containing an x-bounded
embedding. Then we present an efficient algorithm, which relies on our
result, for testing the existence of an x-bounded embedding if the given
graph is a forest. This partially answers a question raised recently by
Angelini et al. and Chang et al., and proves that c-planarity testing of
flat clustered graphs with three clusters is tractable when the underlying
abstract graph is a forest.

Keywords: Graph planarity testing · Weakly simple embedding ·
c-planarity · PQ-tree · Algebraic crossing number

1 Introduction

Testing planarity of graphs with additional constraints is a popular theme in the
area of graph visualizations abundant with open problems mainly of algorithmic
nature. One of the most exciting open problems in the area is to determine
the complexity status, i.e., P, NP-hard, or IP, of deciding for a pair of (planar)
graphs G1 and G2, whose edge sets possibly intersect, if there exists a drawing
of G1 ∪ G2 in the plane, whose restriction to both graphs, G1 and G2, is an
embedding (edge-crossing free drawing). The problem, also known as SEFE-2,
was introduced in 2003 by Brass et al. in [8] and its prominence was realized by
Schaefer in [34], where polynomial time reductions of many problems in the area
to SEFE-2 is given, see Fig. 2 therein.

Among the problems reducible to SEFE-2 in a polynomial time is a noto-
riously difficult open problem raised under the name of c-planarity in 1995 by
Feng, Cohen and Eades [16,17]. The problem asks for a given planar graph G
equipped with a hierarchical structure on its vertex set, i.e., clusters, to decide
if a planar embedding G with the following property exists: the vertices in each

The research leading to these results has received funding from the People Pro-
gramme (Marie Curie Actions) of the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under REA grant agreement no [291734].
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cluster are drawn inside a disc so that the discs form a laminar set family cor-
responding to the given hierarchical structure and the embedding has the least
possible number of edge-crossings with the boundaries of the discs. Again we are
interested in the complexity status of the problem.

On the other hand, quite well understood from the algorithmic perspec-
tive are upward embeddings of directed acyclic planar graphs [4,22] and closely
related various layered drawings of leveled graphs [3,29]. In the setting of lay-
ered drawings we place the vertices on, e.g., parallel lines or concentric circles,
corresponding to the levels of G. Furthermore, we require that edges lie between
the levels of their endpoints and that edges are monotone in the sense that they
intersect any line (circle) parallel to (concentric with) the chosen lines (circles)
at most once. Also these easier planarity variants are reducible in a polynomial
time to SEFE-2 [34]. The layered drawings with parallel lines representing levels
are called level drawings. The x-bounded embeddings treated in this work gen-
eralize level planarity and constitute a special case of c-planarity as we will see
later.

The algorithmic problems in the area can be classified according to whether
the isotopy class of a desired embedding of the given graph is a part of the input,
where often prescribing an isotopy class makes the problem much easier. If the
isotopy class is a part of the input the problem often reduces to a flow/ matching
problem, see e.g., [1,2,4]. If not, the main building block of polynomial-time
algorithms is often a data structure that can efficiently store all isotopy classes
of admissible embeddings throughout the execution of the algorithm. The two
widely used data structures (and their variants) that serve this purpose are PQ-
tree [7,26] (or its un-rooted variant PC-tree) and SPQR-tree [14]. While the
two mentioned techniques, the one using a flow/matching and the one using a
tree-based data structure, are very popular in the field of graph drawing we are
not aware of any previous work combining them.

Let (G, γ) denote a pair of a planar graph G = (V,E) and a function γ :
V → N. Similarly as in [21], a drawing in the plane (R2) of G is x-bounded if (i)
x(u) < x(v) whenever γ(u) < γ(v) and (ii) γ(u) ≤ γ(w) ≤ γ(v), where uv ∈ E
and γ(u) ≤ γ(v), whenever x(w) ∈ x(uv), where x(.) denotes the projection to
the x-axis, see Fig. 1a for an illustration. By [19, Lemma 2] and the corresponding
variant of the weak Hanani–Tutte theorem [19, Theorem 1] we have the following.

Lemma 1. There exists an x-bounded embedding of (G, γ) in which the projec-
tion x(e) of every edge e ∈ E is injective, i.e., x-monotone, if there exists an
arbitrary x-bounded embedding of (G, γ).

Hence, the question of deciding whether an x-bounded embedding of (G, γ)
exists is equivalent to deciding the existence of a strip clustered embedding of
Angelini et al. [1]. For that reason we call an x-bounded drawing an x-bounded
embedding if it is edge-crossing free and x(e) is injective for every edge e ∈ E, see
Fig. 1b for an illustration. Moreover, by [33, Theorem 2] edges in such embedding
can be turned into straight-line segments. We prove a characterization of isotopy
classes of embeddings of G in the plane containing an x-bounded embedding,



Bounded Embeddings of Graphs in the Plane 33

Theorem 1. We remark that the characterization easily implies [19, Theorem 1],
see the proof in [18, Theorem 1.3]. In fact, the characterization was extracted
from its proof in [19].

γ(.) = 1 γ(.) = 2 γ(.) = 3
(a)

γ(.) = 1 γ(.) = 2 γ(.) = 3 γ(.) = 4
(b)

Fig. 1. (a) An x-bounded drawing of a pair (G, γ), each vertical strip contains vertices
whose γ value is the same; (b) An x-bounded embedding of a pair (G, γ), x-monotone
as required by our definition.

We use the characterization to prove the correctness of a PQ-tree based
algorithm to test if an x-bounded embedding of (G, γ), where G is a forest,
exists. Since the proof of our characterization proceeds by a reduction to the
matching problem in the spirit of a recent work of Angelini et al. [1], the proof
of our result combines the two techniques from the above.

So far, the most general partial results on SEFE-2 [6] and c-planarity [11,24]
are based on PQ/SPQR-tree style data structures, or Hanani–Tutte variants [34].
However, we suspect that a resolution of the tractability status of SEFE-2 or
c-planarity must use the topology of the plane in an “essential way”, e.g., by
using its topological invariants such as Euler characteristic that are usually not
exploited in approaches based on PQ-tree style data structures or in the proofs of
Hanani–Tutte variants. The proof of our characterization relies crucially besides,
Hall’s theorem [15], on Euler’s formula for planar graphs.

The characterization turns the problem of the existence of an x-bounded
embedding into a problem that can be solved efficiently by employing a PQ-
tree at least in the case of trees. 1 We suspect that with additional twists the
problem can be solved efficiently for any graph. Moreover, our recent work [20]
hints at the possibility that Theorem 1 could be generalized to the setting of
cyclic c-planarity or even c-planarity with pipes [13].

1.1 Results

Refer to Sect. 2 for the definitions. Suppose that we have (G, γ) as above, where G
is connected, and let E denote the isotopy class of an embedding of G in the plane.
Let us treat E as an embedded two-dimensional polytopal complex [35], and
let C = (E ,Z2) be the corresponding chain complex, i.e., in C two-dimensional
chains are generated by the inner faces of E , one-dimensional chains by the
1 By employing the technique of Bläsius and Rutter [6] also in the case of a union of

internally disjoint paths between a pair of vertices [18].



34 R. Fulek

edges, etc. The boundary operator ∂(.) is defined as usual, and we put ∂(v) = ∅,
for any v ∈ V , and hence, γ(∂(v)) = ∅. Let iE(C1, C2) denote the algebraic
intersection number [31] of the supports of chains C1 and C2 in E such that
dim(C1)+ dim(C2) = 2, where dim(.) is dimension, and the support of both C1

and C2 is homeomorphic to a ball of the corresponding dimension. We prove the
following.

Theorem 1. The isotopy class E contains an x-bounded embedding if and only
if iE(C1, C2) = 0 whenever γ(C1) ∩ γ(∂C2) = ∅ and γ(∂C1) ∩ γ(C2) = ∅, where
γ(.) is extended over R linearly to edges.

We remark that the “only if” part of the theorem is easy, and thus, it is the
“if” part that is interesting. Instead of proving Theorem 1 we prove its equivalent
reformulation, Theorem 3 (stated only for trees due to space limitations), that
is less conceptual, but more convenient to work with. Theorem 3 allows us to
employ the PQ-tree data structure to show the following result.

Theorem 2. We can test in cubic time if (G, γ) admits an x-bounded embedding
when the underlying abstract graph G is a forest.

Theorem 2 extends a recent result of Angelini et al. [1] and partially answers
an open problem asked by Chang et al. in the arxiv version of [10, Appendix D.2].
In particular, our results imply that we can test in a polynomial time if a straight-
line drawing of a tree into a line is weakly simple.

Flat Clustered Graph. A flat clustered graph, shortly c-graph, is a pair (G,T ),
where G = (V,E) is a graph and T = {V0, . . . , Vc−1},

⊎
i Vi = V , is a partition

of the vertex set into clusters. A c-graph (G,T ) is clustered planar (or briefly
c-planar) if G has an embedding in the plane such that (i) for every Vi ∈ T
there is a topological disc D(Vi), where interior(D(Vi)) ∩ interior(D(Vj)) = ∅, if
i �= j, containing all the vertices of Vi in its interior, and (ii) every edge of G
intersects the boundary of D(Vi) at most once for every D(Vi). A c-graph (G,T )
with the given isotopy class of an embedding of G is c-planar if additionally the
embedding belongs to the given class. A clustered drawing and embedding of a
flat clustered graph (G,T ) is a drawing and embedding, respectively, of G satis-
fying (i) and (ii). In 1995 Feng, Cohen and Eades [16,17] introduced the notion
of clustered planarity for clustered graphs, shortly c-planarity, (using a more
general hierarchical clustering) as a natural generalization of graph planarity.
(Under a different name Lengauer [30] studied a similar concept in 1989.)

By [18, Lemma 1.2] we obtain the following corollary of Theorem 2.

Corollary 1. Let G be a forest. We can test in cubic time if a c-graph (G,T )
with three clusters is c-planar.

To illustrate the difficulty of c-planarity we mention that already in the case
of three clusters [12], if G is a cycle, the polynomial time algorithm for c-planarity
is not trivial, while if G can be any graph, its existence is still open. Biedl [5]
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gave a polynomial time algorithm for c-planarity with two clusters. A different
approach for two clusters was considered by Hong and Nagamochi [25] and the
result also follows from a work by Gutwenger et al. [24]. Beyond two clusters
a polynomial time algorithm for c-planarity was obtained only in special cases,
e.g., [11,23,24,27,28].

Organization. Due to space limitation, we only state Theorem 3 for trees
(Sect. 2) and establish Theorem 2 only in the case when the underlying abstract
graph is a subdivided star (Sect. 3). Solving this case already illustrates all the
main ideas. The arxiv submission [18] contains the full version of the paper
together with various extensions of our results.

2 Preliminaries

Notation. Let G = (V,E) denote a connected planar graph possibly with multi-
edges. A drawing of G is a representation of G in the plane where every vertex in
V is represented by a unique point and every edge e = uv in E is represented by
a Jordan arc joining the two points that represent u and v. We assume that in a
drawing no edge passes through a vertex, no two edges touch and every pair of
edges cross in finitely many points. An embedding of G is an edge-crossing free
drawing. If it leads to no confusion, we do not distinguish between a vertex or an
edge and its representation in the drawing and we use the words “vertex” and
“edge” in both contexts. Since in the problem we study connected components
of G can be treated separately, we can afford to assume that G is connected
throughout the paper. The rotation at a vertex is the counter-clockwise cyclic
order of the end pieces of its incident edges in a drawing of G. The rotation
system of a graph is the set of rotations at all its vertices. The isotopy class of
an embedding of G is described by the rotations at its vertices and choice of the
(unbounded) outer face. When talking about sub-graphs of G in an isotopy class
we mean it w.r.t. an embedding in the class.

Given a pair (G, γ) we naturally associate with it a partition of the vertex
set into the clusters Vi’s such that v belongs to Vγ(v). We refer to the cluster
whose vertices get label i as to the ith cluster.

Characterization. We present a necessary and sufficient condition for the iso-
topy class E of an embedding of (G, γ), where G is a tree, to contain an x-bounded
embedding. For the remainder of this section we assume that G is given by the
isotopy class of its embedding E .

We use the following definition of iE(P1, P2) of a pair of oriented paths P1

and P2 in E [9]. We orient P1 and P2 arbitrarily. Let P denote the sub-graph of
G that is the union of P1 and P2. We define crP1,P2(v) = +1 (crP1,P2(v) = −1)
if v is a vertex of degree four in P such that the paths P1 and P2 alternate in the
rotation at v and at v the path P2 crosses P1 from left to right (right to left) with
respect to the chosen orientations of P1 and P2. We define crP1,P2(v) = +1/2
(crP1,P2(v) = −1/2) if v is a vertex of degree three in P such that at v the path
P2 is oriented towards P1 from left, or from P1 to right (towards P1 from right,
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V1 V2 V3 V4 V5

P1

V1 V2 V3 V4

P2

Fig. 2. A path P1 that is a 1-cap (left); and a path P2 that is a 4-cup (right).

or from P1 to left) in the direction of P1. The algebraic intersection number of
P1 and P2, iE(P1, P2), is then the sum of crP1,P2(v) over all vertices of degree
three and four in P .

Let G′ ⊆ G. Let max(G′) and min(G′), respectively, denote the maximal and
minimal value of γ(v), v ∈ V (G′).

Definition of an i-cap and i-cup. A path P in G is an i-cap and a j-cup if for
the end vertices u, v of P and all w �= u, v of P we have min(P ) = γ(u) = γ(v) =
i �= γ(w) and max(P ) = γ(u) = γ(v) = j �= γ(w), respectively, (see Fig. 2).
A pair of an i-cap P1 and j-cup P2 is interleaving if (i) min(P1) < min(P2) ≤
max(P1) < max(P2); and (ii) P1 and P2 intersect in a path (or a single vertex).
An interleaving pair of an oriented i-cap P1 and a j-cup P2 is infeasible, if
iE(P1, P2) �= 0, and feasible, otherwise. Thus, feasibility does not depend on the
orientation. Note that iE(P1, P2) can be either 0, 1 or −1. Throughout the paper
by an infeasible and feasible pair of paths we mean an infeasible and feasible,
respectively, interleaving pair of an i-cap and j-cup.

Theorem 3. The isotopy class E of a tree G contains an x-bounded embedding
of (G, γ) if and only if E does not contain an infeasible interleaving pair of paths.

3 Subdivided Stars

In this section we give an algorithm proving Theorem 2, when G is a subdivided
star. Throughout the present section we assume |γ(u)− γ(v)| ≤ 1 for every edge
uv ∈ E(G). This can be assumed without loss of generality as the edges uv
such that |γ(u) − γ(v)| > 1 can be subdivided by |γ(u) − γ(v)| − 1 = k vertices
u1, . . . , uk extending γ(.) so that |γ(ui) − γ(ui+1)| = 1, for i = 0, . . . , k, where
u0 = u and uk+1 = v.

In the sequel G = (V,E) is a subdivided star. Thus, G is a tree that contains
a special vertex v, the center of the star, of an arbitrary degree and all the other
vertices in G are either of degree one or two.

Inwhat followswe showhow touseTheorem3 for a polynomial-timex-bounded
embeddability testing if the underlying abstract graph is a subdivided star. The
algorithm is based on testing in polynomial time whether the columns of a 0–1
matrix can be ordered so that, in every row, either the ones or the zeros are consec-
utive. We, in fact, consider matrices containing 0, 1 and also an ambiguous symbol
∗. A matrix containing 0,1 and ∗ as its elements has the circular-ones property if
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there exists a permutation of its columns such that in every row, either the ones
or the zeros are consecutive among undeleted symbols after we delete all ∗. Then
each row in the matrix corresponds to a constraint imposed on the rotation at v by
Theorem 3 simultaneously for many pairs of paths.

By Theorem 3 it is enough to decide if there exists a rotation at v so that
every interleaving pair of an s-cap P1 and b-cup P2 meeting at v is feasible. Note
that if either P1 or P2 does not contain v in its interior the corresponding pair
is feasible. Since G is a subdivided star, an interleaving pair P1 and P2 passing
through v restricts the set of all rotations at v in an x-bounded embedding of
(G, γ). Namely, if ei and fi are edges incident to Pi at v then in an x-bounded
embedding of (G, γ) in the rotation at v the edges e1, f1 do not alternate with
the edges e2, f2, i.e., e1 and f1 are consecutive when we restrict the rotation to
e1, f1, e2, f2. We denote such a restriction by {e1f1}{e2f2}. Given a cyclic order
O of edges incident to v, we can interpret {e1f1}{e2f2} as a Boolean predicate
which is “true” if and only if e1, f1 do not alternate with the edges e2, f2 in O.
Of course, for a given cyclic order we have {ab}{cd} if and only if {cd}{ab},
and {ab}{cd} if and only if {ba}{cd}. Then our task is to decide in polynomial
time if the rotation at v can be chosen so that the predicates {e1f1}{e2f2} of
all the interleaving pairs P1 and P2 are “true”. The problem of finding a cyclic
ordering satisfying a given set of Boolean predicates of the form {e1f1}{e2f2}
is NP-complete in general, since the problem of total ordering [32] can be easily
reduced to it in polynomial time. However, in our case the instances satisfy the
following structural properties making the problem tractable (as we see later).

Observation 1. If {ab}{cd} is false and {ab}{de} is true then {ab}{ce} is false.

The restriction on rotations at v by the pair of an s-cap P1

and b-cup P2 is witnessed by an ordered pair (s, b), where s < b.
We treat such pair as an interval in N. Let I = {(s, b)| (s, b)
witnesses a restriction on rotations at v by a pair of paths}.

Observation 2. If an s-cap P contains v then P contains an s′-cap P ′ con-
taining v as a sub-path for every s′ such that s < s′ < γ(v). Similarly, if a b-cup
P contains v then P contains a b′-cup P ′ containing v as a sub-path for every
b′ such that γ(v) < b′ < b.

Observation 3. Let s < s′ < b < b′, s, s′, b, b′ ∈ N. If the set I contains both
(s, b) and (s′, b′), it also contains (s, b′) and (s′, b).

We would like to reduce the question of determining if we can choose a rota-
tion at v making all the interleaving pairs feasible to the following problem. Let
S = {e1, . . . , en} be the set of edges incident to v. Let S ′ = {L′

i, R
′
i| i = 1, . . .} be a

set of polynomial size in n such that R′
i, L

′
i ⊆ S and |L′

i|, |R′
i| ≥ 2, L′

i+1 ∪ R′
i+1 ⊆

L′
i ∪ R′

i. Can we cyclically order S so that both R′
i and L′

i, for every R′
i, L

′
i ∈ S ′,

appear consecutively, when restricting the order to R′
i ∪ L′

i? Once we accomplish
the reduction, we end up with the problem of testing the circular-ones property on
matrices containing 0, 1 and ∗ as elements, where each ∗ has only ∗ symbol under-
neath.This problem is solvable in polynomial time aswewill see later.We construct
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an instance for this problem which is a matrix M = (mij) as follows. The ith row of
M corresponds to the pair L′

i and R′
i and each column corresponds to an element

of S. For each pair L′
i, R

′
i we have mij = 0 if j ∈ L′

i, mij = 1 if j ∈ R′
i, and mij = ∗

otherwise. Note that our desired condition on S ′ implies that in M each ∗ has only
∗ symbols underneath. The equivalence of both problems is obvious.

In order to reduce our problem of deciding if a “good” rotation at v exists, we
first linearly order intervals in I. Let (s0, b0) ∈ I be the inclusion-wise minimal
interval in I maximizing s0, and similarly let (s′

0, b
′
0) ∈ I be the inclusion-wise

minimal interval in I minimizing b′
0. By Observation 3 we have s0 = s′

0 and
b0 = b′

0. Thus, let (s0, b0) ∈ I be such that s0 is the biggest and b0 is the
smallest one. Inductively we relabel elements in I as follows. Let (si+1, bi+1) ∈ I
be such that si+1 < si < bi < bi+1 and subject to that condition si+1 is the
biggest and bi+1 is the smallest one. By Observation 3 all the elements in I can
be ordered as follows

(s0,b0), (s0,1, b0), . . . , (s0,i0 , b0), (s0, b0,1), . . . (s0, b0,j0), (s1,b1), . . . , (1)

where sk,i+1 < sk,i < sk and bk,i+1 > bk,i > bk. For example, the ordering
corresponding to the graph in Fig. 3 is (4, 6), (3, 6), (2, 6), (4, 7), (3, 7), (2, 7). Let
E(s, b) and E′(s, b) denote the set of all the edges incident to v contained in an
s-cap and b-cup, respectively, induced by Vs ∪ Vs+1 . . . ∪ Vb, where (s, b) ∈ I,
Thus, E(s, b) ∪ E′(s, b) contain edges incident to v contained in an interleav-
ing pair that yields a restriction on rotations at v witnessed by (s, b). Note
that E(s, b) ∩ E′(s, b) = ∅. By Observation 2, E(sk,j+1, bk) ⊆ E(sk,j , bk) and
E′(sk, bk,j+1) ⊆ E′(sk, bk,j). The restrictions witnessed by (s, b) correspond to
the following condition. In the rotation at v the edges in E(s, b) follow the edges
in E′(s, b). Indeed, otherwise we have a four-tuple of edges e1, e2, f1 and f2 inci-
dent to v, such that e1, f1 ∈ P1 and e2, f2 ∈ P2, where P1 and P2 form an
interleaving pair of an si-cap and bi-cup, violating the restriction {e1f1}{e2f2}
on the rotation at v. However, such a four-tuple is not possible in an embedding
by Theorem 3.

Let Li = E(s, b) and Ri = E′(s, b), respectively, for (s, b) ∈ I, where i is the
index of the position of (s, b) in (1). Note that E(si+1, bi+1) ∪ E′(si+1, bi+1) ⊆
E(si, bi) ∪ E′(si, bi). Our intermediate goal of reducing our problem to the
circular-ones property testing would be easy to accomplish if I consisted only of
intervals of the form (si, bi) defined above. However, in I there might be inter-
vals of the form (si, b), b �= bi, or (s, bi), s �= si. Hence, we cannot just put
L′

i := Li and R′
i := Ri for all i, since we do not necessarily have the condition

Li+1 ∪ Ri+1 ⊆ Li ∪ Ri satisfied for all i.

Definition of S ′. Let S = {Li, Ri| i = 1, . . .}. We obtain S ′ from S by deleting
the least number of elements from Li’s and Ri’s so that L′

i+1∪R′
i+1 ⊆ L′

i∪R′
i for

every i. More formally, S ′ is defined recursively as S ′
m, where S ′

1 = {L′
1, R

′
1| L′

1 =
L1, R′

1 = R1} and S ′
j = Sj−1 ∪ {L′

j , R
′
j | L′

j = Lj ∩ (L′
j−1 ∪ R′

j−1), R
′
j = Rj ∩

(L′
j−1 ∪ R′

j−1)}. Luckily, the following lemma lying at the heart of the proof of
our result shows that the information contained in S ′ is all we need.
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v

bαsαsα,1 = ssα,2

e = e0

b

e1
e2
e3
e4

e0

e6e5
e4

e3 e2
e1e5

e6

1 2 3 4 5 6 7

Fig. 3. A subdivided star (on the left) with the center v, and some restrictions on
the set of rotation at v (on the right) corresponding to the intervals (sα, bα), (sα,1, bα)
and (s, b). We have {e0, e5, e6} = E(sα,1, bα) ⊆ E(s, b) = {e0, e2, e5, e6} and {e3, e4} =
E′(s, b) ⊆ E′(sα,1, bα) = {e3, e4, e1, e2}. Thus, by removing e0 from E(s, b) we obtain
the same restrictions on the rotation at v.

Lemma 2. We can cyclically order the elements in S so that every pair L′
i, R

′
i

in S ′ gives rise to two disjoint cyclic intervals if and only if (G, γ) admits an
x-bounded embedding.

Proof. The proof of the lemma is by a double-induction. In the “outer–loop” we
induct over |S ′|/2 while respecting the order of pairs Li, Ri given by (1). In the
“inner–loop” we induct over the size of S, where in the base case of the jth step
of the “outer–loop” we have Sj,0 = L′

j ∪R′
j . In each kth step of the “inner–loop”

we assume by induction hypothesis that a cyclic ordering O of S satisfies all the
restrictions imposed by {Li, Ri|i = 1, . . . , j − 1} and Lj ∩ Sj,k−1, Rj ∩ Sj,k−1.
Clearly, once we show that O satisfies restrictions imposed by Lj ∩Sj,k, Rj ∩Sj,k,
where Sj,k = Sj,k ∪ {e} and e ∈ (Lj ∪ Rj) \ Sj,k−1 we are done.

Refer to Fig. 3. Roughly speaking, by (1) a “problematic” edge e is an initial
edge on a path starting at v that never visits a cluster bα after passing through
the cluster sα such that e ∈ E(sα, bα) (or vice-versa with E′(sα, bα)). The edge
e is an (α, β)-lower trim (or (α, β)-✁) if the lowest index i for which e �∈ L′

i ∪R′
i

corresponds to E(sα,β , bα) ∪ E′(sα,β , bα), where β > 0. Analogously, the edge e
is an (α, β)-upper trim (or (α, β)-✃) if the lowest index i for which e �∈ L′

i ∪ R′
i

corresponds to E(sα, bα,β) ∪ E′(sα, bα,β), where β > 0. By (1) and symmetry
(reversing the order of clusters) we can assume that e is an (α, β)-✁, and e ∈
E(sα,β−β′ , bα), for some β′ > 0, where sα,0 = sα, and e ∈ E(s, b) = Lj , where
s = sα,β−β′ and b > bα, following E(sα,β , bα) in our order. Moreover, we pick e
so that e maximizes i for which e ∈ L′

i ∪ R′
i. We say that e was “trimmed” at

the (i + 1)th step.
Thus, e is contained in E(s, b) for some s, b such that E(s, b), E′(s, b) follows

E(sα,β , bα), E′(sα,β , bα) in our order. However, it must be that

E(sα,β−β′ = s, bα) ⊆ E(s, b) and E′(s, b) ⊆ E′(sα,β−β′ = s, bα), (2)

where the first relation follows directly from the fact b > bα and the second
relation is a direct consequence of Observation 2. In what follows we show that (2)
implies that O satisfies all the required restrictions involving e. We consider an
arbitrary four-tuple of edges e′

1, e
′
2, e

′
3 ∈ Sj,k−1 that together with e gives rise
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to a restriction {e′
1e

′
2}{e′

3e} on O witnessed by (s, b). The incriminating four-
tuple must also contain an element from E(s, b) \ E(s, bα), let us denote it by
f = e′

3. Indeed, otherwise by (2) the restriction is witnessed by (s, bα) and
we are done by induction hypothesis. Then e′

1, e
′
2 ∈ E′(s, b). For the sake of

contradiction we suppose that the order O violates the restriction {e′
1e

′
2}{ef}.

Let g ∈ L′
i′ ⊆ E(sα,β , bα), for some i′. Note that g exists (see Fig. 4), for if an

edge g′ ∈ E(sα,β , bα) is not in L′
i′ , it means that g′ was “trimmed” before e and

we can put g to be an arbitrary element from E(s′′, b′′) minimizing s′′ appearing
before E(sα, bα) in our order.

Here, the reasoning goes as follows. Let Pg′ denote the path from v passing
through g′ and ending in a leaf. Recall that si’s are decreasing and bi’s are
increasing as i increases. Thus, if we “trimmed” g′ before e, it had to be a ✁ by
sα,β < sα, but then there exists a path starting at v that reaches a cluster with
a smaller index than a cluster reached by Pg′ before it reaches even the cluster
bα−1 < bα. Note that the edge g can be also chosen as an edge in E(sα,β , bα)
minimizing i such that the path starting at v passing through g has a vertex in
the ith cluster. This choice of g plays a crucial role in our proof of the extension
of the lemma for trees.

Thus, g ∈ Sj,k−1 by the choice of e, since e �∈ L′
i′ . Note that g ∈ E(s, bα),

and hence, g ∈ E(s, b) by (2). By Observation 1 a restriction {e′
1e

′
2}{fg} is

violated as well due to the restriction {e′
1e

′
2}{eg}, that O satisfies by induction

hypothesis, witnessed by (s, bα). However, by (2) {e′
1e

′
2}{fg} is witnessed by

(s, b) and we reach a contradiction with induction hypothesis. �

(min(Pe),max(Pe))
γ(v) bαssα,β

x-axis

bα−1sα

(min(Pg′),max(Pg′))(min(Pg),max(Pg))

b

Fig. 4. Three intervals of clusters corresponding to three paths that start at v: Pe that
passes through e and ends in the first vertex in the cluster sα,β−1, Pg′ that passes
through g′ and ends in a leaf, and Pg that ends in the first vertex of the cluster s′′.
(An alternative interval for Pg is dotted.) Here, g′ was “trimmed” before e.

By Lemma 2 we successfully reduced our question to the problem stated
above. The problem slightly generalizes the algorithmic question considered by
Hsu and McConnell [26] about testing 0–1 matrices for circular ones property.
An almost identical problem of testing 0–1 matrices for consecutive ones prop-
erty was already considered by Booth and Lueker [7] in the context of interval
and planar graphs’ recognition. A matrix has the consecutive ones property if it
admits a permutation of columns resulting in a matrix in which ones are con-
secutive in every row. Our generalization is a special case of the related problem
of simultaneous PQ-ordering considered recently by Bläsius and Rutter [6], and
thus, tractable.
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Abstract. Given a set of prioritized disks with fixed centers in R
2

whose radii grow linearly over time, we are interested in computing
an elimination order of these disks assuming that when two disks
touch, the one with lower priority is ‘crushed’. A straightforward algo-
rithm has running time O(n2 log n) which we improve to expected
O(n(log6 n + Δ2 log2 n + Δ4 log n)) where Δ is the ratio between largest
and smallest radii amongst the disks. For a very natural application of
this problem in the map rendering domain, we have Δ = O(1).

1 Introduction

Given a set of points/centers P = {c1, . . . , cn}, ci ∈ R
2 with associated radii

r1, . . . , rn, ri ∈ R
+ and priorities p1, . . . pn, pi ∈ N, pi �= pj for i �= j, we are

interested in the following dynamic process: Time t ∈ R
+
0 progresses continuously

starting with t = 0. For a given time t, point ci induces a disk D(ci, rit) centered
at ci and with radius Ri(t) = rit. As time progresses, at some point two disks
touch for the first time; we discard/eliminate the one with lower priority and let
time continue further until the next two disks touch. The process finishes once
only one disk remains.

To keep the presentation simple we assume non-degenerate position of the
input which in our case prohibits more than one pair of disks touching at the
same time. Hence for given P , radii, and priorities, the elimination order of the
disks is uniquely determined. The challenge is to compute this elimination order
for given P , radii, and priorities efficiently.

1.1 Motivation

A common task when rendering a map is the labelling of points of interest
(POIs) like countries, cities, amenities, etc. on the map. Typically one is after a
hierarchical labelling scheme, where in a very coarse view of the map only the
most important POIs are labelled, but when zooming in more and more labels
appear until in a very zoomed-in view all labels are present. If labels are not
to change or overlap when the map is rotated, it is very convenient to allocate
a disk-like shape for each label. Furthermore, we expect that while zooming in,
no previously present labels disappear again. This and several other consistency
c© Springer International Publishing Switzerland 2016
V. Mäkinen et al. (Eds.): IWOCA 2016, LNCS 9843, pp. 43–54, 2016.
DOI: 10.1007/978-3-319-44543-4 4
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criteria were postulated by Been et al. in [1]. So considering the reverse process,
starting from a fully zoomed-in view we have all POIs labeled with their label
written in a small disk around the POI, all scaled that none of the disks overlap.
The relative radii of the disks depend on the label sizes and the font sizes.
Zooming out while keeping the font sizes corresponds to blowing up the disks.
As soon as two disks intersect, this might induce an overlap of the respective
labels, so one of the labels has to be eliminated for that zoom level and all
levels further zoomed out. Naturally one would eliminate the label of the less
important POI.

Computing an elimination order as defined at the beginning yields a con-
sistent level-of-detail hierarchy of map labels, in particular avoiding spurious
appearance and disappearance of labels as it is still often experienced with com-
mon map renderings like Google/Bing/Yahoo maps. See Fig. 1 for an example of
two zoom levels of the region around Stuttgart (not computed with the algorithm
of this paper, though).

Fig. 1. Labelings of the region Stuttgart in Germany with the disks reserved for each
labels to prevent overlaps when rotating. Zoomed-in (left) and further zoomed-out
(right). Map data c©OpenStreetMap contributors

1.2 Related Work

Eppstein and Erickson in [6] considered the following problem: Given n motor-
cycles, each motorcycle i starting at some position ci ∈ R

2 and moving in some
direction di at speed si, a motorcycle crashes as soon as it hits the track of
another motorcycle (similar to the light cycles in the movie TRON). The goal is
to determine which motorcycle crashes into which track and which motorcycles
survive. This is expressed in the so-called motorcycle graph. Construction of the
latter given initial starting positions, directions and speeds of the motorcycles
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is surprisingly difficult. While a naive algorithm (similar to the naive algorithm
for our problem) takes O(n2 log n) time, the best known algorithm as presented
in [6] has a running time of O(n17/11+ε) for any ε > 0. In spite of the simplicity
of motorcycle graphs, they have so far resisted construction in near-linear time.

If all radii are equal, our problem becomes quite easy. Maintaining the closest
pair under deletions using a data structure like [4] (explained in more detail later
on) allows for computing the elimination order in near-linear time.

In [2] the authors consider a related family of active range optimization
(ARO) problems. One variant — the 2-dimensional simple ARO — is quite
similar to our problem at hand. Phrased in terms of our problem, their goal is
to identify an elimination sequence which maximizes the sum of life times of all
circles. In fact they do not consider circles but squares, show NP-hardness and a
1/24 approximation algorithm with near-linear running time. The hardness cru-
cially relies on the freedom to choose which of two collision partners survives. In
our concrete application setting, this is not desired, as we typically have strong
preferences which label should survive, e.g., the label for the city of Munich
should not be eliminated by the label of the small town Unterschleißheim when
zooming out. From a complexity theoretical point of view, our problem formula-
tion is simpler as the O(n2 log n) naive algorithm already shows. The aim of this
work is to improve upon the naive algorithm such that millions or even billions
of points (as implicit in the OpenStreetMap data set) can be labelled. Following
[2], a more practical direction is taken in [10], formulating the 2-dimensional
ARO problem as an integer linear program and proposing greedy heuristics with
O(n2) running time.

Contribution. We devise an efficient algorithm for computing the elimination
order for given P , radii, and priorities in expected O(n(log6 n + Δ2 log2 n +
Δ4 log n)) time improving upon the O(n2 log n) running time of the naive algo-
rithm. Here Δ is the ratio between the largest and smallest radius in the prob-
lem instance. Our approach has the potential to be generalized to higher (fixed)
dimensions by replacing the data structure due to Chan [4] by respective approx-
imate variants, e.g. [3,9].

2 Crushing Disks

In this section we will first briefly sketch a naive algorithm with roughly quadratic
running time and outline some problems that discard straightforward improve-
ment strategies. We then introduce our new algorithm, and prove its correctness
and improved running time.

2.1 Naive Algorithm

A naive algorithm to solve the problem is simply computing/predicting all pair-
wise collision times and throwing these potential events into a min-priority queue
organized according to the collision time. Then the events are popped one-by-
one from the priority queue. If the two centers ci, cj of the current event are still
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alive, the one with smaller priority is discarded (and appended to the elimina-
tion sequence). If at least one of them has already been discarded, the event is
ignored. See Algorithm 1 for the pseudo-code. It takes Θ(n2) time to compute all
potential collision events and O(n2 log n) to process them through the priority
queue (e.g. an ordinary heap), resulting in an O(n2 log n) overall running time.

Algorithm 1. Naive algorithm
for all (ci, cj)|i, j = 1, . . . , n ∧ i < j do

tij ← |cicj |
ri+rj

insert CollisionEvent(ci, cj , tij) into event queue Q
end for
while Q �= ∅ do

curEvent(ci, cj , tij) ← Q.popMin()
if alive(ci) ∧ alive(cj) then

if pi < pj then
discard and output ci

else
discard and output cj

end if
end if

end while

It is clear that such a running time is prohibitive for an application domain
as the one outlined in the introduction where we have millions or billions of POIs
labels. Unfortunately, in this very naive algorithm, this running time does not
only occur for pathological problem instances, but in fact all the time.

2.2 Algorithmic Tools

To come up with a more efficient solution we need some tools from computational
geometry, more concretely we will employ data structures for efficient proximity
queries. Let us define the types of queries that are relevant to us. First of all, we
are interested in a point from a specified set which is closest to a given query
point:

Definition 1. For a point set P ⊂ R
d and a query point q, a nearest neighbor

of q is a point c ∈ P with |qc| ≤ |qc′|, for all c′ ∈ P .

Furthermore, we are also interested in points within a certain distance of a query
point:

Definition 2. For a point set P ⊂ R
d, a query point q, and a distance r, a

range reporting query returns the set S := {c ∈ P : |qc| ≤ r}.
In dimension d = 2, Chan in [4] has devised a dynamic data structure that

allows for nearest neighbor and range reporting queries in polylogarithmic time.
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Theorem 1 (Chan [4]). For n points in R
2 one can construct a data struc-

ture in expected O(n log2 n) time which supports deletions in expected amor-
tized O(log6 n) time, nearest neighbor queries in O(log2 n), and range reporting
queries in time O(log2 n + k log n), where k = |S| is the size of the output of the
range reporting query.

Note that simply maintaining a Delaunay triangulation/Voronoi diagram
does not suffice since deletion might be very expensive for high-degree vertices.

In dimensions d > 2 things become much harder and one typically resort
to an approximate notion of proximity. While our algorithms can probably be
generalized to that setting as well, we will restrict to the 2-dimensional scenario in
this paper. We will sketch some of the necessary modifications in the conclusions.
Efficient schemes for approximate proximity queries even in a dynamic setting
were devised e.g. in [3,9].

2.3 First Ideas Towards a More Efficient Algorithm

An idea for improvement of the naive algorithm that immediately comes to
mind is to avoid for one center ci the inspection of all other centers, by looking
only locally for collision partners. It seems very likely, that the disk around ci

collides only with ‘nearby’ disks and is discarded before interacting with far away
disks. So a natural implementation of this idea lets every center ci at the very
beginning look at a neighborhood with size proportional to the distance to its
nearest neighbor and check for collisions with other centers in this neighborhood.

Fig. 2. Example where a neighborhood of a center ci that is proportional to the distance
to its nearest neighbor contains many other centers.

Unfortunately, it is not difficult to come up with examples where for a center
ci the number of other centers in its neighborhood is Ω(n), see Fig. 2. Further-
more, the actual first collision that happens for a center ci might in fact be
with the furthest other center, see Fig. 3, since all closer centers might have been
eliminated before a collision can occur.

The algorithm we propose in the following is based on the idea of inspecting
local neighborhoods, but by appropriately delaying the inspections we can make
sure that the number of other centers to inspect remains small. Furthermore we
do not insist on each center actually knowing its next collision, but make only
sure that before every actual collision a neighborhood inspection of at least one
of the collision partners takes place predicting the collision.
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Fig. 3. Example where the first collision for ci happens with the furthest center if pj

is the maximum priority.

2.4 The Algorithm

We describe our algorithm under a common non-degeneracy assumption, that is,
there is no t > 0 where more than two disks with respective time-varying radii
collide. It is not difficult to enforce this assumption by actual perturbations (e.g.
[7,8]) or symbolic perturbation [5]. Alternatively these degenerate situations can
also be treated explicitly, though complicating the presentation unnecessarily.

Our algorithm maintains the following global structures:

– a min-priority queue Q which organizes (according to time t) the following
types of events:

• UpdateEvent(ci, t): center ci should check again for possible collisions at
time t

• CollisionEvent(ci, cj , t): a collision between the disks around ci and cj is
predicted at time t

– for each center ci the following sets:
• NN(ci): the set of currently alive centers which have ci as their nearest

neighbor
• CP (ci): the set of currently alive centers which have ci as their currently

predicted next collision

Within the priority queue Q we resolve ambiguities (with identical times t)
by considering UpdateEvents ‘smaller’ than CollisionEvents and finally resorting
to lexicographical ordering.

In Algorithm 2 we have depicted the main loop of our algorithm. For every
not yet discarded/‘crushed’ center ci there is either an UpdateEvent(ci, t) or a
predicted collision CollisionEvent(ci, ., t) in the priority queue Q. Our algorithm
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does not require a collision between disks around centers ci and cj to be predicted
by both ci and cj , but in fact only the center with larger radius, that is, if ri ≥ rj ,
our algorithm makes sure that ci predicts the collision between ci and cj . There
is no harm, though, if both predict the respective collision.

The event queue is initialized with update events as follows: for every ci its
nearest neighbor cj is determined. Clearly, the disk around ci cannot collide with
another disk with radius less than ri earlier than |cicj |/2ri, so it suffices for ci to
check for collisions at that time. Then the algorithm processes the events one-by-
one, occasionally calling the central collision prediction routine, see Algorithm 3.
It is invoked as PredictCollision(ci, t) for a center ci at some time t. After deter-
mining the nearest neighbor of ci it checks whether the current radius (rit) of the
disk around ci is at least half the distance to its nearest neighbor. If so, a neighbor-
hood of twice the distance to its nearest neighbor is examined for collision. If not,
we know that ci is not responsible for detecting a collision in the near future and
send it ‘to sleep’ via an update event at a time roughly corresponding to its nearest
neighbor distance.

2.5 Analysis

We will first argue that our new algorithm indeed computes the same elimination
order as the naive algorithm and then show that for a bounded ratio Δ = maxi ri

mini ri

our algorithm runs in near-linear time.

Correctness.

Lemma 1. Algorithm 2 computes the same elimination order as Algorithm 1.

Proof. We show this by induction, making sure that the i-th collision detected
by Algorithm 1 is also detected by Algorithm 2 for i = 1, . . . n − 1. For the
base case i = 1, w.l.o.g. let (c1, c2) be the first collision with r1 ≥ r2. When the
update event for c1 is processed, a neighborhood of twice the distance to c1’s
nearest neighbor is examined which also includes c2 (otherwise c1 would collide
with the disk around its nearest neighbor before hitting the disk around c2),
hence the collision with c2 is predicted. As no other collision can happen earlier,
the base case is settled. Now assume the first i collisions were correctly detected
and the respective deletions have taken place. Algorithm 1 produces (ck, cl) as
the next collision, w.l.o.g. rk ≥ rl. Consider the state of Algorithm 2 right after
processing the i-th deletion. At this point ck must be present in the priority
queue. If an UpdateEvent(ck, .) is in Q, the nearest neighbor (at the time of
creation of the update event) of ck is also still alive. When this update event is
processed, the collision (ck, cl) will be predicted and processed (as in the base
case). On the other hand, if CollisionEvent(ck, cl′ , .) is present in Q, we must
have cl′ = cl as when PredictCollision(ck, .) was called for the last time, cl was
amongst the considered centers in the neighborhood (again same argument as
in the base case). ��
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Algorithm 2. Main algorithm loop
for all ci, i = 1, . . . n do

determine nearest neighbor cj of ci
NN(cj) ← NN(cj) ∪ {ci}
insert UpdateEvent(ci, |cicj |/(2ri)) into event queue Q

end for
while Q �= ∅ do

curEvent ← Q.popMin()
if curEvent = UpdateEvent(ci, t) then

PredictCollisions(ci, t)
else if curEvent = CollisionEvent(ci, cj , t) and alive(ci) ∧ alive(cj) then

if pi < pj then
discard and output ci
for all ck ∈ NN(ci) ∪ CP (ci) do

remove ci from NN(ck) or CP (ck) (if present)
PredictCollisions(ck, t)

end for
else

discard and output cj
for all ck ∈ NN(cj) ∪ CP (cj) do

remove cj from NN(ck) or CP (ck) (if present)
PredictCollisions(ck, t)

end for
end if

end if
end while

Algorithm 3. PredictCollision(ci, t)
remove existing event UpdateEvent(ci, .) or CollisionEvent(ci, ., .) from Q
determine nearest neighbor cj of ci
NN(cj) ← NN(cj) ∪ {ci}
t′ ← |cicj |/(2ri)
if t < t′ then

insert UpdateEvent(ci, t
′ ) into event queue Q

else
C ← {c|c ∈ D(ci, 2|cicj |)}
determine element ck ∈ C with minimum collision time tk
insert CollisionEvent(ci, ck, tk) into event queue Q
CP (ck) ← CP (ck) ∪ {ci}

end if

Running Time. Bounding the running time of the algorithm consists of essen-
tially two steps. We need to bound the size of the result of the range reporting
query (determination of the set C in the PredictCollision subroutine) and the
number of times PredictCollision is invoked. Let us first turn to the former.
In the following Lemmas, t′ refers to |cicj |/(2ri), that is, the adjusted nearest
neighbor distance (line 4 in PredictCollision).
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Lemma 2. At any time t and for any center ci we have during an invocation
of PredictCollision with t ≥ t′ that for C = {c ∈ D(ci, αrit)}, |C| = O(α2Δ2).

Proof. The disks with radius rmint around the centers in C have to be all disjoint
and completely contained in a disk of radius (αri + rmin)t around ci. Hence the
size of C is upper bounded by:

O

(
((αri + rmin)t)2

(rmint)2

)

= O

(
((αΔrmin + rmin)t)2

(rmint)2

)

= O(α2Δ2)

The Lemma follows. ��
So essentially as long as Δ is not too big, the cost for an individual range

reporting query is quite moderate.

Lemma 3. Whenever PredictCollision is called, it takes expected O(log2 n +
Δ2 log n) time.

Proof. Determining the nearest neighbor takes expectedly O(log2 n) time using
Chan’s data structure [4]. In case t < t′ we only have to remove and insert a
single event into Q which can be done in O(log n) time. Otherwise, according to
Lemma 2 with α = 2 we have to report and inspect O(Δ2) other centers which
can be done in expected O(log2 n+Δ2 log n) time. Having predicted the earliest
collision, insertion into the event queue takes O(log n) time. ��

Now let us make sure that PredictCollision is not called too often. We
partition the calls to PredictCollision according to the calling context, that is:

– PredictCollision(ci, t) was called because ci had cj as nearest neighbor, and
cj was discarded.

– PredictCollision(ci, t) was called because ci had cj as collision partner, and
cj was discarded.

– PredictCollision(ci, t) was called due to an UpdateEvent (having slept)

We will first argue that the number of invocations of PredictCollision trig-
gered by discarded nearest neighbors and collision partners is in O(n). To that
end we need a small Lemma bounding the number of other centers which have
a specific center as nearest neighbor.

Lemma 4. The number of other centers that have a certain center c as nearest
neighbor is O(1).

Proof. Consider the set NN(c), that is, the set of centers having c as nearest
neighbor. Let r be the minimum distance of any point in NN(c) to c. For every
point in NN(c) we construct its projection on the boundary of D(c, r) i.e. the
disk centered at c with radius r. Let NN ′(c) be the described set of projected
points. The projection does not change the nearest neighbor relation (compare
Fig. 4). Clearly, for neighbors q1, q2 ∈ NN ′(c), we have ∠q1pq2 ≥ 60o, otherwise
|q1q2| < |qip|. It follows that |NN ′(c)| ≤ 6 and hence |NN(c)| ≤ 6. ��
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Fig. 4. Setting where 2 points q′
1 and q2 have different distances to the common nearest

point c. Shifting q′
1 to q1 on the straight line towards c then |cq1| < |cq′

1| and disk
D(q1, |cq1|) is contained in D(q′

1, |cq′
1|).

Lemma 5. The number of times PredictCollision is called from a nearest
neighbor context is O(n).

Proof. According to Lemma 4, whenever a center is discarded, only O(1) calls to
PredictCollision can be triggered because of that center being a nearest neighbor
for the respective other center. Hence in total O(n) such calls happen. ��
Lemma 6. The number of times PredictCollision is called from a collision
partner context is O(Δ2n).

Proof. Whenever a center is discarded, all other centers that had this center
as collision partner must be within distance 2rmaxt of the discarded center.
According to Lemma 2, there are only a constant number of them. Hence in total
only O(n) such calls can happen. ��

So the number of calls to PredictCollision due to nearest neighbors or col-
lision partners being discarded is fine. Bounding the number of calls due to
an update event is not that straightforward. Observe, that for a single center
ci, Θ(n) such calls might be issued, see Fig. 5. Fortunately, we can prove that
in total, this number cannot exceed O(n).

Fig. 5. Example where Θ(n) calls to PredictCollision are issued due to update events
if p1 < p2 < . . . < pn−1 < pn.
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Lemma 7. The number of times PredictCollision is called from an update
event context is O(n).

Proof. Consider a call to PredictCollision(ci, t) triggered by an update event.
Note that in this case t = t′, as the distance to the nearest neighbor of ci can only
change when the nearest neighbor of ci is discarded which would have triggered a
non-update-event related call of PredictCollision. Having t = t′ makes sure that
the exploration of D(ci, 2|cicj |) takes place and the next call to PredictCollision
is not update-related. So, this shows that we can never have two consecutive calls
to PredictCollision(ci, .) being triggered by update events, and hence the total
number of calls triggered by update events is O(n) via Lemmas 5 and 6. ��

2.6 Summary

So we have shown that the number of calls to PredictCollision is O(Δ2n) and
every call to PredictCollision takes expected O(log2 n + Δ2 log n) time, which
yields the following theorem about the total running time of our algorithm when
employing the dynamic nearest neighbor data structure due to Chan [4].

Theorem 2. We can compute the elimination order for given P , radii and pri-
orities in expected O(n(log6 n + Δ2 log2 n + Δ4 log n)) time.

Proof. The cost for calling PredictCollision has been bounded by the previous
Lemmas. The n− 1 deletions can be performed in expected amortized O(log6 n)
using Chan’s data structure. The running time follows. ��
In the real-world application sketched at the beginning, we naturally have Δ =
O(1), since it is essentially determined by the ratio between shortest and longest
label string as well as smallest and largest font size used for labelling.

3 Outlook and Future Work

It is natural to consider the problem of computing elimination sequences also
for dimensions higher than 2. For our application scenario, a spherical setting
might also be of interest, in particular if POIs on a globe are to be labelled.

Unfortunately, no data structure for exact proximity queries like the one by
Chan [4] that we have employed is known for dimensions d > 2 (and probably
also unlikely to exist). In such a case one typically resorts to data structures
which answer proximity queries in an approximate fashion. At first it seems as
we could simply replace Chan’s data structure by one of these data structures,
e.g. [3,9]. Unfortunately, Lemma 4 does not hold anymore, in particular, a center
ci might be approximate nearest neighbor for many other centers.

Another (more challenging) direction of future work would be trying to get
rid of the dependency of the runtime on Δ.
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Abstract. Given a plane forest F = (V, E) of |V | = n points, we find
the minimum set S ⊆ E of edges such that the edge-constrained min-
imum spanning tree over the set V of vertices and the set S of con-
straints contains F . We present an O(n log n)-time algorithm that solves
this problem. We generalize this to other proximity graphs in the con-
straint setting, such as the relative neighbourhood graph, Gabriel graph,
β-skeleton and Delaunay triangulation.

We present an algorithm that identifies the minimum set S ⊆ E of
edges of a given plane graph I = (V, E) such that I ⊆ CGβ(V, S) for
1 ≤ β ≤ 2, where CGβ(V, S) is the constraint β-skeleton over the set V
of vertices and the set S of constraints. The running time of our algo-
rithm is O(n), provided that the constrained Delaunay triangulation of
I is given.

Keywords: Proximity graphs · Constraints · Visibility · MST · Delau-
nay · β-skeletons

1 Introduction

This paper was inspired by topics in geometric compression. In particular, Dev-
illers et al. [3] investigate how to compute the minimum set S ⊆ E of a given
plane triangulation T = (V,E), such that T is a constrained Delaunay triangu-
lation (DT ) of the graph (V, S). They show that S and V is the only information
that needs to be stored. The graph T can be successfully reconstructed from S
and V . Experiments on real data sets (such as terrain models and meshes) show
that the size of S is less than 3.4% of the total number of edges of T , which
yields an effective compression of the triangulation.

Our goal is to broaden this research and investigate geometric compression of
other neighbourhood graphs. We study minimum spanning trees, relative neigh-
bourhood graphs, Gabriel graphs and β-skeletons for 1 ≤ β ≤ 2. We give a
definition of each of those graphs in the constraint setting (refer to Sect. 2).
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Minimum spanning trees (MST ) have been studied for over a century and
have numerous applications. We study the problem of finding the minimum
set S of constraint edges in a given plane forest F = (V,E) such that the
edge-constrained MST over the set V of vertices and the set S of constraints
contains F . If F is a plane tree then the edge-constrained MST over (V, S) is
equal to F . We give an O(n log n)-time algorithm that solves this problem.

Gabriel graphs (GG) were introduced by Gabriel and Sokal in [4]. Toussaint
introduced the notion of relative neighbourhood graphs (RNG) in his research
on pattern recognition [10]. Both graphs were studied extensively.

Jaromczyk and Kowaluk showed that RNG of a set V of points can be con-
structed from the Delaunay triangulation of V in time O(nα(n, n)), where α(·)
is the inverse of the Ackerman function [5]. These two authors, together with
Yao, improved the running time of their algorithm to linear [6]. They achieved
it by applying a static variant of the Union-Find data structure. They also gen-
eralized their algorithm to construct the β-skeleton (Gβ) for 1 ≤ β ≤ 2 in linear
time from the Delaunay triangulation of V under the Lp-metric, 1 < p < ∞. We
provide the definition of β-skeleton in Sect. 2. For now, note that the 1-skeleton
corresponds to the Gabriel graph and the 2-skeleton corresponds to the relative
neighbourhood graph. In this paper, we use two geometric structures: elimination
path and elimination forest, introduced by Jaromczyk and Kowaluk [5].

Neighbourhood graphs are known to form a nested hierarchy, one of the
first versions of which was established by Toussaint [10]: for any 1 ≤ β ≤ 2,
MST ⊆ RNG ⊆ Gβ ⊆ GG ⊆ DT . We show that the neighbourhood graphs
in the constraint setting form the same hierarchy. Moreover, we show that the
minimum set of constraints required to reconstruct a given plane graph (as a
part of each of those neighbourhood graphs) form an inverse hierarchy.

In Sect. 2, we present notations and definitions. In Sect. 3, we give some obser-
vations concerning constrained MST , show worst-case examples and present an
O(n log n)-time algorithm that identifies the minimum set S ⊆ E of constraint
edges given a plane forest F = (V,E) such that the edge-constrained MST over
the set V of vertices and the set S of constraints contains F . Section 4 presents
an algorithm that identifies the minimum set S of edges of a given plane graph
I = (V,E) such that I ⊆ CGβ(V, S) for 1 ≤ β ≤ 2, where CGβ(V, S) is a
constrained β-skeleton on the set V of vertices and set S of constraints. The
hierarchy of the constrained neighbourhood graphs together with the hierarchy
of the minimum sets of constraints are given in Sect. 5.

2 Basic Definitions

Let V be a set of n points in the plane and I = (V,E) be a plane graph rep-
resenting the constraints. Each pair of points u, v ∈ V is associated with a
neighbourhood defined by some property P (u, v, I) depending on the proxim-
ity graph under consideration. An edge-constrained neighbourhood graph GP (I)
defined by the property P is a graph with a set V of vertices and a set EP of
edges such that uv ∈ EP if and only if uv ∈ E or uv satisfies P (u, v, I).
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For clarity and to distinguish between different types of input graphs, if I is
a forest, we will denote I by F = (V,E), to emphasize its properties.

In this paper, we assume that the points in V are in general position (no
three points are collinear and no four points are co-circular).

Two vertices u and v are visible to each other with respect to E provided that
uv ∈ E or the line segment uv does not intersect the interior of any edge of E.
For the following definitions, let I = (V,E) be a plane graph.

Definition 1 (Visibility Graph of I). The visibility graph of I is the graph
V G(I) = (V,E′) such that E′ = {(u, v) : u, v ∈ V , u and v are visible to each
other with respect to E}. It is a simple and unweighted graph.

In Definition 1, we may think of I as of the set of obstacles. The nodes of
V G(I) are the vertices of I, and there is an edge between vertices u and v if
they can see each other, that is, if the line segment uv does not intersect the
interior of any obstacle in I. We say that the endpoints of an obstacle edge see
each other. Hence, the obstacle edges form a subset of the edges of V G(I), and
thus I ⊆ V G(I).

Definition 2 (Euclidean Visibility Graph of I). The Euclidean visibility
graph EV G(I) is the visibility graph of I, where each edge uv (u, v ∈ V ) is
assigned weight w(u, v) that is equal to the Euclidean distance between u and v.

Definition 3 (Constrained Visibility Graph of I). The constrained visi-
bility graph CV G(I) is EV G(I), where each edge of E is assigned weight 0.

We use the notation MST (G) to refer to a minimum spanning tree of the
graph G. We assume that each edge of G has weight equal to its Euclidean
length, unless the edge was specifically assigned the weight 0 by our algorithm.
If none of the edges of G are assigned the weight 0 then MST (G) is a Euclidean
minimum spanning tree of G.

Definition 4 (Constrained Minimum Spanning Tree of F). Given a
plane forest F = (V,E), the constrained minimum spanning tree CMST (F )
is the minimum spanning tree of CV G(F ).

We assume that all the distances between any two vertices of V are distinct,
otherwise, any ties can be broken using lexicographic ordering. This assumption
implies that there is a unique MST and a unique CMST .

Since each edge of a plane forest F has weight zero in CV G(F ), by running
Kruskal on CV G(F ), we get F ⊆ CMST (F ). Notice also that if F is a plane
tree, then F = CMST (F ).

Definition 5 (Locally Delaunay criterion). Let G be a triangulation, v1v2
be an edge in G (but not an edge of the convex hull of G), and �(v1, v2, v3)
and �(v1, v2, v4) be the triangles adjacent to v1v2 in G. We say that v1v2 is a
locally Delaunay edge if the circle through {v1, v2, v3} does not contain v4 or
equivalently if the circle through {v1, v2, v4} does not contain v3. Every edge of
the convex hull of G is also considered to be locally Delaunay [3].
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Definition 6 (Constrained Delaunay Triangulation of I). The con-
strained Delaunay triangulation CDT (I) is the unique triangulation of V such
that each edge is either in E or locally Delaunay. It follows that I ⊆ CDT (I).

This definition is equivalent to the classical definition used for example by
Chew in [1]: CDT (I) is the unique triangulation of V such that each edge e is
either in E or there exists a circle C with the following properties:

1. The endpoints of edge e are on the boundary of C.
2. Any vertex of I in the interior of C is not visible to at least one endpoint of e.

The equivalence between the two definitions was shown by Lee and Lin [8].
When considering edge weights of CDT (I), we assume that the weight of

each edge is equal to the Euclidean distance between the endpoints of this edge.
The relative neighbourhood graph (RNG) was introduced by Toussaint in

1980 as a way of defining a structure from a set of points that would match
human perceptions of the shape of the set [10]. An RNG is an undirected graph
defined on a set of points in the Euclidean plane by connecting two points u
and v by an edge if there does not exist a third point p that is closer to both u
and v than they are to each other. Formally, we can define RNG through the
concept of a lune. Let D(x, r) denote an open disk centered at x with radius r,
i.e., D(x, r) = {y : dist(x, y) < r}. Let Lu,v = D(u, dist(u, v)) ∩ D(v, dist(u, v));
Lu,v is called a lune.

Definition 7 (Relative Neighbourhood graph of V). Given a set V of
points, the Relative Neighbourhood graph of V , RNG(V ), is the graph with
vertex set V and the edges of RNG(V ) are defined as follows: uv is an edge if
and only if Lu,v ∩ V = ∅.
Definition 8 (Constrained Relative Neighbourhood graph of I). The
constrained Relative Neighbourhood graph, CRNG(I), is defined as the graph
with vertices V and the set E′ of edges such that each edge e = uv is either in
E or, u and v are visible to each other and Lu,v does not contain points in V
visible from both u and v. It follows that I ⊆ CRNG(I).

u

v

p

q

Fig. 1. Removal of p makes uv
locally Gabriel.

Gabriel graphs were introduced by Gabriel
and Sokal in the context of geographic varia-
tion analysis [4]. The Gabriel graph of a set V
of points in the Euclidean plane expresses the
notion of proximity of those points. It is the
graph with vertex set V in which any points u
and v of V are connected by an edge if u 	= v and
the closed disk with uv as a diameter contains
no other point of V .

Definition 9 (Locally Gabriel criterion). The edge uv of the plane graph
G = (V,E) is said to be locally Gabriel if the vertices u and v are visible to
each other and the circle with uv as a diameter does not contain any points in
V which are visible from both u and v. Refer to Fig. 1.
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Definition 10 (Constrained Gabriel graph of I). The constrained Gabriel
graph CGG(I) is defined as the graph with vertices V and the set E′ of edges
such that each edge is either in E or locally Gabriel. It follows that I ⊆ CGG(I).

Relative neighbourhood and Gabriel graphs are special cases of a para-
metrized family of neighbourhood graphs called β-skeletons (defined by Kirk-
patrick and Radke in [7]). The neighbourhood Uu,v(β) is defined for any fixed β
(1 ≤ β < ∞) as the intersection of two disks (refer to Fig. 7):

Uu,v(β) = D

((
1 − β

2

)
u +

β

2
v,

β

2
dist(u, v)

)

∩D

((
1 − β

2

)
v +

β

2
u,

β

2
dist(u, v)

)

Definition 11 ((lune-based) β-skeleton of V). Given a set V of points in
the plane, the (lune-based) β-skeleton of V, denoted Gβ(V ) is the graph with
vertex set V and the edges of Gβ(V ) are defined as follows: uv is an edge if and
only if Uu,v(β) ∩ V = ∅.

Notice that RNG(V ) is a β-skeleton of V for β = 2; namely RNG(V ) =
G2(V ). Similarly, GG(V ) = G1(V ).

Definition 12 (Constrained β-skeleton of I). The constrained β-skeleton
of I, CGβ(I) is the graph with vertex set V and edge set E′ defined as follows:
e = uv ∈ E′ if and only if e ∈ E or u and v are visible to each other and Uu,v(β)
does not contain points in V which are visible from both u and v.

3 CMST Algorithm

Problem 1: Let a plane forest F = (V,E) with |V | = n points be given. Find
the minimum set S ⊆ E of edges such that F ⊆ CMST (V, S).

Putting it differently, we want to find the smallest subset S of edges of F
such that CMST (F ) is equal to CMST (V, S), although the weights of the two
trees may be different. Recall, that CMST (F ) = CMST (V,E) is the minimum
spanning tree of the weighted graph CV G(V,E) where each edge of E is assigned
weight 0, and every other edge is assigned a weight equal to its Euclidean length.

Let us begin by considering an example. We are given a tree F =
({v1, v2, v3}, {v1v2, v2v3}) (refer to Fig. 2(a)). Figure 2(b) shows CDT (F ).
Observe that CDT (F ) = DT ({v1, v2, v3}). In other words, CDT (F ) =
CDT ({v1, v2, v3}, ∅) and thus no constraints are required to construct CDT (F ).
However, this is not the case with CMST (F ). Obviously MST (CDT (F )) 	=
CMST (F ) (refer to Fig. 2(c)), because F � MST (CDT (F )). We need to iden-
tify the minimum set S ⊆ F of edges such that F = CMST (V, S). In this
example S = {v1v2, v2v3}.

A first idea is to construct an MST of EV G(V, ∅). Every edge of F that is
not part of MST (EV G(V, ∅)) should be forced to appear in CMST (F ). If we do
this by adding each such edge of F to S (recall that every edge in S has weight
0) then, unfortunately, some edges of F , that were part of MST (EV G(V, ∅)),
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v1
v2

v3

F

(a)

v1
v2

v3

CDT (F )

(b)

v1
v2

v3

MST (CDT (F ))

(c)

Fig. 2. Example showing relationship between input graph, its CDT and MST (CDT ).
(a) Input graph F . (b) No constraints are required to construct CDT (F ). (c) F �=
MST (CDT (F )). We need two constraints S = {v1v2, v2v3}.

will no longer be part of the MST of the updated graph. A correct approach
is to start with MST (EV G(V, ∅)) and eliminate every edge that is not part
of F and does not connect two disconnected components of F . Each such edge
e ∈ MST (EV G(V, ∅)) creates a cycle ce in F ∪ {e} and we have that ce ⊆
EV G(V, ∅). If e becomes the heaviest edge of ce then it will no longer be part
of MST . Thus, we add to S every edge of ce that is heavier than e. Although
this approach gives us a set S such that F ⊆ CMST (V, S), the set S of edges
with weight 0 may not be minimal. Consider the example of Fig. 3. We are given
a tree F = ({v1, v2, v3, v4}, {v1v2, v2v3, v3v4}) (refer to Fig. 3(a)). Every edge on
the path from v1 to v4 in F is heavier than v1v4 - an edge of MST (EV G(V, ∅))\F .
In order to eliminate v1v4 from the MST we assign the weight 0 to all the edges
of the path cv1v4 \ v1v4, i.e. S = {v1v2, v2v3, v3v4}. However, it is sufficient to
assign weight 0 only to the edge v2v3. In this case, CMST (V, {v2v3}) = F .

F
v1

v2

v3

v4

(a)

MST (EV G(V, ∅))
v1

v2

v3

v4

(b)

cv1v4
v1

v2

v3

v4

(c)

Fig. 3. Counterexample to the optimality of S = {v1v2, v2v3, v3v4}. The set S′ =
{v2v3} is optimal. (a) Input graph F = (V, E). (b) MST of V . (c) Cycle cv1v4 of the
graph F ∪ {v1v4}. Every edge on the path from v1 to v4 in F is heavier than v1v4.

Nevertheless, this approach is correct when applied to the MST of a different
graph. Instead of considering edges of MST (EV G(V, ∅)) we apply our idea to
MST (EV G(F )). Notice that EV G(F ) does not have edges that intersect edges
of F , and thus we will not encounter cases similar to the example of Fig. 3. Now
it may look like we will be missing important information by considering only a
subset of V G(V, ∅). Can we guarantee that CMST (V, S) will not contain edges
that intersect edges of F \ S? To answer this question, we prove the following
statement: CMST (V, S) ⊆ V G(F ) (Lemma 1). The basic algorithm for con-
structing S is given below. We prove its optimality by showing minimality of S
(Lemma 3). Later, we present an efficient implementation of this algorithm.
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Algorithm 1. S construction for CMST

Input: plane forest F = (V, E)
Output: minimum set S ⊆ E of constraints such that F ⊆ CMST (V, S)

1 Construct T ′ = MST (EV G(F )) ; // we show T ′ = MST (CDT (F ))
2 Initialize S = ∅;
3 foreach e′ ∈ T ′ do
4 if F ∪ {e′} creates a cycle ce′ then
5 foreach e ∈ ce′ do
6 if w(e) > w(e′) then
7 set S ← S ∪ {e}

We show the correctness of Algorithm 1 by proving the following lemmas.
We start by observing an interesting property of the edges of F that were not
added to S during the execution of the algorithm. The proof of the property can
be found in our full paper.

Property 1. Let S be the output of Algorithm 1 on the input plane forest F =
(V,E). Let T ′ = MST (EV G(F )). If e = uv ∈ F and e /∈ S then e ∈ T ′.

Lemma 1. Let S be the output of Algorithm 1 on the input plane forest F =
(V,E). We have CMST (V, S) ⊆ V G(F ).

Proof. Let e∗ = ab be an arbitrary edge of CMST (V, S). Assume to the contrary
that e∗ /∈ V G(F ) (and hence e∗ /∈ F and e∗ /∈ S). Thus there exists an edge of
F that intersects e∗. Notice, that this edge cannot be in S.

Let k (1 ≤ k ≤ n) be the number of edges of F that intersect e∗. Let
ei = cidi ∈ F be the edge that intersects e∗ at point xi, where i (0 ≤ i < k)
represents an ordering of edges ei according to the length |axi|. In other words,
the intersection point between e∗ and e0 is the closest to a among other edges
of F that intersect e∗. Refer to Fig. 4.

We prove this lemma in three steps. First we derive some properties of ei.
Then we show that both endpoints of e∗ are outside the disk with ei as a diameter
for every 0 ≤ i < k. We finalize the proof by showing that e∗ /∈ CGG(V, S) and
thus by Lemma 9 (establishing that CMST (V, S) ⊆ CGG(V, S), refer to Sect. 5)
we have e∗ /∈ CMST (V, S). This contradicts the definition of e∗ which leads to
the conclusion that e∗ ∈ V G(F ) (meaning that the intersection between e∗ and
an edge of F is not possible). Refer to our full paper for detailed proof. ��
Lemma 2. Let S be the output of Algorithm 1 on the input plane forest F =
(V,E). We have F ⊆ CMST (V, S).

Lemma 3. Let S be the output of Algorithm 1 on the input plane forest F =
(V,E). The set S is minimal and minimum.
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a

be∗e0

e1 ek−1

c0 c1

d0

x0

d1

x1

xk−1

ck−1

dk−1

Fig. 4. Intersection between e∗ ∈
CMST (V, S) and k edges of F . Notice
that the points x0, . . . , xk−1 do not
belong to V .

v1

v2

v3

v4

v5

v6

v7 v8
v9

vn

vn−1

vn−2

Fig. 5. Worst case example showing
n − 1 constraints. The input tree F is
drawn using solid lines. The MST of
the set {v1, v2, . . . vn} is dashed.

Lemmas 2 and 3 show the correctness of Algorithm 1 (see proofs in our full
paper). However, we said nothing about our strategy of finding cycles in the
graph. With a naive approach lines 3–7 of the algorithm could be quadratic
in n. Also, the size of the visibility graph of F can be quadratic in the size of
V , leading to the complexity of line 1 of the algorithm equal to O(n2 log n).
Our first step to improve the running time is to reduce the size of the graph
we construct MST for. We prove that MST (EV G(F )) ⊆ CDT (F ) (refer to our
full paper). It is then sufficient to construct CDT (F ), whose size is O(n). The
running time of line 1 then becomes O(n log n). Moreover, if F is a plane tree
then the construction of CDT (F ) can be performed in O(n) time [2].

We use the Link/Cut Tree of Sleator and Tarjan [9] to develop an efficient
solution for lines 3–7 of Algorithm 1. Refer to our full paper for a detailed descrip-
tion and implementation. The complexity of the algorithm becomes O(n log n).

If F ⊆ MST (V ) then F ⊆ CMST (V, ∅). In other words we do not require
constraints at all to obtain Constrained MST that will contain F . It is interesting
to consider the opposite problem. How big can the set of constraints be? Fig. 5
shows the worst-case example, where the set S of constraints contains all the
edges of F , thus |S| = n − 1.

4 Constrained β-skeleton Algorithm

Problem 2: We are given a plane graph I = (V,E) of |V | = n points and 1 ≤
β ≤ 2. Find the minimum set S ⊆ E of edges such that I ⊆ CGβ(V, S). In other
words, we are interested in the minimum S such that CGβ(V, S) = CGβ(I).

For the constrained Gabriel graph, the problem can be solved in a simpler
way. We can decide in constant time whether or not the edge e ∈ I should be a
constraint in CGG that contains I by considering at most two triangles adjacent
to e in CDT (I). We exploit the fact that S, constructed of all non locally Gabriel
edges of I, is necessary and sufficient. Refer to our full paper for details.
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Let u, v and p be a triple of vertices of V . Recall the definition of Uu,v(β);
see Sect. 2 and Fig. 6(a). If p ∈ Uu,v(β) and p is visible to both u and v, then we
say that the vertex p eliminates line segment uv. We prove in Lemma 9 (refer to
Sect. 5) that CRNG(I) = CGβ=2(I) ⊆ CG1≤β≤2(I) ⊆ CGβ=1(I) = CGG(I) ⊆
CDT (I). The following lemmas further explain a relationship between CGβ(I)
and CDT (I). Proofs of all the Lemmas of this section are in our full paper.

Lemma 4. Given a plane graph I = (V,E) and 1 ≤ β ≤ 2. Let p ∈ V be the
closest vertex to the edge uv ∈ CDT (I) that eliminates uv. Then �(u, v, p)∩V =
∅. Refer to Fig. 6.

The above lemma implies that if there exists an edge e∗ ∈ CDT (I) that lies
between p and uv, i.e. e∗ intersects the interior of �(u, v, p), then e∗ intersects
both line segments up and vp. Refer to Fig. 6(c). Notice, that e∗ cannot intersect
uv, since e∗, uv ∈ CDT (I).

Fig. 6. The neighbourhood Uu,v(β = 2) is highlighted in gray. (a) The vertex p ∈ V
eliminates uv. (b) If p is the closest vertex to uv ∈ CDT (I) that eliminates uv, then
	(u, v, p) ∩ V = ∅. (c) If p is the closest vertex to uv ∈ CDT (I) that eliminates uv,
then p ∈ Ue∗(β) for every edge of e∗ ∈ CDT (I) that lies between p and uv.

Lemma 5. Given a plane graph I = (V,E) and 1 ≤ β ≤ 2. Let p ∈ V be the
closest vertex to the edge uv ∈ CDT (I) that eliminates uv. Let e∗ = qw be an
edge of CDT (I) that intersects �(u, v, p). Then p ∈ Uq,w(β). Ref. to Fig. 6(c).

To solve our main problem we will use two geometric structures: elimination
path and elimination forest, introduced by Jaromczyk and Kowaluk in [5]. The
elimination path for a vertex p (starting from an adjacent triangle �(p, u, v) ∈
CDT (I)) is an ordered list of edges, such that p ∈ Ue(β) for each edge e of this
list. In the work [5] an edge e belongs to the elimination path induced by some
point p only if e is eliminated by p. In our problem this is not the case. The
point p eliminates e if and only if p ∈ Ue(β) and p is visible to both endpoints
of e. We show how to adapt the original elimination forest to our problem later
in this section. See our full paper for detailed definition of the elimination path.

Jaromczyk and Kowaluk show that a vertex cannot belong to the β-
neighbourhood U(β) of more than two edges for a particular triangle. Thus
elimination paths do not split. Moreover, they also show that if two elimination



64 P. Bose et al.

paths have a common edge e and they both reached e via the same triangle, then
starting from this edge one of the two paths is completely included in another
one. This property is very important-it guarantees that the elimination forest
can be constructed in linear time. Refer to [5,6] for further details.

Since we are dealing with CDT , the elimination paths defined via the original
construction may split at non-locally Delaunay edges. To overcome this problem
we terminate the propagation of the elimination path after a non-locally Delau-
nay edge is encountered and added to the path. Thus, the elimination forest for
our problem can also be constructed in linear time. It is shown in Lemma 2.3
in [5] that if two points eliminate a common edge of a triangle in DT (such that
both points are external to this triangle) then the two points can eliminate at
most one of the remaining edges of this triangle. Similarly, we can show that if
two points of V eliminate a common locally Delaunay edge e of an external tri-
angle in CDT then they can eliminate at most one of the remaining edges of the
triangle. It is due to the fact that there exists a circle that contains the endpoints
of e such that if any vertex v of V is in the interior of the circle then it cannot
be “seen” from at least one of the endpoints of e. It means that the point v does
not eliminate e,– the elimination path of v terminated at non-locally Delaunay
edge that obstructed visibility between v and one of the endpoints of e.

Lemmas 4 and 5 show that no important information will be lost as a result
of “shorter” elimination paths. Every non-locally Delaunay edge of CDT (I) is
a constraint and thus belongs to I. Edges of I obstruct visibility. Let p ∈ V
be the closest vertex to the edge uv ∈ CDT (I) that eliminates uv. Assume to
the contrary that uv is not on the elimination path from p because the path
terminated at non-locally Delaunay edge e∗ before the path could reach uv. By
Lemma 4 the edge e∗ intersects both line segments pu and pv. Refer to Fig. 6(c).
Since e∗ ∈ I, neither u nor v are visible to the point p. This contradicts the fact
that p eliminates uv. Lemma 6 further shows that if some edge e of I must be
a constraint in CGβ(I) then it will belong to at least one elimination path, and
in particular, to the path induced by the closest point to e that eliminates e.

Lemma 6. Given a plane graph I = (V,E) and 1 ≤ β ≤ 2. Let p ∈ V be the
closest vertex to the edge uv ∈ CDT (I) that eliminates uv. Then uv belongs to
the elimination path induced by p.

Each elimination path starts with a special node (we call it a leaf) that carries
information about the vertex that induced the current elimination path. A node
that corresponds to the last edge of a particular elimination path also carries
information about the vertex that started this path. The elimination forest is
build from bottom (leaves) to top (roots).

The elimination forest (let us call it ElF ) gives us a lot of information, but
we still do not know how to deal with visibility. The elimination path induced
by point p can contain locally Delaunay edges of I that may obstruct visibility
between p and other edges that are further on the path. We want to identify edges
that not only belong to the elimination path of some vertex p but whose both
endpoints are also visible to p. Observe, that visibility can only be obstructed by
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edges of I. Let us contract all the nodes of the ElF that correspond to edges not
in I. If a particular path is completely contracted, we delete its corresponding
leaf as well. Now the ElF contains only nodes of edges that belong to I together
with leaves, that identify elimination paths, that originally had at least one edge
of I. The correctness of our approach is supported by the following lemma.

Lemma 7. Given a plane graph I = (V,E), 1 ≤ β ≤ 2 and a contracted ElF
of CDT (I). There exists a vertex of V that eliminates uv ∈ I if and only if
the node nuv of the contracted ElF has a leaf attached to it.

We are ready to present an algorithm that finds the minimum set S ⊆ E of
edges such that I ⊆ CGβ(V, S) for constrained β-skeletons (1 ≤ β ≤ 2):

Algorithm 2. S construction for constrained β-skeletons
Input: plane graph I = (V, E) and 1 ≤ β ≤ 2
Output: minimum set S ⊆ E of constraints such that I ⊆ CGβ(V, S)

1 Construct CDT (I);
2 Initialize S = ∅;
3 Construct Elimination Forest (ElF ) of CDT (I);
4 foreach e /∈ E do
5 contract the node that corresponds to e in ElF ;
6 if a particular path is about to be contracted in full then
7 delete its corresponding leaf from ElF

8 foreach node ne (that corresponds to edge e) of Contracted ElF do
9 if ne has an immediate leaf attached to it then

10 set S ← S ∪ {e};

Let us discuss the correctness of Algorithm 2. Let S be the output of the
algorithm on the input plane graph I = (V,E). Notice that the following is true:
I ⊆ CGβ(V, S). Every edge of E that belongs to S also belongs to CGβ(V, S)
by definition. According to the algorithm, every edge of E \ S does not have a
leaf attached to a corresponding node in contracted ElF . By Lemma 7 none of
those edges has a vertex that eliminates it.

Lemma 8. Let S be the output of Algorithm 2 on the input plane graph I =
(V,E). The set S is minimum.

The running time of Algorithm 2 depends on the complexity of the first line.
Lines 2–10 can be performed in O(n) time. In the worst case the construction of
CDT (I) can take O(n log n) time. But for some types of input graph I this time
can be reduced. If I is a tree or a polygon, then CDT (I) can be constructed in
O(n) time. If I is a triangulation, then I = CDT (I) and thus the first line is
accomplished in O(1) time.
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5 Hierarchy

Proximity graphs form a nested hierarchy, a version of which was estab-
lished in [10]:

Theorem 1 (Hierarchy). In any Lp metric, for a fixed set V of points and
1 ≤ β ≤ 2, the following is true: MST ⊆ RNG ⊆ Gβ ⊆ GG ⊆ DT .

u

v

β = 1

β = 1.33 β = 1.67

β = 2

Fig. 7. Lune-based neighbourhoods for
1 ≤ β ≤ 2, where Uu,v(β = 1.33) is
dashed.

We show that proximity graphs pre-
serve the above hierarchy in the con-
straint setting (refer to Lemma 9). We
also show that the minimum set of con-
straints required to reconstruct a given
plane graph (as a part of each of those
neighbourhood graphs) form an inverse
hierarchy (refer to Lemma 10). See the
proofs of both lemmas in our full paper.

Lemma 9. Given a plane forest F =
(V,E) and 1 ≤ β ≤ 2, CMST (F ) ⊆
CRNG(F ) ⊆ CGβ(F ) ⊆ CGG(F ) ⊆
CDT (F ). Given a plane graph I = (V,E)
and 1 ≤ β ≤ 2, CRNG(I) ⊆ CGβ(I) ⊆
CGG(I) ⊆ CDT (I).

Lemma 10. Let SG denote the the minimum set of constraints of G. Given a
plane graph I = (V,E) and 1 ≤ β ≤ 2, SCRNG(I) ⊇ SCGβ(I) ⊇ SCGG(I) ⊇
SCDT (I). Given a plane forest F = (V,E) and 1 ≤ β ≤ 2, SCMST (F ) ⊇
SCRNG(F ) ⊇ SCGβ(F ) ⊇ SCGG(F ) ⊇ SCDT (F ).
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Plane Bichromatic Trees of Low Degree
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Abstract. Let R and B be two disjoint sets of points in the plane such
that |B| � |R|, and no three points of R ∪ B are collinear. We show that
the geometric complete bipartite graph K(R, B) contains a non-crossing

spanning tree whose maximum degree is at most max
{

3,
⌈

|R|−1
|B|

⌉
+ 1
}

;

this is the best possible upper bound on the maximum degree. This
solves an open problem posed by Abellanas et al. at the Graph Drawing
Symposium, 1996.

1 Introduction

Let R and B be two disjoint sets of points in the plane. We assume that the
points in R are colored red and the points in B are colored blue. Problems
related to bichromatic inputs have been studied extensively in computational
geometry, e.g., red-blue intersection [3,15], red-blue separation [4–6,9], and red-
blue connection problems [2,6,8,10,11,14]. As for an overview, see the excellent
survey of Kaneko and Kano [12]. In this paper we study non-crossing bichromatic
spanning trees, which is a red-blue connection problem.

We assume that R∪B is in general position, i.e., no three points of R∪B are
collinear. The geometric complete bipartite graph K(R,B) is the graph whose
vertex set is R ∪ B and whose edge set consists of all the straight-line segments
connecting a point in R to a point in B. A bichromatic tree on R∪B is a spanning
tree in K(R,B). A plane bichromatic tree is a bichromatic tree whose edges do
not intersect each other in their interior. A d-tree is defined to be a tree whose
maximum vertex degree is at most d.

If R ∪ B is in general position, then it is possible to find a plane bichromatic
tree on R ∪ B as follows. Take any red point and connect it to all the blue
points. Extend the resulting edges from the blue endpoints to partition the
plane into cones. Then, connect the remaining red points in each cone to a
suitable blue point on the boundary of that cone without creating crossings.
This simple solution produces trees possibly with large vertex degree. In this
paper we are interested in computing a plane bichromatic tree on R ∪ B whose
maximum vertex degree is as small as possible. This problem was first mentioned
by Abellanas et al. [1] in the Graph Drawing Symposium in 1996:

Problem 1. Given two disjoint sets R and B of points in the plane, with |B| �
|R|, find a plane bichromatic tree on R ∪B having maximum degree O(|R|/|B|).
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Assume |B| � |R|. Any bichromatic tree on R ∪ B has |R| + |B| − 1 edges.
Moreover, each edge is incident on exactly one blue point. Thus, the sum of the
degrees of the blue points is |R| + |B| − 1. This implies that any bichromatic
tree on R ∪ B has a blue point of degree at least |R|+|B|−1

|B| = |R|−1
|B| + 1. Since

the degree is an integer,
⌈

|R|−1
|B|

⌉
+ 1 is the best possible upper bound on the

maximum degree.
For cases when |R| = |B| or |R| = |B| + 1 it may not

always be possible to compute a plane bichromatic tree of degree⌈
|R|−1

|B|
⌉

+1 = 2, i.e., a plane bichromatic path; see the example
in the figure on the right which is borrowed from [2]; by adding
one red point to the top red chain, an example for the case when
|R| = |B| + 1 is obtained. In 1998, Kaneko [11] posed the following conjecture.

Conjecture 1 (Kaneko [11]). Let R and B be two disjoint sets of points in the
plane such that |B| � |R| and R ∪ B is in general position, and let k =

⌈
|R|
|B|

⌉
.

If k � 2, then there exists a plane bichromatic tree on R ∪ B whose maximum
vertex degree is at most k + 1.

1.1 Previous Work

Assume |B| � |R| and let k =
⌈

|R|
|B|

⌉
. Abellanas et al. [2] proved that there exists

a plane bichromatic tree on R∪B whose maximum vertex degree is O(k+log |B|).
Kaneko [11] proved the existence of such a tree of degree at most 3k. For the
case where |R| = |B|, i.e. k = 1, Kaneko [11] showed how to construct a plane
bichromatic tree of maximum degree three.

Abellanas et al. [2] considered the problem of computing a low degree plane
bichromatic tree on some restricted point sets. They proved that if R ∪ B is
in convex position and |R| = k|B|, with k � 1, then R ∪ B admits a plane
bichromatic tree of maximum degree k + 2. If R and B are linearly separable
and |R| = k|B|, with k � 1, they proved that R ∪ B admits a plane bichromatic
tree of maximum degree k + 1. They also obtained a degree of k + 1 for the case
when B is equal to the set of points on the convex hull of R ∪ B.

Kano et al. [13] considered the problem of computing a spanning tree (not
necessarily plane) of low degree in a (not necessarily complete) connected bipar-
tite graph G with bipartition (R,B). They showed that if |B| � |R| � k|B| + 1,
with k � 1, and σ(G) � |R|, then G has a spanning (k + 1)-tree, where σ(G)
denotes the minimum degree sum of k + 1 independent vertices of G.

The problem of computing a plane tree of low degree on multicolored point
sets (with more than two colors) is considered in [6,14].

A related problem is to compute a plane bichromatic Euclidean minimum
spanning tree on R ∪B. This problem is NP-hard [8]. The best polynomial-time
algorithm known so far for this problem has approximation factor O(

√
n), where

n is the total number of points [8].
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1.2 Our Contribution

Our main result is the following theorem that is even sharper than Conjecture 1.

Theorem 1. Let R and B be two disjoint sets of points in the plane such that
|B| � |R| and R ∪ B is in general position, and let δ =

⌈
|R|−1

|B|
⌉
. Then, there

exists a plane bichromatic tree on R∪B whose maximum vertex degree is at most
max{3, δ + 1}; this is the best possible upper bound on the maximum degree.

The core of our contribution is given in Sect. 2, where we partially prove
Conjecture 1: If |R| = k|B|, with k � 2, and R ∪ B is in general position, then
there exists a plane bichromatic tree on R ∪ B whose maximum degree is k + 1.
We present a constructive proof for obtaining such a tree. Based on the algorithm
of Sect. 2, we prove the full Conjecture 1 and Theorem 1 in the full version of
this paper (see [7]). As we will see, the proofs are simple for δ � 4. However, for
smaller values of δ, the proofs are much more involved.

2 Plane Bichromatic (k + 1)-trees

In this section we prove Conjecture 1 for the case when |R| = k|B| and k � 2:

Theorem 2. Let R and B be two disjoint sets of points in the plane, such that
|R| = k|B|, with k � 2, and R ∪ B is in general position. Then, there exists a
plane bichromatic tree on R ∪ B whose maximum vertex degree is at most k + 1.

Note that any bichromatic tree on R∪B has |B|+|R|−1 = (k+1)|B|−1 edges.
Since each edge is incident to exactly one blue point, the sum of the degrees of
the blue points is (k + 1)|B| − 1. This implies the following observation:

Observation 1. Let R and B be disjoint sets of points in the plane such that
|R| = k|B|, with k � 1 is an integer. Then, in any bichromatic (k + 1)-tree on
R ∪ B, one point of B has degree k and each other point of B has degree k + 1.

In order to prove Theorem 2 we provide some notation and definitions. Let
P be a set of points in the plane. We denote by CH(P ) the convex hull of P .
For two points p and q in the plane, we denote by (p, q) the line segment whose
endpoints are p and q. Moreover, we denote by �(p, q) the line passing through
p and q. For a node p in a tree T we denote by dT (p) the degree of p in T . Let
p be a vertex of CH(P ). The radial ordering of P − {p} around p is obtained
as follows. Let p1 and p2 be the two vertices of CH(P ) adjacent to p such that
the clockwise angle ∠p1pp2 is less than π. For each point q in P − {p}, define
its angle around p—with respect to p1— to be the clockwise angle ∠p1pq. Then
the desired radial ordering is obtained by ordering the points in P − {p} by
increasing angle around p.

We start by proving two lemmas that play important roles in the proof of
Theorem 2.
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Lemma 1. Let R and B be two sets of red and blue points in the plane, respec-
tively, such that |B| � 1, k(|B| − 1) < |R| � k|B|, with k � 2, and R ∪ B is
in general position. Define α = |R| − k(|B| − 1), hence 0 < α � k. Let b1, b, b2
be blue points that are counter clockwise consecutive on CH(R ∪ B). Then, in
the radial ordering of R ∪ B − {b} around b, there are α consecutive red points,
r1, . . . , rα, such that |R1| = k|B1| + 1 and |R2| = k|B2| + 1, where R1 (resp.
B1) is the set of red points (resp. blue points) of R ∪ B − {b} lying on or to the
left of �(b, r1), and R2 (resp. B2) is the set of red points (resp. blue points) of
R ∪ B − {b} lying on or to the right of �(b, rα).

Proof. By a suitable rotation of the plane, we may assume that b is the lowest
point of CH(R ∪ B), and b1 (resp. b2) is to the left (resp. right) of the vertical
line passing through b. Note that b1 is the first point and b2 is the last point in
the clockwise radial ordering of R ∪ B − {b} around b. See Fig. 1. We define the
function f as follows: For every point x in this radial ordering,

f(x) =k · (the number of points of B − {b} lying on or to the left of �(b, x))
− (the number of points of R lying on or to the left of �(b, x)).

Fig. 1. k consecutive red points
in the radial ordering around b.
(Color figure online)

Based on this definition, we have f(b1) = k �
2 and f(b2) = k(|B| − 1) − |R| = −α � −1.
Along this radial ordering, the value of f
changes by +k at every blue point and by −1
at every red point. Since f(b1) > 0 > f(b2),
there exists a point in the radial ordering for
which f equals 0. Let v be the last point in
the radial ordering where f(v) = 0. Since b2
increases f by +k and f(b2) � −1, there are
at least k + 2 points strictly after v in the
radial ordering. Let S = (r1, . . . , rk) be the
sequence of k points strictly after v in the
radial ordering.

Claim: The points of S are red. For the sake of contradiction assume some points
of S are blue. Let i be the minimum index in {1, . . . , k} where ri is blue. Then,
the (i − 1) points of S that are before ri are red. Thus,

f(ri) = f(v) − (i − 1) + k = k − i + 1 > 0.

Since f(ri) > 0 > f(b2), there exists a point between ri and b2 in the radial
ordering for which f equals 0. This contradicts the fact that v is the last point
in the radial ordering with f(v) = 0. This proves the claim.
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Thus, each ri ∈ S is red. Moreover, f(ri) = −i. We show that the subsequence
S′ = (r1, . . . , rα) of S satisfies the statement of the lemma; note that, by defini-
tion, α � k. Having r1 and rα, we define R1, B1, R2 and B2 as in the statement of
the lemma. See Figure 1. By definition of f , we have f(r1) = k|B1| − |R1| = −1,
and hence |R1| = k|B1| + 1. Moreover,

|R2| = |R| − |R1| − |S′| + 2 = |R| − (k|B1| + 1) − (|R| − k(|B| − 1)) + 2
= k(|B| − |B1| − 1) + 1 = k|B2| + 1,

where |S′| is the number of elements in the sequence S′. Note that R2 = (R −
(R1 ∪S′))∪{rα}. Since r1 belongs to both R1 and S′, and rα belongs to R2, the
term “+2” in the first equality is necessary (even for the case when r1 = rα).
The last equality is valid because B2 = B − (B1 ∪{b}). This completes the proof
of the lemma. ��

r2r1

R1, B1 R2, B2

r

b

k-α α

)b()a(

Fig. 2. (a) 0 < f(b) = α < k, (b) f(b) = 0, and b, b′ are consecutive blue points. (Color
figure online)

Lemma 2. Let R and B be two sets of red and blue points in the plane, respec-
tively, such that |B| � 1, |R| = k|B| + 1, with k � 2, and R ∪ B is in gen-
eral position. Let r1, r, r2 be red points that are counter clockwise consecutive on
CH(R ∪ B). Then, one of the following statements holds:

1. There exists a blue point b in the radial ordering of (R ∪ B) − {r} around r,
such that |R1| = k(|B1| − 1) + k − α and |R2| = k(|B2| − 1) + α, where R1

(resp. B1) is the set of red points (resp. blue points) of (R ∪ B) − {r} lying
on or to the left of �(r, b), R2 (resp. B2) is the set of red points (resp. blue
points) of (R ∪ B) − {r} lying on or to the right of �(r, b), and 0 < α < k.

2. There exist two consecutive blue points b and b′ in the radial ordering of
(R ∪ B) − {r} around r, such that |R1| = k|B1| and |R2| = k|B2|, where R1

(resp. B1) is the set of red points (resp. blue points) of (R∪B)−{r} lying on
or to the left of �(r, b) and R2 (resp. B2) is the set of red points (resp. blue
points) of (R ∪ B) − {r} lying on or to the right of �(r, b′).

Proof. By a suitable rotation of the plane, we may assume that r is the lowest
point of CH(R ∪ B), and r1 (resp. r2) is to the left (resp. right) of the vertical
line passing through r. Note that r1 is the first point and r2 is the last point in
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the clockwise radial ordering of (R ∪ B) − {r} around r. See Fig. 2. We define
the function f as follows: For every point x in this radial ordering,

f(x) =k · (the number of points of B lying on or to the left of �(r, x))
− (the number of points of R − {r} lying on or to the left of �(r, x)).

Based on this definition, we have f(r1) = −1 and f(r2) = k|B| − (|R| − 1) = 0.
Along this radial ordering, the value of f changes by +k at every blue point and
by −1 at every red point. Let v be the point before r2 in the radial ordering. Since
r2 decreases f by −1 and f(r2) = 0, we have f(v) = 1. Since f(r1) < 0 < f(v),
there exists a point b between r1 and v in the radial ordering such that f(b) � 0
and f is negative at b’s predecessor. Let b be the last such point between r1 and
v; it may happen that b = v. Observe that b is blue and f(b) < k. We consider
two cases, depending on whether 0 < f(b) < k or f(b) = 0.

• 0 < f(b) < k. Since b is blue and r2 is red, there is at least one point after b in
the radial ordering. Define R1, B1, R2 and B2 as in the first statement of the
lemma. See Fig. 2(a). Let α = f(b). By definition of f , we have α = f(b) =
k|B1| − |R1|, and hence |R1| = k|B1| − α = k(|B1| − 1) + k − α. Moreover,

|R2| = |R| − |R1| − 1 = (k|B| + 1) − (k|B1| − α) − 1
= k(|B| − |B1|) + α = k(|B2| − 1) + α,

where the last equality is valid because b belongs to both B1 and B2.
• f(b) = 0. In the radial ordering there are at least k + 1 points after b since a

red point only decreases the value of f and f(r2) = 0. Let b′ be the successor
of b in the radial ordering. The point b′ is blue: If b′ is red, we have f(b′) =
−1 < 0 < f(v) and, thus, there exists a point b′′ between b′ and v such that
f(b′′) � 0 and f is negative at the predecessor of b′′, contradicting our choice
of b. Define R1, B1, R2 and B2 as in the second statement of the lemma
(Fig. 2(b)). Since f(b) = k|B1| − |R1| = 0, |R1| = k|B1|. Moreover,

|R2| = |R| − |R1| − 1 = (k|B| + 1) − k|B1| − 1 = k(|B| − |B1|) = k|B2|,

which completes the proof of the lemma.

2.1 Proof of Theorem 2

We use Lemmas 1 and 2 to prove Theorem 2. Let R and B be two disjoint
sets of points in the plane, such that |R| = k|B|, with k � 2, and R ∪ B is in
general position. We will present an algorithm, plane-tree, that constructs a plane
bichromatic tree of maximum degree k + 1 on R ∪ B such that each red vertex
has degree at most 3. This algorithm uses two procedures, proc1 and proc2:
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plane-tree(R, B)

Input: A set R of red points and a non-empty set B of blue points, where |R| =
k|B|, with k � 2, and R ∪ B is in general position.
Output: A plane bichromatic (k + 1)-tree on R ∪ B such that each red vertex
has degree at most 3.

proc1(R, B, b)

Input: A set R of red points, a non-empty set B of blue points, and a point
b ∈ B, where k(|B| − 1) < |R| � k|B|, with k � 2, and b is on CH(R ∪ B).
Output: A plane bichromatic (k+1)-tree T on R∪B where dT (b) = |R|−k(|B|−1)
and each red vertex has degree at most 3.

proc2(R, B, r)

Input: A set R of red points, a non-empty set B of blue points, and a point
r ∈ R, where |R| = k|B| + 1, with k � 2, and r is on CH(R ∪ B).
Output: A plane bichromatic (k + 1)-tree T on R ∪ B where dT (r) ∈ {1, 2} and
each other red vertex has degree at most 3.

First we describe each of the procedures proc1 and proc2. Then we describe
algorithm plane-tree. The procedures proc1 and proc2 will call each other. As
we will see in the description of these procedures, when proc1 or proc2 is called
recursively, the call is always on a smaller point set. We now describe the base
cases for proc1 and proc2.

The base case for proc1 happens when |B| = 1, i.e., B = {b}. In this case,
we have 1 � |R| � k and 2 � |R ∪ B| � k + 1. We connect all points of R to b,
and return the resulting star as a desired tree T where dT (b) = |R| and each red
vertex has degree 1.

The base case for proc2 happens when |B| = 1; let b be the only point in B.
In this case, we have |R| = k + 1 and |R ∪ B| = k + 2. We connect all points
of R to b, and return the resulting star as a desired tree T where dT (b) = k + 1
and each red vertex has degree 1.

In Sect. 2.1.1 we describe proc1(R,B, b), whereas proc2(R,B, r) will be
described in Sect. 2.1.2. In these two sections, we assume that both proc1 and
proc2 are correct for smaller point sets.

2.1.1 Procedure proc1

The procedure proc1(R,B, b) takes as input a set R of red points, a set B of blue
points, and a point b ∈ B, where |B| � 2, k(|B| − 1) < |R| � k|B|, with k � 2,
and b is on CH(R ∪ B). Let α = |R| − k(|B| − 1), and notice that 1 � α � k.
This procedure computes a plane bichromatic (k +1)-tree T on R ∪B such that
dT (b) = α and each red vertex has degree at most 3. Depending on whether or
not two points of CH(R ∪ B) adjacent to b belong to B, we have two cases.
Case 1: Both vertices of CH(R ∪ B) adjacent to b belong to B. We apply
Lemma 1 on R, B, and b. Consider the α consecutive red points, r1, . . . , rα, and
the sets R1, R2, B1, and B2 in the statement of Lemma 1. Note that r1 is a red
point on CH(R1 ∪ B1) and rα is a red point on CH(R2 ∪ B2). We distinguish
between two cases: 1 < α � k and α = 1.
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Case 1.1: 1 < α � k. In this case r1 �= rα. Moreover CH(R1 ∪B1) and CH(R2 ∪
B2) are disjoint. Let T1 be the plane bichromatic (k + 1)-tree obtained by
running proc2 on R1, B1, r1; note that dT1(r1) ∈ {1, 2}, all other red points
in T1 have degree at most 3, and |R1 ∪ B1| < |R ∪ B|. Similarly, let T2 be
the plane bichromatic (k + 1)-tree obtained by running proc2 on R2, B2, rα;
note that dT2(rα) ∈ {1, 2}, all other red points in T2 have degree at most
3, and |R2 ∪ B2| < |R ∪ B|. Let S be the star obtained by connecting the
vertices r1, . . . , rα to b. Then, we obtain a desired tree T = T1 ∪ T2 ∪ S. See
Fig. 1. T is a plane bichromatic (k + 1)-tree on R ∪ B with dT (r1) ∈ {2, 3},
dT (rα) ∈ {2, 3}, dT (b) = α, and dT (ri) = 1 where 1 < i < α.

Case 1.2: α = 1. In this case r1 = rα and |R| = k(|B| − 1) + 1. Moreover,
r1 ∈ R1 ∩R2. If we handle this case as in the previous case, then it is possible
for r1 to be incident on two edges in each of T1 and T2, and incident on one
edge in S. This makes dT (r1) = 5. If k � 4, then T is a desired (k + 1)-tree.
But, if k = 2, 3, then T would not be a (k +1)-tree. Thus, we handle the case
when α = 1 differently.
Let x1 and y1 be the two blue neighbors of b on CH(R ∪ B). By a suitable
rotation of the plane, we may assume that b is the lowest point of CH(R ∪
B), and x1 (resp. y1) is to the left (resp. right) of the vertical line passing
through b. Let C1 = (x1, . . . , xj = r1) be the sequence of points on the
boundary of CH(R1 ∪ B1) from x1 to r1 that are visible from b. Similarly,
define C2 = (y1, . . . , r1) on CH(R2 ∪ B2). See Fig. 3. Let xs be the first red
point in the sequence C1, and let yt be the first red point in the sequence
C2. Note that s, t � 2. It is possible for xs or yt or both to be r1. Consider
the subsequences C ′

1 = (x1, . . . , xs) and C ′′
1 = (xs, . . . , r1) of C1 as depicted

in Fig. 3(a). Similarly, consider the subsequences C ′
2 = (y1, . . . , yt) and C ′′

2 =
(yt, . . . , r1) of C2. Let l1 and l2 be the lines passing through (xs−1, xs) and
(yt−1, yt), respectively. l1 is tangent to CH(R1 ∪ B1) and l2 is tangent to
CH(R2 ∪ B2).
We consider two cases, depending on whether or not l1 intersects C2 and l2
intersects C1.
Case 1.2.1: l1does not intersect C2, or l2does not intersect C1. Because of

symmetry, we assume that l1 does not intersect C2. Note that in this case
l1 does not intersect the interior of CH(R ∪ B − {b}). Let R′ = R and
B′ = B−{b}; note that |R′| = |R| = k(|B|−1)+1 = k|B′|+1. In addition,
xs is on CH(R′∪B′). See Fig. 3(a). Let T ′ be the plane bichromatic (k+1)-
tree obtained by proc2(R′, B′, xs). Note that dT ′(xs) ∈ {1, 2}, all other
red points in T ′ have degree at most 3, and |R′ ∪B′| < |R∪B|. We obtain
a desired tree T = T ′ ∪ {(b, xs)}. T is a plane bichromatic(k + 1)-tree on
R ∪ B with dT (b) = α = 1 and dT (xs) ∈ {2, 3}.

Case 1.2.2: l1intersects C2, and l2intersects C1. We consider two cases:
Case 1.2.2.1: l1intersects C ′

2, or l2intersects C ′
1. Because of symmetry,

we assume that l1 intersects C ′
2. Let (yi, yi+1), with 1 � i < t, be the

leftmost edge of C ′
2 that is intersected by l1 (note that l1 may intersect

two edges of C ′
2). Observe that yi is a blue point. Let R′

1 = R1−{xs},
B′

1 = B1, R′
2 = R2 − {r1} and B′

2 = B2 as shown in Fig. 3(b). Note
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that |R′
1| = k|B′

1| and |R′
2| = k|B′

2|. In addition, CH(R′
1 ∪ B′

1) and
CH(R′

2 ∪ B′
2) are disjoint, xs−1 is a blue point on CH(R′

1 ∪ B′
1), and

yi is a blue point on CH(R′
2 ∪ B′

2). Let T1 be the plane bichromatic
(k + 1)-tree obtained by the recursive call proc1(R′

1, B
′
1, xs−1), and

let T2 be the plane bichromatic (k +1)-tree obtained by the recursive
call proc1(R′

2, B
′
2, yi). Note that dT1(xs−1) = k, dT2(yi) = k, all red

points in T1 and T2 have degree at most 3, |R′
1 ∪ B′

1| < |R ∪ B|,
and |R′

2 ∪ B′
2| < |R ∪ B|. We obtain a desired tree T = T1 ∪ T2 ∪

{(b, xs), (xs−1, xs), (yi, xs)}; see Fig. 3(b). T is a plane bichromatic
(k+1)-tree on R∪B with dT (b) = α = 1, dT (xs) = 3, dT (xs−1) = k+1
and dT (yi) = k + 1.

Case 1.2.2.2: l1intersects C ′′
2 , and l2intersects C ′′

1 . In this case Q =
(xs−1, xs, yt, yt−1) is a convex quadrilateral because l1∩ (yt−1, yt) = ∅
and l2 ∩ (xs−1, xs) = ∅. Moreover, Q does not have any point of
R ∪ B in its interior and it has no intersection with the interiors of
CH(R1 ∪ B1) and CH(R2 ∪ B2). We handle this case as in Case
1.2.2.1 with the blue point yt−1 playing the role of yi. Observe that
this construction gives a valid tree even if xs = yt = r1.

b

r1
R1, B1 R2, B2

x1 x2 xs-1 xs
y1y2yt-1

yt
l1

l2

C ′
1

C ′
2

R′, B′

C ′′
1

C ′′
2

b

r1

R′
1, B

′
1 R′

2, B
′
2

x1 x2 xs-1
xs

y1
y2

yt-1
yt

l1

l2

yi

yi+1

)b()a(

Fig. 3. (a) l1 does not intersect the interior of CH(R ∪ B), and (b) l1 intersects C′
2.

(Color figure online)

Case 2: At least one of the vertices on CH(R ∪ B) adjacent to b does not
belong to B. Let x1 be such a vertex that belongs to R. Initialize X = {x1}. If
at least one of the vertices of CH((R − X) ∪ B) adjacent to b does not belong
to B, let x2 be such a red point. Add x2 to the set X. Repeat this process on
CH((R − X) ∪ B) until |X| = α or both neighbors of b on CH((R − X) ∪ B)
are blue points. Let x1, . . . , xβ be the sequence of red points added to X in this
process. After this process we have |X| = β, where 1 � β � α. Let S1 be the
star obtained by connecting all points of X to b. See Fig. 4 where S1 is shown
with green bold edges. Observe that dS1(b) = β. We distinguish between two
cases: β = α and 1 � β < α.
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b

x1x4

R1, B1

x2
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x3
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x2
xβ

γ

)b()a(

Fig. 4. The edges in S1 are in bold where (a) β = α, and (b) 1 � β < α. (Color figure
online)

Case 2.1: β = α. Let R1 = (R − X) ∪ {xα} and B1 = B − {b}. See Fig. 4(a).
Note that xα is a red point on CH(R1 ∪ B1) and

|R1| = |R| − α + 1 = |R| − (|R| − k(|B| − 1)) + 1 = k|B1| + 1.

Let T1 be the plane bichromatic (k + 1)-tree obtained by proc2(R1, B1, xα)
with dT1(xα) ∈ {1, 2} and all other red points in T1 are of degree at most
3. Note that |R1 ∪ B1| < |R ∪ B|. We obtain a desired tree T = T1 ∪ S1.
T is a plane bichromatic (k + 1)-tree on R ∪ B with dT (xα) ∈ {2, 3} and
dT (b) = α = |R| − k(|B| − 1) as required.

Case 2.2: 1 � β < α. In this case both vertices of CH((R − X) ∪ B) adjacent to
b are blue points. Let R1 = R − X and B1 = B. See Fig. 4(b). Let γ = α − β
and note that 1 � γ < α � k. Then,

|R1| = |R| − β = (k(|B| − 1) + α) − β = k(|B1| − 1) + γ.

Thus, k(|B1| − 1) < |R1| � k|B1|. Let T1 be the plane bichromatic (k + 1)-
tree obtained by the recursive call proc1(R1, B1, b) with dT1(b) = γ and all
red points of T1 are of degree at most 3. Note that |R1 ∪ B1| < |R ∪ B|. We
obtain a desired tree T = T1 ∪ S1. T is a plane bichromatic (k + 1)-tree on
R ∪ B with dT (b) = β + γ = α.

2.1.2 Procedure proc2

The procedure proc2(R,B, r) takes as input a set R of red points, a set B of
blue points, and a point r ∈ R, where |B| � 2, |R| = k|B|+1, with k � 2, and r
is on CH(R ∪ B). This procedure computes a plane bichromatic (k + 1)-tree T
on R ∪ B where dT (r) ∈ {1, 2} and each other red vertex has degree at most 3.
We consider two cases, depending on whether or not both points of CH(R ∪ B)
adjacent to r belong to R.

Case 1: At least one of the vertices on CH(R∪B) adjacent to r does not belong
to R. Let b be such a point belonging to B. Let R1 = R − {r}, B1 = B. Note
that |R1| = k|B1|, and b is on CH(R1 ∪ B1). Let T1 be the plane bichromatic
(k + 1)-tree obtained by proc1(R1, B1, b) with dT1(b) = k and all red points of
T1 are of degree at most 3. Note that |R1 ∪ B1| < |R ∪ B|. Then, we obtain a
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desired tree T = T1 ∪ {(r, b)}. T is a plane bichromatic (k + 1)-tree on R ∪ B
with dT (b) = k + 1 and dT (r) = 1.

Case 2: Both vertices of CH(R ∪ B) adjacent to r belong to R. In this case,
by Lemma 2 there are two possibilities:

Case 2.1: The first statement in Lemma 2 holds. Consider the blue point b and
the sets R1, R2, B1, and B2 in this statement. Note that b is a blue point
on CH(R1 ∪ B1) and on CH(R2 ∪ B2). Let T1 and T2 be the plane bichro-
matic (k+1)-trees obtained by running proc1(R1, B1, b) and proc1(R2, B2, b),
respectively. Note that dT1(b) = k−α, dT2(b) = α, all red points of T1 and T2

have degree at most 3, |R1∪B1| < |R∪B|, and |R2∪B2| < |R∪B|. We obtain
a desired tree T = T1 ∪ T2 ∪ {(r, b)}. See Fig. 2(a). T is a plane bichromatic
(k + 1)-tree on R ∪ B with dT (r) = 1 and dT (b) = (k − α) + α + 1 = k + 1.

Case 2.2: The second statement in Lemma 2 holds. Consider the blue points b, b′

and the sets R1, R2, B1, and B2 in this statement. Note that b is a blue point on
CH(R1∪B1) and b′ is a blue point on CH(R2∪B2). Let T1 and T2 be the plane
bichromatic (k + 1)-trees obtained by proc1(R1, B1, b) and proc1(R2, B2, b

′).
Note that dT1(b) = k, dT2(b

′) = k, all red points of T1 and T2 have degree at
most 3, |R1 ∪B1| < |R ∪B|, and |R2 ∪B2| < |R ∪B|. We obtain a desired tree
T = T1∪T2∪{(r, b), (r, b′)}. See Fig. 2(b). T is a plane bichromatic (k+1)-tree
on R ∪ B with dT (b) = k + 1, dT (b′) = k + 1, and dT (r) = 2.

2.1.3 Algorithm plane-tree

Algorithm plane-tree(R,B) takes as input a set R of red points and a non-empty
set B of blue points, where |R| = k|B|, with k � 2, and R ∪ B is in general
position. This algorithm constructs a plane bichromatic (k + 1)-tree T on R ∪B
such that each red vertex has degree at most 3. By Observation 1, T has one blue
vertex of degree k and the other blue vertices are of degree k + 1. We consider
two cases, depending on whether or not all vertices of CH(R ∪ B) belong to R.

Case 1: At least one of the vertices of CH(R ∪ B) belongs to B. Let b be such
a vertex. Let T be the tree obtained by running proc1(R,B, b). T is a plane
bichromatic (k + 1)-tree on R ∪ B with dT (b) = k and all red vertices of T are
of degree at most 3. Notice that b is the only blue vertex of degree k in T .

R1, B1 R2, B2b

b′

r′ a

Fig. 5. A dummy red point r′ is
placed very close to a. (Color figure
online)

Case 2: All vertices of CH(R ∪ B) belong
to R. Let a be an arbitrary red point on
CH(R ∪ B). By a suitable rotation of the
plane, we may assume that a is the lowest
point of CH(R ∪ B). We add a dummy red
point r′ at a sufficiently small distance ε to
the left of a such that the radial ordering of
the points in (R ∪ B) − {a} around r′ is the
same as their radial ordering around a. See
Fig. 5. Now we consider the radial ordering of
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the points in R ∪ B (including a) around r′. We apply Lemma 2 with r′ playing
the role of r. There are two possibilities:

Case 2.1: The first statement in Lemma 2 holds. Consider the blue point b and
the sets R1, R2, B1, and B2 as in the first statement of Lemma 2. Note
that a ∈ R2, r′ /∈ R1 ∪ R2, and b is a blue point on CH(R1 ∪ B1) and on
CH(R2∪B2). Let T1 and T2 be the plane bichromatic (k+1)-trees obtained by
proc1(R1, B1, b) and proc1(R2, B2, b), respectively. Note that dT1(b) = k − α,
dT2(b) = α, and all red vertices of T1 and T2 have degree at most 3. We obtain
a desired tree T = T1 ∪ T2 with dT (b) = k − α + α = k; b is the only blue
vertex of degree k in T .

Case 2.2: The second statement in Lemma 2 holds. Consider the blue points b, b′

and the sets R1, R2, B1, and B2 as in the second statement of Lemma 2.
Note that a ∈ R2, r′ /∈ R1 ∪ R2, b is a blue point on CH(R1 ∪ B1), and
b′ is a blue point on CH(R2 ∪ B2). If we compute trees on R1 ∪ B1 and
R2 ∪ B2 and discard r′, as we did in the previous case, then the resulting
graph is not connected and hence it is not a tree. Thus, we handle this case
in a different way. First we remove a from R2 as shown in Fig. 5; this makes
|R2| = k|B2| − 1 = k(|B2| − 1) + (k − 1). Note that CH(R1 ∪ B1) and
CH(R2 ∪ B2) are disjoint. Let T1 and T2 be the plane bichromatic (k + 1)-
trees obtained by proc1(R1, B1, b) and proc1(R2, B2, b

′), respectively. Note
that dT1(b) = k, dT2(b

′) = k − 1, and red vertices of T1 and T2 have degree at
most 3. We obtain a desired tree T = T1 ∪T2 ∪{(a, b), (a, b′)} with dT (a) = 2
and dT (b) = k + 1 and dT (b′) = k; b′ is the only vertex of degree k in T .

This concludes the description of algorithm plane-tree. The pseudo code for
proc1, proc2, and plane-tree are given in the full version of the paper (see [7]).

A simple reduction from the convex hull problem shows that the computation
of a plane bichromatic spanning tree has an Ω(n log n) lower bound. Using a
worst-case deletion-only convex hull data structure, we can compute the tree in
Theorems 2, and hence the tree in Theorem 1, in O(n · polylog(n)) time.
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Abstract. A connected road network with N nodes and L edges has
K ≤ L edges identified as one-way roads. In a feasible direction, these
one-way roads are assigned a direction each, so that every node can reach
any other [Robbins ’39]. Using O(L) preprocessing time and space usage,
it is shown that all feasible directions can be found in O(K) amortized
time each. To do so, we give a new algorithm that lists all the strong
orientations of an undirected connected graph with m edges in O(m)
amortized time each, using O(m) space. The cost can be deamortized to
obtain O(m) delay with O(m2) preprocessing time and space.

1 Introduction

Consider a road network as a connected network with N nodes that correspond
to road intersections, and L edges that correspond to road traits. Of the latter,
K ≤ L are tagged as one-way roads whose direction must be decided, whereas
the rest are two-way roads taken in both directions. The network has a feasible
direction if there is an assignment of direction to each one-way road, so that
from every node it is possible to reach all the other ones in the network. The
problem of finding a feasible direction in a road network has been studied since
Robbins’ theorem, which gives the necessary and sufficient conditions [21]. In
particular, the problem is named one-way street problem in [22].

Problem Definition. This paper addresses the problem of discovering all the
feasible directions in the one-way street problem, which might find application
in situations where no clear apriori optimality criterion is available for directing
the network, and multiple criteria must be tailored for the special situation at
hand (e.g. some populous areas of big cities, which contain many narrow one-
way roads). We reduce the problem of finding feasible directions in the road
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Algorithmics for MAssive and Networked DAta.
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Fig. 1. Two ear decompositions (left and right) and a so obtained from both (center)

network to the problem of finding strong orientations of an undirected graph
G with n ≤ 2K nodes and m ≤ 2K edges, where each strong orientation (so
afterwards) of G produces a distinct directed graph that is strongly connected,
that is, every node can reach any other node.

Related Work. Several papers by Roberts and Xu deal with these feasible direc-
tions [23–26] in the one-way street problem. The results reduce the latter to the
problem of finding a so of a mixed multigraph, which is a multigraph where both
directed and undirected edges coexist. Robbins’ theorem has been extended by
Boesch and Tindel [3] accordingly, and Chung et al. [7] describe a linear time
algorithm for finding a strong orientation in a mixed multigraph. In our reduc-
tion to listing sos, however, we have the additional requirement of preserving
all feasible directions in the reduction (see Sect. 2).

Some variations of the one-way street problem have been considered with the
purpose of minimizing the average [11] or the maximum [12,13,15,19] distance
among all pairs of nodes, both of which are NP-hard problems [8,20] (see [18] for
a survey). Moreover, the minimum diameter among all the strong orientations
of a given graph has been shown to be related with its domination number [12].
Other variations consider, for instance, the distance stretch for each pair of
nodes [16], other connectivity constraints [1], cost-based constraints [5], degree-
based constraints [2], and forced orientations [6].

The previous works mentioned above do not extend efficiently to our problem.
By Robbins’ theorem [21] the graphs that admit sos are exactly the 2-edge con-
nected graphs: in these graphs, for every pair of nodes there are two edge-disjoint
paths connecting them; hence, if G is not 2-edge connected, the corresponding
road network has no feasible direction. Its proof contains the following remark-
able hint to find all the sos, but it has some issues. Given an ear decomposition
of G, it is possible to produce a so by orienting each ear as a directed path,
thus obtaining 2k sos from an ear decomposition with k ears. In general, list-
ing ear decompositions and then obtaining sos seems a natural approach to our
problem. However, two different ear decompositions can lead to the same so.
Figure 1 shows two possible ear decompositions of a graph yielding the same so:
first orient the cycle {1, 2, 3, 4, 5} clock-wise in both orientations, then in the
left one orient the ears as (1, 6, 7) and (3, 8, 7, 5), whereas in the right one as
(3, 8, 7) and (1, 6, 7, 5). It is easy to generalize this example, so that the same so
is obtained by many distinct ear decompositions.
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A possible way to list once all the sos would be to consider one edge at a
time and employ the algorithm in [7] to check which orientations of that edge
will lead to a solution. This approach would yield a recursive algorithm taking
O(m2) time per solution because of the O(m) recursion depth. It is natural to
ask whether O(m) time is possible, as each solution requires O(m) to be output.

Our Contribution. We present the first algorithm for efficiently listing once all
the sos in a graph G with m edges, with a cost of O(m) time per solution and
using O(m) preprocessing time and total space. The cost can be deamortized
to obtain O(m) delay with O(m2) preprocessing time and space, where the
delay is the maximum time elapsed between any two consecutive outputs. Using
this result, we are able to find all the feasible directions of the road network
in O(K) amortized time per solution, using O(L) preprocessing time and total
space; also, the cost can be deamortized to obtain O(K) delay using O(K2 + L)
preprocessing time and total space. Furthermore, our approach easily extends to
the enumeration of totally cyclic orientations, which are orientations in which
every edge is part of a cycle. On a connected graph, these orientations are exactly
the sos [4], otherwise they are combinations of the sos of each component. Note
that sos are not related to acyclic and cyclic orientations [9,10], orientations
with respectively no cycles or at least one, which require different algorithmic
techniques.

In the paper we adopt the following notation for an undirected connected
graph G = (V,E) with |V | = n nodes and |E| = m edges. An orientation of G is
the directed graph

−→
G = (V,A) where for any pair {u, v} ∈ E either (u, v) ∈ A or

(v, u) ∈ A. The orientation
−→
G is strong if

−→
G is strongly connected. For the sake

of clarity, we call edges the unordered pairs {x, y} (undirected graph), while we
call arcs the two possible orientations (x, y) and (y, x) (directed graphs).

2 From One-Way Streets to Strong Orientations

We show how to list solutions for the one-way street problem by a reduction to
the problem of listing strong orientations, as this gives a cleaner proof of our
results. As in [22], we use the notion of mixed graph G = (V,E,A), i.e. a graph
with vertices (in V ) linked by the edges in E and by the arcs in A. Clearly,
both directed and undirected graphs are special cases of mixed graphs, in which
E = ∅ or A = ∅ respectively. Given the mixed graph G = (V,E,A), we say that
node x reaches node y if there is a path from x to y that uses directed edges
in their correct orientation and/or undirected edges. G is strongly connected if
u reaches v for every pairs of nodes u, v ∈ V , and is 2-edge connected if there
are two edge-disjoint paths connecting u and v for every pair of distinct nodes
u, v ∈ V . We refer to G as a mixed multigraph when E or A are multisets.

Consider a road network R with N intersections, K one-way roads and L−K
two-way roads. We thus model R as a mixed multigraph M = (VM , EM , AM )
in which every node in VM represents a road intersection, EM is the multiset of
edges corresponding to the one-way roads, and AM is the multiset of directed
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arcs, that contains (x, y) and (y, x) for each two-way road linking the intersec-
tions modeled by x and y (hence, |VM | = N , |EM | = K, and |AM | = 2(L−K)).
A strong orientation of M is a direction assignment for the edges in EM such that
the resulting directed multigraph is strongly connected. Any edge {u, v} ∈ EM

has two possible orientations (u, v) and (v, u), representing how the correspond-
ing road is directed. We consider this to hold for self-loops as well.

It is straightforward to see how a strong orientation of M corresponds to
a feasible way of directing R. We will map strong orientations of the mixed
multigraph M to strong orientations of a suitable graph G.

To this aim, we introduce the following operation on mixed multigraphs:

Definition 1 (contraction of a directed cycle). Given a mixed multigraph
M = (VM , EM , AM ) and a set of nodes C ⊆ VM which form a directed cycle,
the contraction of C as a node c modifies M as follows: VM = (VM \ C) ∪ {c};
for each edge e ∈ EM and each arc a ∈ AM , any endpoint of e and a in C is
replaced by c; finally, any oriented self-loop on c created this way is removed.

Note that a contraction can create unoriented selfloops that we preserve along
with their endpoints before the contraction.

Lemma 1 shows a useful property of the contraction of a directed 2-cycle,
while Lemma 2 shows how to neglect undirected self-loops as well.

Lemma 1. Let M be a mixed multigraph, and x, y a pair of nodes such that
both arcs (x, y) and (y, x) exist in M . Let M ′ be the mixed multigraph obtained
by contracting the directed 2-cycle C = {x, y} as a node c. There is a one-to-one
correspondence between the strong orientations of M and the ones of M ′.

Proof. Let us show that any so of M induces a unique so of M ′ and vice
versa. We remark that all undirected edges of M are preserved in M ′, although
some might have become undirected selfloops, thus we have a mapping from
each undirected edge of M to a distinct one of M ′. Note that this gives us
a bijective mapping of the orientations of M and M ′, as each orientation is
defined by the direction assignment of the undirected edges. Consider now a
strong orientation of M : each node can reach/be reached by both x and y, thus
in the correspondent orientation of M ′ each node will reach/be reached by c by
construction, making M ′ strongly connected. Similarly a strong orientation of
M ′ induces a strong orientation M . Thus we have a one-to-one correspondence
between strong orientations of M and M ′. �	
Lemma 2. Let M ′ be the multigraph obtained by removing all the k unoriented
self-loops in the mixed multigraph M . Each strong orientation of M ′ corresponds
to 2k unique strong orientations of M , and all strong orientations of M can be
found this way.

Proof. Strong connectivity is not influenced by the removal of self-loops. Thus,
removing all self-loop from a strong orientation of M gives us a strong orientation
of M ′. Moreover, given a strong orientation of M ′, we can obtain 2k unique
strong orientations of M by assigning arbitrary orientations to any self-loop
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(recall that each edge, including self-loops, has two possible orientations). Since
two orientations obtained in this way from different orientations of M ′ are clearly
distinct, the statement follows. �	

Using Lemmas 1 and 2 we transform M = (VM , EM , AM ) in a graph G =
(V,E), exploiting the fact that all the arcs in AM form a set of directed cycles
of size 2 by construction. Our transformation proceeds as described next.

1. We contract every directed cycle in M to obtain an undirected multigraph
M ′ according to Lemma 1. Note that M ′ contains only unoriented self-loops.

2. We remove all the self loops in M ′ according to Lemma 2.
3. From the resulting multigraph M ′′ we obtain G = (V,E) as follows: for each

edge {x, y} in M ′′, we have edges {x, z} and {z, y} in E, where z is a new
dummy node, and V is made of the nodes of M ′′ plus the new dummy nodes.

Note that |V | = n ≤ |VM | + |EM | = 2K and, similarly, |E| = m ≤ 2K by
construction. We now show that this transformation is correct.

Lemma 3. Let G be the graph obtained by applying the above transformation
to a mixed multigraph M modelling a road network. Each strong orientation of
G corresponds to 2k unique strong orientations of M , where k is the number of
self-loops removed in the transformation. Each strong orientation of M can be
obtained this way.

Proof. By Lemmas 1 and 2, we only need to prove that there is a one-to-one
correspondence between the strong orientations of G and the ones of M ′′. Let di
denote the dummy node of G introduced by the transformation when “splitting”
i-th edge {x, y}. Given an arbitrary orientation of M ′′, we define an orientation of
G in the following way: if (x, y) is the orientation of {x, y}, then the orientations
of {x, di} and {y, di} are (x, di) and (di, y). This mapping is clearly injective.

It is now sufficient to prove that any strong orientation of G is induced by
a strong orientation of M ′′ and vice versa. Let u,w be two nodes of G. We can
assume wlog that neither of them is a dummy node: if, say, u = di for edge
(x, y) of M ′′, then we have edges (x, u),(u, y) in G and we can replace u with
y. Since G is strongly connected, and only has edges between dummy and non-
dummy nodes, there exists a directed path u = v1, d1, . . . , dk−1, vk = w in G,
which alternates non-dummy and dummy nodes. By construction of G and the
mapping, it follows that v1, v2, . . . , vk−1, vk is a directed path from u to v in M ′′.
For the converse, let u,w be two nodes of M ′′. Since M ′′ is strongly connected,
there is a path u = v1, . . . , vk = w in M ′′. By construction, G has the path
u = v1, d1, . . . , dk−1, vk. �	

3 Finding Strong Orientations

In this section we show how to efficiently find all the strong orientations (sos)
of an undirected graph G = (V,E). We assume wlog that G = (V,E) is
2-edge connected: this is a consequence of the following well-known result [21],
as otherwise there are no sos.
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Theorem 1 (Robbins’ theorem). A graph G admits a strong orientation iff
it is 2-edge connected.

We introduce the key definitions and properties that will be used to build
our algorithm. Using the standard definitions, we call a cut of G any bipartition
V1, V2 of its nodes and we say that an edge {x, y} or an arc (x, y) crosses the
cut if x ∈ V1 and y ∈ V2, or vice versa. We define two kinds of cuts which will
help us model the problem, namely one-way cut and forcing cut (Shown in
Fig. 2).

Fig. 2. Two partial orientations of a mixed graph: a one-way cut (left) and a forcing
cut with bound edge {3, 4} having (3, 4) as bound direction (right)

Definition 2 (one-way cut). Given a mixed graph G = (V,E,A), we call a
cut V1, V2 of V a one-way cut if the cut is crossed only by arcs, which are all
oriented towards V1 (alternatively, the arcs are all oriented towards V2).

We will also exploit another kind of cut that lets us foresee which orientations
of which edges will produce a one-way cut:

Definition 3 (forcing cut). Given a mixed graph G = (V,E,A), we call a cut
V1, V2 of V a forcing cut if the cut is crossed by exactly one undirected edge,
called bound edge, and by one or more arcs that are all oriented towards V1.
We call bound direction the one obtained by orienting the bound edge towards
V2. (The roles of V1 and V2 can be interchanged.)

Note that we cannot have zero arcs in a forcing cut of G as otherwise G
would not be 2-edge connected.

Lemma 4. Let G = (V,E,A) be a 2-edge connected mixed graph that has no
one-way cut. Then any node x reaches any other node y.

Proof. Let us suppose by contradiction that there exist two nodes x, y such that
x does not reach y. Let Vx be the set of nodes that are reachable from x. Since
y 
∈ Vx, we have that Vx, V \ Vx is a cut of the graph. Moreover, by its definition
there can be no edge going from a node of Vx to a node of V \ Vx, so Vx, V \ Vx

is a one-way cut as the graph is connected. �	
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The above lemma together with Theorem 3, are crucial to understand the
idea behind our approach. For this, we need the following known theorem in [3],
that extends Robbins’ theorem.

Theorem 2 (Boesch and Tindell). A mixed graph G has a so if and only if
G is strongly connected and 2-edge connected.

We say that a mixed graph can be completed or extended to a so if there
exists a direction assignment for its edges such that the resulting digraph is a
so. By ensuring that our partial orientation never admits a one-way cut, we
can ensure the existence of a strongly connected extension using Boesch and
Tindell’s theorem.

Theorem 3. A 2-edge connected mixed graph G = (V,E,A) can be completed
to form a so iff G does not admit a one-way cut.

Proof. If G has a one-way cut V1, V2, clearly it cannot be extended to a so.
Indeed, as all edges between V1, V2 are already oriented, the cut will still be a
one-way cut in any extension, thus nodes in V2 will not be reachable by nodes
in V1.

To prove the other implication, note that by Lemma 4 we have that in G
any node can reach any other node. Moreover we know by hypothesis that G is
2-edge connected. Boesch and Tindell’s theorem implies that such a graph has
a so, proving our result. �	

Finally, we show how the concept of forcing cut is important for the
completion of an orientation as a so. In particular, Theorem 4 extends Lemma 2
in [7].

Lemma 5. Let G = (V,E,A) be a 2-edge connected mixed graph, and V1, V2 a
cut of V . Then V1, V2 can be turned into a one-way cut by orienting exactly
one undirected edge iff V1, V2 is a forcing cut.

Proof. The proof follows immediately from the definitions of one-way cut and
forcing cut. �	
Theorem 4. Let G = (V,E,A) be a 2-edge connected mixed graph that has
no one-way cut, and {x, y} an undirected edge in E. Then neither of the
orientations (x, y) and (y, x) of the edge will create a one-way cut iff {x, y} is
not a bound edge.

Proof. If {x, y} is not a bound edge, both orientations lead to a solution. Indeed,
any cut crossed by {x, y} is not a forcing cut, thus by Lemma 5 any orientation
of {x, y} will not produce a one-way cut. If {x, y} is a bound edge, then there
is a cut V1, V2 of V in which all edges are oriented towards V1 except for {x, y}.
Orienting {x, y} towards V1 will create a one-way cut. �	
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3.1 Algorithm Description

The above properties are the guidelines for a simple and efficient algorithm to
enumerate the sos of G. The core idea hinges on bound edges to guarantee that
each recursive call either outputs a new SO or yields two calls that will produce
at least one new SO each.

Algorithm 1. Finding all strong orientations (sos)
Input : Graph G = (V,E).
Output: All sos of G.
Strong-Orientations(V,E, ∅)
Function Strong-Orientations(V,E,A)

B ← bound edges in mixed graph G = (V,E,A)
E ← E \ B
A ← A ∪ {(b, c) : (b, c) is the bound direction of {b, c} ∈ B}
if E = ∅ then

output so ← −→
G = (V,A)

else
{x, y} ← an arbitrary edge in E
E ← E \ {{x, y}}
Strong-Orientations(V,E,A ∪ {(x, y)})
Strong-Orientations(V,E,A ∪ {(y, x)})

The ideas are detailed in Algorithm 1: it is a recursive approach that consists
in incrementally exploring all the possible ways of orienting edges of G that
will lead to a solution. In the beginning G is completely undirected, so it will
not contain a one-way cut. By Theorem 4 we know that the edges that can
create a one-way cut are exactly all the bound edges; let B be the set of such
edges. Each edge in B must be oriented according to its bound direction, as it
would otherwise create a one-way cut. Note that as a consequence of Boesch
and Tindell’s theorem [3], if there is at least one so, then the bound direction
does not create a one-way cut. For all other edges, we are free to chose any
orientation. Thus we orient the edges in B according to their suitable direction,
pick an arbitrary edge {x, y} (if any), and recur on both possible ways (x, y) and
(y, x) of orienting {x, y}. When there are no more edges that can be oriented we
output the current orientation.

It remains to describe how to find the bound edges in B. In any recursive
step, our algorithm starts with a mixed graph G = (V,E,A), where A are the
edges that have been already directed, and E the ones that have not. We need
to find in this graph all the bound edges in E, that is, all the forcing cuts
of M . As we will show in Lemma 7, these are actually all the undirected edges
which are strong bridges.
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Definition 4 (strong bridge). Given a mixed graph G, a strong bridge is an
edge that, if removed, increases the number of strongly connected components
of G.

Using the algorithm by Italiano et al. [17] we can find all strong bridges in G
in O(|E| + |A|) time. The algorithm is intended for directed graphs, but it can
also be applied to mixed graphs by considering each undirected edge {x, y} as
a pair of arcs (x, y), (y, x) with opposite directions, so as to traverse {x, y} in
both directions: whichever is chosen between (x, y) and (y, x) as a strong bridge,
gives the bound direction to {x, y}. (Note that (x, y) and (y, x) cannot be both
chosen as strong bridges.)

3.2 Correctness

As any edge that is not bound can be oriented in both ways and lead to a solution
by Theorem 4, we observe the following fact.

Lemma 6. Let e be an edge that is not bound in G. Then, orienting any bound
edge of G in its forced direction does not make e a bound edge.

Proof. It follows from the observation that any cut involving e has at least two
undirected edges, thus orienting the bound edges cannot affect e.

Lemma 7. Let {x, y} be an undirected edge in a strongly connected mixed graph
G. Then {x, y} is bound iff it is a strong bridge.

Proof. We will first prove that if {x, y} is a bound edge then it is a strong bridge.
Indeed, if Vx, Vy is the forcing cut of {x, y}, where all other edges go from
Vx to Vy, then removing {x, y} makes nodes in Vy unable to reach nodes in Vx,
increasing the number of strongly connected components of G, thus {x, y} is a
strong bridge.

Suppose now that {x, y} is a strong bridge. Let Vx and Vy be the set of nodes
reachable from respectively x and y without using the edge {x, y}. Since {x, y} is
a strong bridge, either Vx 
= V or Vy 
= V . Let V1 be the set, chosen between Vx

and Vy, satisfying the latter disequality. Let V2 = V \V1 be the complement set,
which is nonempty, and consider the cut V1, V2: all the arcs in this cut (except
{x, y}) must be oriented towards V1, as otherwise V1 would be larger. Hence,
V1, V2 is a forcing cut for {x, y} because V1 has no outgoing edges to V2 other
than {x, y} itself. �	
Theorem 5. Given a 2-edge connected graph G = (V,E), our algorithm cor-
rectly outputs all the strong orientations of G exactly once.

Proof. A 2-edge connected mixed graph can be completed to form a so iff it does
not admit a one-way cut by Theorem 3. Hence, we prove by induction on |E|
that, if G′ = (V,E,A) is a mixed graph with no one-way cut, our algorithm
outputs all the sos of G′ once.
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Base case for |E| = 0. Then G′ is completely oriented and with no one-way
cut, so by Lemma 4 it is strongly connected. Moreover it has exactly one so−→
G′ = (V,A), which we output.

Inductive step for |E| > 0. We can identify all the bound edges in G′ and
their bound directions by Lemma 7, using the algorithm in [17]. Orienting bound
edges in their bound direction does not alter the set of sos of G′, since there is
no so that has a bound edge in the other direction: as each bound edge belongs
to a forcing cut, orienting that edge otherwise would create a one-way cut
by Lemma 5. Also, orienting a bound edge in its bound direction cannot create a
new bound edge by Lemma 6. We can thus consider G′ as having no bound edges,
without loss of generality. If G′ has no more undirected edges, we fall back to the
base case. Otherwise, given an undirected edge e of G′, we know that orienting
it either way does not produce any one-way cut by Theorem 4. Any so must
have e in either one direction or the other. Let G′

1 and G′
2 be the graphs obtained

by orienting e in each way, respectively. Since both G′
1 and G′

2 have a smaller
number of undirected edges than G′, we know by inductive hypothesis that our
algorithm terminates, outputting all the sos of G′

1 and G′
2 once. Any so of G′

is a so of either G′
1 and G′

2, and the latter have no intersection as they differ on
the orientation of e. Hence, the algorithm produces all the sos of G′ once. �	

3.3 Analysis

We now analyze the time and space cost of our algorithm on the graph G =
(V,E), with |V | = n and |E| = m assuming wlog that it is connected. We
remark that each recursion node which is not a leaf has at least two children,
and that every leaf of the computation tree outputs a distinct solution. This gives
us a computation tree with no unary nodes1 and α leaves, where α is the number
of solutions. It follows that the total number of recursion nodes is bounded by
2 · α and thus the amortized cost per solution of the algorithm is bounded by
the cost of a single recursion node.

Consider the structure of Algorithm 1. We show how every step takes O(m)
time. Computing bound edges is done in O(m) time by finding the strong bridges
and selecting the undirected ones; moreover, the algorithm by Italiano et al. [17]
is applied to a directed graph where each undirected edge is represented by two
directed arcs, thus finding a strong bridge will immediately give us the bound
direction of the corresponding bound edge, making the assignment of bound
directions clearly O(m) time. All other steps involve updating or scanning sets
of size O(m), which trivially take O(m) time each. The total cost is O(m · α),
or equivalently O(m) amortized cost per solution. We remark that this cost is
optimal for merely printing each so.

Finally we show that the space cost is bounded by O(m) as well: indeed,
the working space of a single recursion node is O(m), but the information that
needs to be passed on to child recursive calls, other than the input, is simply

1 This is crucial, as the presence of unary nodes is the reason behind the O(m2) cost
of the approach based on [7], mentioned in the introduction.
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the partial orientation of the graph. If stored as the difference with the partial
orientation in the parent node, the space requirement of a root-to-leaf path (and
thus of the whole algorithm) is always O(m). Thus the following holds:

Theorem 6. Given a 2-edge connected graph G = (V,E), Algorithm 1 outputs
all the strong orientations of G exactly once, in O(m) amortized time, using
O(m) total space.

We observe that the delay of Algorithm 1 is bounded by the sum of the costs
along a leaf-to-root path and a root-to-leaf path. Since the cost of each recursion
node is O(m), and the depth of the computation tree is at most m, we obtain
O(m2) delay. We will now show how the delay can be reduced to O(m) using the
Output Queue Method by Uno [27], which suitably accumulates solutions that
arrives at an irregular pace to output them in a regular fashion, using a queue
of bounded size. The method depends on two parameters: T ∗, the maximum
cumulative cost in a root-to-leaf path of the recursion tree, and T̄ , an upper
bound on the amortized cost per solution in any subtree of the computation. In
our case, the former is O(m2) as discussed above, and the second is Θ(m), as
each k-size subtree of our binary recursion tree has Θ(k) leaves (i.e. solutions
since there are no unary nodes), and a node takes O(m) time. As a result,
using a queue of O(T ∗/T̄ ) = O(m) solutions, we can output each solution with
delay O(T̄ ) = O(m). This takes O(T ∗ + T̄ ) = O(m2) preprocessing time and
O(m · T ∗/T̄ ) = O(m2) space.

Theorem 7. Given a 2-edge connected graph G = (V,E), there exists an algo-
rithm that outputs all the strong orientations of G exactly once, with O(m) delay,
using O(m2) preprocessing time and total space.

4 Conclusions

In this paper we considered the problem of finding all feasible ways of directing a
connected road network, also known as the one-way street problem, and reduced
the latter to the problem of listing all the strong orientations in an undirected
connected graph. The bounds are optimal if one wants to print each strong ori-
entation. A referee suggests the interesting open problem of enumerating totally
cyclic orientations in 3-edge connected graphs [14] in constant amortized time
by listing only the edges that get flipped from orientation to orientation.
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Abstract. We consider a population of interconnected individuals that,
with respect to a piece information, at each time instant can be subdi-
vided into three (time-dependent) categories: agnostic, influenced, and
evangelists. A dynamical process of information diffusion evolves among
the individuals of the population according to the following rules. Ini-
tially, all individuals are agnostic. Then, a set of people is chosen from
the outside and convinced to start evangelizing, i.e., to start spreading
the information. When a number of evangelists, greater than a given
threshold, communicate with an node v, the node v becomes influenced,
whereas, as soon as the individual v is contacted by a sufficiently much
larger number of evangelists, it is itself converted into an evangelist and
consequently it starts spreading the information. The question is: How to
choose a bounded cardinality initial set of evangelists so as to maximize
the final number of influenced individuals? We prove that the problem
is hard to solve, even in an approximate sense, and we present exact
polynomial time algorithms for trees and complete graphs. For general
graphs, we derive exact algorithms parameterized with respect to neigh-
borhood diversity. We also study the problem when the objective is to
select a minimum number of evangelists able of influencing the whole
network.

1 Introduction

The Context. Customer Evangelism [26] occurs when a customer actively tries
to convince other customers to buy or use a particular brand. Fathered by Apple
marketing guru Guy Kawasaki in the 90’s [22], the idea of consumer evange-
lism has found a new and more powerful incarnation in modern communica-
tions media. Social networks like Twitter, Facebook and Pinterest have indeed
immensely empowered properly motivated individuals towards brand advocacy
and proselytism. We plan to abstract a few algorithmic problems out of this
scenario, and provide efficient solutions for some of them.

The Problem. Our model posits an interconnected population consisting of
individuals that, with respect to a piece of information and/or an opinion, at
each time instant can be subdivided into three time-dependent categories: agnos-
tic, influenced, and evangelists. Initially, all individuals are agnostic. Then, a set

c© Springer International Publishing Switzerland 2016
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of people is chosen and converted into evangelists, that is, convinced to start
spreading the information. When a sufficiently large number of evangelists com-
municate with an node v, the node v becomes influenced; as soon as the individ-
ual v has in his neighborood a much larger number of evangelists, it is converted
to an evangelist and only then it starts spreading the information itself. Our
model can be seen also as an idealization of diffusion processes studied in the
area of memetics. A meme [14] is an idea, behavior, or fashion that spreads from
person to person within a culture. It is apparent that not every meme learned
by a person spreads among the individuals of a population. We are making here
the reasonable hypothesis that individuals indeed acquire a meme when it has
been heard of from a few friends, but people start spreading the same meme only
when they believe it is popular, fashionable, or important, i.e., when it has been
communicated to them by large number of friends. This is not too far from what
has been experimentally observed about how memes evolve and spread within
Facebook [2].

A bit more concretely, we are given a graph G = (V,E), abstracting a social
network, where the node set V corresponds to people and the edge set to rela-
tionships among them. We denote by NG(v) the neighborhood of node v ∈ V
and by dG(v) = |NG(v)| the degree of v in G, we avoid the subscript G when-
ever the graph is clear from the context. Moreover, let tI : V → {0, 1, 2, . . .} and
tE : V → {0, 1, 2, . . .} be two functions assigning integer thresholds to the nodes
in G such that 0 ≤ tI(v) ≤ tE(v) ≤ d(v) + 1, for each v ∈ V .

An evangelization process in G, starting at a subset of nodes S ⊆ V , is
characterized by two sequences of node subsets Evg[S, 0] ⊆ Evg[S, 1] ⊆ . . . ⊆
Evg[S, τ ] ⊆ . . . ⊆ V, and Inf[S, 0] ⊆ Inf[S, 1] ⊆ . . . ⊆ Inf[S, τ ] ⊆ . . . ⊆ V, where
for each τ = 0, 1, . . . , it holds that Evg[S, τ ] ⊆ Inf[S, τ ]. The process is formally
described by the following dynamics: Evg[S, 0] = Inf[S, 0] = S, and for each τ≥1

Evg[S, τ ] = Evg[S, τ−1] ∪
{

u :
∣
∣N(u) ∩ Evg[S, τ−1]

∣
∣ ≥ tE(u)

}
,

Inf[S, τ ] = Inf[S, τ−1] ∪
{

u :
∣
∣N(u) ∩ Evg[S, τ−1]

∣
∣ ≥ tI(u)

}
.

In words, a node v becomes influenced if the number of his evangelist neigh-
bors is greater than or equal to its influence threshold tI(v), and v becomes an
evangelist if the number of evangelists among his neighbors reaches its evange-
lization threshold tE(v) ≥ tI(v). The process terminates when Evg[S, ρ + 1] =
Evg[S, ρ] for some ρ ≥ 0. We denote by Evg[S] = Evg[S, ρ] and Inf[S] =
Inf[S, ρ + 1] the final sets when the process terminates. The initial set S is also
denoted as a seed set of the evangelization process. Due to foreseeable difficulties
in hiring evangelists, it seems reasonable trying to limit their initial number, and
see how the dynamics of the spreading process evolves. Therefore, we state our
problem as follows:

Maximally Evangelizing Set (MES).
Instance: A graph G = (V,E), thresholds tI , tE : V → {0, 1, 2, . . .}, and a
budget β.
Question: Find a seed set S ⊆ V , with |S| ≤ β, such that |Inf[S]| is maximum.
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What is Already Known and What We Prove. The above algorithmic
problem has roots in the broad area of the spread of influence in Social Networks
(see [6,16] and references quoted therein). In the introduction of this paper we
have already highlighted the connections of our model to the general area of viral
marketing. There, companies wanting to promote products or behaviors might
try initially to target and convince a few individuals which, by word-of-mouth
effects, can trigger a cascade of influence in the network, leading to an adoption
of the products by a much larger number of individuals. Not unexpectedly, viral
marketing has also become an important tool in the communication strategies
of politicians [25,29]. Less secular applications of our evangelization process can
also be envisioned. Here, we shall limit ourselves to discuss the work that is
most directly related to ours, and refer the reader to the authoritative texts
[6,16] for a synopsis of the area. The first authors to study spread of influence
in networks from an algorithmic point of view were Kempe et al. [23]. However,
they were mostly interested in networks with randomly chosen thresholds. Chen
[5] studied the following minimization problem: given an unweighted graph G
and fixed thresholds t(v), for each vertex v in G, find a set of minimum size that
eventually influences all (or a fixed fraction of) the nodes of G. He proved a strong
inapproximability result that makes unlikely the existence of an algorithm with
approximation factor better than O(2log

1−ε |V |). Chen’s result stimulated a series
of papers, e.g., [1,3,4,7–13,21,27,28] that isolated interesting cases in which the
problem (and variants thereof) become tractable.

All of the above quoted papers considered the basic model in which any node,
as soon as it is influenced by its neighbors, it also immediately starts spreading
influence. The more refined model put forward in this paper, that differenti-
ate among active spreaders (evangelists) and plain informed (influenced) nodes,
appears to be new, to the best of our knowledge. We would like to point out that
we obtain an interesting information diffusion model already in the particular
case in which tI(v) = 1, for each node v. In fact, in this case nodes in the sets
Inf[S, τ ] would correspond to people that have simply heard about a piece of
information, while people in the sets Evg[S, τ ] would correspond to people who
are actively spreading that same piece of information.

In Sect. 2, we first prove that the MES problem is hard to solve, even in
the approximate sense. Subsequently, we design exact algorithms parameterized
with respect to neighborhood diversity (and, as a byproduct, by vertex cover).
In Sect. 3, we present exact polynomial time algorithms for trees and complete
graphs. Finally, we also study the issue when the objective is to select a minimum
number of evangelists capable of influencing the whole network. We refer to this
problem as the Perfect Evangelic Set (PES) problem. Namely, given a
graph G = (V,E), node thresholds tI(v) and tE(v) for each v ∈ V , the PES
problem asks for a minimum size set S ⊆ V such that Inf[S] = V . In Sect. 4 we
study this latter problem in dense graphs.
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2 The Complexity of MES

The MES problem includes the Influence Maximization (IM) problem [23],
that is known to be NP-hard to approximate within a ratio of n1−ε, for any
ε > 0. In our terminology, the IM problem takes in input a graph G with a
threshold function t : V → {0, 1, 2, . . .} and a budget β, and asks for a subset S
of β nodes of G such that |Evg[S]| is maximum. An instance of the IM problem
corresponds to the MES instance consisting of G, β, and threshold functions
tE , tI , with tI(v) = tE(v) = t(v), for each v ∈ V . We can prove that the MES
problem remains hard even if the influence threshold tI is equal to 1, for each
node v ∈ V . The proof is quite standard and it is omitted here.

Theorem 1. It is NP-hard to approximate the MES problem within a ratio of
n1−ε for any ε > 0 even when tI(v) = 1, for each node v ∈ V .

2.1 Parameterized Complexity

A parameterized computational problem with input size n and parameter t is
called fixed parameter tractable (FPT) if it can be solved in time f(t) ·nc, where
f is a function depending on t only, and c is a constant [15]. In this section we
study the effect of some parameters on the computational complexity of the MES
problem. As usual, we consider the decision version (α, β)-MES of the problem.
It takes in input a graph G = (V,E), node thresholds tI : V → {0, 1, 2, . . .} and
tE : V → {0, 1, 2, . . .}, and integer bounds α, β ∈ N, and asks if there exists a
seed set S ⊆ V such that |S| ≤ β and |Inf[S]| ≥ α.

We notice that by conveniently choosing the thresholds tE and tI , the MES
problem specializes in problems whose parameterized complexity is well known.
When tI(v) = tE(v) for each v ∈ V and α = |V |, the problem becomes the target
set selection [5]. This problem is W [2]-hard1 with respect to the solution size β
[27], it is XP when parameterized with respect to the treewidth [4], and is W [1]-
hard with respect to the parameters treewidth, cluster vertex deletion number
and pathwidth [4,8]. Moreover, the target set selection problem becomes fixed-
parameter tractable with respect to the single parameters: Vertex cover number,
feedback edge set size, bandwidth [8,27]. In general when tI(v) = tE(v) for each
v ∈ V , the (α, β)-MES problem has no parameterized approximation algorithm
with respect to the parameter β and it is W [1]-hard with respect to the combined
parameters α and β [3].

In the following, we study the parameterized complexity of the (α, β)-MES
problem for the general case tI(v) 	= tE(v). We concentrate our attention on
two parameters: the well known treewidth and the more recently introduced
neighborhood diversity.

Parameterization with Neighborhood Diversity. The neighborhood diver-
sity was first introduced in [24]. It has recently received particular attention

1 See [15] for definitions of W [2]-hardness, W [1]-hardness and the class XP.
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[17,19,20] also due to its property of being computable in polynomial time [24]—
unlikely other parameters, including treewidth, rankwidth, and vertex cover.

Definition 1. Given a graph G = (V,E), two nodes u, v ∈ V have the same
type iff N(v) \ {u} = N(u) \ {v}. The graph G has neighborhood diversity t, if
there exists a partition of V into at most t sets, V1, V2, . . . , Vt, s.t. all the nodes
in Vi have the same type, for i = 1, . . . , t. The family V={V1, V2, . . . , Vt} is called
the type partition of G.

Let G = (V,E) be a graph with type partition V = {V1, V2, . . . , Vt}. By
Definition 1, each Vi induces either a clique or an independent set in G. For each
Vi, Vj ∈ V, we get that either each node in Vi is a neighbor of each node in Vj or
no node in Vi is a neighbor of any node in Vj . Hence, all the nodes in the same
Vi have the same neighborhood N(Vi)—excluding the nodes in Vi itself.

We present a FPT-algorithm for the MES problem with parameter t. At the
end of the evangelization process in G starting at S, we identify the number of
evangelists that are neighbors of (all) the nodes in Vi and define

Ni(S) =

{
|Evg[S] ∩ N(Vi)| if Vi is an independent set,
|Evg[S] ∩ (Vi ∪ N(Vi))| if Vi is a clique.

It is easy to see that a node u ∈ Vi − Evg[S] is influenced if tI(u) ≤ Ni(S).
We can prove the following Lemma.

Lemma 1. Let S′ be a seed set for G. Let u, v ∈ Vi be s.t. u ∈ S′ and v 	∈ S′,
and consider the set S′′ = (S′ − {u}) ∪ {v}. The following properties hold:

a) If tI(u) ≤ Ni(S′), tI(v) ≤ Ni(S′) and tE(v) ≥ tE(u) then Inf[S′] ⊆ Inf[S′′];
b) if tI(u) ≤ Ni(S′) and tI(v) > Ni(S′) then Inf[S′] ⊆ Inf[S′′];
c) if tI(u) > Ni(S′) and tI(v) > Ni(S′) then Inf[S′] = Inf[S′′].

We now present our algorithm. We assume that the nodes of G are sorted in
order of non–increasing evangelization thresholds and consider all the possible
t-ple (s1, s2, . . . , st) such that

∑t
i=1 si = β. For each such s = (s1, s2, . . . , st), we

construct the set Ss in two steps. In the first step we set Ss = ∪t
i=1Si where Si is

obtained by choosing si nodes with the largest evangelization threshold in Vi. In
the second step we first consider the evangelization process in G starting at Ss

and then we update each Si by using the nodes that have not been influenced in
the process. In particular, Si is updated by replacing as many nodes as possible
among those that could be influenced (if outside Si) by nodes that cannot be
influenced. The construction of Ss is detailed in algorithm ME-ND(s,V).

We then consider the evangelization process in G starting at Ss and get the
number αs = |Inf[Ss]| of influenced nodes at the end of the process. Finally, we
determine s′ = arg maxsαs and compare α with αs′ . If αs′ ≥ α then we answer
yes to the MES question for G with parameters α and β and Ss′ is the desired
seed set; otherwise we answer no.

Theorem 2. Let t be the neighborhood diversity of G. It is possible to decide
the (α, β)-MES question in time O(nt 2t log(β+1)).



Evangelism in Social Networks 101

Proof (Sketch.) We first prove the correctness of our algorithm. For any possible
s = (s1, s2, . . . , st), we check if the corresponding set Ss gets |Inf[Ss]| ≥ α.

For any fixed s = (s1, s2, . . . , st), let Ss = ∪t
i=1Si be the seed set returned by

the algorithm ME-ND. Let now S′ be any (α, β)-MES for G such that each S′
i =

S′ ∩ Vi has size |S′
i| = si, for i = 1, . . . , t. We show that |Inf[Ss]| ≥ |Inf[S′]| ≥ α.

To this aim, we iteratively tranform each S′
i into Si by trading a node u ∈ S′

i−Si

for a node v ∈ Si − S′
i without decreasing the number of informed nodes.

Algorithm 1. ME-ND(s,V)
Input: s = (s1, s2, . . . , st); a type partition V of G

1 foreach i = 1, . . . , t do
2 Let Si be a the set of si nodes of Vi with the largest t()

3 Set Ss = ∪t
i=1Si and consider the process in G starting at Ss.

4 foreach i = 1, . . . , t do // Update set Si;
5 while (∃ u ∈ Si, tI(u) ≤ Ni(Ss) AND ∃ v ∈ Vi − Si, tI(v) > Ni(Ss)) do
6 u = arg min u∈Si

tI (u)≤Ni(Ss)
{tE(u)}; Si = Si − {u} ∪ {v}

7 return Ss = ∪t
i=1Si

If we can choose u, v such that tI(u) ≤ Ni(S′) and tI(v) ≤ Ni(S′), then by
construction of the set Si we also know that tE(v) ≥ tE(u) (cfr. line 2 of the
algorithm); hence, by Lemma 1 S′′ = (S′−{u})∪{v} has |Inf[S′′]| ≥ |Inf[S′]| ≥ α.

If we can choose u, v such that tI(v) > Ni(S′) then by (b) and (c) of Lemma 1
we get S′′ = (S′ − {u}) ∪ {v} has |Inf[S′′]| ≥ |Inf[S′]| ≥ α.

Suppose now that for any choice of u, v it holds tI(u) > Ni(S′) and
tI(v) ≤ Ni(S′). It is possible to see that the sets Si (both as initially
chosen at line 2 of the algorithm and after each update) maximize the
number of evangelized nodes in each Vi and it holds Ni = Ni(Ss) ≥
Ni(S), for any seed set S such |S ∩ Vi| = si, for i = 1, . . . , t. Hence,

Ni(Ss) ≥ Ni(S′), for i = 1, . . . , t.

Notice that, by construction of the sets Si, it cannot happen that tI(u) > Ni(Ss)
and tI(v) ≤ Ni(S′) ≤ Ni(Ss) (cfr. lines 5-6 of the algorithm). Therefore, the only
remaining case to analyze is when tI(u) < Ni(Ss) and tI(v) ≤ Ni(S′) ≤ Ni(Ss)
for each u ∈ S′

i − Si and v ∈ Si − S′
i. In such a case, we have

Inf[S′] ∩ Vi ⊆ S′ ∪ {w ∈ Vi | tI(w) ≤ Ni(Ss)} ⊆ Vi ∩ Inf[Ss]

Hence, we have Inf[S′] ⊆ Inf[Ss] and we can conclude that |Inf[Ss]| ≥ α.
The correctness follows since for any possible s = (s1, s2, . . . , st), we check if

the corresponding set Ss gets |Inf[Ss]| ≥ α.
Now we evaluate the running time of the algorithm. The number of all the

possible t-ple s = (s1, s2, . . . , st) such that
∑t

i=1 si = β is
(
β+t−1

t−1

)
< 2t log(β+1).

Moreover, one needs O(nt) to construct Ss and O(nt) to obtain |Inf[Ss]|. Hence,
the running time for deciding if a (α, β)-MES for G exists is O(nt 2t log(β+1)). 
�
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Noticing that the type partition V can be obtained in polynomial time, one
has that the (α, β)-MES problem is in the class FPT when parameterized by the
neighborhood diversity t and the solution size β.

Theorem 2 can be used to have FPT linear time algorithms with vertex cover
size as parameter. Indeed, graphs of bounded vertex cover have bounded neigh-
borhood diversity—while the opposite is not true since large cliques have neigh-
borhood diversity 1 [20].

Theorem 3. Given a vertex cover of G of size �, it is possible to decide the
(α, β)-MES question in time O(n(2� + �)2(2

�+�) log �).

Parameterization with Treewidth. Roughly speaking, the treewidth mea-
sures the “tree-likeness” of a given graph, in particular any tree has treewidth 1.
We generalize the results given in [4] for the target set selection problem. We
design an algorithm for the Perfect Evangelic Set (PES) problem that
runs in nO(w), where w is the treewidth of the input graph. If all the nodes have
the same influence threshold we obtain that the problem is FPT.

Definition 2. A tree decomposition of a graph G is a pair (T ,X ), where X is
a family of subsets of V (G), and T is a tree over X , satisfying the following
conditions:
1. ∪X∈X G[X] = G, and 2. ∀v ∈ V (G), {X ∈ X | v ∈ X} is connected in T .

A tree decomposition (T ,X ) of a graph G is nice if T is rooted, binary, each
node X ∈ X has exactly w vertices, and is of one of the following three types:
Leaf node, X is a leaf in T and consists of w pairwise non-adjacent vertices of
G; Replace node, X has one child Y in T , s.t. X − Y = {u} and Y − X = {v}
for u 	= v; Join node, X has two children Y and Z in T with X = Y = Z.

The width of T is maxX∈X |X| − 1. The treewidth of G is the minimum
width over all tree (nice) decompositions of G.

The algorithm follows a dynamic programming approach computing a table, for
each node X of a nice tree decomposition of G, that depends on the pair of
thresholds of the vertices in X. Each entry in the table stores the smallest seed
set for the subgraph G[X] of G induced by the vertices of the subtree rooted
at X. The desired seed set for G is the one corresponding to the root node of
the tree decomposition of G. The proof follows the lines of the one in [4] for the
target set selection problem (e.g. in the special case tE = tI), except for the role
played by vertices that need to be influenced but not evangelized and by the
influence thresholds in computing the entries of the table for each node X. We
can prove the following result.

Theorem 4. In graphs of treewidth w the PES problem can be solved in nO(w)

time.

3 Polynomial Time Algorithms for MES

We show that the MES problem is polynomially solvable on complete graphs
and trees. The proof of the following algorithm is omitted for the sake of space.
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Theorem 5. The algorithm MES -K(K,β) solves the MES problem on a clique
of size n in O(n) time.

In case of trees, we give a dynamic programming algorithm that proves The-
orem 6.

Algorithm 2. Algorithm MES -K(K,β)
Input: A clique K = (V, E), threshold functions tI and tE , budget β ≤ |V |.
Output: S a seed set for K such that |S| ≤ β

1 Order the nodes in V so that tE(v1) ≥ tE(v2), . . . , tE(vn);
2 Set S = X = {v1, v2, . . . , vβ} and η∗ = |Evg[X]|
3 while (∃ x ∈ S, tI(x) ≤ η∗ AND ∃ y ∈ V − S, tI(y) > η∗) do

S = S − {x} ∪ {y}
4 return S

Theorem 6. The MES problem with bound β can be solved in time
O(min{nΔ2β3, n2β3}) on any tree with n nodes and maximum degree Δ.

The rest of this section is devoted to the description and analysis of the algorithm
proving Theorem 6. Let T = (V,E) be a tree rooted at any node r and denote
by T (v) the subtree rooted at v, for v ∈ V . The algorithm makes a postorder
traversal of the input tree T . For each node v, the algorithm solves all possible
instances of the MES problem on the subtree T (v), with bound b ∈ {0, 1, . . . , β}.
Moreover, in order to compute these values one has to consider—for the root
node v of T (v)—not only the original thresholds tI(v) and tE(v) of v, but also the
decremented values tI(v)−1 and tE(v)−1 which we call the residual thresholds.
For each node v ∈ V and integer b ≥ 0 we define the following quantities:

NOv[b] is the maximum number of nodes that can be influenced in T (v), (1)
assuming that at most b of the nodes in T (v) belong to the seed set,
if v is still agnostic at the end of the evangelization process;

Infv[b] is the maximum number of nodes that can be influenced in T (v) (2)
assuming that at most b of the nodes in T (v) belong to the seed set,
if, at the end of the process, v is influenced but it is not an evangelist;

Evgv[b] is the maximum number of nodes that can be influenced in T (v) (3)
assuming that at mostb of the nodes in T (v) belong to the seed set,
if v is an evangelist at the end of the evangelization process.

Similarly the quantities N̂Ov[b], Înfv[b] and Êvgv[b] represent the same quan-
tities as above but considering the decreased thresholds for v (which may reflect
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the fact that the parent node of v becomes an evangelist before v itself).
We define the above quantities be −∞ if any of the constraints is not satisfiable.
For instance, if v is a single node, b = 0 and tE(v) > 0 we set2 Evgv[0] = −∞.

The maximum number of nodes in T that can be influenced with any seed
set of size β can be then obtained by computing

max{NOr[β], Infr[β], Evgr[β]}. (4)

In order to obtain the value in (4), we compute the quantities3 NOv[b], Infv[b],
Evgv[b], N̂Ov[b], Înfv[b] and Êvgv[b] for each v ∈ V and for each b = 0, 1, . . . , β.

We proceed postorder fashion on the tree, so that the computation of the
various values for a node v is done after all the values for v’s children are known.

For each leaf node � we have the values below. Recall that they refer to the
tree T (�) consisting of the single node �.

The node � will be not even influenced only if the budget is not sufficient
to have � in the seed set (e.g. b = 0) while the influence threshold is tI(�) > 0.
Hence,

NO�[b] =

{
0 if (b = 0 AND tI(�) > 0)
−∞ otherwise,

(5)

The node � gets influenced but does not become an evangelist in case the budget
is not sufficient to have � in the seed set (e.g. b = 0) and the evangelization
threshold is tE(�) > 0, but the influence threshold is tI(�) = 0. Hence,

Inf�[b] =

{
1 if (b = 0 AND tI(�) = 0 AND tE(�) > 0)
−∞ otherwise.

(6)

The node � becomes evangelist in T (�) when either the budget is sufficiently large
to have � in the seed set (b ≥ 1) or its evangelization threshold is tE(�) = 0.
Hence,

Evg�[b] =

{
1 if (b ≥ 1 OR tE(�) = 0)
−∞ otherwise.

(7)

The values for N̂O�[b], Înf �[b] and Êvg�[b] are computed similarly by using
on � the residual thresholds (tI(�) − 1 and tE(�) − 1) instead of tI(�) and tE(�).

Lemma 2. For any internal node v and for any integer b ∈ {0, . . . , β}, each
of the values NOv[b], Infv[b], Evgv[b], N̂Ov[b], Înfv[b], and Êvgv[b] can be
computed in time O(d2b2), where d is the number of children of v in T .

It follows that the value in (4) can be computed in time∑
v∈V O(d(v)2β2)×O(β) = O(β3) × ∑

v∈V O(d(v)2) = O(min{nΔ2β3, n2β3}),
where Δ is the maximum node degree. Standard backtracking techniques can
be used to compute a seed set of size at most β that influences this maximum
number of nodes in the same O(min{nΔ2β3, n2β3}) time. This concludes the
proof of Theorem 6.
2 Indeed v should be an evangelist, however the budget is 0 while the threshold is > 0.
3 For the root node r, the quantities N̂Or[b], Înfr[b] and Êvgr[b] are not required.
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4 Dense Graphs

In this section we concentrate on the Perfect Evangelic Set problem in
graphs characterized by large minimum degree. In particular, we relate the graph
minimum degree to the size of the smallest perfect seed set, e.g., a set S ⊆ V
such that Inf[S] = V .

Assuming that tI(v) ≤ tI and tE(v) ≤ tE , for each v ∈ V , and tE + tI ≤
|V | + 2, the algorithm PES(G, tE , tI) selects and returns a set S ⊆ V , of size at
most 2(tE − 1), that we will prove to be a PES for G whenever the minimum
degree of G is |V |+tE+tI

2 − 2.
The construction of the set S returned by the algorithm PES(G, tE , tI),

immediately implies the fact below.

Fact 1. 1) If |S| < 2(tE − 1) then each v ∈ V − S has at least tI neighbors in
S. 2) If |S| = 2(tE −1) then the sum of the degrees of the nodes in the subgraph
induced by S in G is upper bounded by [tI(tI −1)−2]+2(tI −1)[2(tE −1)− tI ] =
(tI − 1)(4tE − tI − 4) − 2 if tI ≥ 2; it is 0 if tI = 1.

Theorem 7. Let G = (V,E) be a graph on n nodes with tI(v) ≤ tI , tE(v) ≤ tE,
for each v ∈ V , where tE + tI ≤ n + 2, and d(v) ≥ n+tE+tI

2 − 2, for each v ∈ V .
The algorithm PES(G, tE , tI) returns a PES for G of size at most 2tE − 2.

Proof. Consider the evangelization process in G starting at the set S returned
by the algorithm PES(G, tE , tI). Let i ∈ {0, 1, . . .} be a round of the process and
a(i) = |Evg[S, i] − S| be the number of evangelists at round i that not belong to
the seed set S. If V − Inf[S, i] = ∅ then each node in V −Evg[S, i] has at least tI
neighbors in Evg[S, i] and the theorem is proved. Assume then V − Inf[S, i] 	= ∅.
By 1) of Fact 1, we know that |S| = 2(tE −1). Let σ(Evg[S, i]) denote the number
of edges in the subgraph of G induced by Evg[S, i]. In the following we assume
that tI≥2. The proof for tI=1 can be obtained similarly recalling that the value
in 2) of Fact 1 is 0 in this case. By 2) of Fact 1 and since each node in Evg[S, i]−S
is connected at most to each other node in Evg[S, i] ∪ S, we have that sum of
the degrees of the nodes in the subgraph of G induced by Evg[S, i] is

2σ(Evg[S, i]) ≤ (tI − 1)(4tE−tI−4)−2 + a(i)(a(i) − 1) + 2a(i)[2(tE − 1)]
= (tI − 1)(4tE−4−tI)−2 + a(i)2 + a(i)(4tE − 5). (8)

Recalling that d(v) ≥ n+tE+tI

2 − 2 for each v ∈ V , we get that the number
σ(Evg[S, i], V − Evg[S, i]) of edges connecting one node in Evg[S, i] and one in
V − Evg[S, i] is

σ(Evg[S, i], V − Evg[S, i])

≥ n+tE+tI−4

2
[2(tE−1)+a(i)] − [(tI − 1)(4tE−4−tI)−2 + a(i)2 + a(i)(4tE − 5)]

= (n+tE−3tI)(tE−1) + (tI−1)tI+2−a(i)2+a(i)

(
n + tE + tI

2
− 4tE + 3

)
(9)
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Algorithm 3. Algorithm PES(G, tE , tI)
Input: A graph G = (V, E) having thresholds tI(v)≤tI and tE(v)≤tE for v∈V .
Output: S, a perfect seed set for G.

1 Set S as any subset of V such that
2 - |S| = tI and
3 - at least two nodes in S are independent, if possible [e.g., if G is not a clique],
4 while (|S| < 2(tE − 1)) AND (∃v ∈ V − S s.t. |N(v) ∩ S| ≤ tI − 1) do

S = S ∪ {v}
5 return S

We first determine the minimum value of a(i) that guaranties that at least
one node v ∈ V − Evg[S, i] becomes an evangelist at round i + 1. By con-
tradiction assume that each node in V − Evg[S, i] has at most tE − 1 neigh-
bors in Evg[S, i]. This assumption implies that σ(Evg[S, i], V − Evg[S, i]) ≤
(n − 2(tE − 1) − a(i))(tE − 1)

It is not hard to see that the lower bound in (9) is larger than the above
upper bound when 0 ≤ a(i) ≤ n+tE+tI

2 − 3tE + 2. This leads to a contradiction
for such a range of values of a(i). Hence, for each round i for which 0 ≤ a(i) ≤
n+tE+tI

2 − 3tE + 2 at least one node v ∈ V − Evg[S, i] moves from V − Evg[S, i]
to Evg[S, i + 1] at round i + 1.

We show now that if a(i) = n+tE+tI

2 − 3tE+2 (i.e., |Evg[S, i+1]| ≥ 2(tE − 1) +
n+tE+tI

2 − 3tE+3) then |V − Inf[S, i+1]| = 0, thus completing the proof.
Indeed, we have |V − Evg[S, i + 1]| ≤ n − [2(tE − 1) + n+tE+tI

2 − 3tE + 3] =
n−(tE+tI)

2 +tE−1.This implies that the number of evangelists among the neighbors
of any node v ∈ V − Evg[S, i + 1] is at least

n + tE + tI
2

− 2 − n − (tE + tI)
2

− tE + 2 = tI .

Hence at round i+1 each node in V −Evg[S, i] is influenced and
|V −Inf[S, i+1]|=0. 
�

Notice that if tE = tI = 2, we get the result for Dirac graphs given in [18].

Corollary 1. Let G be a graph with d(v) ≥ n
2 , for each v ∈ V . The algorithm

PES(G, 2, 2) returns an optimal PES for G of size 2.
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Abstract. The 2-hop cover labeling of a graph is a data structure that
recently received a lot of attention since it can be exploited to efficiently
answer to shortest-path distance queries on large-scale networks. In this
paper, we propose the first dynamic algorithm to update 2-hop cover
labelings for distance queries under edge removals, and show that: (i) it
is efficient in terms of the number of nodes that change their distance
toward some other node of the network, as a consequence of an edge
removal; (ii) it is able to preserve the minimality of the labeling, a desir-
able property that has impact on both size and query time. In addition,
we combine the new method with the unique algorithm in the literature
suitable to handle edge additions, thus obtaining the first fully dynamic
algorithm for updating 2-hop cover labelings for distance queries. We also
conduct an extensive experimental study on real and synthetic dynamic
networks, to show the scalability and efficiency of our new methods.

1 Introduction

Answering to shortest-path distance queries between pairs of nodes of a graph
is one of the most fundamental operations on graph data, as it is a building
block of some of the most important applications in modern networked systems,
such as social networks analysis [16], context-aware search [14], route planning
in road networks [1,9], journey planning in transport systems [6], routing and
management of resources in computer networks [4].

Distance queries can be easily answered either by using a breadth first search
(BFS) on unweighted graphs, or the Dijkstra’s algorithm on positively weighted
graphs. Unfortunately, networks deriving from real-world applications tend to
be huge, yielding unsustainable times to compute shortest paths. For this rea-
son, many smarter methods for efficiently answering distance queries in differ-
ent application scenarios have been proposed [1,2,5,7,9,13,14], the majority of
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which relies on a preprocessing phase that precomputes data to be exploited
for reducing the time required for answering queries. Some of the most efficient
of these methods are based on the notion of 2-hop cover labeling [7]. Among
them, the recent pruned landmark labeling (pll) [2] achieves considerable better
scalability than other methods in several real-world networks [9].

However, many real-world networks are dynamic and rapidly changing, while
most of the above methods have been thought for static networks. In the dynamic
case, in order to keep queries correct, the preprocessed data need to be updated
after each change. The easiest way is to recompute everything from-scratch. This
is in general infeasible in modern large-scale networks since even the fastest
methods require too much time. In recent years, some techniques have been
developed to solve this issue for classes of dynamic graphs that exhibit a well
defined structure, such as road networks [8,10]. However, for complex (i.e. with
non-trivial topological features) dynamic networks very little has been done.

Recently in [3], a dynamization of pll has been proposed, which focuses on
the incremental problem, i.e. on handling edge additions only. However, no solu-
tion is given w.r.t. the decremental problem, i.e. when edge removals need to be
managed. They motivate this choice by several reasons. First, solving the incre-
mental problem appears to be already quite technically challenging. Second, the
authors claim that the decremental problem is even harder, and a solution able
to efficiently solving it without making big compromises on performance (e.g.
labeling size and hence query time) seems to be very difficult to devise. Finally,
the authors claim that removals either never happen in certain kinds of real-
world dynamic networks such as interaction networks, and co-author networks,
or happen with very low frequency in other kinds of real dynamic networks.

However, there are many prominent scenarios where removals are possi-
ble, and often very frequent. Examples are the management of disruptions in
both public transportation systems and road-networks, the management of con-
gestions in communication networks, the management of removals of links in
network-aware search indices [4,6,12]. More in general, efficiently solving the
decremental problem seems to be a crucial building block of all those real-world
applications that rely on dynamic large-scale graph-like data, as for instance
graph database systems or software modeling tools.

In this paper, we propose the first decremental algorithm for updating 2-hop
cover labelings for shortest-path distance query, and show that: (i) it is efficient in
terms of the number of nodes that change their distance toward some other node
of the network, as a consequence of an edge removal; (ii) it is able to preserve
the minimality of the labeling, a desirable property that has impact on both size
and query time. In addition, we combine the new method with the unique algo-
rithm able to update 2-hop cover labelings in case of incremental graph updates,
proposed in [3], thus obtaining the first fully dynamic algorithm for updating 2-
hop cover labelings. Finally, we propose an extensive experimental study on real
and synthetic networks, to demonstrate the scalability and efficiency of our new
methods. Our experiments show that: (i) our approaches are orders of magnitude
faster than the recomputation from scratch for updating even massively sized
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labelings; (ii) labelings updated by our algorithms are able to answer to distance
queries in large-scale networks in microseconds and their size does not change as
graph updates occur. On the one hand our data support our theoretical results
in confirming that the decremental problem is much harder to be solved w.r.t.
the incremental one. In fact, the time required for updating the labeling in the
decremental case is much higher than that required for handling the incremental
scenario. On the other hand, our experimental results clearly contradicts the
conjecture given in [3] by showing that a practically efficient method for the
fully dynamic case can be developed without any compromise on performance.

2 Preliminaries

Given an undirected graph G = (V,E) with n = |V | nodes and m = |E| edges,
we denote by N(v) the set of the neighbors of v in G, that is N(v) = {u ∈
V | {u, v} ∈ E}, and by d(u, v) the distance between nodes u and v, that is
the number of edges in a shortest path between u and v. If u and v are not
connected, then d(u, v) = ∞. A modification or update to a graph is either the
addition (also referred as insertion) or the removal (also referred as deletion)
of an edge. Nodes additions and removals can be modeled as modifications of
multiple edges incident to the same node. We assume that time is described by
positive integers and that graph updates occur at each integer t. Symbol Gt

denotes the graph after t modifications, where G0 is the initial graph. Similarly,
Nt and dt denote neighbor and distance functions in Gt, respectively. We omit
the parameter t when it is clear by the context.
2-hop Cover Labeling. For each node v of G, the label L(v) of v is a set of pairs
(u, δuv), where u is a node in V and δuv = d(u, v). The set {L(v)}v∈V is referred
to as a labeling. We use u ∈ L(v) instead of (u, δuv) ∈ L(v) when the meaning is
clear from the context. Labels can be used to answer to a query on the distance
between two nodes s and t as follows: Query(s, t, L) = min{δvs + δvt | v ∈
L(s)∧v ∈ L(t)} if L(s)∩L(t) �= ∅, and Query(s, t, L) = ∞ otherwise. A labeling
L is called a 2-hop cover labeling of G if, for each pair s, t ∈ V , L(s)∩L(t) contains
at least a node u in a shortest path between s and t (or it is empty if s and t
are disconnected). If such a node u exists, it is said to be a hub of pair (s, t). It
can be easily proven that in a 2-hop cover labeling Query(s, t, L) = d(s, t), for
each s, t ∈ V [7]. For each node v ∈ V , if L(v) is sorted according to the IDs of
its nodes, then computing Query(s, t, L) takes O(|L(s)| + |L(t)|) time.

Given a graph G, two nodes s and t in V , and a labeling L of G, a shortest
path P from s to t is induced by L if for any two nodes u and v in P there exists
a hub h of (u, v) such that h ∈ P , or h = u, or h = v. The set of shortest paths
between nodes s and t induced by L is denoted by Path(s, t, L). A labeling L is
minimal if and only if, for each v ∈ V and for each (u, δuv) ∈ L(v), there exist
two nodes s, t such that Query(s, t, L′) �= di(s, t), where L′ is obtained from L
by removing (u, δuv) in L(v).

In the literature, two algorithms for the computation of a 2-hop cover labeling
of a graph are known [2]. The first method is called naive landmark labeling and
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is based on a full computation of n BFSs, starting from all the nodes of the
graph. The second method is called pruned landmark labeling (pll) and consists
in a tailored pruning of the BFSs of the previous method. For space constraints
we omit the details of such algorithms, and refer to [2] for a detailed description.

Even if the two methods exhibit the same worst-case time and space com-
plexity, it has been shown that the latter performs much better in practice [2,9].
In particular, the performance of pll heavily depends on the ordering of V . It
has been experimentally observed that the average label size (and the time com-
plexity of the query algorithm) decreases by several orders of magnitude if the
nodes are sorted according to a centrality measure, like e.g. degree or closeness,
instead of a random ordering [2]. The best way to select an ordering depends on
the graph structure, only recently it has been proposed a sorting algorithm that
leads to small label sizes in many graph classes [9]. Note that, given a graph, it
has been shown that computing an ordering on the nodes that delivers a labeling
of minimum size is NP-Hard [11].

The pll method guarantees the well-ordering property [15] that is, if v < u,
then u is not in L(v), while v might be in L(u). This property is quite important,
as it can be used to prove that the computed labeling is minimal [2]. Minimality
is an highly desirable property, given the hardness of finding 2-hop covers of
minimum size. In details, pll builds labeling that are minimal.
Incremental Algorithm. The only known algorithm for the incremental prob-
lem has been proposed in [3], and is called add in what follows. A peculiarity of
add is that it does not remove outdated label entries from the original labeling,
i.e. entries that correspond to distances that have decreased as a consequence of
the insertion of an edge. Therefore, they are present also in the updated labeling.

The above observation is motivated by the fact that distances can only
decrease due to edge additions and hence they cannot be underestimated because
of outdated label entries, i.e. it is possible to correctly answer to distance queries
even in presence of such pairs, since the query algorithm searches for the mini-
mum. Moreover, removing outdated entries is avoided also because their detec-
tion is computationally expensive. Under this strategy, the minimality of the
resulting labeling as a whole can be broken even after a single update, although
the set of newly added entries is minimal to answer correct distances. Due to
space constraints, we refer to [3] for a thorough description of add.

3 Decremental Algorithm

In this section, we present our new algorithm to update a 2-hop cover labeling
L of a given graph G under edge removals, called remove. Notice that, in case
of removals, outdated label entries cannot be simply ignored, as they might
induce underestimated, uncorrect distances. For this reason, the detection and
the removal of such entries, unlike the case of edge additions, cannot be avoided.
Due to space limitations, the proofs of our results will be given in the full paper.

Let us assume that an edge {x, y} is removed from Gi−1 and that Gi is the
resulting graph, for i ≥ 1. We say that a node v is affected by such a removal
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if there exists a shortest path induced by L between v and any other node u,
i.e. a path in Path(v, u, L) that passes through edge {x, y} in Gi−1. The set of
affected nodes is denoted as Aff.

The set of affected nodes is exploited to detect the labels that change as a
consequence of the removal of {x, y}. Indeed, assume that, for a pair of nodes u
and v, one of the paths in Path(u, v, L) passes through edge {x, y} in Gi−1. Let
h be the hub of pair (u, v) corresponding to such path, then one label between
(h, δuh) in L(u) or (h, δvh) in L(v) might not be correct and hence it must be
removed from L(u) or L(v), respectively, and, in this case, a new hub between u
and v must be computed (see Fig. 1). This might hold also for the labels of each
other node z that contains u (or v) in L(z) and exploit it as a hub from z to v
(or u).

Fig. 1. A shortest path between nodes u and v. The solid line represents edge {x, y},
while dashed lines represent shortest paths. Assume that h ∈ L(u) ∩ L(v), then h is
a hub for pair (u, v). If {x, y} is removed, then v, h ∈ Aff (x), u ∈ Aff (y), and label
(h, δuh) in L(u) is not correct and must be updated.

For each affected node v, di−1(v, x) < di−1(v, y) or di−1(v, x) > di−1(v, y).
Therefore, we divide set Aff into two disjoint subsets Aff (x) and Aff (y) that
contain the affected nodes closer to x or to y, respectively. Moreover, we observe
that if u and v are two affected nodes such that u ∈ Aff (x) and v ∈ Aff (y) and a
shortest path between u and v passes through {x, y}, then a hub h of pair (u, v)
is also affected and either h ∈ Aff (x) or h ∈ Aff (y) (see Fig. 1). The next lemma
gives us a way to exploit the set of affected nodes to identify the pairs in L that
must be updated.

Lemma 1. If L is a 2-hop cover labeling of Gi−1, then, for each u, v ∈ V ,
Query(u, v, L) �= di(u, v) only if v ∈ Aff (x) and u ∈ Aff (y) or v ∈ Aff (y) and
u ∈ Aff (x).

By Lemma 1, if L is a 2-hop cover labeling of Gi−1, then Query(u, v, L) �=
di(u, v) only if v ∈ Aff (x) and u ∈ Aff (y) (or symmetrically v ∈ Aff (y) and
u ∈ Aff (x)). Moreover, there exists a hub h of pair (u, v) that is also affected and
either h ∈ Aff (x) or h ∈ Aff (y). In the former case, Query(u, h, L) �= di(u, h),
while in the latter case Query(v, h, L) �= di(v, h) (Fig. 1 depicts the former
case). By repeating this argument, we obtain a pair of affected nodes h′, h′′ in
Path(u, v, L) such that (h′, δh′h′′) ∈ L(h′′) but δh′h′′ �= di(h′, h′′). In this case,
(h′, δh′h′′) must be removed from L(h′′) and updated, possibly by finding a new
hub for (h′, h′′), and also for all hubs in the considered path between u and v.
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Lemma 2. To obtain a 2-hop cover labeling of Gi from a 2-hop cover labeling L
of Gi−1 it is enough to update all the pairs (u, δvu) in label L(v), for all the nodes
v and u such that v ∈ Aff (x) and u ∈ Aff (y) or v ∈ Aff (y) and u ∈ Aff (x).

Lemma 2 implies that all pairs (u, δvu) in L(v), for all nodes v and u such
that v ∈ Aff (x) and u ∈ Aff (y) or v ∈ Aff (y) and u ∈ Aff (x) may not be correct
in Gi and therefore our approach is to remove them from L(v) and recompute a
new hub for (u, v). In fact, note that it is not enough to update (u, δvu) in L(v)
by setting δvu = di(u, v), but the computation of a new hub might be required.

Our new algorithm remove is made of three phases. In the first phase,
we compute sets Aff (x) and Aff (y); in the second phase, we remove the pairs
satisfying the condition of Lemma 1; and in the third phase we recompute the
missing hubs in order to restore the 2-hop cover labeling according to Lemma 2.
Detecting Affected Nodes. The pseudocode of the algorithm to compute set
Aff (x) is given in Algorithm 1, the algorithm to compute Aff (y) is symmetrical
and it is not reported. The set of affected nodes is stored in variable A(x). We
assume that A(x) is kept sorted according to the node ordering, this could be
done e.g. by maintaining A(x) as a heap.

Algorithm 1 mimics a BFS rooted at x but it prunes some of the branches if
the reached node is not affected. We use a queue Q to store the nodes to visit and
a boolean vector mark to keep track of the visited nodes. At line 3, we initialize
A(x), Q, and mark. Then, the pruned BFS is performed at lines 4–11 starting from
x. A node v is enqueued in Q only if it is affected. Let v be a node extracted from
Q, then v is inserted into A(x) and mark[v] is set to true at line 10. Then, each
neighbor u of v is analyzed in order to check whether it is affected and hence
must be inserted into Q. Let H be the set of hubs of pair (u, y) in Gi−1, then u
is inserted into Q if there exists a hub h ∈ H such that one of the two following
conditions holds (see line 9): (i) h ∈ A(x); (ii) di−1(v, y) = di−1(v, x) + 1 and
either h = v or h = y. Condition (i) checks whether a hub h has been already
identified as affected. In this case, there exists a shortest path from h to y in
Path(h, y, L) that contains edge {x, y} and therefore also one of the shortest
paths from u to y in Path(u, y, L) must contain edge {x, y}. Note that, since we
are performing a BFS starting from x, then the hub h of pair (u, y) is analyzed
by the algorithm before u and, if it is affected, then it is inserted in A(x) before
u being analyzed from the condition at line 9. Condition (ii) handles the case
in which a hub of pair (u, y) is u or y. In this case, u is affected if any shortest
path from u to y passes through edge {x, y} and therefore we check whether
di−1(v, y) = di−1(v, x) + 1, in fact, in such a case there exists at least a shortest
path from u to y passing through edge {x, y}. If the condition at line 9 is not
satisfied, node u is not inserted into Q and then the search is pruned at u.

Lemma 3. At the end of Algorithm 1, A(x) = Aff (x).

Removing Affected Hubs. Algorithm 2 removes labels (u, δuv) from L(v), for
all affected nodes u and v that satisfy the condition of Lemma 1. The following
lemma follows by simply observing that, by Lemma 3, A(x) = Aff (x).
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Algorithm 1. Compute A(x)
1 foreach v ∈ V do
2 mark[v] ← false;
3 A ← ∅; Q ← ∅; mark[x] ← true; Q.Enqueue(x);
4 while Q �= ∅ do
5 v ← Q.Dequeue();
6 A(x) ← A(x) ∪ {v};
7 foreach u ∈ Ni(v) : ¬mark[u] do
8 Let H be the set of hubs of pair (u, y) in Gi−1;
9 if ∃ h ∈ H : h ∈ A(x) ∨ ((h = u ∨ h = y) ∧ di−1(u, y) = di−1(u, x) + 1)

then
10 mark[u] ← true;
11 Q.Enqueue(u);

Algorithm 2. Remove affected hubs from affected labels
1 foreach (u, v) : ((v ∈ A(x) ∧ u ∈ A(y)) ∨ (v ∈ A(y) ∧ u ∈ A(x))) ∧ u ∈ L(v) do
2 Remove (u, δuv) from L(v);

Lemma 4. At the end of Algorithm 2, L does not contain any pair that satisfies
the condition of Lemma 1.

Computing New Hubs. Let us assume w.l.o.g. that |A(x)| < |A(y)|. Moreover,
we assume that di(x, y) �= ∞, since otherwise L is already correct and algorithm
remove terminates just after the end of Algorithm 2. Algorithm 3 updates the
labels of affected nodes in the case that di(x, y) �= ∞. We run Algorithm 3 only
on nodes in A(x) and we do not need to run it also on nodes in A(y).

Algorithm 3 performs a BFS rooted at each node a ∈ A(x). As in Algorithm 1,
we use a queue Q to store the nodes to visit and a boolean vector mark to keep
track of the visited nodes. We use a vector dist to store the distances between
a and any other node. At lines 2–8, we initialize Q, mark, and dist. At lines 10–
17, we perform a BFS rooted at each a ∈ A(x). Let v be the node currently
extracted from Q and L be the current label set. If v ∈ A(y), then the result of a
query between a and v that uses the label set might be wrong due to Lemma 1.
Therefore, we check whether dist[v] < Query(a, v, L) and, in the affirmative
case, the path between a and v found by the BFS is shorter than those induced
by L and hence we update L either by inserting pair (v, dist[v]) in L(a) or by
inserting pair (a, dist[v]) in L(v), depending on the relative ordering of v and
a (see lines 12–14). Note that, we do not compute the distances between all the
pairs (u, v) such that v ∈ A(x) and u ∈ A(y) since in some case a hub h between
u and v might have been found in previous iterations of the algorithm.

Theorem 1. At the end of Algorithm 3, L is a 2-hop cover labeling.

The next theorem shows that the labeling resulting from Algorithm 3 is
minimal. On the one hand, this leads to a reduced query time. On the other
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Algorithm 3. Compute new hubs
1 foreach a ∈ A(x) do
2 Q ← ∅; mark[a] ← true; dist[a] ← 0;
3 foreach v ∈ V \ {a} do
4 mark[v] ← false;
5 dist[v] ← ∞;

6 foreach v ∈ Ni(a) do
7 Q.Enqueue(v);
8 dist[v] ← 1;
9 mark[v] ← true;

10 while Q �= ∅ do
11 v ← Q.Dequeue();
12 if dist[v] < Query(a, v, L) ∧ v ∈ A(y) then
13 if v < a then Insert (v, dist[v]) in L(a);
14 else Insert (a, dist[v]) in L(v);

15 foreach u ∈ Ni(v) : ¬mark[u] do
16 dist[u] ← dist[v] + 1;
17 Q.Enqueue(u);
18 mark[u] ← true;

hand, it implies that the deletion of a single hub in the labeling would lead to
some incorrect queries. However, in Algorithm 1, we exactly identify the hubs
that need to be updated in order to keep all the queries correct.

Theorem 2. If L is a minimal 2-hop cover labeling of Gi−1 that satisfies the
well-ordering property, then at the end of Algorithm 3, L is a minimal 2-hop
cover labeling of Gi that satisfies the well-ordering property.

Note that, in the worst case remove is not better than pll, which requires
O(nm+n2) time. However, in what follows we show that it is efficient in terms of
the number of affected vertices. Given a 2-hop cover labeling L of G, we denote
by l the maximum size of the labels in L, i.e. l = maxv∈V |L(v)|, by Â the biggest
in size between sets A(x) and A(y), i.e. Â = arg max{|A(x)|, |A(y)|}, and by mÂ

the number of edges incident on the nodes of Â, i.e. mÂ =
∑

v∈Â |N(v)|. The next
theorem states the complexity of remove as a function of |Â|.
Theorem 3. Algorithm remove requires O(mÂl log |Â|+ |Â|(m+n log |Â|+nl))
worst case time.

Although in the worst case |Â| = O(|V |), in practice the nodes affected by an
edge removal are much less than |V |, thus suggesting that remove will behave
well in practice. This observation is confirmed by our experimental results, which
are shown in the next section.

4 Experimental Evaluation

We implemented, in C++: (i) algorithms add and remove; (ii) a combination
of them able to handle both edge additions and removals (named fully); (iii)
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pll for the from-scratch computation. Concerning the computation of the set
of affected nodes within remove, we implemented Algorithm 1 in a way that
allows us to avoid to compute the set H of all hubs between pairs (u, y) at
line 8. Regarding pll, we considered its parallel version, which exploits multi-
cores architectures, while all other algorithms are sequential. As in [3], we sorted
nodes in non-increasing order of degree. All code has been compiled with GNU
g++ 4.8 (O4 opt. level) under Linux (Kernel 3.13.0–65), and executed on a
Quad-core 3.60 GHz Intel Xeon X5687 equipped workstation, with 24 GB of main
memory and 12 MB of internal cache.

As input, we used various real-world network instances taken from known
repositories for this kind of datasets, such as, e.g., SNAP, PTV, and Konect. In
detail, we considered datasets similar to those used in other studies on static and
dynamic 2-hop cover based methods [2,3,9]. We tested our algorithms on real-
world undirected networks, and on synthetic networks generated via ForestFire
model. Graph details on the considered networks are reported in Table 1.

Table 1. Input graphs.

Dataset Network |V| |E| AvgDeg

Eu-All (eua) Mail 265 214 365 570 2.77

Epinions (epn) Social 131 828 841 372 12.76

YouTube (ytb) Social 1 134 890 2 987 624 5.26

Brightkite (bkt) Location-based 58 228 214 078 7.35

Google (goo) Web 875 713 4 322 051 9.87

AS-Skitter (ski) Computer 1 696 415 11 095 298 13.08

Denmark (den) Road 469 110 545 019 2.32

FlickrImg (fli) Metadata 105 938 2 316 948 43.74

ForestFire-U (ffu) Synthetic 1 000 000 7 374 808 14.75

WikiTalk (wtk) Communication 2 394 385 4 659 565 4.19

FlickrLinks (fll) Social 1 715 255 15 550 782 18.13

DBPedia (dbp) Miscellaneous 3 966 924 13 820 853 6.97

SimpWiki-En (swe) Hyperlink 100 312 826 491 16.5

Executed Tests. We conducted a wide set of experiments which can be logically
divided in two categories: synthetic, and real-world edge operations.

In the synthetic case, for each graph G, we first construct a labeling L(G)
by pll. Then, we generate and perform three different types of workloads, called
inc, dec and ful, respectively. In the inc (dec, resp.) case, we perform 10 000
randomly chosen edge insertions (deletions, resp.). Note that, edge insertions are
performed by selecting pairs of nodes that are not connected in the graph and by
inserting and edge between them. By applying i-th operation on Gi, we obtain
Gi+1. Then, we execute algorithm add (remove, resp.) to reflect the change
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on L(Gi), thus obtaining L(Gi+1). In parallel, we execute pll directly on Gi+1

to compute L(Gi+1) from-scratch. In the ful workload case, we perform 10 000
operations of mixed randomly chosen type. For each operation, we either remove
or add an edge, run fully and compare it with pll, as above.

In the real-world case, we used a dynamic dataset available on Konect,
namely SimpWiki-En, representing a real evolving network. In this scenario,
the ful workload is a realistic sequence of updates, i.e. additions and removals,
where the number of additions is around 25% of the total number of updates
within the dataset. In all above tests, we reduce the number of operations when-
ever dealing with networks of very large size (e.g., to 500 for AS-Skitter), since
pll can require hundreds of minutes per execution in such cases.

As primary performance metric, after each graph update, we measure (i)
the update time (UT), i.e. the computational time, in seconds, for updating the
labeling by either add or remove or fully, and (ii) the building time (BT),
i.e. the computational time, in seconds, for building the labeling from-scratch
by pll. For each graph update, we compute the speed-up, i.e. the ratio between
UT and BT. As in [3] we also consider space occupancy and query time metrics.
In particular, after each graph update, for each considered labeling L, either
computed via from-scratch or by dynamic algorithms, we measure: (i) the labeling
size (LS), i.e. the space required to store L, in bytes, on average; (ii) the average
query time (QT) i.e. the time needed to answer a distance query, in microseconds,
on average, over 100 000 random queries.

The results of the all above experiments are summarized in Table 2 where
we report, for each network, average values over all graph operations for all the
above measures. We omit the results of the inc workload case, since they are very
similar to those of [3]. For completeness’ sake, for remove only, we also provide
value |Â|, i.e. the average size of set Â. Regarding the speed-up, our results are
shown in Fig. 2, where we report the distribution of the speed-up of remove

and fully via box-plot charts (we highlight minimum, 1st quartile, median, 3rd
quartile and maximum values). Due to space constraints, we focus on a subset
of the considered networks. Other datasets produce similar outcomes.
Analysis. Our experimental data show that the proposed approach is effective
in practice. In fact, we observe (see Table 2) that UT is always by far smaller than
BT. In particular, dynamic algorithms are, on average, more than two orders of
magnitude faster w.r.t. pll. Their good performance is even clearer if we focus
on Fig. 2, where we can observe that in almost all the instances remove and
fully are faster than pll. The median value is always quite high (i.e. more than
100) and there are cases in which both remove and fully, are more than 108

times faster than pll. Furthermore, the speed-up seems to increase as the size of
network and/or the density increase, which suggests that the proposed methods
might scale well to bigger/denser networks. The experiments also support the
result of Theorem 3. In fact, the update time of remove decreases whenever
the number of affected nodes is small.

Regarding space occupancy, our results show that the use of dynamic algo-
rithms does not induce an increase in labeling size. This confirms the outcome of
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Table 2. Experimental results.

Dataset ful workload dec workload

pll fully pll remove

BT LS QT UT LS QT BT LS QT UT LS QT |Â|
Eu-All 20.2 83MB 9.2 1.98 83MB 9.7 21.1 83MB 9.9 3.62 83MB 9.9 130 556

Epinions 41.9 81MB 20.3 0.54 81MB 17.8 41.5 81MB 20.2 0.99 81MB 17.5 16 985

YouTube 516 882MB 22.1 56.16 882MB 20.6 514 882MB 22.3 112.43 882MB 20.7 368 302

Brightkite 9.31 2.5MB 15.9 0.36 2.5MB 15.8 9.30 2.5MB 15.9 0.88 2.5MB 15.8 13 574

Google 466 663MB 19.1 27.63 663MB 17.2 457 663MB 18.5 73.39 663MB 17.1 133 688

AS-Skitter 4 930 3.6GB 53.0 61.99 3.6GB 67.2 4 930 3.6GB 55.3 65.05 3.6GB 53.5 208 709

Denmark 212 1.9GB 80.7 84.50 2.6GB 134.0 212 1.9GB 80.7 92.50 2.6GB 129.0 46 923

FlickrImg 409 260MB 70.1 4.76 260MB 67.2 409 260MB 69.4 7.41 260MB 69.5 5 110

ForestFire-U 2 370 2.5GB 61.7 22.08 2.5GB 60.5 2 350 2.5GB 61.8 46.63 2.5GB 60.3 100 056

WikiTalk 2 720 1.3GB 35.4 63.6 1.3GB 16.5 2 840 1.3GB 30.2 112.0 1.3GB 16.9 1 167 840

FlickrLinks 6 900 12GB 50.9 8.9 12GB 50.9 6920 12GB 50.9 16.7 12GB 52.1 1 003 260

DBPedia 2 760 9.3GB 21.3 61.1 9.3GB 21.3 2 760 9.3GB 17.1 359.0 9.3GB 17.1 1 785 560

SimpWiki-En 38.3 189MB 13.4 0.188 190MB 14.1 41.3 181MB 15.2 0.814 181MB 16.0 40 400

our theoretical analysis of Sect. 3 about remove, and that of the experimental
evaluation of add proposed in [3], where the authors show that, even giving up
on the minimality property, the algorithm behaves well in practice w.r.t. space
occupancy. Regarding query time, our experiments confirm that dynamic algo-
rithms deliver labelings that exhibit query times comparable to those exhibited
by labelings computed from-scratch. This is in agreement with the considerations
done w.r.t. average labeling size, which is directly related to query time [9].

In summary, remove can be considered as the first algorithm for updating
2-hop cover labelings that is able to efficiently handle edge removals. In fact, it
allows to reflect graph changes on the labeling extremely faster than the fastest
available approach, i.e. pll, and, at the same time, to efficiently answer queries
without increasing the labeling size over time. This is clearly a highly desirable
behavior in real-world dynamic scenarios. In fact, relying on pll would imply
having wrong answers to distance queries for much longer periods of time.

Regarding fully, its performance w.r.t. update time is even better than
remove, since it manages additions by the very fast add. Moreover, our data
show that this is achieved without any degradation w.r.t. labeling size and query
time. In fact, even though add does not remove outdated labels, and then if used
alone it might require the periodic execution of pll to restore minimality and
avoid query time increases, in the ful experiments we can observe that the
average labeling size and query time are always comparable to those of both
remove and pll. This is due to the very effective Algorithm 2, which deletes
also outdated label entries that are not removed by add.

For the above reasons, fully can be considered the first fully dynamic algo-
rithm for updating 2-hop cover labelings, able to deal with both additions and
removals, and to answer to distance queries without any compromises on per-
formance thus improving the literature on the matter.

As a last remark, we emphasize that all proposed approaches appear to be
extendable to weighted graphs. We plan to investigate this issue as part of our
future work.
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Fig. 2. Speed-up of remove (left) and fully (right) against pll.
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Abstract. This paper considers the minimax regret 1-median problem
in dynamic path networks. In our model, we are given a dynamic path
network consisting of an undirected path with positive edge lengths,
uniform positive edge capacity, and nonnegative vertex supplies. Here,
each vertex supply is unknown but only an interval of supply is known.
A particular assignment of supply to each vertex is called a scenario.
Given a scenario s and a sink location x in a dynamic path network, let
us consider the evacuation time to x of a unit supply given on a vertex
by s. The cost of x under s is defined as the sum of evacuation times to
x for all supplies given by s, and the median under s is defined as a sink
location which minimizes this cost. The regret for x under s is defined
as the cost of x under s minus the cost of the median under s. Then, the
problem is to find a sink location such that the maximum regret for all
possible scenarios is minimized. We propose an O(n3) time algorithm for
the minimax regret 1-median problem in dynamic path networks with
uniform capacity, where n is the number of vertices in the network.

Keywords: Minimax regret · Sink location · Dynamic flow · Evacuation
planning

1 Introduction

The Tohoku-Pacific Ocean Earthquake happened in Japan on March 11, 2011, and
many people failed to evacuate and lost their lives due to severe attack by tsunamis.
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From the viewpoint of disaster prevention from city planning and evacuation plan-
ning, it has nowbecome extremely important to establish effective evacuationplan-
ning systems against large scale disasters in Japan. In particular, arrangements of
tsunami evacuation buildings in large Japanese cities near the coast has become
an urgent issue. To determine appropriate tsunami evacuation buildings, we need
to consider where evacuation buildings are located and how to partition a large
area into small regions so that one evacuation building is designated in each region.
This produces several theoretical issues to be considered. Among them, this paper
focuses on the location problem of the evacuation building assuming that we fix the
region such that all evacuees in the region are planned to evacuate to this building.
In this paper, we consider the simplest case for which the region consists of a single
road.

In order to represent the evacuation, we consider the dynamic setting in graph
networks, which was first introduced by Ford et al. [11]. In a graph network under
the dynamic setting, each vertex is given supply and each edge is given length
and capacity which limits the rate of the flow into the edge per unit time. We
call such networks under the dynamic setting dynamic networks. Unlike in static
networks, the time required to move supply from one vertex to a sink can be
increased due to congestion caused by the capacity constraints, which require
supplies to wait at vertices until supplies preceding them have left. In this paper,
we consider the flow on dynamic networks as continuous, that is, each input value
is given as a real number, and supply, flow and time are defined continuously.
Then each supply can be regarded as fluid, and edge capacity is defined as the
maximum amount of supply which can enter an edge per unit time. The 1-sink
location problem in dynamic networks is defined as the problem which requires
to find the optimal location of a sink in a given dynamic network so that all
supplies are sent to the sink as quickly as possible.

In order to evaluate an evacuation, we can naturally consider two types of
criteria: completion time criterion and total time criterion. In this paper we
adopt the latter one (for the former one, refer to [12,15,17,18]). We here define
a unit as an infinitesimally small portion of supply. Given a sink location x in
a dynamic network, let us consider an evacuation to x starting at time 0 and
define the evacuation time of a unit to x as the time when the unit reaches x in
the evacuation. The total time for the evacuation to x is defined as the sum of
evacuation times over all infinitesimal units to x. Then, the minimum total time
for all possible evacuations to x could be the criterion for the optimality of sink
location, which we adopt. Given a dynamic network, we define the 1-median
problem as the problem which requires to find a sink location minimizing the
minimum total time, and the optimal solution is called the median.

Although the above criterion is reasonable for the sink location, it may not be
practical since the number of evacuees in an area may vary depending on the time
(e.g., in an office area in a big city, there are many people during the daytime on
weekdays while there are much less people on weekends or during the night time).
So, in order to take into account the uncertainty of population distribution, we
consider the maximum regret for a sink location as another evaluation criterion
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assuming that for each vertex, we only know an interval of vertex supply. Then,
the minimax regret 1-median problem in dynamic path networks is formulated
as follows. A particular assignment of supply to each vertex is called a scenario.
Here, for a sink location x and a scenario s, we denote the minimum total time by
Φs(x). Also let ms denote the median under s. The problem can be understood
as a 2-person Stackelberg game as follows. The first player picks a sink location
x and the second player chooses a scenario s that maximizes the regret defined
as Φs(x)−Φs(ms). The objective of the first player is to choose x that minimizes
the maximum regret.

Related to the minimax regret facility location in graph networks, espe-
cially for trees, some efficient algorithms have been presented by [2,3,5–7,9].
For dynamic networks, Cheng et al. [8] first studied the minimax regret 1-center
problem in path networks, which requires to find a sink location in a path that
minimizes the maximum regret where the completion time criterion is adopted
instead of the total time one. They presented an O(n log2 n) time algorithm.
Higashikawa et al. [13] improved the time bound by [8] to O(n log n), and also
Wang [19] independently achieved the same time bound of O(n log n) with better
space complexity. Very recently, Bhattacharya et al. [4] have improved the time
bound to O(n). The above problem was extended to the multiple sink location
version by Arumugam et al. [1]. For the minimax regret k-center problem in
dynamic path networks with uniform capacity, they presented an O(kn3 log n)
time algorithm, and this time bound was improved to O(kn3) recently [12]. On
the other hand, for dynamic tree networks, only the minimax regret 1-center
problem was solved in O(n2 log2 n) time [14,16].

This paper first considers the minimax regret median problem in dynamic
networks while all the above works for dynamic networks treated center prob-
lems. In this paper, we address the minimax regret 1-median problem in dynamic
path networks with uniform capacity and present an O(n3) time algorithm.

2 Preliminaries

2.1 Dynamic Path Networks Under Uncertain Supplies

Let P = (V,E) be an undirected path with ordered vertices V = {v1, v2, . . . , vn}
and edges E = {e1, e2, . . . , en−1} where ei = (vi, vi+1) for i ∈ {1, . . . , n− 1}. Let
N = (P, l, w, c, τ) be a dynamic network with the underlying path graph P ; l is a
function that associates each edge ei with positive length li, w is a function that
associates each vertex vi with positive weight wi, amount of supply at vi; c is the
capacity, a positive constant representing the amount of supply which can enter
an edge per unit time; τ is a positive constant representing the time required
for a flow to travel a unit distance. In our model, instead of the weight function
w on vertices, we are given the weight interval function W that associates each
vertex vi ∈ V with an interval of supply Wi = [w−

i , w+
i ] with 0 < w−

i ≤ w+
i .

We call such a network N = (P, l,W, c, τ) with path structures a dynamic path
network under uncertain supplies.
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In the following, we write p ∈ P to indicate that a point is a vertex of P or
lies on one of the edges of P . For any point p ∈ P , we abuse this notation by also
letting p denote the distance from v1 to p. Informally we can regard P as being
embedded on a real line with v1 = 0. For two points p, q ∈ P satisfying p < q,
let [p, q] (resp. [p, q), (p, q] and (p, q)) denote an interval in P consisting of all
points x ∈ P such that p ≤ x ≤ q (resp. p ≤ x < q, p < x ≤ q and p < x < q).

2.2 Scenarios

Let S denote the Cartesian product of all Wi for i ∈ {1, . . . , n}:

S =
n∏

i=1

Wi. (1)

An element of S, i.e., a particular assignment of weight to each vertex, is called
a scenario. Given a scenario s ∈ S, we denote by ws

i the weight of a vertex vi

under s.

2.3 Evacuation on a Dynamic Path Network

In our model, the supply is defined continuously. We define a unit as an infin-
itesimally small portion of supply. Given a sink location x ∈ P and a scenario
s ∈ S, without loss of generality, an evacuation to x under s is assumed to satisfy
the following assumptions. When a unit arrives at a vertex v on its way to x, it
has to wait for the departure if there are already some units waiting for leaving
v. All units waiting at v for leaving v are processed in the first-come first-served
manner. We show the details below.

As shown in Fig. 1, let us consider a path with only three vertices, say v1,
v2 and x, and two edges. Supplies of w1 and w2 are given at vertices v1 and v2,
respectively, and a sink is at a vertex x, Both edges have capacity c. For a unit
of supply, it takes τ(v2 −v1) time to cross the edge (v1, v2) and τ(x−v2) time to
cross the edge (v2, x). Suppose that all supplies start evacuating to x at time 0.
First consider the evacuation of supply given at v2. Since the amount of supply
which can enter an edge in unit time is c, the last unit of v2 leaves v2 at time
w2/c and reaches x at time τ(x − v2) + w2/c.

xv
2

v
1

w
2

w
1

Fig. 1. Illustration of a path with three vertices and two edges

Next consider the evacuation of supply given at v1. At time τ(v2 − v1), the
first unit of v1 reaches v2. Then one of the following three situation occurs.
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(1) No congestion: If τ(v2 −v1) > w2/c, there is no supply waiting at v2 when
the first unit of v1 reaches v2. In this case, every unit from v1 continues through
to x without waiting, say v1 gets no congestion at v2. Then the last unit of v1
reaches x at time

τ(x − v1) +
w1

c
. (2)

(2) Congestion: If τ(v2 − v1) < w2/c, there is some supply waiting at v2 when
the first unit of v1 reaches v2. In this case, every unit from v1 has to wait at v2,
say v1 gets congestion at v2. Then the last unit of v1 reaches x at time

τ(x − v2) +
w1 + w2

c
. (3)

(3) Touching: If τ(v2 − v1) = w2/c, the last unit of v2 just leaves v2 when the
first unit of v1 reaches v2, say v1 gets touching at v2. Then the last unit of v1
reaches x at time

τ(x − v1) +
w1

c
= τ(x − v2) +

w1 + w2

c
. (4)

Note that if v1 gets congestion or touching at v2, we can transform the input
so that supply of w1 is moved from v1 to v2, which never changes the time when
each unit reaches x.

2.4 Total Evacuation Time

For a given x ∈ P and s ∈ S, let us consider an evacuation to x under s starting
at time 0 and define the evacuation time of a unit to x under s as the time
when the unit reaches x. Let Φs(x) denote the sum of evacuation times over all
infinitesimal units to x under s. Also let Φs

L(x) (resp. Φs
R(x)) denote the sum of

evacuation times to x under s for all units on [v1, x) (resp. (x, vn]). Then, Φs(x)
is obviously the sum of Φs

L(x) and Φs
R(x), i.e.,

Φs(x) = Φs
L(x) + Φs

R(x). (5)

Without loss of generality, we assume Φs
L(v1) = 0 and Φs

R(vn) = 0.
We will show the formula of Φs(x) that has been proved in [15,17]. Suppose

that x is located in an open interval (vh, vh+1) with 1 ≤ h ≤ n − 1, i.e., x ∈ eh.
We here show only the formula of Φs

L(x) (the case of Φs
R(x) is symmetric). First,

let us define the vertex indices ρ1, . . . , ρk inductively as

ρi = max

{

argmax

{

τ(vh − vj) +

∑j
l=ρi−1+1 ws

l

c

∣
∣
∣
∣ j ∈ {ρi−1 + 1, . . . , h}

}}

, (6)

where ρ0 = 0. Obviously ρk = h holds. We then call a set of all units on
[vρi−1+1, vρi

] the i-th left cluster for x (the i-th right cluster for x is symmetrically
defined), andavertexvρi

theheadof i-th cluster (seeFig. 2).Also, for i ∈ {1, . . . , k},
we define σi as σi =

∑ρi

l=ρi−1+1 ws
l , which is called the weight of i-th cluster.
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Fig. 2. Illustration of left clusters for x where i-th cluster is headed by a vertex vρi

The definition of (6) can be interpreted as follows. Looking at the i-th left
cluster, we find that vρi−1 gets congestion or touching at vρi

. Therefore trans-
forming the input so that supply of wρi−1 is moved from vρi−1 to vρi

and vρi−1

is removed never changes the evacuation time of each unit to x, which implies
that Φs

L(x) is never changed. After that, vρi−2 also gets congestion or touching
at vρi

, thus wρi−2 can be moved from vρi−2 to vρi
and vρi−2 can be removed

without changing Φs
L(x). In the similar manner, even if we transform the input

so that all supplies on [vρi−1+1, vρi
) are moved to vρi

for every i ∈ {1, . . . , k},
Φs

L(x) is never changed. In the following, we call such a transformation the left-
clustering for x (the right-clustering for x is symmetrically defined). Note that
after left-clustering for x, heads of left clusters only remain in the left side of x
and vρi−1 gets no congestion at vρi

for any i ∈ {2, . . . , k}, that is,

τ(vρi
− vρi−1) >

σi

c
. (7)

In other words, the first unit of each head can reach x without any stop on its
way to x. Thus, as in [15,17], Φs

L(x) can be written as

Φs
L(x) =

k∑

i=1

(

σiτ(x − vρi
) +

σi
2

2c

)

. (8)

2.5 Minimax Regret Formulation

For a scenario s ∈ S, let ms be a point in P that minimizes Φs(x) over x ∈ P ,
called the median under s. We now define the regret for x under s as

Rs(x) = Φs(x) − Φs(ms). (9)

Moreover, we also define the maximum regret for x as

Rmax(x) = max{Rs(x) | s ∈ S}. (10)

If ŝ = argmax{Rs(x) | s ∈ S}, we call ŝ the worst case scenario for x. The
goal is to find a point x∗ ∈ P , called the minimax regret median, that minimizes
Rmax(x) over x ∈ P , i.e., the objective is to

minimize {Rmax(x) | x ∈ P}. (11)
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2.6 Known Properties for the Fixed Scenario Case

We here show some properties on the 1-median problem in a dynamic path
network N = (P = (V,E), l, ws, c, τ) when a scenario s ∈ S is given, which were
basically presented in [15,17]. We first introduce the following two lemmas.

Lemma 1 [15,17]. For a scenario s ∈ S, ms is at a vertex in V .

Lemma 2 [15,17]. For a scenario s ∈ S, all Φs(vi) over i ∈ {1, . . . , n} can be
computed in O(n) time in total.

We then can see a corollary of these lemmas.

Corollary 1 [15,17]. For a scenario s ∈ S, ms and Φs(ms) can be computed in
O(n) time.

Now let us look at the formula of (8). Even if x is moving on an edge ei

(not including endpoints vi and vi+1), the formation of left clusters for x does
not change over x ∈ ei. Therefore, Φs

L(x) is a linear function of x ∈ ei, and
symmetrically, Φs

R(x) is also a linear function. For i ∈ {1, . . . , n − 1}, letting as
i

and bs
i be the values such that for x ∈ ei,

Φs(x) = as
i x + bs

i , (12)

we can derive the following lemma from [15,17].

Lemma 3. For a scenario s ∈ S, all as
i and bs

i over i ∈ {1, . . . , n − 1} can be
computed in O(n) time in total.

3 Properties of Worst Case Scenarios

In this section, we show the important properties which worst case scenarios
have. In our problem, a main difficulty lies in evaluating Rs(x) over s ∈ S to
compute Rmax(x) even for a fixed x since the size of S is infinite. We thus aim
to find a scenario set with a finite size (in particular, a polynomial size) which
includes a worst case scenario for any x ∈ P . In order to do this, we introduce
a new concept, the gap between two points x, y ∈ P under a scenario s ∈ S,
defined by

Γ s(x, y) = Φs(x) − Φs(y). (13)

By Lemma 1 and the definition of (9), we have

Rs(x) = max{Γ s(x, y) | y ∈ V }, (14)

and by (10) and (14),

Rmax(x) = max{max{Γ s(x, y) | y ∈ V } | s ∈ S}
= max{max{Γ s(x, y) | s ∈ S} | y ∈ V }. (15)
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From (15), if we can compute max{Γ s(x, y) | s ∈ S} for a fixed pair 〈x, y〉 ∈
P ×V , Rmax(x) can also be computed by repeating the same maximization over
y ∈ V . We call a scenario that maximizes Γ s(x, y) for a fixed 〈x, y〉 a worst case
scenario for 〈x, y〉. In the following, we show a scenario set of size O(n) that
includes a worst case scenario for a fixed 〈x, y〉, which implies a scenario set of
size O(n2) that includes a worst case scenario for a fixed x.

3.1 Bipartite Scenario

We first introduce the concept of the bipartite scenario, which was originally
introduced as the dominant scenario in [8,13]. Let us consider a scenario s ∈ S.
A scenario s is said to be left-bipartite (resp. right-bipartite) if ws

j = w+
j (resp.

w−
j ) over j ∈ {1, . . . , i} and ws

j = w−
j (resp. w+

j ) over j ∈ {i + 1, . . . , n} for
some i ∈ {1, . . . , n − 1}. Obviously the number of such scenarios is O(n). The
authors of [8,13] treated the minimax regret 1-center problem in dynamic path
networks, which requires to find a sink location in a path that minimizes the
maximum regret similarly defined as (10) where the completion time criterion
is adopted instead of the total time one. They proved that for any point in an
input path, at least one worst case scenario is left-bipartite or right-bipartite.

3.2 Pseudo-bipartite Scenario

We here introduce the concept of the pseudo-bipartite scenario. A scenario s is
said to be left-pseudo-bipartite (resp. right-pseudo-bipartite) if ws

j = w+
j (resp.

w−
j ) over j ∈ {1, . . . , i − 1} and ws

j = w−
j (resp. w+

j ) over j ∈ {i + 1, . . . , n}
for some i ∈ {2, . . . , n − 1}. In this definition, we do not care about the weight
of a vertex vi, called the intermediate vertex. Given a pseudo-bipartite scenario
with the intermediate vertex vi, we call intervals [v1, vi) and (vi, vn] the left part
and the right part, respectively. Let SL (resp. SR) denote a set of all left-pseudo-
bipartite scenarios (resp. right-pseudo-bipartite scenarios). We then prove the
following lemma (the proof is omitted).

Lemma 4. Given a pair 〈x, y〉 ∈ P × V satisfying y < x (resp. x < y), there
exists a worst case scenario for 〈x, y〉 belonging to SL (resp. SR) such that x is
in the right part (resp. the left part), and y is in the left part (resp. the right
part) or at the intermediate vertex.

3.3 Critical Pseudo-bipartite Scenario

By Lemma 4, we studied the property of a worst case scenario for a fixed 〈x, y〉 ∈
P × V , however the sizes of SL and SR are still infinite since the weight of the
intermediate vertex in a pseudo-bipartite scenario is not fixed. In the rest of this
section, we focus on the weight of the intermediate vertex in a pseudo-bipartite
scenario which is worst for 〈x, y〉.

Given a pair 〈x, y〉 ∈ P ×V satisfying y < x, let us consider a scenario s ∈ SL

such that the intermediate vertex is vi and y ≤ vi < x. Suppose that the weight
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of vi is set as the minimum, i.e., ws
i = w−

i . Performing the right-clustering for
y under s (mentioned in Sect. 2.4), we will get right clusters for y such that the
head of l-th cluster is ρl for l ∈ {1, . . . , k} satisfying ρk < . . . < ρ1, and the
weight of l-th cluster is σl. Suppose that the intermediate vertex vi belongs to
the j-th cluster.

Let us increase the weight of vi, little by little, without changing the weight
of any other vertex. Let s(w) be a scenario in SL such that the intermediate
vertex is vi whose weight is w ∈ [w−

i , w+
i ]. Note that vρj−1 gets no congestion at

vρj
under s, i.e., s(w−

i ). When the weight of vi reaches some value ω, vρj−1 may
get touching at vρj

. If so, the following equality holds:

τ(vρj−1 − vρj
) =

σj + (ω − w−
i )

c
. (16)

Here σj +(ω−w−
i ) corresponds to the weight of j-th cluster under s(ω). At that

moment, by the definition of (6), the (j − 1)-th cluster is immediately merged
to the j-th cluster. We then call s(ω) a critical left-pseudo-bipartite scenario
for y. Note that such critical scenarios may occur several times while increasing
the weight of vi from w−

i to w+
i . Also, s(w−

i ) and s(w+
i ) are assumed to be

critical left-pseudo-bipartite scenarios for y even if any merge does not occur at
those moments. Critical right-pseudo-bipartite scenarios for y are symmetrically
defined. Let Sy denote a set of all critical left-pseudo-bipartite scenarios and
critical right-pseudo-bipartite scenarios for y, and S∗ =

⋃
y∈V Sy. We will show

two lemmas (the proof of Lemma 5 is omitted).

Lemma 5. Given a pair 〈x, y〉 ∈ P × V , there exists a worst case scenario for
〈x, y〉 belonging to Sy.

Lemma 6. For a vertex y ∈ V , the size of Sy is O(n), and all scenarios in Sy

can be computed in O(n) time.

Proof. We first prove that the number of critical left-pseudo-bipartite scenarios
for y is O(n) (the case of critical right-pseudo-bipartite scenarios is symmetric).
Suppose that y = vj . For i ∈ {j + 1, . . . , n} and w ∈ [w−

i , w+
i ], let s(i, w) be

a scenario in SL such that the intermediate vertex is vi whose weight is w.
Here, let us define the total ordering between two scenarios s(i, w) and s(i′, w′):
s(i, w) ≺ s(i′, w′) holds if and only if (a) i < i′ or (b) i = i′ and w < w′. For
i ∈ {j + 1, . . . , n}, we also define pi and qi as follows. Let pi be the number of
critical left-pseudo-bipartite scenarios for y such that the intermediate vertex is
vi (including s(i, w−

i ) and s(i, w+
i )). Let qi be, under a scenario s(i, w+

i ), the
number of right clusters for y that follow a cluster including vi.

Let us consider computing all critical left-pseudo-bipartite scenarios for y in
ascending order, and suppose that the weight of vi now increases from w−

i to
w+

i . Here let c be the right cluster for y including vi. While the weight increases,
since pi − 2 critical left-pseudo-bipartite scenarios for y occur (except s(i, w−

i )
and s(i, w+

i )), and at each such scenario, one or more clusters are merged into c,
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at least pi−2 clusters are merged into c in total. We thus have qi ≤ qi−1−(pi−2)
for i ∈ {j + 1, . . . , n}, i.e.,

pi ≤ qi−1 − qi + 2. (17)

Note that the total number of critical left-pseudo-bipartite scenarios for y is
exactly 1 +

∑n
i=j+1(pi − 1). By (17), we have

n∑

i=j+1

(pi − 1) ≤
n∑

i=j+1

(qi−1 − qi + 1) = qj − qn + (n − j), (18)

which is O(n) since qj ≤ n − j and qn = 0.
In the rest of the proof, we show that all critical left-pseudo-bipartite scenar-

ios for y = vj can be computed in O(n) time. Recall that all critical left-pseudo-
bipartite scenarios for y are computed in ascending order. The algorithm first
gets s(j + 1, w−

j+1), and performs the right clustering for y under s(j + 1, w−
j+1).

As claimed in [15,17], it is easy to see that the right clustering for a fixed y can
be obtained in O(n) time.

Suppose that for particular i ∈ {j + 1, . . . , n} and ω ∈ [w−
i , w+

i ], s(i, ω) is
critical for y, and the algorithm has already obtained s(i, ω) and the right clusters
for y. We then show how to compute the subsequent critical left-pseudo-bipartite
scenario. Let cy be a right cluster for y including vi and c′

y be a right cluster for
y immediately following cy. Also, let ρy (resp. ρ′

y) be the index of a vertex that
corresponds to the head of cy (resp. c′

y), and σy (resp. σ′
y) be the weight of cy

(resp. c′
y).

There are two cases: [Case 1] ω < w+
i ; [Case 2] ω = w+

i . For Case 2, we notice
that s(i + 1, w−

i+1) is equivalent to s(i, w+
i ). Therefore, this case immediately

results in Case 1 by letting i be i + 1 and ω be w−
i+1 (although a right cluster

for y including vi+1 may be c′
y, not cy). We thus consider only Case 1 in the

following.
The algorithm will compute the subsequent critical left-pseudo-bipartite sce-

nario s(i, ω′) where ω′ satisfies ω < ω′ ≤ w+
i . In order to compute ω′, the

algorithm test if there exists w ∈ (ω,w+
i ] such that

τ(vρ′
y

− vρy
) =

σy + (w − ω)
c

, (19)

which is similar to (16). If yes, for such w, the algorithm returns ω′ = w and
updates the right clusters for y by merging c′

y into cy. Otherwise, ω′ = w+
i

is just returned. Such testing and updating are done in O(1) time. Since the
number of critical left-pseudo-bipartite scenarios for y is O(n) and each of those
is computed in O(1) time, we completes the proof. ��
By (15), we have a corollary of Lemma 5.

Corollary 2. Given a point x ∈ P , there exists a worst case scenario for x
belonging to S∗.
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Also, a corollary of Lemma 6 immediately follows.

Corollary 3. The size of S∗ is O(n2), and all scenarios in S∗ can be computed
in O(n2) time.

4 Algorithm

In this section, we show an algorithm that computes the minimax regret median,
which minimizes Rmax(x) over x ∈ P . The algorithm basically consists of two
phases:
[Phase 1] Compute Rmax(vi) over i ∈ {1, . . . , n}, and
[Phase 2] Compute min{Rmax(x) | x ∈ ei} over i ∈ {1, . . . , n − 1}.
After these, the algorithm evaluates all the 2n − 1 values obtained and finds the
minimax regret median in O(n) time.

By Corollary 2, we only have to consider scenarios in S∗ to compute Rmax(x)
for any x ∈ P . Therefore, the algorithm computes all scenarios in S∗ in advance,
which can be done in O(n2) time by Corollary 3. Subsequently, it computes all
the values Φs(ms) over s ∈ S∗ for Phase 1 and Phase 2. By Corollaries 1 and 3,
this can be done in O(n3) time in total.

First let us see details in Phase 1. For a fixed scenario s ∈ S∗, since all
Φs(vi) over i ∈ {1, . . . , n} can be computed in O(n) time by Lemma 2 and
Φs(ms) has already been computed before Phase 1, all Rs(vi) over i ∈ {1, . . . , n}
can also be computed in O(n) time (refer to (9)). After the algorithm obtains
Rs(v1), . . . , Rs(vn) over s ∈ S∗ in O(n3) time, for each i ∈ {1, . . . , n}, Rs(vi)
over s ∈ S∗ are evaluated to obtain Rmax(vi). Thus, it is easy to see that Phase
1 can be done in O(n3) time in total.

We next focus on Phase 2. As mentioned at the end of Sect. 2.6, for a fixed
scenario s ∈ S∗, Φs(x) is a linear function of x ∈ ei for each i ∈ {1, . . . , n − 1}
(not including vi and vi+1). Therefore, Rs(x) is also linear for x ∈ ei for each i.
Referring to (12), a function Rs(x) on an edge ei is written as

Rs(x) = as
i x + bs

i − Φs(ms). (20)

Recall that Φs(ms) has already been computed. Then, by Lemma 3, Rs(x) on ei

over i ∈ {1, . . . , n − 1} can be computed in O(n) time. After the algorithm does
the same computation over s ∈ S∗ in O(n3) time, on each edge ei, we have O(n2)
linear functions Rs(x) over s ∈ S∗. By the definition of (10), min{Rmax(x) | x ∈
ei} can be obtained by solving a linear programming problem in two dimensions
with O(n2) constraints, i.e.,

minimize y

subject to as
i x + bs

i − Φs(ms) ≤ y, ∀s ∈ S∗

vi ≤ x ≤ vi+1.

This problem can be solved in O(n2) time by [10]. Repeating the same operations
over i ∈ {1, . . . , n − 1}, Phase 2 is completed in O(n3) time.

Theorem 1. The minimax regret 1-median problem in dynamic path networks
with uniform capacity can be solved in O(n3) time.
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5 Conclusion

In this paper, we address the minimax regret 1-median problem in dynamic
path networks with uniform capacity and present an O(n3) time algorithm.
Additionally, this is the first work that treats the minimax regret facility location
problem in dynamic networks where the total time criterion is adopted. Two
natural questions immediately follow. The first one is whether we can reduce
the number of scenarios to be considered. The other one is whether we can
extend the problem to the k-median version with k ≥ 2, or the problem in more
general networks.
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Abstract. In this paper, we address three related problems. One is the
enumeration of all the maximal edge induced chain subgraphs of a bipar-
tite graph, for which we provide a polynomial delay algorithm. We give
bounds on the number of maximal chain subgraphs for a bipartite graph
and use them to establish the input-sensitive complexity of the enumer-
ation problem. The second problem we treat is the one of finding the
minimum number of chain subgraphs needed to cover all the edges a
bipartite graph. For this we provide an exact exponential algorithm with
a non trivial complexity. Finally, we approach the problem of enumer-
ating all minimal chain subgraph covers of a bipartite graph and show
that it can be solved in quasi-polynomial time.

Keywords: Chain subgraph cover problem · Enumeration algorithms ·
Exact exponential algorithms

1 Introduction

Enumerating (listing) the subgraphs of a given graph plays an important role
in analysing its structural properties. It thus is a central issue in many areas,
notably in data mining and computational biology.

In this paper, we address the problem of enumerating without repetitions all
maximal edge induced chain subgraphs of a bipartite graph. These are graphs
that do not contain a 2K2 as induced subgraph. From now on, we will refer to
them as chain subgraphs for short when there is no ambiguity.

Bipartite graphs arise naturally in many applications, such as biology as
will be mentioned later in the introduction, since they enable to model the
relations between two different classes of objects. The problem of enumerating
in bipartite graphs all subgraphs with certain properties has thus already been
considered in the literature. These concern for instance maximal bicliques for
which polynomial delay enumeration algorithms in bipartite [6,11] as well as
in general graphs [5,11] were provided. In the case of maximal induced chain
subgraphs, their enumeration can be done in output polynomial time as it can
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be reduced to the enumeration of a particular case of the minimal hitting set
problem [7] (where the sets in the family are of cardinality 4). However, the
existence of a polynomial delay algorithm for this problem remains open. To the
best of our knowledge, nothing is known so far about the problem of enumerating
maximal edge induced chain subgraphs in bipartite graphs.

In this paper, we propose a polynomial delay algorithm to enumerate all
maximal chain subgraphs of a bipartite graph. We also provide an analysis of
the time complexity of this algorithm in terms of input size. In order to do
this, we prove some upper bounds on the maximum number of maximal chain
subgraphs of a bipartite graph G with n nodes and m edges. This is also of
intrinsic interest as combinatorial bounds on the maximum number of specific
subgraphs in a graph are difficult to obtain and have received a lot of attention
(see for e.g. [8,12]).

We then address a second related problem called the minimum chain sub-
graph cover problem. This asks to determine, for a given graph G, the minimum
number of chain subgraphs that cover all the edges of G. This has already been
investigated in the literature as it is related to other well-known problems such
as maximum induced matching (see e.g. [3,4]). For bipartite graphs, the problem
was shown to be NP-hard [14].

Calling m the number of edges in the graph, we provide an exact exponen-
tial algorithm which runs in time O∗((2 + ε)m), for every ε > 0 by combining
our results on the enumeration of maximal chain subgraphs with the inclusion-
exclusion technique [1] (by O∗ we denote standard big O notation but omitting
polynomial factors). Notice that, since a chain subgraph cover is a family of sub-
sets of edges, the existence of an algorithm whose complexity is close to 2m is not
obvious. Indeed, the basic search space would have size 22

m

, which corresponds
to all families of subsets of edges of a graph on m edges.

Finally, we approach the problem of enumerating all minimal covers by chain
subgraphs. To this purpose, we provide a total output quasi-polynomial time
algorithm to enumerate all minimal covers by maximal chain subgraphs of a
bipartite graph. To do so, we prove that this can be polynomially reduced to the
enumeration of the minimal set covers of a hypergraph.

Besides their theoretical interest, the problems of finding one minimum chain
subgraph cover and of enumerating all such covers have also a direct application
in biology. Nor et al. [13] showed that a minimum chain subgraph cover of such a
bipartite graph provides a good model for identifying the minimum genetic archi-
tecture enabling to explain one type of manipulation, called cytoplasmic incom-
patibility, by some parasite bacteria on their hosts. This phenomenon results in
the death of embryos produced in crosses between males carrying the infection
and uninfected females. The observed cytoplasmic compatibility relationships,
can be then represented by a bipartite graph with males and females in different
classes. Moreover, as different minimum (resp. minimal) covers may correspond
to solutions that differ in terms of their biological interpretation, the capacity
to enumerate all such minimal chain covers becomes crucial.
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The remainder of the paper is organised as follows. In Sect. 2, we give some
definitions and preliminary results that will be used throughout the paper.
Section 3 then provides a polynomial delay algorithm to enumerate all maxi-
mal chain subgraphs in a bipartite graph G with n nodes and m edges, and
Sect. 4 presents an upper bound on their maximum number. We use the latter
to further establish the input-sensitive complexity of the enumeration algorithm.
In Sect. 5, we detail the exact algorithm for finding the minimum size of a mini-
mum chain cover in bipartite graphs, and in Sect. 6 we exploit the connection of
this problem with the minimal set cover of a hypergraph to show that it is possi-
ble to enumerate in quasi-polynomial time all minimal covers by maximal chain
subgraphs of a bipartite graph. Finally, we conclude with some open problems.

2 Preliminaries

Throughout the paper, we assume that the reader is familiar with the standard
graph terminology, as contained for instance in [2]. We consider finite undirected
graphs without loops or multiple edges. For each of the graph problems in this
paper, we let n denote the number of nodes and m the number of edges of the
input graph.

Given a bipartite graph G = (U ∪ W,E) and a node u ∈ U , we denote by
NG(u) the set of nodes adjacent to u in G and by EG(u) the set of edges incident
to u in G. Moreover, given U ′ ⊆ U and W ′ ⊆ W , we denote by G[U ′,W ′] the
subgraph of G induced by U ′ ∪W ′. A node u ∈ U such that NG(u) = W is called
a universal node.

A bipartite graph is a chain graph if it does not contain a 2K2 as an induced
subgraph. Equivalently, a bipartite graph is a chain graph if and only if for each
two nodes v1 and v2 both in U (resp. in W ), it holds that either NG(v1) ⊆
NG(v2) or NG(v2) ⊆ NG(v1). Given a chain subgraph C = (X ∪ Y, F ) of G,
we say that a permutation π of the nodes of U is a neighbourhood ordering of
C if NC(uπ(1)) ⊆ NC(uπ(2)) ⊆ . . . ⊆ NC(uπ(|U |)). Observe that if X ⊂ U , the
sets NC(uπ(1)), . . . , NC(uπ(l)) for some integer l ≤ |U |, may be empty and, in
the case C is connected, l = |U | − |X|. By the largest neighbourhood of C, we
mean the neighbourhood of a node x in X for which the set NC(x) ⊆ Y has
maximum cardinality. A set Y ′ ⊆ Y is a maximal neighborhood of G, if there
exists x ∈ X such that NG(x) = Y ′ and there does not exist a node x′ ∈ X such
that NG(x) ⊂ NG(x′). Two nodes x, x′ such that NC(x) = NC(x′) are called
twins.

In this paper, we always consider edge induced chain subgraphs of a graph
G. Hence, here a chain subgraph C of G is a set of edges E(C) ⊆ E(G) and
in that case its set of nodes will be constituted by all the nodes of G incident
to at least one edge in C (sometimes abusing notation, we more simply write
C \ E(D) with D a subgraph of G, e ∈ C, C ⊆ E(D) or equivalently C ⊆ D to
say that C is a subgraph of D).

A maximal chain subgraph C of a given bipartite graph G is a connected
chain subgraph such that no superset of E(C) is a chain subgraph. We denote
by C (G) the set of all maximal chain subgraphs in G.
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A set of chain subgraphs C1, . . . , Ck is a cover for G if ∪1≤i≤kE(Ci) = E(G).
Observe that, given any cover of G by chain subgraphs C = {C1, . . . Ck}, there
exists another cover of same size C ′ = {C ′

1, . . . C
′
k} whose chain subgraphs are all

maximal; more precisely, for each i = 1, . . . , k, C ′
i is a maximal chain subgraph of

G and C ′
i admits Ci as subgraph. In order to avoid redundancies, from now on,

although not explicitly highlighted, we will restrict our attention to the covers
by maximal chain subgraphs.

We denote by S(G) the set of all minimal chain covers of a bipartite graph G.

An enumeration algorithm is said to be output polynomial or total polynomial
if the total running time is polynomial in the size of the input and the output. It
is said to be polynomial delay if the time between the output of any one solution
and the next one is bounded by a polynomial function of the input size [10].

3 Enumerating All Maximal Chain Subgraphs

In this section, we provide a polynomial delay algorithm for enumerating all the
maximal chain subgraphs of a given bipartite graph. We start by proving the
following result.

Proposition 1. Let C = (X∪Y, F ) be a chain subgraph of G = (U ∪W,E), with
X ⊆ U , Y ⊆ W and F ⊆ E, and let x ∈ X be a node with largest neighbourhood
in C. Then C is a maximal chain subgraph of G if and only if both the following
conditions hold:

(i) NC(x) = NG(x) is a maximal neighbourhood of G, i.e. there does not exist
a node x′ ∈ X such that NG(x) ⊂ NG(x′).

(ii) C \ EG(x) is a maximal chain subgraph of G
[
U \ {x}, NG(x)

]
.

Proof. (⇒) Let C = (X ∪Y, F ) be a maximal chain subgraph of G = (U ∪W,E).
To prove that (i) holds, suppose by contradiction that NC(x) is not a maximal
neighbourhood of G, i.e. there exists x′ ∈ U with NC(x) ⊂ NG(x′) (possibly
x′ = x). Since NC(x) is the largest neighbourhood of C, for all z ∈ X, we have
NC(z) ⊆ NC(x) ⊂ NG(x′), so we can then add to C all the edges incident
to x′ and still obtain a chain subgraph thereby contradicting the maximality
of C. To prove that (ii) holds, first observe that NG(x) = Y (otherwise we
would violate (i) with x′ = x). By contradiction, assume that C \ EG(x) is
not maximal in G

[
U \ {x}, NG(x)

]
. Then, there exists a chain subgraph C ′

such that C \ EG(x) ⊂ C ′ ⊆ G
[
U \ {x}, NG(x)

]
. By adding to each one of the

previous graphs the edges in EG(x), we have that the strict inclusion is preserved
because the added edges were not present in any one of the three graphs. Since
C ′ with the addition of EG(x) is still a chain subgraph with NG(x) as its largest
neighbourhood, we reach a contradiction with the hypothesis that C is maximal
in G.

(⇐) We show that if both (i) and (ii) hold, then the chain subgraph C of G
is maximal. Suppose by contradiction that C is not maximal in G, and let C ′

be a chain subgraph of G such that C ⊂ C ′. Let x be the node with the largest
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neighbourhood in C. It follows that NC(x) ⊆ NC′(x). As (i) holds, we have that
NG(x) = NC(x) ⊆ NC′(x) ⊆ NG(x) from which we derive that NC′(x) = NG(x),
and that C ′ ⊆ G

[
U,NG(x)

]
since NC′(x) is a maximal neighbourhood of G,

hence the largest neighbourhood of C ′ (and C by the hypothesis). This implies
also that C and C ′ differ in some node different from x, i.e. C \ EG(x) ⊂
C ′ \EG(x) ⊆ G

[
U \{x}, NG(x)

]
. Notice that C ′ \EG(x) is still a chain subgraph

because we simply removed node x and all its incident edges. We then get a
contradiction with (ii). 	


Proposition 1 leads us to the design of Algorithm 1 which efficiently enumer-
ates all maximal chain subgraphs of G. It exploits the fact that, in each maximal
chain subgraph, a nodeu whose neighbourhood is largest is also maximal inG (part
(i) of Proposition 1) and this holds recursively in the chain subgraph obtained by
removing node u and restricting the graph to NC(u) (part (ii) of Proposition 1).
To compute the maximal neighbourhood nodes, the algorithm uses a function,
computeCandidates, that, given sets U and W , returns for each maximal neigh-
bourhood Y ⊂ W , a unique node u, called candidate, for which NG(u) = Y . This
means that in case of twin nodes, the function computeCandidates extracts only
one representative node according to some fixed order on the nodes (e.g. the node
with the smallest label according to the lexicographical order). If the graph has no
edges, the function returns the empty set.

Proposition 2 (Correctness). Algorithm 1 correctly enumerates all the max-
imal chain subgraphs of the input graph G without repetitions.

Proof. Let G = (U ∪ W,E) be a bipartite graph. We prove the correctness of
Algorithm 1 by induction on |U |, i.e. we show that all the solutions are output,
without repetitions.

When |U | = 1, let u be the only node in U . We have that NG(u) is the only
neighbourhood in W , and line 3 returns {u} as unique candidate. In line 9, the
algorithm reduces the graph of interest. In line 10, the whole EG(u) is added
to the current chain subgraph C. Then the function is recursively recalled, with
U ′ = ∅ so the condition at line 4 is true and C is printed; it is in fact the
only chain subgraph of G, it is trivially maximal and there are no repetitions.
Correctness then follows when |U | = 1.

Assume now that |U | = k with k > 1. As inductive hypothesis, let the
algorithm work correctly when |U | = k − 1.

For each candidate u, the algorithm recursively recalls the same function on a
reduced graph and, by the inductive hypothesis, outputs all chain subgraphs of this
reduced subgraph without repetitions. By Proposition 1, if we add to each one of
these chain subgraphs the node u and all the edges incident to u in G[U,W ], we get
a different maximal chain subgraph of G since each maximal chain subgraph has
one and only one maximal neighborhood and the function computeCandidates
returns only one representative node. Recall that in the case of twin nodes the
algorithm will always consider the nodes in a precise order and so no repetition
occurs. Moreover, iterating this process for all candidates guarantees that all max-
imal chain subgraphs are enumerated and no one is missed. 	
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Algorithm 1. Enumerate All Maximal Chain Subgraphs
Input: A bipartite graph G = (U ∪ W,E)
Output: All maximal chain subgraphs of G

1 C ←− ∅ ; /* C is the set of edges of the current chain subgraph */

2 enumerateMaximalChain(U,W,C)

3 Candidates ←− computeCandidates(U,W )

4 if Candidates == ∅ then
5 print(C);
6 return;

7 end
8 for u ∈ Candidates do
9 U ′ ←− U \ {u}; W ′ ←− W ∩ NG(u); /* reduced graph */

10 F (u) ←− {edges of EG(u) incident to some node in W ′}
11 enumerateMaximalChain(U ′,W ′, C ∪ F (u));

12 end

Let G = (U ∪ W,E) be a bipartite graph, with n = |U | + |W | and m = |E|.
Before proving the time complexity of Algorithm 1, we observe that the running
time of the function ComputeCandidates is O(nm). Indeed, if we assume that
the adjacency lists of the graph are ordered, for each node ui ∈ U , it requires only
time proportional to i ·deg(ui) ≤ n ·deg(ui) to check whether the neighbourhood
of ui either is included, or includes the neighbourhood of uj , for each j < i.

Proposition 3 (Time Complexity and Polynomial Delay). Let G =
(U ∪ W,E) be a bipartite graph. The total running time of Algorithm1 is
O(|C (G)|n2m) where |C (G)| is the number of maximal chains subgraph of G.
Moreover, the solutions are enumerated in polynomial time delay O(n2m).

Proof. Represent the computation of Algorithm 1 as a tree of the recursion calls
of enumerateMaximalChain, each node of which stores the current graph on
which the recursion is called at line 11. Of course, the root stores G and on each
leaf the condition Candidates = ∅ is true and a new solution is output. Observe
that each leaf contains a feasible solution, and that no repetitions occur in view
of Proposition 2, so the number of leaves is exactly |C (G)|.

Since at each call the size of U is reduced by one, the tree height is necessarily
bounded by |U | = O(n); moreover, on each tree node, O(nm) time is spent for
running function ComputeCandidates.

It follows that, since the algorithm explores the tree in DFS fashion starting
from the root, between two solutions the running time is at most O(n2m) and
the total running time is O(|C (G)|n2m). 	
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4 Upper Bounds on the Number of Maximal Chain
Subgraphs

In this section, we give two upper bounds on the maximum number of maximal
chain subgraphs of a bipartite graph G with n nodes and m edges. The first
bound is given in terms of n while the second depends on m. These bounds
are of independent interest, however we will use them in two directions. First,
they will allow us to determine the (input-sensitive) complexity of Algorithm1.
Indeed, in Proposition 3, we proved that the total running time of Algorithm1
is of the form O(D(n) × |C (G)|), where D(n) is the delay of the algorithm and
|C (G)| is the number of maximal chain subgraphs of G. Thus, a bound on |C (G)|
leads to a bound on the running time of Algorithm1 depending on the size of
the input. Second, the bound on |C (G)| in terms of edges allows us to compute
the time complexity of an exact exponential algorithm for the minimum chain
subgraph cover problem in Sect. 5.

4.1 Bound in Terms of Nodes

The following lemma claims that a given permutation is the neighbourhood
ordering of at most one maximal chain subgraph.

Lemma 1. Let C1 and C2 be two maximal chain subgraphs of G = (U ∪ W,E)
and let π1 (resp. π2) be a neighbourhood ordering of C1 (resp. C2). Then, π1 =
π2 =⇒ C1 = C2.

Proof. The proof proceeds by induction on the number of nodes of U .
If |U | = 1 then G has only one maximal chain subgraph and the result

trivially holds.
Assume now that |U | > 1. By Proposition 1, we have that NC1(uπ(|U |)) =

NG(uπ(|U |)) = NC2(uπ(|U |)). Using again Proposition 1, we obtain that C ′
1 :=

C1[U \{uπ(|U |)}, NG(uπ(|U |))] and C ′
2 := C2[U \{uπ(|U |)}, NG(uπ(|U |))] are maxi-

mal chain subgraphs of the graph defined as G[U \{uπ(|U |)}, NG(uπ(|U |))]. Apply-
ing the inductive hypothesis with the permutations restricted to the |U | − 1 ele-
ments, we have that C ′

1 = C ′
2. Finally, since NC1(uπ(|U |)) = NC2(uπ(|U |)), we

conclude that C1 = C2. 	

As a corollary, the maximum number of chain subgraphs of a graph G =

(U ∪ W,E) is bounded by |U |!. Since the same reasoning can be applied on W ,
we have that |C (G)| ≤ |W |! and hence:

|C (G)| ≤ min(|U |, |W |)! ≤ n

2
!

This bound is tight as shown by the following family of graphs that
reaches it.



144 T. Calamoneri et al.

Consider the antimatching graph with n nodes An = (U ∪ W,E) defined as
the complement of an n/2 edge perfect matching, i.e.:

U := {u1, . . . , un/2}, W := {w1, . . . , wn/2},

E := {(ui, wj) ∈ U × W : i �= j}

It is not difficult to convince oneself that the maximal chain subgraphs of
An are exactly (n/2)! and that a different permutation corresponds to each of
them. In particular, for each permutation π of the nodes of U , the correspond-
ing maximal chain subgraph Cπ of An can be defined by means of the set of
neighbourhoods as follows:

NCπ
(ui) := {wks.t.π−1(k) < π−1(i)}.

The so-defined graph Cπ is a chain subgraph since all the neighbourhoods form
a chain of inclusions. Moreover, it is maximal since if we added to the neigh-
bourhood of ui any one of the missing edges (ui, wj) with π−1(j) ≥ π−1(i), we
would introduce a 2K2 with the existing edge (uj , wi) as (uj , wj) and (ui, wi)
are not in E.

4.2 Bound in Terms of Edges

Let T (m) be the maximum number of maximal chain subgraphs over all bipartite
graphs with m edges. We prove that T (m) ≤ 2

√
m log(m).

Lemma 2. Let G = (U ∪ W,E) be a bipartite graph. Then |C (G)| ≤ |U | ·
T (m − |W |).
Proof. In view of how the algorithm works and of Proposition 1, at the beginning,
there at most |U | candidates. For each candidate x, we can build as many chain
subgraphs as there are in G[U \ {x}, NG(x)]. We claim that this latter graph
has at most m − |W | edges. Indeed, in order to construct G[U \ {x}, NG(x)], we
remove from G exactly |EG(x)| edges when deleting x from U , and |W |−|NG(x)|
nodes (each one connected to at least a different edge as G is connected) when
reducing W to NG(x). Observing that |EG(x)| = |NG(x)|, in total we remove
|W | edges. The proof follows from the fact that the number of chain subgraphs
of G[U \ {x}, NG(x)] is bounded by T (m − |W |). 	

Theorem 1. Let G = (U ∪W,E) be a bipartite graph with n nodes and m edges;
then |C (G)| ≤ 2

√
m log m, i.e. T (m) ≤ 2

√
m log m.

Proof. Assume w.l.o.g that |U | ≤ |W |. The proof is by induction on m. Note
that for m = 1 the theorem holds trivially.

Applying the inductive hypothesis and Lemma 2, we have:

|C (G)| ≤ |U |T (m − |W |) ≤ n

2
2
(√

m− 1
2 n log(m− 1

2 n)
)
.
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Since the function x �→ x2
√

m−x log(m−x) is decreasing in the interval
[
√

m,m − 1], the maximum of n
2 2

√
m− n

2 log(m− n
2 ) is reached when n/2 is mini-

mum. Note that trivially for a bipartite graph we have n/2 >
√

m. Hence,

|C (G)| ≤ √
m 2

√
m−√

m log(m−√
m)

Let A :=
√

m −
√

m − √
m and B := m−√

m
m . We then have:

|C (G)| ≤ √
m 2(

√
m−A) log(mB)

= 2
√

m log m × √
m 2log B(

√
m−A)−A log(m)

Let us show that Z :=
√

m 2log B(
√

m−A)−A log m ≤ 1 by showing that log Z ≤ 0:

log Z = log
√

m + log B(
√

m − A) − A log(m)
= log

√
m(1 − 2A) + log B(

√
m − A)

≤ 0

considering that B < 1 and 1/2 < A ≤ 1 since:

A =
1

1 +
√

B
=

1

1 +
√

1 − 1√
m

	

Corollary 1. The (input-sensitive) complexity of Algorithm1 is bounded by
O∗(2

√
mlog(m)).

5 Minimum Chain Subgraph Cover

In this section, we show how to find in polynomial space the minimum size of
a chain subgraph cover in time O∗((2 + ε)m), for every ε > 0. Since a chain
subgraph cover is a family of subsets of edges, the existence of an algorithm
whose complexity is close to 2m is not obvious. Indeed the basic search space
has size 22

m

, as it corresponds to a family of subsets of edges. To obtain this
result, we exploit Algorithm 1, the bound obtained in Theorem 1 and the inclu-
sion/exclusion method [1,8] that has already been successfully applied to exact
exponential algorithms for many partitioning and covering problems.

We first express the problem as an inclusion-exclusion formula over the sub-
sets of edges of G.

Proposition 4. [1] Let ck(G) be the number of chain subgraph covers of size
k of a graph G. We have that:

ck(G) =
∑

A⊆E

(−1)|A|a(A)k

where a(A) denotes the number of maximal chain subgraphs not intersecting A.
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Exploring this result brings to the exact algorithm as described in the proof
of the next theorem.

Theorem 2. Given a bipartite graph G with m edges, for all k ∈ N
∗ and for all

ε > 0, ck(G) can be computed in time O∗((2 + ε)m).

Proof. Let G = (U ∪ W,E) be a bipartite graph, k ∈ N
∗ and ε > 0. Using the

formula of Proposition 4, ck can be computed in time
m∑

i=0

(
m
i

)
C(i), where C(i)

is the time complexity needed to compute a(A), |A| = i.
Notice that to compute a(A) for a given A ⊆ E, one can naively compute

all maximal chain subgraphs of G′ = (U ∪ W,E \ A) and, for each of them,
check whether it is maximal in G. Using this fact, and Corollary 1, C(i) can be
determined in time O(n2m2

√
m−i log(m−i)).

Thus we have that ck(G) can be computed in time
m∑

i=0

(
m
i

)
n2m2

√
m−i log(m−i).

Observe now that since 2
√

m−i log(m−i) = o((1 + ε)m), there exists a constant nε

such that for all m > nε, 2
√

m−i log(m−i) < (1 + ε)m.
Recalling that G is connected and thus m ≥ n, we then have:

m∑
i=0

(m

i

)
n
2
m2

√
m−i log(m−i)

=n
2
m

(
m−nε−1∑

i=0

(m

i

)
2

√
m−i log(m−i)

+

m∑
i=m−nε

(m

i

)
2

√
m−i log(m−i)

)

≤ n
2
m

(
m−nε−1∑

i=0

(m

i

)
(1 + ε)

m−i
+ nεm

nε2
√

nε log(nε)

)

≤ n
2
m

(
m∑

i=0

(m

i

)
(1 + ε)

m−i
+ nεm

nε2
√

nε log(nε)

)

≤ n
2
m(2 + ε)

m
+ n

2
nεm

1+nε2
√

nε log(nε)

= O
∗
((2 + ε)

m
).

We conclude, by observing that the size of a minimum chain cover is given
by the smallest value of k for which ck(G) �= 0. 	


6 Enumeration of Minimal Chain Subgraph Covers

In this section, we prove that the enumeration of all minimal chain subgraph
covers can be polynomially reduced to the enumeration of the minimal set covers
of a hypergraph. This reduction implies that there is a quasi-polynomial time
algorithm to enumerate all minimal chain subgraph covers. Indeed, the result in
[9] implies that all the minimal set covers of a hypergraph can be enumerated in
time N log N where N is the sum of the input size (i.e. n + m) and of the output
size (i.e. the number of minimal set covers).

Let G = (U ∪W,E) be a bipartite graph, C = C (G) the set of all its maximal
chain subgraphs, and S = S(G) the set of its minimal chain subgraph covers.
Notice that the minimal chain subgraph covers of G are the minimal set covers
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of the hypergraph H := (V, E) where V = E and E = C . Unfortunately, the size
of H might be exponential in the size of G plus the size of S. Indeed not every
maximal chain subgraph in C will necessarily be part of some minimal chain
subgraph cover. To obtain a quasi-polynomial time algorithm to enumerate all
minimal chain subgraph covers, we need to enumerate only those maximal chain
subgraphs that belong to a minimal chain subgraph cover.

Given an edge e ∈ E, let Ce be the set of all maximal chain subgraphs of G
containing e and Me the set of all edges e′ ∈ E inducing a 2K2 in G together
with e.

We call an edge e ∈ E non-essential if there exists another edge e′ ∈ E such
that Ce′ ⊂ Ce. An edge which is not non-essential is said to be essential. Note
that for every non-essential edge e, there exists an essential edge e1 such that
Ce1 ⊂ Ce. Indeed, by applying iteratively the definition of a non-essential edge,
we obtain a list of inclusions Ce ⊃ Ce1 ⊃ Ce2 . . ., where no Cei

is repeated as the
inclusions are strict. The last element of the list will correspond to an essential
edge.

The following lemma claims that if a maximal chain subgraph C contains at
least one essential edge, then it belongs to at least one minimal chain subgraph
cover.

Lemma 3. Let C be a maximal chain subgraph of a bipartite graph G = (U ∪
W,E). Then C belongs to a minimal chain subgraph cover of G if and only if C
contains an essential edge.

Proof. (⇒) Let C belong to a minimal chain subgraph cover M and assume that
C contains no essential edge. Given e ∈ C, e therefore being non-essential, there
exists an essential edge e′ such that Ce′ ⊂ Ce. Moreover, e′ �∈ C. As M is a cover,
there exists C ′ ∈ M such that e′ ∈ C ′. Thus, C ′ �= C, C ′ ∈ Ce′ ⊂ Ce, hence
e ∈ C ′. Since for every edge e ∈ C, there exists C ′ ∈ M containing it, we have
that M \ {C} is a cover, contradicting the minimality of M .

(⇐) Assume C contains an essential edge e. Let C ′ = {D ∈ C (G) : e �∈ D}.
Note that C ′ = C \ Ce. We show that C ′ ∪ {C} is a cover. Suppose on the
contrary that there exists e′ ∈ E \ E(C) and e′ is not covered by C ′ and thus
Ce′ ∩C ′ = ∅. This implies that Ce′ ⊆ C \C ′ = Ce and as e is essential, we obtain
Ce′ = Ce from which we deduce that e′ ∈ C. Thus, M = C ′ ∪{C} is a cover and
clearly it contains a minimal one. Finally, we conclude by observing that, since
by construction C is the only chain subgraph of M that contains e, it belongs
to any minimal cover contained in M . 	


It follows that the set of maximal chain subgraphs that can contribute to a
minimal chain cover is C̃ = ∪Ce where the index e of the union operation runs
over all the essential edges of G. In the following, we show how to detect essential
edges. This problem then consists in detecting all the couples e1, e2 such that
Ce1 ⊆ Ce2 before enumerating all useful maximal chain subgraphs. The following
lemma holds.
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Lemma 4. Let C be a maximal chain subgraph of a bipartite graph G = (U ∪
W,E) and let e ∈ E be such that for all e′ ∈ E(C), it holds that e �∈ Me′ . Then
e ∈ C.

Using this lemma we can now prove the following result.

Theorem 3. Given a bipartite graph G = (U ∪ W,E), for any two edges e, e′ ∈
E, Ce ⊆ Ce′ if and only if Me ⊇ Me′ .

Proof. (⇒) Given two edges e, e′ ∈ E, suppose that Ce ⊆ Ce′ , and assume
on the contrary that there exists f ∈ Me′ and f �∈ Me. Then there exists a
maximal chain C ′ containing e and f (as they do not form a 2K2 in G) but not
e′ (f ∈ Me′). Hence, C ′ ∈ Ce but C ′ /∈ Ce′ , contradicting the assumption that
Ce ⊆ Ce′ .

(⇐) Suppose now Me ⊇ Me′ . Let C ∈ Ce. By definition, none of the edges
of Me appears in C. Hence, e′ does not form a 2K2 with any edge in C in the
graph G (as Me ⊇ Me′). By Lemma 4 e′ ∈ C. Thus, Ce ⊆ Ce′ . 	


Notice that, given an edge e = (u,w) ∈ E, u ∈ U and w ∈ W , it is easy to
determine the set Me. We just need to start from E and delete all edges that
are incident either to u or to w, as well as all edges at distance 2 from e (that is
all edges e′ = (u′, w′) such that either u′ is adjacent to w or w′ is adjacent to u).
Checking whether Me ⊇ Me′ is also easy: it suffices to sort the edges in each
set in lexicographic order, and then the inclusion of each pair can be checked
in linear time in their size, that is in O(m). It is thus possible to enumerate in
polynomial delay only those maximal chain subgraphs that contain at least one
essential edge by modifying Algorithm 1. Due to space limits, we do not detail
the algorithm here. Finally, we are now able to state the main result of this
section.

Theorem 4. Given a bipartite graph G = (U ∪W,E), one can enumerate all its
minimal chain subgraph covers, i.e. all the elements in S, in time O(|S|log(|S|)+2).

Proof. We first construct the hypergraph H = (V, E) where V := E′ is the set
of essential edges of G and E := Cess is the set of maximal chain subgraphs of G
that contain at least one essential edge. This takes time O(n2m|Cess|). Applying
then the algorithm given in [9], one can enumerate all minimal set covers of
H (i.e. all minimal chain subgraph covers) in time O((|H| + |S|)log(|H|+|S|)) =
O((|Cess| + |S|)log(|Cess|+|S|)). The total running time is thus O(n2m|Cess| +
(|Cess| + |S|)log(|Cess|+|S|)). Notice now that since by Lemma 3, every maximal
chain subgraph in Cess belongs to at least one minimal chain subgraph cover,
we have that |Cess| ≤ m|S|. Finally, we obtain that the total running time is
O(n2m2|S| + (|S| + |S|)log(|S|+|S|)) = O(|S|log(|S|)+2).

7 Conclusion

In this paper, we studied different problems related to maximal chain subgraphs
and chain subgraph covers in bipartite graphs. This work raises many questions.
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First, it remains an open problem whether it is possible to enumerate the min-
imal chain covers of a graph in polynomial delay. Indeed, our problem is more
constrained than an arbitrary instance of the set cover of a hypergraph. A future
goal is to better exploit the connections between these two problems. Second,
it would be interesting to determine the exact value of T (m). We conjecture

that a tighter bound may be
(

1+
√
1+4m
2

)

!. Finally, it is worth exploring the

different nature of the problems considered here in the case where we deal with
an hereditary property (induced chain subgraphs) instead of a non-hereditary
one (edge induced chain subgraphs). In particular, it remains unknown whether
enumerating maximal induced subgraphs can be done in polynomial delay.
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project “Algorithms and Models for the solution of difficult problems in biology”.
A. Mary is supported by the ANR project GraphEN “Enumération dans les graphes
et les hypergraphes: algorithmes et complexité”, ANR-15-CE40-0009.
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Weighted de Bruijn Graphs
for the Menage Problem and Its Generalizations
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Abstract. We address the problem of enumeration of seating arrange-
ments of married couples around a circular table such that no spouses
sit next to each other and no k consecutive persons are of the same gen-
der. While the case of k = 2 corresponds to the classical problème des
ménages with a well-studied solution, no closed-form expression for the
number of seating arrangements is known when k ≥ 3.

We propose a novel approach for this type of problems based on enu-
meration of walks in certain algebraically weighted de Bruijn graphs.
Our approach leads to new expressions for the menage numbers and their
exponential generating function and allows one to efficiently compute the
number of seating arrangements in general cases, which we illustrate in
detail for the ternary case of k = 3.

1 Introduction

The famous menage problem (problème des ménages) asks for the number Mn

of seating arrangements of n married couples of opposite sex around a circular
table such that

1. no spouses sit next to each other;
2. females and males alternate.

The problem was formulated by Edouard Lucas in 1891 [6]. A complete solution
was first obtained by Touchard in 1934 [9].

Let us call a couple seating next to each other close. The restriction of the
menage problem can be equivalently stated as

1. there are no close couples;
2. no k = 2 consecutive people are of the same sex.

This reformulation allows us to generalize the menage problem to other values
of k, such as k = 3 which we refer to as the ternary menage problem. The ternary
menage problem was posed by Hugo Pfoertner in 2006 as the sequence A114939
in the OEIS [8], for which he then managed to correctly compute only the first
three terms.
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In this work, we propose a novel approach for the generalized menage prob-
lem based on the transfer-matrix method [7, Section 4.7] applied to certain alge-
braically weighted de Bruijn graphs. We illustrate our approach on the classical
case k = 2, where we obtain new formulae for the menage numbers Mn and their
exponential generating function (EGF). While an explicit expression (in terms
of the modified Bessel functions) for the EGF was earlier derived by Wyman and
Moser [10], they admitted it be “quite complicated”. In contrast, our expression
(and its derivation) is much simpler and can be stated in terms of a certain power
series or the exponential integral function. We further apply our approach for
the ternary case k = 3, which apparently has not been addressed in the litera-
ture before. While the resulting formulae in this case are not that simple, they
provide an efficient method for computing the corresponding number of seat-
ing arrangements, which we used to compute many new terms for A114939 and
related sequences in the OEIS.

2 Classical Approaches for Menage Problem

To the best of our knowledge, there exist three major approaches for solving the
menage problem, which we briefly discuss below.

Ladies First. A straightforward approach to the menage problem is first to seat
all ladies (in 2 ·n! ways) and then to seat all gentlemen, obeying the close couple
restriction. This way the problem reduces to enumerating placements of non-
attacking rooks on a square board like the one shown in Fig. 1. Using the rook
theory [7, Section 2.3], this leads to the Touchard formula:

Mn = 2 · n! ·
n∑

k=0

(−1)k
2n

2n − k

(
2n − k

k

)

(n − k)! . (1)

Fig. 1. A board corresponding to the menage problem with n = 8 couples. For a fixed
seating arrangement of ladies, the seating arrangements of gentlemen are in one-to-one
correspondence with the placements of n non-attacking rooks at non-shaded cells.

Hamiltonian Cycles in Crown Graphs. The seating arrangements satisfying the
menage problem correspond to directed Hamiltonian cycles in the crown graph
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on 2n vertices obtained from the complete bipartite graph Kn,n with removal
of a perfect matching. Here males/females represent the partite sets of Kn,n

with every male vertex connected to every female vertex, except for the spouses
(corresponding to the removed perfect matching). For odd integers n, crown
graphs on 2n vertices represent circulant graphs, where Hamiltonian cycles can
be systematically enumerated [4].

Non-Sexist Inclusion-Exclusion. Bogart and Doyle [2] suggested to compute Mn

with the inclusion-exclusion principle (e.g., see [7, Section 2.1]) as the number of
alternating male-female seating arrangements that have no close couples. To do
so, they computed the number Wn,j of alternating male-female seating arrange-
ments of n couples with j fixed couples being close as

Wn,j = 2 · 2n

2n − j

(
2n − j

j

)

· j! · (n − j)!2 , (2)

where:

– the factor 2 accounts for two ways to reserve alternating seats for males and
females;

– 2n
2n−j

(
2n−j

j

)
is the number of ways to select 2j seats for the j close couples;

– j! is the number of seating arrangements of the j close couples at the 2j
selected seats;

– (n − j)!2 = (n − j)! · (n − j)! is the number of ways to seat females and males
from the other n − j couples.

The inclusion-exclusion principle then implies that

Mn =
n∑

j=0

(−1)j ·
(

n

j

)

· Wn,j

= 2 ·
n∑

j=0

(−1)j ·
(

n

j

)

· 2n

2n − j

(
2n − j

j

)

· j! · (n − j)!2 ,

(3)

which trivially simplifies to (1).
The aforementioned approaches for the menage problem do not seem to eas-

ily extend to the ternary case, since there is no nice male-female alternating
structure anymore. In particular, the ladies-first approach does not reduce the
problem to a uniform board and there is no obvious reduction to a Hamiltonian
cycle problem. The (non-sexist) inclusion-exclusion approach is most prominent,
but it is unclear what should be in place of 2n

2n−j

(
2n−j

j

)
. In order to generalize

the solution to the menage problem to the ternary case, we suggest to look at
this problem at a different angle as described below.

3 De Bruijn Graph Approach for Menage Problem

So far, a seating arrangement in the menage problem was viewed as a cyclic
(clockwise) sequence of females (fi) and males (mj):

fi1 → mj1 → fi2 → mj2 → · · · → fin → mjn → fi1 .



154 M.A. Alekseyev

However, it can also be viewed as a cyclic sequence of pairs of people sitting
next to each other:

(fi1 ,mj1) → (mj1 , fi2) → (fi2 ,mj2) → · · · → (fin ,mjn) → (mjn , fi1) → (fi1 ,mj1) .

A similar idea was used by Nicolaas de Bruijn [3] to construct a shortest
sequence, which contains every subsequence of length � (called �-mer) over a
given alphabet. He introduced directed graphs, now named after him, whose
nodes represent (� − 1)-mers and arcs represent �-mers (the arc corresponding
to an �-mer s connects the prefix of s with the suffix of s).

We employ de Bruijn graphs for � = 3 for solving the menage problem.
However, in contrast to conventional unweighted de Bruijn graphs, we introduce
algebraic weights to account for (i) the balance between females and males; and
(ii) the number of close couples.

Fig. 2. The weighted de Bruijn graph for the menage problem and its adjacency
matrix A.

The (weighted) de Bruijn graph for the menage problem and its adjacency
matrix A are shown in Fig. 2. This graph has 4 nodes labeled fm (for clockwise
adjacent female–male pair), mf (clockwise adjacent male–female pair), and their
starred variants indicating close couples. There is an arc connecting every pair
of nodes uv and vw (at most one of which may be starred) for u, v, w ∈ {f,m}.
Each such arc has an algebraic weight ypzq with p = ±1 and q ∈ {0, 1} such
that the degree of indeterminate y accounts for the males-females balance, while
the degree of indeterminate z accounts for the number of close couples. Namely,
p = 1 whenever w = m (and p = −1 whenever w = f), while q = 1 whenever
vw is starred.

Any seating arrangement corresponds to a cyclic sequence of nodes fm and
mf , some of which may be starred to indicate close couples. Such sequence with j
close couples corresponds to a walk of length 2n and algebraic weight y0zj . The
transfer-matrix method [7, Section 4.7] implies that the number of such walks
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equals [y0zj ] tr(A2n), i.e., the coefficient of y0zj in the trace of matrix A2n. This
leads to a new formula for Wn,j :

Wn,j = [y0zj ] tr(A2n) · j! · (n − j)!2 ,

where the factors j! and (n − j)!2 bear the same meaning as in (2). Similarly to
(3), we then obtain

Mn = n! ·
n∑

j=0

(−1)j · (n − j)! · [y0zj ] tr(A2n) . (4)

Comparison of (4) and (1) suggests the following identity, which we will prove
explicitly:

Lemma 1. For the matrix A defined in Fig. 2 and any integers n > 1, j ≥ 0,

[y0zj ] tr(A2n) = 2 · 2n

2n − j
·
(

2n − j

j

)

.

Proof. The eigenvalues of A are 1±√
1+4z
2 , each of multiplicity 2.1 It follows that

[y0zj ] tr(A2n) = 2 · [zj ]

((
1 +

√
1 + 4z
2

)2n

+
(

1 − √
1 + 4z
2

)2n
)

.

We further remark that 1−√
1+4z
2 = −zC(−z) and 1+

√
1+4z
2 = C(−z)−1, where

C(x) = 1−√
1−4x
2x is the ordinary generating function for Catalan numbers.

Since j ≤ n and n > 1, we have [zj ] (−zC(−z))2n = 0. On the other hand,
since [xk] C(x)m = m

2k+m

(
2k+m

m

)
(e.g., see [5, formula (5.70)]), we have

C(−z)−2n = (−1)j
−2n

2j − 2n

(
2j − 2n

j

)

=
2n

2n − 2j

(
2n − j − 1

j

)

=
2n

2n − 2j

(
2n − j − 1
2n − 2j − 1

)

=
2n

2n − j

(
2n − j

j

)

,

which concludes the proof. ��
Lemma 1 proves that our formula (4) implies the Touchard formula (1). In

the next section, we show that it also implies another (apparently new) formula
for Mn. But most importantly, the matrix formula (4) can be generalized for the
ternary menage problem as we show in Sect. 5.

1 We remark that A2 does not depend on y, so it is not surprising that the eigenvalues
of A do not depend on y either.
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4 New Formulae for Menage Numbers and Their EGF

We find it convenient to define the series Laplace transform Lx,y of a function
f(x) as the conventional Laplace transform of f(yt) (as a function of t) evaluated
at 1, i.e.,

Lx,y[f ] =
∫ ∞

0

f(yt) · e−t · dt.

It can be easily seen that Lx,y[xk] = k! · yk for any integer k ≥ 0 and thus for a
power series f(x), we have

Lx,y[f ] =
∞∑

k=0

k! · yk · [xk] f(x).

In particular,

∞∑

k=0

k! · [xk] f(x) = Lx,1[f ] =
∫ ∞

0

f(t) · e−t · dt.

Lemma 2. Let U, V be same-size square matrices that do not depend on inde-
terminate z. Then for any integer n ≥ 0,

n∑

j=0

(−1)j · (n − j)! · [zj ] tr((U + V · z)n) =
∫ ∞

0

tr((U · t − V )n) · e−t · dt .

Proof. We have

[zj ] tr((U + V · z)n) = [zn−j ] tr((U · z + V )n) = (−1)j · [zn−j ] tr((U · z − V )n) .

Hence
n∑

j=0

(−1)j · (n − j)! · [zj ] tr((U + V · z)n) =
n∑

j=0

(n − j)! · [zn−j ] tr((U · z − V )n)

= Lz,1[tr((U · z − V )n)] ,

which concludes the proof. ��
We are now ready to derive new closed-form expressions for the menage

numbers Mn and their exponential generating function.

Theorem 1. For all integers n > 1,

Mn = 2 ·n! ·
∫ ∞

0

((
t − 2 +

√
t2 − 4t

2

)n

+

(
t − 2 − √

t2 − 4t

2

)n)

·e−t ·dt . (5)
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Furthermore,

∞∑

n=0

Mn
xn

n!
= −1 − 2x + 2 ·

∫ ∞

0

x2 − 1
xt − (x + 1)2

· e−t · dt (6)

= −1 + 2x + 2 · 1 − x

1 + x
·

∞∑

k=0

k! · xk

(1 + x)2k
(7)

= −1 + 2x + 2 · 1 − x2

x
· e− (x+1)2

x · Ei
(

(x + 1)2

x

)

, (8)

where Ei(t) is the exponential integral.

Proof. For the matrix A defined in Fig. 2, we have A2 = U + V · z, where

U =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0

⎤

⎥
⎥
⎦ and V =

⎡

⎢
⎢
⎣

1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ .

Then Lemma 2 and formula (4) imply

Mn = n! ·
∫ ∞

0

tr((U · t − V )n) · e−t · dt .

Since the eigenvalues of the matrix U ·t−V are t−2±√
t2−4t

2 , each of multiplicity 2,
we obtain formula (5).

To derive (6) from (5), we notice that

∞∑

n=0

((
t − 2 +

√
t2 − 4t

2

)n

+

(
t − 2 − √

t2 − 4t

2

)n)

· xn = 1 +
x2 − 1

xt − (x + 1)2

and take special care of the initial values M0 = 1 and M1 = 0. Expanding the
last expression as a power series in t, we get

x2 − 1
xt − (x + 1)2

=
1 − x

1 + x
· 1
1 − x

(x+1)2 t
=

1 − x

1 + x
·

∞∑

k=0

xk

(x + 1)2k
· tk.

Applying the series Laplace transform Lt,1, we obtain (7). Expression (8)

now follows from (7), since
∑∞

k=0 k! · yk = e−1/y

y · Ei
(

1
y

)
(e.g., see [1, formula

(1.1.7)]). ��

5 De Bruijn Graph Approach for Ternary Menage
Problem

In contrast to the menage problem, in the ternary case two females or two
males can sit next to each other. Hence, the de Bruijn graph in this case can be
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Fig. 3. The weighted de Bruijn graph for the ternary menage problem and its adjacency
matrix B.

obtained from the de Bruijn graph for the menage problem by adding two more
nodes labeled ff and mm, connected to the other nodes following the same rules
(Fig. 3).

Let Tn be the number of seating arrangements of n couples in the ternary
menage problem.

Theorem 2. For n > 1, the number Tn can be computed in the following ways:

Tn = n! ·
n∑

j=0

(−1)j · (n − j)! · [y0zj ] tr(B2n) , (9)

where B is defined in Fig. 3; or

Tn = n! ·
∫ ∞

0

[yn] tr(Bn
2 ) ·e−t ·dt , B2 =

⎡
⎢⎢⎢⎣

−y yt t 0 yt −y
−y y(t − 1) 0 y2(t − 1) yt −y
0 y(t − 1) 0 y2(t − 1) 0 −y

−y 0 t − 1 0 y(t − 1) 0
−y yt t − 1 0 y(t − 1) −y
−y yt 0 y2t yt −y

⎤
⎥⎥⎥⎦ ; (10)

or

Tn = n! ·
∫ ∞

0

[xnyn]
a(xy, t) + b(xy, t) · (x + xy2)
c(xy, t) + d(xy, t) · (x + xy2)

· e−t · dt , (11)

where
a(p, t) = −2 p5t3 + 2 p4t4 + 4 p5t2 − 8 p4t3 − 2 p5t + 12 p4t2 − 8 p4t + 6 p3t − 4 p2t2

+ 16 p2 − 10 pt + 20 p + 6 ,

b(p, t) = −p2t(2 + p − t)(p − 3 t + 6) ,

c(p, t) = p6t2 − 2 p5t3 + p4t4 + 4 p5t2 − 4 p4t3 − 2 p5t + 6 p4t2 − 4 p4t + 2 p3t − p2t2

+ 4 p2 − 2 pt + 4 p + 1 ,

d(p, t) = −p2t(2 + p − t)2 .
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Proof. Formula (9) is similar to (4) and follows directly from the definition of
the de Bruijn graph in Fig. 3.

To avoid dealing with negative powers, we notice that [y0zj ] tr(B2n) =
[y2nzj ] tr((yB)2n). Furthermore, the matrix (yB)2 has entries that are polyno-
mial in y2 and z with the degree in z being at most 1, that is (yB)2 = U +V · z,
where matrices U, V do not depend on z. Since the specified matrix B2 equals
U · t − V where y2 is replaced with y, formula (10) easily follows from (9) and
Lemma 2.

According to [7, Corollary 4.7.3],

∞∑

n=0

tr(Bn
2 ) · xn = 6 − xQ′(x)

Q(x)
,

where Q(x) = det(I−x·B2) and I is the 6×6 identity matrix. Direct computation
shows that Q(x) = c(xy, t)+d(xy, t) · (x+xy2) and 6Q(x)−xQ′(x) = a(xy, t)+
b(xy, t) · (x + xy2), implying that

∞∑

n=0

tr(Bn
2 ) · xn =

a(xy, t) + b(xy, t) · (x + xy2)
c(xy, t) + d(xy, t) · (x + xy2)

.

Substitution of this expression into (10) yields (11). ��
While formulae (9) and (10) provide an efficient way for computing Tn for

a given integer n > 1, the special form of the rational function in (11) further
enables us to obtain a closed-form expression for the EGF for the numbers Tn.

Lemma 3. Let a(z), b(z), c(z), d(z) be polynomials such that [z0] c(z) = 1 (i.e.,
c(z) is invertible as a series in z). Then for any integer n ≥ 0,

[xnyn]
a(xy) + b(xy) · (x + xy2)

c(xy) + d(xy) · (x + xy2)
= [pn]

(
a(p) · d(p) − b(p) · c(p)

d(p) ·√c(p)2 − 4 · p2 · d(p)2 +
b(p)

d(p)

)
.

Proof. Let p = xy. Then a(xy)+b(xy)·(x+xy2)
c(xy)+d(xy)·(x+xy2) = a(p)+b(p)·(x+py)

c(p)+d(p)·(x+py) . In the series
expansion of this function, we will discard all terms with distinct degrees in x
and y, while in the remaining terms (with equal degrees in x and y), we will
replace xy with p to obtain a univariate power series in p. We start with the
following expansion:

a(p) + b(p) · (x + py)

c(p) + d(p) · (x + py)
=

a(p) + b(p) · (x + py)

c(p)

∞∑
k=0

(−d(p)

c(p)

)k

(x + py)k

=
a(p)

c(p)

∞∑
k=0

(−d(p)

c(p)

)k

(x + py)k +
b(p)

c(p)

∞∑
k=0

(−d(p)

c(p)

)k

(x + py)k+1 .
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Here from each power of x + py we extract the term with the equal degrees in
x and y and replace it with the corresponding power of p. This yields

a(p)

c(p)

∞∑
k=0

(−d(p)

c(p)

)2k
(

2k

k

)
p2k +

b(p)

c(p)

∞∑
k=0

(−d(p)

c(p)

)2k+1
(

2k + 2

k + 1

)
p2k+2

=
a(p)

c(p)
· f
((

d(p)

c(p)
p

)2
)

− b(p)

d(p)
·
(
f

((
d(p)

c(p)
p

)2
)

− 1

)

=
a(p) · d(p) − b(p) · c(p)

c(p) · d(p) · f
((

d(p)

c(p)
· p
)2
)

+
b(p)

d(p)

=
a(p) · d(p) − b(p) · c(p)

d(p) ·√c(p)2 − 4 · p2 · d(p)2 +
b(p)

d(p)
,

where f(z) = (1 − 4z)−1/2 =
∑∞

k=0

(
2k
k

) · zk. By construction, the coeffi-
cient of xnyn in the original expression equals the coefficient of pn in the last
expression. ��
Theorem 3. Let polynomials a(p, t), b(p, t), c(p, t), and d(p, t) be defined as in
Theorem 2. Then for all n > 1,

Tn = n! ·
∫ ∞

0

[pn]

(
a(p, t) · d(p, t) − b(p, t) · c(p, t)

d(p, t) · √c(p, t)2 − 4 · p2 · d(p, t)2
+

b(p, t)
d(p, t)

)

·e−t ·dt . (12)

Correspondingly, the exponential generating function for Tn equals

∞∑
n=0

Tn
xn

n!
= −2 + 2 · x − 2 · x · e−x−2 · Ei(x + 2)

+

∫ ∞

0

(
t3x2 +

(−2 x3 − 4 x2 − x
)
t2 +

(
x4 + 4 x3 + 7 x2 + 4 x + 3

)
t − 6 x2 − 9 x − 6

) · e−t

(t − (x + 2))
√

(t2x2 − tx3 − 2 tx2 − 3 xt + 4 x2 + 4 x + 1) (t2x2 − tx3 − 2 tx2 + xt + 1)
dt .

Proof. Formula (12) directly follows from (11) and Lemma 3. Multiplying (12)
by xn

n! and summing over n, we further get

∞∑
n=0

Tn
xn

n!
= −5 + 2x

+

∫ ∞

0

(
a(x, t) · d(x, t) − b(x, t) · c(x, t)

d(x, t) ·√c(x, t)2 − 4 · p2 · d(x, t)2 +
b(x, t)

d(x, t)

)
· e−t · dt ,

(13)

where the terms −5+2x take care of the initial values T0 = 1 and T1 = 0. While
we are not aware if it is possible to simplify the integral of the term involving a
square root, below we evaluate the integral of the rational term.

Expansion of b(x,t)
d(x,t) as a power series in t yields

b(x, t)
d(x, t)

=
x − 3t + 6
x − t + 2

= 3 − 2x

2 + x
· 1
1 − t

2+x

= 3 − 2x

2 + x
·

∞∑

k=0

tk

(2 + x)k
.
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Similarly to the proof of Theorem 1, this further allows us to evaluate the integral
∫ ∞

0

b(x, t)
d(x, t)

· e−t · dt = 3 − 2 · x · e−x−2 · Ei(x + 2).

Plugging this expression into (13) completes the proof. ��

6 Computing Numerical Values

The Online Encyclopedia of Integer Sequences [8] contains a number of sequences
related to the menage problem and its ternary variant:

Sequence Terms for n = 1, 2, 3, . . . OEIS index

Mn 0, 0, 12, 96, 3120, 115200, 5836320, 382072320, . . . A059375

Mn/2n! 0, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, . . . A000179

Mn/2n 0, 0, 2, 12, 312, 9600, 416880, 23879520, . . . A094047

Tn 0, 8, 84, 3456, 219120, 19281600, 2324085120, . . . A258338

Tn/4n 0, 1, 7, 216, 10956, 803400, 83003040, . . . A114939

While the Touchard formula (1) can be used to efficiently compute the
menage numbers Mn and associated sequences, our formula (9) enables the same
for the numbers Tn. In particular, we have computed many terms of sequences
A114939 and A258338 in the OEIS.

We also remark that the formula (12) provides another way to compute Tn

by extracting the coefficient of xp (which is a polynomial in t) and applying the
transform Lt,1 (i.e., replacing every tk with k!).

References

1. Bleistein, N., Handelsman, R.A.: Asymptotic Expansions of Integrals. Dover Books
on Mathematics, Revised edn. Dover Publications, New York (2010)

2. Bogart, K.P., Doyle, P.G.: Non-sexist solution of the ménage problem. Am. Math.
Monthly 93, 514–519 (1986)

3. de Bruijn, N.G.: A combinatorial problem. Proceedings of the Section of Sciences of
the Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam 49(7),
758–764 (1946)

4. Golin, M.J., Leung, Y.C.: Unhooking circulant graphs: a combinatorial method for
counting spanning trees and other parameters. In: Hromkovič, J., Nagl, M., West-
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Abstract. We study a reconfiguration problem for Steiner trees in an
unweighted graph, which determines whether there exists a sequence of
Steiner trees that transforms a given Steiner tree into another one by
exchanging a single edge at a time. In this paper, we show that the prob-
lem is PSPACE-complete even for split graphs (and hence for chordal
graphs), while solvable in linear time for interval graphs.

1 Introduction

The Steiner tree problem on graphs is one of the most well-known NP-
complete problems [3]. For an unweighted graph G and a vertex subset S ⊆
V (G), a Steiner tree for S is a subtree of G which includes all vertices in S; each
vertex in S is called a terminal. For example, Fig. 1 illustrates five Steiner trees
of the same graph G for the same terminal set S. Given an unweighted graph G,
a terminal set S ⊆ V (G), and an integer k ≥ 0, the Steiner tree problem is to
determine whether there exists a Steiner tree T of G for S such that T consists
of at most k edges. This problem is known to be NP-complete [3].

The concept of Steiner trees has several applications such as network routing
and VLSI design. In the network routing problem, a graph represents a computer
network such that each terminal corresponds to a user or a server, each non-
terminal to a router, and each edge to a communication link. Then, we wish to
find a routing which connects all users and servers to provide the service; thus,
a Steiner tree of the graph represents such a routing.

1.1 Our Problem

However, the network routing problem could be considered in more “dynamic”
situations: In order to temporarily remove routers for maintenance, we some-
times need to change the current routing (i.e., Steiner tree) into another one.
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Fig. 1. A sequence 〈T0, T1, . . . , T4〉 of Steiner trees of the same graph G for the same
terminal set S, where the terminals are depicted by squares, non-terminals by circles,
the edges in Steiner trees by thick lines.

To minimize disruption, this transformation needs to be done by switching com-
munication links one by one, while keeping the connectivity among all users and
servers to provide the service even during the transformation.

In this paper, we thus study the following problem: Suppose that we are
given two Steiner trees of a graph G for a terminal set S ⊆ V (G) (e.g., the left-
most and rightmost ones in Fig. 1), and we are asked whether we can transform
one into the other via Steiner trees for S such that each intermediate Steiner
tree can be obtained from the previous one by exchanging a single edge, that
is, two consecutive Steiner trees T and T ′ in the transformation satisfy both
|E(T ) \ E(T ′)| = 1 and |E(T ′) \ E(T )| = 1. We call this decision problem the
Steiner tree reconfiguration problem. For the particular instance of Fig. 1,
the answer is yes as illustrated in the figure.

1.2 Known and Related Results

Similar problems have been extensively studied under the reconfiguration frame-
work [6], which arises when we wish to find a step-by-step transformation between
two feasible solutions of a combinatorial (search) problem such that all inter-
mediate solutions are also feasible. The reconfiguration framework has been
applied to several well-studied problems, including satisfiability [4,11], inde-
pendent set [2,6,9], vertex cover [6,7,12], clique [6,8], and so on. (See also a
survey [5].)

Ito et al. [6] studied the spanning tree reconfiguration problem, which
can be seen as Steiner tree reconfiguration when restricted to the case
where all vertices in a given graph are terminals. They showed that any instance
of spanning tree reconfiguration is a yes-instance, that is, there always
exists a desired transformation between two spanning trees in any graph.

1.3 Our Contribution

In this paper, we study Steiner tree reconfiguration from the viewpoint
of graph classes and paint an interesting picture of the boundary between
intractability and polynomial-time solvability (See Fig. 2.)

More specifically, we prove that the problem is PSPACE-complete even for
split graphs, while is solvable in linear time for interval graphs. To do so,



Reconfiguration of Steiner Trees in an Unweighted Graph 165

split

threshold

[Thm 3]

[Thm 4]

even-hole-free

PSPACE-comp.

P (linear time)

perfect

interval

chordal

Fig. 2. Our results, where each arrow represents the inclusion relationship between
graph classes: A → B represents that a graph class B is properly included in a graph
class A [1].

we first give a sufficient condition and a necessary condition for the existence
of a desired transformation between two Steiner trees; we emphasize that these
conditions hold for any graph. We then show that our necessary condition is
indeed a necessary and sufficient condition for interval graphs.

2 Preliminaries

In this section, we first define some basic terms and notation. Then, we introduce
a sufficient condition and a necessary condition for the existence of a desired
transformation between two Steiner trees.

2.1 Definitions

In this paper, we assume without loss of generality that graphs are simple and
connected. For a graph G, we denote by V (G) and E(G) the vertex set and edge
set of G, respectively. For a vertex subset V ′ ⊆ V (G), we denote by G[V ′] the
subgraph of G induced by V ′. We simply write G \ V ′ = G[V (G) \ V ′].

For a graph G and a terminal set S ⊆ V (G), a subtree T of G is a Steiner
tree for S if S ⊆ V (T ) holds. For convenience, although T is not a rooted tree,
we call each degree-1 vertex of T a leaf of T . We say that a leaf vf of T is free if
it is a non-terminal, that is, vf ∈ V (T ) \ S. Thus, T \ {vf} is also a Steiner tree
for S, and hence a Steiner tree having a free leaf is not minimal.

For a graph G and a terminal set S, we say that two Steiner trees T and T ′

for S are adjacent if both |E(T ) \ E(T ′)| = 1 and |E(T ′) \ E(T )| = 1 hold; we
write T ↔ T ′ in this case. For two Steiner trees Tp and Tq for S, a sequence
〈T0, T1, . . . , T�〉 of Steiner trees for S is called a reconfiguration sequence between
Tp and Tq if T0 = Tp, T� = Tq, and Ti−1 ↔ Ti holds for each i ∈ {1, 2, . . . , �}.
Note that any reconfiguration sequence is reversible, that is, 〈T�, T�−1, . . . , T0〉 is
a reconfiguration sequence between Tq and Tp. We write Tp � Tq if there is a
reconfiguration sequence between Tp and Tq. Then, the Steiner tree recon-

figuration problem is defined as follows:
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Input: An unweighted graph G, a terminal set S ⊆ V (G),
and two Steiner trees T0 and Tr for S

Question: Determine whether T0 � Tr or not.

We denote by a 4-tuple (G,S, T0, Tr) an instance of Steiner tree reconfigu-

ration. Note that Steiner tree reconfiguration is a decision problem and
hence it does not ask for an actual reconfiguration sequence. Throughout the
paper, we assume that S �= ∅ and Steiner trees are of the same size; otherwise
such an instance is trivial.

2.2 Sufficient Condition and Necessary Condition

In this subsection, we give a sufficient condition and a necessary condition for
the existence of a reconfiguration sequence between two Steiner trees. These
conditions will play important roles in this paper to prove our results, and we
emphasize that they hold for any graph.

We first give a sufficient condition, as follows.

Theorem 1. Let (G,S, T0, Tr) be an instance of Steiner tree reconfigu-

ration. If V (T0) = V (Tr), then it is a yes-instance.

Proof. Suppose that V (T0) = V (Tr) holds. Then, we have G[V (T0)] = G[V (Tr)].
Therefore, both T0 and Tr form spanning trees of G[V (T0)] = G[V (Tr)]. It is
known that any two spanning trees are reconfigurable each other by exchanging
a single edge at a time [6, Proposition 1], and hence the theorem follows. 
�

Theorem 1 says that any two Steiner trees are reconfigurable each other as
long as they consist of the same vertex set. On the other hand, since we can
exchange only a single edge at a time, two adjacent Steiner trees having different
vertex sets satisfy a special property, as in the following proposition.

Proposition 1. Suppose that T ↔ T ′ holds for two Steiner trees T and T ′ of a
graph G with a terminal set S. If V (T ) �= V (T ′), then

– V (T ) \ V (T ′) contains exactly one vertex vf , and vf is a free leaf in T ; and
– V (T ′) \ V (T ) contains exactly one vertex v′

f , and v′
f is a free leaf in T ′.

Proof. Suppose for a contradiction that V (T ) \ V (T ′) contains more than one
vertex. (The proof is symmetric for the case where V (T ′) \ V (T ) contains more
than one vertex.) Since S �= ∅ and V (T ) \ V (T ′) contains no terminal, we know
that V (T )∩V (T ′) �= ∅. Then, since T is connected, T has at least two edges inci-
dent to vertices in V (T ) \ V (T ′) and hence |E(T ) \ E(T ′)| ≥ 2. This contradicts
the assumption that T ↔ T ′.

In this way, we have verified that V (T ) \ V (T ′) contains exactly one vertex
vf , and hence it is a leaf in T . Since both T and T ′ are Steiner trees for S, we
know V (T )V (T ′) = (V (T ) \ V (T ′)) ∪ (V (T ′) \ V (T )) ⊆ V (G) \ S. Thus, vf is
free. 
�
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We now give a sufficient condition for no-instance; by taking a contrapositive,
this yields a necessary condition for yes-instance.

Theorem 2. Let (G,S, T0, Tr) be an instance of Steiner tree reconfigu-

ration. Then, it is a no-instance if the following conditions (a) and (b) hold:

(a) V (T0) �= V (Tr); and
(b) at least one of G[V (T0)] and G[V (Tr)] has no Steiner tree for S with a free

leaf.

Proof. Suppose for a contradiction that (G,S, T0, Tr) is a yes-instance even though
it satisfies both Conditions (a) and (b). Then, there exists a reconfiguration
sequence T between T0 and Tr. Let Ti+1 be the first Steiner tree in T such that
V (Ti+1) �= V (T0); such a Steiner tree exists since V (T0) �= V (Tr). Then, the
Steiner tree Ti in T satisfies Ti ↔ Ti+1 and V (Ti) = V (T0). By Proposition 1,
V (Ti) \ V (Ti+1) contains exactly one vertex vf which is a free leaf in Ti. Since
V (Ti) = V (T0), we can conclude that G[V (T0)] has a Steiner tree Ti for S with a
free leaf vf . By the symmetric arguments, G[V (Tr)] has a Steiner tree for S with
a free leaf, too. This contradicts the assumption that Condition (b) holds. 
�

3 PSPACE-Completeness for Split Graphs

In this section, we show the computational hardness of Steiner tree recon-

figuration. A graph is a split graph if it can be partitioned into a clique and
an independent set.

Theorem 3. Steiner tree reconfiguration is PSPACE-complete for split
graphs.

We prove Theorem 3 in the remainder of this section. Observe that the prob-
lem can be solved in (most conveniently, nondeterministic [13]) polynomial space,
and hence it is in PSPACE. Therefore, we show that the problem is PSPACE-
hard for split graphs, by giving a polynomial-time reduction from vertex cover

reconfiguration [14].

3.1 Reduction

Recall that a vertex cover C of a graph G is a vertex subset of G which contains at
least one of the two endpoints of every edge in G. We say that two vertex covers
C and C ′ of G are adjacent if |C \C ′| = |C ′ \C| = 1, that is, C ′ can be obtained
from C by exchanging a single vertex; we write C ↔ C ′ in this case. (This
adjacency relation is sometimes called the TJ rule.) Given two vertex covers C0

and Cr of a graph G, the vertex cover reconfiguration problem (under
the TJ rule) is to determine whether there exists a sequence 〈C0, C1, . . . , C�〉 of
vertex covers of G such that C� = Cr and Ci−1 ↔ Ci for all i ∈ {1, 2, . . . , �}. This
problem is known to be PSPACE-complete even for planar graphs with bounded
bandwidth [14, Theorem 9]. We denote by a triple (G,C0, Cr) an instance of
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Fig. 3. (a) Given a graph G′ for vertex cover reconfiguration with a vertex cover
C = {v2, v3}, and (b) its corresponding split graph G for Steiner tree reconfigu-

ration with a Steiner tree corresponding to C having a free leaf v4.

vertex cover reconfiguration, and assume without loss of generality that
neither C0 = V (G) nor Cr = V (G) holds; otherwise it is a trivial instance.

Given an instance (G′, C0, Cr) of vertex cover reconfiguration, we
now construct a corresponding instance (G,S, T0, Tr) of Steiner tree recon-

figuration, as follows. (See Fig. 3 as an example.) Let A = V (G′). For
the edge set E(G′) = {e1, e2, . . . , e|E(G′)|}, we define a new vertex set B =
{w1, w2, . . . , w|E(G′)|} in which each vertex wi corresponds to the edge ei ∈
E(G′). Then, G is defined to be a graph such that

(1) V (G) = A ∪ B;
(2) G[A] forms a clique, and G[B] forms an independent set; and
(3) for each edge ei = vjvk ∈ E(G′), there are two edges wivj and wivk in G.

Let S = B, and let T ′
0 and T ′

r be any spanning trees in G[C0 ∪B] and G[Cr ∪B],
respectively; we will prove in Lemma 1 that both T ′

0 and T ′
r are Steiner trees

for S. Since C0 �= V (G′) = A and G[A] is a clique, we can choose a vertex
v0

f ∈ A \ C0 and join it to any vertex in C0 = V (T ′
0) ∩ A; let T0 be the resulting

tree, then v0
f is a free leaf in T0. Similarly, since Cr �= V (G′) = A, we can obtain a

Steiner tree Tr having a free leaf vr
f ∈ A\Cr. This completes the construction of

the corresponding instance (G,S, T0, Tr) of Steiner tree reconfiguration.
Clearly, this construction can be done in polynomial time.

3.2 Correctness of the Reduction

To prove the correctness of our reduction, we first show that both T0 and Tr (in
particular, T ′

0 and T ′
r) are Steiner trees for S, as in the following lemma.

Lemma 1. A vertex subset C ⊆ V (G′) forms a vertex cover of G′ if and only
if G has a Steiner tree T such that V (T ) = C ∪ B.

Proof. We first prove the only-if direction. Suppose that C ⊆ V (G′) forms a vertex
cover of G′. Then, for each edge ei = vjvk ∈ E(G′), we have vj ∈ C or vk ∈ C.
Since G[C] forms a clique and G has two edges wivj and wivk for the vertex wi ∈
V (G) corresponding to ei ∈ E(G′), we thus know that G[C ∪ B] is connected. By
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taking any spanning tree of G[C ∪ B], we can obtain a Steiner tree T such that
V (T ) = C ∪ B.

We then prove the if direction. Suppose that G has a Steiner tree T such that
V (T ) = C∪B. Since B forms an independent set of G, every vertex wi ∈ B must
be adjacent to at least one vertex vj ∈ C in T . By the construction of the graph
G, the edge ei in G′ (corresponding to wi ∈ V (G)) is incident to vj ∈ V (G′).
Thus, C forms a vertex cover of G′. 
�

The following lemma completes the proof of Theorem 3, whose proof is omit-
ted from this extended abstract.

Lemma 2. An instance (G′, C0, Cr) of vertex cover reconfiguration is a
yes-instance if and only if the corresponding instance (G,S, T0, Tr) of Steiner
tree reconfiguration is a yes-instance.

4 Algorithm for Interval Graphs

A graph G with V (G) = {v1, v2, . . . , vn} is an interval graph if there exists
a set I of (closed) intervals I1, I2, . . . , In such that vivj ∈ E(G) if and only
if Ii ∩ Ij �= ∅ for each i, j ∈ {1, 2, . . . , n}. We call the set I of intervals an
interval representation of the graph. For a given graph G, it can be determined
in linear time whether G is an interval graph, and if so we can obtain an interval
representation of G in linear time [10].

In this section, we prove that Steiner tree reconfiguration is solvable
in linear time for interval graphs. The key is the following theorem, whose proof
will be given in the remainder of this section.

Theorem 4. Let (G,S, T0, Tr) be an instance of Steiner tree reconfigu-

ration such that G is an interval graph. Then, it is a yes-instance if and only
if the following conditions (a) or (b) hold:

(a) V (T0) = V (Tr); or
(b) each of G[V (T0)] and G[V (Tr)] has a Steiner tree for S with a free leaf.

Then, we have the following corollary.

Corollary 1. Steiner tree reconfiguration can be solved in linear time
for interval graphs.

Proof. It suffices to show that Conditions (a) and (b) of Theorem 4 can be
checked in linear time. We can clearly check Condition (a) in linear time. Thus,
we show that Condition (b) can be checked in linear time, as follows.

Notice that, for a non-terminal vertex v ∈ V (T0) \ S, if the induced graph
G[V (T0) \ {v}] is connected, then any spanning tree T of G[V (T0) \ {v}] is a
Steiner tree for S; by adding the non-terminal vertex v to T as a leaf, we can
obtain a Steiner tree with a free leaf. The same holds for Tr, too.

We now check in linear time whether such a non-terminal vertex v ∈ V (T0)\S
exists or not. Since G[V (T0)] is an interval graph, we first obtain its interval
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representation in linear time [10]. Then, by traversing the interval representation
from left to right, we can enumerate all cut-vertices in G[V (T0)] in linear time,
and hence the existence of a desired non-terminal vertex v ∈ V (T0) \ S can be
checked in linear time. (The same is applied to Tr, too.) 
�

We give a proof of Theorem 4 in the remainder of this section. The only-if
direction is immediate from Theorem 2 (by taking a contrapositive). In addition,
when Condition (a) holds, the if direction is also immediate from Theorem 1.
Therefore, it suffices to prove that (G,S, T0, Tr) is a yes-instance if both V (T0) �=
V (Tr) and Condition (b) hold.

Let (G,S, T0, Tr) be a given instance of Steiner tree reconfiguration

such that G is an interval graph, V (T0) �= V (Tr), and Condition (b) of Theorem 4
holds. Then, G[V (T0)] has a Steiner tree for S with a free leaf, and by Theorem 1
there exists a reconfiguration sequence between T0 and the Steiner tree with a
free leaf; the same holds for Tr. Therefore, we assume without loss of generality
that two given Steiner trees T0 and Tr have free leaves. We will construct a
reconfiguration sequence between T0 and Tr.

Let I be an interval representation of G. For an interval Ii ∈ I, we denote
by l(Ii) and r(Ii) the left and right coordinates of Ii, respectively; we sometimes
call the values l(Ii) and r(Ii) the l-value and r-value of Ii, respectively. We
may assume without loss of generality that all l-values and r-values are distinct.
For notational convenience, we sometimes identify a vertex vi ∈ V (G) with its
corresponding interval Ii ∈ I, and simply write l(vi) = l(Ii) and r(vi) = r(Ii).
We say that a path P in G is r-increasing if the r-values of the vertices along P
are increasing. Let sleft be the terminal in S which has the minimum l-value, that
is, l(sleft) = min{l(v) : v ∈ S}, while let sright be the terminal in S which has the
maximum r-value, that is, r(sright) = max{r(v) : v ∈ S}. Note that sleft = sright
may hold. By the definition of sright, all vertices v with r(sright) < r(v) are
non-terminals. Because we can greedily exchange edges incident to such non-
terminals, we simply ignore them (or if some of the vertices are required for
the connectedness of G, we can shorten their right coordinates with keeping the
reconfigurability); the details are omitted from this extended abstract. Then, we
say that a Steiner tree F for S is in standard form if

– the unique path P in F from sleft to sright is r-increasing; and
– every terminal in S \ V (P ) is a leaf in F which is adjacent to some vertex in P .

(See Fig. 4(c) as an example.)

Lemma 3. For any Steiner tree T of an interval graph G, there exists a Steiner
tree F of G such that F is in standard form, all free leaves in T are free leaves
in F , V (F ) = V (T ), and T � F .

Proof. Let Vfree be the set of all free leaves in T , and let T ′ be the subtree of T
obtained by deleting the vertices in Vfree. (See Fig. 4(a) in which T ′ is illustrated
by the thick dotted lines.) We first prove the existence of a Steiner tree F ′ in
standard form for S such that V (F ′) = V (T ′).
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Fig. 4. (a) Steiner tree T of an interval graph G, (b) Steiner tree F ′ of G[V (T ′)] in a
standard form, and (c) Steiner tree F of G in a standard form. In the figure, graphs
are illustrated by their interval representations; each terminal in S is depicted by thick
(red) line, and each non-terminal by thin (black) line. Steiner trees are depicted by
dotted lines on the interval representations. In (b) and (c), the thick (green) dotted
lines represent the paths from sleft to sright (Color figure online).

Consider the induced subgraph G[V (T ′)] of G. (See Fig. 4(b).) Since T ′ is
connected, G[V (T ′)] is also connected. Therefore, we can greedily find an r-
increasing path P in G[V (T ′)] from sleft to sright. By the choice of sleft and
sright, every terminal s in S \ V (P ) intersects with at least one vertex in P ; we
arbitrarily choose such a vertex in P , and connect s with it.

To finish the construction of F ′, we now claim that every vertex in V (T ′)\S
is either on P or has a path to a vertex w in P which consists of only non-
terminal vertices except for w. (See the vertex u in Fig. 4(b) as an example for
the latter case.) Then, the terminals in S \V (P ) remain leaves in F ′, as required
in standard form. Suppose for a contradiction that a vertex u in V (T ′) \ S does
not have such a path. If both l(u) < r(sright) and l(sleft) < r(u) hold, then u
intersects with some vertex in P . Thus, u must satisfy either r(sright) < l(u)
or r(u) < l(sleft). Consider the case where r(u) < l(sleft) holds; the other case
is symmetric. Then, since G[V (T ′)] is connected but u has no desired path to
any vertex in P , there must exist a terminal s ∈ S such that l(s) < l(sleft); this
contradicts the definition of sleft.

In this way, there exists a Steiner tree F ′ in standard form such that V (F ′) =
V (T ′). Then, since G[V (T )] is connected and every vertex u with l(u) < r(sright)
and l(sleft) < r(u) intersects with a vertex in P , we can add the vertices in Vfree

to F ′ as leaves so that the terminals in S \ V (P ) remain leaves in F ′; let F be
the resulting tree. (See Fig. 4(b) and (c).)

Therefore, we have verified the existence of a Steiner tree F in standard form
such that V (F ) = V (T ) and all free leaves in T are free leaves also in F . Then,
since V (F ) = V (T ) holds, Theorem 1 yields that T � F . 
�
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Fig. 5. Illustration for Case (i).

Recall that a given instance (G,S, T0, Tr) is assumed to satisfy Condition (b)
of Theorem 4. Then, to verify that T0 � Tr holds, by Lemma 3 it suffices to
construct a reconfiguration sequence between two Steiner trees T ′

0 and T ′
r such

that V (T ′
0) = V (T0), V (T ′

r) = V (Tr), both T ′
0 and T ′

r are in standard form and
have free leaves. Thus, the following lemma completes the proof of Theorem 4.

Lemma 4. Let TA and TB be any two Steiner trees of G for S such that
|V (TA)| = |V (TB)|, and both TA and TB are in standard form and have free
leaves. Then, TA � TB.

Proof. Let PA = (a1, a2, . . . , a�A) and PB = (b1, b2, . . . , b�B ) be the paths from
sleft to sright in TA and TB , respectively; and hence a1 = b1 = sleft and a�A =
b�B = sright. We prove the lemma by induction on the number of vertices in
V (PA)V (PB).

First, consider the case where V (PA)V (PB) = ∅. Since both TA and TB are
in standard form, we know PA = PB . Furthermore, all terminals in S \ V (PA)
are leaves and adjacent to vertices in PA. Therefore, by greedily exchanging the
edges in E(TA)E(TB), we can obtain a reconfiguration sequence between TA

and TB . We thus have TA � TB .
Second, consider the case where V (PA)V (PB) �= ∅. Let j be the first index

such that aj �= bj . (See Fig. 5(a).) Since both PA and PB are r-increasing, aj

and bj intersect with each other and hence ajbj ∈ E(G). Assume without loss
of generality that r(bj) < r(aj) holds, as illustrated in Fig. 5(a). (The other case
is symmetric.) Then, we have ajbj+1 ∈ E(G). We deal with this case according
to the following three sub-cases.

Case (i): aj appears in PB . (See Fig. 5.)
Let k be the index such that bk = aj . Since r(bj) < r(aj) = r(bk) and

PB is r-increasing, we know that k > j holds. Therefore, we simply exchange
the edge bj−1bj ∈ E(PB) with the edge bj−1bk ∈ E(G) \ E(TB), and obtain a
Steiner tree T ′

B for S with the path P ′
B = (b1, b2, . . . , bj−1, bk, bk+1, . . . , b�B ) from

b1 = sleft to b�B = sright. (See Figs. 5(a) and (b).) Then, P ′
B is r-increasing. Since

bj−1bj ∈ E(PB), neither bj−1 nor bj is a free leaf in TB . Thus, free leaves in TB

remain free leaves also in T ′
B . If needed, we can transform T ′

B into a Steiner tree
T ′′

B in standard form with keeping the free leaves, as in the proof of Lemma 3.
Then, since |V (PA)V (P ′

B)| < |V (PA)V (PB)|, we can apply the induction
hypothesis to TA and T ′′

B . Therefore, we have TB ↔ T ′
B � T ′′

B � TA.
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Fig. 6. Illustration for Case (ii).

Case (ii): bj is a terminal in S. (See Fig. 6.)
Since PA is r-increasing and we have assumed without loss of generality that

r(bj) < r(aj) holds, bj does not appear in PA. Then, since TA is in standard
form, bj must be a leaf in TA which is adjacent to a vertex ap in PA for some
index p. If p �= j, then we first exchange the edge apbj ∈ E(TA) with the edge
ajbj ∈ E(G) \ E(TA). We then exchange the edge aj−1aj ∈ E(PA) with the
edge aj−1bj ∈ E(G) \ E(TA), and obtain a Steiner tree T ′

A for S with the path
P ′

A = (a1, a2, . . . , aj−1, bj , aj , aj+1, . . . , a�A) from a1 = sleft to a�A = sright. (See
Figs. 6(a) and (b).) Note that, since r(aj−1) = r(bj−1) < r(bj) < r(aj) holds,
P ′

A is r-increasing. Since bj is a terminal, it is not a free leaf. In addition, since
aj−1aj ∈ E(PA), neither aj−1 nor aj is a free leaf in TA. Thus, free leaves in TA

remain free leaves also in T ′
A. Then, by similar arguments as in Case (i), we thus

have TA � T ′
A � TB .

Case (iii): bj is not a terminal in S. (See Fig. 7.)
If aj appears in PB , then we apply Case (i) above. We now consider the

case where aj does not appear in PB. Let bq be any vertex in PB such that
l(bq) < r(aj) < r(bq); by the definitions of sleft and sright, such a vertex bq always
exists. Recall that ajbj+1 ∈ E(G) holds, and hence we know that q ≥ j + 1.
If aj �∈ V (TB), then we exchange an arbitrary chosen edge ef ∈ E(TB) inci-
dent to a free leaf with the edge bqaj ∈ E(G) \ E(TB). Otherwise, we pick the
first edge on the path in TB from aj to a vertex in PB , and exchange it with
the edge bqaj ∈ E(G) \ E(TB). We then exchange the edge bj−1bj ∈ E(PB)
with the edge bj−1aj , and obtain a Steiner tree T ′

B for S with the path
P ′

B = (b1, b2, . . . , bj−1, aj , bq, bq+1, . . . , b�B ) from b1 = sleft to b�B = sright. (See
Figs. 7(a) and (b).) By the choice of bq, P ′

B is r-increasing. In addition, since
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Fig. 7. Illustration for Case (iii).
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q ≥ j + 1 and bj is not a terminal, bj is a free leaf in T ′
B . By similar arguments

as in Case (i), we thus have TB � T ′
B � TA. 
�

5 Conclusion

In this paper, we have shown that the Steiner tree reconfiguration prob-
lem is PSPACE-complete even for split graphs (and hence for chordal graphs),
while solvable in linear time for interval graphs. Thus, as illustrated in Fig. 2,
we have clarified a boundary on the graph classes lying between intractability
and tractability, because the structure of split graphs (resp., chordal graphs) can
be seen as a star-like (resp., tree-like) structure of cliques, while that of interval
graphs can be seen as a path-like structure of cliques.
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1. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, SIAM (1999)
2. Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T., Ono, H.,

Otachi, Y., Uehara, R., Yamada, T.: Linear-time algorithm for sliding tokens on
trees. Theor. Comput. Sci. 600, 132–142 (2015)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

4. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectiv-
ity of Boolean satisfiability: computational and structural dichotomies. SIAM J.
Comput. 38, 2330–2355 (2009)

5. van den Heuvel, J.: The complexity of change. Surveys in Combinatorics 2013,
London Mathematical Society Lecture Notes Series 409 (2013)

6. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412, 1054–1065 (2011)

7. Ito, T., Nooka, H., Zhou, X.: Reconfiguration of vertex covers in a graph. IEICE
Trans. Inf. Syst. E99–D, 598–606 (2016)

8. Ito, T., Ono, H., Otachi, Y.: Reconfiguration of cliques in a graph. In: Jain, R.,
Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 212–223. Springer,
Heidelberg (2015)
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Abstract. Recently, the first online complexity class, AOC, was intro-
duced. The class consists of many online problems where each request
must be either accepted or rejected, and the aim is to either minimize or
maximize the number of accepted requests, while maintaining a feasible
solution. All AOC-complete problems (including Independent Set, Vertex
Cover, Dominating Set, and Set Cover) have essentially the same advice
complexity. In this paper, we study weighted versions of problems in
AOC, i.e., each request comes with a weight and the aim is to either min-
imize or maximize the total weight of the accepted requests. In contrast
to the unweighted versions, we show that there is a significant difference
in the advice complexity of complete minimization and maximization
problems. We also show that our algorithmic techniques for dealing with
weighted requests can be extended to work for non-complete AOC prob-
lems such as Matching (giving better results than what follow from the
general AOC results) and even non-AOC problems such as scheduling.

1 Introduction

An online problem is an optimization problem for which the input is divided into
small pieces, usually called requests, arriving sequentially. An online algorithm
must serve each request, irrevocably, without any knowledge of possible future
requests. The quality of online algorithms is traditionally measured using the
competitive ratio [10,14], which is essentially the worst case ratio of the online
performance to the performance of an optimal offline algorithm, i.e., an algorithm
that knows the whole input sequence from the beginning and has unlimited
computational power.

For some online problems such as Independent Set or Vertex Cover, the best
possible competitive ratio is linear in the sequence length. This gives rise to the
question of what would happen, if the algorithm knew something about future
requests. Sometimes a semi-online setting is studied where it is assumed that the
algorithm has some specific knowledge such as the value of an optimal solution.
The extra knowledge may also be more problem specific such as an access graph
for paging. In contrast to problem specific approaches, advice complexity [3,7,9]
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V. Mäkinen et al. (Eds.): IWOCA 2016, LNCS 9843, pp. 179–190, 2016.
DOI: 10.1007/978-3-319-44543-4 14



180 J. Boyar et al.

is a quantitative and standardized way of relaxing the online constraint. The
main idea of advice complexity is to provide an online algorithm, Alg, with
some partial knowledge of the future in the form of advice bits provided by a
trusted oracle which has unlimited computational power and knows the entire
request sequence. Informally, the advice complextity of an algorithm, Alg, is
the maximum number of advice bits read by Alg for input sequences of a given
length, and the advice complexity of a problem is the advice complexity of the
best possible algorithm for the problem. Upper bounds on the advice complexity
for a problem can sometimes lead to (or come from) semi-online algorithms, and
lower bounds can show that such algorithms do not exist. Since its introduction,
advice complexity has been a very active area of research. Lower and upper
bounds on advice complexity have been obtained for a large number of online
problems; a recent list can be found in [15].

Recently in [5], the first complexity class for online problems, AOC, was
introduced. The class consists of online problems that can be described in the
following way: The input is a sequence of requests and each request must either
be accepted or rejected. The set of accepted requests is called the solution. For
each request sequence, there is at least one feasible solution. The class contains
minimization as well as maximization problems. For a minimization problem,
the goal is to accept as few requests as possible, while maintaining a feasible
solution, and for maximization problems, the aim is to accept as many requests
as possible. For minimization problems, any super set of a feasible solution is
also a solution, and for maximization problems, any subset of a feasible solution
is also a feasible solution.

In this paper, we consider a generalization of the problems in the class AOC
in which each request comes with a weight. The goal is now to either minimize or
maximize the total weight of the accepted requests. We separately consider the
classes of maximization and minimization problems. For AOC-complete maxi-
mization problems, we get advice complexity results quite similar to those for
the unweighted versions of the problems, but for AOC-complete minimization
problems, the results are a lot more negative, so this gives a complexity class
containing harder problems than AOC. This is in contrast to unweighted AOC-
complete problems, where minimization and maximization problems are equally
hard in terms of advice complexity. Recently, differences between (unweighted)
AOC minimization and maximization problems were found with respect to online
bounded analysis [4] and min- and max-induced subgraph problems [11].

Our upper bound techniques are also useful for non-complete AOC problems
such as Matching as well as non-AOC problems such as Scheduling.

Previous results. For any AOC-complete problem, Θ(n/c) advice bits are nec-
essary and sufficient to obtain a competitive ratio of c. More specifically, for
competitive ratio c, the advice complexity is B(n, c) ± O(log n), where

B(n, c) = log
(

1 +
(c − 1)c−1

cc

)

n, (1)
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and an/c ≤ B(n, c) ≤ n/c, a = 1/(e ln(2)) ≈ 0.53. This is an upper bound on
the advice complexity of all problems in AOC. In [5], a list of problems including
Independent Set, Vertex Cover, Dominating Set, and Set Cover were proven
AOC-complete.

The paper [1] studies a semi-online version of scheduling where it is allowed
to keep several parallel schedules and choose the best schedule in the end. The
scheduling problem considered is makespan minimization onm identicalmachines.
Using (1/ε)O(log(1/ε)) parallel schedules, a (4/3 + ε)-competitive algorithm is
obtained. Moreover, a (1+ε)-competitive algorithm using (m/ε)O(log(1/ε)/ε) paral-
lel schedules is given along with an almost matching lower bound. Note that keep-
ing sdifferent schedules until the end corresponds toworkingwith sdifferent online
algorithms. Thus, this particular semi-online model easily translates to the advice
model, the advice being which of the s algorithms to run. In this way, the results
of [1] correspond to a (4/3 + ε)-competitive algorithm using O(log2(1/ε)) advice
bits and a (1 + ε)-competitive algorithm using O(log(m/ε) · log(1/ε)/ε) advice
bits. In particular, note that this algorithm uses constant advice in the size of the
input and only logarithmic advice in the number of machines.

In [13], scheduling on identical machines with a more general type of objective
function (including makespan, minimizing the �p-norm, and machine covering)
was studied. The paper considers the advice-with-request model where a fixed
number of advice bits are provided along with each request. The main result
is a (1 + ε)-competitive algorithm that uses O((1/ε) · log(1/ε)) advice bits per
request, totaling O((n/ε) · log(1/ε)) bits of advice for the entire sequence.

Our results. We prove that adding arbitrary weights, AOC-complete minimiza-
tion problems become a lot harder than AOC-complete maximization problems:

– For AOC-complete maximization problems, the weighted version is not sig-
nificantly harder than the unweighted version: For any maximization prob-
lem in AOC (this includes, e.g., Independent Set), the c-competitive algorithm
given in [5] for the unweighted version of the problem can be converted into a
(1+ε)c-competitive algorithm for the weighted version using only O((log2 n)/ε)
additional advice bits. Thus, a (1 + ε)c-competitive algorithm using at most
B(n, c) + O((log2 n)/ε) bits of advice is obtained.
For non-complete AOC problems, better trade-offs between the competitive
ratio and number of advice bits can be obtained. We show that any c-competitive
algorithm for an AOC maximization problem, P, using b advice bits can be con-
verted into a O(c · log n)-competitive algorithm for the weighted version of P
using b + O(log n) advice bits. For Weighted Matching, this implies a O(log n)-
competitive algorithm reading O(log n) bits of advice. We show that this is best
possible in the following sense: For a set of weighted AOC problems including
Matching, Independent Set, and Clique, no algorithm reading o(log n) bits of
advice can have a competitive ratio bounded by any function of n. Furthermore,
any O(1)-competitive algorithm for Weighted Matching must read Ω(n) advice
bits.

– For all minimization problems known to be AOC-complete (this includes, e.g.,
Vertex Cover, Dominating Set, and Set Cover), n − O(log n) bits of advice



182 J. Boyar et al.

are required to obtain a competitive ratio bounded by a function of n. This
should be contrasted with the fact that n bits of advice trivially yields a strictly
1-competitive algorithm.
If the largest weight wmax cannot be arbitrarily larger than the smallest weight
wmin, the c-competitive algorithm given in [5] for the unweighted version can
be converted into a c(1 + ε)-competitive algorithm for the weighted versions
using B(n, c) + O(log2 n + log(log(wmax/wmin)/ε)) advice bits in total.

Our main upper bound technique is a simple exponential classification scheme
that can be used to sparsify the set of possible weights. This technique can
also be used for problems outside of AOC. For example, for scheduling on
related machines, we show that for many important objective functions (includ-
ing makespan minimization and minimizing the �p-norm), there exist (1 + ε)-
competitive algorithms reading O((log2 n)/ε) bits of advice. For scheduling on
m unrelated machines where m is constant, we get a similar result, but with
O((log n)m+1/εm) advice bits. Finally, for unrelated machines, where the goal
is to maximize a seminorm (as in machine covering), we show that there is a
(1 + ε)-competitive algorithm reading O((log n)m+1/εm) bits of advice.

For scheduling on related and unrelated machines, our results are the first
non-trivial upper bounds on the advice complexity. For the case of makespan
minimization on identical machines, the algorithm of [1] is strictly better than
ours. However, for minimizing the �p-norm or maximizing a seminorm on iden-
tical machines, we exponentially improve the previous best upper bound [13]
(which was linear in n).

The missing proofs and definitions can be found in the full paper [6].

2 Preliminaries

Throughout the paper, we let n denote the number of requests in the input.
We let R+ denote the set containing 0 and all positive real numbers. We let log
denote the binary logarithm log2. For k ≥ 1, [k] = {1, 2, . . . , k}. For any bit
string y, let |y|0 and |y|1 denote the number of zeros and the number of ones,
respectively, in y. We write x � y if for all indices, i, xi = 1 ⇒ yi = 1.

In this paper, we use the “advice-on-tape” model [3]. Before the first request
arrives, the oracle, which knows the entire request sequence, prepares an advice
tape, an infinite binary string. The algorithm Alg may, at any point, read some
bits from the advice tape. The advice complexity of Alg is the maximum number
of bits read by Alg for any input sequence of at most a given length. Opt is an
optimal offline algorithm.

Advice complexity is combined with competitive analysis to determine how
many bits of advice are necessary and sufficient to achieve a given competitive
ratio.

Definition 1 (Competitive ratio [10,14] and advice complexity [3]). The
input to an online problem, P, is a request sequence σ = 〈r1, . . . , rn〉. An online
algorithm with advice, Alg, computes the output y = 〈y1, . . . , yn〉, where yi
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is computed from ϕ, r1, . . . , ri, where ϕ is the content of the advice tape. Each
possible output for P is associated with a cost/profit. For a request sequence σ,
Alg(σ) (Opt(σ)) denotes the cost/profit of the output computed by Alg (Opt)
when serving σ.

If P is a maximization (minimization) problem, then Alg is c(n)-compet-
itive if there exists a constant, α, such that, for all n ∈ N, Opt(σ) ≤ c(n) ·
Alg(σ) + α, (Alg(σ) ≤ c(n) · Opt(σ) + α), for all request sequences, σ, of
length at most n. If the relevant inequality holds with α = 0, we say that Alg is
strictly c(n)-competitive.

The advice complexity, b(n), of an algorithm, Alg, is the largest number of
bits of ϕ read by Alg over all possible request sequences of length at most n. The
advice complexity of a problem, P, is a function, f(n, c), c ≥ 1, such that the
smallest possible advice complexity of a strictly c-competitive online algorithm
for P is f(n, c).

We only consider deterministic online algorithms (with advice). Note that
both the advice read and the competitive ratio may depend on n, but, for ease
of notation, we often write b and c instead of b(n) and c(n). Also, with this
definition, c ≥ 1, for both minimization and maximization problems.

In this paper, we consider the complexity class AOC from [5].

Definition 2 (AOC [5]). A problem, P, is in AOC (Asymmetric Online Cover-
ing) if it can be defined as follows: The input to an instance of P consists of a
sequence of n requests, σ = 〈r1, . . . , rn〉, and possibly one final dummy request.
An algorithm for P computes a binary output string, y = y1 . . . yn ∈ {0, 1}n,
where yi = f(r1, . . . , ri) for some function f .

For minimization (maximization) problems, the score function, s, maps a
pair, (σ, y), of input and output to a cost (profit) in N ∪ {∞} (N ∪ {−∞}).
For an input, σ, and an output, y, y is feasible if s(σ, y) ∈ N. Otherwise, y is
infeasible. There must exist at least one feasible output. Let Smin(σ) (Smax(σ))
be the set of those outputs that minimize (maximize) s for a given input σ.

If P is a minimization problem, then for every input, σ, the following must
hold:

1. For a feasible output, y, s(σ, y) = |y|1.
2. An output, y, is feasible if there exists a y′ ∈ Smin(σ) such that y′ � y.

If there is no such y′, the output may or may not be feasible.

If P is a maximization problem, then for every input, σ, the following must
hold:

1. For a feasible output, y, s(σ, y) = |y|0.
2. An output, y, is feasible if there exists a y′ ∈ Smax(σ) such that y′ � y.

If there is no such y′, the output may or may not be feasible.

Recall that no problem in AOC requires more than B(n, c) + O(log n) bits of
advice (see Eq. (1) for the definition of B(n, c)). The problems in AOC requiring
the most advice are AOC-complete [5]:
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Definition 3 (AOC-complete [5]). A problem P ∈ AOC is AOC-complete if
for all c > 1, any c-competitive algorithm for P must read at least B(n, c) −
O(log n) bits of advice.

In [5], an abstract guessing game, minASGk (Minimum Asymmetric String
Guessing with Known History), was introduced and shown to be AOC-complete.
The minASGk-problem itself is very artificial, but it is well-suited as the starting
point of reductions. All other minimization problems known to be AOC-complete
have been shown to be so via reductions from minASGk.

The input for minASGk is a secret string x = x1x2 . . . xn ∈ {0, 1}n given
in n rounds. In round i ∈ [n], the online algorithm must answer yi ∈ {0, 1}.
Immediately after answering, the correct answer xi for round i is revealed to the
algorithm. If the algorithm answers yi = 1, it incurs a cost of 1. If the algorithm
answers yi = 0, then it incurs no cost if xi = 0, but if xi = 1, then the output
of the algorithm is declared to be infeasible (and the algorithm incurs a cost of
∞). The objective is to minimize the total cost incurred. Note that the optimal
solution has cost |x|1.

The problem minASGk is based on the binary string guessing problem [2,9].
Binary string guessing is similar to asymmetric string guessing, except that any
wrong guess (0 instead of 1 or 1 instead of 0) gives a cost of 1.

In Theorem 1, we show a very strong lower bound for a weighted version of
minASGk. In Theorem 2, via reductions, we show that this lower bound implies
similar strong lower bounds for the weighted version of other AOC-complete
minimization problems.

We now formally define weighted versions of the problems in AOC.

Definition 4 (Weighted AOC). Let P be a problem in AOC. We define the
weighted version of P, denoted Pw, as follows: A Pw-input σ = 〈{r1, w1},
{r2, w2}, . . . , {rn, wn}〉 consists of n P-requests, r1, ..., rn, each of which has a
weight wi ∈ R+. The P-request ri and its weight wi are revealed simultaneously.
An output y = y1 . . . yn ∈ {0, 1}n is feasible for the input σ if and only if y is
feasible for the P-input 〈r1, . . . , rn〉. The cost (profit) of an infeasible solution is
∞ (−∞).

If P is a minimization problem, then the cost of a feasible Pw-output y for
an input σ is

s(σ, y) =
n∑

i=1

wiyi

If P is a maximization problem, then the profit of a feasible Pw-output y for
an input σ is

s(σ, y) =
n∑

i=1

wi(1 − yi)
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3 Weighted Versions of AOC-Complete Minimization
Problems

In the weighted version of minASGk, minASGkw, each request is a weight for
the current request and the value 0 or 1 of the previous request. Producing a
feasible solution requires accepting (answering 1 to) all requests with value 1,
and the cost of a feasible solution is the sum of all weights for requests which
are accepted.

We start with a negative result for minASGkw and then use it to obtain
similar results for the weighted online version of Vertex Cover, Set Cover, Dom-
inating Set, and Cycle Finding.

Theorem 1. For minASGkw, the competitive ratio of any algorithm with less
than n bits of advice is not bounded by any function of n.

Proof (sketch). Let Alg be any algorithm for minASGkw reading at most n−1
bits of advice. We show how an adversary can construct input sequences where
the cost of Alg is arbitrarily larger than that of Opt. To this end, we describe
a way to assign weights to the requests in minASGkw such that if Alg makes a
single mistake (either guessing 0 when the correct answer is 1 or vice versa), its
competitive ratio is unbounded. We use a large number a > 1, which we allow
to depend on n. All weights are from the interval [1, a] (note that they are not
necessarily integers). Let x = x1, . . . , xn be an arbitrary input string with at
least one 1, and set w1 = a1/2. For i > 1, we set wi = wi−1 · a(−2−i) if xi−1 = 0
and we set wi = wi−1 · a(2−i) if xi−1 = 1. Since the weights are only a function
of previous requests, they do not reveal any information to Alg about future
requests. This finishes the description of the hard input instance.

Since Alg reads strictly less than n bits of advice, it will make at least
one mistake on at least one input string x. We claim that this implies that the
competitive ratio of Alg is not bounded by any function of n. Indeed, if Alg

guesses 0 for a request, but the correct answer is 1, the solution is infeasible
and Alg gets a cost of ∞. We now consider the case where Alg guesses 1 for a
request j, but the correct answer is xj = 0. By our choice of weights, for every
j′ �= j such that xj = 1, the weight wj′ of xj′ is smaller than wj by at least a
(multiplicative) factor of a(2−n). Thus, the total cost of Opt, which is the sum
of weights wj′ for which xj′ = 1, is at least a factor of a(2−n)/n smaller than the
weight wj alone. This proves the lower bound since a can be arbitrarily large. �

In order to show that similar lower bounds apply to the weighted versions
of all minimization problems known to be AOC-complete, we define a simple
type of advice preserving reduction for online problems (Definition 5 in the full
paper [6]). These are much less general than those defined by Sprock in his PhD
dissertation [16], mainly because we do not allow the amount of advice needed to
change by a multiplicative factor. Using these reductions and previous results [5]
showing that the underlying AOC problems are AOC-complete, the following
result can be shown.
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Theorem 2. For the weighted online versions of Vertex Cover, Cycle Finding,
Dominating Set, Set Cover, an algorithm reading less than n − O(log n) bits of
advice cannot have a competitive ratio bounded by any function of n.

4 Exponential Sparsification

Assume that we are faced with an online problem which we know how to effi-
ciently solve, possibly using advice, in the unweighted version (or when there
are only few possible different weights). We use exponential sparsification, a sim-
ple technique which can be of help when designing algorithms with advice for
weighted online problems by reducing the number of different possible weights
the algorithm has to handle. The first step is to partition the set of possible
weights into intervals of exponentially increasing length, i.e., for some small ε,
0 < ε < 1,

R+ =
∞⋃

k=−∞

[
(1 + ε)k, (1 + ε)k+1

)
.

How to proceed depends on the problem at hand. We now informally explain
the meta-algorithm that we repeatedly use in this paper. Note that if w1, w2 ∈[
(1 + ε)k, (1 + ε)k+1

)
and w1 ≤ w2, then w1 ≤ w2 ≤ (1 + ε)w1. For many online

problems, this means that an algorithm can treat all requests whose weights
belong to this interval as if they all had weight (1 + ε)k+1 with only a small loss
in the competitive ratio.

Consider now a set of weights and let wmax denote the largest weight in
the set. Let kmax be the integer for which wmax ∈ [

(1 + ε)kmax , (1 + ε)kmax+1
)
.

We say that a request with weight w ∈ [
(1 + ε)k, (1 + ε)k+1

)
is unimportant if

k < kmax − �log1+ε(n2)�. Furthermore, we will often categorize the request as
important if kmax−�log1+ε(n2)� ≤ k < kmax+1 and as huge if k ≥ kmax+1. Each
unimportant request has weight w ≤ (1+ ε)k+1 ≤ (1+ ε)kmax−�log1+ε(n

2)�−1+1 ≤
wmax/n2, so the total sum of the unimportant weights is O(wmax/n). For many
weighted online problems, this means that an algorithm can easily serve the
requests with unimportant weights. In maximization problems, this is done by
rejecting them. In minimization problems, it is done by accepting them. Thus,
exponential sparsification (when applicable) essentially reduces the problem of
computing a good approximate solution for a problem with n distinct weights to
that of computing a good approximate solution with only O(log1+ε n) distinct
weights.

For a concrete problem, several modifications of this meta-algorithm might
be necessary. Often, the most tricky part is how the algorithm can learn kmax

without using too much advice. One approach that we often use is the following:
The oracle encodes the index i of the first request whose weight is close enough
to (1+ ε)kmax that the algorithm only needs a little bit of advice to deduce kmax

from the weight of this request. If it is somehow possible for the algorithm to
serve all requests prior to i reasonably well, then this approach works well.
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Our main application of exponential sparsification is to weighted AOC prob-
lems. We begin by considering maximization problems. Note that no assumptions
are made about the weights of Pw in Theorem 3.

Theorem 3. If P ∈ AOC is a maximization problem, then for any c > 1 and
0 < ε ≤ 1, Pw has a strictly (1 + ε)c-competitive algorithm using B(n, c) +
O(ε−1 log2 n) advice bits.

Proof (sketch). We split the requests into classes, where class k contains all
requests with weights in [(1 + ε)k, (1 + ε)k+1). The algorithm learns the class
kmax of the request with the largest weight which is accepted by Opt, using
the approach described above. The unimportant and huge requests are rejected.
This is a safe choice, since the huge requests are also rejected by Opt and the
total weight of the unimportant requests is insignificant.

In each class with important requests, we use the covering design based c-
competitive algorithm for unweighted maxASG that was used in [5] to obtain
the upper bound of B(n, c)+O(log n) on the advice complexity of AOC problems.
This gives a feasible solution, since the accepted requests constitute a subset of
those accepted by Opt. We use that the function B(n, c) is linear, which ensures
that, in total, these smaller covering designs use roughly the same number of
advice bits as one covering design for all n requests. For each smaller covering
design, there are an additional O(log n) advice bits used, which adds up to the
O(ε−1 log2 n) additional advice bits in the theorem. �

It may be surprising that adding weights to AOC-complete maximization
problems has almost no effect, while adding weights to AOC-complete minimiza-
tion problems drastically changes the advice complexity. In particular, one might
wonder why the technique used in Theorem 3 does not work for minimization
problems. The key difference lies in the beginning of the sequence.

For maximization problems, the algorithm can safely reject all requests before
the first important one. For minimization problems, this approach does not work,
since the algorithm must accept a superset of what Opt accepts in order to
ensure that its output is feasible. Thus, rejecting an unimportant request that
Opt accepts may result in an infeasible solution. This essentially means that the
algorithm is forced into accepting all requests before the first important request
arrives. Accepting all unimportant requests is no problem, since they will not
contribute significantly to the total cost. However, accepting even a single huge
request can give an unbounded contribution to the algorithm’s cost. As shown
in Theorem 1, it is not possible in general for the algorithm to tell if a request
in the beginning of the sequence is unimportant or huge without using a lot of
advice.

However, if the ratio of the largest weight, wmax, to the smallest weight,
wmin, is not too large, exponential sparsification is also useful for minimization
problems in AOC. Essentially, when this ratio is bounded, it is possible for the
algorithm to learn a good approximation of wmax when the first request arrives.
This is formalized in Theorem 4, the proof of which is very similar to the proof
of Theorem 3.
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Theorem 4. If P ∈ AOC is a minimization problem and 0 < ε ≤ 1, then Pw

with all weights in [wmin, wmax] has a (1+ ε)c-competitive algorithm with advice
complexity at most

B(n, c) + O

(

ε−1 log2 n + log
(

ε−1 log
wmax

wmin

))

.

5 Matching and Other Non-Complete AOC Problems

We first provide a general theorem that works for all maximization problems in
AOC, giving better results in some cases than that in Theorem 3.

Theorem 5. Let P ∈ AOC be a maximization problem. If there exists a c-
competitive P-algorithm reading b bits of advice, then there exists a O(c · log n)-
competitive Pw-algorithm reading O(b + log n) bits of advice.

In the online matching problem, edges arrive online, the algorithm must
irrevocably accept or reject them as they arrive, and the goal is to maximize
the number of edges accepted. The natural greedy algorithm for this problem is
well known to be 2-competitive. In terms of advice, the problem is known to be
in AOC, but is not AOC-complete [5]. We remark that a version of unweighted
online matching with vertex arrivals (incomparable to our weighted matching
with edge arrivals) has been studied with advice in [8].

Corollary 1. For Weighted Matching, there exists a O(log n)-competitive algo-
rithm reading O(log n) bits of advice.

Proof. The result follows from Theorem 5 since there exists a 2-competitive
algorithm without advice for (unweighted) Matching. �

5.1 Lower Bounds

Theorem 3 shows that for weighted maximization problems in AOC, we cannot
hope to achieve lower bounds similar to that of Theorem 2. However, we do have
the following lower bound for algorithms reading very little advice.

Theorem 6. For the weighted online versions of Independent Set, Clique, Dis-
joint Path Allocation, and Matching, an algorithm reading o(log n) bits of advice
cannot have a competitive ratio bounded by any function of n.

Returning to the example of Weighted Matching, we now know that O(log n)
bits suffice to be O(log n)-competitive, and that o(log n) bits of advice leads
to a competitive ratio unbounded by any function of n. Furthermore, using a
technique introduced in [12], we prove the following result:

Theorem 7. An O(1)-competitive algorithm for Weighted Matching must read
at least Ω(n) bits of advice.

In particular, we cannot achieve a constant competitive ratio using O(log n) bits
of advice for Weighted Matching. We leave it as an open problem to close the
gap between ω(1) and O(log n) on the competitive ratio of Matching algorithms
with advice complexity O(log n).
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6 Scheduling with Sublinear Advice

For the scheduling problems studied, the requests are jobs, each characterized
by its size. Each job must be assigned to one of m available machines. If the
machines are identical, the load of a job on any machine is simply its size. If
the machines are related, each machine has a speed, and the load of a job, J ,
assigned to a machine with speed s is the size of J divided by s. If the machines
are unrelated, each job arrives with a vector specifying its load on each machine.

Consider a sequence σ = 〈r1, . . . , rn〉 of n jobs that arrive online. Each job
ri ∈ σ has an associated weight-function wi : [m] → R+. Upon arrival, a job
must irrevocably be assigned to one of the m machines. The load Lj of a machine
j ∈ [m] is defined as Lj =

∑
i∈Mj

wi(j) where Mj is the set of (indices of)
jobs scheduled on machine j. The total load of a schedule for σ is the vector
L = (L1, . . . , Lm). We say that (L1, . . . , Lm) ≤ (L′

1, . . . , L
′
m) if and only if

Li ≤ L′
i for 1 ≤ i ≤ m. A scheduling problem of the above type is specified by an

objective function f : Rm
+ → R+ and by specifying if the goal is to minimize or

maximize f(L) = f(L1, . . . , Lm) ∈ R+. We assume that f is non-decreasing, i.e.,
f(L) ≤ f(L′) for all L ≤ L′. Some of the classical choices of objective function
include:

– Minimizing the �p-norm fp(L) = fp(L1, . . . , Lm) = ‖(L1, . . . , Lm)‖p for some

1 ≤ p ≤ ∞. That is, for 1 ≤ p < ∞, the goal is to minimize
(∑

j∈[m] L
p
j

)1/p

and for p = ∞, the goal is to minimize the makespan maxj∈[m] Lj .
– Maximizing the minimum load f(L) = minj∈[m] Lj . This is also known as

machine covering. Note that this objective function is not a norm, but it is a
seminorm.1

We begin with a result for unrelated machines.

Theorem 8. Let P be a scheduling problem on m unrelated machines where the
goal is to minimize an objective function f . Assume that f is a norm. Then, for
0 < ε ≤ 1, there exists a (1 + ε)-competitive P-algorithm reading O

(
( 4ε log(n) +

2)m log(n)
)
bits of advice. In particular, if m = O(1) and ε = Ω(1), then there

exists a (1 + ε)-competitive algorithm reading O(polylog(n)) bits of advice.

Roughly speaking, we prove Theorem 8 by carefully using exponential spar-
sification to partition the set of jobs into a sufficiently small number of types,
and then giving as advice the number of jobs of each type.

The advice complexity of the algorithm for unrelated machines in Theorem8
depends quite heavily on the number of machines m. In Theorem 9, we show
that the dependency on m can be removed when the machines are related.

Theorem 9. Let P be a scheduling problem on m related machines where the
goal is to minimize an objective function f . Assume that f is a norm. Then, for
0 < ε ≤ 1, there exists a (1 + ε)-competitive P-algorithm with advice complexity
O

(
ε−1 log2 n

)
.

1 f is a norm if f(av) = |a|f(v), f(v + v) ≤ f(v) + f(v), and f(v) = 0 ⇒ v = 0. A
seminorm does not require this last condition.
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We now consider scheduling problems where the goal is to maximize an
objective function f . Recall that we assume that the objective function is non-
decreasing. The most notable example is when f is the minimum load.

Theorem 10. Let P be a scheduling problem on m unrelated machines where
the goal is to maximize an objective function f . Assume that f is a seminorm.
Then, for every 0 < ε ≤ 1, there exists a (1 + ε)-competitive P-algorithm with
advice complexity O((4ε log(n) + 2)mm2 log n). In particular, if m = O(1) and
ε = Ω(1), the advice complexity is O(polylog(n)).
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7. Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant informa-
tion in input. RAIRO Theor. Inf. Appl. 43(3), 585–613 (2009)
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Abstract. A string s is said to be a gapped palindrome iff s = xyxR for
some strings x, y such that |x| ≥ 1, |y| ≥ 2, and xR denotes the reverse
image of x. In this paper we consider two kinds of gapped palindromes,
and present efficient online algorithms to compute these gapped palin-
dromes occurring in a string. First, we show an online algorithm to find
all maximal g-gapped palindromes with fixed gap length g ≥ 2 in a string
of length n in O(n log σ) time and O(n) space, where σ is the alphabet
size. Second, we show an online algorithm to find all maximal length-
constrained gapped palindromes with arm length at least A ≥ 1 and gap
length in range [gmin, gmax] in O(n( gmax−gmin

A
+ log σ)) time and O(n)

space. We also show that if A is a constant, then there exists a string
of length n which contains Ω(n(gmax − gmin)) maximal LCGPs, which
implies we cannot hope for a significant speed-up in the worst case.

1 Introduction

A palindrome is a string of form xaxR, where x is a string called the left arm,
a is either the empty string or a single character, and xR is the reversed string
of x called the right arm. Finding palindromic substrings in a given string w
is a classical problem on string processing. The earliest work on this problem
dates back to at least 1970’s when Manacher [10] proposed an online algorithm
to find all prefix palindromes in w in O(n) time, where n is the length of w.
Later, Apostolico et al. [1] pointed out that Manacher’s algorithm can be used
to find all maximal palindromes in w in O(n) time, where a maximal palindrome
is a substring palindrome w[i..j] = w[i..j]R of w whose arms cannot be further
extended based on the same center i+j

2 .
A natural generalisation of palindromes is gapped palindromes of form xyxR,

where y is a string of length at least 2 called a gap1. Finding gapped palindromes
has applications in bioinformatics, e.g.; RNA secondary structures called hairpins
can be regarded as a kind of gapped palindrome xyxR, where x represents the
complement of x (x is obtained by exchanging A with U and exchanging C with
G in x). The most basic type of gapped palindromes is g-gapped palindromes,
where g ≥ 2 is a pre-defined fixed length of the gaps. For three parameters gmin,
1 If y is a single character, then xyxR is a palindrome of odd length. Thus we here

assume y is of length at least 2.
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gmax, and A such that 2 ≤ gmin ≤ gmax and A ≥ 1, Kolpakov and Kucherov [8]
introduced length-constrained gapped palindromes (LCGPs) which has arms of
length at least A and gaps of length in range [gmin, gmax]. This is a natural
generalisation of g-gapped palindromes with gmin = gmax = g and A = 1.

In this paper, we consider the problems of finding these gapped palindromes
in a string in an online manner. Namely, our input is a growing string to which
new characters can be appended, and each character of the string arrives one by
one, from left to right. Let n be the length of the final string w. We propose:

(1) An online algorithm to compute all maximal g-gapped palindromes in w in
O(n log σ) time and O(n) space, where σ is the alphabet size. This algorithm
can be modified to output only distinct maximal g-gapped palindromes in
an online manner, in the same complexity.

(2) An online algorithm to compute all maximal LCGPs in w in O(n(m+log σ))
time and O(n) space, where m = max{ gmax−gmin

A , 1}.

Formal definitions of the maximality of these gapped palindromes will be given
in Sects. 3 and 4, respectively.

We remark that using a slightly modified version of Solution (1), it is trivial
to obtain an O(n(gmax − gmin + log σ))-time solution for finding all maximal
LCGPs, by simply testing gap lengths gmin, gmin +1, . . . , gmax separately. Hence,
in the case where A is not a constant and log σ is not a dominating term, then
Solution (2) speeds up this trivial method by a factor of A. On the other hand,
in the case where A is a constant, then we show that there exists a string of
length n which contains Ω(nm) maximal LCGPs, meaning that we cannot hope
significant speed-up in the worst case.

Solution (2) is based on Solution (1) and is quite different from the offline
solution by Kolpakov and Kucherov [8]. To our knowledge, these are the first
efficient online algorithms that compute any kind of gapped palindromes.

Related work. A number of efficient offline algorithms for computing various
kinds of gapped palindromes have been proposed in the literature.

Let w be an input string w of length n over the integer alphabet. There exists
a folklore O(n)-time algorithm (see e.g. [6]) which finds all maximal g-gapped
palindromes for a given fixed gap length g; the suffix tree [4,12] of string wR#w$
and a constant-time LCA data structure [2] over the suffix tree are constructed
during preprocessing, and then computing each maximal g-gapped palindrome
reduces to an outward longest common extension (LCE) query, which can be
answered by an LCA query on the tree. Our algorithm for computing all maximal
g-gapped palindromes can be regarded as an online version of this algorithm.

Kolpakov and Kucherov [8] proposed an O(n + L)-time offline algorithm to
find all maximal LCGPs, where L is the number of outputs. Their algorithm
consists of the following two steps: In the first step, it computes all (not neces-
sarily outward maximal) LCGPs whose arms are of length exactly A. Let (i, j)
be the pair of the ending position i and the beginning position j of the left and
right arms of each of the above LCGPs, respectively. In the second step, for each
LCGP computed above, the algorithm performs an outward LCE query from
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i and j, using the same suffix-tree based data structure as for the maximal g-
gapped palindromes above. However, each time a new character is appended to
the growing string, the LCE value from the same pair of positions may increase,
and it is impossible to know beforehand when the growth of the LCE value
for each pair of positions stops. Thus, it seems difficult to apply Kolpakov and
Kucherov’s solution to our online setting.

There exist efficient offline solutions for finding other kinds of gapped palin-
dromes. Kolpakov and Kucherov [8] also proposed an O(n)-time2 offline algo-
rithm to compute all maximal long-armed palindromes (those whose arms are
longer than their gap) in a given string w of length n. Kolpakov and Kucherov’s
algorithm uses a variant of Lempel-Ziv factorisation called the reversed LZ fac-
torisation of strings. Let f1, . . . , fk be the reversed LZ factorisation of w. Then,
for each pair fi of adjacent factors, their algorithm focuses on positions |fi|

2k
for

every 1 ≤ k ≤ � |fi|
2 � in fi. This implies that the length of each fi needs to be pre-

computed. However, in the online setting, the length of the last factor that is a
suffix of the current string can extend each time a new character is appended. It
is therefore unclear whether we can extend their solution to the online scenario.

Very recently, Gawrychowski et al. [5] considered a generalisation of long-
armed palindromes called α-gapped palindromes; For a parameter α > 1, a
gapped palindrome xyxR is said to be an α-gapped palindrome iff |xy| ≤ α|y|.
Gawrychowski et al. [5] proposed an O(αn)-time offline algorithm which com-
putes all maximal α-gapped palindromes in an input string w of length n. This
algorithm requires a preprocessing of the input w for integer c ≥ 2 such that the
occurrences of a substring of length 2k (called a basic factor therein) in another
substring of length c2k can be computed efficiently. Thus, it seems difficult to
apply their result to the online setting.

2 Preliminaries

2.1 Strings

Let Σ be an ordered alphabet of size σ. An element of Σ∗ is called a string.
The length of string w is denoted by |w|. The empty string is denoted by ε.
For any non-empty string w, w[i] denotes the character at position i of w for
1 ≤ i ≤ |w|, and w[i..j] denotes the substring of w that begins at position i and
ends at position j in w for 1 ≤ i ≤ j ≤ |w|. For convenience, let w[i..j] = ε
for i > j. For 0 ≤ i ≤ |w| + 1, w[1..i] and w[i..|w|] are called a prefix and
a suffix of w, respectively. Let wR denotes the reversed image of w, namely,
wR = x[|x|] · · · x[1]. For instance, if w = desserts, then wR = stressed. For
any strings x and y, let lcp(x, y) denote the length of the longest common prefix
of x and y.

2 Originally, Kolpakov and Kucherov [8] stated their algorithm works in O(n+S) time,
where S is the number of outputs. It follows from a recent work by Gawrychowski
et al. [5] that S = O(n).
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2.2 Gapped Palindromes

A string p is said to be a gapped palindrome iff p = xyxR for some non-empty
strings x, y with |y| > 1. The intervals [1, |x|], [|y| + 1, |xy|], and [|xy| + 1, |xyx|]
in p are called the left arm, gap, and right arm of gapped palindrome p = xyxR.
Note that in general the choice of arms and gap are not unique for the same
string p. For instance, if p = abccbba, then we can take x = ab and y = ccb, or
x = a and y = bccbb.

A gapped palindrome xyxR is said to be a length-constrained palindrome
(LCGP) iff |x| ≥ A and gmin ≤ |y| ≤ gmax for some fixed integer parame-
ters A ≥ 1 and 1 < gmin ≤ gmax. A gapped palindrome xyxR is said to be a
g-gapped palindrome iff |y| = g for some fixed integer g > 1. Note that any
g-gapped palindrome is a special case of a length-constrained palindrome with
gmin = gmax = g and A = 1.

An occurrence of a gapped palindrome p = xyxR in a string w is identified
by a triple (i, j, a) such that a denotes the length of each arm, and i, j denote
the ending and beginning positions of the left and right arms of p, respectively.
Namely, w[i − a + 1..i] = x, w[i + 1..j − 1] = y, and w[j..j + a − 1] = xR. The
center of an occurrence (i, j, a) of a gapped palindrome in w is i+j

2 .

2.3 Suffix Trees and LCE Queries

The suffix tree of a string w, denoted STree(w), is a path-compressed trie which
represents all suffixes of w. More formally, STree(w) is an edge-labelled rooted
tree such that (1) Every internal node is branching; (2) The out-going edges
of every internal node begin with mutually distinct characters; (3) Each edge
is labelled by a non-empty substring of w; (4) For each suffix s of w, there is
a unique path from the root which spells out s (the path possibly ends on an
edge). It follows from the definition of STree(w) that if n = |w| then the number
of nodes and edges in STree(w) is O(n). By representing every edge label x by
a pair (i, j) of integers such that x = w[i..j], STree(w) can be represented with
O(n) space.

For any node v of STree(w), let str(v) denotes the substring of w that is
obtained by concatenating the edge labels in the path from the root to v. Each
node v stores the length |str(v)| of the string it represents. For each non-root
node v, let slink(v) = (v, u) be a reversed edge called the suffix link of v, such that
str(u) = str(v)[2..|str(v)|]. It is well-known that STree(w) with the suffix links
of all nodes can be constructed online in O(n log σ) time and O(n) space [11].

The locus of a substring x of w in STree(w) is the ending point of the path
Px that spells out x from the root. If the ending point of Px lies on an edge
label, then the locus is represented by triple 〈u, s, t〉 such that u is the deepest
node in the path Px and s, t are positions of w with str(u)w[s..t] = x.

Given an ordered pair (i, j) of positions in a string w of length n, a reversed
longest common extension query rlcew(i, j) returns lcp((w[1..i])R, w[j..n]). Com-
puting rlcew(i, j) reduces to the lowest common ancestor (LCA) problem on
STree(w′), where w′ = wR#w and # is a special delimiter which does not
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occur in w. Let vi,j be the LCA of the two leaves which represent the suf-
fixes w′[n − i + 1..2n + 1] and w′[n + j + 1..2n + 1]. Then, we have that
|str(vi,j)| = rlcew(i, j). Using an LCA data structure (e.g. [2]), we can answer
rlcew(i, j) query for any pair (i, j) of positions in O(1) time after an O(n)-time
preprocessing on STree(w′).

3 Online Algorithms to Compute All Maximal g-gapped
Palindromes

An occurrence (i, j, a) of a g-gapped palindrome xyxR in a string w is said to be
maximal, if the arms x, xR cannot be extended outward, i.e., if w[b−1] �= w[e+1],
b = 1, or e = n, where b = i − a + 1 and e = j + a − 13.

Example 1. Consider string aabaacabbcaabb and let g = 3. This string has
3-gapped maximal palindromes (1, 5, 1) = a · aba · a, (6, 10, 4) = baac · ab
b · caab, (7, 11, 1) = a · bbc · a, and (9, 13, 2) = bb · caa · bb.

3.1 Computing all Maximal g-gapped Palindromes Online

In this subsection, we propose online algorithms to compute all maximal
g-gapped palindromes in a string w of length n, where g > 1 is a given fixed
integer parameter (since g = 1 gives odd palindromes, we set g > 1).

As was mentioned in Sect. 1, there exists an offline algorithm which computes
all g-gapped maximal palindromes in O(n) time and space for an input string w
of length n over an integer alphabet. However, in our scenario the input string
w is given online, and we wish to process each character from left to right. In
the sequel, we will show our online algorithm which can deal with this setting.

For each k = 1, . . . , n, our algorithm maintains the longest g-gapped suffix
palindrome of w[1..k] (if it exists). For each g-gapped palindrome to compute,
we maintain two variables i, j (i < j < k) that represent the ending position
of the left arm and the beginning position of the right arm of g-gapped palin-
drome, respectively. Assume (i, j, ai,j) is the longest g-gapped suffix palindrome
of w[1..k], where the gap of length g is w[i + 1..j − 1], j = i + g + 1 and
j +ai,j −1 = k. In case there are no g-gapped suffix palindromes of w[1..k], then
let ai,j = 0, i = k − g and j = k + 1. Depending on the next character w[k + 1],
we have two cases:

1. If w[i − ai,j ] = w[k + 1], then there exists a longer g-gapped palindrome
centered at i+j

2 . We then näıvely extend the arm length by ai,j ← ai,j + 1,
and proceed to the forthcoming character by updating k ← k + 1.

3 Since the gap length is fixed to g and since it simplifies the description of the algo-
rithm, here we do not consider inward maximality of the arms. However, it is easy
to modify our algorithm so that it outputs all g-gapped palindromes that are both
outward and inward maximal with the same efficiency.
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2. If w[i−ai,j ] �= w[k+1], then it appears that (i, j, ai,j) is the longest g-gapped
maximal palindrome ending at position k, and hence we output it. We then
shift the gap to the right by updating i ← i + 1 and j ← j + 1. There are
two-sub cases.
(a) If j > k+1, then it appears that there is no g-gapped suffix palindrome of

w[1..k+1]. We therefore update k ← k+1 and proceed to the forthcoming
character, with the current values of i and j.

(b) If j ≤ k+1, then we compute ai,j (we will later describe how to efficiently
compute it for updated i and j). There are two sub-cases:
i. If j + ai,j − 1 = k + 1, then (i, j, ai,j) is the longest g-gapped suffix

palindrome of w[1..k + 1]. We proceed to the forthcoming character
by updating k ← k + 1.

ii. If j + ai,j − 1 < k + 1, then (i, j, ai,j) is the maximal g-gapped palin-
drome with the gap beginning at position i + 1, and hence we output
it. We then shift the gap to the right by updating i ← i + 1 and
j ← j + 1, and go to either Case 2a or Case 2b depending on the
value of j.

In order to efficiently compute ai,j of Case 2 above in our online scenario, we
utilize the following results:

Theorem 1 ([7]). There exists an O(n log σ)-time O(n)-space algorithm to
maintain the suffix tree with suffix links for a bidirectionally growing string to
which new characters can be prepended and appended, where n is the length of
the final string.

Theorem 2 ([3]). There exists a linear-space algorithm for a rooted tree that
supports the following operations and query in O(1) worst-case time: which sup-
ports the following operations and query in O(1) worst-case time: (1) Insert a
new node; (2) Delete an existing node; (3) LCA query for any pair of nodes in
the current tree.

We are ready to show the main result of this section:

Theorem 3. For a growing string to which new characters are appended, we can
compute all maximal g-gapped palindromes in an online manner, in O(n log σ)
time and O(n) space, where n is the length of the final string.

Proof. The correctness immediately follows from the above arguments.
The time complexity is shown as follows. In the sequel, we consider the

amortised time cost for each k = 1, . . . , n. For each k that falls into Case 1, it
clearly takes O(1) time. For each k that falls into Case 2b, we output several
maximal g-gapped palindromes. It takes O(1) time to output the longest max-
imal g-gapped palindrome. The key is how to compute the arm lengths ai,j of
shorter maximal g-gapped palindromes. For this sake we maintain STree(w′

k)
where w′

k = (w[1..k])R#w[1..k], where # is a special delimiter which does not
appear elsewhere in w′

k (see also Fig. 1 for an example).
Note that computing ai,j is equivalent to computing rlcew[1..k](i, j), and thus
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Fig. 1. STree(w′
k) with w[1..k] = abacabcabc and w′

k = cbacbacaba#abacabcabc. The
label strings after # are omitted for simplicity.

is equivalent to computing |str(vi,j)|, where vi,j is the LCA of the nodes of
STree(w′

k) which represent the suffixes w′
k[k−i+1..2k+1] and w′

k[k+j+1..2k+1]
of w′

k. Since # is unique in w′
k, the suffix w′

k[k−i+1..2k+1] is always represented
by a leaf of STree(w′

k) and hence can easily be accessed in O(1) time. However,
notice that the other suffix w′

k[k + j + 1..2k + 1] is not represented by a node
when the path that spells out w′

k[k + j + 1..2k + 1] from the root ends on an
edge (this can happen when w′

k[k + j + 1..2k + 1] = w[j..k] is a prefix of another
suffix of w[1..k]). Consider such a case, and let 〈uj , sj , tj〉 be the locus for the
suffix w′

k[k + j + 1..2k + 1]. Since uj is the nearest ancestor to the locus, we can
use uj for the LCA query instead of the locus for w′

k[k + j + 1..2k + 1].
What remains is how to quickly find the loci for increasing j. For this we

can use a similar technique to Ukkonen’s online suffix tree construction algo-
rithm [11]: Assume that the locus 〈uj , sj , tj〉 for the suffix w′

k[k+ j +1..2k+1] =
w[j..k] in STree(w′

k) is given. To find the locus for 〈uj+1, sj+1, tj+1〉 for the next
suffix w′

k[k + j + 2..2k + 1] = w[j + 1..k], we first follow the suffix link of uj

and arrive at z = slink(uj). We then traverse the path from z which spells out
w′

k[sj+1..tj+1]. The last piece of this path gives the locus 〈uj+1, sj+1, tj+1〉 (see
also Fig. 2).

Using a similar analysis to [11], the cost to find this locus is amortised to
O(log σ). Since the total number of outputs (maximal g-gapped palindromes)
is linear in n, the amortised cost per output is O(log σ). The cost to update
STree(w′

k) to STree(w′
k+1) is amortised to O(log σ) by Theorem 1. Each LCA

query can be answered in O(1) time by Theorem 2. Hence, the total time com-
plexity is O(n log σ). The total space requirement is clearly O(n). This completes
the proof. 
�
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3.2 Computing all Distinct Maximal g-gapped Palindromes Online

Fig. 2. Illustration of how to find
the locus 〈uj+1, sj+1, tj+1〉 of the
next suffix w′

k[k + j + 2..2k + 1] =
w[j+1..k] using the suffix link of uj ,
where 〈uj , sj , tj〉 is the locus of the
previous suffix w′

k[k + j + 1..2k +
1] = w[j..k]. The cost for walking
down from node z to the locus for
〈uj+1, sj+1, tj+1〉 is O(log σ) amor-
tised.

Consider a g-gapped palindrome p = xyxR

which has at least two maximal occurrences
in a string w. When considering “distinct-
ness” of two maximal occurrences (i, j, a) and
(i′, j′, a) of p, we take into account the left
and right neighbouring characters for a tech-
nical reason. Namely, two maximal occur-
rences (i, j, a) and (i′, j′, a) of a g-gapped
palindromes are said to be distinct iff (1)
w[b−1] �= w[b′ −1] or (2) w[e+1] �= w[e′ +1],
where b = i−a+1, e = j+a−1, b′ = i′−a+1,
and e′ = j′ + a − 1.

Our online algorithm of Sect. 3.1 can be
modified to output all distinct maximal g-
gapped palindromes in an online manner.

For any string w, let lusuf (w) denote the
longest suffix of w which appears at least
twice in w (we assume that the empty string ε
appears |w|+1 times in w so lusuf (w) always
exists). We make use of the following simple
observation:

Observation 1. Let (i, j, a) be an occurrence of a maximal g-gapped palindrome
xyxR in a string w, and let c� = w[i − a] and cr = w[j + a]. Then, it is the first
(i.e. left-most) maximal occurrence of xyxR in w iff |c�xyxRcr| = j−i+2a+1 >
|lusuf (w[1..j + a − 1])|.
Theorem 4. For a growing string to which new characters are appended, we
can compute all distinct maximal g-gapped palindromes in an online manner, in
O(n log σ) time and O(n) space, where n is the length of the final string.

Proof. On top of STree(w′
k) used in Theorem 3, we build another suffix tree

STree(w[1..k]) for increasing k = 1, . . . , n using Ukkonen’s online algorithm [11].
For each k, Ukkonen’s algorithm maintains an invariant called the active point
which indicates the locus of lusuf (w[1..k]). When we process the kth character
w[k], we store |lusuf (w[1..h])| for all 1 ≤ h ≤ k. Let (i, j, ai,j) be an occurrence
of a maximal g-maximal found at the k-th stage of the algorithm where we have
processed w[1..k]. Then, we can determine in O(1) time whether or not it is the
first maximal occurrence of the g-gapped palindrome using Observation 1 (recall
that the right mismatched position j + ai,j never exceeds k and hence we know
|lusuf (w[1..j+ai,j ])|). Since Ukkonen’s online algorithm works in O(n log σ) time
and O(n) space, the theorem holds. 
�

We note that a similar technique was used by Kosolobov et al. [9] in their
online algorithm to find all distinct palindromes (without gaps) in a given string.
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4 Online Algorithms to Compute all Maximal LCGPs

An occurrence (i, j, a) of an LCGP in a string w of length n is said to be outward-
maximal iff w[i − a] �= w[j + a], i − a + 1 = 1, or j + a − 1 = n, and it is said to
be inward-maximal iff w[i + 1] �= w[j − 1]. It is said to be maximal iff it is both
outward-maximal and inward-maximal4.

Example 2. Consider string aabaacabbcaabb and let gmin = 1, gmax = 4, and
A = 2. All the maximal LCGPs in this string are (2, 4, 2) = aa · b · aa, (4, 7, 2) =
ba · ac · ab, (6, 10, 4) = baac · abb · caab, and (9, 13, 2) = bb · caa · bb.

4.1 Computing all Maximal LCGPs Online

In this section, we present an online algorithm to compute all maximal LCGPs
of a given string w. This algorithm works in O(n(m + log σ)) time and O(n)
space, where n = |w| and m = max{ gmax−gmin

A , 1}.
Let d = gmax−gmin

2 . For ease of explanation, we assume that d mod A = 0 and
we will describe our algorithm for this case. However, the algorithm can easily
be extended to a general case with d mod A �= 0, retaining the same efficiency.

For each k = 1, . . . , n in increasing order, we maintain a pair (i, j) of positions
such that j−i = gmin+1 and the longest inward-maximal suffix LCGP of w[1..k]
is centered at i+j

2 (if it exists). If it does not exist, then let i = k − gmax and
j = k − gmax + gmin + 1. For 1 ≤ l ≤ d

A , we consider the positions i − l · A and
j+ l ·A in w[1..k], called sampled positions. The following simple lemma suggests
how we can use these sampled positions for efficient computation of LCGPs.

Lemma 1. Let (i′, j′, a′) be any maximal LCGP whose center is i+j
2 (i.e.,

i′+j′

2 = i+j
2 ). Then, there exists l (1 ≤ l ≤ d

A) such that j + l ·A ∈ [j′, j′ +a′ −1]
and i − l · A ∈ [i′ − a′ + 1, i′]. Moreover, for each such l, (i′, j′, a′) is the unique
maximal LCGP satisfying the above conditions.

Proof. The existence of l is clear from the fact that the arms of LCGPs must be
at least A long (see also Fig. 3). By definition, the arms of two different maximal
LCGPs with the same center cannot overlap. Thus, for each l, there exists at
most one LCGP whose left and right arms contain sampled positions i − l · A
and j + l · A, respectively. This completes the proof. 
�

Let l (1 ≤ l ≤ d
A ) be the smallest integer such that i − l · A (resp. j + l · A)

is contained in the left arm (resp. the right arm) of the longest suffix inward-
maximal LCGP of w[1..k] that is centered at i+j

2 , and let al be the length of the
arm of this LCGP. Also, let il, jl be the ending position of the left arm and the
beginning position of the right arm of this LCGP, respectively. Note il+jl

2 = i+j
2

and jl +al −1 = k. Depending on the next character w[k+1], we have two cases:

4 Since the gap length varies in range [gmin, gmax], we here consider both outward and
inward maximality of the arms.
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Fig. 3. Illustration for Lemma 1. Since any LCGP centered at i+j
2

with gap length in
range [gmin, gmax] contains a pair (i − l · A, j + l · A) of sampled positions for some l,
we can compute it by two LCEs from the sampled positions.

1. If w[il −al] = w[k+1], then (il, jl, al +1) is the longest suffix inward-maximal
LCGP of w[1..k +1] centered at i+j

2 . Thus, we näıvely extend the arm length
outward by al ← al+1, and proceed to the forthcoming character by updating
k ← k + 1.

2. If w[il − al] �= w[k + 1], then it appears that (il, jl, al) is a maximal LCGP
centered at i+j

2 and ending at position k, and hence we output it. To com-
pute other maximal LCGPs centered at i+j

2 , we do the following: We update
l ← l + 1, and consider a pair (i − l · A, j + l · A) of the sampled positions
and compute the outward LCE aout

l = rlcew[1..k+1](i − l · A, j + l · A) and the
inward LCE ain

l = rlcew[1..k+1](j + l · A − 1, i − l · A + 1) from these sampled
positions (see also Fig. 3). There are three sub-cases depending on the LCE
values:
(a) If aout

l + ain
l < A or ain

l > l · A, then there is no maximal LCGP with
gap length in range [gmin, gmax] that is centered at i+j

2 and contains the
sampled positions i − l · A and j + l · A. We update l ← l + 1, and go to
one of the following sub-cases.
i. If l ≤ d

A , then we compute the outward and inward LCEs from the
pair of sampled positions with l.

ii. If l > d
A , then there is no suffix gapped palindrome of w[1..k] that

is centered at i+j
2 and has a gap length in range [gmin, gmax]. We

therefore update i ← i + 1, j ← j + 1, l ← 1, k ← k + 1 and proceed
to the forthcoming character.

(b) If aout
l + ain

l ≥ A, ain
l ≤ l · A, and j + l · A + aout

l ≤ k, then (il, j′l, al) is a
maximal LCGP centered at i+j

2 where il = i − l · A + ain
l , j + l · A + aout

l ,

and al = aout
l + ain

l . We output it and update l ← l + 1 + aout
l

A � (this is
to skip the subsequent sampled positions which are also contained in the
same LCGP due to Lemma 1).
i. If l ≤ d

A , then we compute the outward and inward LCEs from the
pair of sampled positions with l.

ii. If l > d
A , then there is no inward-maximal suffix gapped palindrome

of w[1..k] that is centered at i+j
2 and has a gap length in range

[gmin, gmax]. We therefore update i ← i+1, j ← j+1, l ← 1, k ← k+1
and proceed to the forthcoming character.
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(c) If aout
l +ain

l ≥ A, ain
l ≤ l ·A, and j+l ·A+aout

l = k+1, then (il, jl, al) is an
inward-maximal gapped suffix palindrome of w[1..k + 1] with gap length
in range [gmin, gmax]. Moreover, since we have processed l in increasing
order, it is guaranteed that (il, jl, al) is the longest such one. Hence, we
proceed to the next character by updating k ← k + 1.

Theorem 5. For a growing string to which new characters are appended, we
can compute all LCGPs in an online manner, in O(n(m+log σ)) time and O(n)
space, where n is the length of the final string and m = max{ gmax−gmin

A , 1}.
Proof. The correctness should be clear from the above arguments.

For each k = 1, . . . , n, we consider a fixed center i+j
2 and compute all LCGPs

with this center. We perform at most 2d
A LCE queries for each k, as there are

d
A sampled positions for each k. Since each LCE query can be answered in
O(1) time as in the proof of Theorem 3, the total time cost of the LCE queries
for all k = 1, . . . , n is O( d

An) = O(mn). We use additional O(n log σ) time
to maintain the suffix tree augmented with the dynamic LCA data structure
for bidirectionally growing string w′

k = (w[1..k])R#w[1..k]. Thus the total time
complexity is O(n(m + log σ)).

The total space requirement is dominated by the suffix tree and the dynamic
LCA data structure, and hence is O(n). 
�

4.2 Optimality of our Algorithm

The following corollary is immediate from Theorem 5.

Corollary 1. For constant parameters gmin, gmax, A and a constant-size alpha-
bet, we can compute all maximal LCGPs in a string of length n in an online
manner, in optimal O(n) time and space.

We can show that even for non-constant gap constraints gmin and gmax, the
running-time of our algorithm is optimal in the worst case. For any string w,
let Lw denote the number of all maximal LCGPs in w w.r.t. given parameters
gmin, gmax, and A. It immediately follows from Lemma 1 that Lw is upper-
bounded by the total number of sampled positions in w. Hence Lw = O(mn),
where n = |w| and m = max{ gmax−gmin

A , 1}. It is also true that there is an
instance w for which Lw = Ω(mn) if A is a constant: For example, consider
string z = (abc)

n
3 . This string z contains maximal gapped palindromes of form

a(bc(abc)p)a with arm a, b(c(abc)pa)b with arm b, and c((abc)pab)c with arm
c for all 0 ≤ p ≤ n

3 − 2. Thus, for A = 1 and for any 2 ≤ gmin ≤ gmax, the
string z contains Lz = Θ((gmax − gmin)n) = Θ( gmax−gmin

A n) = Θ(mn) maximal
LCGPs. Hence the running time O(m(n + log σ)) of our algorithm is optimal in
the worst case, for a constant-size alphabet.

5 Conclusions

In this paper, we presented an online algorithm which finds all maximal g-gapped
palindromes occurring in a string w of length n in O(n log σ) time, where σ is the



202 Y. Fujishige et al.

alphabet size. We also showed that the above online algorithm can be extended
to find more general length-constrained gapped palindromes (LCGPs) occurring
in w in O(n( gmin−gmax

A + log σ)) time, for given parameters 2 ≤ gmin ≤ gmax and
A ≥ 1. We also showed that if A is a constant, then there exists a string which
contains Ω((gmin−gmax)n) maximal LCGPs. This implies that for a constant-size
alphabet the running time of our algorithm is optimal in the worst case.

To our knowledge, the proposed methods are the first online algorithms to
find any kind of gapped palindromes in strings. Therefore, there remain many
open problems. In particular, we are interested in the following:

– Is there a string of length n which contains Ω( gmin−gmax
A n) maximal LCGPs

for non-constant A?
– Can we reduce the n gmin−gmax

A factor to Lw in the O(n( gmin−gmax
A + log σ))-

time algorithm for finding all maximal LCGPs, thereby obtaining an optimal
algorithm?

– Can the maximal α-gapped palindromes [5] of a given string be computed
online efficiently?
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Abstract. The online search problem is a fundamental problem in
finance. The numerous direct applications include searching for opti-
mal prices for commodity trading and trading foreign currencies. In this
paper, we analyze the advice complexity of this problem. In particu-
lar, we are interested in identifying the minimum amount of information
needed in order to achieve a certain competitive ratio. We design an
algorithm that reads b bits of advice and achieves a competitive ratio of

(M/m)1/(2
b+1) where M and m are the maximum and minimum price

in the input. We also give a matching lower bound. Furthermore, we
compare the power of advice and randomization for this problem.

1 Introduction

We study the online search problem (abbreviated Online Search), which is
formulated as an online (profit) maximization problem. For such problems, the
input arrives gradually in consecutive time steps. Each piece of input is called
a request. After a request is given, an online algorithm (also called the online
player) has to produce a definite piece of the output, called an answer. Each
answer is thus computed without any knowledge about further requests [6]. The
goal is to produce an output with a profit that is as large as possible. In Online

Search, the online player searches for the maximum price of a certain asset that
unfolds sequentially. Suppose the player, in this context a trader, would like to
transfer its assets from, say, USD to CHF in one transaction. Each day (formally,
each time step), the trader receives a quotation of the current exchange rate and
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V. Mäkinen et al. (Eds.): IWOCA 2016, LNCS 9843, pp. 203–212, 2016.
DOI: 10.1007/978-3-319-44543-4 16



204 J. Clemente et al.

decides whether to trade on the same day or to wait. The trading duration
is finite, and it may be known or unknown to the trader. Formally, we define
Online Search as follows.

Definition 1 (Online Search Problem). Let σ = (p1, p2, . . . , pn), with 0 <
m ≤ pi ≤ M for all 1 ≤ i ≤ n, be a sequence of prices that arrives in an online
fashion. Here, M and m are upper and lower bounds on the prices, respectively.
For each day i, price pi is revealed, and the online player has to choose whether
to trade on the same day or to wait for the new price quotation on the next day.
If the player trades on day i, its profit is pi. If the player did not trade for the
first n− 1 days, it must accept pn. The player’s goal is to maximize the obtained
price (i. e., its profit).

We assume that the parameters m and M for the price range are fixed and
known to the online algorithm in advance. The duration of the trading period n
is finite and may or may not be known to the online algorithm. We do not take
into account sampling costs in the profit, i. e., the price for each day is freely
given by the market to the trader. However, some direct applications of Online

Search may do require to consider the sampling costs. For instance, obtaining
prices of a certain product may induce some cost, either in the form of time
or money, from the player. For a study of such more involved cost variants, we
refer the reader to Xu et al. [19], where the authors considered the accumulated
sampling cost while maximizing the player’s profit.

1.1 Competitive Analysis and Advice Complexity

Competitive analysis was introduced by Sleator and Tarjan in 1985 [18] to ana-
lyze the solution quality of online algorithms. The measure used in the analysis
is called the competitive ratio, which can be obtained by comparing the profit of
the online algorithm to the one of an optimal offline solution. The term “offline”
is used when the whole input sequence is known in advance. Note that it is
generally not possible for an online algorithm to compute the optimal offline
solution in advance, because parts of the output have to be specified before the
whole input is known. It is merely taken into account to analyze the profit that
can hypothetically be obtained if the whole input is known in advance. The
competitive ratio of an online algorithm is formally defined as follows.

Definition 2 (Competitive Ratio). Let Π be an online maximization prob-
lem, let Alg be an online algorithm for Π, and let c > 1. Alg is said to be
c-competitive if, for every instance I of Π, we have

c · profit(Alg(I)) ≥ profit(Opt(I)),

where profit(Alg(I)) is the profit of Alg on input I, and profit(Opt(I)) denotes
the optimal offline profit.
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In this paper, we study the advice complexity of Online Search. More
specifically, we ask about the additional information both sufficient and necessary
in order to improve the obtainable competitive ratio. In a way, this approach
can be seen as measuring the information content of the problem at hand [13].

This tool, which was introduced by Dobrev et al. in 2008 [9] and then revised
by Böckenhauer et al. [4], Hromkovič et al. [13], and Emek et al. [11], is a comple-
mentary tool to analyze online problems. In order to study the information that
is needed in order to outperform purely deterministic (or randomized) online
algorithms, we introduce a trusted source, referred to as an oracle, which sees
the whole input in advance and may write binary information on a so-called
advice tape. These advice bits are allowed to be any function of the entire input.
The algorithm, which is called an online algorithm with advice in this setting,
may then use the advice to compute the output for the given input. The app-
roach is quantitative and problem-independent. In other words, the information
supplied can be arbitrary (as long as it is computable). This is in particular
interesting to give lower bounds for many other measurements or relaxations
of online problems. More specifically, hardness results in advice complexity give
useful negative results about various semi-online approaches. If it is for example
shown that O(log2 n) bits of advice do not help any online algorithm to achieve
a better competitive ratio, this gives a negative answer to questions of the form:
Would it help the algorithm to know the length of the input? Would it help the
algorithm to know the number of requests of a certain type?

Many prominent online problems have been studied in this framework,
including paging [4,9], the k-server problem [4,11,12,17], metrical task sys-
tems [11], and the online knapsack problem [5]. Negative results on the advice
complexity can be transferred by a special kind of reduction [2,8,11]. More-
over, advice complexity has a close and non-trivial relation to randomization
[1,3,14,16]. We now define online algorithms with advice formally.

Definition 3 (Advice Complexity). Let x1, . . . , xn be the input for an online
problem Π. An online algorithm with advice, Alg, for Π computes the output
sequence y1, . . . , yn, where yi is allowed to depend on x1, . . . , xi−1 as well as on
an advice string φ. The advice, φ, is written in binary on an infinite tape and is
allowed to depend on the request sequence x1, . . . , xn. The advice complexity of
Alg is the largest number of advice bits it reads from φ over all inputs of length
at most n.

Our paper is devoted to both creating online algorithms with advice for
Online Search that achieve a certain output quality while using a certain
number of advice bits, and to show that such algorithms cannot exist if the
advice complexity is below some certain threshold.

Most of the work in advice complexity theory considers problems where at
least n advice bits are required for an algorithm to be optimal. Here, we study
a problem where only log2 n bits give an optimal algorithm. We investigate how
this problem behaves when the number of advice bits is in the interval [1, log2 n].
For the ease of presentation, we assume that log2 n is integer.
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2 Related Work

The search problem in an offline setting, i. e., where the set of prices is known in
advance, can easily be solved optimally in time O(n). However, for a lot of online
environments such as stock trading and foreign exchange, decisions should be
made even though there is no knowledge of the future prices of the currencies.
These problems are intrinsically online.

The most common approaches are Bayesian. These approaches rely on a prior
distribution of prices where the online algorithm computes a certain reservation
price based on the distribution. The trader accepts any price that is larger than
or equal to the reservation price. If this certain price is not met, the player has to
trade on the last day (according to Definition 1). Throughout this paper, Alg[p]
denotes the algorithm that accepts the first price it sees that is at least p.

Since the prior distribution of prices is not necessarily known in advance,
El-Yaniv et al. [10] proposed to measure the quality of online trading algorithms
using competitive analysis. Moreover, for some assets, the goal is not just to
increase the profit but to minimize the loss by considering the possible worst-
case scenarios in the market. Competitive analysis in financial problems such as
Online Search can provide a guaranteed performance measure for the trader’s
profit. The best deterministic online algorithm with respect to competitive analy-
sis is Alg[

√
Mm], i. e., the algorithm that accepts the first price it sees that is

at least
√

Mm (or it accepts pn if no such price is ever seen). This algorithm
has a competitive ratio of

√
M/m, which is provably the best competitive ratio

any deterministic online algorithm without advice can achieve [6].
Boyar et al. [7] studied how the problem behaves when applying a variety of

difference performance measures (and not just competitive ratio).

3 Advice for the Online Search Problem

In this section, we explore the advice complexity of Online Search. We start
by studying how much advice is necessary and sufficient in order to obtain an
optimal output. After that, we study general c-competitiveness.

3.1 Advice for Optimality

It is possible for an algorithm to be optimal using log2 n bits of advice if n is
known in advance by simply encoding the day where the largest price is offered.
If n is not known in advance, it has to be encoded with a self-delimiting encoding,
for example, by writing the length of log2 n in unary followed by log2 n. This
requires 2 log2 n bits [4].

Moreover, optimality can also be achieved by encoding the value of pmax

using O(log2(M/m)) bits, but since M and m can be arbitrarily large, this may
be very expensive. We now give a complementing lower bound.

Theorem 1. At least log2 n bits of advice are necessary to obtain an optimal
solution for Online Search. This holds even if n is known to the algorithm.
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Proof. We use that an algorithm with b advice bits can be viewed as dealing with
the best of 2b algorithms without advice, for the particular instance chosen. First,
we generate a set of request sequences S. Then, we show that, for S, there is no
set of n−1 or fewer deterministic algorithms, which can ensure that at least one
algorithm always gets the optimal solution.

We construct the set S in such a way that each request has a unique optimal
solution. The construction is as follows. Let S = {σ1, σ2, . . . , σn}, such that

σi = (m + δ,m + 2δ, . . . ,m + iδ
︸ ︷︷ ︸

i

,m, . . . ,m
︸ ︷︷ ︸

n−i

) ,

where δ = (M − m)/n. Each σi is thus a sequence of n prices that follow an
increasing order until day i. Then the price drops to the minimum m for the
remaining n − i days. The optimal solution for each σi clearly is to trade on
day i and obtain a profit of m + iδ. From the construction, it is impossible for
any deterministic online algorithm to distinguish the request sequence σi from
any other sequence of requests σj , for j > i, until the price for day i + 1 is
offered. This is due to the fact that the set of requests {σi, σi+1, . . . , σn} have
the same prices offered from day 1 up to day i. Since we have n such input
instances with different optimal solutions, and fewer than n algorithms, there is
one algorithm that gets chosen for at least one the above instances. Clearly, this
algorithm cannot be optimal for both these instances. Thus, any online algorithm
with advice needs log2 n bits of advice to identify the actual input from these n
possible cases. ��

Note that if it is required that the prices are integral, this construction still
works by picking m and M such that δ is an integer.

3.2 Advice for c-Competitiveness

Next, we investigate the advice complexity of Online Search if we have less
than log2 n advice bits. This means we study a tradeoff between the number b of
advice bits supplied and the competitive ratio c obtainable. Recall that, without
advice bits, the optimal trader strategy is to use Alg[p], where the reservation
price is p =

√
Mm.

Before we present the upper bounds for online algorithms with advice for
Online Search that achieve c-competitiveness, we give a simple intuition
behind our strategy. We can think of it as having 2b deterministic algorithms
with different reservation prices. The computation of each reservation price pi is
obtained by computing the solution of the following equation.

p1
m

=
p2
p1

= . . . =
p2i

p2i−1

= . . . =
M

p2b

Theorem 2. For every b > 0, there exists an online algorithm with advice for
Online Search which reads b bits of advice and achieves a competitive ratio of
at most (M/m)

1
2b+1 . This holds even if n is unknown.
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Proof. We describe an algorithm Alg with advice which reads b bits of advice
and achieves the claimed competitive ratio. First, the oracle simulates the algo-
rithms

Alg

[

m
2b+1−i

2b+1 M
i

2b+1

]

for i = 1, . . . , 2b. Let A denote the set of these algorithms. Then, it writes the
value of i for the algorithm that achieves the best competitive ratio. We argue
that at least one of the algorithms gets a competitive ratio of at most

(
M

m

) 1
2b+1

.

We have three cases for pmax. The first case is when pmax < m
2b

2b+1 M
1

2b+1 .
Here, each algorithm in A will get the price offered on the last day, which is at
least m. The competitive ratio for Alg is at most

m
2b

2b+1 M
1

2b+1

m
=

(
M

m

) 1
2b+1

.

The second case is when pmax ≥ m
1

2b+1 M
2b

2b+1 . In this case,

Alg

[

m
1

2b+1 M
2b

2b+1

]

gets a price of at least m
1

2b+1 M
2b

2b+1 . Since Opt gets at most M , the competitive
ratio for Alg is again at most

M

m
1

2b+1 M
2b

2b+1

=
(

M

m

) 1
2b+1

.

The last case is when m
2b+1−i

2b+1 M
i

2b+1 ≤ pmax < m
2b−i

2b+1 M
i+1
2b+1 for some i < 2b.

In this case,

Alg

[

m
2b+1−i

2b+1 M
i

2b+1

]

gets at least its reservation price. Thus, also here, the competitive ratio for Alg

is at most
m

2b−i

2b+1 M
i+1
2b+1

m
2b+1−i

2b+1 M
i

2b+1

=
(

M

m

) 1
2b+1

.

All in all, we have shown that, in each case, Alg obtains a competitive ratio
of at most (M/m)

1
2b+1 as we claimed. ��

We now present a matching lower bound.
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Theorem 3. Let Alg be an algorithm with advice for Online Search which
reads b < log2 n bits of advice. The competitive ratio of Alg is at least
(M/m)

1
2b+1 .

Proof. For any given b < log2 n, let Alg be an algorithm with advice that reads
at most b bits of advice. Again, we view this advice as 2b deterministic online
algorithms. We now give a class of request sequences that ensure that each of
them gets a competitive ratio of at least

(
M

m

) 1
2b+1

.

Consider the sequence (p1, p2, . . . , p2b) with

pi = m
2b+1−i

2b+1 M
i

2b+1 .

The adversary simulates all 2b algorithms on this sequence. We consider two
cases. If a request pi is rejected by all algorithms, it requests p1, p2, . . . , pi fol-
lowed by requests that are all equal to m. For the first case, assume that there
exists a request pi, which is rejected by all 2b algorithms. The remaining requests
are all m. This means that Alg gets a price of at most pi−1 (the largest request
that was not pi) while Opt gets a price of pi. Note that, if the first request is
rejected, Alg gets a price of at most m = p0. In this case, the competitive ratio
for Alg is at least

pi
pi−1

=
m

2b+1−i

2b+1 M
i

2b+1

m
2b+2−i

2b+1 M
i−1
2b+1

=
(

M

m

) 1
2b+1

.

Thus, Alg cannot obtain a competitive ratio which is better than (M/m)
1

2b+1

if a request is rejected by all the algorithms.
Next, we consider the second case. Here, every request in σ is accepted by

some algorithm. Since there are 2b requests in σ, it follows that all algorithms
accept a price that is at most p2b . Since 2b < n, the adversary can still make a
request. The final request is then M . The competitive ratio for Alg is therefore
bounded from below by

M

p2b
=

M

m
1

2b+1 M
2b

2b+1

=
(

M

m

) 1
2b+1

.

In both cases, Alg has a competitive ratio of at least (M/m)
1

2b+1 as claimed
by the theorem. ��

4 Advice and Randomization

Randomization is often used to improve the competitive ratio of online algo-
rithms (in expectation). Here, the online player is allowed to base some of its
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answers on a random source. An oblivious adversary knows the algorithm, but
not the outcome of the random decisions. To provide an improvement over the
lower bound of deterministic online algorithms for Online Search, El-Yaniv
et al. [10] provided an upper bound by presenting a randomized algorithm with
an expected competitive ratio of log2(M/m). Lorenz et al. [15] provided an
asymptotically matching lower bound of (log2(M/m))/2 for randomized online
algorithms for Online Search.

In this section, we compare the power of advice to the ability of an online
algorithm to access random bits for Online Search. The competitive ratio of
online algorithms with advice (with an increasing number of advice bits) is shown
in Fig. 1. We fixed a fluctuation ratio M/m, and we highlighted the competitive
ratio of the best deterministic algorithm, i. e., (M/m)

1
2 , and the corresponding

upper (i. e., log2(M/m)) and lower (i. e., log2(M/m)/2) bounds of randomized
algorithms for Online Search.

Fig. 1. Plot comparing the competitive ratio of the online algorithm with advice with
respect to the lower bound for deterministic and randomized algorithms.

It is interesting to point out that, with the number of advice bits greater
than

b∗ = log2

⎛

⎝ log2(M/m)

log2
(

log2(M/m)
2

) − 1

⎞

⎠ ,

our online algorithm for Online Search outperforms the lower bound of ran-
domized online algorithms. And as we increase the number of advice bits,
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the better the competitive ratio we get. In the plot shown in Fig. 1, we considered
a fluctuation ratio M/m = n. Note that the competitive ratio is asymptotic to
1, but it is actually possible to get an optimal solution with log2 n advice bits.

5 Conclusion and Future Work

We studied the advice complexity of Online Search and determined upper
and lower bounds on the advice complexity to achieve both optimality and c-
competitiveness. We presented a tight lower bound of log2 n for the number of
advice needed by any online algorithm to obtain optimal solutions, as shown
in Theorem 1. We also provided a strategy with b bits of advice and achieved
a tight bound of (M/m)

1
2b+1 for the competitive ratio as shown in Theorems 2

and 3.
We compared the power of advice and randomization in terms of competitive

ratio. The comparison of the competitive ratio is shown in Fig. 1.
For future work, it would be interesting to extend the results to the One-

Way Trading problem with advice. It is known that Online Search and
the One-Way Trading are closely related. In fact, they are equivalent in the
sense that, for every randomized algorithm for Online Search, there exists an
equivalent deterministic algorithm for One-Way Trading [10]. Although ran-
domization significantly improved the competitive ratio of algorithms for Online

Search, it can be shown that it cannot help to improve the competitive ratio
of algorithms for One-Way Trading. It would be interesting to investigate the
tradeoff between advice and competitive ratio in One-Way Trading.
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advice complexity of the online problem. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2013)

5. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: The online knapsack
problem: advice and randomization. Theor. Comput. Sci. 527, 61–72 (2014)

6. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press, New York (1998)



212 J. Clemente et al.

7. Boyar, J., Larsen, K.S., Maiti, A.: A comparison of performance measures via
online search. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) FAW-AAIM 2012.
LNCS, vol. 7285, pp. 303–314. Springer, Heidelberg (2012)

8. Boyar, J., Favrholdt, L.M., Kudahl, C., Mikkelsen, J.W.: Advice complexity for a
class of online problems. In: Proceedings of the 32nd Symposium on Theoretical
Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in
Informatics, vol. 30, pp. 116–129. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik (2015)
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Abstract. We present a new data structure called the packed compact
trie (packed c-trie) which stores a set S of k strings of total length n
in n log σ + O(k log n) bits of space and supports fast pattern match-
ing queries and updates, where σ is the alphabet size. Assume that
α = logσ n letters are packed in a single machine word on the standard
word RAM model, and let f(k, n) denote the query and update times
of the dynamic predecessor/successor data structure of our choice which
stores k integers from universe [1, n] in O(k log n) bits of space. Then,
given a string of length m, our packed c-tries support pattern matching
queries and insert/delete operations in O(m

α
f(k, n)) worst-case time and

in O(m
α

+f(k, n)) expected time. Our experiments show that our packed
c-tries are faster than the standard compact tries (a.k.a. Patricia trees)
on real data sets. We also discuss applications of our packed c-tries.

1 Introduction

The trie for a set S of strings of total length n is a classical data structure
which occupies O(n log n+n log σ) bits of space and allows for prefix search and
insertion/deletion for a given string of length m in O(m log σ) time, where σ is the
alphabet size. The compact trie for S is a path-compressed trie where the edges
in every non-branching path are merged into a single edge [16]. By representing
each edge label by a pair of positions in a string in S, the compact trie can be
stored in n log σ+O(k log n) bits of space, where k is the number of strings in S,
retaining the same time efficiency for prefix search and insertion/deletion for a
given string. Thus, compact tries have widely been used in numerous applications
such as dynamic dictionary matching [12], suffix trees [19], sparse suffix trees [15],
external string indexes [8], and grammar-based text compression [11].

In this paper, we show how to accelerate prefix search queries and update
operations of compact tries on the standard word RAM model with machine word
size w = log n, still keeping n log σ + O(k log n)-bit space usage. A basic idea is
c© Springer International Publishing Switzerland 2016
V. Mäkinen et al. (Eds.): IWOCA 2016, LNCS 9843, pp. 213–225, 2016.
DOI: 10.1007/978-3-319-44543-4 17
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to use the packed string matching approach [5], where α = logσ n consecutive
letters are packed in a single word and can be manipulated in O(1) time. In this
setting, we can read a given pattern P of length m in O(m

α ) time, but, during the
traversal of P over a compact trie, there can be at most m branching nodes. Thus,
a näıve implementation of a compact trie takes O( m

logσ n +m log σ) = O(m log σ)
time even in the packed matching setting.

To overcome the above difficulty, we propose how to quickly process long
non-branching paths using bit manipulations, and how to quickly process dense
branching subtrees using fast predecessor/successor queries and dictionary look-
ups. As a result, we obtain a new compact trie called the packed compact trie
(packed c-trie) for a dynamic set S of strings with the following efficiency:

Theorem 1 (main result). Let f(k, n) be the query/update times of an arbi-
trary dynamic predecessor/successor data structure using O(k log n) bits of space
for a dynamic set of k integers from the universe [1, n]. Our packed c-trie stores
a set S of k strings of total length n in n log σ + O(k log n) bits of space and
supports prefix search and insertion/deletion for a given string of length m in
O(m

α f(k, n)) worst-case time or in O(m
α + f(k, n)) expected time.

Using Beame and Fich’s data structure [3] or Willard’s y-fast trie [20] as the
dynamic predecessor/successor data structure, we obtain the following corollary:

Corollary 1. There exists a packed c-trie for a dynamic set S of strings which
uses n log σ+O(k log n) bits of space, and supports prefix search and insert/delete
operations for a given string of length m in O(m

α · log log k log log n
log log log n ) worst-case time

or in O(m
α + log log n) expected time.

Unlike most other (compact) tries, our packed c-trie does not maintain a dic-
tionary or a search structure for the children of each node. Instead, we partition
our c-trie into �h/α� levels, where h is the length of the longest string in S. Then
each subtree of height α, called a micro c-trie, maintains a predecessor/successor
dictionary that processes prefix search inside the micro c-trie. A reduction from
prefix search to predecessor/successor queries was already considered in an ear-
lier work by Cole et al. [6], however, their data structure is static. On the other
hand, our micro c-tries are dynamic. A similar technique to our packed c-trie
was used in the linked dynamic uncompacted trie by Jansson et al. [14].

Our experiments show that our packed c-tries are faster than Patricia trees
for both construction and prefix search in almost all data sets we tested.

We show that our packed c-tries can be applied to efficient online construc-
tion of evenly sparse suffix trees [15], word suffix trees [13] and its extension [17].
Also, packed c-tries can be used for online computation of the LZ-Double factor-
ization [11] (LZDF ), a state-of-the-art online grammar-based text compressor.

Related Work. Belazzougui et al. [4] proposed a randomized compact trie
called the signed dynamic z-fast trie, which stores a dynamic set S of k strings
in n log σ + O(k log n) bits of space. Given a string of length m, the signed
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dynamic z-fast trie supports prefix search in O(m
α + log m) worst-case time only

with high probability, and supports insert/delete operations in O(m
α + log m)

expected time only with high probability.1 On the other hand, our packed c-trie
always return the correct answer for prefix search, and always insert/delete a
given string correctly, in the bounds stated in Theorem 1 and Corollary 1.

Andersson and Thorup [2] proposed the exponential search tree which uses
n log σ + O(k log n) bits of space, and supports prefix search and insert/delete

operations in O(m +
√

log k
log log k ) worst-case time. Each node v of the exponential

search tree stores a constant-time look-up dictionary for some children of v and
a dynamic predecessor/successor data structure for the other children of v. This
implies that given a string of length m, at most m nodes in the search path for
the string must be processed one by one, and hence packing α = logσ n letters
in a single word does not seem to speed-up the exponential search tree.

Fischer and Gawrychowski’s wexponential search tree [9] proposed uses
n log σ + O(k log n) bits of space, and supports prefix search and insert/delete
operations in O(m + (log log σ)2

log log log σ ) worst-case time. When σ = polylog(n),

our packed c-trie achieves O(m log σ log log k log log n
log n log log log n ) = O(m (log log n)2

log n log log log n ) =
O(o(1)m) worst-case time, while the wexponential search tree requires O(m +
(log log log n)2

log log log log n ) time2.

2 Preliminaries

Let Σ be the alphabet of size σ. An element of Σ∗ is called a string. For any string
X of length n, |X| denotes its length, namely |X| = n. We denote the empty
string by ε. For any 1 ≤ i ≤ n, X[i] denotes the ith character of X. For any
1 ≤ i ≤ j ≤ |X|, X[i..j] denotes the substring X[i] · · · X[j]. For convenience,
X[i..j] = ε for i > j. For any strings X,Y , LCP(X,Y ) denotes the longest
common prefix of X and Y .

Throughout this paper, the base of the logarithms will be 2, unless otherwise
stated. For any integers i ≤ j, [i, j] denotes the interval {i, i + 1, . . . , j}. Our
model of computation is the standard word RAM of word size w = log n bits.
For simplicity, we assume that w is a multiple of log σ, so α = logσ n letters are
packed in a single word. Since we can read w bits in constant time, we can read
and process α consecutive letters in constant time.

Let S = {X1, . . . , Xk} be a set of k non-empty strings of total length n. We
consider dynamic data structures for S allowing for fast prefix searches of given
patterns over strings in S, and fast insertion/deletion of strings to/from S.

Suppose S is prefix-free. The trie of S is a tree s.t. each edge is labeled by a
single letter, the labels of the out edges of each node are distinct, and for each
Xi ∈ S there is a unique leaf �i s.t. the path from the root to �i spells out Xi.
1 The O(log m) expected bound for insertion/deletion stated in [4] assumes that the

prefix search for the string has already been performed.
2 For sufficiently long patterns of length m = Θ(n), our packed c-trie achieves worst-

case sublinear o(n) time while the wexponential search tree requires O(n) time.
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The compact trie TS of S is a path-compressed trie obtained by contracting
non-branching paths into single edges. Namely, in TS , each edge is labeled by
a non-empty substring of T , each internal node has at least two children, the
out-going edges from each node begin with distinct letters, and each edge label
x is encoded by a triple 〈i, a, b〉 such that x = Xi[a..b] for some 1 ≤ i ≤ k and
1 ≤ a ≤ b ≤ |Xi|. The length of an edge e, denoted |e|, is the length of its
label string. Let root(TS) denote the root of the compact trie TS . For any node
v, let parent(v) denotes its parent. For convenience, let ⊥ be an auxiliary node
s.t. parent(root(TS)) = ⊥. We assume the edge from ⊥ to root(TS) is labeled
by an arbitrary letter. For any node v, let str(v) denotes the string obtained by
concatenating the edge labels from the root to v. Each node v stores |str(v)|.

Let s be a prefix of any string in S. Let v be the shallowest node of TS such
that s is a suffix of str(v) (notice s can be equal to str(v)), and let u = parent(v).
The locus of string s in TS is a pair φ = (e, h), where e is the edge from u to v
and h is the offset from u, namely, h = |s|−|str(u)|.3 We extend the str function
to locus φ, so that str(φ) = s. The string depth of locus φ is d(φ) = |str(φ)|.
A string P is recognized by TS iff there is a locus φ with str(φ) = P .

We consider the following query and operations on dynamic compact tries.

LPS(φ, P ): Given a locus in TS and a pattern string P , it returns the locus φ̂
of string str(φ)Q in TS , where Q is the longest prefix of P for which str(φ)Q is
recognized by TS . When φ = ((⊥, root(TS)), 1), then the query is known as the
longest prefix search for the pattern P in the compact trie.

Insert(φ,X): Given a locus φ in TS and a string X, it inserts a new leaf which
corresponds to a new string str(φ)X ∈ S into the compact trie, from the given
locus φ. When there is no node at the locus φ̂ = LPS(φ,X), then a new node is
created at φ̂ as the parent of the leaf. When φ = ((⊥, root(TS)), 1), then this is
standard insertion of string X to TS .

Delete(Xi): Given a string Xi ∈ S, it deletes the leaf �i. If the out-degree of
the parent v of �i becomes 1 after the deletion of �i, then the in-coming and
out-going edges of v are merged into a single edge, and v is also deleted.

For a dynamic set I ⊆ [1, n] of k integers of w = log n bits each, dynamic
predecessor data structures (e.g., [3,4,21]) efficiently support predecessor query
Pred(X) = max({Y ∈ I | Y ≤ X} ∪ {0}), successor query Succ(X) = min({Y ∈
I | Y ≤ X} ∪ {n + 1}), and insert/delete operations for I. Let f(k, n) be the
time complexity of for predecessor/successor queries and insert/delete operations
of an arbitrary dynamic predecessor/successor data structure which occupies
O(k log n) bits of space. Beame and Fich’s data structure [3] achieves f(k, n) =
O( (log log k)(log log n)

log log log n ) worst-case time, while Willard’s Y-fast trie [20] achieves
f(k, n) = O(log log n) expected time.

3 In the literature the locus is represented by (u, c, h) where c is the first letter of the
label of e. Since our packed c-trie does not maintain a search structure for branches,
we represent the locus directly on e.
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3 Packed Dynamic Compact Tries

This section presents our new dynamic compact tries called the packed dynamic
compact tries (packed c-tries) for a dynamic set S = {X1, . . . , Xk} of k strings
of total length n, which achieves the main result in Theorem 1. In the sequel, a
string X ∈ Σ∗ is called short if |X| ≤ α = logσ n, and is called long if |X| > α.

Micro Dynamic Compact Tries for Short Strings. In this subsection, we
present our data structure storing short strings. Our input is a dynamic set
S = {X1, . . . , Xk} of k strings of total length n, such that |Xi| ≤ α = logσ n
for every 1 ≤ i ≤ k. Hence it holds that k ≤ σα = n. For simplicity, we assume
for now that |Xi| = α for every 1 ≤ i ≤ k. The general case where S contains
strings shorter than α will be explained later in Remark 1.

The dynamic data structure for short strings, called a micro c-trie and
denoted MT S , consists of the following: (i) A dynamic compact trie of height
exactly α storing the set S. Let N be the set of internal nodes, and let
L = {�1, . . . , �k} be the set of k leaves such that �i corresponds to Xi for
1 ≤ i ≤ k. Since every internal node is branching, |N | ≤ k − 1. Every node
v of MT S corresponds to the string str(v) of log n bits. Overall, this compact
trie requires n log σ + O(k log n) bits of space (including S). (ii) A dynamic pre-
decessor/successor data structure D which stores the set S = {X1, . . . , Xk} of
strings in O(k log n) bits of space, where each Xi is regarded as a log n-bit inte-
ger. D supports predecessor/successor queries and insert/delete operations in
f(k, n) time each. Clearly MT S requires n log σ + O(k log n) bits of total space.

The next lemma shows how to support in O(1) time LCP queries for strings
represented by two given nodes on the dynamic micro c-trie MT S . This is related
to the labeling scheme (e.g., see [1]) which assigns a short label to each node so
that later, given the labels of two nodes, the label of the LCA of the nodes can
be answered in O(1) time. Although the static tree is considered in the labeling
scheme, our micro c-trie is dynamic. Also, our algorithm is much simpler than
applying the dynamic LCA data structure [7] to our micro c-tries.

Lemma 1. For any nodes u and v of the dynamic micro c-trie MT S, we can
compute LCP(str(u), str(v)) in O(1) time.

Proof. We pad str(u) and/or str(v) with an arbitrary letter c so they become α
long each, namely, let P = str(u)cα−|str(u)| and Q = str(v)cα−|str(v)|. We com-
pute the most significant bit (msb) of the XOR of the bit representations of P
and Q. Let b the bit position of the msb, and let z = (b−1)/ log σ. W.l.o.g. assume
|str(u)| ≤ |str(v)|. (1) If z < str(u), then str(u)[1, z] = LCP(str(u), str(v)).
In this case, there exists a branching node y such that str(y) = str(u)[1, z],
and hence LCP(str(u), str(v)) = str(y). (2) If z ≥ str(u), then str(u) =
LCP(str(u), str(v)), and hence str(u) = LCP(str(u), str(v)).

Since each of P and Q is stored in a single machine word, we can compute
the XOR of P and Q in O(1) time. The msb can be computed in O(1) time
using the technique of Fredman and Willard [10]. This completes the proof. �
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On micro c-tries, prefix searches and insertion operations can be started not
only from the root but from any node. This is necessary for online sparse suffix
tree construction based on Ukkonen’s algorithm [18], since during the suffix link
traversal we have to insert new leaves from non-root internal nodes.

Theorem 2. The micro c-trie MT S supports LPS(φ,X) queries in O(f(k, n))
time.

Proof. Let P be the prefix of str(φ)X of length α, i.e., P = str(φ)X[1..α −
d(phi)]. The case where P is represented by a leaf is easy, and thus, in what
follows we focus on the case where P is not represented by a leaf.

First, we compute the string depth d = d(φ) ∈ [0, α]. Observe that d =
max{|LCP(P,Pred(P ))|, |LCP(P,Succ(P ))|}. Given P , we compute Pred(P ) and
Succ(P ) in O(f(k, n)) time. Then, we can compute |LCP(P,Pred(P ))| in O(1)
time by computing the msb of the XOR of the bit representations of P and
Pred(P ), as in Lemma 1. |LCP(P,Succ(P ))| can be computed analogously, and
thus, d = d(φ) can be computed in O(f(k, n)) time.

Second, we locate e = (u, v). See also Fig. 1. Let Z = P [1, d]. Let LB =
Zc

α−|Z|
1 and UB = Zc

α−|Z|
σ be the lexicographically least and greatest strings

of length α with prefix Z, respectively. To locate u in MT S , we find the
leftmost and rightmost leaves XL and XR below φ by XL = Succ(LB) and
XR = Pred(UB). Then, the longer one of LCP(XL−1,XL) and LCP(XR,XR+1)
corresponds to the origin node u of e, and LCP(XL,XR) corresponds to the des-
tination node v of e. These LCPs can be computed in O(1) time by Lemma 1.
What remains is how to access the nodes u and v representing these strings. In
so doing, let $ be a special character that does not appear in any strings in S.
For each string Y represented by an internal node of MT S , we pad $ at the end
of Y so its length becomes exactly α, namely, we obtain Y $α−|Y |. We insert this
padded string into a dynamic dictionary dedicated only for internal nodes (here
we use a predecessor/successor data structure). Now, given a string represented
by an internal node, we can access the corresponding node in O(f(k, n)) time.
Finally we obtain φ = ((u, v), d − |str(u)|) in overall O(f(k, n)) time. �

It follows from the proof of Theorem 2 that a dynamic predecessor/successor
data structure is enough to support pattern matching queries on our dynamic
micro c-tire. This implies that we do not have to store (the triples for) the edge
labels in the micro c-trie. This observation is important when we consider delete
operations on the set S, as we will see in the next lemma.

Lemma 2. The micro c-trie MT S supports Insert(φ,X) and Delete(X) opera-
tions in O(f(k, n)) time. We assume that d(φ) + |X| ≤ α so that the height of
the micro compact trie will always be kept within α.

Proof. We show how to support Insert(φ,X) in O(f(k, n)) time. Initially S = ∅,
the micro compact trie MT S consists only of root(MT S), and predeces-
sor/successor dictionary D contains no elements. When the first string X
is inserted to S, then we create a leaf below the root and insert X to D.
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φ = root

LCA(lL-1, lL)

LCA(lR, lR+1)

φ̂

lL-1 lL lR lR+1XL XR

micro c-trie

X[1..d]

Fig. 1. Given the initial locus φ (which
is on the root in this figure) and
query pattern P = 01011010110, the
algorithm of Theorem 2 answers the
LPS(φ, P ) query on the micro c-trie as
in this figure. The answer to the query
is the locus φ̂ for P [1..5] = 01011.

α

α

α

α

0α

1α

2α

3α

4α

Fig. 2. Micro-trie decomposition: The
packed c-trie is decomposed into a
number of micro c-tries (gray rectan-
gles) each of which is of height α =
logσ n. Each micro-trie is equipped
with a dynamic predecessor/successor
data structure.

Suppose that the data structure maintains a string set S with |S| ≥ 1. To
insert a string X from the given locus φ, we first conduct the LPS(φ,X) query
of Theorem 2, and let φ̂ = (e, h) be the answer to the query. If h = |e|, then we
simply insert a new leaf � from the destination node of e. Otherwise, we split
e at φ̂ and create a new node v there as the parent of the new leaf, such that
str(v) = str(φ̂). The rest is the same as in the former case. After the new leaf is
inserted, we insert str(φ)X to D in O(f(k, n)) time.

We consider Delete(X). Recall that each edge of the micro c-trie does not
store the triple representing its string label. Thanks to this property, we need
not consider updates of the labels of the edges in the path from the root to the
deleted leaf (which usually becomes problematic in compact tries). Thus, we can
support Delete(X) in a similar way to Insert(φ,X), in O(f(k, n)) time. �
Remark 1. When d(φ) + |X| < α, then we can support Insert(φ,X) and
LPS(φ,X) as follows. When inserting X, we pad X with a special letter $
which does not appear in S. Namely, we perform Insert(φ,X) operation with
X ′ = X$α−d(φ)−|X|. When computing LPS(φ,X), we pad X with another spe-
cial letter # �= $ which does not appear in S. Namely, we perform LPS(φ,X ′′)
query with X ′ = X#α−d(φ)−|X|. This gives us the correct locus for LPS(φ,X).

Packed Dynamic Compact Tries for Long Strings. In this subsection,
we present the packed dynamic compact trie (packed c-trie) PT S for a set S of
variable-length strings of length at most O(2w) = O(n).

Micro Trie Decomposition. We decompose PT S into a number of micro
c-tries. See also Fig. 2. Let h > α be the length of the longest string in S.
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We categorize the nodes of PT S into �h/α� + 1 levels: We say that a node of
PT S is at level i (0 ≤ i ≤ �h/α�) iff |str(v)| ∈ [iα, (i + 1)α − 1]. The level of
a node v is denoted by level(v). A locus φ of PT S is called a boundary iff d(φ)
is a multiple of α. Consider any path from root(PT S) to a leaf, and assume
that there is no node at some boundary kα on this path. We create an auxiliary
node at that boundary on this path, iff there is at least one non-auxiliary (i.e.,
original) node at level i−1 or i+1 on this path. Let BN denote the set of nodes
at the boundaries, called the boundary nodes. For each boundary node v ∈ BN ,
we create a micro compact trie MT whose root root(MT ) is v, internal nodes
are all descendants u of v with level(u) = level(v), and leaves are all boundary
descendants � of v with level(�) = level(v) + 1. Notice that each boundary node
is the root of a micro c-trie at its level and is also a leaf of a micro c-trie at the
previous level. An edge is said to be a long edge iff its label is at least α long.
We store the label of each long edge by a triple of integers. Recall that, on the
other hand, we do not store (encodings) of the edge labels in the micro c-tries.

Lemma 3. The packed c-trie PT S for a prefix-free set S of k strings requires
n log σ + O(k log n) bits of space.

Proof. Firstly, we show the number of auxiliary boundary nodes in PT S . At
most 2 auxiliary boundary nodes are created on each original edge of PT S .
Since there are at most 2k − 2 original edges, the total number of auxiliary
boundary nodes is at most 4k − 4.

Since there are at most 2k − 1 original nodes in PT S , the total number of
nodes in PT S is at most 6k − 5. Clearly, the total number of short strings of
length at most α maintained by the micro c-tries is no more than the number
of all nodes in PT S . The number of long edges in PT S is no more than the
number of its nodes. Overall, the total space of PT S is n log σ + O(k log n)
bits. �

For any locus φ on PT S , ld(φ) denotes the local string depth of φ in the
micro c-trie MT that contains φ. Namely, if root(MT ) = v, the parent of u in
PT S is u, and e = (u, v), then ld(φ) = d(φ) − d((e, |e|)). Prefix search queries
and insert/delete operations can be supported by our packed c-trie, as follows.

Lemma 4. The packed c-trie PT S supports LPS(φ, P ) query in O(m
α f(k, n))

worst-case time, where m = |P | > α.

Proof. If m+ld(φ) ≤ α, the bound immediately follows from Theorem 2. Assume
m + ld(φ) > α, and let q = α − ld(φ) + 1. We factorize P into h + 1 blocks as
p0 = P [1, q −1], p1 = P [q, q +α−1], . . . , ph−1 = P [q +(h−1)α, q +hα−1], and
ph = P [q+hα,m], where 1 ≤ |p0| ≤ α, |pi| = α for 1 ≤ i ≤ h−1, and 1 ≤ |ph| ≤
α. Each block can be computed in O(1) time by standard bit operations. If there
is a mismatch in p0, we are done. Otherwise, for each i in increasing order from
1 to h, we perform LPS(γ, pi) query from the root γ of the corresponding micro
c-trie at each level of the corresponding path starting from φ. This continues
until we find either the first mismatch for some i or complete matches for all
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i’s. Each LPS query with each micro c-trie takes O(f(k, n)) time by Theorem 2.
Since h = O(m

α ), it takes O(m
α f(k, n)) total time. �

Lemma 5. The packed c-trie PT S supports Insert(φ,X) and Delete(Xi) opera-
tions in O(m

α f(k, n)) worst-case time, where m = |X| > α.

Proof. Insert(φ,X): we first perform LPS(φ,X) in O(m
α f(k, n)) time (Lemma 4).

Let x0, . . . , xh be the factorization of X w.r.t. φ, and let xj be the block of the
factorization containing the first mismatch. Then, we conduct Insert(γ, xj) oper-
ation on the corresponding micro c-trie, where γ is its root. It takes O(f(k, n))
time (Lemma 2). If j = h (xj is the last block in the factorization of X), then
we are done. Otherwise, we create a new edge with label x′

jxj+1 · · · xk, where x′
j

is the suffix of Xj which begins at the mismatched position, leading to the new
leaf �. We create a new boundary node if necessary. These operations take O(1)
time each. Hence, Insert(φ,X) takes O(m

α f(k, n)) total time.

Delete(Xi): Let Q be the path from the root r of PT S to leaf �i. If �i is a child
of the root of PT S , then we simply delete the single edge in Q. Otherwise, for
each sub-path of Q that belongs to a micro c-trie, we perform Delete operation of
Lemma 2 in this micro c-trie. Since the path Q spans at most m

α micro c-tries, the
delete operations on these micro c-tries take O(m

α f(k, n)) total time. For each
long edge in Q whose label refers to Xi, let 〈i, a, b〉 be the triple representing
the label. We replace the triple with 〈i′, a′, b′〉, where Xi′ is the predecessor of
Xi in S and Xi′ [a′..b′] = X[a..b] (if Xi does not have a predecessor, then we can
use the successor of S instead). We can find Xi′ as follows. First, we compute
φ = LPS(r,Xi) = LCA(�i′ , �i). Then, we can find �i′ by traversing the right-most
path from φ that is to the left of the sub-path of Q from φ to �i. This can be
done in O(m

α f(k, n)) time. The positions a′ and b′ in Xi′ can be computed by
simple arithmetics, since we know the total length of the labels in the path from
φ to �i′ . Since the path Q contains less than m

α long edges, the triples for all long
edges in Q can be updated in O(m

α ) time. �

Speeding-up with Hashing. By augmenting each micro c-trie with a hash
table storing the short strings, we achieve a good expected performance, as
follows:

Lemma 6. The packed c-trie PT S augmented with hashing supports LPS(φ,X)
query, Insert(φ,X) and Delete(X) operations in O(m

α + f(k, n)) expected time.

4 Applications to Online String Processing

Sparse Suffix Trees. The suffix tree [19] of a string T of length n is a compact
trie which stores all n suffixes of T . A sparse suffix tree for a set K ⊆ [1, n]
of sampled positions of T is a compact trie which stores only the subset S =
{T [i..n] | i ∈ K} of the suffixes of T beginning at the sampled positions in K.
It is known that if the set K of sampled positions satisfy some properties (e.g.,
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every r positions for some fixed r > 1 or the positions immediately after the
word delimiters), the sparse suffix tree can be constructed in an online manner
in O(n log σ) time and n log σ + O(n log n) bits of space [13,15,17].

Packed c-tries can speed up online construction and pattern matching for
these sparse suffix trees: Here each input string X to Insert is given as a pair
(i, j) of positions in T s.t. X = T [i..j]. As Lemma 7 states, Insert operation in
such a case can be processed more quickly than in Lemma 4.

Lemma 7. Given a pair (i, j) of positions in T s.t. X = T [i..j], we can support
Insert(φ,X) in O( q

αf(k, n)) worst-case time or O( q
α + f(k, n)) expected time,

where q is the length of the longest prefix of X that can be spelled out from φ.

Theorem 3. Using packed c-tries, we can construct in an online manner the
sparse suffix trees of [13,15,17] for a given text T of length n in O((n

α +k)f(k, n))
worst-case time or in O(n

α +kf(k, n)) expected time with n log σ+O(k log n) bits
of space, where k is the number of sampled positions. At any moment during the
construction, pattern matching queries take O(m

α f(k, n)) worst-case time or in
O(m

α + f(k, n)) expected time, where m is the the pattern length.

LZ-Double Factorization. LZ-Double factorization (LZDF ) [11] is a gener-
alization of Lempel-Ziv 78 factorization [22]. The ith factor gi = gi1gi2 of the
LZDF of a string T of length n is the concatenation of previous factors gi1 and gi2

s.t. gi1 is the longest prefix of T [1+
∑i−1

j=1 |gj |, n] that is a previous factor (one of
{g1, . . . , gi−1}∪Σ), and gi2 is the longest prefix of T [1+|gi1 |+

∑i−1
j=1 |gj |, n] that is

a previous factor. Goto et al. [11] proposed a Patricia-tree based algorithm which
computes the LZDF of a given string T of length n in O(k(M+min{k,M} log σ))
worst-case time4 with O(k log n) = O(n log σ) bits of space5, where k is the num-
ber of factors and M is the length of the longest factor. With packed c-tries, we
can achieve a good expected performance:

Theorem 4. Using our packed c-trie, we can compute the LZDF of string T in
O(k(M

α + f(k, n))) expected time with O(n log σ) bits of space.

5 Preliminary Experiments

This section shows some preliminary experimental results which compare our
implementations of packed c-tries against that of the classical c-trie (Patricia
tree). Table 1 shows the datasets and their statistics used in our experiments,
where the first six datasets are from Pizza&Chili Corpus6, the seventh con-
sists of URLs in uk domain7, and the eighth consists of all titles from Japanese
Wikipedia8. The datasets were treated as binary strings.
4 Since kM ≥ n always hods, the n term is hidden in the time complexity.
5 Since all the factors of the LZDF are distinct, k = O( n

logσ n
) holds [22].

6 Pizza&Chili Corpus, http://pizzachili.dcc.uchile.cl.
7 Laboratory for webalgorithmics, uk-2005.urls.gz, http://law.di.unimi.it/datasets.

php.
8 jawiki, https://dumps.wikimedia.org/jawiki/.

http://pizzachili.dcc.uchile.cl
http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
https://dumps.wikimedia.org/jawiki/
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Table 1. Description of the datasets we used in our experiments.

Dataset Original
alhpabet
size

Actual
alphabet
size

Total size
(bytes)

Number of
strings

Ave. string
length
(bits)

DNA 4 2 52,428,800 337 1,244,600.59

DBLP 128 2 52,428,800 3,229,589 129.87

english 128 2 52,428,800 9,400,185 44.62

pitches 128 2 52,428,800 93,354 4,492.90

proteins 20 2 52,428,800 186,914 2,243.98

sources 128 2 52,428,800 5,998,228 69.93

urls 128 2 52,010,031 707,658 587.97

jawiki ≥ 216 2 30,414,297 1,643,827 148.02

We tested three implementations of c-tries by the authors: an implemen-
tation CT of classical c-tries, and two simplified implementations PCTxor and
PCThash of our packed c-tries in Sect. 3 as a proof-of-concept versions. CT uses
unordered map in the C++/STL library to maintain the branching out-going
edges of its nodes. For our implementations of packed c-tries, we set α = 32. The
first implementation PCTxor only uses the XOR-based technique of Theorem 4
to quickly process long edges, while branching out-going edges are processed as
in CT. The second implementation PCThash is a simplified version of our packed
c-tries of Lemma 6 using XOR and hashing. Each micro c-trie in PCThash is
equipped with a hash table for α-bit integers. We again used unordered map in
the C++/STL library for hash tables on micro c-tries. For simplicity, each micro
c-trie is not equipped with a predecessor/successor data structure.

We compiled all programs with gcc 4.9.3 using -O3 option, and ran all exper-
iments on a PC (2.8 GHz Intel Core i7 processor, register size 64 bits, 16 GB of
memory) running on MacOS X 10.10.5, where consecutive α = 32 bits of strings
were packed into a machine word.

Table 2. Summary of our experimental results.

Tree size (# of nodes) Const. time (msec) Query time (msec)

Dataset CT PCTxor PCThash CT PCTxor PCThash CT PCTxor PCThash

DNA 674 674 985 14,494 15,270 18,596 6,690 7,381 5,342

DBLP 1,059,656 1,059,656 1,204,651 16,662 16,987 14,139 8,083 8,905 7,209

english 448,379 448,379 532,750 17,496 16,944 18,197 9,127 9,916 10,452

pitches 86,205 86,205 121,943 18,816 16,571 16,520 7,022 9,009 6,053

proteins 310,392 310,392 437,768 17,957 15,733 18,673 8,511 8,851 6,749

sources 1,314,571 1,314,571 1,616,872 17,398 15,929 16,892 8,111 8,444 7,852

urls 1,341,200 1,341,200 1,357,730 14,038 13,422 13,585 6,939 6,903 5,918

jawiki 2,365,821 2,365,821 3,043,817 9,440 9,116 10,107 4,477 4,661 3,962
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In Table 2, we show our experimental results. First, we consider the first
groups of columns for the tree sizes. We observe that the number of nodes of
PCThash increases from both of CT and PCTxor. The gain varies from 101.3% on
urls to 146.1% on DNA. This comes from the addition of boundary nodes. Next,
we consider the second groups of columns for the construction times. We observe
that PCTxor is slightly faster than the classical CT in most case. The construction
time of PCThash is slightly faster against CT for DBLP, pitches, sources and urls,
and slower for DNA, english, proteins and jawiki. Yet, the construction time of
PCThash per node is faster than CT for all datasets. We, however, do not observe
clear advantage of PCThash over PCTxor. We guess that the inconsistency is due to
the balance of utility and the overhead for creating the boundary nodes. Finally,
we consider the third groups of columns for query times. In these experiments,
we used all strings from the dataset as query patterns, and searched them on each
c-trie. The table shows the total times for all the pattern searches. Among all
the datasets except english, PCThash is clearly faster than CT, where the former
achieved 5% to 20% speed-up over the latter. This indicates that PCThash is
superior to the classic c-tries in prefix searches.
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Abstract. An upper dominating set in a graph is a minimal (with
respect to set inclusion) dominating set of maximum cardinality. The
problem of finding an upper dominating set is generally NP-hard, but
can be solved in polynomial time in some restricted graph classes, such
as P4-free graphs or 2K2-free graphs. For classes defined by finitely many
forbidden induced subgraphs, the boundary separating difficult instances
of the problem from polynomially solvable ones consists of the so called
boundary classes. However, none of such classes has been identified so far
for the upper dominating set problem. In the present paper, we discover
the first boundary class for this problem.

1 Introduction

In a graph G = (V,E), a dominating set is a subset of vertices D ⊆ V such that
any vertex outside of D has a neighbour in D. A dominating set D is minimal
if no proper subset of D is dominating. An upper dominating set is a minimal
dominating set of maximum cardinality. The upper dominating set problem
(i.e. the problem of finding an upper dominating set in a graph) is known to
be NP-hard [5]. Moreover, it remains difficult under substantial restrictions, for
instance, for triangle-free graphs and the complements of bipartite graphs [1].
On the other hand, in some particular graph classes, the problem can be solved
in polynomial time, which is the case for bipartite graphs [6], chordal graphs
[10], generalized series-parallel graphs [9], graphs of bounded clique-width [7]
and 2K2-free graphs [1]. What other restrictions are necessary and sufficient for
polynomial-time solvability of the problem? For classes defined by finitely many
forbidden induced subgraphs, this question can be answered through the notion
of boundary classes. This notion was introduced in [2] to study the maximum
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independent set problem and was later applied to many other algorithmic
graph problems (see e.g. [3,4,13]). However, for the upper dominating set

problem no boundary classes have been identified so far. In the present paper,
we reveal the first boundary class for this problem.

The organization of the paper is as follows. In Sect. 2, we introduce basic
definitions, including the notion of a boundary class, and prove some preliminary
results. Section 3 contains the main result of the paper. Finally, in Sect. 4 we
discuss an open problem.

2 Preliminaries

We denote by G the set of all simple graphs, i.e. undirected graphs without loops
and multiple edges. The girth of a graph G ∈ G is the length of a shortest cycle
in G. As usual, we denote by Kn, Pn and Cn the complete graph, the chordless
path and the chordless cycle with n vertices, respectively. Also, G denotes the
complement of G. A star is a connected graph in which all edges are incident to
a same vertex, called the center of the star.

Let G = (V,E) be a graph with vertex set V and edge set E, and let u and v
be two vertices of G. If u is adjacent to v, we write uv ∈ E and say that u and v
are neighbours. The neighbourhood of a vertex v ∈ V is the set of its neighbours;
it is denoted by N(v). The degree of v is the size of its neighbourhood.

A subgraph of G is spanning if it contains all vertices of G, and it is induced
if two vertices of the subgraph are adjacent if and only if they are adjacent in G.
If a graph H is isomorphic to an induced subgraph of a graph G, we say that G
contains H. Otherwise we say that G is H-free. Given a set of graphs M , we denote
by Free(M) the set of all graphs containing no induced subgraphs from M .

A class of graphs (or graph property) is a set of graphs closed under isomor-
phism. A class is hereditary if it is closed under taking induced subgraphs. It
is well-known (and not difficult to see) that a class X is hereditary if and only
if X = Free(M) for some set M . If M is a finite set, we say that X is finitely
defined.

A class of graphs is monotone if it is closed under taking subgraphs (not
necessarily induced). Clearly, every monotone class is hereditary.

In a graph, a clique is a subset of pairwise adjacent vertices, and an indepen-
dent set is a subset of vertices no two of which are adjacent. A graph is bipartite if
its vertices can be partitioned into two independent sets. It is well-known that a
graph is bipartite if and only if it is free of odd cycles, i.e. if and only if it belongs
to Free(C3, C5, C7, . . .). We say that a graph G is co-bipartite if G is bipartite.
Clearly, a graph is co-bipartite if and only if it belongs to Free(C3, C5, C7, . . .).

We complete this part of the section with the following technical lemma,
proved in [1], where a private neighbour of a vertex x ∈ D is a vertex y �∈ D
such that x is the only neighbour of y in D.

Lemma 1. Let G be a connected graph and D a minimal dominating set in G.
If there are vertices in D that have no private neighbour outside of D, then D
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can be transformed in polynomial time into a minimal dominating set D′ with
|D′| ≤ |D| in which every vertex has a private neighbour outside of D′.

2.1 Boundary Classes of Graphs

Aswementioned earlier, the notion of boundary classes of graphswas introduced in
[2] to study the maximum independent set problem in hereditary classes. Later
this notion was applied to some other problems of both algorithmic [3,4,13,17]
and combinatorial [14,15,19] nature. Assuming P �= NP , the notion of boundary
classes can be defined, with respect to algorithmic graph problems, as follows.

Let Π be an algorithmic graph problem, which is generally NP-hard. We will
say that a hereditary class X of graphs is Π-tough if the problem is NP-hard for
graphs in X and Π-easy, otherwise. We define the notion of a boundary class
for Π in two steps. First, let us define the notion of a limit class.

Definition 1. A hereditary class X is a limit class for Π if X is the inter-
section of a sequence X1 ⊇ X2 ⊇ X3 ⊇ . . . of Π-tough classes, in which case we
also say that the sequence converges to X.

Example. To illustrate the notion of a limit class, let us quote a result from [20]
stating that the maximum independent set problem is NP-hard for graphs
with large girth, i.e. for (C3, C4, . . . , Ck)-free graphs for each fixed value of k.
With k tending to infinity, this sequence converges to the class of graphs without
cycles, i.e. to forests. Therefore, the class of forests is a limit class for the maxi-

mum independent set problem. However, this is not a minimal limit class for
the problem, which can be explained as follows.

The proof of the NP-hardness of the problem for graphs with large girth is
based on a simple fact that a double subdivision of an edge in a graph G increases
the size of a maximum independent set in G by exactly 1. This operation applied
sufficiently many (but still polynomially many) times allows to destroy all small
cycles in G, i.e. reduces the problem from an arbitrary graph G to a graph G′

of girth at least k. Obviously, if G is a graph of vertex degree at most 3, then
so is G′, and since the problem is NP-hard for graphs of degree at most 3, we
conclude that it is also NP-hard for for (C3, C4, . . . , Ck)-free graphs of degree
at most 3. This shows that the class of forests of vertex degree at most 3 is a
limit class for the the maximum independent set problem. However, it is still
not a minimal limit class, because by the same operation (double subdivisions
of edges) one can destroy small induced copies of the graph Hn shown on the
left of Fig. 1. Therefore, the maximum independent set problem is NP-hard
in the following class for each fixed value of k:

Zk is the class of (C3, . . . , Ck,H1, . . . , Hk)-free graphs of degree at most 3.
It is not difficult to see that the sequence Z3 ⊃ Z4 ⊃ . . . converges to the class

of forests every connected component of which has the form Si,j,� represented
on the right of Fig. 1. Throughout the paper we denote this class by S, i.e. S is
the intersection of the sequence Z3 ⊃ Z4 ⊃ . . ..
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Fig. 1. Graphs Hn (left) and Si,j,� (right).

The above discussion shows that S is a limit class for the maximum inde-

pendent set problem. Moreover, in [2] it was proved that S is a minimal limit
class for this problem.

Definition 2. A minimal (with respect to set inclusion) limit class for a problem
Π is called a boundary class for Π.

The importance of the notion of boundary classes for NP-hard algorithmic
graph problems is due to the following theorem proved originally for the max-

imum independent set problem in [2] (can also be found in [3] in a more
general context).

Theorem 1. If P �= NP, then a finitely defined class X is Π-tough if and only
if X contains a boundary class for Π.

In what follows, we identify the first boundary class for the upper domi-

nating set problem. To this end, we need a number of auxiliary results. The
first of them is the following lemma dealing with limit classes, which was derived
in [2,3] as a step towards the proof of Theorem 1.

Lemma 2. If X is a finitely defined class containing a limit class for an NP-
hard problem Π, then X is Π-tough.

The next two results were proved in [12] and [3], respectively.

Lemma 3. The minimum dominating set problem is NP-hard in the class Zk

for each fixed value of k.

Theorem 2. The class S is a boundary class for minimum dominating set

problem.

3 A Boundary Class for Upper Domination

To describe a boundary class for the upper dominating set problem, let us
introduce the following graph transformations. Given a graph G = (V,E), we
denote by
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S(G) the incidence graph of G, i.e. the graph with vertex set V ∪ E, where V
and E are independent sets and a vertex v ∈ V is adjacent to a vertex
e ∈ E in S(G) if and only if v is incident to e in G. Alternatively, S(G) is
obtained from G by subdividing each edge e by a new vertex ve. According
to this interpretation, we call E the set of new vertices and V the set of old
vertices. Any graph of the form S(G) for some G will be called a subdivision
graph.

Q(G) the graph obtained from S(G) by creating a clique on the set of old vertices
and a clique on the set of new vertices. We call any graph of the form Q(G)
for some G a Q-graph.

The importance of Q-graphs for the upper dominating set problem is due
to the following lemma, where we denote by Γ (G) the size of an upper dominating
set in G and by γ(G) the size of a dominating set of minimum cardinality in G.

Lemma 4. Let G be a graph with n vertices such that Γ (Q(G)) ≥ 3. Then
Γ (Q(G)) = n − γ(G).

Proof. Let D be a minimum dominating set in G, i.e. a dominating set of size
γ(G). Without loss of generality, we will assume that D satisfies Lemma 1, i.e.
every vertex of D has a private neighbour outside of D. For every vertex u outside
of D, consider exactly one edge, chosen arbitrarily, connecting u to a vertex in
D and denote this edge by eu. We claim that the set D′ = {veu

: u �∈ D} is a
minimal dominating set in Q(G). By construction, D′ dominates E ∪ (V − D)
in Q(G). To show that it also dominates D, assume by contradiction that a
vertex w ∈ D is not dominated by D′ in Q(G). By Lemma 1 we know that w
has a private neighbour u outside of D. But then the edge e = uw is the only
edge connecting u to a vertex in D. Therefore, ve necessarily belongs to D′ and
hence it dominates w, contradicting our assumption. In order to show that D′

is a minimal dominating set, we observe that if we remove from D′ a vertex veu

with eu = uw, u �∈ D, w ∈ D, then u becomes undominated in Q(G). Finally,
since |D′| = n − |D|, we conclude that Γ (Q(G)) ≥ n − |D| = n − γ(G).

Conversely, let D′ be an upper dominating set in Q(G), i.e. a minimal dom-
inating set of size Γ (Q(G)) ≥ 3. Then D′ cannot intersect both V and E, since
otherwise it contains exactly one vertex in each of these sets (else it is not min-
imal, because each of these sets is a clique), in which case |D′| = 2.

Assume first that D′ ⊆ V . Then V − D′ is an independent set in G. Indeed,
if G contains an edge e connecting two vertices in V − D′, then vertex ve is
not dominated by D′ in Q(G), a contradiction. Moreover, V − D′ is a maximal
(with respect to set-inclusion) independent set in G, because D′ is a minimal
dominating set in Q(G). Therefore, V − D′ is a dominating set in G of size
n − Γ (Q(G)) and hence γ(G) ≤ n − Γ (Q(G)).

Now assume D′ ⊆ E. Let us denote by G′ the subgraph of G formed by the
edges (and all their endpoints) e such that ve ∈ D′. Then:

– G′ is a spanning forest of G, because D′ covers V (else D′ is not dominating
in Q(G)) and G′ is acyclic (else D′ is not a minimal dominating set in Q(G)).
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– G′ is P4-free, i.e. each connected component of G′ is a star, since otherwise
D′ is not a minimal dominating set in Q(G), because any vertex of D′ corre-
sponding to the middle edge of a P4 in G′ can be removed from D′.

Let D be the set of the centers of the stars of G′. Then D is dominating in G
(since D′ covers V ) and |D| = n − |D′|, i.e. γ(G) ≤ n − Γ (Q(G)), as required. 
�

Lemma 4 together with Theorem 2 suggest the following natural idea about a
boundary class for the upper dominating set problem: it is the class of graphs
Q(G) obtained from graphs G in S. In order to transform this idea into a formal
proof, we need more notations and more auxiliary results.

For an arbitrary class X of graphs, we denote S(X) := {S(G) : G ∈ X}
and Q(X) := {Q(G) : G ∈ X}. In particular, Q(G) is the set of all Q-graphs,
where G is the class of all simple graphs. We observe that an induced subgraph
of a Q-graph is not necessarily a Q-graph. Indeed, in a Q-graph every new vertex
is adjacent to exactly two old vertices. However, by deleting some old vertices
in a Q-graph we may obtain a graph in which a new vertex is adjacent to at
most one old vertex. Therefore, Q(X) is not necessarily hereditary even if X is
a hereditary class. We denote by Q∗(X) the hereditary closure of Q(X), i.e. the
class obtained from Q(X) by adding to it all induced subgraphs of the graphs
in Q(X). Similarly, we denote by S∗(X) the hereditary closure of S(X).

With the above notation, our goal is proving that Q∗(S) is a boundary class
for the upper dominating set problem. To achieve this goal we need the
following lemmas.

Lemma 5. Let X be a monotone class of graphs such that S �⊆ X, then the
clique-width of the graphs in Q∗(X) is bounded by a constant.

Proof. In [16], it was proved that if S �⊆ X, then the clique-width is bounded for
graphs in X. It is known (see e.g. [8]) that for monotone classes, the clique-width
is bounded if and only if the tree-width is bounded. By subdividing the edges
of all graphs in X exactly once, we transform X into the class S(X), where the
tree-width is still bounded, since the subdivision of an edge of a graph does not
change its tree-width. Since bounded tree-width implies bounded clique-width
(see e.g. [8]), we conclude that S(X) is a class of graphs of bounded clique-
width. Now, for each graph G in S(X) we create two cliques by complementing
the edges within the sets of new and old vertices. This transforms S(X) into
Q(X). It is known (see e.g. [11]) that local complementations applied finitely
many times do not change the clique-width “too much”, i.e. they transform a
class of graphs of bounded clique-width into another class of graphs of bounded
clique-width. Therefore, the clique-width of graphs in Q(X) is bounded. Finally,
the clique-width of a graph is never smaller than the clique-width of any of its
induced subgraphs (see e.g. [8]). Therefore, the clique-width of graphs in Q∗(X)
is also bounded. 
�
Lemma 6. Let X ⊆ Q∗(G) be a hereditary class. The clique-width of graphs in
X is bounded by a constant if and only if it is bounded for Q-graphs in X.
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Proof. The lemma is definitely true if X = Q∗(Y ) for some class Y . In this case,
by definition, every non-Q-graph in X is an induced subgraph of a Q-graph from
X. However, in general, X may contain a non-Q-graph H such that no Q-graph
containing H as an induced subgraph belongs to X. In this case, we prove the
result as follows.

First, we transform each graph H in X into a bipartite graph H ′ by replacing
the two cliques of H (i.e. the sets of old and new vertices) with independent sets.
In this way, X transforms into a class X ′ which is a subclass of S∗(G). As we
mentioned in the proof of Lemma5, this transformation does not change the
clique-width “too much”, i.e. the clique-width of graphs in X is bounded if and
only if it is bounded for graphs in X ′.

By definition, H ∈ X is a Q-graph if and only if H ′ is a subdivision graph, i.e.
H ′ = S(G) for some graph G. Therefore, we need to show that the clique-width
of graphs in X ′ is bounded if and only if it is bounded for subdivision graphs in
X ′. In one direction, the statement is trivial. To prove it in the other direction,
assume the clique-width of subdivision graphs in X ′ is bounded. If H ′ is not a
subdivision, it contains new vertices of degree 0 or 1. If H ′ contains a vertex
of degree 0, then it is disconnected, and if H ′ contains a vertex x of degree 1,
then it has a cut-point (the neighbour of x). It is well-known that the clique-
width of graphs in a hereditary class is bounded if and only if it is bounded for
connected graphs in the class. Moreover, it was shown in [18] that the clique-
width of graphs in a hereditary class is bounded if and only if it is bounded for
2-connected graphs (i.e. connected graphs without cut-points) in the class. Since
connected graphs without cut-points in X ′ are subdivision graphs, we conclude
that the clique-width is bounded for all graphs in X ′. 
�

Finally, to prove the main result of this paper, we need to show that Q∗(G)
is a finitely defined class. To show this, we first characterize graphs in Q∗(G)
as follows: a graph G belongs to Q∗(G) if and only if the vertices of G can be
partitioned into two (possibly empty) cliques U and W such that

(a) every vertex in W has at most two neighbours in U ,
(b) if x and y are two vertices of W each of which has exactly two neighbours

in U , then N(x) ∩ U �= N(y) ∩ U .

In the proof of the following lemma, we call any partition satisfying (a) and (b)
nice. Therefore, Q∗(G) is precisely the class of graphs admitting a nice partition.
Now we characterize Q∗(G) in terms of minimal forbidden induced subgraphs.

Lemma 7. Q∗(G) = Free(N), where N is the set of eleven graphs consisting of
C3, C5, C7 and the eight graphs shown in Fig. 2.

Proof. To show the inclusion Q∗(G) ⊆ Free(N), we first observe that C3, C5 and
C7 are forbidden in Q∗(G), since every graph in this class is co-bipartite, while
C3, C5, C7 are not co-bipartite. Each of the remaining eight graphs of the set
N is co-bipartite, but none of them admits a nice partition, which is a routine
matter to check.
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G1 G2 G3 G4

G5 G6 G7 G8

Fig. 2. Forbidden graphs for Q∗(G)

To prove the inverse inclusion Free(N) ⊆ Q∗(G), let us consider a graph G in
Free(N). By definition, G contains no C3, C5, C7. Also, since G1 is an induced
subgraph of Ci with i ≥ 9, we conclude that G contains no complements of
odd cycles of length 9 or more. Therefore, G is co-bipartite. Let V1 ∪ V2 be an
arbitrary bipartition of V (G) into two cliques. In order to show that G belongs
to Q∗(G), we split our analysis into several cases.

Case 1: G contains a K4 induced by vertices x1, y1 ∈ V1 and x2, y2 ∈ V2. To
analyze this case, we partition the vertices of V1 into four subsets with respect
to x2, y2 as follows:

A1 is the set of vertices of V1 adjacent to x2 and non-adjacent to y2,
B1 is the set of vertices of V1 adjacent to x2 and to y2,
C1 is the set of vertices of V1 adjacent to y2 and non-adjacent to x2,
D1 is the set of vertices of V1 adjacent neither to x2 nor to y2.

We partition the vertices of V2 with respect to x1, y1 into four subsets A2, B2,
C2, D2 analogously. We now observe the following.

(1) For i ∈ {1, 2}, either Ai = ∅ or Ci = ∅, since otherwise a vertex in Ai and a
vertex in Ci together with x1, y1, x2, y2 induce G2.

According to this observation, in what follows, we may assume, without loss of
generality, that

– C1 = ∅ and C2 = ∅.

We next observe that

(2) Either A1 = ∅ or A2 = ∅, since otherwise a vertex a1 ∈ A1 and a vertex
a2 ∈ A2 together with x1, y1, x2, y2 induce either G1 (if a1 is not adjacent to
a2) or G2 (if a1 is adjacent to a2).
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Observation (2) allows us to assume, without loss of generality, that

– A2 = ∅.

We further make the following conclusions:

(3) For i ∈ {1, 2}, |Di| ≤ 1, since otherwise any two vertices of Di together with
x1, x2, y1, y2 induce G3.

(4) If D1 = {d1} and D2 = {d2}, then d1 is adjacent to d2, since otherwise
d1, d2, x1, x2, y1, y2 induce G4.

(5) If A1 ∪ D1 ∪ D2 �= ∅, then every vertex of B1 is adjacent to every vertex
of B2. Indeed, assume, without loss of generality, that z ∈ A1 ∪ D1 and
a vertex b1 ∈ B1 is not adjacent to a vertex b2 ∈ B2. Then the vertices
z, b1, b2, x1, x2, y1 induce either G1 (if z is not adjacent to b2) or G2 (if z is
adjacent to b2).

(6) Either A1 = ∅ or D1 = ∅, since otherwise a vertex in A1 and a vertex in D1

together with x1, y1, x2, y2 induce G1.

According to (6), we split our analysis into three subcases as follows.

Case 1.1: D1 = {d1}. Then A1 = ∅ (by (6)) and every vertex of B1 is adjacent
to every vertex of B2 (by (5)). If D2 = ∅, then U = D1 and W = B1 ∪ B2 is a
nice partition of G (remember that x1, y1 ∈ B1 and x2, y2 ∈ B2).

Now assume D2 = {d2} and denote by B0
1 the vertices of B1 nonadjacent

to d2 and by B1
1 the vertices of B1 adjacent to d2. Similarly, we denote by B0

2

the vertices of B2 nonadjacent to d1 and by B1
2 the vertices of B2 adjacent to

d1. Then |B1
1 ∪ B1

2 | ≤ 1, since otherwise any two vertices of B1
1 ∪ B1

2 together
with x1, x2, d1, d2 induce G2. But then U = D1 ∪ D2 and W = B1 ∪ B2 is a nice
partition of G.

Case 1.2: A1 �= ∅. Then D1 = ∅ (by (6)) and every vertex of B1 is adjacent
to every vertex of B2 (by (5)). In this case, we claim that

(7) every vertex of B2 is either adjacent to every vertex of A1 or to none of
them. Indeed, assume a vertex b2 ∈ B2 has a neighbour a′ ∈ A1 and a
non-neighbour a′′ ∈ A1. Then b2, a

′, a′′, x1, y1, y2 induce G1.

We denote by B0
2 the subset of vertices of B2 that have no neighbours in A1 and

by B1
2 the subset of vertices of B2 adjacent to every vertex of A1. Then

– either |A1| = 1 or |B0
2 | = 1, since otherwise any two vertices of A1 together

with any two vertices of B0
2 and any two vertices of B1 induce G3.

– if D2 = {d2}, then |B1
2 | = 1, since otherwise any two vertices of B1

2 together
with d2, x1, y2 and any vertex a in A1 induce either G1 (if a is not adjacent
to d2)) or G2 (if a is adjacent to d2)).

– if D2 = {d2}, then d2 has no neighbours in B1. Indeed, if d2 has a neighbour
b1 ∈ B1, then vertices b1, d2, x1, x2, y2 together with any vertex a1 ∈ A1 induce
either G1 (if d2 is not adjacent to a1) or G2 (if d2 is adjacent to a1).
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Therefore, either U = A1 ∪ D2, W = B1 ∪ B2 (if |A1| = 1) or U = B0
2 ∪ D2,

W = A1 ∪ B1 ∪ B1
2 (if |B0

2 | = 1) is a nice partition of G.

Case 1.3: A1 = ∅ and D1 = ∅. In this case, if D2 �= ∅, then U = D2,
W = B1 ∪ B2 is a nice partition of G, since B1 ∪ B2 is a clique (by (5)). Assume
now that D2 = ∅. If B1 ∪ B2 is a clique, then G has a trivial nice partition.
Suppose next that B1 ∪ B2 is not a clique. If all non-edges of G are incident
to a same vertex, say b (i.e. b is incident to all the edges of G), then U = {b},
W = (B1∪B2)−{b} is a nice partition of G. Otherwise, G contains a pair of non-
edges b′

1b
′
2 �∈ E(G) and b′′

1b′′
2 �∈ E(G) with all four vertices b′

1, b
′′
1 ∈ B1, b′

2, b
′′
2 ∈

B2 being distinct (i.e. b′
1b

′
2 and b′′

1b′′
2 form a matching in G). We observe that

{b′
1, b

′′
1 , b′

2, b
′′
2} ∩ {x1, y1, x2, y2} = ∅, because by definition vertices x1, y1, x2, y2

dominate the set B1 ∪B2. But then b′
1, b

′′
1 , b′

2, b
′′
2 , x1, y1 induce either G2 (if both

b′
1b

′′
2 and b′

2b
′′
1 are edges in G) or G1 (if exactly one of b′

1b
′′
2 and b′

2b
′′
1 is an edge

in G) or G3 (if neither b′
1b

′′
2 nor b′

2b
′′
1 is an edge in G). This completes the proof

of Case 1.

Case 2: G contains no K4 with two vertices in V1 and two vertices in V2. We
claim that in this case V1 ∪ V2 is a nice partition of G. First, the assumption
of case 2 implies that that no two vertices in the same part of the bipartition
V1 ∪ V2 have two common neighbours in the opposite part, verifying condition
(b) of the definition of nice partition. To verify condition (a), it remains to prove
that one of the parts V1 and V2 has no vertices with more than two neighbours
in the opposite part. Assume the contrary and let a1 ∈ V1 have three neighbours
in V2 and let a2 ∈ V2 have three neighbours in V1.

First, suppose a1 is adjacent to a2. Denote by b2, c2 two other neighbours of
a1 in V2 and by b1, c1 two other neighbours of a2 in V1. Then there are no edges
between b1, c1 and b2, c2, since otherwise we are in conditions of Case 1. But now
a1, b1, c1, a2, b2, c2 induce a G3.

Suppose now that a1 is not adjacent to a2. We denote by b2, c2, d2 three
neighbours of a1 in V2 and by b1, c1, d1 three neighbours of a2 in V1. No two
edges between b1, c1, d1 and b2, c2, d2 (if any) share a vertex, since otherwise we
are in conditions of Case 1. But then a1, b1, c1, d1, a2, b2, c2, d2 induce either G5

or G6 or G7 or G8. This contradiction completes the proof of the lemma. 
�

Now we are ready to prove the main result of the paper.

Theorem 3. If P �= NP, then Q∗(S) is a boundary class for the upper domi-

nating set problem.

Proof. From Lemmas 3 and 4 we know that upper domination is NP-hard in
the class Q∗(Zk) for all values of k ≥ 3. Also, it is not hard to verify that the
sequence of classes Q∗(Z1), Q∗(Z2) . . . converges to Q∗(S). Therefore, Q∗(S) is
a limit class for the upper dominating set problem. To prove its minimality,
assume there is a limit class X which is properly contained in Q∗(S). We consider
a graph F ∈ Q∗(S)−X, a graph G ∈ Q(S) containing F as an induced subgraph
(possibly G = F if F ∈ Q(S)) and a graph H ∈ S such that G = Q(H).
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From the choice of G and Lemma 7, we know that X ⊆ Free(N ∪ {G}), where
N is the set of minimal forbidden induced subgraphs for the class Q∗(G). Since
the set N is finite (by Lemma 7), we conclude with the help of Lemma2 that
the upper dominating set problem is NP-hard in the class Free(N ∪{G}). To
obtain a contradiction, we will show that graphs in Free(N ∪{G}) have bounded
clique-width.

Denote by M the set of all graphs containing H as a spanning subgraph.
Clearly Free(M) is a monotone class. More precisely, it is the class of graphs con-
taining no H as a subgraph (not necessarily induced). Since Free(M) is monotone
and S �⊂ Free(M) (as H ∈ S), we know from Lemma 5 that the clique-width is
bounded in Q∗(Free(M)).

To prove that graphs in Free(N ∪ {G}) have bounded clique-width, we will
show that Q-graphs in this class belong to Q∗(Free(M)). Let Q(H ′) be a Q-
graph in Free(N ∪ {G}). Since the vertices of Q(H ′) represent the vertices and
the edges of H ′ and Q(H ′) does not contain G as an induced subgraph, we
conclude that H ′ does not contain H as a subgraph. Therefore, H ′ ∈ Free(M),
and hence Q(H ′) ∈ Q(Free(M)). By Lemma 6, this implies that all graphs in
Free(N ∪ {G}) have bounded clique-width. This contradicts the fact that the
upper dominating set problem is NP-hard in this class and completes the
proof of the theorem. 
�

4 Conclusion

In this paper, we identified the first boundary class for the upper dominating

set problem. Since the problem is NP-hard in the class of triangle-free graphs [1],
we known (by Theorem 1) that there must exist at least one more boundary class
for the problem. Revealing this class is a challenging open question.
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Abstract. We consider Upper Domination, the problem of finding a
maximum cardinality minimal dominating set in a graph. We show that
this problem does not admit an n1−ε approximation for any ε > 0, mak-
ing it significantly harder than Dominating Set, while it remains hard
even on severely restricted special cases, such as cubic graphs (APX-
hard), and planar subcubic graphs (NP-hard). We complement our neg-
ative results by showing that the problem admits an O(Δ) approxima-
tion on graphs of maximum degree Δ, as well as an EPTAS on planar

graphs. Along the way, we also derive essentially tight n1− 1
d upper and

lower bounds on the approximability of the related problem Maximum

Minimal Hitting Set on d-uniform hypergraphs, generalising known
results for Maximum Minimal Vertex Cover.

1 Introduction

A dominating set of an undirected graph G = (V,E) is a set of vertices S ⊆ V
such that all vertices outside of S have a neighbour in S. The problem of finding
the smallest dominating set of a given graph is one of the most widely studied
problems in computational complexity. In this paper, we focus on a related
problem that “flips” the optimisation objective. In Upper Domination we are
given a graph and we are asked to find a maximum cardinality dominating set
that is still minimal. A dominating set is minimal if any proper subset of it is no
longer dominating, that is, if it does not contain obviously redundant vertices.

Considering a MaxMin or MinMax version of a problem by “flipping” the
objective is not a new idea; in fact, such questions have been posed before for
c© Springer International Publishing Switzerland 2016
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many classical optimisation problems. Some of the most well-known examples
include the Minimum Maximal Independent Set problem [9,10,14,19] (also
known as Minimum Independent Dominating Set), the Maximum Mini-

mal Vertex Cover problem [7,26] and the Lazy Bureaucrat problem [2,4],
which is a MinMax version of Knapsack. The initial motivation for this type of
question was rather straightforward: most classical optimisation problems admit
an easy, naive heuristic algorithm which starts with a trivial solution and then
gradually tries to improve it in an obvious way until it gets stuck. For example,
one can produce a (maximal) independent set of a graph by starting with a
single vertex and then adding vertices to the current solution while maintaining
an independent set. What can we say about the worst-case performance of such
a basic algorithm? Motivated by this initial question the study of MaxMin and
MinMax versions of standard optimisation problems has gradually grown into a
sub-field with its own interest, often revealing new insights on the structure of
the original problems. Upper Domination is a natural example of this family
of problems, on which somewhat fewer results are currently known. A typical
pattern that often shows up in this line of research is that MaxMin versions
of classical problems turn out to be much harder than the originals, especially
when one considers approximation. For example, Maximum Minimal Vertex

Cover does not admit any n
1
2−ε approximation, while Vertex Cover admits a

2-approximation [7]; Lazy Bureaucrat is APX-hard while Knapsack admits
a PTAS [2]; and though Minimum Maximal Independent Set and Indepen-

dent Set share the same (inapproximable) status, the proof of inapproximabil-
ity of the MinMax version is considerably simpler, and was known long before
the corresponding hardness results for Independent Set [14].

Our first contribution is to show that this pattern also holds for Upper Dom-

ination: while Dominating Set admits a greedy ln n approximation, Upper

Domination does not admit an n1−ε approximation for any ε > 0, unless P=NP.
We establish this by considering the related Maximum Minimal Hitting Set

problem: given a d-uniform hypergraph, find the largest minimal set of vertices
that intersects all hyperedges. Observe that the previously studied Maximum

Minimal Vertex Cover problem is a special case of this problem for d = 2.
We show, for any d, an approximation algorithm with ratio n1− 1

d , for Maximum

Minimal Hitting Set on d-uniform hypergraphs, as well as a tight n1− 1
d −ε

inapproximability bound, exactly matching, and subsuming, the corresponding
tight

√
n approximation results for Maximum Minimal Vertex Cover given

in [7]. We then obtain the inapproximability of Upper Domination by per-
forming a reduction from an instance with sufficiently large d. We also show
that Upper Domination remains hard on two restricted cases: the problem is
still APX-hard on cubic graphs, and NP-hard on planar subcubic graphs. Since
the problem is easy on graphs of maximum degree 2, our results completely char-
acterise the complexity of the problem in terms of maximum degree (the best
previously known result was NP-hardness for planar graphs of maximum degree
6 [1]). Given the general behavior of this type of problem, and the above results
on Upper Domination in particular, the questions remains why are such prob-
lems typically so much harder than their original versions. Consider the following
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extension problem: Given a graph G = (V,E) and a set S ⊆ V , does there exist
a minimal dominating set of any size that contains S? Even though questions of
this type are typically trivial for problems such as Independent Set and Lazy

Bureaucrat, it can be shown by a more or less easy modification of the proof
of analogous results in [8,22] that in the case of Upper Domination, deciding
the existence of such a minimal dominating set is NP-hard in general graphs.
This helps explain the added difficulty of this problem, and more generally of
problems of this type, since any natural algorithm that gradually builds a solu-
tion would have to contend with (some version of) this extension problem. In
this paper we show that the extension problem for Upper Domination remains
hard even for planar cubic graphs.

We complement the above negative results by giving some approximation
algorithms for the problem in restricted cases. Specifically, we show that the
problem admits an O(Δ)-approximation on graphs with maximum degree Δ, as
well as an EPTAS on planar graphs.

Previous results. It has long been known that Upper Domination is NP-
complete in general [11], and even for graphs of maximum degree 6 [1]. Some
polynomial-time solvable graph classes are also known. This is mainly due to
the fact that on certain graph classes (like bipartite graphs) the independence
number and upper domination number coincide and for those graph classes,
the independence number can be computed in polynomial-time. We refer to the
textbook on domination [16] for further details. We mention that the problem
is polynomial for bipartite graphs [12], chordal graphs [20], generalised series-
parallel graphs [15] and graphs with bounded clique-width [13]. Recently, the
complexity of Upper Domination in monogenic classes of graphs defined by
a single forbidden induced subgraph has led to a complexity dichotomy: if the
unique forbidden induced subgraph is a P4 or a 2K2 (or an induced subgraph of
these), then Upper Domination is polynomial; otherwise, it is NP-complete [1].

2 Preliminaries and Combinatorial Bounds on Γ (G)

We only deal with undirected simple connected graphs G = (V,E). The number
of vertices n = |V | is known as the order of G. As usual, N(v) denotes the open
neighbourhood of v, and N [v] is the closed neighbourhood of v, i.e., N [v] =
N(v) ∪ {v}, which easily extendeds to vertex sets X, i.e., N(X) =

⋃
x∈X N(x)

and N [X] = N(X) ∪ X. The cardinality of N(v) is known as the degree of v,
denoted as deg(v). The maximum degree in a graph is written as Δ. A graph
of maximum degree three is called subcubic, and if all degrees equal three, it is
called cubic.

Given a graph G = (V,E), a subset S of V is a dominating set if every vertex
v ∈ V \ S has at least one neighbour in S, i.e., if N [S] = V . A dominating set
is minimal if no proper subset of it is a dominating set. Likewise, a vertex set
I is independent if N(I) ∩ I = ∅. An independent set is maximal if no proper
superset is independent. In the following we use classical notations: γ(G) and
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Γ (G) are the minimum and maximum cardinalities over all minimal dominating
sets in G, α(G) and i(G) are the maximum and minimum cardinalities over
all maximal independent sets, and τ(G) is the size of a minimum vertex cover,
which equals |V | − α(G) by Gallai’s identity. A minimal dominating set D of G
with |D| = Γ (G) is also known as an upper dominating set of G.

For any subset S ⊆ V and v ∈ S we define the private neighbourhood of v
with respect to S as pn(v, S) := N [v] \ N [S \ {v}]. Any w ∈ pn(v, S) is called a
private neighbour of v with respect to S. S is called irredundant if every vertex
in S has at least one private neighbour, i.e., if |pn(v, S)| > 0 for every v ∈ S.
IR(G) denotes the cardinality of the largest irredundant set in G, while ir(G)
is the cardinality of the smallest maximal irredundant set in G. We can now
observe the validity of the well-known domination chain.

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ (G) ≤ IR(G)

The domination chain is largely due to the following two combinatorial prop-
erties: (1) Every maximal independent set is a minimal dominating set. (2) A
dominating set S ⊆ V is minimal if and only if |pn(v, S)| > 0 for every v ∈ S.
Observe that v can be a private neighbour of itself, i.e., a dominating set is
minimal if and only if it is also an irredundant set. Actually, every minimal
dominating set is also a maximal irredundant set.

Any minimal dominating set D for a graph G = (V,E) can be associated with
a partition of V into four sets F, I, P,O given by: I := {v ∈ D : v ∈ pn(v,D)},
F := D \ I, P ∈ {B ⊆ N(F ) \ D : |pn(v,D) ∩ B| = 1 for all v ∈ F} with
|F | = |P |, O = V \ (D ∪ P ). This representation is not necessarily unique since
there might be different choices for P and O, but for every partition of this
kind, the following properties hold: (1) Every vertex v ∈ F has at least one
neighbour in F , called a friend. (2) The set I is an independent set in G. (3)
The subgraph induced by F ∪ P has an edge cut set separating F and P that is
also a perfect matching; hence, P is a set of private neighbours for F . (4) The
neighbourhood of a vertex in I is always a subset of O, which are otherwise the
outsiders. This partition is also related to a different characterisation of Γ (G)
in terms of so-called upper perfect neighbourhoods [16].

Lemma 1. For any connected graph G with n > 0 vertices we have:

α(G) ≤ Γ (G) ≤ max
{

α(G),
n

2
+

α(G)
2

− 1
}

(1)

Lemma 2. For any connected graph G with n > 0 vertices, minimum degree
δ and maximum degree Δ, we have:

α(G) ≤ Γ (G) ≤ max
{

α(G),
n

2
+

α(G)(Δ − δ)
2Δ

− Δ − δ

Δ

}

(2)

Note that Lemma 2 generalises the earlier result of Henning and Slater on
upper bounds on IR(G) (and hence on Γ (G)) for Δ-regular graphs G [17].
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3 Hardness Results for Upper Domination

In this section we demonstrate several results that indicate that Upper Domina-

tion is a rather hard problem: it does not admit any non-trivial approximation
in polynomial time, and it remains hard even in quite restricted cases.

3.1 Hardness of Approximation on General Graphs

We show that Upper Domination is hard to approximate in two steps: first, we
show that a related natural problem, Maximum Minimal Hitting Set, is hard
to approximate, and then we show that this problem is essentially equivalent to
Upper Domination.

The Maximum Minimal Hitting Set problem is the following: we are given
a hypergraph, that is, a base set V and a collection F of subsets of V . We wish to
find a set H ⊆ V such that: (1) For all e ∈ F we have e∩H 	= ∅ (i.e., H is a hitting
set) (2) For all v ∈ H there exists e ∈ F such that e∩H = {v} (i.e., H is minimal)
(3) H is as large as possible. This problem generalises Upper Domination:
given a graph G = (V,E), we can produce a hypergraph by keeping the same set
of vertices and creating a hyperedge for each closed neighbourhood N [v] of G.
An upper dominating set of the original graph is now exactly a minimal hitting
set of the constructed hypergraph. We will also show that Maximum Minimal

Hitting Set can be reduced to Upper Domination.
Let us note that Maximum Minimal Hitting Set, as defined here, also gen-

eralises Maximum Minimal Vertex Cover, which corresponds to instances
where the input hypergraph is actually a graph. We recall that for this problem
there exists a n1/2-approximation algorithm, while it is known to be n1/2−ε-
inapproximable [7]. Here, we generalise this result to arbitrary hypergraphs,
taking into account the sizes of the hyperedges allowed.

Theorem 1. For all ε > 0, d ≥ 2, if there exists a polynomial-time approxi-
mation algorithm for Maximum Minimal Hitting Set which on hypergraphs
G = (V, F ) where hyperedges have size exactly d has approximation ratio n

d−1
d −ε,

where |V | = n, then P=NP. This is still true for hypergraphs where |F | ∈ O(|V |).
Proof. Fix some constant hyperedge size d. We will present a reduction from
Maximum Independent Set, which is known to be inapproximable [18].
Specifically, for all ε > 0, it is known to be NP-hard to distinguish for an n-
vertex graph G if α(G) > n1−ε or α(G) < nε.

Take an instance G = (V,E) of Maximum Independent Set. If d > 2
we begin by turning G into a d-uniform hypergraph G′ = (V,H) such that any
(non-trivial) hitting set of G′ is a vertex cover of G and vice-versa (for d = 2
we simply set G′ = G). We proceed as follows: for every edge e ∈ E and every
S ⊆ V \ e with |S| = d − 2 we construct in H the hyperedge e ∪ S (with size
exactly d). Thus, |H| = O(nd). Any vertex cover of G is also a hitting set of
G′. For the converse, we only want to prove that any hitting set of G′ of size at
most n − d is also a vertex cover of G (this is without loss of generality, since d
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is a constant, so we will assume α(G) > d). Take a hitting set C of G′ with at
most n − d vertices; take any edge e ∈ E and a set S with S ⊆ V \ (C ∪ e) and
|S| = d−2 (such a set S exists since |V \C| ≥ d). Now, (e∪S) ∈ H, therefore C
must contain a vertex of e. We thus conclude that the maximum size of V \ C,
where C is a hitting set of G′ is either at least n1−ε or at most nε, that is, the
maximum size of V \ C is α(G).

We now add some vertices and hyperedges to G′ to obtain a hypergraph G′′.
For every set S ⊆ V such that |S| = d − 1 and V \ S is a hitting set of G′, we
add to G′′ n new vertices, call them uS,i, 1 ≤ i ≤ n. Also, for each such vertex
uS,i we add to G′′ the hyperedge S ∪ {uS,i}, 1 ≤ i ≤ n. This completes the
construction. It is not hard to see that G′′ has hyperedges of size exactly d, and
its vertex and hyperedge set are both of size O(nd).

Let us analyse the approximability gap of this reduction. First, suppose that
there is a minimal hitting set C of G′ with |V \ C| > n1−ε. Then, there exists a
minimal hitting set of G′′ with size at least nd−O(dε). To see this, consider the
set C ∪{uS,i | S ⊆ V \C, 1 ≤ i ≤ n}. This set is a hitting set, since C hits all the
hyperedges of G′, and for every new hyperedge of G′′ that is not covered by C
we select uS,i. It is also minimal, because C is a minimal hitting set of G′, and
each uS,i selected has a private hyperedge. To calculate its size, observe that for
each S ⊆ V \ C with |S| = d − 1 we have n vertices. There are at least

(
n1−ε

d−1

)

such sets.
For the converse direction, we want to show that if |V \ C| < nε for all

hitting sets C of G′, then any minimal hitting set of G′′ has size at most n1+O(dε).
Consider a hitting set C ′ of G′′. Then, C ′∩V is a hitting set of G′. Let S ⊂ V be a
set of vertices such that S∩C ′ 	= ∅. Then uS,i 	∈ C ′ for all i, because the (unique)
hyperedge that contains uS,i also contains some other vertex of C ′, contradicting
minimality. Now, because V ∩ C ′ is a hitting set of G′ we have |V \ C ′| ≤ nε.
Thus, the maximum number of different sets S ⊆ V such that some uS,i ∈ C ′ is
(

nε

d−1

)
and the total size of C ′ is at most |C ′ ∩ V | + nε(d−1)+1 ≤ n1+O(dε). �

Corollary 1. For any ε > 0 Maximum Minimal Hitting Set is not n1−ε-
approximable, where n is the number of vertices of the input hypergraph, unless
P=NP. This is still true for hypergraphs G = (V, F ) where |F | ∈ O(|V |).
A graph is called co-bipartite if its complement is bipartite. Using Corollary 1 and
the reduction of [21] from Minimum Hitting Set to Minimimum Dominating

Set, the following holds.

Theorem 2. For any ε > 0 Upper Domination, even restricted to co-
bipartite graphs, is not n1−ε-approximable, where n is the number of vertices
of the input graph, unless P=NP.

Note that, in fact, the inapproximability bound given in Theorem 1 is tight,
for every fixed d, a fact that we believe may be of independent interest. This
is shown in the following theorem, which also generalises results on Maximum

Minimal Vertex Cover [7].
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Theorem 3. For all d ≥ 1, there exists a polynomial-time algorithm which,
given a hypergraph G = (V, F ) such that all hyperedges have size at most d,
produces a minimal hitting set H of G with size Ω(n1/d). This shows an O(n

d−1
d )-

approximation for Maximum Minimal Hitting Set on such hypergraphs.

3.2 Hardness on Cubic and Subcubic Planar Graphs

Upper Domination is known to be NP-hard on planar graphs of maximum
degree six [1]. We strengthen this result in two ways: first, we show that even for
cubic graphs the problem is APX-hard; second, the problem remains NP-hard
for planar subcubic graphs. We complement this hardness with an EPTAS on
planar graphs.

u vTheorem 4. Upper Domination is APX-hard on
cubic graphs.

Proof. (Sketch) We present a reduction from Maximum Independent Set on
cubic graphs, which is APX-hard [25]. Let G = (V,E) be the cubic input graph.
Build G′ from G by replacing every (u, v) ∈ E by a structure of six new vertices,
as shown on the right. Any IS ⊂ V is an independent set for G if and only if G′

contains an upper dominating set of cardinality |IS| + 3|E|. �
Theorem 5. Upper Domination is NP-hard on planar subcubic graphs.

3.3 On Minimal Dominating Set Extension

Algorithms working on combinatorial graph problems often try to look at local
parts of the graph and then extend some part of the (final) solution that was
found and fixed so far. For many maximisation problems, like Upper Irredun-

dance or Maximum Independent Set, it is trivial to obtain a feasible solution
that extends a given vertex set by some greedy strategy, or to know that no such
extension exists. This is not true for Upper Domination, as we show next. Let
us first define the problem formally.

Minimal Dominating Set Extension

Input: A graph G = (V,E), a set S ⊆ V .
Question: Does G have a minimal dominating set S′ with S′ ⊇ S?

Notice that this problem is trivial on some input with S = ∅ by using a greedy
approach. If S is an independent set in G, it is also always possible to extend
S to a minimal dominating set, simply by greedily extending it to a maximal
independent set. If S however contains two adjacent vertices, we arrive at the
problem of fixing at least one private neighbour for these vertices. This problem
of preserving irredundance of the vertices in S while extending S to dominate
the whole graph turns out to be a quite difficult task.
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In [8] it is shown that this kind of extension of partial solutions is NP-hard
for the problem of computing prime implicants of the dual of a Boolean function;
a problem which can also be seen as the problem of finding a minimal hitting
set for the set of prime implicants of the input function. Interpreted in this way,
the proof from [8] yields NP-hardness for the minimal extension problem for 3-

Hitting Set. The standard reduction from Hitting Set to Dominating Set

however does not transfer this result to Minimal Dominating Set Extension;
observe that if we represent the hitting-set input-hypergraph H = (V, F ) with
partial solution S ⊂ V (w.l.o.g. irredundant) by G = (V ∪ F,E) with E =
{(v, f) : v ∈ V, f ∈ F, v ∈ f} ∪ (V × V ), the set S can always be extended
to a minimal dominating set by simply adding all edge-vertices which are not
dominated by S. One can repair this by adjusting this construction to forbid the
edge-vertices in minimal solutions in the following way: for each edge-vertex f ,
add three new af , bf , cf with edges (f, af ), (af , bf ), (bf , cf ) and include af and
bf in S. This way, f is the only choice for a private neighbour for af .

We will show that Minimal Dominating Set Extension remains hard
even for very restricted cases. Our proof is based on a reduction from the NP-
complete 4-Bounded Planar 3-Connected SAT problem (4P3C3SAT for
short) [23], the restriction of 3-satisfiability to clauses in C over variables in V ,
where each variable occurs in at most four clauses and the associated bipartite
graph (C ∪ X, {(c, x) ∈ C × X : (x ∈ c) ∨ (¬x ∈ c)}) is planar.

c1j

c2j

z1j

z2j
zjsjpj

Theorem 6. Minimal Dominating Set Extension is NP-complete, even
when restricted to planar cubic graphs.

Proof. (Sketch) Consider an instance of 4P3C3SAT with
clauses c1, . . . , cm and variables v1, . . . , vn. By definition,
the graph G = (V,E) with V = {c1, . . . , cm} ∪ {v1, . . . , vn}
and E = {(cj , vi) : vi or v̄i is literal of cj} is planar. Replace
every vertex vi by six new vertices f1

i , x1
i , t

1
i , t

2
i , x

2
i , f

2
i with

edges (f j
i , xj

i ), (t
j
i , x

j
i ) for j = 1, 2.

Depending on whether vi appears negated or non-negated in these clauses,
we differentiate between the three cases depicted in Fig. 1. Observe that all other
cases are rotations of these three cases and/or invert the roles of vi and v̄i and
that the maximum degree of the vertices which replace vi is three. Next, replace
each clause-vertex cj by the subgraph on the right. The vertices c1j , c

2
j somehow

take the role of the old vertex cj regarding its neighbours: c1j is adjacent to two of
the literals of cj and c2j is adjacent to the remaining literal. This way, all vertices
have degree at most three and the choices of literals to connect to c1j and c2j can
be made such that planarity is preserved. �
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vi

c1

c2

c3 c4

t1i
c2

c3 f1
i c4f2

i

c1

t2i

x1
i

x2
i

t1i
c2

c3 f1
i c4t2i

c1

f2
i

x1
i

x2
i

t1i
c2

c3 f1
i c4f2

i

c1

t2i

x1
i

x2
i

vi ∈ c1, c2, c3, v̄i ∈ c4 vi ∈ c2, c4, v̄i ∈ c1, c3 vi ∈ c1, c2, v̄i ∈ c3, c4

Fig. 1. Construction of Theorem 6: A variable vi appearing in four clauses c1, . . . , c4,
of the original instance is transformed to one of the subgraphs on the right, depending
on which clauses it appears positive in. Black vertices denote elements of S.

4 Approximation Algorithms

4.1 Bounded-Degree Graphs

Unlike the general case, Upper Domination admits a simple constant factor
approximation when restricted to graphs of maximum degree Δ. This follows by
the fact that any dominating set in such a graph has size at least n

Δ+1 . We show
that this can be improved.

Theorem 7. Consider some graph-class G(p, ρ) with the following properties:

– One can properly colour every G ∈ G(p, ρ) with p colours in polynomial time.
– For any G ∈ G(p, ρ), Maximum Independent Set is ρ-approximable in

polynomial time.

Then, for every G ∈ G(p, ρ), Upper Domination is approximable in polynomial
time within ratio at most max

{
ρ, Δρp+Δ−1

2ρΔ

}
.

The proof idea uses Eq. (2) and the fact that any maximal independent set is a
minimal dominating set. We distinguish two cases, and run a different Maximum

Independent Set algorithm for each case. We output the best among the
computed solutions.

Any connected graph of maximum degree Δ, except a complete graph or
an odd cycle, can be coloured with at most Δ colours [24]; also, Maximum

Independent Set is approximable within ratio (Δ+3)/5 in graphs of maximum
degree Δ [5]. So, the class G(Δ, (Δ + 3)/5) contains all graphs of maximum
degree Δ.

Corollary 2. Upper Domination is approximable in polynomial time within
a ratio of (6Δ2 + 2Δ − 3)/10Δ in general graphs.

Theorem 7 can be improved for regular graphs where Γ (G) � n
2 [17].

Corollary 3. Upper Domination in regular graphs is approximable in poly-
nomial time within ratio Δ/2.
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4.2 Planar Graphs

In this section we present an EPTAS (a PTAS with running time f(1ε ) ·poly(|I|))
for Upper Domination on planar graphs. We use techniques based on the
ideas of Baker [3]. As we shall see, some complications arise in applying these
techniques, because of the hardness of extending solutions to this problem.

We use the notion of outerplanar graphs. An outerplanar (or 1-outerplanar)
graph G is a graph such that there is a planar embedding of G, where all vertices
are incident to the outer face of G. For k > 1, graph G is a k-outerplanar graph
if there is a planar embedding of G, such that when all vertices, incident to the
outer face are removed, G is a (k−1)-outerplanar graph. Removing stepwise the
vertices that are incident to the outer face, the vertices of G can be partitioned
into levels L1, . . . , Lk. We write |Li| for the number of vertices in level Li (if i < 1
or i > k we write |Li| = 0). Bodlaender [6] proved that every k-outerplanar graph
has treewidth of at most 3k − 1. This implies the following corollary:

Corollary 4. The maximum minimal dominating set Γ (G) of a k-outerplanar
graph G can be computed in time f(k)n.

To obtain the EPTAS, we use the fact that every planar graph is k-outerplaner
for some k. By removing some of the levels Li we split the graph G into sev-
eral �-outerplanar subgraphs Gi of some small � < k. The maximum minimal
dominating set Γ (Gi) can be computed using the above corollary. Finally the
partial solutions of Gi are merged to obtain a minimal dominating set for G.
In the following theorem we analyse how the maximum of the subgraphs Γ (Gi)
correlates to the maximum Γ (G) of the graph G.

Theorem 8. Let G = (V,E) be a k-outerplanar graph with levels L1, . . . , Lk ⊆
V . For some i ≤ k, let G1 be the subgraph which is induced by levels L1, . . . , Li−1

and let G2 be the subgraph induced by levels Li+1, . . . , Lk. Then, Γ (G1)+Γ (G2) ≥
Γ (G) − ∑i+3

j=i−3 |Lj |.
Using the above theorem iteratively for several levels Li1 , . . . , Lis−1 yields

the following

Corollary 5. Let G = (V,E) be a k-outerplanar graph with levels L1, . . . , Lk ⊆
V . For indices 0 = i0 < i1 < . . . ≤ is = k, let Gj be the subgraph which is induced
by levels Lij

, . . . , Lij+1 . Then,
∑s−1

j=0 Γ (Gj) ≥ Γ (G) − ∑s
k=0

∑ik+3
j=ik−3 |Lj |.

The following algorithm shows how partial solutions of subgraphs can be used
to obtain a minimal dominating set for the whole graph G.

Algorithm 1. Input: A minimal dominating set of subgraphs G1 = (V1, E1)
and G2 = (V2, E2) of G = (V,E), which are separated by level Li such that
V1 ∪ Li ∪ V2 = V .

1. Repeat the following steps until all vertices are covered by the dominating set.
2. Add vertex v ∈ Li which is not covered by the dominating set.
3. Remove vertices in N [N [v]] from the dominating set until the dominating set

is minimal.
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Theorem 9. Let G = (V,E) be a k-outerplanar graph with levels L1, . . . , Lk ⊆
V . For some i ≤ k, let G1 be the subgraph which is induced by levels L1, . . . , Li−1

and let G2 be the subgraph induced by levels Li+1, . . . , Lk. Let S1 and S2 be a
minimal dominating set of G1 and G2, respectively. Then Algorithm 1 returns a
minimal dominating set S with |S| ≥ |S1| + |S2| − |Li−1| − |Li+1|.
We now state our final algorithm: An EPTAS for planar Upper Domination.

Algorithm 2. Input: A k-outerplanar graph G = (V,E) for some k ∈ N and
parameter ε.

1. Let μ = � 36
ε �.

2. Choose x such that 0 ≤ x < μ and such that the following term is minimised

∑

j∈N

((
3∑

i=−3

|Ljμ+x+i|) + |Ljμ+x−1| + |Ljμ+x+1|)

3. Let Gi be the graph induced by levels L(i−1)μ+x+1, . . . , Liμ+x−1 (note that Li

with i < 1 or i > k are empty sets) and let Hi be the graph induced by levels
L1, . . . , Liμ+x−1.

4. Use Corollary 4 to compute the maximum minimal dominating set and its
value Γ (Gi) for each graph Gi with 0 ≤ i ≤ � k

μ�.
5. Apply Algorithm 1 iteratively to graph Hi and Gi+1 with separating level

Liμ+x for all 0 ≤ i ≤ � k
μ� (starting from H0 = G0) to obtain a minimal

dominating set for Hi+1.
6. Return the minimal dominating set for (H� k

μ �) = G.

Theorem 10. Algorithm 2 returns a minimal dominating set S of size |S| ≥
(1 − ε)Γ (G) in time bounded by f( 1ε )n + O(n2).
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Abstract. Daligault, Rao and Thomassé conjectured that if a heredi-
tary class of graphs is well-quasi-ordered by the induced subgraph rela-
tion then it has bounded clique-width. Lozin, Razgon and Zamaraev
recently showed that this conjecture is not true for infinitely defined
classes. For finitely defined classes the conjecture is still open. It is
known to hold for classes of graphs defined by a single forbidden induced
subgraph H, as such graphs are well-quasi-ordered and are of bounded
clique-width if and only if H is an induced subgraph of P4. For bigenic
classes of graphs i.e. ones defined by two forbidden induced subgraphs
there are several open cases in both classifications. We reduce the num-
ber of open cases for well-quasi-orderability of such classes from 12 to 9.
Our results agree with the conjecture and imply that there are only two
remaining cases to verify for bigenic classes.

1 Introduction

Well-quasi-ordering is a highly desirable property and frequently discovered con-
cept in mathematics and theoretical computer science [16,20]. One of the most
remarkable recent results in this area is Robertson and Seymour’s proof of Wag-
ner’s conjecture, which states that the set of all finite graphs is well-quasi-ordered
by the minor relation [25]. One of the first steps towards this result was the proof
of the fact that graph classes of bounded treewidth are well-quasi-ordered by the
minor relation [24] (a graph parameter π is said to be bounded for some graph
class G if there exists a constant c such that π(G) ≤ c for each G ∈ G).

The notion of clique-width generalizes that of treewidth in the sense that
graph classes of bounded treewidth have bounded clique-width, but not necessar-
ily vice versa. The importance of both notions is due to the fact that many algo-
rithmic problems that are NP-hard on general graphs become polynomial-time
solvable when restricted to graph classes of bounded treewidth or clique-width.
For treewidth this follows from the meta-theorem of Courcelle [6], combined with
a result of Bodlaender [2]. For clique-width this follows from combining results
from several papers [8,15,18,23] with a result of Oum and Seymour [22].
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In the study of graph classes of bounded treewidth, we can restrict ourselves
to minor-closed graph classes, because from the definition of treewidth it imme-
diately follows that the treewidth of a graph is never smaller than the treewidth
of its minor. This restriction, however, is not justified when we study graph
classes of bounded clique-width, as the clique-width of a graph can be much
smaller than the clique-width of its minor. In particular, Courcelle [7] showed
that if G is the class of graphs of clique-width 3 and G′ is the class of graphs
obtainable from graphs in G by applying one or more edge contraction opera-
tions, then G′ has unbounded clique-width. On the other hand, the clique-width
of a graph is never smaller than the clique-width of any of its induced subgraphs
(see, for example, [9]). This allows us to restrict ourselves to classes of graphs
closed under taking induced subgraphs. Such graph classes are also known as
hereditary classes.

It is well-known (and not difficult to see) that a class of graphs is hereditary
if and only if it can be characterized by a set of minimal forbidden induced
subgraphs. Due to the minimality, the set F of forbidden induced subgraphs is
always an antichain, that is, no graph in F is an induced subgraph of another
graph in F . For some hereditary classes this set is finite, in which case we say
that the class is finitely defined, whereas for other hereditary classes (such as,
for instance, bipartite graphs) the set of minimal forbidden induced subgraphs
forms an infinite antichain. The presence of these infinite antichains immediately
shows that the induced subgraph relation is not a well-quasi-order. In fact there
even exist graph classes of bounded clique-width that are not well-quasi-ordered
by the induced subgraph relation: take, for example, the class of cycles, which
all have clique-width at most 4. What about the inverse implication: does well-
quasi-ordering imply bounded clique-width? This was stated as an open problem
by Daligault, Rao and Thomassé [13] and a negative answer to this question
was recently given by Lozin, Razgon and Zamaraev [21]. However, the latter
authors disproved the conjecture by giving a hereditary class of graphs whose
set of minimal forbidden induced subgraphs is infinite. Hence, for finitely defined
classes the question remains open.

Conjecture 1. If a finitely defined class of graphs G is well-quasi-ordered by the
induced subgraph relation, then G has bounded clique-width.

We emphasize that our motivation for verifying Conjecture 1 is not only math-
ematical but also algorithmic. Should Conjecture 1 be true, then for finitely
defined classes of graphs the aforementioned algorithmic consequences of having
bounded clique-width also hold for the property of being well-quasi-ordered by
the induced subgraph relation.

A class of graphs is monogenic or H-free if it is characterized by a single forbid-
den induced subgraphH. For monogenic classes, the conjecture is true. In this case,
the twonotions even coincide: a class of graphsdefinedbya single forbidden induced
subgraph H is well-quasi-ordered if and only if it has bounded clique-width if and
only ifH is an induced subgraphofP4 (see, for instance, [12,14,19]).Aclass of graph
is bigenic or (H1,H2)-free if it is characterized by two incomparable forbidden
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induced subgraphs H1 and H2. The family of bigenic classes is more diverse than
the family of monogenic classes. The questions of well-quasi-orderability and hav-
ing bounded clique-width still need to be resolved. Recently, considerable progress
has been made towards answering the latter question for bigenic classes; see [10] for
the most recent survey, which shows that there are currently eight (non-equivalent)
open cases. With respect to well-quasi-orderability of bigenic classes, Korpelainen
and Lozin [19] left all but 14 cases open. Since then, Atminas and Lozin [1] proved
that the class of (K3, P6)-free graphs is well-quasi-ordered by the induced subgraph
relation and that the class of (2P1 + P2, P6)-free graphs is not, reducing the number
of remaining open cases to 12. All available results for bigenic classes verify Conjec-
ture 1. Moreover, eight of the 12 open cases have bounded clique-width (and thus
verify Conjecture 1) leaving four remaining open cases of bigenic classes for which
we still need to verify Conjecture 1.

Our Results. Our first goal is to obtain more (bigenic) classes that are well-
quasi-ordered by the induced subgraph relation and to support Conjecture 1 with
further evidence. Our second goal is to increase our general knowledge on well-
quasi-ordered graph classes and the relation to the possible boundedness of their
clique-width.

Towards our first goal we prove in Sect. 4 that the class of (2P1 + P2, P2+P3)-
free graphs (which has bounded clique-width [11]) is well-quasi-ordered by the
induced subgraph relation. We also determine, by giving infinite antichains, two
bigenic classes that are not, namely the class of (2P1 + P2, P2 +P4)-free graphs,
which has unbounded clique-width [11], and the class of (P1 + P4, P1 +2P2)-free
graphs, for which boundedness of the clique-width is unknown. Consequently,
there are nine classes of (H1,H2)-free graphs for which we do not know whether
they are well-quasi-ordered by the induced subgraph relation, and there are
two open cases left for the verification of Conjecture 1 for bigenic classes; see
Open Problems 1 and 2 below. See Fig. 1 for drawings of the forbidden induced
subgraphs.

Towards our second goal, we aim to develop general techniques as opposed to
tackling specific cases in an ad hoc fashion. Our starting point is a very fruitful
technique used for determining (un)boundedness of the clique-width of a graph
class G. We transform a given graph from G via a number of elementary graph
operations that do not modify the clique-width by “too much” into a graph from
a class for which we do know whether or not its clique-width is bounded.

It is a natural question to research how the above modification technique
can be used for well-quasi-orders. The permitted elementary graph operations
are vertex deletion, subgraph complementation and bipartite complementation.
As we will explain in Sect. 3, these three graph operations do not preserve well-
quasi-ordering. We circumvent this by checking whether these three operations
preserve boundedness of a graph parameter called uniformicity, which was intro-
duced by Korpelainen and Lozin [19]. In their paper they proved that bound-
edness of uniformicity is preserved by vertex deletion. Here we prove this for
the remaining two graph operations. Korpelainen and Lozin [19] also showed
that every graph class G of bounded uniformicity is well-quasi-ordered by the
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so-called labelled induced subgraph relation (which in turn implies that G is
well-quasi-ordered by the induced subgraph relation). As the reverse implication
does not hold, we sometimes need to rely only on the labelled induced subgraph
relation. Hence, in Sect. 3 we also show that the three permitted graph opera-
tions preserve well-quasi-orderability by the labelled induced subgraph relation.
We believe that the graph modification technique will also be useful for proving
well-quasi-orderability of other graph classes. As such, we view the results in
Sect. 3 as our second main contribution.

2P1 + P2 P1 + P4 P1 + 2P2 P2 + P3 P2 + P4

Fig. 1. The forbidden induced subgraphs considered in this paper.

Future Work. We identify several potential directions for future work start-
ing with the two remaining bigenic classes for which Conjecture 1 must still be
verified.

OpenProblem 1. Is Conjecture 1 true for the class of (H1,H2)-free
graphs when: H1 = K3 and H2 = P2 + P4 or when H1 = P1 + P4 and
H2 = P2 + P3?

For both classes we know neither whether they are well-quasi-ordered by the
induced subgraph relation nor whether their clique-width is bounded. Below we
list all seven classes of (H1,H2)-free graphs for which we do not know whether
they are well-quasi-ordered by the induced subgraph relation.

OpenProblem 2. Is the class of (H1,H2)-free graphs well-quasi-ordered by the
induced subgraph relation when:

(i) H1 = 3P1 and H2 ∈ {P1 + 2P2, P1 + P5, P2 + P4};
(ii) H1 = 2P1 + P2 and H2 ∈ {P1 + 2P2, P1 + P4};
(iii) H1 = P1 + P4 and H2 ∈ {P1 + P4, 2P2, P2 + P3, P5}.
In relation to this, we mention that the infinite antichain for (P1 + P4, P1+2P2)-
free graphs was initially found by a computer search. This computer search also
showed that similar antichains do not exist for any of the remaining nine open
cases. As such, constructing antichains for these cases is likely to be a challenging
problem and this suggests that many of these cases may in fact be well-quasi-
ordered. Some of these remaining classes have been shown to have bounded
clique-width [3–5,10]. We believe that some of the structural characteriza-
tions for proving these results may be useful for showing well-quasi-orderability.
Indeed, we are currently trying to prove that the class of (K3, P1+P5)-free graphs
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is well-quasi-ordered via the technique of bounding the so-called lettericity for
graphs in these classes. Again, applying complementations and vertex deletions
does not change the lettericity of a graph by “too much”.

Another potential direction for future research is investigating linear clique-
width for classes defined by two forbidden induced subgraphs. Indeed, it is not
hard to show that k-uniform graphs have bounded linear clique-width. Again,
we can use complementations and vertex deletions when dealing with this para-
meter.

2 Preliminaries

The disjoint union (V (G)∪V (H), E(G)∪E(H)) of two vertex-disjoint graphs G
and H is denoted by G + H and the disjoint union of r copies of a graph G
is denoted by rG. The complement of a graph G, denoted by G, has vertex set
V (G) = V (G) and an edge between two distinct vertices if and only if these
vertices are not adjacent in G. For a subset S ⊆ V (G), we let G[S] denote the
subgraph of G induced by S, which has vertex set S and edge set {uv | u, v ∈
S, uv ∈ E(G)}. If S = {s1, . . . , sr} then, to simplify notation, we may also
write G[s1, . . . , sr] instead of G[{s1, . . . , sr}]. We use G \ S to denote the graph
obtained from G by deleting every vertex in S, i.e. G \ S = G[V (G) \ S].

The graphs Cr,Kr,K1,r−1 and Pr denote the cycle, complete graph, star
and path on r vertices, respectively. For a set of graphs {H1, . . . ,Hp}, a graph G
is (H1, . . . , Hp)-free if it has no induced subgraph isomorphic to a graph in
{H1, . . . , Hp}; if p = 1, we may write H1-free instead of (H1)-free.

For a graph G = (V,E), the set N(u) = {v ∈ V | uv ∈ E} denotes the
neighbourhood of u ∈ V . A graph is bipartite if its vertex set can be partitioned
into (at most) two independent sets. The biclique Kr,s is the bipartite graph
with sets in the partition of size r and s respectively, such that every vertex in
one set is adjacent to every vertex in the other set. Let X be a set of vertices of a
graph G = (V,E). A vertex y ∈ V \ X is complete to X if it is adjacent to every
vertex of X and anti-complete to X if it is non-adjacent to every vertex of X.
Similarly, a set of vertices Y ⊆ V \ X is complete (resp. anti-complete) to X if
every vertex in Y is complete (resp. anti-complete) to X. A vertex y ∈ V \ X
distinguishes X if y has both a neighbour and a non-neighbour in X. The set X
is a module of G if no vertex in V \X distinguishes X. A module U is non-trivial
if 1 < |U | < |V |, otherwise it is trivial. A graph is prime if it has only trivial
modules.

A quasi order ≤ on a set X is a reflexive, transitive binary relation. Two
elements x, y ∈ X in this quasi-order are comparable if x ≤ y or y ≤ x, otherwise
they are incomparable. A set of elements in a quasi-order is a chain if every
pair of elements is comparable and it is an antichain if every pair of elements
is incomparable. The quasi-order ≤ is a well-quasi-order if any infinite sequence
of elements x1, x2, x3, . . . in X contains a pair (xi, xj) with xi ≤ xj and i < j.
Equivalently, a quasi-order is a well-quasi-order if and only if it has no infinite
strictly decreasing sequence x1 � x2 � x3 � · · · and no infinite antichain.
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For an arbitrary set M , let M∗ denote the set of finite sequences of elements
of M . Any quasi-order ≤ on M defines a quasi-order ≤∗ on M∗ as follows:
(a1, . . . , am) ≤∗ (b1, . . . , bn) if and only if there is a sequence of integers i1, . . . , im
with 1 ≤ i1 < · · · < im ≤ n such that aj ≤ bij for j ∈ {1, . . . , m}. We call ≤∗

the subsequence relation.

Lemma 1 (Higman’s Lemma [17]). If (M,≤) is a well-quasi-order then
(M∗,≤∗) is a well-quasi-order.

Labelled Induced Subgraphs and Uniformicity. To define the notion of
labelled induced subgraphs, let us consider an arbitrary quasi-order (W,≤). We
say that G is a labelled graph if each vertex v of G is equipped with an element
lG(v) ∈ W (the label of v). Given two labelled graphs G and H, we say that G is
a labelled induced subgraph of H if G is isomorphic to an induced subgraph of H
and there is an isomorphism that maps each vertex v of G to a vertex w of H with
lG(v) ≤ lH(w). Clearly, if (W,≤) is a well-quasi-order then a class of graphs X
cannot contain an infinite sequence of labelled graphs that is strictly-decreasing
with respect to the labelled induced subgraph relation. We therefore say that a
class of graphs X is well-quasi-ordered by the labelled induced subgraph relation
if it contains no infinite antichains of labelled graphs whenever (W,≤) is a well-
quasi-order. Such a class is readily seen to be well-quasi-ordered by the induced
subgraph relation as well. We will use the following three results.

Lemma 2 ([1]). The class of P6-free bipartite graphs is well-quasi-ordered by
the labelled induced subgraph relation.

Lemma 3 ([1]). Let k, �,m be positive integers. Then the class of
(Pk,K�,Km,m)-free graphs is well-quasi-ordered by the labelled induced subgraph
relation.

Lemma 4 ([1]). Let X be a hereditary class of graphs. Then X is well-quasi-
ordered by the labelled induced subgraph relation if and only if the set of prime
graphs in X is. In particular, X is well-quasi-ordered by the labelled induced
subgraph relation if and only if the set of connected graphs in X is.

Let k be a natural number, let K be a symmetric square 0, 1 matrix of order k,
and let Fk be a graph on the vertex set {1, 2, . . . , k}. Let H be the disjoint union
of infinitely many copies of Fk, and for i = 1, . . . , k, let Vi be the subset of V (H)
containing vertex i from each copy of Fk. Now we construct from H an infinite
graph H(K) on the same vertex set by applying a subgraph complementation
to Vi if and only if K(i, i) = 1 and by applying bipartite complementation to
a pair Vi, Vj if and only if K(i, j) = 1. In other words, two vertices u ∈ Vi

and v ∈ Vj are adjacent in H(K) if and only if uv ∈ E(H) and K(i, j) = 0
or uv /∈ E(H) and K(i, j) = 1. Finally, let P(K,Fk) be the hereditary class
consisting of all the finite induced subgraphs of H(K).

Let k be a natural number. A graph G is k-uniform if there is a matrix K and
a graph Fk such that G ∈ P(K,Fk). The minimum k such that G is k-uniform
is the uniformicity of G.
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The following result was proved by Korpelainen and Lozin. The class of
disjoint unions of cliques is a counterexample for the reverse implication.

Theorem 1 ([19]). Any class of graphs of bounded uniformicity is well-quasi-
ordered by the labelled induced subgraph relation.

3 Permitted Graph Operations

It is not difficult to see that if G is an induced subgraph of H, then G is an
induced subgraph of H. Therefore, a graph class X is well-quasi-ordered by
the induced subgraph relation if and only if the set of complements of graphs
in X is. In this section, we strengthen this observation in several ways. Sub-
graph complementation in a graph G is the operation of complementing a sub-
graph of G induced by a subset of its vertices. Applied to the entire vertex set
of G, this operation coincides with the usual complementation of G. However,
applied to a pair of vertices, it changes the adjacency of these vertices only.
Clearly, repeated applications of this operation can transform G into any other
graph on the same vertex set. Therefore, unrestricted applications of subgraph
complementation may transform a well-quasi-ordered class X into a class con-
taining infinite antichains. However, if we bound the number of applications of
this operation by a constant, we preserve many nice properties of X, including
well-quasi-orderability with respect to the labelled induced subgraph relation.
Next, we introduce the following operations. Bipartite complementation in a
graph G is the operation of complementing the edges between two disjoint sub-
sets X,Y ⊆ V (G). Note that applying a bipartite complementation between X
and Y has the same effect as applying a sequence of three complementations:
with respect to X, Y and X ∪ Y . Finally, we define the following operation:
Vertex deletion in a graph G is the operation of removing a single vertex v from
a graph, together with any edges incident to v.

Let k ≥ 0 be a constant and let γ be a graph operation. A graph class G′

is (k, γ)-obtained from a graph class G if (i) every graph in G′ is obtained from
a graph in G by performing γ at most k times, and (ii) for every G ∈ G there
exists at least one graph in G′ obtained from G by performing γ at most k times.
We say that γ preserves well-quasi-orderability by the labelled induced subgraph
relation if for any finite constant k and any graph class G, any graph class G′

that is (k, γ)-obtained from G is well-quasi-ordered by this relation if and only
if G is.

Lemma 5. The following operations preserve well-quasi-orderability by the
labelled induced subgraph relation:

(i) Subgraph complementation,
(ii) Bipartite complementation and
(iii) Vertex deletion.
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Proof. We start by proving the lemma for subgraph complementations. Let X
be a class of graphs and Y be a set of graphs obtained from X by applying a
subgraph complementation to each graph in X. More precisely, for each graph
G ∈ X we choose a set ZG of vertices in G; we let G′ be the graph obtained
from G by applying a complementation with respect to the subgraph induced
by ZG and we let Y be the set of graphs G′ obtained in this way. Clearly it is
sufficient to show that X is well-quasi-ordered by the labelled induced subgraph
relation if and only if Y is.

Suppose that X is not well-quasi-ordered under the labelled induced sub-
graph relation. Then there must be a well-quasi-order (L,≤) and an infinite
sequence of graphs G1, G2, . . . in X with vertices labelled with elements of L, such
that these graphs form an infinite antichain under the labelled induced subgraph
relation. Let (L′,≤′) be the quasi-order with L′ = {(k, l) : k ∈ {0, 1}, l ∈ L} and
(k, l) ≤′ (k′, l′) if and only if k = k′ and l ≤ l′ (so L′ is the disjoint union of two
copies of L, where elements of one copy are incomparable with elements in the
other copy). Note that (L′,≤′) is a well-quasi-order since (L,≤) is a well-quasi-
order.

For each graph Gi in this sequence, with labelling li, we construct the
graph G′

i (recall that G′
i is obtained from Gi by applying a complementation

on the vertex set ZGi
). We label the vertices of V (G′

i) with a labelling l′i as
follows: set l′i(v) = (1, li(v)) if v ∈ ZGi

and set l′i(v) = (0, li(v)) otherwise.
We claim that when G′

1, G
′
2, . . . are labelled in this way they form an infinite

antichain with respect to the labelled induced subgraph relation. Indeed, suppose
for contradiction that G′

i is a labelled induced subgraph of G′
j for some i �= j.

This means that there is a injective map f : V (G′
i) → V (G′

j) such that l′i(v) ≤′

l′j(f(v)) for all v ∈ V (G′
i) and v, w ∈ V (G′

i) are adjacent in G′
i if and only if f(v)

and f(w) are adjacent in G′
j . Now since l′i(v) ≤′ l′j(f(v)) for all v ∈ V (G′

i), by
the definition of ≤′ we conclude the following: li(v) ≤ lj(f(v)) for all v ∈ V (G′

i)
and v ∈ ZGi

if and only if f(v) ∈ ZGj
.

Suppose v, w ∈ V (Gi) with w /∈ ZGi
(v may or may not belong to ZGi

) and
note that this implies f(w) /∈ ZGj

. Then v and w are adjacent in Gi if and only
if v and w are adjacent in G′

i if and only if f(v) and f(w) are adjacent in G′
j if

and only if f(v) and f(w) are adjacent in Gj .
Next suppose v, w ∈ ZGi

, in which case f(v), f(w) ∈ ZGj
. Then v and w are

adjacent in Gi if and only if v and w are non-adjacent in G′
i if and only if f(v)

and f(w) are non-adjacent in G′
j if and only if f(v) and f(w) are adjacent in Gj .

It follows that f is an injective map f : V (Gi) → V (Gj) such that li(v) ≤
lj(f(v)) for all v ∈ V (Gi) and v, w ∈ V (Gi) are adjacent in Gi if and only if f(v)
and f(w) are adjacent in Gj . In other words Gi is a labelled induced subgraph
of Gj . This contradiction means that if G1, G2, . . . is an infinite antichain then
G′

1, G
′
2, . . . must also be an infinite antichain.

Therefore, if the class X is not well-quasi-ordered by the labelled induced
subgraph relation then neither is Y . Repeating the argument with the roles of
G1, G2, . . . and G′

1, G
′
2, . . . reversed shows that if Y is not well-quasi-ordered



Well-Quasi-Ordering versus Clique-Width: New Results on Bigenic Classes 261

under the labelled induced subgraph relation then neither is X. This completes
the proof for subgraph complementations.

Since a bipartite complementation is equivalent to doing three subgraph com-
plementations one after another, the result for bipartite complementations fol-
lows. Hence it remains to prove the result for vertex deletions. Let X be a class of
graphs and let Y be a set of graphs obtained from X by deleting exactly one ver-
tex zG from each graph G in X. We denote the obtained graph by G−zG. Clearly
it is sufficient to show that X is well-quasi-ordered by the labelled induced sub-
graph relation if and only if Y is.

Suppose that Y is well-quasi-ordered by the labelled induced subgraph rela-
tion. We will show that X is also a well-quasi-order by this relation. For each
graph G ∈ X, let G′ be the graph obtained from G by applying a bipartite com-
plementation between {zG} and N(zG), so zG is an isolated vertex in G′. Let Z
be the set of graphs obtained in this way. By Lemma5.(ii), Z is a well-quasi-
order by the labelled induced subgraph relation if and only if X is. Suppose
G1, G2 are graphs in Z with vertices labelled from some well-quasi-order (L,≤).
Then for i ∈ {1, 2} the vertex zGi

has a label from L and the graph Gi − zGi

belongs to Y . Furthermore if G1−zG1 is a labelled induced subgraph of G2−zG2

and lG1(zG1) ≤ lG2(zG2) then G1 is a labelled induced subgraph of G2. Now by
Lemma 1 it follows that Z is well-quasi-ordered by the labelled induced subgraph
relation. Therefore X is also well-quasi-ordered by this relation.

Now suppose that Y is not well-quasi-ordered by the labelled induced sub-
graph relation. Then Y contains an infinite antichain G1, G2, . . . with the vertices
of Gi labelled by functions li which takes values in some well-quasi-order (L,≤).
For each Gi, let G′

i be a corresponding graph in X, so Gi = G′
i −zG′

i
. Then in G′

i

we label zG′
i

with a new label ∗ and label all other vertices v ∈ V (G′
i) with the

same label as that used in Gi. We make this new label ∗ incomparable to all the
other labels in L and note that the obtained quasi order (L ∪ {∗},≤) is also a
well-quasi-order. It follows that G′

1, G
′
2, . . . is an antichain in X when labelled

in this way. Therefore, if Y is not well-quasi-ordered by the labelled induced
subgraph relation then X is not either. This completes the proof. 
�

The above lemmas only apply to well-quasi-ordering with respect to the
labelled induced subgraph relation. Indeed, if we take a cycle and delete a vertex,
complement the subgraph induced by an edge or apply a bipartite complementa-
tion to two adjacent vertices, we obtain a path. However, while the set of cycles
is an infinite antichain with respect to the induced subgraph relation, the set of
paths is not.

We now show that our graph operations do not change uniformicity by “too
much” either. The result for vertex deletion this was proved by Korpelainen and
Lozin. We omit the proof of the remaining two operations.

Lemma 6. Let G be a graph of uniformicity k. Let G′, G′′ and G′′′ be graphs
obtained from G by applying one vertex deletion, subgraph complementation or
bipartite complementation, respectively. Let �′, �′′ and �′′′ be the uniformicities
of G, G′ and G′′, respectively. Then the following three statements hold:
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(i) �′ < k < 2�′ + 1 [19];
(ii) k

2 ≤ �′′ ≤ 2k;
(iii) k

3 ≤ �′′′ ≤ 3k.

4 One New WQO Class and Two New Non-WQO Classes

In this section we show that (2P1 + P2, P2 + P3)-free graphs are well-quasi-
ordered by the labelled induced subgraph relation. We divide the proof into
several sections, depending on whether or not the graphs under consideration
contain certain induced subgraphs or not. We follow the general scheme that
Dabrowski, Huang and Paulusma [11] used to prove that this class has bounded
clique-width, but we will also need a number of new arguments. We first consider
graphs containing a K5 and state the following lemma (proof omitted).

Lemma 7. The class of (2P1 + P2, P2 + P3)-free graphs that contain a K5 is
well-quasi-ordered by the labelled induced subgraph relation.

By Lemma 7, we may restrict ourselves to looking at K5-free graphs in our
class. We now consider the case where these graphs have an induced C5 (proof
omitted).

Lemma 8. The class of (2P1 + P2, P2 + P3,K5)-free graphs that contain an
induced C5 has bounded uniformicity.

By Lemmas 7 and 8, we may restrict ourselves to looking at (K5, C5)-free
graphs in our class. We need the following structural result (proof omitted).

Lemma 9. Let G be a (2P1 + P2, P2 + P3,K5, C5)-free graph containing an
induced C4. Then by deleting at most 17 vertices and applying at most two bipar-
tite complementations, we can modify G into the disjoint union of a P2 +P3-free
bipartite graph and a 3-uniform graph.

Since P2 +P3 is an induced subgraph of P6, it follows that every P2 +P3-free
graph is P6-free. Combining Lemma 9 with Theorem 1 and Lemmas 2, 4, 5.(ii)
and 5.(iii) we therefore obtain the following corollary.

Corollary 1. The class of connected (2P1 + P2, P2+P3,K5, C5)-free graphs with
an induced C4 is well-quasi-ordered by the labelled induced subgraph relation.

Theorem 2. The class of (2P1 + P2, P2 + P3)-free graphs is well-quasi-ordered
by the labelled induced subgraph relation.

Proof. Graphs in the class under consideration containing an induced subgraph
isomorphic to K5, C5 or C4 are well-quasi-ordered by the labelled induced sub-
graph relation by Lemmas 7 and 8 and Corollary 1, respectively. The remain-
ing graphs form a subclass of (P6,K5,K2,2)-free graphs, since C4 = K2,2 and
P2 + P3 is an induced subgraph of P6. By Lemma 3, this class of graphs is well-
quasi-ordered by the labelled induced subgraph relation. Therefore, the class
of (2P1 + P2, P2 + P3)-free graphs is well-quasi-ordered by the labelled induced
subgraph relation. 
�
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Our final two results show that the classes of (2P1 + P2, P2 + P4)-free graphs
and (P1 + P4, P1 + 2P2)-free graphs are not well-quasi-ordered by the induced
subgraph relation. The antichain used to prove the first of these cases was pre-
viously used by Atminas and Lozin to show that the class of (2P1 + P2, P6)-free
graphs is not well-quasi-ordered with respect to the induced subgraph relation.
Because of this, we can show show a stronger result for the first case (proof
omitted).

Theorem 3. The class of (2P1 + P2, P2 + P4, P6)-free graphs is not well-quasi-
ordered by the induced subgraph relation.

Theorem 4. The class of (P1 + P4, P1 + 2P2)-free graphs is not well-quasi-
ordered by the induced subgraph relation.

Proof. Let n ≥ 3 be an integer. Consider a cycle C4n, say x1−x2−· · ·−x4n −x1.
We partition the vertices of C4n into the set X = {xi | i ≡ 0 or 1 mod 4} and
Y = {xi | i ≡ 2 or 3 mod 4}. Next, we apply a complementation to each of X
and Y , so that in the resulting graph X and Y each induce a clique on 2n vertices
with a perfect matching removed. Let G4n be the resulting graph.

Suppose, for contradiction that G4n contains an induced P1 + 2P2. Without
loss of generality, the set X must contain three of the vertices v1, v2, v3 of the
P1 + 2P2. Since every component of P1 + 2P2 contains at most two vertices,
without loss of generality we may assume v1 is non-adjacent to both v2 and v3.
However, every vertex of G4n[X] has exactly one non-neighbour in X. This
contradiction shows that G4n is indeed (P1 + 2P2)-free.

Every vertex in X has exactly one neighbour in Y and vice versa. This
means that any K3 in G4n must lie entirely in G4n[X] or G4n[Y ]. Since G4n[X]
or G4n[Y ] are both complements of perfect matchings and every vertex of P1 + P4

lies in one of three induced K3’s, which are pairwise non-disjoint, it follows
that G4n is P1 + P4-free.

It remains to show that the graphs G4n form an infinite antichain with respect
to the induced subgraph relation. Since n ≥ 3, every vertex in X (resp. Y ) has
at least two neighbours in X (resp. Y ) that are pairwise adjacent. Therefore,
given x1, we can determine which vertices lie in X and which lie in Y . Every
vertex in X (resp. Y ) has a unique neighbour in Y (resp. X) and a unique non-
neighbour in X (resp. Y ). Therefore, by specifying which vertex in G4n is x1,
we uniquely determine x2, . . . , x4n. Suppose G4n is an induced subgraph of G4m

for some m ≥ 3. Then n ≤ m due to the number of vertices. By symmetry, we
may assume that the induced copy of G4n in G4m has vertex x1 of G4n in the
position of vertex x1 in G4m. Then the induced copy of G4n must have vertices
x2, . . . , x4n in the same position as x2, . . . , x4n in G4m, respectively. Now x1

and x4n are non-adjacent in G4n. If n < m then x1 and x4n are adjacent in G4m,
a contradiction. We conclude that if G4n is an induced subgraph of G4m then
n = m. In other words {G4n | n ≥ 3} is an infinite antichain with respect to the
induced subgraph relation. 
�
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Sufficient Conditions for Tuza’s Conjecture
on Packing and Covering Triangles
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Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences,
Beijing 100190, China
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Abstract. Given a simple graph G = (V, E), a subset of E is called
a triangle cover if it intersects each triangle of G. Let νt(G) and τt(G)
denote the maximum number of pairwise edge-disjoint triangles in G and
the minimum cardinality of a triangle cover of G, respectively. Tuza con-
jectured in 1981 that τt(G)/νt(G) ≤ 2 holds for every graph G. In this
paper, using a hypergraph approach, we design polynomial-time combi-
natorial algorithms for finding small triangle covers. These algorithms
imply new sufficient conditions for Tuza’s conjecture on covering and
packing triangles. More precisely, suppose that the set TG of triangles
covers all edges in G. We show that a triangle cover of G with cardi-
nality at most 2νt(G) can be found in polynomial time if one of the
following conditions is satisfied: (i) νt(G)/|TG| ≥ 1

3
, (ii) νt(G)/|E| ≥ 1

4
,

(iii) |E|/|TG| ≥ 2.

Keywords: Triangle cover · Triangle packing · Linear 3-uniform hyper-
graphs · Combinatorial algorithms

1 Introduction

Graphs considered in this paper are undirected, simple and finite (unless other-
wise noted). Given a graph G = (V,E) with vertex set V (G) = V and edge set
E(G) = E, for convenience, we often identify a triangle in G with its edge set.
A subset of E is called a triangle cover if it intersects each triangle of G. Let
τt(G) denote the minimum cardinality of a triangle cover of G, referred to as the
triangle covering number of G. A set of pairwise edge-disjoint triangles in G is
called a triangle packing of G. Let νt(G) denote the maximum cardinality of a
triangle packing of G, referred to as the triangle packing number of G. It is clear
that 1 ≤ τt(G)/νt(G) ≤ 3 holds for every graph G. Our research is motivated by
the following conjecture raised by Tuza [11] in 1981.

Conjecture 1 (Tuza’s Conjecture [11]). τt(G)/νt(G) ≤ 2 holds for every graph G.

The conjecture is still unsolved in general. If it is true, then the upper bound 2
is sharp as shown by K4 and K5 – the complete graphs of orders 4 and 5.
Throughout, by extremal graphs we mean graphs G with τt(G)/νt(G) = 2.
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Related Work. The only known universal upper bound smaller than 3 was given
by Haxell [7], who showed that τt(G)/νt(G) ≤ 66/23 = 2.8695... for all graphs G.
Haxell’s proof [7] implies a polynomial-time algorithm for finding a triangle cover
of cardinality at most 66/23 times that of some maximal triangle packing.

Other partial results on Conjecture 1 concern special classes of graphs.
Tuza [12] confirmed the conjecture for planar graphs, K5-free chordal graphs and
graphs with n vertices and at least 7n2/16 edges. The proof for planar graphs [12]
gives an elegant polynomial-time algorithm for finding a triangle cover in planar
graphs with cardinality at most twice that of some maximal triangle packing.
The validity of Conjecture 1 on the class of planar graphs was later generalized
by Krivelevich [9] to the class of graphs without K3,3-subdivision. Haxell and
Kohayakawa [8] showed that τt(G)/νt(G) ≤ 2 − ε for tripartite graphs G, where
ε > 0.044. Haxell et al. [6] proved that every K4-free planar graph G satisfies
τt(G)/νt(G) ≤ 1.5.

Regarding the tightness of the conjectured upper bound 2, Tuza [12] noticed
that infinitely many extremal graphs exist. Cui et al. [5] characterized planar
extremal graphs – they are edge-disjoint unions of K4’s plus possibly some ver-
tices and edges that are not in any triangles. Baron and Kahn [1] proved that
Conjecture 1 is asymptotically tight for dense graphs.

Fractional and weighted variants of Conjecture 1 were also studied. Krivele-
vich [9] confirmed two fractional versions of the conjecture: τt(G) ≤ 2ν∗

t (G) and
τ∗
t (G) ≤ 2νt(G) hold for all graphs G, where τ∗

t (G) and ν∗
t (G) are the values of

a minimum fractional triangle cover and a maximum fractional triangle pack-
ing of G, respectively. The result was generalized by Chapuy et al. [3] to the
weighted case, which amounts to packing and covering triangles in multigraphs
Gw (obtained from G by adding multiple edges). The authors [3] showed that
τt(Gw) ≤ 2ν∗

t (Gw) − ν∗
t (Gw)/6 + 1 and τ∗

t (Gw) ≤ 2νt(Gw); the arguments
imply an LP-based 2-approximation algorithm for finding a minimum weighted
triangle cover in graph G.

Our Contributions. Along a different line, we establish new sufficient conditions
for validity of Conjecture 1 by comparing the triangle packing number, the num-
ber of triangles and the number of edges. Given a graph G, we use

TG = {E(T ) : T is a triangle in G}
to denote the set consisting of the (edge sets of) triangles in G. Without loss of
generality, we focus on the graphs where every edge is contained in some triangle.
These graphs are called irreducible.

Theorem 1. Let G = (V,E) be an irreducible graph. Then a triangle cover of G
with cardinality at most 2νt(G) can be found in polynomial time, which implies
τt(G) ≤ 2νt(G), if one of the following conditions is satisfied: (i) νt(G)/|TG| ≥
1
3 , (ii) νt(G)/|E| ≥ 1

4 , and (iii) |E|/|TG| ≥ 2.

The primary idea behind the theorem is simple: any one of conditions (i)
– (iii) allows us to remove at most νt(G) edges from G to make the result-
ing graph G′ satisfy τt(G′) = νt(G′); the removed edges and the edges in a
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minimum triangle cover of G′ form a triangle cover of G with size at most
νt(G) + νt(G′) ≤ 2νt(G). The idea is realized by establishing new results on
linear 3-uniform hypergraphs (see Sect. 2); the most important one states that
such a hypergraph could be made acyclic by removing a number of vertices that
is no more than a third of the number of its edges. A key observation here is
that hypergraph (E,TG) is linear and 3-uniform.

To show the qualities of conditions (i) – (iii) in Theorem 1, we obtain the fol-
lowing result which complements to the constants 1

3 , 1
4 and 2 in these conditions

with 1
4 , 1

5 and 3
2 , respectively.

Theorem 2. Conjecture 1 holds for every graph if there exists some real δ > 0
such that Conjecture 1 holds for every irreducible graph G satisfying one of the
following inequalities: νt(G)/|TG| ≥ 1

4 − δ, νt(G)/|E| ≥ 1
5 − δ, and |E|/|TG| ≥

3
2 − δ.

It is worthwhile pointing out that strengthening Theorem 1, our arguments
actually establish stronger results for linear 3-uniform hypergraphs.

Theorem 3. Let H = (V, E) be a linear 3-uniform hypergraph without isolated
vertices. If ν(H)/|E| ≥ 1

3 or |V|/|E| ≥ 2, then a transversal of H with cardinality
at most 2ν(H) can be found in polynomial time, which implies τ(H) ≤ 2ν(H).

The rest of paper is organized as follows. Section 2 proves theoretical and algo-
rithmic results on linear 3-uniform hypergraphs concerning feedback sets, which
are main technical tools for establishing new sufficient conditions for Tuza’s
conjecture in Sect. 3. Section 4 concludes the paper with extensions and future
research directions. Omitted deals and proofs can be found in the full version of
the paper [4].

2 Hypergraphs

This section develops hypergraph tools for studying Conjecture 1. The theoret-
ical and algorithmic results are of interest in their own right.

Let H = (V, E) be a hypergraph with vertex set V and edge set E . For
convenience, we use ||H|| to denote the number |E| of edges in H. If hypergraph
H′ = (V ′, E ′) satisfies V ′ ⊆ V and E ′ ⊆ E , we call H′ a sub-hypergraph of H, and
write H′ ⊆ H. For each v ∈ V, the degree dH(v) is the number of edges in E
that contain v. We say v is an isolated vertex of H if dH(v) = 0. Let k ∈ N be a
positive integer. Hypergraph H is called k-regular if dH(u) = k for each u ∈ V,
and k-uniform if |e| = k for each e ∈ E . Hypergraph H is linear if |e ∩ f | ≤ 1 for
any pair of distinct edges e, f ∈ E .

A vertex-edge alternating sequence v1e1v2...vkekvk+1 of H is called a path (of
length k) between v1 and vk+1 if v1, v2, ..., vk+1 ∈ V are distinct, e1, e2, ..., ek ∈ E
are distinct, and {vi, vi+1} ⊆ ei for each i ∈ [k] = {1, . . . , k}. Hypergraph H is
said to be connected if there is a path between any pair of distinct vertices in H.
A maximal connected sub-hypergraph of H is called a component of H.
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A vertex-edge alternating sequence C = v1e1v2e2...vkekv1, where k ≥ 2, is
called a cycle (of length k) if v1, v2, ..., vk ∈ V are distinct, e1, e2, ..., ek ∈ E are
distinct, and {vi, vi+1} ⊆ ei for each i ∈ [k], where vk+1 = v1. We consider
the cycle C as a sub-hypergraph of H with vertex set ∪i∈[k]ei and edge set
{ei : i ∈ [k]}. For any S ⊂ V (resp. S ⊂ E), we write H\S for the sub-hypergraph
of H obtained from H by deleting all vertices in S and all edges incident with
some vertices in S (resp. deleting all edges in E and keeping vertices). If S is
a singleton set {s}, we write H \ s instead of H \ {s}. For any S ⊆ 2V , the
hypergraph (V, E ∪ S) is often written as H ⊕ S if S ∩ E = ∅.

A vertex (resp. edge) subset of H is called a feedback vertex set or FVS
(resp. feedback edge set or FES) of H if it intersects the vertex (resp. edge)
set of every cycle of H. A vertex subset of H is called a transversal of H if it
intersects every edge of H. Let τV

c (H), τE
c (H) and τ(H) denote, respectively, the

minimum cardinalities of a FVS, a FES, and a transversal of H. A matching
of H is an nonempty set of pairwise disjoint edges of H. Let ν(H) denote the
maximum cardinality of a matching of H. It is easy to see that τV

c (H) ≤ τE
c (H),

τV
c (H) ≤ τ(H) and ν(H) ≤ τ(H). Our discussion will frequently use the trivial

observation that if no cycle of H contains any element of some subset S of V ∪E ,
then H and H \ S have the same set of FVS’s, and τV

c (H) = τV
c (H \ S). The

following theorem is one of our main contributions.

Theorem 4. Let H be a linear 3-uniform hypergraph. Then τV
c (H) ≤ ||H||/3.

Proof. Suppose that the theorem failed. We take a counterexample H = (V, E)
with τV

c (H) > |E|/3 such that ||H|| = |E| is as small as possible. Obviously |E| ≥ 3.
Without loss of generality, we can assume that H has no isolated vertices. Since
H is linear, any cycle in H is of length at least 3.

If there exists some e ∈ E which does not belong to any cycle of H, then
τV
c (H) = τV

c (H\e). The minimality of H = (V, E) implies τV
c (H\e) ≤ (|E|−1)/3,

giving τV
c (H) < |E|/3, a contradiction. So we have

(1) Every edge in E is contained in some cycle of H.

If there exists some v ∈ V with dH(v) ≥ 3, then τV
c (H\v) ≤ (|E|−dH(v))/3 ≤

(|E| − 3)/3, where the first inequality is due to the minimality of H. Given a
minimum FVS S of H \ v, it is clear that S ∪ {v} is a FVS of H with size
|S| + 1 = τV

c (H \ v) + 1 ≤ |E|/3, a contradiction to τV
c (H) > |E|/3. So we have

(2) dH(v) ≤ 2 for all v ∈ V.

Suppose that there exists some v ∈ V with dH(v) = 1. Let e1 ∈ E be the
unique edge that contains v. Recall from (1) that e1 is contained in a cycle
C = v1e1v2e2v3 · · · ekv1, where k ≥ 3. By (2), we have dH(vi) = 2 for all i ∈ [k].
In particular dH(v1) = dH(v2) = 2 > dH(v) implies v �∈ {v1, v2}, and in turn
v1, v2, v ∈ e1 enforces e1 = {v1, v, v2}. Let S be a minimum FVS of H′ =
H \ {e1, e2, e3}. It follows from (2) that

H \ v3 ⊆ H \ {e2, e3} = H′ ⊕ e1,
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and in H′ ⊕ e1, edge e1 intersects at most one other edge, and therefore is
not contained in any cycle. Thus S is a FVS of H′ ⊕ e1, and hence a FVS of
H \ v3, implying that {v3} ∪ S is a FVS of H. We deduce that |E|/3 < τV

c (H) ≤
|{v3} ∪ S| ≤ 1 + |S|. Therefore τV

c (H′) = |S| > (|E| − 3)/3 = ||H′||/3 shows a
contradiction to the minimality of H. Hence the vertices of H all have degree at
least 2, which together with (2) gives

(3) H is 2-regular.

Let C = (Vc, Ec) = v1e1v2e2 . . . vkekv1 be a shortest cycle in H, where k ≥ 3.
For each i ∈ [k], suppose that ei = {vi, ui, vi+1}, where vk+1 = v1.

Because C is a shortest cycle, for each pair of distinct indices i, j ∈ [k], we have
ei ∩ ej = ∅ if and only if ei and ej are not adjacent in C, i.e., |i − j| �∈ {1, k − 1}.
This fact along with the linearity of H says that v1, v2, . . . , vk, u1, u2, . . . , uk are
distinct. By (3), each ui is contained in a unique edge fi ∈ E \ Ec, i ∈ [k].
We distinguish among three cases depending on the values of k (mod 3). In
each case, we construct a proper sub-hypergraph H′ of H with ||H′|| < ||H|| and
τV
c (H′) > ||H′||/3 which shows a contradiction to the minimality of H.
Case 1. k ≡ 0 (mod 3): Let S be a minimum FVS of H′ = H \ Ec. Setting
V∗ = {vi : i ≡ 0 (mod 3), i ∈ [k]} and E∗ = {ei : i ≡ 1 (mod 3), i ∈ [k]}, it
follows from (3) that

H \ V∗ ⊆ (H \ Ec) ⊕ E∗ = H′ ⊕ E∗,

and in H′ ⊕ E∗, each edge in E∗ intersects exactly one other edge, and therefore
is not contained in any cycle. Thus (H′ ⊕E∗)\S is also acyclic, so is (H\V∗)\S,
saying that V∗ ∪ S is a FVS of H. We deduce that |E|/3 < τV

c (H) ≤ |V∗ ∪ S| ≤
k/3+ |S|. Therefore τV

c (H′) = |S| > (|E|−k)/3 = ||H′||/3 shows a contradiction.

Case 2. k ≡ 1 (mod 3): Consider the case where f1 �= f3 or f2 �= f4. Relabeling
the vertices and edges if necessary, we may assume without loss of generality
that f1 �= f3. Let S be a minimum FVS of H′ = H \ (Ec ∪ {f1, f3}). Set V∗ = ∅,
E∗ = ∅ if k = 4 and V∗ = {vi : i ≡ 0 (mod 3), i ∈ [k] − [3]}, E∗ = {ei : i ≡ 1
(mod 3), i ∈ [k] − [6]} otherwise. In any case we have |V∗| = (k − 4)/3 and

H\({u1, u3} ∪ V∗) ⊆ (H\(Ec ∪ {f1, f3})) ⊕ ({e2, e4} ∪ E∗) = H′ ⊕ ({e2, e4} ∪ E∗).

Note from (3) that in H′ ⊕ ({e2, e4} ∪ E∗), each edge in {e2, e4} ∪ E∗ can
intersect at most one other edge, and therefore is not contained in any cycle.
Thus (H′ ⊕({e2, e4} ∪ E∗))\S is also acyclic, so is (H\({u1, u3} ∪ V∗))\S. Thus
{u1, u3} ∪ V∗ ∪ S is a FVS of H, and |E|/3 < τV

c (H) ≤ |{u1, u3} ∪ V∗ ∪ S| ≤ 2 +
|V∗| + |S| = (k + 2)/3 + |S|. This gives τV

c (H′) = |S| > (|E|−k−2)/3 = |H′|/3,
a contradiction.

Consider the case where f1 = f3 and f2 = f4. As u1, u2, u3, u4 are distinct
and |f1| = |f2| = 3, we have f1 �= f2. Observe that u1e1v2e2v3e3u3f3u1 is a cycle
in H of length 4. The minimality of k enforces k = 4. Therefore Ec ∪ {f1, f2}
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consist of 6 distinct edges. Let S be a minimum FVS of H′ = H\ (Ec ∪{f1, f2}).
It follows from (3) that

H \ {u2, u4} ⊆ (H \ (Ec ∪ {f1, f2})) ⊕ {e1, e3, f1} = H′ ⊕ {e1, e3, f1}.

In H′ ⊕ {e1, e3, f1}, both e1 and e3 intersect only one other edge, which is f1,
and any cycle through f1 must contain e1 or e3. It follows that none of e1, e3, f1
is contained by a cycle of H′ ⊕{e1, e3, f1}. Thus (H′ ⊕{e1, e3, f1}) \S is acyclic,
so is (H \ {u2, u4}) \ S, saying that {u2, u4} ∪ S is a FVS of H. Hence |E|/3 <
τV
c (H) ≤ |{u2, u4} ∪ S| ≤ 2 + |S|. In turn τV

c (H′) = |S| > (|E| − 6)/3 = ||H′||/3
shows a contradiction.

Case 3. k ≡ 2 (mod 3): Let S be a minimum FVS of H′ = H\(Ec∪{f1}). Setting
V∗ = {vi : i ≡ 1 (mod 3), i ∈ [k] − [3]} and E∗ = {ei : i ≡ 2 (mod 3), i ∈ [k]}, we
have |V∗| = (k − 2)/3 and

H \ ({u1} ∪ V∗) ⊆ (H \ (Ec ∪ {f1})) ⊕ E∗ = H′ ⊕ E∗

In H′ ⊕ E∗, each edge in E∗ intersects at most one other edge, and therefore is not
contained in any cycle. Thus (H′ ⊕ E∗) \ S is acyclic, so is (H \ ({u1} ∪ V∗)) \ S.
Hence {u1} ∪ V∗ ∪ S is a FVS of H, yielding |E|/3 < τV

c (H) ≤ |{u1} ∪ V∗ ∪ S| ≤
1 + (k − 2)/3 + |S| and a contradiction τV

c (H′) = |S| > (|E| − k − 1)/3 = ||H′||/3.
The combination of the above three cases complete the proof. �
The upper bound ||H||/3 in Theorem 4 is best possible. See Fig. 1 for illustra-

tions of five linear 3-uniform hypergraphs attaining the upper bound. It is easy
to prove that the maximum degree of every extremal hypergraph (those H with
τV
c (H) = ||H||/3) is at most three. Despite a number of attempts, we did not find

any extremal hypergraph other than those in Fig. 1. It would be interesting to
characterize all extremal hypergraphs for Theorem 4.

Fig. 1. Some linear 3-uniform hypergraphs H with τV
c (H) = ||H||/3.

The proof of Theorem 4 actually gives a recursive combinatorial algorithm
(Algorithm 1) for finding in polynomial time a FVS of size at most ||H||/3 on a
linear 3-uniform hypergraph H.

Note that Algorithm 1 never visits isolated vertices (it only scans along the
edges of the current hypergraph). The number of iterations performed by the
algorithm is upper bounded by |E|. Since H is 3-uniform, the condition in any
step is checkable in O(|E|2) time. One can use the breadth first search algorithm
to find a cycle in stated in Step 7 or Step 9 in O(|E|2) time. Thus Algorithm 1
runs in O(|E|3) time.
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ALGORITHM 1. Fvs(·) for finding FVS’s of linear 3-uniform hyper-
graphs
Input: A linear 3-uniform hypergraph H = (V, E).
Output: Fvs(H), which is a FVS of H with cardinality at most ||H||/3.

1. If |E| ≤ 2 Then Return ∅
2. Else If ∃ s ∈ V ∪ E s.t. s is not contained in any cycle of H
3. Then Return Fvs(H \ s)

4. If ∃ s ∈ V s.t. dH(s) ≥ 3

5. Then Return {s} ∪ Fvs(H \ s)

6. If ∃ v ∈ V s.t. dH(v) = 1

7. Then Let v1e1v2e2v3 · · · ekv1 be a cycle of H s.t. e1 = {v1, v2, v}
8. Return {v3} ∪ Fvs(H \ {e1, e2, e3})

9. Let (Vc, Ec) = v1e1v2e2 . . . vkekv1 be a shortest cycle in H
10. For each i∈ [k], let ui ∈Vc, fi ∈E \ Ec be s.t. {ui, vi, vi+1} = ei, ui ∈ fi
11. If k ≡ 0 (mod 3)

12. Then Return {vi : i ≡ 0 (mod 3), i ∈ [k]} ∪ Fvs(H \ Ec)

13. If k ≡ 1 (mod 3)

14. Then If f1 	= f3 or f2 	= f4
15. Then Relabel vertices & edges if necessary to make f1 	=f3
16. V∗ ← {vi : i ≡ 0 (mod 3), i ∈ [k] − [3]}
17. Return {u1, u3} ∪ V∗ ∪ Fvs(H \ Ec \ {f1, f3})

18. Else Return {u2, u4} ∪ Fvs(H \ Ec \ {f1, f2})

19. If k ≡ 2 (mod 3)

20. Then V∗ ← {vi : i ≡ 1 (mod 3), i ∈ [k] − [3]}
21. Return {u1} ∪ V∗ ∪ Fvs(H \ (Ec ∪ {f1}))

Corollary 1. Given any linear 3-uniform hypergraph H, Algorithm 1 finds in
O(||H||3) time a FVS of H with size at most ||H||/3. �

Corollary 1 concerns with small FVS of linear 3-uniform hypergraphs. Next,
we consider the counterpart of FES.

Lemma 1. If H = (V, E) is a connected linear 3-uniform hypergraph without
cycles, then |V| = 2|E| + 1.

Proof. We prove by induction on |E|. The base case where |E| = 0 is trivial.
Inductively, we assume that |E| ≥ 1 and the lemma holds for all connected acyclic
linear 3-uniform hypergraph of edges fewer than H. Take arbitrary e ∈ E . Since
H is connected, acyclic and 3-uniform, H \ e contains exactly three components
Hi = (Vi, Ei), i = 1, 2, 3. Note that for each i ∈ [3], hypergraph Hi with |Ei| < |E|
is connected, linear, 3-uniform and acyclic. By the induction hypothesis, we have
|Vi| = 2|Ei| + 1 for i = 1, 2, 3. It follows that |V| = 3

i=1 |Vi| = 2 3
i=1 |Ei| + 3 =

2|E| + 1. �
Given any hypergraph H = (V, E), we can easily find a minimal (not neces-

sarily minimum) FES in O(|E|2) time: Go through the edges of the trivial FES
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E in any order, and remove the edge from the FES immediately if the edge is
redundant. The redundancy test can be implemented using Depth First Search.

Lemma 2. Let H = (V, E) be a linear 3-uniform hypergraph with p components.
If F is a minimal FES of H, then |F| ≤ 2|E| − |V| + p. In particular, τE

c (H) ≤
2|E| − |V| + p.

Proof. Suppose that H \ F contains exactly k components Hi = (Vi, Ei), i =
1, . . . , k. It follows from Lemma 1 that |Vi| = 2|Ei| + 1 for each i ∈ [k]. Thus
|V| = i∈[k] |Vi| = 2 i∈[k] |Ei| + k = 2(|E| − |F|) + k, which means 2|F| =
2|E| − |V| + k. To establish the lemma, it suffices to prove k ≤ |F| + p.

In case of |F| = 0, we have F = ∅ and k = p = |F| + p. In case of |F| ≥ 1,
suppose that F = {e1, ..., e|F|}. Because F is a minimal FES of H, for each
i ∈ [|F|], there is a cycle Ci in H \ (F \ {ei}) such that ei ∈ Ci, and Ci \ ei is a
path in H\F connecting two of the three vertices in ei. Considering H\F being
obtained from H be removing e1, e2, . . . , e|F| sequentially, for i = 1, . . . , |F|, since
|ei| = 3, the presence of path Ci \ ei implies that the removal of ei can create at
most one more component. Therefore we have k ≤ p + |F| as desired. �

Given a hypergraph H, let MH be the V ×E incidence matrix. If H is acyclic,
then MH falls within the class of restricted totally unimodular matrices, and
a minimum transversal and a maximum matching of H can be found using
Yanakakis’s combinatorial algorithm [13] based on the current best combinatorial
algorithms for the b-matching problem and the maximum weighted independent
set problem on bipartite multigraphs [10].

Theorem 5 ([2,13]). Let H be a hypergraph with n non-isolated vertices and m
edges. If H has no cycle, then τ(H) = ν(H), and a minimum transversal and a
maximum matching of H can be found in O(n(m + n log n) log n) time. �

3 Triangle Packing and Covering

This section establishes several new sufficient conditions for Conjecture 1,
and provides their algorithmic implications on finding small triangle covers.
Section 3.1 deals with graphs of high triangle packing numbers. Section 3.2 inves-
tigates irreducible graphs with many edges.

To each graph G = (V,E), we associate a hypergraph HG = (E,TG), referred
to as triangle hypergraph of G. Since G is simple, it is easy to see that HG is
3-uniform and linear, ν(HG) = νt(G) and τ(HG) = τt(G). Note that ||HG|| =
|TG| < min{|V |3, |E|3}, and |E| ≤ 3|TG| if G is irreducible, i.e., ∪T∈TG

E(T ) =
E. Note that the number of non-isolated vertices of HG is upper bounded by
3||HG|| = 3|TG|.
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3.1 Graphs with Many Edge-Disjoint Triangles

We investigate Conjecture 1 for graphs with large triangle packing numbers,
which are firstly compared with the number of triangles, and then with the
number of edges.

Theorem 6. If a graph G and a real number c ∈ (0, 1] satisfy νt(G)/|TG| ≥ c,
then a triangle cover of G with size at most 3c+1

3c νt(G) can be found in O(|TG|3)
time, which implies τt(G)/νt(G) ≤ 1 + 1

3c .

Proof. We consider the triangle hypergraph HG = (E,TG) of G which is 3-
uniform and linear. By Corollary 1, we can find in O(|TG|3) time a FVS
S of HG with |S| ≤ |TG|/3. Since ν(HG) = νt(G) ≥ c|TG|, it follows
that |S| ≤ ν(HG)/(3c). As HG \ S is acyclic, Theorem 5 enables us to find
in O(|TG|2 log2 |TG|) time a minimum transversal R of HG \ S such that
|R| = τ(HG \ S) = ν(HG \ S). We observe that S ∪ R ⊆ E and G \ (S ∪ R) is
triangle-free. Hence S ∪ R is a triangle cover of G with size

|S ∪ R| ≤ ν(HG)
3c

+ ν(HG \ S) ≤ 3c + 1
3c

ν(HG) =
3c + 1

3c
νt(G),

which proves the theorem. �
The special case of c = 1/3 in the above theorem gives the following result

providing a new sufficient condition for Conjecture 1.

Corollary 2. If graph G satisfies νt(G)/|TG| ≥ 1/3, then τt(G)/νt(G) ≤ 2. �
The mapping from the lower bound c in the condition νt(G)/|TG| ≥ c to the

upper bound 1+ 1
3c in the conclusion τt(G)/νt(G) ≤ 1+ 1

3c of Theorem 6 shows a
kind of trade-off. In Corollary 2, c = 1

3 maps to 1 + 1
3c = 2 hitting the boundary

of Conjecture 1. It remains to study graphs G with νt(G)/|TG| < 1
3 . The next

theorem (Theorem 7) says that we only need to take care of graphs G with
νt(G)/|TG| ∈ ( 14 − ε, 1

3 ), where ε can be any arbitrarily small positive number.
So, in some sense, to settle Conjecture 1, we only have a gap of 1

3 − 1
4 = 1

12 to be
bridged. Interestingly, for c = 1

4 , we have 1 + 1
3c = 7

3 = 2.333..., which is much
better than the best known general bound 2.87 due to Haxell [7].

Theorem 7. If there exists some real δ > 0 such that Conjecture 1 holds for
every graph G with νt(G)/|TG| ≥ 1/4 − δ, then Conjecture 1 holds for every
graph.

Proof. If δ ≥ 1
4 , the theorem is trivial. We consider 0 < δ < 1

4 . As the set of
rational numbers is dense, we may assume δ ∈ Q and 1/4 − δ = i/j for some
i, j ∈ N. Therefore i/j < 1/4 gives 4i + 1 ≤ j, i.e., 4 + 1/i ≤ j/i. It remains to
prove that for any graph G with νt(G) < (i/j)|TG| there holds τt(G) ≤ 2νt(G).

Write k for the positive integer i|TG|− j ·νt(G). Let G′ be the disjoint union
of G and k copies of K4. Clearly, |TG′ | = |TG| + k|TK4 | = |TG| + 4k, τt(G′) =
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τt(G) + k · τt(K4) = τt(G) + 2k and νt(G′) = νt(G) + k · νt(K4) = νt(G) + k.
It follows that

(i/j)|TG′ | = (i/j)(|TG| + 4k)
= (i/j)((k + j · νt(G))/i + 4k)
= (i/j)(j · νt(G)/i + (4 + 1/i)k)
≤ νt(G) + k

= νt(G′)

where the inequality is guaranteed by 4 + 1/i ≤ j/i. So νt(G′) ≥ (1/4 − δ)|TG′ |
together with the hypothesis of the theorem implies τt(G′) ≤ 2νt(G′), i.e., τt(G)+
2k ≤ 2(νt(G) + k), giving τt(G) ≤ 2νt(G) as desired. �

Next, we discuss the sufficient condition that compares the triangle packing
number with the number of edges. It is based on the fact that every graph G can
be made bipartite (and thus triangle-free) in polynomial time by removing at
most half of its edges. Therefore τt(G) ≤ |E(G)|/2, which implies the following
result.

Corollary 3. If G = (V,E) is a graph such that νt(G)/|E| ≥ c for some
c > 0, then τt(G)/νt(G) ≤ 1/(2c). In particular, if νt(G)/|E| ≥ 1/4, then
τt(G)/νt(G) ≤ 2. �

Thus if νt(G)/|E| ≥ c for some c > 0, then a triangle cover of G with size
at most νt(G)/(2c) can be found in polynomial time. Complementary to Corol-
lary 2 whose condition νt(G)/|TG| ≥ 1/3 mainly takes care of sparse graphs,
the second statement of Corollary 3 applies to many dense graphs, including
complete graphs on 25 or more vertices.

Similar to Corollary 2 and Theorem 7, by which our future investigation
space on Conjecture 1 shrinks to interval (14 −ε, 1

3 ) w.r.t. νt(G)/|TG|, Corollary 3
and the following Theorem 8 narrow the interval w.r.t. νt(G)/|E| to (15 − ε, 1

4 ).
Moreover, when taking c = 1

5 in Corollary 3. we obtain 1
2c = 2.5, still better

than the general bound 2.87 of Haxell [7].

Theorem 8. If there exists some real δ > 0 such that Conjecture 1 holds for
every graph G with νt(G)/|E| ≥ 1/5 − δ, then Conjecture 1 holds for every
graph. �
Proof. We use the similar trick to that in proving Theorem 7; we add a number of
complete graphs on five (instead of four) vertices. We may assume δ ∈ (0, 1

5 )∩Q

and 1/5 − δ = i/j for some i, j ∈ N. Therefore i/j < 1/5 and the integrality of
i, j imply 5 + 1/i ≤ j/i. To prove Conjecture 1 for each graph G with νt(G) <
(i/j)|E|, we write k = i|E|−j ·νt(G) ∈ N. Let G′ = (V ′, E′) be the disjoint union
of G and k copies of K5’s. Then |E′| = |E| + 10k, τt(G′) = τt(G) + k · τt(K5) =
τt(G) + 4k, νt(G′) = νt(G) + k · νt(K5) = νt(G) + 2k, and

(i/j)|E′| = (i/j)(|E| + 10k) = (i/j)(j · νt(G)/i + (10 + 1/i)k) ≤ νt(G) + 2k = νt(G
′)

where the inequality is guaranteed by 10+1/i ≤ 2j/i. So νt(G′) ≥ (1/5−δ)|E′|
together with the hypothesis the theorem implies τt(G′) ≤ 2νt(G′), i.e., τt(G) +
4k ≤ 2(νt(G) + 2k), giving τt(G) ≤ 2νt(G) as desired. �
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3.2 Graphs with Many Edges on Triangles

Each graph has a unique maximum irreducible subgraph. Conjecture 1 is valid for
a graph if and only the conjecture is valid for its maximum irreducible subgraph.
In this section, we study sufficient conditions for Conjecture 1 on irreducible
graphs that bound the number of edges from below in terms of the number of
triangles.

Theorem 9. If G = (V,E) is an irreducible graph such that |E|/|TG| ≥ 2,
then a triangle cover of G with cardinality at most 2νt(G) can be found in
O(|TG|2 log2 |TG|) time, which implies τt(G)/νt(G) ≤ 2.

Proof. Let p be the number of components of the linear 3-uniform hypergraph
H = (E,TG) associated to G. By Lemma 2, we can find in O(|TG|2) time a
minimal FES F of H such that |F| ≤ 2|TG|− |E|+p ≤ p. Since G is irreducible,
we see that H has no isolated vertices, i.e., every component of H has at least
one edge. Thus ν(H) ≥ p ≥ |F|. For the acyclic hypergraph H\F , By Lemma 5
we may found in O(|TG|2 log2 |TG|) time a minimum transversal R of H \ F
such that

|R| = τ(H \ F) = ν(H \ F).

Observe that R ⊆ E and F ⊆ TG. If F = ∅, set S = ∅, else for each F ∈ F ,
take eF ∈ E with eF ∈ F , and set S = {eF : F ∈ F}. It is clear that R ∪ S
is a transversal of H (i.e., a triangle cover of G) with cardinality |R ∪ S| ≤
ν(H \ F) + |F| ≤ 2ν(H) = 2νt(G), establishing the theorem. �

We observe that the graphs G that consist of a number of triangles sharing a
common edge satisfy |E(G)| ≥ 2|TG|, and νt(G) < |TG|/3 when |TG| ≥ 4. So in
some sense, Theorem 9 works as a supplement of Corollary 2 for sparse graphs.

Along the same line as in the previous subsection, Theorem 9 and the fol-
lowing Theorem 10 jointly narrow the interval w.r.t. |E(G)|/|TG| to (1.5 − ε, 2)
for future study of Conjecture 1 on graph G.

Theorem 10. If there exists some real δ > 0 such that Conjecture 1 holds for
every irreducible graph G = (V,E) with |E|/|TG| ≥ 3/2 − δ, then Conjecture 1
holds for every graph. �

4 Conclusion

Using tools from hypergraphs, we design polynomial-time combinatorial algo-
rithms for finding a small triangle covers in graphs, which particularly imply
several sufficient conditions for Conjecture 1. The high level idea of these algo-
rithms is to remove some edges from G so that the triangle hypergraph of the
remaining graph is acyclic (see the proofs of Theorems 4 and 9), which guaran-
tees that the remaining graph has equal triangle covering number and triangle
packing number, and a minimum triangle cover of the remaining graph is com-
putable in polynomial time (see Theorem 5). It is well-known that the acyclic
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condition in Theorem 5 could be weakened to odd-cycle-freeness [13]. So our
sufficient conditions could be (significantly) improved if we can remove (much)
fewer edges from G such that the triangle hypergraph of the remaining graph is
odd-cycle free.

Acknowledgements. The authors are indebted to Dr. Gregory J. Puleo and Dr.
Zbigniew Lonc for their invaluable comments and suggestions.
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Abstract. Given an undirected graph G = (V, E) with |V | = n and a
vertex coloring, a vertex v is happy if v and all its neighbors have the
same color. An edge is happy if its end vertices have the same color.
Given a partial coloring of the vertices of the graph using k colors, the
Maximum Happy Vertices (also called k-MHV) problem asks to color the
remaining vertices such that the number of happy vertices is maximized.
The Maximum Happy Edges (also called k-MHE) problem asks to color
the remaining vertices such that the number of happy edges is maximized.
For arbitrary graphs, k-MHV and k-MHE are NP-Hard for k ≥ 3. In this
paper we study these problems for trees. For a fixed k we present linear
time algorithms for both the problems. In general, for any k the proposed
algorithms take O(nk log k) and O(nk) time respectively.

Keywords: Happy vertex · Happy edge · Graph coloring · Coloring
trees

1 Introduction

Graph coloring problems are well studied in literature. The traditional vertex
coloring problem asks to color the vertices of the graph using minimum number
of colors such that the adjacent vertices get different colors. There are many
variants of coloring problems. Recently, Zhang and Li [10] studied a coloring
problem in which adjacent vertices are allowed to get same color. The proposed
problems have applications related to homophyly in networks (see Chapter 4
of [4]).

Given an undirected graph G = (V,E) and a vertex coloring, a vertex is
happy if the vertex and all its adjacent vertices have the same color and unhappy
otherwise. An edge is happy if its end vertices have the same color and unhappy
otherwise.

For S ⊆ V , let cp : S → {1, 2, . . . , k} be a partial vertex coloring. A coloring
cf : V → {1, 2, . . . , k} is an extended full coloring for cp, if cf (v) = cp(v),∀v ∈ S.
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Given an S ⊆ V and a partial coloring cp, Maximum Happy Vertices (MHV)
(respectively, Maximum Happy Edges (MHE)) problem asks to find an extended
full coloring c such that the number of happy vertices (respectively, edges) is
maximized. As k is also an input parameter, the problem is also referred to as
k-MHV (respectively, k-MHE).

Definition 1. Multiway-Cut
(Instance) We are given an undirected graph G = (V,E) and a terminal set

S = {s1, s2, . . . , sk} ⊆ V .
(Goal) Find a set of edges C ⊆ E with minimum cardinality whose removal

disconnects all the terminals from each other.

Definition 2. Multiway-Uncut
(Instance) We are given an undirected graph G = (V,E) and a terminal set

S = {s1, s2, . . . , sk} ⊆ V .
(Goal) Find a partition {V1, V2, . . . , Vk} of V such that each partition con-

tains exactly one terminal and the number of edges not cut by the partition is
maximized.

The k-MHE problem is a generalization of the Multiway Uncut problem [7]
which is the complement of Multiway Cut problem [1,2]. The Multiway Uncut
problem is a special case of k-MHE problem in which there is exactly one pre-
colored vertex (terminal) for each color.

Both k-MHV and k-MHE problems are NP-Hard [10] for k ≥ 3 for arbi-
trary graphs. In [10], O(mn7 log n) and O(min{n

2
3 m,m

3
2 }) time algorithms are

presented for 2-MHV and 2-MHE respectively. Towards this end, the authors
of [10] used techniques such as minimizing sub modular functions (2-MHV) [6]
and max-flow algorithms (2-MHE) [5]. Zhang and Li [10] presented approxima-
tion algorithms with approximation ratios max{ 1

k , Ω(Δ−3)} and 1
2 for k-MHV

and k-MHE respectively. Here, Δ is the maximum degree of the graph. Later,
Zhang et al. [9] presented approximation algorithms with approximation ratios

1
Δ+1 and (12 +

√
2
4 f(k)) ≥ 0.8535 for k-MHV and k-MHE respectively.

1.1 Our Results

Apart from the results in [9,10], the MHV and MHE problems does not seem
to be addressed for any class of graphs. In this paper, we study these problems
for trees. We propose dynamic programming based algorithms for both k-MHV
and k-MHE. For an arbitrary k, the proposed algorithms take O(nk log k) and
O(nk) time respectively. When k is fixed, the algorithms run in linear time.
We also extend our algorithms to generate all the optimal colorings of the tree.
Generating each optimal coloring takes polynomial time.

Using the result from [2] we observe that, for an arbitrary k, the k-MHE
problem is NP-Hard for planar graphs. Using the result from [3] we infer that,
when the number of pre-colored vertices is bounded, the k-MHE problem can
be solved in linear time for graphs with bounded branch width.
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The rest of the paper is organized as follows: In Sect. 2 we discuss the algo-
rithm for the k-MHV problem, in Sect. 3 we discuss the algorithm for the k-MHE
problem and the related observations. We conclude with Sect. 4. Throughout the
paper we assume that the input graph is a tree (T ). We use integers from 1 to
k to denote the colors.

2 Algorithm for k-MHV Problem

We root the tree at an arbitrary vertex. Let Tv denotes the subtree rooted at a
vertex v. Before presenting the algorithm we give a simple reduction rule, which
can be executed in linear time.

Rule 1: If a leaf vertex is uncolored, remove it and count the leaf vertex as
happy.

We can give the color of its parent to the uncolored leaf to make it happy.
Hence, without loss of generality we can assume that all the leaves are colored.

We process the vertices of the rooted tree according to post order traversal.
At each vertex v, we maintain a list of 2k integer values. The maximum value
of these 2k values gives the maximum number of happy vertices in Tv, the sub
tree rooted at v. The maximum value of the 2k values associated with the root
gives us the maximum number of happy vertices of the tree. The corresponding
optimal coloring can also be traced back in reverse direction. The list of 2k values
defined as follows, for 1 ≤ i ≤ k:

– Tv[i,H]: The maximum number of happy vertices in the subtree Tv, when v is
colored i and is happy in Tv. That is, when v and all its children are colored
i. Note that, here we focus on v being happy in the subtree Tv. The vertex v
can become unhappy in the tree T because its parent gets another color.

– Tv[i, U ]: The maximum number of happy vertices in Tv, when v is colored i
and is unhappy in Tv. That is, when one or more children of v are colored
with a color other than i.

Note that, if a vertex or some of its children are already colored, then some
of the 2k values are invalid. We use −1 to denote an invalid value. We keep these
2k values in an array to access any specific item in constant time. The values are
indexed in the order, Tv[1,H], Tv[1, U ], Tv[2,H], Tv[2, U ], . . . , Tv[k,H], Tv[k, U ].

The following expressions are defined to simplify some of the equations:

– Tv[i, ∗]: The maximum number of happy vertices in the subtree Tv, when v is
colored i. v may be happy or unhappy. That is:

Tv[i, ∗] = max{Tv[i,H], Tv[i, U ]}. (1)

– Tv[i,−]: The maximum number of happy vertices in Tv excluding v, when v
is colored i.

Tv[i,−] = max{Tv[i,H] − 1, Tv[i, U ]}. (2)
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– Tv[ı, ∗]: The maximum number of happy vertices in the subtree Tv, when v is
colored with color other than i.

Tv[ı, ∗] = max
r �=i

{Tv[r, ∗]}. (3)

– Tv[ı,−]: The maximum number of happy vertices in the subtree Tv excluding
v, when v is colored with color other than i.

Tv[ı,−] = max
r �=i

{Tv[r,−]}. (4)

– Tv[∗, ∗]: The maximum number of happy vertices in Tv. That is:

Tv[∗, ∗] = max{Tv[1, ∗], Tv[2, ∗], . . . , Tv[k, ∗]}. (5)

Now we explain the process to compute these 2k values at each vertex. As
a leaf vertex is pre-colored, it is always happy alone as a subtree with a single
vertex. Only one out of 2k values is valid. Suppose the color of the leaf is i, then
the only valid value is Tv[i,H] = 1.

The following subsections consider the case when v is a non leaf vertex. Let
v1, v2, . . . , vd be the children of v. The values Tv[i,H] and Tv[i, U ] are invalid, if
v is pre-colored with a color r 	= i. Otherwise, we compute Tv[i,H] and Tv[i, U ]
as follows:

2.1 Computing Tv[i,H]

Computing Tv[i,H] has two cases:

Algorithm 1. Computing Tv[i,H]
1: procedure ComputeTvH(v, i)
2: if ∀vj , Tvj [i, ∗] �= −1 then
3: return (1 +

∑
vj

Tvj [i, ∗]) � Case 2

4: else
5: return −1 � Case 1
6: end if
7: end procedure

Case 1: For some child vj , Tvj
[i, ∗] = −1.

This means that the child vj is pre colored with a color other than i. In this
case, v becomes unhappy when it gets color i. So Tv[i,H] is invalid.

Case 2: For every child vj , Tvj
[i, ∗] > −1.

In this case, we use the following equation to compute Tv[i,H].

Tv[i,H] = 1 +
∑

vj

Tvj
[i, ∗]. (6)
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Algorithm 2. Computing Tv[i, U ]
1: procedure ComputeTvU(v, i)
2: if every child vj is pre-colored with color i then
3: return −1 � Case 1
4: else if ∃vj′ child of v such that Tvj′ [∗, ∗] �= Tvj′ [i, ∗] then
5: return (

∑
vj

max{Tvj [1, −], . . . , Tvj [i, ∗], . . . , Tvj [k, −]}) � Case 2

6: else � Case 3
7: for each child vj do
8: diff(vj , i) ← Tvj [i, ∗] − Tvj [ı, −]
9: end for

10: v� ← argminvj
diff(vj , i)

11: q ← argmaxr �=i Tv� [r, −]
12: return (Tv� [q, −] +

∑
vj �=v�

Tvj [i, ∗])

13: end if
14: end procedure

2.2 Computing Tv[i, U ]

Computing Tv[i, U ] has three cases:

Case 1: Every child vj is pre colored with color i.
In this case, we cannot make v unhappy by giving color i to v. Hence Tv[i, U ] is

invalid.
Case 2: For some child vj′ , Tvj′ [∗, ∗] 	= Tvj′ [i, ∗].
That is, the child vj′ has color r 	= i in the optimal coloring of Tvj′ . When v is

colored i and vj′ is colored r, irrespective of the colors of the other children,
v will certainly be unhappy. In this case, we use the following expression to
compute Tv[i, U ].

Tv[i, U ] = Tvj′ [r,−] +
∑

vj child of v,

vj �=vj′

max{Tvj
[1,−], . . . , Tvj

[i, ∗], . . . , Tvj
[k,−]}

(7)

=
∑

vj child of v

max{Tvj
[1,−], . . . , Tvj

[i, ∗], . . . , Tvj
[k,−]}. (8)

Case 3: For every child vj , Tvj
[∗, ∗] = Tvj

[i, ∗].
For each vj , if we pick Tvj

[i, ∗], v will become happy, but we need v to be
unhappy. To avoid this situation, for some child we pick a value with color
other than i as follows:

For each vj , we define diff(vj , i) as follows:

diff(vj , i) = Tvj
[i, ∗] − Tvj

[ı,−]. (9)
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We pick the child (say v�) with minimum diff(vj , i) value. Suppose, Tv�
[ı,−] =

Tv�
[q,−], we replace Tv�

[i, ∗] with Tv�
[q,−]. The new expression is:

Tv[i, U ] = Tv�
[q,−] +

∑

vj �=v�

Tvj
[i, ∗]. (10)

Algorithm 3. Algorithm for MHV problem
1: for each v ∈ V in post order do
2: for i = 1 to k do
3: if v is a leaf then
4: if color(v) = i then
5: Tv[i, H] ← 1
6: Tv[i, U ] ← −1
7: else
8: Tv[i, H] ← −1
9: Tv[i, U ] ← −1

10: end if
11: else
12: if v is pre-colored and color(v) �= i then
13: Tv[i, H] ← −1
14: Tv[i, U ] ← −1
15: else
16: Tv[i, H] ← ComputeTvH(v, i)
17: Tv[i, U ] ← ComputeTvU(v, i)
18: end if
19: end if
20: end for
21: end for

Theorem 1. There is an O(nk log k) time algorithm for the k-MHV problem
for trees.

Proof. We evaluate the time spent at a particular vertex v to compute Tv[i,H]
and Tv[i, U ], for 1 ≤ i ≤ k. Let v1, v2, . . . , vd be the children of v.

Computing Tv[i,H]: The Tvj
[i,H] and Tvj

[i, U ] values are accessible in con-
stant time for each child vj . Time to compute Tv[i,H], ∀1 ≤ i ≤ k is:

∑

1≤i≤k

O(d) = O(kd). (11)

Computing Tv[i, U ]: We sort the 2k values in descending order. For any child
vj , Tvj

[i, ∗] is available in constant time from the original array. From the sorted
array Tvj

[∗, ∗] and Tvj
[ı, ∗] are available in constant time. Hence Tv[i, U ], ∀1 ≤

i ≤ k can be computed in:

O(dk log k) +
∑

1≤i≤k

O(d) = O(dk log k). (12)
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Hence the total time is:
∑

v

dk + dk log k ≤
∑

v

2dk log k = 2k log k
∑

v

d = O(nk log k). (13)


�
The correctness of the value Tv[∗, ∗] for every vertex v implies the correctness

of the algorithm. The correctness of the value Tv[∗, ∗] follows from the correct-
ness of the 2k values Tv[1,H], Tv[1, U ], Tv[2,H], Tv[2, U ], . . . , Tv[k,H], Tv[k, U ]
associated with v.

Theorem 2. Algorithm 3 correctly computes the values Tv[i,H] and Tv[i, U ] for
every v and 1 ≤ i ≤ k.

Proof. We prove the theorem by using induction on the size of the subtrees. For
a leaf vertex v, the algorithm correctly computes the values Tv[i,H] and Tv[i, U ]
for 1 ≤ i ≤ k. Since the leaf vertices are pre-colored, each leaf vertex has only
one valid value (this value being 1).

For a non-leaf vertex v, let v1, v2, . . . , vd be the children of v. By induction on
the size of the sub-trees, all the 2k values associated with each child vj of v are
correctly computed. Let x be the value computed by the algorithm for Tv[i,H]
(or Tv[i, U ]) for any color i. If x is not the optimal value, it will contradict the
optimality of at least one value of a child of v. Hence the algorithm correctly
computes the values Tv[i,H] and Tv[i, U ] for every v and 1 ≤ i ≤ k. 
�

2.3 Generating All Optimal Happy Vertex Colorings

Our algorithm can also be extended to generate all the optimal happy vertex
colorings of the tree. Among the 2k values associated with a vertex v, there
may be multiple values equal to the optimal value. So, while generating optimal
happy vertex coloring, we can chose any of these values to generate a different
optimal coloring. For example, let Tv[i,H] be an optimal value for the vertex v.
Let vj be a child of v with both Tvj

[i,H] and Tvj
[i, U ] are optimal. So, we can

generate one optimal coloring by picking Tvj
[i,H] and another optimal coloring

by picking Tvj
[i, U ]. There may be exponentially many optimal colorings, but,

generating each optimal coloring takes polynomial time (linear time for fixed k).

3 Algorithm for k-MHE Problem

Before presenting the algorithm we give simple reduction rules, which can be
executed in linear time.

Rule 2: Let v be a pre-colored vertex with degree more than 1. Let v1, v2, . . . , vd

be the neighbours of v in T . We can divide T into d edge disjoint subtrees
T1, T2, . . . , Td and all these trees share only the vertex v.

k-MHE(T ) = k-MHE(T1) + k-MHE(T2) + · · · + k-MHE(Td). (14)
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With the application of Rule 2, without loss of generality we can assume that
T does not have a pre-colored vertex with degree more than 1.

Now, we root the tree at an arbitrary vertex with degree more than 1.

Rule 3: (Similar to Rule 1 in Sect. 2) If a leaf vertex is uncolored, remove it
and count the edge connecting the leaf vertex as happy.

With Rule 2 and Rule 3, without loss of generality, all the leaves of the rooted
tree T are pre-colored and no non-leaf vertex is pre-colored.

Our algorithm for k-MHE problem has two phases. In the first phase, we visit
the vertices according to post order traversal and populate a list of tentative
colors for each vertex. In the second phase we visit the vertices according to
pre-order traversal and assign a color for each vertex.

Algorithm 4. Phase 1 of the algorithm
1: procedure PopulateTentativeColors(T )
2: for each v ∈ V in post order do
3: if v is a leaf then
4: L(v) ← color(v)
5: else � Let v1, v2, . . . , vd be the children of v
6: frequency[1..k] ← {0}
7: for each child vj of v do
8: for each color c ∈ L(v) do
9: frequency[c] ← frequency[c] + 1

10: end for
11: end for
12: max ← 0
13: for i = 1 to k do
14: if frequency[i] > max then
15: max ← frequency[i]
16: end if
17: end for
18: for i = 1 to k do
19: if frequency[i] = max then
20: L(v) ← L(v) ∪ {i}
21: end if
22: end for
23: end if
24: end for
25: end procedure

Phase 1: We visit the vertices according to post order traversal. At each vertex
v, we keep a list of tentative colors to assign to the vertex v in the optimal
solution. The size of this list is at most k. Let L(v) denote the list of tentative
colors associated with the vertex v.
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If the vertex v is a leaf, as the leaf vertex is pre-colored, we add that pre-
color to L(v). Otherwise, let v1, v2, . . . , vd be the children of v. The list of
tentative colors L(vj) for each vertex vj are already computed. For each child
vj , we traverse the list L(vj) and compute the frequency of occurrences of
each color in the multiset that is union of the lists. Let frequency(i) denote
the frequency of color i. We add all the colors with maximum frequency to
L(v). The process is captured in Algorithm 4.

Algorithm 5. Phase 2 of the algorithm
1: procedure AttachColors(T, L) � Fixing color to vertices
2: for each v ∈ V in pre order do
3: if |L(v)| = 1 then
4: color(v) ← Only element of L(v)
5: else if color(parent(v)) ∈ L(v) then
6: color(v) ← color(parent(v))
7: else
8: color(v) ← Any element of L(v)
9: end if

10: end for
11: end procedure

Phase 2: We visit the vertices according to pre-order traversal to assign a color
to each vertex. Let v be the vertex in pre-order. If |L(v)| = 1, then we fix
the color of v to the only color in L(v). Otherwise, we check if the color of
the parent of v is present in L(v), and assign it to v if present. Otherwise, we
pick any arbitrary color from L(v) and assign it to v. The process is captured
in Algorithm 5.

Theorem 3. There is an O(nk) time algorithm for the k-MHE problem for
trees.

Proof. At each vertex with degree d, we perform O(kd) time in the Phase 1 and
O(k) time in the Phase 2. The time complexity is:

∑

v

O(kd) = O(nk). (15)


�
The correctness of the algorithm can be proved using induction on the size

of the sub-tree similar to Theorem 2.
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3.1 Generating All Optimal Happy Edge Colorings

Our algorithm can be extended to generate all the optimal happy edge color-
ings. We keep a list of tentative colors at each vertex. At a vertex v, if the
color(parent(v)) is present in L(v), then, we assign the color(parent(v)) to v in
the optimal coloring. Otherwise, we can generate a different optimal coloring
for each color in L(v). Here we point out that, this scheme may miss out some
optimal colorings when color(parent(v)) is not present in L(v) but present in the
set of colors with frequency one less than the maximum frequency. In this case,
we can assign the color(parent(v)) to v even though the color(parent(v)) is not
present in L(v). A special case of this scenario is when there is a vertex v where all
its children have distinct colors (the maximum frequency being 1). Even though
the color(parent(v)) not present in L(v), we can assign the color(parent(v)) to v
as it has zero frequency at v.

There may be exponentially many optimal happy edge colorings. Generating
each optimal coloring takes polynomial time (linear time for fixed k).

3.2 k-MHE for Planar Graphs and Graphs with Bounded Branch
Width

The Multiway-Cut problem is NP-Hard for planar graphs [2] when k, the number
of terminals, is not fixed. This implies the following theorem on hardness of k-
MHE for planar graphs for an arbitrary k.

Theorem 4. For an arbitrary k, the k-MHE problem is NP-Hard for planar
graphs.

In [8], Robertson and Seymour introduced the notions of tree width and
branch width. They showed that these two quantities are always within a con-
stant factor of each other. Many graph problems that are NP-Hard for gen-
eral graphs have been shown to be solvable in polynomial time for graphs with
bounded tree width or equivalently bounded branch width. For more formal
definitions of branch width and tree width we refer the readers to [8].

Definition 3. Multi-Multiway Cut
(Instance) We are given an undirected graph G = (V,E) and c sets of vertices

S1, S2, . . . , Sc.
(Goal) Find a set of edges C ⊆ E with minimum cardinality whose removal

disconnects every pair of vertices in each set Si.

When c = 1, the Multi-Multiway Cut problem is equivalent to Multiway
Cut problem. The k-MHE problem can also be formulated as a Multi-Multiway
Cut problem, by creating vertex sets with every pair of pre-colored vertices with
different colors. In [3], Deng et al. studied the Multi-Multiway Cut problem
for graphs with bounded branch width and presented an O(b2b+2.22bc.|G|) time
algorithm, where b is the branch width of the graph and c is the number of vertex
sets. The algorithm runs in linear time when the branch width and the number
of vertex sets are fixed.
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Theorem 5. When the branch width of the graph and the number of pre-colored
vertices are bounded, there is a linear time algorithm for the k-MHE problem.

Proof. Let the number of pre-colored vertices be p and the branch width be b.
For this instance of k-MHE, we can formulate a Multi-Multiway Cut problem
with at most p2 vertex sets. Hence, the k-MHE problem can be solved in time
O(b2b+2.22bp2

.|G|). Hence, when both the number of pre-colored vertices and the
branch width are constants, the k-MHE problem can be solved in linear time. 
�

4 Conclusions

In this paper, we study the Maximum Happy Vertices (k-MHV) and Maximum
Happy Edges (k-MHE) problems for trees. We have presented O(nk log k) and
O(nk) time algorithms for k-MHV and k-MHE problems respectively. Our algo-
rithms run in linear time when k is fixed. Our algorithms can be extended to
generate all the optimal colorings of the tree.

As a future direction, it is interesting to study the hardness of the k-MHV
problem for planar graphs. For fixed k, the Multiway Cut problem has a poly-
nomial time algorithm for planar graphs [2]. So, for planar graphs and when k
is fixed, polynomial time algorithms might be possible for k-MHV and k-MHE.
Finding a linear time algorithm for graphs with bounded tree width (branch
width) without the constraint on the number of pre-colored vertices is another
direction.

Acknowledgement. We thank the anonymous reviewers for their detailed reviews
and suggestions.
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Abstract. In the planar k-median problem we are given a set of demand
points and want to open up to k facilities as to minimize the sum of the
transportation costs from each demand point to its nearest facility. In the
line-constrained version the medians are required to lie on a given line.
We present a new dynamic programming formulation for this problem,
based on constructing a weighted DAG over a set of median candidates.
We prove that, for any convex distance metric and any line, this DAG
satisfies the concave Monge property. This allows us to construct effi-
cient algorithms in L∞ and L1 and any line, while the previously known
solution (Wang and Zhang, ISAAC 2014) works only for vertical lines.
We also provide an asymptotically optimal O(n) solution for the case
of k = 1.

Keywords: k-median · Dynamic programming · Monge property

1 Introduction

The planar k-median problem is a variation of the well-known facility location
problem. For a given set P of demand points, we want to find a set Q of k
facilities, such that the sum of all transportation costs from a demand point to
its closest facility is minimized. Each p ∈ P is associated with its own (positive)
cost per unit of distance to assigned facility, denoted w(p). Formally, we want
to minimize:

S(P ) =
∑

p∈P

min
q∈Q

w(p) · d(p, q)

Because the problem is NP-hard for many metrics [7], we further restrict it by
introducing a line-constraint on the set Q. We require that all facilities should
belong to a specified facility line χ defined by an equation ax + by = c, where
a, b, c ∈ R and a · b �= 0. Such a constraint is natural when all facilities are by
design placed along a path that can be locally treated as linear, e.g., pipeline,
railroad, highway, country border, river, longitude or latitude.

For k = 1 we obtain the line-constrained 1-median problem. Despite the
additional restriction, the complexity of this simplest variant strongly depends

c© Springer International Publishing Switzerland 2016
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on the metric. For a point p ∈ R
2, let x(p) and y(p) denote its x- and y-

coordinate. The most natural metric is the Euclidean distance, where L2(p, q) =√
(x(p) − x(q))2 + (y(p) − y(q))2. It is known that even for 5 points, it is not pos-

sible to construct the 1-median with a ruler and compass. It can also be proven
that the general, line-constrained and 3-dimension versions of the k-median prob-
lem are not solvable over the field of rationals [2]. Hence it is natural to consider
also other distance functions, for example:

Chebyshev distance L∞(p, q) = max{|x(p) − x(q)|, |y(p) − y(q)|},
Manhattan distance L1(p, q) = |x(p) − x(q)| + |y(p) − y(q)|,
squared Euclidean distance L2

2(p, q) = (x(p) − x(q))2 + (y(p) − y(q))2.1

All these distances functions have been recently considered by Wang and Zhang
[10] in the context of line-constrained k-median problem. They designed efficient
algorithms based on a reduction to the minimum weight k-link path problem.
However, their L1 and L∞ solutions work only in the special case of a horizontal
facility line.

We provide a different dynamic programming formulation of the problem that
works for any facility line χ in L1 and L∞. The new formulation can also be
seen as a minimum weight k-link path in a DAG, where the weights are Monge.
However, looking up the weight of an edge in this DAG is more expensive. We
show how to implement edge lookups in O(log n) after O(n log n) time and space
preprocessing which then allows us to apply the SMAWK algorithm [1] or, if
k = Ω(log n), the algorithm of Schieber [9] to obtain the following complexities.

Metric Facility line Time complexity

Wang and Zhang [10]

L1 horizontal min{O(nk), n2O(
√
log k log logn) logn}

L∞ horizontal min{O(nk logn), n2O(
√
log k log logn) log2 n}

Our results

L1 general min{O(nk logn), n2O(
√
log k log logn) log n}

L∞ general min{O(nk logn), n2O(
√
log k log logn) log n}

In L∞, our general solution is faster than the one given by Wang and Zhang
for the special case of horizontal facility line. We also provide a specialized pro-
cedure solving the problem for k = 1 in linear time.

2 Preliminaries

A basic tool for speeding up dynamic programming is the so-called Monge prop-
erty. It can often be used to improve the time complexity by an order of magni-
tude, especially in geometric problems.
1 This is not a metric.
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Definition 1. A weight function w is concave Monge if, for all a < b and c < d,
w(a, c) + w(b, d) ≤ w(b, c) + w(a, d).

Dynamic programming can often be visualized as finding the row minima
in a n × n matrix. Naively, this takes O(n2) time. However, Aggarwal et al. [1]
showed how to decrease the time complexity to O(n) if the matrix has the so-
called total monotonicity property, which is often established through the Monge
property. Their method is usually referred to as the SMAWK algorithm. There is
a deep connection between SMAWK and other methods for speeding up dynamic
programming, such as the Knuth-Yao inequality used for building optimal binary
search trees, as observed by Bein et al. [3].

Let D be a DAG on n nodes 0, 1, . . . , n − 1 with a concave Monge weight
function w(i, j) defined for 0 ≤ i < j < n that corresponds to the weight of
the edge 〈i, j〉. A minimum diameter path in D is a path from 0 to n − 1 with
the minimum weight. Galil and Park showed how to find such path in optimal
O(n) time using the SMAWK algorithm [5]. A minimum weight k-link path is a
minimum weight path from 0 to n − 1 consisting of exactly k edges (links).

Lemma 2. Minimum weight k-link path can be found in O(nk) and, for k =
Ω(log n), n2O(

√
log k log log n) time.

Proof. To obtain O(nk) time complexity, we iteratively compute minimum
weight 1-link, 2-link, . . . , (k−1)-link and finally k-link paths from 0 to every other
node. This can be seen as k layers of dynamic programming, each requiring only
O(n) time thanks to the SMAWK algorithm. Alternatively, n2O(

√
log k log log n)

time algorithm for k = Ω(log n) was given by Schieber [9]. ��
The weights of the edges in our DAG will be computed on-the-fly with orthog-

onal queries. We will use the following tool: preprocess a given set of n weighted
points in a plane for computing the sum of the weights of all points in a given
query range [x,+∞]× [y,+∞]. We call this problem orthogonal range sum. The
following is well-known.

Lemma 3. There exists a data structure for the orthogonal range sum problem
that can be built in O(n log n) time and answers any query in O(log n) time.

Proof. We convert the points into a sequence by sorting them according to their
x-coordinates (without losing the generality, these coordinates are all distinct)
and writing down the corresponding y-coordinates. The y-coordinates are further
normalized by replacing with the ranks on a sorted list of all y-coordinates (again,
we assume that they are all distinct). Hence we obtain a sequence of length n
over an alphabet [n], where each character has its associated weight. We build a
wavelet tree [6] of this sequence in O(n log n) time. Each node of the wavelet tree
is augmented with an array of partial sums of the prefixes of its subsequence.
Given an orthogonal query, we first normalize it by looking at the sorted list
of all x- and y-coordinates. Then we traverse the wavelet tree starting from the
root and accumulate appropriate partial sums. The details can be found in [8]. ��
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3 Normalizing Problem Instances

L1 and L∞ metrics are equivalent, which can be seen by rotating the plane by
45◦. Hence from now on we will work in L1 metric. This simplification was not
possible in the previous approach [10], since it required the facility line to be
horizontal, which is no longer true after rotation.

We further modify the problem instance so that the line χ is expressed in
a slope intercept form y = ax, where a ∈ [0, 1], and all coordinates of points
in P are non-negative. This is always possible by reflecting along the horizontal
axis, then along the line y = x, and finally translating. Such transformations
do not modify the distances in L1, so computing the k-median solution Q for
the transformed instance gives us the answer for the original instance. Because
any solution Q can be transformed so that the x-coordinates of all facilities are
distinct without increasing the cost, we will consider only such solutions and
identify each facility with its x-coordinate.

4 Computing 1-median

Let D(p, x) be the weighted distance between p ∈ P and (x, a · x) ∈ χ:

D(p, x) = w(p) · d(p, (x, a · x))

Whenever we say that p ∈ P is closer to coordinate xi than xj , we mean that
D(p, xi) < D(p, xj). For a set of points A ⊆ P , D(A, x) is the sum of weighted
distances:

D(A, x) =
∑

p∈A

w(p) · d(p, (x, a · x))

The 1-median is simply min
x∈R

D(P, x).

A function f : R → R is convex if the line segment between any two points on
its graph lies above or on the graph. Such functions have the following properties:

1. f(x) = |x − y| is convex for any y.
2. if f(x) is convex, then g(x) = c · f(x) is convex for any positive c.
3. if f(x) and g(x) are convex, then h(x) = f(x) + g(x) is also convex.

Lemma 4. For any point p, D(p, x) is convex. For any set of points P , D(P, x)
is also convex.

Proof. Consider any point p ∈ P . From the definition:

D(p, x) = w(p) · L1(p, (x, a · x)) = w(p) · (|x(p) − x| + |y(p) − a · x|) .

This is a sum of absolute values functions multiplied by the (positive) weight
of p. Hence by the properties of convex functions D(p, x) is convex. Then D(P, x)
is also convex since it is a sum of convex functions over p ∈ P . ��
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Since D(p, x) is convex, any of its local minima is a global minimum. Similarly
to the function f(x) = |x|, it is only semi-differentiable. Its derivative D′(p, x) is
a staircase nondecreasing function, undefined for at most two values x = x1 and
x = x2. We call x1 and x2 the median candidates and for convenience assume
that D′(p, x) is equal to its right derivative there. When a = 0 or p ∈ χ, D′(p, x)
has exactly one median candidate x1 = x(p), that is the minimum. Otherwise,
there are two median candidates x1 = x(p) and x2 = y(p)

a . For a ∈ (0, 1), x1 is
the only minimum, whereas for a = 1 every value in range [x1, x2] is a minimum.
Because the derivative of a sum of functions is the sum of their derivatives,
D′(P, x) can only change at a median candidate of some p ∈ P . This means
that a minimum of D(p, x) corresponds to one of at most 2n median candidates
of P . In other words, there exists a solution (x, y) ∈ χ, such that x = x(p) or
y = y(p) for some p ∈ P . From now on, we use M(P ) to denote the set of median
candidates of P . M(P ) can be computed in O(n) time by simply iterating over
p ∈ P and adding x = x(p) and x = y(p)

a to the result (note that this might give
us a multiset, i.e., some median candidates might be included multiple times).

Theorem 5. We can solve line-constrained 1-median problem in O(n) time.

Proof. Because D′(p, x) is nondecreasing, we can binary search for the largest
x such that D′(p, x) ≤ 0. Then we return x as the solution. In every step of
the binary search we use the median selection algorithm [4] to narrow down the
current search range X = (xleft, xright). At the beginning of every step:

1. M is a multiset of all median candidates of P that are in X.
2. S contains all points from P with at least one median candidate in M .
3. r = D′(P \ S, x) for some x ∈ X.

We select the median xm of M and compute D′(P, xm). If D′(p, xm) > 0, we
continue the search in (xleft, xm), and otherwise in (xm, xright), updating S and
M accordingly. Eventually xleft = xright and we return xleft.

The key observation is that when a point p is removed from S, it does no
longer have a median candidate within X and its D′(p, x) remains constant in
all further computations. This means that D′(P \ S, x) is constant for all x ∈ X
and r can be updated after removing every point p from S in O(1) time. xm

can be found in O(|M |) time. Calculating D′(P, xm) = r +D′(S, xm) then takes
O(1 + |S|) time. For a point p to be in S, one of its median candidates must
belong to M , so |S| ≤ |M |. Hence the complexity of a single iteration is O(|M |).
After each iteration the size of M decreases by a factor of two, so the running
time is described by T (n) = O(n) + T (n/2), which solves to O(n). ��
Theorem 6. We can calculate D(P, x) for every x ∈ M(P ) in O(n log n) time.

Proof. The elements of M(P ) can be sorted in O(n log n) time, and we can
assume that every point generates exactly two median candidates. Let M(P ) =
{x1, x2, . . . , x2n}, where xi ≤ xi+1 for all i = 1, 2, . . . , 2n − 1. Recall that
D′(P, x) = D′(P, xi) for any x ∈ (xi, xi+1). We compute D(p, x1) together with
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D′(P, x1) in O(n) time. Then all other D(p, xi) are computed sequentially for
i = 2, 3, . . . , 2n in O(1) time each using the formula:

D(P, xi) = D(P, xi−1) + D′(P, xi−1) · (xi − xi−1)
D′(P, xi) = D′(P, xi−1) + 2 · w(p) · σ

where xi is generated by the point p, σ = 1 if xi = x(p) and σ = a otherwise. ��

5 Computing k-median

Consider now any optimal solution Q of the k-median problem for the given set
of weighted points P . For any facility q ∈ Q, let Pq be the set of points of P
assigned to q. By interchanging the order of the summation, Q should minimize

∑

q∈Q

∑

p∈Pq

w(p) · d(p, q).

Hence q must be an optimal solution of the 1-median problem for Pq. Since
replacing q will not increase the sum of distances of points in P \ Pq, q can be
chosen to be a median candidate of Pq. We deduce that there exists an optimal
solution Q′ such that

∀
q∈Q′

q ∈ M(Pq) ⊆ M(P ).

For k ≥ min(n, |M(P )|), every p ∈ P can be assigned to its closest possible
facility. Such an assignment can be easily computed in O(n) time. If we are
required to return exactly k medians, then we add enough additional points to
M(P ). From now on, we assume that k < min(n, |M(P )|). Thus there exists an
optimal k-median solution, where all facilities are 1-median candidates of P .

xi

Fig. 1. Path in the DAG ending at the candidate xi. Dashed lines represent current
assignment of points from P to the closest chosen facility.
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xi

xj

Fig. 2. We follow the edge 〈i, j〉. All (black) points now assigned to xj were previously
assigned to xi, see Fig. 1.

By arranging all median candidates in a sequence according to their x-
coordinates, we can view choosing k facilities as selecting a (k + 1)-link path
in a DAG between two artificial elements infinitely to the left and to the right
of the sequence, called source and sink, respectively.

Imagine that we traverse the sequence from left to right while deciding if we
should open a new facility at the current median candidate, see Fig. 1. Initially,
all points are assigned to the artificial facility source and the cost of the current
solution S is set to +∞. If we decide to open a new facility at the current median
candidate xj , for every p ∈ P we check if xj is closer to p than the facility p is
currently assigned to. If so, we reassign p to xj , see Fig. 2.

We claim that p ∈ P can be closer to xj than the facility p is currently
assigned to only if the currently assigned facility is the most recently chosen
facility xi, that is, the current solution does not contain any facilities between xi

and xj . Assuming that the claim holds, we define the weight of an edge 〈source, i〉
to be D(P, xi), and the weight of an internal edge 〈i, j〉 to be total decrease of
the cost after giving each point p ∈ P the possibility to switch from xi to xj .
Finally, the weight of an edge 〈j, sink〉 is 0. Then selecting k medians corresponds
to selecting an (k + 1)-link from source to sink in the DAG. However, we need
to show the claim. To this end we consider the following properties of convex
functions:

Proposition 7. For any convex function f and a < b < c:

(a) If f(c) < f(b) then f(b) < f(a).
(b) If f(c) < f(a) then f(b) < f(a).

Proof. Assume otherwise for any of the two implications. This means that f(a) ≤
f(b) > f(c) and the segment AC where A = (a, f(a)) and C = (c, f(c)) lies below
f(b), contradicting the assumption that the function f is convex. ��

Now we can prove the claim. Consider a point p ∈ P such that its currently
assigned facility is xi and, for some k > i, facility xk was not selected as a better
option. Then, for any j > k, facility xj cannot be a better option either, because
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xi < xk < xj so by Proposition 7(a) D(p, xi) ≤ D(p, xk) implies D(p, xj) ≥
D(p, xk). This means that if xi was the most recently opened facility and xj

is the current median candidate, opening a new facility at xj changes the total
cost by ∑

p∈P

min(D(p, xj) − D(p, xi), 0).

Definition 8. Let x1, x2, . . . , xn−1, x2n be the sorted sequence of median candi-
dates of P . We define its median DAG over nodes 0, 1, . . . , 2n, 2n + 1 with edge
weight function w(i, j) as follows:

w(i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞ if i = 0 and j = 2n + 1,

0 if i > 0 and j = 2n + 1,

D(P, xj) if i = 0 and j ∈ {1, 2, . . . , 2n},
∑

p∈P

min(D(p, xj) − D(p, xi)), 0) otherwise.

The total cost of any k-median solution is equal to the sum of weights on its
corresponding path of length k + 1 between 0 and 2n + 1, so finding k-median
reduces to finding the minimum weight (k + 1)-link path in the median DAG.

Because a sum of Monge functions is also Monge, to prove that w(i, j) is
Monge we argue that wp(i, j) is Monge, where w(i, j) =

∑

p∈P

wp(i, j) and:

wp(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞ if i = 0 and j = 2n + 1,

0 if i > 0 and j = 2n + 1,

D(p, xj) if i = 0 and j ∈ {1, 2, . . . , 2n},

min(D(p, xj) − D(p, xi)), 0) otherwise.

Proposition 9. For any convex function f , if a < b < c then:

min(f(c) − f(a), 0) ≤ min(f(c) − f(b), 0).

Proof. If f(c) ≥ f(b) then the right side of the equation is equal to 0 and left
side is non-positive. If f(c) < f(b) then by Proposition 7(a) also f(b) < f(a), so

min(f(c) − f(a), 0) ≤ f(c) − f(a) < f(c) − f(b) = min(f(c) − f(b), 0)

so the claim holds. ��
Proposition 10. For any convex function f , if a < b < c then

f(b) + min(f(c) − f(a), 0) ≤ f(c) + min(f(b) − f(a), 0).

Proof. If f(b) ≥ f(a) then by Proposition 7(a) also f(c) ≥ f(b). Hence also
f(c) ≥ f(a) and

f(b) + min(f(c) − f(a), 0) = f(b) ≤ f(c) = f(c) + min(f(b) − f(a), 0)
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so the property holds. Otherwise, f(b) < f(a) and the property becomes

f(b) + min(f(c) − f(a), 0) ≤ f(c) + f(b) − f(a)

which is always true due to min(f(c) − f(a), 0) ≤ f(c) − f(a). ��
Proposition 11. For any convex function f , if a < b < c < d then

min(f(c)−f(a), 0)+min(f(d)−f(b), 0) ≤ min(f(d)−f(a), 0)+min(f(c)−f(b), 0).

Proof. If f(d) ≥ f(a), then

min(f(d) − f(b), 0) ≤ 0 = min(f(d) − f(a), 0).

Combined with Proposition 9 applied to a < b < c we obtain the claim. Other-
wise, f(d) < f(a) and by Proposition 7(b) applied to a < c < d also f(c) < f(a),
so the property becomes

f(c) + min(f(d) − f(b), 0) ≤ f(d) + min(f(c) − f(b), 0)

which holds by Proposition 10 applied to b < c < d. ��
Theorem 12. For any point p, wp(i, j) is concave Monge.

Proof. Consider any s, t, u, v ∈ [0, 2n + 1] such that s < t < u < v. We need to
prove that for any p ∈ P :

wp(s, u) + wp(t, v) ≤ wp(s, v) + wp(t, u).

Case 1. s = 0 and v = 2n + 1
Straightforward, since wp(s, v) = ∞ and all other edges have finite weights.
Case 2. s > 0 and v = 2n + 1

wp(s, u) + wp(t, v) = wp(s, u) + 0
= min(D(p, u) − D(p, s), 0)
9≤ min(D(p, u) − D(p, t), 0)
= 0 + wp(t, u)
= wp(s, v) + wp(t, u)

Case 3. s = 0 and v < 2n + 1

wp(s, u) + wp(t, v) = D(p, u) + min(D(p, v) − D(p, t), 0)
10≤ D(p, v) + min(D(p, u) − D(p, t), 0)
= wp(s, v) + wp(t, u)
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Case 4. s > 0 and v < 2n + 1

wp(s, u) + wp(t, v) = min(D(p, u) − D(p, s), 0) + min(D(p, v) − D(p, t), 0)
11≤ min(D(p, v) − D(p, s), 0) + min(D(p, u) − D(p, t), 0)
= wp(s, v) + wp(t, u)

So in all cases wp(s, u) + wp(t, v) ≤ wp(s, v) + wp(t, u) and hence wp(i, j) is
concave Monge. ��

In order to apply the known algorithms for finding minimum weight k-link
path in the k-median problem, we need to answer queries for w(i, j).

Lemma 13. After O(n log n) time and space preprocessing, we can answer
queries for w(i, j) in O(log n) time per query.

Proof. All edges from the source can be computed in O(n log n) time via
Theorem 6. All edges to sink have zero weight. It remains to show how to calcu-
late the weight of an internal edge 〈i, j〉. Consider the set of points p ∈ P that
are closer to xj than to xi:

V (i, j) = {(x, y) ∈ P : |x − xi| + |y − a · xi| > |x − xj | + |y − a · xj |}

By definition, w(i, j) = D(V (i, j), xj) − D(V (i, j), xi). We describe how to com-
pute D(V (i, j), xi). D(V (i, j), xj) can be computed using the formula:

D(V (i, j), xj) = D(P, xj) − D(P \ V (i, j), xj)

where D(P, xj) is the already preprocessed weight of the edge 〈source, j〉, and
D(P \ V (i, j), xj) can be calculated by rotating the plane by 180◦ and using the
same method as the one described below.

First we argue that if (x, y) ∈ V (i, j) then x > xi. Otherwise

|y − a · xi| − |y − a · xj | > xj − xi ≥ a · xj − a · xi ≥ 0

and we obtain a contradiction in each of the three cases:

1. y < a · xi then the inequality becomes a · xi − a · xj > 0 but xi < xj .
2. y ∈ [a · xi, a · xj) then the inequality becomes 2y > 2a · xj but y < a · xj .
3. y > a · xj then the inequality becomes a · xj − a · xi > a · xj − a · xi.

We partition V (i, j) into V1(i, j) and V2(i, j) with a horizontal line y = a · xi:

V1(i, j) = V (i, j) ∩ {(x, y) : y ≥ a · xi}
V2(i, j) = V (i, j) ∩ {(x, y) : y < a · xi}.

The median candidate (xi, a ·xi) is on the left and bottom of all points in V1(i, j)
and on the left and top of all points in V2(i, j). Consider the minimum area
rectangle enclosing P with sides parallel to the coordinate axes, and enumerate
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c1

c4

c2

c3

p1

p2

xi

xj

V1(i, j)

V2(i, j)

Fig. 3. Shortest route in L1 from p2 to c1 and from p1 to c4 passing through the median
candidate xi.

its corners clockwise starting from the top left as c1, c2, c3, c4. In L1 metric, one
of the shortest routes from any point in V1(i, j) to the bottom left corner point
c4 goes via xi, see Fig. 3. Therefore our desired sum of distances to xi can be
described in respect to c4 as:

D(V1(i, j), xi) =
∑

p∈V1(i,j)

w(p) · d(p, (xi, a · xi))

=

⎛

⎝
∑

p∈V1(i,j)

w(p) · d(p, c4)

⎞

⎠ −
⎛

⎝d(c4, (xi, a · xi)) ·
∑

p∈V1(i,j)

w(p)

⎞

⎠.

Similarly, one of the shortest routes from any point in V2(i, j) to c1 goes via xi:

D(V2(i, j), xi) =

⎛

⎝
∑

p∈V2(i,j)

w(p) · d(p, c1)

⎞

⎠ −
⎛

⎝d(c1, (xi, a · xi)) ·
∑

p∈V2(i,j)

w(p)

⎞

⎠.

V4(i, j)

V3(i, j)
xi

xj

Fig. 4. V1 represented as the gray V3 minus the striped V4.
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The distances d(c1, (xi, a ·xi)) and d(c4, (xi, a ·xi)) can be computed in O(1)
time. The expressions

∑
p∈V2(i,j)

w(p) · d(p, c1) and
∑

p∈V2(i,j)
w(p) can be eval-

uated in O(log n) with orthogonal queries. To calculate
∑

p∈V1(i,j)
w(p) · d(p, c4)

and
∑

p∈V1(i,j)
w(p), we represent V1(i, j) as V3(i, j) \ V4(i, j), see Fig. 4 where

δx = xj − xi, δy = a(xj − xi) and

V3(i, j) =
{

(x, y) ∈ P : y > axi ∧
(

x + y >
(δx + δy)

2

)}

V4(i, j) =
{

(x, y) ∈ P : x ≤ xi + δx − δy ∧
(

x + y >
(δx + δy)

2

)}

.

Now each of V2(i, j), V3(i, j) and V4(i, j) is defined by an intersection of two half-
planes. By transforming every point p ∈ P into (x(p)+y(p), y(p)) for V3(i, j) and
into (x(p)+y(p), x(p)) for V4(i, j), we can assume that the lines defining the half-
planes are parallel to the coordinate axes. Hence each sum can be calculated with
orthogonal queries in O(log n) time and O(n log n) time and space preprocessing
by Lemma 3. ��

We reduced the line-constrained k-median problem in L1 to the minimum
k-link path problem. The weight of any edge can be retrieved in O(log n) time
by decomposing it into a constant number of orthogonal queries. By plugging in
an appropriate algorithm for the minimum k-link path problem, we obtain the
final theorem.

Theorem 14. We can solve the line-constrained k-median problem in L1 and
L∞ using O(kn log n) time or, if k = Ω(log n), n2O(

√
log k log log n) log n time.
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Abstract. In this paper, we study a combinatorial problem arising in
the development of innovative treatment strategies and equipment using
tunable shields in internal radiotherapy. From an algorithmic point of
view, this problem is related to circular integer word decomposition into
circular binary words under constraints. We consider several variants of
the problem, depending on constraints and parameters and present exact
algorithms, polynomial time approximation algorithms and NP-hardness
results.

1 Introduction

In France, every year, almost 200,000 patients are treated by radiotherapy as part
of their cancer treatment. This kind of therapy uses ionizing radiation aiming
at controlling or killing malignant cells as a curative procedure or as part of
adjuvant therapy and is widely used (in 2/3 of the cancer treatments). While
internal radiotherapy treatments are currently widespread and considered as
routine, there is still room for related innovative developments. The aim is to
concentrate the radiation beams as precisely as possible towards the tumor site
while sparing as much as possible the nearby healthy tissues, such as skin or
vital organs (the so-called organs at risk from radiation).

Brachytherapy – also sometimes named Curietherapy – refers to a short dis-
tance (brachys in Greek) treatment of cancer with radiation from small, encap-
sulated radionuclide sources (also called seeds). These radioactive seeds are used
to deliver a high dose to the tissues close to the source. It is characterized by
strong dose gradients, i.e., the dose becomes negligible in a very short distance
from the source (about 10 % decay per mm) [7]. Such a treatment is given by
placing sources directly into or near the volume to be treated. The dose is then
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delivered continuously, either over a short period of time (temporary implants)
or over the lifetime of the source to a complete decay (permanent implants).
There are many different techniques and sources available.

In this contribution, we focus on High Dose Rate (HDR) implants. HDR
brachytherapy is a form of internal radiation which temporarily exposes abnor-
mal tissue to a high amount of radiation. Under Computed Tomography and
Fluoroscopy guidance, a bronchoscope or a needle is used to deliver a catheter
into a position at the tumor site. The other end of this catheter is connected
to a computerized machine. This machine passes a small radioactive metal seed
through the catheter. The catheter guides the seed to the tumor site. The seed
moves step by step through the catheter in order to cover the whole tumor site.
The time spent at each position – also known as dwell time – is used to control
the radiation dose distribution accross the tumor. The overall effect of HDR
brachytherapy is to deliver short and precise amounts of high-dose radiation to
a tumor while minimizing healthy tissue exposure. After a series of treatment
sessions, the catheter is removed leaving no radioactive seeds in the body.

One of the main drawbacks of this technique comes from the lack of precise
modulation of the irradiation field and thus of conformation to the shape of
the tumor site. In this paper, we aim at studying the benefit of an innovative
modulation technique in brachytherapy using tunable shields (as done in exter-
nal radiotherapy). This approach will allow accumulating both the temporal
modulation currently used and the shielding modulation. The aim is to provide
treatment of better accuracy by adapting more precisely to the tumor shape.
Indeed, currently, the modulation of the radiation source is done by controlling
the time spent at each position by the source along the catheter. The main prob-
lem is that, at any position, the irradiation is uniform and can be represented as
a cylinder surrounding the catheter. This shape does not always conform to the
relative placement of the tumor and organs at risk (i.e., in the radiation field).
In this contribution, we consider modulating a unique radioactive source using
a gear inspired by external radiotherapy.

The use of the shield will allow to preserve, for a given position along
the catheter, some part of the surrounding area. The so-called rotating shield
brachytherapy (RSBT) was conceptually proposed by Ebert in 2002 [3]. In RSBT,
the dose is delivered through a partially shielded radiation source in an opti-
mized step-shot fashion (as done in classical brachytherapy treatment) to improve
tumor dose conformity. The intensity of radiation is modulated by the amount of
time the shield is pointed in a given direction. RSBT [5,6,13] and other intensity-
modulated brachytherapy techniques such as dynamic modulated brachytherapy
(DMBT) [10–12] were further studied with the aim of improving intracavitary
brachytherapy dose distributions for rectal and cervical cancer. We will first focus
on a peculiar type of shield which have been briefly described in the patent [9] and
studied in [4]. It corresponds to a set of shield segments forming a cylinder that can
be individually retracted to produce circumferentially limited radiation output,
directed radially. According to the way the sources are introduced in the patient
body, and the physical constraints of the material, it is not possible to build sec-
tor of size as small, and thus as high resolution, as wanted. Therefore, using the
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possible rotation of the equipment, the aim is to find a sequence of sectors con-
figurations that allows delivering a dose distribution as near as possible to the
prescribed one. The corresponding algorithmic aspects are unexplored and the
goal of this paper is to conduct an algorithmic study which will guide the final
development of the equipment. From an algorithmic point of view, the prob-
lem is related to circular integer word decomposition into circular binary words
under constraints. In Sect. 2 we formally introduce the considered problem and we
present an overview of the results.

2 A Formal Model for HDR Brachytherapy with Shields

Considering each dwell position of the irradiation source (denoted I), our main
objective is to deliver to each part of the surrounding volume its proper irra-
diation dose. For this purpose, we will use a paddle-based shielding equipment
P of K paddles (also referred as sectors for ease) that can stop the radiation
going through when they are not retracted. We will consider the surrounding
volume to be treated as a circular volume of interest divided in N subvolumes.
In the following, a treatment plan for a given dwell position will be defined as a
sequence of T shield configurations

(
(P 1, τ1), (P 2, τ2), . . . , (PT , τT )

)
where P t,

1 ≤ t ≤ T , is a paddle configuration and τ t is its dwell time. Each paddle config-
uration is represented as a binary string P t = pt

0p
t
1 . . . pt

K−1 where pt
k represents

the state (open or closed) of the sector k of P t. An open sector of the shield
(paddle retracted allowing radiation going through) is represented by a 1, while
a closed one (paddle is out and radiation is stopped) is represented by a 0.

For each given step (P t, τ t) in the treatment plan, a corresponding received
dose Dt by the surrounding volume is defined as a string of integers Dt =
dt
0d

t
1 . . . dt

N−1 where dt
n corresponds to the total irradiation time the subvolume

n was exposed to during this step. Roughly, it corresponds to the contribution
of the corresponding treatment step to the whole treatment plan. For ease, when
parameters P t and τ t are not needed for comprehension we may omit them and
only write D. Regarding the entire treatment plan, we will denote the prescribed
doses as a string of nonnegative integers D̂ = d̂0d̂1 . . . d̂N−1 where d̂n corresponds
to the total irradiation time needed to achieve the right dose for the subvolume
n. We will moreover denote the total received doses as a string of integers D =
d0d1 . . . dN−1, such that for all dn ∈ D, dn =

∑
1≤t≤T dt

n.
For ease and without loss of generality, we assume that each shield sector

is associated to w = N/K consecutive subvolumes, and, for simplicity, that K
divides N (so w is an integer). By default, each shield sector pk will be associated
to Dk = D[k · w, (k + 1) · w − 1] = dk·wdk·w+1 . . . dk·w+w−1 of length w (see
example Fig. 1a). We can remark that D = D0D1 . . . DK . Informally, one may
see P and D as circular strings, P placed inside D and representing a mask that
can stop the radiation from going through (see Fig. 1b, with a counterclockwise
indexation).

Let us consider the practical case where one is applying a given shielded
configuration (represented by P ) on a patient (represented by D) for a given
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Fig. 1. Relation between P and D (K = 3, N = 6)

amount of time τ (expressed in a given unit of time). Let us denote D(P, τ) =
d0d1 . . . dN−1 the string of integers obtained by applying radiation for a time τ to
D through the mask P . We consider that pk = 1 (resp. pk = 0) denotes applying
radiation (resp. no radiation applied) to the area Dk. Moreover, dn = τ (resp.
dn = 0) if radiation is applied to the volume n for a time τ (resp. if no radiation
is applied there). In other words, each subvolume associated to an open sector
(represented by a 1) is irradiated τ units of time, while volume associated to a
closed sector (represented by a 0) is left in its previous state.

One may consider several variants of the problem, depending on constraints
and parameters. First of all, the shield configuration can be considered as fixed
or dynamic (one fixed mask or a minimal number of chosen masks) and provided
with or without rotation capabilities (this last property is not considered here).
These properties are related to manufacturing purposes and constraints. We
moreover consider allowing or not irradiation overdoses (dn > d̂n). Indeed, in
practice, it is convenient to overdose a tumor region while one should try to not
overdose regions of organs at risk. From a combinatorial point of view, there are
two parameters that alter the overall treatment time; namely, the sum of the
irradiation times and the number of configurations (as a transition between two
configurations will require some time). In the following, we will consider variants
of the problem based on the previous observations. In the first two variants, the
input consists of only one shield configuration that is given and fixed. The goal
is to decide what is the optimum amount of radiation that can be applied when
allowing or disallowing overdoses. As proven in Sect. 3, these variants of the
problem are polynomial time solvable.

Problem 1 (FixMask). Given a prescribed dose represented as a string of non-
negative integers D̂ = d̂0d̂1 . . . d̂N−1 and a fixed shield configuration repre-
sented as a binary string P = p0p1 . . . pK−1, find the dwell time τ minimizing
∑N−1

n=0 |d̂n − dn| with D = D(P, τ).

While in the FixMask variant of the problem, d̂n − dn can be negative – that
is overdoses are allowed – in the FixMask+ variant, we moreover impose that
∀n < N , dn ≤ d̂n – thus, forbidding overdoses. We now consider variants of
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the problem where multiple shield configurations are allowed. As mentioned previ-
ously, two different criteria can be optimized in such a treatment plan. One would
like to either achieve the optimal difference between the prescribed dose and the
actual total delivered dose using aminimal number of shield configurations or given
an upper bound on the number of shield configurations, achieving the minimum
reachable difference. Formally, the problems are defined as follows.

Problem 2 (MinFixMasksopt). Given two nonnegative integers K and diff
and a string of integers D̂ = d̂0d̂1 . . . d̂N−1 (with N being a multiple of K),
find a treatment plan

(
(P 1, τ1), (P 2, τ2), . . . , (PT , τT )

)
minimizing T such that

∑N−1
n=0

∣
∣
∣d̂n − dn

∣
∣
∣ ≤ diff , where ∀dn ∈ D, dn =

∑
1≤t≤T dt

n.

Problem 3 (MinFixMasksbound). Given two nonnegative integers K and Tmax

and a string of integers D̂ = d̂0d̂1 . . . d̂N−1 (with N being a multiple of K), find
a treatment plan

(
(P 1, τ1), (P 2, τ2), . . . , (PT , τT )

)
where T < Tmax minimizing

∑N−1
n=0

∣
∣
∣d̂n − dn

∣
∣
∣, where ∀dn ∈ D, dn =

∑
1≤t≤T dt

n.

Similarly to FixMask+, in MinFixMasks+opt and MinFixMasks+bound vari-
ants of the problem, we moreover impose that ∀n < N , dn ≤ d̂n – thus, forbid-
ding overdoses.

Our results can be summarized as follows. We will show in Sect. 3 that
the problems FixMask and FixMask+ can be solved in polynomial time. We
will then show in Sect. 4 that all of {MinFixMasksopt, MinFixMasks+opt,
MinFixMasksbound, MinFixMasks+bound} can be solved in quasi-polynomial
time if d̂max is bounded by a polynomial in the number of prescribed doses,
where d̂max is the maximum prescribed dose to a subvolume of the patient. In
the same section we will also show that the problems MinFixMasksopt and
MinFixMasks+opt can be approximated in polynomial time within a factor of
log d̂max of the optimum. Finally, we will show in Sect. 5 that the problems
MinFixMasksopt and MinFixMasksbound are NP-complete.

3 Polynomial Results

In this section, we show that the variants of the problem where the shield con-
figuration is given and fixed are solvable in polynomial time. Clearly, for a fixed
masked, the doses associated to closed paddles cannot be brought closer to the
corresponding prescribed doses and will thus not be considered.

Theorem 1. FixMask+ can be solved in O(N) time.

Proof. Because we are not allowed to apply overdoses, we obtain that the max-
imum and also the optimum irradiation time is equal to the minimum of all
prescribed doses d̂j of D̂ for which the corresponding paddle is open. Since the
minimum of these doses can be obtained in linear time, the result follows.
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The main observation required to show that FixMask can also be solved
in polynomial time is given in the following lemma, which can be considered
folklore and is stated here only for the convenience of the reader.

Lemma 1. For a sequence S of natural numbers and a natural number x, con-
sider the function f(x) such that f(x) =

∑
s∈S |s − x|. Then f(x) has a unique

minimum, which is only reached by any number x in between the at most two
medians of S. Moreover, for any x not between the at most two medians of S,
the function f(x) decreases with the distance of x to a median of S.

The above lemma implies that an optimum dwell time for an instance of
FixMask is a median of the subsequence of D̂ containing all prescribed doses
for which the paddles are open.

Theorem 2. FixMask can be solved in O(N).

Proof. Because of Lemma 1 the best possible value that we can achieve for∑N−1
n=0 |d̂n − dn| is obtained by setting the dwell time τ0 to any median of the

subsequence of D̂ containing only the prescribed doses for which the paddles are
open (in the given mask). It is known [1] that a median of n numbers can be
found in linear time.

4 Quasi-polynomial Algorithms for MINFIXMASKS

In this section, we present exact algorithms for all variants of the MinFixMasks
problem. The presented algorithms run in quasi-polynomial time if the values
of the prescribed patient doses are bounded by a polynomial in the number of
prescribed doses. As a by-product we show that the problems MinFixMasksopt
and MinFixMasks+opt can be approximated in polynomial-time within a factor
of log d̂max of the optimum where d̂max is the maximum prescribed dose to a
subvolume of the patient, i.e., d̂max := maxd̂n∈D̂ d̂n. We first show that it is
sufficient to consider treatment plans where the applied dwell times are pairwise
distinct.

Lemma 2. For any instance of MinFixMasksopt, MinFixMasks+opt,
MinFixMasksbound, and MinFixMasks+bound there is an optimal solution(
(P 1, τ1), (P 2, τ2), . . . , (PT , τT )

)
satisfying τ i �= τ j for every i and j with

1 ≤ i �= j ≤ T .

Proof. Let P =
(
(P 1, τ1), . . . , (PT , τT )

)
be an optimal solution of an instance I

of any of the mentioned variants of theMinFixMasks problem. We will show that
we can transform P into an equivalent treatment plan that does not use any dwell
time more than once. Let i and j with 1 ≤ i �= j ≤ T be such that τ i = τ j . Let (i)
τ j
∗ = 2τ j , (ii) the binary string P i

∗ be obtained by the XOR of binary strings P i

and P j , and (iii) the binary string P j
∗ be obtained by the AND of binary strings

P i and P j . Then the treatment plan obtained from P by replacing (P i, τ i) with
(P i

∗, τ
i) and (P j , τ j) with (P j

∗ , τ j
∗ ) is also an optimal solution of I. Moreover, by

applying this procedure iteratively we eventually obtain an optimal solution of I
such that all dwell times are pairwise distinct.
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Let S be a set of dwell times. We say that S is complete if it contains a
subset S′ for every number 1 ≤ i ≤ d̂max such that i =

∑
s∈S′ s. We say that

a treatment plan is S-restricted if it uses only dwell times from S and each of
them at most once.

Lemma 3. Let S be a set of dwell times. Then an S-restricted treatment plan
minimizing

∑N−1
n=0

∣
∣
∣d̂n − dn

∣
∣
∣ can be found in time O((d̂max)2|S|+Kw+Kd̂max).

Moreover, the same applies to an S-restricted treatment satisfying the additional
constraint that d̂n−dn ≥ 0 for every 0 ≤ n ≤ N−1. Finally, if S is complete then
the S-restricted treatment plans returned by the above algorithms are optimal
among all (not necessarily S-restricted) treatment plans.

Lemma 4. There is a treatment plan minimizing
∑N−1

n=0

∣
∣
∣d̂n − dn

∣
∣
∣ using at most

�log d̂max�+1 steps. Moreover, such a treatment plan can be found in polynomial
time. The same holds for a treatment plan minimizing

∑N−1
n=0

∣
∣
∣d̂n − dn

∣
∣
∣ under

the additional constraint that d̂n − dn ≥ 0 for every n with 0 ≤ n ≤ N − 1.

Proof. Because the set S = { 2i : 0 ≤ i ≤ �log d̂max� } is complete and has size
�log d̂max� + 1, this follows immediately from Lemma 3.

Because any non-trivial instance of MinFixMasksopt and MinFixMasks+opt
require at least one step, we obtain the following corollary from the above lemma.

Corollary 1. MinFixMasksopt and MinFixMasks+opt can be approximated in
polynomial time within a factor of log d̂max of the optimum.

We are now ready to show our main theorem of this section.

Theorem 3. MinFixMasksopt, MinFixMasks+opt, MinFixMasksbound, and

MinFixMasks+bound can be solved in time O(d̂�log d̂max�+1
max ((d̂max)2(�log d̂max�+

1) + Kw + Kd̂max)).

Proof. The algorithm goes over all sets S containing at most �log d̂max� + 1
(respectively at most min{�log d̂max�+1, Tmax} in the case ofMinFixMasksbound
and MinFixMasks+bound) dwell times between 1 and d̂max. For every such set
S, the algorithm then uses Lemma 3 to compute the optimal (the meaning of
optimal here depends on the considered problem) S-restricted treatment plan.
Finally, in the case of MinFixMasksopt and MinFixMasks+opt the algorithm
returns a shortest treatment plan satisfying

∑N−1
n=0

∣
∣
∣d̂n − dn

∣
∣
∣ ≤ diff and in the

case of MinFixMasksbound and MinFixMasks+bound returns a treatment plan
minimizing

∑N−1
n=0

∣
∣
∣d̂n − dn

∣
∣
∣ found for any of the considered sets S. The stated

running time of the algorithm follows because there are at most d̂
�log d̂max�+1
max

such sets S and because of Lemma 3 for each set S, we require time at most
O(d̂max)2|S| + Kw + Kd̂max). The correctness of the algorithm follows from
Lemmas 2, 3 and 4.
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Corollary 2. MinFixMasksopt, MinFixMasks+opt, MinFixMasksbound, and
MinFixMasks+bound can be solved in quasi-polynomial time if d̂max is bounded
by a polynomial in the number of prescribed doses.

5 Hardness of MinFixMasksopt and MinFixMasksbound

In this section, we show that MinFixMasksopt and MinFixMasksbound are NP-
complete already for w = 2 (recall that w = N/K). Observe that the decision
version of the problemsMinFixMasksopt andMinFixMasksbound are the same,
i.e., given a target sequence D̂ = d̂0 . . . d̂N−1 and integers K, diff , and Tmax, deter-
mine whether there is a treatment plan

(
(P 1, τ1), (P 2, τ2), . . . , (PT , τT )

)
such

that T ≤ Tmax and
∑N−1

n=0

∣
∣
∣d̂n − dn

∣
∣
∣ ≤ diff .

Our proof uses a reduction from the Monotone 1-3 SAT problem (proven
to be NP-complete in [8]): given a boolean formula φ = {c1, c2, . . .} in 3-CNF
of |φ| clauses built on a set V = {v1, v2, . . .} of |V | variables, such that its
clauses contain only unnegated literals, does there exist a truth assignment on
V satisfying φ such that each clause is satisfied by exactly one of its three literals?

Given any instance (φ, V ) of Monotone 1-3 SAT problem, we build an
instance of the decision version of MinFixMasksopt and MinFixMasksbound as
follows. For all i ∈ [1, |V |], let qi be an integer value computed using the following
recurrence formula: qi = 1 + 2 × ∑i−1

j=1(1 + qj) with q1 = |V |. For each variable
vi ∈ V , we build the sequence Vi = (qi, 1+qi). For each clause cm = (va, vb, vc) ∈
φ, we build the sequence Cm composed of two copies of (qa + qb + qc + 2). For
each pair (vi, vj), i < j ≤ |V |, we build the sequence Vi,j = (qi + qj , qi + qj + 2).
Let V∗,j be the concatenation of V1,j , V2,j , . . . Vj−1,j . The sequence D̂ is obtained
by concatenating in order V1 V2 . . . V|V | C1 C2 . . . C|φ| V∗,2 V∗,3 . . . V∗,|V |. We
finally set K = |V | + |φ| + |V |·(|V |−1)

2 , N = 2 · K (i.e., w = 2), diff = |V |2, and
Tmax = |V |. An illustration is given in Fig. 2.

Fig. 2. Example of an instance of MinFixMasks considering the boolean formula
φ = (v1, v2, v3) ∧ (v3, v4, v5) ∧ (v2, v4, v5) ∧ (v1, v2, v4) which only admits one optimal
solution (v1 = v5 = true and v2 = v3 = v4 = false). For ease of notation, vx will denote
x occurrences of the element v (thus 612 corresponds to 61 61) and most elements Vi,j

have been omitted.

Let us start by showing some important properties for any treatment plan of
the constructed instance. Let

(
(P 1, τ1), (P 2, τ2), . . . , (PT , τT )

)
be a treatment

plan that is a solution for an instance constructed from the given formula. We
say that a step t contributes to a sequence Vi if the block Vi is irradiated at step
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t (the ith bit of its mask P t is set to 1) and t minimizes a sequence Vi if the
step t is the last one of the treatment plan contributing to Vi: at step t − 1 and
before, Vi did not reach its minimum yet, at step t + 1 and after, Vi cannot be
lowered. Note that a sequence is minimized at exactly one step.

Lemma 5. For every treatment plan it holds that
∑N−1

n=0

∣
∣
∣d̂n − dn

∣
∣
∣ ≥ diff =

|V |2. Moreover, any treatment plan for which
∑N−1

n=0

∣
∣
∣d̂n − dn

∣
∣
∣ = diff , uses at

least |V | steps. Finally, for every treatment plan that uses at most |V | steps, it
holds that every step minimizes at most one sequence Vi.

Using the reduction defined above, we are now ready to show the main the-
orem of this section.

Theorem 4. The MinFixMasksopt and MinFixMasksbound problems are
NP-complete when w = 2.

Proof. Clearly, both problems are contained in NP, since there is always an
optimal solution of length at most �log d̂max� + 1 (see also Lemma 4).

We will show the correctness of the reduction from Monotone 1-3 SAT to
the decision versions of MinFixMasksopt and MinFixMasksbound given above
the theorem.

(⇒) Let τ be an assignment satisfying φ such that each clause is satis-
fied by exactly one of its literals. We will construct a treatment plan P =
(
(P 1, τ1), (P 2, τ2), . . . , (P |V |, τ |V |)

)
satisfying

∑N−1
n=0

∣
∣
∣d̂n − dn

∣
∣
∣ = diff = |V |2

as follows.
For all 1 ≤ n ≤ |V |, τn is defined by setting τn = qn if τ(vn) = true and set-

ting τn = 1+qn otherwise. Each Pn is obtained by concatenating three substrings
corresponding to the Vi’s, Cm’s and Vi,j ’s as follows: Pn = Pn

v Pn
c Pn

V∗ where
Pn
v = 0n−110|V |−n, Pn

c = In(n, 1)In(n, 2) . . . In(n, |φ|) (In(n,m) is 1 if vn ∈ cm,
0 otherwise) and Pn

V∗ = Pn
V∗,2

. . . Pn
V∗,|V | . Each Pn

V∗,i
is defined accordingly to i

and n as Pn
V∗,i

= 0i−1 if i < n ; Pn
V∗,i

= 1n−1 if i = n and Pn
V∗,i

= 0n−110i−1−n

otherwise.
By construction, P applies total dwell time of either qn or 1 + qn each Vn.

Moreover, any Cm corresponding to a clause (va, vb, vc) receives a total dwell
time of qa + qb + qc + 2, since by hypothesis exactly one of {va, vb, vc} is true in
our assignment: that is either qa + (1 + qb) + (1 + qc) or (1 + qa) + qb + (1 + qc)
or (1 + qa) + (1 + qb) + qc. Finally, a total dwell time τ i + τ j such that qi + qj ≤
τ i + τ j ≤ qi + qj + 2 has been applied to each Vi,j , lowering its cost to 2. Thus,
any Monotone 1-3 SAT solution over φ gives us an optimal solution for our
instance of MinFixMasks using |V | shield configurations.

(⇐) Let P =
(
(P 1, τ1), (P 2, τ2), . . . , (PT , τT )

)
be a solution, i.e., it holds

that
∑N−1

n=0 |d̂n −dn| ≤ diff = |V |2 and T ≤ Tmax. It follows from Lemma 5 that
∑N−1

n=0 |d̂n − dn| = diff = |V |2 and moreover T = Tmax = |V |.
Because we have |V | sequences Vi that need to be minimized at some step

of P and P has |V | steps, we obtain from Lemma 5 that exactly one sequence
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Vi is minimized at any step of P. W.l.o.g., we can assume that P is ordered in
such a way that each sequence Vi is minimized at step i. In the next proposition,
we prove that the dwell time at step i can take one of two possible values, thus
corresponding to a true/false assignment of variable i.

Proposition 1. For any i, τ i ∈ {qi, 1 + qi}.
Proof. We prove the result by induction. Because of our assumption on the
ordering of P, we obtain that qi − ∑i−1

j=1 τ j ≤ τ i ≤ 1 + qi for each step i. Thus,
for the first induction step, it holds that q1 ≤ τ1 ≤ 1 + q1, so τ1 ∈ {q1, 1 + q1}.

Considering the step j, and the sequence Vj−1,j = (qj−1 + qj , qj−1 + qj + 1),
no step after j can contribute to Vj−1,j since

τ j+1 ≥ qj+1 −
j∑

i=1

(1 + qi) ≥ 1 + 2 ×
j∑

i=1

(1 + qi) −
j∑

i=1

(1 + qi)

> qj−1 + qj + 2

Moreover,
∑j−1

i=1 τ i ≤ ∑j−1
i=1 (1 + qi) < qj , so the contribution of step j is

mandatory to minimize Vj−1,j which induces that

τ j ≥ qj−1 + qj −
j−1∑

i=1

τ i ≥ qj−1 + qj −
j−1∑

i=1

(1 + qi)

≥ qj − 1 −
j−2∑

i=1

(1 + qi)

Suppose now that there exists k ≥ 2 such that τ j ≥ qj−1 − 1 − ∑j−k
i=1 (1 + qi).

Consider then Vj−k,j = (qj−k + qj , qj−k + qj + 2). Applying a similar reasoning
as before, we conclude that the contribution of step j is mandatory, and, with
our last lower bound over τ j that

qj−k + qj − τ j ≤ qj−k + qj −
(

qj − 1 −
j−k∑

i=1

(1 + qi)

)

≤ qj−k + 1 +
j−k∑

i=1

(1 + qi) < qj−k+1

Thus, steps strictly between j − k and j cannot contribute. Therefore, the only
steps able to contribute are j and 1 to j − k:

τ j ≥ qj−k + qj −
j−k∑

i=1

τ i ≥ qj−k + qj −
j−k∑

i=1

(1 + qi)

≥ qj − 1 −
j−(k+1)∑

i=1

(1 + qi)
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We obtain a greater lower bound for τ j . This reasoning can be applied as long
as Vj−k,j exists, that is as long as j − k ≥ 1. The last application (k = j − 1,
k + 1 = j) leads to

τ j ≥ qj − 1 −
j−j∑

i=1

(1 + qi) ≥ qj − 1

On the whole, we obtain τ j ∈ {qj − 1, qj , 1 + qj}. Moreover, if τ j = qj − 1,
then step j is not enough to minimize Vj = (qj , 1 + qj) (an amount of 1 or 2 is
missing). But we can only use the dwell times of the treatment plan, and the
lowest one is τ1 ∈ {|V |, |V | + 1}, where |V | is the number of variables in φ (so
|V | ≥ 3). Thus, τ j = qj − 1 is impossible. This leads to τ j ∈ {qj , 1 + qj} for any
step j. �

To complete our proof, it remains to show that a sequence Cm = (qa +
qb + qc + 2, qa + qb + qc + 2) cannot be minimized by other steps, except those
corresponding to an assignment to the variables a, b and c.

Proposition 2. Minimizing a sequence Cm = (qa + qb + qc + 2, qa + qb + qc + 2)
implies the contribution of exactly the steps a, b, and c.

Proof. W.l.o.g. let a < b < c. To minimize Cm, we need to apply a total amount
of exactly τ = qa + qb + qc + 2. Since τ c+1 ≥ qc+1 ≥ 1 + 2 × ∑c

i=1(1 + qi) > τ ,
step c + 1 or higher cannot contribute to Cm. Thus the contribution of step c is
mandatory since

∑c−1
i=1 τ i ≤ ∑c−1

i=1 (1+ qi) < 1+2×∑c−1
i=1 (1+ qi) < qc. Similarly,

τ b+1 ≥ qb+1 > τ − τ c, so steps strictly between b and c cannot contribute, and
∑b−1

i=1 τ i < qb ≤ τ − τ c inducing that the contribution of step b is mandatory.
Finally, τa+1 ≥ qa+1 > τ − τ c − τ b, so steps strictly between a and b cannot
contribute, implying that the contribution of step a is mandatory since

∑a−1
i=1 τ i <

qa ≤ τ − τ c − τ b. �

Gathering the previous results, we have an optimal solution to our Min-
FixMasks instance if and only if each sequence Cm corresponding to a clause
(va, vb, vc) receives exactly the dwell times received by the sequences Va, Vb and
Vc. Moreover, each of theses Vi receives either qi or 1 + qi as a (total) dwell
time. Finally, minimizing Cm implies that exactly one of the three Vi receives
the lowest of its two possible values. This corresponds to a truth assignment over
φ such that each of its clauses contains exactly one true variable.

6 Conclusions and Future Work

We gave the first rigorous algorithmic study of the recently introduced rotating
shield brachytherapy. Our analysis led to efficient algorithms as well matching
hardness results. For future work we plan to explore further variants of the
problem, e.g., variants resulting from a rotation of the shield.
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Abstract. In this paper, we discuss a new model-generating algorithm
for integer feasibility in a system of Unit Two Variable Per Inequality
(UTVPI) constraints (IF). Recall that a UTVPI constraint is a linear
constraint of the form: a · x+ b · y ≤ c, where a, b ∈ {0, 1,−1} and c ∈ Z.
These constraints arise in a number of application domains including but
not limited to program verification (array bounds checking and abstract
interpretation), operations research (packing and covering) and logic pro-
gramming. Over the years, several algorithms have been proposed for the
IF problem. Most of these algorithms are based on two inference rules,
viz. the transitive rule and the tightening rule. None of these algorithms
are bit-scaling, i.e., the running times of these algorithms are parame-
terized only by the number of variables and the number of constraints in
the UTVPI system. We introduce a novel algorithm for the IF problem,
which is based on a collection of new insights. These insights areused to
design a new bit-scaling algorithm for IF that runs in O(

√
n · m · logC)

time, where n denotes the number of variables, m denotes the number of
constraints and C denotes the largest absolute values of all the constants
defining the system.

1 Introduction

In this paper, we discuss a new model-generating algorithm for integer feasibil-
ity in a system of Unit Two Variable Per Inequality (UTVPI) constraints (IF).
Recall that a UTVPI constraint is a constraint of the form: a · x + b · y ≤ c,
where a, b ∈ {0, 1,−1} and c ∈ Z. A conjunction of such constraints consti-
tutes a UTVPI constraint system (UCS) and can be represented in matrix form
as: A · x ≤ c, where A has m rows and n columns. These constraints arise in a
number of application domains including but not limited to program verification
(array bounds checking and abstract interpretation) [10], operations research
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(packing and covering) and logic programming [9]. Over the years, several algo-
rithms have been proposed for the IF problem [8–11]. Most of these algorithms
are based on two inference rules, viz. the transitive rule and the tightening rule.

1.

a · xi + b · xj ≤ cij −b · xj + c′ · xk ≤ cjk

a · xi + c′ · xk ≤ cij + cjk

This rule is called the transitive rule and it is solution preserving.
2.

a · xi + b · xj ≤ cij a · xi − b · xj ≤ c′
ij

a · xi ≤ � cij+c′
ij

2 �
(1)

This rule is called the tightening rule and it is lattice-point preserving.

None of these algorithms are bit-scaling, i.e., the running times of these
algorithms are parameterized only by the number of variables and the number
of constraints in the UTVPI system [1]. However, in many practical application
the constants defining the UTVPI constraints are rather small [15]. It is therefore
worthwhile to investigate whether one can design an algorithm whose running
time can be parameterized in terms of the defining constants of the constraints,
in addition to the cardinalities of the variable and constraint sets. This question
is answered affirmatively in this paper. Our work should be contrasted with the
work on bit-scaling algorithms for difference constraints [6].

We introduce a novel algorithm for the IF problem which is based on a
collection of new insights, which permit the transformation of a linearly feasible
UTVPI system into a 2CNF formula. We then use the fact that 2CNF formulas
are decidable in linear time [2]. This transformation also allows us to make
certain observations about the length of certificates of integer infeasibility for
UTVPI constraints.

These insights are used to design a new bit-scaling algorithm for IF that runs
in O(

√
n · m · log C) time, where n denotes the number of variables, m denotes

the number of constraints and C denotes the largest absolute values of all the
constants defining the system. Additionally, the algorithm is certifying, i.e., if
the input UTVPI system is integer infeasible, then it provides an easily verifiable
certificate that affirms the integer infeasibility. This is an improvement over the
model generating algorithm in [10] which runs in O(m · n + n2 · log n) time.

The principal contributions of this paper are as follows: 1. New insights into
the connection between linear and integer feasibility in UTVPI constraints. 2.
The design and analysis of a new algorithm for modeling integer feasibility in
UTVPI constraints. 3. Establishing a link between the length of integer refuta-
tions in linearly feasible UTVPI systems and the length of resolution refutations
in 2CNF formulas.

The rest of this paper is organized as follows: Sect. 2 defines the problem being
studied. It also includes a brief discussion of related work in the literature. The
new algorithm is described in Sect. 3. We conclude in Sect. 4, by summarizing
our contributions and identifying avenues for future research.
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2 Statement of Problem

In this section, we formally describe the problem under consideration and define
the types of refutations studied in this paper.

Let U : A · x ≤ c denote a system of UTVPI constraints. Observe that each
row of A has at most two non-zero entries and all entries belong to the set
{0, 1,−1}.

We are interested in checking if U is integer feasible, i.e., whether there exists
a solution to the problem:
x ∈ Z

n : A · x ≤ c.
We assume that U is linear feasible; i.e., the program x ∈ R

n : A · x ≤ c is
feasible. Clearly, if this is not the case then the U is integer infeasible.

Definition 1. A read-once refutation is a refutation in which we can use each
constraint only once. However, we can re-derive constraints as long as we never
reuse constraints originally in the system.

Not all constraint classes have a read-one refutation.

Definition 2. A dag-like refutation is a refutation in which we can use any con-
straint multiple times. A dag-like refutation has length k if k unique constraints
are used by the refutation.

Definition 3. A tree-like refutation is a refutation in which we can use derived
constraints only once. However, we can use the constraints in the original system
multiple times and re-derive constraints. A tree-like refutation has length k if k
constraints are used by the refutation (counting duplicates).

It is important to note that tree-like refutations are complete in that every
unsatisfiable CNF formula and linear system has a tree-like refutation. This
follows from the fact that every refutation (tree-like or not) can be arranged so
that each use of a resolvent can be accomplished by making copies of the input
constraints. This transformation from an unconstrained refutation to a tree-like
refutation can cause an exponential blow up in the size of the refutation [13].

The first known decision procedure for checking the integer feasibility of
a system of UTVPI constraints is detailed in [9]. This algorithm processes a
set of UTVPI constraints with the goal of finding its transitive and tightening
closure. Such a closure is essentially a finite representation of all possible UTVPI
constraints that can be inferred from the input set of constraints (also see [3]).
In other words, it finds all possible deductions from the initial set of constraints,
including rounded constraints which can be forced into integral solutions. It then
checks to see if the system of constraints thus generated, is feasible by virtue
of having no contradictions. The algorithm runs in O(m · n2) time and uses
O(n2) space. Furthermore, it is not certifying. [8] improves on the approach in
[9] from an ease-of-implementation standpoint, by combining the transitive and
tightening closures into a single step. However, the additional wrinkle does not
improve the asymptotic complexity of the algorithm in [9]; nor does it provide
certificates.
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The algorithm in [10] (henceforth, the Lahiri algorithm) is the fastest known
algorithm to date, for deciding integer feasibility in UTVPI systems. We will
elaborate on their method, in order to provide the proper background to contrast
our procedures.

The Lahiri algorithm begins by converting each constraint into a pair of dif-
ference constraints with positive and negative versions of each involved variable.
For instance, a sum constraint, say, xi + xj ≤ cij is converted into the following
difference constraint pair: x+

i − x−
j ≤ cij and x+

j − x−
i ≤ cij . Once all con-

straints are thus converted, the converted constraint system is represented by a
constraint network as detailed in [4]. For instance, the constraint x−

j − x−
i ≤ cij

results in an edge x−
j

cij← x−
i . The resulting edges are then tightened by converting

edges of the form xi
cii← xi, where cii is odd to xi

cii−1← xi, in order to ensure inte-
gral solutions. A negative cycle detection subroutine (such as the Bellman-Ford
algorithm) then determines whether the system is satisfiable.

We note that in order for the Lahiri algorithm to produce a model, it must
compute the transitive and tightening closure of the original constraint system,
even when such a set of constraints is known to be satisfiable. Indeed, it uses a
procedure similar to the one in [8,9] to find bounds for all variables and assign
values to them. A naive implementation of this algorithm runs in O(n3) time and
uses O(n2) space. Utilizing Johnson’s algorithm for implementing the transitive
closure [4], the time complexity can be improved to O(m · n + n2 · log n), while
maintaining O(n2) space complexity. However, even the improved algorithm is
more expensive (asymptotically) to the ideal O(m · n) time and O(m + n) space
complexity of the non-model generating decision algorithm.

Recently, there has been some work on incremental satisfiability of UTVPI
constraints. For instance, [14] describes an algorithm for incremental (integer)
satisfiability checking in UTVPI constraints. Their algorithm adds a single con-
straint to a set of UTVPI constraints in O(m + n · log n) time. Incremental
algorithms are extremely important from the perspective of SAT Modulo Theo-
ries [12].

In this paper, we focus on designing a bit-scaling algorithm for UTVPI con-
straints, along the lines of Goldberg’s bit-scaling algorithms for difference con-
straints [6].

We now provide a brief summary of how Goldberg’s Algorithm operates.
First we introduce the concept of ε-feasibility.

Definition 4. A price vector f is ε-feasible for a constraint network G, if for
every edge e = (xi, xj) in G, weight(e) + fi − fj ≥ −ε.

Note that an ε-feasible price vector is allowed to violate the constraints corre-
sponding to G. However, these constraints cannot be violated by more than ε.
If G has no ε-feasible price function then it has no feasible price function.

The algorithm in [6] starts with ε such that:

1. ε is a power of 2.
2. For all edges e ∈ G weight(e) ≥ −ε.

The algorithm then refines ε-feasible solutions into ε
2 -feasible solutions until

either:
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1. It reaches a value of ε for which no ε-feasible solution is found. In this case,
G has a negative cycle and so the original system has no linear (or integer)
solutions.

2. It finds a 0-feasible price vector f . In this case, f can be used to find a half
integral solution to the original system.

Each stage of the refinement process takes O(
√

n · m) time and f is refined at
most log2 C times. Thus, the algorithm has an overall running time of O(

√
n ·

m · log2 C).

3 The New Algorithm

In this section, we provide a bit-scaling algorithm for UTVPI constraints.
Our algorithm requires the transformation of the input UCS into a constraint

network as described in [10].
This transformation is handled by Algorithm 3.1.

Make-Graph (System of UTVPI constraints S)

1: Let G be a constraint network.
2: for i = 1 . . . n do
3: Add the vertices x+

i and x−
i to

G.
4: end for
5: for Every constraint e in S do
6: if e is of the form xi + xj ≤ ck

then
7: Add the edge x−

i → x+
j to G

with weight ck.
8: Add the edge x−

j → x+
i to G

with weight ck.
9: end if

10: if e is of the form xi − xj ≤ ck

then
11: Add the edge x−

i → x−
j to G

with weight ck.
12: Add the edge x+

j → x+
i to G

with weight ck.
13: end if
14: if e is of the form −xi + xj ≤ ck

then

15: Add the edge x+
i → x+

j to G
with weight ck.

16: Add the edge x−
j → x−

i to G
with weight ck.

17: end if
18: if e is of the form −xi − xj ≤ ck

then
19: Add the edge x+

i → x−
j to G

with weight ck.
20: Add the edge x+

j → x−
i to G

with weight ck.
21: end if
22: if e is of the form xi ≤ ck then
23: Add the edge x−

i → xi to G
with weight 2 · ck.

24: end if
25: if e is of the form −xi ≤ ck then
26: Add the edge x+

i → x−
i to G

with weight 2 · ck.
27: end if
28: end for
29: return G as a constraint network.

Algorithm 3.1: Make-Graph
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[10] transforms the input UTVPI system into a constraint network as follows:
Consider the following constraint system.

x1 + x3 ≤ 0 x2 − x3 ≤ −7 x4 − x2 ≤ 3
−x1 − x4 ≤ 5 x1 ≤ 6 (2)

For each variable, two vertices (a positive version and a negative version)
are added to the constraint network. For instance, corresponding to the variable
xi, we create the vertices x+

i and x−
i . Each constraint is replaced by a pair

of equivalent constraints. For instance, a difference constraint xi − xj ≤ c is
replaced by the two constraints x+

i − x+
j ≤ c and x−

j − x−
i ≤ c. The exception is

for absolute constraints, each of which is simply converted to a single equivalent
constraint. For instance, xi ≤ c yields x+

i − x−
i ≤ 2 · c. Once all the equivalent

constraints have been determined, they are represented in a directed graph, as
discussed in [4]. It is thus seen that the constraint network constructed as per [10]
has 2 ·n vertices (assuming n variables in the constraint system) and up to 2 ·m
edges (assuming m constraints in the original constraint system). The resultant
constraint network is called the potential graph. Figure 1 shows the potential
graph, corresponding to System (2).

We are now ready to present our bit-scaling algorithm.
Algorithm 3.2 divides the process of obtaining an integer solution to a system

of UTVPI constraints into several steps.
First the system of UTVPI constraints, A · x ≤ c, is converted into a con-

straint network. This is the same process used in [10] and is described in greater
detail in Algorithm 3.1. Note that G has two vertices, x+

i and x−
i , corresponding

to each variable. Thus, f will have 2 · n values with f2·i−1 as the price of vertex
x+

i and f2·i as the price of vertex x−
i .

Linear feasibility is then determined using Goldberg’s Bit-Scaling Algorithm.
This is the same process used in [6]. We refer to this algorithm as Goldberg(G).
If A · x ≤ c is not linearly feasible, then it is not integer feasible and it is returned
as such. However, if it is linearly feasible, then we can construct a linear solution
d. Note that every element of d is an integer multiple of 1

2 , thus d is a half-integral
solution.

A · x ≤ c is then transformed into a system of 2CNF clauses, Φ(v). This
process is done by Algorithm 3.3.

From the original system and half-integral solution d, we can construct a
new system of UTVPI constraints, A · x ≤ c′, as follows:

1. Replace each constraint xi + xj ≤ ck with xi + xj ≤ ck − (di + dj).
2. Replace each constraint xi − xj ≤ ck with xi − xj ≤ ck − (di − dj).
3. Replace each constraint −xi + xj ≤ ck with −xi + xj ≤ ck − (−di + dj).
4. Replace each constraint −xi − xj ≤ ck with −xi − xj ≤ ck − (−di − dj).

Note that, by construction, c′ = c − A · d ≥ 0. This corresponds to the
process of re-weighting difference constraints with a potential function.

We can now reduce the number of constraints by focusing on the constraints
of the form ±xi ± xj ≤ 0 in A · x ≤ c′ such that di, dj 
∈ Z. Let A′ · x′ ≤ 0 be
the system of these constraints.
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Fig. 1. Example potential graph.

UTVPI-Scaling (System of UTVPI constraints S)

1: Let d denote a linear solution to S.

2: Let y denote an integer solution to
S.

3: G ← Make-Graph(S).
4: f ← Goldberg(G).
5: if f is a feasible price function for

G then
6: for i = 1 . . . n do
7: di ← f2·i−1−f2·i

2 .
8: end for
9: else

10: return S is not linear feasible.
11: {Thus, S is not integer feasible.}
12: end if
13: Φ ← Make-2CNF(S, d).

14: if Φ is satisfiable then
15: v ← satisfying assignment to Φ.
16: else
17: return S is not integer feasible.
18: end if
19: for i = 1 . . . n do
20: if di ∈ Z then
21: yi ← di

22: else if vi is true then
23: yi ← di + 1

2
24: else
25: yi ← di − 1

2
26: end if
27: end for
28: return y as an integer solution to

S.

Algorithm 3.2: UTVPI-Scaling

From A′ · x′ ≤ 0, we can construct a system, Φ(v), of 2CNF clauses which is
satisfiable if and only if A · x ≤ c is integer feasible. Φ(v) also has the property
that any proof of unsatisfiability for Φ(v) can be easily converted into a proof
of integer infeasibility of the same length for A · x ≤ c and vice-versa.
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Make-2CNF (System of UTVPI constraints S, feasible half-integer solution d)
1: Let Φ denote the 2CNF formula corresponding to S.
2: for Every constraint e ∈ S do
3: if e is of the form xi + xj ≤ ck then
4: if (di 
∈ Z ∧ dj 
∈ Z ∧ ck = di + dj) then
5: {This becomes xi + xj ≤ 0 in A′ · x′ ≤ 0.}
6: Add the clause (¬vi ∨ ¬vj) to Φ.
7: end if
8: end if
9: if e is of the form xi − xj ≤ ck then

10: if (di 
∈ Z ∧ dj 
∈ Z ∧ ck = di − dj) then
11: {This becomes xi − xj ≤ 0 in A′ · x′ ≤ 0.}
12: Add the clause (¬vi ∨ vj) to Φ.
13: end if
14: end if
15: if e is of the form −xi + xj ≤ ck then
16: if (di 
∈ Z ∧ dj 
∈ Z ∧ ck = −di + dj) then
17: {This becomes −xi + xj ≤ 0 in A′ · x′ ≤ 0.}
18: Add the clause (vi ∨ ¬vj) to Φ.
19: end if
20: end if
21: if e is of the form −xi − xj ≤ ck then
22: if (di 
∈ Z ∧ dj 
∈ Z ∧ ck = −di − dj) then
23: {This becomes −xi − xj ≤ 0 in A′ · x′ ≤ 0.}
24: Add the clause (vi ∨ vj) to Φ.
25: end if
26: end if
27: end for
28: return Φ as a system of 2CNF clauses.

Algorithm 3.3: Make-2CNF

Note that, A · x ≤ c′ and A′ · x′ ≤ 0 are not actually constructed by Algo-
rithm 3.3. However, these systems are used to prove the correctness of the algo-
rithms.

In Φ(v), each vi corresponds to an xi which assumes a non-integer value in
the linear solution d. vi being true corresponds to xi being rounded up, while
false corresponds to xi being rounded down. This action is performed by the
final step of Algorithm 3.2.

If Φ(v) is feasible, then the values of each vi correspond to a rounding needed
to make an integral solution to the original system A · x ≤ c. Similarly, if Φ(v)
infeasible, then no such rounding is possible and A · x ≤ c is integer infeasible.
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3.1 Resource Analysis

Algorithm 3.2 can be broken up into several parts. The complexity of each part
can be considered independently.

1. First, Algorithm 3.2 finds a linear solution. This is accomplished by running
Goldberg’s Bit-Scaling Algorithm on the constraint network construction in
[10]. This takes O(

√
n · m · log C) time [6].

2. Then, Algorithm 3.3 converts the system into a system of 2CNF clauses. This
consists of checking each constraint in the system and performing a series of
constant time operations to generate the 2CNF clause. Thus, this takes O(m)
time.

3. Then, Algorithm 3.2 generates a feasible solution to the 2-SAT system or
declares the system infeasible. This can be done in O(n + m) time [2].

4. Finally, Algorithm 3.2 generates a feasible integer solution to the UTVPI
system or declares the system not integer feasible. This is done by utilizing
the 2-SAT solution and initial linear solution and runs in O(n) time.

Thus, Algorithm 3.2 generates a feasible integer solution to the UTVPI system
or declares the system not integer feasible in O(

√
n · m · log C) time.

3.2 Proof of Correctness

We now establish the correctness of the reduction from linearly feasible UTVPI
to 2-SAT.

We first show that the limitations on the constraints used in the reduction
do not eliminate any proofs of integer infeasibility. Note that all proof in this
section apply only to linearly feasible systems of UTVPI constraints.

Theorem 1. If A · x ≤ c has a proof of integer infeasibility, then the constraints
forming that proof correspond to constraints of the form ±xi ± xj ≤ 0 in
A · x ≤ c′.

Proof. Let d be a half-integral solution to A · x ≤ c, and let xi be a variable
such that di 
∈ Z. Since A · x ≤ c is not integer feasible there exist no solutions
with xi = di� or xi = �di�. Thus, we can derive the constraints xi + xi ≤ 2 · di

and −xi − xi ≤ −2 · di.
Consider the constraints in A · x ≤ c added together to obtain xi+xi ≤ 2·di.

When we add the corresponding constraints in A · x ≤ c′ we obtain

xi + xi ≤ 2 · di − (di + di) = 0.

All constraints in A · x ≤ c′ have c′
k ≥ 0. Thus, every constraint involved in

this new sum must have c′
k = 0. The same holds true for the constraints used

to derive −xi − xi ≤ −2 · di. Thus, the constraints used to establish the integer
infeasibility of A · x ≤ c correspond to constraints in A · x ≤ c′ such that c′

k = 0.

Theorem 2. If A · x ≤ c has a proof of integer infeasibility, then the constraints
in that proof involve only variables xj such that dj 
∈ Z.
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Proof. From Theorem 1, we have that every constraint involved in the proof of
integer infeasibility must correspond to a constraint with c′

k = 0 in A · x ≤ c′.
For any constraint xj + xl ≤ 0 in A · x ≤ c′, dj and dl must both be integral

or both be non-integral. Otherwise,

c′
k = ck ± dj ± dl 
∈ Z.

A proof of integer infeasibility for A · x ≤ c consists of establishing bounds on
a variable xi with di 
∈ Z. Thus, all constraints in that proof must involve only
variables xj such that dj 
∈ Z.

Together these two theorems imply that to find a proof of integer infeasibility
we only need to focus on constraints in A · x ≤ c′ such that c′

k = 0 and involving
variables xi for which di is non-integral.

Theorem 3. A 2CNF clause can be resolved from Φ(v) if and only if the cor-
responding UTVPI constraint can be derived from A′ · x′ ≤ 0.

Proof. The inference rule used in the resolution of 2CNF clauses is

(li ∨ lj) (¬lj ∨ lk)
(li ∨ lk)

for literals li, lj and lk.
Let us consider the case where li = vi, lj = vj , and lk = vj . If we look at

the corresponding constraints in A′ · x′ ≤ 0, then we see that, in this case, the
clauses correspond to the constraints −xi − xj ≤ 0 and xj − xk ≤ 0 yielding
−xi−xk ≤ 0. This is exactly what would be obtained from applying the transitive
inference rule. It is easy to see that the reverse also holds.

The cases corresponding to the other possible assignments to the literals li,
lj , and lk are handled similarly.

We can now establish the correctness of the reduction.

Theorem 4. Φ(v) is satisfiable if and only if A · x ≤ c has an integer solution.

Proof. Assume that Φ(v) is unsatisfiable. Thus, we can derive the clauses (vi)
and (¬vi) for some variable vi. These clauses correspond to the constraints
xi + xi ≤ 0 and −xi − xi ≤ 0. Thus, from Theorem 3, these constraints are
derivable from A′ · x′ ≤ 0. Since di is an odd multiple of 1

2 , these correspond to
the constraints

xi + xi ≤ 2 · di = 2 · �di� + 1 and − xi − xi ≤ −2 · di = −2 · �di� − 1.

These constraints are derivable from A · x ≤ c.
When we tighten these constraints, we get xi ≤ �di� and −xi ≤ −�di� − 1.

Summing these two constraints yields 0 ≤ −1. Thus, showing that A · x ≤ c is
infeasible.

Now assume that Φ(v) is satisfiable. Let v′ be a boolean vector such that
Φ(v′) is true. From v′ and d, we can construct the vector r as follows:
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1. If di ∈ Z, then set ri = 0.
2. If di 
∈ Z and v′

i is true, then set ri = 1
2 .

3. If di 
∈ Z and v′
i is false, then set ri = − 1

2 .

We now show that A · r ≤ c′. Let ±xi ± xj ≤ c′
k be a constraint in A · x ≤ c′.

Let us examine all possible cases:

1. c′
k ≥ 1: We have that ±ri ± rj ≤ 1

2 + 1
2 = 1 ≤ c′

k. Thus, the constraint is
satisfied by r.

2. c′
k = 0 and di ∈ Z: From the proof of Theorem 2, we know that dj ∈ Z. Thus,

ri = rj = 0 and ±ri ± rj = 0 = c′
k. Thus, the constraint is satisfied by r.

3. c′
k = 0 and di 
∈ Z: From the proof of Theorem 2, we know that dj 
∈ Z. In

this case, we look at each possible constraint individually.
(a) xi + xj ≤ 0: By construction, the clause (¬vi ∨ ¬vj) is in Φ(v). Thus,

v′
i or v′

j must be false. This means that ri = − 1
2 or rj = − 1

2 . In either
case, we have that

ri + rj ≤ −1
2

+
1
2

= 0 = c′
k.

Thus, the constraint is satisfied by r.
(b) xi − xj ≤ 0: By construction, the clause (¬vi ∨ vj) is in Φ(v). Thus, v′

i

must be false or v′
j must be true. This means that ri = − 1

2 or rj = 1
2 .

In either case, we have that

ri − rj ≤ −1
2

+
1
2

= 0 = c′
k.

Thus, the constraint is satisfied by r.
(c) −xi + xj ≤ 0: By construction, the clause (vi ∨ ¬vj) is in Φ(v). Thus, v′

i

must be true or v′
j must be false. This means that ri = 1

2 or rj = − 1
2 .

In either case, we have that

−ri + rj ≤ −1
2

+
1
2

= 0 = c′
k.

Thus, the constraint is satisfied by r.
(d) −xi − xj ≤ 0: By construction, the clause (vi ∨ vj) is in Φ(v). Thus, v′

i

or v′
j must be true. This means that ri = 1

2 or rj = 1
2 . In either case,

we have that
−ri − rj ≤ −1

2
+

1
2

= 0 = c′
k.

Thus, the constraint is satisfied by r.

By the construction of r, we have d + r ∈ Z
n. We also have that

c′ = c − A · d. Thus,

A · (d + r) = A · d + A · r ≤ A · d + c′ = c.

This means that (d + r) is a valid integer solution to A · x ≤ c.
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4 Conclusion

The primary contribution of this paper is the design and analysis of a new
bit-scaling algorithm for the problem of checking integer feasibility in UTVPI
constraints. On a UTVPI system over n variables and m constraints, the bit-
scaling algorithm runs in time O(

√
n · m · log C), where C is the maximum

absolute value of all the defining constants in the UTVPI system. Thus, there are
now bit-scaling algorithms for obtaining integer solutions to systems of UTVPI
constraints and difference constraints [6]. As remarked earlier, the algorithm is
certifying in that in the event the given system is infeasible, it provides an easily
checkable certificate that certifies the infeasibility. Of course, in the event the
given system is satisfiable, the output is a lattice point, whose appropriateness
can be checked in linear time. Additionally, the following results are documented
in the journal version of the paper:

1. We establish a link between the lengths of integer refutations in linearly fea-
sible systems of UTVPI constraints and the lengths of resolution refutations
in 2CNF formulas.

2. We will use the UCS network construction described in [16], as opposed to
[10]. This requires a significant modification to Goldberg’s algorithm.
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Abstract. The Maximum Planar Subgraph (MPS) problem asks for a
planar subgraph with maximum edge cardinality of a given undirected
graph. It is known to be MaxSNP-hard and the currently best known
approximation algorithm achieves a ratio of 4/9.

We analyze the general limits of approximation algorithms for MPS,
based either on planarity tests or on greedy inclusion of certain sub-
graphs. On the one hand, we cover upper bounds for the approximation
ratios. On the other hand, we show NP-hardness for thereby arising
subproblems, which hence must be approximated themselves. We also
provide simpler proofs for two already known facts.

1 Introduction

The Maximum Planar Subgraph (MPS) problem is to determine a planar sub-
graph of a graph G, such that it has maximum edge cardinality. The related, yet
easier, maximal planar subgraph problem asks for a planar subgraph to which no
further edge of G can be added without destroying planarity. MPS is MaxSNP-
hard and the best possible approximation ratio is unknown. The strongest known
approximation algorithm has a tight (w.r.t. its analysis) ratio of 4/9 [2].

In the following, we always consider simple undirected connected graphs. Let
n be the number of nodes. By Euler’s formula, planar graphs have at most 3n−6
edges and 2n−4 (triangular) faces. We call any planar graph that has this exact
number of edges a triangulation. It is trivial to achieve an approximation ratio
of 1/3 by picking any spanning tree (with thus n − 1 edges).

The approximation of MPS has received significant attention despite the fact
that recent advances are scarce. Both Cimikowski [3] and Zelikovsky [13] presented
algorithmic ideas that were never completed. Poranen [11] conjectured that two
algorithms based on iteratively selecting triangles (building on top of [2]) would
achieve the ratio of 4/9 which turned out to be false [7, Sect. 56.6].

Cimikowski [4] also showed that several sophisticated specific algorithms
achieve an approximation ratio of only 1/3 for MPS. This includes an algorithm
based on the planarity test by Hopcroft and Tarjan [8]. Later, Hsu [9] extended
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another DFS-based planarity test [1,12] to compute a maximal planar subgraph
in linear time without considering any approximation properties.

We are interested in bounding approximation ratios of general classes of
algorithms that are based on common underlying ideas like those sketched above.
Thereby, we hope to point out promising directions for new algorithmic ideas.

Outline. In Sect. 2 we introduce the basic notation and give an alternative,
simpler proof that a maximal planar subgraph approximates MPS by 1/3. In
Sect. 3 we show that it remains NP-hard to find a maximum planar subgraph
that contains a given DFS/BFS/spanning tree. Note that these problems differ
from MPS and it is not immediately clear that they are NP-hard. We also show
that the approximation ratio of algorithms based on such an idea is at most 2/3.
This very general result includes all known MPS heuristics based on planarity
tests, in particular also Hsu’s algorithm [9].1 Our argumentation also allows an
alternative, much shorter, proof for the NP-hardness of MPS itself, which is
presented in Sect. 4. Finally, we consider several variants to generalize the best
known approximation algorithms [2]. Again, we prove corresponding hardness
results and bounds for the approximation ratio. In particular, this rules out
several ideas along the lines of [11] to achieve improved approximation ratios.

2 Preliminaries and Maximality

An edge between nodes u and v is denoted by uv. For a subset X of nodes or
edges, G[X] denotes the induced subgraph. A k-path is a path with k edges.
For two nodes u and v we define a u-v-bundle Bt

u,v of thickness t as a set of t
parallel 2-paths between u and v; the new inner nodes I(Bt

u,v) have degree 2.
For convenience, we write [k] := Zk; addition and subtraction are modulo k.

While the following statement is known to be true, we provide a simpler
instance than the original source [6]. They use a 3-colorable planar triangulated
graph extended by Θ(n) edges that form three cycles on the node partitions
induced by the coloring. Our argument is based on a K5.

Observation 1. A maximal planar subgraph of a given graph G yields an
approximation ratio of at most 1/3 for the MPS problem on G.

Proof. Consider the complete graph K5 on 5 nodes. We construct G by replacing
a single edge vu by B�

v,u, and adding a Hamiltonian path P = p1, . . . , p� for the
nodes I(B�

v,u). Let S := E(K5) \ {vu} ∪ {vpk | k odd} ∪ {pku | k even}. S is a
maximal planar subgraph of G since adding any edge yields a K5 subdivision
(cf. Fig. 1). An MPS H can be obtained by removing any one edge outside of
B�

v,u from G. The approximation ratio is thus at most lim�→∞ |S|/|E(H)| = 1/3.
��

1 The proof by Cimikowski [4] for the Hopcroft-Tarjan based heuristic exploits the
specific embedding of backedges and cannot be generalized to arbitrary algorithms
based on DFS trees.
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Fig. 1. (cf. Observation 1) Maximal planar subgraph for � = 6.

3 Algorithms Inspired by Planarity Tests

First, we focus on DFS- and BFS-based algorithms providing hardness results
and bounds for families of approximation algorithms. We denote the problem of
finding a maximum planar subgraph that contains a given DFS (or BFS) tree
by MPS-DFS (or MPS-BFS, respectively). In particular, any known algorithm
based on a planarity test in fact solves MPS-DFS heuristically.

A k-book is a collection of k half-planes (pages) that share a common bound-
ary (spine). A k-book embedding is an embedding of a graph into a k-book such
that the vertices are placed on the spine, every edge is drawn on a single page,
and no two edges cross each other. Consider a circle with straight-line chords C.
A circle graph is the intersection graph of the latter: C are its nodes, two nodes
are adjacent iff their chords cross. The overlap graph is the graph where each
chord is an edge, and the chords’ end nodes are connected by a Hamiltonian
cycle according to the original drawing. For a given circle graph G = (V,E) and
c, k ∈ N, the problem of finding a subset V ′ ⊆ V , such that |V ′| ≥ k and G[V ′]
is c-colorable is the c-Colorable Induced Subgraph problem for Circle Graphs
(c-CIG). It is NP-hard for c ≥ 2 [5]. Clearly, any solution for c-CIG corresponds
to a c-book embedding of the respective overlap graph; the circle corresponds to
the spine and each color class is embedded in its own page.

Theorem 1. MPS-DFS is NP-hard. Furthermore, there are (infinitely many)
graphs G that allow a DFS tree Tv for each possible start node v such that MPS-
DFS on each (G,Tv) is NP-hard.

Proof. We perform a reduction from 2-CIG to MPS-DFS. Let (G, k) be an instance
for 2-CIG and C = (W,F ) be the corresponding overlap graph. Let n := |W |,
m := |F |, and π : [n] → W denote the cyclic order of W induced by C. Let Bi :=
Bm

πi,πi+1
denote a πi-πi+1-bundle of thickness m and B′

i := Bi ∪ {πiπi+1}. We
construct the input graph D := (

⋃
i∈[n] V (Bi), F ∪EB) for MPS-DFS, with EB :=

⋃
i∈[n] E(B′

i); see Fig. 2. The set T := {πiπi+1, uπi+1 | 0 ≤ i < n − 1, u ∈ Ii} ∪
{uπn−1 | u ∈ In−1}, where Ii := I(Bi), is a DFS tree of D.2 We show that the

2 We start at π0 with π0π1. Next, we pick all edges of B0 that are incident to π1 since the
I(B0)-vertices lead only to π0 (visited). We iterate this until we arrive at πn−2πn−1.
Finally, we pick all edges connecting πn−1 with I(Bn−2) and I(Bn−1).
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2-CIG instance (G, k) has a solution if and only if D has a planar subgraph of size
ξ := k + n(2m + 1) that contains T .

(If) Assume there is a planar embedded subgraph S of D that contains T
and has ξ edges. D contains m+n(2m+1) edges. Removing more than m edges
from D yields a graph with less than ξ edges. Thus, there are at least m+1 edges
from each B′

i in S. Consequently, for each pair of nodes πi, πi+1 there is a path
within B′

i connecting them. Hence we have a cycle through π0, π1, . . . , πn−1, π0,
splitting E(S) \ EB, the edge set of S corresponding to chords, into an inside
and an outside partition. Since S is planar, this induces a 2-book embedding of
those edges. Thus, we have a solution of 2-CIG on (G, k) as |E(S)| − |EB| = k.

(Only If) Assume there is a solution for 2-CIG on (G, k). This corresponds
to a 2-book embedding of a subgraph C ′ := (W,E′) of C, where the vertices W
are placed on the spine according to π, and |E′| ≥ k. Adding EB to C ′ yields a
planar graph. Note that T ⊆ EB and C ′ contains |EB| + k ≥ ξ edges.

Note that the proof works independently of the DFS start node since π is
cyclic and π0 can be chosen arbitrarily. ��

a

b

c

d

e

a

b

c d
e

a1 b1 c1 a2 e1 d1 b2 e2 c2 d2

Fig. 2. (cf. Theorem 1) The circle graph G on the left with the respective overlap
graph in the middle and a schematic depiction of the input graph D for MPS-DFS
with ordering π0 = a1, π1 = b1, . . . on the right (bundles sketched in gray).

We will see that any algorithm adding edges to an arbitrary DFS tree has
an approximation ratio of at most 2/3. However, the second part of the theorem
above shows that we cannot simply iterate over all possible start nodes to find
a tractable MPS-DFS instance and use this to approximate MPS.

Theorem 2. An optimal solution to MPS-DFS yields an approximation ratio
of at most 2/3 for the corresponding MPS problem.

Proof. Given a number p ≥ 4, consider the following graph G := (V, S ∪{ẽ}∪T )
with V := {u1, . . . , up, v1, . . . , vp}, and S :=

⋃p−1
i=1 {uiui+1, vivi+1}. The edges

in S form two disjoint paths, both of length p − 1. Let T be an edge set that
triangulates G[S]. Note that this is possible (cf. Fig. 3) in a way such that

∀e ∈ T : e = uivj ∧ |i − j| ≤ 2. (1)

Finally, we define ẽ := upv1. Observe that |T | = 4p − 4 and P := S ∪ {ẽ} forms
a Hamiltonian path. Assume that the DFS on G returns P . We prove that any
planar subgraph H of G that contains P can have at most half of the edges of T .
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Any such graph can be constructed by successively inserting edges of T into
G[P ]. After each step the there are at least two faces f1, f2 that have exactly
one edge of T on their boundary: Initially, adding the first edge to G[P ] yields
two such faces. If the next edge is embedded neither in f1 nor in f2 the invariant
holds. Otherwise, the edge is embedded in, say, f1. Then f1 is split into two
faces, one of which becomes the new f1. For each edge t ∈ T , P ∪ {t} has a
cycle of length at least p − 2, which follows from Eq. (1) by construction of P .
We conclude that H has two faces of degree at least p − 2, and at least 2p − 10
edges are missing for H to be a triangulation.

The edges E(G) \ {ẽ} form an MPS. We conclude that MPS-DFS approxi-
mates MPS by a ratio of at most limp→∞(|P |+|T |−(2p−10))

/|E(G)\{ẽ}| = 2/3.
��

u1 v1u2 v2u3 v3u4 v4

ẽ

Fig. 3. (cf. Theorem 2) Drawing of the graph G with p = 4. Edges of S are dotted.

The result above shows that the approximation ratio of DFS-based algo-
rithms is bounded from above by 2/3. We wonder if this is caused by the special
structure of DFS trees or if this can be extended, for example to BFS-based
algorithms:

Theorem 3. MPS-BFS is NP-hard. Furthermore, there are (infinitely many)
graphs G that allow a BFS tree Tv for each possible start node v such that MPS-
BFS on each (G,Tv) is NP-hard.

Proof. We give a reduction from Hamiltonian cycle (HC) to MPS-BFS. Let G =
(V,E) be an instance for HC, n := |V |, m := |E|, s a new node, and Bv := Bm+1

v,s

for each v ∈ V . We construct an input graph G′ := (V ′, E′) for MPS-BFS, where
V ′ := {r} ∪ V ∪ VB, VB :=

⋃
v∈V V (Bv), E′ := Er ∪ E ∪ EB, Er := {rv | v ∈ V },

and EB :=
⋃

v∈V E(Bv), cf. Fig. 4(a). G′ contains 2 + n(m + 2) nodes and
m + n(2m + 3) edges. Choose u ∈ V and p̃ ∈ I(Bu) arbitrarily. We define
T := {p̃s} ∪ E(G′[V ′ \ {s}]) \ E, a BFS tree of G′.3 We show that G has a HC
if and only if G′ has a planar subgraph of size ξ := n(2m + 4) that contains T .

(If) Given a planar subgraph H of G′ with ξ edges that contains T . There
are at most m − 1 edges of G′ not in H since |E′| − m < ξ. Thus, for each

3 Starting at r (level 0) includes all edges of Er. E cannot be taken since all of V lies
on level 1. Each node v ∈ V is connected to all of I(Bv), which lie on level 2. Only
s remains, which is connected to p̃—the first investigated node on level 2.
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bundle at least one 2-path is part of H. It follows that there can be at most n
edges of E in H since H is planar. Consequently, |E(H)| ≤ k − m + |E′| where
k := |E ∩ E(H)| ≤ n. Assuming k < n leads to |E(H)| < ξ, a contradiction. By
planarity of H we observe that H[V ] forms a Hamiltonian cycle in G.

(Only if) Given a Hamiltonian cycle C on G. We construct a planar subgraph
H := G′[T ∪ C ∪ EB] that contains T (by construction) and has ξ edges. Note
that adding C to T yields a planar graph since H[{r}∪V ] forms a wheel graph.
Likewise, adding EB preserves planarity since G′[EB] is planar and contains a
face with all nodes of V that allows an arbitrary ordering of those nodes.

Finally, we show the independence of the start node. From the above
input graph G′, we construct G′′ by replacing each edge rv ∈ Er with Bm+1

r,v

(cf. Fig. 4(b)), and replacing each edge of E with a path containing 5 new edges
where each of the 4 new nodes is also connected to r with a new edge. Note
that we can reach all nodes of V in at most 4 BFS levels, independent of the
start node. Consequently, none of the 5-paths that correspond to edges in E can
be fully contained in the resulting BFS tree. We conclude that any BFS tree
constructed in the above way allows a reduction from HC to MPS-BFS. ��

As for DFS trees, we have that any algorithm adding edges to an arbitrary
BFS tree has an approximation ratio of at most 2/3.

(a) r

s

Er

V and E

Bv ∀v ∈ V

(b) r

s

Bm+1
r,v ∀v ∈ V

V and E

Bm+1
v,s ∀v ∈ V

Fig. 4. (a) (cf. Theorem 3) Schematic drawing of G′ for |V | = 6. Thick edges depict
bundles of m + 1 parallel 2-paths. (b) (cf. Theorems 3 and 6) The analogously con-
structed graph for the MPS hardness proof.

Theorem 4. An optimal solution to MPS-BFS yields an approximation ratio
of at most 2/3 for the corresponding MPS problem.

Proof. Let G = (V,E) denote a triangulated graph that allows a 3-coloring
φ : V → [3] of the nodes, for example an even cycle C with two new nodes
adjacent to all of C. We define the input graph G′ := ({s, s0, s1, s2} ∪ V,E ∪ T )
for MPS-BFS with T := {ssi | i ∈ [3]} ∪ {sφ(v)v | v ∈ V }. T is a BFS tree
rooted at s. By construction, every triangle in G′ requires 3 nodes of V of
different color. We can add at most one triangle to T , as a K3,3-subdivision
would arise otherwise, see Fig. 5. Hence, the number of triangular faces in any
planar subgraph H of G′ that contains T is bounded by a constant, independent
of |V |. Thus, the upper bound on the approximation ratio converges from above
to 2/3 for large |V |. ��
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(a)

s

s0

s1

s2

(b)

s

s0

s1

s2

(c)

s

s0

s1

s2

Fig. 5. (cf. Theorem 4) Arising K3,3-subdivisions after adding two triangles to the BFS
tree. One triangle is dotted, the other is dashed. From left to right: (a) both triangles
share two nodes, (b) both triangles share a single node, (c) the triangles are disjoint.

Since any DFS or BFS tree is also a spanning tree, we have:

Corollary 5. It is NP-hard to find a maximum planar subgraph that contains a
given spanning tree. Likewise, an optimal solution to this problem approximates
MPS with at most 2/3.

4 MPS Is NP-hard: A Simple Proof

Inspired by our proof that MPS-BFS is NP-hard, we can give a shorter proof for
the hardness of MPS itself. Liu and Geldmacher [10] gave a 2-step-reduction of
Vertex Cover to a HC restricted to triangle-free graphs and from that to MPS.
We give a direct simple reduction from general HC to MPS.

Theorem 6. MPS is NP-hard.

Proof. Let G = (V,E) be an instance for HC, n := |V |, and m := |E|. We
construct an input graph G′ for MPS by adding two nodes r, s and the edge set
EB :=

⋃
v∈V (Bm+1

r,v ∪Bm+1
v,s ) (cf. Fig. 4(b)). Note that G′ contains 2+n(2m+3)

nodes and m+4n(m+1) edges. We show that G has a Hamiltonian cycle if and
only if G′ has a planar subgraph of size ξ := |EB| + n.

(If) Given a planar subgraph H of G′ with ξ edges. There are at most m − 1
edges of G′ not in H since |E(G′)| − m < ξ. Thus, for each bundle in EB at
least one 2-path is part of H. It follows that there can be at most n edges of
E in H as H is planar. Consequently, |E(H)| ≤ k − m + |E(G′)| where k ≤ n
equals the number of edges of E in H. Assuming k < n leads to |E(H)| < ξ,
a contradiction. By planarity of H we observe that H[V ] forms a Hamiltonian
cycle in G.

(Only if) Given a Hamiltonian cycle C on G. The graph H := G′[C ∪ EB]
has ξ edges and is planar. ��

Consider an MPS instance G = (V,E). We can construct G′ by replacing
every edge in E with a path of length k := p/3�. Now all cycles in G′ contain
at least p nodes, and OPT(G′) = OPT(G) + (k − 1)|E|. We conclude:

Corollary 7. MPS remains NP-hard for graphs with any given girth.
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Algorithm 1. Cactus Algorithm
Input: connected simple graph G = (V, E)
edge set S1 := ∅
while ∃ triangle T ⊆ E whose nodes are in 3 different components of (V, S1) do

S1 := S1 ∪ T
S2 := S1

while ∃ edge e ∈ E whose nodes are in different components of (V, S2) do
S2 := S2 ∪ {e}

return S2

5 Algorithms Inspired by Cactus Structures

The (greedy) Cactus Algorithm, see Algorithm 1, for MPS was developed by
Călinescu et al. [2] and first constructs a cactus subgraph S1 consisting of trian-
gles joined at single nodes. The resulting structure S2 achieves a tight approxi-
mation ratio of 7/18. When the first phase of the algorithm is replaced to find
a cactus structure of maximum cardinality (which requires the use of a graphic
matroid parity subalgorithm), the approximation ratio can be improved to 4/9.
One may either search for an algorithm with a better approximation guarantee
or for an algorithm with an approximation ratio better than 7/18 that requires
only simple operations (in contrast to the matroid-based algorithm), possibly
again based on a greedy scheme. Poranen proposed two algorithms that greedily
select triangles and conjectured approximation ratios of at least 4/9 [11]. How-
ever, both conjectures were refuted by Fernandes et al. [7, Sect. 56.6]. We show
that related, more general classes of algorithms are not suited to achieve the
desired approximation guarantee or have an approximation ratio of at most 1/2.

It is fairly natural to ask for a more sophisticated yet easily implementable
greedy selection of the triangles to build a cactus. We first investigate algorithms
that greedily select either edges or triangles in an “intuitively smart” manner.
Given a graph G and a subgraph G′ ⊆ G, we say that an edge e ∈ E(G) is
forbidden in G′ if and only if G′ + e is non-planar. Similarly, we call an edge set
F ⊆ E(G) forbidden iff there is a forbidden edge f ∈ F .

The algorithm that iteratively picks an edge (or triangle) that minimizes
the number of resulting forbidden edges (or triangles), is called Greedy Edge
Selection (GES) (or Greedy Triangle Selection (GTS), respectively).

Theorem 8. GES has a tight approximation ratio of 1/3.

Proof. Let p ≥ 4. Define Hp := (V,EH) with V := {vi
� | � ∈ [p], i ∈ [3]}

and EH := {vi
�v

i+1
� | 0 ≤ � ≤ p − 1, i ∈ [3]} ∪ {vi

�−1v
i
� | 1 ≤ � ≤ p − 1, i ∈

[3]} ∪ {vi
�v

i+1
�−1 | 1 ≤ � ≤ p − 1, i ∈ [3]}, cf. Fig. 6(a). We define Λ(vi

�) := � as
the level of vi

�. Note that Hp is a triangulation and 4-colorable with the coloring
φ(vi

�) := (3� + i) mod 4. For any color c ∈ [4], let Vc := {v ∈ V | φ(v) = c}
be the c-colored node partition induced by φ. We denote the increasing order
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t0s1

t2 s3

s0t1

s2 t3

(c) sx

tx sy

ty

Fig. 6. (cf. Theorem 8) (a) The graph Hp for p = 4. (b) The outerplanar graph Xp on
V (Hp). (c) Inserting independent edges whose endpoints are non-adjacent between Vx

and Vy in Xp.

of Vc according to Λ by πc. For each of the four colors we define the (new)
path Pc := {πc

i π
c
i+1 | 1 ≤ i < |Vc|}. The lowest and highest level node of a path

Pc is denoted by sc and tc, respectively. We obtain the graph Xp on the nodes
V by adding {t0s1, s1t2, t2s3, s3t0, s0t3, t1s2} to the paths Pc, cf. Fig. 6(b).

Consider the graph G := Hp∪Xp (over the common node set V ) as our input.
The triangulation Hp is an MPS of G. The graph Xp is outerplanar. Thus, we
can add any single edge planarly to Xp, and Xp can arise during GES since
none of its edges was forbidding any other edges. By showing that we can only
add a constant number of edges to Xp while preserving planarity we bound the
approximation ratio by limp→∞(|E(Xp)| + const)/(|E(Hp)|) = 1/3.

We can ignore all edges incident to nodes {sc, tc | c ∈ [4]}: this is a constant
number of edges since we have bounded degree (independent of p). Given two
colors x, y, there are at most two faces in any embedding of Xp that have Px

and Py on their boundary. Traversing any such face will visit the nodes along
both paths in the same order (either sx → tx and sy → ty; or tx → sx and
ty → sy). Let Exy ⊆ (Vx × Vy) ∩ EH be an arbitrary set of independent edges
whose endpoints are non-adjacent in Xp. The orderings πx and πy induce two
orderings of Exy. By construction of Hp we have |Λ(v) − Λ(w)| ≤ 1 for all
vw ∈ EH . Hence, we observe that the above two orderings of Exy are in fact
identical. It follows that we can insert at most one edge of Exy into each of
the at most two suitable faces of Xp, cf. Fig. 6(c). The number of color pairs is
constant. Thus, for any color pair (x, y) and suitable face f , the insertable edges
E′

xy ⊆ (Vx × Vy) ∩ EH need to be either adjacent, or incident to adjacent nodes.
Since G has bounded degree, we can only add a constant number of edges to Xp.

��
Theorem 9. Any algorithm that selects the edges picked by GTS has an approx-
imation ratio of at most 7/18.

Proof. Let G be the graph of the proof of Theorem 8 for an arbitrary but fixed
p ≥ 5, and np := |V (G)| = 3p. Again, we speak of the paths Pc for the colors
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Fig. 7. (cf. Theorem 9 (a) Schematic structure of G′ showing only some nodes of color c.
(b) The outerplanar graph X ′

p.

c ∈ [4], and the outerplanar subgraph Xp of G. Our initial argument is based
on the same principle as before. Coarsely speaking we replace the edges of the
paths Pc by new triangles, preserve outerplanarity, and extend Hp by a similar
structure on the newly inserted nodes:

Let D be a copy of Hp−1 where we delete the node v2
p−2. Note that D is

triangulated with the exception of one face of degree 5. As in the proof above, this
graph is 4-colorable which induces the node partitions Dc := Vc(D) for c ∈ [4]. D
can be seen as a copy of Hp where one node of each color (v0

p−1, v
1
p−1, v

2
p−1, v

2
p−2)

is removed. We keep the notation of the ordering of nodes Vc in Xp by πc and
denote the analogous ordering of the nodes in the newly introduced partitions Dc

by σc. Let X ′
p := (V (Xp)∪V (D)∪{a, b}, E(Xp)∪E� ∪{s1s3, s0a, at3, t1b, bs2})

with E� := {πc
i σ

c
i , σ

c
i π

c
i+1 | c ∈ [4], πc

i π
c
i+1 ∈ Pc}, see Fig. 7. I.e. E� consists of

a level-monotone Hamiltonian path for each color class.
Let G′ := (V (X ′

p), E(X ′
p) ∪ E(Hp) ∪ E(D)). The graph J := Hp ∪ D is a

planar subgraph of G′. Every edge in X ′
p is part of a triangle and the graph

remains outerplanar. Thus, we can add any single triangle planarly to X ′
p, and

X ′
p could arise during GTS on G′. Analogous to the proof for Theorem 8, we

can only add a constant number of edges to X ′
p while preserving planarity.

Let FJ denote the set of triangular faces in J . We obtain the graph G′′ from
G′ by inserting new nodes vf of degree 3 for all f ∈ FJ , connecting vf with the
nodes on the boundary of f . Let L := {vf | f ∈ FJ} denote the newly inserted
nodes and EL the incident edges. Considering G′′ as the input for GTS, similar
to above, the number of edges that we can add to X ′

p while preserving planarity
is bounded by |L| + const: Any edge in EL is part of a 2-path u1-w-u2, where
ui ∈ V (G′), φ(u1) �= φ(u2), and w ∈ L. On the other hand, J ∪ (L,EL) remains
planar. We conclude that the approximation ratio is at most

lim
p→∞

|E(X ′
p)| + |L| + const

|E(J)| + |EL| = lim
p→∞

(3np + const) + (4np + const) + const
(6np + const) + (12np + const)

.

��
Corollary 10. Any algorithm that first selects an arbitrary (possibly maximal)
set of triangles has an approximation ratio of at most 7/18.
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Algorithm 2. Dense Subgraph Selection (DSS)
Input: parameter k ∈ N≥3, connected simple graph G = (V, E)
edge set S := ∅
while S is not maximal planar do

Find a planar subgraph Q with up to k nodes W such that
(i) S[W ] � E(Q),
(ii) S ∪ E(Q) is planar,
(iii) Q has maximum density among all subgraphs that satisfy (i) and (ii),
(iv) and possibly further restrictions (see text).

S := S ∪ E(Q)
return S

Observe that this bound matches the one of Algorithm 1 [2]. Similar to any
DFS- and BFS-based algorithms, it remains NP-hard to determine a maximum
set of edges that can be added planarly to a selected set of triangles. We will
show a more general result in Theorem 11.

We investigate the selection of dense subgraphs, which is a natural general-
ization of triangle-based algorithms such as GTS. Given an edge set S and a
node set W , we define S[W ] as the edges of S that connect nodes of W . Let the
density of a graph (V,E) be defined as |E|/|V |, the edges per node.

We denote Algorithm 2 by DSS. In its most general form (DSS-U) we do not
pose any further restrictions (iv) on the selection of dense subgraphs: they may
overlap arbitrarily. A restricted version of this algorithm, called DSS-D, requires
the subgraphs Q in the loop to be node disjoint to the current structure S.
Similarly, we denote by DSS-C the algorithm with the restriction that the nodes
of Q are pairwise disconnected in the current structure S.

Theorem 11. Consider any MPS instance G. It remains NP-hard to find a
maximum planar subgraph of G under either the restriction that it contains (a)
the solution S of DSS-D, or the restriction that it contains (b) the solution S of
DSS-C, respectively.

Proof. (a) Given an arbitrary triangle-free graph G = (V,E), we construct G′

by adding k − 1 nodes Vv for each v ∈ V , such that Gv := G′[{v} ∪ Vv] is
triangulated. Let S :=

⋃
v∈V E(Gv). Note that each Gv is a graph on k nodes

with maximal density and that any other subgraph of G′ has strictly lower
density. Consequently, the algorithm selects each Gv to S. Thus, any subgraph H ′

of G′ that contains S corresponds to a subgraph H of G with |E(H ′)| = |E(H)|+
n(3k − 6). MPS is NP-hard on triangle-free graphs, see Corollary 7.

(b) Consider a graph G together with a spanning tree T . We know from
Corollary 5 that it is NP-hard to find a maximum set of edges that can be
added planarly to T . Replacing each edge of T with a triangulated subgraph
on k nodes in G yields an instance where Algorithm 2 can select exactly the
structures corresponding to T . Thus, finding a maximum set of edges that can
be added to the selected structure remains NP-hard, independent of k. ��
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Note that Theorem 11 for DSS-C and k = 3 is the above claimed hardness
result for algorithms based on triangle selection.

Theorem 12. For any fixed k ≥ 3, DSS-U has an approximation ratio of at
most 1/2. For any fixed k ≥ 7 any variant of DSS that poses arbitrary restrictions
(iv) on the cut of Q with S has an approximation ratio of at most 1/2.

Proof. First assume that k ≥ 7. Let F := {f0, . . . , f3} denote the set of faces of a
K4, δi the set of nodes incident to face fi and κ := k−7. We define F ′ := F \{f0}
and {b, t, u0} =: δ0. We construct G = (V,E) with V := V (K4) ∪ {wi | fi ∈
F ′}∪{ui+1 | i ∈ [κ]}, E := E(K4)∪EW ∪EU , EW := {wiv | fi ∈ F ′, v ∈ δi}, and
EU :=

⋃κ
i=1{bui, uit, uiui−1}. Note that G is triangulated, planar, and contains

exactly k nodes. Furthermore, we cannot connect any nodes wi, wj , i �= j, while
preserving planarity. We define the input graph G′ as (V ∪ L,E ∪ EL), where
L := {s1, . . . , s�} and EL :=

⋃
i∈[�]{siw1, siw2, siw3} (cf. Fig. 8), for some � ≥ 7.

The algorithm may pick a graph Q that is the entire triangulated subgraph G
in its first iteration, since G contains exactly k nodes. Thus, nodes in L can
only be added with a single edge and we thus pick at most 1/3 of EL. On
the other hand, a planar subgraph H ⊆ G can be obtained by picking every
edge in E except for the edge of K4 incident to f1 and f2. Then, each node
in L can be connected with w1 and w2 (picking 2/3 of EL), giving H ′ ⊆ G′.
We conclude that the approximation ratio is at most lim�→∞(|Q| + �)/|H ′| =
lim�→∞(|E| + �)/(|E| − 1 + 2�) = 1/2.

For k < 7 we construct the graph G as for k = 7 where DSS-U may still
return a subgraph containing G, independent of k and �. ��

w1

w2

w3

t

u0

b

Fig. 8. (cf. Theorem 12) Schematic drawing of the input graph for � = 6 and k = 4.
The K4 subgraph is highlighted by thick edges. Dotted edges are not included in H2.
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Abstract. We study the weighted vertex coloring problem (WVCP)
in binary trees and a restricted class of cactus graphs we called cactus
paths. WVCP is a generalization of the vertex coloring problem where
a color class of a feasible coloring is assigned a cost equal to the largest
weight of a vertex from the color class. The objective is to find a feasible
coloring which minimizes the sum of the color costs assigned to each color
class. We improve the exact algorithms for solving WVCP on binary
trees and propose new and efficient algorithms for WVCP on cycles and
cactus paths with maximum degree three. Our work extends the results
of Kavitha and Mestre [8]. Our algorithms have a time complexity of
O(n log2 n) for cactus paths and O(n2 log n) for binary trees.

Keywords: Vertex coloring · Max coloring · Weighted coloring ·
Scheduling · Binary trees · Cactus graph · Dynamic programming ·
Spine tree decomposition

1 Introduction

The vertex coloring problem in a graph (VCP) is a fundamental combinatorial
optimization problem that dates back to the work of Francis Guthrie (1831–
1899) who conjectured that a planar graph can be colored with four colors [4].
VCP, which seeks to assign the smallest number of colors to the vertices of a
graph so that no two adjacent vertices receive the same color, has motivated the
work of many famous mathematicians. The problem arises in several practical
applications as well, such as scheduling, timetabling, computing derivatives, and
frequency assignment in second generation cellular networks [11].

A channel allocation problem in fourth generation WiMAX cellular networks
can be modeled as a generalization of the VCP [13]. In the weighted vertex
coloring problem WVCP, the vertices of the graph are assigned positive weights
and a color i of a feasible colouring is assigned a cost equal to the maximum
weight among the vertices colored with color i. The goal is to find a feasible
coloring for which the sum of the color costs is minimized. It is not difficult to
find an example showing that a coloring with the smallest number of colors is
not necessarily an optimal solution to the WVCP.
c© Springer International Publishing Switzerland 2016
V. Mäkinen et al. (Eds.): IWOCA 2016, LNCS 9843, pp. 347–358, 2016.
DOI: 10.1007/978-3-319-44543-4 27
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WVCP has some interesting properties. It is strictly more difficult than the
classical VCP. For example, WVCP is NP-hard for some classes of graphs, such
as bi-partite and interval graphs, for which the VCP can be solved exactly in
polynomial time [6]. This has motivated a number of research articles investigat-
ing polynomial time algorithms for special classes of graphs. Paths and several
restrictions of tree and bi-partite graphs have been investigated and there was an
effort to improve the running time for paths [8,12,15]. The case of trees is partic-
ularly interesting. For arbitrary trees, an algorithm with complexity O(nΘ(log n))
that relies on a procedure to solve the list coloring problem [10], follows from
the work of Guan and Zhu [6]. Moreover, Araujo et al. show that this algorithm
is optimal in some sense (thus WVCP on arbitrary trees is most likely not in
P unless P = NP ). WVCP for arbitrary trees is unlikely to be NP-hard as
there is a quasi polytime algorithm [1]. For any class of trees whose maximum
degree is bounded by a constant, the quasi polytime algorithm is polynomial.
In particular, for binary trees, the algorithm runs in time O(n4) which can be
improved to O(n3 log n) by a straightforward application of binary search.

Our Contributions: In this paper, we propose a new algorithm for solving
WVCP on binary trees and cactus paths graphs with maximum degree bounded
by a constant. For the class of cactus paths, our method solves WVCP in time
O(n log2 n) and for binary trees in time O(n2 log n) by the use of the Spine Tree
Decomposition [2]. To the best of our knowledge these results are new.

1.1 Problem Definition and Notation

Let G(V,E,w) be a vertex-weighted undirected graph with vertex set V , edge
set E, and weight function w : V → R. We denote by wv the weight of vertex v.
A color class (an independent set) is a set of non-adjacent vertices in a graph.
Consider a feasible coloring X of G using k colors (a k-coloring) as a partition
of the vertex set V into k sets X = {α1, α2, ..., αk} where αi is a color class in
G. We define the cost of color i by w(αi) = maxv∈αi

wv, and the cost of coloring
X by w(X) =

∑k
i=1 w(αi).

Problem 1. Weighted vertex coloring (WVCP) [6]:Given a vertex-weighted undi-
rected graph G, find a feasible coloring X of G for which w(X) is minimum.

When wv = 1 for all v ∈ V , WVCP reduces to the proper vertex coloring
problem (VCP). It follows that WVCP is strongly NP-hard [5]. Interestingly, an
optimal solution to WVCP may use more colors then that of unweighed vertex
coloring problem. Consider the following example in Fig. 1

158911 1 4 15

v1 v2 v3 v4 v5 v6 v7

Fig. 1. Two coloring is not optimal. Greedy is not optimal.
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Example: In Fig. 1, any 2-coloring has cost 30. While coloring v2, v4 and v7 by
color 1 and coloring v1, v3 and v6 by color 2 and v5 by color 3 gives the WVCP
with the weight of 15 + 11 + 1 = 27. A simple greedy strategy based on sorting
the vertices, has cost of 15 + 9 + 8 = 32. In the greedy strategy v1, v4, v7 are
colored with color 1 and v2, v6 are colored with color 2 and v5, v3 are coloured
with color 3.

Applications: WVCP arises in the scheduling of data transmissions in a time
division multiple access (TDMA) wireless network [12,14]. One example of
such TDMA technology is the Worldwide Interoperability for Microwave Access
(WiMAX) standard which is responsible for a large portion of the data mobility
services today. The WiMAX standard does not specify any channel allocation
algorithms. This is to allow the most flexible and efficient use of resources pos-
sible. Moreover, the duration of the time slots in the WiMAX standard need
not be uniform. Given a set of clients with different bandwidth requirement, a
channel allocation scheme in a mesh network using WiMAX technology seeks
to group the transmissions in such a way that interference does not occur and
the channel is used efficiently. Such a schedule corresponds to a WVCP problem
where the graph that represents interference in the network. The vertex weights
correspond to the bandwidth requirement for the devices participating in the
communication. In particular, line, ring and tree topologies are commonly used
in telecommunication networks [9], hence our results on trees and cactus paths
may be of interest in this domain as well.

WVCP also occurs in batch scheduling, an important problem in distributed
computing [7]. Here, a set of jobs is to be scheduled in parallel on a large number
of processors. However, several jobs may require access to the same resource.
These jobs cannot be scheduled in parallel. A parallel schedule with minimum
make-span can be formed by solving a WVCP problem. The jobs are the nodes
in the graph and edges represent conflicts between jobs and the weight of nodes
represent the processing time of the job.

The Matrix Decomposition Problem in Time Division Multiple Access Traffic
Assignment can also be modeled as WVCP. In this problem, a traffic matrix is
decomposed into k mode matrices such that: no more than one non-zero element
in each column and row; and each non-zero entry of the original traffic matrix
should appear in one and only one matrix mode of the decomposition. The cost
of a mode matrix is determined by the maximum of its non-zero elements. The
objective is to minimize the sum of mode matrices. This problem can be modeled
as WVCP by creating a graph where all the non-zero entries of the given matrix
are vertices with their weights; and add an edge between the vertices if the
vertices are in the same row or the column. A color class in the generated graph
corresponds to a mode matrix and its weight is determined by the weight of the
vertex. Riberio et al. [17] gave an exact algorithm based on column generation.
Prais et al. [16] proposed a heuristic approach based on a Greedy Randomized
Adaptive Search Procedure.

Related Work: There are several results on WVCP when restricted to paths.
Guan and Zhu [6] were the first to propose an O(n4) time algorithm for WVCP
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on paths. Since the maximum number of colors needed for WVCP is not larger
than Δ + 1, where Δ is the maximum degree. So, three colors suffice for a path.
The running time was subsequently improved by Escoffier et al. [3] to O(n2).
Their approach is as follows. Consider the colors labelled in such a way that
w1 ≥ w2 ≥ w3, where wi is the cost of color i. The value w1 is fixed and equal
to the maximum weight in the graph. They enumerate all possible values for
w2. All of the vertices with weight greater than w2 must be colored 1. Now,
consider two vertices u and v that must be colored 1. Two vertices between u
and v are colored other than color 1. If there exists an even number of vertices
between u and v, introduce third color otherwise color the vertices with two
colors (1, 2). Halldorsson et al. [7] further reduced the complexity of the algorithm
to O(n log n). For each fixed value of w2, they find the minimum value of w3 in
O(log n) time [7].

Finally, Kavitha and Mestre [8] gave linear time algorithm on paths and
skinny trees. They assume the vertices can be sorted independently. Trees for
which the set of vertices of degree at least 3 forms an independent set are referred
to a skinny tree. Their idea is to find a set of candidate values for the cost of
color 3. Then, by preprocessing the weights at odd and even positions on the
path, one can determine, in amortized constant time, the costs for colors 1 and
2. The idea works for skinny trees as well.

Apart from Kavitha and Mestre’s algorithm for skinny trees and the general
algorithm based on list coloring originating from the work of Guan and Zhu [6],
no other algorithms for trees are known. In the following section we describe a
new algorithm based on computing, in a bottom up manner, the set of weight
values corresponding to feasible weighted colorings of sub-trees of the given tree.

2 An Exact Algorithm for Binary Trees

The approach described by Guan and Zhu in [6] can be adapted to solve WVCP
for binary trees in polytime. The idea is to enumerate all possible values for the
costs of the colours of the WVCP and use a procedure for list coloring to test if
a coloring with such color costs is feasible.

Our approach is different. Rather than testing feasibility with a procedure
for list coloring, we compute the set of values for wi for which list coloring is
feasible. We call this set of values the feasible weight set. In the next section, we
characterize this set and we show that its complexity is linear in the size of the
binary tree.

2.1 Feasible Weight Sets

Consider a vertex weighted binary tree T = (V,E,w) where w : V → R. We wish
to represent the set of weight values wi : 1 ≤ i ≤ 4 for binary trees Δ ≤ 3 for
which a feasible WVCP coloring of T exists where the cost of color i is denoted
wi, and w1 ≥ w2 ≥ w3 ≥ w4. Naturally, w1 = max

v∈V
w(v) is fixed. Consider w2

is also fixed. For this case, we are concerned with representing the set of values
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for w3 and w4. There are O(n) possible choices for w3 and w4 and therefore,
the size of the feasible weight set is O(n2). The important point here is that,
although the size is O(n2) we will represent this set by a geometric construction
with complexity O(n).

We represent the feasible weight set by points in the two dimensional space
with coordinate axes w3 and w4 (see Fig. 2). Because w2 ≥ w3 ≥ w4, the feasible
set is contained in the upper triangular region in the figure.

We discuss a few simple properties of the feasible weight set to help build
our intuition. We first remark that point (w2, w2) is always part of the feasible
weight set. This is because there is a feasible coloring with w3 = w4 = w2. In
this case, there are two types of vertices in tree T : vertices v with wv > w2 which
must be colored 1, and vertices with wv ≤ w2 which can be colored with any of
the four colors. If the choice of w2 is feasible, then the vertices of type 1 must
form an independent set. If we remove these vertices from T , we obtain a forest
which can be colored with any two colors from the set of allowed colors {2, 3, 4}.

Another interesting point is the origin O in Fig. 2. The origin is part of the
feasible weight set if and only if there exists a feasible two coloring with color
weights w1 and w2. Of course, this is not true for all values of w2. Given the two
observations above, the feasible weight set corresponds to a set of points inside
�OPQ possibly separated from the origin by a polygonal line which we call
boundary line of the feasible weight set (Fig. 3). We characterize this boundary
line and claim that it has a complexity of O(n). To do this, we first prove the
following simple lemma.

Lemma 1. Let W (T ) denote the set of weights of tree T . Let A = (a, b) be
a point in the feasible weight set. Then any point Z = (x, y) with x ∈ W (T ),
y ∈ W (T ), x ≥ a, and y ≥ b is also in the feasible weight set.

Proof. The proof is immediate. If the list coloring problem is feasible for point
A (w3 = a and w4 = b), then it must also be feasible for point Z since the list
of allowed colors for the list coloring instance at point Z contains the lists of
allowed colors from the instance at point A. ��

Lemma 1 implies that, if the origin is not inside the feasible weight set, then
the boundary line separating the feasible weight set from the origin is an x-y
monotone polygonal line with axis parallel line segments, with one endpoint on
line segment [PQ] and the other endpoint on line segment [OQ] (see Fig. 3). For
this reason, we also call the boundary line the staircase. The staircase contains
O(n) points, at most two points for each possible value of w3. If the origin is part
of the feasible weight set, we consider the vertical line segment [OP ] to be the
boundary line. In this case, the feasible weight set is the set of O(n2) points inside
�OPQ. Consequently, we claim the following that defines the representation of
a feasible weight set.

Corollary 1 (Feasible weight set). The feasible weight set for a fixed w1 and
w2 is uniquely determined by the boundary line that starts at horizontal line
w3 = w2 and ends at diagonal line w3 = w4.
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w3
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P Q
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(2, 3)

(w2, w2)

w4 w3

Fig. 2. The region in w3–w4 space
enclosing the feasible weight set.

feasible region

infeasible region

w2

w4

w3

w3

w4

w3

Fig. 3. Boundary line for the feasible
weight set.

2.2 An Efficient Dynamic Progamming (DP) Algorithm for Binary
Trees

Given the feasible weight set for fixed w2 for the entire tree, a simple procedure
can determine the optimal solution to the WVCP by traversing the boundary line
of this set in O(n) time and computing the values w3 +w4 for every corner point
on the boundary line. A corner point is a point on the boundary line where the
boundary line of w3 and w4 intersects. The feasible weight set of any arbitrary
binary tree can be efficiently computed if we use the Spine Tree Decomposition
(STD) [2]. In the STD, the given rooted binary tree is recursively decomposed
into two or more sub-trees called components. The decomposition is determined
by a path computed in such a way than no component adjacent to this path is
excessively large in size. This fact allows the decomposition to be balanced. This
path is called the spine. Each node on the spine is considered as leaf node in
a balanced binary search tree built on top of the spine. A path connecting any
two search trees nodes can be called a super-path. Two important properties of
the STD are given below for reference.

Theorem 1. Any two tree nodes x and y are connected, in the STD data struc-
ture, by a super-path of search tree nodes of length O(log n) where n is the
number of vertices.

Theorem 2. An STD data structure can be constructed in O(n) time and uses
O(n) space.

Weight Set Computation: We compute feasible weight sets in a bottom-up
fashion. We find the optimal solution to the WVCP from the feasible weight sets
of the entire tree which are computed at the root of the STD, rSD (see Fig. 4).
We associate feasible weight sets with the internal nodes in the search trees
of the STD. These sets represent the set of feasible weights assigned to colors 2
through 4 for which a feasible coloring exists in the sub-tree corresponding to the
internal search tree node. If v represents an internal search tree node, the sub-
tree Tv corresponding to v has a special structure. It is connected with the rest
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of tree T by at most two boundary vertices (vertices of a spine). We compute the
feasible weight sets for Tv under the constraint that the two boundary vertices
are assigned a prescribed pair of colors. This means that the DP algorithm
computes a feasible vertex set that corresponds to colors assigned to at most
two spine nodes. Hence, the number of feasible weight sets computed per STD
node is 42 = 16.

Our computation proceeds, in a bottom up fashion, and associates feasible
weight sets to the nodes of the STD search trees, one search tree at a time.
Each such calculation is performed for w3 and w4 for a fixed value of w2. The
calculation is then repeated for another value of w2 and so on, starting with the
smallest possible value for w2 until w2 equals w1. Let Sij(v) denote the staircase
for feasible weight set of sub-tree Tv when the two boundary nodes are colored
with colors i : 1 ≤ i, j ≤ 4 respectively, the optimal solution to the WVCP is
obtained by computing the cost w3 + w4 on each cornor point on the staircase
Si(rSD) for all (i, j) combinations of colors. This can be done in time O(n) as
shown in Sect. 2.1.

The following lemma, proved in [8] provides a starting value for w2.

Lemma 2. In every valid coloring, we must have w2 ≥ max{min(wu, wv) :
(u, v) ∈ E} [8].

Base Case: In this section we show how to compute the feasible weight for a leaf
node v in the STD tree. In this case, then, v is on the spine of the STD search
tree. We distinguish the following two cases.

Case 1: Node v has degree three. In this case, the feasible weight sets associated
with v are obtained from the root of the search tree corresponding to the
child spine that node v starts. No additional processing is required.

Case 2: Node v has degree two. We have the following situations:
i: wv > w2. Then v must be colored 1 and Si(v) = ∅ for i ≥ 2 and S1(v)

corresponds to line segment [OP ] in Fig. 5 (no restriction).
ii: wv ≤ w2. Then S1(v) and S2(v) again correspond to line segment [OP ], no

restriction. However, S3(v) corresponds to staircase in Fig. 6 and staircase
S4(v) corresponds to staircase in Fig. 7.

Recursive step: We distinguish three cases.
Case 1: When the parent node v has two leaf nodes x and y. Thus v has at most
twelve possible color combinations. Let Sj(v) represents the staircase function
for color j : 1 ≤ j ≤ 4. Let k = 1, . . . , 4.

Sjk(v) = Sj(x) ∩ Sk(y),∀j,∀k, j �= k

Case 2: In this case, we calculate the feasible weight sets of the parent node v
whose immediate neighbour x is a leaf node of STD and y is an internal node of
the search tree. Let p = 1, ..., 4 and q = 1, ..., 4:

Spq(v) =
⋃

j �=p

(Sp(x) ∩ Sjq(y))
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Boundary Nodes

Search Tree

Spine

Fig. 4. Spine Tree Decomposition; x
and y are leaves of the search tree

w3

w4O

P

w2

Fig. 5. The staircase line is segment [OP ].

w3

w4O

P w2

wv

Fig. 6. Base case for S3(v)

w3

w4O

P w2

wv

Fig. 7. Base case for S4(v)

Case 3: Here, we calculate the feasible weight sets of node v whose children x
and y are internal nodes of the search tree.

Spq(v) =
⋃

j �=k

(Spj(x) ∩ Skq(y))

When wv ≥ w2 we have to further intersect Sj(x) : 1 ≤ j ≤ 4 with
max{w3, wv} if j is the third color or with max{w4, wv} if j is the fourth color
(Figs. 8 and 9).

Analysis: We already know that the complexity of the feasible weight sets is
linear in the size of the tree they are defined on. It is not difficult to notice that
the number of steps needed to compute unions or intersections of feasible weight
sets is proportional to the total complexity of the boundary lines of the feasible
sets being merged. The lines are x-y monotone and one can carefully traverse
the two lines in the same direction and compute their intersection in amortized
constant time per point visited. We thus state the following theorem whose proof
is to be provided in the full version.

Theorem 3. The WVCP problem in arbitrary binary trees can be solved exactly
in time O(n2 log n).

3 An Exact Algorithm for Cactus Paths

A cactus graph is a connected graph where any two cycles have at most one
vertex in common. In this section we give an exact algorithm for a special class
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Sjk(v)
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Sk(y)

w3

w4

w2
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Fig. 8. Combining the feasible weight
sets Sj(x) and Sk(y).

Sqk(v)

Spq(x)
Spj(y)

w3

w4

w2
Q

P

Infeasible Region

Feasible Region

O

Fig. 9. Computing Spq(v) from the six-
teen temporary staircase lines Sjk(v);
only two temporary staircase lines are
depicted.

of cactus graphs, the cactus paths with maximum degree three. A cactus path
is a cactus graph which generates a path graph by contracting all cycles. A
contraction of a cycle means converting a cycle into a single node. In general,
cactus graphs generate trees upon contraction of cycles.

Results of Guan and Zhu [6] imply that a cactus path with maximum degree
three is 4-colorable. Figure 10 illustrates that four colors are needed in an optimal
solution. The minimum three coloring has cost 8 + 4 + 4 = 16, whereas the four
coloring has cost 8 + 4 + 2 + 1 = 15.

We now establish several properties that characterize the optimal solution to
the WVCP in cactus graphs with maximum degree three. These properties are
essential in establishing the correctness of the proposed algorithm.

8 2

4 4
8

1 8
1

1

1

1 1

Fig. 10. A cactus path

x y

z

Fig. 11. A base case of a cactus path

Lemma 3. Let G be a graph with maximum degree Δ. If all of the maximum
degree vertices of G have neighbors with constant degree k where k < Δ, then
the optimal solution to the WVCP uses at most Δ colors [6,8].

Lemma 4. If the optimal solution to the WVCP on a cactus path with maximum
degree Δ uses four colors, then at least two vertices of maximum degree are
adjacent.
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Proof. Suppose u and v are maximum degree vertices in a four colored cactus
path. If u and v are adjacent then one of u or v will use the fourth color. Let u
be colored with the fourth color. For the sake of contradiction, let us introduce
a vertex y between u and v. Because of the vertex y, the neighbours of u and
v are all 2 degree vertices. By Lemma 3 both u and v can be colored by color
3 without increasing the cost of the optimal solution. Therefore, the adjacency
between the maximum degree is a necessary condition for a cactus path that
needs four colors in an optimal coloring. ��

To conserve space, the following statements are provided without a proof.

Corollary 2. If the optimal WVCP solution uses four colors and every degree
three vertex has at most one neighbor with degree three, then the color 4 candidate
vertices are the degree three vertices with a neighbor with bigger neighbor.

3.1 Algorithm

In this section we summarize the O(n log2 n) algorithm for cactus paths.
We associate a node with every cycle of the cactus path. We also associate a

node with every component left after removal of all the cycles from the cactus
path. According to the structure of the cactus paths, these components must be
paths or isolated vertices if they exist. We arrange these nodes so that consecutive
nodes correspond to components (cycles or paths) that are adjacent. We consider
a balanced binary tree whose leaves are the nodes just created. Like on the
previous sections, we consider feasible solutions with at most four colors where
wi represents the cost of color i and w1 ≥ w2 ≥ w3 ≥ w4. Unlike the algorithm
for trees, we fix the cost of the fourth colour and we represent feasible weight
sets for the cactus graph components in the space w2 and w3. We merge these
feasible weight sets, in a bottom-up fashion, given the balanced binary tree. At
the root of the tree, we obtain the feasible weight sets for the entire cactus path
and a fixed weight for the fourth color. We recover the optimal (w2, w3) pair by
processing this global weight set in the same way we did for the binary trees.

We then consider a new value for the cost of the fourth color and update
the global feasible weight set. It can be shown with amortized analysis that the
total amount of work to update the feasible weight sets is O(n log2 n). In the
following paragraph, we describe the procedure to compute the feasible weight
sets for the components of the cactus paths.

Basis step: The feasible weight sets for a component are computed for the
base case where the boundary vertices of the component are colored with pre-
determined colors. Let x and y be two boundary vertices of a component and
consider any color assignment for these vertices (see Fig. 11). If the component is
a cycle and we remove the boundary vertices x and y, then the cycle is split into
two different paths. We use the algorithm of Kavitha and Mestre [8] to obtain a
feasible weight set in w2 and w3 space for each one of these two paths. We then
compute the feasible weight set for the cycle by intersecting the feasible weight
sets obtained for the two paths.
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Recursive step: Once the feasible weight sets of the components of the cactus
graph are available, we proceed to merge them according to the balanced binary
tree. We use the same union and intersection operations as for the WVCP algo-
rithm on binary trees (details omitted). Since the complexity of the boundary
of the feasible weight sets is linear in the size of the corresponding cactus com-
ponents, it can be shown that the entire computation takes O(n log n) time.

Algorithm:

Step 1: Compute, the components of the cactus path in O(n) time.
Step 2: Determine the vertices that are candidates for the fourth color using

Lemma 2. Sort these vertices in non-decreasing order of their weights in
list L.

Step 3: For w4 ∈ ({0} ∪ L) do:
a: Compute or update the feasible weight set by traversing the balanced

binary tree bottom-up.
b: Traverse the boundary of the feasible solution to obtain the best solution

for the fixed value of w4.
Step 4: Return the best solution obtained over all values of w4.

We note that updating the feasible weight sets is dictated by the weight of
candidate vertex to be colored with a four color (Lemma 2). The update requires
union of the existing feasible sets with an additional feasible weight set. The com-
plexity of the feasible weight set is proportional to the size of the component
adjacent to the candidate color four vertex. The union can be performed in time
O(S log n) where S is the size of the component, irrespective of the complexity
of the feasible weight set being updated using binary search. Since a compo-
nent is involved in update at most once and the height of the balanced binary
tree is O(log n), it follows that the total update time for all values of w4 takes
O(n log2 n) time.

Theorem 4. The WVCP problem in cactus paths can be solved exactly in time
O(n log2 n).

Theorem 5. The WVCP problem in cycles can be solved exactly in time O(n).
Assume the vertices can be sorted independently.

4 Conclusion

In this paper, we consider the weighted coloring problem in binary trees and
cactus paths. It is well known that for WVCP, any tree with the maximum
degree bounded by a constant, can be in polynomial time. However, the running
time of this algorithm is quite high, O(n3 log n) for binary trees and cactus
paths. For certain applications such as solving robust versions of WVCP, this
can be slow. We describe a more powerful method that computes the coloring for
binary trees in time only O(n2 log n) using the spine tree decomposition. We then
discuss how the method can be extended to cactus paths to give an algorithm
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with time complexity O(n log2 n). We conjecture that using feasible weight sets,
an algorithm with sub-quadratic time complexity for the binary trees can be
designed.
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7. Halldórsson, M.M., Shachnai, H.: Batch coloring flat graphs and thin. In:
Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 198–209. Springer, Hei-
delberg (2008)

8. Kavitha, T., Mestre, J.: Max-coloring paths: tight bounds and extensions. J. Comb.
Optim. 24(1), 1–14 (2012)

9. Khan, N., Pal, A., Pal, M.: Edge colouring of cactus graphs. Adv. Model. Optim
11(4), 407–421 (2009)

10. Kratochvil, J., Tuza, Z.: Algorithmic complexity of list colorings. Discrete Appl.
Math. 50(3), 297–302 (1994)

11. Lewis, R.: A Guide to Graph Colouring, Algorithms and Applications. Springer,
Switzerland (2015)

12. Malaguti, E., Monaci, M., Toth, P.: Models and heuristic algorithms for a weighted
vertex coloring problem. J. Heuristics 15(5), 503–526 (2009)

13. McDiarmid, C., Reed, B.: Channel assignment and weighted coloring. Networks
36(2), 114–117 (2000)

14. Mishra, A., Banerjee, S., Arbaugh, W.: Weighted coloring based channel assign-
ment for wlans. SIGMOBILE Mob. Comput. Commun. Rev. 9(3), 19–31 (2005)

15. Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring
problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)

16. Prais, M., Ribeiro, C.C.: Reactive GRASP: an application to a matrix decomposi-
tion problem in TDMA traffic assignment. INFORMS J. Comput. 12(3), 164–176
(2000)

17. Ribeiro, C.C., Minoux, M., Penna, M.C.: An optimal column-generation-with-
ranking algorithm for very large scale set partitioning problems in traffic assign-
ment. Eur. J. Oper. Res. 41(2), 232–239 (1989)



Graph Algorithms



Finding Cactus Roots in Polynomial Time

Petr A. Golovach1, Dieter Kratsch2, Daniël Paulusma3,
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Abstract. A cactus is a connected graph in which each edge belongs
to at most one cycle. A graph H is a cactus root of a graph G if H is a
cactus and G can be obtained from H by adding an edge between any
two vertices in H that are of distance 2 in H. We show that it is possible
to test in O(n4) time whether an n-vertex graph G has a cactus root.

1 Introduction

Squares and square roots are well-known concepts in graph theory that have
been studied first from a structural perspective [22,24] but later also from an
algorithmic perspective, as we will discuss. The square G = H2 of a graph
H = (VH , EH) is the graph with vertex set VG = VH , such that any two distinct
vertices u, v ∈ VH are adjacent in G if and only if u and v are of distance at
most 2 in H. A graph H is a square root of G if G = H2. It is a straightforward
exercise to check that there exist graphs with no square root, graphs with a
unique square root as well as graphs with many square roots.

In this paper we consider square roots from an algorithmic point of view. The
corresponding recognition problem, which asks whether a given graph admits a
square root, is called the Square Root problem. Our research is motivated by
the result of Motwani and Sudan [21] who proved in 1994 that Square Root is
NP-complete. Afterwards, Square Root was shown to be polynomial-time solv-
able for various graph classes, such as K4-free graphs (trivial), planar graphs [18],
or more general, any non-trivial minor-closed graph class [23], block graphs [16],
line graphs [19], trivially perfect graphs [20], threshold graphs [20], graphs of
maximum degree 6 [3], 3-degenerate graphs [11] and (Kr, Pt)-free graphs for any
two integers r, t ≥ 1 [11]. It was also shown that Square Root is NP-complete
for chordal graphs [13]. We refer to [3,4,10] for a number of parameterized com-
plexity results on Square Root. The computational hardness of Square Root

also led to the following natural research question:
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Is it possible to test in polynomial time whether a given graph has a square
root that belongs to some specified graph class H?

It has been shown that such a polynomial-time algorithm exists if H is
the class of trees [18], proper interval graphs [13], bipartite graphs [12], block
graphs [16], strongly chordal split graphs [17], graphs with girth at least g for
any fixed g ≥ 6 [9], ptolemaic graphs [14], 3-sun-free split graphs [14] (see [15]
for an extension of the latter result to other subclasses of split graphs). In con-
trast, NP-completeness of this problem has been shown if H is the class of split
graphs [13], chordal graphs [13], graphs of girth at least 4 [9] or graphs of girth
at least 5 [8].

Our Result. We consider the class of all graphs being a cactus as H. A con-
nected graph is a cactus if every edge of it is contained in at most one cycle.
We give an O(n4)-time algorithm that tests whether an n-vertex graph has a
cactus root. Our result is motivated by the nontrivial question whether squares
of planar graphs can be recognized in polynomial time. The known result that
squares of trees, which form a subclass of the class of cactuses, can be recognized
in polynomial time [18] can be seen as a first step in solving this problem. As
every cactus is planar, our result could be seen as a second step in solving it.
On a side note, cactuses are not a subclass of any of the other aforementioned
classes of which the squares can be recognized in polynomial time.

We prove our result by analyzing, in Sect. 3, the structure of squares of cac-
tuses. In this way we are able to recognize vertices of the input graph G that
are cut-vertices in any cactus root (if such a square root exists) together with a
set of compulsory edges and a set of forbidden edges of any cactus root of G. In
this way we can reduce, in Sect. 4, the graph G to a number of smaller instances
such that G has a cactus root if and only if each of these smaller instances has a
cactus root. Showing that each of the smaller instances has bounded treewidth
and observing that we can solve the problem in linear time on any graph class
of bounded treewidth completes the proof.

We observe that in several variants of the Square Root problem where the
aim is to find some type of sparse square root [1,8,9,18], such a square root is
unique or unique up to isomorphism. This uniqueness can be exploited and as
such is very helpful for finding the square root. However, this is not the case for
cactus roots: Fig. 1 shows a graph that has two non-isomorphic cactus roots.

In Sect. 5 we discuss some directions of future work.

2 Preliminaries

We consider only finite undirected graphs without loops and multiple edges. We
refer to the textbook of Diestel [7] for any undefined graph terminology.

Basic Graph Terminology. We denote the vertex set of a graph G by VG and
the edge set by EG. The subgraph of G induced by a subset U ⊆ VG is denoted
by G[U ]. The graph G − U is the graph obtained from G after removing the
vertices of U . If U = {u}, we also write G − u. Similarly, we denote the graph
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Fig. 1. A graph with non-isomorphic square cactus roots. The edges of the cactus roots
are shown by solid lines, whereas the other edges are shown by dashed lines.

obtained from G after deleting a set of edges S (an edge e) by G − S (G − e
respectively).

Let G be a graph. A connected component of G is a maximal connected
subgraph. The distance distG(u, v) between a pair of vertices u and v of G is
the number of edges of a shortest path between them. The diameter diam(G) of G
is the maximum distance between two vertices of G. The open neighborhood of a
vertex u ∈ VG is defined as NG(u) = {v | uv ∈ EG}, and its closed neighborhood
is defined as NG[u] = NG(u) ∪ {u}. Two (adjacent) vertices u, v are said to
be true twins if NG[u] = NG[v]. A vertex v is simplicial if NG[v] is a clique,
that is, if there is an edge between any two vertices of NG[v]. The degree of
a vertex u ∈ VG is defined as dG(u) = |NG(u)|. The maximum degree of G is
Δ(G) = max{dG(v) | v ∈ VG}. A vertex of degree 1 is said to be a pendant
vertex. If v is a pendant vertex, then we say that the unique edge incident to u
is a pendant edge.

A vertex u is a cut vertex of a connected graph G with at least two vertices
if G − u is disconnected. An inclusion-maximal induced subgraph of G that has
no cut vertex is called a block. Recall that a connected graph G is a cactus if
each edge of G is contained in at most one cycle. This implies the following
well-known property.

Observation 1. Each block of a cactus with at least two vertices is either a K2

(an edge) or a cycle.

A tree decomposition of a graph G is a pair (T,X) where T is a tree and
X = {Xi | i ∈ VT } is a collection of subsets (called bags) of VG such that the
following three conditions hold:
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(i)
⋃

i∈VT
Xi = VG,

(ii) for each edge xy ∈ EG, x, y ∈ Xi for some i ∈ VT , and
(iii) for each x ∈ VG the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ VT }, T ) is maxi∈VT
{|Xi| − 1}. The

treewidth tw(G) of a graph G is the minimum width over all tree decomposi-
tions of G. If T is restricted to be a path, then we say that (X,T ) is a path
decomposition of G.

Problem Definition. Recall that a graph H is called a cactus root of a graph
G if H is a cactus and a square root of G. We consider the following problem:

Cactus Root

Input: a graph G.
Question: is there a cactus H with H2 = G?

We also need to define the following more general variant introduced in [3]
for general square roots:

Cactus Root with Labels

Input: a graph G and sets of edges R,B ⊆ EG.
Question: is there a cactus H with H2 = G, R ⊆ EH and B ∩ EH = ∅?

By choosing R = B = ∅ we see that Cactus Root is indeed a special case
of Cactus Root with Labels.

3 A Number of Structural Observations and Lemmas

In this section we state three observations and prove seven lemmas. We will use
these results, which are all structural, for the design of our O(n4) time algorithm
for Cactus Root presented in Sect. 4.

The first observation is known and easily follows from the definition of the
treewidth.

Observation 2. For a cactus G, tw(G) ≤ 2.

The second observation gives an upper bound for the treewidth of the square
of a graph; it follows from the well-known fact that we can transform every tree
decomposition (T,X) of a graph G into a tree decomposition of G2 by adding,
to each bag Xi of T , all the neighbors of every vertex from Xi.

Observation 3. For a graph G, tw(G2) ≤ (tw(G) + 1)Δ(G) − 1.

Let H be a square root of a graph G. We say that H is a minimal square root
of G if H2 = G but any proper subgraph of H is not a square root of G. Note that
the two cactus roots displayed in Fig. 1 are both minimal. Since any connected
subgraph of a cactus is a cactus, we can make the following observation.
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Observation 4. If a graph G has a cactus root, then G has a minimal cactus
root.

A block of a graph G is called a leaf block if it contains at most one cut vertex
of G. This leads to our first lemma.

Lemma 1. If a cactus H is a minimal square root of a graph G, then H has no
leaf block that is a triangle.

Proof. Suppose that a cactus H is a minimal square root of G such that a triangle
with vertices x, y, z is a leaf block of H. As a leaf block contains at most one cut
vertex of H by definition, we may assume that y and z are not cut vertices of
H. Let H ′ = H − yz. It is straightforward to verify that H ′2 = G, contradicting
the minimality of H. 	


Suppose that u and v are pendant vertices of a square root H of G and that
u and v are adjacent to the same vertex of H − {u, v}. Then, in G, u and v are
simplicial vertices and true twins. We use this observation in the proof of the
following lemma.

Lemma 2. Let H be a minimal cactus root of a graph G. If G contains at least
six simplicial vertices that are pairwise true twins, then at least one of these
vertices is a pendant vertex of H.

Proof. Let H be a minimal cactus root of a graph G that contains a set X of
six simplicial vertices that are pairwise true twins. The vertices of X cannot all
belong to the same block of H, because such a block would be a cycle with at
least six vertices (by Observation 1) and any two vertices of this block could not
be true twins of G. Hence, there is a cut vertex u of H such that there exist two
vertices x, y ∈ X that are in distinct connected components of H −u. Let H ′ be
a connected component of H −u that contains x. If x is not a pendant vertex of
H then, by the minimality of H and Lemma 1, there exists a vertex z ∈ VH′ that
is adjacent to x and that is at distance 2 from u in H. Then, as every path from
y to z in H contains u, we find that yz /∈ EG. This is a contradiction since x
and y are true twins of G and xz ∈ EG. We conclude that x is a pendant vertex
of H. 	


The following definition plays a crucial role in our paper.

Definition 1. Let u be a cut vertex of a connected graph H. We say that

(i) u is important if H − u has three vertices that belong to three distinct
connected components of H − u and that are each at distance at least 2
from u in H;

(ii) u is essential if H −u has two vertices that belong to two distinct connected
components of H − u and that are both at distance at least 2 from u in H.

Definition 1(i) immediately implies the following lemma.
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Lemma 3. If u is an important cut vertex of a cactus root H of a graph G,
then there are three vertices x, y, z ∈ NG(u) such that x, y and z are at distance
at least 3 from each other in G − u.

Although we have no implication in the opposite direction, we can show the fol-
lowing (which explains why we need the second and weaker part of Definition 1).

Lemma 4. Let G be a graph with a cactus root H. If u ∈ VG has three neighbors
x, y and z in G that are at distance at least 3 from each other in G − u, then u
is an essential cut vertex of H. Moreover, at least two vertices of {x, y, z} belong
to distinct connected components of H − u.

Proof. Assume that G has a cactus root H. Let u ∈ VG be such that u has three
neighbors x, y and z in G that are at distance at least 3 from each other in
G − u. Notice that because x, y and z are at distance at least 3 from each other
in G − u, these vertices are all at distance 2 from u in H.

For contradiction, assume that u is not a cut vertex of H. Then u has at
most two adjacent vertices in H, since H is a cactus (see Observation 1). Then
at least two vertices of {x, y, z} are adjacent to the same vertex of H (which is
one of the two neighbors of u) implying that these two vertices of {x, y, z} are
adjacent in G and thus in G − u; a contradiction. Hence u is a cut vertex of H.

Now suppose that x, y and z are all in the same connected component H ′

of H − u. Since H is a cactus, we find, by Observation 1, that H ′ contains at
most two vertices that are adjacent to u in H. Again, we obtain that at least
two vertices of {x, y, z} are adjacent to the same vertex of H; a contradiction.
Hence, at least two vertices of {x, y, z} belong to distinct connected components
of H − u. Since x, y and z are at distance 2 from u in H, this implies that u is
an essential cut vertex of H. 	


We now show that we can recognize edges of a cactus root that are incident
to an essential cut vertex.

Lemma 5. Let u be an essential cut vertex of a cactus root H of a graph G.
Then for every x ∈ NG(u), it holds that ux /∈ EH if and only if there exists a
vertex y ∈ NG(u) such that x and y are at distance at least 3 in G − u.

Proof. Let u be an essential cut vertex of a cactus root H of a graph G. Let
x ∈ NG(u). First suppose that ux ∈ EH . Let y ∈ NG(u). If uy ∈ EH , then
xy ∈ EG. If uy /∈ EH , then there exist a vertex z ∈ VH and edges uz, zy ∈ EH ,
as y ∈ NG(u). As zy ∈ EH , we find that zy ∈ EG. As ux, uz ∈ EH , we also
deduce that xz ∈ EG. In both cases x and y are at distance at most 2 in G − u.

Now suppose that ux /∈ EH . Then, as x ∈ NG(u), we find that x is at dis-
tance 2 from u in H. Let H ′ be the connected component of H −u containing x.
Since u is an essential cut vertex of H, H − u has another connected compo-
nent H ′′ containing a vertex y at distance 2 from u in H. It remains to observe
that y ∈ NG(u) and x and y are at distance 3 in G − u. 	


The next lemma is used to recognize vertices adjacent to an essential cut
vertex that belong to the same block of a minimal cactus root.
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Lemma 6. Let H be a minimal cactus root of a graph G. For any u ∈ VH , two
distinct vertices x, y ∈ NH(u) are in the same block of H if and only if x and y
are in the same connected component of G′ = G − EG[NH(u)] − u.

Proof. Let x, y ∈ NH(u). First suppose that x and y are in distinct blocks of
H. Then x and y are readily seen to be in distinct connected components of G′.
Now suppose that x and y are in the same block C of H. If xy ∈ EG then x and
y are in the same connected component of G′. Suppose xy /∈ EG. Then C is a
cycle by Observation 1. If C is not a triangle, then C has a unique (x, y)-path
in H (avoiding u) of length at least 2. This path is an (x, y)-path in G′ as well.
Hence x and y are in the same connected component of G′. Suppose that C is
a triangle. Then xy ∈ EH . As H is a minimal cactus root, x or y has at least
one neighbor z �= u in H due to Lemma 1. Assume without loss of generality
that z is a neighbor of x. Then the edges xy, xz ∈ EH imply that zy ∈ EG. We
establish that xzy is an (x, y)-path in G′, that is, also in this case x and y are
in the same connected component of G′. 	


Finally we show how to determine which neighbors in G of an essential cut
vertex u of a cactus root H are in the same connected component of H − u.

Lemma 7. Let H be a minimal cactus root of a graph G. For any u ∈ VH and
x ∈ NH(u), a vertex y ∈ NG(u) is in the same connected component of H −u as
x if and only if either uy ∈ EH and y in the same block of H as x, or uy /∈ EH

and there is a vertex z ∈ NH(u), such that z is in the same block of H as x and
yz ∈ EG.

Proof. Let y ∈ NG(u). First suppose y is in the same connected component of
H −u as x. If uy ∈ EH , then y is in the same block of H as x. Suppose uy /∈ EH .
As uy ∈ EG, there is a vertex z ∈ NH(u) such that zy ∈ EH . Then z is in the
same block of H as x, as x and y are in the same connected component of H −u.

To prove the reverse implication, if uy ∈ EH and x, y are in the same block
of H, then x and y are in the same connected component of H − u. Suppose
that uy /∈ EH and there is a vertex z ∈ NH(u) such that z is in the same block
of H as x and yz ∈ EG. If yz ∈ EH , then y and z are in the same connected
component of H − u. If yz /∈ EH , then there is a v ∈ VG such that yv, vz ∈ EH .
Since uy /∈ EH , we obtain v �= u. Therefore, y and z are in the same connected
component of H − u. Because y and z are in the same connected component of
H − u and x, y are in the same block of H, we obtain that x, y are in the same
connected component of H − u. 	


4 The Algorithm

In this section we use the structural results from the previous section to obtain
a polynomial-time algorithm for Cactus Root. The main idea is to reduce a
given instance of Cactus Root to a set of smaller instances of Cactus Root

with Labels, each having bounded treewidth. We therefore need the following
two lemmas which show, together with Observations 2 and 3, that we are done
if we manage to achieve this goal. The first lemma is due to Bodlaender.
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Lemma 8. ([2]) For any fixed constant k, it is possible to decide in linear time
whether the treewidth of a graph is at most k.

Lemma 9. Cactus Root with Labels can be solved in time f(t) · n for
n-vertex graphs of treewidth at most t.

Proof. It is not difficult to construct a dynamic programming algorithm for the
problem, but for simplicity we give a non-constructive proof based on Cour-
celle’s [5] theorem. By this theorem, it suffices to show that the existence of a
cactus root can be expressed in monadic second-order logic.

Let (G,R,B) be an instance of Cactus Root with Labels. We observe
that the existence of a cactus H such that G = H2, R ⊆ EH and B ∩ EH = ∅
is equivalent to the existence of a subset X ⊆ EG such that the following four
properties hold:

(i) R ⊆ X and B ∩ X = ∅;
(ii) for every uv ∈ EG, uv ∈ X or there exists a vertex w such that uw,wv ∈ X;
(iii) for every two distinct edges uw, vw ∈ X, uv ∈ EG;
(iv) for every uv ∈ X and for every two (u, v)-paths P1 and P2 in G such that

EP1 , EP2 ⊆ X \ {uv}, it holds that P1 = P2.

Each of these properties can be expressed in monadic second-order logic. In
particular, with respect to property (iv), expressing that a subgraph P of G is
a (u, v)-path in G can be done in monadic second-order logic in a standard way
(see, for example, [6]). Hence the lemma follows. 	


Now we are ready to prove the main result.

Theorem 1. Cactus Root can be solved in time O(n4) for n-vertex graphs.

Proof. We first give an overview of our algorithm. As we can consider each
connected component separately, we may assume without loss of generality that
the input graph G is connected. First, we use Lemma 2 to recognize sets of
pendant vertices in a (potential) cactus root adjacent to the same vertex that
have size at least 7. For each of these sets, we show that it is safe to delete
some vertices without changing the answer for the considered instance. After
performing this step, we obtain a graph G′ such that in any cactus root of G′

each vertex is adjacent to at most six pendants. Further, we use Lemmas 3 and 4
to construct a set U of essential cut vertices in a (potential) cactus root such
that U contains all important cut vertices. Next, we apply Lemma5 to recognize
which edges incident to the vertices of U are in any cactus root and which edges
are not included in any cactus root. We label them red and blue respectively and
obtain an instance of Cactus Root with Labels. Now we can use Lemmas 6
and 7 to determine for each u ∈ U , the partition of the set of vertices of G − u
into the sets of vertices of the connected components of H − u, where H is a
cactus root of G′. This allows us to split G′ via the vertices of U as shown in
Fig. 2. Due to the presence of labeled edges incident to the vertices of U , we
obtain an equivalent instance. Finally, we observe that the obtained graph has
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Fig. 2. Splitting of a graph; the vertices of U are black, the edges of a square root are
shown by solid lines and the other edges are shown by dashed lines.

bounded treewidth using Observations 2 and 3, so we can use Lemmas 8 and 9
to solve the problem, as we pointed out already.

Now we formally explain the details of our algorithm. Let G be a connected
graph. First, we preprocess G using Lemma 2 to reduce the number of pendant
vertices adjacent to the same vertex in a (potential) cactus root of G. To do so,
we exhaustively apply the following rule.

Pendants Reduction. If G has a set X of simplicial true twins of size at least 7,
then delete an arbitrary u ∈ X from G.

The following claim shows that this rule is safe.

Claim A. If G′ = G − u is obtained from G by the application of Pendant
reduction, then G has a cactus root if and only if G′ has a cactus root.

We prove Claim A as follows. Suppose that H is a minimal cactus root of G.
By Lemma 2, H has a pendant vertex u ∈ X. It is easy to verify that H ′ = H −u
is a cactus root of G′. Assume now that H ′ is a minimal cactus root of G′. By
Lemma 2, H has a pendant vertex w ∈ X \ {u}, since the vertices of X \ {u} are
simplicial true twins of G′ and |X \ {u}| ≥ 6. Let v be the unique neighbor of w
in H ′. We construct H from H ′ by adding u and making it adjacent to v. It is
readily seen that H is a cactus root of G. This completes the proof of Claim A.

For simplicity, we call the graph obtained by exhaustive application of the
pendants rule G again. The following property is important for us.

Claim B. Every cactus root of G has at most six pendant vertices adjacent to
the same vertex.

Now we construct an instance of Cactus Root with Labels together with
a set U of cut vertices of a (potential) cactus root.

Labeling. Set U = ∅, R = ∅ and B = ∅. For each u ∈ VG such that there are
three distinct vertices x, y, z ∈ NG(u) that are at distance at least 3 from each
other in G − u do the following:

(i) set U = U ∪ {u},
(ii) set B′ = {uv ∈ EG | ∃w ∈ NG(u) s.t. distG−u(v, w) ≥ 3},
(iii) set R′ = {uv | v ∈ NG(u)} \ B′,
(iv) set R = R ∪ R′ and B = B ∪ B′,
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(v) if R ∩ B �= ∅, then return a no-answer and stop.

Lemmas 3, 4 and 5 immediately imply the following claim.

Claim C. If G has a cactus root, then Labeling does not stop in Step (v), and
if H is a minimal cactus root of G, then R ⊆ EH and B ∩ EH = ∅. Moreover,
every vertex u ∈ U is an essential cut vertex of any cactus root of G, and any
important cut vertex u of any cactus root of G is contained in U .

For each u ∈ U , let R(u) = {v ∈ NG(u) | uv ∈ R} and B(u) = NG(u) \ R(u)
and construct a partition P (u) = {S1, S2, . . . , Sk(u)} of NG(u) as follows.

Partition. For each u ∈ U ,

(i) put x, y ∈ R(u) in the same set of P (u) if and only if x and y are in the
same connected component of G′ = G − EG[R(u)] − u,

(ii) for each x ∈ R(u), put y ∈ B(y) in the same set with x if xy ∈ EG,
(iii) if at least one of the following holds, then return a no-answer and stop:

• P (u) is not a partition of NG(u),
• there is a set of P (u) with at least three vertices of R(u),
• there is a vertex of B(u) that is not in a set of P (u) with a vertex of R(u),
• there are distinct S, S′ ∈ P (u) such that for some x ∈ S and y ∈ S′,

xy ∈ R,
• there are distinct S, S′ ∈ P (u) such that for some x ∈ S and y ∈ S′,

xy ∈ EG but ux /∈ R or uy /∈ R,
• there are distinct S, S′ ∈ P (u) such that for some x ∈ S and y ∈ S′,

xy /∈ EG but ux ∈ R and uy ∈ R,
• the graph G − EG[R(u)] − u has a path connecting vertices of distinct sets

of P (u).

By Lemmas 6, 7 and Claim C, we have the following.

Claim D. If G has a cactus root, then Partition does not stop in Step (iii),
and if H is a minimal cactus root of G, then

(i) R ⊆ EH and B ∩ EH = ∅,
(ii) every important cut vertex u of H is in U ,
(iii) for any u ∈ U , x, y ∈ NG(u) are in the same connected component of H −u

if and only if x and y are in the same set of P (u).

Now we split the instance (G,R,B) of Cactus Root with Labels into
several instances of the problem.

Splitting. For each u ∈ U , let P (u) = {S1, . . . , Sk} and do the following:

(i) delete u and introduce k new vertices u1, . . . , uk,
(ii) for each i ∈ {1, . . . , k}, make ui adjacent to all vertices of Si,
(iii) for each i ∈ {1, . . . , k} and v ∈ Si, if uv ∈ R, then replace uv by uiv in R,

and if uv ∈ B, then replace uv by uiv in B,
(iv) for each i, j ∈ {1, . . . , k}, i �= j, delete the edges xy with x ∈ Si and y ∈ Sj ,
(v) for each i ∈ {1, . . . , k} and v ∈ Si, update P (v) by replacing v by vi in the

sets and deleting the vertices of NG(u) \ Si from the sets.
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Let G1, . . . , Gr be the connected components of the obtained graph. For
i ∈ {1, . . . , r}, let Ri = R ∩ EGi

and Bi = B ∩ EGi
. By Claims B and D, we

establish the following crucial claim.

Claim E. The input graph G has a cactus root if and only if (Gi, Ri, Bi) is a
yes-instance of Cactus Root with Labels for each i ∈ {1, . . . , r}. Moreover,
if (Gi, Ri, Bi) is a yes-instance, then Gi has a cactus root H with Ri ⊆ EH and
Bi ∩ EH = ∅ such that every cut vertex of H belongs to at most eight blocks and
to at most two blocks not being a K2.

By Claim E, if G has a cactus root, then Δ(Gi) ≤ 10 for i ∈ {1, . . . , k}. By
Observations 2 and 3, we obtain that tw(Gi) ≤ 29 in this case. We use Lemma 8
to check whether this holds for each i ∈ {1, . . . , r}. If the algorithm reports that
tw(Gi) ≥ 30 for some i ∈ {1, . . . , r}, then we return a no-answer and stop.
Otherwise, we solve Cactus Root with Labels for each instance (Gi, Ri, Bi)
using Lemma 9 for i ∈ {1, . . . , r}.

It remains to evaluate the running time of our algorithm. We can find all
simplicial vertices and sort them into the equivalence classes with the true twin
relation in time O(n3). This implies that the exhaustive application of the Pen-
dant reduction rule can be done in time O(n3). For each vertex u ∈ VG, we
can compute the distances between the vertices of G − u in time O(n3). Hence,
the Labeling step can be done in time O(n4). For each u ∈ U the sets R(u)
and B(u) can be constructed in time O(n2). For each u ∈ U , we can construct
G′ = G − EG[R(u)] and find the connected components of G′ in time O(n2). It
follows, that the Partition step can be done in time O(n3). The Splitting step
takes O(n3) time. The algorithm in Lemma 8 runs in O(n) time. We conclude
that the total running time is O(n4). 	


5 Conclusions

We proved that the problem of testing whether a graph has a cactus root is
O(n4)-time solvable. In fact, our algorithm can be modified to find a cactus root
in the same time (if it exists).

We recall that every cactus is planar and that the problem of settling the
complexity of recognizing squares of planar graphs is open. We also recall that
a cactus is a connected graph, in which each block is either a cycle or an edge.
This leads to the following (known) generalization: a cactus block graph is a
connected graph, in which each block is a cycle or a complete graph. Can we
decide in polynomial time whether a given graph has a square root that is a
cactus block graph? In order to answer this question, we need new arguments
as our current proof for cactus roots does not carry over.
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Abstract. This paper is devoted to the fast and exact diameter compu-
tation in graphs with n vertices and m edges, if the diameter is a large
fraction of n. We give an optimal O(m+n) time algorithm for diameters
above n/2. The problem changes its structure at diameter value n/2, as
large cycles may be present. We propose a randomized O(m + n log n)
time algorithm for diameters above (1/3 + ε)n for constant ε > 0.

1 Introduction

Computing distances and shortest paths is one of the fundamental graph prob-
lems. The diameter of an undirected graph is the maximum distance between any
two vertices. In a graph with n vertices and m edges of unit length, all distances
from a single vertex (single-source shortest paths, SSSP) can be computed by
breadth-first-search (BFS) in O(n+m) time, and all pairwise distances (all-pairs
shortest paths, APSP) can therefore be obtained in O(nm) time by solving n
times SSSP. Trivially, this also yields the diameter, but it was a longstanding
open problem whether the diameter can be computed significantly faster than
via APSP, see [1,14] for results. Many results are also known for diameter compu-
tation in special graph classes [5,6,8,13] and fast approximation of the diameter
[2–4,11,13]. This bibliography is certainly far from being complete. Other related
lines of research that we cannot survey here include faster APSP computation
in special graph classes, and experimental studies of diameter computations in
real-world graphs.

Instead of the graph structure one may also restrict the range of diameters.
As discussed in [5], the problem of distinguishing between graphs of diameter
2 and 3, already for the special class of split graphs, is as hard as the disjoint
sets problem (deciding whether a given set family contains two disjoint sets) and
is therefore unlikely to have a subquadratic algorithm. In the present paper we
look at the other end: graphs with “giant” diameters close to the number n of
vertices. (The word is borrowed from the giant components of random graphs.)
Whereas most real-world networks have small diameters, chain-like structures
may appear as well in various contexts (chain molecules, connections between
two fixed sites in a network, etc.).

Contributions. First we give an O(m + n) time algorithm for diameters above
n/2. One can think of different approaches, e.g., similar to diameter computation
c© Springer International Publishing Switzerland 2016
V. Mäkinen et al. (Eds.): IWOCA 2016, LNCS 9843, pp. 373–384, 2016.
DOI: 10.1007/978-3-319-44543-4 29
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in trees. Our approach is based on separators (articulation points in this case),
and removal of irrelevant subgraphs. Moreover, it is not necessary to know in
advance that the given graph has a large diameter. Admittedly we use quite a
number of lemmas to prepare this result, but we want to point out all single
steps, in the hope that future research can generalize them to larger separators
and smaller diameters. We also show that the O(n + m) time bound cannot be
improved (say, to O(n) time) under plausible assumptions on the graph represen-
tation. While our solution for diameters larger than n/2 works with articulation
points, we observe some “phase transition” just below n/2: A graph with such a
diameter may have a giant geodesic cycle, hence qualitatively different methods
are needed to “choose the correct half cycle” that yields the diameter. For this
purpose we define an auxiliary problem that might be of independent interest. Its
solution is applied in a randomized O(m +n log n) time algorithm for diameters
above n/3. Note that this bound is linear in the graph size if m > n log n.

2 Preliminaries

Our graphs G = (V,E) are undirected, unweighted, and connected, and have n
vertices and m edges. A path joining two vertices u and v is denoted u − v, if
the inner vertices are clear from context or irrelevant. The distance dG(u, v), or
simply d(u, v), is the length, i.e., number of edges, of a shortest u − v path. A
shortcut to a subgraph H of G is a path in G that connects two vertices u and v
from H, but is shorter than dH(u, v). We call H a geodesic subgraph if H has no
shortcuts in G. In particular, a geodesic path P is a shortest path connecting its
end vertices. The diameter of G is diam(G) := max{d(u, v)|u, v ∈ V }. Hence a
longest geodesic path in G is a path of length diam(G). We use the abbreviation
δ := diam(G)/n. Note that a cycle C is geodesic if, for any two vertices u, v ∈ C,
their smaller distance (of at most 1

2 |C|) on C equals d(u, v).
With respect to a root vertex r we refer to the sets Ni(r) := {v| d(u, v) = i}

as layers, and the depth of G is defined by max{d(r, v)| v ∈ V }. Depth and layers
can be computed using breadth-first-search (BFS).

To avoid heavy notation and technicalities we may neglect additive constants
in arithmetic expressions, as well as rounding of fractional numbers to integers,
as long as this does not affect asymptotic statements for large graphs.

For U ⊂ V we denote by G − U the graph that remains when the vertices
of U and all incident edges are removed from G. If U = {u}, we write G − u
for G − U . A separator is a vertex set S ⊂ V such that G − S is disconnected.
An articulation point is just a separator of size 1, that is, a vertex u such that
G − u is disconnected. A block is a biconnected graph, that is, a graph without
articulation points. The block-cut tree of G has a node for every articulation
point, and a node for every block (biconnected component) without the articu-
lation points therein. The block-cut tree has edges between adjacent articulation
points, and between those articulation points and blocks where G has edges.

A hair in a graph is a path H such that one end vertex of H has degree 1, all
inner vertices have degree 2, and the other end vertex has degree larger than 2.
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We can think of a hair as a simple path that is dangling at the rest of the graph.
In particular, a hair is a geodesic path.

We say that a vertex v is between vertices u and w, in symbols B(u, v, w), if
the triangle inequality degenerates to the equation d(u,w) = d(u, v) + d(v, w).

We tacitly use some elementary properties listed here: Any subpath of a geo-
desic path is geodesic. If we replace any subpath of a geodesic path with another
geodesic (sub)path between the same two vertices, then the entire path remains
geodesic. Any three vertices u, v, w that appear in this order on a geodesic path
satisfy B(u, v, w). Conversely, if B(u, v, w) holds true, then any concatenation
of two geodesic u − v and v − w paths is a geodesic u − w path.

3 Diameters Larger than Half the Size

First we study the largest diameters, more precisely, the case δ > 1/2. We show
that this case can be solved in linear time. Our approach works with articulation
points, and (in Lemma3) pruning of irrelevant vertices. Lemma 2 below also
holds for general graphs.

Lemma 1. Suppose that δ = 1/2 + h, and let P be any longest geodesic path.
Then there exists a vertex u ∈ P which is an articulation point of G and divides
P in two subpaths of length at least hn each.

Proof. Let v be an end vertex of P . Clearly, the number of vertices not in P
is (1/2 − h)n. Hence at least 2hn of the layers Ni(v) contain a single vertex.
Since edges cannot skip layers, every such single vertex u (except for i = 0 and
possibly the last layer) is an articulation point of G and an inner vertex of P .

Specifically, consider an articulation point u that belongs to P and is as close
as possible to the center of P . In the worst case, only 2hn articulation points
are on P , and they form two subpaths of equal lengths at the ends of P . Still,
an innermost articulation point u divides P in two paths the shorter of which
has length at least hn. ��
Lemma 2. Consider an articulation point u of G, a connected component C of
G − u, and a longest geodesic path P in G. Define Cu := C ∪ {u}. Then one
of these three cases applies: (a) P does not intersect C. (b) P intersects both C
and G − Cu. (c) P is entirely in Cu.

In case (b), the subpath Pu of P in Cu is a geodesic path connecting u with
some vertex of C at maximum distance from u. Moreover, any such geodesic path
in Cu may replace Pu in P , and the resulting path is again a longest geodesic
path in G. Case (c) can be true only if Cu has at least δn vertices.

Proof. The case distinction is evident, as well as the assertion about case (c).
The assertion about case (b) follows from two facts: P has maximum length,
and no edges join any vertices of C and G − Cu. Hence the new subpath cannot
lead to shortcuts to vertices outside C. ��
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Lemma 3. Consider an articulation point u of G, a connected component C of
G − u, and a longest geodesic path P in G. Suppose that P is not entirely in
C (for instance, because C has fewer than δn vertices). Then it is safe to keep
only one geodesic path from u to a farthest vertex v (with maximum d(u, v)) in
C and remove all other vertices of C. That is, this removal retains some longest
geodesic path in G.

Proof. By assumption, case (c) of Lemma 2 does not apply to C. If case (a)
applies, then the assertion is vacuously true. If case (b) applies, then the assertion
follows from the property mentioned in Lemma2: Since any geodesic path from
u to a farthest vertex v can be used, we need to keep only one. ��

As a consequence of the previous lemmas we can already settle one case:

Lemma 4. Suppose that δ > 1/2. Let u be an articulation point of G such
that every connected component of G − u has fewer than n/2 vertices. Then G
has a longest geodesic path P composed of two subpaths that connect u with the
farthest vertices in two distinct connected components of G − u with the two
largest depths. (Here, depth is understood with respect to the root u, and ties are
broken arbitrarily if some depths are equal.)

Proof. P has the claimed shape due to Lemma 3. Since P has the maximum
length among all geodesic paths, the two connected components that intersect
P must also have the largest depths. ��

The next lemma addresses some routine preprocessing.

Lemma 5. Given a graph G, we can determine, in O(n+m) time, the set A of
all articulation points u, the block-cut tree of G, and the vertex numbers of all
connected components of all graphs G − u (u ∈ A).

Proof. In O(n + m) time one can find all articulation points of G [9,12], and
furthermore construct the block-cut tree T straightforwardly. We declare an
arbitrary node of T the root and compute, by bottom-up summation in the
rooted tree T , the number of vertices (that is, original vertices of G) below
every edge of T . From these numbers we get the vertex numbers of all connected
components of G − u, for all articulation points u, in O(n + m) time in total:
In particular, note that one edge from any articulation point u except the root
goes upwards in the rooted tree, and the size of the corresponding component is
n − 1 minus the sum of sizes of all other connected components of G − u being
below u in the rooted tree. ��

Now we can either reduce an instance of our problem in linear time to an
equivalent instance with a simple structure, or solve the problem.

Lemma 6. In a graph G with δ > 1/2 we can, in O(n + m) time, either com-
pute a longest geodesic path of G, or extract an induced subgraph of G that still
contains a longest geodesic path of G and consists of only one block with hairs.
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Proof. We do computations as in Lemma 5. If, for an articulation point u, every
connected component of G−u has fewer than n/2 vertices, then we find a longest
geodesic path by Lemma 4 in O(n + m) time, by using BFS with root u.

The other case is that, for every articulation point u, one connected compo-
nent of G − u has at least n/2 vertices. Assume that the block-cut tree T has
two or more blocks. Then there exists an articulation point u on the path of T
between any two blocks. But now Lemma 3 applies to the connected components
of G − u except the largest one. Thus we can replace them all with one longest
geodesic path from u into these components, ending now in a new leaf of T . In
particular, we get rid of at least one block.

We repeat this procedure until only one block with hairs remains. The depths
and hairs are computed by BFS, where we can append any previously computed
hair as a whole, if BFS reaches its (non-leaf) start vertex. Thus all changes affect
pairwise disjoint parts of T , thus the process costs O(n + m) time in total. ��

In order to compute a longest geodesic path in arbitrary graphs with δ > 1/2
it remains to treat the graphs as produced in Lemma6, consisting of one block
with hairs. Note that still δ > 1/2, since the number of vertices has not increased.
Now we also use the quantitative part of Lemma 1.

Lemma 7. In a graph G with δ > 1/2 consisting of one block with hairs, some
longest geodesic path begins at one of the two longest hairs (where ties are broken
arbitrarily if some hair lengths are equal).

Proof. Lemma 1 implies for this special type of graph that any longest geodesic
path P must begin with a hair of length at least hn. We define factors hi such
that h1n ≥ h2n ≥ . . . are the hair lengths in descending order, and we let
H1,H2 . . . denote the hairs in this order (not including their last articulation
points that belong to the block).

If P does not begin with H1, then P is a longest geodesic path in the graph
G1 := G − H1, thus in a graph with n1 := (1 − h1)n vertices and with diameter
(12 +h)n = (12 − 1

2h1 + 1
2h1 +h)n = 1

2n1 +(12h1 +h)n. Since Lemma 1 also holds
for G1, we conclude that P must begin with a hair of length at least (12h1 +h)n,
thus 1

2h1 + h ≤ h2. If P does not begin with H2 either, then P is a longest
geodesic path in G2 := G1 − H2, thus in a graph with n2 := (1 − h1 − h2)n
vertices and, by a similar calculation, with diameter 1

2n2 + (12 (h1 + h2) + h)n.
The same reasoning as above implies 1

2 (h1 + h2) + h ≤ h3. This contradicts
h1 ≥ h2 ≥ h3. Thus, P must begin with H1 or H2. ��

This yields the final result of the section.

Theorem 1. In a graph G with δ > 1/2 we can find some longest geodesic path,
and thus compute diam(G), in O(n + m) time.

Proof. We run the procedure from Lemma6. If it yields a subgraph of the special
form mentioned there, we start BFS from the two longest hairs and output the
longest of the two geodesic paths, which is correct by Lemma 7. ��
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Corollary 1. In a graph G we can decide whether δ > 1/2, and in that case we
can find some longest geodesic path, and thus compute diam(G), altogether in
O(n + m) time.

Proof. First we run an algorithm as in Theorem1. (We remark that the following
reasoning does not depend on the particular algorithm.) If it does not output a
result, then δ ≤ 1/2. Otherwise, we test in O(n + m) time whether the output
path actually has a length above n/2 and is a geodesic path. This can be done by
BFS from one end vertex, since BFS yields the distances from the root vertex.
If the output passes the test, then δ > 1/2. Conversely, if δ > 1/2, then the test
confirms it. ��

4 Optimality of Linear Time (in the Number of Edges)

Graphs with δ > 1/2 can still have a quadratic number m = O(n2) of edges.
For instance, consider a path of length δn with a clique of (1 − δ)n vertices
attached somewhere. One may suspect that we need not read all edges in dense
subgraphs in order to compute diam(G), since most of them cannot belong to
a longest geodesic path. Therefore it is not obvious whether the time O(n + m)
is optimal. Perhaps one could solve the problem in O(n) time? However, we
will argue that O(n + m) time is actually needed in the worst case, even for a
good approximation, provided that graphs are given by adjacency lists where the
vertices appear in no particular order. The idea is that diam(G) can depend on
the presence of single edges creating shortcuts, but they are hard to find between
dense subgraphs. The crucial subproblem in pure form looks as follows.

Crossing Edge: Given is a graph on a vertex set X ∪ Y , where X ∩ Y = ∅.
The graph is given by adjacency lists, where the vertices appear in no particular
order, and the partitioning into X and Y is known. Find some edge xy with
x ∈ X, y ∈ Y , or report that no such edge exist.

Note that the following lemma hinges on the cardinalities. It would not hold
if, for instance, |X| = k and |Y | = 1.

Lemma 8. Any algorithm that solves Crossing Edge with |X| = |Y | = k
needs Ω(k2) time in the worst case.

Proof. We can think of any algorithm as a player that can only look up entries
in the adjacency lists, whereas an adversary provides all information. This trans-
lates the problem into a game with the following rules. In each step, the player
may choose an arbitrary vertex u, and the adversary returns one vertex v adja-
cent to u (meaning that the player reads v in u’s adjacency list).

As we are proving a lower bound, we can give the player extra information:
The adversary tells in advance that either none or two edges exist between X
and Y , and all other edges are inside X or Y . The player also gets to know
the degrees of all vertices, that is, the lengths of all adjacency lists. Now the
player can examine the adjacency lists, thus learn the edges. After each step of
the game, the adversary is even more helpful and removes not only v from u’s
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adjacency list, but also u from v’s adjacency list. Only the undetected edges are
kept, and the degrees of u and v are reduced by 1.

It remains to specify an adversary strategy. Remember that the player’s
instantaneous knowledge is the degrees of all vertices of X and Y , respectively.
We call a degree sequence (multiset of degrees) valid, if there exists a graph with
that degree sequence. The adversary does not reveal the graph, but only valid
degree sequences in both X and Y . Initially let all degrees be k − 1, thus we
have roughly k2 edges, and the degree sequences are valid, as both subgraphs
can be cliques. As long as there remains at least one edge in both X and Y ,
the player cannot distinguish whether these edges in X and Y exist, or instead
two edges between X and Y joining the same four vertices. Whenever the player
has chosen a vertex u, the adversary takes a vertex v from the same set (v ∈ X
if u ∈ X, and v ∈ Y if u ∈ Y ) such that the resulting degree sequence after
subtracting 1 remains valid. Such a vertex v does always exist: Since the current
degree sequence is valid, there exists a graph realizing it, and in such a graph
there exists an edge uv that can be removed.

This shows that the player must empty one of X and Y , and therefore see
Ω(k2) edges, in order to decide whether some edges join X and Y . ��
Proposition 1. Any algorithm that approximates the diameter of graphs with
any fixed δ > 1/2 within a factor better than 2 needs Ω(n+m) time in the worst
case.

Proof. We construct a special graph G: We take a simple path P of length δn
and attach two subgraphs with vertex sets X and Y at the ends of P , |X| =
|Y | = k := 1

2 (1 − δ)n. They are chosen as in Lemma 8; in particular, we have
m = δn+Θ(k2) = Θ(n2) edges. If X and Y are connected directly by some edge,
then diam(G) = 1

2δn rather than diam(G) = δn “as expected”. By Lemma 8,
a shortcut between X and Y cannot be recognized or excluded without reading
Ω(k2) = Ω(n + m) edges, as this problem is an instance of Crossing Edge. ��

5 An Auxiliary Problem: Largest Mixed Sum

For δ ≤ 1/2, diameter computation cannot be based on articulation points any
more, for the trivial reason that there exist graphs with diameter about n/2
but without any articulation points, such as the chordless cycle. We argue that
δ = 1/2 is a barrier in the sense that already for δ slightly below 1/2, due to
the possibility of long geodesic cycles and the lack of articulation points, it is
inevitable for diameter calculation to solve a specific new subproblem.

To introduce and motivate this problem, consider the following special case
of graphs. Let H = (V,E) and H ′ = (V ′, E′) be two vertex-disjoint graphs with
distinguished vertices u, v ∈ V and u′, v′ ∈ V ′. We connect u and u′ by a path
of some length � larger than the diameters of H and H ′. Similarly we connect v
and v′ by another path of length �, being vertex-disjoint to the first path. The
graph G constructed in this way is, roughly speaking, a geodesic cycle with two
subgraphs H and H ′ attached at diametral positions. For any two vertices w ∈ V
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and w′ ∈ V ′ we have d(w,w′) = � + min{d(w, u) + d(w′, u′), d(w, v) + d(w′v′)},
since one of the paths u−u′ or v−v′ must be chosen. (Distances are meant with
respect to G.) Define s := d(u, v) and s′ := d(u′, v′). Note that G has a longest
geodesic cycle (in general not uniquely determined) of length 2� + s + s′. Any
geodesic path that starts outside V ∪ V ′ is a subpath of some longest geodesic
cycle and has therefore a length at most � + 1

2 (s + s′). Some geodesic path
connecting H and H ′ can be longer, since a distance d(w,w′), as above, can be
as large as � + 1

2 (d(w, u) + d(w′, u′) + d(w, v) + d(w′v′)) ≥ � + 1
2 (s + s′). (The

two terms under “min” might be equal, and the triangle inequality holds.) Then
we must find the maximum d(w,w′) to get the correct diameter. By abstracting
from the graph problem and using the symbols

x := d(w, u), y := d(w, v), y′ := d(w′, u′), x′ := d(w′, v′),

we arrive at the following problem statement.

Largest Mixed Sum: We are given h pairs of numbers (xi, yi) and h′ pairs of
numbers (x′

j , y
′
j), find two indices i and j so as to maximize min{xi+y′

j , yi+x′
j}.

We refer to the given pairs as h red and h′ blue pairs, and we refer to the given
numbers as coordinates. We can assume h′ ≤ h.

Observe that these values x, y and x′, y′ for all vertices w and w′, respectively,
can together be computed by four runs of BFS, in linear time in the number of
edges of H and H ′. From any identical pairs we keep only one copy. We say that
a pair of numbers (a, b) is dominated by a pair (c, d) if a ≤ c and b ≤ d. Within
a given set of pairs, we call a pair non-dominated if that pair is not dominated
by other pairs in the set.

Proposition 2. Largest Mixed Sum is solvable in O(h log h) time.

Proof. The subset of the non-dominated pairs in a set of h pairs, sorted by
strictly ascending first coordinates (and thus by strictly descending second coor-
dinates) can be computed in O(h log h) time: Sort the pairs by their first coor-
dinates, scan this sequence, and maintain the sorted sequence of pairs being
non-dominated so far. Since the second coordinates are decreasing there, for
every new pair (a, b) we only have to find the correct place of b in the sequence
by binary search, and then delete the current end of the sequence containing
those pairs with second coordinates smaller than b.

An optimal solution to Largest Mixed Sum can always be formed by a
red pair and a blue pair which are non-dominated in the set of red pairs and
blue pairs, respectively. This is true by an obvious exchange argument. Thus,
in order to solve the problem it suffices to take each red pair (x, y) and find an
optimal partner (x′, y′) in the sorted sequence U of non-dominated blue pairs.
Finally we take the best solution, with maximum z := min{x + y′, y + x′}.

We distinguish six cases regarding the relationships between the coordinates.
In cases of equations, the equality signs = can be arbitrarily replaced with the
strict signs < or >. (See the Fig. 1)
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x − x

y − y

1

2

3

4

5

6

Fig. 1. These are the cases in the proof of Proposition 2.

(1) x′ < x and y′ > y
(2) x′ < x and y′ < y and x − x′ > y − y′

(3) x′ > x and y′ > y and x′ − x < y′ − y
(4) x′ < x and y′ < y and x − x′ < y − y′

(5) x′ > x and y′ > y and x′ − x > y′ − y
(6) x′ > x and y′ < y

Checking these cases one by one, we see that, if both x′ increases y′ decreases,
then the objective z strictly increases in the regions (1)–(3) and strictly decreases
in the regions (4)–(6). Moreover, the sorted sequence U first passes the regions
(1)–(3) and then continues in the regions (4)–(6). Hence z is a unimodal discrete
function on U , that is, z has only one local maximum which is therefore the
global maximum. The maximum can be found by O(log h′) look-ups of function
values, by golden section search [10]. Since we have to do this at most h times
(for every red pair), the time bound follows. ��

Remark 1: Due to the search procedures, the log factor in Proposition 2 might
be necessary for Largest Mixed Sum in general. Our particular objective
function z is actually a “↔� unimodal 2D function” in the sense of [7], but we
have used unimodality in only one direction. However, it is apparently unknown
[7] whether this stronger property allows to find the global maximum in linear
time. On another front, we have not established a linear-time reduction from
Largest Mixed Sum to the diameter problem. The Largest Mixed Sum
instances that can be realized by distances in graphs may have further properties
that allow for linear time. We leave these questions open.

6 Diameters Larger than One Third of the Size

Generalizing Lemma 1 we can state, not surprisingly, that graphs with large
diameter possess many small separators. We will use this version of the principle:
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Lemma 9. Suppose that δ = 1
2 − h, where 0 ≤ h < 1

6 . Let P be any longest
geodesic path, with r as one of its end vertices. Then at least (14 − 3

2h)n of the
layers Ni(r) consist of at most two vertices.

Proof. The ( 12 − h)n layers contain together all n vertices. Define x such that
x + 3(12 − h − x) = 1. Then at least xn layers have less than three vertices.
Resolving the equation yields the claimed x = 1

4 − 3
2h. ��

Based on this observation and the result of the previous section we will now
propose a randomized algorithm.

Theorem 2. For every fixed δ > 1/3, a longest geodesic path can be computed
with high probability in O(m + n log n) time.

Proof. We attempt to construct a longest geodesic path by the following ran-
domized procedure that we call a trial.

Trial, Preparation: Choosing Separator Vertices. We choose indepen-
dently three random vertices u, v, w. The following happens with some guar-
anteed constant probability: (i) Each of u, v, w is in a layer of size at most 2,
say u ∈ Ni(r), v ∈ Nj(r), w ∈ Nk(r), where i < j < k, moreover, (ii) P goes
through u and w. Note that constant probability for (i) holds due to Lemma9,
and for (ii) it follows from (i).

We can replace the subpath from u to w with any geodesic path Q between
these vertices (if this geodesic path is not unique), as this yields another geodesic
path between the end vertices of P . Thus, without loss of generality we may
assume that some particular Q is a subpath of P .

Trial, Main Phase: Choosing a Geodesic Path. Observe the following:

(1) If |Nj(r)| = 1, then v is an articulation point, moreover, P also goes through
v and intersects two different connected components of G − v.

(2) If |Nj(r)| = 2, then v is not on Q, with constant probability (since both
vertices in Nj(r) are proclaimed v with the same probability).

Now we “speculate” that our random u, v, w have properties (i) and (ii) above.
Since we do not know which subcase appeared, we proceed as follows.

If v happens to be an articulation point, then situation (1) may be true. In
order to capture this possible case, we apply Lemma 2 in order to determine, in
O(n+m) time, the longest geodesic path that intersects two different connected
components of G − v. Since, in particular, P has this property in case (1), we
find P or another longest geodesic path in this trial.

If v is not an articulation point, then we know that |Nj(r)| = 2, and we
speculate that (2) is true. Since Q contains the other vertex of Nj(r), and
every layer is a separator S such that P intersects two connected components
of G − S, we conclude that P also intersects two connected components of
G − (Q ∪ {v}). Furthermore, all vertices c and d of P in these two compo-
nents satisfy B(c, u, w) and B(u,w, d), respectively. Defining the vertex sets
C := {c|B(c, u, w)} and D := {d|B(u,w, d)}, we can therefore set up an instance
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of Largest Mixed Sum, where the numbers x, x′, y, y′ are the distances of ver-
tices in C and D to v and to some fixed reference vertex on Q. All these distances
are computed by two runs of BFS, with roots u and v, in O(n + m) time.

Largest Mixed Sum returns a path P ′ with the following properties: P ′

has its end vertices in C and D, its subpaths in C and D are geodesic, and either
P ′ goes through Q and avoids v, or P ′ goes through v. (More precisely, only the
end vertices of P ′ are returned, and the information whether P ′ uses Q or v,
but this suffices to finally reconstruct a geodesic path between these ends.) If P ′

goes through Q (and hence is at most as long as the alternative path through v),
we output P ′ in this trial, otherwise the trial has no output.

Analysis of a Trial. In case (1) we have already seen that a longest geodesic
path is produced. In case (2), if P actually goes through Q as assumed, then
we claim that the trial returns P (or another longest geodesic path). Assume
for contradiction that some shorter path P ′ going through Q is returned. Let us
divide P ′ in three subpaths: (A,Q,B). Since A ⊆ C, that is, A contains only
vertices c with B(c, u, w), it follows that the subpath (A,Q) is geodesic. By the
symmetric argument, (Q,B) is geodesic. Hence, any shortcut on P ′ must connect
A and B jumping over Q, and this is possible only by going through v, since
Q ∪ {v} is a separator. However, by construction the alternative path through v
was not shorter, hence P ′ has no shortcut at all, in other words, P ′ is geodesic.
But since Largest Mixed Sum maximizes the minimum of the two lengths (of
the paths through Q and v), it cannot yield a geodesic path shorter than P .

Conclusion. As shown above, our speculative assumptions are true with some
guaranteed constant probability, and if they are, the path returned in the trial
is in fact a longest geodesic path in the graph. As usual, one can amplify the
probability of a correct result to any desired constant close to 1, by repeating
the trial O(1) times independently. ��

7 Further Research

Does a deterministic algorithm with the same time bound as in Theorem 2 exist?
The difficulty is to hit a separator of two vertices that divides some (unknown!)
longest geodesic path P . Alternatively we might use a version of Lemma 9 that
guarantees a decrease of the largest connected component by a constant factor
and thus enables divide-and-conquer, but now the catch is that a separator
S = {u, v} may have a large d(u, v), and the long subpath u − v of a solution
may be in another connected component of G − S, such that the size of an
instance to be solved recursively does not decrease enough.

The algorithm in Theorem 2 is Monte Carlo. It might be possible to turn it
into a Las Vegas algorithm by verifying that the obtained geodesic path P is the
longest one. This might be done by a technique as in Theorem2, but now using
the fact that P is already given. (Of course, the question becomes obsolete if a
deterministic algorithm can be devised.)
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Despite the mentioned difficulties we conjecture that the diameter can be
found in nearly linear time for every fixed δ, by some smart use of O(1/δ) sized
separators. By arguments similar to the case δ < 1/2, this would also require a
multi-dimensional generalization of Largest Mixed Sum.

Acknowledgment. The author would like to thank the anonymous referees for careful
remarks which helped erase a number of small inaccuracies.
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Abstract. Tree-width and path-width are widely successful concepts.
Many NP-hard problems have efficient solutions when restricted to
graphs of bounded tree-width. Many efficient algorithms are based on a
tree decomposition. Sometimes the more restricted path decomposition
is required. The bottleneck for such algorithms is often the computation
of the width and a corresponding tree or path decomposition. For graphs
with n vertices and tree-width or path-width k, the standard linear time
algorithm to compute these decompositions dates back to 1996. Its run-
ning time is linear in n and exponential in k3 and not usable in practice.
Here we present a more efficient algorithm to compute the path-width

and provide a path decomposition. Its running time is 2O(k2)n. In the
classical algorithm of Bodlaender and Kloks, the path decomposition is
computed from a tree decomposition. Here, an optimal path decomposi-
tion is computed from a path decomposition of about twice the width.
The latter is computed from a constant factor smaller graph.

Keywords: Path-width · Tree-width · Bodlaender’s algorithm · Path
decomposition · FPT

1 Introduction

Tree-width and tree decompositions have been defined by Roberson and
Seymour [15]. Independently, Arnborg and Proskurowski [2] introduced
the equivalent concept of partial k-trees, as subgraphs of the previously
known, simply structured k-trees. Many NP-hard graph problems have
very efficient solutions when the graph is given with a tree decomposi-
tion of small width. Indeed, Courcelle’s meta-theorem [6] says that all
problems expressible in monadic second order logic have a linear time
solution for graphs of bounded tree-width. Here, the dependence of the
running time on the tree-width is allowed to be really bad. Theoret-
ically this concept is captured by fixed parameter tractability (FPT).
A parameterized problem is in FPT, if it can be solved by an algorithm with a
running time of the form O(f(k)nc) for an arbitrary computable function f(k)
and some constant c, where n is the problem size and k is the parameter.
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Many faster solutions have been designed for specific problems. The goal is
always to have efficient solutions for instances with small values of the parameter.
For more background information on fixed parameter tractability, see e.g. [7–9,11].

Tree-width is an important parameter for enabling fast algorithms for inter-
esting classes of graphs. But for some algorithms, the more restricted path-width
parameter is of interest. (The Pathwidth entry on Wikipedia lists such applica-
tions in VLSI design, graph drawing, and computational linguistics.) The path-
width is defined with tree-decompositions where the tree is a path.

Unfortunately, for graphs of small tree-width or path-width, it is not easy to
find a corresponding tree decomposition of minimal width. Computing the tree-
width is NP-hard [1]. For constant tree-width, a tree decomposition of minimal
width can be computed in polynomial time [15]. The problem is even solvable by
an FPT-algorithm [16]. But the only known linear time algorithms are variations
of Bodlaender’s algorithm [3]. Their running time is 2Θ(k3)n. This is too slow
to be used in practice. Heuristic algorithms are used instead. Throughout this
paper n = |V | is the number of vertices of the graph in question, and k is a
width parameter.

For the related notion of tree-depth [10], initially Bodlaender’s algorithm pro-
vided the most efficient way to compute its value and to produce a correspond-
ing tree decompositon. Recently, the exponent in the running time has been
decreased from O(k3) to O(k2) [14]. We want to produce the same improvement
for path-width, even though it seems to require a different method.

There have been many efforts to find better approximation algorithms for the
tree-width. The main goal has been to achieve a small constant factor approxi-
mation with a running time f(k)g(n), where f(k) is 2O(k) and g(n) is polynomial,
preferably linear. This combined goal has been achieved by the recent paper of
Bodlaender et al. [4] producing a 5-approximation in time O(ckn). The authors
write, “it would be very interesting to have an exact algorithm for testing if the
treewidth of a given graph is at most k in 2o(k3)nO(1) time.” Downey and Fellows
[7] remark that Bodlaender’s Theorem, based on the algorithm of Bodlaender
and Kloks is impractically exponential in k, namely 2ck3

where c ≈ 32, and
they write, “It would be very interesting if this could be reduced to an expo-
nential with exponent linear in k.” We cannot get a linear exponent, but the
improvement from O(k3) to O(k2) in the exponent for path-width is significant.

We will use some key ingredients of Bodlaender and Kloks [5] and its
improved version of Perković and Reed [12]. First of all, it is the idea that a
given tree decomposition is useful for the solution of all kinds of graph prob-
lems based on bottom-up dynamic programming. Even the problems of comput-
ing tree decompositions or path decompostions themselves are graph problems
that can be solved this way. This makes sense, if one wants to compute a tree
decomposition of width k, when one has available a tree decomposition of width
linear in k. To obtain the needed constant factor approximation, one can use
a top-down construction based on the repeated use of small vertex separators
[13,16]. But such an FPT-algorithm runs in O(n log n) or even quadratic time.
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Recently, a the 5-approximation has been obtained by Bodlaender et al. [4] run-
ning in time O(ckn).

For a theoretical result, this approximation would be sufficient, but the high
approximation ratio makes the final step very expensive. Therefore, in order to
have a chance of a practical algorithm, we show how to modify the Bodlaender
and Kloks [5] method working with 2-approximations. Finally, we do the critical
last step improving the constant factor approximation to an exact solution in
time 2O(k2) instead of the previous 2O(k3) for graphs of path-width k. Here, the
starting approximation ratio affects the constant factor in the exponent hidden
by the O-notation.

The main idea of Bodlaender and Kloks [5] is the following. If a graph has
a large matching, then a significantly smaller graph with the same or smaller
tree-width is obtained by collapsing matched pairs of vertices into one. The
smaller problem can be solved recursively, and expanding the collapsed pairs
again results in a 2-approximation for the width and a corresponding tree decom-
position of the original graph. On the other hand, if there is no large matching,
then one can add more edges to the graph without increasing the tree-width.
This in turn will create simplicial vertices, i.e., vertices whose neighborhood
induces a clique. Simplicial vertices are easy to handle.

For computing the tree-width, these methods did not result in a practical
algorithm, because of the cubic exponent and large constant factors. For path-
width, with a quadratic exponent and much smaller constant factors, we could
have a chance.

We use the standard notions of tree decomposition and a special notion of
nice path decomposition.

Definition 1. A tree decomposition of a graph G = (V,E) is a pair ({Bp : p ∈
I}, T ), where T is a tree, I is the node set of T , and the subsets Bp ⊆ V have
the following properties. (The set of vertices Bp associated with p ∈ I is called
the bag of p.)

1.
⋃

p∈I Bp = V , i.e., each vertex belongs to at least one bag.
2. For all edges e = {u, v} ∈ E there is at least one p ∈ I with {u, v} ⊆ Bp, i.e.,

each edge is represented by at least one bag.
3. For every vertex v ∈ V , the set of indices p of bags containing v induces a

subtree of T (i.e., a connected subgraph).

The tree-width of G is the smallest k such that G has a tree decomposition with
largest bag size k + 1.

A rooted tree decomposition is a tree decomposition where T is a rooted tree.
We assume all tree edges are oriented towards the root.

Definition 2. A nice tree decomposition is a rooted tree decomposition with the
following four types of nodes.

Leaf node: p has no children, and |Bp| = 1.
Introduce node: p has one child q with Bp = Bq ∪{v} for some vertex v �∈ Bq.
Forget node: p has one child q with Bp ∪ {v} = Bq for some vertex v �∈ Bp.
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Join node: p has 2 children q and q′ with Bp = Bq = Bq′ .

Furthermore, the root is a forget node with an empty bag.

As an important concept, tree-width has several other equivalent definitions.
A graph has tree-width at most k, if and only if it is a partial k-tree [2].

2 Path Decompositions

One can define a path decomposition of a graph G = (V,E) to be a tree decom-
posing ({Bp : p ∈ I}, T ) where the tree T = (I, F ) is a path. A rooted path
decomposition is a rooted tree decomposition where the root is an endpoint of
the path.

We find it more convenient, to describe a nice path decomposition by the
sequence of introduce and forget operations. Reminiscent of the traditional def-
inition, we refer to the indices of the sequence as nodes. Every vertex has its
introduce node before its forget node. The first node is the leaf, the last node is
the root. It is a forget node. We consider the leaf node to be an introduce node
too.

Definition 3. A path decomposition of a graph G = (V,E) with |V | = n is a
sequence of triples P = ((p1, t1, w1), . . . , (p2n, t2n, w2n)) with the following prop-
erties.

– Every vertex v ∈ V occurs exactly twice in the sequence (p1, . . . , p2n), first,
pj = v with tj = +1 indicating j being the introduce node for v, then, pj′ = v
with tj′ = −1 indicating j′ with j′ > j being the forget node for v.

– The sequence (w1, . . . , w2n) is defined by

wj =

⎧
⎪⎨

⎪⎩

0 if j = 1
wj−1 + 1 if 1 < j ≤ 2n and tj = +1 (introduce node)
wj−1 − 1 if 1 < j ≤ 2n and tj = −1 (forget node).

Bags have the traditional meaning and can easily be defined recursively.

Bj =

⎧
⎪⎨

⎪⎩

{p1} if j = 1
Bj−1 ∪ {pj} if 1 < j ≤ 2n and tj = +1 (introduce node)
Bj−1 \ {pj} if 1 < j ≤ 2n and tj = −1 (forget node).

The width of a node j is defined to be 1 less than the number of vertices in its
bag Bj . Thus, wj is the width of the node j.

Definition 4. The width of a path decomposition is the maximum width of any
of its nodes.

The path-width of a graph is the minimum width of any of its path decom-
positions.
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We use the double factorial (2n−1)!! = (2n−1)(2n−3) . . . 3 1 = (2n)!/(n!2n).
We count the number of path decompositions.

Proposition 1. The number of path decompositions of an n-vertex graph is

n!(2n − 1)!! =
(2n)!
2n

∼ √
πn

(n

e

)2n

2n+1.

Proof. Induction on n shows that the number of path decompositions for n
vertices which are forgotten in a fixed order is (2n−1)!!, as there are 2n−1 places
to introduce the last forgotten vertex. Considering all n! permutations of the
forgetting order of the vertices proves the result. Finally Stirling’s approximation
is used. 
�

We now assume, we are given a path decomposition of width �, and we
want to produce a path decomposition of width k < � or conclude that no such
decomposition exists.

Definition 5. The full skeleton QP (U) induced by a non-empty subset U ⊆ V
of a path decomposition P = ((p1, t1, w1), . . . , (p2n, t2n, w2n)) of G = (V,E) is
obtained from P by replacing all pj ∈ V \ U by 0.

Definition 6. The skeleton Q induced by a non-empty subset U ⊆ V of a
path decomposition P = ((p1, t1, w1), . . . , (p2n, t2n, w2n)) of G = (V,E) is
obtained from QP (U) by repeatedly deleting maximal length intervals of the form
((pj+1, tj+1, wj+1), . . . , (pj′−1, tj′−1, wj′−1)) with pj+1 = pj+2 = · · · = pj′−1 = 0
and

min{wj , wj′} ≤ wj′′ ≤ max{wj , wj′}
for all j′′ with j < j′′ < j′. We refer to this step as simplifying.

Note that every deleted node has a width between the width of the remaining
node immediately before it and the width of the remaining node immediately
after it. wj is the width of the jth node. Thus, if the jth node is an introduce
node for vertex v, then wj is the width just after the insertion of vertex v, and
if the jth node is a forget node for vertex v, then wj is the width just after the
deletion of vertex v.

Definition 7. The width of a skeleton is its maximum wj entry.

Proposition 2. The width of a path decomposition is equal to the width of any
of its skeletons.

Proof. Sequences of deleted nodes are always next to a node whose width is at
least equal to the width of any node in the deleted sequence. 
�
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3 Overview

The fastest published linear time algorithm to decide whether the path-width
of a graph G is at most k, and to produce a width k path decomposition is
obtained in two steps. The first step uses a version of Bodlaender’s algorithm [3]
to compute a tree decomposition of width � = O(k) (or show that none exists).
The second step uses the method of Bodlaender and Kloks [5] to produce a path
decomposition of width k (or show that none exists) from the tree decomposi-
tion of width �. Also the first step uses the method of Bodlaender and Kloks
in recursive calls, to compute tree decompositions of smaller width from tree
decompositions of roughly twice the width for smaller graphs. The improved
version of Bodlaender’s algorithm by Perković and Reed [12] computes the small
width tree decomposition much faster, but like the original version, its running
time has an exponent of order k3. A theoretical alternative would be to start
with the recent 5-approximation algorithm [4], but if an exact solution is desired,
the second step would be significantly more expensive due to the higher approx-
imation factor.

We propose a linear time path-width and path decomposition algorithm
which recurses on path decompositions rather than the more costly tree decom-
positions. The exponent is only quadratic in k, and there are no large hidden
constants. Note that we concentrate on the worst case in terms of the path-width.
It is possible that the tree-width is significantly smaller than the path-width (by
a factor of up to log n). In this special case, the traditional approach can be
faster.

4 The Efficient Algorithm

The crucial step of producing our faster path decomposition is to produce a
small width path decomposition from one with a constant factor bigger width.

We are given a path decomposition P . Let

B∗
j =

j⋃

i=1

Bi.

Let Gj = G[B∗
j ] be the subgraph of G induced by B∗

j .
We want to construct a minimum width path decomposition P ′ of G. As

for most efficient algorithms based on small tree-width, our path decomposition
algorithm uses a bottom-up dynamic programming approach. Any optimal path
decomposition P ′ of G contains a path decomposition P ′

j of the subgraph Gj

of G.
It is sufficient to try for all small k whether there is a path decomposition of

width k, and pick one in the affirmative case. For simplicity, we just describe the
decision algorithm, because a solution can be found by standard back tracing
of the dynamic programming solution. The basic idea of the algorithm is to
produce the skeleton Qj of an optimal P ′

j induced by Bj for j = 1, . . . , 2n. Then
the path-width of Q2n is the path-width of G.
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Naturally, the problem with this basic idea is that the optimal path decompo-
sition P ′ is unknown. A pessimistic approach would be to compute all skeletons
obtained from all possible path decompositions of G. Fortunately, a good com-
promise is possible. Instead of computing all skeletons Qj , we compute a set Qj

of skeletons, with the assurance that Qj contains at least one skeleton Qj of an
optimal path decomposition.

Theorem 1. Given a graph G, a number k, and a path decomposition P of G
of width � = 2O(k), one can decide whether the path-width of G is at most k
in time 2O(�k)n. A corresponding path decomposition can be computed with the
same time bound.

Proof. Assume G and its path decomposition P of width � is given. Each bag
Bj is a set of vertices of G with |Bj | ≤ � + 1. We define Aj to be the set of all
path decompositions of Gj = G[B∗

j ] of width at most k.
We will now define an algorithm that visits the nodes of G in the order given

by P . For more details see Fig. 1. The algorithm will have the following property.

Claim. During the visit of node j, the algorithm computes a set of skeletons Qj

of Aj , induced by Bj . This set Qj includes at least one of minimal width.
Each set of skeletons is computed from the previously computed set of skele-

tons of the predecessor j − 1 in P . We will show that if Gj has a path decompo-
sition P ′

j of width at most k′ ≤ k, then Qj contains at least one skeleton of Gj

(induced by Bj) of width at most k′.
The algorithm Decrease Path-Width depends on the type of node j in the

path decomposition P . For every type of node, we now describe the action of
the algorithm and prove the claim inductively.

Leaf node 1: The bag of the leaf node 1 contains just one vertex v = p1, the only
skeleton in Q1 is a two node skeleton Q = (v,+1, 0), (v,−1,−1) (v is introduced
and then forgotten). The leaf node 1 has bag B1 = {v}, the root node 2 has
bag B2 = ∅. The claim is satisfied, because there is only one path decomposition
P ′ of the one vertex graph G1. Thus Q is the skeleton of the minimal path
decomposition P ′.

Introduce node j: If j is an introduce node, then the bag Bj of node j of P
contains a new vertex v not in the bag Bj−1 of the predecessor node. More
precisely, Bj = Bj−1 ∪ {v} with v �∈ Bj−1.

The algorithm goes through all skeletons Q of Qj−1. For each Q, it creates
various skeletons of Qj by inserting an introduce node and a forget node for
the new vertex v. All suitable places are tried for the insertion of v. A place is
suitable if it is before the forget nodes of all neighbors u of v in G. Now the forget
node of v is inserted somewhere after the introduce node of v. This includes the
option immediately after the introduce node of v if that place is suitable. Again,
all suitable places are tried. A place is suitable if it is after the introduce nodes
of v and all its neighbors u in G. A newly created skeleton is discarded rather
than put into Qj , if its width is greater than k.
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Fig. 1. The algorithm Decrease path-width

The algorithm would certainly be correct, if the insertions were tried in all
positions of the full skeletons. This would be an extremely slow brute force
algorithm. Thus it is crucial to argue that there is no benefit in trying those
intervals I of positions in the full skeletons that have been deleted in the proper
skeletons. Such an interval I consists of the nodes j′′ between two positions j
and j′ with min{w′

j , w
′
j′} ≤ w′

j′′ ≤ max{w′
j , w

′
j′}. All the vertices introduced

and deleted in these intervals are from B∗
i−1, while all vertices that still have to

be included in the path decomposition are from bags after i. There are no edges
between vertices of these intervals and later introduced vertices. Thus the only
concern is the width caused by insertions between j and j′.

The widths between positions j and j′ can be viewed as a mountain range
with the height at j′′ being the current width w′

j′′ of the bag B′
j′′ . If an insert or

forget node of a later vertex is placed between positions j and j′, it is not always
an advantage to place these nodes in the deepest valley, because the width is also
affected by mountain tops between the insertion and the deletion of a vertex.
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Nevertheless, it is never an advantage to place insertions or deletions of later
nodes along the slope of a mountain. All the later nodes can just as well, and
often with an advantage, be placed at the bottom of a valley. From there, still
the same mountain tops have to be crossed, but it can only be an advantage if
the new width caused by later placed vertices is added to a smaller width (from
a valley) of the earlier placed vertices. More precisely, if a highest and a lowest
point of an interval I are at its boundaries, and all the intermediate nodes insert
and forget vertices of B∗

j−1, then there is never an advantage to insert or forget
a new vertex at any other place on I than at the lowest point.

To prove the claim by induction, we assume that Qj−1 contains a skeleton
Qj−1 of width at most k induced by Bj−1 corresponding to an optimal path
decomposition P (j−1) of G. If P j−1 has any vertices introduced or forgotten on
the slopes of a skeleton Qj−1, then P (j−1) is modified to a path decomposition
P (j) by sliding all these vertices down the slope to the lowest valley of its interval.
The width of P (j) is also optimal, because it is not more than the width of P (j−1).
The skeleton Qj of this P (j) is in Qj proving the induction step of the claim.

Forget node j: If j is a forget node, then the bag Bj of node j of P contains
a new vertex v not in the bag Bj−1 of the predecessor node. More precisely,
Bj = Bj−1 \ {v} with v ∈ Bj−1. Now, Qj is obtained from Qj−1 simply by
restricting to the smaller set Bj , i.e., by replacing both occurrences of v by 0.
This shows the correctness of the claim.

Running time: The running time of the algorithm is mainly determined by the
number of skeletons used. We have O(n) nodes j in the path decomposition P .
For each node, we consider skeletons induced by the � + 1 vertices from the bag
Bj . By Proposition 1, we have 2O(� log �) path decompositions with �+1 vertices.
For each of these path decompositions, we have 2� + 1 intervals between the
nodes where the vertices of the bag Bj are inserted and deleted. These intervals
are determined by their sequence of widths.

The lengths of these intervals between two nodes involving vertices of Bj in
any skeleton are at most 2k + 1. This is so, because the worst width sequences
in such a interval is . . . , k − 2, 2, k − 1, 1, k, 0, k, 1, k − 1, 2, k − 2, . . . and . . . , k −
2, 1, k − 1, 0, k, 0, k − 1, 1, k − 2, . . . . More importantly, there are only 2O(k) such
sequences [5, Lemma 3.5].

In summary, when handling bag Bj for j = 1, . . . , 2n, we have 2O(� log �) path
decompositions of Bj . Each has 2� + 1 intervals with 2O(k) possible sequences,
resulting in 2O(� log �)2O(�k) = 2O(�k) skeletons. Thus for all 2n nodes of P together,
there are 2O(�k)n possible skeletons. As the algorithm only makes polynomial time
(in k) manipulations on each skeleton, the total running time is still 2O(�k)n.

It is standard for dynamic programming algorithms to actually recover the
structure (the path decomposition in our case) that has produced the minimum. 
�

One should notice that there are no large hidden constants involved in the
time analysis.

Corollary 1. The path-width of a graph can be computed in time 2O(k2)n for
graphs of path-width k if a path decomposition of width O(k) is provided.
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Proof. Theoretically, one can just try k = 1, 2, . . . until one succeeds. Naturally,
most of the work for k − 1 could be used for k. 
�

5 Computing a Path-Width Approximation

We use the well known result that in any tree decomposition of any graph con-
taining the complete bipartite graph Kp,q, there is a bag containing either all
the p vertices of one side or all the q vertices of the other side and an additional
vertex. Thus if p is greater than the tree-width k, then the addition of all edges
between the q vertices on the other side does not increase the tree-width or path-
width. The graph obtained from G by adding all such forced edges is called the
augmented graph.

A vertex is simplicial, if its neighbors form a clique.

Theorem 2. The path-width of a graph can be computed and a corresponding
path decomposition can be found in time 2O(k2)n for graphs of path-width k.

Proof. We use the results of [5,12] that for any graph G of tree-width k one can
quickly augment G and find a linear size matching M or a linear size subset V ′

of simplicial vertices in the augmented graph.
If M is large, then one recursively computes an optimal path decomposition

of width k of the graph with the vertices of M merged. It implies a path decom-
position of the original graph G of width at most 2k + 1. It can be improved to
a path decomposition of width k as seen in Theorem 1.

If there is a large set V ′ of simplicial vertices, then one recursively computes
an optimal path decomposition of width k of the graph with the vertices V ′

removed. If a tree decomposition of width k is found for the graph with the sim-
plicial vertices removed, then immediately such a decomposition can be obtained
for the given graph. This does not work for path decompositions. One obtains
a caterpillar graph instead. Then, we just change the caterpillar decomposition
into a path decomposition of width 1 more. This width might not be optimal,
but it is a very good approximation, that can be improved to an optimal path
decomposition as before. 
�

The reason why [5] works with tree decompositions, even when computing
path decompositions, might be because the intermediate caterpillar decomposi-
tions prevent a direct production of path decompositions. Another reason is that
for some graphs the tree-width is smaller than the path-width by a log n factor.
In such situations, it could be better to work with tree-decompositions.

Corollary 2. There is an algorithm computing the path-width, and outputting
a corresponding path decomposition in time 2O(k2)n, where k is the path-width.

Proof. As is usual for dynamic programming algorithms doing some minimiza-
tion, whenever the algorithm makes a choice, computing the minimum width of
two skeletons, it can record which option provided the minimum (an arbitrary
choice is sufficient in case of a tie). Then it is easy to trace back to find an actual
path decomposition once the global minimum width has been determined. 
�
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6 Conclusion

Path-width is an important width parameter. The worst case linear running time
for its computation has not been improved over the last two decades.

Our algorithm is significantly faster for path decomposition than the fastest
linear time algorithms for tree decomposition. Furthermore, there are no large
hidden constant factors in the expressions for the running time. We conjecture
that this algorithm can be implemented to run satisfactory for small path-width.

The main open problem in this area is to get an improvement of Bodlaender’s
algorithms of tree-width computation and the production of tree-decompositions
of small width. In particular, one would like to know whether an O(ckn) time
algorithm is possible for some constant c. In a wider context the open question
is whether similar results are possible for other important width parameters, in
particular for clique-width.
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Abstract. Suppose that n elements shall be sorted by comparisons,
but an unknown subset of at most k pairs systematically returns false
comparison results. Using a known connection with feedback arc sets
in tournaments (FAST), we characterize the solution space of sorting
with recurring comparison faults by a FAST enumeration, which rep-
resents all information about the order that can be obtained by doing
all
(
n
2

)
comparisons. An optimal parameterized enumeration algorithm

for FAST also works for the more general chordal graphs, and this fact
contributes to the efficiency of our representation. Then, we compute
the solution space more efficiently, by fault-tolerant versions of Treesort
and Quicksort. We need O(n logn + kn + k2 logn) comparisons and
O(n log n + kn + k2 log n + kF (k2, k)) time, where F (n, k) is any para-
meterized time bound for finding a FAST with at most k arcs. Thus, for
rare faults the complexity is close to optimal.

1 Introduction

In the model of recurring faults in computations as introduced in [10], operations
on certain items yield false results even when repeated. As opposed to transient
or probabilistic failures, this model accounts for systematic errors. One of the
problems investigated in [10] is to sort a set of n elements by comparisons, where
at most k pairs return false comparison results; let us denote this assumption Ak.
Recurring comparison faults can result from software bugs. One can also think
of applications where the elements are real entities rather than data items in
computer memory. For instance, archaeological finds or historical events may
be brought into chronological order by pairwise comparisons, say by comparing
style characteristics or by causal dependencies, respectively, but for a few pairs
the comparison criteria may be misleading.

It is impossible to verify Ak from the comparison results only, since false but
consistent answers might pretend any order. The best we can do is to determine
all orders compatible with Ak, and then we know: If Ak holds true, then these
are the possible orders. Only if no compatible order exists, we recognize that
Ak is false. Hence the problem belongs to the category of promise problems: We
must know in advance that comparisons are reliable, subject to a certain “small”
number of at most k false pairs.
c© Springer International Publishing Switzerland 2016
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In [10], quality measures for alleged sorted sequences are defined and related
to each other. This is done from the approximation point of view, asking: How
much does an order obtained by doing all comparisons and some postprocessing
differ from the unknown sorted order? What is not considered is the full solution
space obtained from the comparisons, and the number of comparisons actually
needed. A fault-tolerant search for the minimum element is provided, which
returns an element of rank O(k) by using O(

√
kn) comparisons and time. Here

we aim at similar results for the sorting problem. We separate the number of
comparisons and auxiliary computations, as comparisons may be more expensive,
depending on the nature of elements to compare.

Our contributions. We answer two different questions: 1. What can we learn
at all about an unknown order by faulty comparisons? 2. How can we efficiently
extract this entire information? Specifically, how can we infer all comparison
results by doing only a minority of them, ideally in a time close to O(n log n)?

Starting from a version of the reversal lemma for minimal feedback arc sets
(MFAS), we enumerate in O(3kk(n + m)) time all MFAS with at most k arcs in
a directed graph of n vertices and m edges whose underlying undirected graph is
chordal. This extends an early algorithm [11] for finding smallest MFAS in tour-
naments, called FAST. While a single minimum FAST can be computed faster,
base 3 is optimal for explicit enumerations. Next, the MFAS enumeration char-
acterizes the solution space, i.e., the orders compatible with all comparisons.
While there can be nO(k) such orders, it suffices to know at most 3k MFAS,
as all other compatible orders are obtained from them by simple transposition
sequences. Next we observe: If we know already a compatible order, we can
certify it with only O(kn) comparisons that form a chordal graph, hence the
MFAS that describe all compatible orders can be enumerated in O(3kk2n) time.
Finally we give efficient algorithms that actually find a compatible order and
the information needed to reconstruct the solution space. A building block is a
procedure to insert another vertex in an existing order with a minimum num-
ber of backward arcs. This leads to fault-tolerant sorting algorithms based on
Treesort and Quicksort, that essentially need O(n log n) comparisons for fixed
k, which is optimal in a sense. The time is larger by just some “FPT term” in
the parameter k. These are the first subquadratic algorithms for sorting with
recurring comparison faults.

Other related literature. As much work exists on fault-tolerant searching
and sorting (see the survey [5]), it is important to pay attention to similari-
ties. Liar models are also deterministic fault models with a maximum number
of false answers, but they count repeated false answers, and the searcher can
reconstruct the true results. Sorting in a model where some elements can be
corrupted (but comparisons are correct) is considered in [8], where the goal is
to sort the uncorrupted elements. Sorting under probabilistic errors is studied
in [3,4]. Some steps of our insertion procedure resemble some of their lemmas,
as well as arguments from the kernelization of FAST [1]. Enumeration problems
find attention in various fields (see, e.g. [2]). The number of comparisons needed
to decide properties of partial orders is studied in [7].
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2 Preliminaries

Orders are ascending from left to right. We use the terms vertex and element
interchangeably. Suppose that k is fixed. In a directed comparison graph D =
(V,A), where V is the set of the n elements to be sorted, every arc (u, v) indicates
a comparison that claimed u < v. We call the arc (u, v) true if actually u < v,
and false if v < u. With respect to an order σ of V , an arc is forward (backward)
if it points to the right (left). We denote the set of backward arcs B(σ). The
length of an arc (u, v) is the absolute difference of the positions of u and v in σ.
Provided that at most k comparisons are false, clearly, an order σ is a candidate
for the correctly sorted sequence if and only if |B(σ)| ≤ k. As in [10] we call such
σ compatible.

A transposition flips the positions of two neighbored vertices u, v in an order.
It turns the arc (u, v), if there is one, from forward to backward or vice versa,
while all other arcs are not affected. For two orders π and σ of the same set, an
inversion is a pair of elements u, v such that u is to the left of v in π but v is
to the left of u in σ. The Kemeny distance d(π, σ) is the number of inversions.
Starting from π, consider any sequence of transpositions with the property that
each transposition removes an inversion. Every maximal sequence of this kind
has length d(π, σ) and ends in σ.

As usual, n and m denotes the number of vertices and arcs of a graph. A
directed graph D = (V,A) is acyclic if it has no directed cycles. As is well known,
a directed graph is acyclic if and only if it admits an order without backward
arcs, called topological order, and one can construct a topological order or output
a directed cycle in O(n + m) time. For general D = (V,A) we call an order σ
of V a minimal backward order if no other order τ has B(τ) ⊂ B(σ). Hence,
in acyclic graphs, minimal backward and topological orders are the same. A
minimum backward order also has a minimum number of backward arcs.

A computational problem is fixed-parameter tractable (FPT) if instances of
size n and with an additional input parameter k can be solved in f(k) · nO(1)

time, with some computable function f . A feedback arc set (FAS) is a subset of
arcs whose removal makes the graph acyclic, and a minimal FAS (MFAS) is a
FAS such that no proper subset of it is a FAS, too. A tournament is a complete
directed graph D = (V,A). A (directed) triangle is a (directed) cycle of three
vertices. The FAST problem requires to find a minimum FAS in a tournament.
Let F (n, k) be a time bound of an FPT algorithm for FAST, for graphs with
O(n) vertices and solution size k. Note that F (n, k) is well-defined for any FPT
algorithm: Since the dependency of the time bound on n is polynomial, a constant
factor in n only affects the constant factor in F (n, k). We can use F (n, k) =
2O(

√
k)nO(1) [6,9]. We will give time bounds in terms of F (n, k), not in order

to hide the exponential part, but in order to state the bounds in a generic way,
independently of the current state of FAST.

The undirected underlying graph of a directed graph is obtained by ignoring
the orientations of arcs. An undirected graph is chordal if every cycle C is a
triangle or has a chord, that is, an edge joining two non-consecutive vertices
in C. Every chordal graph has a perfect elimination order (PEO), defined by the
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following property: If u is the first of u, v, w in the order, and uv and uw are
edges, then vw is an edge, too. A PEO is constructed in O(n + m) time [12].

3 Characterizing and Enumerating MFAS

The “reversal lemma” was used in [11] and already discovered several times in
the 1960s. It states that reversing the arcs of an MFAS makes a directed graph
acyclic. The following extended version also considers orders.

Lemma 1. An arc set F ⊆ A is an MFAS in a directed graph D = (V,A), if and
only if F = B(σ) for some minimal backward order σ. Moreover, the possible σ
are exactly the topological orders of (V,A \ F ).

Proof. For any order σ, trivially, B(σ) is a FAS. Let F be any FAS. Then (V,A\
F ) is acyclic. We take any topological order σ and re-insert the arcs of F . Clearly,
B(σ) ⊆ F . If F is an MFAS then, since B(σ) is a FAS, it also follows B(σ) = F .
Now assume that σ is not minimal backward. Then there exists another σ′

with B(σ′) ⊂ B(σ). But F ′ := B(σ′) is also a FAS, and F ′ ⊂ F contradicts the
minimality of F . Thus, every topological order of (V,A\F ) is minimal backward.

Conversely, let σ be any minimal backward order, and F := B(σ). Then F is
a FAS. Assume that a smaller FAS F ′ ⊂ F exists. As we saw above, there exists
a topological order σ′ such that B(σ′) ⊆ F ′ ⊂ F = B(σ), which contradicts the
assumed backward minimality of σ. ��
Lemma 2. A directed graph with an underlying chordal graph is acyclic if and
only if it has no directed triangle. Furthermore, we can confirm that the graph
is acyclic or find a triangle in O(n + m) time.

Proof. We run a standard O(n+m) time algorithm that constructs a topological
order or outputs a directed cycle. If the graph is acyclic, trivially it has no
directed triangle. If we get a directed cycle C, represented as a doubly linked
circular list, it remains to find a directed triangle in O(n + m) time. To this
end we construct in O(n + m) time a PEO of the underlying chordal graph and
mark the vertices of C therein. We scan the PEO from left to right until we find
the first vertex u ∈ C. Let v and w be its neighbors in C (in the circular list).
Then u, v, w form a triangle, due to the PEO. If this triangle is directed, we can
stop. If not, then we update C by removing u and its two incident arcs, and
inserting the arc (v, w) or (w, v) instead. The shortened cycle is still directed,
and the update is done in O(1) time. We keep on scanning the PEO until the
next vertex of C is found. Since the cycle is shortened each time and remains
directed, eventually we get a directed triangle. ��
Theorem 1. In a directed graph with chordal underlying graph, at most 3k

MFAS of at most k arcs exist, and they are enumerated in O(3kk(n + m)) time.

Proof. We pick any directed triangle T and branch on it. That means, we gen-
erate at most three sub-instances of the problem as follows: In every branch we
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choose one arc of T , reverse it and mark it. Marked arcs are not reversed again
in later steps (dealing with other triangles). If all three arcs in T were already
marked, then the sub-instance is discarded. Each of the, at most 3k, paths of
branching steps is followed until k steps are done or the obtained directed graph
is free of directed triangles. We collect the latter graphs. By Lemma2, each of
them is acyclic, hence the reversed arcs form a FAS. Eventually we throw out
all FAS that are not MFAS or are duplicates of other MFAS.

For correctness it remains to show that every MFAS F with at most k arcs
is found in this collection. We use Lemma1 and fix an order σ where F = B(σ).
We follow a path of reversals where only arcs of F get reversed. As long as the
obtained graph is not acyclic, by Lemma 2, it retains a directed triangle. The
algorithm picks some; let us call it T . Clearly, some of the three arcs in T is still
backward in σ, thus the arc is in F and not yet reversed and marked, and one
of the branches reverses just this arc. As soon as the obtained graph is acyclic,
the graph without the reversed arcs is acyclic, too, but since F is an MFAS, it
follows that all arcs of F have already been reversed. These two cases show that
our path never gets stuck with a proper subset of F reversed.

We have O(3k) branching steps, and the main work in each of them is to find
a directed triangle. By Lemma 2 this us done in O(n + m) time. Every FAS F
not being an MFAS is detected easily: For every arc e we check whether F \ {e}
is still a FAS, in O(n + m) time. This costs O(3kk(n + m)) time for all collected
FAS. Duplicates are recognized by bucketsorting. ��

One could also make the enumeration repetition-free by sorting the edges in
each triangle and marking the reversed arc and the preceding arcs, but we remove
duplicates anyhow, and the base in the 3k factor is optimal, even for tournaments.
To see this, take for instance k disjoint directed triangles, arrange them in an
order, and insert all possible forward edges between vertices of different triangles.
Then each of the 3k selections of one arc from each triangle is an MFAS. By this
3k lower bound, none of the faster algorithms that compute a minimum FAS can
be turned into a faster algorithm that enumerates all MFAS as an explicit list.

4 MFAS and the Solution Space of Faulty Sorting

In this section we describe the family of all orders of a set being compatible with
a comparison graph, by virtue of an MFAS enumeration and transpositions.

Lemma 3. An order σ of the vertex set of a directed tournament D = (V,A) is
minimal backward if and only if no backward arc has length 1.

Proof. One direction is trivial: If some backward arc has length 1, then a trans-
position makes it a forward arc, hence σ is not minimal backward.

Conversely, assume for contradiction that no backward arc in σ has length 1,
but there exists an order τ with B(τ) ⊂ B(σ). Consider an arc (u, v) ∈ B(σ) \
B(τ) that has minimum length in σ, among all arcs in this set difference. Since
this length is not 1, there exists a vertex w ∈ V such that v, w, u appear in this
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order in σ. Clearly, u appears before v in τ , hence w swaps its position relative
to u or v or both. We look at the conceivable cases:

Assume that w appears before v in τ ; the other case is symmetric. If (v, w) ∈
A then (v, w) /∈ B(σ) and (v, w) ∈ B(τ), which contradicts the choice of τ . If
(w, v) ∈ A then (w, v) ∈ B(σ) and (w, v) /∈ B(τ), but since (w, v) is shorter than
(u, v), this contradicts the choice of (u, v). ��
Theorem 2. For a tournament D = (V,A) and an integer k, every compatible
order can be obtained from a compatible, minimal backward order by a sequence
of transpositions, each turning a (current) forward arc into a backward arc.

Proof. Consider any compatible order σ. If σ is not minimal backward, then,
by Lemma 3, it has a backward arc of length 1. A transposition at this place
removes exactly this arc from B(σ). By an inductive argument, a sequence of
such transpositions ends in some minimal backward order. (We remark that this
final order is not unique.) Trivially, this order is compatible, too. The assertion
follows by reversing the sequence of transpositions. ��

Suppose that we have done all
(
n
2

)
comparisons, that is, the comparison graph

is a tournament. Then, the results provide a simple implicit description of all
compatible orders, which is also practical for rare faults, that is, for small k:

Enumerate all MFAS with most k arcs in the comparison graph, in O∗(3k)
time (as in Theorem 1). For any solution, reverse the arcs in the MFAS, and
output the resulting order, which is a compatible, minimal backward order (by
Lemma 1). If the number of backward arcs is b < k, all other compatible orders
are obtained by up to k − b transpositions that preserve the backward arcs, but
are arbitrary, subject to this condition. Equivalently, these orders have Kemeny
distance at most k − b from the minimal backward orders. We comment that
Theorem 2 is not an isolated observation but an integral part of the characteri-
zation of the solution space. It implies that algorithms for fault-tolerant sorting
need to care about minimal backward orders only.

5 A Certificate for Sorting with Recurring Faults

The next natural question is whether we can get the solution space without
doing all O(n2) comparisons when k is small, in view of the fact that sorting
without faults (the case k = 0) needs only O(n log n) comparisons. Intuitively,
we could first apply any O(n log n)-time sort and then check the result and fix
errors. However, usual sorting algorithms would not notice comparison faults, as
they do not cause inconsistencies. They just continue and output a possibly false
order σ. Another observation is that for any two neighbored elements u and v
in σ we must actually do the comparison between u and v, since otherwise one
could not tell whether u < v or v < u. In order to spot errors we insert some
redundancy, namely all arcs of length at most 2k+1 in σ, and we do these O(kn)
comparisons. We do not take advantage of longer arcs from other comparisons
possibly made before.
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Definition 1. Given an order σ of the vertex set V of a comparison graph, let
D(σ) be the subgraph consisting of V and all arcs of length at most 2k + 1.

Suppose that D(σ) has at most k backward arcs. In this case we are in a
good position, as the next theorem says that further comparisons would not add
more information, thus the instance of the sorting problem is then solved after
O(n log n + kn) comparisons.

Theorem 3. Consider an ordered comparison graph that contains all arcs of
length at most 2k + 1, and at most k of them are backward arcs. Let u and v
be any two vertices such that v appears more than 2k + 1 positions to the right
of u. Then we can safely conclude u < v.

Proof. We use induction on the distance d between u and v in the order. Sup-
pose that the assertion holds for all distances between 2k + 1 and d. Let w be
any of the d − 1 vertices between u and v. We have either (1) u < w by the
induction hypothesis, or (2) (u,w) is a forward arc, or (3) (w, u) is a backward
arc. Similarly, we have either (1) w < v by the induction hypothesis, or (2) (w, v)
is a forward arc, or (3) (v, w) is a backward arc.

Since at most k backward arcs exist, for at least d − 1 − k of the vertices
w, only cases (1) and (2) apply, with respect to both u and v. Since at most k
arcs are false, for at least d − 1 − 2k ≥ 1 of the vertices w, we have both u < w
and w < v, where each of the two inequalities holds either by the induction
hypothesis or since the forward arc, (u,w) or (w, v), is true. Note that we do not
know which forward arcs are true, yet we can infer the existence of a vertex w
with u < w < v. This concludes the induction step and the proof. ��

By Theorem 3, a graph D(σ) with at most k backward arcs is a certificate
that all other arcs are forward. Thus, the solution space description from Sect. 4
can be based on D(σ), as we know the other arcs without testing them. Since
D(σ) has m = O(kn) edges and is chordal, by Theorem 1 we can enumerate
its MFAS already in O(3kk2n) time, which is O(n) for any fixed k. However, in
general we cannot expect to be lucky and get D(σ) with at most k backward arcs
already in one pass of a usual sorting algorithm. The following sections deal with
the actual construction of an order that satisfies the condition in Theorem3. We
conclude this section with another structural property that will be needed.

Definition 2. Consider a tournament and an order of its vertices. We partition
it into components with the following properties: every component is a consecu-
tive set of vertices; every backward arc is within a component; and for every point
between two vertices in a component there exists a backward arc from a vertex
on the right side to a vertex on the left side of this point. A trivial component
has only one vertex, and a nontrivial component has more than one vertex.

The components are uniquely determined. We index them from left to right
by C1, C2, C3, and so on. Let bi denote the minimum number of backward arcs,
in an optimal order of Ci, and b :=

∑
i bi. We define the following routine:
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Procedure MB. In every nontrivial component Ci we compute a minimum
FAS. Due to Lemma 1, topological sorting then yields a minimal backward order
of Ci. We rearrange the vertices in every Ci accordingly.

Lemma 4. The order from MB has exactly b backward arcs, which is optimal.

Proof. The minimal backward order of every Ci has bi backward arcs. Since
we keep the order of components, and there exist no backward arcs between
components, the number b is evident. To show optimality, consider any order of
the whole set. The order induced on every Ci still has at least bi backward arcs,
since bi is optimal in Ci. Since the components are disjoint, no backward arcs
are counted twice. It follows that at least b backward arcs are needed. ��

6 Insertion in a Compatible Minimum Backward Order

Suppose that we have already found an order σ of a subset U ⊂ V , such that
D(σ) exhibits at most k backward arcs. Due to Theorem 3 this also implies that
all longer arcs are forward. We can further suppose that the number of backward
arcs in σ, or equivalently, in every component, is minimized (see Lemma 4). Let
us store the sequence σ in an array indexed with consecutive integers. Now we
want to insert another vertex v /∈ U and find an order τ of U ∪ {v} that still
enjoys the same properties. Such an order must exist, if at most k comparison
faults are present, but it is not obvious how to get τ efficiently from σ. We begin
with a transitivity lemma and then establish a fault-tolerant binary search that
runs, so to speak, on an almost sorted set blurred by comparison faults.

Lemma 5. Suppose that u′ stands to the left of u, at a distance larger than
2k + 1. If (u, v) is true, then u′ < v. A similar assertion holds in the symmetric
case.

Proof. By the assumed distance and Theorem 3, we have u′ < u. Since (u, v) is
true, we also have u < v, hence u′ < v. ��
Lemma 6. We can find elements � and r with distance O(k) in σ and � < v < r,
by using O(k log n) comparisons of elements of U with v, in O(k log n) time.

Proof. Let us append dummy vertices to σ: one at the left end which is smaller
than all real elements, and one at the right end which is larger than all real
elements. Initially let � and r be these dummy elements, hence � < v < r is true.
To query a vertex means to compare it to v. Since σ is stored as an array, we
have access to the indices and can find the center of an interval in O(1) time.

We query consecutive vertices u around the center of the interval [�, r], until
k+1 of them give the same answer, say u < v. Clearly, this happens after at most
2k + 1 comparisons. Since at most k comparisons are false, we know that u < v
is true for some queried vertex u, but we cannot say which. However, Lemma 5
ensures u′ < v for all u′ more than 2k + 1 positions to the left of u. Thus it
is safe to update � to the vertex at distance 2k + 2 to the left of the leftmost
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queried vertex. Similarly we proceed with r in the symmetric case. Thus, the
property � < v < r is preserved. In each step we halve the interval [�, r] and add
an offset of O(k). Clearly, after O(log n) such steps with O(k log n) comparisons,
the length of [�, r] is reduced down to O(k). ��

Next we finalize the procedure. Recall the FAST time bound F (n, k) from
Sect. 2, the notion of components in Definition 2, and note that a component has
O(k2) vertices, since at most k backward arcs exist, all of length O(k).

Lemma 7. Given an order σ of U such that D(σ) has a minimum number of
backwards arcs, bounded by k, we can get an order τ of U ∪ {v} with the same
properties, by O(k log n) comparisons in O(k log n + F (k2, k) + n) time.

Proof. After running the procedure in Lemma6 we insert v anywhere in [�, r]
and denote by σ′ the resulting order of U ∪ {v}. By Theorem 3, � is larger than
all vertices to the left, and r is smaller than all vertices to the right, with the
exception of at most 2k + 1 vertices next to � and r. From Lemma 6 we have
|[�, r]| = O(k) and � < v < r. Thus v is only involved in backward arcs of length
O(k) in σ′. (Longer backward arcs from comparisons with v that contradict these
relations are now recognized as false and can be reversed.) The backward arcs
with v create a new component that may incorporate some components from σ
and contains only O(k2) vertices.

We have now learned the complete comparison graph of U ∪ {v} by actually
doing only O(k log n) comparisons. By Lemma 4 it remains to apply MB to σ′,
and to take the resulting order τ . Actually it suffices to optimize the component
including v, since all other components were already optimal in σ and have not
changed. At this point, D(τ) has at most k backward arcs (otherwise more than
k faults exist, and we can stop), these are the only true backward arcs in τ , and
their number is minimized. This establishes correctness.

In addition we need F (k2, k) time to optimize the new component of length
O(k2), and O(n) time to update the indices, due to the insertion of v. ��

Lemma 7 is complemented with a simpler and faster procedure for the special
case when backwards arcs did not yet appear. Then we can either insert another
vertex as above, or recognize a fault.

Lemma 8. Given an order σ of U such that D(σ) has no backwards arcs, we
can construct an order τ with the same property, such that either τ is an order of
U ∪{v}, or τ is an order of U \{u, u′} for some u, u′ ∈ U where some comparison
among u, u′, v is false, by using O(log n + k) comparisons and O(n) time.

Proof. First we do usual binary search and temporarily believe the results. We
insert v at the resulting position in σ. Note that all arcs of length 1 are forward.
Only now we compare v to all vertices at distance at most 2k + 1. If we get
only forward arcs, then τ is the obtained order of U ∪ {v}. Otherwise we take
some shortest backward arc. Since its length is not 1, it forms a directed triangle
with two forward arcs. We remove the three involved vertices and let τ be the
resulting order. Trivially, some of the arcs in the directed triangle is false.
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The number of O(log n + k) comparisons is obvious. We need O(n) time to
update the indices, and the time for all other operations is no larger. ��
Theorem 4. For k <

√
n, sorting with at most k recurring comparison faults

can be accomplished with O(n log n + kn + k2 log n) comparisons.

Proof. We do fault-tolerant Insertion Sort, that is, beginning with the empty
order we insert all n elements one by one in a minimum backward order. If k is
small compared to n, actually the special case of no backward arcs is the more
frequent one. In detail:

Phase 1: We apply Lemma 8 as long as possible. Since in total at most k com-
parisons are false and the removed triples are disjoint, at most 3k vertices are
removed from the order. We put these vertices aside. This needs O(n log n+kn)
comparisons and O(n2) time.

Phase 2: We switch to Lemma 7 and insert the remaining O(k) vertices. This
needs O(k2 log n) comparisons and O(k2 log n + kn + kF (k2, k)) time. ��

While the number of comparisons is already pleasant, this method would
need O(n2 + k2 log n + kF (k2, k)) computations. As a final step we will do the
insertion procedures in a more economic way, to get rid of the O(n2) term.

7 Fault-Tolerant Treesort and Quicksort

For ease of presentation we did not pay much attention to the data structures so
far. The catch with the use of an array for the order is that O(n2) time is needed
only for updating the indices n times. Of course, fault-tolerant Insertion Sort
cannot be faster than the error-free case. But we can also maintain the order
and at the same time use a balanced search tree for the comparisons. This does
not affect the comparison graphs D(σ) and accelerates the updates.

Theorem 5. Sorting with at most k recurring comparison faults can be accom-
plished with O(n log n + kn + k2 log n) comparisons and in O(n log n + kn +
k2 log n + kF (k2, k)) time.

Proof. We explain the modifications of the method from Theorem4
We maintain a partitioning of σ into buckets, which are sets of at least 2k+2

but at most 4k + 3 consecutive vertices. The leftmost vertex of each bucket is
the leading vertex. Since the leading vertices have distances larger than 2k + 1,
by Theorem 3, they are in the correct order.

We store the leading vertices in a balanced binary search tree. Instead of
using indices for the positions of vertices in σ we use the search tree to find the
appropriate position for insertion of the new vertex v. During Phase 1, in every
node of the search tree we compare v to the leading vertex only. During Phase
2, in every node of the search tree we compare v to the leading vertex and its
entire bucket. Since the buckets are larger than 2k + 1, majority vote sends v
in the correct direction (as we have seen before), and since the buckets have
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size O(k), also the last comparisons during this search cost only O(k) time. For
every vertex we used O(log n+k) comparisons and O(log n+k) time in Phase 1,
and O(k log n) comparisons and O(k log n + F (k2, k)) time in Phase 2.

Optimizing and re-ordering the O(k)-sized component of v affects only O(1)
buckets. If the new vertex v exceeds the size limit of buckets, we also split one
bucket in two smaller ones. Then we update the search tree in O(log n) time.
Altogether we get the claimed complexity bounds. ��

A drawback of Treesort is the overhead for tree manipulations which dete-
riorates the constant factor in the time bound. Therefore we also present an
alternative: to equip Quicksort with fault tolerance. Interestingly enough, it is
possible to invoke our insertion procedure from Lemma 7 also there. The reason
why it works is that Quicksort divides an instance recursively in two smaller
instances that are independent in the error-free setting and interact only a little
in the case of a few faults. We formally state the theorem as follows, although
the (expected) complexity in O-notation is the same as for the deterministic
algorithm. We remark that the expected O(n log n) bound for Quicksort holds
for every instance, and the only randomness is in the choice of pivots; loosely
speaking, there is no “interference” with our comparison faults.

Theorem 6. Sorting with at most k recurring comparison faults can be accom-
plished with O(n log n + kn + k2 log n) expected comparisons in O(n log n + kn +
k2 log n + kF (k2, k)) expected time.

Proof. First remember how Quicksort works. A random pivot element p is com-
pared to all other elements. A set L (R) collects all elements smaller (larger)
than p, then L and R are sorted recursively, and L, p,R is the sorted order. In
expectation this costs O(n log n) comparisons and time. Now, some extra work is
needed due to possible comparison faults. Instead of sorting L and R completely,
we only produce minimum backward orders recursively. Since some comparisons
with p may be false, some vertices in L should actually be in R and vice versa.
We call them the dislocated vertices. Due to Theorem 3, dislocated vertices can
only exist in a segment of length O(k) at the right end of L and at the left end of
R. Each of the O(k) candidates v for a dislocated vertex in L is compared to the
first 2k + 1 vertices in R. If the majority claims that v is smaller, then Lemma 5
yields that v is actually smaller than all vertices of R, with O(k) exceptions
at the left end. In the other case we insert v in R as in Lemma 7. We proceed
similarly with dislocated vertices in R. To turn the concatenation L, p,R into a
minimum backward order, it remains to optimize the component of p.

Only O(n/k) pivots are considered, because segments of length O(k) are
not further split recursively. The dislocation tests require O(k2) comparisons for
every pivot, in total O(kn). Since at most k vertices are dislocated in total (not
only per pivot), all insertions together are done in O(k2 log n + kF (k2, k) + kn)
time. For every pivot p, the component of p has length O(k2), thus in can be
optimized in F (k2, k) time. We need to call an FPT algorithm at most k times,
since every nontrivial component exists due to a comparison fault. Altogether
the asserted expected complexity follows. ��
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8 Conclusions and Further Work

We presented the first efficient algorithms for sorting with recurring faults. The
methods are elementary but not obvious. It is unclear whether the approach of
error detection and correction by majority voting would also work with Merge-
sort. (It works in [8], but in a different error model.) Simplicity should make
it possible to implement the proposed algorithms, which was outside the scope
of this study. We assumed small k, that is, applications with exceptional faults.
For growing k, the dependency on k, which is subexponential but still has k in
the exponent, becomes an issue. Further research may find improved bounds,
e.g., by more sophisticated Quicksort versions. Our aim was mainly to explore
the structure of the solution space. In practice this does not necessarily mean
that one must explicitly enumerate all compatible orders. Faults may appear
independently in different segments, and then succinct enumerations of MFAS
using binary decision diagrams can be much smaller. Some experimentation is
needed to study the practicality.
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Abstract. (I) We prove that the (maximum) number of monotone paths
in a triangulation of n points in the plane is O(1.8027n). This improves
an earlier upper bound of O(1.8393n); the current best lower bound is
Ω(1.7034n). (II) Given a planar straight-line graph G with n vertices,
we show that the number of monotone paths in G can be computed in
O(n2) time.

Keywords: Monotone path · Triangulation · Counting algorithm

1 Introduction

A directed polygonal path ξ in R
d is monotone if there exists a nonzero vector

u ∈ R
d that has a positive inner product with every directed edge of ξ. The

classical simplex algorithm in linear programming produces a monotone path on
the 1-skeleton of a d-dimensional polytope of feasible solutions. According to the
monotone Hirsch conjecture [26], for every u ∈ R

2\{0}, the 1-skeleton of every d-
dimensional polytope with n facets contains a u-monotone path with at most n−
d edges from any vertex to a u-maximal vertex. Klee [14] verified the conjecture
for 3-dimensional polytopes, but counterexamples have been found in dimensions
d ≥ 4 [25]; see also [19]. Kalai [12,13] gave a subexponential upper bound for
the length of a shortest monotone path between any two vertices. However, even
in 3 dimensions, no deterministic pivot rule is known to find a monotone path
of length n − 3 [11], and the expected length of a path found by randomized
pivot rules requires averaging over all u-monotone paths [10,16]. This motivates
the study of the maximum number of monotone paths in geometric graphs on n
vertices.

Our Results. We first show that the number of monotone paths in a triangu-
lation of n points in the plane is O(1.8193n), using a fingerprinting technique
in which incidence patterns of groups of size 8 are analyzed. We then give a
sharper bound of O(1.8027n) using the same strategy, by enumerating incidence
patterns of groups of size 9 by a computer program.
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Theorem 1. The number of monotone paths in a triangulation on n vertices in
the plane is O(1.8027n).

The number of crossing-free structures (matchings, spanning trees, spanning
cycles, triangulations) on a set of n points in the plane is known to be expo-
nential [1,6,9,18,20–23]; see also [7,24]. Early upper bounds in this area were
obtained by multiplying an upper bound on the maximum number of triangu-
lations on n points with an upper bound on the maximum number of desired
configurations in an n-vertex triangulation; valid upper bounds result since every
planar straight-line graph can be augmented into a triangulation.

It is often challenging to determine the number of configurations (i.e., count)
faster than listing all such configurations (i.e., enumerate). In Sect. 5 we show
that monotone paths can be counted in polynomial time in plane graphs.

Theorem 2. Given a plane straight-line graph G with n vertices, the number of
monotone paths in G can be computed in O(n2) time. The monotone paths can
be enumerated in an additional O(1)-time per edge.

Related Previous Work. We derive a new upper bound on the maximum
number of monotone paths in straight-line triangulations of n points in the plane.
Analogous problems have been studied for cycles, spanning cycles, spanning
trees, and matchings [3] in n-vertex edge-maximal planar graphs, which are
defined in purely graph theoretic terms. In contrast, the monotonicity of a path
depends on the embedding of the point set in the plane. The number of geometric
configurations contained (as a subgraph) in a triangulation of n points have been
considered only recently. The maximum number of convex polygons is known to
be between Ω(1.5028n) and O(1.5029n) [8,15]; while the minimum number of
monotone paths in an n-vertex triangulation lies between Ω(n2) and O(n3.17) [4].

2 Preliminaries

A polygonal path ξ = (v1, v2, . . . , vt) is monotone in direction u ∈ R
2 \ {0} if

every directed edge of ξ has a positive inner product with u, that is, 〈−−−→vivi+1,u〉 >
0 for i = 1, . . . , t−1; here 0 = (0, 0). A path ξ = (v1, v2, . . . , vt) is monotone if it
is monotone in some direction u ∈ R

2\{0}. Every triangulation contains at least
Ω(n2) monotone paths, since there is a monotone path between any two vertices
(by a straightforward adaptation of [5, Lemma1] from convex subdivisions to
triangulations).

Let S ⊂ R
2 be an n-element point set in the plane with no three points

collinear. A (geometric) triangulation of S is a plane straight-line graph with
vertex set S such that the bounded faces are triangles that jointly tile of the
convex hull of S. Since a triangulation has at most 3n − 6 edges, it is enough
to consider monotone paths in O(n) directions parallel to the edges. In the
remainder of the paper, we fix a direction, which we may assume to be the
x-axis after a suitable rotation.
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We prove the upper bound for a broader class of graphs, plane monotone
graphs, in which every edge is an x-monotone Jordan arc. Consider a plane
monotone graph G on n vertices with a maximum number of x-monotone paths.
We may assume that the vertices have distinct x-coordinates; otherwise we can
perturb the vertices without decreasing the number of x-monotone paths. Since
adding extra edges to G can only increase the number of x-monotone paths,
we may also assume that G is fully triangulated [17, Lemma 3.1], i.e., it is an
edge-maximal planar graph. Denote the vertex set by W = {w1, w2, . . . , wn},
ordered by increasing x-coordinates; and orient each edge wiwj ∈ E(G) from wi

to wj if i < j; we thereby obtain a directed graph G.
By [4, Lemma 3], all edges wiwi+1 must be present, i.e., ξ0 = (w1, w2, . . . , wn)

is a Hamiltonian path in G. The recurrence T (i) = T (i−1)+T (i−2)+T (i−3) for
i ≥ 4, where T (i) denotes the number of x-monotone paths that start at vertex
wn−i+1, was established in [4]. The recurrence solves to T (n) = O(1.8393n).

Proof Technique. An x-monotone path can be represented uniquely by the
subset of visited vertices. This unique representation gives the trivial upper
bound of 2n for the number of x-monotone paths. For a set of k vertices V ⊆ W ,
an incidence pattern of V (pattern, for short) is a subset of V that appears in
a monotone path ξ (i.e., the intersection between V and a monotone path ξ).
Denote by I(V ) the set of all incidence patterns of V ; see Fig. 1. For instance,
v1v3 ∈ I(V ) implies that there exists a monotone path ξ in G that is incident
to v1 and v3 in V , but no other vertices in V . The incidence pattern ∅ ∈ I(V )
denotes an empty intersection between ξ and V , i.e., a monotone path that has
no vertices in V .

We now describe a divide & conquer application of the fingerprinting tech-
nique we use in our proof. Assuming that n is a multiple of 4, partition the
path ξ0 into groups of 4 consecutive vertices. We show that such a group can
have at most 13 patterns (Sect. 3). By the product rule, we can deduce an upper
bound of 13n/4 < 1.8989n on the number of x-monotone paths in G. A care-
ful analysis of the edges between two consecutive groups of 4 shows that, for 8
consecutive vertices, at most 120 out of the 132 = 169 incidence patterns are
possible (Lemma 6). It follows that the maximum number of x-monotone paths
is 120n/8 < 1.8193n if n is a multiple of 8, and O(1.8193n) in general (Sect. 4).

Computer search reveals that a group of 9 consecutive vertices admits 201
patterns, and so the number of x-monotone paths is O(201n/9) = O(1.8027n);
see Sect. 4. The analysis of larger groups, using the same technique is expected to
yield further improvements. Handling groups of 10 or 11 is still realistic (although
time consuming), but working with larger groups is currently prohibitive, both
by analytic methods and with computer search. Significant improvement over
our results will likely require new ideas.

Definitions and Notations. Let G be a directed plane monotone triangula-
tion that contains a Hamiltonian path ξ0 = (w1, w2, . . . , wn). Denote by G−

(resp., G+) the path ξ0 together with all edges below (resp., above) ξ0. Let
V = {v1, . . . , vk} be a set of k consecutive vertices of ξ0. We wish to iden-
tify the edges relevant for the incidence patterns of V . For this purpose, the
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edges between a vertex vi ∈ V and any vertex preceding V (resp., succeed-
ing V ) are equivalent. We apply a graph homomorphism ϕ on G− and G+,
respectively, that maps all vertices preceding V to a new node v0, and all ver-
tices succeeding V to a new node vk+1. The path ξ0 is mapped to a new path
(v0, v1, . . . , vk, vk+1). Denote the edges in ϕ(G−\ξ0) and ϕ(G+\ξ0), respectively,
by E−(V ) and E+(V ); they are referred to as the upper side and the lower side;
and let E(V ) = E−(V ) ∪ E+(V ). The incidence pattern of the vertex set V
is determined by the triple (V,E−(V ), E+(V )). We call this triple the group
induced by V .

u1 u2 u3 u4

U

v1 v2 v3 v4

V

Fig. 1. Left: a group U with incidence patterns I(U) = {∅, u1u2, u1u2u3, u1u2u3u4,
u1u2u4, u2, u2u3, u2u3u4, u2u4, u3, u3u4}. Right: a group V with I(V ) = {∅, v1v2,
v1v2v3, v1v2v3v4, v1v2v4, v1v3, v1v3v4, v2, v2v3, v2v3v4, v2v4, v3, v3v4}.

The edges vivj ∈ E(V ), 1 ≤ i < j ≤ k, are called inner edges. The edges v0vi,
1 ≤ i ≤ k, are called incoming edges of vi ∈ V ; and the edges vivk+1, 1 ≤ i ≤ k,
are outgoing edges of vi ∈ V (note that v0 and vk+1 are not in V ). An incoming
edge v0vi for 1 < i ≤ k (resp., and outgoing edge vivk+1 for 1 ≤ i < k) may be
present in both E−(V ) and E+(V ). Denote by In(v) and Out(v), respectively,
the number of incoming and outgoing edges of a vertex v ∈ V ; and note that
In(v) and Out(v) can be 0, 1 or 2.

For 1 ≤ i ≤ k, let V∗i denote the set of incidence patterns in the group V
ending at i (i.e., leaving the group at vi). For example in Fig. 1 (right), V∗3 =
{v1v2v3, v1v3, v2v3, v3}. By definition we have |V∗i| ≤ 2i−1. Similarly Vi∗ denotes
the set of incidence patterns in the group V starting at i (i.e., entering the group
at vi). In Fig. 1 (left), U2∗ = {u2, u2u3, u2u3u4, u2u4}. Observe that |Vi∗| ≤ 2k−i.
Note that

|I(V )| = 1 +
k∑

i=1

|V∗i| and |I(V )| = 1 +
k∑

i=1

|Vi∗|. (1)

Reflecting all components of a triple (V,E−(V ), E+(V )) with respect to the x-
axis generates a new group denoted by V R. By definition, both V and V R have
the same set of incidence patterns.

3 Groups of 4 or 8 Vertices

Lemma 1. Let V be a group of 4 vertices with at least 10 incidence patterns.
Then there is: (i) an outgoing edge from v2 or v3; and (ii) an incoming edge into
v2 or v3.
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v1 v2 v3 v4

V

Fig. 2. v1 cannot be the last vertex with an outgoing edge from a group V =
{v1, v2, v3, v4} with at least 10 incidence patterns.

Proof. (i) There is at least one outgoing edge from {v1, v2, v3}, since otherwise
V∗1 = V∗2 = V∗3 = ∅ implying |I(V )| = |V∗4| + 1 ≤ 9. Assume there is no
outgoing edge from v2 and v3; then V∗1 = {v1} and V∗2 = V∗3 = ∅. From (1), we
have |V∗4| = 8 and this implies {v1v3v4, v2v4, v3v4} ⊂ V∗4. The patterns v1v3v4
and v2v4, respectively, imply that v1v3, v2v4 ∈ E(V ). The patterns v2v4 and
v3v4, respectively, imply there are incoming edges into v2 and v3. Refer to Fig. 2.
Without loss of generality, an outgoing edge from v1 is in E+(V ). By planarity,
an incoming edges into v2 and v3 have to be in E−(V ). Then v1v3 and v2v4 both
have to be in E+(V ) which by planarity is impossible.

(ii) By symmetry in a vertical axis, there is an incoming edge into v2 or v3. �
Lemma 2. Let V be a group of 4 vertices with at least 11 incidence patterns.
Then there is: (i) an incoming edge into v2; and (ii) an outgoing edge from v3.

Proof. (i) Assume In(v2) = 0. Hence |V2∗| = 0. By Lemma 1 (ii), we have
In(v3) > 0. By definition |V3∗| ≤ 2. We distinguish two cases.

Case 1: In(v4) = 0. In this case, |V4∗| = 0. Refer to Fig. 3 (left). By planarity,
the edge v1v4 and an outgoing edge from v2 cannot coexist with an incoming edge
into v3. So either v1v4 or v1v2 is not in V1∗, which implies |V1∗| < 8. Therefore,
(1) yields |I(V )| = |V1∗| + |V3∗| + 1 < 8 + 2 + 1 = 11, which is a contradiction.

Case 2: In(v4) > 0. In this case, |V4∗| = 1. If the incoming edges into v3
and v4 are on opposite sides (see Fig. 3 (center)), then by planarity there are
outgoing edges from neither v1 nor v2, which implies that the patterns v1 and
v1v2 are not in V1∗, and so |V1∗| ≤ 8−2 = 6. If the incoming edges into v3 and v4
are on the same side (see Fig. 3 (right)), then by planarity either the edges v1v4
and v2v4 or an outgoing edge from v3 cannot exist, which implies that either
v1v4 and v1v2v4 are not in V1∗ or v1v3 and v1v2v3 are not in V1∗. In either case,
|V1∗| ≤ 8 − 2 = 6.

Therefore, irrespective of the relative position of the incoming edges into v3
and v4, (1) yields |I(V )| = |V1∗| + |V3∗| + |V4∗| + 1 ≤ 6 + 2 + 1 + 1 = 10, which
is a contradiction.

(ii) By symmetry in a vertical axis, Out(v3) > 0. �
Lemma 3. Let V be a group of 4 vertices with exactly 11 incidence patterns.
Then the following hold.
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v1 v2 v3 v4

V

v1 v2 v3 v4

V

v1 v2 v3 v4

V

Fig. 3. Left: an incoming edge arrives into v3, but not into v4. Center and right:
incoming edges arrive into both v3 and v4; either on the same or on opposite sides
of ξ0.

(i) If In(v3) = 0, then all the incoming edges into v2 are on the same side,
|V1∗| ≥ 5 and |V2∗| ≥ 3.

(ii) If In(v3) > 0, then all the incoming edges into v3 are on the same side,
|V1∗| ≥ 4, |V2∗| ≥ 2 and |V3∗| = 2.

Proof. By Lemma 2, In(v2) �= 0 and Out(v3) �= 0. Therefore {v2v3, v2v3v4} ⊆
V2∗, implying |V2∗| ≥ 2. By definition |V4∗| ≤ 1.

(i) Assume In(v3) = 0. Then we have |V3∗| = 0. Using (1), |V1∗| + |V2∗| ≥ 9.
By definition |V2∗| ≤ 4, implying |V1∗| ≥ 5. All incoming edges into v2 are on
the same side, otherwise the patterns {v1, v1v3, v1v3v4, v1v4} cannot exist, which
would imply |V1∗| < 5. If |V2∗| < 3, then v2 and v2v4 are not in V2∗ implying
that v1v2 and v1v2v4 are not in V1∗; hence |V1∗| ≤ 6 and thus |V1∗| + |V2∗| < 9,
which is a contradiction. We conclude that |V2∗| ≥ 3.

(ii) Assume In(v3) > 0. Then we have {v3, v3v4} ⊆ V3∗, hence |V3∗| = 2.
By (1), we obtain |V1∗| + |V2∗| ≥ 7. If |V1∗| < 4, then |V2∗| ≥ 4 and so
{v2, v2v3, v2v4, v2v3v4} ⊆ V2∗. This implies {v1v2, v1v2v3, v1v2v4, v1v2v3v4} ⊆
V1∗, hence |V1∗| ≥ 4 and |V1∗| + |V2∗| ≥ 4 + 4 = 8 which is a contradiction. We
conclude |V1∗| ≥ 4. All incoming edges into v3 are on the same side, otherwise
the patterns {v1, v1v2, v1v2v4, v1v4, v2, v2v4} cannot exist, and thus |I(V )| ≤ 10
which is a contradiction. �
Lemma 4. Let V be a group of 4 vertices with exactly 12 incidence patterns.
Then the following hold.

(i) For i = 1, 2, 3, all outgoing edges from vi, if any, are on one side of ξ0.
(ii) If V has outgoing edges from exactly one vertex, then this vertex is v3 and

we have |V∗3| = 4 and |V∗4| = 7. Otherwise there are outgoing edges from
v2 and v3, and we have |V∗2| = 2, |V∗3| ≥ 3 and |V∗4| ≥ 5.

(iii) For i = 2, 3, 4, all incoming edges into vi, if any, are on one side of ξ0.
(iv) If V has incoming edges into exactly one vertex, then they are into v2 and

we have |V2∗| = 4 and |V1∗| = 7. Otherwise there are incoming edges into
v3 and v2, and we have |V3∗| = 2, |V2∗| ≥ 3 and |V1∗| ≥ 5.

Proof. (i) By Lemma 2 (i), there is an incoming edge into v2. So by planarity,
all outgoing edges from v1, if any, are on one side of ξ0.

If there are outgoing edges from v2 on both sides, then by planarity the edges
v1v3, v1v4 and any incoming edge into v3 cannot exist, implying the five patterns
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{v1v3, v1v3v4, v1v4, v3, v3v4} are not in I(V ) and thus |I(V )| ≤ 16−5 = 11, which
is a contradiction.

If there are outgoing edges from v3 on both sides (see Fig. 4 (a)) then by
planarity the edges v1v4, v2v4 and an incoming edge into v4 cannot exist which
implies that the four patterns {v1v2v4, v1v4, v2v4, v4} are not in I(V ). Without
loss of generality, an incoming edge into v2 is in E+(V ). Then by planarity, any
outgoing edge of v1 and the edge v1v3 (which must be present) are in E−(V ).
Then by planarity either an incoming edge into v3 or an outgoing edge from v2
cannot exist. So either the patterns {v3, v3v4} or the patterns {v1v2, v2} are not
in I(V ). Hence |I(V )| ≤ 16−(4+2) = 10, which is a contradiction. Consequently,
all outgoing edges of vi are on the same side of ξ0, for i = 1, 2, 3.

v1 v2 v3 v4

V

v1 v2 v3 v4

V

Fig. 4. (a) Having outgoing edges from v3 on both sides is impossible. (b) Existence
of outgoing edges only from {v1v3} is impossible.

(ii) If V has outgoing edges from exactly one vertex, then by Lemma 2 (ii),
this vertex is v3. Consequently, V∗1 = V∗2 = ∅. Using (1), |V∗3| + |V∗4| = 11.
Therefore |V∗4| ≥ 7, since by definition |V∗3| ≤ 4. If |V∗4| = 8, then we have
{v1v2v3v4, v1v3v4, v2v3v4, v3v4} ⊂ V∗4. Existence of these four patterns along
with an outgoing edge from v3 implies {v1v2v3, v1v3, v2v3, v3} ⊆ V∗3 and thus
|V∗3| + |V∗4| = 4 + 8 = 12, which is a contradiction. Therefore |V∗4| = 7 and
|V∗3| = 4.

If V has outgoing edges from more than one vertex, the the possible vertex
sets with outgoing edges are {v1, v3}, {v2, v3}, and {v1, v2, v3}. We show that
it is impossible that all outgoing edges are from {v1, v3}, which will imply that
there are outgoing edges from both v2 and v3.

If there are outgoing edges from {v1, v3} only, we may assume the ones from
v1 are in E+(V ) and then by planarity all incoming edges into v2 are in E−(V ),
see Fig. 4 (b). Then by planarity, either v1v3 or v2v4 or an incoming edge into v3
cannot exist implying that {v1v3, v1v3v4} or {v1v2v4, v2v4} or {v3, v3v4} is not
in I(V ). By the same token, depending on the side the outgoing edges from v3
are on, either the edge v1v4 or an incoming edge into v4 cannot exist, implying
that either v1v4 or v4 is not in I(V ). Since V∗2 = ∅, {v1v2, v2} are not in I(V ). So
|I(V )| ≤ 16− (2+ 1+ 2) = 11, which is a contradiction. Therefore the existence
of outgoing edges only from v1 and v3 is impossible.

If there are outgoing edges from only {v2, v3} or only {v1, v2, v3}, then we have
{v1v2, v2} ⊆ V∗2 and {v1v2v3, v2v3} ⊆ V∗3, since In(v2) �= 0 and Out(v3) �= 0
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v1 v2 v3 v4

V

v1 v2 v3 v4

V

Fig. 5. (a) |V∗3| ≥ 3. (b) |V∗4| ≥ 5.

by Lemma 2. Therefore |V∗2| = 2 and |V∗3| ≥ 2. If |V∗3| < 3, then v1v3, v3 /∈
V∗3, which implies v1v3 and that an incoming edge into v3 are not in E(V ).
Consequently, v1v3v4, v3v4 /∈ I(V ); see Fig. 5(a). By planarity the edge v1v4, an
incoming edge into v4 and an outgoing edge from v1 cannot exist together with
an incoming edge into v2 and an outgoing edge from v3. So at least one of the
patterns {v1, v1v4, v4} is missing implying |I(V )| ≤ 16− (2 + 2+ 1) = 11, which
is a contradiction. So |V∗3| ≥ 3. If |V∗4| < 5, then (1) yields |V∗3| = 4, |V∗2| = 2
and |V∗1| = 1. We may assume that all outgoing edges from v1 are in E+(V ); see
Fig. 5 (b). By planarity, the incoming edges into v2 are in E−(V ). Depending on
the side the outgoing edges from v2 are on, either v1v3 or an incoming edge into
v3 cannot exist, implying that either v1v3 or v3 is not in V∗3, therefore |V∗3| < 4,
creating a contradiction. We conclude that |V∗4| ≥ 5.

(iii) and (iv) follow from (i) and (ii), respectively, by symmetry. �
Lemma 5. Let V be a group of 4 vertices. Then V has at most 13 incidence
patterns. If V has 13 incidence patterns, then V is either A or AR in Fig. 6.

1 2 3 4

A

1 2 3 4

AR

Fig. 6. I(A) = I(AR) = ∅, 12, 123, 1234, 124, 13, 134, 2, 23, 234, 24, 3, 34. A and AR are
the only groups with 13 incidence patterns.

Proof. Observe that group A in Fig. 6 has 13 patterns. Let V be a group of 4
vertices with at least 13 patterns. We first prove that V has an incoming edge
into v3 and an outgoing edge from v2. Their existence combined with Lemma 2
implies that {v3v4, v3} ⊂ I(V ) and {v1v2, v2} ⊂ I(V ), respectively. At least
one of these two edges has to be in E(V ), otherwise V has at most 16 − (2 +
2) = 12 patterns. Assume that one of the two, without loss of generality, the
outgoing edge from v2 is not in E(V ). Then {v1v3, v2v4} ⊆ E(V ), otherwise
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either patterns {v1v3, v1v3v4} or {v1v2v4, v2v4} are not in I(V ) and there are at
most 16 − (2 + 2) = 12 patterns. By Lemma2, there is an incoming edge into
v2 and an outgoing edge from v3. Without loss of generality, the outgoing edge
from v3 is in E−(V ). So by planarity v2v4 is in E+(V ) which implies that v1v3
and the incoming edge into v3 are in E−(V ). By the same token, the incoming
edge into v2 is in E+(V ). So by planarity the edge v1v4 and an outgoing edge
from v1 cannot be in E(V ). Then the patterns {v1v4, v1} are not in I(V ), thus
V has at most 16 − (2 + 2) = 12 patterns which is a contradiction.

We may assume that the incoming edge into v3 is in E−(V ). By planarity,
the outgoing edge from v2 is in E+(V ). If the outgoing edge from v1 is in E(V ),
then by planarity it has to be in E+(V ), which implies incoming edge into v2 is
in E−(V ) and the edge v1v3 is not in E(V ). Since outgoing edge from v1 implies
only one pattern v1 where the edge v1v3 implies two patterns {v1v3, v1v3v4},
outgoing edge from v1 cannot be in E(V ) but the edge v1v3 is in E−(V ). By
a similar argument we show that the incoming edge into v4 cannot be in E(V )
and the edge v2v4 is in E+(V ). Therefore V is A and it has 13 patterns.

If the incoming edge into v3 is in E+(V ), then V is AR (again with 13
patterns). �

Lemmas 1–5 together with other arguments omitted here give the following.

Lemma 6. Consider a group UV consisting of two consecutive groups of 4 ver-
tices, where 10 ≤ |I(U)| ≤ 13 or 10 ≤ |I(V )| ≤ 13. Then UV allows at most 120
incidence patterns.

4 Proof of Theorem1

Partition the path ξ0 into groups of 8 consecutive vertices. A group of 8, denoted
by UV , where U and V are the groups induced by the first and last four vertices
of UV , respectively. If |I(U)| ≤ 9 or |I(V )| ≤ 9, then |I(UV )| ≤ |I(U)| · |I(V )| ≤
9 × 13 = 117 by Lemma5. Otherwise, Lemma 6 shows that |I(UV )| ≤ 120. It
follows by the product rule that the number of x-monotone paths is bounded
above by 120n/8 < 1.8193n if n is a multiple of 8, and by O(1.8193n) in general.
Consequently, the number of monotone paths in any direction is O(n 120n/8) =
O(1.8193n).

To verify the tightness of the upper bound of our analysis, consider the
group (U,E−(U), E+(U)) of 8 vertices depicted in Fig. 7 (right). The first and
second half of U are the groups B2 and B3, each with 12 patterns. Observe that
exactly 24 patterns are incompatible, thus U has exactly |I(B2)| · |I(B3)|−24 =
12 · 12 − 24 = 120 patterns.

The application of the same fingerprinting technique to groups of 9 vertices
via a computer program1 shows that a group of 9 allows at most 201 incidence
patterns; the extremal configuration appears in Fig. 8. This yields a sharper
upper bound of O(n 201n/9) = O(1.8027n) for the number of monotone paths in
an n-vertex triangulation, as given in Theorem 1.
1 The program will be made available on the arXiv in due time.
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1 2 3 4

B2

1 2 3 4

B3

u1 u2 u3 u4 u5 u6 u7 u8

U

Fig. 7. U has 120 patterns. The 24 missing patterns are 123678, 12367, 12368, 1236,
123,13678,1367,1368,136,13,23678,2367, 2368,236,23,3678,367,368,36,3,678,67,68,6.

u1 u2 u3 u4 u5 u6 u7 u8 u9

U

v1 v2 v3 v4 v5 v6 v7 v8 v9

V

Fig. 8. Groups U and V (and their reflections in the x-axis) are the only groups of 9
vertices that have 201 patterns. Observe that V is the reflection of U in the y-axis.

To generate all groups of k vertices, the program first generates all possible
sides of k vertices, essentially by brute force. A side of k vertices V = {v1, . . . vk}
is represented by a directed planar graph with k + 2 vertices, where the edges
v0vi and vivk+1, for 1 ≤ i ≤ k, denote an incoming edge into vi and an outgoing
edge from vi, respectively. The edge v0vk+1 represents the ∅ pattern. Note that
ξ0 ∪ v0vk+1 forms a plane cycle on k + 2 vertices in the underlying undirected
graph. Therefore, E+(V ) and E−(V ) can each have at most (k +2)− 3 = k − 1
edges. After all possible sides are generated, the program combines all pairs
of sides with no common inner edge to generate a group (V,E−(V ), E+(V )).
For each generated group, the program calculates the corresponding number
of patterns and in the end returns the group with the maximum number of
patterns. �

5 Algorithm for Counting Monotone Paths

Let G = (V,E) be a planar straight-line graph with n vertices. We first observe
that the number of x-monotone paths in G can be easily computed by a sweep-
line algorithm (and similarly the number of u-monotone paths in G for any
direction u ∈ R

2 \ {0}). For every vertex v ∈ V , denote by m(v) the number of
(directed) nonempty x-monotone paths that end at v.

Sweep a vertical line � from left to right, and whenever � reaches a vertex v,
we compute m(v) according to the relation m(v) =

∑
q∈L−(v)[m(q) + 1], where

L−(v) denotes the set of neighbors of vertex v in G that lie to the left of v.
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The total number of x-monotone paths in G is
∑

v∈V m(v). For every v ∈ V , the
computation of m(v) takes O(deg(v)) time, thus computing m(v) for v ∈ V takes∑

v∈V O(deg(v)) = O(n) time. Together with the sorting step, the algorithm for
computing the number of x-monotone paths in G takes O(n log n) time.

For computing the total number of monotone paths over all directions u ∈
R

2 \ {0}, some care is required. Note that it is enough to consider the |E|
directions parallel to the edges of G. However, we cannot simply sum up the
number of monotone paths for all |E| directions, since a monotone path in G
may be monotone in several of these directions. Instead, for each new direction,
we compute the number of new paths. In fact, we count directed monotone paths,
that is, each path will be counted twice, as traversed in two opposite directions.

Sort the edges of G by their slopes. To avoid ties (corresponding to parallel
edges), perturb the slopes arbitrarily to obtain a set U of |E| ≤ 3n − 6 distinct
directions. Let u0 ∈ U denote the direction of the minimum slope in E. We
first compute the number of u0-monotone directed paths in G by the sweep-line
algorithm described above in O(n) time. Consider the directions u ∈ U \{u0}, in
increasing slope order. For each u, we maintain the number of directed paths in G
that are monotone in some direction between u0 and u. For each new direction u,
exactly one directed edge, say (a, b) becomes u-monotone. Therefore, it is enough
to count the number of u-monotone paths that traverse edge (a, b). These paths
can easily be counted by sweeping G with a line � orthogonal to u: Sort the
vertices in direction u, and then count all u-monotone paths that end at a, and
all u-monotone paths that start at b, both in O(n) time. The total number of
u monotone paths traversing (a, b) is the product of these two counts plus one
(for the 1-edge path (a, b)). Note that the sorted order of vertices in direction
u can be maintained in O(n2) time over all |E| = O(n) directions [2, Ch. 8].
Consequently, the total running time of the algorithm is O(n2), as claimed. �
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Abstract. Counting the number of permutations of a given total dis-
placement is equivalent to counting weighted Motzkin paths of a given
area (Guay-Paquet and Petersen [11]). The former combinatorial prob-
lem is still open. In this work we show that this connection allows to
construct efficient algorithms for counting and for sampling such permu-
tations. These algorithms provide a tool to better understand the original
combinatorial problem. A by-product of our approach is a different way
of counting based on certain “building sequences” for Motzkin paths,
which may be of independent interest.

1 Introduction

Consider the set Sn of all permutations over n elements {1, 2, . . . , n}. Diaconis
and Graham [6] studied the disarray statistic of permutations, also called total
displacement by Knuth [14, Problem 5.1.1.28], defined as follows. For any per-
mutation π define its distance to the identity permutation as the sum of the
displacements of all elements:

D(π) :=
n∑

i=1

|i − π(i)| = 2
∑

π(i)>i

(π(i) − i).

Note that this distance is always even. The following natural question is still
unresolved:

How many permutations at a given distance 2d from the identity permu-
tation are there?

That is, one would like to know the following total displacement number:

D(n, d) := |{π ∈ Sn | D(π) = 2d}|,
that is the number of permutations of total displacement equal to 2d. So far, a
closed formula for arbitrary n is only known for fixed d up to seven (d ≤ 7) [11].
Entry A062869 [8] of the OEIS previously reported values of D(n, d) for small n
and d (n ≤ 30).
c© Springer International Publishing Switzerland 2016
V. Mäkinen et al. (Eds.): IWOCA 2016, LNCS 9843, pp. 423–434, 2016.
DOI: 10.1007/978-3-319-44543-4 33
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Fig. 1. A permutation and its Motzkin path of width 10 and area 12.

Guay-Paquet and Petersen [11] made recently significant progress in this
question by showing that these permutations are in correspondence to Motzkin
paths whose area is exactly the distance d under consideration. Their result
shows that, for any Motzkin path (see below) of area d, one can easily calculate
the number of permutations that correspond to this specific path. Therefore the
problem above translates into the problem of counting weighted Motzkin paths
of a given area.

A Motzkin path consists of a sequence of U (Up-right), H (Horizontal-right),
and D (Down-right) moves over the two-dimensional lattice starting at coordi-
nate (0, 0) and such that the path never goes below the x-axis and ends on the
x-axis (see Fig. 1 (right) for an example). For any such path, one can consider
its width and its area defined as the number of moves and the area of the region
between the y = 0 axis and the path. The permutations over n elements with
total displacement 2d map into Motzkin paths of width n and area A = d.

For instance, the permutation in Fig. 1 is mapped into a Motzkin path accord-
ing to the following rule. The first element π(1) = 5 is mapped into a U because
the element at position 1 goes to a higher position (right) and also the number
coming into position 1 is higher than 1: π(1) > 1 < π−1(1). The fourth element
is mapped into D because the opposite happens: π(4) = 1 < 4 > 3 = π−1(4).
Finally, elements 3, 5, 7, 10 are mapped into H because neither of the previous
cases apply.

Let hi denote the maximum height of the path during move i (for U : after
the move, for D: before the move, and anytime for H). Then the number ω(mz )
of permutations that map to a certain Motzkin path mz is [11]

ω(mz ) =
n∏

i

ωi where ωi =

{
hi if mz i = U or mz i = D,

2hi + 1 if mz i = H.
(1)

We also refer to ω(mz ) as the weight of mz . In the example in Fig. 1 this gives
1 ·2 ·5 ·2 ·3 ·2 ·5 ·2 ·1 ·1 = 1200. Note how this formula separates over the moves
of the Motzkin path. This independence is what we will exploit in this article.

Theorem 1 ([11]). For any n and d, let MZ (n,A) be the set of all Motzkin
paths of width n and area A = d. Then it holds that

D(n, d) =
∑

mz∈MZ (n,A)

ω(mz ). (2)
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Corollary 1 ([2]). Given aMotzkin path mz of length n, we can sample uniformly
at random one of the ω(mz ) many permutations mapping into mz in time O(n).

Our contribution. In this work, we address counting and sampling of permuta-
tions from both a combinatorial and computational point of view. Specifically:

– On the computational side, we show that the total displacement number
D(n, d) can be computed efficiently, namely, in time O(n4) and space O(n3).

– On the combinatorial side, we introduce sequences of certain building blocks
which provide a different perspective on the problem structure. Moreover,
this is a crucial part of a Markov chain sampling method which constitutes
the third contribution of this paper.

– Finally, we consider the task of sampling permutations of a given total dis-
placement with uniform distribution.

To compute the number of permutations efficiently, we look at the paths
from left to right. Building on an operation introduced by Barcucci et al. [1],
we can provide an elegant dynamic programming formulation which achieves a
running time of O(n4) and needs space O(n3). Consequently, we can compute
the sequences A062869 [8] and A129181 [4] to much higher values of n and d
than was possible before.

Considering the combinatorial aspects, we show that every Motzkin path
comes from a sequence a describing its building blocks. We provide an explicit
formula for the number m(a) of paths that these building blocks can form. The
weights in Eq. (1) are preserved in the sense that the weight of a path depends
only on its building sequence.

Since the exact formula seems to be currently out of reach, we contribute
a dynamic programming algorithm which computes D(n, d) for large n and d.
Given the dynamic programming table one can efficiently sample permutations
of total displacement 2d in linear time O(n). Further, we show that sampling
sequences of building blocks with the appropriate distribution automatically
gives a sampler for the permutations. One application of the latter result is a
Monte Carlo Markov chain (MCMC) method which gives an alternative approach
to the dynamic programming. The computational experiments with the MCMC
method show a promising convergence speed leading to a sampler for very high
values of n and d. The experimental results support a hypothesis that the MCMC
method is faster than the method based on dynamic programming and runs in
O(n3) time.

Omitted proofs and an extensive experimental evaluation of our MCMC can
be found in the full version of the paper [2].

Related Work. Different metrics on permutations have been studied, for a survey
see [5]. Sampling and counting of permutations of a fixed distance was studied
for several metrics [13] but not for total displacement.

The number of Motzkin paths under various conditions were also studied in
a more general frame of enumeration of lattice paths [9,12]. Motzkin numbers
play a role in many combinatorial problems as is illustrated for example in [7].
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The total area under a set of generalized Motzkin paths, where the horizontal
segments have a constant length k (k ≥ 0) have been studied in [16] and [15].
Moreover, the author in [17] studies the moments of generalized Motzkin paths
where the first moment describes the area under a Motzkin path. Heinz [4]
describes a different algorithm for enumerating unweighted Motzkin paths with
a given area, cf. Remark 2 in Sect. 2.1.

The use of Markov chains for sampling and counting combinatorial objects
is a very active research area (see e.g. the book [3]), and some works exploit
the connection between combinatorial structures and paths of a certain type to
accomplish this task (see e.g. [10]).

Paper Organization. Section 2 describes the dynamic programming algorithm.
Section 3 describes how weighted Motzkin paths can be counted via building
block sequences. Section 4 provides a Markov chain sampling algorithm as well
as its experimental evaluation.

2 Weighted Motzkin Paths Using Dynamic Programming

Recall that we denote by D(n, d) the number of permutations on n elements
with total displacement 2d (OEIS A062869 [8]). Let M(n,A) denote the number
of Motzkin paths of width n and area A (OEIS A129181 [4]).

2.1 Dynamic Program for Counting Weighted Motzkin Paths

Theorem 2. Computing M(n,A) and D(n, d) can be done in time O(n4) and
space O(n3).

Proof. The key ingredient is a construction by Barcucci et al. [1] that produces
every possible Motzkin path through a unique sequence of insertion steps. Let
us look at the last fall of a given Motzkin path, i.e., its suffix of Down-right
moves. At one of the positions before or after any of these fall moves, we insert
a new peak (a U and a D) or we insert a new flat (an H). Repeatedly inserting
peaks and flats this way along the last fall will create our path. See Fig. 2 for
an example. This construction is complete and unique [1], meaning that every
Motzkin path can be created through a unique sequence of such insertions.

This allows us to derive a dynamic programming formulation for counting
M(n,A). We add the last fall length l to our state and write it as M(n,A, l). So
how can we recursively express M(n,A, l)? We undo the last insertion step. If
we inserted a flat last, then we were at M(n − 1, A − l, l′) before the insertion,
for some l′ ≥ l, because the last fall was at least as long before the insert. When
inserting a peak, we might increase the last fall length by one, but not more. So
M(n − 2, A − (2l − 1), l′) for all l′ ≥ l − 1 are also possible predecessor states.
Together with the base case M(0, 0, 0) = 1 this gives the recurrence

M(n,A, l) =
n/2∑

l′≥l

M(n − 1, A − l, l′) +
n/2∑

l′≥l−1

M(n − 2, A − (2l − 1), l′), (3)
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Fig. 2. All six possible flat- and peak-extensions of the last fall of length 2.

which allows for O(n4) many states as A ≤ n2 and l ≤ n. Hence we immediately
get an O(n5) time algorithm with O(n4) space. We can shave off one factor
of n in both time and space as follows: We first note, that we can compute
the two sums in constant time if we precompute the prefix sums over the last
variable l′. Let us denote these prefix sums as SM (n,A, l) =

∑l
l′=0 M(n,A, l′) =

SM (n,A, l−1)+M(n,A, l). This allows us to compute every value of M(n,A, l)
in amortized constant time, so in time O(n4) overall. Finally, our recurrence only
relies on the last two values of n, so when computing M(n, ·, ·) only the O(n3)
many values for M(n − 1, ·, ·) and M(n − 2, ·, ·) need to be stored. The values
M(n,A) are then simply the marginals of M(n,A, l) over all last fall lengths l.

We can extend this recurrence to the weighted case which by Corollary 1
gives rise to the total displacement count: We distribute the factors of the weight
ω(mz ) (Eq. (1)) over the steps of the dynamic program. As l denotes the height
of the last flat or peak that we add, we have factors 2l + 1 or l2:

D(n, d, l) =(2l + 1)
n/2∑

l′≥l

D(n − 1, d − l, l′) + l2
n/2∑

l′≥l−1

D(n − 2, d − (2l − 1), l′).��

Remark 1. The bounds in Theorem2 assumed that basic operations have unit-
cost. The numbers involved can be exponential in n however. We can easily
bound M(n,A) ≤ 3n and D(n, d) ≤ n! showing that their bit-representations
are at most of length O(n log n). Our dynamic programs only use multiplica-
tion with small numbers of size O(log n) and addition. So one can consider a
refined analysis by multiplying both the time and space bounds of Theorem2 by
Θ(npolylog n). Finally, as suggested by an anonymous reviewer, the space could
be further improved by counting modulo small primes and using the Chinese
Reminder Theorem.

Remark 2. For computing M(n,A), the OEIS contains a dynamic program by
Heinz [4]. It is stated as a Maple code snippet without any further comment or
reference. It uses a different state and might have the same time complexity as
ours. We believe that our extension to the weights of D(n, d) can also be applied.
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2.2 Sampling from the Dynamic Program

Theorem 3. After running the dynamic program from Theorem2, we can sam-
ple (weighted) Motzkin paths in time O(n).

Proof. Given access to a source of randomness and the filled table for M , we
can randomly retrace the steps through the dynamic programming states to
sample a Motzkin path from right to left. For the weighted paths according to
D(n, d) all the steps will be exactly the same. We first sample the last fall length
by picking a random number x ∈u.a.r. {0, . . . ,M(n,A) − 1} and then finding the
smallest l such that its prefix sum SM (n,A, l) is larger than x. We continue with
x − SM (n,A, l − 1), the offset within the class of paths with last fall length l.
For each step, we first decide whether we are in the flat-case or in the peak-case
of the recurrence by comparing x to the left summand of (3). We then know
whether the move before the last fall was an H or a U . We increment l′ until we
find the last fall length of the previous state. We adapt x and recurse until we
end at M(0, 0, 0) with x = 0. Note that the search for the initial l takes linear
time. After that, every time we compare x to a value of M , we fix at least one
move of the sampled Motzkin path, so sampling takes O(n) time overall. ��
Remark 3. This sampling procedure requires the full table of the dynamic pro-
gram to be stored. Hence the memory optimization from O(n4) to O(n3) in
Theorem 2 can not be used simultaneously.

Remark 4. A C++ implementation of our counting and sampling approaches
by Theorems 2 and 3 is available at http://people.inf.ethz.ch/grafdan/motzkin/.
With our code, we can quickly compute for n up to 100 (and all d) the integer
sequences A062869 [8] and A129181 [4] of which the former was only known
up to n ≤ 30 before.

3 Combinatorial Structure of Motzkin Paths

In this section, we look at the combinatorial structure of Motzkin paths: There
is a natural decomposition of any Motzkin path into “building blocks”, already
hinted at in the last section. For each height i of the Motzkin path we count the
number of flats fi and peaks pi.

Definition 1 (building sequence). For given positive integers n and A, a
finite sequence of non-negative integers a = (f0, p1, f1, p2, . . . , ph, fh) is a build-
ing sequence if all p-entries are non-zero, p1, p2, . . . , ph > 0, and the following
two conditions hold:

(f0 + f1 + . . . + fh) + 2(p1 + p2 + . . . + ph) = n, (4)
(0f0 + 1f1 + . . . + hfh) + (1p1 + 3p2 + . . . + (2h − 1)ph) = A. (5)

The set of all building sequences satisfying (4)–(5) is denoted as S(n,A).

http://people.inf.ethz.ch/grafdan/motzkin/
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7

0 n 21 1 1 2

Fig. 3. The Motzkin path on the left can be obtained from its building blocks.

Such a sequence has a natural interpretation as a set of “building blocks”
that generate a number of Motzkin paths of width n and area A (see Fig. 3): We
have fi flats and pi peaks of height i which can be split into pieces of width 1
and then rearranged into a Motzkin path.

Proposition 1. For any Motzkin path mz of width n and area A there exists
a unique building sequence a(mz) ∈ S(n,A) such that mz can be obtained by
splitting and rearranging the blocks of this sequence.

Theorem 1 gives a surjective mapping from permutations into Motzkin paths.
It is easy to see that the number of permutations ω(mz ) mapping into the same
path mz , given by Eq. (1), is uniquely determined by the building block sequence
a = a(mz), since we have

perm(a) :=
∏

fi

(2i + 1)fi

∏

pi

i2pi = ω(mz ). (6)

Hence ω(mz ) is independent of the actual Motzkin path and only depends on its
combinatorial structure. This raises the question of whether also the number of
Motzkin paths which share a common building sequence a is solely determined
by a. We answer this in the positive, deriving a formula for this number, denoted
by m(a). We proceed in a top-down fashion by looking at the number of peaks
and flats in the highest level and how these can be rearranged. Once a level is
fixed, we proceed recursively by arranging the blocks one level below.

Theorem 4. For any building sequence a = (f0, p1, f1, . . . , ph, fh) ∈ S(n,A),
the number of Motzkin paths of width n and area A that can be constructed out
of the building sequence a is exactly

m(a) =
(

fh + ph − 1
ph − 1

)(
ph + fh−1

fh−1

)(
ph + fh−1 + ph−1 − 1

ph−1 − 1

)(
ph−1 + fh−2

fh−2

)

· · ·

· · ·
(

p3 + f2 + p2 − 1
p2 − 1

)(
p2 + f1

f1

)(
p2 + f1 + p1 − 1

p1 − 1

)(
p1 + f0

f0

)

.

(7)

Proof. We start with the highest flats of the sequence a. There are fh of those
flats. Two (or more) such flats can either lie directly next to each other, or they
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Fig. 4. The top down construction of paths from the given sequence (1, 1, 1, 2, 2). Note
that p1 − 1 = 0, and thus no DU valley is inserted at height 1.

might be separated by a Down-right move followed at some point by an Up-right
move. We call this setting a DU valley; we get such valleys by splitting peaks
of height h and reassembling them the other way round, see Fig. 4. A feasible
Motzkin path has to have a U slope at the very left and a D slope at the very
right of all height h pieces. The remaining ph −1 DU valleys can be freely placed
around the fh flats, that is we choose their places from fh + ph − 1 available
positions. The number of ways to do this is

(
fh + ph − 1

ph − 1

)

.

(8)

Now we continue on the second highest level h − 1. Naturally, the number of
times that our Motzkin path rises above level h − 1 is exactly the number ph of
peaks of height h. We can distribute our fh−1 flats of height h − 1 around those
peaks, i.e. pick from ph + fh−1 many positions, hence we can choose from

(
ph + fh−1

fh−1

)

(9)

many possibilities. After placing the flats, we will have to place new valleys
down to the next lower level around the existing ph peaks and fh−1 flats. As
before, the leftmost up and down slopes are fixed, hence the number of ways
to distribute ph−1 − 1 valleys is given by the third factor in Eq. (7). Since the
choices in different levels are independent, we can iterate this reasoning until we
include flats of height 0. ��

We conclude with a corollary of Theorems 1 and 4:

Corollary 2. There exists a surjective mapping from permutations over n ele-
ments into building sequences satisfying the following condition: For any build-
ing sequence a ∈ S(n,A), the number of permutations π which are at distance
D(π) = 2d = 2A from the identity permutation and that are mapped into this
building sequence a is precisely

P (a) := m(a) · perm(a), (10)
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where m(a) is given by Eq. (7) and perm(a) by Eq. (6). Therefore the total num-
ber of permutations at distance 2d = 2A from the identity permutation satisfies

D(n, d)
(2)
=

∑

mz∈MZ (n,A)

ω(mz ) =
∑

a∈S(n,A)

P (a). (11)

Example 1. The building blocks in Fig. 3 yield
(
3
1

)(
3
1

)(
3
0

)(
2
1

)
= 18 Motzkin paths,

and each path corresponds to 1200 permutations. So, there are 1200 ·18 = 21 600
permutations mapping into the building sequence a = (1, 1, 1, 2, 2).

Remark 5. Theorem 4 and Corollary 2 allow for a dynamic program for counting
and sampling weighted Motzkin paths, similar to Sects. 2.1 and 2.2. Additionally,
we can easily sample paths with a fixed number of highest peaks and flats, at
the cost of an additional O(n3)-factor in the running time, see [2].

4 Sampling Weighted Motzkin Paths by Length and Area

In this section, we consider the task of selecting (sampling) permutations with
uniform distribution over all permutations of a given total displacement. By
Corollary 1 it is enough to sample Motzkin paths with the proper weights. We
have already seen in Sect. 2.2 that we can sample such weighted Motzkin paths
using dynamic programming at the cost of large memory consumption.

We will show in Sect. 4.1 an approach to sample weighted Motzkin paths
based on the building sequences introduced in Sect. 3 that requires only O(n)
memory. In general, observe that sampling permutations can be accomplished
efficiently if we can sample building sequences with a probability proportional
to P (a) = m(a) · perm(a) in polynomial time:

Theorem 5. Every polynomial-time algorithm that samples sequences in S(n,
A) with probability π(a) ∝ P (a) can be turned into a polynomial-time algorithm
for sampling permutations uniformly at random among the permutations over n
elements and of total displacement 2d = 2A.

Proof (Sketch). The sampler maps the sequence into a random Motzkin path,
and then into a random permutation as follows: (1) Pick a Motzkin path mz
uniformly at random among those that can be created with a, that is, with prob-
ability 1/m(a); (2) Pick a permutation uniformly at random among those that
map into the Motzkin path mz , that is, with probability 1/perm(a), according
to Corollary 1. Using Corollary 2 it is immediate to see that every permutation
has probability of being selected equal to 1/D(n, d).

4.1 A Markov Chain Sampler

Suppose we have a set of k possible local changes transforming any sequence a
into another sequence a′ such that all sequences can be obtained by applying
a certain number of such operations. Then the following standard Metropolis
chain samples sequences with the desired distribution:
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1. With probability 1
2 do nothing. Otherwise,

2. Select one of the k local operations u.a.r. If this operation cannot be applied to
the current sequence a (the new sequence is unfeasible) do nothing; Otherwise,
let a′ be the sequence obtained from a by applying this operation;

3. Accept the operation transforming a to a′ with probability

A(a, a′) := min
{

1,
P (a′)
P (a)

}

= min
{

1,
m(a′)
m(a)

· perm(a′)
perm(a)

}

, (12)

and do nothing with remaining probability 1 − A(a, a′).

Local operations over the sequences. We define our Metropolis chain Mblocks

through four types of operations: Peak to Flat (PF), Flat to Valley (FV), Flat
to Flat (FF), and Peak into Valley (PV). We formally define them as:

PF (i, j) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pi ← pi − 1
fi−1 ← fi−1 + 2
fj ← fj − 1
fj+1 ← fj+1 + 1

, FV (i, j) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fi ← fi − 2
pi ← pi + 1
fj ← fj − 1
fj+1 ← fj+1 + 1

FF (i, j) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fi ← fi − 1
fi+1 ← fi+1 + 1
fj ← fj − 1
fj−1 ← fj−1 + 1

PV (i, j) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pi ← pi − 1
fi−1 ← fi−1 + 2
pj ← pj − 1
fj ← fj + 2

Note that each type of operation applies to two indices i and j, and we also
implicitly consider the reversed operations which “undo” the changes. We now
explain step 4.1 of the chain Mblocks in more detail: The Markov chain Mblocks

picks two indices i and j at random, then picks one of the four operations above,
and decides with probability 1/2 whether to choose the operation or its reversed
version. As for step 4.1, computing the transitional probability A(a, a′) can be
done in constant time as only a few of the factors in Eqs. (6) and (7) change.

Theorem 6. The Markov chain Mblocks defined above is ergodic and its unique
stationary distribution satisfies π(a) ∝ P (a) for every a ∈ S(n,A).

Experimental Evaluation of Mblocks . We are interested in the required num-
ber of steps until the distribution of Mblocks is sufficiently close to its stationary
distribution. We measure the distance between two distributions by the total
variation distance. The mixing time of a Markov chain is the smallest time t such
that the total variation distance between the stationary distribution and the dis-
tribution after t steps, starting from any state, is smaller than some small ε > 0.

We study the mixing time of Mblocks for a given area A and a given width
n by running the following experiment. We estimate the distribution after a
given number of steps by repeatedly running Mblocks with an initial state a0

defined as follows: The building block sequence consists of one peak of height
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Fig. 5. (left) Total variation for n = 8 and all A ≤ (n/2)2 with |S(8, A)| > 1. (right)
Maximal mixing time for given widths (•), mixing time for areas A∗

n (+).

h for every h ≤ 	√A� and the remaining area and width is filled greedily with
flats of maximal possible height. The total variation distance of the distribution
of Mblocks after some number of steps t from its stationary distribution π is

dTV (P t(a0, ·), π) =
1
2

·
∑

a∈S(n,A)

∣
∣
∣P t(a0, a) − π(a)

∣
∣
∣.

We estimate the mixing time for a given area A and a given width w by comput-
ing the total variation distance for increasing t until the total variation distance
is below 0.05.

Figure 5 (left) illustrates the mixing time for width 8 and every area A with
more than one possible building block sequence. The maximal mixing time (400
steps) is necessary for area 9. In fact, for every width smaller than 13, the
mixing time is maximal for area A∗

n = ((n − 2)/2)2 if n is even and A∗
n =

((n − 1)/2)2 otherwise. This is due to our choice of the initial state of Mblocks .
We estimate the maximal mixing time for widths larger than 12 by computing
the mixing time for A∗

n only, as the number of repeats necessary to estimate the
distribution of Mblocks after t steps depends on the number of possible building
block sequences, which grows exponentially depending on n. Figure 5 (right)
shows the maximal mixing time up to width 40. The plot suggests that the
number of steps necessary to approximate the stationary distribution does not
grow exponentially depending on the width n, the algorithm is probably faster
than the sampler based on dynamic programming and the results suggest that
the MCMC sampler achieves the mixing time O(n3).

Conjecture 1. Mblocks mixes in time O(n3).

Remark 6. The implementation of Mblocks is available at http://people.inf.ethz.
ch/grafdan/motzkin/.

http://people.inf.ethz.ch/grafdan/motzkin/
http://people.inf.ethz.ch/grafdan/motzkin/
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Abstract. A covering array CA(N ; t, k, v) is an N ×k array with entries
in {1, 2, . . . , v}, for which every N × t subarray contains each t-tuple of
{1, 2, . . . , v}t among its rows. Covering arrays find application in interac-
tion testing, including software and hardware testing, advanced materials
development, and biological systems. A central question is to determine
or bound CAN(t, k, v), the minimum number N of rows of a CA(N ; t, k, v).
The well known bound CAN(t, k, v) = O((t − 1)vt log k) is not too far
from being asymptotically optimal. Sensible relaxations of the cover-
ing requirement arise when (1) the set {1, 2, . . . , v}t need only be con-
tained among the rows of at least (1 − ε)

(
k
t

)
of the N × t subarrays

and (2) the rows of every N × t subarray need only contain a (large)
subset of {1, 2, . . . , v}t. In this paper, using probabilistic methods, sig-
nificant improvements on the covering array upper bound are established
for both relaxations, and for the conjunction of the two. In each case,
a randomized algorithm constructs such arrays in expected polynomial
time.

1 Introduction

Let [n] denote the set {1, 2, . . . , n}. Let N,t,k, and v be integers such that k ≥
t ≥ 2 and v ≥ 2. Let A be an N × k array where each entry is from the set [v].
For I = {j1, . . . , jρ} ⊆ [k] where j1 < . . . < jρ, let AI denote the N × ρ array in
which AI(i, �) = A(i, j�) for 1 ≤ i ≤ N and 1 ≤ � ≤ ρ; AI is the projection of A
onto the columns in I.

A covering array CA(N ; t, k, v) is an N × k array A with each entry from
[v] so that for each t-set of columns C ∈ (

[k]
t

)
, each t-tuple x ∈ [v]t appears

as a row in AC . The smallest N for which a CA(N ; t, k, v) exists is denoted by
CAN(t, k, v).

Covering arrays find important application in software and hardware testing
(see [22] and references therein). Applications of covering arrays also arise in
experimental testing for advanced materials [4], inference of interactions that
regulate gene expression [29], fault-tolerance of parallel architectures [15], syn-
chronization of robot behavior [17], drug screening [30], and learning of boolean
functions [11]. Covering arrays have been studied using different nomenclature,
c© Springer International Publishing Switzerland 2016
V. Mäkinen et al. (Eds.): IWOCA 2016, LNCS 9843, pp. 437–448, 2016.
DOI: 10.1007/978-3-319-44543-4 34
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as qualitatively independent partitions [13], t-surjective arrays [5], and (k, t)-
universal sets [19], among others. Covering arrays are closely related to hash
families [10] and orthogonal arrays [8].

2 Background and Motivation

The exact or approximate determination of CAN(t, k, v) is central in applications
of covering arrays, but remains an open problem. For fixed t and v, only when
t = v = 2 is CAN(t, k, v) known precisely for infinitely many values of k. Kleitman
and Spencer [21] and Katona [20] independently proved that the largest k for
which a CA(N ; 2, k, 2) exists satisfies k =

(
N−1
�N/2�

)
. When t = 2, Gargano, Kőrner,

and Vaccaro [13] establish that

CAN(2, k, v) =
v

2
log k(1 + o(1)). (1)

(We write log for logarithms base 2, and ln for natural logarithms.) Sev-
eral researchers [2,5,14,16] establish a general asymptotic upper bound on
CAN(t, k, v):

CAN(t, k, v) ≤ t − 1
log vt

vt−1

log k(1 + o(1)). (2)

A slight improvement on (2) has recently been proved [12,28]. An (essentially)
equivalent but more convenient form of (2) is:

CAN(t, k, v) ≤ (t − 1)vt log k(1 + o(1)). (3)

A lower bound on CAN(t, k, v) results from the inequality CAN(t, k, v) ≥ v ·
CAN(t − 1, k − 1, v) obtained by derivation, together with (1), to establish that
CAN(t, k, v) ≥ vt−2 ·CAN(2, k − t+2, v) = vt−2 · v

2 log(k − t+2)(1+o(1)). When
t
k < 1, we obtain:

CAN(t, k, v) = Ω(vt−1 log k). (4)

Because (4) ensures that the number of rows in covering arrays can be con-
siderable, researchers have suggested the need for relaxations in which not all
interactions must be covered [7,18,23,24] in order to reduce the number of rows.
The practical relevance is that each row corresponds to a test to be performed,
adding to the cost of testing.

For example, an array covers a t-set of columns when it covers each of the
vt interactions on this t-set. Hartman and Raskin [18] consider arrays with a
fixed number of rows that cover the maximum number of t-sets of columns. A
similar question was also considered in [24]. In [23,24] a more refined measure of
the (partial) coverage of an N × k array A is introduced. For a given q ∈ [0, 1],
let α(A, q) be the number of N × t submatrices of A with the property that at
least qvt elements of [v]t appear in their set of rows; the (q, t)-completeness of A
is α(A, q)/

(
k
t

)
. Then for practical purposes one wants “high”(q, t)-completeness

with few rows.
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In these works, no theoretical results on partial coverage appear to have been
stated; earlier contributions focus on experimental investigations of heuristic
construction methods. Our purpose is to initiate a mathematical investigation
of arrays offering “partial” coverage. More precisely, we address:

– Can one obtain a significant improvement on the upper bound (3) if the set
[v]t is only required to be contained among the rows of at least (1 − ε)

(
k
t

)

subarrays of A of dimension N × t?
– Can one obtain a significant improvement if, among the rows of every N × t

subarray of A, only a (large) subset of [v]t is required to be contained?
– Can one obtain a significant improvement if the set [v]t is only required to be

contained among the rows of at least (1 − ε)
(
k
t

)
subarrays of A of dimension

N ×t, and among the rows of each of the ε
(
k
t

)
subarrays that remain, a (large)

subset of [v]t is required to be contained?

We answer these questions both theoretically and algorithmically in the following
sections.

3 Partial Covering Arrays

When 1 ≤ m ≤ vt, a partial m-covering array, PCA(N ; t, k, v,m), is an N × k

array A with each entry from [v] so that for each t-set of columns C ∈ (
[k]
t

)
, at

least m distinct tuples x ∈ [v]t appear as rows in AC . Hence a covering array
CA(N ; t, k, v) is precisely a partial vt-covering array PCA(N ; t, k, v, vt).

Theorem 1. For integers t, k, v, and m where k ≥ t ≥ 2, v ≥ 2 and 1 ≤ m ≤ vt

there exists a PCA(N ; t, k, v,m) with

N ≤
ln

{(
k
t

)(
vt

m−1

)}

ln
(

vt

m−1

) . (5)

Proof. Let r = vt−m+1, and A be a random N×k array where each entry is cho-
sen independently from [v] with uniform probability. For C ∈ (

[k]
t

)
, let BC denote

the event that at least r tuples from [v]t are missing in AC . The probability that
a particular r-set of tuples from [v]t is missing in AC is

(
1 − r

vt

)N . Applying the

union bound to all r-sets of tuples from [v]t, we obtain Pr[BC ] ≤ (
vt

r

) (
1 − r

vt

)N .
By linearity of expectation, the expected number of t-sets C for which AC misses
at least r tuples from [v]t is at most

(
k
t

)(
vt

r

) (
1 − r

vt

)N . When A has at least
ln
{
(kt)( vt

m−1)
}

ln( vt

m−1 )
rows this expected number is less than 1. Therefore, an array A

exists with the required number of rows such that for all C ∈ (
[k]
t

)
, AC misses

at most r − 1 tuples from [v]t, i.e. AC covers at least m tuples from [v]t. ��
Theorem 1 can be improved upon using the Lovász local lemma.
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Lemma 1. (Lovász local lemma; symmetric case) (see [1]) Let A1, A2, . . . , An be
events in an arbitrary probability space. Suppose that each event Ai is mutually
independent of a set of all other events Aj except for at most d, and that Pr[Ai] ≤
p for all 1 ≤ i ≤ n. If ep(d + 1) ≤ 1, then Pr[∩n

i=1Āi] > 0.

Lemma 1 provides an upper bound on the probability of a “bad” event in terms
of the dependence structure among such bad events, so that there is a guaranteed
outcome in which all “bad” events are avoided. This lemma is most useful when
there is limited dependence among the “bad” events, as in the following:

Theorem 2. For integers t, k, v and m where v, t ≥ 2, k ≥ 2t and 1 ≤ m ≤ vt

there exists a PCA(N ; t, k, v,m) with

N ≤
1 + ln

{
t
(

k
t−1

)(
vt

m−1

)}

ln
(

vt

m−1

) . (6)

Proof. When k ≥ 2t, each event BC with C ∈ (
[k]
t

)
(that is, at least vt − m + 1

tuples are missing in AC) is independent of all but at most
(

t
1

)(
k−1
t−1

)
< t

(
k

t−1

)

events in {BC′ : C ′ ∈ (
[k]
t

)\{C}}. Applying Lemma 1, Pr[∧
C∈([k]

t )BC ] > 0 when

e
(

vt

r

)(
1 − r

vt

)N

t

(
k

t − 1

)

≤ 1. (7)

Solve (7) to obtain the required upper bound on N . ��

When m = vt, apply the Taylor series expansion to obtain ln
(

vt

m−1

)
≥ 1

vt ,
and thereby recover the upper bound (3). Theorem 2 implies:

Corollary 1. Given q ∈ [0, 1] and integers 2 ≤ t ≤ k, v ≥ 2, there exists an
N × k array on [v] with (q, t)-completeness equal to 1 (i.e., maximal), whose
number of rows, N satisfies

N ≤
1 + ln

{
t
(

k
t−1

)(
vt

qvt−1

)}

ln
(

vt

qvt−1

) .

Rewriting (6), setting r = vt − m + 1, and using the Taylor series expansion
of ln

(
1 − r

vt

)
, we get

N ≤
1 + ln

{
t
(

k
t−1

)(
vt

r

)}

ln
(

vt

vt−r

) ≤ vt(t − 1) ln k

r

{

1 − ln r

ln k
+ o(1)

}

. (8)

Hence when r = v(t − 1) (or equivalently, m = vt − v(t − 1) + 1), there is a par-
tial m-covering array with Θ(vt−1 ln k) rows. This matches the lower bound (4)
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Algorithm 1. Moser-Tardos type algorithm for partial m-covering arrays.
Input: Integers N, t, k, v and m where v, t ≥ 2, k ≥ 2t and 1 ≤ m ≤ vt

Output: A : a PCA(N ; t, k, v, m)

1 Let N :=
1+ln

{
t( k

t−1)(
vt

m−1)
}

ln
(

vt

m−1

) ;

2 Construct an N × k array A where each entry is chosen independently and
uniformly at random from [v];

3 repeat
4 Set covered := true;

5 for each column t-set C ∈ ([k]
t

)
do

6 if AC does not cover at least m distinct t-tuples x ∈ [v]t then
7 Set covered := false;
8 Set missing-column-set := C;
9 break ;

10 end

11 end
12 if covered = false then
13 Choose all the entries in the t columns of missing-column-set

independently and uniformly at random from [v];

14 end

15 until covered = true;
16 Output A;

asymptotically for covering arrays by missing, in each t-set of columns, no more
than v(t − 1) − 1 of the vt possible rows.

The dependence of the bound (6) on the number of v-ary t-vectors that must
appear in the t-tuples of columns is particularly of interest when test suites are
run sequentially until a fault is revealed, as in [3]. Indeed the arguments here
may have useful consequences for the rate of fault detection.

Lemma 1 and hence Theorem 2 have proofs that are non-constructive in
nature. Nevertheless, Moser and Tardos [26] provide a randomized algorithm
with the same guarantee. Patterned on their method, Algorithm 1 constructs a
partial m-covering array with exactly the same number of rows as (6) in expected
polynomial time. Indeed, for fixed t, the expected number of times the resampling
step (line 13) is repeated is linear in k (see [26] for more details).

4 Almost Partial Covering Arrays

For 0 < ε < 1, an ε-almost partial m-covering array, APCA(N ; t, k, v,m, ε), is an
N × k array A with each entry from [v] so that for at least (1 − ε)

(
k
t

)
column

t-sets C ∈ (
[k]
t

)
, AC covers at least m distinct tuples x ∈ [v]t. Again, a covering

array CA(N ; t, k, v) is precisely an APCA(N ; t, k, v, vt, ε) when ε < 1/
(
k
t

)
. Our

first result on ε-almost partial m-covering arrays is the following.
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Theorem 3. For integers t, k, v,m and real ε where k ≥ t ≥ 2, v ≥ 2, 1 ≤ m ≤
vt and 0 ≤ ε ≤ 1, there exists an APCA(N ; t, k, v,m, ε) with

N ≤
ln

{(
vt

m−1

)
/ε

}

ln
(

vt

m−1

) . (9)

Proof. Parallelling the proof of Theorem 1 we compute an upper bound on the
expected number of t-sets C ∈ (

[k]
t

)
for which AC misses at least r tuples x ∈ [v]t.

When this expected number is at most ε
(
k
t

)
, an array A is guaranteed to exist

with at least (1 − ε)
(
k
t

)
t-sets of columns C ∈ (

[k]
t

)
such that AC misses at most

r − 1 distinct tuples x ∈ [v]t. Thus A is an APCA(N ; t, k, v,m, ε). To establish
the theorem, solve the following for N :

(
k

t

)(
vt

r

)(
1 − r

vt

)N

≤ ε

(
k

t

)

. ��
When ε < 1/

(
k
t

)
we recover the bound from Theorem 1 for partial m-covering

arrays. In terms of (q, t)-completeness, Theorem 3 yields the following.

Corollary 2. For q ∈ [0, 1] and integers 2 ≤ t ≤ k, v ≥ 2, there exists an N ×k
array on [v] with (q, t)-completeness equal to 1 − ε, with

N ≤
ln

{(
vt

m−1

)
/ε

}

ln
(

vt

m−1

) .

When m = vt, an ε-almost covering array exists with N ≤ vt ln
(

vt

ε

)
rows.

Improvements result by focussing on covering arrays in which the symbols are
acted on by a finite group. In this setting, one chooses orbit representatives of
rows that collectively cover orbit representatives of t-way interactions under the
group action; see [9], for example. Such group actions have been used in direct
and computational methods for covering arrays [6,25], and in randomized and
derandomized methods [9,27,28].

We employ the sharply transitive action of the cyclic group of order v, adapt-
ing the earlier arguments using methods from [28]:

Theorem 4. For integers t, k, v and real ε where k ≥ t ≥ 2, v ≥ 2 and 0 ≤ ε ≤ 1
there exists an APCA(N ; t, k, v, vt, ε) with

N ≤ vt ln
(

vt−1

ε

)

. (10)

Proof. The action of the cyclic group of order v partitions [v]t into vt−1 orbits,
each of length v. Let n = 
N

v � and let A be an n × k random array where each
entry is chosen independently from the set [v] with uniform probability. For
C ∈ (

[k]
t

)
, AC covers the orbit X if at least one tuple x ∈ X is present in AC .
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The probability that the orbit X is not covered in A is
(
1 − v

vt

)n =
(
1 − 1

vt−1

)n.
Let DC denote the event that AC does not cover at least one orbit. Apply-
ing the union bound, Pr[DC ] ≤ vt−1

(
1 − 1

vt−1

)n. By linearity of expectation,
the expected number of column t-sets C for which DC occurs is at most(
k
t

)
vt−1

(
1 − 1

vt−1

)n. As earlier, set this expected value to be at most ε
(
k
t

)
and

solve for n. An array exists that covers all orbits in at least (1 − ε)
(
k
t

)
column

t-sets. Develop this array over the cyclic group to obtain the desired array. ��
As in [28], further improvements result by considering a group, like the

Frobenius group, that acts sharply 2-transitively on [v]. When v is a prime
power, the Frobenius group is the group of permutations of Fv of the form
{x �→ ax + b : a, b ∈ Fv, a �= 0}.

Theorem 5. For integers t, k, v and real ε where k ≥ t ≥ 2, v ≥ 2, v is a prime
power and 0 ≤ ε ≤ 1 there exists an APCA(N ; t, k, v, vt, ε) with

N ≤ vt ln
(

2vt−2

ε

)

+ v. (11)

Proof. The action of the Frobenius group partitions [v]t into vt−1−1
v−1 orbits of

length v(v − 1) (full orbits) each and 1 orbit of length v (a short orbit). The
short orbit consists of tuples of the form (x1, . . . , xt) ∈ [v]t where x1 = . . . = xt.
Let n = 
 N−v

v(v−1)� and let A be an n × k random array where each entry is
chosen independently from the set [v] with uniform probability. Our strategy is
to construct A so that it covers all full orbits for the required number of arrays
{AC : C ∈ (

[k]
t

)}. Develop A over the Frobenius group and add v rows of the
form (x1, . . . , xk) ∈ [v]t with x1 = . . . = xk to obtain an APCA(N ; t, k, v, vt, ε)
with the desired value of N . Following the lines of the proof of Theorem 4, A
covers all full orbits in at least (1 − ε)

(
k
t

)
column t-sets C when

(
k

t

)
vt−1 − 1

v − 1

(

1 − v − 1
vt−1

)n

≤ ε

(
k

t

)

.

Because vt−1−1
v−1 ≤ 2vt−2 for v ≥ 2, we obtain the desired bound. ��

Using group action when m = vt affords useful improvements. Does this
improvement extend to cases when m < vt? Unfortunately, the answer appears
to be no. Consider the case for PCA(N ; t, k, v,m) when m ≤ vt using the action
of the cyclic group of order v on [v]t. Let A be a random n × k array over [v].
When vt − vs + 1 ≤ m ≤ vt − v(s − 1) for 1 ≤ s ≤ vt−1, this implies that
for all C ∈ (

[k]
t

)
, AC misses at most s − 1 orbits of [v]t. Then we obtain that

n ≤
(
1 + ln

(
t
(

k
t−1

)(
vt−1

s

)))
/ ln

(
vt−1

vt−1−s

)
. Developing A over the cyclic group

we obtain a PCA(N ; t, k, v,m) with

N ≤ v
1 + ln

{(
k

t−1

)(
vt−1

s

)}

ln
(

vt−1

vt−1−s

) (12)
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Fig. 1. Comparison of (12) and (6). Figure (a) compares the sizes of the partial m-
covering arrays when vt − 6v + 1 ≤ m ≤ vt. Except for m = vt = 4096 the bound from
(6) outperforms the bound obtained by assuming group action. Figure (b) shows that
for m = vt − v = 4092, (6) outperforms (12) for all values of k.

Figure 1 compares (12) and (6). In Fig. 1a we plot the size of the partial
m-covering array as obtained by (12) and (6) for vt − 6v + 1 ≤ m ≤ vt and
t = 6, k = 20, v = 4. Except when m = vt = 4096, the covering array case,
(6) outperforms (12). Similarly, Fig. 1b shows that for m = vt − v = 4092, (6)
consistently outperforms (12) for all values of k when t = 6, v = 4. We observe
similar behavior for different values of t and v.

Next we consider even stricter coverage restrictions, combining Theorems 2
and 4.

Theorem 6. For integers t, k, v,m and real ε where k ≥ t ≥ 2, v ≥ 2, 0 ≤ ε ≤ 1
and m ≤ vt + 1 − ln k

ln(v/ε1/(t−1))
there exists an N × k array A with entries from

[v] such that

1. for each C ∈ (
[k]
t

)
, AC covers at least m tuples x ∈ [v]t,

2. for at least (1 − ε)
(
k
t

)
column t-sets C, AC covers all tuples x ∈ [v]t,

3. N = O(vt ln
(

vt−1

ε

)
).

Proof. We vertically juxtapose a partial m-covering array and an ε-almost
vt-covering array. For r = ln k

ln(v/ε1/(t−1))
and m = vt − r + 1, (8) guarantees

the existence of a partial m-covering array with vt ln
(

vt−1

ε

)
{1 + o(1)} rows.

Theorem 4 guarantees the existence of an ε-almost vt-covering array with at
most vt ln

(
vt−1

ε

)
rows. ��

Corollary 3. There exists an N × k array A such that:

1. for any t-set of columns C ∈ (
[k]
t

)
, AC covers at least m ≤ vt + 1 − v(t − 1)

distinct t-tuples x ∈ [v]t,
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2. for at least
(
1 − vt−1

k1/v

) (
k
t

)
column t-sets C, AC covers all the distinct t-tuples

x ∈ [v]t.
3. N = O(vt−1 ln k).

Proof. Apply Theorem 6 with m = vt + 1 − ln k
ln(v/ε1/(t−1))

. There are at most
ln k

ln(v/ε1/(t−1))
− 1 missing t-tuples x ∈ [v]t in the AC for each of the at most ε

(
k
t

)

column t-sets C that do not satisfy the second condition of Theorem 6. To bound
from above the number of missing tuples to a certain small function f(t) of t, it

is sufficient that ε ≤ vt−1
(
1
k

) t−1
f(t)+1 . Then the number of missing t-tuples x ∈ [v]t

in AC is bounded from above by f(t) whenever ε is not larger than

vt−1

(
1
k

) t−1
f(t)+1

(13)

On the other hand, in order for the number N = O
(
vt−1 ln

(
vt−1

ε

))
of rows

of A to be asymptotically equal to the lower bound (4), it suffices that ε is not
smaller than

vt−1

k
1
v

. (14)

When f(t) = v(t − 1) − 1, (13) and (14) agree asymptotically, completing the
proof. ��

Once again we obtain a size that is O(vt−1log k), a goal that has not been
reached for covering arrays. This is evidence that even a small relaxation of
covering arrays provides arrays of the best sizes one can hope for.

Next we consider the efficient construction of the arrays whose existence
is ensured by Theorem 6. Algorithm 2 is a randomized method to construct an
APCA(N ; t, k, v,m, ε) of a size N that is very close to the bound of Theorem 3. By
Markov’s inequality the condition in line 9 of Algorithm 2 is met with probability
at most 1/2. Therefore, the expected number of times the loop in line 2 repeats
is at most 2.

To prove Theorem 3, t-wise independence among the variables is sufficient.
Hence, Algorithm 2 can be derandomized using t-wise independent random vari-
ables. We can also derandomize the algorithm using the method of conditional
expectation. In this method we construct A by considering the k columns one by
one and fixing all N entries of a column. Given a set of already fixed columns,
to fix the entries of the next column we consider all possible vN choices, and
choose one that provides the maximum conditional expectation of the number
of column t-sets C ∈ (

[k]
t

)
such that AC covers at least m tuples x ∈ [v]t.

Because vN = O(poly(1/ε)), this derandomized algorithm constructs the desired
array in polynomial time. Similar randomized and derandomized strategies can
be applied to construct the array guaranteed by Theorem 4. Together with
Algorithm 1 this implies that the array in Theorem 6 is also efficiently con-
structible.
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Algorithm 2. Randomized algorithm for ε-almost partial m-covering
arrays.
Input: Integers N, t, k, v and m where v, t ≥ 2, k ≥ t and 1 ≤ m ≤ vt, and real

0 < ε < 1
Output: A : an APCA(N ; t, k, v, m, ε)

1 Let N :=
ln

{
2( vt

m−1)/ε

}

ln
(

vt

m−1

) ;

2 repeat
3 Construct an N × k array A where each entry is chosen independently and

uniformly at random from [v];
4 Set isAPCA:= true;
5 Set defectiveCount := 0;

6 for each column t-set C ∈ ([k]
t

)
do

7 if AC does not cover at least m distinct t-tuples x ∈ [v]t then
8 Set defectiveCount := defectiveCount + 1;

9 if defectiveCount > �ε(k
t

)� then
10 Set isAPCA:= false;
11 break ;

12 end

13 end

14 end

15 until isAPCA = true;
16 Output A;

5 Final Remarks

We have shown that by relaxing the coverage requirement of a covering array
somewhat, powerful upper bounds on the sizes of the arrays can be estab-
lished. Indeed the upper bounds are substantially smaller than the best known
bounds for a covering array; they are of the same order as the lower bound for
CAN(t, k, v). As importantly, the techniques not only provide asymptotic bounds
but also randomized polynomial time construction algorithms for such arrays.

Our approach seems flexible enough to handle variations of these problems.
For instance, some applications require arrays that satisfy, for different subsets
of columns, different coverage or separation requirements [8]. In [16] several
interesting examples of combinatorial problems are presented that can be unified
and expressed in the framework of S-constrained matrices. Given a set of vectors
S each of length t, an N×k matrix M is S-constrained if for every t-set C ∈ (

[k]
t

)
,

MC contains as a row each of the vectors in S. The parameter to optimize is,
as usual, the number of rows of M . One potential direction is to ask for arrays
that, in every t-tuple of columns, cover at least m of the vectors in S, or that
all vectors in S are covered by all but a small number of t-tuples of columns.
Exploiting the structure of the members of S appears to require an extension of
the results developed here.
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Abstract. The probability that two spatial objects establish some kind
of mutual connection often depends on their proximity. To formalize this
concept, we define the notion of a probabilistic neighborhood : Let P be
a set of n points in R

d, q ∈ R
d a query point, dist a distance met-

ric, and f : R+ → [0, 1] a monotonically decreasing function. Then, the
probabilistic neighborhood N(q, f) of q with respect to f is a random
subset of P and each point p ∈ P belongs to N(q, f) with probability
f(dist(p, q)). Possible applications include query sampling and the sim-
ulation of probabilistic spreading phenomena, as well as other scenarios
where the probability of a connection between two entities decreases
with their distance. We present a fast, sublinear-time query algorithm to
sample probabilistic neighborhoods from planar point sets. For certain
distributions of planar P , we prove that our algorithm answers a query
in O((|N(q, f)| +

√
n) log n) time with high probability. In experiments

this yields a speedup over pairwise distance probing of at least one order
of magnitude, even for rather small data sets with n = 105 and also for
other point distributions not covered by the theoretical results.

1 Introduction

In many scenarios, connections between spatial objects are not certain but proba-
bilistic, with the probability depending on the distance between them: The prob-
ability that a customer shops at a certain physical store shrinks with increasing
distance to it. In disease simulations, if the social interaction graph is unknown
but locations are available, disease transmission can be modeled as a random
process with infection risk decreasing with distance. Moreover, the wireless con-
nections between units in an ad-hoc network are fragile and collapse more fre-
quently with higher distance.

For these and similar scenarios, we define the notion of a probabilistic neigh-
borhood in spatial data sets: Let a set P of n points in R

d, a query point q ∈ R
d,

a distance metric dist, and a monotonically decreasing function f : R+ → [0, 1]
be given. Then, the probabilistic neighborhood N(q, f) of q with respect to f is
a random subset of P and each point p ∈ P belongs to N(q, f) with probabil-
ity f(dist(p, q)). A straightforward query algorithm for sampling a probabilistic
neighborhood would iterate over each point p ∈ P and sample for each whether
c© Springer International Publishing Switzerland 2016
V. Mäkinen et al. (Eds.): IWOCA 2016, LNCS 9843, pp. 449–460, 2016.
DOI: 10.1007/978-3-319-44543-4 35
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it is included in N(q, f). This has a running time of Θ(n · d) per query point,
which is prohibitive for repeated queries in large data sets. Thus we are inter-
ested in a faster algorithm for such a probabilistic neighborhood query (PNQ,
spoken as “pink”). We restrict ourselves to the planar case in this work, but the
algorithmic principle is generalizable to higher dimensions.

While the linear-time approach has appeared before in the literature for a
particular application [2] (without formulating the problem as a PNQ explicitly),
we are not aware of previous work performing more efficient PNQs with an index
structure. For example, the probabilistic quadtree introduced by Kraetzschmar
et al. [10] is designed to store probabilistic occupancy data and gives determinis-
tic results. Other range queries related to (yet different from) our work as well as
deterministic index structures are described in Sect. 2.2. Proofs, details, further
experiments, pseudocode and visualizations omitted due to space constraints can
be found in the full version of this paper [16].

Contributions. We develop, analyze, implement, and evaluate an index structure
and a query algorithm that together provide fast probabilistic neighborhood
queries in the Euclidean and hyperbolic plane. Our key data structure for these
fast PNQs is a polar quadtree which we adapt from our previous work [17]. Pre-
processing for quadtree construction requires O(n log n) time with high proba-
bility1 (whp).

To answer PNQs, we first present a simple query algorithm (Sect. 3). We then
improve its time complexity by treating whole subtrees as so-called virtual leaves,
see Sect. 4. As shown by our detailed theoretical analysis, the improved algorithm
yields a query time complexity of O((|N(q, f)| +

√
n) log n) whp to find a prob-

abilistic neighborhood N(q, f) among n points, for n sufficiently large. This is
sublinear if the returned neighborhood N(q, f) is of size o(n/ log n) – an assump-
tion we consider reasonable for most applications. For our theoretical results to
hold, the quadtree structure needs to be able to partition the distribution of the
point positions in P, i. e. not all of the probability mass may be concentrated
on a single point or line. In our case of polar quadtrees, this is achieved if the
distribution is continuous, integrable, rotationally invariant with respect to the
origin and non-zero only for a finite area.

Experimental results are shown in Sect. 5: We apply our query algorithm
to generate random graphs in the hyperbolic plane [12] in subquadratic time.
Graphs with millions of edges can now be generated within a few minutes sequen-
tially. This yields an acceleration of at least one order of magnitude in practice
compared to a reference implementation [2] that uses linear-time queries. Com-
pared to our previous work on graph generation [17], our new algorithm is able
to generate a more extensive model. Even if the distribution of a given point set
P is unknown in practice, running times are fast: As an example of probabilistic
spreading behavior, we simulate a simple disease spreading mechanism on real
population density geodata. In this scenario, our fast PNQs are at least two
orders of magnitude faster than linear-time queries.
1 We say “with high probability” (whp) when referring to a probability ≥ 1 − 1/n for

sufficiently large n.
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2 Preliminaries

2.1 Notation

Let the input be given as set P of n points. The points in P are distributed
in a disk DR of radius R in the hyperbolic or Euclidean plane, the distribution
is given by a probability density function j(φ, r) for an angle φ and a radius
r. Recall that, for our theoretical results to hold, we require j to be known,
continuous and integrable. Furthermore, j needs to be rotationally invariant –
meaning that j(φ1, r) = j(φ2, r) for any radius r and any two angles φ1 and
φ2 – and positive within DR, so that j(r) > 0 ⇔ r < R. Due to the rotational
invariance, j(φ, r) is the same for every φ and we can write j(r). Likewise, we
define J(r) as the indefinite integral of j(r) and normalize it so that J(R) = 1
(also implying J(0) = 0). The value J(r) then gives the fraction of probability
mass inside radius r.

For the distance between two points p1 and p2, we use distH (p1, p2) for the
hyperbolic and distE (p1, p2) for the Euclidean case. We may omit the index
if a distinction is unnecessary. As mentioned, a point p is in the probabilistic
neighborhood of query point q with probability f(dist(p, q)). Thus, a query pair
consists of a query point q and a function f : R+ → [0, 1] that maps distances
to probabilities. The function f needs to be monotonically decreasing but may
be discontinuous. Note that f can be defined differently for each query. The
query result, the probabilistic neighborhood of q w. r. t.f , is denoted by the set
N(q, f) ⊆ P .

For the algorithm analysis, we use two additional sets for each query (q, f):

– Candidates(q, f): neighbor candidates examined when executing such a query,
– Cells(q, f): quadtree cells examined during execution of the query.

Note that the sets N(q, f),Candidates(q, f) and Cells(q, f) are probabilistic, thus
theoretical results about their size are usually only with high probability.

2.2 Related Work

Fast deterministic range queries. Numerous index structures for fast range
queries on spatial data exist. Many such index structures are based on trees or
variations thereof, see Samet’s book [14] for a comprehensive overview. I/O effi-
cient worst case analysis is usually performed using the EM model, see e. g. [3]. In
more applied settings, average-case performance is of higher importance, which
popularized R-trees or newer variants thereof, e. g. [9]. Concerning (balanced)
quadtrees for spatial dimension d, it is known that queries require O(d · n1−1/d)
time (thus O(

√
n) in the planar case) [14, Ch. 1.4]. Regarding PNQs our algo-

rithm matches this query complexity up to a logarithmic factor. Yet note that,
since for general f and dist in our scenario all points in the set P could be
neighbors, data structures for deterministic queries cannot solve a PNQ effi-
ciently without adaptations.
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Hu et al. [8] give a query sampling algorithm for one-dimensional data that,
given a set P of n points in R, an interval q = [x, y] and an integer, t ≥ 1,
returns t elements uniformly sampled from P ∩ q. They describe a structure of
O(n) space that answers a query in O(log n + t) time and supports updates in
O(log n) time. While also offering query sampling, PNQs differ from the problem
considered by Hu et al. in two aspects: We consider two dimensions instead of
one and our sampling probabilities are not necessarily uniform, but can be set
by the user by a distance-dependent function.

Range queries on uncertain data. During the previous decade probabilistic
queries different from PNQs have become popular. The main scenarios can be
put into two categories [13]: (i) Probabilistic databases contain entries that come
with a specified confidence (e. g. sensor data whose accuracy is uncertain) and
(ii) objects with an uncertain location, i. e. the location is specified by a prob-
ability distribution. Both scenarios differ under typical and reasonable assump-
tions from ours: Queries for uncertain data are usually formulated to return
all points in the neighborhood whose confidence/probability exceeds a certain
threshold [11], or computing points that are possibly nearest neighbors [1].

In our model, in turn, the choice of inclusion of a point p is a random choice
for every different p. In particular, depending on the probability distribution,
all nodes in the plane can have positive probability to be part of some other’s
neighborhood. In the related scenarios this would only be true with extremely
small confidence values or extremely large query circles.

Applications in fast graph generation. One application for PNQs as introduced
in Sect. 1 is the hyperbolic random graph model by Krioukov et al. [12]. The n
graph nodes are represented by points thrown into the hyperbolic plane at ran-
dom2 and two nodes are connected by an edge with a probability that decreases
with the distance between them. An implementation of this generative model is
available [2], it performs Θ(n2) neighborhood tests. Bringmann et al. provide an
algorithm to generate hyperbolic random graphs in expected linear time [5]; to
our knowledge no implementation of it exists yet.

In previous work we designed a generator [17] faster than [2] for a restricted
model; it runs in O((n3/2+m) log n) time whp for the whole graph with m edges.
The range queries discussed there are facilitated by a quadtree which supports
only deterministic queries. Consequently, the queries result in unit-disk graphs
in the hyperbolic plane and can be considered as a special case of the current
work (a step function f with values 0 and 1 results in a deterministic query).

Our major technical inspiration for enhancing the quadtree for probabilistic
neighborhoods is the work of Batagelj and Brandes [4]. They were the first
to present a random sampling method to generate Erdős-Rényi-graphs with n
nodes and m edges in O(n + m) time complexity. Faced with a similar problem
of selecting each of n elements with a constant probability p, they designed an
efficient algorithm. Instead of sampling each element separately, they use random

2 The probability density in the polar model depends only on radii r and R as well as
a growth parameter α and is given by g(r) := α sinh(αr)

cosh(αR)−1
.
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jumps of length δ(p), δ(p) = ln(1 − rand)/ ln(1 − p), with rand being a random
number uniformly distributed in [0, 1).

2.3 Quadtree Specifics

Our key data structure is a polar region quadtree in the Euclidean or hyperbolic
plane. While they are less suited to higher dimensions as for example k-d-trees,
the complexity is comparable in the plane. For the (circular) range queries we
discuss, quadtrees have the significant advantage of a bounded aspect ratio: A cell
in a k-d-tree might extend arbitrarily far in one direction, rendering theoretical
guarantees about the area affected by the query circle difficult to impossible. In
contrast, the region covered by a quadtree cell is determined by its position and
level.

We mostly reuse our previous definition [17] of the quadtree: A node in the
quadtree is defined as a tuple (minφ,maxφ,minr,maxr) with minφ ≤ maxφ and
minr ≤ maxr. It is responsible for a point p = (φp, rp) exactly if (minφ ≤ φp <
maxφ) and (minr ≤ rp < maxr). We call the region represented by a particular
quadtree node its quadtree cell. The quadtree is parametrized by its radius R,
the maxr of the root cell. If the probability distribution j is known (which we
assume for our theoretical results), we set the radius R to arg minr J(r) = 1,
i. e. to the minimum radius that contains the full probability mass. If only the
points are known, the radius is set to include all of them. While in this latter
case the complexity analysis of Sects. 3 and 4 does not hold, fast running times
in practice can still be achieved (see Sect. 5).

3 Baseline Query Algorithm

We begin the main technical part by describing adaptations in the quadtree
construction as well as a baseline query algorithm. This latter algorithm intro-
duces the main idea, but is asymptotically not faster than the straightforward
approach. In Sect. 4 it is then refined to support faster queries.

3.1 Quadtree Construction

At each quadtree node v, we store the size of the subtree rooted there. We then
generalize the rule for node splitting to handle point distributions j as defined
in Sect. 2.1: As is usual for quadtrees, a leaf cell c is split into four children when
it exceeds its fixed capacity. Since our quadtree is polar, this split happens once
in the angular and once in the radial direction. Due to the rotational symmetry
of j, splitting in the angular direction is straightforward as the angle range is
halved: midφ := maxφ+minφ

2 . For the radial direction, we choose the splitting
radius to result in an equal division of probability mass. The total probability
mass in a ring delimited by minr and maxr is J(maxr) − J(minr). Since j(r) is
positive for r between R and 0, the restricted function J |[0,R] defined above is a
bijection. The inverse (J |[0,R])−1 thus exists and we set the splitting radius midr

to (J |[0,R])−1
(

J(maxr)+J(minr)
2

)
.
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×

Fig. 1. Query over 200 points in a polar
hyperbolic quadtree, with f(d) :=
1/(e(d−7.78) + 1) and the query point
q marked by a red cross. Points are col-
ored according to the probability that
they are included in the result. Blue
represents a high probability, white
a probability of zero. (Color figure
online)

Figure 1 visualizes a point distribution
on a hyperbolic disk with 200 points and
Fig. 2 its corresponding quadtree.

Two results on quadtree properties
help to establish the time complexity of
quadtree operations. They are generalized
versions of our previous work [17, Lem-
mas 1 and 2] and state that each quadtree
cell contains the same expected number
of points and that the quadtree height is
O(log n) whp.

Lemma 1. Let DR be a hyperbolic or
Euclidean disk of radius R, j a probability
distribution on DR which fulfills the prop-
erties defined in Sect. 2.1, p a point in DR

which is sampled from j, and T be a polar
quadtree on DR. Let C be a quadtree cell
at depth i. Then, the probability that p is
in C is 4−i.

Proposition 1. Let DR and j be as in Lemma 1. Let T be a polar quadtree on
DR constructed to fit j. Then, for n sufficiently large, height(T ) ∈ O(log n) whp.

A direct consequence from the results above and our previous work [17] is
the preprocessing time for the quadtree construction. The generalized splitting
rule and storing the subtree sizes only change constant factors.

Corollary 1. Since a point insertion takes O(log n) time whp, constructing a
quadtree on n points distributed as in Sect. 2.1 takes O(n log n) time whp.

200

48

9121314

57

1291818

53

11141513

42

149910

Fig. 2. Visualization of the data structure used in Fig. 1. Quadtree nodes are colored
according to the upper probability bound for points contained in them. The color of a
quadtree node c is the darkest possible shade (dark = high probability) of any point
contained in the subtree rooted at c. Each node is marked with the number of points
in its subtree.
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Algorithm 1. QuadNode.getProbabilisticNeighborhood
Input: query point q, prob. function f , quadtree node c
Output: probabilistic neighborhood of q

1 N = {};
2 b = dist(q, c);

/* Distance between point and cell */

3 b=f(b);
/* Since f is monotonically decreasing, a lower bound for the

distance gives an upper bound b for the probability. */

4 s = number of points in c;
5 if c is not leaf then

/* internal node: descend, add recursive result to local set */

6 for child ∈ children(c) do
7 add getProbabilisticNeighborhood(q, f , child) to N;

8 else
/* leaf case: apply idea of Batagelj and Brandes [4] */

9 for i=0; i < s ; i++ do

10 δ = ln(1 − rand)/ ln(1 − b);
11 i += δ;
12 if i ≥ s then
13 break;

14 prob = f(dist(q, c.points[i]))/b;
15 add c.points[i] to N with probability prob

16 return N

3.2 Algorithm

The baseline version of our query (Algorithm 1) has unfortunately a time com-
plexity of Θ(n), but serves as a foundation for the fast version (Sect. 4). It takes
as input a query point q, a function f and a quadtree cell c. Initially, it is
called with the root node of the quadtree and recursively descends the tree. The
algorithm returns a point set N(q, f) ⊆ P with

Pr [ p ∈ N(q, f) ] = f(dist(q, p)). (1)

Algorithm 1 descends the quadtree recursively until it reaches the leaves.
Once a leaf l is reached, a lower bound b for the distance between the query
point q and all the points in l is computed (Line 2). Such distance calculations
are detailed in the full version [16]. Since f is monotonically decreasing, this
lower bound for the distance gives an upper bound b for the probability that a
given point in l is a member of the returned point set (Line 3). This bound is used
to select neighbor candidates in a similar manner as Bategelj and Brandes [4]:
In Line 10, a random number of vertices is skipped, so that every vertex in l is
selected as a neighbor candidate with probability b. The actual distance dist(q, a)
between a candidate a and the query point q is at least b and the probability
of a ∈ N(q, f) thus at most b. For each candidate, this actual distance dist(q, a)
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is then calculated and a neighbor candidate is confirmed as a neighbor with
probability f(dist(q, a))/b in Line 14.

Regarding correctness and time complexity of Algorithm 1, we can state:

Proposition 2. Let T be a quadtree as defined above, q be a query point and
f : R

+ → [0, 1] a monotonically decreasing function which maps distances
to probabilities. The probability that a point p is returned by a PNQ (q, f)
from Algorithm 1 is f(dist(q, p)), independently from whether other points are
returned.

Proposition 3. Let T be a quadtree with n points. The running time of
Algorithm 1 per query on T is Θ(n) in expectation.

4 Queries in Sublinear Time by Subtree Aggregation

One reason for the linear time complexity of the baseline query is the fact that
every quadtree node is visited. To reach a sublinear time complexity, we thus
aggregate subtrees into virtual leaf cells whenever doing so reduces the number
of examined cells and does not increase the number of candidates too much.

To this end, let S be a subtree starting at depth l of a quadtree T . During
the execution of Algorithm 1, a lower bound b for the distance between S and
the query point q is calculated, yielding also an upper bound b for the neighbor
probability of each point in S. At this step, it is possible to treat S as a virtual
leaf cell, sample jumping widths using b as upper bound and use these widths
to select candidates within S. Aggregating a subtree to a virtual leaf cell allows
skipping leaf cells which do not contain candidates, but uses a weaker bound
b and thus a potentially larger candidate set. Thus, a fast algorithm requires
an aggregation criterion which keeps both the number of candidates and the
number of examined quadtree cells low.

As stated before, we record the number of points in each subtree during
quadtree construction. This information is now used for the query algorithm:
We aggregate a subtree S to a virtual leaf cell exactly if |S|, the number of
points contained in S, is below 1/f(dist(S, q)). This corresponds to less than
one expected candidate within S. The changes required in Algorithm 1 to use
the subtree aggregation are minor. Lines 5, 14 and 15 are changed to:

5 ifc is inner node and |c| · b ≥ 1 then

14 neighbor = maybeGetKthElement(q, f , i, b, c);
15 add neighbor to N if not null

The main change consists in the use of the function maybeGetKthElement.
Given a subtree S, an index k, q, f , and b, this function descends S to the leaf cell
containing the kth element. This element pk is then accepted with probability
f(dist(q, pk))/b.
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Since the upper bound calculated at the root of the aggregated subtree is not
smaller than the individual upper bounds at the original leaf cells, Proposition 2
also holds for the virtual leaf cells. This establishes the correctness.

The time complexity is given by the following theorem, whose proof can be
found in the full version [16].

Theorem 1. Let T be a quadtree with n points and (q, f) a query pair. A query
(q, f) using subtree aggregation has time complexity O((|N(q, f)|+√

n) log n) whp.

5 Application Case Studies

In order to test our algorithm for PNQs, we apply it in two application case stud-
ies, one for Euclidean, the other one for hyperbolic geometry. For the Euclidean
case study we build a simple disease spread simulation as an example for a prob-
abilistic spreading process. The probability distribution of points is in this case
non-uniform and unknown. The hyperbolic application, in turn, is a generator
for complex networks with a known point distribution.

5.1 Probabilistic Spreading

When both contact graph and travel patterns of a susceptible population are
not known in detail, the resulting spreading behavior of an infectious disease
seems probabilistic. Contagious diseases usually spread to people in the vicinity
of infected persons, but an infectious person occasionally bridges larger distances
by travel and spreads the disease this way. We model this effect with our proba-
bilistic neighborhood function f , giving a higher probability for small distances
and a lower but non-zero probability for larger distances. Note that this scenario
is meant as an example of the probabilistic spreading simulations possible with
our algorithm and not as highly realistic from an epidemiological point of view.

In the simulation, the population is given as a set P of points in the Euclidean
plane. In the initial step, exactly one point (= person) from P is marked as
infected. Then, in each round, a PNQ is performed for each infected person q.
All points in N(q, f) become infected in the next round. We use an SIR model [7],
i. e. previously infected persons recover with a certain probability in each round
and stay infectious otherwise. In our simulation, persons recover with a rate of
0.8 and are then immune.

5.2 Random Hyperbolic Graph Generation

Random hyperbolic graphs (RHGs, also see Sect. 2.2) are a generative graph
model for complex networks. For graph generation one places n points
(= vertices) randomly in a hyperbolic disk. The radius R of the disk can be
used to control the average degree of the network. A pair of vertices is connected
by an edge with a probability that depends on the vertices’ hyperbolic distance.
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This connection probability is given in [12, Eq. (41)] and parametrized by a
temperature T ≥ 0:

f(x) =
1

e(1/T )·(x−R)/2 + 1
(2)

This definition of random hyperbolic graphs is a generalized version of the one
considered in our previous work, which was restricted to the special case of
T = 0.

5.3 Experimental Settings and Results

Our implementation is included in the open-source toolkit NetworKit [15] and is
written in C++ 11. Running time measurements were made with g++ 4.8 -O3 on a
machine with 128 GB RAM and an Intel Xeon E5-1630 v3 CPU with four cores at
3.7 GHz base frequency. Our code is sequential, as is the reference implementation
for random hyperbolic graph generation [2].

Disease Spread Simulation. We experimented on three data sets taken from
NASA population density raster data [6] for Germany, France and the USA.
They consist of rectangles with small square cells (geographic areas) where for
each cell the population from the year 2000 is given. To obtain a set of points,
we randomly distribute points in each cell to fit 1/20th of the population den-
sity. The data sets of France and USA have roughly 3 and 14 million points,
respectively.

The number of required queries naturally depends heavily on the simulated
disease. For our parameters, a number of 5000 queries is typically reached within
the first dozen steps. To evaluate the algorithmic speedup, Table 1 compares run-
ning times for 5000 pairwise distance probing (PDP) queries against 5000 fast
PNQs on the three country datasets. To obtain a similar total number of infec-
tions, we use a slightly different probabilistic neighborhood function for each coun-
try and divide by the population: f(x) := (1/x) · e7/n. This results in a slower
initial progression for the US. Our algorithm achieves a speedup factor of at least
two orders of magnitude, even including the quadtree construction time.

Table 1. Running time results for polar Euclidean quadtrees on population data. The
query points were selected uniformly at random from P, the probabilistic neighborhood
function is f(x) := (1/x) · e7/n.

Country 5000 PDP queries Construction QT 5000 QT queries

France 1007 s 1.6 s 1.2 s

Germany 1395 s 2.8 s 1.3 s

USA 4804 s 8.7 s 0.7 s

Random Hyperbolic Graph Generation. We compare our generator using PNQs
with the only (to our knowledge) previously existing generator for general ran-
dom hyperbolic graphs [2], i. e. those not only following the threshold model.
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Fig. 3. Comparison of running times to generate networks with 210-220 vertices, α = 1,
T = 0.5 and average degree k = 6. The gap between the running times widens, which
in the loglog-plot implies a different exponent in the time complexities. Running times
are fitted with a = 2.089 · 10−7, b = 3.311 · 10−4, c = 2.18 · 10−6 and d = 5.6 · 10−6.

As seen in Fig. 3, our implementation is faster by at least one order of magnitude
and the experimental running times support our theoretical time complexity of
O((n3/2 + m) log n).

6 Conclusions

After formally defining the notion of probabilistic neighborhoods, we have
presented a quadtree-based query algorithm for such neighborhoods in the
Euclidean and hyperbolic plane. Our analysis shows a time complexity of
O((|N(q, f)| +

√
n) log n), our algorithm is to the best of our knowledge the

first to solve the problem asymptotically faster than pairwise distance probing.
With two example applications we have shown that our algorithm is also faster
in practice by at least one order of magnitude.
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