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    Chapter 15   
 Bioenergy Trees: Genetic and Genomic 
Strategies to Improve Yield                     

     G.     Taylor     ,     M.  R.     Allwright    ,     H.  K.     Smith    ,     A.     Polle    ,     H.     Wildhagen    ,     M.     Hertzberg    , 
    R.     Bhalerao    ,     J.  J.  B.     Keurentjes    ,     S.     Scalabrin    ,     D.     Scaglione    , and     M.     Morgante   

          Global Drivers for Increasing Bioenergy from  Trees   

 The recently concluded  COP21   climate negotiations committed UN signatories to 
restrict global temperature increases to ‘well below’ 2 °C above pre-industrial levels 
and to aspire towards 1.5 °C (United Nations  2015 ). If such ambitious climate and 
 GHG   emissions targets are to be met and future energy security assured, it is essen-
tial that renewable and sustainable alternative energy sources are developed and 
utilised on a global scale. Bioenergy and bioenergy with CCS will be a central part 
of that commitment, since these technologies feature strongly in many forward sce-
narios for reduced and negative carbon emissions, as described in the work leading 
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to  COP21   (Fuss et al.  2014 ). Many outstanding issues remain on delivery however, 
the concept of ‘ land sparing  ’ (increasing agricultural yields and reducing farmland 
area to allow the spare land to be used for climate change mitigation and biodiver-
sity conservation) could enable high-yield feedstocks to produce signifi cant, low- 
impact lignocellulosic resources (Lamb et al.  2016 ). Sources of  lignocellulosic   
biomass under active consideration over the past decade include energy grasses 
(David and Ragauskas  2010 ; Jørgensen  2011 ), crop residues (Gomez et al.  2008 ) 
and fast growing trees cultivated under short rotation coppice or short rotation for-
estry (Hinchee et al.  2009 ; Tullus et al.  2012 ). 

  Prioritisation of the    Sustainable Intensifi cation     
of    Biomass - Tree     Cultivation

 Bioenergy trees are prime examples of second-generation (2G) bioenergy feed-
stocks (as defi ned by Manning et al.  2015 ) in which lignocellulosic biomass is har-
vested from dedicated perennial species (Somerville et al.  2010 ). Such crops must 
be appropriate to the climate and region in which they are grown and able to grow 
on marginal lands thus minimising competition with food crops or the destruction 
of high-nature-value ecosystems. They should require few inputs; both to minimise 
the economic and energy costs of their cultivation and management and to reduce 
the environmental impacts associated with the fertilisers and pesticides necessary 
for intensive farming. A review by Manning et al. ( 2015 ) suggested that farmland 
biodiversity and the provision of regulating and cultural ecosystem services could 
even be improved by  perennial biomass   crop cultivation if appropriately managed 
across the landscape. Benefi ts (in addition to provisioning services such as low car-
bon energy) include the provision of habitat corridors between and within inten-
sively farmed land areas; harbouring biodiversity including pollinators and other 
insect populations; preventing soil erosion and buffering water sources against 
nutrient run-off and sedimentation (Manning et al.  2015 ). Land use change model-
ling reported by Milner et al. ( 2015 ) supports this idea and proposes that planting 
perennial  lignocellulosics  , in temperate landscapes at least, can enhance the provi-
sion of a basket of ecosystem services. A review by Don et al. ( 2012 ) reported that 
soils under dedicated  perennial   crops emit signifi cantly less N 2 O than soils under 
conventional arable cultivation. They also have the potential to sequester more car-
bon, though the effect of transition from grassland to perennial biomass cropping 
can be neutral or even slightly negative (Don et al.  2012 ; Harris et al.  2015 ). The net 
greenhouse  gas      balance of bioenergy crops depends strongly upon good land man-
agement practices (Davis et al.  2013 ) and maintaining soil-based  ecosystems   ser-
vices is an essential aspect of sustainable agricultural intensifi cation (Schulte et al. 
 2014 ). Figure  15.1  provides an overview of the ‘more-from-less’, paradigm for such 
 sustainable intensifi cation  ; increasing yield in a given area without degrading the 
land or resorting to energy intensive cultivation practices (Allwright and Taylor 
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 2016 ). This essential principle drives bioenergy tree breeding and development and 
thus the remainder of this chapter is focussed on research in three important species: 
poplar (Verlinden et al.  2015 ), willow (Stolarski et al.  2013 ) and  eucalyptus   
(Freeman et al.  2013 ).

   The primary goal of bioenergy  tree   breeding and development is the  sustainable 
intensifi cation   of biomass production. In addition to breeding for yield traits, this 
also means targeting feedstock quality to increase the effi ciency of conversion to 
liquid fuels and decrease emissions across the whole life cycle of the system. 
Resource use effi ciency with respect to water and nutrients is also a priority to 
ensure a low-input crop without high irrigation or fertigation needs. Good agro-
nomic practices are also an essential aspect of making high yielding bioenergy trees 
sustainable. The crop  GHG   balance can be improved through the preservation of 
soil carbon stocks and biodiversity and ecosystems services may be preserved and 
enhanced by good land management.  

  Fig. 15.1    More from less— sustainable intensifi cation  . The fi gure illustrates how breeding targets 
to fi ll the  yield gap   through yield intensifi cation should be a high priority. However, this yield 
intensifi cation must make full consideration of the wider inputs required to achieve high yield and 
that more effi cient plants with respect to resources such as water and nitrogen are required. In addi-
tion, yield intensifi cation must occur alongside assessment of the  GHG   balance of the crop system 
such that lower GHG emissions can be targeted; perhaps through management practices related to 
the preservation of soil carbon. Finally, a basket of ecosystem services that includes biodiversity 
protection must be delivered from future multi-functional landscapes       
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    Unravelling the Yield Gap is Central to the Sustainable 
Intensifi cation of  Bioenergy      

 Bioenergy trees have the potential to achieve high yields in sustainable, low input 
agronomic systems and could allow signifi cant reductions in  GHG   emissions com-
pared to conventional fossil fuels (Zanchi et al.  2012 ). However, these species still 
require investment and research effort to overcome the yield gap between typical 
biomass harvests and their true genetic potential (Allwright and Taylor  2016 ). The 
 yield gap   is widely acknowledged in the breeding and development of food crops 
(Affholder et al.  2013 ; Kassie et al.  2014 ). It is the difference between the potential 
crop yield under optimal, non-limiting conditions (water, nutrients, pest control) 
and the average yield under typical fi eld conditions (Mueller et al.  2012 ; Van 
Ittersum et al.  2013 ). A yield gap may result from one, or a combination, of genetic 
(G), environmental (E) or management (M) factors and failure to address these fac-
tors may result in yield stagnation (Licker et al.  2010 ; Ray et al.  2012 ). We have 
already outlined that a central aim for the development of bioenergy trees is sustain-
able intensifi cation (Fig.  15.1 ) and understanding the nature of G × E × M  interac-
tions      underpinning the yield gap can help drive this. For example, through enhanced 
water and nutrient resource management (Mueller et al.  2012 ; Bredemeier et al. 
 2015 ); the optimisation of soil pH (Tilman et al.  2011 ); protecting and increasing 
soil organic carbon stocks (Powlson et al.  2011 ) or improving soil aeration which is 
important to fi ne root development and growth (Weltecke and Gaertig  2012 ). 
Figure  15.2  (modifi ed from Allwright and Taylor  2016 ) demonstrates signifi cant 
yield gaps for all three tree species; although this fi gure generally draws on data 
from small research-scale yield plots since those are the only data widely available 
at present for these crops for such an analysis. With this caveat, poplar and  eucalyp-
tus   show a greater range of values than willow with larger maximum biomass yields 
reported. Poplar trials range from 3 to 35 t −1 ha −1 y −1  (mean 16.1), eucalyptus trials 
from 10.5 to 34 t −1 ha −1 y −1  (mean 22.4) and willow trials from 11.6 to 27.5 t −1 ha −1 y −1  
(mean 17.3). It can be seen that the highest yields are generally achieved in trials in 
which irrigation or fertigation are supplied, yet potential yields are rarely reached. 
There is however, an exception in the case of the highest yielding eucalyptus trial 
whose small experimental plot size means, in the words of the authors, ‘commercial 
yields are likely to be considerably lower’ (Sims et al.  1999 ). In practice therefore, 
the yield gap may be greater than indicated by the shaded region of the chart as 
commercial yields fall short of those reported in experimental plots and trials 
(Nonhebel  2002 ) where only climatic conditions may be limiting. In the remainder 
of this chapter, we explore the potential for high-throughput  phenotyping   and tran-
scriptomics, forward genetics (association studies and genomic  selection  ), reverse 
genetics and genetic modifi cation/genome editing as tools to help close the  yield 
gap   and drive the sustainable  intensifi cation      of the cultivation of  biomass trees   as 
part of the  molecular breeding   pipeline.
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       Three Tree Species for Biomass  Production   

 There is now an extensive knowledge and technology foundation for the improve-
ment of poplar, willow and  eucalyptus  . These include phenotyping facilities, genetic 
mapping, genetic modifi cation and advanced molecular breeding. The publication 
of the poplar genome in 2006 (Tuskan et al.  2006 ) was followed by that of  eucaly-
ptus   in 2011 (Myburg et al.  2011 ) while the willow genome is still in progress. 

  Fig. 15.2    Reported biomass yields reveal a  yield gap   for  biomass trees  . Poplar, willow and eucalyptus 
show wide variation in their biomass yields. Where more than one value is reported in a publication 
those given here are the maximum reported oven-dry biomass yields (t ha −1  y −1 ) for the best performing 
sites, genotypes and years or coppice cycles within each study. The inset bar chart displays the mean 
yield and standard error for all the trials shown, pooled across feedstocks for each management practice. 
Numerical citations adjacent to each bar correspond to a single published fi eld trial:  1 . (Sims et al.  1999 ) 
 2 . (Shankhwar and Srivastava  2015 )  3 . (Minhas et al.  2015 )  4 . (Guo et al.  2006 )  5 . (de Andrade et al. 
 2013 )  6 . (Herrero et al.  2014 )  7 . (Müller  et al .  2005 )  8 . (Scaracia-Mugnozza et al.  1997 )  9 . (Pontailler 
et al.  1999 )  10 . (Carmona et al.  2015 )  11 . (Rae et al.  2007 )  12 . (Labrecque and Teodorescu  2005 )  13 . 
(Fortier et al.  2010 )  14 . (Nassi O Di Nasso N et al.  2010 )  15 . (Verlinden et al.  2015 )  16 . (Dillen et al. 
 2013 )  17 . (Truax et al.  2012 )  18 . (Nielsen et al.  2014 )  19 . (Bungart and Hüttl  2004 )  20 . (Bungart  1999 ) 
 21 . (Adegbidi et al.  2001 )  22 . (Labrecque and Teodorescu  2003 )  23 . (Volk et al.  2011 )  24 . (Stolarski 
et al.  2013 )  25 . (Kopp et al.  2001 )  26 . (Stolarski et al.  2011 )  27 . (McElroy and Dawson  1986 )  28 . 
(Serapiglia et al.  2013 )  29 . (Adegbidi et al.  2003 ). (Modifi ed from Allwright and Taylor  2016 )       

 

15 Bioenergy Trees: Genetic and Genomic Strategies to Improve Yield



172

All three species are of commercial signifi cance and have been subject to extensive 
 QTL   mapping over more than two decades for traits of interest including biomass 
yield (Rae et al.  2009 ), wood quality (Brereton et al.  2010 ) and pest resistance 
(Alves et al.  2012 ). This depended upon the development and curation of mapping 
populations in all three species. More recently,  genotyping  -by-sequencing (GBS) 
and association mapping for higher resolution identifi cation of candidate genes for 
bioenergy traits have been conducted in poplar and eucalyptus (Porth et al.  2013a , 
 b ; Silva-Junior et al.  2015 ). Genetic transformation protocols are established for all 
three species; there have been extensive fi eld trials of transgenic poplar (Van Acker 
et al.  2014 ) and commercial transgenic eucalyptus is now a reality in Brazil (Ledford 
 2014 ). Table  15.1  provides an overview of the state of progress in these species 
while a more detailed discussion of how these resources fi t together in a systems 
biology approach to molecular tree breeding is provided below.

       A  Systems Biology Approach      to Molecular Tree Breeding 

 Systems biology may be broadly defi ned as the use of computational approaches to 
understand complex biological systems, using functional data from the cellular to 
organism perspective. As such it has much to offer tree breeding and is generally 
considered as the integration of ‘omics’ data, such as data from genomics, pro-
teomics and metabolomics with data from the phenotyping. Figure  15.3  is an illus-
trated overview of how a systems biology approach might aid the discovery of links 
between genes and traits. Conducting the quantity of  phenotyping   required now 
represents a signifi cant challenge and a bottleneck relative to the ability to obtain 
molecular data for  genotyping  . An exception to this is the ability to procure high- 
throughput RNA-Seq data which is now revolutionising eQTL approaches. Both 
reverse and forward genetics can be of value to the acceleration of the breeding 
pipeline. Reverse genetics seeks to elucidate a specifi c gene’s function through 
mutagenising its DNA sequence and observing the phenotypic outcome. By con-
trast, forward genetics seeks to map the genetic basis of a specifi c trait of interest 
by seeking a statistical relationship between genetic markers and that phenotype. In 
general, reverse genetics approaches are valuable for understanding the basis of 
traits controlled by a small number of genetic loci of large effect while forward 
genetics approaches are better suited to understanding polygenetic traits with mul-
tiple small effect loci. One powerful forward genetic technique is genomic  selec-
tion  . Here the complex nature of a polygenetic trait such as yield is explicitly 
recognised, with 100s or 1000s of SNP molecular  markers      used together to establish 
breeding values and obviate signifi cance testing in association and linkage studies 
(Beaulieu et al.  2014 ). In contrast, there is also now powerful evidence that  CRISPR/
Cas genome   editing (a cutting edge reverse genetics approach) may be deployed in 
tree crops such as poplar (Zhou et al.  2015 ) where mutation breeding could be pre-
cisely deployed, again accelerating the breeding pipeline. The following sections 
give more detail of progress made to date for our target bioenergy trees.
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       Phenotyping: The Bottle Neck for  Molecular Breeding      

 In order to make genetic gains to increase the productivity of  biomass trees  , it is 
necessary to thoroughly assess the phenotypes of large numbers of existing and 
emerging genotypes. Given the latest approaches use association rather than map-
ping populations, the number of individual genotypes and replicates can soon lead 
to very large and unwieldy experiments with several thousand plants (Porth et al. 
 2013a ,  b ; McKown et al.  2014a ,  b ). Phenotyping throughput is still limited and now 
stands as the major bottleneck for breeding programs. To this end, there is increased 
interest in developing high-throughput phenotyping platforms such as those which 
make up the International and European Plant Phenotyping Networks (  http://www.
plant-phenotyping.org/     and   http://www.plant-phenotyping-network.eu/    ). These 
facilities include both controlled environment and fi eld set-ups and generally 
increased throughput is reliant on the utilisation of imaging and remote sensing 
technologies (Table  15.2 ).

   The facility at IPK  Gatersleben      (Leibniz-Institut für Pfl anzengenetik und 
Kulturpfl anzenforschung, Germany) combines a high-throughput controlled envi-
ronment phenotyping platform (IPK LemnaTec Scanlayzer) with GC-MS for 
metabolite profi ling. This accommodates plants of small–large size with a capacity 
for up to 4608 plants to be grown in parallel. The system has enabled the detailed 
evaluation of stress-related metabolic and phenotypic traits in crops such as lentil. 
In this case, drought and salinity stress were the focus. Four accessions were int-

  Fig. 15.3    Systems biology for optimised  biomass tree   breeding.  Phenotyping   and ‘ omics  ’ tech-
nologies, linked to the development of both  forward      and  reverse   genetic  approaches  , are proposed 
as a mechanism to deliver the yield improvement required for  sustainable intensifi cation  . (Modifi ed 
from Sims et al.  2006 )       
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ensively phenotyped in order to link drought and salinity tolerance to observed 
metabolic differences (Muscolo et al.  2015 ). Phenotyping platforms which utilise 
controlled environments allow high-precision plant phenotyping and support the 
study of the genetic basis of these traits. However, for traits that are subject to high 
GxE interaction, fi eld phenotyping to measure plants in conditions more similar 
to the target commercial environment is required. For example, DIAPHEN is a 
fi eld- based platform, comprising imaging tools carried by drones and phenomobiles, 
managed by the Institut National de la Recherche Agronomique (INRA, France). 
These systems are GPS-equipped and have the capacity to frequently crop physio-
logical parameters, for example green area cover and canopy activity, in fi eld plots 
of medium–large plants with a throughput of up to 100 plots h −1 . The platform has 
been successfully used to identify genetic determinants of the drought response in 
an apple tree hybrid population consisting of 122 genotypes (Virlet et al.  2015 ). 

   Table 15.2    Phenotyping and environmental monitoring capabilities of major global phenotyping 
platforms including downstream proteomics and  transcriptomics           

 Environmental monitoring  Air and soil temperature 
  Humidity         
 Light quality and intensity 
 Quantifi cation of CO 2 , O 3 , NO x  and other trace gases 
 Micro-meteorological variables 

 Biomass traits  Total biomass and growth dynamics, stem height and diameter 
 Leaf area, Leaf Area Index, leaf growth rate 
 Root structure and growth (number, length, density and 
architecture) 

 Water relations  Pot water  balance         
 Soil water potential 
 Root–soil interactions 
 Photosynthesis and transpiration 

 Remote sensing/imaging  Visible for green  biomass         estimates and plant architecture (2D 
and 3D) 
 Hyperspectral and multi-spectral 
 Near infra-red (NIR) for moisture content 
 Far infra-red (FIR) for transpiration rates and apex temperature 
 Fluorescence—bulk and chlorophyll 
 Raman spectrometry 

 Biochemistry and ‘ omics  ’  Cell/tissue  processes         
 Nitrogen content 
 Metabolite profi ling 
 Thermogravimetric profi ling 
 GC/MS analysis of pyrolytic gas composition 
 Proteomics profi ling 
  Transcriptomics         
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 Although substantial advances have been made in plant phenotyping in recent 
years (Grobkinsky et al.  2015 ), the gap between the relatively low-throughput of 
high accuracy, controlled environment platforms and the higher throughput, lower 
precision phenotyping which can be achieved in the fi eld remains a challenge and 
several ongoing, large-scale projects are currently working on the problem of up- 
scaling phenotyping approaches to crop scale. High-precision, high-throughput 
phenotyping is necessary to support crop breeding and  management     .  

     Metabolomics        , Proteomics and Transcriptomics 

 In addition to traditional morpho-physiological phenotyping, individuals and popu-
lations can be characterised based on their metabolome, proteome and transcrip-
tome. Using these ‘omics’  approaches   allows physiological phenotypes to be linked 
to the underlying metabolome, proteome and transcriptome. This is a valuable tool 
to elucidate the molecular and genetic basis of yield and underpin the breeding 
effort. 

 In  eucalyptus  , the drought stress response of two contrasting genotypes was 
examined at a metabolomic and physiological level (Shvaleva et al.  2006 ). These 
  Eucalyptus globulus    genotypes were found to differ in physiological drought avoid-
ance mechanisms. The metabolomic analyses indicating that glutathione reductase 
plays a central role in response to drought. Similarly, proteomics can be applied 
alongside traditional phenotyping to unravel the molecular basis of traits of interest. 
For example, xylem development is important as it impacts donwstream bioethanol 
production. In   Populus    a proteomic method was used to identify co-expressed pro-
teins in the secondary xylem and generate  transgenic trees   based on this analysis for 
fi eld evaluation (Jia et al.  2011 ). In this way, proteomic and genomic-informed 
breeding strategies can be developed which utilise these rapidly advancing tech-
nologies to support breeding. 

 It is now possible to carry out whole-transcriptome sequencing in which 
 expressed         mRNA sequences are reverse transcribed and the cDNA (complementary 
DNA) sequenced to provide the entire coding region of the genome. This is a pow-
erful and increasingly achievable tool to characterise the genetic control of traits of 
interest; such as yield under stress conditions. For example, a comparative  tran-
scriptomic approach   has been used to identify genes with conserved expression 
patterns in the woody tissues of   Populus      trichocarpa    and  Eucalyptus grandis  (Hefer 
et al.  2015 ). This identifi ed conserved multi-gene orthologous gene clusters involved 
in secondary cell wall biosynthesis as well as species-specifi c gene regulation which 
allows xylem specialisation. Similar transcriptomic approaches have been employed 
in a number of plant species and many of these have been able to construct transcript 
correlation networks which can be linked to phenotypic traits (Porth et al.  2013a ,  b ; 
Gehan et al.  2015 ; Vining et al.  2015 ). In   P. balsamifera    a high level of network 
module preservation was again present however organisation within modules and 
the central hub genes (highly interconnected genes at the centre of a network res-
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ponsible for modulating a trait of interest) was found to vary between  genotypes   
(Hamanishi et al.  2015 ). Through this transcriptome  analysis        , one of the six geno-
types was found to have a large and distinct  transcriptomic   drought response while 
also exhibiting the smallest metabolomic response. The transcripts in this hub are 
likely to play a central role in regulating the drought response. This shows the power 
of these transcriptome-based strategies to determine critical gene hubs and gene 
connectivity at the genotype, organ and tissue levels. Furthermore, modelling 
approaches can be taken based on these identifi ed gene hubs whereby phenotypic 
predictions can be made based on the alteration of genes in the hub network. 
The combination of transcriptomic network analysis and predictive modelling has 
further scope to be extended to other bioenergy tree species and to inform breeding 
programs for industrially-important bioenergy traits. 

 In the past, ‘omics’  approaches   have been costly and constrained by both tech-
nologies, for example for protein identifi cation or high-throughput sequencing, and 
the bioinformatics pipelines that must deal effi ciently with large amounts of data. 
However, these are now rapidly decreasing in cost and accessibility. While it is not 
always straightforward; it is now possible to use these approaches as part of a pow-
erful multi-omics strategy which can be linked with traditional phenotypic data to 
underpin breeding efforts.  

    Reverse  Genetics  : Proof of Concept or Direct Release 
of Biotechnologically Enhanced Trees? 

 Reverse genetic approaches such as gene knockouts or overexpression are required 
for proof of concept studies to confi rm the function of putative candidate genes from 
 QTL   or  GWAS   analyses (Prado et al.  2014 ) but may themselves also produce new 
trees of valuable and distinctive phenotypes for direct commercialisation (Fig.  15.3 ). 
An example of this is seen in the successful launch of the world’s fi rst commercial, 
transgenic forest tree in Brazil this year (FuturaGene  2015 ). FuturaGene’s  GM   
 eucalyptus   has shown 20 % increases in biomass yield in fi eld trials over a 10-year 
period and is ready for harvest after 5½ years instead of the usual 7 (Ledford  2014 ). 
The overexpressed protein (derived from a gene sequence identifi ed from the model 
plant,  Arabidopsis ) accelerates growth by enhancing cell wall expansion; however, 
its identity remains a commercial secret. Overexpression of stress-responsive genes 
in  eucalyptus   can improve salt and cold tolerance (Navarro et al.  2011 ; Yu et al. 
 2013 ). The overexpression of several stress-related genes by gene stacking resulted 
in poplar with increased salt and pest tolerance (Polle and Chen  2015 ). Cold toler-
ance is a key breeding priority for eucalyptus to extend its growth range, sustain 
consistent yields and be commercially competitive in emerging bioenergy  markets      
(Yu and Gallagher  2015 ). Reverse genetics can also assist in systems biology 
approaches to understand more complex pathways. For example, Vanholme et al. 
( 2012 ) used Arabidopsis loss-of-function mutants for each of the ten genes in the 
lignin biosynthesis pathway to understand the responses to perturbations in this 
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pathway. Low-lignin  transgenic trees   (generally knockouts or RNAi knockdowns) 
are of great research interest because they have the potential to yield a feedstock that 
is less recalcitrant to enzymatic saccharifi cation (Studer et al.  2011 ). Van Acker 
et al. ( 2014 ) demonstrated improved saccharifi cation and ethanol yield from fi eld- 
grown  GM   poplar defi cient in the lignin biosynthetic enzyme cinnamoyl-CoA 
reductase. Unfortunately, blunt reductions in lignin content can have negative con-
sequences for yield (Van Acker et al.  2014 ) and pest resistance (Polle et al.  2013 ) 
and other, more novel, transgenic approaches are being investigated. One route is 
the heterologous expression (i.e. stimulating gene expression in cells that do not 
normally express the gene) of thermophilic, cell wall degrading enzymes  in planta  
(Jung et al.  2012 ). These enzymes can be activated by mild temperature increases 
post-harvest and can decrease the energy and fi nancial costs of the conversion of 
wood to ethanol. Poplar especially is known as an effi cient bioreactor for the expres-
sion of foreign enzymes (Kim et al.  2012 ). Another exciting GM approach for 
reduced recalcitrance without impacting fi tness has been reported by Wilkerson 
et al. ( 2014 ). They successfully incorporated a transferase gene into poplar which 
introduced ester linkages into the lignin backbone. These ester bonds can be readily 
hydrolysed by a mild, alkaline pre-treatment, aiding processing. In recent years, 
highly targeted, sequence-specifi c genome editing has become more feasible in 
eukaryotes through the development of  CRISPR/Cas   technology (Gaj et al.  2013 ). 
In a key development for  bioenergy trees   this technology has now been successfully 
used in poplar to target a lignin biosynthetic enzyme (4-coumarate:CoA ligase) and 
further innovations using this method are likely to follow (Zhou et al.  2015 ). Finally, 
tilling is a powerful and high-throughput reverse genetic approach to elucidate gene 
function in a mutagenised population using a mismatch endonuclease to detect the 
induced mutations (SNPs or indels).  Ecotilling   is closely related but seeks to iden-
tify polymorphisms in natural populations and evaluate their effects on genes of 
interest and phenotypic signifi cance (methodology and development reviewed by 
Barkley and Wang  2008 ).  Ecotilling      has been successfully employed in food crops 
(Yu et al.  2012 ) and has potential for accelerating the domestication of forest trees 
(Harfouche et al.  2012 ). Marroni et al. ( 2011 ) reported the detection of rare alleles 
in poplar using NGS and believe that this methodology could drive next generation 
ecotilling in this species; allowing function to be ascribed to these low frequency 
variants.  

    From Trees to Genes: Forward  Genetics      

 Forward genetic techniques seek to understand the genetic basis of a phenotype and 
identify genomic regions, markers and/or candidate genes linked with the trait of 
interest (Fig.  15.3 ). Forward genetic approaches are of particular value for elucida-
ting quantitative, polygenic traits. Before the revolution in cost-effi cient, high- 
throughput, next-generation sequencing (Mardis  2011 ), genetic marker density was 
generally limited and research was focussed on broad  QTL   mapping which can be 
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achieved with only a few hundred SSLR or microsatellite markers. QTL have been 
mapped for yield in both  eucalyptus   (Freeman et al.  2013 ) and poplar (Wullschleger 
et al.  2005 ; Rae et al.  2007 ). Rae et al. ( 2009 ) identifi ed fi ve robust QTL hotspots 
for yield in short rotation coppice (SRC) poplar explaining 20 % of fi nal biomass 
yield in the mapping population. In willow, QTL have been mapped for rust resis-
tance; a major willow pathogen and responsible for commercial losses (Hanley 
et al.  2011 ; Samils et al.  2011 ).  Expression QTL (eQTL)   mapping is a more recent 
development, also known as ‘ genetical genomics  ’ (Joosen et al.  2009 ). This approach 
considers gene expression (quantifi ed levels of given mRNA transcripts) as a quan-
titative trait and maps this expression data as QTL (Ingvarsson and Street  2010 ). 
This can permit the identifi cation of causal genes underpinning the phenotype of 
interest.  Genetical genomics   has been widely employed for several years in a num-
ber of plant and animal species including model organisms such as  Drosophila , 
yeast and mice (Joosen et al.  2009 ). In the model plant   Arabidopsis    the technique 
has been useful for understanding the genetic basis of complex responses such as 
genotype-by-environment interactions (Joosen et al.  2013 ) and genetic regulatory 
networks (Terpstra et al.  2010 ). In bioenergy research genetical genomics has been 
applied in the biodiesel crop jatropha for oil production traits (Liu et al.  2011 ) and 
in poplar for leaf shape variation (Drost et al.  2015 ). Another genetical genomics 
approach that has been employed in  poplar   is a form of bulk segregant analysis with 
microarray expression data. Street et al. ( 2006 ) identifi ed extreme genotypes for 
drought tolerance traits in response to soil drying and used microarrays to identify 
differentially expressed genes between these groups. They were able to identify 
promising candidate genes whose differential expression co-located with tradition-
ally mapped  QTL   for these drought-specifi c traits. More recently, with the avail-
ability of NGS approaches to provide high-throughput DNA marker data,  eQTL   
mapping has become relatively cheap and much more tractable to elucidate the link 
between phenotypes and their underlying resolution at the  genomic   level (Majewski 
and Pastinen  2011 ). These technologies are now being applied to plant improve-
ment and combined with QTL-Seq approaches (Takagi et al.  2013 ). Using NGS for 
RNA-Seq can offer signifi cant new potential to resolve traits in trees in future in a 
more time and cost-effective manner. 

  Association mapping   is a more powerful forward genetic approach for elucidat-
ing the genetic basis of qualitative and quantitative traits in species of interest; seek-
ing statistical associations between SNPs and phenotypes of interest within a 
population (Ingvarsson and Street  2010 ). The fi nesse with which a trait can be 
mapped is dependent on the rate of decay of  linkage disequilibrium (LD)  , i.e. the 
non-random association of alleles at different loci. Since linkage is a major con-
tributor to LD, LD declines with physical distance (Flint-Garcia et al.  2003 ). 
Outbreeding species (including poplar,  eucalyptus   and willow), which have a higher 
effective degree of recombination than inbreeders (Gaut and Long  2003 ), can 
achieve higher resolution association mapping but concomitantly require a higher 
marker frequency (Neale and Kremer  2011 ). The need for high marker density 
meant that initial association studies in  bioenergy trees   tended to take a candidate 
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gene approach which are not genome-wide but useful for narrowing down genes of 
interest within a broader  QTL   region or identifying candidates within a group of 
genes of putatively similar function (Teare  2011 ). In both poplar (Wegrzyn et al. 
 2010 ; Guerra et al.  2013 ) and eucalyptus (Thavamanikumar et al.  2011 ,  2014 ) can-
didate gene approaches have been employed for wood quality traits with robust 
trait- marker   associations identifi ed. In poplar these have been superseded by the 
development of a 34,000 SNP array for  P. trichocarpa  with SNPs drawn from 3543 
candidate genes for a variety of valuable bioenergy traits (Geraldes et al.  2013 ). 
This ‘chip’ has been employed in a number of  GWAS   in poplar in the past 2  years   
identifying hundreds of trait-marker associations for key traits including biomass 
yield (McKown et al.  2014a ,  b ), wood quality (Porth et al.  2013a ,  b ) and rust toler-
ance (La Mantia et al.  2013 ).  Eucalyptus   researchers are now pursuing a similar 
path with the recent publication of a 60,000 SNP chip that will permit GWAS in this 
species (Silva-Junior et al.  2015 ). Associations can then feed into the  molecular 
breeding   pipeline (Fig.  15.4 ) and marker-assisted selection (MAS), as seen in many 
crop plants (Miedaner and Korzun  2012 ), for the advanced breeding of superior 
bioenergy trees.  

 Beginning with unimproved  germplasm   curated in a natural, wide or mapping 
population, advanced  molecular breeding   may proceed through high-throughput 
phenotyping for traits of interest. In parallel; GBS,  GWAS  , genomic  selection  , tran-
scriptome sequencing and/or  eQTL   mapping can allow the identifi cation of candi-
date genes or markers for the phenotyped traits which may also serve as high value 
targets for  GM   proof of concept studies and genome editing. Collectively these 
techniques feed directly into advanced, marker-assisted selection and breeding pro-
grammes for novel, high  yield  , low-input feedstocks. 

 As NGS reduces  genotyping   costs and marker numbers and density increase 
there is the potential to move towards GS in bioenergy trees. GS assigns breeding 
values to individuals based on genome-wide markers of suffi cient density to permit 
the assumption or knowledge that all relevant genomic regions are in LD with some 
of the genotyped SNPs (single nucleotide polymorphisms or single base changes in 
the DNA sequence) (Grattapaglia and Resende  2010 ). A modelling study from 

  Fig. 15.4    The advanced  molecular breeding   pipeline       
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Resende et al. ( 2012 ) suggests that GS could accelerate the domestication of forest 
trees by increasing selection effi ciency resulting in a faster breeding cycle. This has 
huge potential for biomass poplar, willow and  eucalyptus   where trees take several 
years to reach reproductive maturity and traditional breeding can take decades. 
GS has recently been shown to be effective in interior spruce (Gamal El-Dien 
et al.  2015 ) using markers obtained through GBS; with ongoing research to identify 
the best breeding groups to deploy this technology in white spruce (Beaulieu 
et al.  2014 ). 

 

    The  Breeding Pipeline   

 Trees are long-lived and largely out-breeding species and it is therefore diffi cult to 
make rapid improvements through breeding and selection (Harfouche et al.  2011 ; 
Allwright and Taylor  2016 ). In addition many tree species are dioecious (single 
sexed), making the selection of specifi c crosses diffi cult and genetic research com-
plex. These lifecycle limitations have major impacts on the breeding cycles for 
woody plants and have been partially overcome in the past by the extensive use of 
vegetatively propagated or clonal material, as in the three species considered here 
(Liesebach and Naujoks  2004 ; Meilan et al.  2002 ; Stape et al.  2008 ). Recently, pro-
toplast fusion has been introduced as a novel technique for the production of 
enhanced poplar germplasm (Hennig et al.  2015 ); however, the technique is still in 
its infancy. 

 This short review has highlighted several approaches that are combining next- 
generation DNA sequencing technologies with high-throughput  phenotyping   
approaches to overcome this bottleneck in the next decade with accelerated breed-
ing cycles possible. All pipelines begin with the collection and curation of novel 
germplasm material (Fig.  15.4 ) and future efforts to fulfi l the necessity for  sustain-
able intensifi cation   (Fig.  15.1 ) are likely to involve collection from extreme cli-
mate sites. The value of wild germplasm cannot be overestimated and has proved 
to be of central importance in recent breeding efforts in both rice (Arbelaez et al. 
 2015 ) and tomato (Blanca et al.  2015 ). Recent advances now mean that this mate-
rial is tractable with large  GWAS   studies enabling the rapid development of links 
between traits and genes and the development of molecular markers with which to 
pursue MAS. The diffi culty with this approach for trees is their outbreeding nature, 
although rare variants have been identifi ed using a modifi ed pooled multiplexing 
(the simultaneous sequencing of many DNA samples tagged for their identifi ca-
tion, thus speeding DNA sequencing whilst reducing cost) approach that identifi es 
rare variants of functional genes underpinning lignin production in poplar (Marroni 
et al.  2011 ). More promising are the genomic  selection   tools where training and 
validation populations are used to calculate genotypes’ breeding values from mul-
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tiple markers in relation to traits of interest. Such techniques offer signifi cant 
potential to reduce breeding time since selections can be made in a fraction of the 
time required to follow the growth and performance of a breeding population 
using routine harvest and assessment methods. Alongside genomic selection, 
genome editing has also been shown as a proven technology for poplar (Fan et al. 
 2015 ; Zhou et al.  2015 ) and offers a route for the rapid assessment of individual 
genes that might emerge from the breeding pipeline and high-throughput  pheno-
typing     . In many respects, genomic selection and genome editing offer two con-
trasting routes to the production of improved, high yielding biomass material for 
the future bioenergy landscape and both should be considered over the coming 
decades.  

    Conclusions 

 Tree breeding for  bioenergy   is important as woody  lignocellulosics   crops can con-
tribute to efforts to fulfi l global commitments to reduced emissions and the move 
towards a low carbon economy. Most future energy scenarios highlight a signifi cant 
role for energy from biomass, including through co-fi ring; biomass burning with 
CCS and biomass for liquid biofuels. However, the supply of high yielding, sustain-
able feedstock cultivars of  biomass tree   species is hampered by the biology of trees. 
This review has highlighted the importance of high-throughput phenotyping and new 
molecular technologies that can be deployed to signifi cantly accelerate the breeding 
pipeline, without the necessity to produce a ‘ GM  ’ tree; helping to address the current 
yield gap and increase potential yields in these important lignocellulosic crops.     
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