
 123

LN
CS

 9
84

6

5th IFIP WG 2.14 European Conference, ESOCC 2016
Vienna, Austria, September 5–7, 2016
Proceedings

Service-Oriented
and Cloud Computing

Marco Aiello
Einar Broch Johnsen
Schahram Dustdar
Ilche Georgievski (Eds.)

Lecture Notes in Computer Science 9846

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Marco Aiello • Einar Broch Johnsen
Schahram Dustdar • Ilche Georgievski (Eds.)

Service-Oriented
and Cloud Computing
5th IFIP WG 2.14 European Conference, ESOCC 2016
Vienna, Austria, September 5–7, 2016
Proceedings

123

Editors
Marco Aiello
University of Groningen
Groningen
The Netherlands

Einar Broch Johnsen
University of Oslo
Oslo
Norway

Schahram Dustdar
Vienna University of Technology
Vienna
Austria

Ilche Georgievski
University of Groningen
Groningen
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-44481-9 ISBN 978-3-319-44482-6 (eBook)
DOI 10.1007/978-3-319-44482-6

Library of Congress Control Number: 2016947513

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

It is an interesting time to be a researcher in the field of service-oriented and cloud
computing. While the former has been one of the most important paradigms for the
development of distributed software applications for a number of years now, the use of
services in cloud infrastructures is increasing constantly and rapidly. The European
Conference on Service-Oriented and Cloud Computing (ESOCC) is the premier con-
ference on advances in the state of the art and practice of service-oriented computing
and cloud computing in Europe. ESOCC evolved from the ECOWS (European Con-
ference on Web Services) conference series. The first edition of the new series, ESSOC
2012, was successfully held in Bertinoro, Italy, the second edition, ESOCC 2013, was
held in Malaga, Spain, the third edition, ESOCC 2014, was held in Manchester, UK,
and the fourth edition, ESOCC 2015, in Taormina (Messina), Italy. ESOCC 2016 was
the fifth edition and was held in Vienna, Austria, during September 5–7, 2016.

ESOCC 2016 featured a research track dedicated to technical explorations and
findings in service-oriented computing and cloud computing. After thorough review-
ing, 16 papers were accepted for presentation at the research track of ESOCC 2016.
These contributions are included as full-length papers in these proceedings. The Pro-
gram Committee (PC) did a thorough review of the submitted papers. While each paper
received at least two reviews, the majority received three. The reviews were provided
by the members of the PC, sometimes with the help of additional reviewers. The
program chairs initiated discussions and worked closely together to make the final
decisions.

As part of the main technical program, we had two excellent keynote talks given by
Frank Leymann (Professor of Computer Science at the University of Stuttgart, Ger-
many) and David Costa (CTO and Head of R&D at Fredhopper, The Netherlands).
Their talks represent explorations and success stories on topics such as formal methods,
loose coupling, architectures, software as a service, and distributive laws.

Along with the main conference program, ESOCC 2016 featured five workshops:
the 4th International Workshop on CLoud for IoT (CLIoT 2016), the Second Inter-
national Workshop on Cloud Adoption and Migration (CloudWays 2016), the First
International Workshop on Patterns and Pattern Languages for SOCC: Discovery and
Use (PATTWORLD), the First International Workshop on Performance and Confor-
mance of Workflow Engines (PEaCE), and the IFIP WG SOS Workshop 2016
Rethinking Services ResearCH (ReSeRCH). The program of ESOCC 2016 also
included a PhD symposium and an EU-projects track.

The end result was a successful ESOCC 2016 program. We express our deep
appreciation to the track chairs for the organization of the review process. We also
thank all 53 PC members and additional reviewers for taking part in the reviewing and
selection process. Our gratitude extends to the chairs and organizers of the EU-project
track, workshops, and PhD symposium. We thank the invited speakers for their

valuable contribution to the program. We are grateful to the local Organizing
Committee for their support, organization, and hospitality.

Finally, we thank all the authors of technical papers and those who presented their
research for contributing to this successful conference. With their work and dedication,
ESOCC continues its tradition in advancing the field of service-oriented computing and
cloud computing.

September 2016 Marco Aiello
Einar Broch Johnsen

Schahram Dustdar
Ilche Georgievski

VI Preface

Organization

ESOCC 2016 was organized by the Distributed Systems Group of the TU Wien.

Organizing Committee

General Chair

Schahram Dustdar TU Wien, Austria

Program Chairs

Marco Aiello University of Groningen, The Netherlands
Einar Broch Johnsen University of Oslo, Norway

Industry Track Chairs

Matteo Melideo Engineering Ingegneria Informatica SPA, Italy
Audris Mockus University of Tennessee, USA

Workshop Chairs

Stefan Schulte TU Wien, Austria
Alexander Lazovik University of Groningen, The Netherlands

IFIP WG Chairs

Luciano Baresi Politecnico di Milano, Italy
Winfried Lamersdorf Hamburg University, Germany

EU Projects Chair

Antonio Brogi University of Pisa, Italy

Publicity Chair

Daniel Moldovan TU Wien, Austria

Publication Chair

Ilche Georgievski University of Groningen, The Netherlands

Local Chair

Stefan Schulte TU Wien, Austria

Website Chairs

Philipp Hoenisch TU Wien, Austria
Philipp Waibel TU Wien, Austria

Steering Committee

Antonio Brogi University of Pisa, Italy
Schahram Dustdar TU Wien, Austria
Paul Grefen Eindhoven University of Technology, The Netherlands
Kung Kiu Lau University of Manchester, UK
Winfried Lamersdorf University of Hamburg, Germany
Frank Leymann University of Stuttgart, Germany
Flavio de Paoli University of Milano-Bicocca, Italy
Cesare Pautasso University of Lugano, Switzerland
Ernesto Pimentel University of Malaga, Spain
Ulf Schreier Hochschule Furtwangen University, Germany
Massimo Villari University of Messina, Italy
John Erik Wittern IBM T.J. Watson Research Center, USA
Gianluigi Zavattaro University of Bologna, Italy
Olaf Zimmermann HSR FHO Rapperswil, Switzerland
Wolf Zimmermann Martin Luther University, Germany

Program Committee

Marco Aiello University of Groningen, The Netherlands
Vasilios Andrikopoulos University of Stuttgart, Germany
Farhad Arbab CWI, The Netherlands
Marcello Bonsangue University of Leiden, The Netherlands
Mario Bravetti University of Bologna, Italy
Antonio Brogi University of Pisa, Italy
Christoph Bussler Xtime, Inc., USA
Giacomo Cabri University of Modena and Reggio Emilia, Italy
Javier Cubo University of Malaga, Spain
Frank de Boer CWI, The Netherlands
Roberto di Cosmo Université Paris Diderot, France
Juergen Dunkel FH Hannover, Germany
Schahram Dustdar TU Wien, Austria
Rik Eshuis Eindhoven University of Technology, The Netherlands
David Eyers University of Otago, New Zealand
George Feuerlicht Prague University of Economics, Czech Republic
Marisol García-Valls Universidad Carlos III de Madrid, Spain
Claude Godart University of Lorraine, France
Paul Grefen Eindhoven University of Technology, The Netherlands
Heerko Groefsema University of Groningen, The Netherlands
Michael Goedicke University of Duisburg-Essen, Germany
Thomas Gschwind IBM Zurich Research Lab, Switzerland
Reiner Haehnle TU Darmstadt, Germany
Martin Henkel Stockholm University, Sweden
Philipp Hoenisch TU Wien, Austria
Einar Broch Johnsen University of Oslo, Norway

VIII Organization

Kung Kiu Lau University of Manchester, UK
Birgitta Koenig-Ries Universität Jena, Germany
Ernoe Kovacs NEC Europe Network Labs, Germany
Peep Kungas University of Tartu, Estonia
Patricia Lago VU University Amsterdam, The Netherlands
Winfried Lamersdorf University of Hamburg, Germany
Frank Leymann University of Stuttgart, Germany
Welf Loewe Linnaeus University, Sweden
Ingo Melzer DaimlerChrysler Research, Germany
Roy Oberhauser Aalen University, Germany
Guadalupe Ortiz University of Cádiz, Spain
Claus Pahl Dublin City University, Ireland
Cesare Pautasso University of Lugano, Switzerland
Ernesto Pimentel University of Malaga, Spain
Alessandro Rossini Sintef ICT, Norway
Ulf Schreier Furtwangen University, Germany
Stefan Schulte TU Wien, Austria
Rainer Unland University of Duisburg-Essen, Germany
Maarten van Steen University of Twente, The Netherlands
Massimo Villari University of Messina, Italy
Erik Wilde UC Berkeley, USA
Martin Wirsing Ludwig Maximilians University of Munich, Germany
Lai Xu Bournemouth University, UK
Gianluigi Zavattaro University of Bologna, Italy
Olaf Zimmermann HSR FHO Rapperswil, Switzerland
Wolf Zimmermann Martin Luther University, Germany
Christian Zirpins KIT/Seeburger AG, Karlsruhe, Germany

Additional Reviewers

Arshad, Rehman
Bezirgiannis, Nikolaos
Vukojevic-Haupt,

Karolina
Boubeta-Puig, Juan

Kaat, Marijke
Ibrahim, Ahmad
Qian, Chen
Orsini, Gabriel
Jamshidi, Pooyan

Rutle, Adrian
Serbanescu, Vlad Nicolae
Kalinowski, Julian
Skouradaki, Marigianna

Organization IX

Contents

Policies and Performance

Updating Policies in CP-ABE-Based Access Control: An Optimized
and Secure Service . 3

Somchart Fugkeaw and Hiroyuki Sato

vmBBThrPred: A Black-Box Throughput Predictor for Virtual Machines
in Cloud Environments . 18

Javid Taheri, Albert Y. Zomaya, and Andreas Kassler

Dynamic SLAs for Clouds . 34
Rafael Brundo Uriarte, Francesco Tiezzi, and Rocco De Nicola

Adaptation

Reinforcement Learning Techniques for Decentralized Self-adaptive
Service Assembly . 53

M. Caporuscio, M. D’Angelo, V. Grassi, and R. Mirandola

Situation-Aware Execution and Dynamic Adaptation of Traditional
Workflow Models . 69

Kálmán Képes, Uwe Breitenbücher, Santiago Gómez Sáez, Jasmin Guth,
Frank Leymann, and Matthias Wieland

SLA-Aware Services

Subsumption Reasoning for QoS-Based Service Matchmaking 87
Kyriakos Kritikos and Dimitris Plexousakis

Towards Combined Functional and Non-functional Semantic
Service Discovery . 102

Kyriakos Kritikos and Dimitris Plexousakis

Declarative Elasticity in ABS . 118
Stijn de Gouw, Jacopo Mauro, Behrooz Nobakht,
and Gianluigi Zavattaro

Job Placement

Interplay of Virtual Machine Selection and Virtual Machine Placement 137
Zoltán Ádám Mann

http://dx.doi.org/10.1007/978-3-319-44482-6_1
http://dx.doi.org/10.1007/978-3-319-44482-6_1
http://dx.doi.org/10.1007/978-3-319-44482-6_2
http://dx.doi.org/10.1007/978-3-319-44482-6_2
http://dx.doi.org/10.1007/978-3-319-44482-6_3
http://dx.doi.org/10.1007/978-3-319-44482-6_4
http://dx.doi.org/10.1007/978-3-319-44482-6_4
http://dx.doi.org/10.1007/978-3-319-44482-6_5
http://dx.doi.org/10.1007/978-3-319-44482-6_5
http://dx.doi.org/10.1007/978-3-319-44482-6_6
http://dx.doi.org/10.1007/978-3-319-44482-6_7
http://dx.doi.org/10.1007/978-3-319-44482-6_7
http://dx.doi.org/10.1007/978-3-319-44482-6_8
http://dx.doi.org/10.1007/978-3-319-44482-6_9

An Auto-Scaling Cloud Controller Using Fuzzy
Q-Learning - Implementation in OpenStack . 152

Hamid Arabnejad, Pooyan Jamshidi, Giovani Estrada, Nabil El Ioini,
and Claus Pahl

FedUp! Cloud Federation as a Service . 168
Paolo Bottoni, Emanuele Gabrielli, Gabriele Gualandi,
Luigi Vincenzo Mancini, and Franco Stolfi

Compositionality

Service Cutter: A Systematic Approach to Service Decomposition. 185
Michael Gysel, Lukas Kölbener, Wolfgang Giersche,
and Olaf Zimmermann

Economic Aspects of Service Composition: Price Negotiations
and Quality Investments. 201

Sonja Brangewitz and Simon Hoof

Fault Tolerance

Fault-Aware Application Management Protocols . 219
Antonio Brogi, Andrea Canciani, and Jacopo Soldani

Improving Reliability of Cloud-Based Applications 235
Hong Thai Tran and George Feuerlicht

A Short Survey on Using Software Error Localization
for Service Compositions . 248

Julia Krämer and Heike Wehrheim

Author Index . 263

XII Contents

http://dx.doi.org/10.1007/978-3-319-44482-6_10
http://dx.doi.org/10.1007/978-3-319-44482-6_10
http://dx.doi.org/10.1007/978-3-319-44482-6_11
http://dx.doi.org/10.1007/978-3-319-44482-6_12
http://dx.doi.org/10.1007/978-3-319-44482-6_13
http://dx.doi.org/10.1007/978-3-319-44482-6_13
http://dx.doi.org/10.1007/978-3-319-44482-6_14
http://dx.doi.org/10.1007/978-3-319-44482-6_15
http://dx.doi.org/10.1007/978-3-319-44482-6_16
http://dx.doi.org/10.1007/978-3-319-44482-6_16

Policies and Performance

Updating Policies in CP-ABE-Based Access
Control: An Optimized and Secure Service

Somchart Fugkeaw(&) and Hiroyuki Sato

Department of Electrical Engineering and Information Systems,
The University of Tokyo, Tokyo, Japan

{somchart,schuko}@satolab.itc.u-tokyo.ac.jp

Abstract. Policy update management is one of the key problems in the
ciphertext policy-attribute-based encryption (CP-ABE) supporting access con-
trol in data outsourcing scenario. The problem is that the policy is tightly
coupled with the encryption itself. Hence, if the policy is updated, the data
owner needs to re-encrypt files and sends them back to the cloud. This incurs
overheads including computation, communication, and maintenance cost at data
owner side. The computation and communication overheads are even more
costly if there are frequent changes of access control elements such as users,
attributes and access rules. In this paper, we extend the capability of our access
control scheme: C-CP-ARBE to be capable to support secure and flexible policy
updating in data outsourcing environment. We propose a policy updating
method and exploit a very lightweight proxy re-encryption (VL-PRE) technique
to enable policies to be dynamically and effectively updated in the cloud.
Finally, we demonstrate the efficiency and performance of our proposed scheme
through our evaluation and implementation.

1 Introduction

To consider adopting a cloud solution for storing large scales of highly value data,
security and privacy are of paramount importance. Existing research works and cloud
applications generally deploy encryption techniques and applicable access control
model to satisfy the security requirement.

Access Control is among the most effective solutions for full-fledged network
security control. Data access control for outsourced data should not only support the
security but it should also provide a flexible and efficient management of the policy
enforced over a large number of users as well as the optimized cost for handling the
change of access control elements such as users, attributes, access policies. Importantly,
the access control policy must be up-to-date to support the right and effective control
and enforcement. In addition, access control supporting collaborative accesses across
the data sources outsourced at the cloud servers is very important.

Attribute-based encryption (ABE) [6] is regarded as an effective solution for for-
mulating a lightweight access control to outsourced data and unknown decrypting
parties. To date, several works apply ciphertext attribute-based encryption (CP-ABE)
[2–5, 8] for the access control solutions and generally concentrate on minimizing key
management cost, reducing computing cost of interaction between data owner and

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-44482-6_1

outsourced data storage, improving scalability and efficient revocation. However, these
works have not addressed the policy evolution or policy updating problem in their
proposed models.

In fact, policy updating is one of the critical administrative tasks to control the most
up-to-date access policy enforcement. The policy update in CP-ABE renders the cost of
policy update operation, cost of file re-encryption and communication cost for loading
the file back to the cloud. All of these costs are usually occurred at data owner’s side.

Therefore, in addition to the fine-grained and scalable access control model sup-
porting data outsourced in the cloud, optimizing the policy update is also another grand
challenge. For the operational point of view, the issues including correctness, security,
and accountability of the subsequent update of policy are the requirements to be
provided by CP-ABE policy updating scheme. These requirements are described as
follows.

• Correctness: An updated policy must be syntactically correct and the policy
updating must support any types of CP-ABE policy boolean. In addition, users who
hold the keys containing a set of attributes satisfying the policy are able to decrypt
the data encrypted by an updated policy.

• Security: A policy must be updated by the data owner or authorized administrator
only in the secure manner and a new policy should not introduce problems for the
existing access control.

• Accountability: All policy updating events must be traceable for auditing.

The remainder of the paper is organized as follows. Section 2 discusses related
works. Section 3 presents detail of our proposed approach. Section 4 describes the
policy updating method and presents concept of our proxy re-encryption scheme.
Section 5 gives the evaluation and implementation detail. Finally, the conclusion and
future work are depicted in Sect. 6.

2 Related Work

Ciphertext Policy Attribute Based Encryption (CP-ABE) was originally proposed in
[7]. In CP-ABE, each user is given a set of attributes, which is embedded into the user’s
secret key, and a public key is defined for each user attribute. The ciphertext is
associated with the access policy structure in which the encryptor can define the access
policy by her own control. Users are able to decrypt a ciphertext if their attributes
satisfy the ciphertext access structure.

However, policy update in ABE scheme has attracted less attention by existing
research works. In [13], the authors introduced a ciphertext delegation method to
update the policy of ciphertext in attribute-based access control. Their method aimed at
solving user revocation based on a re-encryption delegation technique to protect newly
encrypted data. Nevertheless, the performance on updating the ciphertext over the
complex access policy was not examined by the authors.

Recently, Yang et al. [3, 9] proposed a method to outsource a policy updating to the
cloud server. They proposed policy updating algorithms for adding and removing
attributes in the AND, OR, and threshold gate of LSSS policy. The proposed scheme is

4 S. Fugkeaw and H. Sato

to update ciphertext in order to avoid file re-encryption. Cost for ciphertext update is
also linear to the number of attributes updated over the access structure. Besides, the
authors have not discussed how updated polices are maintained and how the security
and accountability are supported when there is the policy update.

Proxy-based Re-encryption (PRE) was initially introduced by Mambo and Oka-
moto [11]. They proposed a technique that uses a concept of delegator to perform
re-encryption of the ciphertext sent by the originator. In this scheme, the delegator
learns neither the decryption keys nor original plaintext. Later, Ateniese et al. [12]
introduced a proxy re-encryption scheme that improves security in preventing collusion
attack over the bilinear map. They implemented the PRE to show its efficiency in a few
PRE scenarios. This approach becomes adopted by several PRE-based scheme.

In 2014, Liang et al. [15] proposed a cloud-based revocable identity-based proxy
re-encryption (CB-IB-PRE) scheme to support user revocation in the cloud data sharing
systems. Hereafter, several works [e.g., 10, 14, 17, 19] have adopted PRE to optimize the
revocation overhead, specifically the re-encryption cost in attribute-based access control.

In [16], the authors introduced adaptable CP-ABE scheme to handle policy changes
in CP-ABE encryption for data outsourced in cloud computing. In this scheme, a
trapdoor is generated from the central authority and it is used to transform a ciphertext
under one access policy into ciphertexts under any other access policies. With this
scheme, a data owner outsources ciphertext re-encryption task to the proxy and the
proxy can not learn the content from the plaintext encrypted. However, the trapdoor
generation is still the computation burden that the authority has to compute every time
of all policy update events.

In [17], Yukata Kawai proposed a flexible CP-ABE proxy re-encryption scheme by
combining key randomized and encrypted methodology and adaptive CP-ABE. The
proposed scheme focuses on reducing the computation cost at client side by out-
sourcing the re-encryption key generation to cloud server. The universal re-encryption
key (urk) is proposed to be used together with the decryption key (Sks) for generating
the re-encryption key. The decryption key is concealed by randomized parameters and
sent to the cloud for computing the re-encryption key. Importantly, Kawai’s approach
is the first attempt dealing with the outsourcing concept of re-encryption key generation
in PRE setting. However, the author does not provide the performance evaluation to
demonstrate the efficiency of the proposed scheme.

However, the proposed schemes [16, 17] only provide the security function while
the implementation result and performance have not been provided. Hence, the effi-
ciency of the proposed CP-ABE proxy re-encryption in handling the policy changes
cannot be inferred.

In [19], Fugkeaw and Sato proposed PRE scheme that fully outsources
re-encryption key generation to the proxy; the computation cost at data owner is
minimized. However, if there are frequent revocation or policy update cases, the
re-encryption key needs to be re-generated in every cases and data owners require to
prepare and submit data package to the proxy for computing the re-encryption key.

To the best of our knowledge, existing normal PRE schemes are not practical for
policy updating in large-scale data outsourcing environment where the access control
elements are changed frequently. This is because cost for re-encryption key generation
is unpredictable at the data owner side. However, offloading too much computation

Updating Policies in CP-ABE-Based Access Control 5

cost to a proxy may introduce the delay for re-encryption task and thus cause efficiency
problem. Besides, this strategy is also not advisable for the cloud model that the cloud
provider charges the fee based on CPU usage. Thus optimizing both setup cost at data
owner side and re-encryption cost at cloud side is a real challenge. Unfortunately, this
computation optimization aspect has not been addressed by the existing PRE schemes.
In this paper, we entail the practical solutions for handling policy evolution in the
evolvable cloud environment with the consideration on computation and communi-
cation cost reduction in both data owner and cloud side.

3 Background

3.1 C-CP-ARBE Model

In this section, we give basic system definitions of our proposed access control called
Collaborative-Ciphertext Policy-Attribute Role-based Encryption (C-CP-ARBE). The
proposed access control model integrates role-based access control (RBAC) model into
the CP-ABE. The model thus accommodates the benefits of RBAC feature with the
attribute–based attribute encryption. RBAC provides more scalable management over a
number of attributes [15]. Here, a set of attributes in CP-ABE is assigned to the specific
roles and the privileges are included to compliment the expressiveness of access control
mechanism. Definitions 1 and 2 show the complete set of our access control elements
and access control policy (ACP).

Definition 1: User (U), Role (R), Attributes (attr), and Permission (P)

• User (U) is a subject who requests to access (read or write) the data outsourced by
the data owner in the cloud. Each user is assigned the set of attributes with respect
to his/her role by the attribute authority.

• Attributes (Attr) are a set of attributes used to characterize the user and associated to
the particular attribute “role”. A set of attributes is issued by attribute authority (AA).

• Role (R) is a super set of attribute where users and respective attributes are assigned
to.

• Permission (P) is an action or privilege having value read (r) and write (w).

Definition 2: Access Control Policy (ACP)

ACP is a tree-based structure. Let ACP T is a tree represent the access structure in
C-CP-ARBE. Each non-leaf node of the ACP tree represents the Role node and
threshold gate where the Role node is a parent of threshold gate node. The threshold
gate rule is the same as access tree of CP-ABE. We denote the parent of the children
node x in the tree by parent(x). Thus, the parent of leaf node x is the pair of {Role node,
threshold gate}. The function attr(x) is defined only x is in a leaf node of the tree.

To provide a fine-grained access control, we introduce special attribute “privilege”
as an extended leaf (EL) node of the ACP T in order to identify the read or write
privilege of the role. Figure 1 illustrates a sample access control policy used to enforce
access rules to hospital staffs and patients in accessing disease diagnostic data.

6 S. Fugkeaw and H. Sato

Figure 1 illustrates a sample access control policy used to enforce access rules to
restrict the access of hospital staff and patients to the healthcare data. As seen from the
figure, hospital staffs, hospital executives, and a specific group of medical doctor from
another hospital is allowed to access the disease diagnostic data.

The policy is administered by the host hospital and it is able to be updated by
authorized administrator. In reality, such a policy can be changed anytime. For
example, the senior nurse may be allowed to access the diagnosis file for preparing the
summarized report. In this case, the data owner needs to update the above policy tree
by adding role “nurse” and its attributes with the logical rules specifying the authorized
access to the diagnosis file. In addition to updating the policy, the file encrypted by the
before-updated policy needs to be retrieved from the cloud and it will be decrypted and
re-encrypted with a new policy. Then, it will be uploaded back to the cloud. This is a
cumbersome task especially when there is a large amount of data as well as the high
chance of policy changes. We will discuss how the policy change is securely and
efficiently managed in Sect. 4.

3.2 C-CP-ARBE Constructs

Our proposed cryptographic process of C-CP-ARBE scheme [1] is a kind of Multi-
Authority CP-ABE (MA-CP-ABE). We use attribute authority identification (aid) to
identify the authority who issues the attributes to users. Each user who is issued the
attributes by the attribute authority is identified with uid.aid. Basically, bilinear map is a
major construct in our user key generation protocol.

Definition 3: Bilinear Map [7]

Let G1 and G2 be two multiplicative cyclic groups of prime order p and e be a
bilinear map, e: G1 × G1 → G2. Let g be a generator of G1. Let H: {0,1}* → G1 be a
hash function that is modeled in a random oracle.

Fig. 1. Access control policy of disease diagnosis file

Updating Policies in CP-ABE-Based Access Control 7

The bilinear map e has the following properties:

1. Bilinearity: for all u, v 2 G1 and a, b 2 Zp, e(u
a, vb) = e(u, v)ab

2. Non-degeneracy: e(g, g) ≠ 1.

The following table presents the notations and its description used in our proposed
algorithms (Table 1).

Here, we present our four major cryptographic algorithms including AA setup, user
key generation, encryption, and decryption.

1. AuthoritySetUp

Attribute Authority Setup (AAk where each AA is identified with aid)
Each AAk (k 2 set of all authority SA).
Let S (aK) be a set of attributes issued and managed by the authority AAk.
The AA setup (AAk) chooses two random numbers a; b 2 Zp:
Then the Public Key AAk(or PKaid) = G1, g, h = gbk , f ¼ g1=bk,
eðg; gÞak ; and the Secret Key AAk (or SKaid) is ðbk; gak Þ.

2. UserKeyGen(Suid,aid, SKaid, Certuid) → EDKuid,aid, RDKaid. The KeyGen algo-
rithm takes continuous two steps as follows:
(1) The algorithm takes input as set of attributes Suid,aid, attribute authority’s secret

key SKaid, then it returns the set of user decryption keys UDK.
(2) A UDK is encrypted with the global public key of the user Certuid and outputs

an encrypted decryption key EDKuid,aid. In addition to the UDK generated, the

Table 1. Notations used in the C-CP-ARBE

Notation Description

Suid.aid Set of all attributes issued to user uid and managed by authority aid
SKaid a secret key which belongs to authority aid
PKaid Public key which belongs to authority aid
GSKuid A global secret key of a user uid. GSK is a private key issued by the certification

authority CA
Certuid A public key certificate containing user’s public key issued by a certification

authority CA
UDKuid.

aid

User Decryption key issued by authority aid

EDKuid.

aid

EDK is an encrypted form of a UDK which is encrypted by a user public key

GRP Group role parameter is a seed numbers computed from a set of user members of
the roles

SS Secret seal is a symmetric key created from the AES algorithm together with the
GRP

ACP An access control policy used to encrypt the data files
SCT A sealed ciphertext is a ciphertext encrypted with the SS

8 S. Fugkeaw and H. Sato

system will also produce the root decryption key RDKaid for further use in
re-encryption key generation. It contains the data owner’s ID attribute and
digital signature attribute of the data owner. Thus, the RDKaid is very small and
it can be used to decrypt the files they created because these two attributes are
bounded in the ACP as default attributes. RDKaid is also encrypted by the data
owner’s public key.

3. Enc(PKaid, [SS, GRP], M, ACP, Certuid) → SCT. The encryption algorithm per-
forms two continuous steps as follows:
(1) Inner Layer: the algorithm takes as inputs authority public key PKaid, access

control policy ACP, and data M. Then it returns a ciphertext CT.
(2) Outer Layer: the algorithm takes group role parameter GRP which is randomly

generated from a set of user members (i.e. Users’ IDs) of all roles. GRP is used
as a key together with AES algorithm to generate the session key referred as a
secret seal SS. The SS is used to encrypt the ciphertext CT. Then, the algorithm
returns sealed ciphertext SCT. Finally, a SS is encrypted with user’s public key
Certuid, and stored in the cloud server.

4. Decrypt(PKaid, SCT, GSKuid, EDKuid,) → M. The decryption algorithm performs
two continuous steps as follows:
(1) Decrypt the secret seal SS. The algorithm takes user’s global secret key GSKuid

and then obtains the session key to decrypt the SCT and gets the CT.
(2) Decrypt the encrypted decryption key (EDKuid). The algorithm takes user’s

global secret key GSKuid and then obtains the user decryption key UDK. Then,
if the set of attribute S satisfies the ACP structure, the algorithm returns the
original M.

4 Policy Updating Method

To complete the policy updating process, two tasks including policy updating and file
re-encryption are required. To this end, we propose a policy updating algorithm and a
proxy re-encryption technique called a very lightweight PRE (VL-PRE) to efficiently
support the required tasks respectively.

4.1 Flexible and Secure Policy Update Management

Outsourcing policy update to the cloud enhances the service availability and reduces
computing costs at data owner side.

In typical cloud-based access control systems, if there is a change to the policy, data
owners apply a new policy to re-encrypt the files at their local side and send them back
to the cloud server. Accordingly, policy update introduces the communication, com-
putation, and maintenance cost at data owners.

Therefore, a flexible and secure policy update should be provided to allow data
owners or administrators to manage the attributes (add, update, delete) in polices stored
in a cloud server in a practical manner. We develop policy updating algorithm to

Updating Policies in CP-ABE-Based Access Control 9

support access policy updating in the cloud. This reduces computation and commu-
nication cost and allows the data owners to update the policy anytime and anywhere.

Figures 2 and 3 illustrate the policy updating process and policy updating syntax
validation. The policy updating undertakes the updating operations including add,
update, and delete of the attributes contained in the policy together the syntax checking.
For the syntax checking, the algorithm checks the possible operands taken on the
attribute type and attribute value. This guarantees that the updated policy is syntactically
correct. In our scheme, after the policy updating is done, the proxy will automatically
take the updated policy to re-encrypt all files encrypted by the before-updated policy.

Fig. 2. Policy updating algorithm

Fig. 3. Policy update syntax validation

10 S. Fugkeaw and H. Sato

4.2 Very Lightweight Proxy Re-Encryption (VL-PRE)

VL-PRE is an extended PRE model that is specifically designed to deliver a very
lightweight PRE operation in supporting attribute revocation or policy update in
CP-ABE based access control. The process of VL-PRE is divided into three phases:
Generate re-encryption key, Update re-encryption key, and Renew re-encryption key.
Generally, the proposed three-phase PRE is triggered when there is a case of attribute
revocation or policy update. Basically, the proxy transforms ciphertext CTk1 to CTk2

with a re-encryption key RK(rks1→s2) where RK is generated by a proxy server.

Phase 1: Generate Re-encryption Key:

For the initial phase, it consists of Pre-process, ReKeyGen and ReEnc algorithms
which are described as follows.

1. Pre-process: Data owner (1) chooses random seeds and generates secure random
number R and applies random number Rvn (tagged with the current version number
vn) to encrypt the root decryption key RDKaid generated since the key generation
phase. (2) applies Rvn to append the attributes in the leaf node of the updated version
of access control policy ACPvn, and gets the ACPRvn

vn . Then, data owner submits
encrypted RDKaid and ACPRvn

vn as parts of re-encryption key to the cloud proxy.
2. ReKeyGen (param; SS, Rvn(RDKaid), (ACPRvn

vn), ExpireTime) → rks2 → (M′, ACP′).
The algorithm takes input param, secret seal SS, root decryption key encrypted by
the Random Rvn, Rvn(RDKaid), a new access policy embedded with Random Rvn,
ACPRvn

vn , and Expire_time. First, the SS is used to decrypt the sealed ciphertext
(SCT) and the original ciphertext (CT) is derived. The Expire_time is used to
indicate the validity of re-encryption key rks2. Hence, if the key expires, the owner
needs to initiate re-key generation with a new random Rvn.

Then, the algorithm outputs a re-encryption key rks2 → (M′, ACP′) that can be used to
transform a ciphertext under (M, ACP) to another ciphertext under (M′, ACP′).

• ReEnc(param; rks2 → (M′, ACP′), CMR function, CT(M, ACP)) → CTk2: The
algorithm takes input param, a re-encryption key rks2 → (M′, ACP′), Com-
bineMatchRemove function CMR, and an original CT(M, ACP). It outputs a
re-encrypted ciphertext CT′(M′, ACP′).

According to the element of rks2, we embed the CombineMatchRemove
(CMR) function to support the re-encryption process as follows:

(1) Combine pieces of R applied in leaf nodes of a new ACPRvn
vn .

(2) Match R between Rvn (RDKaid) and ACPRvn
vn .

(3) Remove R from Rvn(RDKaid).

Then, the RDKaid is automatically used to decrypt the old ciphertext and the
algorithm applies a new ACP′ to re-encrypt the data. Finally, the proxy takes SS to
encrypt a new Ciphertext (CTk2).

Updating Policies in CP-ABE-Based Access Control 11

Phase 2: Update Re-encryption Key:

There are two algorithms for updating re-encryption key.

1. UpdateACP(Rvn,ACPvn+1) → ACPRvn
vnþ 1

Data owner applies current random number Rvn to encrypt the updated ACP, and
the ACPRvn

vnþ 1
is obtained and sent to the proxy.

2. UpdateReEncKey(rks2,vn, ACPRvn
vnþ 1

Þ → rks2,vn+1

The proxy runs the algorithm by taking the updated ACP,ACPRvn
vnþ 1

to update the
current version of re-encryption key, rks2,vn. The new rks2,vn+1 is used to re-encrypt the
existing ciphertext.

The algorithms help to reduce both computation and communication overhead at
both data owner side and proxy since the RDK needs not to be encrypted every time
and the information (only the updated ACP) sent out to the proxy is small. Besides, the
proxy does not need to fully compute a new re-encryption key upon policy update, it
only updates the key instead.

Phase 3: Renew Re-encryption Key

In this phase, if the current re-encryption key rks2,vn expires, the algorithms in phase
1 will be run.

Here, the owner needs to initiate re-key generation with a new set of random seeds
Rvn+1 and updated ACP. Then, re-encryption key generation and ciphertext
re-encryption are performed by the proxy.

However, re-encryption key renewal is not required to perform instantly when the
key expires, it will be executed when there is the next policy update.

4.3 Security Model

Our C-CP-ARBE is secure under the random oracle model in the following security
game.

1. Initialization. Adversary A outputs a challenge access policy ACPC to
Challenger C.

2. Setup. C runs CreateAttributeAuthority algorithm and gives a public keys PK to the
adversary A. For corrupted authorities S0A, the challenger sends both the public keys
and secret keys to adversary.

3. Query Phase1:
(a) Private key extraction: C runs UserKeyGen on the attribute set S (Suid,aid) of the

corrupted AA and returns UDK to A.
(b) Re-encryption key extraction oracle Ork (S, ACP

C): With attribute set S, and an
access control policy ACPC, C returns reKeyGen(param; SS, Rvn(RDKaid),
(ACPCRvn)) → rks2,vn → (M′, ACP′) to A, where rks2,vn is a generated
re-encryption key and (S, SKaid) → UDK.

12 S. Fugkeaw and H. Sato

(c) RE-encryption oracle Ork (S, ACP
C, CT(M, ACP)): With the input an attribute set

S, an access control policy ACPC, and an original ciphertext CT(M, ACP),
C returns rks2 → (M′, ACP′),CT(M, ACP)) → CTR

ðM0;ACP0Þ, where reKeyGen(param,
SS, Rvn(RDKaid), (ACP’R)) → rks2 → (M′, ACP′), (S, SKaid) → UDK and
S| = ACP.

(d) Original ciphertext decryption oracle Od2(S, CT(M, ACP)). With the input an
attribute set S and an original ciphertext CT(M, ACP),C returns Decrypt(S, UDK,
CT(M, ACP)) → M to A, where (S, SKaid) → UDK and S| = ACP.

(e) Re-encrypted ciphertext decryption oracle Od2(S′, CTR
ðM0;ACP0Þ). With the input

an attribute set S’ and a re-encrypted ciphertext CTR
ðM0;ACP0Þ, C returns Decrypt

(S′, UDK′, CTR
ðM0;ACP0Þ) → M, where (S’, SKaid) → UDK′ and S′| = ACP′.

Note that if the ciphertexts queried to oracles Ore, Od2, and Od1 are invalid,
C simply outputs a ?.

1. Challenge. A outputs two equal length messages M0 and M1 to C. C returns
CT*(M*,ACP*) = Enc(ACP*, Mb) to A, where b 2 {0,1}.

2. Query Phase II: A performs as it did in Phase 1.

Guess. A submits a guess bit b′ 2 {0,1}. If b′ = b, A wins. The advantage of A in
this game is defined as Pr½b0 ¼ bjl ¼ 0� ¼ 1

2. □

In the security point of view of VL-PRE, we use random encryption to secure
re-encryption key component while our core access control enforcement is based on
CP-ABE. The detailed security proof is as presented in the original CP-ABE [7].

4.4 Policy Update Evaluation

We analyze and evaluate our policy update scheme based on the correctness,
accountability, and security requirement.

Correctness: An updated policy must be syntactically correct and users who hold
the keys containing a set of attributes satisfying the policy are able to decrypt the data
encrypted by an updated policy.

Proof: The syntax of the updating is validated through the CP-ABE tree structure.
Hence, attributes updated to AND, OR, K out of N is done at the policy structure. The
policy checking for the update is controlled by our policy updating algorithm. The
algorithm verifies the syntax of the threshold gates to ensure the correctness of
grammar of tree-based model. Also, if the policy is updated with valid attributes (issued
trusted AA with PKx.aid) the users who hold sufficient attributes satisfying a new policy
are able to decrypt the file encrypted by a new policy. This correctness is guaranteed by
CP-ABE model.

Updating Policies in CP-ABE-Based Access Control 13

Security: A policy must be updated by the data owner or authorized administrator
only in the secure manner and a new policy should not introduce problems for the
existing access control.

Proof: To enable the policies to be securely stored and managed in cloud, we make
use a simple CP-ABE tree policy to encrypt the ACP. The policy encryption is simply
formed by a set of identity attributes of the data owners and authorized users. Hence,
only data owners and authorized users are allowed to access the policy and can use the
policy to encrypt the data. Here, the data owner can selectively delegate the policy
update function to the users. In addition, our scheme requires data owner’s digital
signature for executing and committing the update.

Accountability: All policy updating events must be traceable.
Proof: When the policy is updated, event log keeps the details of update including

login users, update time, and update operations. In addition, the system requires digital
signing of the authorized data owner or administrator to commit the update.

5 Evaluation

5.1 Comparison of Policy Update Cost

We analytically compare policy update features and update cost between the
C-CP-ARBE, Yang et al. scheme [3], and Lai et al. scheme [16].

From Table 2, according to Yang et al. scheme, data owner has to update key
generation and to update the ciphertext to complete the policy updating process. For the
ciphertext update, the data owner needs to compute ciphertext components for new
attributes. The entire computation cost is subject to the number of attributes and the
type of update operations (i.e. OR, AND) over the access structure. In Lai et al.
scheme, PRE concept is used to convert the existing ciphertext according to the
updated policy. In this scheme, the trapdoor or re-encryption key is generated at key
generation authority or at data owner side. This limits the operation with the
dependability on the availability of the authority or data owner. In contrast, we delegate
the major cost of re-encryption key generation and file re-encryption to the delegated
proxy in the cloud.

Table 2. Comparison of policy update feature and cost

Operation Yang et al. [3] Lai et al. [16] Our C-CP-ARBE

Update key generation At owner side At owner/authority side At cloud server
Policy storage outsourcing No No Yes
Policy update method Ciphtertext update PRE VL-PRE
Computation O(tc) O(1) O(1)

tc = the total number of attributes in the updated ciphertext

14 S. Fugkeaw and H. Sato

Our scheme has no limitation for update operations and number attributes involving
in the policy. The computation cost for re-encryption is O(1) as the re-encryption is
performed once to complete the policy update. In addition, our scheme allows policies
to be securely stored in the cloud. This enables flexible and efficient policy manage-
ment in data outsourcing scenario.

5.2 Performance Evaluation

In our experiments, we implement the application service using PHP and Java language
which are run on the Apache Sever. The service is run on Intel Xeon, E562 processor
240 GHz. with Ubuntu Linux. We use the Pairing-Based Cryptography library version
0.5.12 to simulate the cryptographic constructs of those two compared schemes. Our
core cryptographic library is extended and developed from the CP-ABE programming
library provided in [18]. On the client (data owner) end, a simulation was run on
MacBook Pro Intel Core i5 Dual-core, 2.7 GHz.

In the experiment setting, we simulate KeyUpdate and CiphertextUpdate algo-
rithms for Yang et al. scheme, while Trapdoor generation and policy update based on
PRE are simulated for Lai et al. scheme. For our C-CP-ARBE scheme, the time used
for executing policy updating algorithm and processing the VL-PRE are used to
measure the total cost of policy update.

To demonstrate the performance improvement, we compare total time used for
policy updating and re-encryption between these three approaches. We simulate the
policy updating protocols of Yang et al. scheme by simulating the key update gener-
ation and ciphertext update while Lai et al. scheme and our C-CP-ARBE use the PRE
strategy. To measure the performance, we vary the number of attributes updated in the
given access policy. The access policy contains up to 120 attributes and it is used to
encrypt 2-MB file. Then, we measure the total time for the policy update and file
re-encryption or ciphertext update used by these three schemes.

Fig. 4. Comparison of policy update cost

Updating Policies in CP-ABE-Based Access Control 15

As of the Fig. 4, compared with Yang et al. scheme and Lai et al. scheme, our
C-CP-ARBE fully outsources the PRE process to the proxy. Thus, the computation at
data owner side is significantly reduced. With our scheme, the data owner only updates
at her own machine, while the policy and the subsequent costs (re-encryption key
generation and ciphertext re-encryption) are fully outsourced to the delegated proxy.
With a small re-encryption key size and key update strategy of VL-PRE, the processing
workload performed by the proxy at cloud is also optimized. In Lai et al. scheme, even
though the PRE is used to transform the ciphertext, the data owner still needs to
compute the trapdoor and update the policy before the proxy performs the
re-encryption task. Obviously, both C-CP-ARBE and Lai et al. scheme do not get
significant impact from the number of attributes changed or the operations used in the
policy. In contrast, with the ciphertext update strategy of Yang et al. scheme, it is very
practical to support a small number of updated attributes. However, when the number
of updated attributes increases, the processing time sharply increases.

6 Conclusion

In this paper, we have presented a privacy-preserving CP-ABE based access control
model with the capability of policy change management in the data outsourcing sce-
nario. Our core access control policy contains roles, attributes, and privileges logically
modeled in a tree-based structure. We introduce our proposed policy updating algo-
rithm and VL-PRE to securely and economically support policy evolution in cloud data
access control. VL-PRE uses a small package of re-encryption key generation and
relies on key updates strategy instead of key generations. Therefore, it outperforms
existing PRE schemes. Finally, we conduct the experiments to evaluate the perfor-
mance of our proposed policy update scheme. The results reveal that our proposed
scheme is efficient and promising for real deployment in supporting policy update for
data outsourcing scenario.

For future work, we will conduct larger scale of experiments in real cloud envi-
ronment and measure the scalability of the proposed system in serving concurrent
updates of multiple policies.

References

1. Fugkeaw, S., Sato, H.: An extended CP-ABE based access control model for data
outsourced in the cloud. In: Proceedings of the International Workshop on Middleware for
Cyber Security, Cloud Computing and Internetworking (MidCCI 2015), pp. 73–78. IEEE
(2015)

2. Wan, Z., Liu, J., Deng, H.R.: HASBE: a hierarchical attribute-based solution for flexible and
scalable access control in cloud computing. IEEE Trans. Inf. Forensics Secur. 7(2), 743–754
(2012)

3. Yang, K., Jia, X., Ren, K., Xie, R., Huang, L.: Enabling efficient access control with
dynamic policy updating for big data in the cloud. In: Proceedings of the International
Conference on Computer Communications (INFOCOM 2014), pp. 2013–2021. IEEE (2014)

16 S. Fugkeaw and H. Sato

4. Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing of personal health
records in cloud computing using attribute-based encryption. IEEE Trans. Parallel Distrib.
Syst. 24(1), 131–143 (2013)

5. Yang, K., Jia, X., Ren, K., Zhang, B., Xie, R.: Expressive, efficient, and revocable data
access control for multi-authority cloud storage. IEEE Trans. Parallel Distrib. Syst. 25(7),
1735–1744 (2014)

6. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: Proceedings of the International Conference on
Computer and Communications Security (CCS 2006), pp. 89–98. ACM (2006)

7. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In:
Proceedings of IEEE Symposium of Security and Privacy, pp. 321–334. IEEE (2007)

8. Fugkeaw, S.: Achieving privacy and security in multi-owner data outsourcing. In:
Proceedings of the International Conference on Digital and Information Management
(ICDIM 2012), pp. 239–244. IEEE (2012)

9. Yang, K., Jia, X., Ren, K.: Secure and verifiable policy update outsourcing for big data
access control in the cloud. IEEE Trans. Parallel Distrib. Syst. (TPDS) 26(12), 3461–3470
(2015). IEEE

10. Tysowski, P.K., Hasan, M.A.: Hybrid attribute- and re-encryption-based key management
for secure and scalable mobile applications in clouds. IEEE Trans. Cloud Comput. 1(2),
172–186 (2013). IEEE

11. Mambo, M., Okamoto, E.: Proxy cryptosystems: delegation of the power to decrypt
ciphertexts. IEICE Trans. E80-A(1), 54–63 (1997)

12. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes
with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9, 1–30 (2006).
ACM

13. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext delegation for
attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 199–217. Springer, Heidelberg (2012)

14. Liang, X., Cao, Z., Lin, H., Shao, J.: Attribute based proxy re-encryption with delegating
capabilities. In: Li, W., Susilo, W., Tupakula, K.U., Safavi-Naini, R., Varadharajan, V.
(eds.) ASIACCS, pp. 276–286. ACM, New York (2009)

15. Liang, K., Liu, J.K., Wong, D.S., Susilo, W.: An efficient cloud-based revocable
identity-based proxy re-encryption scheme for public clouds data sharing. In: Kutyłowski,
M., Vaidya, J. (eds.) ICAIS 2014, Part I. LNCS, vol. 8712, pp. 257–272. Springer,
Heidelberg (2014)

16. Lai, J., Deng, R.H., Yang, Y., Weng, J.: Adaptable ciphertext-policy attribute-based
encryption. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365, pp. 199–214.
Springer, Heidelberg (2014)

17. Kawai, Y.: Outsourcing the re-encryption key generation: flexible ciphertext-policy
attribute-based proxy re-encryption. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol.
9065, pp. 301–315. Springer, Heidelberg (2015)

18. CP-ABE Library. http://acsc.cs.utexas.edu/cpabe/
19. Fugkeaw, S., Sato, H.: Embeding lightweight proxy re-encryption for efficient attribute

revocation in cloud computing. Int. J. High Perform. Comput. Netw. (in press)

Updating Policies in CP-ABE-Based Access Control 17

http://acsc.cs.utexas.edu/cpabe/

vmBBThrPred: A Black-Box Throughput
Predictor for Virtual Machines

in Cloud Environments

Javid Taheri1(B), Albert Y. Zomaya2, and Andreas Kassler1

1 Department of Computer Science, Karlstad University, Karlstad, Sweden
{javid.taheri,andreas.kassler}@kau.se

2 School of Information Technologies, University of Sydney, Sydney, Australia
albert.zomaya@sydney.edu.au

Abstract. In today’s ever computerized society, Cloud Data Centers
are packed with numerous online services to promptly respond to users
and provide services on demand. In such complex environments, guar-
anteeing throughput of Virtual Machines (VMs) is crucial to minimize
performance degradation for all applications. vmBBThrPred, our novel
approach in this work, is an application-oblivious approach to predict
performance of virtualized applications based on only basic Hypervisor
level metrics. vmBBThrPred is different from other approaches in the lit-
erature that usually either inject monitoring codes to VMs or use periph-
eral devices to directly report their actual throughput. vmBBThrPred,
instead, uses sensitivity values of VMs to cloud resources (CPU, Mem,
and Disk) to predict their throughput under various working scenarios
(free or under contention); sensitivity values are calculated by vmBBPro-
filer that also uses only Hypervisor level metrics. We used a variety of
resource intensive benchmarks to gauge efficiency of our approach in our
VMware-vSphere based private cloud. Results proved accuracy of 95%
(on average) for predicting throughput of 12 benchmarks over 1200 h of
operation.

Keywords: Performance prediction and modeling · Throughput
degradation · Cloud infrastructure

1 Introduction

The demand for cloud computing has been constantly increasing during recent
years. Nowadays, Virtualized Data Centers (vDCs) accommodate thousands of
Physical Machines (PMs) to host millions of Virtual Machines (VMs) and fulfill
today’s large-scale web applications and cloud services. Many organizations even
deploy their own private clouds to better manage their computing infrastruc-
ture [7]. In fact, it is shown that more than 75 % of current enterprise workloads

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 18–33, 2016.
DOI: 10.1007/978-3-319-44482-6 2

vmBBThrPred 19

Fig. 1. Relative performance of eight applications when co-located with a Mem+Disk
(unzipping large files) intensive application

are currently running on virtualized environments [11]. Despite massive capi-
tal investments (tens to hundreds of millions of dollars) however, their resource
utilization rarely exceeds 20 % of their full capacity [11,14]. This is because,
alongside its many benefits, sharing PMs also leads to performance degradation
of sensitive co-located VMs and could undesirably reduce their quality of service
(QoS) [13]. Figure 1 shows relative throughput (with regard to their isolated run)
of eight high resource demanding VMs when co-located with a background VM
running a high Memory+Disk intensive application (unzipping large files). All
VMs had 2vCPU, 2 GB of RAM, and 20 GB of Disk. For each test, VMs were
pinned on the same set of CPUs/Cores and placed on the same disk to compete
for CPU cycles, conflict on L1/L2/L3 memory caches, and interfere with each
others’ disk access. As it can be inferred from Fig. 1, despite being classified
as resource demanding, five of these applications (e.g., apache) could be safely
co-located with the background resource intensive application (Mem+Disk) –
assuming that performance degradation of up to 10 % is allowed. Nevertheless,
a conservative view would separate/isolate all VMs to allocate them on sepa-
rate PMs. This simple example shows/motivates that understanding, measuring,
and predicting performance degradation is essential to identify VMs that can be
safely co-located with minimum interference to each other. It also motivates the
importance of designing effective affinity rules to guarantee optimal placement
of VMs, and consequently maximize the overall performance of vDCs.

This work is a major step to predict throughput, and consequently per-
formance degradation of general purpose applications/VMs through profiling a
variety of benchmarks under different working scenarios and resource limita-
tions. Such profiles are then used to predict throughput of a VM only based on
the amount of resources (CPU, Mem, and Disk) it is consuming as seen by the
Hypervisor. We used 12 well-known benchmarks with different resource usage
signatures (CPU/Mem/Disk intensive and various combinations of them) to run
on three different PMs. Results were collected and used to model throughput,
and consequently performance degradation. We finally aligned our results with
actual throughput of these benchmarks to show the accuracy of our approach:
VM Black-Box Throughput Predictor (vmBBThrPred).

Our contribution in this work can be highlighted as: unlike all available simi-
lar approaches, (1) vmBBThrPred uses only Hypervisor level metrics to predict
throughput and performance degradation of a VM. No code/agent is required

20 J. Taheri et al.

to be developed, installed, and/or executed inside VMs; (2) vmBBThrPred pro-
vides a systematic approach to formulate throughput of VMs; (3) vmBBThrPred
uses a wider range of benchmarks (from pure CPU/Mem/Disk intensive bench-
marks to various combination of CPU+Mem+Disk intensive ones) to produce
such formulas; and (4) vmBBThrPred produces a polynomial formula for each
application/VM so that its throughput can be directly and dynamically (online)
calculated according to its current CPU, Mem, and Disk utilization.

The remainder of this paper is structured as follows. Section 2 reviews the
related work. Section 3 explains the architecture of vmBBThrPred and elabo-
rates on its components. Section 4 demonstrates vmBBThrPred’s step-by-step
procedures. Section 5 lays out our experimental setup. Results are discussed and
analyzed in Sect. 6, followed by Conclusion in Sect. 7.

2 Related Work

The ever increasing popularity of virtualization [12] in vDCs is probably one of
the most significant paradigm shifts in the IT industry. Through virtualization,
PM resources are partitioned for VMs to run services. Running a highly efficient
vDC is however not a trivial task. Firstly, vDCs are envisaged to run several VMs
on each PM assuming proper partitioning of its resources. Although resources
like CPU and Network seem to be fairly partition-able, Mem and Disk are proven
to be much more cumbersome. Secondly, vDCs need to provide accurate/online
operational information to both administrators and users so that functionality
of deployed services can be monitored, controlled, and ensured at all times. This
requires identifying under-performing VMs – those who suffer the most because
of co-location – immediately, effectively, and dynamically. This also demands the
ability of vDC management systems to accurately – at least within acceptable
margins – predict the performance of different VMs in various working scenarios;
i.e., isolated or co-located as well as under or free of resource contentions. This
concern, in particular, seems to be more important than the other two because
it could directly lead to further optimizations of the whole system as well as
significant increase of the productivity of vDCs.

To date, many approaches are proposed to measure throughput, and conse-
quently performance degradation of VMs in vDCs; they can be categorized into
the following two main themes.

High-Level (SLA) Based Measurements: Approaches in this group use
high-level metrics to measure actual throughout of an application/VM (e.g.,
the number of transactions a SQL server responds to per second) in its current
situation. They all rely on developing tailor-made foreign agents/codes for each
application, installing them in VMs, and giving them enough system privileges
to collect and send out performance data.

Xu et al. [19] proposed two Fuzzy based systems (global and local) to mon-
itor resource utilization of workloads in VMs. The local system is an SLA sen-
sor that is injected into a VM to directly compare its performance with the
desired SLA, and request or relinquish resources (e.g., CPU share) if required.

vmBBThrPred 21

The global controller receives all local requests and decides what VM should get
more resources in cases of contention. Tested for CPU-intensive workloads, their
self-learning fuzzy systems could efficiently tune itself to demand for “just right”
amount of resources. Their approach however assumed that high-level SLAs (e.g.,
http requests per second) can be accurately defined and measured per applica-
tion/VM. Rao et al. [16] proposed VCONF, an auto-configuration RL-based
agent, to automatically adjust CPU and Memory shares of VMs to avoid perfor-
mance degradation. They, too, used direct application measurements to generate
efficient polices for their Xen based environment. Watson et al. [18] used prob-
abilistic performance modeling to control system utilization and response time
of 3-tier applications such as RUBiS. They showed that CPU allocation of VMs
are enough to control high level SLAs such as response time of applications.
Caglar et al. [9] proposed hALT, an online algorithm that uses Artificial Neural
Networks (ANNs) to link CPU and Memory utilization of CPU intensive appli-
cations/tasks in Google trace data to performance degradation of VMs. They
used another ANN to recommend migration of VMs to assure QoS for Google
services. For real deployments, they still need an agent to report “performance”
of an application/VM to feed and train their ANNs. Bartolini et al. [8] proposed
AutoPro to take a user-defined metric and adjust VMs’ resources to close the
gap between their desired performances and their current ones. AutoPro uses a
PI controller to asymptotically close this gap and can work with any metric –
such as frame/s, MB/s, etc. – as long as developers can provide it.

Approaches in this group are generally more accurate than others because
they use direct measurements/feedback from applications inside VMs. Their
usage however could be very limited, because (1) they all rely on an inside
tailor-made agent to report the exact throughput of an application/VM, and
(2) their focus is mostly to improve performance of VMs rather than modeling
throughput of applications/VMs according to their resource utilization.

Low-Level (Resource) Measurements: Approaches in this group use low-
level metrics (e.g., CPU utilization) to predict throughput (e.g., the response
time of a web-server) of an application/VM in its current situation. They too
rely on developing tailor-made foreign agents/codes for each application/VM,
installing them in the VM, and giving them enough system privileges to collect
and send out performance data.

Q-cloud [15] uses a feedback-agent inside each VM to report its CPU utiliza-
tion. They used five CPU intensive application from SPECjbb [1] and showed
that there are direct relations between the amount of CPU a VM uses with its
actual throughput. Using a MIMO linear model, authors then model interfer-
ence of CPU intensive applications and feedback “root” in Hyper-V to adjust
CPU allocations of VMs to improve their performances. Du et al. [10] proposed
two profiling agents to collect guest-wide and system-wide performance met-
rics for developers so that they can accurately collect information about their
products in KVM-based virtualized environments. They did not use any specific
benchmark, but simple programs to engage different parts of a system.

22 J. Taheri et al.

Approaches in this group generally predict throughput of an application/VM
in relation to its resource utilization, although mostly to avoid performance
degradations rather than modeling and predicting throughput. Also, although
these approaches can be easily modified to use Hypervisor level metrics – instead
of reports from their inside agents – to predict applications’ throughout, their
focus on only CPU or Disk intensive applications makes them non-generalizable.

After close examination of many techniques presented to date, we have
noticed the following shortcomings. Firstly, many techniques require an
agent/code to be injected to a VM to report either its throughput or its perfor-
mance data. The need to have access to VMs and permission to run tailor-made
foreign codes is neither acceptable not practical in most general cases. Secondly,
many techniques aim to predict throughput of an application only to avoid con-
tention by using/controlling one resource type (CPU, Mem, or Disk). Finally,
most approaches target known applications that do not have multidimensional
resource demands: they are pure CPU, Mem, or Disk intensive.

To address these shortcomings, we designed vmBBThrPred to directly model
and formulate throughput of an unknown application/VM according to its
resource usages. vmBBThrPred is an application-agnostic non-intrusive app-
roach that does not require access to the VM to run foreign agents/codes: it only
uses Hypervisor level metrics to systematically relate multidimensional resource
usage of a VM to its actual throughput, and consequently performance degra-
dation for various working scenarios (free or under resource contention).

3 Architecture of vmBBThrPred

The key idea of vmBBThrPred is to use the sensitivity values of an applica-
tion to model/formulate its throughout. vmBBProfiler, our systematic sensi-
tivity analysis approach in [17], was designed to pressure an unknown VM to
work under different working scenarios and reveal its sensitivity to each resource
type. vmBBProfiler calculates three sensitivity values (∈ [0, 1]) upon profiling a
VM: Senc, Senm, and Send to respectively reflect sensitivity of a VM to its CPU,
Mem, and Disk. For example, Senc = 1 implies that the profiled VM significantly
changes its behavior, and consequently its throughput when it suffers to access
CPU. Senc = 0 implies that throughput of the profiled VM is insensitive to its
CPU share; e.g., when the VM is running a Disk intensive application. Other
values of Secc/m/d reflect other levels of sensitivity: the larger the Secc/m/d the
more sensitivity to a resource type. vmBBProfiler is also application-oblivious
and uses no internal information about the nature of the applications running
inside the VM when profiling it; Fig. 2 shows the architecture of both vmBBPro-
filer and vmBBThrPred and how they are related to each other. All components
of vmBBProfiler and vmBBThrPred are totally separate and performing non-
redundant procedures; both are run outside the VM and are currently imple-
mented using PowerShell [2] and PowerCLI [4] scripts for Windows-7 and above.

vmBBProfiler: The key idea in vmBBProfiler is to identify how a VM behaves
under resource contention. Its architecture relies on two components (Fig. 2):

vmBBThrPred 23

Fig. 2. Architecture of vmBBProfiler and vmBBThrPred

vmProfiler and vmDataAnalyser. The vmProfiler, in turn, consists of two parts:
vmLimiter and vmDataCollector to respectively command a Hypervisor, through
VMware-vCenter [5] in our case, to impose resource limits to a VM, and
collect/record its behavior under the imposed limits.

vmProfiler aims to emulate contention through limitation. That is, instead
of challenging a VM to compete with other co-located VMs to access/use
resources (CPU, Mem, and/or Disk), the vmLimiter limits resource usage of
the VM so that it reveals its behavior under hypothetical contentions. We
showed in [17] that although resource starvation under “contention” and “lim-
itation” are different, they always lead to very similar performance degrada-
tion (less than 5 % different on average). cpu/mem/diskLimit ∈ [0, 1] sets the
percentage of CPU/Mem/Disk that the VM can use. For example, if a VM
has two 2.4 GHz vCPUs, cpuLimit = 0.25 would limit CPU usage of this VM
to 0.25 × 2 × 2.4 = 1.2GHz. After imposing a set of limits to resources,
vmDataCollector is then launched to collect/record performance of the VM
through polling several Hypervisor level metrics; it only polls VM metrics (e.g.,
CPU utilization) that are already collected by the Hypervisor: it neither demands
nor needs any specific metric from the VM itself.

Table 1 shows a sample profiling table upon completion of vmBBProfiler; this
table will be refereed to as “ProfTable” for the rest of this article. In this table,
cpuLimit ∈ {c1, c2, . . . , cnc}, memLimit ∈ {m1,m2, . . . ,mnm}, and diskLimit
∈ {d1, d2, . . . , dnd} produce a total number of nc × nm × nd profiling scenarios.
metricX is the average of the X-th Hypervisor metrics (e.g., disk.read.average
(KBps)) during the imposed limitation scenario. It is worth noting that each met-
ric is a series of values during the profiling phase (e.g., 15 values for 5 min of pro-
filing in [17]), however because they showed to have negligible standard deviation,
their average values proved to be accurate enough to be used in vmBBThrPred.

Upon profiling behavior of a VM under several limitation profiles, vmData-
Analyser is invoked to analyze the profiled data and calculate sensitivity of the
VM to its CPU, Memory, and Disk allowances; they are respectively named Senc,

24 J. Taheri et al.

Table 1. vmBBProfiler output table (ProfTable) after profiling a VM

Scenario # cpuLimit memLimit diskLimit (metric1, metric2, . . . , metricK)

1 c1 m1 d1 · · ·
2 c1 m1 d2 · · ·
· · · · · · · · · · · · · · ·
nc × nm × nd cnc mnm dnd · · ·

Senm, and Send. For example, it would suggest that the application in the VM,
which is assumed responsible for its resource demands, would always stay more
sensitive to its CPU allocation than to its Memory bandwidth. As a result, it
speculates that performance of this VM, for example, would be degraded more
if its CPU-share – as opposed to its Memory share – is halved.

vmBBThrPred: After profiling a VM using vmBBProfiler, vmBBThrPred is
launched to use its sensitivity values and predict its throughput under any work-
ing scenario, even those that have not been observed in Table 1. vmBBThrPred
consists of two parts: vmModeler and vmPredictor. vmModeler uses Senc/m/d

values and the ProfTable (both calculated and provided by vmBBProfiler) to
produce a polynomial model to relate resource utilization of a VM to its through-
put; vmPredictor connects directly to VMware-vCenter [5], dynamically (online)
polls CPU, Mem, and Disk utilization of a VM, and uses the produced formula
to predict throughout (Thr) and performance degradation (PD = 1− Thr) of the
VM at its current working condition.

4 Procedures of vmBBThrPred

The first step before delving into the procedures of vmBBThrPred is to select
several Hypervisor metrics that can directly or indirectly relate to the actual
throughout of an application/VM. Here, because vmBBThrPred is designed to
be application-oblivious, we define the term “throughput” as a normalized value
(∈ [0, 1]) where Thr = 1 always reflect the maximum performance of a VM.
Similarly, “performance degradation” (PD) is defined as (1−Thr) to reflect the
amount of degradation a VM encounters in its current working situation. For
the apache server (2vCPUs, 2 GB of RAM, and 20 GB) in our experimental
setup (Sect. 5) for example, we observed the maximum response rate of 10900
‘requests per second’, when the VM hosting the apache server was run in an
isolated environment. After migrating the VM to a contention environment, its
respond rate was reduced to 4045. In this case, the respond rate of 10900 and 4045
would map to Thr = 1.00 (PD = 0.00) and Thr = 4045/10900 = 0.37 (PD = 0.63),
respectively.

vmBBThrPred 25

4.1 Identify Relevant Hypervisor Metrics

We performed a series of engineered experiments to find Hypervisor metrics
that have significant correlations with the actual throughput of different appli-
cations. Note that the actual throughput of applications/VMs is not accessi-
ble/measurable for general purpose VMs – because of the need to install/inject
monitoring codes. However, we could have access to these values because the
Phoronix Test Suits [3] that we used in this article actually provides such detailed
values at the end of its runs. It is worth noting that we used such detailed values
only to identify (reverse-engineer) relative Hypervisor metrics; general use cases
of vmBBThrPred does not require actual throughput measurements.

To this end, we used four benchmarks (out of the total 12 for this article) with
different resource utilization behavior from the Phoronix Test Suite [3] to iden-
tify correlated metrics. They were ‘apache’ to represent CPU intensive (H/–/–),
‘blogbench’ to represent Memory intensive (–/H/L), ‘aio-stress’ to represent Disk
intensive (–/–/H), and ‘unpack-linux’ to represent CPU+Mem+Disk intensive
(L/L/L) applications/VMs. We tested each benchmark on three different PMs
(Table 2) for 64 different contention scenarios (Table 1). Actual throughput values
of these runs (provided by the Phoronix at the end of each run) are statistically
correlated with 134 metrics provided by our VMware-vSphere [6] private cloud
to identify the most significant/influential ones. Table 3 lists five metrics with the
highest correlation to the actual throughput for each benchmark.

Table 2. Characteristics of used physical machines

PM name CPU family # Cores (speed) Memory Cache (L1/L2/L3)

AMD AMD Opteron 6282 SE 64 (2.599GHz) 256GB (768KB/16MB/16MB)

DELL Intel i7-3770 8 (3.40GHz) 16GB (256KB/1MB/8MB)

SGI Intel Xeon(R) E5420 8 (2.493GHz) 32GB (256KB/12MB/–)

As it can be seen, for one-resource-intensive benchmarks (Table 3a–c),
throughput of apache, blogbench, and aio-stress is highly correlated with CPU,
Mem, and Disk, respectively. For the unpack-linux with multi-resource-intensive
nature however, metrics for all three resource types are listed. To compile a list
of metrics to cover all cases, we averaged correlation values for all four bench-
marks and build Table 4. Based on this table, we chose the cpu.usage.average
(%), mem.usage.average (%), and disk.usage.average (KBps) as the three most
correlated metrics to actual throughput of general purpose/unknown applica-
tions/VMs. In Sect. 5, we will show that throughout, and consequently perfor-
mance degradation of all sorts of applications with various utilization patterns
can be accurately (≈90–95 %) predicted using these selected metrics.

4.2 Blind Prediction

After selecting three of the most correlated Hypervisor metrics to actual through-
put of applications/VMs, we performed another set of statistical analysis to dis-

26 J. Taheri et al.

Table 3. Five most correlated Hypervisor metrics for the selected benchmarks

(a) apache

Metric Name Correlation

cpu.run.summation(millisecond) 0.99
cpu.usage.average(%) 0.99
cpu.ready.summation(millisecond) 0.99
cpu.demand.average(MHz) 0.99
cpu.overlap.summation(millisecond) 0.98

(b) blogbench

Metric Name Correlation

mem.active.average(KB) 0.69
mem.usage.average(%) 0.69
mem.granted.average(KB) 0.68
mem.activewrite.average(KB) 0.67
mem.entitlement.average(KB) 0.65

(c) aio-stress

Metric Name Correlation

virtualdisk.write.average(KBps) 0.99
datastore.write.average(KBps) 0.98
disk.usage.average(KBps) 0.98
virtualdisk.mediumseeks.latest(number) 0.98
disk.numberwrite.summation(number) 0.97

(d) unpack-linux

Metric Name Correlation

disk.usage.average(KBps) 0.94
virtualdisk.mediumseeks.latest(number) 0.90
cpu.used.summation(millisecond) 0.89
cpu.usage.average(%) 0.88
mem.usage.average(%) 0.79

Table 4. Six most correlated Hypervisor metrics for all benchmarks

Metric name Correlation

disk.numberwrite.summation (number) 0.87

disk.usage.average (KBps) 0.85

cpu.usage.average (%) 0.77

cpu.used.summation (millisecond) 0.77

mem.usage.average (%) 0.61

mem.latency.average (%) 0.55

cover the actual relation (formula) between the selected metrics and throughput
values. To this end, we observed that there is a significant alignment between
sensitivity values computed by vmBBProfiler and calculated correlation values.
Figure 3 aligns “Correlation to Throughput” with “Sensitivity” values calculated
by vmBBProfiler for all benchmarks in Table 5 on all PMs in Table 2. Comparing
such alignments with the “ideal” line, which represent a perfect alignment, in
these sub-figures motivates us to believe/hypothesize that the actual throughput
of applications/VMs can be accurately predicted using their sensitivity values
instead of their correlation values. To mathematically formulate this, we designed
the following formula to predict “throughput” of a VM using only its current
normalized CPU, Mem, and Disk utilization values.

Thr(C,M,D)=C×Senc+M×Senm+D×Send

Senc+Senm+Send (1)

In this formula, C, M, and D are respectively the proportional of CPU,
Mem, and Disk utilization of a VM with respect to their counterpart values in
an isolated run. For example, assume a VM with sensitivity values of Senc = 1.00,
Senm = 0.05, and Send = 0.03 uses 80 % of its CPU, occupies 22 % of its Mem,
performs 25 KBps of Disk activity, and responds to 200 requests per second when
it is run in a contention free environment (isolated run). Also assume its hosting

vmBBThrPred 27

Fig. 3. Point-by-point alignment of “Correlation to Throughout” with “Sensitivity”
values

VM is migrated to a PM where utilization of its resources are reduced to 45 %
of CPU, 10 % of Mem, and 8 KBps of Disk because of contention. According
to Eq. 1, its throughout, in this case, is predicted to be 55 % of its maximum
throughout (200) in the isolated run; i.e.:

Thr=

(
45%
80%×1.00+ 10%

22%×0.05+ 8KBps
25KBps×0.03

1.00+0.05+0.03

)
× 200 = 0.55 × 200

The rationale behind this formula is based on our direct observations across
months of profiling. To explain it, assume CPU-usage of a CPU intensive appli-
cation (such as an apache server) is 90 % and it responds to 10000 requests
per seconds. Now assume that its CPU-usage is reduce to 30 % because of con-
tention. The general sense, also confirmed by direct measurements, dictates that
the VM should respond to one-third of 10000; i.e. 30/90× 10000 = 3333. For
more complicated cases where a VM is sensitive to more than one resource,
assume a Mem+Disk application (such as blogbench) is using 10 % of CPU,
70 % of Mem, and perform 17,000 KBps on Disk to conduct 100,000 blog activ-
ities in a contention free environment. Now assume this VM is migrated to
another PM and its resource usages are reduced to 9 % of CPU, 63 % of Mem,
and 8500 KBps because of contention. In this case, although its Mem- and disk-
usage are respectively reduce by 10 % and 50 %, its final throughput will not
reduce by max(10 %, 50 %) = 50 %. This is because a VM’s throughput is actu-
ally reduced based on its nature and in proportion to how sensitive it is to each
of its resources. For blogbench in this example with Senc = 0.00, Senm = 0.75,
and Send = 0.20, we observed (measured) the final throughput of 83,460 that is
very close to 82,000 that Eq. 1 predicts as:

Thr=

(
9
10×0.00+ 63

70×0.75+ 8500
17000×0.20

0.00+0.75+0.20

)
× 100000 = 0.82 × 100000

In Sect. 5 we will show that using sensitivity values to weight average usage
proportion of resources leads to accurate blind prediction of throughput for all
benchmarks we used in this work.

28 J. Taheri et al.

4.3 VmModeler Procedures

Algorithm 1 shows procedural steps of modeling, and consequently deriving a
formula to relate throughput of an application/VM to its CPU, Mem, and Disk
utilization. Modeling can be performed in two modes: Blind or Assisted. In the
Blind mode, it is assumed that vmBBThrPred has no knowledge of the appli-
cation inside a VM, and it purely relies on the sensitivity values reported by
vmBBProfiler (Senc/m/d) to predict throughput of the VM under different work-
ing scenarios. In the Assisted mode, it is assumes that there exists a “known”
measurement/metric that could directly or indirectly reflect the actual perfor-
mance of a VM. For example, the amount of network traffic for an apache
server or the amount of IOPs (i/o operation per second) for an ftp server can
both indirectly reflect performance of these servers. The Assisted mode is to
address the current theme of using internal and/or external measurements to
predict throughput, and consequently performance degradation of a VM in its
current working condition. We included this mode only to show that not only
vmBBThrPred can be easily adopted/employed by current systems, but also
its bundling with vmBBProfiler yields more than 95 % accuracy in predicting
throughout of any application with any resource sensitivity. Similar to vmBBPro-
filer [17], vmModeler also uses the normalized values of C, M, and D to propose
a polynomial function with prototype

Thr(C,M,D) = x1C + x2M + x3D + x4CM + x5CD + x6MD + x7CMD + x8 (2)

where C, M, and D are the current values of cpu.usage.average (%) divided
by 100, mem.usage.average (%) divided by 100, and disk.usage.average (KBps)
divided by 50000 (the maximum read/write speed for our testing environment),
respectively.

To calculate x1 . . . x8, we use ProfTable (Table 1) generated during calcu-
lation of Senc/m/d by vmBBProfiler. In this table, for nc=nm=nd = 4 (where
cx = mx = dx = x × 0.25, ProfTable would have 64 rows. Using these 64 runs,
we define:

A =

⎡
⎢⎢⎢⎢⎢⎣

C1 M1 D1 (C1M1) (C1D1) (M1D1) (C1M1D1) 1

...
...

...
...

...
...

...
...

C64 M64 D64 (C64M64) (C64D64) (M64D64 (C64M64D64) 1

⎤
⎥⎥⎥⎥⎥⎦ (3)

X =

⎡
⎢⎣
x1

...
x8

⎤
⎥⎦ Y 1 =

⎡
⎢⎢⎢⎣

C1
C64

Senc+
M1
M64

Senm+
D1
D64

Send

Senc+Senm+Send

...
C64
C64

Senc+
M64
M64

Senm+
D64
D64

Send

Senc+Senm+Send

⎤
⎥⎥⎥⎦ Y 2 =

⎡
⎢⎣

T1
T64
...

T64
T64

⎤
⎥⎦ (4)

In Eq. 3, normalized values of C, M, and D for the k-th run in ProfTable are
used to fill the k-th row of matrix A. In Eq. 4, each element/row of vector
Y1 is the weighted average of relative CPU, Mem, and Disk utilization of the

vmBBThrPred 29

Algorithm 1. Algorithm for vmModeler in both modes
1: procedure vmModeler((Senc/m/d, ProfTable)) Input : Senc/m/d and ProfTable

→ calculated and provided by vmBBProfiler
Output: ThrA(C,M,D) and/or ThrB(C,M,D)

2: Use ProfTable to Initialize Matrix A � Eq. 3
3: Use ProfTable and Senc/m/d to Initialize Matrixes Y1,Y2 � Eq. 4
4: Calculate X for Y← Y1 and Build ThrB(C,M,D) � Eqs. 5, 2
5: Calculate X for Y← Y2 and Build ThrA(C,M,D) � Eqs. 5, 2

return ThrA and/or ThrB
6: end procedure

k-th run with respect to the 64-th run (the run with no limitation and maxi-
mum performance). Vector Y2, only for the assisted mode, records the relative
performance value of an indirect-metric that can be used to directly or indi-
rectly reflect the performance of a VM; it is assumed that T64 reflects the
maximum throughput/performance. For example, we used disk.usage.average
(KBps) (T64 = 46000 KBps) as the indirect-metric for aio-stress in our experi-
mental setup (more information in Sect. 5). Using linear regression, the optimal
value of X can be calculated as:

A64×8 × X8×1 = Y64×1 =⇒ X = (ATA)−1ATY (5)

For Y←Y1, the X calculated using Eq. 5 yields ThrB (B for Blind) in Eq. 2;
Y←Y2 yields ThrA (A for assisted) in Eq. 2.

In Algorithm 1, operations 2–3 initialize three matrices; operation 4 calculates
and builds ThrB; operation 5 builds ThrA. Note that computing ThrB and
ThrA are independent of each other; therefore if no “indirect-metric” could be
identified to calculate ThrA, vmModeler can still build ThrB. In Sect. 5 we will
show that ThrA is, as expected, more accurate (≈96 %) than ThrB (≈90 %) for
all cases/benchmarks.

5 Experimental Results

To validate our proposed vmBBThrPred, we ran about 1200 h (50 days) of
actual running and profiling benchmarks on our private cloud in the School
of Information Technologies at the University of Sydney. We used three different
PMs (Table 2) and profiled 12 different benchmarks (Table 5), varying from pure
CPU/Mem/Disk intensive to various combination of CPU+Mem+Disk ones.

Benchmark Selection: We used the Phoronix Test Suite [3] (one of the most
comprehensive testing and benchmarking platform) to evaluate performance and
accuracy of vmBBThrPred. Table 5 lists the 12 benchmarks (out of 168 available
ones in v5.2.1) we used for our experiments. We deliberately picked benchmarks
with different intensities of resource usage profile of CPU, Mem, and Disk to
cover realistic applications. In this table ‘H’, ‘L’, and ‘–’ respectively mean High,

30 J. Taheri et al.

Low, and Negligible resource utilization. From the 12 benchmarks in Table 5,
eight run CPU intensive, four run Memory intensive, and five run Disk intensive
processes.

Experimental Results: Table 5 shows experimental results of using our app-
roach (vmBBThrPred) to derive polynomial formulas for the selected 12 bench-
marks. There are three rows for each benchmark: one row for each PM in Table 2.
As it was explained in Sect. 4, vmBBThrPred can work in two modes: Blind and
Assisted. ThrB is built purely based on Senc/m/d and the ProfTable (Table 1);
ThrA additionally uses the mentioned indirect-metric in Table 5.

6 Discussion and Analysis

We highlight the most stimulating conclusions from Table 5 in this section.

6.1 Accuracy of vmBBThrPred

Table 5 shows different prediction accuracy for different benchmarks: ranging
from 76 %–99 % for the Blind (ThrB) and 94 %–100 % for the Assisted (ThrA)
mode. For CPU intensive applications (marked as (*/–/–)), the accuracy of

Table 5. Results for using vmBBThrPred on the selected benchmarks

Benchmark PM Senc / Senm / Send ThrB(C,M,D) ThrA(C,M,D)
formula acc. formula acc. indirect-metric

apache
(H/–/–)

AMD 0.95 / 0.00 / 0.00 (1.02)C 95% (1.03)C–0.05 98%
cpu.latency.
average(%)

DELL 0.97 / 0.00 / 0.00 (1.02)C 97% (0.94)C+0.06 98%
SGI 0.97 / 0.03 / 0.00 (0.99)C 96% (1.00)C+0.04 98%

john-the-
ripper

(H/–/–)

AMD 0.93 / 0.00 / 0.00 (1.18)C 95% (1.14)C+0.04 95%
cpu.latency.
average(%)

DELL 0.96 / 0.00 / 0.00 (1.09)C+0.01 95% (1.06)C+0.08 97%
SGI 0.96 / 0.00 / 0.00 (1.17)C 91% (1.11)C+0.13 95%

n-queens
(H/–/–)

AMD 0.95 / 0.00 / 0.00 (1.02)C 97% (1.07)C–0.05 99%
cpu.idle.sum
mation(msec)

DELL 0.97 / 0.00 / 0.00 (1.01)C 99% (1.02)C 100%
SGI 0.97 / 0.00 / 0.00 (1.02)C 99% (1.03)C 100%

build-apache
(H/–/–)

AMD 0.94 / 0.00 / 0.00 (1.13)C+0.01 97% (1.19)C–0.03 97%
cpu.latency.
average(%)

DELL 0.96 / 0.00 / 0.00 (1.05)C 99% (1.07)C–0.01 99%
SGI 0.96 / 0.04 / 0.00 (1.10)C+0.01 98% (1.16)C–0.01 99%

build-php
(H/–/–)

AMD 0.95 / 0.02 / 0.00 (1.01)C 98% (1.02)C–0.01 98%
cpu.latency.
average(%)

DELL 0.96 / 0.00 / 0.00 (1.04)C 98% (1.03)C+0.02 98%
SGI 0.97 / 0.07 / 0.00 (0.96)C+0.01 95% (1.00)C+0.03 98%

dcraw
(L/–/–)

AMD 0.54 / 0.00 / 0.00 (2.10)C 98% (2.38)C–0.11 99%
cpu.idle.sum
mation(msec)

DELL 0.55 / 0.00 / 0.00 (2.16)C+0.02 98% (2.26)C–0.02 98%
SGI 0.48 / 0.04 / 0.00 (2.01)C 94% (2.24)C–0.03 98%

x264
(L/–/–)

AMD 0.33 / 0.01 / 0.00 (1.28)C 96% (1.32)C–0.06 97%
cpu.latency.
average(%)

DELL 0.39 / 0.00 / 0.00 (1.27)C 95% (1.34)C–0.08 98%
SGI 0.41 / 0.02 / 0.00 (1.28)C 98% (1.30)C–0.02 98%

unpack-linux
(L/L/L)

AMD 0.19 / 0.10 / 0.40 (1.59)C+(1.61)D–(1.14)CD–0.07 95% (1.76)C+(4.91)D–(6.04)CD–0.53 98%
disk.numwrite.
summation

DELL 0.21 / 0.09 / 0.25 (1.36)D+0.01 95% (1.60)D–0.07 96%
SGI 0.18 / 0.09 / 0.35 (0.91)C+(1.09)D–(0.18)CD–0.01 94% –(0.58)C–(0.26)D+(5.04)CD+0.33 95%

blogbench
(–/H/L)

AMD 0.09 / 0.74 / 0.16 (0.93)M 77% (0.60)M+0.41 90%
mem.latency.
average(%)

DELL 0.00 / 0.75 / 0.20 (0.20)M+(0.64)D+(0.16)MD+0.37 76% –(0.89)M+(0.40)D+(0.34)MD+0.98 90%
SGI 0.11 / 0.81 / 0.18 (0.15)C+(0.93)M–(0.03)CM 84% (0.46)C+(0.20)M+(0.06)CM+0.28 91%

bork
(–/L/L)

AMD 0.00 / 0.47 / 0.18 (0.75)M+(0.26)D+(0.05)MD+0.02 84% –(0.03)M+(0.94)D+(0.11)MD 99%
mem.activewri
te.average(KB)

DELL 0.00 / 0.45 / 0.09 (0.80)M+(0.39)D–(0.10)MD 82% (0.03)M+(1.14)D–(0.03)MD+0.05 98%
SGI 0.00 / 0.53 / 0.20 (0.82)M+(0.43)D–(0.15)MD 83% (0.04)M+(1.24)D–(0.08)MD–0.01 97%

compress-gzip
(–/L/H)

AMD 0.00 / 0.00 / 0.55 (1.37)D+0.07 94% (0.85)D+0.40 97%
disk.numwrite.
summation

DELL 0.00 / 0.00 / 0.45 (0.48)M+(0.52)D+(0.22)MD+0.11 87% (0.16)M+(1.01)D+(0.42)MD 94%
SGI 0.00 / 0.00 / 0.47 (0.51)M+(0.48)D+(0.25)MD+0.09 83% (0.10)M+(1.08)D+(0.40)MD 95%

aio-stress
(–/–/H)

AMD 0.00 / 0.31 / 0.84 (0.60)M+(0.68)D–(0.02)MD 90% (1.10)D+(0.33)MD 99%
disk.maxtotal
latency.latest

DELL 0.00 / 0.32 / 0.91 (0.40)M+(0.95)D–(0.11)MD–0.01 96% (0.13)M+(1.22)D–(0.06)MD–0.05 98%
SGI 0.00 / 0.30 / 0.80 (1.00)M+(0.75)D–(0.19)MD–0.02 86% –(0.05)M+(2.01)D+(0.75)MD+0.02 99%

vmBBThrPred 31

vmBBThrPred were significantly high (>94 %). Accuracy of ThrA/B for disk
intensive applications ((–/L/L) and (–/*/H)) were also noticeably high with the
minimum accuracy of 82 % and 94 % for ThrB and ThrA, respectively. Memory
intensive applications, (–/H/*) and (–/L/*), proved to be much more cumber-
some than the other two. In this case, vmBBThrPred accuracy dropped as low
as 76 % and 90 % for the Blind and Assisted modes, respectively. This is well
aligned with other experiments in the literature that identify Memory Caches
(L1/L2/L3) as one of the most influential components in virtualized environ-
ments. It is also well aligned with Table 4 in which Memory bandwidth showed
less correlation with throughput as compared with CPU and Disk.

6.2 Transferability of Results

Table 5 shows a variety of formulas for different benchmarks on different PMs.
Nevertheless, in most cases the formula was almost identical across PMs. For
CPU intensive applications, (*/–/–), ThrA/B are almost identical across PMs.
Disk intensive applications, (–/L/L) and (–/*/H), have also led to similar formu-
las. Throughput of memory intensive applications however, (–/H/*) and (–/L/*),
could not be modeled using similar formulas; they also varied across PMs. This
could be related to the internal nature of CPU structure and the size of caches
in these PMs. As it can be observed in Table 2, these PMs have different cache
sizes. The AMD machine for example has the largest cache size; we believe this is
why it has the most straight forward formula for all cases. For example, ThrA/B
formulas for blogbench with the highest sensitivity to memory is calculated as a
function of ‘M’, while on the other two PMs they are related to ‘C’ and ‘D’ too.
This also confirms that the cache size/structure is very important for virtualized
environments.

6.3 Indirect Metrics

Table 5 also shows the indirect-metric we used for each benchmark to build its
ThrA formulas to achieve slightly better (5 %–10 % more) accuracy than ThrB.
This proves that having “known” metrics to directly or indirectly measure per-
formance of applications could in fact lead to more accurate results. Nevertheless,
we argue that selecting the right “indirect metric” could not be very easy some-
times because not only we need to know the nature of the application/VM, but
we also need to make sure that the chosen metric has a linear relation with
the actual throughput of the application/VM. In fact, selecting a wrong metric
could lead to meaningless formulas, such as selecting a disk related metric (e.g.,
disk.usage.average (KBps)) for a CPU-intensive applications (e.g., apache).

7 Conclusion

In this work, we presented vmBBThrPred to predict throughput, and conse-
quently the performance degradation of general purpose applications/VMs based

32 J. Taheri et al.

on their CPU, Mem, and Disk utilization as seen by the Hypervisor, and the sen-
sitivity values calculated for them by vmBBProfiler. vmBBThrPred can work in
two modes: Blind and Assisted. In the Blind mode, it uses only the Hypervisor
level metrics to derive a polynomial formula in which normalized CPU, Mem,
and Disk utilization values of working VMs can be dynamically (online) plugged
in to predict the immediate throughput of each VM. For the Assisted mode,
an indirect-metric could be nominated by the user so that vmBBThrPred can
derive more accurate formulas. vmBBThrPred was implemented in our VMware-
vSphere based private cloud and proved its efficiency across 1200 h of empirical
studies. Using 12 well known benchmarks to cover all sorts of possible applica-
tions, it managed to successfully build accurate formulas (90 % for Blind and
95 % for Assisted on average) for a various range of applications with different
resource intensity usage profiles. vmBBThrPred is the first Black-Box through-
put predictor, to the best of our knowledge, that uses only basic Hypervisor level
metrics for its very systematic calculations.

References

1. Specjbb (2016). https://www.spec.org/jbb2015/
2. Microsoft powershell (2016). https://msdn.microsoft.com/en-us/mt173057.aspx
3. Phoronix test suite (2016). www.phoronix-test-suite.com/
4. Vmware-powercli (2016). www.vmware.com/support/developer/powercli/
5. Vmware-vcenter (2016). www.vmware.com/products/vcenter-server
6. Vmware-vsphere (2016). www.vmware.com/products/vsphere/
7. Banga, G., Druschel, P., Mogul, J.C.: Resource containers: a new facility for

resource management in server systems (1999)
8. Bartolini, D.B., Sironi, F., Sciuto, D., Santambrogio, M.D.: Automated fine-grained

CPU provisioning for virtual machines. ACM Trans. Architect. Code Optim.
(TACO) 11(3), 27 (2014)

9. Caglar, F., Shekhar, S., Gokhale, A.: Towards a performance interference-aware
virtual machine placement strategy for supporting soft real-time applications in
the cloud (2011)

10. Du, J., Sehrawat, N., Zwaenepoel, W.: Performance profiling of virtual machines.
SIGPLAN Not. 46(7), 3–14 (2011)

11. Hui, C., Shinan, W., Weisong, S.: Where does the power go in a computer system:
experimental analysis and implications. In: 2011 International Green Computing
Conference and Workshops (IGCC), pp. 1–6 (2011)

12. Kundu, S., Rangaswami, R., Dutta, K., Ming, Z.: Application performance mod-
eling in a virtualized environment. In: 2010 IEEE 16th International Symposium
on High Performance Computer Architecture (HPCA), pp. 1–10 (2010)

13. Lingjia, T., Mars, J., Vachharajani, N., Hundt, R., Soffa, M.L.: The impact of mem-
ory subsystem resource sharing on datacenter applications. In: 2011 38th Annual
International Symposium on Computer Architecture (ISCA), pp. 283–294 (2011)

14. Mars, J., Tang, L., Hundt, R., Skadron, K., Soffa, M.L.: Bubble-up: increasing
utilization in modern warehouse scale computers via sensible co-locations (2011)

15. Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-clouds: managing performance inter-
ference effects for QoS-aware clouds (2010)

https://www.spec.org/jbb2015/
https://msdn.microsoft.com/en-us/mt173057.aspx
http://www.phoronix-test-suite.com/
www.vmware.com/support/developer/powercli/
www.vmware.com/products/vcenter-server
www.vmware.com/products/vsphere/

vmBBThrPred 33

16. Rao, J., Bu, X., Xu, C.Z., Wang, L., Yin, G.: VCONF: a reinforcement learning
approach to virtual machines auto-configuration (2009)

17. Taheri, J., Zomaya, A.Y., Kassler, A.: vmbbprofiler: A black-box profiling approach
to quantify sensitivity of virtual machines to shared cloud resources. ACM Trans.
Model. Perform. Eval. Comput. Syst. (March 2016, submitted)

18. Watson, B.J., Marwah, M., Gmach, D., Chen, Y., Arlitt, M., Wang, Z.: Probabilis-
tic performance modeling of virtualized resource allocation (2010)

19. Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif, M.: Autonomic resource man-
agement in virtualized data centers using fuzzy logic-based approaches. Clust.
Comput. 11(3), 213–227 (2008)

Dynamic SLAs for Clouds

Rafael Brundo Uriarte1(B), Francesco Tiezzi2, and Rocco De Nicola1

1 IMT School for Advanced Studies Lucca, Lucca, Italy
{rafael.uriarte,rocco.denicola}@imtlucca.it

2 University of Camerino, Camerino, Italy
francesco.tiezzi@unicam.it

Abstract. In the Cloud domain, to guarantee adaptation to the needs
of users and providers, Service-Level-Agreements (SLAs) would bene-
fit from mechanisms to capture the dynamism of services. The existing
SLA languages attempt to address this challenge by focusing on rene-
gotiation of the agreement terms, which is a heavy-weight process, not
really suitable for dealing with cloud dynamism. In this paper, we pro-
pose an extension of SLAC, a SLA language for clouds that we have
recently defined, with a mechanism that enable dynamic modifications
of the service agreement. We formally describe this extension, imple-
ment it in the SLAC framework and analyse the impacts of dynamic
SLAs in some applications. The advantages of dynamic SLAs are demon-
strated by comparing their effect with that of static SLA and of the
“renegotiation” approach.

1 Introduction

The cloud paradigm is inherently dynamic from both the consumer and the
provider perspectives. From the provider’s standpoint, new resources are added
and removed on-the-fly, whilst service requests and prices vary over time as the
pay-per-use model is employed. From the consumer’s perspective, instead, the
requirements may vary considerably when, e.g., clouds are used to outsource
internal services or to complement the computing capacity through a hybrid
cloud. Such dynamism might change providers and consumers requirements dur-
ing the service provision period. Providers might need to change the agreements,
e.g., to avoid the violation of agreements and to maximise revenues by serving
consumers willing to pay for immediate use of the service [6]. On the other hand,
consumers may modify the service, e.g., to respond to unexpected demands, to
extend the expiration date of a contract or to change the amount of resources
to be provided.

Clouds commonly use Service-Level-Agreements (SLAs) to regulate the pro-
vision of services. A SLA is the formalisation of the service provision character-
istics, which are composed of obligations, rights and guarantees for the involved
parties. In clouds, where consumers entrust crucial data and processes to other

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 34–49, 2016.
DOI: 10.1007/978-3-319-44482-6 3

Dynamic SLAs for Clouds 35

parties, SLAs are necessary and reflecting cloud’s dynamism in contracts is a
crucial open issue. The need for dynamicity can be perceived by considering a
situation in which a cloud provider has overbooked its resources and the load
unexpectedly raises. In such case, the provider to avoid breaching SLAs, paying
fines and violating the consumers’ trust, might want to activate a clause in the
contract that allows him to reduce the resources provided to some consumers
(e.g., number of VMs) offering monetary discounts to compensate this reduc-
tion. Unfortunately, none of the existing SLA definition languages offers this
possibility. Two solutions are commonly employed to mitigate this problem.

In the first, only a generic specification of the service and its quality is
defined. Providers specify generic terms, such as service availability, or even
service classes, such as Silver and Gold, under which new instances are created.
However, this approach provides only a high-level account of the service, which
may be a source of ambiguity for the verification of the service quality. More-
over, the addition of resources or changes in the provided service are subject
to the prices and availability at the moment of the request, which may vary
considerable since the original agreement does not impose them any restriction.

The second approach to mitigate the dynamicity problem in clouds is the
renegotiation of the SLA. However, automatic (re)negotiation of SLAs is com-
plex and time consuming [8,9,14,16]; it entails the costs of formulating, taking
decision and analysing the proposed SLA modifications [9]. It does not offer
the flexibility of acting/planning without the authorisation of the other parties,
and does not guarantee elasticity to the service because requests can always be
refused. Furthermore, renegotiation cannot replace contracts specified in natural
language because they may include conditional clauses which trigger automatic
changes.

To overcome the lack of support for dynamic changes in the SLA definition
languages, we introduce a conceptual framework, devised for the cloud domain,
that enables the specification of conditions and events in which changes (trig-
gered by, e.g., violations or requests from parties) are explicitly permitted by
the SLA. We propose two mechanisms to perform changes in the SLA. The first
mechanism allows unilateral changes, where the authorisation by the involved
parties is not necessary if the conditions defined in the SLA are satisfied. The
second mechanism enables changes only with the explicit authorisation of the
involved parties. Differently from the renegotiation approach, in this case, the
modifications are defined in the contract, which allows the parties to predict
possible changes and speed up the decision-making process. We implement this
framework as an extension of SLAC [17], a SLA definition language for clouds
which, as the other existing definition languages, did not include mechanisms to
support dynamic SLAs.

The main contributions of this paper are: (i) an innovative approach to cap-
ture the dynamism of clouds in the SLAs through the definition of cases in which
the terms of the SLA can be changed; (ii) a formal extension of the SLAC lan-
guage to support dynamic SLAs, and (iii) the implementation and comparison
of our approach against the traditional SLA renegotiation. Before presenting the

36 R.B. Uriarte et al.

extension of SLAC to support dynamism (Sect. 2), some experiments (Sect. 3)
and the impact of dynamic SLAs in different fields (Sect. 4), we briefly discuss
the related works.

A generic SLA framework that supports the reservation of long term capacity
at pre-specified prices is proposed in [7]. The focus is on the service admission
control from the provider side and on providing solutions for capacity allocation
in scenarios in which consumers reserve resources for fixed prices. This approach
is problem specific and the authors clarify that the work is a pragmatic first
step towards more dynamic pricing scenarios. Neither the framework, nor the
SLA definition language to support this feature, nor the mechanism to reserve
the resources are discussed. Similarly, other works provide solutions considering
implicit changes in the services quality level, but, to the best of our knowledge,
none of them defines a conceptual framework with an actual implementation or
studies the contractual nature of such changes and its implications in the SLA.

An interesting discussion on the management perspective of dynamic SLAs
is reported in [9] where the authors stress that, due to rapidly changing require-
ments of consumers and providers, clouds require dynamic SLAs. Also possible
design choices for such systems are surveyed and the main phases of SLA man-
agement, such as admission control, monitoring, SLA evaluation and enforce-
ment are clearly introduced. The focus, however, is on the discussion of the
requirements of management systems, in particular of Openstack, to provide
this flexibility in clouds but the issues of creating dynamic SLAs for clouds are
not addressed.

The WS agreement language is extended in [3,4] to support modifications
at run time using renegotiation; this involves a party requesting the desired
modification and the other one accepting it. An on-line renegotiation extension
for WS-Agreement is instead proposed in [5]; renegotiation templates are intro-
duced which specify the terms that can be modified during the renegotiation
(dynamic or static Service-Level-Objectives). Similarly, many other works pro-
pose renegotiation of SLAs (e.g., [6,11,13]). However, they are not suitable for
the cloud domain since they do not enable the specification of changes in the
agreement without a negotiation process, which involves requests, proposals and
decision-making from the involved parties.

2 Supporting Dynamism in SLAC

The requirements of the parties involved in the service provision in clouds change
rapidly. This changes are not limited to elasticity but can range from business
aspects, e.g., expiration date and payment model, to the quality-of-service, e.g.,
response time. However, SLAs are commonly non-modifiable documents, unless
a renegotiation process is carried out and the involved parties agree on new
terms. Aiming to reflect the dynamism of clouds into SLAs without the weight
of a renegotiation process, we have developed a mechanism to enable changes in
SLAs inspired by contracts specified in natural language. The intuition behind
this mechanism is the specification in the contract itself of the conditions and
the terms which can be changed.

Dynamic SLAs for Clouds 37

Table 1. Syntax of the SLAC language (an excerpt from [17]).

SLA ::= id: Id parties: PartyDef PartyDef +

term groups: Group∗ terms: Term+ guarantees: Guarantee∗

Group ::= GroupName : Term+

Term ::= Party -> Party+: Metric | [Expr,Expr] of GroupName

Party ::= Role | PartyName

Metric ::= NumericMetric not? in Interval Unit | . . .

NumericMetric ::= cCPU | RT delay | response time | RAM | price | . . .

Interval ::=]Expr,Expr[|]Expr,Expr] | [Expr,Expr[| [Expr,Expr]

Unit ::= GB | # | ms | EUR/Hour | . . .

Event ::= violation

We designed an extension of SLAC [17], named dSLAC, to support this
mechanism and enable parties to modify the terms during the service provision.
The SLA itself contains the specification of the conditions and terms which
can be modified and is divided into two sections: the Dynamism, where the
triggers for changes, the conditions and the modifications are specified; and the
Invariants, which defines fixed bounds for the SLA terms.

2.1 Syntax

SLAC is a language for the specification of SLA for clouds, which focusses on:
(i) formal aspects of SLAs; (ii) supporting multi-party agreements; (iii) business
and utility aspects; and (iv) proactive management of the agreement as well as
the cloud system. For the sake of readability and self-containedness, we report in
Table 1 (an excerpt of) the syntax of the the SLAC core language (the complete
syntax of SLAC and its extensions can be found in the project’s web page [1]).
The syntax is formally defined in the Extended Backus Naur Form (EBNF), in
which italic denotes non-terminal symbols, while teletype denote terminal ones.

The description of a SLA comprises a unique identification code (Id) and at
least two involved parties. The terms of the agreement express the characteristics
of the service together with their respective expected values. Each SLA requires
the definition of at least one term, which can be either a Metric or a Group of
terms (which enables the re-use of the same terms in different contexts). Each
term defines the party responsible to fulfil the term (a single party) and the
contractors of the service (one or more). SLAC supports different metrics, e.g.,
the NumericMetric, which is constrained by open or closed Intervals of values
and a particular Unit. The specification of intervals in numeric metrics relies on
the evaluation of expressions (Expr). Finally, Guarantees ensure that the terms
of the agreement will be enforced or, in case of a violation Event, define the
actions that will be taken.

38 R.B. Uriarte et al.

Table 2. Syntax of the dSLAC language.Syntax of the dSLAC language.

SLA += Dynamism: Dynamism∗ Invariants: Metric∗

Dynamism += on Event : ConditionModification

ConditionModification ::= (if ExprModification then Modifications)+

(else Modifications)? | Modifications

ExprModification ::= Expr | Party authorises

Modifications ::= Modification and Modifications
| Modification or Modifications | Modification

Modification ::= add term Term | delete term RefTerm
| replace value of RefTerm with MetricValue

RefTerm ::= (Party => Party+:)?(GroupName:)∗ ComposedMetric

ComposedMetric ::= NumericMetric | ListMetric | BooleanMetric
| GroupName

MetricValue ::= Interval Unit | Boolean | {ListElement+}
or {ListElement+}∗

Event += Party request | SLA expiration | . . .

The syntax of dSLAC is obtained by extending that of SLA and is presented
in Table 2. The symbol ::= is used when a new rule is added to the syntax, while
+= is used to extend an existing syntactic rule.

The dynamic changes cover two sections of the SLA: Dynamism and Invari-
ants. The former specifies events, conditions and changes, whilst the latter
provides fixed rules that regulate these changes, i.e. the modification of the
agreements specified in the Dynamism section are only performed when they
are compliant with the conditions defined in the Invariants section. Although
the invariants could be specified as conditions in the Dynamism part of the agree-
ment, we opted to specify them as separated sections to have clearer specification
and semantics.

The changes in the Dynamism section are based on Events, such as requests
from parties or SLA violations. Then, one or more conditions can be defined
(ConditionModification), which can be an expression Expr, as defined in the core
language, or express the need of the authorisation from one or more parties.

Afterwards, the modification are specified using three actions: add term,
delete term and replace value. The add term operation inserts a new term, which
is not specified in the initial SLA. It requires a Term, which includes the involved
parties, metric and value. The delete term removes a SLA term, which requires
only the reference to an existing term (RefTerm). The replace value operation
substitutes the value of an existing term with a new value (MetricValue), which
can be, according to the metric type, an Interval and its Unit, a Boolean or a set
of lists. Replacements can use reserved variable names, which refer to, e.g., the
current values of the existing term, of another term or the number of times the

Dynamic SLAs for Clouds 39

Fig. 1. Automaton of an excerpt of the example in Table 4.

SLA was violated. In case of multiple terms using the same metric (e.g., in dif-
ferent groups) the reference to the metric must be complete, including involved
parties and groups, to avoid ambiguity.

Finally, the Invariants section defines rules that cannot be changed by
dynamic actions, i.e. fix bounds for terms of the contract. They can define, for
example, that a user cannot request more than 1000 Virtual Machines (VMs)
and never less than 1 or that the provider must always backup the data of the
consumer. Events that trigger changes in the contract will not be applied unless
they are compliant with the terms defined in this section.

2.2 Semantics

The semantics of a SLA specified via SLAC is formulated as a Constraint Satis-
faction Problem (CSP) that verifies: (i) at negotiation-time, whether the terms
composing the agreement are consistent; and (ii) at enforcement-time, whether
the characteristics of the service are within the specified values.

In the formal SLAC semantics [17] a SLA was given by means of a func-
tion [[SLA]] that returned a pair composed of a set of group definitions and a
constraint representing the semantics of SLA’s terms. This pair constituted the
CSP associated to the agreement; details can be found in [17].

In dSLAC the possibility of changing the set of valid constraints calls for a
different approach. The agreement is represented by an automaton in which each
state is labelled by a set of constraints and each transition by the event that mod-
ifies the constraints. The initial state of the automaton is created using the orig-
inal semantics of a SLA, which converts the agreement without the Dynamism
and Invariants sections into a CSP. Then, all possible new states are created
considering events, conditions and the triggered changes to the SLA constraints
specified in the Dynamism section, as well as the invariants of the agreement,
which are defined as additional conditions to every transition of the automaton.

40 R.B. Uriarte et al.

Table 3. IaaS Example: consumer can add and remove any type of VM up to 200
VMs.

SLA
...
Term Groups:
Small VM:

Imt → Rafael:cCpu in [1,1] #

Imt → Rafael:RAM in [4,4] GB

Imt → Rafael:RT delay in [0,10] ms

Imt → Rafael:price in [0.22,0.22] EUR/Hour

Terms:
[2,2] of Small VM

Dynamism:
on consumer request:

replace value of Small VM with [#1+1, #2+1] or
replace value of Small VM with [#1-1, #2-1]

Invariants:
Small VM in [0,200]

Figure 1 illustrates this approach based on the second example of dynamic
SLA, discussed in the next section and presented in Table 4. For the sake of sim-
plicity, the automaton does not include the dynamic part that requires autho-
risation from the consumer. In this case, the consumer can request 2 additional
VMs when the SLA state is the initial one (corresponding to the service quality
level Base and passing to state Gold) and remove 2 of them when the total
number of VMs is 4 (from state Gold back to sate Base). Also, the provider
can request an increase in the Response Time in state Gold compensating the
consumer with a reduction in the price (passing to the state Silver). Even if in
the state Silver, the consumer can reduce the number of VMs to 2 and return
to state Base.

2.3 Examples

We illustrate the dynamism of SLAs using two examples. The first is presented
in Table 3; it is an instance of an Infrastructure-as-a-Service SLA from a provider
named IMT which initially delivers 2 VM to consumer Rafael. In this scenario,
the consumer adds and removes VMs according to his needs, if the number of
VMs does not exceed 200. The #1 represents the current value of the lower
bound of the interval of the term and #2 the upper bound.

In the second example, presented in Table 4, we use the same scenario and
base SLA as the first example, modifying only the Dynamism and Invariant
parts. In this case, the consumer adds and removes VMs for a fixed price but
must respect the limits defined in the Invariants, that is, in this case, he can
have only 2 or 4 VMs at the same time. The provider may request an increase in
the response time if the number of VMs is equal to 4. If so, as a compensation
to the consumer, the price is then reduced by 50 cents. Moreover, on provider’s

Dynamic SLAs for Clouds 41

request, a consumer may accept an increase in the response time of 5 ms, for
a reduction of 10 cents in the price, always considering the ranges defined in
the Invariants section that, in this example, limits the response time between
0 and 35 ms.

3 Experiments

To illustrate the SLAC extension and the benefits of dynamic SLAs we present
a case study in a cloud testbed for the execution of cloud services and simulates
the interaction between a provider and multiple consumers.

For the sake of simplicity, apart from the Dynamism and Invariant sections,
the SLAs have only: the definition of the service execution deadline, the price
to execute the service and the penalty in case of violation of the deadline. We
compare three different approaches: Static SLAs, in which SLAs do not change
during their lifetime; Renegotiation, in which the parties can renegotiate the
existing SLA; and our approach, Dynamic SLAs, which enables the definition of
modifications in the agreements. For this comparison, we analyse the number of
violations, penalty and the total revenue of the provider.

The need for dynamism in this use case is demonstrated in three cases:

– Request for modification from the consumers, commonly caused by change of
requirements, which we simulated by randomly selecting services in execution;

Table 4. Example of a more complex dynamic SLA.

SLA
...
Dynamism:
on consumer request:

if Small VM == 2

replace value of Small VM with [#1+2,#2+2] and
replace value of Price with [#1+2.4,#2+2.4]

on consumer request:

replace value of Small VM with [#1-2,#2-2] and
replace value of Price with [2.0, 2.0]

on providers request:

if Small VM == 4 and RT delay == [0,20]:

replace value of RT delay with [0,30] and
replace value of Price with [#1-0.5,#2-0.5]

on providers request:

if consumer authorises:

replace value of RT delay with [0,#2+5] and
replace value of Price with [#1-0.1,#2-0.1]

Invariants:
RT delay in [0,35]

Small VM in [2,4]

42 R.B. Uriarte et al.

– High violation risk, which is detected during the service execution to enables
the provider to change the agreement and avoid violations;

– Low violation risk, which is also detected during the service execution and
enables the provider to increase its revenue, for example increasing the price
but reducing the deadline of the service.

The results demonstrate the flexibility dSLAC and its capacity to reduce the
number of SLA violations and to improve the revenue of the involved parties.

3.1 Use Case Model

The framework developed for the coordination of the execution of services has
several components, as depicted in Fig. 2. The SLAC Framework parses and
evaluates SLAs, which contain the service specification and requirements, and
sends this description to the Service Execution Framework. This latter compo-
nent is specifically designed to guarantee the correct deployment and execution
of services and to manage the cloud infrastructure and employes schedules ser-
vices using the approach presented in [18]. The Panoptes Monitoring System [19]
provides the status of the system and services to the Violation Risk Analyser
and to the SLAC Framework and is directly configured by the Service Execu-
tion Framework. The Violation Risk Analyser measures the risk of the running
services of not meeting the deadline specified in the SLA and updates the Rene-
gotiation Decision System. Finally, the Renegotiation Decision System creates
proposals of modifications for the SLA and decides, when using the Renegoti-
ation approach, whether to accept changes in the services. The violation risk
analysis is performed using Supervised Random Forest [2], a machine learning
technique, and is based on the monitoring information of services and the SLA
itself.

Fig. 2. Components of the use case framework.

The algorithm defined for the experiments is used for each service regardless
the evaluated approaches and is depicted in Fig. 3. Each service is evaluated only

Dynamic SLAs for Clouds 43

Fig. 3. Flow diagram of the tested approaches: Static, Renegotiation and Dynamic.

once during its execution lifetime, in time tr, which is a random point between
the initial time and the deadline of the service defined in the SLA. In the case
of Static SLAs, the services are computed employing the SLA defined at design
time and, when the service ends or the deadline is achieved, the system verifies
whether the SLA was violated and then assesses the price paid and the possi-
ble penalties. In the Renegotiation approach, first the violation risk is measured.
If it is not higher or lower than a specific value, the system verifies whether the
service was randomly chosen. If not, the service is computed normally with the
SLA defined at design time. Renegotiation take place in case of high violation
risk to avoid penalties and customer insatisfaction; in case of the payment of
low violation risk, to raise provider revenues by, e.g., shortening the deadline;
and to simulate changes of requirements from consumers when the service was
randomly chosen. A party sends a SLA proposal to the other party that analy-
ses it according to its priorities using a Fuzzy Decision System, as described in
the next section. If the new agreement is accepted, the service continues and is
evaluated considering the new SLA, otherwise the initially defined agreement is
the valid one till the end of the service.

In this use case, compared to Renegotiation, the only difference of the
Dynamic approach is that the renegotiation and consentment of the involved
parties is not necessary, that is, in case of low violation risk or high violation
risk or the service being randomly chosen, the agreement is modified automat-

44 R.B. Uriarte et al.

ically since the changes are pre-defined in the SLA. In both cases a bonus is
given to the other when a change is made during the service execution in order
to motivate or compensate the other party for the changes. Although the bonus
a priori is usually much smaller than the bonus required for renegotiating the
SLA during the execution, for the sake of simplicity, we opt to use the same
range of values of the Renegotiation approach.

3.2 Fuzzy Decision System

The Renegotiation approach requires the analysis of the difference between the
initial agreement (pre-runtime) and the SLA proposed for renegotiation, and
the assessment of the benefits before deciding whether accept or refuse a new
agreement. In our use case, to simulate this process that is typically carried out
by a human being or autonomous decision systems, we designed a fuzzy logic
decision support system inspired by the approach presented in [5].

Our decision system takes as input the rate (positive or negative) of change
for the considered parameter; for example, if in the renegotiation process the
provider requests and increases of 20 % on the price, one of the parameters is 20.
With these inputs, the system decides whether the new SLA is beneficial, neutral
or not beneficial to the party. In the case of consumers, the system also takes
into account the priorities of each consumer, for example, if the deadline is the
priority of consumer 1 the influence of this variable is highlighted in the decision.

Fuzzy rules interpret the relationships between the inputs and outputs and
are constructed in the logical form. In the use case, the inputs are: the deadline
for the service (D), the price to be paid for the service (Pr) and the penalty in
case of violation (Pe). Table 5 exemplifies some rules exploited in the use case
and applied by the provider’s fuzzy decision system. Despite being fixed for the
provider, the rules change according to the priorities of each consumer. For a
complete account of the fuzzy rules and the framework used in the experiments,
we refer to the website of the SLAC project [1].

Table 5. Fuzzy rules of the provider decision system.

Rule Evaluation

If Pe increases not beneficial

If Pr or D increases beneficial

If Pr and D increase very beneficial

If Pe increase < 10% neutral

3.3 Evaluation

The experiments were conducted in a cloud with 2 physical machines, providing
12 heterogeneous VMs, in which the agents are employed to execute services.

Dynamic SLAs for Clouds 45

In the experiments, services are generated based on the distribution of a trace
of real-world cloud environment, the Google’s cloud dataset [15], and the same
services are executed using all three described approaches. Each service has an
associated SLAC SLA, which is created along with the service, according to an
estimation of the resources necessary to finish the service within the comple-
tion time. The features are: CPU, RAM, Requirements, Disk Space, Completion
Time and Network Bandwidth. Different types of services are used in the exper-
iments, such as web crawling, word count, machine learning algorithms, number
generation and format conversion, which are close to real-world applications [10].
Service’s penalty and price are generated along with the SLA and are based on
the service execution time and a randomly defined number. Penalties are always
higher than the price, since the price is paid even if a service is violated.

Fig. 4. Performance analysis

The training set for the SLA Risk assessment is built in every round of
experiments by executing 1000 services. Then, it is used to train the machine
learning algorithm to provide the probability of classifying a new service into
the violated and not violated classes.

In each round of experiments, new services are generated (for creating the
training set and for testing the approaches) and the same services are executed
for all approaches. The number of services ranges from 100 to 500 (with 50
services interval). We assume that the services’ arrival is a Poisson process, i.e.
the time between consecutive arrivals has an exponential distribution and, in
our case, a service arrives in average every 0.7 s.

The Fuzzy decision system accepts proposals which are beneficial to the
requested party. Therefore, the requester and the Renegotiation Decision System
usually offer compensations for the requested party that fulfil the need of the
requester, e.g., if the violation risk is high, the provider requests more time to fin-
ish the service but offers it with a discount on the price and higher penalty. The

46 R.B. Uriarte et al.

definition of the exact parameters of the considered metrics of the SLA mod-
ification proposal, which are used by Renegotiation and Dynamic approaches
(though the latter applies changes without requesting the approval of the other
party), are randomly generated in a predefined range.

The results of these experiments are illustrated in Fig. 4 considering different
number of services. Table 6 presents the overall results, relative to the Renegotia-
tion and Dynamic approaches, expressed as percentages: in the case of Penalties
and Revenue characteristics, the results correspond to a comparison with the
Static approach, whilst in the case of the other measured characteristics they
result from a comparison with the total number of services. Considering the para-
meters defined for the Renegotiation approach and the benefit threshold used in
the experiments, around 60 % of the Modification Requests were accepted and
carried out. Using the Dynamic approach, 21 % of the services were Modified
mainly due to High Risk of violation (more than 19 %). The total number of
Modifications is relatively high due to the accuracy of the machining learning
algorithm, in which we prioritised the identification of high-risk SLAs. Conse-
quently, the number of false positives increased, i.e. some SLAs that normally
would not be classified as high-risk, in this case, were considered high-risk. In the
Renegotiation and Dynamic approaches, 14 % and 19 % of the SLAs classified as
high-risk and more than 10 % of the Randomly selected were violated. Overall,
the flexibility provided by the Dynamic approach increased the Revenue by 22 %
and reduced the Penalties by 64 %, whilst these measures were only 13 % and
31 % for the Renegotiation approach.

3.4 Discussion

In the experiments, the use of the renegotiation and the dynamic mechanisms
of SLAs heavily depend on the accuracy of the violation risk analyses approach.
The results show that, although the penalties were reduced by 64 %, the impact

Table 6. Experimental results

Renegotiation Dynamic

Modification Requests 24 % 0 %

Modifications 13 % 21 %

High Risk 11 % 19 %

Low Risk 0.1 % 0.2 %

Random 1.8 % 1.1 %

Violated High Risk 19 % 14 %

Violated Low Risk 0 % 3 %

Violated Random 10 % 12 %

Penalties −31 % −64 %

Revenue 13 % 22 %

Dynamic SLAs for Clouds 47

on the total revenue was an increase of around 22 %. The main reasons for this
difference are: the limited impact of the penalties on the total revenue due to
the average number of violations; the compensation provided to the consumers
when a modification is requested, which lowers the price paid for that service
and sets higher penalties in case of violation; and the number of modified SLAs
which were violated since most of the modification requests increase the penalty
as a compensation to increasing the service completion time, which suggests that
performing an analysis to define the additional time required to avoid violations
instead of generating a random number could improve the total revenue.

The experiments were focused on avoiding SLA violations, and in few oppor-
tunities the Dynamic and Renegotiation mechanisms were used to improve the
revenue of the parties (only around 1.4 % of the services were considered low-
risk or randomly selected). In most scenarios, these mechanisms can be more
aggressively employed to improve the revenue, mainly when a better accuracy is
reached by the risk analysis.

Also, the parameters defined in the SLA modification proposal may have a
considerable impact on the results. We adjusted these parameters to simulate a
real-world situation, where every party defends his interest.

Finally, the results demonstrate that dSLAC provides flexibility for the par-
ties and significantly improves the optimisation of the SLA management. More-
over, it can always be used together with the renegotiation approach in case not
all relevant modifications are included in the SLA.

4 Conclusions and Future Works

To address the lack of support for the cloud dynamism in the existing SLA def-
inition languages we have introduced a new approach for the specification of
dynamic SLAs for clouds. This dynamism is achieved through the specifications,
in the SLA itself, of the conditions and of the modifications that will be applied
to the SLA once the related conditions are met. We have introduced syntax and
semantics of an extension of the SLAC language and described its implemen-
tation and possible usage. We have provided evidence of the advantages of our
approach in comparison to static SLAs and the use of renegotiation.

Since our approach is devised also for business, it may be used to back-
up legal disputes. In fact, in designing dSLAC, we took the legal aspects of
contract formation into account. Our approach is compliant with the norms
defined in [12], where the authors discuss the provision of services from the legal
standpoint using the European Union directives for E-Commerce as reference.
Thus, dynamic SLAs, i.e. SLAs with pre-defined changes based on events and
conditions, can be used in legally binding contracts.

We conclude by discussing the impact of dynamic SLAs in the cloud domain
and the related challenges that we plan to address as future work. Indeed, this
approach impacts in areas related to the creation and management of services
and poses new important challenges in the field while looking at them from
different perspectives.

48 R.B. Uriarte et al.

The negotiation process needs considerable changes to support this feature.
The first challenge is the matching of offers and requests of services since the
possible changes must be considered. This matching mechanism needs to verify
whether the requirements of the parties comply with all possible states of the
SLA, taking into account the conditions for such changes. Depending on the
changes defined on the SLA, a large number of states need to be analysed, which
is a computation intensive process, and new techniques are needed to address
possible problems, such as explosion of states. Moreover, crisp solutions that
simply verify whether there exist a single state that is not compatible with the
specification of the parties may imply low matching rates, whilst an algorithm
considering the probability of reaching a non-desired state could improve this
rate. Considering the complexity of this process, the negotiation can hardly
be performed by humans and new algorithms, for example, based on model
checking, that take into account the priorities of the involved parties should be
develop to define SLA proposals and to assess their benefits.

The scheduling, service admission and resource reservation areas also need to
consider the possible changes in the services. As the modifications in the agree-
ment do not need the authorisation from the provider, the consumer can request
changes in unexpected times and the provider must cope with them. Although
most of the existing methodologies already employ statistical methods to predict
the load of the system, the agreement with pre-defined changes is valuable source
of knowledge as it contains the explicit definitions of the changes which are more
likely to happen or that are expected by the parties. Moreover, the methodolo-
gies can also use the conditions pre-defined in the SLAs to adjust the load of the
system. This process is complex and requires multi-objective solutions to find
the optimal (or a better) scenarios for such cases since the possibilities in large
scale are numerous. For example, even if a consumer requests a large number
of new VMs, the provider can avoid violations of SLAs by removing VMs from
other consumers, by e.g., providing a discount to them.

Service and infrastructure Monitoring are essential for the decision-making
and SLA management. With dynamic SLAs, this process needs to adapt the
knowledge generation methods to use the collected data before and after the
changes. Finally, management systems must track the changes in the SLA for
billing purposes and for legal reasons (e.g., in case of disputes).

References

1. SLAC: A Formal Service-Level-Agreement Language for Cloud Computing (2016).
http://sysma.imtlucca.it/tools/slac/

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Di Modica, G., Regalbuto, V., Tomarchio, O., Vita, L., Doria, V.A.: Dynamic

re-negotiations of SLA in service composition scenarios. In: SEAA, pp. 359–366.
IEEE (2007)

4. Di Modica, G., Tomarchio, O., Vita, L.: Dynamic SLAs management in service
oriented environments. J. Syst. Softw. 82(5), 759–771 (2009)

5. Djemame, S.S.K.: Enabling service-level agreement renegotiation through extend-
ing WS-Agreement specification. SOCA 9, 177–191 (2015)

http://sysma.imtlucca.it/tools/slac/

Dynamic SLAs for Clouds 49

6. Galati, A., Djemame, K., Fletcher, M., Jessop, M., Weeks, M., Hickinbotham, S.,
McAvoy, J.: Designing an SLA protocol with renegotiation to maximize revenues
for the CMAC platform. In: Haller, A., Huang, G., Huang, Z., Paik, H., Sheng, Q.Z.
(eds.) WISE 2011 and 2012. LNCS, vol. 7652, pp. 105–117. Springer, Heidelberg
(2013)

7. Garg, R., Saran, H., Randhawa, R., Singh, M.: A SLA framework for QoS provi-
sioning and dynamic capacity allocation. In: IWQoS, pp. 129–137. IEEE (2002)

8. Green, L.: Service level negotiation in a heterogeneous telecommunication environ-
ment. In: I4CT. IEEE (2004)

9. Lee, C.A., Sill, A.F.: A design space for dynamic service level agreements in
OpenStack. J. Cloud Comput. 3(1), 17 (2014)

10. Nanduri, R., Maheshwari, N., Reddyraja, A., Varma, V.: Job aware scheduling
algorithm for mapreduce framework. In: CloudCom, pp. 724–729. IEEE (2011)

11. Omezzine, A., Tazi, S., Bellamine, N., Saoud, B., Drira, K., Cooperman, G.:
Towards a dynamic multi-level negotiation framework in cloud computing. In:
CloudTech. IEEE (2015)

12. Parkin, M., Kuo, D., Brooke, J., MacCulloch, A.: Challenges in EU grid contracts.
In: Exploiting the Knowledge Economy: Issues, Applications and Case Studies,
pp. 67–75. IOS Press (2006)

13. Parkin, M., Hasselmeyer, P., Koller, B.: An SLA re-negotiation protocol. In:
NFPSLA-SOC (2008)

14. Pichot, A., Wäldrich, O., Ziegler, W., Wieder, P.: Towards dynamic service
level agreement negotiation: an approach based on WS-Agreement. In: WEBIST,
pp. 107–119. SCITEPRESS (2009)

15. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format +
schema. Technical report, Google Inc. November 2011. http://googleclusterdata.
googlecode.com/files/Googlecluster-usagetraces-format+schema(2011.10.
27external).pdf

16. Shen, W., Li, Y., Ghenniwa, H., Wang, C.: Adaptive negotiation for agent-based
grid computing. JASA 97(457), 210–214 (2002)

17. Uriarte, R.B., Tiezzi, F., De Nicola, R.: SLAC: a formal service-level-agreement
language for cloud computing. In: UCC, pp. 419–426. IEEE (2014)

18. Uriarte, R.B., Tsaftaris, S., Tiezzi, F.: Service clustering for autonomic clouds using
random forest. In: CCGrid, pp. 515–524. IEEE (2015)

19. Uriarte, R.B., Westphall, C.B.: Panoptes: a monitoring architecture and framework
for supporting autonomic clouds. In: NOMS. IEEE (2014)

http://googleclusterdata.googlecode.com/files/Googlecluster-usagetraces-format+schema(2011.10.27external).pdf
http://googleclusterdata.googlecode.com/files/Googlecluster-usagetraces-format+schema(2011.10.27external).pdf
http://googleclusterdata.googlecode.com/files/Googlecluster-usagetraces-format+schema(2011.10.27external).pdf

Adaptation

Reinforcement Learning Techniques
for Decentralized Self-adaptive Service Assembly

M. Caporuscio1, M. D’Angelo1, V. Grassi2, and R. Mirandola3(B)

1 Linnaeus University, Växjö, Sweden
{mauro.caporuscio,mirko.dangelo}@lnu.se

2 Università di Roma Tor Vergata, Rome, Italy
vgrassi@info.uniroma2.it

3 Politecnico di Milano, Milan, Italy
raffaela.mirandola@polimi.it

Abstract. This paper proposes a self-organizing fully decentralized
solution for the service assembly problem, whose goal is to guarantee a
good overall quality for the delivered services, ensuring at the same time
fairness among the participating peers. The main features of our solution
are: (i) the use of a gossip protocol to support decentralized information
dissemination and decision making, and (ii) the use of a reinforcement
learning approach to make each peer able to learn from its experience the
service selection rule to be followed, thus overcoming the lack of global
knowledge. Besides, we explicitly take into account load-dependent qual-
ity attributes, which lead to the definition of a service selection rule that
drives the system away from overloading conditions that could adversely
affect quality and fairness. Simulation experiments show that our solu-
tion self-adapts to occurring variations by quickly converging to viable
assemblies maintaining the specified quality and fairness objectives.

1 Introduction

We consider a distributed peer-to-peer scenario, where a large set of peers coop-
eratively work to accomplish specific tasks. In general, each peer possesses the
know-how to perform some tasks (offered services), but could require services
offered by other peers to carry out these tasks. Scenarios of this type can be
typically encountered in pervasive computing application domains like ambient
intelligence or smart transportation systems, where several (from tens to thou-
sands) services cooperate to achieve some common objectives [13].

A basic functional requirement for this scenario is to match required and
provided services, so that the resulting assembly makes each peer able to cor-
rectly deliver its service(s). Besides this functional requirement, we also assume
the existence of non functional requirements concerning the quality of the deliv-
ered service, expressed in terms of several quality attributes referring to different
quality domains (e.g., performance, dependability, cost).

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 53–68, 2016.
DOI: 10.1007/978-3-319-44482-6 4

54 M. Caporuscio et al.

Our goal is to devise a self-assembly procedure among the peers, aimed at
fulfilling both functional and non functional requirements. For the latter, we aim
in particular to maximize some notion of global utility expressed in terms of the
quality attributes of the services delivered by peers in the system, ensuring at the
same time fairness (i.e., no peer should be excessively favored or penalized with
respect to others). Challenges to be tackled to achieve this goal include: (1) the
presence of several functionally equivalent services, with different values of their
quality attributes, which makes non trivial determining the “best” selection of
offered services to be bound to required services; (2) the intrinsic dynamism of
a large distributed system, with peers entering/exiting the system, or changing
the value of their quality attributes, which require to dynamically adapt the
assembly to the changing system configuration; (3) the lack of global knowledge,
which is difficult to achieve and maintain in a large distributed system with
autonomous peers; this makes centralized service assembly policies hardly usable;
(4) the need of devising a service selection and assembly procedure that scales
with increasing system size (up to hundreds or thousands of services/peers); (5)
the possibly load-dependent nature of service quality attributes. This obviously
holds for attributes in the performance domain (e.g., response time), where load
has a negative impact on their value; it may also hold for other domains like
the dependability domain, where increasing load could increase the likelihood
of failures [8], or the cost domain, for example in case of cost schemes based
on congestion pricing [11]. Load-dependent quality attributes rule out simple
greedy service selection policies, as they could easily lead to service overloading,
and consequent worsening of the overall delivered quality.

To cope with these challenges we propose in this paper a self-adaptive fully
decentralized solution for the service assembly problem, whose main features
are: (i) the adoption of an unstructured peer-to-peer approach for dynamic ser-
vice discovery, based on the use of a gossip protocol that guarantees resilience
through self-adaptation to dynamic changes occurring in the system, and scal-
ability with respect to the system size, thanks to the bounded amount of infor-
mation maintained and exchanged among peers; (ii) the use of a reinforcement
learning approach to make each peer able to dynamically learn from its experi-
ence the service selection rule to be followed, thus overcoming the lack of global
knowledge; (iii) the explicit consideration of load-dependent quality attributes,
which leads to the definition of a service selection rule that drives the system
away from service overloading conditions.

The paper is organized as follows. In Sect. 2 we give an overview of the main
features of the adopted approach. In Sect. 3 we define the system model and
state the problem we intend to solve. In Sect. 4 we detail the core elements of
our approach. In Sect. 5 we present experimental results obtained through simu-
lation. In Sect. 6 we survey related work, while in Sect. 7 we present conclusions
and hints for future work.

Reinforcement Learning Techniques for Decentralized Self-adaptive Service 55

2 Adopted Approach Overview

Self-adaptive systems have been proposed to cope with the dynamic environment
where large software-intensive systems typically operate, for example because of
changes in the availability or quality of the resources they rely on [2].

A self-adaptive system typically consists of a managed system that imple-
ments the system business logic, and a feedback loop that implements the adap-
tation logic for the managed system. General architecture for the feedback loop
is the MAPE-K model, with Monitor (M), Analyze (A), Plan (P) and Execute
(E) activities, plus a Knowledge (K) that maintains relevant information for the
other components (e.g., system state, adaptation rules) [17].

In our setting, Monitor aims at collecting information about candidate ser-
vices and their quality attributes, whereas Analyze and Plan aim at selecting,
among the set of known candidates, those services that best serve to resolve
existing dependencies and fulfill non functional requirements. Finally, Execute
actually implements the bindings with the selected services, so leading to the
construction (and maintenance) of the required assembly. However, how the
MAPE-K activities are actually architected and implemented must take into
account the specific characteristics of the managed system and its operating
environment. In the rest of this section, we outline the main characteristics of
the approach we have adopted to this end, highlighting how it deals with the
challenges described in the Introduction.

MAPE-K information sharing architectural pattern – In large distrib-
uted settings a single MAPE-K loop is hardly adequate to manage the whole
system, and monitor, analyze, plan, and execute are implemented by multiple
MAPE-K loops that coordinate with one another. According to the informa-
tion sharing pattern [17], each peer self-adapts locally by implementing its own
MAPE-K loop, but requires state information from other peers in the system.
Apart from information sharing, peers do not coordinate other activities. Hence,
this pattern supports autonomous adaptation decisions at each node, and enables
scalability thanks to the loose coordination required, limited to state information
exchange.

Gossip based monitoring – According to the information sharing pattern,
information collected by the monitor at each peer is shared with other peers in
the system. In the scenario we are considering, this information mainly concerns
offered services the peer is aware of, and their functional and non-functional
properties. To cope with some of the challenges we have outlined in the intro-
duction, this coordinated monitoring activity should scale with increasing system
size, and be able to quickly react to changes occurring in the system (e.g., new
offered services, variations of their quality). To this end, we adopt a gossip-based
approach [1], which exploits epidemic protocols to achieve reliable information
exchange among large sets of interconnected peers, also in presence of network
volatility (e.g., peers join/leave the system suddenly). Specifically, in a gossip
communication model, each peer in the system periodically exchanges infor-
mation with a dynamically built peer set, and spreads information epidemically,

56 M. Caporuscio et al.

similar to a virus in biological communities. This guarantees quick, decentralized
and scalable information dissemination, and makes gossip-based communication
well suited for our purposes. We detail the applied algorithm in Sect. 4.1.

TD-learning based analysis and planning – Analyze and Plan are local at
each peer, and do not require any explicit coordination with other peers. In our
setting, these activities aim at selecting, within the set of candidates built by the
monitoring activity, the offered services to resolve the dependencies of local ser-
vices, trying at the same time to maximize the system quality and ensure fairness
(see Sect. 3). In the dynamic scenario we are considering, fixed selection rules are
hardly able to achieve satisfactory results. Indeed, we make peers learn on their
own the selection rule to be applied, using a reinforcement learning approach
where the learner is not told which actions to take, as in most forms of machine
learning, but instead must discover which actions yield the most reward by try-
ing them [15]. These features fit well with the considered scenario, where peers
do not know each other (and the services they offer) in advance, but discover
themselves dynamically. Moreover, services can have multiple dependencies to
be resolved, and are characterized by multiple load-dependent quality attributes.
To this end, we focus on temporal-difference (TD) learning methods [15], which
can learn directly from raw experience without a model of the environment’s
dynamics and are implemented in an on-line, fully incremental fashion. In par-
ticular, we base the learning on two kinds of knowledge that are incrementally
acquired by each peer: information about the existence of offered services and
their advertised quality, achieved through the gossip-based monitoring activity,
and the direct experience of the services’ quality, acquired by each peer after
actually binding to the selected services. We use the second kind of knowledge
to balance through a trust model the advertised quality with the actually expe-
rienced quality, building to this end a two-layer TD-learning model. We detail
this model in Sect. 4.2.

3 System Model

In this section we define the model of the system we are considering and introduce
the terminology and notation used in the rest of the paper.

We consider a set of N distributed services S = {S1, . . . , SN} hosted by
peer nodes communicating each other through a network. A service S is a tuple
〈Type,Deps, Int ,Outt ,u,Ut〉, where:

– S.Type ∈ T denotes the type of the provided interface (we say that S.Type is
the type of S). We assume w ≥ 1 different service types T = {T1, . . . , Tw}.

– S.Deps ⊆ T is the set of required dependencies for S: for each d ∈ S.Deps, S
must be bound to a service S′ such that d = S′.Type, in order to be executed.
If S.Deps = ∅, then S has no dependencies. We assume that S.Deps is fixed
for each service and known in advance.

– S.Int ⊆ S is the set of services S is bound to at time t, to resolve its
dependencies.

Reinforcement Learning Techniques for Decentralized Self-adaptive Service 57

– S.Out t ⊆ S is the set of other services that are bound to S at time t, to
resolve one of their dependencies.

– u ⊆ R
m is a vector of m “local quality” attributes (e.g., reliability, cost,

response time), which express the quality of the service S, depending only on
internal characteristics of S and of the node hosting it. If S has a non empty
set of dependencies, then u gives only a partial view of the overall quality of
S, which also depends on the quality of the services used to resolve them. For
example, in case of a completion time attribute, the corresponding u entry
could represent the execution time in isolation of S internal code on the hosting
node, without considering the completion time of the called services.

– Ut ⊆ R
m is a vector of m “overall quality” attributes, which express the

quality of the service S at time t, depending on both local quality of S and
the quality of the services it is bound to to resolve its dependencies. We show
below (see Eq. 1) how Ut is expressed in terms of both these factors.

At each time point t ∈ N a service is either fully resolved or partially resolved.
A service S is fully resolved if either: (i) S has no dependencies (S.Deps = ∅);

or (ii) for all d ∈ S.Deps there exists a fully resolved service S′ ∈ S.Int such
that d = S′.Type. On the other hand, a partially resolved service S has a non
empty list of dependencies, and at least one dependency is either not matched,
or is matched by a partially resolved service.

Given these definitions, the overall quality for a service S is defined as follows:

Ut(S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L(u(S), S.Out t), if S.Deps = ∅
⊥ if S is partially resolved
C (L(u(S), S.Out t),Ut(S1), . . . ,Ut(Sk))

if S fully resolved, with S.Int = {S1, . . . , Sk}

(1)

In Eq. (1) if S has no dependencies (S.Deps = ∅), then S is by definition fully
resolved, and Ut(S) is calculated by means of a suitable function L : R

m ×
2S → R

m, which, given the local quality u(S) and the set S.Out t of services
currently bound to S, returns the actual load-dependent Ut(S) at time t. In
order to keep the model as general as possible, we use the set S.Out t to define
the load-dependent nature of L, without explicitly specifying information such
as request rate and job size [12], which is application specific. However, L can
be easily extended and instantiated to account for further specific information,
without affecting our notion of overall quality. Instead, if S has a nonempty
set of dependencies (S.Deps
= ∅) and is not fully resolved, Ut(S) is set to ⊥,
i.e., the special value that is guaranteed to be “worse” than the quality of any
fully resolved instance of S. Finally, if S has a nonempty set of dependencies
and is fully resolved, Ut(S) is computed using a function C : R

(1+|S.Int|)m →
R

m, which combines the local load-dependent quality L(u(S), S.Out t) with the
overall quality of all S dependencies. The general equation (1) can be instantiated
for specific quality attributes as described, for example, in [1].

Problem formalization – Our goal is to maximize the quality globally delivered
by the services hosted in the system, ensuring at the same time fairness among
services. To this end, we must define our notion of global quality and fairness.

58 M. Caporuscio et al.

For the former, the vector Ut(S) details the overall quality delivered by a specific
service S in terms of a set of distinct quality attributes. To facilitate dealing with
multiple and possibly conflicting quality attributes, we transform Ut(S) into a
single scalar value, using the Simple Additive Weighting (SAW) technique [18].
According to SAW, we redefine the service quality of S as a weighted sum of its
normalized quality attributes, as follows:

GUt(S) =

m∑

i=1

wi
V max
i − Ui,t(S)

Ui,t(S) − V min
i

(2)

where Ui,t(S) denotes the i-th entry of Ut(S), V max
i and V min

i denote, respec-
tively, the maximum and minimum value of Ui,t, and wi ≥ 0,

∑m
i=1 wi = 1, are

weights for the different quality attributes expressing their relative importance.

ξt =
1

|Sfull
t |

∑
S∈Sfull

t

GUt(S) (3) ζt =

(
∑

S∈Sfull
t

GUt(S))2

|Sfull
t | ∑

S∈Sfull
t

GUt(S)2
(4)

Now, let Sfull
t ⊆ S be the set of fully resolved services at time t. Equation 3

defines the global system quality as the average quality offered by services in
Sfull

t . Furthermore, in order to measure the uniformity of quality delivered in
the system, we make use of the Jain’s fairness index [6], defined as in Eq. 4.

In our load-dependent setting, the more uniform is the quality, the more
uniform the load distribution tends to be. Hence, our goal can be stated as
the definition of a self-adaptive assembly procedure that: (i) maximizes ξt, thus
optimizing quality, and (ii) maximizes ζt, thus optimizing fairness.

To this end, next section describes the system operations for service discovery
and selection that drive the system towards the achievement of this goal.

4 System Operations

This section describes the implementation of the MAPE-K information sharing
pattern that drives the self-adaptive assembly process, focusing in particular on
the monitoring (Sect. 4.1), and analyzing and planning (Sect. 4.2) activities.

4.1 Gossip Based Monitoring

Algorithm 1 describes the general gossip-based scheme [7] that implements the
monitoring activity (M). It includes two concurrent threads: an active thread
that starts an interaction by sending a message to a random set of peers1, and
a passive thread that reacts to messages received from other peers.

Every Δt time units, the active thread reads monitored information IK from
the knowledge base (K) (line 4), and sends a message m containing IK to the
current peer set (line 6). Specifically, IK = Hosted∪Known contains information

1 Provided by an underlying peer sampling protocol, e.g. NEWSCAST [16].

Reinforcement Learning Techniques for Decentralized Self-adaptive Service 59

Algorithm 1. Gossip based information sharing
1: procedure ActiveThread
2: loop
3: Wait Δt
4: IK ← ReadK()
5: for all Si ∈ GetPeers() do
6: Send 〈IK〉 to Si

7: procedure PassiveThread
8: loop
9: Wait for message 〈m〉
10: for all Si ∈ m do
11: UpdateK(Si)
12: function UpdateK(in S ∈ S)

13: if ∃S ∈ Hosted|S.Type ∈ S.Deps then
14: if |Known| < NK then
15: Known ← Known ∪ {S}
16: else
17: m ← minj{GUt(Sj) | Sj ∈ Known ∧ Sj .Type = S.Type}
18: Known ← Known \ {Sm} ∪ {S}

about the set of services hosted locally and monitored by M , and the set of other
known services discovered by means of message gossiping, respectively.

On the other hand, the passive thread listens for messages gossiped by other
peers and, upon receiving a new message m, it invokes the function UpdateK()
for each Si contained in m. The function UpdateK() is in charge of updating the
knowledge K with the received information. Indeed, referring to Algorithm 1,
UpdateK() updates the set Known (stored in K) that collects the currently
known NK (or less) “best” services solving at least one dependency for the
hosted services2. In particular, if the size of Known is exceeded, the Sj with the
smallest GUt(S) (i.e., Sm) is replaced by the newly discovered Si ∈ m.

As a consequence, the total amount of exchanged information between a pair
of peer nodes is upper bounded by O(NK · |GetPeers()|). This makes scalable
the information sharing procedure, as its complexity at each round grows at most
linearly with the number of nodes in the system, assuming that GetPeers()
returns a set of peers whose cardinality is independent of the system size.

4.2 TD-learning Based Analysis and Planning

As introduced in Sect. 2, the analysis and planning activities are locally imple-
mented at each peer. The goal of these activities is to (i) analyze the information
kept by the knowledge K (i.e., the set of service candidates Known), and (ii)
select the services of interest that resolve the dependencies of local services (i.e.,
Hosted), trying to maximize the global system quality ξt and the fairness ζt.

Algorithm 2 outlines the analysis implementation. It consists of a thread that
actively checks, every Δt time units, the knowledge K. Whenever the analysis
performed by CheckK() notices a variation in K, then a new plan is required by
calling SelectK() that implements the P activity.3 SelectK() implements a
2 The upper bound NK is a system parameter.
3 For the sake of simplicity, we omit the details of CheckK(), which strictly depends

on the specific implementation of K.

60 M. Caporuscio et al.

Algorithm 2. TD-learning based analysis and planning
1: procedure ActiveThread
2: loop
3: Wait Δt
4: b ← CheckK()
5: if b = true then
6: for all Si ∈ Hosted do
7: SelectK(Si)
8: function SelectK(inout S ∈ S)
9: for all d ∈ S.Deps do
10: m ← argmaxj{Ht(Sj) | Sj ∈ Known ∧ Sj .Type = d}
11: if (∃Sk ∈ S.Int — Sk.Type = d) then
12: if Ht(Sk) < Ht(Sm) then
13: S.Int ← S.Int \ {Sk} ∪ {Sm}
14: else
15: S.Int ← S.Int ∪ {Sm}

selection rule that, among the set of service candidates contained in K, properly
chooses the set of services of interest that best achieve the goal stated in Sect. 3,
as explained below.

The service selection rules are defined by means of a TD-learning method [15]
that calculates, based on historical data, a value function that expresses how
good a particular action is in a given situation. Indeed, value functions are used
to properly select the action that provides the best possible reward, in a given
situation. The general formulation of a TD method is:

Et ← Et−1 + α[Rt − Et−1] (5)

where Et is the estimated value function at step t, α ∈ (0, 1] is the learning-
rate parameter, Rt is the reward obtained by taking the action, and Et−1 is
the value function calculated at the previous step – i.e., the historical data. In
simple incremental averaging estimation methods [15], the learning-rate para-
meter α changes at every step and is calculated as 1/k, where k is the number
of accumulated rewards at step t.

Its rationale is to increasingly give more weight to the accumulated expe-
rience. TD methods are well suited in our context, since they can learn from
raw experience, without relying on any predefined model of the environment.
Indeed, the variability is faced on-line, in a fully incremental fashion. Specifi-
cally, we adopt a service selection rule implementing a Two-layer Hierarchical
Reinforcement Learning (2HRL) [3] technique, which considers both data mon-
itored locally, and data shared by the monitoring activities (M) of other peers.

Learning from local data – First layer aims at learning the behaviour of
service candidates in Known by relying on direct experience, without considering
the information shared by other peers.

Let GUR
t (Sj) be the quality obtained while interacting with a given Sj at time

t. This value is used to predict the quality GUE
t+1(Sj) expected from the same Sj

at the next time step (i.e., at time t + 1). Specifically, at any given time t, the
planning activity P calculates for all Sj ∈ Known, the expected quality GUE

t (Sj)
by instantiating Eq. 5:

Reinforcement Learning Techniques for Decentralized Self-adaptive Service 61

GUE
t (Sj) = GUE

t−1(Sj) + αj [GUR
t (Sj) − GUE

t−1(Sj)] (6)

where GUE
t (Sj) is the estimated quality (i.e., value function) at time t, αj ∈ (0, 1]

is the learning-rate, GUR
t (Sj) is the quality (i.e., the reward) obtained by directly

interacting with Sj at time t, and GUE
t−1(Sj) is the quality estimated at the

previous step – i.e., the historical data.
As in Eq. 5, the learning-rate parameter αj could be calculated as αj ←

1/SR(Sj), where SR(Sj) is the number of times that Sj has been invoked. How-
ever, while this averaging method is appropriate for stationary environments, it
is not well suited for dealing with highly dynamic environments such as the one
considered here. In fact, it would make the method not able to promptly react
to sudden changes. In these cases, literature suggests to use a constant step-size
parameter α to be defined at design-time [15].

We introduce instead the notion of learning-window, i.e., a fixed time-window
of size z, in which we apply TD technique. The idea is to subdivide the non-
stationary problem into a set of smaller stationary problems, which can be solved
by applying the averaging method. Indeed, calculating αj as αj ← 1/[SR(Sj)
mod z] provides us with the flexibility of averaging methods while preventing
long-past rewards to be overweighted.

Learning from shared data – Second layer aims at integrating into the learn-
ing process of each peer the information remotely monitored and shared by other
peers. As described in Sect. 4.1, each M activity continuously monitors the local
set of hosted services Hosted and for each S ∈ Hosted, gossips every Δt informa-
tion about it, e.g., S.Int, S.Out t, and GUt(S). However, since the gossip-based
communication is epidemic, the data sent by a given peer pi might be out-
dated when received by the other peers in the system. Indeed, monitored data is
strongly time- and load-dependent (see Sect. 3), and might quickly change over
time, due to highly dynamic changes occurring in the system. In this scenario,
understanding how much the P activity of a peer can trust the received data is
crucial for selecting the services Sj ∈ Known that best fit the goal of maximizing
ξt and ζt (see Sect. 3).

To this end, let mt be a message received by activity P at time t < t, and
let GUt(Sj) be the quality advertised for each Sj ∈ mt, i.e., GUt(Sj) is the last
quality value known for Sj . We estimate the level of trust τt(Sj) of the quality
advertised by Sj by instantiating Eq. 5:

τt(Sj) = τt−1(Sj) + αj [Ft(Sj) − τt−1(Sj)] (7)

where τt(Sj) is the estimated level of trust (i.e., value function) at time t,
αj ∈ (0, 1] is the learning-rate calculated within the learning-window, and Ft(Sj)
(i.e., reward) measures how much accurate is the data received about Sj . Specif-
ically, the accuracy is calculated as 1 minus the relative error between the value
GU

R

t (Sj) at time t and the value GUt(Sj) advertised at time t:

Ft(Sj) = 1 − |GU
R

t (Sj) − GUt(Sj)|
|GUt(Sj)| (8)

62 M. Caporuscio et al.

where GU
R

t (Sj) = min(GUR
t (Sj), GUt(Sj)) is the normalized value of GUR

t (Sj),
which forces Ft(Sj) ∈ [0, 1].

Finally, the two TD-learning layers are combined in a new function H that,
given a service Sj ∈ Known, computes its expected quality at time t:

Ht(Sj) = τt(Sj) · GUt(Sj) + (1 − τt(Sj)) · GUE
t (Sj) (9)

Informally, if trust is high (i.e., τt(Sj) � 1) then shared data GUt(Sj) is con-
sidered highly relevant in the evaluation of Sj . Viceversa, whenever the trust in
shared data is low (i.e., τt(Sj) � 0), then local experience GUE

t (Sj) is considered
more relevant than shared data for evaluating Sj .

Function SelectK in Algorithm 2 shows how the 2HRL technique is used
to build, for a given S ∈ Hosted, the set of bindings S.Int that achieves the
global goal: maximizing ξt and ζt. The algorithm checks, for all dependences
d ∈ S.Deps, what is the service Sm ∈ Known that matches the dependency d
and evaluates the maximum value of Ht (line 10). If a service Sk matching d is
already in S.Int, then Sm replaces Sk only if the former provides a better Ht

than the latter (line 13). On the other hand, if S.Int does not contain any service
matching d, then Sm is added to S.Int (line 15).

5 Experimental Evaluation

In this section we present a set of simulation experiments to assess the effec-
tiveness of our approach. To this end, we implemented a large-scale simulation
model for the PeerSim simulator [9]. PeerSim is a free Java package designed to
efficiently simulate peer-to-peer protocols, which provides a cycle-based engine
implementing a time-stepped simulation model. The cycle-based engine is well
suited to evaluate peer-to-peer protocols, where the most important metric is
the convergence speed measured as the number of rounds (message exchanges)
that are needed to reach a desired configuration. Such a performance metric
(number of interactions) has the advantage of being independent of the details
of the underlying hardware and network infrastructure.

Fig. 1. Local quality functions

Model Parameters – We consider a sys-
tem with N services and w different inter-
face types T = {T1, . . . , Tw}. For the sake
of simplicity, we assume that each net-
work node hosts a single service; hence
the number of nodes inside the network
is equal to the number of services, i.e.,
N . We create N/w� services of each type
and, for each service S we randomly set
the number of its dependencies. Specif-
ically, to avoid loops in the dependency
graph, we allow a service S to only depend on services of type strictly greater
than S.Type. Therefore, for each service S we initialize the dependency set

Reinforcement Learning Techniques for Decentralized Self-adaptive Service 63

Fig. 2. Static scenario

S.Deps as a random subset of {S.Type +1, S.Type +2, ..., w}. Note that, accord-
ing to this rule, services of type Tw have no dependencies. Finally, we assume
that the load-dependent quality function L() (see Sec. 3) of each service S is
defined by the solid line in Fig. 1, and the global quality GUt(S) is defined such
that it returns values in the range (0, 1]. Furthermore, other parameters of our
HRL approach are set as follows: (i) the learning-window parameter z is set to
5, and (ii) for all Si ∈ S the initial trust τ0(Si) is set to 0.95.

Performance Measures – As stated in Sect. 3 we evaluate the performance of
our approach by means of the global system quality ξt, and the fairness ζt. In
particular, ξt is computed as the average quality of all fully resolved services at
step t, and ζt is computed as Jain’s fairness index. Both ξt and ζt are higher-is-
better metrics whose upper-bound is 1. All experiments are run by considering
N = 1000 services, w = 10 interface types, and 2000 simulation steps. All results
are computed by taking the average of 50 independent simulation runs.

5.1 Simulation Results

Hereafter we report the simulation results obtained in different scenarios. To
show the effectiveness of the proposed approach, we compare the results obtained
by our approach with a set of state-of-the-art techniques based on different selec-
tion rules. Specifically, we experimented the following alternative selection rules:
(i) a Random algorithm, which does not consider quality values but randomly
selects, among the available services, those services that satisfy the required func-
tional dependencies; (ii) a Greedy algorithm, which selects among the available
services, those services with maximum quality; and (iii) a single-layer reinforce-
ment learning (SRL) algorithm, which exploits past experience to predict the
behavior of known services [12]. All the experiments show that our solution
outperforms the results provided by these alternative selection rules.

Static scenario – This experiment considers a static scenario involving N =
1000 services of w = 10 different types. Figure 2 shows how ξt and ζt, calculated
on the fully resolved assembly resulting from the application of different selection
rules, vary in function of time t. In particular, it shows how our 2HRL approach

64 M. Caporuscio et al.

Fig. 3. Peers leave the network

Fig. 4. Peers join the network

outperforms other selection rules by building a fully-resolved assembly whose
ξt and ζt tend to upper-bound (see Fig. 2a and b). Next experiments aim at
assessing the ability of 2HRL to self-adapt to changes that might happen in the
networking environment. Indeed, open-end collections of distributed peer-to-peer
nodes are necessarily prone to failures since autonomous nodes might suddenly
leave/join the network at any time, as well as change their local quality.

Peers leave the network – This experiment considers a dynamic scenario
where a number of nodes unexpectedly leave the networking environment. In
particular, starting from the previous experimental setting – i.e., N = 1000
services of w = 10 different interface types – we randomly remove 500 nodes
after t = 1000 simulation steps. Figure 3 reports how the different selection
rules react to the environmental change. In particular, it shows how the 2HRL
selection rule allows services to promptly react and to self-organize into fully-
resolved assemblies that improve the global system quality. In fact, drastically
removing half of the services (i.e., from 1000 to 500) from the network reduces the
total load in the network and makes the 2HRL converging towards an optimal
configuration evaluating ξt ≈ 1 (see Fig. 3a) and ζt ≈ 1 (see Fig. 3b).

Peers join the network – On the other hand, this experiment considers a
dynamic scenario where a number of new nodes join the networking environment.
In particular, starting from the initial experimental setting – i.e., N = 1000

Reinforcement Learning Techniques for Decentralized Self-adaptive Service 65

Fig. 5. Peers change the local quality function

services of w = 10 different interface types – we randomly add 500 new nodes
at simulation step t = 1000. Figure 4 reports how the different selection rules
react to the new environmental change. In this case, after an initial drop of ξt

at time step t = 1000 the 2HRL selection rule allows services to learn from the
new environment setting and to self-organize into fully-resolved assemblies that
gradually re-establish a good level of global quality (see Fig. 4a) and fairness
(see Fig. 4b). The initial drop of ξt at time step t = 1000 is mainly caused by
the fact that the trust value τ0(S) = 0.95 makes the algorithm to select newly
added services, which are evaluated better than the older ones. However, the
2HRL selection rule quickly learns from the new setting and converges towards
a new optimal configuration within a few steps. Setting the initial trust τ0(S)
to a lower value – e.g., τ0(S) = 0.5 – would mitigate such an issue by allowing
2HRL to behave more conservatively while evaluating new discovered services.

Peers change the local quality function – Finally, this experiment considers
a dynamic scenario where 500 randomly chosen services change at time step
t = 1000 their quality function L(u(S), S.Out t), as depicted by the dashed line
in Fig. 1. Figure 5 reports how the different selection rules react to the new
setting. Also in this case, we can notice that after an initial drop of ξt at time
step t = 1000 the 2HRL selection rule allows services to quickly self-organize
into fully-resolved assemblies that re-establish good level of global quality (see
Fig. 5a) and fairness (see Fig. 5b).

6 Related Work

In this section we focus exclusively on approaches based on reinforcement learn-
ing. This methodology has been already used in literature to tackle service selec-
tion and load balancing problems [4,5,14,19]. Some of them (e.g.,[5,14]) are
based on the approach previously presented in [12]. All these papers consider
scenarios with a single type of dependency, and where the agents already know
the full set of available resources. On the contrary, we assume that each peer does
not know in advance the other peers (and the services they offer) in the environ-
ment, but discover them dynamically. Moreover, our services can have multiple
dependencies, and we consider multiple load-dependent quality attributes.

66 M. Caporuscio et al.

Shaerf et al. [12] studied the process of multi-agent reinforcement learning in
the context of load balancing in a distributed system, without use of either cen-
tral coordination or explicit communication. They studied a system consisting
of a certain number of agents using a finite set of resources, each having a time
dependent capacity. The considered resource selection rules were purely local and
the same for all agents. The presented experimental study considered a relatively
small system of 100 agents. A notable outcome of the experiments was that mak-
ing agents communicate each other to share information about the performance
of resources was detrimental to the overall system performance. Galstyan et al. [4]
presented a reinforcement learning model for adaptive resource allocation in a
multi-agent system. The learning scheme is based on minority games on net-
works. Each agent learns over time the best performing strategies and use them
to select the resource to be used. Zhang et al. [19] propose a multi-agent learning
algorithm and apply it for optimizing online resource allocation in cluster net-
works. The learning is distributed to each cluster, using local information only
and without access to the global system reward. Sugawara et al. [14] investigate
multi-agent systems where agents can’t identify the states of all other agents to
assign tasks. The selection is done according to local information about the other
known agents; however this information is limited and may contain uncertainty.
Parent et al. [10] apply reinforcement learning for the dynamic load balancing of
parallel data-intensive applications. Viewing a parallel application as a one-state
coordination game in the framework of multi-agent reinforcement learning they
are able to improve the classic job farming approach.

7 Conclusion

In this paper we have presented a self-organizing fully decentralized approach
for the dynamic assembly of services in distributed peer-to-peer scenarios, whose
goal is to guarantee a good overall quality for the delivered services, ensuring
at the same time fairness among the participating peers. The core element of
the proposed solution is the combined use of gossip protocols and reinforcement
learning techniques. Gossip supports the decentralized information dissemina-
tion and decision making, whereas reinforcement learning enables each peer to
dynamically learn from its experience the service selection rule to be followed,
thus overcoming the lack of global knowledge. Besides, we explicitly take into
account load-dependent quality attributes, which leads to the definition of a
service selection rule that drives the system away from overloading conditions
that could adversely affect quality and fairness. Thanks to these features, the
system is able to build and maintain in a fully decentralised way an assembly of
services that, besides functional requirements, fulfils global QoS requirements.
Moreover, a set of simulation experiments shows how our solution self-adapts to
occurring variations and quickly converges to feasible assemblies, which main-
tains the specified quality and fairness objectives.

Reinforcement Learning Techniques for Decentralized Self-adaptive Service 67

Future work encompasses the extension of the experimental part with the
inclusion of different real-world scenarios and other possible definitions of fair-
ness. We also intend to extend 2HRL to cyber-physical systems, where a new
set of challenging quality concerns have to be managed under severe resource
constraints, e.g., energy consumption, real-time responsiveness.

References

1. Caporuscio, M., Grassi, V., Marzolla, M., Mirandola, R.: GoPrime: a fully decen-
tralized middleware for utility-aware service assembly. IEEE Trans. Softw. Eng.
42(2), 136–152 (2016)

2. Cheng, B.H.C., et al.: 08031 - software engineering for self-adaptive systems: a
research road map. In: Dagstuhl Seminar Proceedings Software Engineering for
Self-Adaptive Systems, vol. 08031. IBFI (2008)

3. Erus, G., Polat, F.: A layered approach to learning coordination knowledge in
multiagent environments. Appl. Intell. 27(3), 249–267 (2007)

4. Galstyan, A., Kolar, S., Lerman, K.: Resource allocation games with changing
resource capacities. In: Proceedings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems AAMAS 2003, pp. 145–152 (2003)

5. Ghezzi, C., Motta, A., Panzica La Manna, V., Tamburrelli, G.: QoS driven dynamic
binding in-the-many. In: Heineman, G.T., Kofron, J., Plasil, F. (eds.) QoSA 2010.
LNCS, vol. 6093, pp. 68–83. Springer, Heidelberg (2010)

6. Jain, R.K., Chiu, D.M.W., Hawe, W.R.: A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems. Technical report
DEC-TR-301, Digital Equipment Corporation, September 1984

7. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-
based peer sampling. ACM Trans. Comput. Syst. 25(3) (2007). Article No. 8

8. Jiang, L., Xu, G.: Modeling and analysis of software aging and software failure. J.
Syst. Softw. 80(4), 590–595 (2007)

9. Montresor, A., Jelasity, M.: PeerSim: a scalable P2P simulator. In: Proceedings
of the 9th International Conference on Peer-to-Peer (P2P 2009), Seattle, WA, pp.
99–100, September 2009

10. Parent, J., Verbeeck, K., Lemeire, J., Nowe, A., Steenhaut, K., Dirkx, E.: Adaptive
load balancing of parallel applications with multi-agent reinforcement learning on
heterogeneous systems. Sci. Program. 12(2), 71–79 (2004)

11. Paschalidis, I.C., Tsitsiklis, J.N.: Congestion-dependent pricing of network services.
IEEE/ACM Trans. Netw. 8(2), 171–184 (2000)

12. Schaerf, A., Shoham, Y., Tennenholtz, M.: Adaptive load balancing: a study in
multi-agent learning. J. Artif. Intell. Res. 2, 475–500 (1995)

13. Schuhmann, S., Herrmann, K., Rothermel, K., Boshmaf, Y.: Adaptive composition
of distributed pervasive applications in heterogeneous environments. ACM Trans.
Auton. Adapt. Syst. (TAAS) 8(2), 10:1–10:21 (2013)

14. Sugawara, T., Fukuda, K., Hirotsu, T., Sato, S., Kurihara, S.: Adaptive agent
selection in large-scale multi-agent systems. In: Yang, Q., Webb, G. (eds.) PRICAI
2006. LNCS (LNAI), vol. 4099, pp. 818–822. Springer, Heidelberg (2006)

15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

16. Voulgaris, S., Jelasity, M., van Steen, M.: A robust and scalable peer-to-peer gos-
siping protocol. In: Moro, G., Sartori, C., Singh, M.P. (eds.) AP2PC 2003. LNCS
(LNAI), vol. 2872, pp. 47–58. Springer, Heidelberg (2004)

68 M. Caporuscio et al.

17. Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke,
J., Andersson, J., Giese, H., Göschka, K.M.: On patterns for decentralized control
in self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 7475, pp. 76–
107. Springer, Heidelberg (2013)

18. Yoon, K.P., Hwang, C.L.: Multiple Attribute Decision Making: An Introduction,
vol. 104. Sage Publications, Thousand Oaks (1995)

19. Zhang, C., Lesser, V., Shenoy, P.: A multi-agent learning approach to online dis-
tributed resource allocation. In: Proceedings of Twenty-First International Joint
Conference on Artificial Intelligence (IJCAI 2009), vol. 1, pp. 361–366 (2009)

Situation-Aware Execution and Dynamic
Adaptation of Traditional Workflow Models

Kálmán Képes1(B), Uwe Breitenbücher1, Santiago Gómez Sáez1,
Jasmin Guth1, Frank Leymann1, and Matthias Wieland2

1 Institute of Architecture of Application Systems,
University of Stuttgart, Stuttgart, Germany
kalman.kepes@iaas.uni-stuttgart.de

{breitenbucher,gomezsaez,guth,leymann}@informatik.uni-stuttgart.de
2 Institute for Parallel and Distributed Systems,

University of Stuttgart, Stuttgart, Germany
wieland@informatik.uni-stuttgart.de

Abstract. The continuous growth of the Internet of Things together
with the complexity of modern information systems results in several
challenges for modeling, provisioning, executing, and maintaining sys-
tems that are capable of adapting themselves to changing situations in
dynamic environments. The properties of the workflow technology, such
as its recovery features, makes this technology suitable to be leveraged in
such environments. However, the realization of situation-aware mecha-
nisms that dynamically adapt process executions to changing situations
is not trivial and error prone, since workflow modelers cannot reflect
all possibly occurring situations in complex environments in their work-
flow models. In this paper, we present a method and concepts to enable
modelers to create traditional, situation-independent workflow models
that are automatically transformed into situation-aware workflow mod-
els that cope with dynamic contextual situations. Our work builds upon
the usage of workflow fragments, which are dynamically selected during
runtime to cope with prevailing situations retrieved from low-level con-
text sensor data. We validate the practical feasibility of our work by a
prototypical implementation of a Situation-aware Workflow Management
System (SaWMS) that supports the presented concepts.

Keywords: Workflow technology · Situation-aware workflow
execution · Workflow adaptation · Workflow transformation · Workflow
fragments

1 Introduction

The significant increase of devices with network capabilities allows the integra-
tion of such into large software systems, which enables paradigms such as the
Internet of Things [3]. One fundamental aspect of such a paradigm is the exis-
tence of multiple sensors that continuously emit data representing the context

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 69–83, 2016.
DOI: 10.1007/978-3-319-44482-6 5

70 K. Képes et al.

of physical or virtual entities and running applications, e.g., temperature data
of physical machines or the utilization of virtual machines that run software.
Dynamic contextual changes have a severe impact on the application behavior,
which must be able to cope with and to adapt themselves to different situations,
e.g. opening or closing room windows to regulate its temperature. The existence
of a wide spectrum of possibly occurring situations across different application
domains, however, arises several challenges to developers regarding the tasks
of designing, implementing, and provisioning all necessary software artifacts to
realize complex processes that provide the required runtime flexibility.

The workflow technology enables the modeling and executing of process mod-
els that describe the desired behavior of information systems [15]. Workflow
models typically comprise a set of interconnected activities that are executed by
a runtime environment to achieve a business goal. However, these models are
not situation-aware by nature. For example, the usage of standardized workflow
languages, such as BPEL [18] or BPMN [19], requires the explicit modelling of
every individual behavior to cope with each and every possible environmental
change. If a workflow model describes the steps of a production process, and
one machine of this process breaks during execution, the overall workflow must
be adapted to achieve the business goal, e.g. by adding activities that repair
the machine or move the process to another machine. Unfortunately, if all pos-
sibly occurring situations must be considered, this leads to several issues at
both modeling and runtime levels, as (i) modeling all possibly occurring situa-
tions leads to extensive and complex workflow models that are hard to create
and even harder to maintain. In addition, (ii) process modelers may not have
the complete knowledge about all possibly arising situations, and (iii) most of
the existing standard-compliant workflow engines are currently not capable of
handling the dynamic nature of frequently changing situations. Moreover, using
standard-compliant technologies to realize workflows that adapt themselves to
changing situations is a non-trivial issue. In contrast, existing situation-aware
workflow management systems often employ custom, non-standardized workflow
languages, which reduces the portability of workflow models between different
runtimes.

In this paper, we tackle these issues. We present the ProSit Method that
enables creating traditional process models, which are then automatically trans-
formed into situation-aware workflow models, which can be executed by any
standard-compliant runtime environment without requiring an extension of the
employed workflow system. This transformation is achieved by searching work-
flow fragments in the original process, replacing each of them by a single activ-
ity whose execution is handled by a situation-aware service bus that dynami-
cally selects an appropriate fragment that provides the original functionality for
the currently prevailing situation during runtime. This supports the creation of
dynamic, self-adaptive processes using the standard-compliant workflow technol-
ogy and reduces the required expertise regarding possibly occurring situations.
Moreover, we present an architecture of a situation-aware workflow management
system called ProSit System, and validate its practical feasibility by a prototyp-
ical implementation. Finally, we conduct a case study to evaluate the approach.

Situation-Aware Execution of Traditional Workflow Models 71

The remainder of this paper is structured as follows. In Sect. 2, we motivate
our approach while Sect. 3 presents a life-cycle of situation-aware workflows and
the overall method. The architecture and implementation of the ProSit System
is introduced in Sect. 4, which is subsequently evaluated in Sect. 5 using a case
study. Section 6 discusses related works, Sect. 7 concludes the paper.

2 Motivation and Background

The workflow technology has considerably influenced the development of soft-
ware, as it allows the robust and reliable automation of business processes [15].
The foundations of this technology have contributed to the creation of several
standards, such as BPEL and BPMN. Due to the standardization, these lan-
guages enable creating portable process models that can be executed by different
standard-compliant runtimes, therefore avoiding vendor lock-in. However, these
languages do not support an efficient means to handle changing situations and
to model situation-aware behavior without polluting the respective models with
extensive and heterogeneous situation handling logic.

Several works have targeted the workflow adaptation in supply chain and per-
vasive environments, e.g., [2,8,24]. More specifically, the enhancement of process
models with context information and the usage of process fragments as a means
to dynamically adapt workflows have been the major research contributions
of these works. However, these approaches do not support the development of
standard-compliant workflow models that automatically become situation-aware
during their execution, which is the major research goal of the ProSit-Method.
In addition, due to large amounts of sensors propagating low-level heterogeneous
data, there is a need to integrate mechanisms for detecting aggregated high-level
situations that provide well-defined semantics.

To overcome these issues, in the SitOPT project1, we aim at providing a
Situation-aware workflow Management System (SaWMS) capable of aggregat-
ing low level sensor data to high level situations and using these situations for
dynamic workflow adaptation [25]. In the following, we describe the necessary
concepts of this architecture that are required to understand the contributions of
this paper. Figure 1 depicts the overall SitOPT architecture, consisting of three
main layers: Sensing Layer, Situation Recognition Layer, and Situation-aware
Workflow Layer. The Sensing Layer comprises the set of domain-specific sensors,
which are basically responsible for reading context parameters and propagating
data samples to the upper layers. The Situation Recognition layer filters, aggre-
gates, and processes the contextual data retrieved from the different objects.
The data aggregation and processing tasks are driven by the Situation Recogni-
tion middleware, which is mainly responsible for receiving the low level sensor
data and mapping this data to high level situations. The existence of multi-
ple Sensor Adapters enable the data processing and aggregation from different
domain-specific sensors.

1 https://www.ipvs.uni-stuttgart.de/abteilungen/as/forschung/projekte/SitOPT.

https://www.ipvs.uni-stuttgart.de/abteilungen/as/forschung/projekte/SitOPT

72 K. Képes et al.

Fig. 1. Overview of the SitOPT architecture and its three layers [25]

The situation-aware workflow adaptation is handled by the SaWMS and
the Situation Handler. The SaWMS is responsible for executing workflows and
passing all service invocations to the Situation Handler, which mainly acts as
a situation-aware service bus regarding the contributions of this paper. If a
request is received by the Situation Handler, it selects an appropriate work-
flow fragment (stored in the Workflow Fragment Repository) that is capable of
executing the requested operation in awareness of the currently prevailing situ-
ation. The Situation-Aware Workflow Modeling Tool supports creating work-
flow models by suggesting activities and operations, respectively, which can
be adapted dynamically for different situations. In this paper, we extend the
SaWMS by a method and concepts to enable automatically transforming tra-
ditional, situation-unaware workflow models in situation-aware models that are
dynamically adapted using the Situation Handler.

3 Situation-Aware Execution of Workflow Models

As described in the previous sections, the current workflow technology is not
situation-aware by nature. In this section, we (i) introduce a life-cycle for
situation-aware workflows and (ii) present the ProSit-Method for the transforma-
tion of traditional workflow models into situation-aware workflows afterwards.

3.1 Situation-Aware Workflow Model Life-Cycle

In Fig. 2, we introduce a life-cycle encompassing the (i) modeling, (ii) provision-
ing, and (iii) execution of situation-aware workflows using workflow fragments as

Situation-Aware Execution of Traditional Workflow Models 73

Fig. 2. Situation-aware workflow model life-cycle

the basis for the dynamic runtime adaptation. This life-cycle defines the context
and basis for the ProSit-Method that is introduced in the next section.

In a first phase, situation-aware workflow fragment models that implement a
certain action for a concrete situation are developed. For example, in the smart
home domain, a fragment model is developed that can reduce the temperature
in a room if the temperature outside the room is lower. Another fragment may
implement the same action for another situation, e.g. for the situation that
the temperature outside the room is higher. While the first fragment opens a
window to reduce the temperature, the second activates the air conditioner.
These fragment models are typically modeled by domain experts and can be
used by different processes. However, their suitability differs depending on the
prevailing situation. Since the repository of available generic situation-aware
workflow fragment models grows over time, this first phase may be skipped if
the modeler decides that the available fragments, i.e. the possible adaptations,
are sufficient for the workflow to be created. Therefore, this phase is optional.

In a second phase, the workflow model is created, describing the set of activ-
ities that must be performed and the data flow between them. To increase the
efficiency of modeling, and to avoid errors, available workflow fragments should
be used since they have been developed by domain experts.

74 K. Képes et al.

The created workflow model is then transformed into a situation-aware work-
flow model in a third phase. This is done by detecting all sets of activities within
the modeled workflow that are semantically and structurally equivalent to avail-
able situation-aware workflow fragments in the repository. This matching is per-
formed to replace the matching parts in the workflow model by single placeholder
activities that specify the invocation of the respective functionality implemented
by the matched fragment, e.g., Reduce Temperature. Based on situation-aware
workflow fragments, which all specify the action they can execute for a certain
situation, this provides the basis to select an appropriate fragment on runtime
to execute the functionality specified by a certain placeholder activity. This is
detailed in the next subsection that presents the ProSit-Method.

In the next phase, the Workflow Provisioning phase takes place: the gener-
ated situation-aware workflow model is deployed on a standard-compliant work-
flow engine that uses the Situation Handler as service bus. Thus, all invocations
of placeholder activities are directed to the bus. The provisioning of all workflow
fragments, which implement actions that are specified by placeholders, is also
done in this phase. To improve this phase, in future work, the provisioning of
fragments may be done on-demand, as presented by Vukojevic et al. [23]. In
the last phase, the provisioned workflow model is executed in a situation-aware
manner, by means of dynamically selecting workflow fragments depending on
prevailing situations.

3.2 ProSit-Method: Generating Situation-Aware Workflows

In this section, we present the ProSit-Method, which details the life-cycle pre-
sented in the previous subsection. In particular, the method supports transform-
ing traditional, situation-unaware workflow models into situation-aware work-
flow models that contain placeholder activities for the invocation of actions that
shall be dynamically adapted based on the prevailing situations. The method is
depicted in Fig. 3 and consists of six steps that are presented in this section.

The first step of the method, Workflow Modeling, corresponds to the second
phase in the life-cycle and, therefore, consists of modeling the desired workflow
model. In this paper, we focus on imperative, graph-based workflow languages
as described by Pichler et al. [20], e.g. using BPEL or BPMN. In the second
step, the Fragment Detection, all available situation-aware workflow fragment
models are structurally and semantically matched against the workflow model.
More specifically, the main objective of this step is to detect subworkflow models,
as defined in [14], that are equivalent to a certain workflow fragment model.
Since every workflow fragment model describes (i) the action it implements as
well as (ii) the situation for which it can be executed, this matching enables
detecting the semantics of certain parts of the workflow model. For example,
if the fragment matches the model that reduces the temperature of a room
by opening the window, the action Reduce Temperature has been recognized.
It is fundamental to denote that this step does not restrict the techniques to
be used to determine neither the semantic nor the structural equivalence. For
example, subgraph isomorphism algorithms can be used to match the control
flows of the workflow model and workflow fragment model as well the respective

Situation-Aware Execution of Traditional Workflow Models 75

Fig. 3. The ProSit method

data flows [7]. The semantic equivalence of activities mainly depends on the
domain and can be realized, for example, by matching the labels of activities.
In our prototype, we defined equivalence rules and implemented the described
matching for the language BPEL, (see Sect. 4). If the workflow modeling in the
first step uses available fragments, the probability of finding matching fragments
increases.

After detecting matching fragments in the workflow model, some of them may
be overlapping. For resolving such overlaps, the Fragment Selection step enables
to manually select the fragment that shall replace the placeholder activities.
However, if the matching is unique or the selection shall be done by the system,
a fully automated approach can be realized, too.

The Substitution Configuration step configures the data flow, if necessary.
This step is required, if the data flow of the original workflow and the selected
workflow fragment(s) do not uniquely match. More specifically, the matching
among the workflow variables and the input and output messages of the work-
flow fragment is driven. If necessary, this step can also target the semantic check-
ing among existing data variables in the original workflow and their equivalent

76 K. Képes et al.

Fig. 4. ProSit system - architectural overview

variables in the workflow fragment model. After this step, it is ensured that the
workflow model part to be replaced is matched by at least one proper fragment
that is equivalent in control flow, data flow, and semantics.

Once the data flow compatibilities are resolved, the Workflow Part Substi-
tution step replaces each matched part inside the workflow model with a single
placeholder activity, therefore transforming the original workflow model into a
situation-aware workflow model. The inserted activities are responsible for exe-
cuting the specified action, e.g., ReduceTemperature, depending on the currently
prevailing situation. Our architecture presented in the next section supports this
by discovering and selecting appropriate workflow fragments for each placeholder
activity and invoking them. Thus, the situation-aware placeholder activity pre-
scribes the use of late binding [21], since the overall system provides a set of
workflow fragments for which it is specified under which situations they are
allowed to be executed. The ProSit method does not restrict on the mechanism
and technological support for the execution of a placeholder activity, such as
inside the running workflow instance itself, as presented in [8], or through an
external service bus. However, the latter is realized in our architecture.

Finally, the situation-aware workflow model is provisioned. The provision-
ing mechanism is not restricted by the method, since it depends on the
implementation.

Situation-Aware Execution of Traditional Workflow Models 77

4 Architecture and Realization

In this section, we present the conceptual architecture of the ProSit-System,
which realizes the ProSit-Method and the introduced life-cycle. Figure 4 depicts
the architecture. The system is tailored towards two main environments: Devel-
opment and Runtime. In the Development Environment, the workflow model
and workflow model fragment developers create the respective models. Work-
flow fragment models are persisted in the Workflow Fragment Model Repository,
which persists a set of tuples, each one containing the (i) fragment model, (ii)
deployment artifacts required for deploying and executing the model fragment,
and (iii) the situation and goal descriptions that each workflow fragment model
is adequate for.

The Fragmentation Service enables the transformation of standard-
compliant, situation-unaware workflow models into fragmented situation-aware
workflow model variants by means of performing matching operations of work-
flow fragment models in the traditional model, as described in the previous
section. The output of the Fragmentation Service is a situation-aware workflow
model containing concrete executable activities and situation-aware placeholder
activities, which are later bound to a certain implementation during the execu-
tion phase, such as a workflow fragment model. Situation-aware workflow models
are then provisioned on a standard-compliant workflow engine that is capable of
executing workflow models specified in a standard workflow language. Since the
original, traditional, workflow model has been transformed and changed in terms
of replacing activities by placeholder activities, these placeholder activities need
to be handled. In particular, this means that for each placeholder activity an
invocation of the Situation Handler is defined. Thus, all actions that need to be
executed are sent to this handler that is responsible for executing the specified
action while monitoring the current prevailing situation. To serve such requests,
the handler discovers and invokes an appropriate workflow model fragment, i.e.,
a fragment that is capable of executing the requested action and that speci-
fies the current prevailing situation for such an action (see Fig. 4 Operation X).
Thus, the Situation Handler acts as a Situation-Aware Service Bus that dis-
covers appropriate services, which are implemented as workflow fragments, and
handles the interconnection among them. To enable this, workflow fragments
must be complete workflow models that can be executed standalone.

To allow the Situation Handler to find appropriate workflow fragments, these
are registered in a repository. This repository contains the workflow fragment
models including all meta-data, e.g., which action it implements for which situa-
tion, and situational endpoints, which are endpoints referencing already deployed
fragments that can be invoked directly. Compensation tasks, e.g. due to failures,
are also handled by the Situation Handler, by means of rolling back the execu-
tion of a workflow model fragment if the originally prevailing situation changes.
In this case, a rollback message is sent to the endpoint and a new feasible end-
point is selected. Details about this rollback, as well as about the architecture
and prototype of the described Situation Handler can be found in Fürst [6].

We implemented the presented architecture and matchmaking concepts
in the scope of the SitOPT Workflow Management Environment [4,10,25].

78 K. Képes et al.

Fig. 5. ProSit component showing the matched fragments against a workflow model

With respect to the implementation of our approach, in the modeling envi-
ronment, workflow developers use the Eclipse based BPEL Designer2 for the
modeling of workflow and workflow fragment models. For the persistence and
discovery of workflow fragment models, i.e. for implementing the Workflow Frag-
ment Model Repository shown in Fig. 4, we used the Fragmento repository pre-
sented by Schumm et al. [22]. In the scope of this paper, we implemented the
ProSit Transformation Service as a RESTful API that allows to process BPEL
workflow fragment models and BPEL workflow models. When BPEL workflows
are processed, the matching against Single-Entry-Single-Exit-based fragments is
started, where we use the library JGraphT [12] to transform these models into
graph-representations for solving an subgraph isomorphism between the models.
The results of each of the steps are stored as XML data inside the Fragmento
repository to be accessable by external clients to additionally configure certain
aspects, such as selection of fragments for replacement (see Fig. 5). Details about
the mapping of control flow, data flow, and activity semantics regarding BPEL
can be found in Képes [13]. The Situation Handler is developed as a RESTful
service that allows adding situational endpoints and to register on occurrences
of situations (see Fürst [6] for more information). Concrete situational endpoint
data is persisted as interface descriptors according to the WSDL standard (see
Fig. 6). The routing mechanism in the Situation Handler is handled through the
Apache Camel [11].

2 BPEL Designer: https://eclipse.org/bpel/.

https://eclipse.org/bpel/

Situation-Aware Execution of Traditional Workflow Models 79

Fig. 6. The situation handler web UI to add situational endpoints

5 Case Study

The evaluation of our approach has been performed by means of conducting a
case study from the SitOPT project. More specifically, we implemented a room
temperature regulation mechanism using situation-aware workflows as the basis,
as depicted in Fig. 7. The evaluation presented in this section consists of (i) trans-
forming a RoomRegulation workflow into a situation-aware workflow, by means
of using the Fragmentation Service, and the OpenWindow and RegulateClimate
fragments, which are subsequently (ii) provisioned, executed, and adapted using
the standard-compliant workflow engine WSO2 BPS.

A first step in our validation consists of modeling a set of workflow fragment
models, i.e. OpenWindow and RegulateClimate, which are two actions that can
be performed to regulate a room’s temperature. Subsequently, the modeling of
the RoomRegulation workflow comprises the set of necessary tasks to regulate
the temperature in a smart room. Subsequently to the modeling phase, the Frag-
mentation Service transforms the original RoomRegulation into a situation-aware
workflow by substituting its logic with situation-aware placeholder activities (see
step 2 in Fig. 7). This substitution is performed taking the potential situational
workflow fragment models persisted in the Workflow Fragment Model Repository
into consideration.

After the provisioning of the RoomRegulation, the execution phase takes
place. When a variation of temperature in the room occurs, an instance of the
RoomRegulation workflow invokes the operation reduceTemperature in the Situ-
ation Handler (see step 3 in Fig. 7), which determines the outside temperature
by invoking the SitOPT situation recognition system SitRS [10]. This allows the
Situation Handler to determine which workflow fragment to use for serving the
original reduceTemperature request (see steps 4 and 5 in Fig. 7). In our scenario,
the room temperature is lower than outside, so opening the windows won’t suf-
fice to achieve the goal of reducing temperature. Therefore, once a workflow
fragment model is discovered, the Situation Handler selects the RegulateClimate
fragment which activates the climate control to serve the reduceTemperature
request. Once the temperature is regulated, the RegulateClimate continues its
execution, potentially waiting until the temperature is stabilized.

80 K. Képes et al.

Fig. 7. Room temperature regulation case study

6 Related Work

This section presents related work in the domains of workflow flexibility, and
context- and situation aware applications. Refinement of processes has been
widely studied in other works. Context-aware process injection (CAPI) is intro-
duced as a concept for the execution of process fragments during runtime [17],
by means of enabling the design of processes that adapt themselves into specified
process regions based on the actual context. Fragments are executed if a speci-
fied region of the process model is reached. Context-aware annotated fragments
can be executed sequential or parallel, and once or multiple times. Although
this approach represents a language extension, it is not standard compliant.
Bucchiarone et al. [5] enable the usage of processes fragments to refine context-
aware abstract activities, in order to react to contextual conditions. While this
approach is highly flexible, it is neccessary to have detailed knowledge of the
domain and processes running in it. Developers have to define entities with their
possible states, fragments with annotated goals, preconditions, effects and com-
pensation effects.

Situation-Aware Execution of Traditional Workflow Models 81

The concept of Worklets is introduced in [1], which partially or completely
implements a context-aware process. A collection of subprocesses are conflated
using Ripple Down rules, which evaluate activities and discover which Worklet
matches to a specific context. While the approach is flexible in selecting work-
flows (Worklets) when activating a task that needs to be substituted, it is missing
changes at runtime of such workflows, e.g. the context changes and the activities
in the substituting workflow isn’t appropriate anymore. Aligned with such an
approach, Wieland et al. introduce Context4BPEL, which consists of a language
extension for BPEL 2.0 [24]. It focusses on precise context information, which are
used for modelling within activities and control flow. Breitenbücher et al. intro-
duce SitME, a concept that enables the modelling of situations on the workflow
tier [4]. Within a start activity, a workflow can receive occurring situations to
start the execution of a workflow. Additionally, Situational Scopes can be defined
within a workflow, which can only be executed if specified situations prevail. The
approach presented in [24] works on the workflow instance level. Therefore, intro-
ducing an huge burden in performance when handling fine-grained sensor data
inside the workflow engine. [4] transforms the defined situation-aware constructs
to native elements of the target workflow language.

Modafferi et al. [16] introduce a concept for developing context-aware work-
flows, by selecting alternative subprocesses based on context data. To react on
changes within the context, the standard behavior of workflow engines, i.e., the
rollback/compensation of activities, is used. Counteracting the expensive roll-
back, Modafferi et al. define edges between subprocesses, which can be evalu-
ated during runtime. If an edge is existent, the workflow engine can switch to
the alternative subprocess without any rollback. Similar to the SitME concept,
this approach represents a language extension. In González and Ortiz [9], the
usage of a context-aware Enterprise Service Bus (ESB) is proposed to adapt
service calls based on complex events. The main idea is that ESBs are responsi-
ble for transforming, routing, etc. messages between participants in the system.
González et al. define high-level situations based on CEP rules that when are
processed by a Context Reasoner to adapt specific parts of the message.

7 Conclusion

The emergence of network-capable devices has raised a number of challenges in
the last years related to how to aggregate and process massive amounts of data
retrieved from multiple interconnected sensors, and react accordingly to envi-
ronmental changes. Applications utilizing such devices must be context-aware
by nature, and must provide agile and flexible mechanisms to react to different
situations.

This work focuses on how to build and execute such applications using the
well established workflow technology as the basis. As the workflow technology is
not situation-aware by nature, we focus in this paper on enhancing such tech-
nology to support the situation-aware adaptability features required by context-
aware application systems. For such a purpose, a life-cycle for situation-aware

82 K. Képes et al.

workflows is firstly presented. The life-cycle phases related to the (i) transfor-
mation of traditional into situation-aware workflow models, and the (ii) execu-
tion of such situation-aware workflows, are covered by the ProSit method and
architectural support. Situation-aware workflows can be generated by discover-
ing, matching, and replacing workflow fragments in traditional workflow models.
Situation-aware workflows can then be executed and adapted based on retrieved
situations. The evaluation of our approach is performed in the scope of the
SitOPT project, by means of using a smart home case study as the basis.

Future works are aligned with exploring the usage of workflow fragments of
more complex shapes as the Single-Entry-Single-Exit, where only one start and
end activity are specified. Moreover, we plan to evaluate our approach using
further case studies in the IoT domain, as well as investigating the usage of our
approach in Cloud scenarios, i.e. for the situation-aware management of Cloud
resources.

Acknowledgments. This work is partially funded by the BMWi German Projects
“SePiA.Pro” (01MD16013F) and “SmartOrchestra” (01MD16001F), and the DFG
German Project “SitOPT” (610872).

References

1. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: a
service-oriented implementation of dynamic flexibility in workflows. In: Meersman,
R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg
(2006)

2. Ardissono, L., Furnari, R., Goy, A., Petrone, G., Segnan, M.: Context-aware work-
flow management. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007.
LNCS, vol. 4607, pp. 47–52. Springer, Heidelberg (2007)

3. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

4. Breitenbücher, U., Hirmer, P., Képes, K., Kopp, O., Leymann, F., Wieland, M.: A
situation-aware workflow modelling extension. In: Proceedings of iiWAS 2015, pp.
478–484. ACM (2015)

5. Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: Dynamic adaptation of
fragment-based and context-aware business processes. In: Proceedings of the 19th
International Conference on Web Services (ICWS), pp. 33–41. IEEE (2012)

6. Fürst, S.: Konzept und Implementierung eines Situation Handlers. Master thesis,
University of Stuttgart, IAAS (2015)

7. Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern
matching. AAAI FS 6, 45–53 (2006)

8. Gómez Sáez, S., Andrikopoulos, V., Hahn, M., Karastoyanova, D., Weiß, A.:
Enabling reusable and adaptive modeling, provisioning & execution of BPEL
processes. In: Proceedings of SOCA 2015. IEEE (2015)

9. González, L., Ortiz, G.: An event-driven integration platform for context-aware
web services. J. UCS 20(8), 1071–1088 (2014)

10. Hirmer, P., Wieland, M., Schwarz, H., Mitschang, B., Breitenbücher, U., Leymann,
F.: SitRS - a situation recognition service based on modeling and executing situ-
ation templates. In: Proceedings of the 9th Symposium and Summer School On
Service-Oriented Computing, pp. 113–127. IBM Research Report (2015)

Situation-Aware Execution of Traditional Workflow Models 83

11. Ibsen, C., Anstey, J.: Camel in Action, 1st edn. Manning Publications Co.,
Greenwich (2010)

12. JGraphT Team: JGraphT - a free Java Graph Library (2016). http://jgrapht.org/
13. Képes, K.: Erkennung und dynamische Ersetzung von Fragmenten in Workflow-

Modellen. Master thesis, University of Stuttgart, IAAS (2016)
14. Kopp, O., Eberle, H., Leymann, F., Unger, T.: The subprocess spectrum. In: Pro-

ceedings of the Business Process and Services Computing Conference (BPSC 2010),
vol. P-177, pp. 267–279. Gesellschaft für Informatik e.V. (GI) (2010)

15. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall PTR, Upper Saddle River (2000)

16. Modafferi, S., Benatallah, B., Casati, F., Pernici, B.: A methodology for designing
and managing context-aware workflows. In: Krogstie, J., Kautz, K., Allen, D. (eds.)
MOBIS’05. IFIP, vol. 191, pp. 91–106. Springer, New York (2005)

17. Mundbrod, N., Grambow, G., Kolb, J., Reichert, M.: Context-aware process
injection: enhancing process flexibility by late extension of process instances.
In: Debruyne, C., Panetto, H., Meersman, R., Dillon, T., Weichhart, G., An,
Y., Ardagna, C.A. (eds.) OTM 2015. LNCS, vol. 9415, pp. 127–145. Springer,
Heidelberg (2015)

18. OASIS: Web Services Business Process Execution Language (WS-BPEL) Ver-
sion 2.0. Organization for the Advancement of Structured Information Standards
(OASIS) (2007)

19. OMG: Business Process Model and Notation (BPMN) Version 2.0. Object Man-
agement Group (OMG) (2011)

20. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Impera-
tive versus declarative process modeling languages: an empirical investigation. In:
Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP,
vol. 99, pp. 383–394. Springer, Heidelberg (2011)

21. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.: Process
flexibility: a survey of contemporary approaches. In: Dietz, J.L.G., Albani, A.,
Barjis, J. (eds.) Advances in Enterprise Engineering I. LNBIP, vol. 10, pp. 16–30.
Springer, Heidelberg (2008)

22. Schumm, D., Karastoyanova, D., Leymann, F., Strauch, S.: Fragmento: advanced
process fragment library. In: Pokorny, J., Repa, V., Richta, K., Wojtkowski, W.,
Linger, H., Barry, C., Lang, M. (eds.) Information Systems Development, pp. 659–
670. Springer, New York (2011)

23. Vukojevic-Haupt, K., Gómez Sáez, S., Haupt, F., Karastoyanova, D., Leymann,
F.: A middleware-centric optimization approach for the automated provisioning
of services in the cloud. In: Proceedings of CloudCom 2015, pp. 174–179. IEEE
(2015)

24. Wieland, M., Kopp, O., Nicklas, D., Leymann, F.: Towards context-aware work-
flows. In: CAiSE 2007, pp. 577–591 (2007)

25. Wieland, M., Schwarz, H., Breitenbücher, U., Leymann, F.: Towards situation-
aware adaptive workflows: SitOPT a general purpose situation-aware workflow
management system. In: Proceedings of PerCom 2015, pp. 32–37. IEEE (2015)

http://jgrapht.org/

SLA-Aware Services

Subsumption Reasoning for QoS-Based Service
Matchmaking

Kyriakos Kritikos(B) and Dimitris Plexousakis

ICS-FORTH, 70013 Heraklion, Greece
{kritikos,dp}@ics.forth.gr

Abstract. Service-orientation has revolutionized the way applications
are constructed and provisioned. To this end, a proliferation of web ser-
vices is being increasingly available. To exploit such services, an accurate
service discovery process is required with a suitable performance focusing
both on functional and quality of service (QoS) aspects. In fact, QoS is
the main distinguishing factor for the plethora of functionally-equivalent
services available in the internet. Accuracy in service discovery comes
via exploiting formal techniques and ontologies in particular. Satisfac-
tory performance levels can be reached via using smart methods that
intelligently organise the service advertisement space. In this paper, we
propose smart ontology-based QoS-aware service discovery algorithms
that exploit ontology subsumption as a means of matching QoS requests
and offers. These algorithms exploit a variety of methods to structure
the service advertisement space. Based on the empirical evaluation con-
ducted, our proposed algorithms outperform the state-of-the-art in cer-
tain circumstances. To this end, ontology-based subsumption is indeed
a promising technique to realise QoS-based service matchmaking.

Keywords: Service · Matchmaking · Discovery · QoS · Ontology ·
Subsumption

1 Introduction

Service-orientation has revolutionalized the way web applications and processes
are constructed, provisioned and evolved. With the advent of cloud computing,
which delivers extra advantages, a proliferation of available services has been
achieved covering various types of functional capabilities. To exploit such services
and rapidly build added-value functionality, there is a need for accurate and fast
service discovery algorithms focusing both on functional and quality-of-service
(QoS) aspects. The state-of-the-art in functional service discovery exploits either
ontology-based [9], information retrieval [2] or a mixture of such techniques [7]
to perform service matching. It has been proven that only when ontology-based
techniques are involved [7], higher accuracy levels can be attained.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 87–101, 2016.
DOI: 10.1007/978-3-319-44482-6 6

88 K. Kritikos and D. Plexousakis

However, functional service discovery alone cannot enable the service designer
to discover those services satisfying all requirement aspects. On the contrary, QoS
has been deemed as the aspect enabling the differentiation between the plethora
of functionally-equivalent services currently available. In fact, QoS can play a
significant role in all phases of the service lifecycle [3]. To this end, various types
of QoS-based service discovery approaches have been proposed. To increase the
accuracy in the service discovery results, some of these types do exploit either
ontology-based techniques [11] alone or constraint solving techniques as well
[5]. Those approaches exploiting solely ontology-based techniques use ontology-
based subsumption to perform the matching but have relied on wrong ontology
constructs to specify QoS-based service specifications. As such, their applicabil-
ity is quite limited. On the other hand, mixed-based approaches have a wider
applicability and have been shown to exhibit much better performance.

In this paper, we propose a pure ontology-based approach which exploits
ontologies in a correct way via more suitable constructs enhancing the respective
applicability. In addition, we propose smart algorithms which intelligently organ-
ise the service offer space so as to perform service matchmaking via ontology sub-
sumption on a subset of all offers. By considering the two main disadvantages of
a mixed-based approach which are the ontology to constraint specification trans-
formation and the solving of multiple constraint models to infer the matching
between a pair of a service QoS offer and demand, our empirical evaluation shows
that our proposed algorithms outperform mixed-based state-of-the-art ones in
certain circumstances. This is a proof that ontology subsumption alone can be
considered as a promising technique for QoS-based service matchmaking.

The rest of the paper is structured as follows. Section 2 reviews the related
work. Section 3 provides background knowledge enabling to better understand
the paper propositions. Section 4 analyses the proposed approach and the
algorithms realising it. Section 5 discusses the experimental evaluation results.
Finally, Sect. 6 concludes the paper and draws further research directions.

2 Related Work

2.1 QoS-Based Service Description

A plethora of languages have been proposed for describing QoS-based offers
and requests. According to the survey in [3], these languages can be distin-
guished according to their formality, expressiveness and complexity. From these
languages, OWL-Q [4], a modular and semantic-based service description lan-
guage, seems to be the most promising, especially in terms of expressiveness as
it covers in a rich manner all possible aspects of QoS-based service description.
Based on OWL-Q, a mid-level ontology is available which provides a common
vocabulary of QoS terms which can be used to populate QoS-based service speci-
fications, such as domain-independent QoS attributes and metrics (e.g., response
time). Due to the above unique advantages, the approach proposed in this paper
exploits OWL-Q along with its mid-level ontology.

Subsumption Reasoning for QoS-Based Service Matchmaking 89

2.2 QoS-Based Service Discovery

Various QoS-based service matchmaking approaches have been proposed that
can be categorised in three main types. Ontology-based approaches [11] rely
on ontology subsumption to perform the service specification matching. These
approaches are able to support only unary-based service specifications, i.e.,
involving one QoS term per constraint (QoS capability or requirement).
Constraint-based approaches [1] assume the existence of a common QoS term
vocabulary through which constraint models can be specified mapping to the
actual service QoS offers and requests. Then, they exploit constraint solving tech-
niques and specific matchmaking metrics to perform the matching of the con-
straint models. In comparison to ontology-based approaches, constraint-based
ones operate over n-ary specifications and have a much better performance.
Finally, mixed based approaches [5] attempt to exploit the best of both worlds.
This means that they operate over semantic QoS specifications by first aligning
them according to their QoS terms and then transforming them into constraint
models which can then be matched based on the second type of approaches. In
comparison to the former two types, this type can operate on n-ary specifica-
tions, it exhibits better accuracy levels due to the alignment of the specifications
that goes beyond using subsumption reasoning and exhibits almost equivalent
performance levels with respect to the constraint-based approach type.

Apart from the above approach categorisation, recently some new mixed
approaches [6] have been proposed able to speed up the service matching time
by cleverly organising the QoS service offer space. These approaches create a
QoS offers subsumption hierarchy. As such, when a QoS request subsumes a
hierarchy node, it subsumes all its descendants. Thus, these descendants do not
have to be matched with the QoS request and matching time gets reduced.

The approach proposed in this paper belongs to the first type. As such, it
suffers from the disadvantage of handling only unary constraints. However, this
disadvantage is not crucial as most, if not all, of existing QoS service specifica-
tions in the real world are unary. Moreover, to speed up the matchmaking time,
we propose different algorithms which attempt to similarly organise the offer
space as in the recent approaches. In this way, we do not only reduce the match-
making time but are able to outperform these recent approaches in certain cases
for the following two reasons: (a) our approach does not require transforming
ontology-based QoS specifications to a different form and (b) ontology subsump-
tion can be faster than constraint-based matching even for a pair of a QoS offer
and demand due to the way constraint matching metrics are realised. Thus, the
use of pure ontology-based approaches in QoS-based service matching is not only
feasible but also quite practical in certain cases. We believe that the prospective
practitioners will benefit from the proposal and findings of this paper.

3 Background

In this section, we first explain why the current realisation of the pure ontology-
based approach type is not appropriate and what is our proposal for solving

90 K. Kritikos and D. Plexousakis

Fig. 1. The example QoS offer in different forms

this issue. Then, we highlight what is the process for adding and matching QoS
offers for both ontology-based approach types as this paper focuses on their
comparison.

3.1 Realisation Issues

Suppose we have the example QoS offer in Fig. 1A in QRL [1]-like syntax indi-
cating that average response time will be less or equal to 10 and greater than
2 seconds while average throughput will be between 100 and 120 requests per
second inclusive. In the pure ontology-based approach type, the two metrics will
originate from a mid-level ontology specifying domain-independent QoS terms.
Indeed, this is the case of the approach in [11] which maps both metrics to sub-
classes of CompositeMetric, thus connecting the upper-level ontology proposed
to the mid-level one. However, the latter approach will then rely on a misuse
of OWL cardinality constraints to specify the constraints of the specifications
as indicated in Fig. 1B. In particular, it will indicate that the cardinality of the
value-based properties (e.g., responseTime) of these metrics will be in accor-
dance to the ranges in Fig. 1A. This wrong QoS constraint modelling has two
main disadvantages: (a) only a specific type of QoS terms can be addressed map-
ping to non-negative integers – as such, terms like availability cannot be catered
as their value types map to real numbers; (b) this modelling can also lead to an
error that is at maximum one-half of the QoS term unit. Apart from the wrong
modelling, the respective QoS ontology language exploited is quite limited with
respect to the capabilities and richness of OWL-Q.

The above modelling issue is solved via the rationale in Fig. 1C. While there
are again terms mapping to a composite metric class, we actually restrict the
range of the value datatype property for them based on the desired limits. As
such, we can model different value types for these terms; either concrete XSD1

types (e.g., integer) or specialisations of them (e.g., constrained integers). By also
exploiting OWL-Q, our QoS modelling is correct, richer and more extensive.

1 http://www.w3.org/TR/xmlschema11-1/.

http://www.w3.org/TR/xmlschema11-1/

Subsumption Reasoning for QoS-Based Service Matchmaking 91

Fig. 2. The QoS demand and the 4 matchmaking problems

However, there is still a specific issue. Subsumption reasoning caters mainly
for positively monotonic QoS terms. This can be understood from the example
QoS demand in Fig. 2B which needs to be matched with the aforementioned
QoS offer. While it is apparent that the QoS offer is more specific than the
QoS demand and there is a match, the average response time is a negatively
monotonic metric. As such, any ontology reasoner will never infer that the QoS
offer is subsumed by the QoS demand.

The solution to this problem is to negate the constraints on negatively
monotonic metrics. This is equivalent to considering a new, positively monotonic
term equal to the negation of the original term. In this way, both the QoS offer
and demand will be expressed as in Figs. 1D and 2B and their matching will
be derived through an ontology reasoner, like Pellet2 [8]. This treatment of QoS
specifications has the following alternative concequences: (a) either the mod-
eller should specify the QoS constraints as well as the QoS terms in the newly
prescribed way taking special case on negatively monotonic terms or (b) the
respective tools enabling the editing of the QoS specifications should be realised
to transform internally the modeller constraints in the appropriate format or
pre-processing of QoS specification via transformation tools is performed before
the actual registration or matching of the specification is performed.

3.2 Ontology-Based QoS Specification Management Process

In a pure ontology-based approach, the QoS offer management process is quite
simple. The existence of a semantic repository is assumed where the support for
a specific ontology language like OWL is offered. Obviously, on top of OWL, a
QoS-based service description language like OWL-Q lies via which the offers are
actually specified. As indicated in [6], a mixed-based approach requires a QoS
term (needed for their alignment) and a constraint model repository. As such,
extra storage requirements are imposed.

2 https://github.com/Complexible/pellet/.

https://github.com/Complexible/pellet/

92 K. Kritikos and D. Plexousakis

QoS Offer Registration. In an ontology-based approach, QoS offers to be reg-
istered are first loaded in order to check whether they are consistent. This maps
to creating a small knowledge base (KB) out of this offer and checking if this
KB is consistent by evaluating whether any concept is subsumed by OWL Noth-
ing. In a mixed-based approach, apart from consistency checking, the ontology
needs first to be realised and validated and then to be transformed into a con-
straint model. Thus, it is expected that the offer registration time is faster in an
ontology-based approach.

By considering the previous sub-section’s example, the mixed-based approach
will map the QoS offer in Fig. 1B into a constraint model similar to that of Fig. 1A
where each unique QoS term will be mapped to a specific variable.

QoS Request Matching. A QoS request passes the same sub-process when
issued as it must be checked for consistency. Then, it must be matched with
all the QoS offers stored in the respective repository. In the pure ontology-based
approach, the QoS request is entered into the existing KB and then classification
is performed such that all subsumption relations are discovered between this
request and all QoS specifications. As such, the QoS request is matched with all
QoS offers that it subsumes. Please note that matchmaking as conformance or
subsumption is the main matching metric in all approach types.

For the rest of the approach types, there is a matching of two constraint
models mapping to the QoS request and offer when the solution space of the
latter is included in the solution space of the former. This is translated in solving
one or more constraint problems depending on the constraint arity of the QoS
specifications. In case of unary constraints, specification conformance maps to
checking M (mapping to the offer’s number of constraints) constraint problems
constructed by the offer’s constraint model and a negation of each demand’s
constraint. If all problems are infeasible, then there is a match between the
QoS offer and request. In case of n-ary constraints, only one constraint problem
needs to be solved constructed from the QoS offer and the negation of the QoS
demand. A match is inferred if the latter problem is infeasible. In the first case,
more steps must be performed with respect to the pure ontology-based approach
whose timing depends on the number of constraints involved. In the second case,
one complicated step is performed but has no counterpart in the pure ontology-
based approach as the latter can address unary constraints only.

In a mixed-based approach, the QoS request of the previous subsection will be
first mapped to the constraint model in Fig. 2D. Then, four constraint problems
need to be solved as depicted in Figs. 2C and F.

4 Proposed Approach

4.1 Architecture

Figure 3 depicts the proposed approach architecture by visualising both the
respective components and their interactions. There are five main components
involved. The Semantic Repository is an ontology-based repository able to store
all QoS offers. The Matcher is a web service (WS) taking as input a QoS request

Subsumption Reasoning for QoS-Based Service Matchmaking 93

Fig. 3. Non-functional service matchmaking system architecture

which is then matched with all QoS offers stored. This WS internally realises one
or more matching algorithms so it can be configured to operate based on one of
them. The Publisher is also a WS enabling service providers to publish their QoS
offers in the semantic QoS-based matchmaking system. Similarly to Matcher, it
can be configured to operate a specific (de-)publication algorithm mapping to
the approach followed for matchmaking. Both the Publisher and Matcher exploit
two other components: (a) the Transformer which loads the specification and
then transforms the constraints for negatively-monotonic terms, when users do
not model them as expected; (b) the Reasoner which performs different types of
tasks: (a) ontology-based specification validation, (b) pair-wise specification com-
parison and (c) (incremental) subsumption over full repository content. Invalid
specifications are returned back to their issuers with a suitable error message.

The semantic QoS-based matchmaking system currently operates solely on
OWL-Q based specifications. In the future, it will include extra transforma-
tion functionality to support original specifications in different QoS-based ser-
vice specification languages which will be injected in the Transformer ’s existing
capabilities. Distribution of content will also be examined to cater for better
scalability levels. Due to the nature of the proposed algorithms, such distribu-
tion is quite easy and natural to realise without any implication on algorithm
accuracy.

4.2 Algorithms

In the following, we are going to analyse the four main algorithms that we have
realised and are included in the capabilities of the Matcher component. We focus
on the two main processes supported: QoS offer registration and QoS request
matching. For each algorithm, the presentation starts with the main rationale,
it then explicates the way the offer space is organised, next the algorithm core
is analyzed and finally its complexity analysis is supplied.

94 K. Kritikos and D. Plexousakis

Naive. Rationale. The main rationale of the algorithm, also justifying its name,
is to load all offers on memory when a specific matching request is issued. This
facilitates an offer’s registration as once its consistency is checked, it is just
stored in the repository. However, it is expected that matching time will not be
appropriate as it has been proven that subsumption reasoning does not scale
well, especially if done in a centralised manner. In fact, as OWL-Q along with
its mid-level lies in the SROIQ(D) family of ontologies, any reasoning task is
decidable but NExpTime-Hard.

Offer Space Organisation. There is no special offer space organisation. Only
one specific hash set is employed to account for the URIs of the offers stored
such that they can be immediately located and loaded during request matching.

Algorithm Core. The algorithm’s core does not differ with respect to that
sketched in Sect. 3. Initially, a KB is constructed out of all QoS offers and the
QoS request and then classification is performed. Finally, a query on the KB is
performed to obtain all offers subsumed by the request.

Complexity Analysis. Suppose that a specification usually has 4–5 QoS terms
and 4–5 constraints on them, all wrapped into a single class definition. As such,
we expect that the specification loading time will be more or less constant and
equal to Lspec. Thus, the time needed to check the request’s consistency (sim-
ilar as loading) as well as construct a KB out of N offers and 1 QoS request
will be O (Lspec ∗ (N + 2)). If we further assume that the time to classify N + 1
specifications is SN+1, such that the classification depends on the specification
number, the overall matching time would be O (Lspec ∗ (N + 1)) + SN+1. We
expect that usually O (SN+1) takes much longer than O (Lspec ∗ (N + 2)), espe-
cially when the specification number becomes bigger, so we will have a final
complexity of O (SN+1) for matchmaking. Offer registration, on the other hand,
takes O (N ∗ Lspec) time as each offer is just loaded and checked for consistency.

Incremental. Rationale. The naive approach does not incrementally build the
KB but constructs it on demand. As such, as incremental classifiers are avail-
able, it might be better to employ incremental classification to save time when
classifying a temporal extension of the KB encompassing the request.

Offer Space Organisation. The previous algorithm’s hash set is preserved
to account for the offers already stored. KB is the other organisation medium
constantly updated. The classification tree constructed contains all possible sub-
sumption connections between the specifications involved.

Algorithm Core. During offer registration we discovered that it is a little bit
costly to run classification each time an offer must be registered. As such, we
run classification only every X offers, where X is a configuration parameter for
the algorithm. In each registration, the offer is loaded, checked for consistency
and then stored in the KB.

For request matching, after consistency checking, we temporarily include the
request in the KB and then we perform incremental classification. We then query
the KB to find the offers subsumed by the request.

Subsumption Reasoning for QoS-Based Service Matchmaking 95

Complexity Analysis. Suppose that SY
X is the incremental classification

time when X specifications are added to the KB and Y specifications
are already loaded. Then, the offer registration time for N offers will be
O

(
Lspec ∗ N +

∑N
X

Y=1 S
Y ∗X
X

)
.

On the other hand, the request matching time will take at most
O

(
Lspec + SN

1

)
as we will have to check the request consistency and incremen-

tally classify only the temporal addition of the request in the existing KB.

Subsumes. Rationale. As a naive approach does not scale well in practice and
driven by the fact that even the incremental algorithm might also exhibit similar
performance problems, we decided to rely on the method in the SubMIPMM
algorithm [6] and create our own subsumes offer hierarchy to be matched against
any issuing request. In such hierarchy, if the request subsumes a node, then it
also subsumes its descendants so some comparisons are avoided.

Offer Space Organisation. We do not construct a complete subsumes hierar-
chy as this requires connecting a new offer to all parents that subsume it and
the registration time would be highly increased. The main trick as followed in
[6] is to connect the offer to the first tree in the hierarchy forest in which it is
matched.

Algorithm Core. The registration process is simple. We first match the new
offer with all hierarchy’s top offers. In case of a match, we check subsumption
direction. If the new offer subsumes one or more top nodes, it becomes a top
node itself and the matched nodes its children. If the offer is subsumed by one
or more top nodes, we take the first one and check where to place the new offer
in its own tree. So, the same matching procedure is followed until either the new
offer subsumes some nodes in the selected tree or becomes this tree’s leaf.

Concerning request matching, we match the request with all top-nodes in the
subsumption hierarchy. In case the request subsumes a top-most node, we add
this node along with its descendants in the matching offers set. Otherwise, we
need to go down a top-most node’s subtree similarly to the way top-matching
is performed to find matching offers. The latter is due to the fact even if the
request does not match the top-node, as we descend the tree, the offers becomes
stricter with a smaller solution space and thus the probability that they finally
match the request becomes higher.

For both processes, if pair-wise subsumption reasoning takes less than pair-
wise constraint-based matching, this algorithm will be faster than SubMIPMM.

Complexity Analysis. Concerning offer registration, we need first to check
offer consistency. Then, different cases can occur. In the best case, the offer is
equivalent to the first top-most node so we do not need to check anything else.
The time complexity will then become: O (Lspec + S2). In the worst case, the
hierarchy maps to a tree and we have to put the new offer as a child of the
rightmost leaf node. This means that we will have to compare the new offer with
all offers stored. In this case, the time complexity is O (Lspec + N ∗ S2) which
can be reduced to O (N ∗ S2). In the average case, B trees more or less balanced

96 K. Kritikos and D. Plexousakis

will exist and the time complexity will become: O
(
Lspec + N+B2

2∗B ∗ S2

)
which

can be reduced to O
(

N+B2

2∗B ∗ S2

)
.

Different cases map to request matching. The best one occurs when the hier-
archy maps to a tree and the request subsumes the root node. The time com-
plexity will be: O (Lspec + S2). The worst case occurs when the request must
be compared with all tree nodes (as it does not subsume any offer or just the
rightmost leaf one). The time complexity will be: O (Lspec + N ∗ S2) which can
be reduced to O (N ∗ S2). In the average case, we assume that P offers will be
subsumed and that there will be at least a two-level hierarchy between the sub-
sumed offers. As such, the time complexity will be O

(
Lspec + N ∗ (

1 − P
2

) ∗ S2)
)

which is reduced to O
(
N ∗ (

1 − P
2

) ∗ S2)
)
.

SubsumesFrag. Rationale. The previous algorithm constructed the hierarchy
in an incremental manner and used ontology-based reasoning only when pair-wise
comparisons of specifications were performed. As many pair-wise comparisons
may have to be made, the current algorithm’s rationale is to construct a bigger
KB involving C specifications and not just 2 as we expect that this will take less
time than having to reason over C − 1 KBs of size 2 (if we assume that always
the first specification is constant, i.e., the request). Moreover, we use incremental
classification to construct the offer hierarchy as this might be deemed better than
having to construct this hierarchy in a pair-wise manner. As such, we expect that
this algorithm will be faster than the previous one.

Algorithm Core. In offer registration, for each X offers stored, we perform
incremental classification over the KB and store the classification hierarchy in
main memory. Rationale is again that it is better to incrementally do this every
time a specific number of incoming offers is issued rather than running incre-
mental classification on-demand for each incoming offer to be registered.

Matchmaking follows a similar rationale as in the previous algorithm. The
sole exception lies on the fact that now the classification is more complete but
also contains new offers (less than X) that have not yet been classified and are
considered top-nodes. Due to the classification completeness, we also need to
keep track of the nodes visited so as not to revisit them again. The matching
process starts by matching the top-nodes in the classification hierarchy in chunks
of C nodes each time (see Rationale paragraph). If a top-node is subsumed, we
do not follow its descendants but just add them in the matching offers set. We
also mark this node and its descendants as visited. Otherwise, we need to go
down the top-node’s tree to find matches again similarly to top-node matching.

Complexity Analysis. Offer registration is equivalent to the case of
the incremental classification algorithm. Thus, its time complexity is:
O

(
Lspec ∗ N +

∑N
X

Y=1 S
Y ∗X
X

)
.

Request matching has 3 cases. In the best case, the request matches a left top-
node in the 1st subsumption chunk taking: O (Lspec + SC). In the worst case, we
must match the request with all nodes. This takes O

(
Lspec + N

C ∗ SC

)
, further

reduced to O
(
N
C ∗ SC

)
. In the average case, we make the same assumptions as in

Subsumption Reasoning for QoS-Based Service Matchmaking 97

previous algorithm. The time complexity is: O
(
Lspec +

N∗(1−P
2)

C ∗ SC

)
, further

reduced to O

(
N∗(1−P

2)
C ∗ SC

)
.

5 Experimental Evaluation

The experimental evaluation aims at comparing the proposed algorithms with
the subMIPMM mixed-based one to identify cases that these algorithms pre-
vail. This evaluation relied on the experimental framework in [6]. It also exploits
the second real dataset from WS-Dream collection [10] and one randomly con-
structed in a controlled manner. The main comparison metric is average execu-
tion time for both registration and matchmaking. Accuracy has not been con-
sidered as all algorithms are perfect in this aspect [6] by completely realising the
matchmaking metric of specification conformance [1]. In the following, we first
shortly explain the way experiments have been performed and then present each
experiment’s results along with their respective analysis.

Please note that Pellet was used for ontology subsumption in the algorithms
while the Ibex constraint solving framework (www.ibex-lib.org/) was exploited
for constraint matching in SubMIPMM.

5.1 Experiment Set-Up

All experiments were performed in a laptop with a 64bit OS, a 6GB main mem-
ory and a multicore CPU of 2.4 GHz frequency. For each experiment, we have
conducted a series of steps to produce the respective average measurements of
the algorithms considered. Each step maps to specific fixed or dynamic values
of the control parameters and a series of 30 runs from which the average was
calculated in order to alleviate for interferences at the OS level.

Real or randomised input was used in the experiments. In case of WS-Dream
dataset, depending on the offer number (given as a control parameter value), we
randomly selected an equal number of measurements from around 4500 avail-
able ones which were transformed into respective ontology-based offers mapping
to the two main terms exploited, i.e., response time and throughput. The cor-
responding request was randomly selected again from the 4500 measurements.
In case of the randomised dataset, the offers were randomly created based on
current values of the control parameters. More details about this can be found
in [6]. The respective randomised request was constructed again based on the
control parameter values so as to match a specific percentage of offers.

5.2 1st Experiment

In this experiment, we exploited the randomised dataset and considered that half
of the offers will be matched by each request issued. The number of offers was
linearly increasing from 40 to 640 with a step of 100. The respective experiment
results are visualised in Figs. 4a and b.

http://www.ibex-lib.org/

98 K. Kritikos and D. Plexousakis

(a) (b)

Fig. 4. (a) shows matching time results for 1st experiment while (b) shows registration
time results for 1st experiment

Concerning matching time, it is clear that SubMIPMM algorithm is the best,
followed by Subsumes. SubsumesFrag comes next while in the end we have Incre-
mental and Naive. These matchmaking results were not expected especially
between the two ontology-based subsumes algorithms while SubMIPMM pre-
vailance possibly indicates that there is a bound in the variable number always
leading to constraint-based matchmaking being faster than ontology subsump-
tion. Please note that there is a speedup with respect to incremental reasoning
which is not great as the removal of a previous request and the addition of a
new one (based on the way the experiment was conducted) in the existing KB
requires performing subsumption over a great number of offers.

Concerning registration time, it was obvious that Naive will be the best
while subMIPMM the last. However, the second expectation was not realised as
there is a specific breakpoint in SubsumesFrag performance because incremental
reasoning is not efficient due to the nature of specifications and subsumption’s
exponential complexity. The order change between Subsumes and SubMIPMM
is due to the fact that the latter performs two (complex) constraint solvings
per comparison in registration in contrast to just one for matchmaking while
obviously the former performs just one classification per comparison constantly.

5.3 2nd Experiment

In this experiment, we exploited again the randomised dataset with almost sim-
ilar control parameter values but: (a) the offer number is now constant (300)
and (b) we linearly increase the QoS term number in the specifications from 10
to 60 with a step of 10. Our main goal is to show that as the QoS term num-
ber increases, the constraint number in each QoS specification also increases;
as such the number of constraint problems to be solved by subMIPMM also
increases. In this sense, we expect that there will be a specific bound on the

Subsumption Reasoning for QoS-Based Service Matchmaking 99

(a) (b)

Fig. 5. (a) shows matching time results for 2nd experiment while (b) shows registration
time results for 2nd experiment

QoS term number beyond which subsumption reasoning will be quicker than
pair-wise constraint-based matching. Figure 5 shows the experiment results.

Concerning matching time, the results are in accordance to the previous
experiment ones for the same initial variable number. However, as soon as the
variable number goes to 20, we clearly see that SubMIPMM ’s performance gets
worse and less than that of the ontology-based subsumes algorithms whose per-
formance order is not altered throughout the experiment. The order between
Naive and Incremental is also not altered with respect to the previous experi-
ment, something quite expected.

Concerning registration time, it is clear that SubMIPMM is the worst algo-
rithm as it has to increasingly solve a much higher number of constraint prob-
lems per offer registration when the number of QoS variables and respective
constraints increases. The order between the two ontology-based subsumes algo-
rithms is almost the same which is evident also by the theoretical complexity
analysis. As in the previous experiment, the order and performance of the rest
of the ontology-based algorithms is not modified.

5.4 3rd Experiment

In this experiment, we exploit the real dataset and increase the offer number from
100 to 600. So, similar settings as in 1st experiment apply with two exceptions:
(a) the QoS term number is 2 and not 10; (b) it is expected that the QoS offer
number to be matched is small and thus much more work is expected for all
subsumes-based algorithms. The main goal is to stress-test the algorithms in
real situations and inspect whether the last algorithm can outperform the rest
as it will have to perform less subsumption checking pieces of work. Figures 6a
and b visualise the respective results.

Concerning matching time, the results validate the complexity analysis as all
subsumes algorithms exhibit a linear behaviour while the rest an exponential one.

100 K. Kritikos and D. Plexousakis

(a) (b)

Fig. 6. (a) shows matching time results for 3rd experiment while (b) shows registration
time results for 3rd experiment

We also see a difference with respect to the 1st experiment results as a much
better algorithm performance is exhibited. This can be possibly due to the fact
that the variable number is less so each matchmaking piece of work takes less
time. In addition, we now see that SubMIPMM is worse than the ontology-based
approaches from which Subsumes is still the best.

Concerning registration time, the results are expected based on our assump-
tions as SubsumesFrag is the best among all subsumes algorithms followed by
Subsumes and then SubMIPMM. The behaviour of SubsumesFrag and Incre-
mental coincides, as expected. Obviously, the Naive algorithm has constantly
the best performance in all experiments according to this aspect.

Two main derivations must be highlighted from the above results: (a) a smart
ontology-based approach can outperform a constraint-based one under real cir-
cumstances and (b) Subsumes seems to be the best algorithm in the long run
for both registration and matchmaking – this can be seen from the breakpoint
at 500 in the x-axis for registration beyond which this algorithm is better than
SubsumesFrag. The latter also reveals the main weakness of even an incremental
reasoner due to the nature of the specifications that it has to address and the
exponential complexity in subsumption.

6 Conclusions

This paper has presented a pure ontology-based approach in QoS-based service
matchmaking. This approach is realised by a naive and two clever algorithms
which intelligently organise the service advertisement space. The latter two algo-
rithms significantly outperfom the naive one in matching time and even com-
pete with recent state-of-the-art QoS-based service matching algorithms. This is
clearly shown in the randomised and realistic experimental evaluation where the
cases in which our novel algorithms prevail are detected. Based on our propo-
sitions and findings, we showcase that a pure ontology-based approach when

Subsumption Reasoning for QoS-Based Service Matchmaking 101

assorted with smart algorithms and techniques can really compete with other
QoS-based service matching approach types. So, we provide guidance to practi-
tioners under which circumstances an ontology-based approach can be exploited.

Concerning future work, the following directions are planned. First, further
investigation of new algorithms which more cleverly organise the advertisement
space. Second, checking the modification of the normal subsumption reasoning
process in order to cater for: (a) not requiring the modification of negatively
monotonic QoS terms to positive ones and (b) for more cleverly matching QoS-
based service specifications. Third, performing a more thorough evaluation with
the state-of-the-art to detect additional cases where a pure ontology-based app-
roach should be recommended. Fourth, coupling the novel approach proposed
with a semantic functional matchmaker in order to realise a complete ontology-
based service discovery system. Such coupling could also lead to cleverly and
concurrently organising and matching the offer space according to both specifi-
cation aspects to further speed up the overall matchmaking time.

Acknowledgments. This research has received funding from the European Commu-
nity’s Framework Programme for Research and Innovation HORIZON 2020 (ICT-07-
2014) under grant agreement number 644690 (CloudSocket).

References

1. Cortés, A.R., Mart́ın-Dı́az, O., Toro, A.D., Toro, M.: Improving the automatic
procurement of web services using constraint programming. Int. J. Coop. Inf. Syst.
14(4), 439–468 (2005)

2. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web
services. In: VLDB 2004: Proceedings of the Thirtieth International Conference on
Very Large Data Bases, Toronto, Canada, pp. 372–383. VLDB Endowment (2004)

3. Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benbernou, S.,
Brandic, I., Kertész, A., Parkin, M., Carro, M.: A survey on service quality descrip-
tion. ACM Comput. Surv. 46(1), 1 (2013)

4. Kritikos, K., Plexousakis, D.: Semantic QoS metric matching. In: ECOWS, pp.
265–274. IEEE Computer Society (2006)

5. Kritikos, K., Plexousakis, D.: Requirements for QoS-based web service description
and discovery. IEEE Trans. Serv. Comput. 2(4), 320–337 (2009)

6. Kritikos, K., Plexousakis, D.: Novel optimal and scalable nonfunctional service
matchmaking techniques. IEEE Trans. Serv. Comput. 7(4), 614–627 (2014)

7. Plebani, P., Pernici, B.: URBE: web service retrieval based on similarity evaluation.
IEEE Trans. Knowl. Data Eng. 21(11), 1629–1642 (2009)

8. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. J. Web Sem. 5(2), 51–53 (2007)

9. Sycara, K.P., Paolucci, M., Soudry, J., Srinivasan, N.: Dynamic discovery and
coordination of agent-based semantic web services. IEEE Internet Comput. 8(3),
66–73 (2004)

10. Zhang, Y., Zheng, Z., Lyu, M.R.: WSPred: a time-aware personalized QoS predic-
tion framework for web services. In: ISSRE (2011)

11. Zhou, C., Chia, L.T., Lee, B.S.: DAML-QoS ontology for web services. In: ICWS,
p. 472. IEEE Computer Society (2004)

Towards Combined Functional
and Non-functional Semantic Service Discovery

Kyriakos Kritikos(B) and Dimitris Plexousakis

ICS-FORTH, 70013 Heraklion, Greece
{kritikos,dp}@ics.forth.gr

Abstract. Service-orientation is increasingly adopted by application
and service developers, leading to a plethora of services becoming increas-
ingly available. To enable constructing applications from such services,
respective service description and discovery must be supported by con-
sidering both functional and non-functional aspects as they play a signifi-
cant role in the service management lifecycle. However, research in service
discovery has mainly focused on one aspect and not both of them. As
such, this paper investigates the issues involved in considering both func-
tional and non-functional aspects in service discovery. In particular, it
proposes different ways via which aspect-specific algorithms can be com-
bined to generate a complete service discovery system. It also proposes
a specific unified service discovery architecture. Finally, it evaluates the
proposed algorithms’ performance to give valuable insights to the reader.

Keywords: Service · Discovery · Matchmaking · Semantics · Ontol-
ogy · Performance · Evaluation · Functional · Non-functional · QoS ·
Architecture

1 Introduction

Nowadays, modern applications and business processes adopt service-orientation
due to the many advantages it delivers, including loose coupling, re-usability,
increased performance and cost reduction. To construct such applications, the
services from which they are built need to be described appropriately, discovered
and finally composed. Concerning service discovery, the state-of-the-art can be
split into approaches that either focus on functional or non-functional aspects.

Functional service discovery work [8] matches user’s functional require-
ments by exploiting various types of techniques from information retrieval and
the semantic web [9,16]. Functional requirements and capabilities are mainly
described via service IO while some work [7] covers behavioral aspects via service
preconditions and effects which are however not available in real service advertise-
ments. Most work nowadays exploits semantic techniques to exhibit better accu-
racy levels and other techniques to achieve performance speedup. However, the
discovery accuracy is imperfect due to non-consideration of behavioural aspects.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 102–117, 2016.
DOI: 10.1007/978-3-319-44482-6 7

Towards Complete Semantic Service Discovery 103

Non-functional service discovery work [10] can be split into three main cate-
gories. Ontology-based approaches [19] employ subsumption techniques to infer
the matching between ontology-based non-functional service descriptions but
are suitable for unary-constrained specifications. Constraint-based approaches
[5] exploit n-ary specifications as models, including quality terms drawn from
common vocabularies, and particular metrics which involve solving one or more
constraint (combined) models to infer the matchmaking. Mixed approaches [10]
combine the best of both worlds by exploiting ontology-based specifications to
cover the non-functional semantics and align the quality terms involved as well as
the metrics in the previous approach type to perform the service matchmaking.

While each aspect is more or less well covered in literature, very few
approaches [2,6] deal with both aspects concurrently. Such approaches, how-
ever, do not adopt the best possible algorithm for each aspect, do not capture
service semantics, and do not have a suitable performance and accuracy level.
Moreover, they have not explored the possible ways the two different types of
matching can be best combined to infer the best possible one. In fact, most
of these approaches employ a simplistic approach to account for non-functional
user requirements and preferences which will never be adopted by respective
practitioners.

As such, this paper first proposes a unified architecture explicating how
different-aspect algorithms can be integrated to support a complete service
discovery process by also accommodating for semantics capturing. Then, the
paper proposes different combinations of aspect-specific algorithms attempting
to accelerate the overall matching performance by not compromising discov-
ery accuracy. Some combinations might be naturally applied and easily realised
while others attempt to intelligently organise the service advertisement space to
reduce the matchmaking time. These combined algorithms are finally evaluated
by a semi-randomised framework according to their performance so as to provide
particular insights on which is the preferred one in different circumstances.

The rest of the paper is structured as follows. Section 2 reviews the related
work. Section 3 presents the unified architecture. Section 4 analyses the proposed
combined algorithms. Section 5 presents the performance evaluation results.
Finally, Sect. 6 concludes the paper and draws directions for further research.

2 Related Work

As we focus on combined service discovery, we only consider combined
approaches. For aspect-based discovery analysis, the reader can refer to [8,10].

QoS Ranking. By reviewing related work, it seems that most approaches [12–14]
first functionally match the service request and then rank the respective matches
based on the user’s non-functional preferences. Non-functional ranking usually
relies on considering utility functions that depend on the respective quality term
monotonicity while the overall rank is produced via a weighted sum of the appli-
cation of the utility functions over the match’s promised quality term values.
Based on the above, it seems that all such approaches neglect the fact that a

104 K. Kritikos and D. Plexousakis

user may pose non-functional requirements which must be respected such that
the functional matches are further filtered before they are ranked.

The approach in [14] caters for ontology encoding and fast reasoning issues.
It attempts to smartly organise the functional advertisement space by exploiting
two advertisement relations that seem to map to well-known functional degrees
of match. However, the second relation seems not to be suitable based on the
formal notion of subsumption. After cleverly matching a request, the functional
matches produced are just ranked based on their non-functional degree of match.

The sequential approach in [13] starts by discovering services that function-
ally match the request and have an appropriate distance from the user to min-
imise network latency. Then, the expected execution time of each matched service
is computed based on performance ratings which is finally exploited to rank the
matched services and select the top one for dynamic adaptation reasons.

QoS Threshold-Based Filtering. A small improvement over the previous category
comes via threshold-based filtering of functional matches [6,15]. However, it is
questionnable whether a simple threshold can be enough to respect the semantics
of all non-functional requirements posed. It rather seems as a trial-and-error
approach towards attempting not to overwhelm users with irrelevant results not
satisfying their non-functional requirements. What makes the approach in [6]
more interesting with respect to the rest in this category is that it attempts
to enable a unified semantic service description and considers various types of
information to infer the ranking, including QoS, business policies and context.

Combined. [2] proposes a sequential combined algorithm coupled with service
ranking based on non-functional preferences. This algorithm actually resembles
SeqOnTheFly (see Sect. 4) as it attempts to match on the fly each functional
result with the user’s non-functional requirements. However, this work is not
assorted with specification validation mechanisms and does not employ specifi-
cation alignment, thus relying on a common quality term vocabulary. It does not
also check how sequential matching can be enhanced for better performance.

In [3], a three step discovery process is proposed. First, functional matching
is performed by exploiting subsumption hierarchy and predicate-based inferenc-
ing. Second, functional matches are clustered based on QoS via the average link-
age clustering and squared Euclidian distance metrics. Third, the best cluster’s
matches are ranked based on each match’s distance from the cluster centroid.
This approach is regarded as combined as it performs a kind of filtering on the
functional match space. However, it is questionnable whether such a filtering is
suitable if we also consider performance aspects. In addition, semantics for QoS
terms are neglected. Functional matching seems also to be wrongly performed.

3 Architecture

Figure 1 depicts the architecture of a complete and unified service discovery
system by also showing the interactions between the respective components and
their ordering in terms of basic discovery system operations. The architecture

Towards Complete Semantic Service Discovery 105

Fig. 1. The architecture of the unified service discovery system

comprises 10 main components: 2 constitute entry points, 4 map to the main
discovery logic and 4 relate to the respective individual and combined registries.

Front-end is the first entry point, a web-based UI interacting with a human
user, either a service provider or requester. It visualises information assisting
the respective interaction, such as forms to specify functional and non-functional
requests or to enable providers to upload, register or update service descriptions.

The REST-API is a service-based component enabling programmatic inter-
action with automated agents acting on behalf of users. It exposes the func-
tionality expected in a service discovery system, like registering, updating and
matching service specifications. It also offers utilities that validate the specifi-
cations before being registered. Service provider-related functionalities are only
available to registered users, while discovery ones are publicly available with
additional features only offered to registered users, like the ability to retrieve all
matchmaking results and provide customised algorithms for service selection.

Once one operation starts execution, the respective specifications are passed
to Specification Processor which loads and processes them to check their syn-
tactic and semantic validity as well as to align them if they refer to equivalent
but differently described terms. Constraint-based consistency is also checked for
non-functional specifications. In case of a validation error, an error message is
relayed to the user. Otherwise, operation passes to the core discovery component,
the Compositor. Specification alignment is performed by consulting a Term and
Ontology Store which includes a common set of basic terms via which alignment
can be rapidly performed (see [10]) as well as the domain ontologies encountered.

Compositor realises the composition logic with respect to the individual
aspect-specific algorithms exploited. It also guarantees the consistency of the
information being registered in these algorithms. This is achieved via the Com-
bined Registry storing the mappings between functional and non-functional spec-
ifications of service providers. This integration approach enables decoupling the
aspect-specific discovery functionality and independence from any service speci-
fication language. Language adoption is coupled with selecting an aspect-specific

106 K. Kritikos and D. Plexousakis

algorithm. As such, we cater for using either unified or aspect-specific service
description languages. In case the latter language type is used, consistency is
maintained via the entries of the Combined Registry. We aim at semantic lan-
guages for which any service profile kind is identified via a URI. This enables
using only semantic algorithms but leads to increased discovery accuracy.

The Compositor implements the combined service matching logic with
respect to the main algorithms proposed (see Sect. 4). It also guarantees the
transactionality of service (de-)registration and update operations. This means
that if an operation fails when executed via a specific aspect-specific sub-system,
and is successful with respect to the other sub-system, we have to roll-back
to the previous state before operation execution. The latter maps, e.g., to de-
registering a functional service specification if its non-functional counterpart fails
to be registered. This transactionality type is enabled by realistically assuming
that each respective aspect-specific sub-system provides aspect-specific opera-
tions that return either boolean values indicating the operation outcome (e.g.,
non-registration as functional service specification already exists) or exceptions
when errors occur. The respective suite of functionally-equivalent service opera-
tions is obviously already available in each aspect-specific system.

Each aspect-specific sub-system should provide an entry point via which
aspect-specific interactions can be performed (either a programmatic REST-API
or a specific component). For the two main aspects, we name the respective com-
ponents as Functional Service Discovery and Non-Functional Service Discovery.
We do not unveil their structure as it can be specific to the sub-system selected.
We just unveil that each sub-system logically has a (functional / non-functional)
store in which aspect-specific service specifications are stored.

Concerning implementation details, all system code was realised in Java
as it is the main implementation language for almost all matchmakers. Front-
End implementation is on-going while the REST-API was realised via Jersey.
The Specification Processor exploits different loading and validation techniques.
The Pellet reasoner [17] is exploited for ontology-based loading and consistency
checking. The Ibex (www.ibex-lib.org) finite constraint and Choco (http://www.
choco-solver.org/) constraint programming solvers are exploited for constraint-
based consistency checking. The Combined Registry is a serialisable Java object
which exposes different methods related to manipulating aspect-specific specifi-
cations (e.g., registering a functional and non-functional service URI pair or an
additional non-functional profile for an existing service).

Alive Matchmaker [4] was selected as a state-of-the-art functional matching
sub-system which exhibits high performance levels due to applying smart struc-
tures via which the matching of semantic I/O concepts can be performed while
also catering for domain ontology evolution. The Unary algorithm of the discov-
ery system in [10] was selected for hybrid non-functional service matching as it
is scalable, exhibits high performance levels and has perfect accuracy.

http://www.ibex-lib.org
http://www.choco-solver.org/
http://www.choco-solver.org/

Towards Complete Semantic Service Discovery 107

4 Algorithm Analysis

Combining aspect-oriented matching algorithms was explored under different
criteria. The first one concerns the expected way to combine two functionalities,
where two possible ways exist: (a) each functionality is performed in sequence or
(b) both functionalities are executed in parallel and their results are integrated.

Concerning (a), we chose to execute first the functional discovery algorithm as
this more naturally depicts the process executed by humans who first seek to sat-
isfy their functional requirements and then the non-functional ones. Functional
service discovery can also be considered more restrictive than non-functional
one. This can be due to the fact that when performing non-functional matching,
domain-independent metrics are usually considered leading to obtaining many
functionally irrelevant results out of the respective domain scope. As such, when
no results are discovered in the first discovery form, there is no reason to continue
with the non-functional one spending unnecessary resources.

Solution (b) attempts to execute the aspect-specific discovery algorithms
in parallel to save time. Compared to the first approach, it may spend more
resources but it will be surely faster, provided that when one aspect-based dis-
covery algorithm ends earlier with not result, we can stop the other one.

The second criterion explored exploiting different structures to smartly
organise the service advertisement space to speed-up service matching. By
relying on the approach in [10], we have considered combined subsumes rela-
tions between different service discovery offers (where a discovery offer maps
to one functional and non-functional offer pair for one service) enabling us to
not browse the whole advertisement space but stop at certain places with-
out requiring to go down in respective subsumes branches. Figure 2 depicts
the notion of a subsumes service advertisement hierarchy via a small forest
of 4 offers. Offer O1 subsumes offers O11 and O12 for different reasons. Offer
O11 is subsumed due to its functional part (its non-functional part is equiva-
lent) while offer O12 is subsumed due to its non-functional part (its functional
part is equivalent). Offer O2 is not related to the tree’s offers as it possesses
an unrelated functional part. This also highlights the definition of the com-
bined subsumes relation: comb subsumes (S1, S2) ≡ func subsumes (S1, S2) ∧
nonfunc subsumes (S1, S2)

By exploiting this subsumption relation, we speed up the service matching
process. For example, assume that request R is issued. We will first compare it
with offer O1. If R subsumes O1, it also subsumes its descendants. As such, we
do not have to go deeper into the respective tree. However, we need to also check
other trees in the forest which could be partially related to each other. There are
two relation kinds to be exploited: subsumes and the opposite one, subsumedBy.
Based on the empirical evaluation in [10], the first relation is more suited when
more than 30 percent of the offers match a request. Otherwise, the second relation
is more suitable. By combining functional and non-functional service matching,
we expect that the percentage of matched offers can be lower than in the case
of aspect-specific matching. In this way, it might be preferrable to exploit the
subsumedBy relation in the end, especially for a highly populated service registry

108 K. Kritikos and D. Plexousakis

Fig. 2. The subsumption forest with request R subsuming a root tree node

spanning multiple domains as each request is expected to be specific to just one
domain and thus lead to matching of a quite low offer percentage.

In the sequel, a small section is first provided explaining the main symbols
and assumptions made. The next four subsections shortly analyse the proposed
algorithms’ functionality for service registration and discovery by also provid-
ing a respective complexity analysis. Other operation types (e.g., deletion and
updating) are not considered as they tend to map either to similar actions as in
case of registration (i.e., deletion) or to a two actions sequence (i.e., updating by
combining deletion and insertion). Finally, the last section discusses the expected
performance of the proposed algorithms based on the complexity analysis.

4.1 Symbols and Assumptions

We assume that one functional and non-functional part comprise the service
request. We also assume that S service offers have been registered. This means
that around S

3 functional offers are to be registered in a functional matchmaker
and S non-functional offers in the non-functional one as each functional offer
is expected to be accompanied by 3 non-functional offers for the same service,
mapping to gold, silver and bronze classes of customers. Functional offer pre-
processing takes O (1) while for a non-functional offer takes O (2M + M ∗ Tz),
where the first part maps to the offer’s consistency checking and the second to its
alignment; M represents the number of the offer’s quality terms. The latter can
be reduced to O (M ∗ Tz) constituting the total pre-processing time. Finally, we
assume that each non-functional offer comprises at most 2M constraints mapping
to the upper and lower bounds given for each quality term.

4.2 Sequential Algorithm

Analysis. Matchmaking. We propose two main algorithm variations named as:
Sequential and SeqOnTheFly. The first version first performs functional service

Towards Complete Semantic Service Discovery 109

discovery; then it fetches the respective non-functional offers from the functional
results, registers them to the non-functional matchmaker and matches them
with the non-functional request part. Finally, it returns back the ending results
to the user and clears the non-functional matchmaker. On the other hand, the
second version checks on the fly whether the non-functional offers mapping to
the matched functional ones are subsumed by the request’s non-functional part.
We expect that the first version is more suitable when non-functional offers
are great in number as the total registration time will be compensated by the
fast matching via the matchmaker’s smart structures. Otherwise, the second
version should be preferred. Section 5 will explore which is the amount of non-
functional offers that represents the break point between choosing one over the
other version.

Registration. Both algorithm versions follow the same registration process by
registering the functional offer in the functional matchmaker and inserting the
respective combined entry in the Combined Registry. Non-functional-based regis-
tration is not needed due to the way the non-functional matchmaker is exploited.
The pre-requisite processing step for specifications controls their validity and
transactionally rolls back the combined registration, if needed.

Complexity Analysis. Matchmaking. We rely on the complexity analysis of
the aspect-specific matchmakers and on the fact that the request validity has to
be checked. Pre-processing as already stated takes O (M ∗ TZ).

The functional matching part [4] requires O
(
RO ∗ S

3 ∗ RAO + MFO ∗ IMean
S

)
,

where RO, RAO represent the number of input and acceptable inputs of the
request, respectively, S

3 represents the number of functional service offers regis-
tered, MFO the number of matched services based on their output and IMmean

FO

the mean number of inputs of each matched service. The latter can be reduced
to O (RO ∗ S ∗ RAO) as S

3 is expected to be much bigger than MFO and IMean
S

could be at most 3. Non-functional matching time depends on the combined
algorithm version. For each version, we assume that O (k ∗ MFO) non-functional
offers must be matched, k non-functional offers for each functional match, based
on our assumption for the mapping between functional and non-functional offers.

For normal non-functional matching, in the worst case, covering both regis-
tration and matching of non-functional offers, the time will be O (M ∗ (MFO+
2 ∗ logMFO

)). For on the fly non-functional matching, O (2M ∗ MFO) time
is needed as we must check each constraint of a non-functional offer
with the request non-functional part’s respective constraint. Thus, in the
end, the matchmaking time for Sequential will be O (RO ∗ S ∗ RAO+
(M ∗ (MFO + 2 ∗ logMFO

)) + M ∗ TZ). If we consider that M is small and can-
not go beyond 10 quality terms and that S is much bigger than MFO, the
complexity formula can be reduced to: O (RO ∗ S ∗ RAO + TZ).

For SeqOnTheFly, the matching time will be O (RO ∗ S ∗ RAO+
(2M ∗ MFO) + M ∗ TZ) which can be similarly reduced to O (RO ∗ S ∗ RAO+
TZ). Thus, in the end, the matching complexity for both algorithm versions
coincides.

110 K. Kritikos and D. Plexousakis

Registration. One functional and its respective 3 non-functional offers are to
be registered. Thus, we need to pre-process 4 specifications and only register
via the functional matchmaker the functional offer. Pre-processing takes again
O (M ∗ TZ) as in matchmaking. Functional registration takes O (SC) as in the
worst case is dominated by the time needed to infer the subsumption hierarchy
of the domain ontology mapping to the service I/O, where SC represents this
time for an ontology of C concepts. Thus, registration time for both algorithm
versions will be O (TZ + SC).

4.3 Parallel Algorithm

Analysis. Matchmaking is performed, after user request is pre-processed and
aligned, by exploiting in parallel the functional and non-functional matchmakers
and then concatenating their results. The exploitation of the Combined Registry
to map functional matches to their non-functional counter-parts (which can be
3 times their number) guarantees the concatenation of the same type of objects.

For registration, we register in parallel the functional offer and non-functional
part in the functional and non-functional matchmakers, respectively. The respec-
tive consistency is achieved by informing the Combined Registry.

Time Complexity Analysis. Matchmaking. Pre-processing as in the previ-
ous algorithm takes O (M ∗ TZ). Functional matching, as already stated, takes
O (RO ∗ S ∗ RAO). Non-functional matching takes O (M ∗ (S + logS)). Concate-
nating the different result types takes: O (MFO). In the end, the total match-
making time will be: O (max (RO ∗ S ∗ RAO,M ∗ (S + logS)) + MFO + M ∗ TZ)
which can be further reduced to: O (S + TZ).

Registration. Functional registration takes O (SC) as indicated in the previous
algorithm. Non-functional registration takes O (M ∗ logS). Thus, total regis-
tration time will be O (max (SC ,M ∗ (logS + TZ))) which can be reduced to
O (max (SC , logS + TZ)).

4.4 Subsumes Algorithm

Analysis. Matchmaking. It is recursively performed [10]. The offer is matched
with each root node. If it subsumes the node, it also subsumes its children. As
such, we just consider this node and its descendants as matches. Otherwise, we
must descend this hierarchy recursively to find respective matching nodes. All
matching results for each root node search (including recursive calls) are finally
collected to be returned to the user.

Registration. It is recursively performed [10]. First, each root node is checked
with the offer to be matched. If the offer is equivalent to the node, it is entered
into the node’s represented offers and registration ends. If the offer subsumes
the node, it becomes its parent. If the root node subsumes the offer, the same
checking is performed recursively at the node’s children. When at the root node’s
subsumption hierarchy the offer is subsumed by one node but does not subsume
its children, the offer is entered as a child of this parent node.

Towards Complete Semantic Service Discovery 111

Complexity Analysis. Matchmaking. 3 cases hold [10]. In the worst case,
we perform functional and non-functional subsumption checking for all forest
nodes. In functional subsumption checking, we expand each output concept of
the functional offer with respect to its ancestor concepts in O (1) step and check
if each output concept of the functional request is inside one of the expanded
lists. This takes O (RO ∗ SO) for each functional offer. For non-functional sub-
sumption checking, we check if each offer constraint is more restrictive that the
respective demand constraint. This takes O (2 ∗ M) as for each offer constraint,
we immediately find the request counter part. So, individual subsumption check-
ing takes O (RO ∗ SO + 2M). By visiting all S nodes and accounting processing
time, total matching time is: O (S ∗ (RO ∗ SO + 2M) + M ∗ TZ). As both RO

and SO tend to be small and M is less than 10, this reduces to just O (S + TZ).
In the best case, only the sole root node is matched (forest reduced to a tree)

which takes O (S + TZ). In the average case, we expect that the tree is more or
less balanced, a percentage of P nodes is subsumed and there is always a pair of
parent-child offers. In this case, total matching will take: O

(
S ∗ (

1 − P
2

)
+ TZ

)
.

Registration. Three cases are also considered. For all cases, we need to do pre-
processing but also account for ontology subsumption-based structure updating.
This maps to O (SC + TZ). In the best case, the first root node compared with
the new offer is equivalent to it. This ends up doing two comparisons (one for
node-to-offer subsumption and one for offer-to-node subsumption) and translates
to O (2 ∗ (S ∗ (RO ∗ SO) + 2M)). Thus, in total, the time will be O (SC + TZ).

In the worst case, we have a single tree and the offer has to be inserted in the
rightmost leaf. This maps to performing twice the subsumption checking over
all tree nodes which will map to O (S + SC + TZ) in the end.

In the average case, we will have B balanced trees and the offer has to be
inserted in the middle of the median tree. This will map to S+B2

2B subsumption

checks which will then map in the end to a total time of: O
(

S+B2

2B + SC + TZ

)
.

4.5 SubsumedBy Algorithm

Analysis. subsumedBy is opposite to subsumes. We organise the offer hierarchy
in this way to cater for the case that a very small offer number matches a request
to be placed in the hierarchy’s leaves (as subsumption maps to something more
restricted or specific so less matches means more restricted matches).

Matchmaking. It is performed by matching the request with the root nodes based
on the subsumes relation. If there is no match, there is no need to go down the
root node’s hierarchy (as either there is no relation at all or the request is sub-
sumedBy the root node). Otherwise, we include the root node in the final matches
and visit its children recursively. All matching results from each (recursive) root
node search are finally collected and returned to the user.

Registration. It is symmetric to Subsumes. We check first the root nodes. An
offer equivalent to a root node is included in the offers represented by the node
and registration ends. If the offer is subsumed by this node, it becomes the

112 K. Kritikos and D. Plexousakis

node’s parent. If it subsumes the node, we go recursively to the node children.
The offer finally becomes a child of a root node descendant or a forest root (in
case it is unrelated to any root node or subsumed by one or more root nodes).

Complexity Analysis. Matchmaking. The same complexity as in Subsumes
holds for the best and worst cases. The sole exception is the conditions mapping
to these cases. In the best case, the sole root node is not subsumed by the request.
In the worst case, all non-subsumed nodes by the request lie in the forest leaves
and do not represent more than one offer. In average, the same assumptions hold
as in Subsumes. This, however, maps to matching the request with O

(
S ∗ P+1

2

)
nodes which finally maps to the total matching time of: O

(
S ∗ P+1

2

)
+ TZ

Registration. This process is identical to that of Subsumes concerning the best
and worst cases, so the respective time complexity is the same. The same holds
for the conditions mapping to worst, best and average cases.

4.6 Discussion

Concerning matchmaking, based on the time complexity analysis, it seems that
in the worst case the Parallel algorithm is the best followed by Sequential and
then the subsumes-based algorithms. However, in the average case, if there is
some kind of subsumption hierarchy between the different nodes, it might be
the case that the subsumes-based algorithms have the best possible performance
and the best algorithm can depend on the percentage of offers being matched.

Concerning registration time, the performance order seems to be clearer as
the Parallel algorithm must have the best performance followed by the sequen-
tial and then the subsumes-based algorithms. So, there is a clear winner plus
a performance trade-off between matchmaking and registration for the second
place where different algorithms are nominated as best for different operations.

5 Evaluation

The evaluation was performed via the experimental framework in [10], covering
the non-functional aspect and being able to generate in a controlled manner
both randomised and real non-functional service specifications, as well as the
OWLSTC framework, covering the functional aspect with real or realistic func-
tional service specifications along with ways to measure functional discovery
accuracy. The main goal was to evaluate the algorithms’ average matchmaking
and registration performance. Accuracy is neglected due to the following reasons:
(a) non-functional matchmakers have perfect accuracy [10]; (b) accuracy results
will be identical to those of the functional matchmaker exploited that have
already been reported. The target is to discover those circumstances that the
selection of a specific algorithm from those proposed is recommended. We also
consider the AliveMM functional matchmaker so that we are enabled to compare
the overall matchmaking time with respect to the functional part and unveil the
degree in which the latter influences the former.

Towards Complete Semantic Service Discovery 113

In the sequel, we explicate the way the sole experiment was conducted based
on the experimental framework and then discuss the experiment results.

5.1 Experiment Set-Up and Control

Unified Framework Features. By combining aspect-specific experimental frame-
works, we generate an overall framework with the capabilities to create in a
controlled manner both functional and non-functional specifications. Functional
specifications can either rely on the OWLSTC collection, to be as realistic as
possible, or can be produced randomly [11] via a domain ontology’s concepts
combined to produce the service I/O. Non-functional specifications rely on the
WS-Dream [18] and QWS [1] datasets or on generating randomised unary spec-
ifications that can include integer or real-valued metrics of different types and
semantics. In the experiment conducted, we relied on OWLSTC and the ran-
domised generation of non-functional specifications. Our choice for the non-
functional aspect relates to the fact that the WS-Dream dataset is big but quite
limited in the metric number while QWS is smaller. However, we desire to gen-
erate a much greater non-functional offer set with an increased metric number
such that respective requests can also match a particular offer percentage.

Offer Generation. For each functional service offer, three non-functional offers
were generated in a controlled manner. This resulted in generating around 3150
service offers (functional and non-functional pairs) provided that OWLSTC con-
tains around 1050 functional service specifications. This also supports our main
real-world assumption that each service can be associated to three non-functional
offers catering for gold, silver and bronze customer classes. The offer number con-
sidered in each experiment step depended on a specific configuration parameter
given as input to the specification generator. For instance, if this number is 100,
we randomly take 100 functional offers from OWLSTC and couple each to 3 non-
functional offers randomly generated such that the next non-functional offer has
an increased performance and price with respect to the previous one to map to
the different customer classes.

Experiment Set-Up. The experiment was conducted in a Windows 7 SSD-based
machine with 2 GHz dual-core CPU and 6 GB of RAM. It included conducting
a set of steps in which one configuration parameter varied (the offer number)
according to a specific range (50 to 1050 with an increase step of 200 for the
functional offers). Each step was executed 30 times to produce the respective
average matchmaking and registration time values of the considered algorithms
such that any possible interference at the OS level is diminished.

5.2 Experiment Results

Figure 3 depicts the experiment results for matchmaking and registration time.
Concerning matchmaking time, the best algorithm is Parallel. The order

for the rest is not stable. Initially, the sequential algorithms are better than the
subsumes; this is reversed when the functional offer number is equal or above 650.

114 K. Kritikos and D. Plexousakis

This means that beyond a specific offer number, the offer hierarchy becomes more
structured such that matching time can be really saved via a subsumes-based
approach. This matches exactly our expectations for the subsumes algorithms.

(a) (b)

Fig. 3. (a) shows the experiment service matchmaking results while (b) the service
registration ones

The partial order between the sequential algorithms is also unstable. Initially,
as the number of non-functional offers to filter is small, SeqOnTheFly is slightly
faster. However, beyond 650 functional offers, this is reversed as it becomes better
to employ a non-functional matchmaker to register and match the non-functional
offers rather than employ pair-wise non-functional filtering.

The subsumes algorithms are equivalent apart from the initial step where
probably the matched offer number is quite small thus favouring SubsumedBy.
This needs further investigation as we need to discover those circumstances that
one algorithm prevails over the other to assist practitioners in their selection.

The results produced validate the complexity analysis (especially with respect
to the algorithm order) due also to corresponding OWLSTC features. In particu-
lar, a more or less stable algorithm performance is seen due to the small matched
offer percentage and the small output parameter number per service. This leads
to a more or less stable matching performance for the functional matchmaker as
depicted in the results. Moreover, while the number of non-functional offers to
be matched is greater in each step, the scalable non-functional matchmaker used
enabled to reach almost equivalent performance levels. So, these matchmakers
combination also leads to a stable matching performance.

Non-functional matching time takes more with respect to functional one.
This is proven by comparing the functional matchmaker and Parallel algorithm
performance. Thus, non-functional matching has still space for further optimisa-
tion. This also indicates that it is always proper for a sequential matchmaker to
first filter based on the functional aspect and then the non-functional one. This
is an interesting result to be accounted by researchers and practitioners.

Towards Complete Semantic Service Discovery 115

Concerning registration time, the best algorithm is again Parallel followed by
the sequential ones. The difference between these algorithms is small but is big
with respect to the subsumes ones. The complexity analysis also validated this.
This means that probably the subsumes algorithms should not be used in cases
when a high offer number is constantly registered or updated. However, it can
also be acceptable in the rest of the cases. So, the use of these algorithms depends
on the registry provider’s preferences and constraints especially with respect to
the main requirements of its clients, i.e., service providers and requesters.

No ordering between sequential and between subsumes algorithms can be
inferred from the results. This is natural as the sequential algorithms rely on
the same registration process. For the subsumes algorithms, by also relying on
the matchmaking results, it seems that the structures produced are more or less
similar, leading to almost the same registration time.

To conclude, we stress that the Parallel algorithm seems to be the best for
both matchmaking and registration so it is undoubtly recommended as the ideal
algorithm for service registry realisation. In case that a different algorithm is
needed or preferred, then the recommendation will be towards the subsumes
algorithms despite the fact that their behavior with respect to registration is
the worst. However, for highly dynamic environments, it seems that the best
choice will be the sequential algorithms as an alternative to Parallel due to their
capability to also deal with the dynamicity in service updating.

6 Conclusions and Future Work

This paper has presented four algorithms which attempt to combine in a dif-
ferent way the facilities of functional and non-functional state-of-the-art service
discovery algorithms. We believe that this investigation is genuine and really
assists practitioners in choosing the algorithm that best matches their current
situation. The respective algorithm evaluation has unveiled the circumstances in
which each algorithm prevails based on performance aspects. Apart from these 4
novel algorithms proposed, we have also implemented an unified service discovery
architecture covering both the functional and non-functional aspects. Such an
architecture comprises components that not only perform core service discovery
tasks but also specification validation and alignment. It also includes compo-
nents that enable both a visual and a programmatic interaction with a human
or software agents, respectively. The algorithm combination is performed such
that transactionality of offer registration and updating is achieved.

Concerning future work, the following directions will be pursued. First, more
thorough validation of the proposed algorithms to produce even more interest-
ing performance insights. Second, completing the development of the service
discovery architecture. Third, extending functional matching towards covering
the service functional behaviour to further increase discovery accuracy in case
respective formal service descriptions are in place. Finally, integrating the ser-
vice discovery system in an existing service composition framework to enable a
faster and more accurate service composition process.

116 K. Kritikos and D. Plexousakis

Acknowledgments. This research has received funding from the European Commu-
nity’s Framework Programme for Research and Innovation HORIZON 2020 (ICT-07-
2014) under grant agreement number 644690 (CloudSocket).

References

1. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web.
In: WWW, pp. 795–804. ACM, Beijing (2008)

2. Benaboud, R., Maamri, R., Sahnoun, Z.: Agents and owl-s based semantic web
service discovery with user preference support. Int. J. Web Semant. Technol. 4(2),
57–75 (2013)

3. Charrad, M., Ayadi, N.Y., Ahmed, M.B.: A semantic and QoS-aware broker for
service discovery. J. Res. Pract. Inf. Technol. 44(4), 387–399 (2012)

4. Cliffe, O., Andreou, D.: Service Matchmaking Framework. Public Deliver-
able D5.2a, Alive EU Project Consortium. http://www.ist-alive.eu/index.php?
option=com docman&task=doc download&gid=28&Itemid=49. Accessed 10 Sept
2009

5. Cortés, A.R., Mart́ın-Dı́az, O., Toro, A.D., Toro, M.: Improving the automatic
procurement of web services using constraint programming. Int. J. Coop. Inf. Syst.
14(4), 439–468 (2005)

6. Jiang, S., Aagesen, F.A.: An approach to integrated semantic service discovery. In:
Gaiti, D., Pujolle, G., Al-Shaer, E.S., Calvert, K.L., Dobson, S., Leduc, G., Mar-
tikainen, O. (eds.) AN 2006. LNCS, vol. 4195, pp. 159–171. Springer, Heidelberg
(2006)

7. Klein, M., König-Ries, B.: Coupled signature and specification matching for auto-
matic service binding. In: Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol.
3250, pp. 183–197. Springer, Heidelberg (2004)

8. Klusch, M.: Semantic web service coordination. In: Schumacher, M., Schuldt, H.,
Helin, H. (eds.) CASCOM: Intelligent Service Coordination in the Semantic Web,
pp. 59–104. Springer, Berlin (2008)

9. Klusch, M., Fries, B., Sycara, K.: OWLS-MX: a hybrid semantic web service match-
maker for OWL-S services. Web Semant.: Sci. Serv. Agents World Wide Web 7(2),
121–133 (2009)

10. Kritikos, K., Plexousakis, D.: Novel optimal and scalable nonfunctional service
matchmaking techniques. IEEE Trans. Serv. Comput. 7(4), 614–627 (2014)

11. Kritikos, K., Plexousakis, D., Paternò, F.: Task model-driven realization of inter-
active application functionality through services. TiiS 3(4), 25 (2014)

12. Lemos, F., Grigori, D., Bouzeghoub, M.: Adding non-functional preferences to
service discovery. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012.
LNCS, vol. 7387, pp. 299–306. Springer, Heidelberg (2012)

13. Makris, C., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Efficient and adaptive
discovery techniques of web services handling large data sets. J. Syst. Softw. 79(4),
480–495 (2006)

14. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY:
Efficient semAntic Service discoverY in pervasive computing environments with
QoS and context support. J. Syst. Softw. 81(5), 785–808 (2008)

15. Pathak, J., Koul, N., Caragea, D., Honavar, V.G.: A framework for semantic web
services discovery. In: WIDM, pp. 45–50. ACM, New York (2005). http://doi.acm.
org/10.1145/1097047.1097057

http://www.ist-alive.eu/index.php?option=com_docman&task=doc_download&gid=28&Itemid=49
http://www.ist-alive.eu/index.php?option=com_docman&task=doc_download&gid=28&Itemid=49
http://doi.acm.org/10.1145/1097047.1097057
http://doi.acm.org/10.1145/1097047.1097057

Towards Complete Semantic Service Discovery 117

16. Plebani, P., Pernici, B.: URBE: web service retrieval based on similarity evaluation.
IEEE Trans. Knowl. Data Eng. 21(11), 1629–1642 (2009)

17. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. J. Web Sem. 5(2), 51–53 (2007)

18. Zhang, Y., Zheng, Z., Lyu, M.R.: WSPred: a time-aware personalized QoS predic-
tion framework for web services. In: ISSRE (2011)

19. Zhou, C., Chia, L.T., Lee, B.S.: DAML-QoS ontology for web services. In: ICWS,
p. 472. IEEE Computer Society (2004)

Declarative Elasticity in ABS

Stijn de Gouw1, Jacopo Mauro3(B), Behrooz Nobakht2,
and Gianluigi Zavattaro4

1 Fredhopper, Amsterdam, Netherlands
2 Leiden University, Leiden, Netherlands

3 University of Oslo, Oslo, Norway
jacopom@ifi.uio.no

4 University of Bologna/INRIA, Bologna, Italy

Abstract. Traditional development methodologies that separate soft-
ware design from application deployment have been replaced by
approaches such as continuous delivery or DevOps, according to which
deployment issues should be taken into account already at the early
stages of development. This calls for the definition of new modeling and
specification languages. In this paper we show how deployment can be
added as a first-class citizen in the object-oriented modeling language
ABS. We follow a declarative approach: programmers specify deploy-
ment constraints and a solver synthesizes ABS classes exposing methods
like deploy (resp. undeploy) that executes (resp. cancels) configuration
actions changing the current deployment towards a new one satisfying
the programmer’s desiderata. Differently from previous works, this novel
approach allows for the specification of incremental modifications, thus
supporting the declarative modeling of elastic applications.

1 Introduction

Software applications deployed and executed on cloud computing infrastructures
should flexibly adapt by dynamically acquiring or releasing computing resources.
This is necessary to properly deliver to the final users the expected services at
the expected level of quality, maintaining an optimized usage of the computing
resources. For this reason, modern software systems call for novel engineering
approaches that anticipate the possibility to reason about deployment already
at the early stages of development.

Modeling languages like TOSCA [21], CloudML [16], and CloudMF [13] have
been proposed to specify the deployment of software artifacts, but they are
mainly intended to express deployment of already developed software. An inte-
gration of deployment in software modeling is still far from being obtained in
the current practices. To cover this gap, in this paper we address the problem of

Supported by the EU projects FP7-610582 Envisage: Engineering Virtualized Services
(http://www.envisage-project.eu) and H2020-644298 HyVar: Scalable Hybrid Vari-
ability for Distributed, Evolving Software Systems (http://www.hyvar-project.eu).

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 118–134, 2016.
DOI: 10.1007/978-3-319-44482-6 8

http://www.envisage-project.eu
http://www.hyvar-project.eu

Declarative Elasticity in ABS 119

extending the ABS (Abstract Behavioural Specification) language [2] with lin-
guistic constructs and mechanisms to properly specify deployment. Following [9]
our approach is declarative: the programmer specifies deployment constraints
and a solver computes actual deployments satisfying such constraints. In pre-
vious work [10] we presented an external engine able to synthesize ABS code
specifying the initial static deployment; in this paper we fully integrate this
approach in the ABS language allowing for the declarative specification of the
incremental upscale/downscale of the modeled application depending, e.g., on
the monitored workload or the current level of resource usage.

ABS is an object-oriented modeling language with a formally defined and
executable semantics. It includes a rich tool-chain supporting different kinds of
analysis (like, e.g., logic-based modular verification [11], deadlock detection [15],
and cost analysis [3]). Executable code can be automatically obtained from ABS
specifications by means of code generation. ABS has been mainly used to model
systems based on asynchronously communicating concurrent objects, distributed
over Deployment Components corresponding to containers offering to objects
the resources they need to properly run. For our purposes, we adopted ABS
because it allows the modeling of computing resources and it has a real-time
semantics reflecting the way in which objects consume resources. This makes
ABS particularly suited for modeling and reasoning about deployment.

Our initial proposal for the declarative modeling of deployment into ABS
[10] was based on three main pillars: (i) classes are enriched with annotations
that indicate functional dependencies of objects of those classes as well as the
resources they require, (ii) a separate high-level language for the declarative
specification of the deployment, (iii) an engine that, based on the annotations
and the programmer’s requirements, computes a fully specified deployment that
minimizes the total cost of the system. The computed deployment is expressed
in ABS and can be manually included in a main block.

The work in [10] had two main limitations: (i) there was no way to express
incremental deployment decisions like, e.g., the need to upscale or downscale the
modeled system at run-time and (ii) there was no real integration of the code
synthesized by the engine in the corresponding ABS specification. In this paper
we address these limitations by promoting the notion of deployment as a first-
class citizen of the language. During a pre-processing phase, the new tool Smart-
Depl generates classes exposing the methods deploy and undeploy to upscale and
downscale the system. The deployment requirements can now also reuse already
deployed objects just specifying which existing objects could be used, and how
they should be connected with new objects to be freshly deployed. This has been
the fundamental step forward that allowed us to support incremental modification
of the current deployment. Moreover, other relevant contributions of this paper are
(i) a more natural high-level language for the specification of requirements that
now supports universal and existential quantifiers, and (ii) the usage of the delta
modules and the variability modeling features of the ABS framework [7] to auto-
matically and safely inject the deployment instructions into the existing ABS code.

Our ABS extension and the realization of the corresponding SmartDepl tool
have been driven by Fredhopper Cloud Services, an industrial case-study of the

120 S. de Gouw et al.

European FP7 Envisage project. The Fredhopper Cloud Services offer search
and targeting facilities on a large product database to e-Commerce companies.
Depending on the specific profile of an e-Commerce company Fredhopper has to
decide the most appropriate customized deployment of the service. Currently,
such decisions are taken manually by an operation team which decides cus-
tomized, hopefully optimal, service configurations taking into account the ten-
sion among several aspects like the level of replications of critical parts of the
service to ensure high availability. The operators manually perform the opera-
tions to scale up or down the system and this usually causes the over-provision
of resources for guaranteeing the proper management of requests during a usage
peak. With our extension of ABS, we have been able to realize a new modeling
of the Fredhopper Cloud Services in which both the initial deployment and the
subsequent up- and down-scale is expected to be executed automatically. This
new model is a first fundamental step towards a new more efficient and elastic
deployment management of the Fredhopper Cloud Services.

Structure of the paper. Section 2 describes the Fredhopper Cloud Services case-
study. Section 3 reports the ABS deployment annotations that we already defined
in [10]. Section 4 presents the new high-level language for the specification
of deployment requirements while Sect. 5 discusses the corresponding solver.
Finally, the application of our technique to the Fredhopper Cloud Services use-
case is reported in Sect. 6. Section 7 discusses the related literature while in
Sect. 8 we draw some concluding remarks.

2 The Fredhopper Cloud Services

Fredhopper provides the Fredhopper Cloud Services to offer search and target-
ing facilities on a large product database to e-Commerce companies as services
(SaaS) over the cloud computing infrastructure (IaaS). The Fredhopper Cloud
Services drives over 350 global retailers with more than 16 billion in online sales
every year. A customer (service consumer) of Fredhopper is a web shop, and an
end-user is a visitor of the web shop.

The services offered by Fredhopper are exposed at endpoints. In practice,
these services are implemented to be RESTful and accept connections over
HTTP. Software services are deployed as service instances. Each instance offers
the same service and is exposed via Load Balancer endpoints that distribute
requests over the service instances.

The number of requests can vary greatly over time, and typically depends on
several factors. For instance, the time of the day in the time zone where most of
the end-users are plays an important role (typical lows in demand are observed
between 2 am and 5 am). Figure 1 shows a real-world graph for a single day (with
data up to 18:00) plotting the number of queries per second (y-axis, ranging from
0–25 qps, the horizontal dotted lines are drawn at 5, 10, 15 and 20 qps) over the
time of the day (x-axis, starting at midnight, the vertical dotted lines indicate
multiples of 2 h). The 2 am–5 am low is clearly visible.

Declarative Elasticity in ABS 121

Fig. 1. Number of queries per second (in green the query processing time). (Color
figure online)

Peaks typically occur during promotions of the shop or around Christmas.
To ensure a high quality of service, web shops negotiate an aggressive Service
Level Agreement (SLA) with Fredhopper. QoS attributes of interest include
query latency (response time) and throughput (queries per second). For example,
based on the negotiated SLA with a customer, services must maintain 100 queries
per seconds with less than 200 ms of response time over 99.5 % of the service
uptime, and 99.9 % with less than 500 ms.

Previous work reported in [10] aimed to compute an optimal initial deploy-
ment configuration (using the size of the product catalogue, number of expected
visitors and cost of the required virtual machines). The computation was based
on an already available model of the Fredhopper Cloud Services written in the
ABS language. In this paper we address the problem of maintaining a high qual-
ity of service after this initial set-up by taking dynamic factors into account,
such as fluctuating user-demand and unexpectedly failing virtual machines.

The solution that we propose is based on a tool named SmartDepl that, when
integrated in the ABS model of the Fredhopper Cloud Services, enables the
modeling of automatic upscaling or downscaling. When the decision to scale up or
down is made, SmartDepl indicates how to automatically evolve the deployment
configuration. This is not a trivial task: the desired deployment configuration
should satisfy various requirements, and those can trigger the need to instantiate
multiple service instances that furthermore require proper configuring to ensure
they function correctly.

The requirements can originate from both business decisions or technical
reasons. For instance, for security reasons, services that operate on sensitive
customer data should not be deployed on machines shared by multiple customers.
Below we list some of these requirements.

122 S. de Gouw et al.

– To increase fault-tolerance, we aim to spread virtual machines across geo-
graphical locations. Amazon allows specifying the desired region (a geograph-
ical area) and availability zone (a geographical location in a region) for a
virtual machine. Fault tolerance is then increased by balancing the number of
machines between different availability zones. Thus, when scaling, the number
of machines should be adjusted in all zones simultaneously. Effectively this
means that with two zones, we scale up or down with an even number of
machines.

– Each instance of a Query service is in one of two modes: ‘live’ mode to serve
queries, or ‘staging’ mode to serve as an indexer (i.e., to publish updates to
the product catalogue). There always should be at least one instance of Query
service in staging mode.

– The network throughput and latency between the PlatformService and indexer
is important. Since the infrastructure provider gives better performance for
traffic between instances in the same zone, we require the indexer and Plat-
formService to be in the same zone.

– Installing an instance of the QueryService requires the presence of an instance
of the DeploymentService on the same virtual machine.

– For performance reasons and fault tolerance, load balancers require a dedi-
cated machine without other services co-located on the same virtual machine.

3 Annotated ABS

The ABS language is designed to develop executable models. It targets distrib-
uted and concurrent systems by means of concurrent object groups and asyn-
chronous method calls. Here, we will recap just the specific linguistic features of
ABS to support the modeling of the deployment; for more details we refer the
interested reader to the ABS project website [2] and [10] for the cost annotations.

The basic element to capture the deployment in ABS is the Deployment
Component (DC), which is a container for objects/services that, intuitively,
may model a virtual machine running those objects/services. ABS comes with a
rich API that allows the programmer to model a cloud provider of deployment
components.

1 CloudProvider cProv = new CloudProvider (" Amazon ");

2 cProv.addInstanceDescription (Pair("c3",

3 InsertAssoc(Pair(CostPerInterval,210),

4 InsertAssoc(Pair(Memory,7500),

5 InsertAssoc(Pair(Cores,4), EmptyMap)))));

6 DeploymentComponent dc = cProv.prelaunchInstanceNamed ("c3");

7 [DC: dc] Service s = new QueryServiceImpl ();

In the ABS code above, the cloud provider “Amazon” is modeled as the object
cProv of type CloudProvider. The fact that “Amazon” can provide a virtual
machine of type “c3” is modeled by calling addInstanceDescription in Line 2.
With this instruction we also specify that c3 virtual machines cost 0,210 cents
per hour, provide 7.5 GB of RAM and 4 cores. In Line 5 an instance of “c3” is

Declarative Elasticity in ABS 123

launched and the corresponding deployment component is saved in the variable
dc. Finally, in Line 6, a new object of type QueryServiceImpl (implementing
interface Service) is created and deployed on the deployment component dc.

ABS supports declaring interface hierarchies and defining classes implement-
ing them.

interface Service { ... }

interface IQueryService extends Service { ... }

class QueryServiceImpl (DeploymentService ds, Bool staging)

implements IQueryService { ... }

In the excerpt of ABS above, the IQueryService service is declared as an inter-
face that extends Service, and the class QueryServiceImpl is an implementation
of this interface. Notice that the initialization parameters required at object
instantiation are indicated as parameters in the corresponding class definition.

Classes can be annotated with the cost and requirements of an object of that
class.

[Deploy: scenario[Name(" staging "), Cost("Cores", 2),

Cost(" Memory",7000), Param (" staging", Default ("True")),

Param("ds", Req)]]

[Deploy: scenario[Name("live"), Cost("Cores", 1),

Cost(" Memory",3000), Param (" staging", Default ("False ")),

Param("ds", Req)]]

The above two annotations, to be included before the declaration of the
class QueryServiceImpl in the above ABS code, describe two possible deployment
scenarios for objects of that class. The first annotation models the deployment
of a Query Service in staging mode, the second one models the deployment in
live mode. A Query Service in staging mode requires 2 cores and 7 GB of RAM.
In live mode, 1 core and 3 GB of RAM suffices. Creating a Query Service object
requires the instantiation of its two initialization parameters ds and staging.
The second parameter should be instantiated with True or False depending on
the deployment scenario. The first parameter is required (keyword Req in the
annotation): this means that the Query Service requires a reference to an object
of type DeploymentService passed via the ds initialization parameter.

4 The Declarative Requirement Language DRL

Computing a deployment configuration requires taking into account the expec-
tations of the ABS programmer. For example, in the Fredhopper Cloud Services,
one initial goal is to deploy with reasonable cost a given number of Query Ser-
vices and a Platform Service, possibly located on different machines to improve
fault tolerance, and later on to upscale (or subsequently downscale) the sys-
tem according to the monitored traffic. Each desiderata can be expressed with
a corresponding expression in Declarative Requirement Language (DRL): a new
language for stating constraints a configuration to be computed should satisfy.

124 S. de Gouw et al.

Table 1. DRL grammar.

1 b_expr : b_term (bool_binary_op b_term)* ;

2 b_term : (’not’)? b_factor ;

3 b_factor : ’true’ | ’false’ | relation ;

4 relation : expr (comparison_op expr)? ;

5 expr : term (arith_binary_op term)* ;

6 term : INT |

7 (’exists ’ | ’forall ’) VARIABLE ’in’ type ’:’ b_expr |

8 ’sum’ VARIABLE ’in’ type ’:’ expr |

9 ((ID | VARIABLE | ID ’[’ INT ’]’) ’.’)? objId |

10 arith_unary_op expr |

11 ’(’ b_expr ’)’ ;

12 objId : ID | VARIABLE | ID ’[’ ID ’]’ | ID ’[’ RE ’]’;

13 type : ’obj’ | ’DC’ | RE ;

14 bool_binary_op : ’and’ | ’or’ | ’impl’ | ’iff’ ;

15 arith_binary_op : ’+’ | ’-’ | ’*’ ;

16 arith_unary_op : ’abs’ ; // absolute value
17 comparison_op : ’<=’ | ’=’ | ’>=’ | ’<’ | ’>’ | ’!=’ ;

As shown in Table 1, that reports an excerpt of the DRL grammar,1 a desider-
ata is a (possibly quantified) Boolean formula b_expr obtained by using the usual
logical connectives over comparisons between arithmetic expressions. An atomic
arithmetic expression is an integer (Line 6), a sum statement (Line 8) or an
identifier for the number of deployed objects (Line 9). The number of objects to
deploy using a given scenario is defined by its class name and the scenario name
enclosed in square brackets (Line 12). For example, the below formula requires
deploying at least one object of class QueryServiceImpl in staging mode.

QueryServiceImpl [staging] > 0

The square brackets are optional (Line 12 - first option) for objects with only
one default deployment scenario. Regular expressions (RE in Line 12) can match
objects deployed using different scenarios. The number of deployed objects can
be prefixed by a deployment component identifier to denote just the number of
objects defined within that specific deployment component. As an example, the
deployment of only one object of class DeploymentServiceImpl on the first and
second instance of a “c3” virtual machine can be enforced as follows.

c3[0]. DeploymentServiceImpl = 1 and

c3[1]. DeploymentServiceImpl = 1

1 The complete grammar defined using the ANTLR compiler generator is
available at https://github.com/jacopoMauro/abs deployer/blob/smart deployer/
decl spec lang/DeclSpecLanguage.g4.

https://github.com/jacopoMauro/abs_deployer/blob/smart_deployer/decl_spec_lang/DeclSpecLanguage.g4
https://github.com/jacopoMauro/abs_deployer/blob/smart_deployer/decl_spec_lang/DeclSpecLanguage.g4

Declarative Elasticity in ABS 125

Here the 0 and 1 numbers between the square brackets represent respectively
the first and second virtual machine of type “c3”. To shorten the notation, the
[0] can be omitted (Line 9).2

It is possible to use also quantifiers and sum expressions to capture more
concisely some of the desired properties. Variables are identifiers prefixed with
a question mark. As specified in Line 13, variables in quantifiers and sums can
range over all the objects (’obj’), all the deployment components (’DC’), or
just all the virtual machines matching a given regular expression (RE). In this
way it is possible to express more elaborate constraints such as the co-location
or distribution of objects, or limit the amount of objects deployed on a given
DC.3 As an example, the constraint enforcing that every Query Service has a
Deployment Service installed on its virtual machine is as follows.

forall ?x in DC: (

?x.QueryServiceImpl [’.*’] > 0 impl

?x.DeploymentServiceImpl > 0)

Here impl stands for logical implication. The regular expression ’.*’ allows
us to match with both deployment modalities for the Query Service (staging and
live). Finally, specifying that the load balancer must be installed on a dedicated
virtual machine (without other Service instances) can be done as follows.

forall ?x in DC: (

?x.LoadBalancerServiceImpl > 0 impl

(sum ?y in obj: ?x.?y) = ?x.LoadBalancerServiceImpl)

5 Deployment Engine

SmartDepl is the tool that we have implemented to realize automatic deployment.
The key idea of SmartDepl is to allow the user on the one hand to declaratively
specify the desired deployments and, on the other hand, to develop its program
abstracting from concrete deployment decisions. More concretely, deployment
requirements are specified as program annotations. SmartDepl processes each of
these annotations and generates for each of them a new class that specifies the
deployment steps to reach the desired target. Then this class can be used to
trigger the execution of the deployment, and to undo it in case the system needs
to downscale.

As an example, imagine that an initial deployment of the Fredhopper Cloud
Services has been already obtained and that, based on a monitor decision, the

2 We assume that every deployment desiderata expressed in DRL deals with only a
bounded number of deployment components (the bound is a configuration parame-
ter for SmartDepl). Notice that this does not mean that the total number of deploy-
ment components in an application is bound, as the deployment can be repeated an
unbounded number of times.

3 DRL improves on the specification language presented in [10] because the addition
of the quantifiers and sums allow to write the desiderata more concise and naturally.

126 S. de Gouw et al.

Table 2. An example of a deployment annotation.

1 { "id": "AddQueryDeployer",

2 "specification": "QueryServiceImpl[live] = 1",

3 "obj": [{ "name": "platformObj",

4 "provides": [{

5 "ports": ["MonitorPlatformService",

6 "PlatformService"],

7 "num": -1 }],

8 "interface": "PlatformService" },

9 { "name": "loadBalancerObj",

10 "provides": [{

11 "ports": ["LoadBalancerService"],

12 "num": -1 }],

13 "interface": "LoadBalancerService" },

14 { "name": "serviceProviderObj",

15 "provides": [{

16 "ports": ["ServiceProvider"],

17 "num": -1 }],

18 "interface": "ServiceProvider" }],

19 "DC": [] }

user wants to add a Query Service instance in live mode. The annotation that
describes this requirement is the JSON object defined in Table 2.4

In Line 1, the keyword "id" specifies that the name of the class with the
deployment code, to be synthesized by SmartDepl, is AddQueryDeployer. As we
will see later, this class exposes methods to be invoked to actually execute deploy-
ment actions that modifies the current deployment according to the requirements
in the deployment annotation. The second line contains the declarative specifica-
tion of the desired configuration in DRL. Deploying a new instance of the Query
Service may involve other relevant objects from the surrounding environment,
such as the PlatformService or a LoadBalancerService. Which objects are rele-
vant may come from business, security or performance reasons, thus in general
it may be undesirable to select or create automatically a Service instance of the
right type. SmartDepl is flexible in this regard: the user supplies the appropriate
ones. By using the keyword "obj", Lines 3–18 list the appropriate objects. Since
these object are already available, they need not be deployed again. The names
of these objects are specified with the keyword "name" (Lines 3, 9, 14), the pro-
vided interfaces with the keyword "port" (Lines 5–6, 11, 16) with the amount of
services that can use it (keyword "num" in Lines 7, 12, 17 — in this case a −1
value means that the object can be used by an unbounded number of other
objects), and the object interface with keyword "interface" (Lines 8, 13, 18).
Finally, with the keyword "DC", the user specifies if there are existing deployment
4 To facilitate the interoperability between ABS and SmartDepl we have adopted a

JSON syntax for the deployment annotations. For the interested reader the formal
specification of the JSON annotations is defined in https://github.com/jacopoMauro/
abs deployer/blob/smart deployer/spec/smart deploy annotation schema.json.

https://github.com/jacopoMauro/abs_deployer/blob/smart_deployer/spec/smart_deploy_annotation_schema.json
https://github.com/jacopoMauro/abs_deployer/blob/smart_deployer/spec/smart_deploy_annotation_schema.json

Declarative Elasticity in ABS 127

components with free resources that can be used to deploy new objects. In this
case, for fault tolerance reasons the user wants to deploy the Query Service in a
new machine and therefore the "DC" is empty (Line 19).

Once the annotation is given, the user may freely use this class. For instance,
the below ABS code scales the system up or down based on a monitor decision.

Every time an upscale is needed, an object of class AddQueryDeployer

(the name associated with the annotation previously discussed) is created. The
idea is to store the references to these deployment objects in a list called
depObjList. We now discuss the initialization parameters for such objects. The
first parameter is the cloud provider, as defined for instance in Sect. 3. The next
parameters are the objects already available for the deployment that do not need
to be re-deployed. These are given according to the order they are defined in the
annotation in Table 2. The generated class implements the SmartDeployInterface

with: (i) a deploy method to realise the deployment of the desired configuration,
(ii) an undeploy method to undo the deployment gracefully by removing the vir-
tual machine created with the deploy method, (iii) getter methods to retrieve the
list of new objects and deployment components created by running the deploy

method (e.g., a call depObj.getIQueryService() retrieves the list of all the Query
Services created by depObj.deploy()). The actual addition of the Query Service is
performed in Line 5 with the call of the deploy method. If the monitor decides to
downscale (Line 7), the last deployment solution is retrieved (Line 8), and the
corresponding deployment actions are reverted by calling the undeploy method.5

Technically, SmartDepl is written in Python (∼1k lines of code) and relies
on Zephyrus2, a configuration optimizer that given the user desiderata and a
universe of components, computes the optimal configuration satisfying the user
needs.6 The cost annotations (see Sect. 3) are used to compute a configuration

5 Since ABS does not have an explicit operation to force the removal of objects the
undeploy procedure just removes the references to these objects leaving the garbage
collector to actually remove them. The deployment components created by the deploy
methods are removed instead using an explicit kill primitive provided by ABS.

6 SmartDepl uses Zephyrus2 (freely available at https://bitbucket.org/jacopomauro/
zephyrus2.git) since it allows the use of a new expressive language and because it relies
on MiniSearch [24], a new efficient and flexible framework for planning the search
strategies. Zephyrus2 is a completely new re-engineering of the previous Zephyrus
solver [8,9].

https://bitbucket.org/jacopomauro/zephyrus2.git
https://bitbucket.org/jacopomauro/zephyrus2.git

128 S. de Gouw et al.

that satisfies the constraints, minimizes the cost of the deployment components
that need to be created and, in case of ties, minimizes the number of created
objects. The user is notified if no configuration exists that satisfies the desider-
ata. Once a configuration is obtained, SmartDepl uses topological sorting to take
into account all the object dependencies and computes the sequence of deploy-
ment instructions to realise the desirable configuration. SmartDepl exploits Delta
Modeling [7] to generate the code of the classes and methods to inject into the
interface. SmartDepl also notifies the user when it is unable to generate a sequence
of deployment actions due to mutual dependencies between the objects.7

As an example the deploy code generated by SmartDepl for the annotation
defined in Table 2 is the following.

1 Unit deploy() {
2 DeploymentComponent c3 0 = cloudProvider.prelaunchInstanceNamed(”c3”);
3 ls DeploymentComponent = Cons(c3 0,ls DeploymentComponent);
4 [DC: c3 0] DeploymentService oDef DeploymentServiceImpl 0 c3 0 =
5 new DeploymentServiceImpl(platformObj);
6 ls DeploymentService = Cons(oDef DeploymentServiceImpl 0 c3 0,
7 ls DeploymentService);
8 [DC: c3 0] IQueryService olive QueryServiceImpl 0 c3 0 = new
9 QueryServiceImpl(oDef DeploymentServiceImpl 0 c3 0, False);

10 ls IQueryService = Cons(olive QueryServiceImpl 0 c3 0, ls IQueryService);
11 ls Service = Cons(olive QueryServiceImpl 0 c3 0, ls Service);
12 ls EndPoint = Cons(olive QueryServiceImpl 0 c3 0, ls EndPoint);
13 }

At Line 3, a new deployment component c3 0 is created. In Lines 4–5 an object
of class DeploymentService is created, since every Query Service requires a corre-
sponding Deployment Service (it is one of the required parameters, cf. Sect. 3)
to be deployed before the Query Service. In Lines 8–9 the desired object of class
IQueryService is created. Both objects are deployed on c3 0.

Even though for the sake of the presentation this is just a simple example,
it is immediately possible to notice that SmartDepl alleviates the user from the
burden of the deployment decisions. Indeed, she can specify the desired configu-
ration without worrying about the dependencies of the various objects and their
distributed placement for obtaining the cheapest possible solution.

SmartDepl is open source, available at https://github.com/jacopoMauro/abs
deployer/tree/smart deployer and to increase its portability it can be installed
also by using the Docker container technology [12]. As illustrated in Fig. 2, Smart-
Depl has also been integrated into the ABS toolchain,8 an IDE for a collection of
tools for writing, inspecting, checking, and analyzing ABS programs developed
within the Envisage European project.

7 This occurs when the creation of an object requires the execution of a complex
protocol, such as what happens for the boostrapping of Linux distributions [1].

8 http://abs-models.org/installation/.

https://github.com/jacopoMauro/abs_deployer/tree/smart_deployer
https://github.com/jacopoMauro/abs_deployer/tree/smart_deployer
http://abs-models.org/installation/

Declarative Elasticity in ABS 129

Fig. 2. SmartDepl execution within the ABS toolchain IDE.

6 Application to the Fredhopper Use Case

In this section we report on the modeling with SmartDepl of the concrete deploy-
ment requirements of the Fredhopper Cloud Services, previously introduced in
Sect. 2. We decided to apply our techniques to the Fredhopper Cloud Services use
case because it was already modeled in ABS, and thanks to extensive profiling
of the in-production system, the cost of its services are known.

SmartDepl was used twice: to synthesize the initial static deployment of the
entire framework and to add (and later remove) instances of the Query Service if
the system needs to scale. Since the Fredhopper Cloud Services uses Amazon EC2
Instance Types, we used two types of deployment components corresponding
to the “xlarge” and “2xlarge” instances of the Compute Optimized instances
(version 3)9 of Amazon. For fault tolerance and stability, Fredhopper Cloud
Services uses instances in multiple regions in Amazon (regions are geographically
separate areas, so even if there is a force majeure in one region, other regions
may be unaffected). We model the instance types in different regions as follows:
“c3 xlarge eu”, “c3 xlarge us”, “c3 2xlarge eu”, “c3 2xlarge us” (“eu” refers to
a European region, “us” is an American region).

The static deployment of the Fredhopper Cloud Services requires deploying
a Load Balancer, a Platform Service, a Service Provider and 2 Query Services
with at least one in staging mode. This is expressed as follows.

9 https://aws.amazon.com/ec2/instance-types/.

https://aws.amazon.com/ec2/instance-types/

130 S. de Gouw et al.

Fig. 3. Example of automatic objects allocation to deployment components.

LoadBalancerServiceImpl = 1 and PlatformServiceImpl = 1 and
ServiceProviderImpl = 1 and QueryServiceImpl[staging] > 0 and
QueryServiceImpl[staging] + QueryServiceImpl[live] = 2

For the correct functioning of the system, a Query Service requires a Deployment
Service installed on the same machine. This constraint is expressed as shown in
Sect. 4. The requirement that a Service Provider is present on every machine
containing a Platform Service is expressed by:

forall ?x in DC: (?x.PlatformServiceImpl > 0 impl ?x.ServiceProviderImpl > 0)

Not all services can be freely installed on an arbitrary virtual machine. To
increase resilience, we require that the Load Balancer, the Query/Deployment
Services, and the Platform Service/Service Provider are never co-located on the
same virtual machine. The end of Sect. 4 shows how this is expressed.

To handle catastrophic failures, the Fredhopper Cloud Services aim to bal-
ance the Query Services between the regions (see Sect. 2). This is enforced by
constraining the number of the Query Services in the different data centers to
be equal. In DRL this is expressed with regular expressions as follows.

(sum ?x in ’.∗ eu’: ?x.QueryServiceImpl[’.∗’]) =
(sum ?x in ’.∗ us’: ?x.QueryServiceImpl[’.∗’])

As described in Sect. 4, for performance reasons, the Query Service in Staging
mode should be located in the zone of the Platform Service, since Amazon con-
nects instances in the same region with low-latency links. For the European
data-center this is expressed by:

(sum ?x in ’.∗ eu’: ?x.QueryServiceImpl[staging]) > 0) impl
(sum ?x in ’.∗ eu’: ?x.PlatformServiceImpl) > 0)

From this specification SmartDepl computes the initial configuration in Fig. 3,
which minimizes the total costs per interval. It deploys the Load Balancer, Plat-
form Service and one staging Query Service on three “2xlarge” instances in
Europe, and deploys a live Query service on an “xlarge” instance in US.

After this initial deployment, the Cloud engineers of Fredhopper Cloud Ser-
vices rely on feedback provided by monitors to decide if more Query Services in
live mode are needed. Figures 4 and 5 show some of the main metrics for a single
customer used to determine the scaling. The timescale in the figures is 1 day,
but this can be adjusted to see trends over longer periods, or zoom in on a short

Declarative Elasticity in ABS 131

period. The figures show that the number of queries served per second (qps,
first graph of Fig. 4) is relatively high and the requests (Fig. 4, second graph) are
fairly low, so requests are not queuing. Furthermore the CPU usage (Fig. 4, third
graph) and memory consumption with small swap space used (Fig. 5, second and
third graphs) look healthy. Hence, no scaling is needed.

If we would have needed to scale up, two Query Service instances are added:
one in an EU region, and one in an US region for balancing across regions. In
contrast, if there is unnecessary overcapacity, the most recent ones can be shut
down. Since the Cloud operations team currently manually decides to scale, and
FredhopperhasveryaggressiveSLAs, the team is typically conservativewithdown-
scaling, leading to potential over-spending. The ability of SmartDepl to deploy
in the programming language (ABS) itself allows to leverage the extensive tool-
supported analyses available for ABS [3,11,15,25]. For example, by using monitors
to track the quality of services, SmartDepl allows to reason on a rigorous basis on
the scaling decisions and their impact on the SLA agreed with the customers.

Furthermore, while the operations team currently use ad-hoc scripts to con-
figure newly added or removed service instances, and these scripts are specific to

Fig. 4. Metrics graphed over a single day for a customer (a).

132 S. de Gouw et al.

Fig. 5. Metrics graphed over a single day for a customer (b).

the infrastructure provider, SmartDepl automatically generates code that accom-
plishes this (for example, see Table 2). SmartDepl is flexible in the sense that it
is infrastructure independent, allowing to seamlessly switch between different
infrastructure providers: virtual machines are launched and terminated through
a generic Cloud API offered by ABS for managing virtual resources. Executable
code is automatically generated from ABS for any of the infrastructures for which
an implementation of the Cloud API exists (e.g., Amazon, Docker, OpenStack).

To automatically generate the scaling deployment configuration, SmartDepl
uses all the previous specifications, except that now instead of requiring a Plat-
form Service and a Load Balancer we simply require two Query services in live
mode. In this case, as expected after the deployment of the initial framework,
the best solution is to deploy one Query Service in Europe and one in US using
“xlarge” instances. The ABS model used with all the annotations and specifi-
cations and an example of generated code is available at https://github.com/
jacopoMauro/abs deployer/blob/smart deployer/test/.

https://github.com/jacopoMauro/abs_deployer/blob/smart_deployer/test/
https://github.com/jacopoMauro/abs_deployer/blob/smart_deployer/test/

Declarative Elasticity in ABS 133

7 Related Work

Many management tools for bottom-up deployment exist, e.g., CFEngine [6],
Puppet [19], MCollective [23], and Chef [22]. Such tools allow for the declaration
of components, by indicating how they should be installed on a given machine,
together with their configuration files, but they are not able to automatically
decide where components should be deployed and how to interconnect them for
an optimal resource allocation. The alternative holistic approach allows modeling
the entire application and derives the deployment plan top-down. In this context,
one prominent work is represented by the TOSCA (Topology and Orchestration
Specification for Cloud Applications) standard [21]. Following a similar philoso-
phy, we can mention Terraform [17], JCloudScale [26], Apache Brooklyn [4], and
tools supporting the Cloud Application Management for Platforms protocol [20].
A first attempt to combine the holistic and bottom-up approaches is reported
in [5]: a global deployment plan expressed in TOSCA is checked for correctness
against local specifications of the deployment lifecycle of the single components.

Similarly to our approach, ConfSolve [18] and Engage [14] use a solver to
plan deployment starting from the local requirements of components, but these
approaches were not incorporated in fully-fledged specification languages (includ-
ing also behavioral descriptions as in our case with ABS).

8 Conclusions

We presented an extension of the ABS specification language that supports mod-
eling deployment in a declarative manner: the programmer specifies deployment
constraints, and a solver synthesizes ABS classes with methods that execute
deployment actions to reach an optimal deployment configuration that satisfies
the constraints. Our approach, which is inspired by [9] and significantly improves
our initial work [10], can be easily applied to any other object-oriented language
that offers primitives for the acquisition and release of computing resources.

As a future work we plan to investigate the possibility to invoke at run time
the external deployment engine. In this way, it could be possible to dynamic re-
define the deployment constraints by means of a dynamic tuning of the engine.
Nevertheless, dynamically computing the deployment steps may require addi-
tional elements such as the support of new reflection primitives to get a snapshot
of the running application, and possibly the use of sub-optimal solutions when
computing the optimal configuration takes too much time.

References

1. Abate, P., Johannes, S.: Bootstrapping software distributions. In: CBSE 2013
(2013)

2. Abstract behavioral specification language. http://www.abs-models.com/
3. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gómez-Zamalloa, M.,

Martin-Martin, E., Puebla, G., Román-Dı́ez, G.: SACO: static analyzer for con-
current objects. In: ETAPS (2014)

http://www.abs-models.com/

134 S. de Gouw et al.

4. Apache Software Foundation: Apache Brooklyn. https://brooklyn.incubator.
apache.org/

5. Brogi, A., Canciani, A., Soldani, J.: Modelling and analysing cloud application. In:
Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp.
19–33. Springer, Heidelberg (2015)

6. Burgess, M.: A site configuration engine. Comput. Syst. 8(2), 309–337 (1995)
7. Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R.: Variability mod-

elling in the ABS language. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 204–224. Springer, Heidelberg (2011)

8. Cosmo, R.D., Lienhardt, M., Mauro, J., Zacchiroli, S., Zavattaro, G., Zwolakowski,
J.: Automatic application deployment in the cloud: from practice to theory and
back. In: CONCUR (2015)

9. Cosmo, R.D., Lienhardt, M., Treinen, R., Zacchiroli, S., Zwolakowski, J., Eiche,
A., Agahi, A.: Automated synthesis and deployment of cloud applications. In: ASE
(2014)

10. de Gouw, S., Lienhardt, M., Mauro, J., Nobakht, B., Zavattaro, G.: On the inte-
grationof automatic deployment into the ABS modeling language. In: Dustdar, S.,
Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp. 49–64. Springer,
Heidelberg (2015)

11. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: CADE (2015)

12. Docker Inc.: Docker. https://www.docker.com/
13. Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A.: Managing multi-cloud

systems with CloudMF. In: NordiCloud (2013)
14. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment management

system. In: PLDI (2012)
15. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in

core ABS. CoRR (2015)
16. Gonçalves, G.E., Endo, P.T., Santos, M.A., Sadok, D., Kelner, J., Melander, B.,

Mångs, J.: CloudML: an integrated language for resource, service and request
description for D-Clouds. In: CloudCom (2011)

17. HashiCorp: Terraform. https://terraform.io/
18. Hewson, J.A., Anderson, P., Gordon, A.D.: A declarative approach to automated

configuration. In: LISA (2012)
19. Kanies, L.: Puppet: next-generation configuration management. ;login: the

USENIX magazine (1) (2006)
20. OASIS: Cloud Application Management for Platforms. http://docs.oasis-open.org/

camp/camp-spec/v1.1/camp-spec-v1.1.html
21. OASIS: Topology and Orchestration Specification for Cloud Applications

(TOSCA) Version 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/
TOSCA-v1.0-cs01.html

22. Opscode: Chef. http://www.opscode.com/chef/
23. Puppet Labs: Marionette collective. http://docs.puppetlabs.com/mcollective/
24. Rendl, A., Guns, T., Stuckey, P.J., Tack, G.: MiniSearch: a solver-independent

meta-search language for MiniZinc. In: CP (2015)
25. Wong, P.Y.H., Bubel, R., de Boer, F.S., Gómez-Zamalloa, M., de Gouw, S., Hähnle,

R., Meinke, K., Sindhu, M.A.: Testing abstract behavioral specifications. STTT
17(1), 107–119 (2015)

26. Zabolotnyi, R., Leitner, P., Hummer, W., Dustdar, S.: JCloudScale: closing the
gap between IaaS and PaaS. ACM Trans. Internet Technol. 15(3), 10 (2015)

https://brooklyn.incubator.apache.org/
https://brooklyn.incubator.apache.org/
https://www.docker.com/
https://terraform.io/
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://www.opscode.com/chef/
http://docs.puppetlabs.com/mcollective/

Job Placement

Interplay of Virtual Machine Selection
and Virtual Machine Placement

Zoltán Ádám Mann(B)

paluno – The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

zoltan.mann@gmail.com

Abstract. Previous work on optimizing resource provisioning in vir-
tualized environments focused either on mapping virtual machines to
physical machines (i.e., virtual machine placement) or mapping compu-
tational tasks to virtual machines (i.e., virtual machine selection). In
this paper, we investigate how these two optimization problems influ-
ence each other. Our study shows that exploiting knowledge about the
physical machines and about the virtual machine placement algorithm
in the course of virtual machine selection leads to better overall results
than considering the two problems in isolation.

1 Introduction

As cloud data centers are serving an ever growing demand for computation, stor-
age, and networking, their efficient operation has become a high priority. On one
hand, the operation of data centers incurs huge costs and environmental impact.
According to a recent study, data center electricity consumption in the USA
alone will increase to 140 billion kWh per year by 2020, costing US businesses
13 billion USD annually in electricity bills and emitting nearly 100 million tons
of CO2 per year [25]. On the other hand, servers often run with low utilization –
in fact, a significant percentage of running servers do not do any useful work [1].

Virtualization has been widely adopted in data centers to consolidate work-
load on the necessary number of physical machines (PMs), with the aim of
achieving high utilization and switching off unused PMs to save energy. For
this purpose, virtual machines (VMs) are used as the virtual infrastructure for
running the workload. Live migration technology makes it possible to migrate a
running VM from one PM to another one without noticeable downtime. This way,
data center operators can react to changes in the workload and always use the
appropriate number of turned-on PMs to accommodate the active VMs, taking
into account their current resource needs. However, too aggressive consolidation
must be avoided because overloading physical resources leads to performance
degradation. Furthermore, live migration of VMs incurs increased resource con-
sumption, so that the number of migrations must be limited.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 137–151, 2016.
DOI: 10.1007/978-3-319-44482-6 9

138 Z.Á. Mann

Optimization relating to the management of VMs has received considerable
attention in the last couple of years because of its impact on costs, application
performance and carbon emission [29]. As shown in our recent survey [21], most
previous research efforts fall into one of two categories: VM placement and VM
selection. The goal of VM placement is to determine a mapping of VMs to PMs
with the objective of minimizing energy consumption while obeying performance
constraints and keeping the number of VM migrations low [23]. On the other
hand, VM selection is concerned with assigning computational tasks to VMs.

is mapped on

is placed on

Task

PM

VM
1..1

1..1

0..*

0..*

VM selection

VM placement

Fig. 1. Overview of VM selection and VM placement

The separation between the VM placement problem and the VM selection
problem (see Fig. 1) is rooted in the fact that the two kinds of optimization are
performed by different actors: VM placement is carried out by cloud providers,
whereas VM selection is done by cloud users. Moreover, the two problems are
quite different: VM placement is about physical resources, power consumption,
and live migration, whereas VM selection is typically concerned with lease costs
and application-level performance metrics. The central notion that connects the
two perspectives is the VM.

Although VMs play an important role, we argue that VMs are just a tool
for mapping users’ tasks to PMs in a safe and manageable fashion. Users’ main
objective is to find hosts for their tasks, providers’ objective is to utilize their
infrastructure by accommodating workload that is valuable for users. VMs can
be seen as wrappers around tasks that make all this possible, at the price of
some overhead. In this respect, VM placement and VM selection are just two
sides of the same coin. Most importantly, the two problems influence each other.

A simplified example is shown in Fig. 2. Here, we consider PMs of capacity
1 (for this conceptual example, the exact metric is unimportant) and six tasks
with resource need 0.3 each. Further, we assume that a VM adds an overhead
of 0.05 to the size of the contained task(s) in terms of resource consumption.
The three subfigures show the effect of different VM selection algorithms on VM
placement. In Fig. 2(a), the VM selection algorithm selects a dedicated VM for

Interplay of Virtual Machine Selection and Virtual Machine Placement 139

Fig. 2. Examples of the impact of VM selection decisions on the possibilities of VM
placement

each task, resulting in 6 VMs of size 0.35 each, the placement of which requires
at least 3 PMs. In Fig. 2(b), tasks are grouped pairwise into VMs, resulting
in 3 VMs of size 0.65 each, the placement of which again requires 3 PMs. In
Fig. 2(c), groups of 3 tasks are mapped to VMs, resulting in 2 VMs of size 0.95
each, and these can be hosted by 2 PMs. Therefore, this third scenario leads to
approximately 33 % energy savings. However, if we continue this line of thought
and map 4 tasks into a single VM, this would result in a VM of size 1.25, which
cannot be accommodated by the available PMs (or, if we map such a VM to one
of the available PMs, this will lead to severe resource overload).

As demonstrated by this example, VM selection influences VM placement in a
non-trivial way. Therefore we argue that, at least in a private cloud setting, where
VM selection and VM placement are in the hand of the same organization, the
two kinds of optimization should be carried out in a closely coupled way. Even in
a public cloud setting, it is important to understand the inter-dependence of the
two optimization problems, so that the provider can motivate users (by means
of appropriate pricing mechanisms) to use VM sizes that allow good placement.
So, the main question that this paper addresses can be summarized as follows:
how to perform VM selection in such a way that the resulting VMs allow an
advantageous VM placement?

In particular, we show that incorporating knowledge about the capacity of the
PMs into the VM selection algorithm already leads to substantial improvement
compared to PM-oblivious VM selection. Further improvement is possible if the
VM selection algorithm also exploits knowledge about the current placement of
VMs on PMs as well as about the VM placement optimization algorithm.

2 Previous Work

As shown in our recent survey [21], most previous research efforts on VM map-
ping problems fall into one of two categories: VM placement is concerned with
mapping VMs to PMs in a data center, while VM selection considers the problem
of mapping tasks to VMs.

140 Z.Á. Mann

2.1 VM Placement

Several algorithms have been suggested for VM placement. Some focus only on
the computational capacity of PMs and computational load of VMs [2,4,7,14,
22,34], whereas others also include other resources like memory, I/O, storage, or
network bandwidth [5,11,24,31].

One of the cost factors considered by most works is the number of active
PMs because it largely determines the total energy consumption [3,7,13,34].
Some also take into account the load-dependent dynamic power consumption of
PMs [4,11,14,30]. A further objective of some works is to minimize the number
of overloaded PMs because of the performance degradation that results from
overloads [4,7,31,34]. Some works also considered the cost of VM migrations
[4,7,13,30].

The special case of the VM placement problem in which a single resource
type is considered and the only objective is to minimize the number of used
PMs is equivalent to the well-known bin-packing problem. On the one hand,
this means that the VM placement problem is strongly NP-hard so that the
existence of an efficient exact algorithm is very unlikely. On the other hand,
simple packing heuristics like First-Fit (FF), Best-Fit (BF), Worst-Fit (WF)
and First-Fit-Decreasing (FFD) are known to perform very well on bin-packing.
Hence, several authors proposed to adopt such heuristics to the VM placement
problem [2–4,14,19,31,34].

2.2 VM Selection

Concerning VM selection, also many different problem models have been sug-
gested. Similarly to the VM placement problem, most works focus on compu-
tational power [8,20,27,35] but some consider also other resource types like
memory [18,26]. The main optimization objective is to find the best trade-off
between performance and VM lease costs, which typically means that either the
minimum required performance is given and costs must be minimized or the
acceptable costs are constrained and performance must be maximized.

Several different models have been investigated also in terms of VM lease costs.
Most works consider costs proportional to VM usage time [6,15,20,32,33,35], but
some also add fees depending on consumed resource usage [18,26] or discounts for
long-term VM rental [12,18].

Existing VM selection algorithms assume that VMs have fixed rental fees and
fixed capacities. However, in a private cloud, VM capacities can be arbitrarily
chosen and also changed, and instead of rental fees, real operations costs have
to be minimized, which are incurred at the level of PMs.

2.3 Inter-dependence of VM Placement and VM Selection

In contrast to the works cited above, we do not handle VM placement or VM
selection in isolation, but are interested in their interplay. We are aware of two
papers that have a somewhat similar aim. The recent work of Piraghaj et al. [28]

Interplay of Virtual Machine Selection and Virtual Machine Placement 141

focuses on selecting optimal VM sizes based on the characteristics of the tasks
to be allocated. The objective is to reduce energy consumption by minimizing
resource wastage. Each VM is assumed to have a fixed size irrespective of its
workload, and the difference between the VM’s size and the total size of its
workload is wasted.

In contrast, we assume that a VM’s real size (what is taken into account by
the provider in VM placement decisions) follows the resource requirements of its
workload. The rationale is that resource usage is most of the time significantly
below the peak, yielding a great opportunity for consolidating VMs based on
their current load and continuously adapting the placement accordingly, always
using just the necessary number of active PMs [30,34]. Another important dif-
ference is that the work of Piraghaj et al. did not consider migrations, whereas
we do. Through these differences we arrive at a more realistic model, in which
the sought trade-offs and the objectives are also different (consolidation through
migration versus minimization of wastage through sizing).

Ganesan et al. [10] consider a Software-as-a-Service provider that wants to
allocate the components of its applications to VMs. The focus of the work is on
VM sizing, namely, determining the dedicated and shared capacity for the VMs,
based on past observations of the applications’ workload. Their algorithm also
outputs recommendations for VM placement, like which VMs can be placed sta-
tically and which ones need dynamic placement. However, the actual allocation
of VMs to PMs is not carried out; they assume that it is done by some external
algorithm. In contrast, we are interested in the impact of sizing on placement; it
is unfortunately not possible to tell how good that approach is in this respect.
Another limitation of that paper is the assumption that each application com-
ponent is mapped to a separate VM, whereas we also allow to co-locate multiple
tasks in the same VM.

3 Problem Model

VM selection and VM placement are difficult problems on their own, so com-
bining them results in a very complex problem. In this paper, we focus on the
following aspects, related to performance and costs (and leave further aspects,
such as security and fault tolerance, for future research):

– Energy consumption of the PMs, which depends on the number and load of
turned-on PMs

– Overhead (extra resource consumption) of virtualization
– Overhead (extra time) associated with launching new VMs
– Overhead (extra resource consumption) of VM migrations
– Performance degradation resulting from PM overloads

It is important to note that the impact of these aspects are conflicting: e.g.,
because of the overheads of virtualization, it would be advantageous to combine
into a single VM as many tasks as possible; on the other hand, too big VMs
limit the consolidation possibilities, thus potentially leading to higher energy
consumption and/or more PM overloads.

142 Z.Á. Mann

We consider d resource types; for example, if CPU and memory are con-
sidered, then d = 2. Each task j has a size s(j) ∈ R

d
+ describing its resource

need according to the considered resource types. Similarly, the size of a VM v is
s(v) ∈ R

d
+, the vector of its resource needs. Each task must be mapped to exactly

one VM; a VM may accommodate multiple tasks. For a task j, v(j) denotes its
hosting VM; for a VM v, T (v) denotes the set of tasks that it hosts. The size of
a VM is determined by the size of the tasks it hosts:

s(v) = s0 +
∑

j∈T (v)

s(j), (1)

where s0 ∈ R
d
+ is the size of an empty VM, representing the overhead of virtu-

alization, in terms of extra resource consumption. This overhead stems from the
(load-independent) resource needs of the guest operating system, hence a con-
stant overhead is a good approximation, although for some resource types more
sophisticated models of the virtualization overhead might be more realistic.

Each PM p has a capacity c(p) ∈ R
d
+. Each VM v must be hosted by exactly

one PM p(v); a PM p may host multiple VMs and their set is denoted by V (p).
To guarantee the required level of performance, the following capacity constraint
must hold:

s(p) =
∑

v∈V (p)

s(v) ≤ c(p). (2)

Note that here “≤” means that in each dimension the left-hand side must be
less than or equal to the right-hand side.

The power consumption of a PM is a function of its CPU load. As in sev-
eral previous works [2,11,17,30], we use a linear approximation, i.e., the power
consumption of a PM with CPU capacity c and CPU load x is given by

W (x) = Wmin + (Wmax − Wmin) · x/c, (3)

where Wmin and Wmax are the minimum and maximum power consumption of
the PM, respectively.

To simplify the presentation, we assume that each PM has the same capacity
and the same power consumption characteristics.

The following decision points – and hence optimization opportunities – exist:

– VM selection:
• If a new task arrives, it must be mapped to a VM. For this purpose, either

one of the existing VMs must be selected or a new VM must be created.
• If a VM becomes empty, it can be destroyed or kept for later reuse.

– VM placement:
• If a new VM is created, it must be mapped to a PM. For this purpose,

either one of the turned-on PMs must be chosen or a new PM must be
turned on.

• A VM can be migrated from its old PM to a new one.
• If a PM becomes empty, it can be switched off.

Interplay of Virtual Machine Selection and Virtual Machine Placement 143

Note that the VM placement can be re-optimized again and again with live
migrations; in contrast, a task is mapped to one VM for its entire life1.

The aim is to make these decisions in such a way that the performance of the
system is as high as possible (requiring the number of migrations, the number
of PM overloads and the number of VM launches to be minimized) and its cost
is as low as possible (requiring the number of turned-on PMs and their energy
consumption to be minimized).

4 VM Selection and VM Placement Algorithms to Assess

Our aim is to investigate the interplay between VM selection and VM place-
ment. For both subproblems, several algorithms are conceivable, leading to a
huge number of possible combinations. To keep the number of experiments man-
ageable, we chose to fix an algorithm for VM placement and consider a series of
algorithms for VM selection that differ in how much knowledge they exploit
about the underlying VM placement.

Specifically, we use the algorithm of Beloglazov et al. for VM placement as a
representative example of previously proposed VM placement algorithms, which
was shown to achieve a good trade-off between energy consumption, number of
migrations, and number of PM overloads [2]. Whenever a new VM is requested,
the first PM that has sufficient free capacity is chosen to host it or a new PM
is turned on if no such PM could be found. Moreover, the VM placement is
re-optimized at regular time intervals, consisting of the following steps:

1. From each overloaded PM, a minimal set of VMs is removed so that the PM is
not overloaded anymore. (A PM is overloaded if its load exceeds its capacity
in at least one dimension.)

2. From each underloaded PM, all its VMs are removed. (A PM p is underloaded
if s(p) ≤ λ · c(p), i.e., its load is below λ times its capacity in each dimension,
where 0 < λ < 1 is a given constant.)

3. The list of removed VMs is sorted in decreasing order of CPU load.
4. For each removed VM, the first PM with sufficient free capacity is chosen.
5. Emptied PMs are switched off.

Next, the considered VM selection algorithms are presented. We start with
the ones that are completely oblivious of the underlying PMs and the VM place-
ment algorithm, and then gradually increase the exploited knowledge:

– Simple. This approach creates a new VM for each task, like in [10].
– Multiple(k). Tasks are assigned to VMs in groups of k, where k ∈ Z+ is a

given constant. In the order as tasks arrive, a VM is created for task 1, which
is then used for tasks 2, . . . , k as well. For task k + 1, a new VM is created,
which is used for tasks k + 2, . . . , 2k as well, and so on.

1 Although some applications may support the migration of individual tasks, but this
cannot be assumed in general.

144 Z.Á. Mann

– Maxsize(μ). In contrast to the previous algorithms, this one exploits some
knowledge about the PMs. The idea here is to ensure that the size of each VM
is at most μ·c, where 0 < μ ≤ 1 is a given constant and c is the capacity vector
of the PMs. When a new task arrives, it is checked which of the existing VMs
could host it without exceeding the μ · c threshold. If no such VM exists, a
new one is created. If multiple appropriate VMs exist, one of them is selected
according to a selection policy, which can be one of FF, BF, WF. Since these
policies work in a single dimension whereas VM and task sizes are multi-
dimensional, a selection metric is used to convert a d-dimensional vector to a
number. Possible metrics are the sum, product, maximum, or minimum of the
coordinates, the length of the vector, or the imbalance of the vector, defined
as the difference between the maximum and minimum coordinate.

– Consolidation-friendly. This algorithm exploits not only knowledge about
the PMs but also about the current VM placement and the VM placement
algorithm. When a new task arrives, it is first checked whether there is a PM
that is not underloaded and has enough free capacity to accommodate the new
task. Such PMs are preferred because in this case, no overhead nor a PM over-
load is generated, and also no consolidation opportunity is obstructed. When
there are multiple such PMs, one of them is selected using an appropriate PM
selection heuristic and metric, similarly as in the Maxsize algorithm. When no
such PM exists, then one of the underloaded PMs is selected with the same
policy and metric. In this case, a consolidation opportunity is obstructed, but
still no overhead is generated. In any case, after a PM has been chosen, one
of its VMs has to be selected using a selection policy and metric, and the new
task is mapped to this VM. Finally, if no appropriate PM could be found,
then a new VM is created to accommodate the new task.

The Simple, Multiple, and Maxsize algorithms are used as representatives of
the class of previously proposed VM selection algorithms. However, the Maxsize
algorithm is already more advanced than the existing algorithms because exist-
ing algorithms just assume some given VM size limit without considering how
this size limit should relate to the PMs’ capacity. The Consolidation-friendly
algorithm was designed by us specifically to show how detailed knowledge about
the underlying VM placement algorithm can be exploited during VM selection.

5 Empirical Results

All the proposed algorithms were implemented in a simulation framework in
C++, which is freely available from https://sourceforge.net/p/vm-alloc/task
vm pm/. To obtain practically relevant results, we used real-world test data.
For the tasks, we used a real workload trace from the Grid Workloads Archive,
namely the AuverGrid trace, available from http://gwa.ewi.tudelft.nl/datasets/
gwa-t-4-auvergrid. From the trace, we used the first 10,000 tasks that had valid
CPU and memory usage data. The simulated time (i.e., the time between the
start of the first task and the end of the last one) is a bit over 29 days, thus
giving sufficient exposure to practical workload patterns.

https://sourceforge.net/p/vm-alloc/task_vm_pm/
https://sourceforge.net/p/vm-alloc/task_vm_pm/
http://gwa.ewi.tudelft.nl/datasets/gwa-t-4-auvergrid
http://gwa.ewi.tudelft.nl/datasets/gwa-t-4-auvergrid

Interplay of Virtual Machine Selection and Virtual Machine Placement 145

As PMs, we simulated HP ProLiant DL380 G7 servers with Intel Xeon E5640
quad-core CPU and 16 GB RAM. Their power consumption varies from 280 W
(zero load) to 540 W (full load) [16]. Throughout the experiments, we focus on
two resource types: CPU and memory, i.e., d = 2. For memory sizes, absolute
values are used in MB. For CPU capacities and loads, relative values are used,
where 100 % is the capacity of one physical CPU core. Concerning virtualization
overhead, previous work reported 5–15 % for the CPU [36] and 107–566 MB for
memory [9]. In our experiments, we use 10 % CPU overhead and 200 MB memory
overhead. The parameter of the VM placement algorithm, λ, is set to 0.4 as in [2].
The VM placement is re-optimized every 5 min.

For each evaluated algorithm, the following quality metrics were measured:

– Total energy consumption
– Average number of turned-on PMs
– Maximum number of turned-on PMs
– Maximum number of concurrently used VMs (as indication of the necessary

number of VM launches)
– Number of migrations
– Number of PM overloads

For each quality metric, smaller numbers are better.
First, the Simple and Multiple(k) algorithms are evaluated. Note that Mul-

tiple(1) is exactly the Simple algorithm.
The results are shown in Fig. 3. As can be seen, the total energy consumption

and the average and maximum number of turned-on PMs all show a similar
pattern with an increase at the beginning, maximum at k = 2, and decrease
afterwards. This can be attributed to two conflicting effects. With increasing k,
the average VM size grows and the number of VMs decreases, which leads on
the one hand to less consolidation opportunities, on the other hand to a decrease
of the resource consumption overhead.

Based on these metrics, higher values of k seem preferable. However, from
Fig. 3(e) and (f) it can be seen that the number of PM overloads skyrockets at
k = 17 and the number of migrations is exorbitantly large already for k ≥ 4.
Although there is a slow decrease of the number of migrations afterwards (thanks
to the decreasing number of consolidation opportunities), but an acceptable level
is reached only for very high values of k, where the number of overloads is already
prohibitively large. Thus, the best compromise seems to be the case k = 3.

The biggest problem with the Multiple(k) algorithm is that the value of k at
which the sudden explosion of the number of migrations and number of overloads
takes place cannot be predicted nor controlled. This depends on several factors,
like the capacity of the PMs and the workload’s characteristics. Therefore, this
algorithm is dangerous. Small values of k are safer but lead to higher costs (higher
energy consumption) and lower performance (more VMs need to be launched).

Next, we evaluated the Maxsize(μ) algorithm. More precisely, this is a fam-
ily of algorithms, characterized by the value of μ, the used selection policy, and
selection metric. We tested 6 different values for μ (0.25, 0.3, 0.5, 0.6, 0.9, 1.0),

146 Z.Á. Mann

Fig. 3. Results of the Multiple(k) algorithm for different values of k

3 selection policies (FF, BF, WF), and 6 selection metrics (sum, product, max-
imum, minimum, imbalance, length). The effect of μ on the different quality
metrics is shown in Fig. 4 (each data point corresponds to one value of μ and
the average according to the two other parameters).

In contrast to the previous experience with the Multiple(k) algorithm, these
figures show no sudden large increases in any quality metric. This is a big advan-
tage: apparently, the knowledge of the PMs’ capacity allows the algorithm much
better control of the PMs’ utilization, leading to safer operation. Only the num-
ber of migrations (Fig. 4(e)) and the number of PM overloads (Fig. 4(f)) show
some seemingly significant oscillations; however, when compared with the corre-
sponding results of the Multiple(k) algorithm, we can see that these oscillations
span actually a quite small range.

Interplay of Virtual Machine Selection and Virtual Machine Placement 147

Fig. 4. Results of the Maxsize(µ) algorithm for different values of µ

Looking at the details, it can be observed that μ = 0.6 leads to significantly
worse performance than μ = 0.5 according to most quality metrics. This is logical,
since VMs of size at most 0.5 · c can be pairwise consolidated to a PM, but if their
size can go somewhat beyond this limit, then the opportunities for consolidation
decrease. This shows once again the importance of PM-level knowledge in VM
selection. According to most quality metrics, μ = 1 is the best choice.

The effect of the selection policy and selection metric on the considered qual-
ity metrics is much smaller than the effect of μ. Therefore, to save space, these
results are not shown (but they can also be found in our online repository men-
tioned above). The FF policy and the minimum metric were chosen as best,
although their advantage over the others is small.

148 Z.Á. Mann

For evaluating the Consolidation-friendly algorithm, several parameters need
to be tuned: 3 possibilities for the PM selection policy (FF, BF, WF), 6 possibili-
ties for the PM selection metric (sum, product, maximum, minimum, imbalance,
length), 2 VM selection policies (maximize, minimize), and 6 VM selection met-
rics (the same as for PMs), resulting in 216 possible configurations. Similarly as
in the case of the Maxsize(μ) algorithm, none of the selection policies and selec-
tion metrics had a profound impact on the investigated quality metrics. This
means that the algorithm is robust in the sense that changes in the parame-
ters do not lead to abrupt changes in its behavior (in contrast to the Multiple(k)
algorithm). The details of fine-tuning the algorithm are skipped because of space
constraints. The chosen best configuration uses FF and the minimum metric for
PM selection (similarly to the Maxsize(μ) algorithm) and the maximize policy
and product metric for VM selection.

Table 1. Comparison of the algorithms’ results

Algorithm Energy Avg #PM Max #PM Max #VM Migrations Overloads

Multiple(3) 7766.14 23.28 82 103 3062 0

Maxsize(1) 7282.90 21.07 68 68 1209 0

Consolidation-friendly 7257.91 20.91 68 70 826 0

Finally, the results of the chosen best configuration of each algorithm are
compared to each other in Table 1. As can be seen, the Multiple(k) algorithm
is significantly outperformed by the two others according to each quality met-
ric. Moreover, the Consolidation-friendly algorithm offers considerable advantage
over the Maxsize(μ) algorithm in terms of the number of migrations, and also
some improvement in energy consumption and the average number of turned-on
PMs, at the price of a marginal increase of the maximum number of concurrently
active VMs.

6 Conclusions

In this paper, we analyzed the interplay of VM selection and VM placement
algorithms. By fixing the VM placement algorithm and considering a series of
VM selection algorithms that exploit an increasing amount of knowledge about
the underlying PMs and the VM placement, we showed the importance of such
information. Specifically, already the knowledge of the PMs’ capacity makes
VM selection more efficient in terms of cost and also much more resilient to
the negative impact of inappropriate parameter choices. Adding more knowledge
about the details of the VM placement algorithm leads to a further improvement,
especially in terms of the number of migrations.

This insight can be used especially in a private cloud setting, where all details
of the PMs and the VM placement are available. In this case, exploiting this
knowledge in the sizing of VMs and the mapping of tasks to VMs leads to

Interplay of Virtual Machine Selection and Virtual Machine Placement 149

considerable improvements. In a public cloud setting, the provider who has the
knowledge about the PMs and the VM placement should shape usage-based
pricing schemes in such a way that it corresponds to the real costs, so that users
are incentivized to use actual VM sizes that lead to good consolidation.

Directions for future research include the investigation of further aspects
that make the interplay of VM selection and VM placement even more complex,
such as data transfer among the tasks or security and reliability considerations.
Moreover, a software engineering challenge is how to design the interface between
VM selection and VM placement tools so that they can exchange the necessary
pieces of information.

Acknowledgments. A part of this work was carried out when Z.Á. Mann was with
Budapest University of Technology and Economics. This work was partially sup-
ported by the Hungarian Scientific Research Fund (Grant Nr. OTKA 108947) and the
European Union’s 7th Framework Programme (FP7/2007–2013) under grant agree-
ment 610802 (CloudWave).

References

1. Anthesis Group: 30% of servers are sitting “comatose” (2015). http://
anthesisgroup.com/30-of-servers-are-sitting-comatose/

2. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28, 755–768 (2012)

3. Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud
data centers. In: 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, pp. 577–578 (2010)

4. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual
machines in cloud data centers. Concurr. Comput. Pract. Exp. 24(13), 1397–1420
(2012)

5. Biran, O., Corradi, A., Fanelli, M., Foschini, L., Nus, A., Raz, D., Silvera, E.:
A stable network-aware VM placement for cloud systems. In: Proceedings of the
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID 2012), pp. 498–506. IEEE Computer Society (2012)

6. Bittencourt, L.F., Madeira, E.R., da Fonseca, N.L.: Scheduling in hybrid clouds.
IEEE Commun. Mag. 50(9), 42–47 (2012)

7. Breitgand, D., Epstein, A.: SLA-aware placement of multi-virtual machine elas-
tic services in compute clouds. In: 12th IFIP/IEEE International Symposium on
Integrated Network Management, pp. 161–168 (2011)

8. Candeia, D., Araújo, R., Lopes, R., Brasileiro, F.: Investigating business-driven
cloudburst schedulers for e-science bag-of-tasks applications. In: 2nd IEEE Inter-
national Conference on Cloud Computing Technology and Science, pp. 343–350
(2010)

9. Chang, C.R., Wu, J.J., Liu, P.: An empirical study on memory sharing of vir-
tual machines for server consolidation. In: IEEE 9th International Symposium on
Parallel and Distributed Processing with Applications, pp. 244–249 (2011)

http://anthesisgroup.com/30-of-servers-are-sitting-comatose/
http://anthesisgroup.com/30-of-servers-are-sitting-comatose/

150 Z.Á. Mann

10. Ganesan, R., Sarkar, S., Narayan, A.: Analysis of SaaS business platform work-
loads for sizing and collocation. In: IEEE 5th International Conference on Cloud
Computing (CLOUD), pp. 868–875 (2012)

11. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci.
79, 1230–1242 (2013)

12. Genez, T.A.L., Bittencourt, L.F., Madeira, E.R.M.: Workflow scheduling for
SaaS/PaaS cloud providers considering two SLA levels. In: Network Operations
and Management Symposium (NOMS), pp. 906–912. IEEE (2012)

13. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Resource pool management:
reactive versus proactive or let’s be friends. Comput. Netw. 53(17), 2905–2922
(2009)

14. Guazzone, M., Anglano, C., Canonico, M.: Exploiting VM migration for the auto-
mated power and performance management of green cloud computing systems.
In: Huusko, J., de Meer, H., Klingert, S., Somov, A. (eds.) E2DC 2012. LNCS,
vol. 7396, pp. 81–92. Springer, Heidelberg (2012)

15. Hoenisch, P., Hochreiner, C., Schuller, D., Schulte, S., Mendling, J., Dustdar, S.:
Cost-efficient scheduling of elastic processes in hybrid clouds. In: IEEE 8th Inter-
national Conference on Cloud Computing, pp. 17–24 (2015)

16. HP: Power efficiency and power management in HP ProLiant servers (2012).
http://h10032.www1.hp.com/ctg/Manual/c03161908.pdf

17. Jung, G., Hiltunen, M.A., Joshi, K.R., Schlichting, R.D., Pu, C.: Mistral: dynam-
ically managing power, performance, and adaptation cost in cloud infrastruc-
tures. In: IEEE 30th International Conference on Distributed Computing Systems,
pp. 62–73 (2010)

18. Lampe, U., Siebenhaar, M., Hans, R., Schuller, D., Steinmetz, R.: Let the
clouds compute: cost-efficient workload distribution in infrastructure clouds. In:
Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON 2012. LNCS, vol. 7714,
pp. 91–101. Springer, Heidelberg (2012)

19. Li, W., Tordsson, J., Elmroth, E.: Virtual machine placement for predictable and
time-constrained peak loads. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.)
GECON 2011. LNCS, vol. 7150, pp. 120–134. Springer, Heidelberg (2012)

20. Li, W., Tordsson, J., Elmroth, E.: Modeling for dynamic cloud scheduling via
migration of virtual machines. In: Proceedings of the 3rd IEEE International
Conference on Cloud Computing Technology and Science, pp. 163–171 (2011)

21. Mann, Z.A.: Allocation of virtual machines in cloud data centers - a survey of
problem models and optimization algorithms. ACM Comput. Surv. 48(1) (2015).
Article No. 11

22. Mann, Z.A.: Rigorous results on the effectiveness of some heuristics for the consol-
idation of virtual machines in a cloud data center. Future Gener. Comput. Syst.
51, 1–6 (2015)

23. Mann, Z.A.: A taxonomy for the virtual machine allocation problem. Int. J. Math.
Models Methods Appl. Sci. 9, 269–276 (2015)

24. Mishra, M., Sahoo, A.: On theory of VM placement: anomalies in existing method-
ologies and their mitigation using a novel vector based approach. In: IEEE Inter-
national Conference on Cloud Computing, pp. 275–282 (2011)

25. Natural Resources Defense Council: Scaling up energy efficiency across the data
center industry: evaluating key drivers and barriers (2014). http://www.nrdc.org/
energy/files/data-center-efficiency-assessment-IP.pdf

http://h10032.www1.hp.com/ctg/Manual/c03161908.pdf
http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf

Interplay of Virtual Machine Selection and Virtual Machine Placement 151

26. Oliveira, D., Ocana, K.A.C.S., Baiao, F., Mattoso, M.: A provenance-based adap-
tive scheduling heuristic for parallel scientific workflows in clouds. J. Grid Comput.
10, 521–552 (2012)

27. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based
heuristic for scheduling workflow applications in cloud computing environments.
In: 24th IEEE International Conference on Advanced Information Networking and
Applications (AINA), pp. 400–407. IEEE (2010)

28. Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R.: Efficient virtual
machine sizing for hosting containers as a service. In: IEEE World Congress on
Services, pp. 31–38 (2015)

29. Sáez, S.G., Andrikopoulos, V., Hahn, M., Karastoyanova, D., Leymann, F.,
Skouradaki, M., Vukojevic-Haupt, K.: Performance and cost trade-off in IaaS envi-
ronments: a scientific workflow simulation environment case study. In: Helfert, M.,
Muñoz, V.M., Ferguson, D. (eds.) Cloud Computing and Services Science. CCIS,
vol. 581, pp. 153–170. Springer, Heidelberg (2015)

30. Svärd, P., Li, W., Wadbro, E., Tordsson, J., Elmroth, E.: Continuous datacenter
consolidation. In: IEEE 7th International Conference on Cloud Computing Tech-
nology and Science (CloudCom), pp. 387–396 (2015)

31. Tomás, L., Tordsson, J.: An autonomic approach to risk-aware data center over-
booking. IEEE Trans. Cloud Comput. 2(3), 292–305 (2014)

32. Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud bro-
kering mechanisms for optimized placement of virtual machines across multiple
providers. Future Gener. Comput. Syst. 28(2), 358–367 (2012)

33. Tsamoura, E., Gounaris, A., Tsichlas, K.: Multi-objective optimization of data
flows in a multi-cloud environment. In: Proceedings of the Second Workshop on
Data Analytics in the Cloud, pp. 6–10 (2013)

34. Verma, A., Dasgupta, G., Nayak, T.K., De, P., Kothari, R.: Server workload
analysis for power minimization using consolidation. In: Proceedings of the 2009
USENIX Annual Technical Conference, pp. 355–368 (2009)

35. Villegas, D., Antoniou, A., Sadjadi, S.M., Iosup, A.: An analysis of provisioning
and allocation policies for infrastructure-as-a-service clouds. In: 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid),
pp. 612–619 (2012)

36. Zhou, Y., Zhang, Y., Liu, H., Xiong, N., Vasilakos, A.V.: A bare-metal and asym-
metric partitioning approach to client virtualization. IEEE Trans. Serv. Comput.
7(1), 40–53 (2014)

An Auto-Scaling Cloud Controller Using Fuzzy
Q-Learning - Implementation in OpenStack

Hamid Arabnejad1, Pooyan Jamshidi2, Giovani Estrada3, Nabil El Ioini4,
and Claus Pahl4(B)

1 IC4, Dublin City University, Dublin, Ireland
2 Imperial College London, London, UK

3 Intel, Leixlip, Ireland
4 Free University of Bozen-Bolzano, Bolzano, Italy

claus.pahl@unibz.it

Abstract. Auto-scaling, i.e., acquiring and releasing resources auto-
matically, is a central feature of cloud platforms. The key problem is
how and when to add/remove resources in order to meet agreed service-
level agreements. Many commercial solutions use simple approaches such
as threshold-based ones. However, providing good thresholds for auto-
scaling is challenging. Recently, machine learning approaches have been
used to complement and even replace expert knowledge. We propose a
dynamic learning strategy based on a fuzzy logic algorithm, which learns
and modifies fuzzy scaling rules at runtime without requiring prior knowl-
edge. The proposed algorithm is implemented and evaluated as an exten-
sion to the OpenStack cloud platform, integrating it with the Heat and
Ceilometer components for orchestration and monitoring, respectively,
using Heat Orchestration Templates. We specifically focus on implemen-
tation and experimentation aspects here. Our auto-scaling approach can
handle various load traffic situations, delivering resources on demand
while reducing infrastructure and management costs. The experimentals
show promising performance in terms of resource adjustment to optimize
SLA compliance (response time) while reducing cloud provider’s costs.

Keywords: Cloud computing · Orchestration · Controller · Fuzzy
logic · Q-learning · OpenStack

1 Introduction

Cloud computing allows easy deployment of elastic applications. Our focus is
on Infrastructure as a Service (IaaS), which allows customers to increase or
decrease their computational and storage resources on the fly. The consumer
does not manage or control the underlying cloud infrastructure, but has control
over operating systems, storage, and deployed applications [12]. IaaS provides
virtualization, which enables running multiple operating system (OS) instances,
called virtual machines (VMs), on the same physical server.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 152–167, 2016.
DOI: 10.1007/978-3-319-44482-6 10

An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning 153

Important concepts of cloud computing are elasticity and dynamism. Manag-
ing physical and virtual resources is a key challenge in the IaaS model. However,
it allows applications to acquire and release resources dynamically, but deciding
the correct number of resources to be released/acquired is the challenging con-
cern. Auto-scaling is a process that automatically scales the number of resources
and maintains an acceptable Quality-of-Service (QoS). The scaling process can
be either vertical or horizontal. Vertical scaling involves modifying the amount
of resources assigned to each VM (CPU and memory, mostly). Horizontal scaling
involves acquiring or releasing of VMs. In most common operating systems, alter-
ing CPU core, memory or disk of the VM which it runs, is not possible without
rebooting; for this reason, most cloud provider only offer horizontal scaling.

To address auto-scaling in IaaS infrastructures, we utilise FQL4KE, a tech-
nique for dynamic resource allocation, presented in [9]. The advantage of FQL4KE
is that we do not need to rely on the knowledge provided by the users anymore,
FQL4KE can start adjusting application resources with no a priori knowledge.
We focus here on the implementation and evaluation of FQL4KE as an extension
to the OpenStack cloud platform, integrating it with the Heat and Ceilometer
components for orchestration and monitoring, respectively, using Heat Orches-
tration Templates for orchestration specification. Previously in [9], we performed
the experiments on PaaS cloud platform whereas in this research, we specifically
focus on architecture, implementation and experimentation aspects in Open-
Stack as an industry-standard IaaS cloud platform (we have documented the
applicability to other platforms such as Azure elsewhere [8,9]. New here is the
in-depth implementation and experimental evaluation coverage. We also cover a
wider range of workload patterns. We demonstrate that this auto-scaling app-
roach can handle various load traffic situations, delivering resources on demand
while reducing infrastructure and management costs. The experimental results
show promising performance in terms of resource adjustment to optimize SLA
compliance and response time while reducing cloud provider’s costs.

The paper is organized as follows. Section 2 describes auto-scaling process
briefly and discusses on related research in this area, Sect. 3 describes the Open-
Stack architecture and orchestration, Sect. 4 describes our approach in detail
followed by implementation in Sect. 5 and evaluation in Sect. 6.

2 Background and Related Work

The aim of auto-scaling approaches is to acquire and release resources dynam-
ically while maintaining an acceptable QoS [10]. The auto-scaling process is
usually represented and implemented by a IBM’s MAPE-K (Monitor, Analyze,
Plan and Execute phases over a Knowledge base) control loop [7].

Threshold-based rules. Threshold-based rules are supported by many cloud
solutions such as EC2, Azure, or OpenStack. Conditions and rules in threshold-
based approaches can be defined based on one or more performance metrics,
such as CPU load, average response time or request rate. Each rule includes an
upper and a lower threshold that defines bound values for applying auto-scaling.

154 H. Arabnejad et al.

Dutreilh et al. [3] investigate horizontal auto-scaling using threshold-based and
reinforcement learning techniques. In [5], the authors describe an approach that
operates fine-grained scaling at resource level in addition to VM-level scaling
in order to improve resource utilization while reducing cloud providers’ costs.
Hasan et al. [6] extend the typical two threshold bound values and add two
levels of threshold parameters and use the three domains (CPU loads, response
time and network link bandwidth) in making scaling decisions. Chieu et al. [2]
propose a strategy for dynamic scalability of PaaS and SaaS applications based
on the number of active sessions and scaling the number of VMs if all instances
with active sessions exceed thresholds. The advantage is simplicity. However, the
performance depends on the quality of the thresholds.

Reinforcement Learning (RL). RL [17] is learning process for an agent to
maximize its rewards. Here, the agent is an auto-scaler, the action is scaling
up/down, the context is the target application and the reward is the perfor-
mance improvement after applying the action. The goal of RL is how to choose
an action in response to current state to maximize the rewards. The most used
approach is Q-learning. It learns estimates of Q-values Q(s, a), which map all
system states s to the best action a. We initialise all Q(s, a) and, during learning,
choose an action a for state s based on an ε-greedy policy and apply it to the
target platform. Then, we observe the new state s′ and reward r and update
the Q-value of the last state-action pair Q(s, a) with respect to the observed
outcome state (s′) and reward (r). Tesauro et al. [18] propose a hybrid learning
system for dynamic server allocation maximize the profits. Their approach com-
bines a queuing network model (for online management) and reinforced learning
using the SARSA approach (for offline training), making resource allocation deci-
sions based on application workload and response time. Rao et al. [15] introduce
VCONF, a reinforcement learning approach in the context of neural networks,
for dynamic VM autoconfiguration according to the application requirements,
i.e., it automatically changes VM configurations in order to achieve good per-
formance for hosted applications.

In RL, there is no need of prior knowledge. It has the ability to online learn
and update environmental knowledge by actual observations. However, there are
some drawbacks in this approach such as taking long time to converge to optimal
or near optimal solution for solving large real world problems and requiring good
initialization of the Q-function.

Control Theory. Control theory deals with influencing the behaviour of dynam-
ical systems by monitoring output and comparing it with reference values. By
using the feedback of the input system (the difference between actual and desired
output level), the controller tries to align actual output to the reference. For auto-
scaling, the reference parameter, i.e., an object to be controlled, is the targeted
SLA value. The system is the target platform and system output are parameters
to evaluate system performance (response time or CPU load).

Ali-Eldin et al. [1] use queueing theory to model a service. Two adaptive
hybrid reactive/proactive controllers estimate future load in order to support
elasticity. Padala et al. [13] propose a feedback resource control system that

An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning 155

automatically adapts to dynamic workload changes to satisfy service level objec-
tives. They use an online model estimator to dynamically maintain the relation-
ship between applications and resources, and a two-layer multi-input, multi-
output (MIMO) controller that allocates resources to applications dynamically.

3 OpenStack Orchestration

OpenStack is an open-source platform, mostly deployed as an IaaS and used
for building public and private clouds. The platform consists of interrelated
components that control hardware pools of processing, storage, and networking
resources through a data center. Users either manage it through a web-based
dashboard, through command-line tools, or through a RESTful API. Figure 1
overviews the OpenStack core services. The important components here are:

– Neutron: is a system for managing networks and IP addresses and handles
creation and management of a virtual networking infrastructure and gives
users self-service ability over network configurations. It provides frameworks
to mange and deploy advanced services such as load balancing.

– Nova: is the primary computing engine behind OpenStack. It provides deploy-
ing and managing virtual machines and other instances to handle computing
tasks as the main part of an IaaS system.

– Glance: provides discovery, registration, and delivery services for disk and
server images. It allows to use stored images as templates for new servers.

– Heat: is a service for managing the infrastructure needed for cloud appli-
cations to run. It provides templates to create and manage cloud resources
such as storage, networking, instances, or applications. Templates are used to
create stacks, which are collections of resources.

– Ceilometer: provides telemetry services to collect metering data. The col-
lected data can be used for billing, system monitoring, or alerts.

– Keystone: provides user/service/endpoint authentication and authorization.
Calling the API function requires authentication by Keystone.

Fig. 1. An OpenStack block diagram

OpenStack orchestration allows managing the infrastructure required by a
cloud application for its entire lifecycle. Orchestration automates processes which
provision and integrate cloud resources such as storage, networking, instances
to deliver a service defined by policies. Heat, as OpenStack’s orchestration com-
ponent, implements an engine to launch multiple composite cloud applications

156 H. Arabnejad et al.

Fig. 2. Heat/Ceilometer architecture. Fig. 3. Logical FQL4KE architecture.

described in text-based templates. Heat templates are used to create stacks,
which are collections of resources such as compute instance, floating IPs, vol-
umes, security groups or users, and the relationship between these resources.
Heat along with ceilometer can create an auto-scaling service. By defining a scal-
ing group (such as compute instance) alongside using monitoring alerts (such as
CPU utilization) provided by Ceilometer, Heat can dynamically adjust resource
allocation, i.e., launching resources to meet application demand and removing
them when no longer required. Figure 2 shows the heat and ceilometer compo-
nents. Heat executes HOT (Heat Orchestration Template) templates.

4 Auto-Scaling Algorithm

In [8,9] we proposed an elasticity controller, which is the basis of this investiga-
tion for OpenStack. This is an online learning mechanism by combining fuzzy
control and fuzzy Q-learning (FQL) [4], called FQL4KE. The fuzzy Q-learning and
control is a self-adaptive mechanism where the fuzzy control facilitates reasoning
at a higher level of abstraction and the Q-learning allows to adjust the controller.
The fuzzy rules are continually tuned through learning from the data collected.
Here, we describe the implemention and evaluation in OpenStack.

4.1 FQL4KE Building Blocks

A fuzzy model is a qualitative model constructed from a set of fuzzy-rules to
represent the relationship between system input and output [16]. However, there
are some issues for defining rules at design-time such as: (i) whole knowledge
or some parts of it may be available; (ii) knowledge is not an optimized model
(existence of redundancy or ineffective rules); (iii) inaccuracy of some rules and
(iv) instability of design-time rules requiring them to be changed at runtime.
As a result, incomplete, inappropriate or not-optimized set of rules may lead to
sub-optimal scaling decisions and loss of revenue for cloud application providers.

An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning 157

Figure 3 illustrates the building blocks of FQL4KE. During the applica-
tion lifecycle, FQL4KE guides resource provisioning following the autonomic
MAPE-K loop by monitoring continuously different characteristics of the appli-
cation (workload and response time), checking the satisfaction of system goals
and adopting resource allocation to satisfy goals.

The monitoring component collects required metrics such as workload (w),
response time (rt) and number of VMs (vm) for both controller and learn-
ing component. The cloud controller is a fuzzy logic controller that takes the
observed data, calculates the scaling action based on input monitored data and
a set of rules, and as output returns the scaling action (sa) in terms of incre-
menting/decrementing the number of VMs. The learning component continu-
ously updates the knowledge. Finally, the actuator issues adaptation commands
from the controller at each control interval to the underlying platform.

4.2 Fuzzy Logic Controller

Fuzzy inference maps a set of control inputs to a set of control outputs through
fuzzy rules. The first step is to partition the state space of each input variable
into fuzzy sets through membership functions. Each fuzzy set is associated with a
linguistic term such as “low” or “high”. The membership function μ(x) quantifies
the degree of membership of input signal x to the fuzzy set y. The membership
functions, see Fig. 4, are triangular and trapezoidal [8]. Three fuzzy sets are
defined for each input (workload and response time) to achieve a reasonable
granularity in the input space while keeping the number of states small.

Fig. 4. Fuzzy membership functions for auto-scaling variables

For the inference mechanism, we define elasticity policies as rules: ‘‘IF (w
is high) AND (rt is bad) THEN (sa+ = 2)", where the output function is a
constant value that can be an integer in {−2,−1, 0,+1,+2}, which is associated
to the change in the number of deployed nodes. Here, no a priori knowledge for
defining the rules is assumed. FQL4KE finds the consequent Y for the rules.

Once the fuzzy controller is designed, controller execution comprises of three
steps (cf. middle part of Fig. 3): (i) fuzzification of inputs, (ii) fuzzy reasoning
and (iii) defuzzification of output. The fuzzifier projects the crisp data onto fuzzy
information using membership functions. The fuzzy engine reasons based on a
set of fuzzy rules and derives fuzzy actions. The defuzzifier reverts results back to
crisp mode and activates an adaptation action. This result is enacted by issuing
appropriate commands to the underlying platform fabric.

158 H. Arabnejad et al.

4.3 Fuzzy Q-Learning

The mechanism learns the policies at runtime, enabling knowledge evolution
(i.e., KE in FQL4KE). As the controller has to take action in each control loop, it
selects past actions taken which produced good (long-term cumulative) rewards:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑

k=0

γkrt+k+1 (1)

The discount rate γ determines the relative importance of future rewards. There
is a trade-off (step 2 in Algorithm 1) between actions that have been tried
(exploitation) and new actions that may lead to better rewards in the future
(exploration).

In each control loop, the controller needs to take an action based on Q(s, a),
which is the expected cumulative reward that can be received by taking action a
in state s. This value directly depends on the policy followed by the controller,
thus determining the behavior of the controller. This policy π(s, a) is the prob-
ability of taking action a from state s. As a result, the value of taking action a
in state s following the policy π is defined as:

Qπ(s, a) = Eπ

{ ∞∑
k=0

γkrt+k+1

}
(2)

where Eπ{.} is the expectation function under policy π. When an appropriate
policy is found, the given learning problem is solved. Q-learning does not require
any specific policy to evaluate Q(s, a), therefore:

Q(st, at) ← Q(st, at) + η
[
rt+1 + γmax

a
Q(st+1, a) − Q(st, at)

]
(3)

where η is the learning rate and takes a value between 0 and 1. Lower value for η
means that considering old values slightly with every update and higher η gives
more impact on recent rewards.

The policy adaptation is achieved by selecting a random action with prob-
ability ε and an action that maximizes Q in the current state with probability
1 − ε. The value of ε is determined by the exploitation/exploration strategy:

a(s) = argmax
a

Q(s, k) (4)

The fuzzy Q-learning is summarized in Algorithm 11. For our use case, the state
space is finite (i.e., 9 states as the full combination of 3×3 membership functions
for fuzzy variables w and rt) and our controller has to choose a scaling action
among 5 possible actions {−2,−1, 0,+1,+2}. However, the design methodology
that we demonstrated in this section is general and can be applied for any
possible state and action spaces. Note that the convergence is detected when the
change in the consequent functions is negligible in each learning loop.
1 A Matlab implementation: https://github.com/pooyanjamshidi/Fuzzy-Q-Learning.

https://github.com/pooyanjamshidi/Fuzzy-Q-Learning

An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning 159

Algorithm 1. Fuzzy Q-Learning
Require: discount rate (γ) and learning rate (η)
1: Initialize q-values:
2: Select an action for each fired rule:

ai = argmaxkq[i, k] with probability 1 − ε � Eq 4
ai = random{ak, k = 1, 2, · · · , J} with probability ε

3: Calculate the control action by the fuzzy controller
4: Approximate the Q function from current q-values and firing level of the rules:

Q
(
s(t), a

)
=

N∑

i=1

(
αi(s) × q[i, ai]

)

where Q
(
s(t), a

)
is the value of the Q function for the state current state s(t)

in iteration t and the action a
5: Take action a and let system goes to the next state s(t + 1)
6: Observe the reinforcement signal, r(t+1) and compute the value for the new state:

V
(
s(t + 1)

)
=

N∑

i=1

αi

(
s(t + 1)

)
.max

a
(q[i, qk])

7: Calculate the error signal:
ΔQ = r(t + 1) + γ × Vt

(
s(t + 1)

)− Q
(
s(t), a

)
� Eq 3

8: Update q-values (where η is a learning rate):
q[i, ai] = q[i, ai] + η.ΔQ.αi

(
s(t)
)

� Eq 3
9: Repeat the process for the new state until it converges

4.4 Dynamic Resource Allocation by FQL4KE

For the reward function, the controller receives the current values of w and rt
that correspond to the system state, s(t) (step 4 in Algorithm 1). The control
signal sa represents the action a that the controller takes in each iteration. We
define the reward signal r(t) based on two criteria: (i) SLA violations, and (ii)
the amount of resources acquired, which directly determines the cost as follows:

r(t) = U(t) − U(t − 1) (5)

where U(t) is the utility value of the system at time t. Hence, if a controlling
action leads to increased utility, it means that the action is appropriate. Other-
wise, if the reward is close to zero, the action is not effective. A negative reward
(punishment) makes the situation worse. The utility function is defined as:

U(t) = w1.
(
1 − vm(t)

vmmax

)
+ w2.

(
1 − H(t)

)

H(t) =

⎧⎪⎨
⎪⎩

rt(t) − rtdes
rtdes

, rtdes ≤ rt(t) ≤ 2.rtdes

1, rt(t) ≥ 2.rtdes

0, rt(t) ≤ rtdes

(6)

where vm(r) and rt(t) are workload and response time (actual & desired)
of the system. w1 and w2 are their corresponding weights determining their

160 H. Arabnejad et al.

relative importance in the utility function. In order to aggregate the individual
criteria, we normalize them depending on whether they should be maximized or
minimized.

For the knowledge base update, we start with controlling the allocation of
resources with no a priori knowledge. After enough explorations, the consequents
of the rules can be determined by selecting those actions that correspond to the
highest q-value in each row of the Q-table. Although we do not rely on design-
time knowledge, if even partial knowledge is available or there exists data regard-
ing performance of the application, our solution can exploit such knowledge by
initializing q-values (cf. step 1 in Algorithm1) with more meaningful data. This
implies a quicker learning convergence.

5 Implementation

We implemented FQL4KE in OpenStack. Orchestration and automation within
OpenStack is handled by the Heat component. It provides a declarative struc-
ture for defining auto-scaling processes. A new OpenStack native standard has
also been developed for providing templates for Orchestration called HOT (Heat
Orchestration Template) which meant to replace the Heat CloudFormation-
compatible format (CFN). Heat automatically provisions infrastructure (com-
pute, network, storage) based on a YAML template file. The auto-scaling deci-
sions made by Heat on when to scale application and whether scale up/down

Fig. 5. Excerpts from OpenStack HOT Template, including resource boundaries and
configurations, scaling policies and the integration of e.g. load balancer and monitoring
tools, as part of the auto-scaling group (asg) definition.

An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning 161

should be applied, are determined based on collected metering parameters from
platform. Collecting measurements in OpenStack is handled by Ceilometer.

A combination of Heat and Ceilometer is used (see Fig. 2). The main part
of Heat is the stack, which contains resources such as compute instances, float-
ing IPs, volumes, security groups or users, and the relationship between these
resources. An exceprt of our Heat implementation, defined in YAML, is shown
in Fig. 5. This YAML structure defines the required resources for auto-scaling
process. Auto-scaling in Heat is done using three main resources:

– auto-scaling group: defined using type OS::Heat::AutoScalingGroup and
is a resource type that is used to encapsulate the resource that we wish to
scale, and some properties related to the scale process.

– scaling policy: defined using type OS::Heat::ScalingPolicy and is a
resource type to define the effect a scaled process has on the resource.

– alarm: defined using type OS::Ceilometer::Alarm and is a resource type to
define under which conditions the ScalingPolicy is triggered.

In the following, we describe the architectural integration of our controller with
the OpenStack platform components – with turns out to be not straighforward.

In our implementation, the environment contains one or more VM instances
that are members of a load balancer and defined as members in an AutoScal-
ingGroup resource. Each instance (VM) includes a simple web server run inside
of it after launching. The implemented server listens to an input port (here port
80) and return simple HTML pages as the response. The simple web server is
created and coded as a part of the user date property of each VM. User data is
the mechanism by which users can define their own pre-configuration as a shell
script (the code of web server) that the instance runs on boot. The response
time from each web server includes the VM instance’s hostname. For the VM
instance type, we used a minimal Linux distribution, cirros2, an image that
was designed for use as a test image on clouds such as OpenStack.

Fig. 6. System overview. Fig. 7. cURL calling OpenStack API.

2 CirrOS images, https://download.cirros-cloud.net/.

https://download.cirros-cloud.net/

162 H. Arabnejad et al.

Generally, the native auto-scaling approach in OpenStack is designed by
setting alarms based on threshold evaluations for a collection of metrics from
Ceilometer. For this threshold approach, we can define actions to take if the
state of the watched resource satisfies specified conditions. However, we replaced
this by the FQL4KE algorithm, to control and manage scaling option. We added a
resource type OS::Nova::Server to create an additional VM, named ctrlsrv,
which acts as an auto-scaling server and enacts the scale up/down decision pro-
posed the FQL learning algorithm. Figure 6 illustrates the implemented system
in OpenStack. The created load-balancer distributes client HTTP requests across
a set of web servers, i.e., auto-scaling group resources, collected in a load bal-
ancer pool. The algorithm used to distribute the load between members of the
pool is ROUND ROBIN. As shown, the ctrlsrv machine, by gathering information
from the load-balancer and the current state of the AutoScalingGroup resource,
decides which horizontal scaling, i.e., up or down, should applied in the target
platform. The scale-up will launch a new server instance. which may take a few
minutes as the instance needs to be started and added to the load-balancer pool.
Once all preconfigured settings are installed, i.e., the defined user data file, it
will go to active and receive or answer to requests sent by the load-balancer.

The proposed auto-scaling algorithm is coded in Python and runs inside the
ctrlsrv machine. We added a complete fuzzy logic library. This is function-
ally similar to the respective matlab features and implements used our FQL4KE
approach. However, for some parameters in the proposed algorithm, such as the
current number of VM instances or workload, we used the OpenStack API com-
mand line. For example, command nova list shows a list of running instances.
Due to the unavailability of direct access to the OpenStack API inside of ctrlsrv
machine, we used the popular command line utility cURL to interact with a cou-
ple of OpenStack APIs. cURL allows transmitting and receiving HTTP requests
and responses from the command line or a shell script, which enables working
with the OpenStack API directly. For some OpenStack APIs, it is necessary to
send additional data, such as authentication keys, as a header request. In Fig. 7,
the process of using cURL to call OpenStack APIs is demonstrated.

The first step is to send a request authentication token by passing correct
credentials (username and password) from the OpenStack identity service. After
receiving Auth-Token from Keystone, the user can combine the authentication
token and Computing Service API Endpoint and send as HTTP request and
receive the output. We used this process inside of ctrlsrv machine to execute
OpenStack APIs and collect required outputs. By combining the settings, we are
able to inetgrate and run the FQL4KE technique as the manager and controller
of auto-scaling processes in OpenStack.

6 Experimental Results and Discussion

The experimental evaluation is designed to show the effectiveness of proposed
FQL4KE approach as part of the OpenStack platform. Furthermore, the cost
improvement by proposed approach for cloud provider is demonstrated.

An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning 163

6.1 Experimental Setup and Benchmark

In our experiment, FQL4KE was implemented as a full working system and was
tested on OpenStack. A web server was considered as target cloud application.
Each server is configured and installed on one dedicated VM, which uses Cirros
images (Linux distribution), and random response times between 0 and 1 sec.
For the auto-scaling control server, due to the Impossibiliity of installing any
additional package in the Cirros image, we considered a VM machine running a
Linux Ubuntu precise server. The maximum and minimum number of VMs that
are allowed to be available at the same time is set to 5 and 1, respectively.

The term workload refers to a number of concurrent user request arrival
in different time. Workload is defined as the sequential of users accessing the
target application that need to be handled by auto-scaler. According to [10,11],
application workload types can be categorized in four representative patterns:
(a) The Predictable Bursting pattern indicates the type of workload that is
subject to periodic peaks and valleys such services with seasonality trends or high
performance computing, (b) the Variations pattern reflects applications such as
News&Media, event registration or rapid fire sales, (c) the Fast Growth pattern
presents applications such as events, business growth and slashdot effect and (d)
the ON&OFF pattern reflects applications such as analytics, bank/tax agencies
and test environments. In all cases, we considered 10 and 100 as minimum and
maximum number of concurrent users per second.

We used Siege3 as our performance measuring tool. Siege is a HTTP load
testing and benchmarking utility which simulates web browsers. It can gener-
ate concurrent user requests and measure performance metrics such as average
response time. For each number N of concurrent users, we generate N request
per second by Siege for 10 min. The learning rate is set to a constant η = 0.1 and
the discount factor is set to γ = 0.8. Here, considered lower value for η causes to
giving more impact on old rewards with every update. After sufficient epochs of
learning, we update the controller’s knowledge base (FIS rules) and decrease the
exploration rate (ε) until a minimum value is reached, here 0.2. So, FQL starts
with exploration phase and after a first learning convergence happens, it enters
the balanced exploration-exploitation phase.

Additionally, we compare the FQL4KE approach with a base-line strategy.
The results of comparing with fixed numbers of VMs equal to a minimum and
maximum permitted value are also shown as based-line (benchmark) approaches,
named V M#1 and V M#5, reflecting under- and over-provisioning strategies.

6.2 Performance

The metric to evaluate dynamic auto-scaling of resource allocation must repre-
sent response time in order to measure the QoS experienced by the users. To
compare our approach with other approaches, we use the observed end-to-end
response time for four workload patterns (Figs. 8(a) and (b)), here achieving the

3 Siege, https://www.joedog.org/siege-home/.

https://www.joedog.org/siege-home/

164 H. Arabnejad et al.

system goals. Additionally, to evaluate the infrastructure provider’s operational
cost, we used the percentage number of used VMs as represented metrics to show
proposed approach effectiveness in auto-scaling applications to meet their QoS
requirements while reducing infrastructure providers cost (Figs. 9(a) and (d)).

6.3 Effectiveness of the FQL4KE Algorithm

Figures 8(a) and (b) show the fluctuation of the observed end-to-end response
time for the workload patterns, e.g., Predictable Bursting (sine wave) or Varia-
tion. For each change of the input workload, i.e., the concurrent input request
submitted by individual users, the corresponding response time varies between
upper or lower bound, depending on current load balance and number of available
VMs. FQL4KE monitors the target application and scales up/down the current
number of VMs by detecting these fluctuation of the response time. In our exper-
iment, the scaling process, up/down, can be completed in a few milliseconds, due
to simplicity and fast booting of Cirros image.

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

0

20

40

60

80

number of concurrent users

R
es
po

ns
e
T
im

e

VM#1 FQL4KE VM#5

(a) Predictable Burst pattern

1
0

3
0

2
0

5
0

3
0

1
0

3
0

5
0

7
0

5
0

3
0

5
0

4
0

3
0

2
0

3
0

6
0

7
0

6
0

5
0

6
0

8
0

9
0

1
0
0

9
0

7
0

6
0

5
0

7
0

6
0

5
0

4
0

5
0

0

20

40

60

80

number of concurrent users

R
es
po

ns
e
T
im

e

VM#1 FQL4KE VM#5

(b) Variations pattern

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

2
5

4
0

5
5

7
0

8
5

1
0
0

0

20

40

60

80

number of concurrent users

R
es
po

ns
e
T
im

e

VM#1 FQL4KE VM#5

(c) Fast Growth pattern

1
0

1
0

1
0

1
0

6
0

6
0

6
0

6
0

3
0

3
0

3
0

3
0

9
0

9
0

9
0

9
0

1
0

1
0

1
0

1
0

4
0

4
0

4
0

4
0

2
0

2
0

2
0

2
0

5
0

5
0

5
0

5
0

5
0

0

20

40

60

number of concurrent users

R
es
po

ns
e
T
im

e

VM#1 FQL4KE VM#5

(d) ON&OFF pattern

Fig. 8. The observed End-to-End response time for the four workload Patterns.

As shown in Fig. 8, FQL4KE demonstrates good performance compared with
the base-line approaches, V M#1 and V M#5, which have a fixed number of
VMs during the test. Firstly, performance of scaling actions produced by FQL4KE
during the initial learning epochs at runtime may be poor. However, after some
iterations and updating the knowledge base, the proposed approach adopts itself
and is able to make more accurate decisions for the current status of system.

An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning 165

6.4 Cost-Effective Scaling by FQL4KE

Figs. 9(a) and (d) show the percentage of used VMs during the trial for all work-
load patterns. Our approach depends on current workload and relative response
time of the system at the current time, increasing the number of available VMs
in scaling up and decreasing the number of idle VMs in scaling down. The
FQL4KE algorithm conducts distributed-case scaling and allocates suitable num-
bers of VMs during the trail according to the workload. For example, the maxi-
mum number of VMs used is only in 19% of time during our experiment. This
implies our approach can meet the QoS requirements using a smaller amount
of resources, which is an improvement on resource utilisation for applications in
terms of hosting VMs. Thereby, FQL4KE can perform auto-scaling of application
as well as save provider costs by increasing resource utilisation.

VM#1

24%

VM#2
20%

VM#3

20%
VM#4

17%

VM#5

19%

(a) Predictable Burst

VM#1

16%

VM#2
19%

VM#3

21% VM#4
21%

VM#5

23%

(b) Variations

VM#1

22%

VM#2
20%

VM#3

19% VM#4
23%

VM#5

16%

(c) Fast Growth

VM#1

25%

VM#2
20%

VM#3

21%
VM#4

18%

VM#5

16%

(d) ON&OFF

Fig. 9. Percentage numbers of VMs used by FQL4KE for 4 pattern types.

7 Conclusions and Future Work

We investigated VM-level scaling of cloud applications. In most real cases, no
priori knowledge is available regarding elasticity policies that cloud controllers
could exploit. A fuzzy Q-learning approach, called FQL4KE, that uses a fuzzy
rule-based system combined with a reinforcement learning algorithm for learning
optimal elasticity policies, has been implemented in OpenStack, an open-source
IaaS platform. FQL4KE is capable of automatically updating the controller and
learns to improve its performance simultaneously. Unlike supervised techniques,
it does not require off-line training. FQL4KE can efficiently scale up/down cloud
resources to meet the given QoS requirements while reducing cloud provider costs
by improving resource utilisation. FQL4KE has been implemented in OpenStack
platform to demonstrate the practical effectiveness of proposed approach has
been successfully tested and presented.

A key contribution here is the demonstration of the architectural integra-
tion requirements that need to be overcome to actually implement an advanced
autoscaling technique in an industrial setting. We have described the architec-
tural challenges and solutions, including the successful evaluation in a real-world
system. It reflects our experience in moveing a conceptual soliution that has been

166 H. Arabnejad et al.

tested through simulations into a real setting. This includes how to use the plat-
form mechanism to orchstrate the core tool like load balancer or networking,
replacing the built-in controller and integrating this with identity management
and the monitoring tools, which is critical in this context.

We plan to carry out further long-term experiments beyond the selected
workload patterns induced. Conceptually, extensions are worth considering that
extend the solution for environments which are partially observable. An explo-
ration of different learning approaches, online and offline, is also planned. Here,
possible dynamic changes in the fuzzy rule set need to be taken into account. A
further direction is to investigate container virtualisation [14] and its workload
and performance management.

Acknowledgement. This work was partly supported by IC4 (the Irish Centre for
Cloud Computing and Commerce), funded by EI and the IDA.

References

1. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller
for cloud infrastructures. In: 2012 IEEE Network Operations and Management
Symposium (NOMS), pp. 204–212. IEEE (2012)

2. Chieu, T.C., Mohindra, A., Karve, A.A.: Scalability and performance of web appli-
cations in a compute cloud. In: International Conference on e-Business Engineering
(2011)

3. Dutreilh, X., Rivierre, N., Moreau, A., Malenfant, J., Truck, I.: From data center
resource allocation to control theory and back. In: International Conference on
Cloud Computing (CLOUD), pp. 410–417. IEEE (2010)

4. Glorennec, P.Y.: Fuzzy Q-learning and dynamical fuzzy Q-learning. In: Proceedings
of the Third IEEE Conference on Fuzzy Systems, 1994, IEEE World Congress on
Computational Intelligence, pp. 474–479. IEEE (1994)

5. Han, R., Guo, L., Ghanem, M.M., Guo, Y.: Lightweight resource scaling for
cloud applications. In: 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp. 644–651. IEEE (2012)

6. Hasan, M.Z., Magana, E., Clemm, A., Tucker, L., Gudreddi, S.L.D.: Integrated
and autonomic cloud resource scaling. In: Network Operations and Management
Symposium (NOMS), pp. 1327–1334 (2012)

7. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing degrees, mod-
els, and applications. ACM Comput. Surv. (CSUR) 40(3), 7 (2008)

8. Jamshidi, P., Ahmad, A., Pahl, C.: Autonomic resource provisioning for cloud-
based software. In: 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pp. 95–104. ACM (2014)

9. Jamshidi, P., Sharifloo, A., Pahl, C., Arabnejad, H., Metzger, A., Estrada, G.:
Fuzzy self-learning controllers for elasticity management in dynamic cloud archi-
tectures. In: International ACM Sigsoft Conference on the Quality of Software
Architectures QoSA’2016, ACM (2016)

10. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–
592 (2014)

An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning 167

11. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application dead-
lines in cloud workflows. In: International Conference for High Performance Com-
puting, Networking, Storage and Analysis, ACM (2011)

12. Mell, P., Grance, T.: The NIST definition of cloud computing (2011)
13. Padala, P., Hou, K.Y., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S.,

Merchant, A.: Automated control of multiple virtualized resources. In: European
Conference on Computer systems, pp. 13–26 (2009)

14. Pahl, C.: Containerisation and the PaaS Cloud. IEEE Cloud Comput. 2(3), 24–31
(2015)

15. Rao, J., Bu, X., Xu, C.Z., Wang, L., Yin, G.: Vconf: a reinforcement learning
approach to virtual machines auto-configuration. In: International Conference on
Autonomic Computing, pp. 137–146 (2009)

16. Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling.
IEEE Trans. Fuzzy Syst. 1(1), 7–31 (1993)

17. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, vol. 135. MIT
Press, Cambridge (1998)

18. Tesauro, G., Jong, N.K., Das, R., Bennani, M.N.: A hybrid reinforcement learn-
ing approach to autonomic resource allocation. In: International Conference on
Autonomic Computing, pp. 65–73 (2006)

FedUp! Cloud Federation as a Service

Paolo Bottoni(B), Emanuele Gabrielli, Gabriele Gualandi,
Luigi Vincenzo Mancini, and Franco Stolfi

Cyber Intelligence and Information Security Research
Center Dipartimento di Informatica, Sapienza University of Rome, Rome, Italy

{bottoni,gabrielli,gualandi,mancini,stolfi}@di.uniroma1.it

Abstract. Current solutions for establishing federations of clouds
require applications to be installed on the individual members of the fed-
eration, which have to devote a certain amount of resources to services
for federation managing. Moreover, additional interoperability require-
ments may need to be satisfied by individual clouds in order to join a
federation. This situation may negatively affect the decision whether to
join a federation. In this paper we propose an alternative approach by
viewing creation and management of a cloud federation as cloud services
themselves, thus allowing a drastic simplification in the federation set-up
process and the decoupling of the federation management services from
the technologies adopted by the individual clouds, minimising technolog-
ical complexity and intrusiveness in the individual cloud infrastructures,
while increasing the flexibility and scalability of resources. We also point
out that existing technologies, in particular containers, microservices,
configurators, clusters and orchestrators, can be the basis for imple-
menting a platform for generation and management of federations of
individual clouds, in a way which facilitates optimisation of workload
and scaling of applications via resource aggregation, and makes deploy-
ing and joining federations fast, easy, and transparent.

1 Introduction

In the last few years, cloud-based solutions have become of interest for public and
private organizations, due to the possibilities they offer for achieving: (1) greater
cost reductions, by moving part of the budget from fixed to variable costs; and (2)
greater resilience, and by increasing the flexibility and scalability of resources in
response to changing business needs. Nevertheless, some elements –such as cus-
tomers’ perception that they are losing control over infrastructure resources, or
the risk of vendor lock-in, stemming from a pervasive use of provider’s services–
are still an obstacle to the use of cloud solutions.

In order to mitigate these problems, many organizations are trying other
cloud computing strategies including the creation of federations of individual
clouds, from which they expect optimization of workload, increased availability
of resources, probably even at more competitive costs and on an as-needed basis,
and high levels of security and quality of service, probably better calibrated on
the needs of an individual cloud joining a federation [3].

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 168–182, 2016.
DOI: 10.1007/978-3-319-44482-6 11

FedUp! Cloud Federation as a Service 169

Current approaches to the construction of federations of clouds, see e.g. Fog-
bow1, Zentera2, Reservoir [7], handle federation services through some specific
applications or frameworks. Hence, specific components must be installed on the
infrastructure of the federation members, which are required to provide a cer-
tain amount of resources to run these components. In addition, when federating
heterogeneous individual clouds, one has to consider the presence of: (1) distinct
domains; (2) different security policies and service levels; and (3) different repos-
itories of accounts. Other issues include the technological compatibility between
the framework and the infrastructure of the individual member clouds, which
may require adaptation to join a federation. All of this brings increased time
and cost, which could make joining a federation inconvenient or impossible.

Faced to these problems, we argue that construction and management of
federations of individual clouds should be seen as cloud services in turn, thus
allowing a drastic simplification in the federation set-up process, the decoupling
of the federation management services from the technologies adopted by the
individual clouds, and minimal technological complexity and intrusiveness in the
individual cloud infrastructures, while increasing the flexibility and scalability
of resources. A further advantage is that joining a federation and contributing
or obtaining resources to and from a federation could be achieved at a fine grain
directly by end-users or with reduced intervention of cloud administrators.

In this paper we outline the basic requirements and the available technolo-
gies –in particular containers, configurators and orchestrators– which allow us to
introduce the FedUp! approach to lean deployment and management of feder-
ations of heterogeneous clouds, by devising some simple mechanisms for setting
up a federation and for allowing individual clouds to join an existing federation.

Paper Organisation. After concluding the introduction with a brief overview
of related work, Sect. 2 presents the requirements and features on which the
approach is based. Section 3 discusses the organisation of the FedUp! platform
as a collection of microservices, possibly allowing a same cloud to join different
federations, or even to participate in one federation in multiple ways, with dif-
ferent levels of service, Sect. 4 provides a description of how the approach can be
realised with current technologies. The interactions involved in the execution of
the main services for creating and managing federations of clouds are described
in Sect. 5. Finally, Sect. 6 provides conclusions and points to future work.

1.1 Related Work

A layered model was proposed for the management of applications in a federated
cloud in [9], where communication among clouds in the federation occurs at the
respective layers (SaaS, PaaS, and IaaS3). In their proposal, a service request
to a cloud, for an application at the SaaS level, will traverse layers and contact

1 http://www.fogbowcloud.org/.
2 http://zentera.net/.
3 Acronyms for [Software, Platform, and Infrastructure] as a Service.

http://www.fogbowcloud.org/
http://zentera.net/

170 P. Bottoni et al.

brokers at the different layers as needed, but the model does not consider the
offering of specific services at federation level.

Reference to the cloud layers is made in [2] to introduce a distinction between
horizontal (same layer) and vertical (across layers) federations, focusing on hor-
izontal ones, where two fundamental scenarios are considered, viz. redundant
deployment of services and service migration from a cloud provider to another,
the service becoming accessible through a different endpoint. They provide a
reference architecture describing services to be offered by a federation, but do
not discuss dynamic creation and join/leave on the individual cloud side

When considering federations of heterogeneous clouds with some common
level of trust, the notion of community cloud arises, as proposed in [4] and
elaborated on from the point of view of security in [6]. Here, each node in the
participating clouds can play both the roles of producer and consumer, and
a specific layer for coordination is proposed, including management of virtual
machines, identity, networking, and transactions.

The kind of flexibility and the fine granularity that the FedUp! approach
grants is also in the direction of Resources as a Service, as advocated at the cloud
level in [1], where users could subscribe to the usage of resources maintained by
a cloud for as much as needed, instead of declaring beforehand the amount of
resources they expect to need. By making joining and leaving federations easy,
shorter turnaround times can be achieved, thus enabling greater responsiveness
by federations to the requests coming from individual clouds.

2 FedUp! Overview and Requirements

We are developing the FedUp! approach (and the homonymous platform) to
setting up and managing federations of resources from individual clouds in a
simple and non-intrusive way, based on cloud services, i.e. services (e.g. Paas,
SaaS, and IaaS) made available to users on demand via the Internet and fully
managed by a provider. In particular, FedUp! has been designed as a platform
by which to create federations in a PaaS style, based on the following activities.

1. Manage the entire life cycle for a federation (creation, management of indi-
vidual cloud membership, management of feature descriptions and of feature-
based bidding and awarding of membership, dismissal). This will in turn
exploit mechanisms based on cloud services, setting the basis for the new
notion of Federation as a Service, thus enabling fastest federation start-up
time, decoupling of services from technologies for service distribution, smaller
intrusion in the technological choices for member clouds (though not com-
pletely technology-agnostic, the approach can be targeted to various imple-
mentations), greater flexibility in management of single federations.

2. Allow a cloud to: (1) become a member of several federations at a time
(through multi-tenancy); (2) apply for becoming a member of any feder-
ation based on a description of the resources it can contribute and/or of
the resources it needs to acquire; (3) easily migrate from one federation to

FedUp! Cloud Federation as a Service 171

another. This will grant ample possibilities to individual clouds for choos-
ing the federation to join, greater flexibility in managing the membership
agreement, and a better appreciation of its resources.

3. Maintain a central repository storing the records concerning the generated
federations. Each federation is described by a set of features (publicly rep-
resented in the form of tags). This will allow the generation of theme-based
federations offering a set of specific services to the member clouds.

We state a list of requirements for lean mechanisms for establishing, man-
aging and granting access to federated clouds, classified under three categories:

General (GR) Overall view of the system
Federation (FR) Resource-sharing and management of the federation
Usability (UR) Point of view of the user of the framework, either as ad-

ministrator or as end-user
Table 1 expresses the identified requirements for the two basic mechanisms

of generating and of managing a federation with FedUp!.

Table 1. General requirements for generating and managing federations

GR1 FedUp! must support heterogeneous clouds

GR2 FedUp! must have low impact on the existing infrastructure of individual
clouds

GR3 FedUp! must allow the generation and dismissal of federations in a
transparent way with respect to individual clouds

FR1 FedUp! must support the join of new member clouds and their abandoning

FR2 FedUp! must support an automatic generation of federations

FR3 FedUp! must generate federations orchestrated by an automatic system

UR1 FedUp! must provide the generated federation with mechanisms to allow
access control to federation resources

UR2 FedUp! must allow a generated federation owner to specify the values of a
pre-defined set of tags

We argue that such requirements, especially GR3, FR2 and FR3, are best
met if the deployed Federations are realized via a microservice approach, thus
automating both generation and management of federations (e.g. FedUp! can
provide these functionalities as services). Table 2 collects the resulting require-
ments on implementation of Infrastructure Services composing a Federation.

Table 2. Specific features required on a microservice implementation

F1 In order to be realistically orchestrable, microservices must work in isolation
without requiring a dedicated VM each

F2 In order to be efficiently orchestrable (e.g. to support redundancy or
migration), microservices have to be properly defined, by separating different
data domains into different services, as expected in a microservice scenario

172 P. Bottoni et al.

3 Generating and Managing Federations with FedUp!

In this section we describe the main components and functionalities of the
FedUp! platform and the naming conventions used in this paper.

FedUp! is an innovative solution for generating and managing multiple cloud
federations using an approach based on cloud services. A federation is conceived
as a set of contributions from individual clouds with the aim of sharing and opti-
mizing their own resources, together with a number of services for the dynamic
proposal, acquisition and withdrawal of these contributions.

We refer to any federation generated via the FedUp! platform as a Federa-
tion. The owner of the individual cloud or tenant starting the generation process
for a Federation, is referred to the Federation owner.

The actors which may interact with the platform have been identified as:

– FedUp! Administrator, responsible for FedUp! platform management.
– Cloud or tenant administrator, using the FedUp! utilities to create a Feder-

ation, or to make an individual cloud (or tenant) join an existing Federation
generated with FedUp!.

– User of a cloud member of a Federation, who can request resources or services
made available to the Federation.

As FedUp! is based on cloud services, in order to avoid ambiguities, we call
“Utilities” the services that manage FedUp!. Each utility consists of a set of
operations named “Actions” (see Table 3). FedUp! presents two main utilities:

– FedUp.Fed: this utility supports the generation and management of the Fed-
erations created with the FedUp! platform. Each Federation can consist of
the aggregation of specific features established by the Federation owner at
creation time (e.g. based on requested or granted quality of service, the level
of safety on economic factors of political, institutional, geographical, etc.).
The Federation features are described as tags. A dictionary of accepted tags
is defined by FedUp! and the owner can choose the tags with their associated
values, characterizing the new Federation at creation time. Tags are used by
search functions available for the individual clouds to select the federations
that match the membership requirements.

– FedUp.Cloud: this utility supports the communication with individual clouds
requesting to join a Federation. Each individual cloud can join a specific
Federation or can apply to join any Federation that matches specific tags.

These utilities rely in turn on the following structures:

– FedUp.Registry maintains information on the generated Federations and on
the individual clouds that want to offer or use services offered by FedUp!.

– FedUp.ServiceRegistry maintains the information on services in terms of
configuration and set of microservices.

– FedUp.ContainerHub maintains the images of the containers relative to the
various microservices.

FedUp! Cloud Federation as a Service 173

Table 3. The list of utilities and actions in FedUp!

Utility and action Description

FedUp.Fed Services for federation management

FedUp.Fed.Create To create a new Federation. The cloud creating the
new Federation becomes the owner

FedUp.Fed.Update To change/update a Federation features, tags included

FedUp.Fed.Dismiss To dismiss a Federation. All clouds, except the owner,
need to quit

FedUp.Fed.Acquire To integrate a cloud that wants to adhere to a
Federation

FedUp.Fed.Search To search for active Federations that satisfy the
requirements of an individual cloud. This option is
available for clouds that are looking for
Federations to adhere to

FedUp.Cloud Services for cloud/tenant management

FedUp.Cloud.Join To adhere to a named Federation or to Federations
characterized by given tags

FedUp.Cloud.Join(target) To adhere to a targeted Federation

FedUp.Cloud.Join(tags[]) To adhere to a Federation that matches the given
requirements (tags)

FedUp.Cloud.Update To change/update a cloud features, tags included

FedUp.Cloud.Leave To allow a cloud to leave a Federation, releasing the
resources that cloud allocated to that Federation

FedUp.Cloud.Search To search for available clouds matching the
requirements of a Federation that wants to acquire
clouds

– FedUp.ConfiguratorMaster is responsible for ensuring that Federations gen-
erated with FedUp! be properly configured in terms of the presence of files,
installed packages and services running to manage that Federation. More
information about this component is given in Sect. 4.

In particular, FedUp.Registry contains:

– Data on generated Federations together with the corresponding tags describ-
ing their main features. The tags are assigned by the Federation owner at
generation time, but can be changed during its construction and are used by
the search functions made available for the individual clouds to search for
Federations matching the membership requirements of the individual cloud.

– References to the individual clouds that want to share resources through the
FedUp! platform with the corresponding tags describing their main features.
Tags are assigned by the cloud owner during the registration to FedUp! and
are used by search functions made available for the Federations to select
individual clouds matching the Federation membership requirements.

174 P. Bottoni et al.

– The map of participant clouds to individual Federations and the map of clouds
available to federate.

The information provided by FedUp.ServiceRegistry fully defines a Fed-
eration infrastructure service, in terms of the information necessary to a cluster
manager to correctly deploy and maintain the service. In particular, the following
queries are handled:

– given the id of a service, the ids of the microservices composing that service;
– given the id of a microservice, the id of a container image relative to that

microservice.

Finally, FedUp.ContainerHub can be queried to retrieve, given the id of a
microservice, the correspondent image of a container.

An overview of the proposed solution is drawn in Fig. 1, while more informa-
tion about how its realization is given in Sect. 4.

Fig. 1. A conceptual overview of the proposed solution

4 Implementation Aspects

In this section we provide some information about how to define a service config-
uration for a Federation and how to deploy the corresponding set of microservices
using containers based on Docker4, Saltstack5 and Kubernetes6 technologies.

We briefly introduce the following notions.
4 https://www.docker.com/.
5 http://saltstack.com/.
6 https://github.com/kubernetes/kubernetes/blob/master/docs/design/README.

md.

https://www.docker.com/
http://saltstack.com/
https://github.com/kubernetes/kubernetes/blob/master/docs/design/README.md
https://github.com/kubernetes/kubernetes/blob/master/docs/design/README.md

FedUp! Cloud Federation as a Service 175

– Microservice: a term referring to a way of designing an architecture as a set
of independently deployable services [5]. A single service can be thought as
composed of a set of loosely-coupled microservices.

– Configuration Management Engine: a software responsible of ensuring that a
remote Operating System is properly configured in terms of the presence of
files, installed packages and running services.

– Container : an isolated, resource-controlled, portable operating environment.
– Container Cluster Manager : a software capable of orchestrating Containers

among a set of nodes, managing a so called Container Cluster.

SaltStack is a well-known Configuration Management Engine based on a
master-slave architecture [8]. It is also classifiable as a Remote Execution Engine
since it allows the execution of remote executable files. The SaltStack master
configures the Operative Systems of a set of machines (called minions) such that
they comply with certain desired states. Among other configuration management
engines, Saltstack is characterized by the use of asynchronous message queues.
Containers are widely used to deploy software, since they are a more efficient
alternative to virtual machines.

Docker is a common implementation of containers. Kubernetes is a Container
Cluster Manager based on a master-slave architecture. It is defined as a system
for managing containerized applications across multiple hosts, providing basic
mechanisms for deployment, maintenance, and scaling of applications. Kuber-
netes automatically manages a cluster of containers by means of a scheduler,
changing the state of the cluster to keep it consistent with respect to a set of
declarative primitives, codified as YAML7 formulas, and regarding topological,
workload and policy aspects. Kubernetes organizes containers in a multi-level,
hierarchical way. In Kubernetes terminology, a cluster is composed of a set of
nodes, each node is composed of a set of pods, and a pod is composed of a set of
containers. A container is intended to host a single microservice, realizing a part
of the functionalities of a specific service. A service is not statically associated
with a particular pod, but its traffic may be routed to different pods depending
on the activities of the scheduler. This mechanism transparently decouples the
containers from the services, providing robust availability.

The FedUp! platform is intended to automatically deploy Federation
Infrastructures (which have been declaratively specified) via Kubernetes. This
implies a possible coupling between the development of a Federation Infrastruc-
ture and Kubernetes, based on the following observations.

1. Kubernetes uses its own network models for inter-service communications.
For example, it offers a DNS service as a pluggable component. This tech-
nique transparently masks the dynamic routing from a service to potentially
different pods. As a consequence, differently from traditional models, services
need to query the DNS service frequently.

2. Kubernetes needs a declarative proposition to be prepared for every single
definition of a container, service or pod used by the infrastructure.

7 YAML Ain’t Markup Language, http://yaml.org/.

http://yaml.org/

176 P. Bottoni et al.

In order to decrease the coupling between the development of services and
(specific versions of) Kubernetes, we exploit the flexibility of its network model.
In particular, FedUp! adopts a traditional network model (i.e. using static IP
address and ports). This is realized by defining a formalized model for the defi-
nition of a Federation Infrastructure, and an automatic generator of declarative
primitives to be used for the deployment of a federation.

With this solution, the declarative propositions influencing a deployed Fed-
eration Infrastructure (e.g. numbers of replicas for pods, minimum policies for
machines) need not be considered by the developers of a Federation Infrastruc-
ture. Given that reasonable declarative propositions can be chosen by FedUp!,
developers are lifted from the burden of acquiring the necessary knowledge of,
and re-implement services to fits to, a specific Kubernetes network model.

5 Federating Heterogeneous Clouds

In this section, we focus on the two basic mechanisms for creating a Federation
and for the joining/acquisition of a cloud (actually a tenant) to a Federation.
The other actions provided by FedUp! are realized in analogous ways. Figure 2
provides an activity diagram describing the fundamental phases involved in these
two processes, which are then detailed in the following subsections.

Fig. 2. An overview of the main processes in FedUp!.

While creation only involves the originator cloud and FedUp!, joining a
Federation Fed is seen as a two-step process in which a cloud Cld (actually a
tenant in a cloud) issues a request via the Join action, also providing information

FedUp! Cloud Federation as a Service 177

on what it can contribute, and Cld enters Fed when the latter accepts a specific
request, via the Acquire action, or interrogates the FedUp! Search service
about the presence of candidate clouds characterised by specific features. To
support this kind of mechanisms, join and acquire requests are associated with
a collection of tags expressing cloud features, e.g. the types and quantities of
resources or services a cloud can contribute to a Federation, the SLAs of the
contributed services, or even the intention to join a specific Federation. FedUp!
will therefore publish a dictionary of managed tags and their admissible values.
For example, in Fig. 1 in Sect. 3, we have indicated that clouds A and B had
issued specific requests to participate in Fed2 and Fed3, while cloud C has
issued a request characterised by two specific values for two different tags.

Similarly, a Federation Fed can directly acquire a cloud, based on previous
notifications of interest for some features, so that if a matching cloud issues a
request to participate in Fed, it is automatically acquired. Criteria for accepting
a new member are proper to any Federation and need not be public. For example,
an initial set of governmental agencies can decide to set up a version of FedUp!
and accept only clouds from other public agencies, while a European initiative for
a federated cloud could accept only clouds managed by agencies at governmental
level from EU nations.

Each cloud accepted in a Federation Fed will generate a partition of its
resources to act as tenant for Fed. In principle a cloud can participate in several
federations, e.g. in Fig. 1 cloud A participates both in Fed2 and Fed3, and
even present different tenants to the same Federation, e.g. cloud B participates
in Fed3 with two tenants, for example one for high performance resources and
one for less stringent SLAs.

Given a single Federation, the shared resources can be partitioned into
the infrastructure resources used to host the Federation itself, and the cloud
resources that can be offered, or acquired, by the individual clouds. Unless dif-
ferently specified, we use the term resource to refer to an infrastructure resource.
Analogously, the term service refers to an infrastructure service rather than a
service offered or acquired by the federation members. In this paper we are not
specifically concerned with the implementation details of a Federation Infrastruc-
ture, but we just mention the following:

– A Federation Infrastructure is typically realized through a service named
Workload Manager that interacts with a centralized registry, for storing and
assigning cloud-resources and cloud-offerings.

– Services within the Federation Infrastructure may be relative to networking,
monitoring, billing and authorization aspects.

– A Federation Infrastructure may be capable of federating heterogeneously in
terms of the particular PaaS solutions used by the individual clouds.

– A Federation Infrastructure may have a (logically) centralized architecture.

Figure 3 shows the UML metamodel for dynamic, service-oriented, network
Federation Infrastructures, using a containerized microservice architecture, in
which the communication is realized over IP addresses/ports. In particular,

178 P. Bottoni et al.

Fig. 3. The metamodel for the federation infrastructure

a FedInfrastructure is associated with a non-empty set of instances of Service,
each described by a static IP address and one or more instances of Port to be
used by other services. Each service results from the aggregation of a number of
instances of MicroService, each in turn associated with a single port and with
a single ContainerImage. The relation is also shown between the infrastructure
metamodel and the general model of federations, which need to be conformant
to some infrastructure and composed of tenants belonging to clouds.

A particular instance of this model can be translated into a proper set of
declarative propositions: together with the declarative propositions provided by
FedUp! (Sect. 4), they form the necessary information for a cluster manager
to deploy and manage the federation. A Federation Infrastructure deployed by
FedUp! has the following characteristics:

– A deployed Federation Infrastructure consists in a set of deployed services.
– A deployed service has network visibility among any other deployed service.
– A deployed service is composed of one or more microservices, each one

deployed on a different container.

5.1 Creating a Federation

Figure 4 shows a sequence diagram presenting the fundamental steps for creat-
ing a federation. An administrator of a tenant Ten1 in a cloud Cld1 issues a
request to FedUp.Fed (namely to its Create action) for creating a new Federation
(arrow 1). The request contains the desired federation type (among the avail-
able Federation Infrastructure solutions) and the credentials usable to interact
with Cld1 ’s IaaS Resource Manager. FedUp.Fed is capable of interacting with
heterogeneous clouds trough a virtual interface exposed by an adapter service
provided by FedUp! , using plugins associated to different IaaS solutions.

FedUp.Fed uses the received credentials to instantiate a Virtual Machine
inside Ten1 (arrow 2). This VM, named Federation Configurator, is a Salt-
Stack slave of the FedUp.ConfiguratorMaster, located on the FedUp! side.
The FedUp.ConfiguratorMaster remotely configures the Federation Configura-
tor (arrow 3) so that it can in turn instantiate and configure inside Ten1 a set of

FedUp! Cloud Federation as a Service 179

Fig. 4. The sequence diagram for creating a federation

virtual machines dedicated to form a Kubernetes cluster (through the operation
Create Cluster, not further detailed here). In particular, a Service Orchestra-
tor VM is dedicated to host a Kubernetes Master, while the other ones are set
up to become Kubernetes nodes. The Federation Configurator is at the same
time a SaltStack slave of FedUp.ConfiguratorMaster and a SaltStack master
of the machines composing the cluster.

Figure 5 shows the considered SaltStack dependencies: a black triangle rep-
resents a slave relation with respect to a SaltStack master connected to the line
entering to the triangle, while a star represents a virtual machine which is part
of a Kubernetes Cluster. After the Kubernetes cluster is created, the Service
Orchestrator is remotely configured (arrow 4 of Fig. 4) to retrieve from FedUp!
the necessary files to deploy the Infrastructure Services. In particular, it is shown
how the FedUp.ContainerHub provides the containers relative to the microser-
vices composing the Infrastructure Services. Similarly, the Service Orchestrator
retrieves the configuration files for the pods, containers and services (not shown)
from the FedUp.ServiceRegistry.

5.2 Joining a Federation

Figure 6 presents the fundamental steps for joining a federation, from the per-
spective of a new member. The administrator of a Tenant Ten2 of cloud Cld2
(not federated yet) communicates the availability to join a federation, also pro-
viding a set of tags, describing its possible contributions. An ID id offer x is

180 P. Bottoni et al.

Fig. 5. Visualization of the SaltStack dependencies: a black triangle represents a slave
relation with respect to a SaltStack master connected to the line entering to the triangle.
A star identifies an element of a Kubernetes cluster.

sent back to the administrator, to be used in a polling request for the state of
its offering. Assuming that at a certain moment an existing Federation FedY
accepts this join offering (either as a consequence of an administrator explicit
action, or of a standing search for matching offerings) and acquires the originator
tenant, the ID of FedY will be returned to Ten2 on the subsequent request.

Fig. 6. The sequence diagram for a tenant joining a federation

Figure 7 shows the process for a Federation Y, identified by id offer y, to
acquire a cloud Cld2. Federation Y looks up the FedUp.Registry for a set of
acquirable tenants, based on a set of tags (“filter”). The set is populated based
on an interaction between the registry and FedUp.Fed. In particular a subset
of the available offerings, arranged into a list of IDs, ([...,id offer x,...])

FedUp! Cloud Federation as a Service 181

Fig. 7. The sequence diagram for a federation acquiring a tenant

is returned to the Federation. Federation Y can communicate its intention to
acquire the offering identified by id offer x, which had been published by Cld2,
to the Registry, which forwards the request to FedUp.Fed, that will complete
the join process. An acknowledgement is sent back to Cld2, communicating
id offer y.

6 Conclusions and Future Work

FedUp! provides a lean PaaS approach to the flexible deployment and manage-
ment of federations of clouds, opening the way to the notion of Federation as a
Service, whereby a central platform will maintain images of predefined configura-
tions that an administrator can decide to install and activate on a managed por-
tion of a cloud. In principle, any cloud user could exploit the resources obtained
by joining a federation to federate them in turn within existing federations, or
to start a new federation.

The platform relies on notions of containers, microservices, configurations
and clusters made popular by technologies such as Docker, Kubernetes, and
Saltstack, which are adopted in its current specification, but is in principle not
tied to them, as it only requires that the tenant designated to start a federation
will allow the installation of a virtual machine with an initial configurator, which
will then execute the needed operations on the tenant. The current working
prototype will be subject to extensive evaluation.

In this line, one can envision a marketplace of federation services, where
also specific services that a single federation wants to offer can be defined and
offered for configurations. For example, one could offer specific forms of workload
management, or of data security across the different members of the federation.

182 P. Bottoni et al.

In this paper we described how instances of a metamodel for Federa-
tion Infrastructures to be generated are memorized by FedUp!. Moreover, we
described how tags can be used to facilitate a targeted encounter between indi-
vidual clouds and Federations. It is possible to further develop these concepts.
One can think of supporting the sharing of the definition of services among differ-
ent types of Federation Infrastructure. In this context, tags could be associated
with specific definitions of services, for example to assess compatibility with other
services, or with different configurations of the same service to be used in differ-
ent scenarios. In this manner, a customizable Federation Infrastructures could
be deployed by blending and re-using (partially or integrally) services memorized
by FedUp! with a modular approach. The same concept could even apply to
microservices.

Finally, FedUp! could provide the possibility to a tenant administrator to
specify parameters to be used in the process of creating a Federation. For exam-
ple, by allowing to choose the desired number of replicas for services, the pos-
sibility would be offered to provide a parametric tuning of the robustness, in
terms of availability, of the deployed services.

Acknowledgments. This work has been supported by the EU H2020 Programme
under the SUNFISH project, grant agreement N. 644666.

References

1. Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: The rise of
RaaS: the resource-as-a-service cloud. Commun. ACM 57(7), 76–84 (2014)

2. Bermbach, D., Kurze, T., Tai, S.: Cloud federation: effects of federated compute
resources on quality of service and cost. In: Proceedings of IC2E 2013, pp. 31–37
(2013)

3. Kertesz, A.: Characterizing cloud federation approaches. In: Mahmood, Z. (ed.)
Cloud Computing: Challenges, Limitations and R&D Solutions, pp. 277–296.
Springer, Berlin (2014)

4. Marinos, A., Briscoe, G.: Community cloud computing. In: Jaatun, M.G., Zhao,
G., Rong, C. (eds.) Cloud Computing. LNCS, vol. 5931, pp. 472–484. Springer,
Heidelberg (2009)

5. Newman, S.: Building Microservices. Designing Fine-Grained Systems. O’Reilly
Media, Sebastopol (2015)

6. Nicanfar, H., Liu, Q., Talebifard, P., Cai, W., Leung, V.C.M.: Community cloud:
concept, model, attacks and solution. In: Proceedings of CloudCom 2013, vol. 2,
pp. 126–131, December 2013

7. Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I.M., Mon-
tero, R.S., Wolfsthal, Y., Elmroth, E., Cáceres, J.A., Ben-Yehuda, M., Emmerich,
W., Galán, F.: The reservoir model and architecture for open federated cloud com-
puting. IBM J. Res. Dev. 53(4), 4:1–4:11 (2009)

8. Sebenik, C., Hatch, T.: Salt Essentials. Fast Scalable, and Flexible Automation.
O’Reilly Media, Sebastopol (2015)

9. Villegas, D., Bobroff, N., Rodero, I., Delgado, J., Liu, Y., Devarakonda, A., Fong,
L., Sadjadi, S.M., Parashar, M.: Cloud federation in a layered service model. J.
Comput. Syst. Sci. 78(5), 1330–1344 (2012)

Compositionality

Service Cutter: A Systematic Approach
to Service Decomposition

Michael Gysel1, Lukas Kölbener1, Wolfgang Giersche2,
and Olaf Zimmermann1(&)

1 University of Applied Sciences of Eastern Switzerland (HSR FHO),
Oberseestrasse 10, 8640 Rapperswil, Switzerland

{michael.gysel,lukas.koelbener}@lifetime.hsr.ch,

ozimmerm@hsr.ch
2 Zühlke Engineering AG, Wiesenstrasse 10a, 8952 Schlieren, Switzerland

wolfgang.giersche@zuehlke.com

Abstract. Decomposing a software system into smaller parts always has been a
challenge in software engineering. It is particularly important to split distributed
systems into loosely coupled and highly cohesive units. Service-oriented
architectures and their microservices deployments tackle many related problems,
but remain vague on how to cut a system into discrete, autonomous,
network-accessible services. In this paper, we propose a structured, repeatable
approach to service decomposition based on 16 coupling criteria distilled from
the literature and industry experience. These coupling criteria form the base of
Service Cutter, our method and tool framework for service decomposition. In
the Service Cutter approach, coupling information is extracted from software
engineering artifacts such as domain models and use cases and represented as an
undirected, weighted graph to find and score densely connected clusters. The
resulting candidate service cuts promise to reduce coupling between and pro-
mote high cohesion within services. In our validation activities, which included
prototyping, action research and case studies, we successfully decomposed two
sample applications with acceptable performance; most (but not all) test sce-
narios resulted in appropriate service cuts. These results as well as early feed-
back from members of the target audience in industry and academia suggest that
our coupling criteria catalog and tool-supported service decomposition approach
have the potential to assist a service architect’s design decisions in a viable and
practical manner.

Keywords: Functional partitioning � Loose coupling � Knowledge
management � Microservices � Service interface design guidelines � Service
granularity � Service quality

1 Introduction

In 1972, D. L. Parnas reflected “On the Criteria to Be Used in Decomposing Systems
into Modules” [11]. Since then, functional decomposition has remained an important
topic in software engineering. As software systems grew and became more complex,
software engineers started to distribute modules and procedures over networks, e.g., as

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 185–200, 2016.
DOI: 10.1007/978-3-319-44482-6_12

remote objects, components or Web services [1]. Architectural styles such as Service-
Oriented Architecture (SOA) aim at tackling the many design challenges of such dis-
tributed systems; however, designing service interface boundaries at the right level of
granularity remained an important challenge for SOA practitioners [3, 17]. While
partial solutions have been found, two of the related Research Problems (RP) remained
open: (RP1) The architecturally significant requirements and stakeholder concerns to
be addressed during service (de-)composition are still not understood fully and have not
been documented consistently and comprehensively yet. (RP2) A requirements-driven,
repeatable, and scalable service decomposition method, to be supported and partially
automated by service design tools, has been missing until now.

In this paper, we collect architecturally significant requirements for service
decomposition and introduce Service Cutter, our knowledge management method and
supporting tool framework that assist software architects when they make service
design decisions (note that we do not intend to fully automate this decision making
process, but rather support it). The remainder of the paper presents our solutions to RP1
and RP2 as well as their validation in the following way: Sect. 2 scopes the context of
our work and the research problems solved, and defines our basic service decompo-
sition terminology. Section 3 presents our first research contribution, a coupling criteria
catalog for service decomposition; Sect. 4 then defines a novel service decomposition
process and an extensible tool architecture that integrates existing graph clustering
algorithms to derive candidate service cuts from system specification artifacts. Sec-
tion 5 presents an implementation of the tool architecture and our validation, which
includes action research, two case studies, and performance measurements; Sect. 6
discusses strengths and weaknesses of Service Cutter and presents initial industry
feedback. Section 7 concludes and highlights future work.

2 Context, Problem and Supporting Definitions

The impact of service boundary design is far-reaching. Loosely coupled, but highly
cohesive services are crucial for the maintainability and scalability of software and
allow architects and developers to choose a suitable technology independently for each
particular business problem and context. Nevertheless, the decomposition of a mono-
lithic application into services still is not fully understood, even with the rise of mi-
croservices [16], a contemporary incarnation of SOA principles and patterns combined
with modern software engineering practices such as continuous, independent deploy-
ment. For instance, a popular introduction to microservices states that “deciding how to
partition a system into a set of services is very much an art” [15].

Microservices advocates suggest leveraging Domain-Driven Design (DDD) [5] to
obtain service boundaries: For instance, instances of the DDD pattern aggregate
establish composed services that are aligned to consistency constraints, and services
derived from bounded contexts are aligned to domain model boundaries or team
organization structures. Both of these two DDD strategies are suitable approaches to
service identification (assuming that one knows how to find aggregates and bounded
contexts in the requirements). However, our collective industry experience and a lit-
erature review indicate that many more stakeholder concerns have to be taken into

186 M. Gysel et al.

account during service decomposition – in particular, architecturally significant
requirements including software quality attributes [2]. We believe that this process can
and should be approached in a more structured way. This leads to our first hypothesis:

The driving forces for service decomposition can be presented to architects in a comprehensive
and comprehensible coupling criteria catalog.

This criteria catalog, which will be introduced in the next section, assembles 16
decomposition criteria commonly used by architects to frame and guide their archi-
tectural decisions. We distilled it in an iterative and incremental way, leveraging
consecutive project retrospectives, interviews, and a coupling criteria workshop.

A systematic collection of design knowledge can serve as the foundation for partial
automation of analysis and design. This observation leads to our second hypothesis:

Based on the coupling criteria catalog, a system’s specification artifacts can be processed in a
structured and partially automated way to suggest service decompositions that promote loose
coupling between and high cohesion within services.

To investigate whether these two hypotheses hold true, we conceptualized and
developed Service Cutter, a tool framework architecture and prototype to analyze
software engineering artifacts, including use cases and domain models, and to suggest
candidate service decompositions.

Service Cutter and its presentation in this paper use the following terminology:

Definitions. The term service can be defined both on a logical and on a physical level:

1. A service is the technical authority for a specific business capability [3].
2. A service is accessed remotely through some invocation interface and commu-

nication protocol, either synchronously or asynchronously [6].

In order to provide capabilities, a service requires resources. We identified three
types of resources that serve as the building blocks of services in our approach:

1. Data. A service may have ownership over a subset of a system’s data [16]. It then
is the only authority allowed to change this data, notifying other services on such
changes. The data is often, but not always, stored in a database (then called
application state); data exposed at the service interface constitutes its published
language [5].
2. Operations. A service can encapsulate business rules and calculation (process-
ing) logic. Operations are often, but not always, based on the data owned by the
service.
3. Artifacts. An artifact is a snapshot of data or operation results transformed into a
specific format. An example is a business report such as monthly sales figures by
geography, which was assembled using operations and data.

To facilitate a systematic approach to service decomposition, we generalize these
resources with the concept of a nanoentity shown in Fig. 1:

Service Cutter: A Systematic Approach to Service Decomposition 187

Service decomposition then can be defined as the process of identifying a set of
services and assigning all nanoentities to one (and only one) of these services.
A coupling criterion represents a particular driving force for service decomposition;
such criteria capture architecturally significant requirements and arguments why two
nanoentities should or should not be owned and exposed by the same service. Software
System Artifacts (SSAs) represent the analysis and design artifacts that contain infor-
mation about coupling criteria; scoring priorities weigh the coupling criteria. A service
cut is the output of a single execution of the service decomposition process.

3 Coupling Criteria Catalog

We conducted a literature review, reflected on past projects, and met for a workshop to
assemble our collective, precompiled architecture design experience. We consolidated
the results of these knowledge gathering activities in a coupling criteria catalog in an
iterative and incremental manner. Our coupling criteria catalog aims at serving as a
comprehensive, yet not complete collection of architecturally significant requirements
and decision drivers for service decomposition. Note that we strived for consensus,
clarity, and compactness; hence, not all candidate criteria made it into the catalog.
Figure 2 lists the 16 Coupling Criteria (CC) in the final catalog version:

We grouped the CC into four categories in the catalog (to improve readability):

1. Cohesiveness: Criteria describing certain common properties of mutually related
nanoentities that justify why these nanoentities should belong to the same service.

Fig. 1. Data, operations and artifacts generalized into the nanoentity concept.

Fig. 2. Coupling Criteria (CC) catalog compiling 16 CC in four categories.

188 M. Gysel et al.

An example of a cohesiveness argument is that all nanoentities involved in the
realization of a use case should belong to a single service to simplify use case
execution.
2. Compatibility: Criteria indicating divergent characteristics of nanoentities.
A service should not contain nanoentities with incompatible characteristics.
Examples of such characteristics are “high”, “eventually”, and “weak” for the
criterion Consistency Criticality; these data consistency management options are
mutually exclusive.
3. Constraints: Criteria specifying high-impact requirements that enforce that
certain groups of nanoentities (a) must jointly constitute a dedicated service or
(b) must be distributed amongst different services. The fact that a set of nanoentities
has to be modified jointly and atomically, e.g. in the same database transaction,
forms a strong requirement that justifies to be represented as constraint criterion in
the catalog.
4. Communication: Criteria exclusively pertaining to the technical cost of
remoting, e.g., mutability. Immutable resources do not require complex synchro-
nization means.

All 16 CC are recorded in a common card layout inspired by pattern languages and
agile practices. Table 1 introduces this Coupling Criterion Card (C3) template:

The usage of such C3s makes the catalog structure recognizable and the catalog
extensible. Tables 2 and 3 present two examples of filled-out C3 instances.1

Eliciting CC instances to reflect the non-functional requirements of a specific
software product is a key aspect of analysis and design. Hence, software architects can
leverage the CC catalog to establish a common terminology for their design discussions
as well as architecture documentation. Moreover, our CC catalog can serve as the basis
of a structured, repeatable way to identify, make, and capture related decisions [18]; it
serves as ubiquitous language [5] for service decomposition.

Table 1. A template for Coupling Criterion Cards (C3).

[Coupling Criteria Identifier and Name]

Description [A brief summary of the Coupling Criterion (CC) w.r.t. its
impact on/usage of nanoentities]

System Specification
Artifacts (SSAs)

[Requirements engineering input and software architecture
concepts/deliverables pertaining to this coupling criterion]

Literature [References to books, articles, and/or blog posts]
Type Cohesiveness | Compatibility | Constraint | Communication
Characteristics [Defines a set of possible values for this CC. Only applies to CC

of type Compatibility. E.g., “critical”, “normal”, “low”]

1 All 16 coupling criteria cards are published in full length in the Service Cutter wiki on GitHub,
https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria.

Service Cutter: A Systematic Approach to Service Decomposition 189

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

4 Service Decomposition Concepts and Tool Architecture

To allow architects to leverage the CC catalog and receive service decomposition
advice, we created the Service Cutter tool framework. Service Cutter derives candidate
service cuts from user-prioritized coupling criteria (obtained from SSAs) to achieve
loose coupling between services and high cohesion within services. To do so, addi-
tional design concepts are required, which will be introduced in this section.

Decomposition Input. The input to Service Cutter is a machine-readable represen-
tation of selected software engineering artifacts that represent intermediate stages of
analysis and design. To represent these artifacts, we introduce System Specification
Artifacts (SSAs). SSAs serve as data sets from which the Service Cutter can extract the
required coupling criteria information. Examples of SSA types are use cases, DDD
entities/aggregates, and Entity-Relationship Models (ERMs); e.g., information about

Table 2. The “Identity and Lifecycle Commonality” CC.

CC-1 Identity and Lifecycle Commonality

Description Nanoentities that belong to the same identity and therefore share
a common lifecycle (create, read, update, delete)

System Specification
Artifacts (SSAs)

– Entity-Relationship Models
– Domain-Driven Design Entity pattern instances

Literature Entity definition in Domain-Driven Design [5]:
Some objects are not defined primarily by their attributes
They represent a thread of identity that runs through time and
often across distinct representations

Type Cohesiveness

Table 3. The “Semantic Proximity” CC.

CC-2 Semantic Proximity

Description Two nanoentities are semantically proximate when they have a
semantic connection given by the business domain

The strongest indicator for semantic proximity is coherent (joint)
access of/to nanoentities within the same use case

System Specification
Artifacts (SSAs)

– Coherent access to or updates of nanoentities in use cases (or
user stories)

– Aggregation or association relationships in an
entity-relationship model

Literature Single Responsibility Principle by Martin [9]:
Gather together the things that change for the same reasons
Separate those things that change for different reasons
Richardson on microservice decomposition [15]:
There are number of strategies that can help [to partition a
system into a set of services]. One approach is to partition
services by verb or use case

Type Cohesiveness

190 M. Gysel et al.

CC-2 Semantic Proximity comes from these two SSA types. We designed additional
SSA types to supply information that is not contained in existing ones (e.g., shared
owner groups, predefined services, separated security zones and security access
groups). The Service Cutter wiki provides detailed explanations and a reference of
these nine types of SSAs (called “user representations” in the prototype).2

Figure 3 specifies the dependencies of coupling criteria and SSAs. For instance,
information about CC-16, Security Constraint, can be obtained from the SSA “sepa-
rated security zones”. Security zones group nanoentities by their diverging privacy
requirements, e.g. sensible personal information vs. unclassified, public data.

Decomposition Process. Figure 4 specifies the service cutting process in BPMN.

Fig. 3. Dependencies between System Specification Artifacts (SSAs) and CC.

Fig. 4. Serving decomposition process (human vs. automated/tool-supported tasks).

2 https://github.com/ServiceCutter/ServiceCutter/wiki/User-Representations.

Service Cutter: A Systematic Approach to Service Decomposition 191

https://github.com/ServiceCutter/ServiceCutter/wiki/User-Representations

Service Cutter processes the provided SSA instances and extracts nanoentities as
well as coupling criteria instances from them. Prioritized coupling criteria and SSAs
are transformed into an undirected, weighted graph; nodes represent nanoentities, and
the weights of edges indicate how cohesive and/or coupled two nanoentities are.

Algorithm Integration. We then employ clustering algorithms on this graph to find
candidate service cuts. Our concepts and tool architecture are designed to be general
enough to allow the inclusion of multiple algorithms; e.g., a programming interface is
provided which can be implemented for any clustering algorithm that is based on
undirected, weighted graphs. At present, we included Java implementations of two
algorithms, namely Girvan-Newman [10] and the Epidemic Label Propagation (ELP),
originally defined by Raghavan and later refined by Leung et al. [14]. A comparison of
and rationale for the selection of these two different approaches can be found in [7].
For instance, the two algorithms differ from each other in their (non-)deterministic
behavior; only one of them required a number-of-clusters in parameter.

Results of a deterministic algorithm like Girvan-Newman can be reproduced by
running the algorithm repeatedly using the same input data. The impact of different
input data, scoring values and priorities can therefore be analyzed as the algorithm itself
does not include a random element. A non-deterministic algorithm like ELP (Leung)
complicates analysis, as changes in the results do not always result from input changes.
Furthermore, results always need to be safely persisted and reloaded since they cannot
be reproduced reliably. An element of randomness is not necessarily a disadvantage:
Running multiple algorithm cycles presents different solutions and outlines where the
difficult architectural decisions reside.

Providing the number of clusters as a parameter to the algorithm has the advantage
of analyzing the service decomposition with any possible number of services. This
feature can be used to better understand the structure and coupling between parts of the
system when running the algorithm with varying input. Requesting a high number of
services, for instance, may indicate how services can be decomposed further; a small
predefined service number allows systems to gradually emerge from a monolithic
architecture to service orientation. However, algorithms requiring the number of ser-
vices as input shift the responsibility to answer this critical question back to the user; as
architects are often prejudiced on the number of services their system should be
composed of, this is not always desirable. Letting Service Cutter suggest not only the
content of each service, but also the number of services (as ELP does) challenges the
user to reassess his/her ideas against the suggested candidate service cuts.

Priority Scoring. The analysis and processing of coupling criteria uses a weighted
graph and scorers. The weight on an edge between two nanoentities is the sum of all
scores per CC multiplied by their priorities. Table 4 illustrates the calculation:

Table 4. An exemplary calculation of the weight of an edge.

Coupling criterion Score Priority Result

CC-1: Semantic Proximity 4 1 4 � 1 ¼ 4
CC-7: Availability Criticality 2.5 5 2:5 � 5 ¼ 12:5
CC-9: Consistency Constraint 8 3 8 � 3 ¼ 24
Total weight 4þ 12:5þ 24 ¼ 40:5

192 M. Gysel et al.

The score is a number from −10 to +10. A score of +10 expresses that these two
nanoentities should definitely reside in the same service according this coupling cri-
terion. A score of −10 therefore represents the opposite extreme, i.e., that the
nanoentities should be placed into different services.

The calculation is performed for every link between nodes with coupling infor-
mation; Fig. 5 shows an example. The calculation depends on the involved coupling
criteria; the scorers map coupling criteria to actual numbers used to construct the
weighted graph. Table 5 maps CCs to the five types of scorers that differ in their
calculation logic:

Fig. 5. Weighted edges representing the coupling connect the nanoentities.

Table 5. Coupling criteria and the scorers calculating the weight of the edges.

Coupling criterion Scorer type

Identity and Lifecycle
Commonality

Shared Owner
Latency
Security Contextuality
Consistency Constraint

Cohesive Group Scorer
Nanoentities in a cohesive group should remain together in one
service. All relations between nanoentities in a group are scored
+10

Semantic Proximity Semantic Proximity Scorer
The joint access to a pair of nanoentities is counted and mapped to
an even distribution between 0 and 10

Structural Volatility
Consistency Criticality
Storage Similarity
Content Volatility
Availability Criticality
Security Criticality

Characteristics Scorer
To achieve homogenous services, this scorer sets a penalty of −1
to −10 to relations with diverging requirements

Security Constraint Separated Group Scorer
Sets a score of −10 to all nanoentities that belong to a group other
than the current one

Predefined Service
Constraint

Exclusive Group Scorer
Same as Cohesive Group, but also adds a penalty of −10 to
nanoentities not in the group

Mutability
Network Traffic
Suitability

Not defined and implemented yet

Service Cutter: A Systematic Approach to Service Decomposition 193

A detailed description of the scorers in Service Cutter can be found in [7].

5 Evaluation via Prototyping, Case Studies, Action Research

We validated our research results via implementation, case study, and action research.
Service Cutter’s current implementation supports a basic feature set that realizes the
structured approach of splitting a system into discrete, loosely coupled services:

• 14 out of 16 coupling criteria from Sect. 3 are implemented (see Table 5).
• All nine System Specification Artifacts (SSAs) that represent user input (see Fig. 3

in Sect. 4) can be imported in the form of custom JSON files.
• Seven criteria priorities, in the prototype casually defined as “T-Shirt sizes”

(IGNORE, XS, S, M, L, XL, XXL) allow users to characterize the context of a
system by valuating the coupling criteria in relation to each other.

• The suggested candidate service cuts and their dependencies are visualized.
• The published language [5] of a service pair (including the data transferred to and

from the invoked service) is exposed via the involved nanoentities.

Figure 6 features a candidate service cut for the “cargo tracking” domain model
from [5]. This candidate service cut consists of three services A, B and C (larger
squares), each owning a set of (cohesive) nanoentities represented as small squares:

Arrows between two services (e.g., Service A and Service B) indicate a dependency
between them. The resulting published language, which characterizes the amount of
coupling between these services in terms of the shared understanding about the
nanoentities that are exposed at the service boundary, is also shown.

Release 1.1 of the Service Cutter implementation is available on GitHub3. This
prototype consists of two components implemented in Java and JavaScript (using
Spring Boot, Spring MVC, AngularJS, and JHipster), RESTful HTTP Web services
wrapping the scoring logic, and a Web application for input and output visualization.

Validation Approach and Results. To further validate the implemented concepts, we
assessed the candidate service cuts of the following two case studies:

1. A fictitious “Trading System” for which we forward-engineered the requirements,
drawing on industry experience with financial services software.

2. The DDD sample application “Cargo Tracking” that accompanies the DDD book
[5]; we reverse engineered the requirements for this scenario from the existing
implementation that is available on SourceForge.4

To objectify the validation and have a comparison baseline, we defined expected
service cuts for both systems according to our experience in service design; to reduce
bias, we developed a service design checklist for this task.5 Next, we defined three
result categories in order to rate the candidate service cuts:

3 https://github.com/ServiceCutter/ServiceCutter.
4 https://sourceforge.net/projects/dddsample/.
5 https://github.com/ServiceCutter/ServiceCutter/wiki/Decomposition-Questionnaire.

194 M. Gysel et al.

https://github.com/ServiceCutter/ServiceCutter
https://sourceforge.net/projects/dddsample/
https://github.com/ServiceCutter/ServiceCutter/wiki/Decomposition-Questionnaire

A: Excellent service cut. The cut (i.e., suggested service decomposition) does not
follow the way we expected, but we find reasons why the cut makes sense from an
architect’s perspective. It therefore improves our own view of the analysed system.
B: Expected service cut. The cut meets and therefore validates our expectations.
C: Unreasonable service cut. There is a mismatch between the cut and the expected
one, and we do not find any reasons why this cut would be beneficial.

To be able to assess the quality of the output of Service Cutter, we use a four-level
classification: An excellent output contains zero unreasonable service cuts and at least
one excellent service cut (i.e., a cut in category A). A good output contains zero
unreasonable service cuts (C). An acceptable output contains at most one unreasonable
service cut (C). A bad output contains two or more unreasonable service cuts (C).

Fig. 6. Screenshot of Service Cutter presenting a candidate service cut.

Service Cutter: A Systematic Approach to Service Decomposition 195

Table 6 summarizes the decomposition results for both systems. Both algorithms,
Girvan-Newman and ELP (Leung), were able to produce acceptable or good service
cuts (but not in all cases):

Both test systems contain approximately 20 nanoentities. To analyze Service Cut-
ter’s performance behavior with more complex systems, we conducted additional
performance tests. These tests are derived from the trading system; all nanoentities and
SSAs were replicated and scaled up 60 times to create larger and more complex domain
models and graphs. These load tests measure the runtime for graph creation and
clustering algorithm and leave out data import and visualization. The tests were con-
ducted on a Windows 10 developer notebook with an Intel i5 2.2 GHz CPU and 8 GB
RAM as documented in detail online.6 Figure 7 shows the test results.

The calculation for systems with up to 600 nanoentities is done in less than five
seconds, which we consider reasonable. Around 75 % of the time used is consumed by
graph creation whereas the clustering algorithm only uses around 25 % of the time.
Hence, our Java code building the graph based on the imported data could be analyzed
and improved to improve runtime performance even further.

Table 6. Assessment of service cuts for analyzed systems (case studies).

Evaluated Application Girvan-Newman ELP (Leung)

Trading System Good output Good (note: in some
exceptional cases, Leung
produced acceptable and
excellent output)

Cargo Tracking System Bad output Acceptable

Fig. 7. Performance test results: service cut calculation (scaled up sample application)

6 https://github.com/ServiceCutter/ServiceCutter/wiki/Runtime-Performance-Tests.

196 M. Gysel et al.

https://github.com/ServiceCutter/ServiceCutter/wiki/Runtime-Performance-Tests

6 Discussion: User Feedback, Pros and Cons, Related Work

User Feedback. We presented the Service Cutter concepts and their implementation to
more than 20 members of the target audience (i.e., software engineers and architects
with experience in designing SOAs), and one of the authors of the paper applied
Service Cutter to a single project case (as a form of technical action research). The
systematic overall approach was appreciated and considered to be promising; it was
pointed out that Service Cutter cannot only be used in an SOA context, but also be used
to split modules without remote interfaces (with adjusted CC priorities).

The template-based coupling criteria cards were generally appreciated, but some of
the current texts were assessed to be too terse (by one provider of feedback); a more
elaborate, but not yet verbose wording was requested. The naming of some coupling
criteria in our catalog also was challenged. An example is “CC-13 Network Traffic
Suitability”, which covers the more common and basic concept of throughput (which
in turn is one facet of the top-level quality attribute performance). Furthermore, system
and process assurance audit compliance [8] was suggested to be added as a compat-
ibility criterion; further research is required to investigate how to integrate such a
composite and complex, possibly even recursive criterion into Service Cutter.

Finally, our selection of two clustering algorithms was questioned, and it was
suggested to only integrate deterministic algorithms that do not require the number of
clusters as a parameter. This critique pertains to the current tool implementation only;
the Service Cutter concepts from Sects. 3 and 4 do not rely on any particular algorithm.
Due to the generality of our concepts and the modular, extensible architecture of their
implementation, we expect the effort to integrate other algorithms into the Service
Cutter framework to be in the range of a few person days per algorithm.

According to the feedback of our industry project partner, who leads an architect
and developer community in professional services, Service Cutter and its underlying
reasoning represent a sound framework to prepare and back architectural decisions.
More specifically, it allows architects to study the impact of weight variations on the
resulting candidate service cuts. Questions like “what, if security wasn’t an issue here”
can be answered easily by changing the respective scoring priority of criterion “security
criticality”. When used with care, Service Cutter can improve the credibility of
architects involved in critical architecture assessments (evaluations) significantly. The
SSAs and coupling criteria can also be used to educate junior architects or students on
the driving forces of service decomposition.

Benefits. From our internal and external validation activities, we can conclude that
Service Cutter offers a number of advantages to service architects: The coupling criteria
catalog indeed collects relevant architecturally significant requirements and decision
drivers for service decomposition, and it does so in an accessible, reusable, and
extensible way. It therefore contributes to the body of reusable architectural decision
knowledge as envisioned in our previous work [18].

Service Cutter suggests candidate service cuts that are obtained from commonly
used analysis and design artifacts, such as use cases and domain models, via a
nanoentity abstraction and the coupling criteria. By expecting several such analysis and
design artifacts, Service Cutter challenges its users (i.e., service architects) to reflect

Service Cutter: A Systematic Approach to Service Decomposition 197

which stakeholder input and non-functional quality characteristics are relevant for
his/her system (and architecture design process). Hence, service architects might use
these artifacts as a checklist and stimulus for the requirement engineering.

The candidate service cuts verify and/or challenge the architect’s expectations
regarding the number of services and their interface definitions. Both green field sce-
narios and iterative approaches for migrating a monolith to services are supported.7

Drawbacks and Liabilities. The benefits that we could observe during our evaluation
activities come at a price; usage of Service Cutter concepts and their implementation
during these activities has unveiled some (expected) drawbacks and liabilities.

Significant effort is required to enter SSAs (such as use cases and domain models) in
JSON; in future versions, we plan to import them, e.g., from UML modeling tools.

We are aware of the risk of a “pseudo accuracy” effect. It is subject to debate
whether service design work, dealing with rather diverse requirements (some of which
are hard to quantify) can really be delegated to algorithms that look for an aggregated
optimal solution. Architects traditionally apply their tacit knowledge and “gut feel”
when making the relate decisions; they are biased. This discussion can be seen as the
SOA variant of the more general discussion on “a rational design process: how and
why to fake it” [12]. However, we believe our approach to be valuable even when
being confronted with a healthy amount of skepticism – relevant design questions are
asked and related criteria listed, and the relation between these concerns and the user
input in SSAs is unveiled. Furthermore, a checklist effect occurs; discussions among
collaborating architects are stimulated.

Other drawbacks and liabilities concern framework architecture design and exten-
sibility. First and foremost, the clustering algorithms that are currently integrated
possibly should be complemented with additional ones due to the only partially sat-
isfying evaluation results. Algorithmic complexity is a major source of performance
limitations and therefore has to be taken into account in any such future algorithm
selection decisions; fortunately, clustering algorithms with linear complexity exist.

As the Service Cutter framework continues to evolve, additional validation and
evaluation activities work will be required. For instance, it has to be verified that the
tool performance does not degrade significantly when processing even larger amounts
of user input that go beyond scaled up sample data and case studies (e.g., complex
domain models from enterprise information systems).

Related Work. Quality attribute-driven design has been an important research topic in
the software architecture community formany years [2, 11]; the specific requirements and
constraints of service-oriented architectures and microservices have also been investi-
gated and related methods proposed [4, 13, 17]. Such methods are complementary to the
approach presented in this paper, providing an overall frame for the use of Service Cutter,
as well as input for coupling criteria, SSAs, and priority scores.

Other research areas in service-oriented computing include service discovery and
runtime topology lookup (e.g., in clouds), dynamic service matchmaking, service
composition into business processes and workflows, quality-of-service awareness,

7 Explained on GitHub: https://github.com/ServiceCutter/ServiceCutter/wiki/Usage-Scenarios.

198 M. Gysel et al.

https://github.com/ServiceCutter/ServiceCutter/wiki/Usage-Scenarios

policies, and agreement, as well as service management. These efforts have different
goals than Service Cutter, which aims at assisting architects making design decisions;
however, well-crafted service cuts can be seen as a prerequisite for the successful
application of any advanced service-oriented computing concepts and technologies. In
our future work, we therefore consider to include additional criteria and SSAs that
represent the concepts from these research efforts as they mature.

7 Summary and Outlook

In this paper, we presented Service Cutter, a systematic approach to system decom-
position, which has been a relevant problem since the very origins of program mod-
ularization and software engineering. Service Cutter advances the state of the art
(a) with the concept of coupling criteria cards, (b) 16 instances of such cards (harvested
from practical experience and the literature), and (c) an extensible service decompo-
sition tool framework architecture that integrates graph clustering algorithms and
features priority scoring starting from nanoentities and nine types of analysis and
design specifications (including domain models and use cases). This structured and
extensible combination of a criteria-driven method with supporting architectural
knowledge and a design optimization and visualization tool paves the way towards the
desired engineering approach to service interface and service granularity design.

We evaluated Service Cutter via implementation (integrating two existing graph
clustering algorithms), a combination of action research and case study investigations,
and load tests. The validation results and additional user feedback indicate that the
proposed semi-automated approach to service decomposition works as designed and
has the potential to benefit practitioners significantly. While the suggested service cuts
did not always meet all early adopters’ expectations, artifact input and coupling criteria
were regarded adequate; the proposed decomposition process was appreciated.

While our early experiences with the presented structured, partially automated (i.e.,
tool supported) approach are promising, work remains to be done both on the con-
ceptual (research) level, as well as on the implementation (engineering) level. For
instance, further enhancements of Service Cutter may include seamless integrations of
the analysis and design tool chain members so that SSAs can be extracted from other
tools automatically. We discussed other directions for future work in Sect. 6; related
development issues are tracked in the open source release of Service Cutter.

References

1. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.: Web Services – Concepts, Architectures
and Applications. Data-Centric Systems and Applications. Springer, Heidelberg (2004)

2. Cervantes, H., Velasco, P., Kazman, R.: A principled way of using frameworks in
architectural design. IEEE Softw. 30(2), 46–53 (2013)

3. Dahan, U.: The Known Unknowns of SOA, Blog Post, November 2010. http://udidahan.
com/2010/11/15/the-known-unknowns-of-soa/

Service Cutter: A Systematic Approach to Service Decomposition 199

http://udidahan.com/2010/11/15/the-known-unknowns-of-soa/
http://udidahan.com/2010/11/15/the-known-unknowns-of-soa/

4. Erradi, A., Anand, S., Kulkarni, N.: SOAF: an architectural framework for service definition
and realization. In: Proceedings of SCC 2006. IEEE Computer Society (2006)

5. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Pearson
Education, Upper Saddle River (2003)

6. Fowler, M.: Inversion of Control Containers and the Dependency Injection Pattern, Online
Article, January 2014. http://www.martinfowler.com/articles/injection.html

7. Gysel, M., Kölbener, L.: Service cutter – a structured way to service decomposition.
Bachelor thesis, HSR Hochschule für Technik Rapperswil (2015). https://eprints.hsr.ch/476/

8. Julisch, K., Suter, C., Woitalla, T., Zimmermann, O.: Compliance by design – bridging the
chasm between auditors and IT architects. Comput. Secur. 30(6–7), 410–426 (2011).
Elsevier

9. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall PTR, Upper Saddle River (2003)

10. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys.
Rev. E 69 (2004). arXiv:cond-mat/0308217

11. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM 15(12), 1053–1058 (1972)

12. Parnas, D.L., Clements, P.C.: A rational design process: how and why to fake it. IEEE
Trans. Softw. Eng. 12(2), 251–257 (1986)

13. Papazoglou, M., van den Heuvel, W.J.: Service-oriented design and development
methodology. Int. J. Web Eng. Technol. (IJWET) 2(4), 412–442 (2006). Inderscience
Enterprises

14. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community
structures in large-scale network. Phys. Rev. E 76 (2007). arXiv:0709.2938

15. Richardson, C.: Microservices: Decomposing Applications for Deployability and
Scalability. InfoQ article, May 2014. http://www.infoq.com/articles/microservices-intro

16. Zimmermann, O.: Microservices tenets: agile approach to service development and
deployment. Overview and vision paper, SummerSoC 2016. J. Comput. Sci. Res. Dev.
(CSRD), Springer (to appear)

17. Zimmermann, O., Krogdahl, P., Gee, C.: Elements of Service-Oriented Analysis and Design.
IBM developerWorks, July 2004

18. Zimmermann, O., Wegmann, L., Koziolek, H., Goldschmidt, T.: Architectural decision
guidance across projects. In: Proceedings of the 12th Working IEEE/IFIP Conference on
Software Architecture (WICSA), pp. 85–92. IEEE Computer Society (2015)

200 M. Gysel et al.

http://www.martinfowler.com/articles/injection.html
https://eprints.hsr.ch/476/
http://arxiv.org/abs/cond-mat/0308217
http://arxiv.org/abs/0709.2938
http://www.infoq.com/articles/microservices-intro

Economic Aspects of Service Composition:
Price Negotiations and Quality Investments

Sonja Brangewitz(B) and Simon Hoof(B)

Department of Economics and SFB 901, Paderborn University,
Paderborn, Germany

{sonja.brangewitz,simon.hoof}@upb.de

Abstract. We analyse the economic interaction on the market for com-
posed services. Typically, as providers of composed services, intermedi-
aries interact on the sales side with users and on the procurement side
with providers of single services. Thus, in how far a user request can be
met often crucially depends on the prices and qualities of the different
single services used in the composition. We study an intermediary who
purchases two complementary single services and combines them. The
prices paid to the service providers are determined by simultaneous mul-
tilateral Nash bargaining between the intermediary and the respective
service provider. By using a function with constant elasticity of substitu-
tion (CES) to determine the quality of the composed service, we allow for
complementary as well as substitutable degrees of the providers’ service
qualities. We investigate quality investments of service providers and the
corresponding evolution of the single service quality within a differential
game framework.

Keywords: Service composition · Price negotiations · Quality invest-
ments · Nash bargaining solution · Differential games

1 Introduction

Service composition in cloud computing or on-the-fly computing environments
is not just technically challenging, but also offers interesting questions that arise
from an economic perspective. Strategic decisions with respect to service qual-
ity and prices influence the interaction between users, providers of composed
services (also referred to as intermediaries), and providers of single services. A
composed service with complementary single services as inputs requires negotia-
tions with different service providers interdependently about prices and qualities.

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901). We
thank Claus-Jochen Haake for constructive suggestions and comments.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 201–215, 2016.
DOI: 10.1007/978-3-319-44482-6 13

202 S. Brangewitz and S. Hoof

However, the providers of single services strategically determine quality invest-
ments and thus the quality level to maximize their individual profits. Therefore,
the intermediary selling the composed service has to pay the service providers
accordingly to induce them to deliver the single services such that they fulfil the
requirements to satisfy the users’ demand. We propose a model that allows us
to analyse the negotiations between the intermediary and the service providers
and to investigate the evolution of service quality and the investments therein
in a dynamic context using a differential game.

2 Literature

Formally, we combine models from cooperative bargaining theory and from non-
cooperative differential game theory to describe the interaction on the market
for composed services. More precisely, for the price negotiations we use the well
established Nash [9] bargaining solution. The use of multilateral Nash bargaining
is inspired by the analysis in [6]. They investigate negotiations in vertical supply
relationships between one manufacturer and two retailers and make use of the
Nash bargaining solution to describe simultaneous and sequential price negoti-
ations. In our model we add a dynamic variable by considering the demand of
the end user and thus the negotiations depending on the qualities of the single
services. We assume that simultaneous multilateral price negotiations take place
at every instant in time. Using a differential game we investigate the dynamic
evolution of the service quality. A comprehensive introduction into differential
games is [5]. In particular, the evolution of service quality is modelled using the
techniques for capital accumulation games [5, Chapter 9]. A similar game is also
used to describe the evolution of quality in health care markets [4].

A systematic overview of the literature on service composition in cloud com-
puting environments can be found in [8]. Here, the intermediary is also referred
to as a “cloud service broker”. They describe the analysis of “dynamically con-
tracting service providers” as one of the “most remarkable challenges” for the
cloud computing service composition problem [8, Sect. 4.2, p. 3813]. A compre-
hensive survey on the pricing of cloud services is [2]. Various pricing schemes
and techniques are systematically presented and compared with respect to their
advantages and disadvantages as well as fairness and implementation in practice.
For cloud instance pricing, when jobs arrive sequentially following a specific sto-
chastic process, two techniques such as fixed unit prices and spot markets have
been explicitly investigated and compared in [1]. The authors provide evidence
that a fixed unit price seems to dominate a combination of both pricing models
in terms of expected revenue. Different approaches and protocols for bargaining-
based negotiations of service level agreements in cloud computing are surveyed
in [7, Sect. 4.2.1, p. 51:12f]. In particular, an application of cooperative bargain-
ing theory to web services for bilateral negotiations between a user and a service
provider is [10]. While the focus of these models is often primarily on the pric-
ing or negotiation procedure, our model incorporates the interaction of different
types of service providers that is required for trading composed services. A sim-
ple model describing the interaction between an intermediary and two service

Economic Aspects of Service Composition 203

providers has already been analysed in [3]. However, the model was only able to
capture two different quality levels of the composed and single services and the
dynamic analysis was by means of a repeated game.

We extend this analysis here in the sense that the quality of a single service is
a continuous state variable and the overall quality can range from complements
to substitutes. This means that we include a parameter describing how the pure
quality of a single service may or may not be compensated by the good quality
of another single service. The investment decisions to change the quality level
of the service providers are strategic. The differential game framework sets up a
dynamic optimal control problem for each service provider and thus allows us to
investigate the evolution of service quality over an infinite time horizon. Quality-
dependent negotiations take place at every instant in time and are modelled by
using cooperative bargaining theory.

3 Model

We study a market consisting of three types of market participants: users, inter-
mediaries and service providers. An intermediary purchases single services and
combines them, where the quality of the composed service depends on the qual-
ities of the single services delivered by the service providers. Finally, the com-
posed service is sold to the users. Here, we focus on the interaction between one
intermediary as the seller of a composed service to the users and two service
providers as the sellers of single services to the intermediary. Each of the service
providers is assumed to produce one single service. These services are supposed
to have complementary properties, i.e., the intermediary needs to bargain with
both service providers and the overall quality depends on both single services.
The economic interaction on the market for composed services is illustrated in
Fig. 1. Time is indexed by t ∈ R+ := [0,∞). However, for ease of notation the
time index is generally omitted.

Service Provider 1 Service Provider 2

Intermediary

Users

single services single services

composed services

Fig. 1. Market interaction

204 S. Brangewitz and S. Hoof

4 Demand and Bargaining

The quality of the composed service is a function of the single services’
qualities

Θ(θ1, θ2) := (θρ
1 + θρ

2)
1
ρ (1)

where θi ∈ R+ denotes the quality of the single service produced by provider
i = 1, 2 and ρ ∈ (−∞, 1) is a measure of substitutability between the two single
services. Technically, the quality of the composed service as in (1) is determined
by a function with constant elasticity of substitution (CES) between the two
single services. For the limit cases we get some special functions, namely

Θ (θ1, θ2) =

⎧⎪⎨
⎪⎩

min (θ1, θ2) for ρ → −∞,

θ1θ2 for ρ → 0,

θ1 + θ2 for ρ → 1.

(2)

For a given overall quality of the composed service Fig. 2(a) illustrates the special
cases. That is, for ρ < 0 the service qualities are complementary while for ρ > 0
they are substitutes.1

The users’ demand for the composed services is modelled by a demand
function

D(Θ, P) :=

⎧⎨
⎩

Θ(θ1, θ2)
P 2

if both services are provided

0 otherwise
(3)

that describes the quantity the users are willing to purchase for a given price
P ∈ R+ and overall quality level Θ(·) of the composed service. In addition, the
users’ demand for a single service is supposed to be zero. These assumptions
on the user’s demand imply the following for the composition of services: Single
services themselves are assumed to be complementary, i.e., both single services
are needed to produce the composed service; while the qualities of the single
services may be substitutable or complementary, i.e., quality differences between
both single services may cancel out to a given extent in the composed service.
The demand function is strictly decreasing in price and strictly increasing in
quality. This means that at a given quality level, higher prices lead to a lower
demand of composed services; and at a given price level, higher quality of the
composed service increases the quantity demanded. The demand function is
illustrated in Fig. 2(b) and is similar to the demand function analysed in the
analytical example of [3, Appendix A].

In order to trade the single services the intermediary has to agree with each
service provider on a price. We refer to this price as a transfer Ti in the fol-
lowing. To model the negotiations between the intermediary and the service
1 Note that the elasticity of substitution can be denoted by σ = 1

1−ρ
. We may observe

σ → {0, 1, ∞} for ρ → {−∞, 0, 1}.

Economic Aspects of Service Composition 205

Fig. 2. Quality and demand of the composed service

providers we make use of cooperative bargaining theory (see [9]). We look at
the individual profits from trading the single services. The intermediary is not
only concerned with costs Ti, but must take into account the users’ demand as
well. The service provider on the other hand has revenues of Ti, but in addition
production costs for supplying the single service. The overall cost function for
each service provider i captures production as well as investment costs

Ci(θi, Ii,D) :=
1
2

(
αiθ

2
i + βiI

2
i

)
+ γiD(Θ, P) (4)

with αi, βi, γi > 0 and for i = 1, 2. Here Ii denotes the investment to improve
the quality of service θi, i.e., one unit of investment comes with quadratic costs.
In addition, production costs are linear increasing to cover a given demand and
quadratic in the supplied quality level. The intermediary must pay some transfer
Ti to each service provider to incentivise production. The profits of the three
parties can now be stated as

Π(P,D, T1, T2) := P · D(Θ, P) −
2∑

i=1

Ti (5)

πi(Ti, Ci) := Ti − Ci(θi, Ii,D) (6)

where Π(·) is the profit of the intermediary, i.e., revenues from selling the com-
posed service to the users minus transfers to the input suppliers. And πi(·),
for i = 1, 2, denotes the profit of the service providers, i.e. transfers from pro-
viding the single service minus total costs. The individual transfer schedule is
the result of a simultaneous negotiation between the intermediary and the two
service providers.

To ensure that negotiations actually take place we must assume that rev-
enues of the intermediary exceed the production costs, i.e., there exists some
surplus to be divided among the three parties

P · D(Θ, P) >
2∑

i=1

Ci(θi, Ii, P). (7)

206 S. Brangewitz and S. Hoof

If this condition did not hold, the analysis of the economic interaction was trivial
in the sense that there is no allocation of the surplus that induces non-negative
profits simultaneously for all negotiating parties and thus no trade would take
place. Moreover, the profits of the negotiating parties shall be non-negative, i.e.,

Π(P,D, T1, T2) ≥ 0 and πi(Ti, Ci) ≥ 0. (8)

Equation (8) is known to be the individual rationality or participation con-
straints. In case of a disagreement the payoff is assumed to be zero. Hereby, we
implicitly suppose that the disagreement with one service provider means that
the composed service cannot be produced, since the single services are assumed
to be complementary. This also implies that the profit of the intermediary
cannot become positive when agreeing only with the other service provider as
users do not demand single services.

We use the well-known Nash bargaining solution to explicitly determine
these transfers [9]. The Nash bargaining solution has the advantage that it
is characterized by some specific axioms2 and leads to strictly positive profits
of the intermediary as well as the service providers. Consider the negotiations
between the intermediary and service provider i. The Nash bargaining solution
then satisfies

TN
i ∈ arg max

Ti

Π(P,D, Ti, T3−i) · πi(Ti, Ci) s.t. (8) holds. (9)

Note that the Nash product for the negotiations with service provider i in (9)
as well as the participation constraint in (8) depend on the outcome of the
negotiations between the intermediary and the other service provider 3 − i. The
complementarity of the single services is reflected by taking a zero disagreement
payoff in case one of the negotiations fails.

The resulting transfer is then readily given by

TN
i (P,D,Ci, T

N
3−i) =

1
2

(
P · D(Θ, P) + Ci(θi, Ii,D) − TN

3−i(P,D,C3−i, T
N
i)

)
.

(10)

For i = 1, 2 we have two equations in two unknowns TN
i (·). Hence, we may

explicitly solve for the transfer and obtain

TN
i (P,D,Ci, C3−i) =

1
3

[P · D(Θ, P) + 2Ci(θi, Ii, P) − C3−i(θ3−i, I3−i, P)] .

(11)

This means that the surplus that exists on the market for selling the composed
service taking the service providers’ costs into account is evenly split among the
two service providers and the intermediary. Finally, the intermediary determines
the sales price of the composed service. In every period the intermediary solves
the following (static) program

P ∗ = arg max
P

Π(P,D, TN
1 , TN

2) = 2(γ1 + γ2). (12)

2 See [9] for further details.

Economic Aspects of Service Composition 207

Note that P ∗ is a datum determined by exogenous parameters, i.e., profits are
given by

Π(P ∗,D, TN
1 , TN

2) = πi(TN
i , Ci) =

1
3

[
P ∗ · D(Θ, P ∗) −

2∑
i=1

Ci(θi, Ii, P
∗)

]
.

(13)

Since every party earns the same profit, we may stick to one symbol π. After
substituting (3), (4) and (12) into (13) one arrives at

π(θ, I) =
1
6

[
(θρ

1 + θρ
2)

1
ρ

2(γ1 + γ2)
−

(
α1θ

2
1 + α2θ

2
2 + β1I

2
1 + β2I

2
2

)]
(14)

where θ = (θ1, θ2) and I = (I1, I2). Note that costs of service composition may
be easily introduced into the model. As the surplus resulting from the composed
service is always evenly distributed among the negotiating parties we may include
costs of service composition directly into Eqs. (5) and (7).

For the dynamic analysis it is crucial to note that the bargaining process takes
place in every period. Therefore, (14) holds at every point in time t ∈ R+. This
reduces the entire profit path {π(θ(t), I(t)) : t ∈ R+} into an expression which
solely depends on the respective quality and investment level in each period
where θi(t) : R+ → R+ and Ii(t) : R+ → R, respectively, are time-dependent
functions. Next, we set up a differential game to investigate the dynamic interac-
tion of both service providers and show how to determine the optimal investment
decision and the associated path of the overall quality level.

5 Dynamics of Service Quality and Investments

In this section we analyse the service providers’ incentives to invest into the
quality of their single services. Each service provider i can govern the quality
level over time by investing Ii (control variable). This means the next periods’
quality is given by the current investment minus a loss in quality that appears
over time (depreciation). The law of motion for the state variable can be
modelled by a differential equation

∀t ∈ R+ : θ̇i = Ii − δθi (15)

where δ ∈ (0, 1] denotes depreciation of quality and we used the abbreviation
θ̇i(t) := dθi

dt (t). By introducing a depreciation of quality we assume that main-
taining the service quality requires continuous investments. That is, Ii denotes
gross investment. Here, the depreciation rate of quality captures that a service
provider has to continuously take care of the quality of his service. For software
services this is by continuously adapting the software to technological changes in
the runtime environments, dependencies with other services or security require-
ments, for example. In our theoretical analysis, the depreciation rate remains a

208 S. Brangewitz and S. Hoof

parameter of the model and may range from almost no reduction of quality over
time to a complete reduction, making the software without investments in the
extreme case useless. Equation (15) links the current quality and the investments
into quality of a service provider. Thus, the optimization problem of service
provider i boils down to choose a stream of investment levels {Ii(t) : t ∈ R+} as
to maximize his discounted profits with respect to the flow constraints and
some given initial quality level

max
{Ii(t)}

∫ ∞

0

e−rtπ(θ, I)dt

s.t. θ̇i = Ii − δθi and θi(0) > 0
(16)

where r > 0 denotes the time preference rate. Future profits are discounted since
we presume that economic agents are impatient, i.e., they rather prefer to earn
profits today than tomorrow.3

Next, the best response of a service provider is determined. The
dynamic optimization problem is solved by applying the maximum principle
[5, Theorem 4.2]. We set up the current value Hamiltonians for each service
provider i by

Hi(θ, I, μi) = π(θ, I) + μi(Ii − δθi). (17)

where μi is the costate variable. The current value Hamiltonian measures current
profits as well as future profits which arise by investing into the service quality.
Note that each service provider faces an intertemporal trade-off when making an
investment decision. Current investment instantly lowers profits due to invest-
ment costs, but also raises expectations of future gains from the investment due
to an increase in the service quality. The costate variable is thus considered as a
shadow price which translates gains of investment into current profits. Inserting
the service provider’s profit from (14), the 1. first order condition for optimal
investment reads

∂Hi

∂Ii
(θ, I, μi) = −βi

3
Ii + μi = 0 ⇐⇒ Ii =

3
βi

μi. (18)

The interpretation of (18) is straightforward: the larger the investment cost para-
meter given by βi, the smaller the investment and the larger future gains of an
increase in quality measured by the shadow price μi, the higher the investment.
That is, current marginal costs of investment must be outweighed by future
gains of current investment. The 2. first order condition gives the evolution of
the costate over time

μ̇i = μir − ∂Hi

∂θi
(θ, I, μi) = μi(r + δ) +

αiθi

3
−

θρ−1
i

(
θρ
1 + θρ

2

) 1−ρ
ρ

12(γ1 + γ2)
. (19)

3 From a technical point of view we must assume that r > 0, because otherwise the
payoff integral may not converge.

Economic Aspects of Service Composition 209

Since we are rather interested in evaluating the dynamics in the (Ii, θi) space,
we may differentiate (18) over time yielding

μ̇i =
βi

3
İi (20)

and then combine it with (19) using (18) which gives us

İi = Ii(δ + r) +
αi

βi
θi −

θρ−1
i

(
θρ
1 + θρ

2

) 1−ρ
ρ

4βi(γ1 + γ2)
. (21)

Considering both service providers, we now have a four-dimensional system of
differential equations which is denoted by D(θ̇, İ). The dynamic equilibrium
or fixed point can be found by solving D(0, 0) for I and θ and is given by4

Ĩi =
δ

4(γ1 + γ2)ξi

(
1 +

(
ξi

ξ3−i

) ρ
2−ρ

) 1−ρ
ρ

, (22)

θ̃i =
Ĩi

δ
(23)

with ξi := δβi(δ + r) + αi and ξ3−i := δβ3−i(δ + r) + α3−i for i = 1, 2. Note that
for particular values of ρ we have5

θ̃i =

⎧⎪⎪⎨
⎪⎪⎩

1
4(γ1 + γ2)

· 1
ξ1 + ξ2

for ρ → −∞,

1
4(γ1 + γ2)

· 1
ξi

for ρ → 1.

(24)

If the qualities of the single services are complementary, then service provider
i also takes into account the cost parameters of 3 − i and both providers will
supply their single service in the same quality. This feature essentially captures
the Leontief characteristics of the quality for the composed service. No service
provider has an incentive to invest into quality of the single service if the overall
quality is solely determined by the other provider. The dynamic equilibrium is
in fact identical for both service providers for ρ → −∞. While if qualities are
perfect substitutes, a service provider is concerned only about his firm-specific
quality and investment costs. In addition, we see that the long-run quality level
is unambiguously increasing in all exogenous parameters. The economic inter-
pretation is as follows: Since αi, βi and γi are cost parameters for producing θi,
we will observe a low long-run quality level for high production costs. If δ is
high, then we will observe a low θ̃i, because quality depreciates rather rapidly

4 Further details on the derivation are presented in Appendix A.1.
5 At the discontinuity point ρ = 0, where the quality of the composed good switches

from complementary to substitutable, one can show that the left- and right-hand
side limits differ with limρ→0− θ̃i = 0 and limρ→0+ θ̃i = ∞.

210 S. Brangewitz and S. Hoof

over time. To maintain some specific quality level the service provider must make
large gross investments Ĩi, which are costly. Finally, θ̃i is decreasing in r. That is,
if the service provider is impatient and does not value future profits that much,
he invests little and the long-run equilibrium is low as well.

The stability of the fixed point can be checked by evaluating the eigenvalues
of the Jacobian matrix. It turns out that the eigenvalues are real and opposite
in sign. That is, there are two positive and two negative eigenvalues, indicating
that the system is saddle point stable.6 There also exists a unique saddle path
converging to the dynamic equilibrium.

6 Simulation

Since the problem is open loop7 in nature, we are dealing with an initial value
problem. That is, given θi(0) we are concerned only with determining optimal
initial investment decisions Ii(0), for i = 1, 2. The system dynamics are then
fully characterized by the four differential equations D(θ̇, İ). However, there are
infinitely many possibilities to pick initial investment Ii(0) ∈ R. To pin down
the unique saddle path we make use of the 3. first order condition, namely the
transversality condition

lim
t→∞ e−rtμi(t)θi(t) = 0. (25)

The transversality condition ensures that the system moves along the saddle
path, because it rules out exploding paths which diverge from the dynamic equi-
librium. Hence the transversality condition gives rise to a terminal condition. If
investment is in steady state at some time instance t = tf , then it has to be
stuck there forever, i.e., limtf →∞ Ii(tf) = Ĩi for i = 1, 2.

Now we are dealing with a 4D system of differential equations with two initial
and two terminal conditions. We then use a numerical boundary value problem
solver to simulate the system. To simulate the model we have to parametrize it.
We used the following parameters throughout θ1(0) = θ2(0) = 3, δ = 1, r = 0.05,
α1, β1, γ1 = 0.1 and α2, β2, γ2 = 0.2. We vary ρ ∈ {−5, 0.9} to emphasize the
main feature of the model. That is, what the optimal quality level of a single
service is if the overall quality of the composed service is either complementary
or substitutable. The respective steady states are given by (23) and read

ρ = 0.9 : θ̃1 = Ĩ1 = 4.3 and θ̃2 = Ĩ2 = 2.3 (26)

ρ = −5 : θ̃1 = Ĩ1 = 1.3 and θ̃2 = Ĩ2 = 1.2 (27)

6 The derivation can be found in Appendix A.2.
7 Actually, here the cooperative as well as the open and closed loop solution coincide.

Since profits are split evenly among the market participants they try to maximize
the overall profit, which is basically the definition of a cooperative mood of play. In
addition, the game is somehow linear-quadratic (LQ). That is, the law of motions are
linear and the payoffs are quadratic with respect to the control and state variable.
LQ games are known to have the same solution for open and closed loop strategies [5,
Sect. 7.1].

Economic Aspects of Service Composition 211

If the services are substitutable (ρ = 0.9), then cost parameters drive the
long-run equilibrium. Here the cost advantage of service provider 1 yields a
higher investment and thus also a higher quality in the dynamic equilibrium.
On the other hand, if services are complementary (ρ = −5), the cost advantage
nearly vanishes and both service providers adjust quality towards some similar
level. Figure 3 displays the respective time paths θi(t) and Ii(t) over a time
horizon of five periods t ∈ [0, 5].

Fig. 3. Solution paths

Consider the case ρ = 0.9 (cf. Fig. 3(a)). Firm 1 invests slightly more than the
long-run equilibrium level and thus increases quality over time θ̇1 > 0. Service
provider 2 on the other hand invests less and thus the quality decreases. Note that
the time paths of quality steadily diverge from the common origin θ1(0) = θ2(0).
Consider the case ρ = −5 (cf. Fig. 3(b)). Even though the cost parameters did
not change, the dynamics fundamentally differ with respect to the first case.
Here the shape of the time path is congruent for both service providers. Service
provider 1 now adjusts the quality towards the less efficient provider 2, i.e., both
service providers decrease quality over time and reach some “close” equilibria due
to the complementarity of the services. Now service provider 1 has no incentive
to produce a high quality service, since the overall quality is strongly determined
by the lower quality.

212 S. Brangewitz and S. Hoof

7 Conclusion

We introduced a model with an intermediary producing a composed service
using two single services to investigate the dynamic interaction on the market
for composed services. While considering in principal a composed service with
two complementary single services as inputs, our analysis is valid for different
assumptions on how the quality of the composed service is actually determined
from the single services’ qualities. Price negotiations have been modelled cooper-
atively by simultaneously applying the Nash bargaining solution in negotiations
between the intermediary and each single service provider. We have shown that
the surplus that is generated from producing and selling the composed service to
a user is evenly divided among the intermediary and the two service providers.
The dynamic evolution of quality and the investments therein have been analysed
using a differential game with an open loop strategy profile. We find that there
exists a unique saddle point for the quality and respective investment level.
That is, the equilibrium is generally unstable, but reachable on the unique sad-
dle path. We pin down the saddle path by applying a boundary value problem
solver. Depending on the quality substitutability the dynamics fundamentally
differ for fixed, but asymmetric cost parameters. That is, cost advantages are of
minor interest if the overall quality heavily depends on both services. This means
we observe that there is a crucial impact of how quality differences between sin-
gle services may or may not be compensated when the quality of the composed
service is determined.

Beyond our analysis here, several extensions of the model are possible. First
of all, we did not explicitly fix a negotiation protocol. In fact, existing approaches
and protocols implementing the Nash bargaining solution may be easily incor-
porated into the model without changing our observations. Surely the impact
of competition between several intermediaries producing composed services and
the use of more complex models of service composition are worth further investi-
gation in future work. For instance, typically different alternative single services
may be available for a composed service. Thus, besides complementary also
substitutable single services may be considered. Competition between service
providers may as well have an effect on the bargaining power of the interme-
diary. In addition, the comparison of different pricing models in an additional
direction for further research.

A Technical Appendix

A.1 Fixed Point

In this section we derive the unique fixed point of D(θ̇, İ) denoted by (θ̃, Ĩ).
Instead of solving İ1 = İ2 = θ̇1 = θ̇2 = 0 simultaneously, we express the equilib-
rium investment level by means of the quality. Setting (15) equal to zero yields

Ĩi − δθ̃i = 0 =⇒ Ĩi = θ̃iδ for i = 1, 2. (28)

Economic Aspects of Service Composition 213

We now solve the remaining equations for θ̃1 and θ̃2. Inserting (28) into (21)
yields

θ̃iδ

(
δ + r +

αi

βiδ

)
−

θ̃ρ−1
i

(
θ̃ρ
1 + θ̃ρ

2

) 1−ρ
ρ

4βi(γ1 + γ2)
= 0. (29)

Rearranging gives us

θ̃2−ρ
i (βiδ(δ + r) + αi) =

(
θ̃ρ
1 + θ̃ρ

2

) 1−ρ
ρ

4(γ1 + γ2)
. (30)

Note that the right-hand side of (30) is identical for both providers, i.e., sym-
metric in the variables γ1 and γ2 as well as in θ̃1 and θ̃2. Thus, we know that

θ̃2−ρ
i ξi = θ̃2−ρ

3−i ξ3−i (31)

where we defined ξi := δβi(δ + r) + αi for i = 1, 2. This yields a relationship
between the two quality levels

θ̃3−i =
(

ξi

ξ3−i

) 1
2−ρ

θ̃i =: φiθ̃i. (32)

Now, we plug (32) into (30) and obtain

θ̃2−ρ
i ξi =

(
θ̃ρ

i + (φiθ̃i)ρ
) 1−ρ

ρ

4(γ1 + γ2)
. (33)

Solving according to θ̃i yields

θ̃i =

(
1 + φρ

i

) 1−ρ
ρ

4(γ1 + γ2)ξi
. (34)

A.2 Stability

The stability of the fixed point can be checked by evaluating the eigenvalues
{ωn : n = 1, 2, 3, 4} of the Jacobian matrix. We obtain

JD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂İ1
∂I1

∂İ1
∂I2

∂İ1
∂θ1

∂İ1
∂θ2

∂İ2
∂I1

∂İ2
∂I2

∂İ2
∂θ1

∂İ2
∂θ2

∂θ̇1
∂I1

∂θ̇1
∂I2

∂θ̇1
∂θ1

∂θ̇1
∂θ2

∂θ̇2
∂I1

∂θ̇2
∂I2

∂θ̇2
∂θ1

∂θ̇2
∂θ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

ε11 0 ε13 ε14
0 ε22 ε23 ε24

ε31 0 ε33 0
0 ε42 0 ε44

⎤
⎥⎥⎦ (35)

214 S. Brangewitz and S. Hoof

with

ε11 = ε22 = δ + r, ε31 = ε42 = 1, ε33 = ε44 = −δ, (36)

ε13 =
α1

β1
+

1 − ρ

4β1(γ1 + γ2)
θρ−2
1 θρ

2 (θρ
1 + θρ

2)
1
ρ −2

, (37)

ε24 =
α2

β2
+

1 − ρ

4β2(γ1 + γ2)
θρ−2
2 θρ

1 (θρ
1 + θρ

2)
1
ρ −2

, (38)

ε14 = − 1 − ρ

4β1(γ1 + γ2)
(θ1θ2)ρ−1 (θρ

1 + θρ
2)

1
ρ −2

, (39)

ε23 = − 1 − ρ

4β2(γ1 + γ2)
(θ1θ2)ρ−1 (θρ

1 + θρ
2)

1
ρ −2

. (40)

The eigenvalues are

ω1,2 =
1
2

(
ε11 + ε33 ±

√
(ε11 − ε33)2 + 4ε13

)
=

1
2

(
r ±

√
(r + 2δ)2 + 4ε13

)
(41)

ω3,4 =
1
2

(
ε22 + ε44 ±

√
(ε22 − ε44)2 + 4ε24

)
=

1
2

(
r ±

√
(r + 2δ)2 + 4ε24

)
.

(42)

Since ε13 > 0 and ε24 > 0 we must have |r| < |√(r + 2δ)2 + 4ε13| and |r| <

|√(r + 2δ)2 + 4ε24|. Hence two eigenvalues are positive and the remaining two
are negative ω1,3 > 0 > ω2,4 respectively. The system is thus said to be saddle
point stable.

References

1. Abhishek, V., Kash, I.A., Key, P.: Fixed and market pricing for cloud services.
In: 2012 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 157–162, March 2012

2. Al-Roomi, M., Al-Ebrahim, S., Buqrais, S., Ahmad, I.: Cloud computing pricing
models: a survey. Int. J. Grid Distrib. Comput. 6(5), 93–106 (2013)

3. Brangewitz, S., Haake, C.-J., Manegold, J.: Contract design for composed services
in a cloud computing environment. In: Ortiz, G., Tran, C. (eds.) ESOCC 2014.
CCIS, vol. 508, pp. 160–174. Springer, Heidelberg (2015)

4. Brekke, K.R., Cellini, R., Siciliani, L., Straume, O.R.: Competition and quality in
health care markets: a differential-game approach. J. Health Econ. 29(4), 508–523
(2010)

5. Dockner, E., Jørgesen, S., Long, N.V., Sorger, G.: Differential Games in Economics
and Management Science. Cambridge University Press, Cambridge (2000)

6. Guo, L., Iyer, G.: Multilateral bargaining and downstream competition. Mark. Sci.
32(3), 411–430 (2013)

7. Hani, A.F.M., Paputungan, I.V., Hassan, M.F.: Renegotiation in service level
agreement management for a cloud-based system. ACM Comput. Surv. (CSUR)
47(3), 51:1–51:21 (2015)

Economic Aspects of Service Composition 215

8. Jula, A., Sundararajan, E., Othman, Z.: Cloud computing service composition:
a systematic literature review. Expert Syst. Appl. 41(8), 3809–3824 (2014)

9. Nash, J.F.: The bargaining problem. Econometrica 18(2), 155–162 (1950)
10. Zheng, X., Martin, P., Powley, W., Brohman, K.: Applying bargaining game theory

to web services negotiation. In: 2010 IEEE International Conference on Services
Computing (SCC), pp. 218–225, July 2010

Fault Tolerance

Fault-Aware Application Management Protocols

Antonio Brogi, Andrea Canciani, and Jacopo Soldani(B)

Department of Computer Science, University of Pisa, Pisa, Italy
soldani@di.unipi.it

Abstract. We introduce fault-aware management protocols, which per-
mit modelling the management behaviour of application components by
taking into account the potential occurrence of faults, and we show how
such protocols can be composed to analyse the behaviour of a multi-
component application and to automate its management. We also illus-
trate a way to recover applications that are stuck because a fault was
not properly handled and/or because a component is behaving differently
than expected.

Keywords: Management protocols · Fault modelling · Finite state
machines

1 Introduction

Automating the management of composite applications is currently one of the
major concerns of enterprise IT [18]. Such applications typically integrate various
heterogeneous components, whose deployment, configuration, enactment, and
termination must be suitably coordinated.

A convenient way to represent the structure of a composite application is
a topology graph [3], whose nodes represent the application components, and
whose arcs represents the dependencies among such components. More precisely,
each topology node can be associated with the requirements of a component, the
operations to manage it, and the capabilities it features. Inter-node dependencies
associate the requirements of a node with capabilities featured by other nodes.

In [4] we have shown how the management behaviour of topology nodes can
be modelled by management protocols, specified as finite state machines whose
states and transitions are associated with conditions defining the consistency of
the states of a node and constraining the executability of management oper-
ations. Such conditions are defined on the requirements of a node, and each
requirement of a node has to be fulfilled by a capability of another node. As
a consequence, the management behaviour of a composite application can be
easily derived by composing the management protocols of its nodes according to
the dependencies defined in its topology.

[4] does not deal with deal with the potential occurrence of faults, which
however must be considered when managing complex composite applications [9].

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 219–234, 2016.
DOI: 10.1007/978-3-319-44482-6 14

220 A. Brogi et al.

Indeed, an application component may be affected by faults caused by other
components on which it relies (e.g., a component is shutdown or uninstalled
while another component is relying on its capabilities).

In this paper we propose a fault-aware extension of management protocols, to
permit modelling how nodes behave when faults occurs. We also illustrate how
to analyse and automate the management of composite applications in a fault-
resilient manner. Namely, we show how the fault-aware management behaviour
of a composite application can be determined by simply composing the man-
agement protocols of its nodes according to the application’s topology. We then
describe how to determine whether a plan orchestrating the application man-
agement is valid, which are its effects (e.g., which capabilities are available after
executing it, or whether it may generate faults while being executed), and how
this also permits finding management plans from given application configura-
tions to achieve specific goals.

Even if application components are described by fault-aware management
protocols, the actual behaviour of components may differ from their described
behaviour (e.g., because of some bug). We show how the unexpected behaviour
of a component can be modelled by automatically completing its management
protocol, and how this permits analysing the (worst possible) effects of a mis-
behaving component on the rest of an application. We also illustrate a way to
recover applications that are stuck because a fault was not properly handled
and/or because of misbehaving components.

The rest of the paper is organised as follows. Section 2 provides an example
motivating the need for fault-aware management protocols. Section 3 illustrates
such protocols and to compose them to analyse an application’s management
in presence of faults. Section 4 describes how to deal with faults caused by the
unexpected behaviour of component(s), and how to recover stuck applications.
Sections 5 and 6 discuss related work and draw some concluding remarks.

2 Motivating Example

Consider a toy application composed by a web-based front-end and a back-end,
both deployed on an apache server, which in turn is installed on a debian oper-
ating system. Figure 1 illustrates the topology of such application, according to
the TOSCA [21] graphical notation.

Each inter-node dependency is explicitly represented by a relationship con-
necting a node’s requirement with another node’s capability (e.g., the server
requirements of front-end and back-end are connected with the app-rte capabil-
ity of apache). A relationship can represent a vertical containment dependency
(e.g., apache is installed on debian), or an horizontal dependency, specifying that
a component requires another, without stating that the former is contained in
the latter (e.g., front-end must connect to back-end’s endpoint to work properly).

Suppose for instance that all nodes have been deployed, started, and properly
connected each other (i.e., all components are in their running state). What
happens if the stop operation of back-end is executed? The back-end application

Fault-Aware Application Management Protocols 221

Fig. 1. Motivating example.

component is stopped, and this generates a fault in the front-end, which becomes
unable to serve requests to its clients, simply because the connection dependency
with back-end is not working any more. Furthermore, even if back-end is re-
started, the front-end has to re-connect to the back-end.

Even worse is the case when a node presents an unexpected behaviour. Sup-
pose again that the application is up and running, and that the apache server
unexpectedly crashes. Such a crash results in faulting also the nodes contained in
apache (viz., front-end and back-end), which are suddenly killed, and potentially
enter in an inconsistent state that makes them unusable from there onwards.

Both the above mentioned cases fail because a node stops providing its capa-
bilities while other nodes are relying on them to continue to work. In the first
case this happens because of the invocation of a management operation that
stops a node while other nodes are depending on it. In the second case a node
unpredictably fails1.

3 Modelling and Analysing Application Management
in Presence of faults

3.1 Fault-Aware Management Protocols

Let N be a node modelling an application component. Management protocols [4]
permit modelling the management behaviour of N by describing whether and
how the management operations of N depend (i) on other operations of the
same node, and/or (ii) on operations of other nodes providing the capabilities
that satisfy the requirements of N .

The first kind of dependencies is described by specifying relationships
between states and management operations of N . More precisely, to describe
the order in which the operations of N can be executed, we employ a transition
relation τ specifying whether an operation o can be executed in a state s, and
which state is reached by executing o in s.

1 Misbehaving components can be detected via monitoring (e.g., by exploiting watch-
dogs or heartbeat services). We shall not deepen into details, as component moni-
toring is outside of the scope of this paper.

222 A. Brogi et al.

The second kind of dependencies is described by associating transitions and
states with (possibly empty) sets of requirements to indicate that the corre-
sponding capabilities are assumed to be provided. More precisely, the require-
ments associated with a transition t specify which are the capabilities that must
be offered to allow the execution of t. Instead, the requirements associated with
a state of N specify which capabilities must (continue to) be offered by other
nodes in order for N to (continue to) work properly. To complete the description,
each state s of N is also associated to the capabilities provided by N in s.

We hereby define a fault-aware extension of management protocols [4], to per-
mit describing how N reacts when it is in a state assuming some requirements
to be satisfied, and some other node(s) stop(s) providing the capabilities satis-
fying such requirements. We introduce a new transition relation ϕ to model the
explicit fault handling of N , i.e. how N changes its state from s to s′ when some
of the requirements it assumes in s stop being satisfied.

Definition 1. Let N = 〈SN , RN , CN , ON ,MN 〉 be a node, where SN , RN , CN ,
and ON are the finite sets of its states, requirements, capabilities, and man-
agement operations, and MN = 〈sN , ρN , χN , τN , ϕN 〉 is a finite state machine
defining the fault-aware management protocol of N , where2:

– sN ∈ SN is the initial state,
– ρN : SN → 2RN is a function indicating which requirements must hold in each

state s ∈ SN ,
– χN : SN → 2CN is a function indicating which capabilities of N are offered in

a state s ∈ SN ,
– τN ⊆ SN × 2RN × ON × SN is a set of quadruples modelling the transition

relation, i.e. 〈s,H, o, s′〉 ∈ τN denotes that in state s, and if the requirements
in H are satisfied, o is executable and leads to state s′, and

– ϕN ⊆ SN × 2RN × SN is a set of triples modelling the explicit fault handling
for a node, i.e. 〈s, F, s′〉 ∈ ϕN denotes that the node will change its state from
s to s′ if the requirements in F stop being satisfied.

Example 1. Figure 2 shows the management protocols of the nodes composing
our motivating scenario (where thicker arrows represent τ , and lighter arrows
represent ϕ).

Consider for instance the management protocol Mapache, which describes the
behaviour of the apache node. In its initial state (not-installed) apache does not
require nor provide anything. In the installed and started states it instead assumes
the os requirement to (continue to) be satisfied. If the os requirement is faulted,
then apache returns to its initial state (thus requiring to be installed and started
again). The started state is the only one where apache concretely provides its
app-rte capability. Finally, note that all apache’s operations can be performed
only if the os requirement is satisfied.
2 The constraints to ensure a deterministic semantics of fault-aware management pro-

tocols can be trivially formalised by extending those presented in [4]. In the following
we consider management protocols that satisfy such requirements.

Fault-Aware Application Management Protocols 223

Mfront-end Mback-end

Mapache Mdebian

Fig. 2. Examples of management protocols.

Consider now the management protocol Mback-end, which describes the behav-
iour of the back-end node. When back-end is installed or running, it assumes the
capability satisfying its server requirement to (continue to) be provided. What
happens if such capability stops being provided? ��

The management protocol of a node may leave unspecified how the compo-
nent will behave in case some requirements stop being fulfilled in some states. To
explicitly model that, management protocols can be completed by adding tran-
sitions for all unhandled faults, all leading to a “sink” state s� (that requires
and provides nothing)3.

Definition 2. Let N = 〈SN , RN , CN , ON ,MN 〉 be a node, where MN = 〈sN ,
ρN , χN , τN , ϕN 〉 is its fault-aware management protocol. The management pro-
tocol MN can be completed by replacing SN and ϕN with:

– S′
N = SN ∪ {s�}, with s�
∈ SN and ρ(s�) = χ(s�) = ∅, and

– ϕ′
N = ϕN ∪ {〈s, F, s�〉 | s ∈ SN ∧ ∅
= F ⊆ ρ(s) ∧ �〈s, F, s′〉 ∈ ϕN}.

In the following we will assume fault-aware management protocols to be auto-
matically completed as defined above.

Example 2. The completion of the management protocol Mback-end (Fig. 2) is
shown in Fig. 3: We add a “sink state” back-end�, and two transitions reacting
to the unsatisfaction of the server requirement when back-end is in its installed
or running states.

The extension of the other management protocols in Fig. 2 is even simpler:
Since they handle all potential faults, their extension only consists in adding a
3 It is easy to prove that the proposed completion preserves the determinism of a

management protocol.

224 A. Brogi et al.

Fig. 3. Example of completed management protocol.

sink state to each of them (i.e., front-end� is added to the front-end’s states, while
apache� and debian� are added to those of apache and debian, respectively). ��

3.2 Composition of Fault-Aware Management Protocols

Let A = 〈T, b〉 be a generic composite application, where T is the finite set
of nodes (application components) in the application topology4, and where the
connection among nodes is described by a (total) binding function

b :
⋃

N∈T RN → ⋃
N∈T CN

associating each node’s requirement with the capability satisfying it.
Since A defines a composition of the nodes in T that coordinate through the

binding b among requirements and capabilities, we model the behaviour of A by
simply composing the management protocols of the nodes in T .

First, we generalise the notion of global state of A [4] by introducing pending
faults. To simplify notation, we shall denote with ρ(G) the set of requirements
that are assumed to hold by the nodes in T when A is in G, with χ(G) the set
of capabilities that are provided by such nodes in G, and with b(R) the set of
capabilities bound to the requirements in R. Formally:

– ρ(G) =
⋃

N∈T {ρN (s) | s ∈ G ∧ s ∈ SN},
– χ(G) =

⋃
N∈T {χN (s) | s ∈ G ∧ s ∈ SN}, and

– b(R) =
⋃

r∈R{b(r)}.

We define the global state of an application A as a set G containing the
current state of each of its nodes. We also define a function P to denote the set
of pending faults in G, which are the requirements that are assumed in G while
the corresponding capabilities are not provided.

Definition 3. Let A = 〈T, b〉 be a composite application, and let N = 〈SN , RN ,
CN , ON ,MN 〉. A global state G of A is a set of states such that:

G ⊆ ⋃
N∈T SN ∧ ∀N ∈ T : ∃!s ∈ G ∩ SN .

4 For simplicity, and without loss of generality, we assume that, given two nodes in a
topology, the names of states, requirements, capabilities, and operations are disjoint.

Fault-Aware Application Management Protocols 225

The set P (G) of pending faults in G is defined as follows:

P (G) = {r ∈ ρ(G) | b(r)
∈ χ(G)}.
We denote by G the initial global state of A, where each node of T is in its
initial state (viz., G =

⋃
N∈T {sN}).

The management behaviour of a composite application A is defined by a
labelled transition system over its global states, which consists of two simple
inference rules, (op) for operation execution and (fault) for fault propagation.

Definition 4. Let A = 〈T, b〉 be a composite application, and let N = 〈SN , RN ,
CN , ON ,MN 〉 with MN = 〈sN , ρN , χN , τN , ϕN 〉. The fault-aware management
behaviour of A is modelled by a labelled transition system whose configurations
are the global states of A, and whose transition relation is defined by the following
inference rules:

s ∈ G 〈s,H, o, s′〉 ∈ τN P (G) = ∅ b(H) ⊆ χ(G)

G
o−→ (G − {s}) ∪ {s′}

(op)

s ∈ G 〈s, F, s′〉 ∈ ϕN F ⊆ P (G)

G
⊥−→ (G − {s}) ∪ {s′}

(fault)

The (op) rule defines how the global state of A is updated when a node performs
a transition 〈s,H, o, s′〉. Such transition can be performed when there are no
pending faults (viz., P (G) = ∅), and the requirements needed to perform the
transition are satisfied in G (viz., b(H) ⊆ χ(G)). As a result, the global state
G is updated with the new state of N (viz., G′ = (G − {s}) ∪ {s′}), potentially
triggering faults to be handled (if P (G′)
= ∅).

The (fault) rule instead models fault propagation. It defines how the global
state G of an application A is updated when executing a fault handling transition
〈s, F, s′〉 of a node N . Such transition can be executed if the faults it handles
are pending in G (viz., F ⊆ P (G)), and its effects on the whole application A
are the following: The state of N is updated (viz., G′ = (G − {s}) ∪ {s′}), novel
faults may be triggered, while the faults in F are not pending any more.

3.3 Analysing an Application’s Fault-Aware Management
Behaviour

The management behaviour defined in Definition 4 permits analysing and
automating the management of a composite application. For instance, we can
easily define which sequences (or, more in general, which workflows) of manage-
ment operations can be considered valid in a global state of an application.

Definition 5. Let A = 〈T, b〉 be a composite application. The sequence o1o2...on
of management operations in A is valid in a global state G0 of A iff

∃G1, G2, ...Gn : G0
o1�−→ G1

o2�−→ G2
o3�−→ . . .

on�−→ Gn

226 A. Brogi et al.

where
G

o−→ G′

G
o�−→ G′

G
o�−→ G′ G′ ⊥−→ G′′

G
o�−→ G′′

A workflow Worchestrating the management operations in A is valid in G0 iff
all its sequential traces are valid in G0.

Example 3. Consider the workflow in Fig. 4(a), which permits restarting the
back-end and front-end of our motivating application (Figs. 1 and 2). Suppose
also that the application is in the following global state: debian is running, apa-
che is started, back-end and front-end are running. It is easy to check that the
workflow is valid in the considered global state since both its sequential traces
are valid in such global state.

(a)

(b)

Fig. 4. Examples of (a) valid workflow and (b) valid sequence of operations.

Consider, for instance, the sequential trace performing back-end’s stop before
front-end’s stop. Figure 4(b) shows the validity of such a sequential trace by
illustrating the evolution of the application’s global state. ��

The modelling introduced in Sects. 3.1 and 3.2 can be exploited for various
other purposes besides checking whether a plan is valid. For instance, validity
may not be enough, as different sequential traces of a plan may reach different
global states. It is thus interesting to characterise deterministic plans.

Definition 6. Let G be a global state of a composite application A. A valid
workflow plan W for A is deterministic from G if and only if all its sequential
traces reach the same global state G′.

Fault-Aware Application Management Protocols 227

The way to check whether a given plan is valid or deterministic is obviously
a visit of the graph associated with the transition system of an application’s
management behaviour (Definition 4). It is worth highlighting that, thanks to
the constraints on management protocols and to the way they are combined,
such a graph is finite and thus its visit is guaranteed to terminate.

It is also interesting to compute the effects of a valid workflow W on the states
of an application’s components, as well as on the requirements that are satisfied
and the capabilities that are available. Such effects can be directly determined
from the global state(s) reached by performing the sequential traces of W .

Moreover, the problem of finding whether there is a workflow which starts
from a global state G and achieves a specific goal (e.g., bringing some components
of an application to specific states, or making some capabilities available) can
also be solved with a visit of the graph associated with the transition system of
an application’s management behaviour.

Finally, our model allows to characterise an interesting property that an
application may exhibit. If it is possible to reach the initial global state G from
any global state G that is reachable from G itself, then it is always possible
to generate a plan for any reachable goal from any reachable global state. This
ensures an application’s recoverability, meaning that whatever global state G
we reach from the initial global state G (by executing whatever operation or
performing whatever ⊥-transition), we can always get back to G, thus always
permitting to reset the application.

4 Modelling the Unexpected

4.1 Unexpected Behaviour of a Component

The analysis described in Sect. 3 assumes that each application component
behaves according to its specified management protocol, thus not taking into
account components that behave unexpectedly because of mismatches between
their modelled and actual behaviour (e.g., because of bugs).

The unexpected behaviour of a component can be modelled by automatically
completing its management protocol by adding a “crash” operation � that leads
the node to the sink state s�.

Definition 7. Let N = 〈SN , RN , CN , ON ,MN 〉 be a node, where MN = 〈sN ,
ρN , χN , τN , ϕN 〉 is its fault-aware management protocol. The management behav-
iour of N can be extended to include unexpected behaviour by replacing ON and
τN with:

– O′
N = ON ∪ {�}, and

– τ ′
N = τN ∪ {〈s, ρ(s),�, s�〉 | s ∈ SN}5.

5 � transitions can be fired only if the requirements in ρ(s) are satisfied so as to ensure
the well-formedness [4] of management protocols. Note that this is not a restriction
since such requirements are satisfied are satisfied in s (by Definitions. 1 and 2).

228 A. Brogi et al.

The � operation, combined with the analyses presented in Sect. 3.3, permits
analysing the management behaviour of an application also in presence of mis-
behaving components: Indeed, the possible unexpected behaviour of a node is
modelled by � transitions which lead the nodes to their sink state s�, where we
(pessimistically) assume that the node is not offering any capability any more.
This permits us to analyse the (worst possible) effects of a misbehaving node
on the rest of the application by simply observing whether and how the global
state of the application changes.

Example 4. Consider the back-end’s management protocol (Fig. 2), extended
by adding back-end� as illustrated in Example 2. The extension described in
Definition 2 simply consists in adding “crash” transitions starting from not-in-
stalled, installed, and running, and leading to back-end� (Fig. 5). The management
protocols of front-end, apache and debian can be extended analogously.

The above extension permits, for instance, determining the effects of a “crash-
ing” back-end when the whole application is up and running (Fig. 6). By invoking
back-end’s �, the global state is changed by updating the state of back-end, and
by filling the set of pending faults with the backend requirement of front-end
(since it is assumed and connected to the back-end’s endpoint capability, which
is no more provided). The pending fault is then consumed by a ⊥-transition,
which updates front-end’s state. ��

More interestingly, we may wish to recover an application having a compo-
nent that is behaving unexpectedly. More precisely, from the global state reached
after injecting a failure (by invoking the “crash” operation �), we may wish to
find a “recovery” plan whose execution permits reaching a given recovery goal
(e.g., the global state in which the failure was injected). Notice that, such a

Fig. 5. Example of a management protocol including unexpected behaviour.

Fig. 6. Example of fault injection and subsequent global state update.

Fault-Aware Application Management Protocols 229

recovery plan cannot be determined by simply visiting of the graph associated
with the labelled transition system modelling the management behaviour of an
application, as the faulted node is stuck in its sink state (since no transition
outgoes from such state).

4.2 Hard Recovery

Recovery plans can be generated automatically, and the underlying idea is quite
simple. When a node N is stuck6 in state s�, it can be “hard reset” by the node
N ′ in which it is contained (i.e., by the node in which it is installed or deployed).
More precisely, by resetting the container node N ′, all nodes it contains (among
which we have the stuck node N) are forcibly reset to their initial state and can
be re-installed and started to return up and running.

Due to space limitations, we hereby show how to recover the global state
directly on our motivating example after the fault injection of Example 4.

Example 5. Our objective is to enforce the hard reset of a node N stuck in
its sink state s�, by restarting the node in which N is contained. This can be
naturally modelled with fault-aware management protocols, provided that the
topology is extended with an alive capability to explicitly represent the node
containment:

– Since front-end and back-end are contained in apache, (i) we add an alive
requirement to front-end and back-end, (ii) we add an alive capability to apa-
che, and (iii) we connect the alive requirements of front-end and back-end alive
requirement with the alive capability of apache.

– Since apache is contained in debian, (i) we add an alive requirement to apa-
che, (ii) we add an alive capability to debian, and (iii) we connect the alive
requirement of apache to the alive capability of debian.

The updated topology permits to container nodes to witness whether they are
still installed (by providing their alive capability), and to contained nodes to
check whether they continue to be installed (by assuming their alive require-
ment). More precisely, it is possible to update the management protocols as
shown in Fig. 7, which illustrates the updated protocols of back-end and apache7.
In each state (other than the initial one), apache and back-end assume their alive
requirement, i.e. they assume their containers to continue to be installed. apache
is also providing its alive capability in such states, to witness to the nodes it
contains (i.e., front-end and back-end) that it continue to be there. Additionally,
whenever their alive requirement is removed, apache and back-end return to their
initial state. This models the fact that, whenever a container is uninstalled, the
nodes it contains are uninstalled along with it.

6 In general, hard recovery can be exploited for recovering a desired global state when-
ever a node is stuck in its sink state.

7 We omit the updated protocols of front-end and back-end due to space limitations,
and since their update is analogous to that of back-end and apache.

230 A. Brogi et al.

Mback-end Mapache

Fig. 7. Example of management protocols with alive requirements and capabilities.

With the above updates we are now able to recover the application from the
stuck global state in Fig. 6. Essentially, back-end is stuck in back-end�, and the
only way to get out of it is to remove its alive requirement, which in turn means
to shutdown and uninstall apache (to make it stop providing its alive capability).
This results in killing also the front-end, which goes back to its initial state.
Afterwards, we can re-install and start the apache server, setup and run the back-
end and front-end nodes, and connect the front-end (to the back-end).

It can be easily verified that the above listed operations build up a valid
workflow permitting the application to be again up and running from the global
state reached in Example 4. As we already mentioned, such a plan can simply
be determined with a visit of the graph associated with the transition system
defined by management behaviour of the application. The only requirement is
to use a modelling of the applications that is updated as we discussed at the
beginning of this example. ��

5 Related Work

The problem of automating composite application management is one of the
major trends in today’s IT [18]. Our previous work [4,5], as well as Aelous [10],
permit automatically deploying and managing multi-component cloud appli-
cations. The underlying idea of both approaches is quite simple: Developers
describe the behaviour of their components through finite-state machines, and
such descriptions can be composed to model the management behaviour of a
composite application. Engage [12] is another approach for processing applica-
tion descriptions to automatically deploy applications. The approach presented
in this paper extends [4,5], and differs from [10,12], since it permits explicitly
modelling faults and injecting failures in application components, analysing their
effects, and reacting to them to restore a desired application state.

The rigorous engineering of fault-tolerant systems is a well-known problem
in computer science [6], with many existing approaches targeting the design and

Fault-Aware Application Management Protocols 231

analysis of such systems. For instance, [15] proposes a way to design object-
oriented systems by starting from fault-free systems, and by subsequently refin-
ing such design by handling different types of faults. [2,22] instead focus on
fault-localisation, thus permitting to redesign a system to avoid the occurrence
of such a fault. These approaches differ from ours because they aim at obtain-
ing applications that “never fail”, since all potential faults have been identified
and properly handled. Our approach is instead more recovery-oriented [7], since
we focus on applications where faults possibly occur, and we permit designing
applications capable of being recovered.

Similar considerations apply to [1,13,16], which however share with our app-
roach the basic idea of modelling faults in single components and of composing
the obtained models according to the dependencies between such components
(i.e., according to the application topology).

[11] proposes a decentralised approach to deploy and reconfigure cloud appli-
cations in presence of failures. It models a composite applications as a set of
interconnected virtual machines, each equipped with a configurator managing its
instantiation and destruction. The deployment and reconfiguration of the whole
application is then orchestrated by a manager interacting with virtual machine
configurators. [11] shares with our approach the objective of providing a decen-
tralised and fault-aware management of a composite application, by specifying
the management of each component separately. However, it differs from our app-
roach since it does permits specifying inter-component dependencies, but it is not
possible to describe whether they are “horizontal” (i.e., a component requires
another to be up and running) or “vertical” dependencies (i.e., a component
is installed/deployed on another). Additionally, it focuses on recovering virtual
machines that have been terminated because of environmental faults, while we
also permit describing how components react to application-specific faults.

[19] proposes an approach to identify failures in a system whose components’
behaviour is described by finite state machines. Even though the analyses are
quite different, the modelling in [19] is quite similar to ours. It indeed relies on
a sort of requirements and capabilities to model the interaction among compo-
nents, and it permits “implicitly” modelling how components behave in presence
of single/multiple faults. Our modelling is a strict generalisation of that in [19],
since a component’s state can change not only because of requirement unsatis-
faction but also because of invoked operations, and since it permits “explicitly”
handling faults (i.e., fault handling transitions are distinct from those modelling
the normal behaviour of a component). Similar considerations apply to [8], whose
modelling is also based on finite state machines with input and output channels
(which permit fault communication and propagation by components).

UFIT [14] is a tool for verifying fault-tolerance of systems. It permits mod-
elling systems’ behaviour with timed automata, some of whose transitions explic-
itly represent how the system reacts to the occurrence of faults. Even if it models
fault transitions in a way similar to ours, UFIT differs from our approach since
it targets standalone systems and does not provide any mechanism to easily
compose the automata modelling the behaviour of multiple systems.

232 A. Brogi et al.

Other approaches worth mentioning are [17,20]. The way in which our app-
roach models fault-awareness by relying on the interactions between components,
as well as the idea of analysing/recovering faults through sequences of atomic
transactions (until a desired state is reached), are indeed inspired by [17]. Instead,
the idea of relying on fault injection to determine the effects of unpredictable
faults is inspired by [20].

In summary, to the best of our knowledge, the approach we propose in this
paper is the first that permits automatically orchestrating the management of
composite applications under the assumption that faults possibly occur during
such management, thus requiring to explicitly model how an application reacts
to their occurrence. It does so by following the common idea of modelling each
component separately, and of deriving the management behaviour of a composite
application by properly combining the behaviour of its components.

6 Conclusions

Management protocols [4] are a modular and reusable way to model the manage-
ment behaviour of application components, and to automate the management
of a complex applications composed by multiple components.

In this paper we have extended management protocols by taking into account
the possibility of faults suddenly occurring, as well as of misbehaving compo-
nents. More precisely, we have shown how to include faults in management proto-
cols, and how to model components’ unexpected behaviour. We have also shown
how to derive the fault-aware management of a composite application by sim-
ply composing the protocols of its components. Finally, we have discussed how
the proposed modelling permits automating various analyses (e.g., determining
whether a workflow orchestrating the management of an application is valid,
which are its effects, whether it generates faults, or recovering an application
that is stuck because of a faulted/misbehaving node).

The presented approach can be exploited for developing engines capable of
automatically orchestrating the management of composite application in a fault-
resilient manner. Indeed, given a desired application configuration, an orchestra-
tor can automatically execute the sequence of operations needed to reach such
configuration, and it can maintain such configuration even if faults or unexpected
behaviours suddenly occur.

Please note that, even if some of the analyses we presented in Sects. 3 and
4 have exponential time complexity in the worst case, they still constitute a
significant improvement with respect to the state-of-the-art, as currently the
management of the components of a complex application is coordinated manually
(e.g., by developing ad-hoc scripts), and it is hardly reusable since it is tightly
coupled to such application.

It is important to observe that our approach can be easily adapted to cope
with applications whose topologies are dynamic. Indeed, to deal with applica-
tions whose components may dynamically (dis)appear, we only need to add

Fault-Aware Application Management Protocols 233

such components to the application topology, and to update the binding func-
tion relating requirements and capabilities. A formalisation of what above is in
the scope of our immediate future work.

Another (obvious) extension for future work is to validate the approach we
presented in this paper on concrete case studies. In this perspective, we plan to
provide tools permitting to model and analyse fault-aware management pro-
tocols. More precisely, we plan to (i) properly extend Barrel [4], an open
source tool exploiting management protocols for describing and analysing the
management of composite TOSCA applications, and (ii) to develop a proto-
type automatically generating concrete workflows orchestrating the fault-aware
management of TOSCA applications.

We also plan to extend the analyses that can be performed on fault-aware
management protocols. For instance, we plan to devise techniques permitting
to improve our analyses by determining fragments of the topology that can
be managed independently from the rest of the topology. This would permit a
smarter and more efficient reasoning, as the search space could be reduced by
focusing only on the interested fragment(s).

Acknowledgements. This work has been partly supported by the project Through
the fog (PRA 2016 64) funded by the University of Pisa.

References

1. Alhosban, A., Hashmi, K., Malik, Z., Medjahed, B., Benbernou, S.: Bottom-up
fault management in service-based systems. ACM Trans. Internet Technol. 15(2),
7:1–7:40 (2015)

2. Betin Can, A., Bultan, T., Lindvall, M., Lux, B., Topp, S.: Eliminating synchroniza-
tion faults in air traffic control software via design for verification with concurrency
controllers. Autom. Softw. Eng. 14(2), 129–178 (2007)

3. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: Automated discovery and
maintenance of enterprise topology graphs. In: Proceedings of the 6th SOCA, pp.
126–134. IEEE (2013)

4. Brogi, A., Canciani, A., Soldani, J.: Modelling and analysing cloud application
management. In: Dustdar, S., et al. (eds.) ESOCC 2015. LNCS, vol. 9306, pp.
19–33. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24072-5 2

5. Brogi, A., Canciani, A., Soldani, J., Wang, P.: Modelling the behaviour of man-
agement operations in cloud-based applications. In: Moldt, D. (ed.) Proceedings of
the International Workshop on Petri Nets and Software Engineering, PNSE 2015.
CEUR Workshop Proceedings, vol. 1372, pp. 191–205. CEUR-WS.org (2015)

6. Butler, M., Jones, C., Romanovsky, A., Troubitsyna, E.: Rigorous Development of
Complex Fault-Tolerant Systems. LNCS. Springer, Heidelberg (2007)

7. Candea, G., Brown, A.B., Fox, A., Patterson, D.: Recovery-oriented computing:
building multitier dependability. Computer 37(11), 60–67 (2004)

8. Chen, L., Jiao, J., Fan, J.: Fault propagation formal modeling based on stateflow.
In: Proceedings of the 1st ICRSE, pp. 1–7. IEEE (2015)

9. Cook, R.I.: How Complex Systems Fail. University of Chicago, Chicago (1998)
10. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: a component model

for the cloud. Inf. Comput., 100–121 (2014)

http://dx.doi.org/10.1007/978-3-319-24072-5_2

234 A. Brogi et al.

11. Durán, F., Salaün, G.: Robust and reliable reconfiguration of cloud applications.
J. Syst. Softw. (2015, in press)

12. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment management
system. In: Proceedings of the 33rd PLDI, pp. 263–274. ACM (2012)

13. Grunske, L., Kaiser, B., Papadopoulos, Y.: Model-driven safety evaluation with
state-event-based component failure annotations. In: Heineman, G.T., Crnković,
I., Schmidt, H.W., Stafford, J.A., Ren, X.-M., Wallnau, K. (eds.) CBSE 2005.
LNCS, vol. 3489, pp. 33–48. Springer, Heidelberg (2005)

14. Hajisheykhi, R., Ebnenasir, A., Kulkarni, S.S.: UFIT: a tool for modeling faults in
UPPAAL timed automata. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM
2015. LNCS, vol. 9058, pp. 429–435. Springer, Heidelberg (2015)

15. Johnsen, E., Owe, O., Munthe-Kaas, E., Vain, J.: Incremental fault-tolerant design
in an object-oriented setting. In: Proceedings of 2nd APAQS, pp. 223–230 (2001)

16. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: Proceedings of the 8th SCS, pp. 37–46. Australian Computer Society Inc. (2003)

17. de Lemos, R., Fiadeiro, J.L.: An architectural support for self-adaptive software
for treating faults. In: Proceedings of the 1st WOSS, pp. 39–42. ACM (2002)

18. Leymann, F.: Cloud computing. IT - Inf. Technol. 53(4), 163–164 (2011)
19. Liggesmeyer, P., Rothfelder, M.: Improving system reliability with automatic fault

tree generation. In: Proceedings of the 28th FTCS, pp. 90–99. IEEE (1998)
20. Nagatou, N., Watanabe, T.: A model-checking based approach to robustness analy-

sis of procedures under human-made faults. In: Ouyang, C., Jung, J.-Y. (eds.)
AP-BPM 2014. LNBIP, vol. 181, pp. 117–131. Springer, Heidelberg (2014)

21. OASIS: Topology and Orchestration Specification for Cloud Applications (2013).
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

22. Qiang, W., Yan, L., Bliudze, S., Xiaoguang, M.: Automatic fault localization for
BIP. In: Li, X., et al. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 277–283. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-25942-0 18

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://dx.doi.org/10.1007/978-3-319-25942-0_18

Improving Reliability of Cloud-Based
Applications

Hong Thai Tran1(&) and George Feuerlicht1,2,3

1 Faculty of Engineering and Information Technology,
University of Technology, Sydney, Sydney, Australia

{hongthai.tran,george.feuerlicht}@uts.edu.au
2 Unicorn College, V Kapslovně 2767/2, 130 00 Prague 3, Czech Republic
3 Department of Information Technology, University of Economics, Prague,

W. Churchill Sq. 4, Prague 3, Czech Republic

Abstract. With the increasing availability of various types of cloud services
many organizations are becoming reliant on providers of cloud services to
maintain the operation of their enterprise applications. Different types of relia-
bility strategies designed to improve the availability of cloud services have been
proposed and implemented. In this paper we have estimated the theoretical
improvements in service availability that can be achieved using the Retry Fault
Tolerance, Recovery Block Fault Tolerance and Dynamic Sequential Fault
Tolerance strategies, and we have compared these estimates to experimentally
obtained results. The experimental results obtained using our prototype Service
Consumer Framework are consistent with the theoretical predictions, and indi-
cate significant improvements in service availability when compared to invoking
cloud services directly.

Keywords: Reliability of cloud services � Fault tolerance � RFT � RBFT �
DSFT

1 Introduction

With the increasing use of cloud services the reliability of enterprise applications is
becoming dependent on the reliability of consumed cloud services. In the public cloud
context, service consumers do not have control over externally provided cloud services
and therefore cannot guarantee the levels of security and availability that they are
typically expected to provide to their users [1]. While most cloud service providers
make considerable efforts to ensure the reliability of their services, cloud service
consumers cannot assume continuous availability of cloud services, and are ultimately
responsible for the reliable operation of their enterprise applications. In response to
such concerns, hybrid cloud solutions have become popular [2]; according to Gartner
Special Report on the Outlook for Cloud [3] half of large enterprises will adopt and use
the hybrid cloud model by the end of 2017. Hybrid cloud solutions involve on-premise
enterprise applications that utilize external cloud services, for example Paypal Payment
Gateway (www.paypal.com), cloud storage service Amazon S3 (aws.amazon.com/s3),
or entire SaaS (Software as a Service) applications. With a hybrid delivery model

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 235–247, 2016.
DOI: 10.1007/978-3-319-44482-6_15

http://www.paypal.com
https://aws.amazon.com/s3/

where enterprise applications are partially hosted on premise and partially in the cloud,
enterprises can balance the benefits and drawbacks of both approaches, and decide
which applications can be migrated to the cloud and which should be deployed locally
to ensure high levels of data security and privacy. However, from the reliability point of
view, hybrid cloud introduces a number of significant challenges as IT (Information
Technology) infrastructure and enterprise applications become fragmented over mul-
tiple environments with different reliability characteristics.

Another reliability challenge concerns service evolution, i.e. changes in functional
attributes of services that may impact on existing consumer applications. Services are
often the subject of uncontrolled changes as service providers implement functional
enhancements and rectify defects with service consumers unable to predict when or
how services will change [4]. Consequently, service consumers suffer service disrup-
tions and are forced to upgrade their applications to maintain compatibility with new
versions of cloud services, often without any notification. As the complexity of
service-oriented applications grows, it is becoming imperative to develop effective
methods to manage service evolution and to ensure that service consumers are pro-
tected from service changes.

In this paper we describe the reliability features of the Service Consumer Frame-
work (SCF) designed to improve the reliability of cloud-based enterprise applications
by managing service outages and service evolution. In the next section (Sect. 2) we
review related literature dealing with the reliability of cloud-based solutions. In Sect. 3
we describe three reliability strategies (Retry Fault Tolerance, Recovery Block Fault
Tolerance, and Dynamic Sequential Fault Tolerance) and calculate their expected
theoretical impact on the probability of failure and response time. In Sect. 4 we discuss
how these reliability strategies are implemented using the SCF framework. Section 5
describes our experimental setup and gives a comparison of the theoretical results
calculated in Sect. 3 with the experimental measurements of availability and response
time. Section 6 contains our conclusions and proposals for future work.

2 Related Work

Traditional approaches to developing reliable, fault tolerant on-premise SOA (Service
Oriented Architecture) applications include fault prevention and forecasting. For
example, Tsai et al. [5] propose a SOA testing and evaluation framework that imple-
ments group testing to enhance test efficiency. This framework uses coverage rela-
tionships and recent test results to rank and to eliminate test cases with overlapping
coverage. Using redundancy-based fault tolerance strategies, Zibin and Lyu [1] propose
a distributed replication strategy evaluation and selection framework for fault tolerant
web services. Authors compare various replication strategies and propose a replication
strategy selection algorithm. Developing highly reliable cloud-based applications
introduces a number of new reliability challenges, as enterprise applications are no
longer under the full of control of local developers and administrators. In response to
such challenges, Zibin et al. [6] present a FTCloud component ranking framework for
building fault-tolerant cloud applications. Using two different ranking algorithms:
structure-based component ranking and hybrid component ranking, authors identify the

236 H.T. Tran and G. Feuerlicht

most critical components of cloud applications and then determine an optimal
fault-tolerance strategy for these components. Based on this work, Reddy and Nalini
[7] propose FT2R2Cloud as a fault tolerant solution using time-out and retransmission
of requests for cloud applications. FT2R2Cloud measures the reliability of the software
components in terms of the number of responses and the throughput. Authors propose
an algorithm to rank software components based on their reliability calculated using a
number of service outages and service invocation.

In recent research, Zhengping et al. [2] propose the S5 system accounting frame-
work to maximize reliability of cloud services. The framework consists five different
layers: service existence examination, service availability examination, service capa-
bility and usability examination, service self-healing layer, and system accounting user
interface. Authors also propose a new definition of quality of reliability for cloud
services. In another work, Adams, Bearly [8] describe fundamental reliability concepts
and a reliability design-time process for organizations. Authors provide a guideline for
IT architects to improve the reliability of their services and propose processes that
architects can use to design cloud services that mitigate potential failures. More
recently, Zheng and Lyu [9] identified major problems when developing fault tolerance
strategies and introduced the design of static and dynamic fault tolerance strategies.
Authors identify significant components of complex service-oriented systems, and
investigate algorithms for optimal fault tolerance strategy selection. A heuristic algo-
rithm is proposed to efficiently solve the problem of selection of a fault tolerance
strategy. The authors describe an algorithm for component ranking aiming to provide a
practical fault-tolerant framework for improving the reliability of enterprise applica-
tions. Zheng et al. [10] describe a Retry Fault Tolerance (RFT) that involves repeated
service invocations with a specified delay interval until the service invocation succeeds.
This strategy is particularly useful in situations characterized by short-term outages.

Focusing on improving the reliability of cloud computing, Chen et al. [11] present a
lightweight software fault-tolerance system called SHelp, which can effectively recover
programs from different types of software faults. SHelp extends ASSURE [12] to
improve its effectiveness and efficiency in cloud computing environments. Zhang et al.
[13] propose a novel approach called Byzantine Fault Tolerant Cloud (BFTCloud) to
manage different types of failures in voluntary resource clouds. BFTCloud deploys
replication techniques to overcome failures using a broad pool of nodes available in the
cloud. Moghtadaeipour and Tavoli [14] propose a new approach to improve load
balancing and fault tolerance using work-load distribution and virtual priority.

Another aspect of cloud computing that impacts on reliability involves service
evolution. Service evolution has been the subject of recent research interest [4, 15–19],
however, the focus of these activities so far has been mainly on developing method-
ologies that help service providers to manage service versions and deliver reliable
services. In the cloud computing environments where services are provided externally
by independent organizations (cloud service providers) a consumer-side solution is
needed to ensure the reliability of cloud-based service-oriented application [10].

Improving Reliability of Cloud-Based Applications 237

3 Reliability Strategies

In this section we discuss three reliability strategies that are implemented in the SCF
framework: Retry Fault Tolerance (RFT), Recovery Block Fault Tolerance (RBFT),
and Dynamic Sequential Fault Tolerance (DFST). As noted above in Sect. 2, these
strategies have been described in the literature for on-premise systems [6, 7, 10]. We
have adapted the RFT, RBFT and DFST reliability strategies for cloud services to
address short-term and long-term service outages, and issues arising from service
evolution. Short-term outages are situations where services become temporarily inac-
cessible, for example as a result of the loss of network connectivity; automatic recovery
typically restores the service following a short delay. Long-term service outages are
typically caused by scheduled and unscheduled maintenance or system crashes that
require service provider intervention to recover the service. Service evolution involves
changes in functional characteristics of services associated with functionality
enhancements and changes aimed at improving service performance. Service evolution
may involve changes to service interfaces, service endpoints, security policy, or may
involve service retirement. Most cloud service providers maintain multiple versions of
services to limit the impact of such changes on service consumers, and attempt to
ensure backward compatibility between service versions. However, in practice it is not
always possible to avoid breaking consumer applications, resulting in a situation where
service consumers are forced to modify their applications to ensure compatibility with
the new version of the service. Service overload occurs when the number of service
requests in a given time period exceeds the provider limit.

3.1 Retry Fault Tolerance

Retry Fault Tolerance (Fig. 1) is
a relatively simple strategy com-
monly used in enterprise appli-
cation. Using this strategy, cloud
services are repeatedly invoked
following a delay period until the
service invocation succeeds. RFT
helps to improve reliability, in particular in situations characterized by short-term
outages. The overall probability of failure (PFRFT) can be calculated by:

PFRFT ¼ PFm ð1Þ

where PF is the probability of failure of the service and m is a number of retry attempts.
While RFT reduces the probability of failure, it may increase the overall response time
TRFT due to delays between consecutive service invocations. The total delay can be
estimated as:

Fig. 1. Retry Fault Tolerance

238 H.T. Tran and G. Feuerlicht

TRFT ¼
Xm

i¼1
ðTðiÞ þD� ði� 1ÞÞ � ðPFÞi�1 ð2Þ

where D is the delay between retry attempts and Ti is the response time of ith invo-
cation. The above calculations assume independent modes of failure of subsequent
invocations; this assumption only holds in situations where the delay D is much greater
than the duration of the outage, i.e. for long duration outages the invocation will fail
repeatedly, invalidating the assumption of independence of failures of subsequent
invocations.

3.2 Recovery Block Fault Tolerance

Recovery Block Fault Tolerance
(Fig. 2) is a widely used strategy that
relies on service substitution using
alternative services invoked in a spec-
ified sequence. It is used to improve
the availability of critical applications.
The failover configuration includes a
primary cloud service used as a default
(active) service, and stand-by services
that are deployed in the event of the
failure of the primary service, or when the primary service becomes unavailable because
of scheduled/unscheduled maintenance. Now assuming independent modes of failure,
the overall probability of failure for n services combined can be computed by:

PFRBFT ¼
Yn

i¼1
PFðiÞ;ARBFT ¼ 1� PFRBFT ð3Þ

Fig. 2. Recovery Block Fault Tolerance

Fig. 3. Online shopping scenario using a composite payment service

Improving Reliability of Cloud-Based Applications 239

where n is the total number of services and PFi is the probability of failure of the ith

alternative service. The overall response time T sð Þ can be calculated by:

TRBFT ¼ Tð1Þ þ
Xn

i¼2
ðTðiÞ �

Yi�1

k¼1
PFðkÞÞ ð4Þ

where T1 is response time of first service invocation and Ti is response time of ith

alternative service invocation. In the online shopping scenario illustrated in Fig. 3, the
composite payment service uses eWay payment service as an alternative (stand-by)
service for the PayPal (primary) service. Assuming that the availability of both PayPal
and eWay services is 99.9 % (corresponding to an outage of approximately 9 h per
year), and that the probability of failure PF = 0.01 for each service, the overall RBFT
probability of failure PF ¼ 10�6, and the overall availability ARBFTs ¼ 99:9999 % (this
corresponds to an outage of approximately 5 min per year).

3.3 Dynamic Sequential Fault Tolerance

The Dynamic Sequential Strategy
(Fig. 4) is a combination of the RFT
and RBFT strategies. When the pri-
mary service fails following RFT
retries, the dynamic sequential strategy
will deploy an alternative service. The
overall probability of failure for the
n services combined is given by:

PFDSFT ¼
Yn

i¼1
PFRFTðiÞ;ADSFT ¼ 1� PFDSRF ð5Þ

where PFRFTðiÞ is the probability of failure of the ith alternative service using the RFT
strategy calculated in Eq. (1), and A sð Þ is the overall availability of the composite
service using the DSFT strategy. The overall response time T sð Þ can be calculated by:

TDSFT ¼ TRFTð1Þ þ
Xn

i¼2
ðTRFTðiÞ �

Yi�1

k¼1
PFRFTðkÞÞ ð6Þ

where TRFTð1Þ is the response time of the first service using the RFT strategy in Eq. (2),
TRFTðiÞ is response time of ith alternative service calculated in Eq. (2), and PFRFTðkÞ is
the probability of failure of the kth alternative service using the RFT strategy calculated
using Eq. (1). Table 1 indicates the suitability of the RFT, RBFT, and DSFT strategies
to different types of reliability challenges.

Fig. 4. Dynamic sequential strategy

240 H.T. Tran and G. Feuerlicht

4 Implementation of Reliability Strategies Using the SCF

The SCF framework is designed to manage hybrid cloud environments and aims to
address the main issues that impact on the reliability of enterprise applications.
The SCF framework implements RFT, RBFT and DSFT strategies and is briefly
described in the following sections. The framework consists of four main components:
Service Repository, Workflow Engine, Service Adaptors and a Notification Centre.
Detail description of the SCF framework can be found in [19]. Figure 5 illustrates how
service adaptors and the workflow engine can be configured to implement the various
reliability strategies.

4.1 Service Repository

Service repository maintains information about the available services and adaptors,
including metadata that describes functional and non-functional attributes of certified
services. The information held in the service repository is used to manage services and
to design reliable applications. The functional and non-functional QoS (Quality of
Service) attributes held in the service repository enable the selection of suitable services
by querying the service repository specifying desired service attributes. Services with
identical (or similar) functionality are identified to indicate that these services can be
used as alternatives to the primary service to implement the RBFT strategy.

Fig. 5. Service consumer framework reliability features

Table 1. Suitability of reliability strategies

Method Short outages Long outages Service evolution Service overload

RFT Yes No No No
RBFT Yes Yes Yes Yes
DSFT Yes Yes Yes Yes

Improving Reliability of Cloud-Based Applications 241

4.2 Service Adaptors

Service adaptors are connectors that integrate software services with enterprise appli-
cations. Each cloud service recorded in the repository is associated with a corre-
sponding service adaptor. Service adaptors use a native interface to transform service
requests to a request that is compatible with the current version of the corresponding
cloud service, maintaining compatibility between enterprise applications and external
services. The function of a service adaptor is to invoke a service, keep track of service
status, and record service execution information in the service repository. Service
adaptors implement the RFT reliability strategy by configuring the number of retry
attempts and the delay period.

4.3 Workflow Engine

The workflow engine implements service workflows, facilitates service failover and the
composition of services. The workflow engine executes workflows and routes requests
to corresponding cloud services. Workflows can be configured to implement the RBFT
strategy by using a number of alternative services redundantly. Another important
function of the workflow engine is load balancing. Service adaptors can be configured
as active or stand by. By default, active service adaptors are used to process the
requests and stand by adaptors are deployed in situation when the primary (active)
adaptor requests fail or when the primary adaptor becomes overloaded.

4.4 Notification Centre

The SCF framework maintains execution logs and updates service status records in the
service repository. When service faults occur, notification centre notifies application
administrators so that a recovery action can take place. The administrators are able to

Fig. 6. Experimental configuration

242 H.T. Tran and G. Feuerlicht

rapidly react to service failures and maintain application availability minimizing
downtime. In addition, execution logs are used to monitor services and to analyze QoS
attributes.

5 Experimental Verification of Reliability Strategies

Figure 6 illustrates the experimental configuration that was used to verify the theo-
retical calculations in Sect. 3. The experimental setup consists of two servers that host
the SCF framework and a separate Monitoring Server. Both SCF servers implement
identical payment scenario illustrated in Fig. 3 using PayPal Pilot service
(pilot-payflowpro.paypal.com) and eWay Sandbox (https://api.sandbox.ewaypayments.
com). The payment requests are randomly generated and sent to the PayPal and eWay
payment servers from two different locations. The US West Server uses Amazon Web
Services (AWS) cloud-based infrastructure located on the West Coast of the United
States and has a high quality server with a reliable network connection. The Sydney
server is a local server in Sydney, Australia with a less reliable Internet connection.

5.1 Experimental Setup

We have collected experimental results from both servers for a period of thirty days,
storing the data in the logs on the Monitoring Server deployed on AWS. The log data
records were analyzed computing the experimental values of availability and response
time for the composite payment service using different reliability strategies. Both SCF
servers generate payment requests in intervals varying randomly between 5 and 10 s,
and use the following four strategies:

Strategy 1: Payment requests are sent directly to the payment service without
applying any reliability strategy
Strategy 2: Payment requests are sent to the payment service using RFT strategy
with three retry attempts (R = 3) and a delay of five seconds (D = 5)

Table 2. Consumer service transaction logs

Service Start time Response time Result

eWay 31/03/2016 12:51 3.59 s Success
PayPal 31/03/2016 12:50 1.48 s Success
PayPal 31/03/2016 12:50 1.39 s Success
PayPal 31/03/2016 12:49 1.39 s Success
eWay 31/03/2016 12:49 2.50 s Success
PayPal 31/03/2016 12:48 1.44 s Success
eWay 31/03/2016 12:48 1.51 s Success
eWay 31/03/2016 12:47 1.72 s Success
PayPal 31/03/2016 12:47 1.41 s Success
PayPal 31/03/2016 12:46 1.39 s Success

(Continued)

Improving Reliability of Cloud-Based Applications 243

https://api.sandbox.ewaypayments.com
https://api.sandbox.ewaypayments.com

Strategy 3: Payment requests are sent to a composite payment service using the
RBFT strategy
Strategy 4: Payment requests are sent to a composite payment service using the
DSFT strategy which is combination of RBFT and RFT with PayPal (R = 3, D = 5)
and eWay (R = 3, D = 5)

5.2 Experimental Results

We have collected the payment transaction data independently of the values available
from the cloud service providers, storing this information in the log files on the Mon-
itoring Server (Table 2 shows a fragment of the response time measurements). The use
of two separate servers in two different locations enables the comparison of availability
and response time information collected under different connection conditions.

As shown in Table 3, using Strategy 1 (i.e. without deploying any reliability
strategy) the availability for PayPal and eWay services on the US West server is
90.4815 % and 93.8654 %, respectively. Deploying the RFT strategy (Strategy 2) the
availability increases to 97.9033 % and 97.2607 %, for PayPal and eWay services,
respectively. Using the RBFT strategy (Strategy 3), the availability of the composite
service (PayPal and eWay) increases to 99.8091 %, and finally using the DSFT
strategy (Strategy 4) the availability of the composite service (PayPal + eWay)
increases further to 99.9508 %. The theoretical values obtained in Sect. 3 are slightly
higher than the experimental values; this can be explained by noting that connection
issues may affect both PayPal and eWay services concurrently, invalidating the
assumption of independent modes of failure.

Table 4 shows the average response time of PayPal and eWay services using
different reliability strategies during the period from March 15th to April 15th 2016. The
average response time of the US West Server is considerably lower than the Sydney
Server when connecting to the PayPal service in the US. However, for the eWay

Table 2. (Continued)

Service Start time Response time Result

eWay 31/03/2016 12:46 2.17 s Success
PayPal 31/03/2016 12:45 1.39 s Success
PayPal 31/03/2016 12:45 1.00 s Error
eWay 31/03/2016 12:44 2.14 s Success

Table 3. Availability of payment services

Server PayPal eWay PayPal
RFT

eWay
RFT

PayPal-eWay
RBFT

PayPal-eWay
DSFT

US West 90.48 % 93.86 % 97.90 % 97.26 % 99.80 % 99.95 %
Sydney 90.18 % 93.53 % 97.28 % 97.03 % 99.29 % 99.82 %

244 H.T. Tran and G. Feuerlicht

Table 4. Response time of payment services in seconds

Server PayPal eWay PayPal
RFT

eWay
RFT

PayPal-eWay
RBFT

PayPal-eWay
DSFT

US West 1.35 1.84 2.33 2.66 2.06 2.44
Sydney 3.70 1.75 5.67 3.02 4.98 5.43

Fig. 7. Availability of reliability strategies from 15th to 31st of March

Fig. 8. Availability of reliability strategies from 1st to 15th of April 2016

Improving Reliability of Cloud-Based Applications 245

service (https://www.eway.com.au/), which is located in Australia, the response time
of the Sydney Server is slightly better than for the US West server. The bar charts in
Figs. 7 and 8 give a comparison of the availability values for various reliability
strategies for the period of March 15th to April 15th 2016. As the figures illustrate, the
availability of PayPal and eWay services using any of the reliability strategies is
significantly higher than without deploying a reliability strategy. During the mea-
surement period the availability of the PayPal service varied between 88 % and 92 %,
but the availability of the combined PayPal-eWay services using the DSFT strategy
remained above 99.9 %.

6 Conclusions

With the increasing availability of various types of cloud services many organizations
are becoming reliant on providers of cloud services to maintain the operation of their
enterprise applications. Different types of strategies designed to improve the availability
of cloud services have been proposed and implemented. These reliability strategies can
be used to improve availability of cloud-based enterprise applications by addressing
service outages, service evolution, and failures arising from overloaded services.

In this paper we have estimated the theoretical improvements in service availability
that can be achieved using the Retry Fault Tolerance, Recovery Block Fault Tolerance,
and Dynamic Sequential Fault Tolerance strategies and compared these values to
experimentally obtained results. The experimental results obtained using the SCF
framework are consistent with theoretical predictions, and indicate significant
improvements in service availability when compared to invoking cloud services directly
(i.e. without deploying any reliability strategy). In the specific case of payment services,
the availability for PayPal and eWay services increased from 90.4815 % and 93.8654 %,
respectively for direct payment service invocation, to 97.9033 % and 97.2607 %, for
PayPal and eWay services, respectively when the RFT strategy was used. Using the
RBFT strategy, the availability of the composite service (PayPal + eWay) increased to
99.8091 %, and using the DSFT strategy the availability of the composite service
(PayPal + eWay) increased further to 99.9508 %.

Deployingmultiple alternative services using the RBFT strategy also alleviates issues
arising from service evolution that results in incompatible versions of services released by
service providers. We are currently extending the functionality of the SFC framework to
detect such situations and automatically redirect requests to alternative services.

References

1. Zibin, Z., Lyu, M.R.: A distributed replication strategy evaluation and selection framework
for fault tolerant web services. In: IEEE International Conference on Web Services, ICWS
2008 (2008)

2. Zhengping, W., Nailu, C., Peng, S.: Improving cloud service reliability – a system
accounting approach. In: 2012 IEEE Ninth International Conference on Services Computing
(SCC) (2012)

246 H.T. Tran and G. Feuerlicht

https://www.eway.com.au/

3. Rivera, J., van der Meulen, R.: Gartner says nearly half of large enterprises will have hybrid
cloud deployments by the end of 2017. In: Gartner Special Report Examines the Outlook for
Hybrid Cloud (2013)

4. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: On the evolution of services. IEEE
Trans. Softw. Eng. 38(3), 609–628 (2012)

5. Tsai, W.T., et al.: On testing and evaluating service-oriented software. Computer 41(8),
40–46 (2008)

6. Zibin, Z., et al.: Component ranking for fault-tolerant cloud applications. IEEE Trans. Serv.
Comput. 5(4), 540–550 (2012)

7. Reddy, C.M., Nalini, N.: FT2R2Cloud: fault tolerance using time-out and retransmission of
requests for cloud applications. In: 2014 International Conference on Advances in
Electronics, Computers and Communications (ICAECC) (2014)

8. Adams, M., et al.: An introduction to designing reliable cloud services. Microsoft
Trustworthy Computing (2014). https://www.microsoft.com/en-au/download/details.aspx?
id=34683

9. Zheng, Z., Lyu, M.R.: Selecting an optimal fault tolerance strategy for reliable
service-oriented systems with local and global constraints. IEEE Trans. Comput. 64(1),
219–232 (2015)

10. Zheng, Z., Lyu, M., Wang, H.: Service fault tolerance for highly reliable service-oriented
systems: an overview. Sci. China Inf. Sci. 58(5), 1–12 (2015)

11. Chen, G., et al.: A lightweight software fault-tolerance system in the cloud environment.
Concurrency Comput. Pract. Experience 27(12), 2982–2998 (2015)

12. Sidiroglou, S., et al.: ASSURE: automatic software self-healing using rescue points. In:
Proceedings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems 2009, Washington, DC, USA, pp. 37–48. ACM (2009)

13. Zhang, Y., Zheng, Z., Lyu, M.R.: BFTCloud: a byzantine fault tolerance framework for
voluntary-resource cloud computing. In: 2011 IEEE International Conference on Cloud
Computing (CLOUD) (2011)

14. Moghtadaeipour, A., Tavoli, R.: A new approach to improve load balancing for increasing
fault tolerance and decreasing energy consumption in cloud computing. In: 2015 2nd
International Conference on Knowledge-Based Engineering and Innovation (KBEI) (2015)

15. Eisfeld, A., McMeekin, D.A., Karduck, A.P.: Complex environment evolution: challenges
with semantic service infrastructures. In: 6th IEEE International Conference on Digital
Ecosystems Technologies DEST-2012 (2012)

16. Romano, D., Pinzger, M.: Analyzing the evolution of web services using fine-grained
changes. In: ICWS-2012, IEEE 19th International Conference on Web Services (2012)

17. Zhenmei, Y., Fengming, L.: Small-world based trust evaluation model for web service. In:
2012 International Conference on Computer Science and Service System (CSSS) (2012)

18. Ziyan, X., Haihong, Z., Lin, L.: User’s requirements driven services adaptation and
evolution. In: Computer Software and Applications Conference Workshops (COMPSACW),
2012 IEEE 36th Annual, pp. 13–19 (2012)

19. Feuerlicht, G., Tran, H.T.: Service consumer framework: managing service evolution from a
consumer perspective. In: ICEIS-2014, 16th International Conference on Enterprise
Information Systems. Springer, Portugal (2014)

Improving Reliability of Cloud-Based Applications 247

https://www.microsoft.com/en-au/download/details.aspx%3fid%3d34683
https://www.microsoft.com/en-au/download/details.aspx%3fid%3d34683

A Short Survey on Using Software Error
Localization for Service Compositions

Julia Krämer(B) and Heike Wehrheim

Department of Computer Science, Paderborn University, Paderborn, Germany
{juliadk,wehrheim}@mail.uni-paderborn.de

Abstract. In modern software development, paradigms like component-
based software engineering (CBSE) and service-oriented architectures
(SOA) emphasize the construction of large software systems out of exist-
ing components or services. Therein, a service is a self-contained piece of
software, which adheres to a specified interface. In a model-based soft-
ware design, this interface constitutes our sole knowledge of the service at
design time, while service implementations are not available. Therefore,
correctness checks or detection of potential errors in service compositions
has to be carried out without the possibility of executing services. This
challenges the usage of standard software error localization techniques for
service compositions. In this paper, we review state-of-the-art approaches
for error localization of software and discuss their applicability to service
compositions.

1 Introduction

Debugging, i.e., the detection, localization and correction of software errors,
is one of the most time-intensive tasks in software development. Within this
process, error localization is considered the most expensive task [43]. In order
to support developers in debugging, a lot of research effort has been spent on
the deployment of automated error localization methods. Today, existing error
localization methods for software are numerous. They can broadly be separated
into two categories.

(1) Approaches based on the inspection of test cases. In this category, we find
error localization methods like delta debugging introduced by Zeller [17,49–
51] or the approaches underlying the tools Tarantula [27], Pinpoint [14] or
AMPLE [19].

(2) Approaches based on the computation of dependence information between
program statements. Herein, we locate all techniques based on static program
slicing as originally introduced by Weiser [46] as well as dynamic slicing.

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 248–262, 2016.
DOI: 10.1007/978-3-319-44482-6 16

A Short Survey on Using Software Error Localization 249

When it comes to a model-driven design approach of service composition (or
to model-driven software development in general), the situation is different. On
the one hand, a model typically abstracts from details of the final software, thus
facilitating the construction of automatic methods and tools for error detection
(like being done in numerous settings, for functional as well as QoS requirements,
e.g. [12,21,39,42]). On the other hand, the localization of errors, once correctness
checks have reported it, lacks automated methods and tool support. So far, to
the best of our knowledge, automated, tool-based approaches for localizing faults
in models of service compositions do not exist, at least when it comes to func-
tional correctness, i.e., the adherence of the model to functional requirements.
With respect to performance analysis of systems, feasible approaches to localize
components that negatively impact the overall performance of the system, have
been devised in the area of performance blame analysis [13,18].

Unfortunately, this lack in tool support cannot easily be amended by applying
the abundant existing approaches for standard software development to the ser-
vice composition approach. The reason is rooted in fact that almost all existing
approaches in the standard software setting rely more or less on the availability
of execution traces, both faulty and correct, or even the possibility to execute the
programs under consideration at will. While this requirement is entirely unprob-
lematic in the software setting, for service composition it is a veritable obstacle,
as services, which are offered by external providers and possibly charged for their
use, may not be available for execution during design time and fault analysis.

Contribution. In this paper, we survey existing error localization techniques for
software, analyze their applicability to models of service compositions and pro-
pose suitable adaptions. Our focus is on functional correctness, more specifically,
the adherence of the service composition to specified pre- and postconditions.
We assume that services are solely specified in terms of their pre- and postcondi-
tions (more precisely, their interface specification) and that no other information
is available about services. In particular, no implementation is given and thus,
they cannot be arbitrarily executed. In this setting, error localization can be
rephrased as the task of locating the precise service call, which is responsible for
the service composition to invalidate the postcondition when started in a state
satisfying the precondition.

In comparison to existing surveys, such as [47] and [3], which focus on meth-
ods of the first category, we also investigate methods of the second category
and thus, include novel methods for error localization, especially formula-based
approaches such as [28–30] and [32]. In contrast to [47] and [3], we do not only
review existing methods but also examine their applicability to service compo-
sitions.

Organization of the Paper. We introduce basic terminology (services and service
compositions) in Sect. 2. In Sect. 3, we present the most important error local-
ization methods for software and discuss their usability for service compositions
in the context of model-based software design. We conclude the paper with a
conclusion and future work in Sect. 4.

250 J. Krämer and H. Wehrheim

2 Services and Service Compositions

Services, i.e. self-contained software components, which can be used platform
independent, are at the core of Service-Oriented Architectures (SOA). In this
section, we introduce service descriptions, which constitute all information about
a service, and service composition as depicted in Fig. 1. We denote service compo-
sition in a textual representation inspired by service effect specifications (SEFFs)
of [11] (making some of the notations closer to programming languages), while
we still use standard concepts of workflow modelling like sequential composi-
tion, decisions and repetition. Possible alternative representations for service
compositions include graphical or structural notations for workflow modelling
like WS-BPEL [40]. The following definition specifies our textual representation
of services formally.

Definition 1. Let Serv be a set of given services, Types be a set of types and
Var be a set of variables. The set of all service compositions SC is given by the
following grammar in Backus-Naur-form:

SC � ϕ, ψ :: = Skip | ϕ; ψ | if B then ϕ else ψ | while B do ϕ | T x = S(x1, . . . , xn)

| foreach x in Set do ϕ,

where x, x1, . . . , xn ∈ Var , S ∈ Serv, T ∈ Types and Set is a set. B is a predicate
in propositional logic with the logical constants true, false and service calls S as
atomic formulas.

Please note that we use assignments in Fig. 1, which are not service calls, for
example, in Line 1, Line 3 and Line 8. We consider these assignment as very
basic service calls usually not offered by an external provider but by the service
specification language. Thus, we do not write them down as service call.

The service composition GVRes in Fig. 1 contains the service restaurantIn that
retrieves all restaurants near a given location, the service isVegan, that tests
whether a given restaurant offers vegan food, the service validate that provides
the rating of a restaurant, and finally, the service isGoodRating, which specifies
when a rating is considered a good rating. The purpose of the service composition
GVRes is to compute the set B of all vegan restaurants with a good rating
near a specific location L provided by the user. However, it is faulty. While the
purpose of the foreach-loop is to filter all the restaurants with a good rating,
the negation in the second if-statement (Line 7) causes only bad restaurants
to be in the set B. At the best, fault localization would precisely indicate the
condition of the if-statement !(IsGoodRating(y)) as the location of the error.

The semantics of single services is cruel to the correctness of a service compo-
sition. We specify the semantics using service descriptions, which include input
and output variables as well as pre- and postconditions (or effects, all together
typically called IOPE, like in WSDL1).

1 https://www.w3.org/TR/wsdl.

https://www.w3.org/TR/wsdl

A Short Survey on Using Software Error Localization 251

Fig. 1. The service composition GVRes

Definition 2. A service description SD is a tuple SD = (I,O,Pre,Post) such
that

– I and O are disjoint sets of input and output variables,
– Pre and Post are first-order logic formulas, which describe the precondition

and the effect (postcondition) of the service, respectively.

All free variables (i.e. all variables not bound by a quantifier) in Pre are elements
of I and all free variables in Post are elements of I ∪ O.

The service validate has the input variable z of type Restaurant and the output
variable y of type Rating. Its postcondition guarantees that the returned rating is
indeed a rating for the given restaurant if the input is indeed a vegan restaurant.

Service compositions are also specified using service description, e.g. the ser-
vice composition GVRes has the input variable L of type Location, the output
variable B of type Set<Restaurant>, the pre- and postcondition

PreGVRes = true

PostGVRes = ∀b ∈ B : isVegan(b) ∧ isGoodRating(validate(b)).

In the following, we say that a service composition is functionally correct with
respect to a precondition Pre and a postcondition Post, if we can prove that for
each input to a service composition, which satisfies the precondition, the output
satisfies the postcondition. We say, that a service composition contains an error,
if it is not functionally correct. The service composition in Fig. 1 will thus be
functionally correct if it ensures that no bad vegan or non-vegan restaurant is
returned (which is not the case). It can be proven that a service composition is
or is not functionally correct, for example, using the approach in [44].

252 J. Krämer and H. Wehrheim

3 Survey on Error Localization

So far, error localization in service compositions has been a sparsely researched
topic and only few approaches are known. In contrast, many localization meth-
ods for standard software (especially for imperative program) are known. Unfor-
tunately, while imperative programs and service compositions are syntactically
similar, they differ in their nature. While error location methods for programs
can usually safely assume that the whole program can be executed arbitrarily,
this is not the case for service compositions. At the time of analysis, the ser-
vices called in the composition are in general not available for execution. The
reason is that services are usually not locally available, but offered by external
providers and charged for their usage. Thus, depending on the concrete services,
their repeated execution for testing purposes might either not be given at the
moment of analysis, or be economically infeasible.

Thus, in order to make use of the rich source of error localization methods
for standard software for service composition, we need to investigate how these
methods can be adapted – if at all.

Remark 1. The services and service compositions we discuss cannot be com-
pared to dynamic web services, in the sense of applications written in PHP
or JavaScript involving dynamically generated web pages or client-server-
interaction. Therefore, our setting is very different from the setting in [6–9,38,45]
and thus, these approaches are inapplicable in our setting.

In this section, we first establish a set of criteria to evaluate existing auto-
mated error localization methods. Subsequently, we present an overview on exist-
ing error localization methods of both categories when applied to service com-
positions as in Definition 1 instead of to software.

3.1 Criteria for Error Localization Approaches

In [3,47], criteria to evaluate error localization methods for software are dis-
cussed. We use a subset of these criteria, slightly adapted to the special chal-
lenges arising in the context of service compositions (Fig 2).

Fig. 2. Criteria for error localization methods and our choice

A Short Survey on Using Software Error Localization 253

–Number of test cases needed: In model-driven software design, one cannot
execute services at design time. In the best case, few test cases are available
in form of input/output pairs witnessing erroneous behavior, for example
resulting from a previous model checking analysis.
Our first evaluation criteria is thus the number of (faulty /correct) test cases
a technique needs.

–Code size reduction: The second criteria we use is code size reduction, i.e., the
percentage of suspicious statements (in which the fault is potentially located)
returned by the error localization method with respect to all statements.

Another criterion, which is often used is multiple fault recognition, i.e. the
possibility of discovering multiple bugs at once. We do not use it here since service
compositions tend to be relatively small, and verification and error localization
can thus be executed several times to find several bugs. Detection of faults caused
by missing code is not a criterion of primary interest, as the results of existing
approaches in general fail w.r.t. multiple bug detection to be specific enough to
be of use in a setting where the programs to be analyzed consist of only few lines
of code.

3.2 Error Localization Approaches in Service Compositions

In the following, we discuss different error localization methods for standard
software. We group approaches, which are similar w.r.t. the number of tests
cases they need to be applicable. If necessary, we further distinguish methods by
their overall approach, for example, whether it relies on statistics or not.

Neither Relying on Test Cases Nor on Execution. We start our survey
with static slicing, which also was the first error localization method proposed
in 1981 by Weiser [46]. Slicing in general means to cut out statements, which
cannot influence a certain variable or a certain property. The “influence” is
captured by a number of dependency relations between program statements,
e.g., a statement within a branch of a decision depends on the condition of
the decision. With respect to error localization this means that the number of
statements possibly responsible for the error can be reduced by slicing. Slicing
approaches can mainly be divided into static and dynamic slicing. Whereas the
first can be obtained without executing the program and thus, does also not
rely on any tests, dynamic slicing gathers information during execution. In [52],
it is stated that a static slice definitely contains the bug if it is contained in a
Boolean condition or an assignment. Unfortunately, static slices are the largest
ones among all slices. Nevertheless, static slicing can easily be modified to be
used on service compositions, for example, in [37], static slicing is discussed for
software relying on web services.

Application to Service Compositions. For faulty service compositions, we
compute slices with respect to the intended postcondition. The static slice with
respect to our postcondition PostGVRes of the service composition in Fig. 1 con-
tains all lines except the lines 9 to 12 (which are uninteresting anyway). We see

254 J. Krämer and H. Wehrheim

that the gain in this case is close to zero. For finding the error, we still need to
inspect the entire service composition. This is an effect, which occurs very often
in service compositions because data is passed from one service call to the next,
and thus service calls often depend on all prior calls. ��

Relying on One Faulty Input. All of the following error localization methods
need at least one faulty input, i.e., one input, which itself satisfies the precondi-
tion, but leads to an output, which does not satisfy the postcondition.

Dynamic Slicing. Dynamic slicing was originally introduced in 1988 in [31]. The
key idea to dynamic slicing is to collect all relevant information directly during
the execution of the program. In the literature, there are mainly three types
of dynamic slices: data, full and relevant slices. They differ in the way they
take dependencies between program statements into account: data slices just
use data dependencies, full slices also control dependencies, and relevant slices
in addition partially include static dependencies, i.e., dependencies on program
paths, which are not included in the current dynamic execution, but might be
if the control-flow is altered. At first, dynamic slicing was considered not useful
for error localization [4,5]. In 2005, an experimental evaluation in [52] showed
that relevant slices are smaller than static slices, but contained all bugs in the
experiments performed on the Siemens test suite [25].

Application to Service Compositions. For service compositions, an abstract
symbolic execution – i.e., an execution, which does not rely on concrete but on
symbolic values for variables – could allow us to use dynamic slicing for error
localization. Important questions to be investigated are then whether dynamic
slices relying on a symbolic execution are smaller than static slices, and whether
all faults are covered. For our example, a symbolic execution would – like for the
static slice – return the whole service composition except the lines 9 to 12. We
conjecture that this will very often be the case due to the tight dependencies
between service calls. ��

Trace Formula Approaches. In this section, we consider all approaches to error
localization, which basically rely on a trace formula. The original idea to use
trace formulas for verification was introduced in [16]. The basic idea therein is
to code executions of a program (or even whole programs) as logical formulas,
employing either propositional or predicate logic. In [44], this basic principle has
been used for the verification of service compositions. We mainly consider the
error localization approach presented in [48], where a trace formula is encoded as
constraint satisfaction problem. In more detail, in [48], a test defining inputs and
expected outputs together with its symbolic execution trace, is transformed into
a constraint satisfaction problem and solved using an existing constraint solver.
The solution to the constraint satisfaction problem allows to easily extract a set
of suspicious statements, which can be returned to the user.

In [28,29], a similar approach using partial MaxSMT to locate errors in pro-
grams has been implemented in the tool BugAssist. MaxSMT is the maximal

A Short Survey on Using Software Error Localization 255

satisfiability problem, which determines the maximal number of clauses in a log-
ical formula that can be simultaneously made true. MaxSMT instances allow to
tag clauses as hard (definitely needs to be true) or soft (candidate for not mak-
ing it true). With respect to error localization, this allows us to state where the
error potential is (or definitely not is) by making this a soft (hard) clause. The
test input and the property to be verified (e.g., the postcondition) are encoded
as hard clauses, whereas the trace formula representing the program is encoded
as soft clause. Using partial MaxSMT, a set of clauses is returned, which can
simultaneously be set to true. The complement of this set then serves as set of
suspicious statements.

Application to Service Compositions. Although we cannot rely on concrete
input and outputs for service compositions, it seems worthwhile to investigate
whether the approach can be adapted to work with pre- and postconditions
instead of test cases. A verification technique like [44] could for instance be used
to generate abstract inputs leading to errors. Abstract input means that we do
not have concrete values but just names for values. Given that this is possible,
we could for instance get an abstract input like city for L with the following
properties (also given via freely chosen names2):

restaurantsIn(city) = {res}
isVegan(res)

rat = validate(res)
¬isGoodRating(rat)

Given such a “test case”, the trace formula of the given service composition
encoded for MaxSMT may look like this:

L = city input

∧A = {res} ∧ B0 = ∅ before loop

∧isVegan(res) ∧ y = rat ∧ ¬isGoodRating(rat) ∧ B1 = B0 ∪ {res} loop once

∧∀b ∈ B1:isVegan(b) ∧ isGoodRating(validate(b)) postcond.

In this example, the underlined clauses are hard clauses, all other clauses are
soft. This formula encodes a path through the service composition when “run”
on the test case plus the desired postcondition at the end. In order to encode
the same trace and the same expected outputs as constraint satisfaction problem
(similar to the approach in [48]), we introduce a predicate ABi per statement i,
which represents whether the statement i is abnormal. Abnormal statements are
candidates for the root cause of the error. For instance, the first statement of
the service compositions is then encoded as

(¬AB1) ⇒ A = {res}.

2 The SMT solver underlying the verification technique in [44] treats all service calls
and types as undefined function symbols, and thus returns just some randomly
chosen identifier for instance of these symbols.

256 J. Krämer and H. Wehrheim

Inputs, the precondition and the postcondition are encoded as so-called observa-
tions. The encoding of the statements as well as the observations are then given
to a constraint solver, which computes valuations for the predicates ABi.

Both the MaxSMT and the constraint satisfaction encoding lead to a candi-
date root cause at line 7, which is exactly where the fault is located. ��
Another formula-based approach are error invariants [22]. Intuitively, an error
invariant is a formula ϕ at a statement st such that the program input and the
trace formula constructed from the beginning to st imply ϕ, and ϕ and the trace
formula from st to the end of the execution does imply false. Inductive error
invariants, i.e. error invariants, which hold for several consecutive statements,
allow to identify irrelevant transitions in error traces. Afterwards, they are used
as an approach similar to [28,29,32] to compute a set of suspicious statements.

Application to Service Compositions. A first idea for using error invariants for
error localization in service compositions is to split abstract symbolic error traces
at every service call, use the precondition of the service as assertion to be proven
to hold after the split, and the postcondition of the service as additional initial
assumption for the next part. This allows to analyze service calls one by one.
Nevertheless, a lot of solver calls are necessary to analyze all parts of a service
composition this way, and therefore experimental studies need to examine the
performance of such an approach. ��

An extension of error invariants in order to make fault localization flow sensi-
tive is done in [15]. Flow-sensitive trace formulas are used to compute suspicious
statements with the help of a software model checker and an interpolating theo-
rem prover. In [32], a full flow-sensitive trace formula is published, which is again
analyzed using partial MaxSMT. Clauses of the trace formula, which belong to
the control flow are marked as hard and all others are marked as soft. The push
& pop mechanism of the solver Yices [20] yields an efficient solution, which gives
quite the same code size reduction as BugAssist but is faster. As flow-sensitive
and standard trace formulas are very similar, we think that these approaches
are also applicable to service compositions.

Relying on One Faulty and One Correct Input. Delta debugging [49–51]
is a divide-and-conquer algorithm to compute the smallest difference between a
working and a failing test. In [49], delta debugging is applied to changes intro-
duced between the last correct version of a program and the current faulty
version. Intuitively, the algorithm splits all existing changes (if it is not only
one) into two non-empty subsets and tests, which changes lead to a successful
and which changes to an unsuccessful run of the program. Subsequently, the
algorithm recursively computes the faulty change in the set of changes that lead
to the error. In [51], a very similar strategy is applied to turn test cases into
minimal ones, in [50], the delta debugging approach is applied to program states
in order to compute the minimal difference between a working and a failing
program. Since we typically do not have different correct and faulty variants of
a service composition available, this technique seems less applicable to service
compositions.

A Short Survey on Using Software Error Localization 257

Relying on Several Faulty Inputs. In [30], all faulty inputs and the respec-
tive execution traces are encoded into an instance of SAT. The results are used
to compute new right-hand sides to assignments in order to correct the program.
In service compositions, the right-hand side of assignments are usually service
calls, which cannot be modified, just completely replaced. In addition, the meth-
ods perform better if there are several faulty inputs, which we typically cannot
provide in our setting.

Relying on Several Faulty and Correct Inputs. In this section, we discuss
existing error localization approaches, which use several faulty ad several correct
tests in order to generate a set of suspicious statements. For a detailed overview
on these error localization methods, we refer the interested reader to [3].

Spectrum-Based and Statistical Methods. Tarantula [26,27] is a spectrum-based
error localization method, which computes the suspiciousness of a statement by
comparing the number of successful and failing test cases, in which the state-
ment has been executed. Different methods to compute the suspiciousness of
a statement, for example, using the Jaccard or Ochiai distance are discussed
in [1,2]. Statistical methods such as [14,19,33–36] also rely on successful and
failing test cases, but compute the suspiciousness with statistical methods. For
example, Pinpoint [14] uses data mining methods to correlate successes and
faults to determine the most likely faulty component. As we neither have tests
nor the implementation of services and thus, cannot rely on multiple faulty and
correct test inputs, we do not consider those error localization methods as easily
applicable to service compositions.

Set-based Methods. Two very simple and common techniques to error localiza-
tion are introduced in [41] and compared to more effective methods like the cause
transition approach in [17] and the Tarantula approach [26,27] in [52]. The set-
union technique computes a set of suspicious statements by removing all state-
ments, which are executed by all passing tests, from the set of statements, which
are contained in at least one failed test case. In contrast, the set-intersection
technique computes a set of suspicious statements by removing all statements,
which are executed in a single failing test case, from all statements, which are
executed by every passed test case. As their effectiveness is already very limited
on programs, we do not expect them to perform well in service compositions,
especially as we do not have successful test cases at hand.

Relying on Model Checking. In [10], correct traces produced by a model
checker are used to localize the error in existing error traces, more specifically,
to report one single error trace per error, and to generate multiple error traces
for multiple faults. The core of their method is to find transitions in error traces,
which do not occur in any correct execution. With respect to service composi-
tions, it could be worthwhile to examine whether there exists services, which do

258 J. Krämer and H. Wehrheim

not occur in a correct execution and then, to add the respective service to the
set of suspicious ones.

In [24], a SAT-based approach relying on CBMC [16] to minimize coun-
terexamples of model checkers is published. In [23], the difference (in terms of
statements) between a correct and a wrong execution is computed and returned
to the user as set of suspicious statements. The approach in [23] only relies
on a counterexample and then generates program inputs, which do not violate
the specification. Again, we consider it worthwhile to investigate, whether the
approach can be adapted to work with service compositions.

Remark 2. In general, one distinguishes between control - and data-flow errors.
A control flow error, is an error, which can be corrected by changing the predicate
of a branch or a loop.

As the control-flow of models of service compositions and of standard soft-
ware do not widely differ and as our example shows, applying standard error
localization methods to find control-flow errors in service compositions seems
promising.

A data-flow error is an incorrect variable state, which occurs during execution
and is caused by wrong assignments. In service compositions, variables are only
used to pass data from one service call to another service call. Therefore, the
root cause of the data-flow error is likely the service call prior to the failing
call. We thus think that the correction of data-flow errors is more promising to
investigate than simply finding data-flow errors.

ACSR test cases app. category

MaxSMT Approach 8% one faulty 2

Constraint Satisfaction

Approach

— one faulty 2

Fully Flow-Sensitive TF 11% one faulty 2

Static Slicing ≈ 30% — 2

Error Invariants — one faulty () 2

Dynamic Slicing ≈ 30% execution () 2

Set Union 1% yield 10% or less faulty & correct f 1

Set Intersection 5.5% yield 10% or less faulty & correct f 1

Delta Debugging with Cause

Transitions (relevant)

35.66% yield 10% or less faulty & correct f 1

Fig. 3. Overview on properties of the presented error localization methods. Column

ACSR shows the Average Code Size Reduction as stated by the respective authors of the approaches,

the column test cases states the number and kind of test cases needed, or if even executable code is

required. In column app., we summarize the applicability of the approach for service compositions.

Column “category” refers to the category, to which the approach belongs with respect to our clas-

sification in Sect. 1. Note that early works give the code size reduction in “percentage of programs

yielding percentage of code size reduction”.

A Short Survey on Using Software Error Localization 259

4 Conclusion and Future Work

In this paper, we have shown that error localization methods for standard soft-
ware do not carry over to service compositions easily. Especially, the unavailabil-
ity or at least the lack of test cases as well as the impossibility to execute service
compositions at will, render most error localization methods inapplicable.

Figure 3 summarizes our findings. It seems that, in general, approaches in the
second category (cf. Sect. 1) are easier to adapt to the setting of models of service
compositions than approaches in the first category. The MaxSMT approach, the
fully flow-sensitive trace formula approach and the constraint satisfaction app-
roach are adaptable to the service setting by enhancing the respective trace
formula by additional predicates, which stem from the pre- and postcondition
of the single services as well as the overall service composition. Thus, the appli-
cation of trace formula approaches seems worthwhile to investigate as similar
encodings of traces are already in use for verification of service compositions.
As service compositions tend to be small, we do not think that the application
of error invariants drastically improves the performance of error localization
although the method is applicable in general. Dynamic slicing as in [52] gathers
information during the execution of programs. As we cannot execute services,
but statically compute traces, we suspect dynamic slicing to perform as good as
static slicing in our context.

We believe that error localization in service compositions might not only
support developers in debugging, but might also be useful to speed up automatic
configuration approaches for service compositions. Service compositions tend to
be simple. Thus, a systematic approach supporting developers might not be
necessary, but when it comes to automatic configuration of service compositions,
finding errors will help to only reconfigure erroneous parts and not the overall
service composition.

As future work, we plan to examine the proposed modifications to the exist-
ing software error localization methods and practically evaluate their effective-
ness. Most promising seems to be the use of logical formula-based approaches
combined with symbolic executions since the interfaces to services are already
given as logical formulas (pre- and postconditions), and the structural aspects
of service compositions can easily be encoded by logic.

References

1. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: An evaluation of similarity coeffi-
cients for software fault localization. In: 12th Pacific Rim International Symposium
on Dependable Computing, PRDC 2006, pp. 39–46 (2006)

2. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the accuracy of spectrum-based
fault localization. In: Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION, TAICPART-MUTATION 2007, pp. 89–98
(2007)

3. Agarwal, P., Agrawal, A.P.: Fault-localization techniques for software systems: a
literature review. SIGSOFT Softw. Eng. Notes 39(5), 1–8 (2014)

260 J. Krämer and H. Wehrheim

4. Agrawal, H., Demillo, R.A., Spafford, E.H.: Debugging with dynamic slicingand
backtracking. Softw. Pract. Exp. 23, 589–616 (1993)

5. Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Proceedings of ACM SIG-
PLAN 1990 Conference on Programming Language Design and Implementation,
PLDI 1990, pp. 246–256. ACM (1990)

6. Artzi, S., Dolby, J., Jensen, S.H., Moller, A., Tip, F.: A framework for automated
testing of javascript web applications. In: 2011 33rd International Conference on
Software Engineering (ICSE), pp. 571–580 (2011)

7. Artzi, S., Dolby, J., Tip, F., Pistoia, M.: Directed test generation for effective fault
localization. In: Proceedings of 19th International Symposium on Software Testing
and Analysis, ISSTA 2010, pp. 49–60. ACM (2010)

8. Artzi, S., Dolby, J., Tip, F., Pistoia, M.: Fault localization for dynamic web appli-
cations. IEEE Trans. Softw. Eng. 38(2), 314–335 (2012)

9. Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A., Ernst, M.D.: Finding
bugs in web applications using dynamic test generation and explicit-state model
checking. IEEE Trans. Softw. Eng. 36(4), 474–494 (2010)

10. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: Proceedings of 30th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2003, pp. 97–105. ACM
(2003)

11. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009). Special Issue:
Software Performance - Modeling and Analysis

12. Becker, S., Grunske, L., Mirandola, R., Overhage, S.: Performance prediction of
component-based systems – a survey from an engineering perspective. In: Reuss-
ner, R., Stafford, J.A., Ren, X.-M. (eds.) Architecting Systems with Trustworthy
Components. LNCS, vol. 3938, pp. 169–192. Springer, Heidelberg (2006)

13. Brüseke, F., Wachsmuth, H., Engels, G., Becker, S.: PBlaman: performance blame
analysis based on Palladio contracts. Concurr. Comput. Pract. Exp. 26(12), 1975–
2004 (2014)

14. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: problem
determination in large, dynamic internet services. In: International Conference on
Dependable Systems and Networks, DSN 2002, Proceedings, pp. 595–604 (2002)

15. Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-sensitive fault localization. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 189–208. Springer, Heidelberg (2013)

16. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

17. Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings of 27th
International Conference on Software Engineering, ICSE 2005, pp. 342–351. ACM
(2005)

18. Crnkovic, I., Chaudron, M.R.V., Larsson, S.: Component-based development
process and component lifecycle. In: ICSEA, p. 44. IEEE Computer Society (2006)

19. Dallmeier, V., Lindig, C., Zeller, A.: Lightweight defect localization for Java. In:
Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 528–550. Springer, Heidelberg
(2005)

20. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Heidelberg (2014)

A Short Survey on Using Software Error Localization 261

21. Engels, G., Güldali, B., Soltenborn, C., Wehrheim, H.: Assuring consistency of
business process models and web services using visual contracts. In: Schürr, A.,
Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 17–31. Springer,
Heidelberg (2008)

22. Ermis, E., Schäf, M., Wies, T.: Error invariants. In: Giannakopoulou, D., Méry, D.
(eds.) FM 2012. LNCS, vol. 7436, pp. 187–201. Springer, Heidelberg (2012)

23. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. Int. J. Softw. Tools Technol. Transf. 8(3), 229–247 (2006)

24. Groce, A., Kroening, D.: Making the most of BMC counterexamples. Electron.
Notes Theor. Comput. Sci. 119(2), 67–81 (2005)

25. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments on the effective-
ness of dataflow- and control-flow-based test adequacy criteria. In: 16th Interna-
tional Conference on Software Engineering, Proceedings, ICSE-16, pp. 191–200
(1994)

26. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-
localization technique. In: Proceedings of 20th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2005, pp. 273–282. ACM (2005)

27. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist
fault localization. In: Proceedings of 24th International Conference on Software
Engineering, ICSE 2002, pp. 467–477. ACM (2002)

28. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. SIGPLAN Not. 46(6), 437–446 (2011)

29. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proceedings of 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2011, pp. 437–446. ACM (2011)

30. Könighofer, R., Bloem, R.: Automated error localization and correction for imper-
ative programs. In: Proceedings of International Conference on Formal Methods
in Computer-Aided Design, FMCAD 2011, pp. 91–100. FMCAD Inc. (2011)

31. Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29(3), 155–163
(1988)

32. Lamraoui, S.-M., Nakajima, S.: A formula-based approach for automatic fault
localization of imperative programs. In: Merz, S., Pang, J. (eds.) ICFEM 2014.
LNCS, vol. 8829, pp. 251–266. Springer, Heidelberg (2014)

33. Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug isolation via remote program
sampling. SIGPLAN Not. 38(5), 141–154 (2003)

34. Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug isolation via remote program
sampling. In: Proceedings of ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, PLDI 2003, pp. 141–154. ACM (2003)

35. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug
isolation. In: Proceedings of 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2005, pp. 15–26. ACM (2005)

36. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug
isolation. SIGPLAN Not. 40(6), 15–26 (2005)

37. Mao, C.: Slicing web service-based software. In: 2009 IEEE International Confer-
ence on Service-Oriented Computing and Applications (SOCA), pp. 1–8 (2009)

38. Minamide, Y.: Static approximation of dynamically generated web pages. In: Pro-
ceedings of 14th International Conference on World Wide Web, WWW 2005, pp.
432–441. ACM (2005)

39. Mirandola, R., Potena, P., Riccobene, E., Scandurra, P.: A reliability model for
service component architectures. J. Syst. Softw. 89, 109–127 (2014)

262 J. Krämer and H. Wehrheim

40. OASIS. Web services business process execution language v2.0. http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

41. Renieres, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: 18th
IEEE International Conference on Automated Software Engineering, Proceedings,
pp. 30–39 (2003)

42. Schäfer, W., Wehrheim, H.: Model-driven development with Mechatronic UML.
In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl
Festschrift. LNCS, vol. 5765, pp. 533–554. Springer, Heidelberg (2010)

43. Vessey, I.: Expertise in debugging computer programs: an analysis of the content
of verbal protocols. IEEE Trans. Syst. Man Cybern. 16(5), 621–637 (1986)

44. Walther, S., Wehrheim, H.: Knowledge-based verification of service compositions -
an smt approach. In: 2013 18th International Conference Engineering of Complex
Computer Systems (ICECCS), pp. 24–32 (2013)

45. Wassermann, G., Yu, D., Chander, A., Dhurjati, D., Inamura, H., Su, Z.: Dynamic
test input generation for web applications. In: Proceedings of 2008 International
Symposium on Software Testing and Analysis, ISSTA 2008, pp. 249–260. ACM
(2008)

46. Weiser, M.: Program slicing. In: Proceedings of 5th International Conference on
Software Engineering, ICSE 1981, pp. 439–449. IEEE Press (1981)

47. Wong, W.E., Debroy, V.: A survey of software fault localization. Technical report,
The University of Texas at Dallas (2009)

48. Wotawa, F., Nica, M., Moraru, I.: Automated debugging based on a constraint
model of the program and a test case. J. Logic Algebraic Program. 81(4), 390–407
(2012). Special Issue: NWPT 2009Special Issue: NWPT 2009

49. Zeller, A.: Yesterday, my program worked. Today, it does not. Why? In: Wang,
J., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE 1999. LNCS, vol. 1687, pp.
253–267. Springer, Heidelberg (1999)

50. Zeller, A.: Isolating cause-effect chains from computer programs. In: Proceedings
of 10th ACM SIGSOFT Symposium on Foundations of Software Engineering, SIG-
SOFT 2002/FSE-10, pp. 1–10. ACM (2002)

51. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002)

52. Zhang, X., He, H., Gupta, N., Gupta, R.: Experimental evaluation of using dynamic
slices for fault location. In: Proceedings of Sixth International Symposium on Auto-
mated Analysis-driven Debugging, AADEBUG 2005, pp. 33–42. ACM (2005)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

Author Index

Arabnejad, Hamid 152

Bottoni, Paolo 168
Brangewitz, Sonja 201
Breitenbücher, Uwe 69
Brogi, Antonio 219

Canciani, Andrea 219
Caporuscio, M. 53

D’Angelo, M. 53
de Gouw, Stijn 118
De Nicola, Rocco 34

El Ioini, Nabil 152
Estrada, Giovani 152

Feuerlicht, George 235
Fugkeaw, Somchart 3

Gabrielli, Emanuele 168
Giersche, Wolfgang 185
Gómez Sáez, Santiago 69
Grassi, V. 53
Gualandi, Gabriele 168
Guth, Jasmin 69
Gysel, Michael 185

Hoof, Simon 201

Jamshidi, Pooyan 152

Kassler, Andreas 18
Képes, Kálmán 69

Kölbener, Lukas 185
Krämer, Julia 248
Kritikos, Kyriakos 87, 102

Leymann, Frank 69

Mancini, Luigi Vincenzo 168
Mann, Zoltán Ádám 137
Mauro, Jacopo 118
Mirandola, R. 53

Nobakht, Behrooz 118

Pahl, Claus 152
Plexousakis, Dimitris 87, 102

Sato, Hiroyuki 3
Soldani, Jacopo 219
Stolfi, Franco 168

Taheri, Javid 18
Tiezzi, Francesco 34
Tran, Hong Thai 235

Uriarte, Rafael Brundo 34

Wehrheim, Heike 248
Wieland, Matthias 69

Zavattaro, Gianluigi 118
Zimmermann, Olaf 185
Zomaya, Albert Y. 18

	Preface
	Organization
	Contents
	Policies and Performance
	Updating Policies in CP-ABE-Based Access Control: An Optimized and Secure Service
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 C-CP-ARBE Model
	3.2 C-CP-ARBE Constructs

	4 Policy Updating Method
	4.1 Flexible and Secure Policy Update Management
	4.2 Very Lightweight Proxy Re-Encryption (VL-PRE)
	4.3 Security Model
	4.4 Policy Update Evaluation

	5 Evaluation
	5.1 Comparison of Policy Update Cost
	5.2 Performance Evaluation

	6 Conclusion
	References

	vmBBThrPred: A Black-Box Throughput Predictor for Virtual Machines in Cloud Environments
	1 Introduction
	2 Related Work
	3 Architecture of vmBBThrPred
	4 Procedures of vmBBThrPred
	4.1 Identify Relevant Hypervisor Metrics
	4.2 Blind Prediction
	4.3 VmModeler Procedures

	5 Experimental Results
	6 Discussion and Analysis
	6.1 Accuracy of vmBBThrPred
	6.2 Transferability of Results
	6.3 Indirect Metrics

	7 Conclusion
	References

	Dynamic SLAs for Clouds
	1 Introduction
	2 Supporting Dynamism in SLAC
	2.1 Syntax
	2.2 Semantics
	2.3 Examples

	3 Experiments
	3.1 Use Case Model
	3.2 Fuzzy Decision System
	3.3 Evaluation
	3.4 Discussion

	4 Conclusions and Future Works
	References

	Adaptation
	Reinforcement Learning Techniques for Decentralized Self-adaptive Service Assembly
	1 Introduction
	2 Adopted Approach Overview
	3 System Model
	4 System Operations
	4.1 Gossip Based Monitoring
	4.2 TD-learning Based Analysis and Planning

	5 Experimental Evaluation
	5.1 Simulation Results

	6 Related Work
	7 Conclusion
	References

	Situation-Aware Execution and Dynamic Adaptation of Traditional Workflow Models
	1 Introduction
	2 Motivation and Background
	3 Situation-Aware Execution of Workflow Models
	3.1 Situation-Aware Workflow Model Life-Cycle
	3.2 ProSit-Method: Generating Situation-Aware Workflows

	4 Architecture and Realization
	5 Case Study
	6 Related Work
	7 Conclusion
	References

	SLA-Aware Services
	Subsumption Reasoning for QoS-Based Service Matchmaking
	1 Introduction
	2 Related Work
	2.1 QoS-Based Service Description
	2.2 QoS-Based Service Discovery

	3 Background
	3.1 Realisation Issues
	3.2 Ontology-Based QoS Specification Management Process

	4 Proposed Approach
	4.1 Architecture
	4.2 Algorithms

	5 Experimental Evaluation
	5.1 Experiment Set-Up
	5.2 1st Experiment
	5.3 2nd Experiment
	5.4 3rd Experiment

	6 Conclusions
	References

	Towards Combined Functional and Non-functional Semantic Service Discovery
	1 Introduction
	2 Related Work
	3 Architecture
	4 Algorithm Analysis
	4.1 Symbols and Assumptions
	4.2 Sequential Algorithm
	4.3 Parallel Algorithm
	4.4 Subsumes Algorithm
	4.5 SubsumedBy Algorithm
	4.6 Discussion

	5 Evaluation
	5.1 Experiment Set-Up and Control
	5.2 Experiment Results

	6 Conclusions and Future Work
	References

	Declarative Elasticity in ABS
	1 Introduction
	2 The Fredhopper Cloud Services
	3 Annotated ABS
	4 The Declarative Requirement Language DRL
	5 Deployment Engine
	6 Application to the Fredhopper Use Case
	7 Related Work
	8 Conclusions
	References

	Job Placement
	Interplay of Virtual Machine Selection and Virtual Machine Placement
	1 Introduction
	2 Previous Work
	2.1 VM Placement
	2.2 VM Selection
	2.3 Inter-dependence of VM Placement and VM Selection

	3 Problem Model
	4 VM Selection and VM Placement Algorithms to Assess
	5 Empirical Results
	6 Conclusions
	References

	An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning - Implementation in OpenStack
	1 Introduction
	2 Background and Related Work
	3 OpenStack Orchestration
	4 Auto-Scaling Algorithm
	4.1 FQL4KE Building Blocks
	4.2 Fuzzy Logic Controller
	4.3 Fuzzy Q-Learning
	4.4 Dynamic Resource Allocation by FQL4KE

	5 Implementation
	6 Experimental Results and Discussion
	6.1 Experimental Setup and Benchmark
	6.2 Performance
	6.3 Effectiveness of the FQL4KE Algorithm
	6.4 Cost-Effective Scaling by FQL4KE

	7 Conclusions and Future Work
	References

	FedUp! Cloud Federation as a Service
	1 Introduction
	1.1 Related Work

	2 FedUp! Overview and Requirements
	3 Generating and Managing Federations with FedUp!
	4 Implementation Aspects
	5 Federating Heterogeneous Clouds
	5.1 Creating a Federation
	5.2 Joining a Federation

	6 Conclusions and Future Work
	References

	Compositionality
	Service Cutter: A Systematic Approach to Service Decomposition
	Abstract
	1 Introduction
	2 Context, Problem and Supporting Definitions
	3 Coupling Criteria Catalog
	4 Service Decomposition Concepts and Tool Architecture
	5 Evaluation via Prototyping, Case Studies, Action Research
	6 Discussion: User Feedback, Pros and Cons, Related Work
	7 Summary and Outlook
	References

	Economic Aspects of Service Composition: Price Negotiations and Quality Investments
	1 Introduction
	2 Literature
	3 Model
	4 Demand and Bargaining
	5 Dynamics of Service Quality and Investments
	6 Simulation
	7 Conclusion
	A Technical Appendix
	A.1 Fixed Point
	A.2 Stability

	References

	Fault Tolerance
	Fault-Aware Application Management Protocols
	1 Introduction
	2 Motivating Example
	3 Modelling and Analysing Application Management in Presence of faults
	3.1 Fault-Aware Management Protocols
	3.2 Composition of Fault-Aware Management Protocols
	3.3 Analysing an Application's Fault-Aware Management Behaviour

	4 Modelling the Unexpected
	4.1 Unexpected Behaviour of a Component
	4.2 Hard Recovery

	5 Related Work
	6 Conclusions
	References

	Improving Reliability of Cloud-Based Applications
	Abstract
	1 Introduction
	2 Related Work
	3 Reliability Strategies
	3.1 Retry Fault Tolerance
	3.2 Recovery Block Fault Tolerance
	3.3 Dynamic Sequential Fault Tolerance

	4 Implementation of Reliability Strategies Using the SCF
	4.1 Service Repository
	4.2 Service Adaptors
	4.3 Workflow Engine
	4.4 Notification Centre

	5 Experimental Verification of Reliability Strategies
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusions
	References

	A Short Survey on Using Software Error Localization for Service Compositions
	1 Introduction
	2 Services and Service Compositions
	3 Survey on Error Localization
	3.1 Criteria for Error Localization Approaches
	3.2 Error Localization Approaches in Service Compositions

	4 Conclusion and Future Work
	References

	Author Index

