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Abstract We study d-dimensional simplicial complexes that are PL embeddable in
R

dC1. It is shown that such a complex must satisfy a certain homological condition.
The existence of this obstruction allows us to provide a systematic approach to
deriving upper bounds for the number of top-dimensional faces of such complexes,
particularly in low dimensions.

1 Introduction

The question of embeddability of a d-dimensional simplicial complex into k-
dimensional Euclidean space R

k has a long history. In the following section we
sketch some of this background. Technical definitions and details appear in later
sections. See J. Matoušek’s book [13, chapter 5] and his paper with M. Tancer and
U. Wagner [14] for nice introductions to the field.

In this note we provide a homological obstruction to codimension one (k D dC1)
piecewise linear (PL) embeddability of simplicial complexes. For the case of graphs
(d D 1) this kind of obstruction was used by S. Mac Lane [11] in his work on
planarity.
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As corollaries we derive upper bounds for the number of top-dimensional faces in
a complex with codimension one PL embedding, in terms of the lower dimensional
face numbers and Betti numbers. For instance, we show that

fd.†/ � g.†/

g.†/ � 2

  
dX

iD1

.�1/i�1 . fd�i.†/ � ˇd�i.†//

!
� 1

!
;

where fi.†/ is the number of faces of dimension i, ˇi is the Betti number in
dimension i, and g.†/ is the girth (smallest size of a d-cycle in non-zero homology).
See Theorem 3 for details. For d D 1 and g.†/ D 3 this specializes to Euler’s 3n�6

upper bound for the maximal number of edges of a planar graph.
The method used enables us to provide a unified approach and to give more

detailed versions of face number inequalities for such complexes in low dimensions.
For instance, we obtain that

f2.†/ � 2 . f1.†/ � f0.†/ � ˇ1.†//

for any connected 2-dimensional complex † that PL embeds into R
3, see Propo-

sition 8. Furthermore, we give a new upper bound for the number of facets of
complexes with codimension one PL embedding, in terms only of the number of
vertices. This slightly improves the upper bound given by Dey and Pach [6].

Finally, some of our face number inequalities are adapted to the case of balanced
complexes, i.e., complexes whose 1-skeleton is .d C 1/-colorable in the graph-
theoretic sense.

2 Background

The concept of planarity has been of interest to mathematicians ever since the
subject of graph theory was founded. For instance, the impossibility for a planar
graph on n (�3) vertices of having more than 3n �6 edges was mentioned in a letter
from L. Euler to C. Goldbach in 1750, see [1, p. 75].

A topological characterisation of planarity was given by K. Kuratowski in 1929
and independently (a few months later) by O. Frink and P.A. Smith. This result
asserts that a finite graph is planar if and only if it does not contain a subgraph
homeomorphic to K5 or K3;3. Since then other characterisations of planarity have
been given. Among them one can mention the more combinatorial approaches by
H. Whitney [23] and S. Mac Lane [11], and the more topological approach of
H. Hanani and W.T. Tutte (see [20], for instance).

What can be said about the situation in higher dimensions? Let † be a finite
d-dimensional simplicial complex. It was known since the early days of topology
that † is linearly embeddable into R

2dC1. In his 1933 article, E. R. van Kampen [21]
showed that this result is best possible, by presenting d-dimensional complexes (now
known as the van Kampen–Flores complexes) that do not embed into R

2d. Thus, the
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natural question is, for d � k � 2d, does † admit an embedding into R
k? The most

intensively investigated cases are when k D 2d or k D d C1. Note that these are the
two natural generalisations to higher dimensions of the concept of planarity.

There is no satisfactory analogue of Kuratowski’s characterisation in higher
dimensions. Indeed, for every d > 1 and d C 1 � k � 2d, J. Zaks [24]
constructed infinitely many pairwise non-homeomorphic d-dimensional complexes
that are minimal with respect to the property of being not embeddable in R

k.
Based on the aforementioned work of van Kampen, in 1957 A. Shapiro [18]

introduced the van Kampen obstruction; a cohomological obstruction to embed-
dability of d-dimensional complexes into R

2d. See [14] for a geometric description.
The van Kampen obstruction can be seen as a higher-dimensional analogue of
the Hanani–Tutte theorem, though the strong version of Hanani–Tutte theorem
appeared much later in [20].

3 Embedding

A simplicial complex † is said to admit a linear embedding into R
k if † has a

geometric realisation k†k in R
k. More generally, † admits a topological embedding

into R
k if there is a continuous injection k†k ,! R

k, from some geometric
realisation of † to R

k. An intermediate concept is that of PL embedding. We say
that † is piecewise linear (PL) embeddable into R

k if there is a subdivision of k†k
that linearly embeds into R

k. In this paper we focus on PL embeddings.
It is a consequence of Steinitz’ Theorem [25, Lect. 4] that every planar graph can

be drawn in the plane with straight edges. However, for higher dimensional objects
the situation is more complicated.

Example 1 (Brehm’s triangulated Möbius strip) In [3], Brehm presented a triangu-
lation of the Möbius strip that can not be geometrically realised in R

3. The idea is
simple but elegant: A non null-homotopic curve, different from the center line, and
the boundary curve of the Möbius strip are linked together, with absolute value
of the linking number at least 2. This can easily be visualised by, for instance,
considering the blue curve on the left hand side of Fig. 1 below. Now, triangulate the
Möbius strip in such a way that the blue curve and the boundary curve are induced
triangles; see the right hand side of Fig. 1. Two triangles with straight edges in R

3 are
either the unlink or the Hopf link. Hence, these two triangles cannot be realised by
straight edges. Iterated simplicial suspensions produce examples of d-dimensional
complexes that are PL embeddable into R

dC1 but do not admit a linear embedding.
The difference between linear and PL embedding is even more dramatic. One can

show that the problem of linear embeddability is algorithmically decidable. On the
other hand, it is shown in [14, Theorem 1.1] that codimension one PL embeddability
is algorithmically undecidable for d � 4. See [14] for a thorough discussion.
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Fig. 1 Brehm’s triangulated Möbius strip

Let us also remark that topological and PL embeddings do not coincide in
codimension one. In fact, by the double suspension theorem [4], the suspension
of the Poincaré homology 3-sphere topologically embeds into R

5. However, it does
not admit a PL embedding into R

5 [22, p. 576].

4 Main Results

Let † be a d-dimensional simplicial complex. We consider simplicial homology of
† with Z2 coefficients. Let c D P

�� � be a d-chain, where the sum is over all
d-dimensional faces of † and �� 2 Z2. We let the support supp.c/ of c be the set of
all d-faces � such that �� D 1.

Let us say that a basis B of Hd.†IZ2/ is m-complete if every d-dimensional face
of † appears in the support of at most m elements in B. When d D 1, this definition
agrees with Mac Lane’s concept of m-fold complete set of cycles for graphs. He
showed that having a 2-fold complete set of cycles is equivalent to planarity for
graphs [11]. In this section we generalise one direction of Mac Lane’s result. Before
doing so, we need to show the following topological invariance property.

Lemma 1 Let † and � be two triangulations of a d-dimensional topological space
X. Then † has an m-complete basis if and only if � has a m-complete basis.

Proof Let Hd.XIZ2/ be the singular homology group of X (this is the only place in
this paper where we use singular homology theory). We refer to the book [16] by
Munkres for the definition and properties of the singular homology.

Let Hd.XIZ2/ D Z
r
2. We can always assume that there are d-dimensional

pseudomanifolds M1; : : : ; Mr and continuous maps f i W Mi ! X, for 1 � i � r,
so that the d-dimensional homology classes of X are f i

]ŒMi�, where ŒMi� is the
fundamental class of Mi. We claim that a triangulation of X has an m-complete basis
if and only if there is a choice of Mi and f i such that for any subset I of f1; 2; : : : ; rg
of size greater than m one has

dim

 \
i2I

f i.Mi/

!
< d:
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Observe that once the claim is verified the desired statement is immediate. However,
the verification of the claim is standard and we leave it to the reader. ut
Remark 1 Since we are working with Z2 coefficients, it follows from a result by
Thom that, M1; : : : ; Mr in the proof of Lemma 1 can be taken to be closed manifolds.
See, for instance, [19, p. 343].

Theorem 1 Let † be a d-dimensional simplicial complex that admits a PL
embedding into R

dC1. Then Hd.†IZ2/ has a 2-complete basis.

Proof First notice that, by Lemma 1, † has a 2-complete basis if and only if any
subdivision of † has this property. This allows us to replace † by a subdivision of
† if needed. Also, observe that since † is PL embeddable into R

dC1, then † is PL
embeddable into the .d C 1/-simplex �dC1. Thus there is a subdivision †0 of † and
a subdivision B of �dC1 such that †0 is a subcomplex of B. So, we may assume
that †0 is a subcomplex of a simplicial .d C 1/-sphere S, say by embedding B into
a hyperplane H of RdC2 and taking S D fpg � @B [ B, where p is a point outside H
and � denotes the simplicial cone.

Now, set r WD ˇd.†0IZ2/ C 1. There is nothing to prove if r D 1. So, we
may assume that r > 1. It follows from Alexander duality [16, Theorem 71.1] that
kSk�k†0k has r connected components, say K1; : : : ; Kr . For 1 � j � r, let cj be the
formal sum (modulo 2) of all facets F of S such that the barycenter of F lies in Kj.
Let bj be the boundary @dC1cj of cj. Notice that bj ¤ 0, since r > 1 and therefore, cj

cannot be a .d C 1/-cycle.
We will show that b1; : : : ; br�1 form a 2-complete basis for Hd.†0IZ2/.
Let � 2 supp.bj/ for some 1 � j � r. Then � is a facet of †0. Otherwise,

the facets F� and F0
� of S that contain � lie in the same connected component Kj.

This implies that F� and F0
� are in the support of cj. Hence, � … supp.bj/, which

is a contradiction. Also, observe that there exists exactly one i ¤ j such that � 2
supp.bi/, since every codimension one face of S is in exactly two facets.

It is immediate that @dbj D @d@dC1cj D 0, hence every bj is a d-cycle in S.
However, since supp.bj/ is a subset of the set of faces of †0, then every bj is a
d-cycle in †0.

Finally, we have that
P

i2A bi ¤ 0 for all proper subsets A of f1; : : : ; rg.
Otherwise,

@dC1

 X
i2A

ci

!
D
 X

i2A

@dC1ci

!
D
X
i2A

bi D 0;

that is, the subcomplex of S whose set of facets are ci, i 2 A, has non-trivial
.d C 1/-dimensional homology. However, this cannot happen, since every proper
subcomplex of S has trivial .d C 1/-dimensional homology. Therefore, b1; : : : ; br�1

is a 2-complete basis for Hd.†0IZ2/, as promised. ut
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Remark 2 It might be possible that the conclusion of Theorem 1 is still valid if
we consider the more general case of topological embedding. However, since we
use Alexander duality, our method would not be directly applicable in that general
setting.
Notice that the converse to Theorem 1 is obviously false for all d > 1. For
instance, there are d-manifolds that do not admit an embedding into R

dC1; non-
orientable manifolds for example. In fact, it follows from Alexander duality that if
† is embeddable into the .d C 1/-sphere S

dC1, then the cohomology Hd.†IZ/ is
isomorphic to eH0.S

dC1 n †IZ/ and, thus, is torsion-free.
Having Theorem 1 in mind it is tempting to conjecture that if a d-dimensional

simplicial complex † embeds into R
dCm�1, then Hd.†IZ2/ has an m-complete

basis. The following example shows that this is not the case.

Example 2 Let n be an integer and let � be the 2-dimensional complex obtained by
suspending the complete bipartite graph Kn;n. Clearly, f .�/ D .n C 2; n2 C 2n; 2n2/

and ˇ2.�/ D n2 � 2n C 1. On the other hand, � (being a suspension of a complex
embeddable in 3-space) is embeddable into R

4. However, we show that for large
enough n, H2.�IZ2/ does not have a 3-complete basis. First observe that if � is
a minimal cycle in �, then � has at least 8 triangles. Now, let B be a basis for
H2.�IZ2/ and let M be the n2 �2n C1 by 2n2 f0; 1g-matrix whose rows are labeled
by the elements � of B and whose columns are labeled by the facets of �, and for
which the entry .F; �/ is the coefficient of F in �. Since the number of facets with
non-zero coefficient in each element of B is at least 8, the minimum number of 1s
in M is 8.n2 � 2n C1/. On the other hand, if H2.�IZ2/ has a 3-complete basis, then
the maximum number of 1 s in M must be 3 times the number of facets, that is, 6n2.
Therefore, if n is large enough then H2.�IZ2/ does not have a 3-complete basis.

5 Face Numbers

In this section we provide upper bounds for the number of top dimensional faces
of complexes that admit a codimension one embedding in terms of the lower
dimensional face numbers and Betti numbers.

For a d-dimensional simplicial complex †, with non-trivial top Betti number,
let us define the girth of †, denoted g.†/, to be the minimum number of d-
dimensional faces of a subcomplex with non-zero d-dimensional Betti number. This
notion extends the graph theoretic notion of girth as the minimal size of a circuit. If
ˇd.†/ D 0 we define the girth to be d C 2. Note that the girth of a d-dimensional
complex satisfies g.†/ � d C 2.

Theorem 2 Let † be a d-dimensional simplicial complex such that Hd.†IZ2/

admits a 2-complete basis. Then

g.†/ .ˇd.†IZ2/ C 1/ � 2fd.†/: (1)
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Proof Let r and b1; : : : ; br be as defined in the proof of Theorem 1. On the one
hand, for 1 � j � r, supp.bj/ has at least g.†/ elements. On the other hand, a d-
dimensional face of † appears, if at all, in the support of two of the bj’s. Therefore,
g.†/r � 2fd.†/, as desired. ut

To help simplify the notation, let ıj D fj.†/ � ˇj.†IZ2/, for all j. Then, let

�j�1.†/ D
jX

iD1

.�1/i�1ıj�i

It follows from the rank-nullity theorem that �j�1.†/ � 0 for all j. These
inequalities, sometimes called the strong Morse inequalities, are discussed in Milnor
[15], and appear in slightly sharper form in [2].

Theorem 3 Let † be a d-dimensional simplicial complex that admits a PL
embedding into R

dC1. Then,

fd.†/ � g.†/

g.†/ � 2
.ıd�1 � ıd�2 C ıd�3 � � � � C ıd�k � 1/ (2)

for all odd k � 1.

Proof Our point of departure is the inequality (1) of Theorem 2. Replace ˇd.†IZ2/

in the left hand side of the inequality by the right hand side of the following form of
the Euler-Poincaré formula:

ˇd.†IZ2/ D fd.†/ � �d�1.†/;

and then simplify and use �d�k�1 � 0 to get the desired inequality. ut
Corollary 4 Let † be a d-dimensional simplicial complex that admits a PL
embedding into R

dC1. Then,

fd.†/ � d C 2

d
. fd�1 � ˇd�1 � 1/:

Proof This is the k D 1 case of Theorem 3, using that g.†/ � d C 2. ut
Next, we focus on balanced simplicial complexes. Recall that a d-dimensional

simplicial complex is said to be balanced if its underlying graph (1-skeleton) is
.d C 1/-colorable in the graph theoretic sense.

Theorem 5 Let † be a balanced d-dimensional simplicial complex that admits a
PL embedding into R

dC1. Then the following hold true:

(a) 2d.ˇd.†IZ2/ C 1/ � fd.†/;
(b) fd.†/ � 2d

2d�1
.�d�1 � 1/.
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Proof It suffices to show that the girth of a balanced d-dimensional simplicial
complex is at least 2dC1. The crucial point is that a balanced d-dimensional complex
with non-zero top dimensional homology has at least 2dC1 faces of dimension d. To
see this one can observe that such a complex must contain a balanced d-dimensional
pseudomanifold without boundary; the pure complex whose facets are support of a
d-cycle. The claim then can be proved easily for pseudomanifolds, say by induction
on the dimension. We leave it to the reader to fill in the details. ut

Our method is applicable also to complexes that admit a codimension zero
embedding. For this, we first need to prove an auxiliary result.

Lemma 2 Let † be a d-dimensional simplicial complex and let †.�1/ denote its
codimension one skeleton. Then one has

fd.†/ D ˇd.†IZ2/ � ˇd�1.†IZ2/ C ˇd�1.†
.�1/IZ2/:

Proof We have that fi.†.�1// D fi.†/ for all i � d � 1, and ˇi.†
.�1// D ˇi.†/ for

all i � d � 2. Hence, by the Euler-Poincaré formula

.�1/dfd.†/ D �.†/ � �.†.�1// D .�1/d
�
ˇd.†/ � ˇd�1.†/ C ˇd�1.†

.�1/
�

ut
Corollary 6 Let † be a d-dimensional simplicial complex that admits a PL
embedding into R

d. Then fd.†/ � 2
dC1

fd�1.†/ � 1.

Proof It can easily be shown, say by using Alexander duality, that the top
dimensional homology of † must be zero. Thus, it follows from Lemma 2 that
ˇd�1.†

.�1/IZ2/ � fd.†/. Now, applying Theorem 2 to †.�1/ we get

.d C 1/. fd.†/ C 1/ � .d C 1/.ˇd�1.†
.�1/IZ2/ C 1/ � 2fd�1.†

.�1// D 2fd�1.†/:

ut

6 Corollaries in Low Dimensions

In this section we summarise direct consequences of the main results for embed-
dings into dimensions 2, 3 and 4. Throughout, the number of vertices of a simplicial
complex is denoted by n (rather than f0).

Proposition 7 Let † be a 2-dimensional complex that PL embeds into R
2. Then

f2.†/ � 2
3
f1.†/ � 1. In particular, f2.†/ � 2n � 5.

Proof The first inequality follows from Corollary 6. The second inequality follows
from the fact that the underlying graph of † is planar. ut
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Proposition 8 Let † be a connected 2-dimensional complex that PL embeds into
R

3. Then f2.†/ � 2. f1.†/ � ˇ1.†/ � n/.

Proof This follows easily from Theorem 3. ut
Corollary 9 (Dey–Edelsbrunner [5]) Let † be a 2-dimensional complex that PL
embeds into R

3. Then f2.†/ � n.n � 3/.

Proof Without loss of generality, we may assume that † is connected. The
inequality is an immediate consequence of Proposition 8 and the trivial

�n
2

�
upper

bound for f1.†/. ut
Corollary 10 Let † be a 3-dimensional complex that PL embeds into R

3. Then
f3.†/ � n.n � 3/=2 � 1.

Proof This follows from Corollaries 6 and 9. ut
Proposition 11 Let † be a connected balanced 2-dimensional complex that
embeds into R

3. Then f2.†/ � 4
9
.n2 � 3n/.

Proof It follows from Theorem 5 that f2.†/ � 4
3
. f1.†/ � n/. Now, since the

underlying graph of † is 3-colorable, one has f1.†/ � 3. n
3
/2. The conclusion now

follows easily. ut
For embeddings into dimension 4 much less is known. It was conjectured by

Kalai and Sarkaria (see Kalai’s blog [9], for instance) that if a 2-dimensional
complex is embedded into R

4, then it has at most 2n.n�1/ triangles. This conjecture
is wide open. Currently, the best known bound [17] is C �n8=3, where C is a constant.
Here is what our method yields in the case of embeddings into dimension four.

Proposition 12 Let † be a connected 3-dimensional complex that PL embeds into
R

4. Then f3.†/ � 5
3

. f2.†/ � f1.†/ � ˇ2.†/ C ˇ1.†/ C n � 2/.

Proof This follows from Theorem 3. ut
Corollary 13 Let † be a connected 3-dimensional complex that PL embeds into
R

4. Then,

f3.†/ � 5

3
. f2.†/ C ˇ1.†/ � 1/ and f3.†/ � 5

3

  
n

3

!
C n � 2/

!
:

If † is simply connected, then f3.†/ � 5
3
. f2.†/ � 1/.

Proof The inequalities are immediate consequences of Proposition 12 and the trivial�n
3

�
upper bound for f2.†/. ut
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7 Estimates

In the following we give an upper bound for the number of top dimensional faces
of a d-dimensional simplicial complex embedded into R

dC1 in terms of the number
of its vertices. Let us begin by observing that for a d-complex † on n vertices one
has fd�1.†/ � �n

d

�
. Hence, it follows from Theorem 3 that fd.†/ < .1 C 2

d /
�n

d

�
.

Therefore, we can easily obtain the upper bound fd.†/ D O.nd/ due to Dey and
Pach [6, Theorem 3.1], where O is the big O notation.

Below we present a slightly better upper bound by using our Theorem 3 and a
combination of an idea due to Gundert [10] and Sperner’s Lemma [7, Lemma 4.5].
Recall that Sperner’s Lemma asserts that for a simplicial complex † on n vertices
the quantity fi.†/=fi�1.†/ is at most

� n
iC1

�
=
�n

i

�
. Notice that Sperner’s Lemma can

easily be strengthened to

fi.†/=fj.†/ �
 

n

i C 1

!
=

 
n

j C 1

!
D O.ni�j/;

for all i > j.

Theorem 14 Let † be a d-dimensional simplicial complex that admits a PL

embedding into R
dC1. Then fd.†/ D O.nd��/, where � D 3�d dC1

2 e.

Proof Let us, to simplify notation, put ` D d dC1
2

e. Let � be the `-dimensional
skeleton of †. Since � is embeddable into R

d, it follows from [10, Proposi-
tion 3.3.5] that

f`.†/ D f`.�/ D O.n`C1�3�`

/:

Now, it follows from Sperner’s Lemma that fd�1.†/ D O.nd�`�1/f`.†/. Therefore,
one obtains that fd�1.†/ D O.nd�3�`

/. Finally, the conclusion follows from
Theorem 3. ut

We remark that the upper bound provided in Theorem 14 is probably far from the
true upper bound. Actually, it was shown by Dey and Pach [6] that if a k-dimensional
complex † embeds into R

k then fk.†/ D O.nd k
2 e/. Indeed, for k � 4 it is an open

problem to show that if a simplicial complex embeds into R
k, then the total number

of its faces is bounded above by O.nd k
2 e/.

8 An Upper Bound by Grünbaum

In the 1970 paper [8] Branko Grünbaum shows that if a d-dimensional complex
† embeds into R

dC1, then fd.†/ � 6
dC1

fd�1.†/. He also proves slightly sharper
versions of this result for pure complexes, see Proposition 15 below.
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How do the different bounds compare? Due to their different structure it is hard
to make a general comparison. In view of having leading constant 6

dC1
, it is clear

that Grünbaum’s upper bound is better than ours in several cases, particularly when
one has only some partial f -vector information. However, our bound is tighter in
other cases, especially if much structural information, expressed in terms of f - and
ˇ-vectors, is available. In this section, we present one such case.

Let us begin with the following result, which extends the validity of Grünbaum’s
inequality [8, 5(iii)] to embeddability into manifolds.

Proposition 15 Let † be a pure d-dimensional simplicial complex that is PL
embeddable into a .d C 1/-dimensional PL manifold. Then

fd.†/ � 6

d C 1
fd�1.†/ � 10

d.d C 1/
fd�2.†/: (3)

Proof We know that if † is a planar graph which contains at least one edge, then1

f1.†/ � 3f0.†/ � 5. This verifies the first step d D 1 of an inductive argument.
Now assume that the statement is valid for every 1 � k < d and † is a pure d-

dimensional simplicial complex that is PL embeddable into a .d C 1/-dimensional
PL manifold. Let V denote the vertex set of † and for v 2 V , let Lv be the link of v

in †. Since † is embeddable into a .d C 1/-manifold, Lv must be embeddable into
a d-sphere and we have

dŠ fd�1.Lv/ � 6.d � 1/Š fd�2.Lv/ � 10.d � 2/Š fd�3.Lv/:

Summing over all vertices v 2 V and using the equation
P

v fi.Lv/ D .iC2/fiC1.†/

yields the desired conclusion. ut
Say we are interested in the question whether the d-skeleton of a .dC1/-manifold

is embeddable into R
dC1. If the manifold in question has non-vanishing homology

in dimension d (or equivalently in dimension one) our inequalities turn out to be
sharp enough to provide a negative answer, while Grünbaum’s inequality (3) is not.

Proposition 16 Let † be the d-skeleton of a triangulated .d C 1/-dimensional PL
manifold with non-zero d-dimensional Betti number. Then † is not PL-embeddable
into R

dC1.

Proof Let M denote the .d C 1/-dimensional manifold in question. We know from
Lemma 2 that

fdC1.M/ D ˇdC1.MIZ2/ � ˇd.MIZ2/ C ˇd.†IZ2/:

1Note that “�5” is needed here, instead of “�6”, in order to include the case when f0 D 2 for the
inductive argument.
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Since M is a manifold, one has .d C 2/fdC1.M/ D 2fd.M/ and ˇdC1.M/ D 1. This,
together with the assumption ˇd.M/ � 1 imply that

.d C 2/ .ˇd.†/ C 1/ D .d C 2/ .ˇdC1.M/ C ˇd.†// > .d C 2/fdC1.M/ D 2fd.M/;

which violates the inequality (1) of Theorem 5. Therefore, † is not PL embeddable
into R

dC1. Also the inequality (2) is violated.
Observe, however, that Grünbaum’s inequality (3) is satisfied by f .†/. This

follows from Proposition 15, since † is PL embeddable into a .d C 1/-dimensional
manifold, namely M. ut
Example 3 As a concrete example of this type, one may take T to be a triangulation
of the 3-torus with f .T/ D .15; 105; 180; 90/. Such a triangulation exists and
happens to be the smallest (w.r.t. the f -vector) known triangulation of the 3-torus
S1 � S1 � S1. See [12, Table 7] for instance. Let † be the 2-skeleton of T. Then one
has f .†/ D .15; 105; 180/ and ˇ.†/ D .1; 3; 92/.
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