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of a Polynomial on the Boolean Cube

Alexander Barvinok

Abstract For a polynomial f W f�1; 1gn �! C, we define the partition function as
the average of e�f .x/ over all points x 2 f�1; 1gn, where � 2 C is a parameter.
We present a quasi-polynomial algorithm, which, given such f , � and � > 0

approximates the partition function within a relative error of � in NO.ln n�ln �/ time
provided j�j � .2L

p
deg f /�1, where L D L. f / is a parameter bounding the

Lipschitz constant of f from above and N is the number of monomials in f . As
a corollary, we obtain a quasi-polynomial algorithm, which, given such an f with
coefficients ˙1 and such that every variable enters not more than 4 monomials,
approximates the maximum of f on f�1; 1gn within a factor of O

�
ı�1

p
deg f

�
,

provided the maximum is Nı for some 0 < ı � 1. If every variable enters not
more than k monomials for some fixed k > 4, we are able to establish a similar
result when ı � .k � 1/=k.

1991Mathematics Subject Classification. 90C09, 68C25, 68W25, 68R05.

1 Introduction and Main Results

1.1 Polynomials and Partition Functions

Let f�1; 1gn be the n-dimensional Boolean cube, that is, the set of all 2n n-vectors
x D .˙1; : : : ; ˙1/ and let f W f�1; 1gn �! C be a polynomial with complex
coefficients. We assume that f is defined as a linear combination of square-free

This research was partially supported by NSF Grant DMS 1361541.

A. Barvinok (�)
Department of Mathematics, University of Michigan, 530 Church street, 48109-1043 Ann Arbor,
MI, USA
e-mail: barvinok@umich.edu

© Springer International Publishing AG 2017
M. Loebl et al. (eds.), A Journey Through Discrete Mathematics,
DOI 10.1007/978-3-319-44479-6_7

135

mailto:barvinok@umich.edu


136 A. Barvinok

monomials:

f .x/ D
X

I�f1;:::;ng
˛IxI where ˛I 2 C for all I

and xI D
Y

i2I
xi for x D .x1; : : : ; xn/ ;

(1)

where we agree that x; D 1. As is known, the monomials xI for I � f1; : : : ; ng
constitute a basis of the vector space of functions f W f�1; 1gn �! C.

We introduce two parameters measuring the complexity of the polynomial f in
(1). The degree of f is the largest degree of a monomial xI appearing in (1) with a
non-zero coefficient, that is, the maximum cardinality jIj such that ˛I ¤ 0:

deg f D max
IW ˛I¤0

jIj:

We also introduce a parameter which controls the Lipschitz constant of f :

L. f / D max
iD1;:::;n

X

I�f1;:::;ng
i2I

j˛I j:

Indeed, if dist is the metric on the cube,

dist.x; y/ D
nX

iD1

jxi � yij where x D .x1; : : : ; xn/ and y D . y1; : : : ; yn/

then

j f .x/ � f . y/j � L. f / dist.x; y/:

We consider f�1; 1gn as a finite probability space endowed with the uniform
measure.

For � 2 C and a polynomial f W f�1; 1gn �! C, we introduce the partition
function

1

2n

X

x2f�1;1gn
e�f .x/ D Ee�f :

Our first main result bounds from below the distance from the zeros of the
partition function to the origin.
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Theorem 1.1 Let f W f�1; 1gn �! C be a polynomial and let � 2 C be such that

j�j � 0:55

L. f /
p
deg f

:

Then

E e�f ¤ 0:

If, additionally, the constant term of f is 0 then

ˇ
ˇE e�f

ˇ
ˇ � .0:41/n:

We prove Theorem 1.1 in Sect. 4. As a simple example, let f .x1; : : : ; xn/ D x1 C
� � � C xn. Then

E e�f D �
E e�x1

� � � � �E e�xn
� D

�
e� C e��

2

�n

:

We have L. f / D deg f D 1 and Theorem 1.1 predicts that E e�f ¤ 0 provided
j�j � 0:55. Indeed, the smallest in the absolute value root of E e�f is � D �i=2

with j�j D �=2 � 1:57. If we pick f .x1; : : : ; xn/ D ax1 C : : : C axn for some real
constant a > 0 then the smallest in the absolute value root of E e�f is �i=2a with
j�j inversely proportional to L. f /, just as Theorem 1.1 predicts. It is not clear at the
moment whether the dependence of the bound in Theorem 1.1 on deg f is optimal.

As we will see shortly, Theorem 1.1 implies that E e�f can be efficiently
computed if j�j is strictly smaller than the bound in Theorem 1.1. When computing
E e�f , we may assume that the constant term of f is 0, since

E e�. fC˛/ D e�˛E e�f

and hence adding a constant to f results in multiplying the partition function by a
constant.

For a given f , we consider a univariate function

� 7�! E e�f :

As follows from Theorem 1.1, we can choose a branch of

g.�/ D ln
�
E e�f

�
for j�j � 0:55

L. f /
p
deg f

such that g.0/ D 0. It follows that g.�/ is well-approximated by a low degree Taylor
polynomial at 0.
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Theorem 1.2 Let f W f�1; 1gn �! C be a polynomial with zero constant term and
let

g.�/ D ln
�
E e�f

�
for j�j � 0:55

L. f /
p
deg f

:

For a positive integer m � 5n, let

Tm. f I �/ D
mX

kD1

�k

kŠ

dk

d�k
g.�/

ˇ
ˇ̌
�D0

be the degree m Taylor polynomial of g.�/ computed at � D 0. Then for n � 2

jg.�/ � Tm. f I �/j � 50n

.m C 1/.1:1/m
C e�n

provided

j�j � 1

2L. f /
p
deg f

: (2)

In Sect. 3, we deduce Theorem 1.2 from Theorem 1.1.
As we discuss in Sect. 3.1, for a polynomial f given by (1), the value of Tm. f I �/

can be computed in nNO.m/ time, where N is the number of monomials in the
representation (1). Theorem 1.2 implies that as long as � � e�n, by choosing
m D O

�
ln n � ln �

�
, we can compute the value of E e�f within relative error � in

NO.ln n�ln �/ time provided � satisfies the inequality (2). For � exponentially small
in n, it is more efficient to evaluate E e�f directly from the definition.

1.2 Relation to Prior Work

This paper is a continuation of a series of papers by the author [3, 4] and by
the author and P. Soberón [5, 6] on algorithms to compute partition functions in
combinatorics, see also [16]. The main idea of the method is that the logarithm of
the partition function is well-approximated by a low-degree Taylor polynomial at
the temperatures above the phase transition (the role of the temperature is played by
1=�), while the phase transition is governed by the complex zeros of the partition
function, cf. [15, 18].

The main work of the method consists of bounding the complex roots of the
partition function, as in Theorem 1.1. While the general approach of this paper
looks similar to the approach of [3–5] and [6] (a martingale type and a fixed point
type arguments), in each case bounding complex roots requires some effort and new
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ideas. Once the roots are bounded, it is relatively straightforward to approximate the
partition function as in Theorem 1.2.

Another approach to computing partition functions, also rooted in statistical
physics, is the correlation decay approach, see [17] and [1]. While we did not
pursue that approach, in our situation it could conceivably work as follows: given
a polynomial f W f�1; 1gn �! R and a real � > 0, we consider the Boolean
cube as a finite probability space, where the probability of a point x 2 f�1; 1gn is
e�f .x/=E e�f . This makes the coordinates x1; : : : ; xn random variables. We consider
a graph with vertices x1; : : : ; xn and edges connecting two vertices xi and xj if there
is a monomial of f containing both xi and xj. This introduces a graph metric on
the variables x1; : : : ; xn and one could hope that if � is sufficiently small, we have
correlation decay: the random variable xi is almost independent on the random
variables sufficiently distant from xi in the graph metric. This would allow us to
efficiently approximate the probabilities P .xi D 1/ and P .xi D �1/ and then
recursively estimate E e�f .

While both approaches treat the phase transition as a natural threshold for
computability, the concepts of phase transition in our method (complex zeros of the
partition function) and in the correlation decay approach (non-uniqueness of Gibbs
measures) though definitely related and even equivalent for some spin systems [8],
in general are different.

Theorem 1.2 together with the algorithm of Sect. 3.1 below implies that to
approximate E e�f within a relative error of � > 0, it suffices to compute moments
E f k for k D O

�
ln ��1

�
. This suggests some similarity with one of the results of [13],

where (among other results) it is shown that the number of satisfying assignments
of a DNF on n Boolean variables is uniquely determined by the numbers of
satisfying assignments for all possible conjunctions of k � 1 C log2 n clauses of
the DNF (though this is a purely existential result with no algorithm attached). Each
conjunction of the DNF can be represented as a polynomial

�j.x/ D 1

2jSjj
Y

i2Sj
.1 C �ixi/ where

Sj � f1; : : : ; ng and �i 2 f�1; 1g;

and we let

f .x/ D
mX

jD1

�j.x/:

Then the number of points x 2 f�1; 1gn such that f .x/ > 0 is uniquely determined
by various expectationsE�j1 � � � �jk for k � 1Clog2 n. The probability that f .x/ D 0

for a random point x 2 f�1; 1gn sampled from the uniform distribution, can be
approximated byE e��f for a sufficiently large� > 0. The expectations are precisely
those that arise when we compute the moments E f k. It is not clear at the moment
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whether the results of this paper can produce an efficient way to compute the number
of satisfying assignments.

2 Applications to Optimization

2.1 Maximizing a Polynomial on the Boolean Cube

Let f W f�1; 1gn �! R be a polynomial with real coefficients defined by its
monomial expansion (1). As is known, various computationally hard problems of
discrete optimization, such as finding the maximum cardinality of an independent
set in a graph, finding the minimum cardinality of a vertex cover in a hypergraph
and the maximum constraint satisfaction problem can be reduced to finding the
maximum of f on the Boolean cube f�1; 1gn, see, for example, [7].

The problem is straightforward if deg f � 1. If deg f D 2, it may already be quite
hard even to solve approximately: Given an undirected simple graph G D .V;E/

with set V D f1; : : : ; ng of vertices and set E � �V
2

�
of edges, one can express

the largest cardinality of an independent set (a set vertices no two of which are
connected by an edge of the graph), as the maximum of

f .x/ D 1

2

nX

iD1

.xi C 1/ � 1

4

X

fi;jg2E
.1 C xi/

�
1 C xj

�

on the cube f�1; 1gn. It is an NP-hard problem to approximate the size of the largest
independent set in a given graph on n vertices within a factor of n1�� for any 0 <

� � 1, fixed in advance [10, 19]. If deg f D 2 and f does not contain linear or
constant terms, the problem reduces to the max cut problem in a weighted graph
(with both positive and negative weights allowed on the edges), where there exists a
polynomial time algorithm achieving an O.ln n/ approximation factor, see [14] for
a survey.

If deg f � 3, no efficient algorithm appears to be known that would outperform
choosing a random point x 2 f�1; 1gn. The maximum of a polynomial f with
deg f D 3 and no constant, linear or quadratic terms can be approximated within an
O
�p

n= ln n
�
factor in polynomial time, see [14]. Finding the maximum of a general

real polynomial (1) on the Boolean cube f�1; 1gn is equivalent to the problem of
finding the maximum weight of a subset of a system of weighted linear equations
over Z2 that can be simultaneously satisfied [12]. Assuming that deg f is fixed in
advance, f contains N monomials and the constant term of f is 0, a polynomial time
algorithm approximating the maximum of f within a factor ofO.

p
N/ is constructed

in [12]. More precisely, the algorithm from [12] constructs a point x such that f .x/
is within a factor of O.

p
N/ from

P
I j˛I j for f defined by (1). If deg f � 3, it is

unlikely that a polynomial time algorithm exists approximating the maximum of f
within a factor of 2.lnN/1��

for any fixed 0 < � � 1 [12], see also [10].



Computing the Partition Function of a Polynomial on the Boolean Cube 141

Let us choose

� D 1

2L. f /
p
deg f

as in Theorem 1.2. As is discussed in Sect. 3.2, by successive conditioning, we can
compute in NO.ln n�ln �/ time a point y 2 f�1; 1gn which satisfies

e�f . y/ � .1 � �/E e�f (3)

for any given 0 < � � 1.
How well a point y satisfying (3) approximates the maximum value of f on the

Boolean cube f�1; 1gn? We consider polynomials with coefficients �1, 0 and 1,
where the problem of finding an x 2 f�1; 1gn maximizing f .x/ is equivalent to
finding a vector in Zn

2 satisfying the largest number of linear equations from a given
list of linear equations over Z2.

Theorem 2.1 Let

f .x/ D
X

I2F
˛IxI

be a polynomial with zero constant term, where F is a family of non-empty subsets
of the set f1; : : : ; ng and ˛I D ˙1 for all I 2 F . Let

max
x2f�1;1gn

f .x/ D ıjF j for some 0 � ı � 1:

Suppose further that every variable xi enters at most four monomials xI for I 2 F .
Then

E e�f � exp

�
3�2ı2

16
jF j

�
for 0 � � � 1:

Since E f D 0, the maximum of f is positive unless F D ; and f 	 0. It
is not clear whether the restriction on the number of occurrences of variables in
Theorem 2.1 is essential or an artifact of the proof. We can get a similar estimate for
any number occurrences provided the maximum of f is sufficiently close to jF j.
Theorem 2.2 Let

f .x/ D
X

I2F
˛IxI

be a polynomial with zero constant term, where F is a family of non-empty subsets
of the set f1; : : : ; ng and ˛I D ˙1 for all I 2 F . Let k > 2 be an integer and suppose
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that every variable xi enters at most k monomials xI for I 2 F . If

max
x2f�1;1gn

f .x/ � k � 1

k
jF j

then

E e�f � exp

�
3�2

16
jF j

�
for all 0 � � � 1:

We prove Theorems 2.1 and 2.2 in Sect. 5.
Let f be a polynomial of Theorem 2.1 and suppose that, additionally, jIj � d for

all I 2 F , so that deg f � d. We have L. f / � 4 and we choose

� D 1

8
p
d

:

Let y 2 f�1; 1gn be a point satisfying (3). Then

f . y/ � 1

�
lnE e�f C ln.1 � �/

�
� 3�ı2

16
jF j C ln.1 � �/

�
:

That is, if the maximumof f is at least ıjF j for some 0 < ı � 1, we can approximate

the maximum in quasi-polynomial time within a factor ofO
�
ı�1

p
d
	
. Equivalently,

if for some 0 < ı � 0:5 there is a vector in Z
n
2 satisfying at least .0:5 C ı/jF j

equations of a set F of linear equations over Z2, where each variable enters at most
4 equations, in quasi-polynomial time we can compute a vector v 2 Z

n
2 satisfying

at least .0:5 C ı1/jF j linear equations from the system, where ı1 D �.ı2=
p
d/ and

d is the largest number of variables per equation.
Similarly, we can approximate in quasi-polynomial time the maximum of f in

Theorem 2.2 within a factor of O.k
p
d/ provided the maximum is sufficiently close

to jF j, that is, is at least k�1
k jF j.

In Theorems 2.1 and 2.2, one can check in polynomial time whether the
maximum of f is equal to jF j, as this reduces to testing the feasibility of a system
of linear equations over Z2. However, for any fixed 0 < ı < 1, testing whether the
maximum is at least ıjF j is computationally hard, cf. [10].

Håstad [9] constructed a polynomial time algorithm that approximates the
maximum of f within a factor ofO.kd/. In [2], see also [11], a polynomial algorithm
is constructed that finds the maximum of f within a factor of eO.d/

p
k, provided

f is an odd function. More precisely, the algorithm finds a point x such that f .x/ is
within a factor of eO.d/

p
k from jF j.
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3 Computing the Partition Function

3.1 Computing the Taylor Polynomial of g.�/ D ln
�
E e�f

�

First, we discuss how to compute the degreem Taylor polynomial Tm. f I �/ at � D 0

of the function

g.�/ D ln
�
E e�f

�
;

see Theorem 1.2. Let us denote

h.�/ D E e�f and g.�/ D ln h.�/:

Then

g0 D h0

h
and hence h0 D g0h:

Therefore,

h.k/.0/ D
kX

jD1

 
k � 1

j � 1

!

g.j/.0/h.k�j/.0/ for k D 1; : : : ;m: (4)

If we calculate the derivatives

h.0/; h.1/.0/; : : : ; h.m/.0/; (5)

then we can compute

g.0/; g.1/.0/; : : : ; g.m/.0/

by solving a non-singular triangular system of linear equations (4) which has
h.0/ D 1 on the diagonal. Hence our goal is to calculate the derivatives (5).

We observe that

h.k/.0/ D 1

2n

X

x2f�1;1gn
f k.x/ D E f k:

For a polynomial f defined by its monomial expansion (1) we have

E f D ˛;:
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We can consecutively compute the monomial expansion of f ; f 2; : : : ; f m by using
the following multiplication rule for monomials on the Boolean cube f�1; 1gn:

xIxJ D xI�J ;

where I�J is the symmetric difference of subsets I; J � f1; : : : ; ng. It follows then
that for a polynomial f W f�1; 1gn �! C given by its monomial expansion (1) and a
positive integer m, the Taylor polynomial

Tm. f I �/ D
mX

kD1

�k

kŠ

dk

d�k
g.�/

ˇ
ˇ
ˇ
�D0

can be computed in nNO.m/ time, where N is the number of monomials in f .
Our next goal is deduce Theorem 1.2 from Theorem 1.1. The proof is based on

the following lemma.

Lemma 3.1 Let p W C �! C be a univariate polynomial and suppose that for some
ˇ > 0 we have

p.z/ ¤ 0 provided jzj � ˇ:

Let 0 < � < ˇ and for jzj � � , let us choose a continuous branch of

g.z/ D ln p.z/:

Let

Tm.z/ D g.0/ C
mX

kD1

zk

kŠ

dk

dzk
g.z/

ˇ
ˇ
ˇ
zD0

be the degree m Taylor polynomial of g.z/ computed at z D 0. Then for

	 D ˇ

�
> 1

we have

jg.z/ � Tm.z/j � deg p

.m C 1/	m.	 � 1/
for all jzj � �:

Proof Let n D deg p and let ˛1; : : : ; ˛n be the roots of p, so we may write

p.z/ D p.0/

nY

iD1

�
1 � z

˛i

�
where j˛ij � ˇ for i D 1; : : : ; n:
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Then

g.z/ D g.0/ C
nX

iD1

ln

�
1 � z

˛i

�
;

where we choose the branch of the logarithm which is 0 when z D 0. Using the
Taylor series expansion of the logarithm, we obtain

ln

�
1 � z

˛i

�
D �

mX

kD1

zk

k˛k
i

C 
m provided jzj � �;

where

j
mj D
ˇ̌
ˇ
ˇ
ˇ
�

C1X

kDmC1

zk

k˛k
i

ˇ̌
ˇ
ˇ
ˇ

�
C1X

kDmC1

� k

kˇk
� 1

.m C 1/	m.	 � 1/
:

Therefore,

g.z/ D g.0/ �
nX

iD1

mX

kD1

zk

k˛k
i

C �m for jzj � �;

where

j�mj � n

.m C 1/	m.	 � 1/
:

It remains to notice that

Tm.z/ D g.0/ �
nX

iD1

mX

kD1

zk

k˛k
i

:

ut
Next, we need a technical bound on the approximation of ez by its Taylor

polynomial.

Lemma 3.2 Let � > 0 be a real number and let m � 5� be an integer. Then

ˇ
ˇ
ˇ
ˇ
ˇ
ez �

mX

kD0

zk

kŠ

ˇ
ˇ
ˇ
ˇ
ˇ

� e�2� for all z 2 C such that jzj � �:
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Proof For all z 2 C such that jzj � �, we have

ˇ
ˇ
ˇ
ˇ̌ez �

mX

kD0

zk

kŠ

ˇ
ˇ
ˇ
ˇ̌ D

ˇ
ˇ
ˇ
ˇ̌

C1X

kDmC1

zk

kŠ

ˇ
ˇ
ˇ
ˇ̌ �

C1X

kDmC1

�k

kŠ
D �mC1

.m C 1/Š

C1X

kD0

�k.m C 1/Š

.k C m C 1/Š

� �mC1

.m C 1/Š

C1X

kD0

�k

kŠ
D �mC1e�

.m C 1/Š
� �mC1e�CmC1

.m C 1/mC1
:

Since m � 5�, we obtain

ˇ̌
ˇ
ˇ
ˇ
ez �

C1X

kD0

zk

kŠ

ˇ̌
ˇ
ˇ
ˇ

� �mC1e�CmC1

5mC1�mC1
D e�

.5=e/mC1
� e�

.5=e/5�
� e�2�:

and the proof follows. ut
Proof of Theorem 1.2 Without loss of generality, we assume that L. f / D 1. Since
the constant term of f is 0, for any x 2 f�1; 1gn, we have

jf .x/j �
nX

iD1

X

IW i2I
j˛I j � n:

Applying Lemma 3.2, we conclude that

ˇ
ˇ̌
ˇ
ˇ
e�f .x/ �

5nX

kD0

�
�f .x/

�k

kŠ

ˇ
ˇ̌
ˇ
ˇ

� e�2n for all x 2 f�1; 1gn (6)

provided j�j � 1. Let

p.�/ D 1 C
5nX

kD1

�k

kŠ

dk

d�k

�
E e�f

� ˇˇ
ˇ
�D0

be the degree 5n Taylor polynomial of the function � 7�! E e�f at � D 0. From (6)
it follows that

ˇ̌
E e�f � p.�/

ˇ̌ � e�2n provided j�j � 1:

From Theorem 1.1, we conclude that

p.�/ ¤ 0 for all � 2 C such that j�j � 0:55p
deg f
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and, moreover,

ˇ
ˇln p.�/ � ln

�
E e�f

�ˇˇ � e�n provided j�j � 0:55p
deg f

and n � 2: (7)

Applying Lemma 3.1 with

ˇ D 0:55p
deg f

; � D 0:5p
deg f

and 	 D ˇ

�
D 1:1;

we conclude that for the Taylor polynomial of ln p.�/ at � D 0,

Tm.�/ D ln p.0/ C
mX

kD1

�k

kŠ

dk

d�k
ln p.�/

ˇ̌
ˇ
�D0

we have

jTm.�/ � ln p.�/j � 50n

.m C 1/.1:1/m
provided j�j � 1

2
p
deg f

: (8)

It remains to notice that the Taylor polynomials of degree m � 5n of the functions

� 7�! ln
�
E e�f

�
and � 7�! ln p.�/

at � D 0 coincide, since both are determined by the firstm derivatives of respectively
E e�f and p.�/ at � D 0, cf. Sect. 3.1, and those derivatives coincide. The proof now
follows by (7) and (8). ut

3.2 Computing a Point y in the Cube with a Large
Value of f. y/

We discuss how to compute a point y 2 f�1; 1gn satisfying (3). We do it by
successive conditioning and determine one coordinate of y D . y1; : : : ; yn/ at a time.
Let FC and F� be the facets of the cube f�1; 1gn defined by the equations xn D 1

and xn D �1 respectively for x D .x1; : : : ; xn/, x 2 f�1; 1gn. Then FC and F� can
be identified with the .n � 1/-dimensional cube f�1; 1gn�1 and we have

E e�f D 1

2
E
�
e�f jFC�C 1

2
E
�
e�f jF�� :

Moreover, for the restrictions fC and f� of f onto FC and F� respectively,
considered as polynomials on f�1; 1gn�1, we have

deg fC; deg f� � deg f and L. fC/; L. f�/ � L. f /:
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Using the algorithm of Sect. 3.1 and Theorem 1.2, we compute E
�
e�f jFC� and

E
�
e�f jF�� within a relative error �=2n, choose the facet with the larger computed

value, let yn D 1 if the value of E
�
e�f jFC� appears to be larger and let yn D �1

if the value of E
�
e�f jF�� appears to be larger and proceed further by conditioning

on the value of yn�1. For polynomials with N monomials, the complexity of the
algorithm is NO.ln n/.

4 Proof of Theorem 1.1

To prove Theorem 1.1, we consider restrictions of the partition function onto faces
of the cube.

4.1 Faces

A face F � f�1; 1gn consists of the points x where some of the coordinates of x are
fixed at 1, some are fixed at �1 and others are allowed to vary (a face is always non-
empty). With a face F, we associate three subsets IC.F/; I�.F/; I.F/ � f1; : : : ; ng
as follows:

IC.F/ D˚i W xi D 1 for all x 2 F; x D .x1; : : : ; xn/


;

I�.F/ D˚i W xi D �1 for all x 2 F; x D .x1; : : : ; xn/



and

I.F/ Df1; : : : ; ng n .IC.F/ [ I�.F// :

Consequently,

F D
n

.x1; : : : ; xn/ where xi D 1 for i 2 IC.F/ and

xi D �1 for i 2 I�.F/
o
:

In particular, if IC.F/ D I�.F/ D ; and hence I.F/ D f1; : : : ; ng, we have
F D f�1; 1gn. We call the number

dimF D jI.F/j

the dimension of F.
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For a subset J 2 f1; : : : ; ng, we denote by f�1; 1gJ the set of all points

x D �
xj W j 2 J

�
where xj D ˙1:

Let F � f�1; 1gn be a face. For a subset J � I.F/ and a point � 2 f�1; 1gJ,
� D �

�j W j 2 J
�
, we define

F� D ˚
x 2 F; x D .x1; : : : ; xn/ W xj D �j for j 2 J



:

In words: F� is obtained from F by fixing the coordinates from some set J � I.F/

of free coordinates to 1 or to �1. Hence F� is also a face of f�1; 1gn and we think
of F� � F as a face of F. We can represent F as a disjoint union

F D
[

�2f�1;1gJ
F� for any J � I.F/: (9)

4.2 The Space of Polynomials

Let us fix a positive integer d. We identify the set of all polynomials f as in (1) such
that deg f � d and the constant term of f is 0 with CN , where

N D N.n; d/ D
dX

kD1

 
n

k

!

:

For ı > 0, we consider a closed convex set U.ı/ � CN consisting of the polynomials
f W f�1; 1gn �! C such that deg f � d and L. f / � ı. In other words, U.ı/ consists
of the polynomials

f .x/ D
X

I�f1;:::;ng
1�jIj�d

˛IxI where
X

IW i2I
j˛Ij � ı for i D 1; : : : ; n:

4.3 Restriction of the Partition Function onto a Face

Let f W f�1; 1gn �! C be a polynomial and let F � f�1; 1gn be a face. We define

E
�
e f jF� D 1

2dimF

X

x2F
ef .x/:
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We suppose that f is defined by its monomial expansion as in (1) and consider
E
�
e f jF� as a function of the coefficients ˛I . Using (9) we deduce

@

@˛J
E
�
e f jF� D 1

2dimF

X

x2F
xJef .x/

D .�1/jI
�

.F/\Jj

2jI.F/j



X

�2f�1;1gI.F/\J

�D.�jW j2I.F/\J/

0

@
Y

j2I.F/\J

�j

1

A
X

x2F�

ef .x/

D .�1/jI
�

.F/\Jj

2jI.F/\Jj



X

�2f�1;1gI.F/\J

�D.�jW j2I.F/\J/

0

@
Y

j2I.F/\J

�j

1

AE
�
e f jF�

�
:

(10)

In what follows, we identify complex numbers with vectors in R2 D C and
measure angles between non-zero complex numbers.

Lemma 4.1 Let 0 < 	 � 1 and ı > 0 be real numbers and let F � f�1; 1gn be a
face. Suppose that for every f 2 U.ı/ we have E

�
e f jF� ¤ 0 and, moreover, for any

K � I.F/ we have

ˇ
ˇE
�
e f jF�ˇˇ �

�	

2

	jKj X

�2f�1;1gK

ˇ
ˇE
�
e f ;F�

�ˇˇ :

Given f 2 U.ı/ and a subset J � f1; : : : ; ng such that jJj � d, letbf 2 U.ı/ be
the polynomial obtained from f by changing the coefficient ˛J of the monomial xJ

in f to �˛J and leaving all other coefficients intact. Then the angle between the two

non-zero complex numbers E
�
e f jF� and E

�
ebf jF

	
does not exceed

2j˛Jj
	d

:

Proof Without loss of generality, we assume that ˛J ¤ 0.
We note that for any f 2 U.ı/, we havebf 2 U.ı/. Since E

�
e f jF� ¤ 0 for all

f 2 U.ı/, we may consider a branch of lnE
�
e f jF� for f 2 U.ı/.
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Let us fix coefficients ˛I for I ¤ J in

f .x/ D
X

I�f1;:::;ng
1�jIj�d

˛IxI (11)

and define a univariate function

g.˛/ D lnE
�
e f jF� where j˛j � j˛J j

obtained by replacing ˛J with ˛ in (11).
We obtain

g0.˛/ D @

@˛J
lnE

�
e f jF� D

�
@

@˛J
E
�
e f jF�

�.
E
�
e f jF� : (12)

Let

k D jI.F/ \ Jj � jJj � d:

Using (10) we conclude that

ˇ
ˇ
ˇ
ˇ

@

@˛J
E
�
e f jF�

ˇ
ˇ
ˇ
ˇ � 1

2k

X

�2f�1;1gI.F/\J

ˇ
ˇE
�
e f jF�

�ˇˇ : (13)

On the other hand,

ˇ
ˇE
�
e f jF�ˇˇ �

�	

2

	k X

�2f�1;1gI.F/\J

ˇ
ˇE
�
e f jF�

�ˇˇ : (14)

Comparing (12), (13), and (14), we conclude that

jg0.˛/j D
ˇ
ˇ
ˇ
ˇ

@

@˛J
lnE

�
e f jF�

ˇ
ˇ
ˇ
ˇ � 1

	 k
� 1

	d
:

Then

ˇ̌
ˇlnE

�
e f jF�� lnE

�
ebf jF

	ˇ̌
ˇ D jg .˛J/ � g .�˛J/j � 2j˛J j max

j˛j�j˛J j
ˇ
ˇg0.˛/

ˇ
ˇ � 2j˛Jj

	d

and the proof follows. ut
Lemma 4.2 Let  � 0 and ı > 0 be real numbers such that ı < � , let F �
f�1; 1gn be a face such that dimF < n and suppose that E

�
e f jF� ¤ 0 for all

f 2 U.ı/. Assume that for any f 2 U.ı/, for any J � f1; : : : ; ng such that jJj � d,
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and for the polynomialbf obtained from f by changing the coefficient ˛J to �˛J and
leaving all other coefficients intact, the angle between non-zero complex numbers

E
�
e f jF� and E

�
ebf jF

	
does not exceed  j˛J j.

Suppose thatbF � f�1; 1gn is a face obtained from F by changing the sign of one
of the coordinates in IC.F/ [ I�.F/. Then G D F [bF is a face of f�1; 1gn and for

	 D cos
ı

2

we have

ˇ̌
E
�
e f jG�ˇ̌ � 	

2

�ˇ̌
E
�
e f jF�ˇ̌C

ˇ̌
ˇE
�
e f jbF

	ˇ̌
ˇ
	

for any f 2 U.ı/.

Proof Suppose thatbF is obtained from F by changing the sign of the i-th coordinate.
Let Qf be a polynomial obtained from f by replacing the coefficients ˛I by �˛I

whenever i 2 I and leaving all other coefficients intact. Then Qf 2 U.ı/ and the

angle between E
�
e f jF� and E

�
eQf jF

	
does not exceed


X

IW i2I
j˛Ij � ı:

On the other hand, E
�
eQf jF

	
D E

�
ef jbF

	
and

E
�
e f jG� D 1

2
E
�
e f jF�C 1

2
E
�
e f jbF

	
D 1

2
E
�
e f jF�C 1

2
E
�
eQf jF

	
:

Thus E
�
e f jG� is the sum of two non-zero complex numbers, the angle between

which does not exceed ı < � . Interpreting the complex numbers as vectors in
R

2 D C, we conclude that the length of the sum is at least as large as the length of
the sum of the orthogonal projections of the vectors onto the bisector of the angle
between them, and the proof follows. ut
Proof of Theorem 1.1 Let us denote d D deg f .

One can observe that the equation

2

cos

�
ˇ

2

� D 
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has a solution  � 0 for all sufficiently small ˇ > 0. Numerical computations show
that one can choose

ˇ D 0:55;

in which case

 � 2:748136091:

Let

ı D ˇp
d

D 0:55p
d

:

We observe that

0 < ı � ˇ � 1:511474850 < �:

Let

	 D cos
ı

2
D cos

ˇ

2
p
d

:

In particular,

	 � cos
ˇ

2
� 0:7277659962:

Next, we will use the inequality

�
cos

˛p
d

�d

� cos˛ for 0 � ˛ � �

2
and d � 1: (15)

One can obtain (15) as follows. Since tan.0/ D 0 and the function tan˛ is convex
for 0 � ˛ < �=2, we have

p
d tan

˛p
d

� tan ˛ for 0 � ˛ <
�

2
:

Integrating, we obtain

d ln cos
˛p
d

� ln cos˛ for 0 � ˛ <
�

2

and (15) follows.
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Using (15), we obtain

2
�
cos ı

2

	d D 2
�
cos ˇ

2
p
d

�d � 2

cos

�
ˇ

2

� D : (16)

We prove by induction on m D 0; 1; : : : ; n the following three statements.

1. Let F � f�1; 1gn be a face of dimension m. Then, for any f 2 U.ı/, we have
E
�
e f jF� ¤ 0.

2. Let F � f�1; 1gn be a face of dimensionm, let f 2 U.ı/ and letbf be a polynomial
obtained from f by changing one of the coefficients ˛J to �˛J and leaving all
other coefficients intact. Then the angle between two non-zero complex numbers

E
�
e f jF� and E

�
ebf jF

	
does not exceed  j˛J j.

3. Let F � f�1; 1gn be a face of dimension m and let f 2 U.ı/. Assuming that
m > 0 and hence I.F/ ¤ ;, let us choose any i 2 I.F/ and let FC and F� be
the corresponding faces of F obtained by fixing xi D 1 and xi D �1 respectively.
Then

ˇ
ˇE
�
e f jF�ˇˇ � 	

2

�ˇˇE
�
e f jFC�ˇˇC ˇ

ˇE
�
e f jF��ˇˇ� :

If m D 0 then F consists of a single point x 2 f�1; 1gn, so

E
�
e f jF� D ef .x/ ¤ 0

and statement 1 holds. Assuming that bf is obtained from f by replacing the
coefficient ˛J with �˛J and leaving all other coefficients intact, we get

E
�
e f jF�

E
�
ebf jF

	 D exp
˚
2˛JxJ



:

Since

j2˛JxJ j D 2j˛Jj �  j˛J j;

the angle between E
�
e f jF� and E

�
ebf jF

	
does not exceed  j˛J j and statement 2

follows. The statement 3 is vacuous for m D 0.
Suppose that statements 1 and 2 hold for faces of dimension m < n. Lemma 4.2

implies that if F is a face of dimension m C 1 and FC and F� are m-dimensional
faces obtained by fixing xi for some i 2 I.F/ to xi D 1 and xi D �1 respectively,
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then

ˇ
ˇE
�
e f jF�ˇˇ �

�
cos

ı

2

� ˇˇE
�
e f jFC�ˇˇC ˇ

ˇE
�
e f jF��ˇˇ

2

D	

2

�ˇˇE
�
e f jFC�ˇˇC ˇ

ˇE
�
e f jF��ˇˇ�

and the statement 3 holds for .m C 1/-dimensional faces.
The statement 3 for .m C 1/-dimensional faces and the statement 1 for m-

dimensional faces imply the statement 1 for .m C 1/-dimensional faces.
Finally, suppose that the statements 1 and 3 hold for all faces of dimension at

mostmC1. Let us pick a face F � f�1; 1gn of dimensionmC1, where 0 � m < n.
Applying the condition of statement 3 recursively to the faces of F, we get that for
any K � I.F/,

ˇ
ˇE
�
e f jF�ˇˇ �

�	

2

	jKj X

�2f�1;1gK

ˇ
ˇE
�
e f jF�

�ˇˇ :

Then, by Lemma 4.1, the angle between two non-zero complex numbers E
�
e f jF�

and E
�
ebf jF

	
does not exceed

2j˛Jj
	d

D 2j˛J j
�
cos ı

2

	d �  j˛J j

by (16), and the statement 2 follows for faces of dimension m C 1.
This proves that statements 1–3 hold for faces F of all dimensions. Iterating

statement 3, we obtain that for any f 2 U.ı/, we have

ˇ
ˇE e f

ˇ
ˇ �

�	

2

	n X

x2f�1;1gn
jef .x/j:

Since for any x 2 f�1; 1gn and for any f 2 U.ı/, we have

jf .x/j �
nX

iD1

X

I�f1;:::;ng
i2I

j˛Ij � nı � ˇn;

we conclude that

ˇ̌
E e f

ˇ̌ � 	ne�ˇn � .0:41/n:
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The proof follows since if f W f�1; 1gn �! C is a polynomial with zero constant
term and

j�j � 0:55

L. f /
p
deg f

;

then �f 2 U.ı/. ut

5 Proofs of Theorems 2.1 and 2.2

The proofs of Theorems 2.1 and 2.2 are based on the following lemma.

Lemma 5.1 Let

f .x/ D
X

I2F
˛IxI

be a polynomial such that ˛I � 0 for all I 2 F . Then

E e f �
Y

I2F

�
e˛I C e�˛I

2

�
:

Proof Since

e˛x D
�
e˛ C e�˛

2

�
C x

�
e˛ � e�˛

2

�
for x D ˙1;

we have

E e f D E
Y

I2F
e˛IxI D E

Y

I2F

��
e˛I C e�˛I

2

�
C xI

�
e˛I � e�˛I

2

��
: (17)

Since

e˛I � e�˛I

2
� 0 provided ˛I � 0

and

E
�
xI1 � � � xIk� � 0 for all I1; : : : ; Ik;

expanding the product in (17) and taking the expectation, we get the desired
inequality. ut
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Next, we prove a similar estimate for functions f that allow some monomials
with negative coefficients.

Lemma 5.2 Let f .x/ D g.x/ � h.x/ where

g.x/ D
X

I2G
xI; h.x/ D

X

I2H
xI; G \ H D ;:

Suppose that the constant terms of g and h are 0 and that every variable xi enters
not more than k monomials of f for some integer k > 0. Then

E e�f � exp

�
3�2

8
.jGj � .k � 1/jHj/

�
for 0 � � � 1:

Proof Since E f D 0, by Jensen’s inequality we have

E e�f � 1

and the estimate follows if jGj � .k � 1/jHj. Hence we may assume that jGj >

.k � 1/jHj.
Given a function f W f�1; 1gn �! R and a set J � f1; : : : ; ng of indices, we

define a function (conditional expectation) fJ W f�1; 1gn�jJj �! R obtained by
averaging over variables xj with j 2 J:

fJ .xi W i … J/ D 1

2jJj
X

xjD˙1
j2J

f .x1; : : : ; xn/ :

In particular, fJ D f if J D ; and fJ D E f if J D f1; : : : ; ng. We obtain the
monomial expansion of fJ by erasing all monomials of f that contain xj with j 2 J.
By Jensen’s inequality we have

E e�f � E e�fJ for all real �: (18)

Let us choose a set J of indices with jJj � jHj such that every monomial in h.x/
contains at least one variable xj with j 2 J. Then every variable xj with j 2 J is
contained in at most .k � 1/ monomials of g.x/ and hence fJ is a sum of at least
jGj � .k � 1/jHj monomials.

From (18) and Lemma 5.1, we obtain

E e�f � E e�fJ �
�
e� C e��

2

�jGj�.k�1/jHj
�
�

1 C �2

2

�jGj�.k�1/jHj
:
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Using that

ln.1 C x/ � x � x2

2
D x

�
1 � x

2

	
for x � 0; (19)

we conclude that

E e�f � exp

�
�2

2

�
1 � �2

4

�
.jGj � .k � 1/jHj/

�
� exp

�
3�2

8
.jGj � .k � 1/jHj/

�

as desired. ut
Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2 Let x0 2 f�1; 1gn, x0 D .�1; : : : ; �n/ be a maximum point
of f , so that

max
x2f�1;1gn

f .x/ D f .x0/:

Let us define Qf W f�1; 1gn �! R by

Qf .x1; : : : ; xn/ D f .�1x1; : : : ; �nxn/ :

Then

max
x2f�1;1gn

f .x/ D max
x2f�1;1gn

Qf .x/; E e�f D E e�Qf

and the maximum value of Qf on the cube f�1; 1gn is attained at u D .1; : : : ; 1/.
Hence without loss of generality, we may assume that the maximum value of f on
the cube f�1; 1gn is attained at u D .1; : : : ; 1/.

We write

f .x/ D g.x/ � h.x/ where g.x/ D
X

I2G
xI and h.x/ D

X

I2H
xI

for some disjoint sets G andH of indices. Moreover,

max
x2f�1;1gn

f .x/ D f .u/ D jGj � jHj � k � 1

k
jF j:

Since

jGj C jHj D jF j;
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we conclude that

jGj � 2k � 1

2k
jF j and jHj � 1

2k
jF j:

By Lemma 5.2,

E e�f � exp

�
3�2

8
.jGj � .k � 1/jHj/

�
� exp

�
3�2

16
jF j

�

as desired. ut
To prove Theorem 2.1, we need to handle negative terms with more care.

Lemma 5.3 Let f .x/ D g.x/ � h.x/ where

g.x/ D
X

I2G
xI; h.x/ D

X

I2H
xI; G \ H D ;

and

jGj � jHj:

Suppose that the constant terms of g and h are 0 and that the supports I 2 H of
monomials in h.x/ are pairwise disjoint. Then

E e�f � exp

�
3�2

8

�p
jGj �

p
jHj

	2
�

for 0 � � � 1:

Proof By Jensen’s inequality we have

E e�f � exp f�E f g D 1;

which proves the lemma in the case when jGj D jHj. Hence we may assume that
jGj > jHj.

If jHj D 0 then, applying Lemma 5.1, we obtain

E e�f D E e�g �
�
e� C e��

2

�jGj
�
�

1 C �2

2

�jGj
:

Using (19), we conclude that

E e�f � exp

�
�2

2

�
1 � �2

4

�
jGj
�

� exp

�
3�2

8
jGj
�

;

which proves the lemma in the case when jHj D 0. Hence we may assume that
jGj > jHj > 0.
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Since the supports I 2 H of monomials in h are pairwise disjoint, we have

E e�h D
Y

I2H
E e�xI D

�
e� C e��

2

�jHj
: (20)

Let us choose real p; q � 1, to be specified later, such that

1

p
C 1

q
D 1:

Applying the Hölder inequality, we get

E e�g=p D E
�
e�f=pe�h=p

� � �
E e�f

�1=p �
E e�qh=p

�1=q

and hence

E e�f �
�
E e�g=p

�p

�
E e�qh=p

�p=q
:

Applying Lemma 5.1 and formula (20), we obtain

E e�f �
�
e�=p C e��=p

2

�jGjp �
e�q=p C e��q=p

2

��jHjp=q

:

Since

ex
2=2 � ex C e�x

2
� 1 C x2

2
for x � 0;

we obtain

E e�f �
�

1 C �2

2p2

�jGjp
exp

�
��2qjHj

2p

�
:

Applying (19), we obtain

E e�f � exp

�
�2jGj

2p
� �2qjHj

2p
� �4jGj

8p3

�
:

Let us choose

p D
pjGj

pjGj �pjHj and q D
pjGj
pjHj :



Computing the Partition Function of a Polynomial on the Boolean Cube 161

Then

E e�f � exp

8
<̂

:̂

�2

2

�p
jGj �

p
jHj

	2 �
�4
�pjGj �pjHj

	3

8
pjGj

9
>=

>;

D exp

8
<

:
�2

2

�p
jGj �

p
jHj

	2

0

@1 �
�2
�pjGj �pjHj

	

4
pjGj

1

A

9
=

;

� exp

�
3�2

8

�p
jGj �

p
jHj

	2
�

and the proof follows. ut
Lemma 5.4 Let f .x/ D g.x/ � h.x/ where

g.x/ D
X

I2G
xI; h.x/ D

X

I2H
xI; G \ H D ;

and

jGj � jHj:

Suppose that the constant terms of g and h are 0, that every variable xi enters at
most two monomials in h.x/ and that if xi enters exactly two monomials in h.x/ then
xi enters at most two monomials in g.x/. Then for 0 � � � 1, we have

E e�f � exp

�
3�2

8

�p
jGj �

p
jHj

	2
�

:

Proof We proceed by induction on the number k of variables xi that enter exactly
two monomials in h.x/. If k D 0 then the result follows by Lemma 5.3.

Suppose that k > 0 and that xi is a variable that enters exactly two monomials in
h.x/ and hence at most two monomials in g.x/. As in the proof of Lemma 5.2, let
fi W f0; 1gn�1 �! R be the polynomial obtained from f by averaging with respect to
xi. As in the proof of Lemma 5.2, we have

E e�f � E e�fi where fi.x/ D
X

I2Gi

xI �
X

I2Hi

xI

and Gi, respectively Hi, is obtained from G, respectively H, by removing supports
of monomials containing xi. In particular,

jHij D jHj � 2 and jGij � jGj � 2:
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Applying the induction hypothesis to fi, we obtain

E e�f � E e�fi � exp

�
3�2

8

�p
jGij �

p
jHij

	2
�

� exp

�
3�2

8

�p
jGj � 2 �

p
jHj � 2

	2
�

� exp

�
3�2

8

�p
jGj �

p
jHj

	2
�

and the proof follows. ut
Finally, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1 As in the proof of Theorem 2.2, without loss of generality we
may assume that the maximum of f is attained at u D .1; : : : ; 1/.

We write

f .x/ D g.x/ � h.x/ where g.x/ D
X

I2G
xI and h.x/ D

X

I2H
xI

for some disjoint sets G andH of indices. Moreover,

max
x2f�1;1gn

f .x/ D f .u/ D jGj � jHj D ıjF j:

Since

jGj C jHj D jF j;

we conclude that

jGj D 1 C ı

2
jF j and jHj D 1 � ı

2
jF j: (21)

For i D 1; : : : ; n let �C
i be the number of monomials in g that contain variable i and

let ��
i be the number of monomials in h that contain xi. Then

�C
i C ��

i � 4 for i D 1; : : : ; n: (22)

If for some i we have �C
i < ��

i then for the point ui obtained from u by switching
the sign of the i-th coordinate, we have

f .ui/ D �jGj � 2�C
i

� � �jHj � 2��
i

� D jGj � jHj C 2
�
��
i � �C

i

�
> f .u/;

contradicting that u is a maximum point of f . Therefore,

�C
i � ��

i for i D 1; : : : ; n
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and, in view of (22), we conclude that

��
i � 2 for i D 1; : : : ; n and if ��

i D 2 then �C
i D 2:

By Lemma 5.4,

E e�f � exp

�
3�2

8

�p
jGj �

p
jHj

	2
�

:

Using (21), we deduce that

E e�f � exp

8
<

:
3�2

8

 r
1 C ı

2
�
r

1 � ı

2

!2

jF j
9
=

;

D exp

�
3�2

8

�
1 �

p
1 � ı2

	
jF j

�
� exp

�
3�2ı2

16
jF j

�
;

which completes the proof. ut
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