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Abstract Gershgorin’s famous circle theorem states that all eigenvalues of a square
matrix lie in disks (called Gershgorin disks) around the diagonal elements. Here we
show that if the matrix entries are non-negative and an eigenvalue has geometric
multiplicity at least two, then this eigenvalue lies in a smaller disk. The proof uses
geometric rearrangement inequalities on sums of higher dimensional real vectors
which is another new result of this paper.

1 Introduction and Main Result

Gershgorin’s circle theorem [4] is a fundamental and widely used result on
localizing the eigenvalues of square matrices. It states that all eigenvalues are in
disks (called Gershgorin disks) around the diagonal elements.

The main goal of this paper is to improve Gershgorin’s theorem under special
conditions, namely, when the matrix is non-negative and has a multiple eigenvalue.
We show that such an eigenvalue lies in disks of smaller radius around a diagonal
element. For the proof we establish various geometric inequalities concerning
rearrangements of vector sums. This is an interesting connection between convex
geometry and matrix theory. The geometric point of view in eigenvalue problems is
certainly not new but this particular connection seems to be new.
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Here we show that if the matrix entries are non-negative and an eigenvalue has
geometric multiplicity at least two, then this eigenvalue lies in a smaller disk.

Let D.a; r/ denote the disk with center a and radius r on the complex plane:

D.a; r/ D fx 2 C W jx � aj 6 rg :

For an n � n complex matrix, A D Œaij�; the Gershgorin disks are D.aii; Ri/ where
Ri D P

jWi¤j jaijj: The most commonly cited form of Gershgorin’s theorem says that
every eigenvalue of A lies in some D.aii; Ri/. Varga’s nice book Gershgorin and His
Circles [15] surveys various applications and extensions of this important theorem.
An interesting and recent theorem of Marsli and Hall [7] states that if an eigenvalue
of a matrix A has geometric multiplicity k; then it lies in at least k of the Gershgorin
disks of A: They have extended this result in subsequent papers [3, 8–10]. Here we
focus on the k D 2 case for non-negative matrices.

Understanding the spectra of a matrix is a central question both in applied
and pure mathematics. Here are some facts and results. There are two particular
eigenvalues for which the multiplicity is of great importance; the largest eigenvalue
which determines the spectral radius of the matrix and the multiplicity of the
eigenvalue “0” since it determines the rank of the matrix. There are also applications
using the smallest eigenvalue. For example Roy shows in [12] that the Euclidean
representation number of a graph is closely related to the multiplicity of the smallest
eigenvalue. The multiplicity of the largest and the second largest eigenvalues play
a key role in some numerical methods. Del Corso [2] considers the problem of
approximating an eigenvector belonging to the largest eigenvalue by the so called
power method. It is proved that the rate of convergence depends on the ratio of
the two largest eigenvalues and on their multiplicities. The rate increases with the
multiplicity of the largest eigenvalue and decreases with the multiplicity of the
second eigenvalue. In graph theory the Colin de Verdière number is the multiplicity
of the second largest eigenvalue of the adjacency matrix, maximized by weighting
the edges and nodes. For more details and the exact definition we refer to the papers
[6] and [14].

Gershgorin’s circle theorem is intertwined with the Perron–Frobenius theory. It
is one of the tools used to bound the spectral radius of a matrix. It follows from
the Perron–Frobenius theorem that the largest magnitude eigenvalue of any non-
negative matrix is a positive real number, see in e.g. [1].

Let us define the half Gershgorin disks, D.aii; ri/; which are subsets of the
original. Instead of Ri D P

jWi¤j jaijj we take the partial sum of the bn=2c largest
terms. This sum is denoted by ri.

Recall that the geometric multiplicity of an eigenvalue � of A is the dimension
of the corresponding eigenspace of A, that is, the kernel of A � �I. (Its algebraic
multiplicity is the multiplicity of the root � of the polynomial det.A � xI/.)

We are going to show that multiple geometric eigenvalues are in smaller
Gershgorin disks when the matrix is non-negative.
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Theorem 1 Let A D faijg be an n � n non-negative (real) matrix and � an
eigenvalue of A with geometric multiplicity at least two. Then � is in a half
Gershgorin disk, D.aii; ri/; for some i:

Actually we are going to prove that such an eigenvalue lies in the disk D.aii; r/
and various values of r for some suitable i. The proofs are based on geometric
estimates that are of independent interest. They are given in the next section.

2 Rearrangement Inequalities for Vectors

Assume V D fv1; : : : ; vng � Rd and
Pn

1 vi D 0. Further, let ˛1 � : : : � ˛n � 0 be
real numbers. We write Œn� for the set f1; : : : ; ng.

Theorem 2 Under the above conditions set ˇ D ˛bn=2cC1. Then for every
permutation � of Œn�

�
�
�
�
�

nX

1

˛iv�.i/

�
�
�
�
�

� max
i2Œn�

kvik
nX

1

j˛i � ˇj:

Corollary 1 Under the above conditions, for every permutation � of Œn�

�
�
�
�
�

nX

1

˛iv�.i/

�
�
�
�
�

� max
i2Œn�

kvik
bn=2cX

1

˛i:

In the second geometric estimate we need a technical assumption.

Theorem 3 Let V D fv1; : : : ; vng � Rd satisfy the previous assumption. Suppose
further that the vi are ordered with decreasing (Euclidean) length, that is, kv1k �
: : : � kvnk. Let � 2 Œ˛jC1; ˛j� for some j 2 Œn � 1�. Then for every permutation �

of Œn�

�
�
�
�
�

nX

1

˛iv�.i/

�
�
�
�
�

�
jX

1

˛ikvik � �

2

2

4
jX

1

kvik �
nX

jC1

kvik
3

5 :

Here of course one wants to choose j and � so that the right hand side is as
small as possible. When j D dn=2e, the sum between the brackets is non-negative.
Choosing any � from the interval Œ˛jC1; ˛j� gives the following.

Corollary 2 Under the above conditions for every permutation � of Œn�

�
�
�
�
�

nX

1

˛iv�.i/

�
�
�
�
�

�
dn=2eX

1

˛ikvik:



126 I. Bárány and J. Solymosi

We mention that the estimates in Theorems 2 and 3 are incomparable; sometimes
the first, other times the second gives the better bound.

3 Proof of the Rearrangement Inequalities

Proof of Theorem 2 First fix some � � 0. Then

nX

1

˛iv�.i/ D
nX

1

˛iv�.i/ �
nX

1

�v�.i/ D
nX

1

.˛i � �/v�.i/:

By the triangle inequality

�
�
�
�
�

nX

1

˛iv�.i/

�
�
�
�
�

� max
i2Œn�

kvik
nX

1

j˛i � � j:

Set k D bn=2c and define ˇ D ˛kC1. It can be proven that the function � !Pn
1 j˛i � � j takes its minimum at � D ˇ when n is odd, and at every � from the

interval Œ˛kC1; ˛k� when n is even. ut
Corollary 1 follows immediately since with the above k and ˇ

nX

1

j˛i � ˇj D
kX

1

.˛i � ˇ/ C
nX

kC1

.ˇ � ˛i/

D
kX

1

˛i �
nX

`

˛i �
kX

1

˛i

where ` equals k C 1 for even n and k C 2 for odd n.

Proof of Theorem 3 The zonotope Z.V/ spanned by V is, by definition, the set

Z.V/ D
8
<

:

X

i2Œn�

�ivi W 0 � �i � 1 .8i/

9
=

;
:

Let B denote the Euclidean unit ball of Rd. We claim first that

Z.V/ � 1

2

�
kv1k C � � � C kvnk

�
B: (1)

It is well-known [11] and easy to check that Z.V/ is the convex hull of the points
s.W/ D P

v2W v where W � V . Thus it suffices to show that for every W � V ,
ks.W/k � 1

2
.kv1k C : : : C kvnk/. Fix U � V such that s.U/ has maximal length
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among all s.W/. Set z D s.U/ and observe that �z D s.V n U/ as s.V/ D 0. Since
kzk D k � zk evidently, we have

2kzk D kzk C k � zk D ks.U/k C ks.V n U/k �
nX

1

kvik

by the triangle inequality. This implies that kzk � 1
2

Pn
1 kvik.

We observe next that

nX

1

˛iv�.i/ D
jX

1

.˛i � �/v�.i/ C
jX

1

�v�.i/ C
nX

jC1

˛iv�.i/

D
jX

1

.˛i � �/v�.i/ C �

2

4
jX

1

v�.i/ C
nX

jC1

˛i

�
v�.i/

3

5 :

The expression between the brackets is a vector u in Z.V/ so kuk � 1
2

Pn
1 kvik.

By the triangle inequality the norm of
Pn

1 ˛iv�.i/ is at most

jX

1

.˛i � �/kv�.i/k C �kuk �
jX

1

.˛i � �/kvik C �

2

nX

1

kvik

D
jX

1

˛ikvik � �

2

2

4
jX

1

kvik �
nX

jC1

kvik
3

5 :

ut

4 Proof of Theorem 1

We first recall the simple proof of Gershgorin’s original theorem. Let v D
.v1; : : : ; vn/ be an eigenvector with eigenvalue � where vi are complex numbers.
Assume jvij D maxj2Œn� jvjj. Then

Pn
jD1 aijvj D �vi implying

.� � aii/vi D
X

jWj¤i

aijvj: (2)

Taking absolute value on both sides and using jvij � jvjj shows that � 2 D.aii; Ri/

with Ri D P
jWj¤i aij indeed.

When the eigenvalue � has geometric multiplicity at least two, then its
eigenspace contains a nonzero vector v D .v1; : : : ; vn/ whose components sum
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to zero:
Pn

1 vi D 0. Indeed, let u and w be two linearly independent eigenvectors
from the eigenspace of �. If

Pn
1 ui D 0, then v D u is a suitable eigenvector. If not,

then v D �Pn
1 wi

�
u � �Pn

1 ui
�

w has the required property.
As any multiplier of v is still an eigenvector, we can suppose that the largest

magnitude component of v; vi, is a positive real number. Actually we can and do
assume that vi D 1. Then the other components, vj, are complex numbers with
jvjj � 1.

The proof of Theorem 1 is based on equation (2) plus the condition thatPn
1 vj D 0. As C is a vector space of dimension 2 over R, we can consider the

components vj of v as vectors in R2. Then Theorem 2 with d D 2 applies to the
vj 2 R2, we just have to imagine that on the right hand side of (2) vi is added with
coefficient zero. So define bii D 0 and bij D aij if i ¤ j. Let b� be the median of the
sequence bi1; : : : ; bin. Theorem 2 gives then that � lies in the disk D.aii; r/ where

r D
X

j¤i

jbij � b�j: (3)

The proof of Theorem 1 uses Corollary 1: � lies in the disk D.aii; r/ where r is
the sum of the largest bn=2c entries in the ith row of A (disregarding aii/. Note that
in general the estimate in (3) is gives a better bound on r than Theorem 1. ut

We can also apply Corollary 2 to the components of v, considered again as
vectors in R2. This gives that � lies in the disk D.aii; r/ where r is the sum of the
k D dn=2e largest entries in row i of A (disregarding aii again). In any special case
a better estimate may come from the more general Theorem 3.

Remark 1 One could hope that an eigenvalue with (geometric) multiplicity 3 or
higher should lie strictly inside the half Gershgorin disk. The simple example below
shows that this is not the case.

Let A be an n � n matrix with n D 3k, consisting of three k � k blocks along the
main diagonal, with each block being a doubly stochastic matrix. Then � D 1 is an
eigenvalue with multiplicity 3, which lies on the boundary of each half Gershgorin
disk D.aii; ri/. Indeed ri is the sum of the largest bn=2c entries of the ith row
(disregarding aii) which equals 1 � aii.

This example shows, however, that � lies in the “third Gershgorin disk”. This is
the disk centred at aii and of radius r which is the sum of the largest n=3 entries
in the ith row (disregarding again aii). We return to this question at the end of the
paper.

5 Examples

In what follows we show examples illustrating the limits of possible extensions of
the results above. Note that one can not expect in general that a multiple eigenvalue
is strictly inside the half Gershgorin disk. The simplest illustration to this is the
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matrix A below where 1 is an eigenvalue with (geometric) multiplicity two.

A D
2

4
0 1 1

1 0 1

1 1 0

3

5

Next we are going to give further examples. The first two show that Theorem 1
does not extend to real matrices that have both positive and negative entries. The
second is a positive semidefinite Hermitian matrix (with complex entries) where the
triple eigenvalue “0” lies on the boundary of the half Gershgorin disk. Perhaps some
form of Theorem 1 can be extended to such matrices.

5.1 Real Matrices with Both Positive and Negative Entries

The matrices in Theorem 1 have non-negative entries. This condition cannot be
deleted as the following symmetric circulant matrix with 0; ˙1 entries shows:

B D

2

6
6
6
6
6
4

0 1 �1 �1 1

1 0 1 �1 �1

�1 1 0 1 �1

�1 �1 1 0 1

1 �1 �1 1 0

3

7
7
7
7
7
5

Like every 5 � 5 symmetric circulant matrix, B has two multiple eigenvalues. They
are

p
5 � 2:236 and �p

5 and both lie outside the half Gershgorin disk.
The following 7 � 7 matrix is again circulant and has 0; ˙1 entries. Its multiple

eigenvalue � �3:494 is even further from the half Gershgorin disk which has
radius 3 around the origin.

C D

2

6
6
6
6
6
6
6
6
6
4

0 1 �1 1 1 �1 1

1 0 1 �1 1 1 �1

�1 1 0 1 �1 1 1

1 �1 1 0 1 �1 1

1 1 �1 1 0 1 �1

�1 1 1 �1 1 0 1

1 �1 1 1 �1 1 0

3

7
7
7
7
7
7
7
7
7
5
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5.2 A Positive Semidefinite Matrix

The next construction gives a 9 � 9 positive semidefinite Hermitian matrix H with
the triple eigenvalue “0” lying on the boundary of the half Gershgorin disk. (This
is very different from the example in Remark 1 where the half disk and the third
disk were the same.) The other eigenvalue is 6 and it lies on the boundary of the
“quarter disk”. This example comes from the Hesse configuration of 9 points and
12 lines in CP

2 [5]. The matrix H looks interesting on its own right. It shows further
that strengthening Theorem 1 to more general matrices (with high multiplicity
eigenvalues) might be difficult.

One possible realization of the Hesse configuration is given by the following 9
points on the complex projective plane

p1 D .0; 1; �1/ p2 D .0; 1; �!/ p3 D .0; 1; �!2/

p4 D .1; 0; �1/ p5 D .1; 0; �!2/ p6 D .1; 0; �!/

p7 D .1; �1; 0/ p8 D .1; �!; 0/ p9 D .1; �!2; 0/

where ! D �1Ci
p

3
2

is a third root of unity. In this arrangement each point lies on
four lines and each line contains three points. Our first matrix, A; records the linear
dependencies of the points. It has 9 columns, one for each point, and 12 rows, one
for each line. If pi; pj and pk are collinear, then there are nonzero complex multipliers
˛; ˇ; � such that ˛pi C ˇpj C �pk D 0: For example the sixth (highlighted) row in
the matrix A below represents the equation

�!2.0; 1; �1/ � .0; 1; �!/ � !.0; 1; �!2/ D .0; 0; 0/:

Thus the matrix A encodes the linear dependencies of collinear triples in the
point-line arrangement of the Hesse configuration.

A D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 �1 0 0 1 0 0

0 0 1 0 �1 0 1 0 0

0 1 0 0 0 �1 1 0 0

0 0 0 0 0 0 �!2 �1 �!

0 0 0 �!2 �! �1 0 0 0

�!2 �1 �! 0 0 0 0 0 0
0 ! 0 0 �1 0 0 1 0

0 0 �!2 0 0 1 0 0 �1

�!2 0 0 0 1 0 0 0 �1

! 0 0 0 0 �1 0 1 0

0 1 0 �! 0 0 0 0 !

0 0 ! �1 0 0 0 1 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5
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The points of the Hesse configuration satisfy the homogeneous system of
equations Ax D 0 where xi 2 CP

2. An affine image of a solution is also a solution,
implying that the rank of A is at most 6. It is easy to see that the rank is exactly 6:
the rank remains the same if one multiplies a matrix with its Hermitian transpose
(complex conjugate transpose). So consider the 9 � 9 matrix H D ATA.

H D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

4 ! !2 �1 �! �!2 1 !2 !

!2 4 ! �! �!2 �1 1 !2 !

! !2 4 �!2 �1 �! 1 !2 !

�1 �!2 �! 4 !2 ! �1 �1 �1

�!2 �! �1 ! 4 !2 �1 �1 �1

�! �1 �!2 !2 ! 4 �1 �1 �1

1 1 1 �1 �1 �1 4 ! !2

! ! ! �1 �1 �1 !2 4 !

!2 !2 !2 �1 �1 �1 ! !2 4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

Matrix H is a positive semidefinite Hermitian matrix that has two eigenvalues:
0 with multiplicity 3 (so the rank of A is indeed 6) and 6 with multiplicity 6. All
non-diagonal entries have norm one and the diagonal entries are 4. Thus � D 0 is
on the boundary of the half Gershgorin disk D.4; 4/ and � D 6 on the boundary of
D.4; 2/, the “quarter disk” (Fig. 1).

6

4

2

2 4 6 8 10 12–4

–4

–6

–2

–2

0

Fig. 1 The Gershgorin disk and half-disk of H
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6 Remarks

There are several questions that remain open.

• What can be said about the location of an eigenvalue with larger multiplicity? Our
method, using the zonotope Z.V/ in the proof of Theorem 3 has its limitations.
Perhaps inequality (1) can be improved. For instance, for an eigenvalue with
multiplicity at least k one would like to use an eigenvector v D .v1; : : : ; vn/ such
that the corresponding zonotope Z.V/ satisfies

Z.V/ � c .kv1k C : : : C kvnk/ B

where c decreases as k grows. Unfortunately one can not expect c to go below 1
�

,
(see Exercise 14.9 in [13])

• How about other matrices? What is the radius of the shrunken Gershgorin disk
which contains a multiple eigenvalue of a general complex matrix? Are there
better bounds for special matrices, like real or positive semidefinite Hermitian
matrices?
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