A Tverberg Type Theorem for Matroids

Imre Bárány, Gil Kalai, and Roy Meshulam

In memory of Jirka Matousek

Abstract Let *b*.*M*/ denote the maximal number of disjoint bases in a matroid *M*. It is shown that if *M* is a matroid of rank $d + 1$, then for any continuous map *f* from the matroidal complex *M* into \mathbb{R}^d there exist $t \ge \sqrt{b(M)}$ /4 disjoint independent sets $\sigma_1, \ldots, \sigma_t \in M$ such that $\bigcap_{i=1}^t f(\sigma_i) \neq \emptyset$.

1 Introduction

Tverberg's theorem [\[15\]](#page-6-0) asserts that if $V \subset \mathbb{R}^d$ satisfies $|V| \ge (k-1)(d+1) + 1$, then there exists a partition $V = V_1 \cup \cdots \cup V_k$ such that $\bigcap_{i=1}^k \text{conv}(V_i) \neq \emptyset$. Tverberg's theorem and some of its extensions may be viewed in the following general context. For a simplicial complex *X* and $d \geq 1$, let the *affine Tverberg number* $T(X, d)$ be the maximal *t* such that for any affine map $f : X \to \mathbb{R}^d$, there exist disjoint simplices $\sigma_1, \ldots, \sigma_t \in X$ such that $\bigcap_{i=1}^t f(\sigma_i) \neq \emptyset$. The *topological Tverberg number TT*(*X*, *d*) is defined similarly where now $f : X \to \mathbb{R}^d$ can be an arbitrary continuous map.

Let Δ_n denote the *n*-simplex and let $\Delta_n^{(d)}$ be its *d*-skeleton. Using the above terminology, Tverberg's theorem is equivalent to $T(\Delta_{(k-1)(d+1)}, d) = k$ which

I. Bárány (\boxtimes)

Rényi Institute, Hungarian Academy of Sciences, POB 127, 1364 Budapest, Hungary

G. Kalai

R. Meshulam Department of Mathematics, Technion, 32000 Haifa, Israel e-mail: meshulam@math.technion.ac.il

© Springer International Publishing AG 2017

Department of Mathematics, University College London, Gower Street, London, UK e-mail: barany@renyi.hu

Einstein Institute of Mathematics, Hebrew University, 9190 Jerusalem, Israel e-mail: kalai@math.huji.ac.il

M. Loebl et al. (eds.), *A Journey Through Discrete Mathematics*, DOI 10.1007/978-3-319-44479-6_5

is clearly the same as $T(\Delta_{(k-1)(d+1)}^{(d)}, d) = k$. Similarly, the topological Tverberg theorem of Bárány, Shlosman and Szűcs $[2]$ states that if p is prime then $TT(\Delta_{(p-1)(d+1)}, d) = p$. Schöneborn and Ziegler [\[14\]](#page-6-1) proved that this implies the stronger statement $TT(\Delta_{(p-1)(d+1)}^{(d)}, d) = p$. This result was extended by Özaydin $[13]$ for the case when *p* is a prime power. The question whether the topological Tverberg theorem holds for every p that is not a prime power had been open for long. Very recently, and quite surprisingly, Frick [\[7\]](#page-5-2) has constructed a counterexample for every non-prime power *p*. His construction is built on work by Mabillard and Wagner [\[10\]](#page-5-3). See also [\[4\]](#page-5-4) and [\[1\]](#page-5-5) for further counterexamples.

There is a colourful version of Tverberg theorem. To state it let $n = r(d + 1) - 1$ and assume that the vertex set *V* of Δ_n is partitioned into $d + 1$ classes (called colours) and that each colour class contains exactly r vertices. We define $Y_{r,d}$ as the subcomplex of Δ_n (or $\Delta_n^{(d)}$) consisting of those $\sigma \subset V$ that contain at most one vertex from each colour class. The colourful Tverberg theorem of Živaljevic´ and Vrecica [[16\]](#page-6-2) asserts that $TT(Y_{2p-1,d}, d) \geq p$ for prime *p* which implies that $TT(Y_{4k-1,d}, d) \geq k$ for arbitrary *k*. A neat and more recent theorem of Blagojević, Matschke, and Ziegler [\[5\]](#page-5-6) says that $TT(Y_{r,d}, d) = r$ if $r + 1$ is a prime, which is clearly best possible. Further information on Tverberg's theorem can be found in Matoušek's excellent book [\[11\]](#page-5-7).

Let *M* be a matroid (possibly with loops) with rank function ρ on the set *V*. We identify *M* with the simplicial complex on *V* whose simplices are the independent sets of *M*. It is well known (see e.g. Theorem 7.8.1 in [\[3\]](#page-5-8)) that *M* is $(\rho(V) - 2)$ connected. Note that both $\Delta_n^{(d)}$ and $Y_{r,d}$ are matroids of rank $d+1$. In this note we are interested in bounding $TT(M, d)$ for a general matroidal complex M . Let $b(M)$ denote the maximal number of pairwise disjoint bases in *M*. Our main result is the following

Theorem 1 Let M be a matroid of rank $d + 1$. Then

$$
TT(M,d) \ge \sqrt{b(M)}/4.
$$

In Sect. [2](#page-1-0) we give a lower bound on the topological connectivity of the deleted join of matroids. In Sect. [3](#page-4-0) we use this bound and the approach of [\[2,](#page-5-0) [16\]](#page-6-2) to prove Theorem [1.](#page-1-1)

2 Connectivity of Deleted Joins of Matroids

We recall some definitions. For a simplicial complex *Y* on a set *V* and an element $v \in V$ such that $\{v\} \in Y$, denote the *star* and *link* of v in *Y* by

$$
st(Y, v) = \{\sigma \subset V : \{v\} \cup \sigma \in Y\}
$$

$$
lk(Y, v) = \{\sigma \in st(Y, v) : v \notin \sigma\}.
$$

For a subset $V' \subset V$ let $Y[V'] = \{\sigma \subset V' : \sigma \in Y\}$ be the induced complex on V' . We regard st (Y, v) , $lk(Y, v)$ and $Y[V']$ as complexes on the original set *V* (keeping in mind that not all elements of *V* have to be vertices of these complexes). Let $f_i(Y)$ denote the number of *i*-simplices in *Y*. Let X_1, \ldots, X_k be simplicial complexes on the same set *V* and let V_1, \ldots, V_k be *k* disjoint copies of *V* with bijections $\pi_i : V \to V_i$. The *join* $X_1 * \cdots * X_k$ is the simplicial complex on $\bigcup_{i=1}^k V_i$ with simplices $\bigcup_{i=1}^k \pi_i(\sigma_i)$ where $\sigma_i \in X_i$. The *deleted join* $(X_1 * \cdots * X_k)_{\Delta}$ is the subcomplex of the join consisting of all simplices $\bigcup_{i=1}^{k} \pi_i(\sigma_i)$ such that $\sigma_i \cap \sigma_j = \emptyset$ for $1 \leq i \neq j \leq k$. When all X_i are equal to X , we denote their deleted join by X_Δ^{*k} . Note that \mathbb{Z}_k acts freely on X_{Δ}^{*k} by cyclic shifts.

Claim 2 *Let* M_1, \ldots, M_k *be matroids on the same set V, with rank functions* ρ_1,\ldots,ρ_k . Suppose A_1,\ldots,A_k are disjoint subsets of V such that A_i *is a union of at most m independent sets in M_i. Then* $Y = (M_1 * \cdots * M_k)_{\Delta}$ *is* $(\lceil \frac{1}{m+1} \sum_{i=1}^k |A_i| \rceil - 2)$ *connected.*

Proof Let $c = \left[\frac{1}{m+1} \sum_{i=1}^{k} |A_i| \right] - 2$. If $k = 1$ then $\rho_1(V) \ge \left[\frac{|A_1|}{m}\right]$ and hence $Y = M_1$ is $\left(\frac{|A_1|}{m}\right] - 2$ -connected. For $k \ge 2$ we establish the Claim by induction on $f_0(Y) = \sum_{i=1}^k f_0(M_i)$. If $f_0(Y) = 0$ then all A_i 's are empty and the Claim holds. We henceforth assume that $f_0(Y) > 0$ and consider two cases:

(a) If $M_i = M_i[A_i]$ for all $1 \le i \le k$ then $Y = M_1 * \cdots * M_k$ is a matroid of rank

$$
\sum_{i=1}^k \rho_i(V) \geq \sum_{i=1}^k \left\lceil \frac{|A_i|}{m} \right\rceil \geq \left\lceil \frac{\sum_{i=1}^k |A_i|}{m} \right\rceil.
$$

Hence *Y* is $\left(\left\lceil \frac{\sum_{i=1}^{k} |A_i|}{m} \right\rceil - 2 \right)$ -connected.

(b) Otherwise there exists an $1 \leq i_0 \leq k$ such that $M_{i_0} \neq M_{i_0}[A_{i_0}]$. Choose an element $v \in V - A_{i_0}$ such that $\{v\} \in M_{i_0}$. Without loss of generality we may assume that $i_0 = 1$ and that $v \notin \bigcup_{i=1}^{k-1} A_i$. Let $S = \bigcup_{i=1}^{k} V_i$ and let $Y_1 = \bigcup_{i=1}^{k} A_i$. $Y[S - {\pi_1(v)}], Y_2 = \text{st}(Y, \pi_1(v)).$ Then

$$
Y_1 = (M_1[V - \{v\}] * M_2 * \cdots * M_k)_{\Delta}.
$$

Noting that $f_0(Y_1) = f_0(Y) - 1$ and applying the induction hypothesis to the matroids $M_1[V - \{v\}], M_2, \ldots, M_k$ and the sets A_1, \ldots, A_k , it follows that Y_1 is *c*-connected. We next consider the connectivity of $Y_1 \cap Y_2$. Write $A_1 = \bigcup_{j=1}^t C_j$ where $t \leq m$, $C_i \in M_1$ for all $1 \leq j \leq t$, and the *C_i*'s are pairwise disjoint. Since $\{v\} \in M_1$, it follows that there exist $\{C'_j\}_{j=1}^t$ such that $C'_j \subset C_j$, $|C'_j| \geq |C_j| - 1$, and $C'_j \in \text{lk}(M_1, v)$ for all $1 \leq j \leq t$. Let

$$
M'_{i} = \begin{cases} \text{lk}(M_{1}, v) & i = 1, \\ M_{i}[V - \{v\}] & 2 \leq i \leq k, \end{cases}
$$

and

$$
A'_{i} = \begin{cases} \bigcup_{j=1}^{t} C'_{j} & i = 1, \\ A_{i} & 2 \leq i \leq k - 1, \\ A_{k} - \{v\} & i = k. \end{cases}
$$

Observe that

$$
Y_1 \cap Y_2 = \text{lk}(Y, \pi_1(v)) = (M'_1 * \cdots * M'_k)_{\Delta}
$$

and that A'_i is a union of at most *m* independent sets in M'_i for all $1 \le i \le k$. Noting that $f_0(Y_1 \cap Y_2) \le f_0(Y) - 1$ and applying the induction hypothesis to the matroids M'_1, \ldots, M'_k and the sets A'_1, \ldots, A'_k , it follows that $Y_1 \cap Y_2$ is *c*'-connected where

$$
c' = \left\lceil \frac{1}{m+1} \sum_{i=1}^{k} |A'_i| \right\rceil - 2
$$

=
$$
\left\lceil \frac{1}{m+1} \left(\sum_{j=1}^{t} |C'_j| + \sum_{i=2}^{k-1} |A_i| + |A_k - \{v\}| \right) \right\rceil - 2
$$

$$
\geq \left\lceil \frac{1}{m+1} \left(|A_1| - m + \sum_{i=2}^{k-1} |A_i| + |A_k| - 1 \right) \right\rceil - 2 = c - 1.
$$

As Y_1 is *c*-connected, Y_2 is contractible and $Y_1 \cap Y_2$ is $(c-1)$ -connected, it follows. that $Y = Y_1 \cup Y_2$ is *c*-connected.

Let *M* be a matroid on *V* with $b(M) = b$ disjoint bases B_1, \ldots, B_b . Let $I_1 \cup \cdots \cup I_k$ be a partition of [b] into almost equal parts $\left\lfloor \frac{b}{k} \right\rfloor \leq |I_i| \leq \left\lceil \frac{b}{k} \right\rceil$. Applying Claim [2](#page-2-0) with $M_1 = \cdots = M_k = M$ and $A_i = \bigcup_{j \in I_i} B_j$, we obtain:

Corollary 3 *The connectivity of* M_{Δ}^{*k} *is at least*

$$
\frac{b\rho(V)}{\lceil\frac{b}{k}\rceil+1}-2.
$$

We suggest the following:

Conjecture 4 *For any* $k \geq 1$ *there exists an* $f(k)$ *such that if* $b(M) \geq f(k)$ *then* M_{Δ}^{*k} $i\int g(k\rho(V)-2)$ *-connected.*

Remark Let *M* be the rank 1 matroid on *m* points $M = \Delta_{m-1}^{(0)}$. The chessboard complex $C(k, m)$ is the *k*-fold deleted join M_{Δ}^{*k} . Chessboard complexes play a key role in the works of Živaljević and Vrećica $[16]$ $[16]$ and Blagojević, Matschke, and Ziegler [\[5\]](#page-5-6) on the colourful Tverberg theorem. Let $k \geq 2$. Garst [\[9\]](#page-5-9) and Živaljević and Vrecica [[16\]](#page-6-2) proved that $C(k, 2k - 1)$ is $(k - 2)$ -connected. On the other hand,

Friedman and Hanlon [\[8\]](#page-5-10) showed that $\tilde{H}_{k-2}(C(k, 2k-2); \mathbb{Q}) \neq 0$, so $C(k, 2k-2)$ is not $(k - 2)$ -connected. This implies that the function $f(k)$ in Conjecture [4](#page-3-0) must satisfy $f(k) \geq 2k - 1$.

3 A Tverberg Type Theorem for Matroids

We recall some well-known topological facts (see [\[2\]](#page-5-0)). For $m \geq 1, k \geq 2$ we identify the sphere $S^{m(k-1)-1}$ with the space

$$
\left\{ (y_1,\ldots,y_k) \in (\mathbb{R}^m)^k : \sum_{i=1}^k |y_i|^2 = 1 , \sum_{i=1}^k y_i = 0 \in \mathbb{R}^m \right\} .
$$

The cyclic shift on this space defines a \mathbb{Z}_k action on $S^{m(k-1)-1}$. The action is free for prime *k*.

The *k-fold deleted product* of a space *X* is the \mathbb{Z}_k -space given by

$$
X_D^k = X^k - \{(x, \ldots, x) \in X^k : x \in X\}.
$$

For $m \geq 1$ define a \mathbb{Z}_k -map

$$
\phi_{m,k}: (\mathbb{R}^m)_D^k \to S^{m(k-1)-1}
$$

by

$$
\phi_{m,k}(x_1,\ldots,x_k) = \frac{(x_1 - \frac{1}{k}\sum_{i=1}^k x_i,\ldots,x_k - \frac{1}{k}\sum_{i=1}^k x_i)}{(\sum_{j=1}^k |x_j - \frac{1}{k}\sum_{i=1}^k x_i|^2)^{1/2}}.
$$

We'll also need the following result of Dold [\[6\]](#page-5-11) (see also Theorem 6.2.6 in [\[12\]](#page-5-12)):

Theorem 5 (Dold) Let p be a prime and suppose X and Y are free \mathbb{Z}_p -spaces such *that* dim $Y = k$ *and* X *is k-connected. Then there does not exist a* \mathbb{Z}_p *-map from* X *to Y.*

Proof of Theorem [1](#page-1-1) Let *M* be a matroid on the vertex set *V*, and let $f : M \to \mathbb{R}^d$ be a continuous map. Let $b = b(M)$ and choose a prime $\sqrt{b}/4 \le p \le \sqrt{b}/2$. We'll show that there exist disjoint simplices (i.e. independent sets) $\sigma_1, \ldots, \sigma_p \in M$ such that $\bigcap_{i=1}^p f(\sigma_i) \neq \emptyset$. Suppose for contradiction that $\bigcap_{i=1}^p f(\sigma_i) = \emptyset$ for all such choices of σ_i 's. Then *f* induces a continuous \mathbb{Z}_p -map

$$
f_*: M_{\Delta}^{*p} \to (\mathbb{R}^{d+1})^p_D
$$

as follows. If x_1, \ldots, x_p have pairwise disjoint supports in *M* and $(t_1, \ldots, t_p) \in \mathbb{R}_+^p$ satisfies $\sum_{i=1}^{p} t_i = 1$ then

$$
f_{*}(t_{1}\pi_{1}(x_{1})+\cdots+t_{p}\pi_{p}(x_{p}))=(t_{1},t_{1}f(x_{1}),\ldots,t_{p},t_{p}f(x_{p}))\in(\mathbb{R}^{d+1})_{D}^{p}.
$$

Hence $\phi_{d+1,p} f_*$ is a \mathbb{Z}_p -map between the free \mathbb{Z}_p -spaces M_{Δ}^{*p} and $S^{(d+1)(p-1)-1}$. This however contradicts Dold's Theorem since by Corollary $\overline{3}$ $\overline{3}$ $\overline{3}$ the connectivity of M_{Δ}^{*p} is at least

$$
\frac{b(d+1)}{\lceil \frac{b}{p} \rceil + 1} - 2 \ge (d+1)(p-1) - 1
$$

by the choice of *p*.

 \Box

Acknowledgements Research of Imre Bárány was partially supported by ERC advanced grant 267165, and by Hungarian National grant K 83767. Research of Gil Kalai was supported by ERC advanced grant 320924. Research of Roy Meshulam is supported by ISF and GIF grants.

References

- 1. S. Avvakumov, I. Mabillard, A. Skopenkov, U. Wagner, Eliminating higher-multiplicity intersections, III. Codimension 2 (2015), 16 pp., arXiv:1511.03501
- 2. I. Bárány, S. Shlosman, A. Szűcs, On a topological generalization of a theorem of Tverberg. J. Lond. Math. Soc. **23**, 158–164 (1981)
- 3. A. Björner, Topological methods, in *Handbook of Combinatorics, 1819–1872*, ed. by R. Graham, M. Grötschel, L. Lovász (North-Holland, Amsterdam, 1995)
- 4. P.V.M. Blagojevic, F. Frick, G.M. Ziegler, Barycenters of polytope Skeleta and counterexam- ´ ples to the topological Tverberg conjecture, via constraints (2015), 6 pp., arXiv:1508.02349
- 5. P.V.M. Blagojevic, B. Matschke, G.M. Ziegler, Optimal bounds for the colored Tverberg ´ problem. J. European Math. Soc. **17**, 739–754 (2015)
- 6. A. Dold, Simple proofs of some Borsuk-Ulam results. Contemp. Math. **19**, 65–69 (1983)
- 7. F. Frick, Counterexamples to the topological Tverberg conjecture (2015), 3 pp., arXiv: 1502.00947
- 8. J. Friedman, P. Hanlon, On the Betti numbers of chessboard complexes, J. Algebraic Combin. **8**, 193–203 (1998)
- 9. P. Garst, Cohen-Macaulay complexes and group actions, Ph.D.Thesis, The University of Wisconsin – Madison, 1979
- 10. I. Mabillard, U. Wagner, Eliminating higher-multiplicity intersections, I. A Whitney trick for Tverberg-type problems (2015), 46 pp., arXiv:1508.02349
- 11. J. Matoušek, *Lectures on Discrete Geometry* (Springer, New York, 2002)
- 12. J. Matoušek, *Using the Borsuk-Ulam Theorem* (Springer, Berlin, 2003)
- 13. M.Özaydin, Equivariant maps for the symmetric group, 1987. Available at [http://minds.](http://minds.wisconsin.edu/handle/1793/63829) [wisconsin.edu/handle/1793/63829](http://minds.wisconsin.edu/handle/1793/63829)
- 14. T. Schöneborn, G.M. Ziegler, The topological Tverberg theorem and winding numbers. J. Combin. Theory Ser. A **112**, 82–104 (2005)
- 15. H. Tverberg, A generalization of Radon's theorem. J. Lond. Math. Soc. **41**, 123–128 (1966)
- 16. R. Živaljević, S. Vrećica, The colored Tverberg's problem and complexes of injective functions. J. Combin. Theory Ser. A **61**, 309–318 (1992)