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Abstract Let b.M/ denote the maximal number of disjoint bases in a matroid M. It
is shown that if M is a matroid of rank d C 1, then for any continuous map f from
the matroidal complex M into R

d there exist t � p
b.M/=4 disjoint independent

sets �1; : : : ; �t 2 M such that
Tt

iD1 f .�i/ ¤ ;.

1 Introduction

Tverberg’s theorem [15] asserts that if V � R
d satisfies jVj � .k � 1/.d C 1/ C 1,

then there exists a partition V D V1 [ � � � [ Vk such that
Tk

iD1 conv.Vi/ ¤ ;.
Tverberg’s theorem and some of its extensions may be viewed in the following
general context. For a simplicial complex X and d � 1, let the affine Tverberg
number T.X; d/ be the maximal t such that for any affine map f W X ! R

d, there
exist disjoint simplices �1; : : : ; �t 2 X such that

Tt
iD1 f .�i/ ¤ ;. The topological

Tverberg number TT.X; d/ is defined similarly where now f W X ! R
d can be an

arbitrary continuous map.
Let �n denote the n-simplex and let �

.d/
n be its d-skeleton. Using the above

terminology, Tverberg’s theorem is equivalent to T.�.k�1/.dC1/; d/ D k which
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is clearly the same as T.�
.d/

.k�1/.dC1/; d/ D k. Similarly, the topological Tver-
berg theorem of Bárány, Shlosman and Szűcs [2] states that if p is prime then
TT.�. p� 1/.dC 1/; d/ D p. Schöneborn and Ziegler [14] proved that this implies

the stronger statement TT.�
.d/

. p�1/.dC1/; d/ D p. This result was extended by

Özaydin [13] for the case when p is a prime power. The question whether the
topological Tverberg theorem holds for every p that is not a prime power had been
open for long. Very recently, and quite surprisingly, Frick [7] has constructed a
counterexample for every non-prime power p. His construction is built on work by
Mabillard and Wagner [10]. See also [4] and [1] for further counterexamples.

There is a colourful version of Tverberg theorem. To state it let n D r.d C 1/ � 1

and assume that the vertex set V of �n is partitioned into d C 1 classes (called
colours) and that each colour class contains exactly r vertices. We define Yr;d as
the subcomplex of �n (or �

.d/
n ) consisting of those � � V that contain at most

one vertex from each colour class. The colourful Tverberg theorem of Živaljević
and Vrećica [16] asserts that TT.Y2p�1;d; d/ � p for prime p which implies that
TT.Y4k�1;d; d/ � k for arbitrary k. A neat and more recent theorem of Blagojević,
Matschke, and Ziegler [5] says that TT.Yr;d; d/ D r if r C 1 is a prime, which is
clearly best possible. Further information on Tverberg’s theorem can be found in
Matoušek’s excellent book [11].

Let M be a matroid (possibly with loops) with rank function � on the set V . We
identify M with the simplicial complex on V whose simplices are the independent
sets of M. It is well known (see e.g. Theorem 7.8.1 in [3]) that M is .�.V/ � 2/-
connected. Note that both �

.d/
n and Yr;d are matroids of rank d C 1. In this note we

are interested in bounding TT.M; d/ for a general matroidal complex M. Let b.M/

denote the maximal number of pairwise disjoint bases in M. Our main result is the
following

Theorem 1 Let M be a matroid of rank d C 1. Then

TT.M; d/ � p
b.M/=4 :

In Sect. 2 we give a lower bound on the topological connectivity of the deleted
join of matroids. In Sect. 3 we use this bound and the approach of [2, 16] to prove
Theorem 1.

2 Connectivity of Deleted Joins of Matroids

We recall some definitions. For a simplicial complex Y on a set V and an element
v 2 V such that fvg 2 Y, denote the star and link of v in Y by

st.Y; v/ D f� � V W fvg [ � 2 Yg
lk.Y; v/ D f� 2 st.Y; v/ W v 62 �g:
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For a subset V 0 � V let YŒV 0� D f� � V 0 W � 2 Yg be the induced complex on V 0.
We regard st.Y; v/, lk.Y; v/ and YŒV 0� as complexes on the original set V (keeping
in mind that not all elements of V have to be vertices of these complexes). Let fi.Y/

denote the number of i-simplices in Y. Let X1; : : : ;Xk be simplicial complexes on the
same set V and let V1; : : : ;Vk be k disjoint copies of V with bijections �i W V ! Vi.
The join X1�� � ��Xk is the simplicial complex on

Sk
iD1 Vi with simplices

Sk
iD1 �i.�i/

where �i 2 Xi. The deleted join .X1 � � � � � Xk/� is the subcomplex of the join
consisting of all simplices

Sk
iD1 �i.�i/ such that �i \ �j D ; for 1 � i ¤ j � k.

When all Xi are equal to X, we denote their deleted join by X�k
� . Note that Zk acts

freely on X�k
� by cyclic shifts.

Claim 2 Let M1; : : : ;Mk be matroids on the same set V, with rank functions
�1; : : : ; �k. Suppose A1; : : : ;Ak are disjoint subsets of V such that Ai is a union of at
most m independent sets in Mi. Then Y D .M1 �� � ��Mk/� is .d 1

mC1

Pk
iD1 jAije�2/-

connected.

Proof Let c D d 1
mC1

Pk
iD1 jAije � 2. If k D 1 then �1.V/ �

l jA1j
m

m
and hence

Y D M1 is .
l jA1j

m

m
� 2/-connected. For k � 2 we establish the Claim by induction

on f0.Y/ D Pk
iD1 f0.Mi/. If f0.Y/ D 0 then all Ai’s are empty and the Claim holds.

We henceforth assume that f0.Y/ > 0 and consider two cases:

(a) If Mi D MiŒAi� for all 1 � i � k then Y D M1 � � � � � Mk is a matroid of rank

kX

iD1

�i.V/ �
kX

iD1

� jAij
m

�
�
&Pk

iD1 jAij
m

'

:

Hence Y is .
lPk

iD1 jAij
m

m
� 2/-connected.

(b) Otherwise there exists an 1 � i0 � k such that Mi0 ¤ Mi0 ŒAi0 �. Choose an
element v 2 V � Ai0 such that fvg 2 Mi0 . Without loss of generality we may
assume that i0 D 1 and that v 62 Sk�1

iD1 Ai. Let S D Sk
iD1 Vi and let Y1 D

YŒS � f�1.v/g�, Y2 D st.Y; �1.v//. Then

Y1 D .M1ŒV � fvg� � M2 � � � � � Mk/�:

Noting that f0.Y1/ D f0.Y/�1 and applying the induction hypothesis to the matroids
M1ŒV � fvg�;M2; : : : ;Mk and the sets A1; : : : ;Ak, it follows that Y1 is c-connected.
We next consider the connectivity of Y1 \ Y2. Write A1 D St

jD1 Cj where t � m,
Cj 2 M1 for all 1 � j � t, and the Cj’s are pairwise disjoint. Since fvg 2 M1, it
follows that there exist fC0

jgtjD1 such that C0
j � Cj, jC0

jj � jCjj�1, andC0
j 2 lk.M1; v/

for all 1 � j � t. Let

M0
i D

�
lk.M1; v/ i D 1;

MiŒV � fvg� 2 � i � k;
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and

A0
i D

8
<

:

St
jD1 C

0
j i D 1;

Ai 2 � i � k � 1;

Ak � fvg i D k:

Observe that

Y1 \ Y2 D lk.Y; �1.v// D .M0
1 � � � � � M0

k/�

and that A0
i is a union of at most m independent sets in M0

i for all 1 � i � k. Noting
that f0.Y1 \ Y2/ � f0.Y/ � 1 and applying the induction hypothesis to the matroids
M0

1; : : : ;M0
k and the sets A0

1; : : : ;A0
k, it follows that Y1 \ Y2 is c0-connected where

c0 D
&

1

m C 1

kX

iD1

jA0
ij
'

� 2

D
2

6
6
6

1

m C 1

0

@
tX

jD1

jC0
jj C

k�1X

iD2

jAij C jAk � fvgj
1

A

3

7
7
7

� 2

�
&

1

m C 1

 

jA1j � m C
k�1X

iD2

jAij C jAkj � 1

!'

� 2 D c � 1:

As Y1 is c-connected, Y2 is contractible and Y1 \ Y2 is .c � 1/-connected, it follows
that Y D Y1 [ Y2 is c-connected. ut
Let M be a matroid on V with b.M/ D b disjoint bases B1; : : : ;Bb. Let I1 [ � � � [ Ik
be a partition of Œb� into almost equal parts b b

k c � jIij � d b
k e. Applying Claim 2

with M1 D � � � D Mk D M and Ai D [j2IiBj, we obtain:

Corollary 3 The connectivity of M�k
� is at least

b�.V/

d b
k e C 1

� 2 :

We suggest the following:

Conjecture 4 For any k � 1 there exists an f .k/ such that if b.M/ � f .k/ then M�k
�

is .k�.V/ � 2/-connected.

Remark Let M be the rank 1 matroid on m points M D �
.0/
m�1. The chessboard

complex C.k;m/ is the k-fold deleted join M�k
� . Chessboard complexes play a key

role in the works of Živaljević and Vrećica [16] and Blagojević, Matschke, and
Ziegler [5] on the colourful Tverberg theorem. Let k � 2. Garst [9] and Živaljević
and Vrećica [16] proved that C.k; 2k � 1/ is .k � 2/-connected. On the other hand,
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Friedman and Hanlon [8] showed that QHk�2.C.k; 2k � 2/IQ/ ¤ 0, so C.k; 2k � 2/

is not .k � 2/-connected. This implies that the function f .k/ in Conjecture 4 must
satisfy f .k/ � 2k � 1.

3 A Tverberg Type Theorem for Matroids

We recall some well-known topological facts (see [2]). For m � 1; k � 2 we identify
the sphere Sm.k�1/�1 with the space

(

. y1; : : : ; yk/ 2 .Rm/k W
kX

iD1

jyij2 D 1 ;

kX

iD1

yi D 0 2 R
m

)

:

The cyclic shift on this space defines a Zk action on Sm.k�1/�1. The action is free for
prime k.

The k-fold deleted product of a space X is the Zk-space given by

Xk
D D Xk � f.x; : : : ; x/ 2 Xk W x 2 Xg :

For m � 1 define a Zk-map

�m;k W .Rm/kD ! Sm.k�1/�1

by

�m;k.x1; : : : ; xk/ D .x1 � 1
k

Pk
iD1 xi; : : : ; xk � 1

k

Pk
iD1 xi/

.
Pk

jD1 jxj � 1
k

Pk
iD1 xij2/1=2

:

We’ll also need the following result of Dold [6] (see also Theorem 6.2.6 in [12]):

Theorem 5 (Dold) Let p be a prime and suppose X and Y are free Zp-spaces such
that dimY D k and X is k-connected. Then there does not exist a Zp-map from X
to Y.

Proof of Theorem 1 Let M be a matroid on the vertex set V , and let f W M ! R
d be

a continuous map. Let b D b.M/ and choose a prime
p
b=4 � p � p

b=2. We’ll
show that there exist disjoint simplices (i.e. independent sets) �1; : : : ; �p 2 M such
that

Tp
iD1 f .�i/ ¤ ;. Suppose for contradiction that

Tp
iD1 f .�i/ D ; for all such

choices of �i’s. Then f induces a continuous Zp-map

f� W M�p
� ! .RdC1/

p
D
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as follows. If x1; : : : ; xp have pairwise disjoint supports in M and .t1; : : : ; tp/ 2 R
p
C

satisfies
Pp

iD1 ti D 1 then

f�.t1�1.x1/ C � � � C tp�p.xp// D .t1; t1f .x1/; : : : ; tp; tpf .xp// 2 .RdC1/
p
D :

Hence �dC1;pf� is a Zp-map between the free Zp-spaces M�p
� and S.dC1/.p�1/�1. This

however contradicts Dold’s Theorem since by Corollary 3 the connectivity of M�p
�

is at least

b.d C 1/

d b
pe C 1

� 2 � .d C 1/. p � 1/ � 1

by the choice of p.

�
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2. I. Bárány, S. Shlosman, A. Szűcs, On a topological generalization of a theorem of Tverberg. J.
Lond. Math. Soc. 23, 158–164 (1981)

3. A. Björner, Topological methods, in Handbook of Combinatorics, 1819–1872, ed. by R. Gra-
ham, M. Grötschel, L. Lovász (North-Holland, Amsterdam, 1995)
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