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Abstract Jiří Matoušek (1963–2015) had many breakthrough contributions in
mathematics and algorithm design. His milestone results are not only profound but
also elegant. By going beyond the original objects—such as Euclidean spaces or lin-
ear programs—Jirka found the essence of the challenging mathematical/algorithmic
problems as well as beautiful solutions that were natural to him, but were surprising
discoveries to the field.

In this short exploration article, I will first share with readers my initial encounter
with Jirka and discuss one of his fundamental geometric results from the early
1990s. In the age of social and information networks, I will then turn the discussion
from geometric structures to network structures, attempting to take a humble step
towards the holy grail of network science, that is to understand the network essence
that underlies the observed sparse-and-multifaceted network data. I will discuss a
simple result which summarizes some basic algebraic properties of personalized
PageRank matrices. Unlike the traditional transitive closure of binary relations,
the personalized PageRank matrices take “accumulated Markovian closure” of
network data. Some of these algebraic properties are known in various contexts.
But I hope featuring them together in a broader context will help to illustrate
the desirable properties of this Markovian completion of networks, and motivate
systematic developments of a network theory for understanding vast and ubiquitous
multifaceted network data.
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1 Geometric Essence: To the Memory of Jiří Matoušek

Like many in theoretical computer science and discrete mathematics, my own
research has benefited from Jirka’s deep insights, especially into computational
geometry [64] and linear programming [65]. In fact, our paths accidentally crossed
in the final year of my Ph.D. program. As a part of my 1991 CMU thesis [88],
I obtained a result on the deterministic computation of a geometric concept, called
centerpoints, which led me to learn about one of Jirka’s groundbreaking results
during this time.

1.1 Centerpoints

The median is a widely-used concept for analyzing one-dimensional data, due to its
statistical robustness and its natural algorithmic applications to divide-and-conquer.
In general, suppose P D f p1; : : : ; png is a set of n real numbers. For ı 2 .0; 1=2�,
we call c 2 R a ı-median of P if max

�jfi W pi < cgj; jf j W pj > cgj/ � .1 � ı
�
n:

A 1
2
-median of P is known simply as a median. Centerpoints are high-dimensional

generalization of medians:

Definition 1.1 (Centerpoints) Suppose P D fp1; : : : ; png is a point set in R
d. For

ı 2 .0; 1=2�, a point c 2 R
d is a ı-centerpoint of P if for all unit vectors z 2 R

d, the
projection zTc is a ı-median of the projections, zT � P D fzTp1; : : : ; zTpng.

Geometrically, every hyperplane h in R
d divides the space into two open

halfspaces, hC and h�. Let the splitting ratio of h over P, denoted by ıh.P/, be:

ıh.P/ WD max
�jhC \ Pj; jh� \ Pj�

jPj (1)

Definition 1.1 can be restated as: c 2 Rd is a ı-centerpoint of P if the splitting
ratio of every hyperplane h passing through c is at most .1 � ı/. Centerpoints
are fundamental to geometric divide-and-conquer [34]. They are also strongly
connected to the concept of regression depth introduced by Rousseeuw and Hubert
in robust statistics [7, 50].

We all know that every set of real numbers has a median. Likewise—
and remarkably—every point set in d-dimensional Euclidean space has a

1
dC1

-centerpoint [30]. This mathematical result can be established by Helly’s
classical theorem from convex geometry.1 Algorithmically, Vapnik–Chervonenkis’
celebrated sampling theorem [92] (more below) implies an efficient randomized
algorithm—at least in theory—for computing a . 1

dC1
��/-centerpoint. This “simple”

1Helly’s Theorem states: Suppose K is a family of at least d C 1 convex sets in Rd , and K is finite
or each member of K is compact. Then, if each d C 1 members of K have a common point, there
must be a point common to all members of K.
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algorithm first takes a “small” random sample, and then obtains its 1
dC1

-centerpoint
via linear programming. The complexity of this LP-based sampling algorithm is:

2O.d/

�
d

�2
� log

d

�

�d

:

1.2 Derandomization

For my thesis, I needed to compute centerpoints in order to construct geometric
separators [67] for supporting finite-element simulation and parallel scientific
computing [68]. Because linear programming was too slow, I needed a practical
centerpoint algorithm to run large-scale experiments [45]. Because I was a theory
student, I was also aiming for a theoretical algorithm to enrich my thesis. For
the latter, I focused on derandomization, which was then an active research area
in theoretical computer science. For centerpoint approximation without linear
programming, my advisor Gary Miller and I quickly obtained a simple and practical
algorithm2 based on Radon’s classical theorem3 [30]. But for derandomization, it
took me more than a year to finally design a deterministic linear-time algorithm
for computing . 1

dC1
� �/-centerpoints in any fixed dimensions. It happened in the

Spring of 1991, my last semester at CMU. Gary then invited me to accompany
him for a month-long visit, starting at the spring break of 1991, at the International
Computer Science Institute (ICSI), located near the U.C. Berkeley campus. During
the California visit, I ran into Leo Guibas, one of the pioneers of computational
geometry.

After I told Leo about my progress on Radon-Tverberg decomposition [90] and
centerpoint computation, he mentioned to me a paper by Jirka [64], which was
just accepted to the ACM Symposium on Theory of Computing (STOC 1991)—
before my solution—that beautifully solved the sampling problem for a broad class
of computational geometry and statistical learning problems. Jirka’s result—see
Theorem 1.3 below—includes the approximation of centerpoints as a simple special
case. Although our approaches had some ideas in common, I instantly knew that this
mathematician—who I later learned was just a year older than me—was masterful
and brilliant. I shortened that section of my thesis by referring readers to Jirka’s
paper [64], and only included the scheme I had that was in common with his bigger
result (Fig. 1).

2The construction started as a heuristics, but it took a few more brilliant collaborators and years
(after my graduation) to rigorously analyzing its performance [29].
3Radon’s Theorem states: Every point set Q � Rd with jQj � d C 2 can be partitioned into two
subsets .Q1;Q2/ such that the convex hulls of Q1 and Q2 have a common point.
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Fig. 1 Page 66 (Chapter 8) of my thesis

1.3 Matoušek’s Theorem: The Essence of Dimensionality

Mathematically, a range space † is a pair .X;R/, where X is a finite or infinite set,
and R is a finite or infinite family of subsets of X. Each H 2 R can be viewed as a
classifier of X, with elements in X\H as its positive instances. For example, Rd and
its halfspaces form a range space, so do R

d and its Lp-balls, for any p > 0, as well
as V and the set of all cliques in a graph G D .V;E/. Range spaces greatly extend
the concept of linear separators.

An important technique in statistical machine learning and computational geom-
etry is sampling. For range spaces, we can measure the quality of a sample as the
following:

Definition 1.2 (�-samples) Let † D .X;R/ be an n-point range space. A subset
S � X is an �-sample or �-approximation for † if for all H 2 R:

ˇ
ˇ̌
ˇ
jH \ Sj

jSj � jH \ Xj
jXj

ˇ
ˇ̌
ˇ � � (2)
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For each S � X, the set of distinct classifiers that R can define is R.S/ D fH\S W
H 2 Rg. For any m � jXj, let the shatter function for † be:

�R.m/ D sup
S�X;jSjDm

jR.S/j (3)

Theorem 1.3 (Deterministic Sampling—Matoušek) Let † D .X;R/ be an n-
point range space with the shatter function satisfying �R.m/ D O.md/ (d � 1

a constant). Having a subspace oracle for †, and given a parameter r, we can
deterministically compute a .1=r/-approximation of size O.dr2 log r/ for †, in time
O.n.r2 log r/d/.

Matoušek’s sampling theorem goes beyond traditional geometry and completely
derandomizes the theory of Vapnik–Chervonenkis [92].

Theorem 1.4 (Vapnik and Chervonenkis) There exists a constant c such that for
any finite range space † D .X;R/ and �; ı 2 .0; 1/, if S is a set of c � d

�2

�
log d

�ı

�

uniform and independent samples from X, where d D VC.†/, (see below for
definition) then:

PrŒS is an �-sample for †� � 1 � ı

Matoušek’s deterministic algorithm can be applied to geometric classifiers as
well as any classifier—known as a concept space—that arises in statistical learning
theory [91]. The concept of range space has also provided a powerful tool for
capturing geometric structures, and played a profound role—both in theory and in
practice—for data clustering [38] and geometric approximation [3]. The beauty of
Vapnik–Chervonenkis’ theory and Matoušek’s sampling theorem lies in the essence
of dimensionality, which is generalized from geometric spaces to abstract range
spaces. In Euclidean geometry, the dimensionality comes naturally to many of us.
For abstract range spaces, the growth of the shatter functions is more intrinsic! If
�R.m/ D 2m, then there exists a set S � X of m elements that is shattered, i.e., for
any subset T of S � X, there exists H 2 R such that T D H \ S. In other words, we
can use R to build classifiers for all subsets of S. There is a beautiful dichotomy of
polynomial and exponential complexity within the concept of shattering:

• either X has a subset S � X of size m that can be shattered by R,
• or for any U � X, jUj � m, jfH \ U W H 2 Rgj is polynomial in jUj.
The latter case implies that R can only be used to build a polynomial number of
classifiers for U. The celebrated VC-dimension of range space † D .X;R/, denoted
by VC.†/, is defined as:

VC.†/ WD arg maxfm W �R.m/ D 2mg:

This polynomial-exponential dichotomy is established by the following Sauer’s
lemma.4

4This lemma is also known as Perles–Sauer–Shelah’s lemma.
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Lemma 1.5 (Sauer) For any range space † D .X;R/ and 8m > VC.†/,

�R.m/ � PVC.†/
kD0

�m
k

�
.

Sauer’s lemma extends the following well-known fact of Euclidean geometry:
any set of m hyperplanes in R

d divides the space into at most O.md/ convex cells.
By the point-hyperplane duality, any set of m points can be divided into at O.md/

subsets by halfspaces.
Although my construction of �-samples in R

d was good enough for designing
linear-time centerpoint approximation algorithm in fixed dimensions, it did not
immediately generalize to arbitrary range spaces, because it was tailored to the
geometric properties of Euclidean spaces.

By addressing abstract range spaces, Jirka resolved the intrinsic algorithmic
problem at the heart of Vapnik–Chervonenkis’ sampling theory. Like Theorem 1.3,
many of Jirka’s other landmark and breakthrough results are elegant, insightful, and
fundamental. By going beyond the original objects—such as Euclidean spaces or
linear programs [65]—Jirka usually went directly to the essence of the challenging
problems to come up with beautiful solutions that were natural to him but remark-
able to the field.

2 Backgrounds: Understanding Multifaceted Network Data

To analyze the structures of social and information networks in the age of Big
Data, we need to overcome various conceptual and algorithmic challenges both in
understanding network data and in formulating solution concepts. For both, we need
to capture the network essence.

2.1 The Graph Model—A Basic Network Facet

At the most basic level, a network can be modeled as a graph G D .V;E/, which
characterizes the structure of the network in terms of:

• nodes: for example, Webpages, Internet routers, scholarly articles, people,
random variables, or counties

• edges: for example, links, connections, citations, friends, conditional dependen-
cies, or voting similarities

In general, nodes in many real-world networks may not be “homogeneous” [5], as
they may have some additional features, specifying the types or states of the node
elements. Similarly, edges may have additional features, specifying the levels and/or
types of pairwise interactions, associations, or affinities.

Networks with “homogeneous” types of nodes and edges are closest to the
combinatorial structures studied under traditional graph theory, which considers
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both weighted or unweighted graphs. Three basic classes of weighted graphs often
appear in applications. The first class consists of distance networks, where each
edge e 2 E is assigned a number le � 0, representing the length of edge e. The
second class consists of affinity networks, where each edge .u; v/ 2 E is assigned a
weight wu;v � 0, specifying u’s affinity weight towards v. The third class consists
of probabilistic networks, where each (directed) edge .u; v/ 2 E is assigned a
probability pu;v � 0, modeling how a random process connects u to v. It is usually
more natural to view maps or the Internet as distance networks, social networks as
affinity networks, and Markov processes as probabilistic networks. Depending on
applications, a graph may be directed or undirected. Examples of directed networks
include: the Web, Twitter, the citation graphs of scholarly publications, and Markov
processes. Meanwhile, Facebook “friends” or collaboration networks are examples
of undirected graphs.

In this article, we will first focus on affinity networks. An affinity network with
n nodes can be mathematically represented as a weighted graph G D .V;E; W/.
Unless otherwise stated, we assume V D Œn� and W is an n � n non-negative matrix
(for example from Œ0; 1�n�n). We will follow the convention that for i ¤ j, wi;j D 0,
if and only if, .i; j/ 62 E. If W is a symmetric matrix, then we say G is undirected. If
wi;j 2 f0; 1g, 8i; j 2 V , then we say G is unweighted.

Although they do not always fit, three popular data models for defining pairwise
affinity weights are the metric model, feature model, and statistical model. The first
assumes that an underlying metric space, M D .V; dist/, impacts the interactions
among nodes in a network. The affinities between nodes may then be determined by
their distances from the underlying metric space: The closer two elements are, the
higher their affinity becomes, and the more interactions they have. A standard way
to define affinity weights for u ¤ v is: wu;v D dist.u; v/�˛ , for some ˛ > 0. The
second assumes that there exists an underlying “feature” space, F D .V; F/, that
impacts the interactions among nodes in a network. This is a widely-used alternative
data model for information networks. In a d-dimensional feature space, F is an n�d
matrix, where fu;i 2 R

C [ f0g denotes u’s quality score with respect the ith feature.
Let fu denote the uth row of F, i.e., the feature vector of node u. The affinity weights
wu;v between two nodes u and v may then be determined by the correlation between
their features: wu;v � �

fTu � fv

� D Pd
iD1 fu;i � fv;i: The third assumes that there exists

an underlying statistical space (such as a stochastic block model, Markov process,
or (Gaussian) random field) that impacts the pairwise interactions. The higher the
dependency between two elements is, the higher their strength of tie is.

If one thinks that the meaning of weighted networks is complex, the real-world
network data is far more complex and diverse. We will have more discussions in
Sects. 2.3 and 4.
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2.2 Sparsity and Underlying Models

A basic challenge in network analysis is that real network data that we
observe is only a reflection of underlying network models. Thus, like machine
learning tasks which have to work with samples from an unknown underlying
distribution, network analysis tasks typically work with observed network data,
which is usually different from the underlying network model. As argued in
[11, 48, 56, 89], a real-world social and information network may be viewed
as an observed network, induced by a “complete-information” underlying
preference/affinity/statistical/geometric/feature/economical model. However, these
observed networks are typically sparse with many missing links.

For studying network phenomena, it is crucial to mathematically understand underlying
network models, while algorithmically work efficiently with sparse observed data. Thus,
developing systematic approaches to uncover or capture the underlying network model — or
the network essence — is a central and challenging mathematical task in network analysis.

Implicitly or explicitly, underlying network models are the ultimate guide for
understanding network phenomena, and for inferring missing network data, and
distinguishing missing links from absent links. To study basic network concepts,
we also need to simultaneously understand the observed and underlying networks.
Some network concepts, such as centrality, capture various aspects of “dimension
reduction” of network data. Others characterizations, such as clusterability and
community classification, are more naturally expressed in a space with dimension
higher than that of the observed networks.

Schematically, centrality assigns a numerical score or ranking to each node,
which measures the importance or significance of each node in a network [1, 13–
17, 22, 33, 36, 37, 41, 42, 51, 66, 71, 76, 80]. Mathematically, a numerical centrality
measure is a mapping from a network G D .V;E; W/ to a jVj-dimensional real
vector:

Œ centralityW.v/ �v2V 2 RjVj (4)

For example, a widely used centrality measure is the PageRank centrality.
Suppose G D .V;E; W/ is a weighted directed graph. The PageRank centrality
uses an additional parameter ˛ 2 .0; 1/—known as the restart constant—to define
a finite Markov process whose transition rule—for any node v 2 V—is the
following:

• with probability ˛, restart at a random node in V , and
• with probability .1 � ˛/, move to a neighbor of v, chosen randomly with

probability proportional to edge weights out of v.

Then, the PageRank centrality (with restart constant ˛) of any v 2 V is proportional
to v’s stationary probability in this Markov chain.

In contrast, clusterability assigns a numerical score or ranking to each subset
of nodes, which measures the coherence of each group in a network [62, 71, 89].
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Mathematically, a numerical clusterability measure is a mapping from a network
G D .V;E; W/ to a 2jVj-dimensional real vector:

Œ clusterabilityW.S/ �S�V 2 Œ0; 1�2
jVj

(5)

An example of clusterability measure is conductance [62].5 Similarly, a community-
characterization rule [19] is a mapping from a network G D .V;E; W/ to a 2jVj-
dimensional Boolean vector:

Œ CW.S/ �S�V 2 f0; 1g2jVj

(6)

indicating whether or not each group S � V is a community in G. Clusterability and
community-identification rules have much higher dimensionality than centrality. To
a certain degree, they can be viewed as a “complete-information” model of the
observed network. Thus again:

Explicitly or implicitly, the formulations of these network concepts are mathematical
processes of uncovering or capturing underlying network models.

2.3 Multifaceted Network Data: Beyond Graph-Based Network
Models

Another basic challenge in network analysis is that real-world network data is much
richer than the graph-theoretical representations. For example, social networks are
more than weighted graphs. Likewise, the Web and Twitter are not just directed
graphs. In general, network interactions and phenomena—such as social influence
[55] or electoral behavior [35]—are more complex than what can be captured by
nodes and edges. The network interactions are often the result of the interplay
between dynamic mathematical processes and static underlying graph structures
[25, 44].

2.3.1 Diverse Network Models

The richness of network data and diversity of network concepts encourage us to
consider network models beyond graphs [89]. For example, each clusterability
measure ŒclusterabilityW.S/�S�V of a weighted graph G D .V;E; W/ explicitly
defines a complete-information, weighted hyper-network:

5The conductance of a group S � V is the ratio of its external connection to its total connection
in G.
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Definition 2.1 (Cooperative Model: Weighted Hypergraphs) A weighted hyper-
graph over V is given by H D .V;E; �/ where E � 2V is a set of hyper-edges and
� W E ! R is a function that assigns weights to hyper-edges. H is a complete-
information cooperative networks if E D 2V .

We refer to weighted hypergraphs as cooperative networks because they are the
central subjects in classical cooperative game theory, but under a different name
[81]. An n-person cooperative game over V D Œn� is specified by a characteristic
function � W 2V ! R, where for any coalition S � V , �.S/ denotes the cooperative
utility of S.

Cooperative networks are generalization of undirected weighted graphs. One can
also generalize directed networks, which specify directed node-node interactions.
The first one below explicitly captures node-group interactions, while the second
one captures group-group interactions.

Definition 2.2 (Incentive Model) An incentive network over V is a pair U D
.V; u/. For each s 2 V , us W 2Vnfsg ! R specifies s’s incentive utility over subsets
of V n fsg. In other words, there are jSj utility values, fus.S n fsggs2S, associated
with each group S � V in the incentive network. For each s 2 S, the value of its
interaction with the rest of the group S n fsg is explicitly defined as us.S n fsg/.
Definition 2.3 (Powerset Model) A powerset network over V is a weighted
directed network on the powersets of V . In other words, a powerset network
P D .V; �/ is specified by a function � W 2V � 2V ! R.

For example—as pointed in [25, 55]—a social-influence instance fundamentally
defines a powerset network. Recall that a social-influence instance I is specified by a
directed graph G D .V;E/ and an influence model D [32, 55, 78], where G defines
the graph structure of the social network and D defines a stochastic process that
characterizes how nodes in each seed set S � V collectively influence other nodes
using the edge structures of G [55]. A popular influence model is independent
cascade (IC)6 [55].

Mathematically, the influence process D and the network structure G together
define a probability distribution PG;D W 2V � 2V ! Œ0; 1�: For each T 2 2V ,
PG;DŒS;T� specifies the probability that T is the final activated set when S cascades
its influence through the network G. Thus, PI D .V; PG;D/ defines a natural
powerset network, which can be viewed as the underlying network induced by the
interplay between the static network structure G and dynamic influence process D.

6In the classical IC model, each directed edge .u; v/ 2 E has an influence probability pu;v 2 Œ0; 1�.
The probability profile defines a discrete-time influence process when given a seed set S: At time 0,
nodes in S are activated while other nodes are inactive. At time t � 1, for any node u activated at
time t � 1, it has one chance to activate each of its inactive out-neighbor v with an independent
probability of pu;v . When there is no more activation, this stochastic process ends with a random
set of nodes activated during the process.
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An important quality measure of S in this process is S’s influence spread [55]. It
can be defined from the powerset model PI D .V; PG;D/ as following:

�G;D.S/ D
X

T�V

jTj � PG;DŒS;T�:

Thus, .V; �G;D/ also defines a natural cooperative network [25].
In many applications and studies, ordinal network models rather than cardinal

network models are used to capture the preferences among nodes. Two classical
applications of preference frameworks are voting [10] and stable marriage/coalition
formation [21, 43, 46, 79]. A modern use of preference models is the Border
Gateway Protocol (BGP) for network routing between autonomous Internet systems
[23, 77].

In a recent axiomatic study of community identification in social networks,
Borgs et al. [11, 19] considered the following abstract social/information network
framework. Below, for a non-empty finite set V , let L.V/ denote the set of all linear
orders on V .

Definition 2.4 (Preference Model) A preference network over V is a pair A D
.V; …/, where … D f�ugu2V 2 L.V/jVj is a preference profile in which �u specifies
u’s individual preference.

2.3.2 Understanding Network Facets and Network Concepts

Each network model enables us to focus on different facets of network data. For
example, the powerset model offers the most natural framework for capturing the
underlying interplay between influence processes and network structures. The coop-
erative model matches the explicit representation of clusterability, group utilities,
and influence spreads. While traditional graph-based network data often consists
solely of pairwise interactions, affinities, or associations, a community is formed
by a group of individuals. Thus, the basic question for community identification
is to understand “how do individual preferences (affinities/associations) result in
group preferences or community coherence?” [19] The preference model highlights
the fundamental aspect of community characterization. The preference model is
also natural for addressing the question of summarizing individual preferences
into one collective preference, which is fundamental in the formulation of network
centrality [89]. Thus, studying network models beyond graphs helps to broaden our
understanding of social/information networks.

Several these network models, as defined above, are highly theoretical models.
Their complete-information profiles have exponential dimensionality in jVj. To use
them as underlying models in network analysis, succinct representations should be
constructed to efficiently capture observed network data. For example, both the
conductance clusterability measure and the social-influence powerset network are
succinctly defined. Characterizing network concepts in these models and effectively
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applying them to understanding real network data are promising and fundamentally
challenging research directions in network science.

3 PageRank Completion

Network analysis is a task to capture the essence of the observed networks. For
example, graph embedding [61, 89] can be viewed as a process to identify the
geometric essence of networks. Similarly, network completion [48, 56, 63], graphon
estimation [4, 20], and community recovering in hidden stochastic block models [2]
can be viewed as processes to distill the statistical essence of networks. All these
approaches build constructive maps from observed sparse graphs to underlying
complete-information models. In this section, we study the following basic question:

Given an observed sparse affinity network G D .V;E; W/, can we construct a complete-
information affinity network that is consistent with G?

This question is simpler than but relevant to matrix and network completion
[48, 56], which aims to infer the missing data from sparse, observed network data.
Like matrix/network completion, this problem is mathematically an inverse prob-
lem. Conceptually, we need to formulate the meaning of “a complete-information
affinity network consistent with G.”

Our study is also partially motivated by the following question asked in [6, 11],
aiming to deriving personalized ranking information from graph-based network
data:

Given a sparse affinity network G D .V;E; W/, how should we construct a complete-
information preference model that best captures the underlying individual preferences from
network data given by G?

We will prove the following basic structural result7: Every connected, undirected,
weighted graph G D .V;E; W/ has an undirected and weighted graph G D
.V;E; W/, such that:

• Complete Information: E forms a complete graph with jVj self-loops.
• Degree and Stationary Preserving: W � 1 D W � 1. Thus, the random-walk

Markov chains on G and on G have the same stationary distribution.
• PageRank Conforming: The transition matrix MW of the random-walk Markov

chain on G is conformal to the PageRank of G, that is, MT
W

� 1 is proportional to
the PageRank centrality of G

• Spectral Approximation: G and G are spectrally similar.

7See Theorem 3.5 for the precise statement.
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In the last condition, the similarity betweenG andG is measured by the following
notion of spectral similarity [85]:

Definition 3.1 (Spectral Similarity of Networks) Suppose G D .V;E; W/ and
G D .V;E; W/ are two weighted undirected graphs over the same set V of n nodes.
Let LW D DW � W and LW D DW � W be the Laplacian matrices, respectively, of
these two graphs. Then, for � � 1, we say G and G are �-spectrally similar if:

8x 2 R
n;

1

�
� xTLWx � xTLWx � � � xTLWx (7)

Many graph-theoretical measures, such as flows, cuts, conductances, effective
resistances, are approximately preserved by spectral similarity [12, 85]. We refer to
G D .V;E; W/ as the PageRank essence or PageRank completion ofG D .V;E; W/.

3.1 The Personalized PageRank Matrix

G D .V;E; W/ stated above is derived from a well-known structure in network
analysis, the personalized PageRank matrix of a network [8, 89].

3.1.1 Personalized PageRanks

Generalizing the Markov process of PageRank, Haveliwala [49] introduced person-
alized PageRanks. Suppose G D .V;E; W/ is a weighted directed graph and ˛ > 0

is a restart parameter. For any distribution s over V , consider the following Markov
process, whose transition rule—for any v 2 V—is the following:

• with probability ˛, restart at a random node in V according to distribution s, and
• with probability .1 � ˛/, move to a neighbor of v, chosen randomly with

probability proportional to edge weights out of v.

Then, the PageRank with respect to the starting vector s, denoted by ps, is the
stationary distribution of this Markov chain.

Let doutu D P
v2V wu;v denotes the out-degree of u 2 V in G. Then, ps is the

solution to the following equation:

ps D ˛ � s C .1 � ˛/ � WT � �Dout
W

��1 � ps (8)

where Dout
W D diag.Œdout1 ; : : : ; doutn �/ is the diagonal matrix of out degrees. Let 1u

denote the n-dimensional vector whose uth location is 1 and all other entries in 1u

are zeros. Haveliwala [49] referred to pu WD p1u as the personalized PageRank of
u 2 V in G. Personalized PageRank is asymmetric, and hence to emphasize this
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fact, we express pu as:

pu D . pu!1; : : : ; pu!n/
T :

Then fpugu2V—the personalized PageRank profile—defines the following matrix:

Definition 3.2 (Personalized PageRank Matrix) The personalized PageRank
matrix of an n-node weighted graph G D .V;E; W/ and restart constant ˛ > 0 is:

PPRW;˛ D Œp1; : : : ; pn�
T D

2

6
4

p1!1 � � � p1!n
::: � � � :::

pn!1 � � � pn!n

3

7
5 (9)

In this article, we normalize the PageRank centrality so that the sum of the
centrality values over all nodes is equal to n. Let 1 denote the n-dimensional vector
of all 1s. Then, the PageRank centrality of G is the solution to the following Markov
random-walk equation [49, 72]:

PageRankW;˛ D ˛ � 1 C .1 � ˛/ � WT
�
Dout

W

��1
PageRankW;˛ (10)

Because 1 D P
u 1u, we have:

Proposition 3.3 (PageRank Conforming) For any G D .V;E; W/ and ˛ > 0:

PageRankW;˛ D
X

u2V
pu D PPRT

W;˛ � 1 (11)

Because Markov processes preserve the probability mass of the starting vector,
we also have:

Proposition 3.4 (Markovian Conforming) For any G D .V;E; W/ and ˛ > 0,
PPRW;˛ is non-negative and:

PPRW;˛ � 1 D 1 (12)

In summary, the PageRank matrix PPRW;˛ is a special matrix associated with
network G—its row sum is the vector of all 1s and its column sum is the PageRank
centrality of G.

3.2 PageRank Completion of Symmetric Networks

PageRank centrality and personalized PageRank matrix apply to both directed and
undirected weighted graphs. Both Propositions 3.3 and 3.4 also hold generally. In
this subsection, we will focus mainly on undirected weighted networks. In such a
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case, let DW be the diagonal matrix associated with weighted degrees dW D W � 1
and let MW D D�1

W W be the standard random-walk transition matrix on G.
To state the theorem below, let’s first review a basic concept of Markov chain.

Recall that a Markov chain over V is defined by an n � n transition matrix M
satisfying the stochastic condition: M is non-negative and M � 1 D 1: A probability
vector � is the stationary distribution of this Markov process if:

MT� D � (13)

It is well known that every irreducible and ergodic Markov chain has a stationary
distribution. Markov chain M is detailed-balanced if:

�Œu�MŒu; v� D �Œv�MŒv; u�; 8 u; v 2 V (14)

We will now prove the following structural result:

Theorem 3.5 (PageRank Completion) For any weighted directed graph G D
.V;E; W/ and restart constant ˛ > 0:

A: PPRW;˛ and
�
Dout

W

��1 �W have the same eigenvectors. Thus, bothMarkov chains
have the same stationary distribution.

B: PPRW;˛ is detailed-balanced if and only if W is symmetric.

Furthermore, when W is symmetric, let G˛ D .V;E˛; W˛/ be the affinity network
such that:

W˛ D DW � PPRW;˛ and E D f.u; v/ W W˛Œu; v� > 0g (15)

Then, G˛ satisfies the following conditions:

1. Symmetry Preserving: WT D W, i.e., G˛ is an undirected affinity network.
2. Complete Information: If G is connected, then E˛ is a complete graph with jVj

self-loops.
3. Degree and Stationary Preserving: W � 1 D W � 1. Thus, DW D DW and the

random-walkMarkov chains MW andMW have the same stationary distribution.
4. Markovian and PageRank Conforming:

MW � 1 D 1 and MT
W

� 1 D PageRankW;˛ (16)

5. Simultaneously Diagonalizable: For any symmetric W, recall LW D DW � W

denotes the Laplacian matrix associated with W. Let LW D D
� 1

2

W LWD
1
2

W D
I � D

� 1
2

W WD
� 1

2

W be the normalized Laplacian matrix associated with W. Then,
LW and LW are simultaneously diagonalizable.
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6. Spectral Densification and Approximation: For all x 2 R
n:

˛ � LW � xT

�
1

1 � ˛
� LW

�
x � 1

˛
LW (17)

˛ � LW � xT

�
1

1 � ˛
� LW

�
x � 1

˛
LW (18)

In other words, G and 1
1�˛

� G˛ are 1
˛
-spectrally similar.

Remarks We rescale LW and LW by 1
1�˛

because G˛ has self-loops of magnitude
˛DW. In other words, G˛ only uses .1 � ˛/ fraction of its weighted degrees for
connecting different nodes in V .

Proof Let n D jVj. For any initial distribution s over V , we can explicitly express
ps as:

ps D ˛

1X

kD0

.1 � ˛/k �
�

WT � �Dout
W

��1
�k � s (19)

Consequently: we can express PPRW;˛ as:

PPRW;˛ D ˛

1X

kD0

.1 � ˛/k �
��

Dout
W

��1 � W
�k

(20)

Note that ˛
P1

kD0.1 � ˛/k D 1. Thus, PPRW;˛ is a convex combination of (multi-

step) random-walk matrices defined by
�
Dout

W

��1 � W. Statement A follows directly

from the fact that
��

Dout
W

��1 � W
�k

is a stochastic matrix for any integer k � 0.

The following fact is well known (Aldous and Fill, recompiled 2014, Reversible
Markov chains and random walks on graphs, Unfinished monograph. Available at
http://www.stat.berkeley.edu~aldous/RWG/book.html):

Suppose M is a Markov chain with stationary distribution � . Let … be the diagonal matrix
defined by � . Then, MT… is symmetric if and only if the Markov process defined by M is
detailed balanced.

We now assume W D WT . Then, Eq. (20) becomes:

PPRW;˛ D ˛

1X

kD0

.1 � ˛/k � �D�1
W � W

�k
(21)

The stationary distribution of D�1
W W—and hence of PPRW;˛—is proportional to

d D W � 1. PPRW;˛ is detailed balanced because W D DW � PPRW;˛ is

a symmetric matrix. Because
��

Dout
W

��1 � W
�k

(for all positive integers) have a

http://www.stat.berkeley.edu~aldous/RWG/book.html
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common stationary distribution, PPRW;˛ is not detailed balanced when W is not
symmetric. It is also well known—by Eq. (19)—that for all u; v 2 V , PPRW;˛Œu; v�

is equal to the probability that a run of random walk starting at u passes by v

immediately before it restarts. Thus, when G is connected, PPRW;˛Œu; v� > 0 for all
u; v 2 V . Thus, nnz.W˛/ D n2, and E˛ , the nonzero pattern of W˛ , is a complete
graph with jVj self-loops. We have now established Condition B and Conditions
1–4.

We now prove Conditions 5 and 6.8 Recall that when W D WT , we can express
the personalized PageRank matrix as:

PPRW;˛ D ˛

1X

kD0

.1 � ˛/k � �D�1
W � W

�k
:

Thus:

W˛ D DW � PPRW;˛ D
 

˛

1X

kD0

.1 � ˛/k � DW � �D�1
W W

�k
!

:

We compare the Laplacian matrices associated with W and W:

LW D DW � W D D1=2
W

�
I � D�1=2

W WD�1=2
W

�
D1=2

W D D1=2
W LWD1=2

W :

LW D DW � W D D1=2

W LWD1=2

W

where

LW D I � ˛

1X

kD0

.1 � ˛/k � .D�1=2

W WD�1=2

W /k:

Let �1 � �2 � : : : � �n be the n eigenvalues of D�1=2
W WD�1=2

W . Let u1; : : : ; un

denote the unit-length eigenvectors of D�1=2

W WD�1=2

W associated with eigenvalues
�1; � � � ; �n, respectively. We have j�ij � 1. Let ƒ be the diagonal matrix associated
with .�1; : : : ; �n/ and U D Œu1; : : : ; un�. By the spectral theorem—i.e., the
eigenvalue decomposition for symmetric matrices—we have:

UTD�1=2

W WD�1=2

W U D ƒ (22)

UUT D UTU D I (23)

8Thanks to Dehua Cheng of USC for assisting this proof.
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Therefore:

LW D D1=2

W UUT
�

I � D�1=2

W WD�1=2

W

�
UUTD1=2

W

D D1=2

W U
�

I � UTD�1=2

W WD�1=2

W U
�

UTD1=2

W

D D1=2

W U .I � ƒ/ UTD1=2

W :

Similarly:

LW˛
D DW � W˛ D D1=2

W LWD1=2

W

D D1=2

W

 

I � ˛

1X

kD0

.1 � ˛/k � .D�1=2

W WD�1=2

W /k

!

D1=2

W

D D1=2

W U

 

I � ˛

1X

kD0

.1 � ˛/k � UT.D�1=2

W WD�1=2

W /kU

!

UTD1=2

W

D D1=2

W U

 

I � ˛

1X

kD0

.1 � ˛/k � ƒk

!

UTD1=2

W

D D1=2

W U
�

I � ˛

I � .1 � ˛/ƒ

�
UTD1=2

W :

The derivation above has proved Condition (5). To prove Condition (6), consider an
arbitrary x 2 R

n n f0g. With y D UTD1=2

W x, we have:

xT 1
1�˛

LWx

xTLWx
D 1

1 � ˛
�

xTD1=2

W U
�

I � ˛
I�.1�˛/ƒ

�
UTD1=2

W x

xTD1=2

W U .I � ƒ/ UTD1=2

W x

D 1

1 � ˛
�

yT
�

I � ˛
I�.1�˛/ƒ

�
y

yT .I � ƒ/ y

This ratio is in the interval of:
"

inf
�Wj�j�1

1

1 � .1 � ˛/�
; sup

�Wj�j�1

1

1 � .1 � ˛/�

#

D
�

1

2 � ˛
;

1

˛

	
:

ut
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3.3 PageRank Completion, Community Identification,
and Clustering

PageRank completion has an immediate application to the community-identification
approaches developed in [11, 19]. This family of methods first constructs a prefer-
ence network from an input weighted graph G D .V;E; W/. It then applies various
social-choice aggregation functions [10] to define network communities [11, 19].
In fact, Balcan et al. [11] show that the PageRank completion of G provides a
wonderful scheme (see also in Definition 4.10) for constructing preference networks
from affinity networks.

In addition to its classical connection with PageRank centrality, PageRank
completion also has a direct connection with network clustering. To illustrate
this connection, let’s recall a well-known approach in spectral graph theory for
clustering [9, 24, 62, 84, 86]:

Algorithm: Sweep.G; v/

Require: G D .V;E; W) and v 2 R
jVj

1: Let ı be an ordering of V according to v, i.e., 8k 2 Œn � 1�, vŒ�.k/� � vŒ�.k C 1/�

2: Let Sk D f�.1/; : : : ; �.k/g
3: Let k� D argmink conductanceW.Sk/.
4: Return Sk�

Both in theory and in practice, the most popular vectors used in Sweep are:

• Fiedler vector: the eigenvector associated with the second smallest eigenvalue
of the Laplacian matrix LW [39, 40, 84].

• Cheeger vector: D�1=2

W v2, where v2 is the eigenvector associated with the second
smallest eigenvalue of the normalized Laplacian matrix LW [24, 28].

The sweep-based clustering method and Fiedler/Cheeger vectors are the main
subject of following beautiful theorem [24] in spectral graph theory:

Theorem 3.6 (Cheeger’s Inequality) For any symmetric weighted graph G D
.V;E; W/, let �2 be the second smallest eigenvalue of the normalized Lapla-
cian matrix LW of G. Let v2 be the eigenvector associated with �2 and S D
Sweep.G; D�1=2

W v2/. Then:

�2

2
� conductanceW.S/ �

p
2�2 (24)

By Theorem 3.5, the normalized Laplacian matrices of G and its PageRank com-
pletion are simultaneously diagonalizable. Thus, we can also use the eigenvector
of the PageRank completion of G to identify a cluster of G whose conductance is
guaranteed by the Cheeger’s inequality.
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Then, how is the PageRank completion necessarily a better representation of the information
contained in the original network?
For example, with respect to network clustering, what desirable properties does the
PageRank completion have that the original graph doesn’t?

While we are still looking for a comprehensive answer to these questions, we
will now use the elegant result of Andersen, Chung, and Lang [9] to illustrate that
the PageRank completion indeed contains more direct information about network
clustering than the original data W. Andersen et al. proved that if one applies sweep
to vectors fD�1

W � pvgv2V , then one can obtain a cluster whose conductance is nearly
as small as that guaranteed by Cheeger’s inequality. Such a statement does not hold
for the rows in the original network data W, particularly when W is sparse.

In fact, the result of Andersen, Chung, and Lang [9] is much stronger. They
showed that for any cluster S 	 V , if one selects a random node v 2 S
with probability proportional to the weighted degree dv of the node, then, with
probability at least 1=2, one can identify a cluster S0 of conductance at most
O.
p

conductanceW.S/ log n/ by applying sweep to vector D�1
W � pv . In other words,

the row vectors in the PageRank completion—i.e., the personalized PageRank
vectors that represent the individual data associated with nodes—have rich and
direct information about network clustering (measured by conductance). This is a
property that the original network data simply doesn’t have, as one is usually not
able to identify good clusters directly from the individual rows of W.

In summary, Cheeger’s inequality and its algorithmic proof can be viewed
as the mathematical foundation for global spectral partitioning, because the
Fiedler/Cheeger vectors are formulated from the network data as a whole. From
this global perspective, both the original network and its PageRank completion
are equally effective. In contrast, from the local perspective of individual-row
data, Andersen, Chung, and Lang’s result highlights the effectiveness of the
PageRank completion to local clustering [86]: The row data associated with nodes
in the PageRank completion provides effective information for identifying good
clusters. Similarly, from the corresponding column in the PageRank completion,
one can also directly and “locally” obtains each node’s PageRank centrality. In
other words, PageRank completion transforms the input network data W into a
“complete-information” network model W, and in the process, it distilled the
centrality/clusterability information implicitly embedded globally in W into an
ensemble of nodes’ “individual” network data that explicitly encodes the centrality
information and locally capturing the clustering structures.

4 Connecting Multifaceted Network Data

The formulations highlighted in Sect. 2.3, such as the cooperative, incentive,
powerset, and preference models, are just a few examples of network models beyond
the traditional graph-based framework. Other extensions include the popular prob-
abilistic graphical model [58] and game-theoretical graphical model [26, 31, 52].
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These models use relatively homogeneous node and edge types, but nevertheless
represent a great source of expressions for multifaceted and multimodal network
data.

While diverse network models enable us to express multifaceted network data,
we need mathematical and algorithmic tools to connect them. For some applications
such as community identification, one may need to properly use some data facets
as metadata to evaluate or cross validate the network solution(s) identified from the
main network facets [74].

But more broadly, for many real-world network analysis tasks, we need a systematic
approach to network composition whose task is to integrate the multifaceted data into
a single effective network worldview. Towards this goal, a basic theoretical step in
multifaceted network analysis is to establish a unified worldview for capturing multifaceted
network data expressed in various models.

Although fundamental, formulating a unified worldview of network models is
still largely an outstanding research problem. In this section, we sketch our prelimi-
nary studies in using Markov chains to build a “common platform” for the network
models discussed in Sect. 2.3. We hope this study will inspire a general theory
for data integration, network composition, and multifaceted network analysis. We
also hope that it will help to strengthen the connection between various fields,
as diverse as statistical modeling, geometric embedding, social influence, network
dynamics, game theory, and social choice theory, as well as various application
domains (protein-protein interaction, viral marketing, information propagation,
electoral behavior, homeland security, healthcare, etc.), that have provided different
but valuable techniques and motivations to network analysis.

4.1 Centrality-Conforming Stochastic Matrices of Various
Network Models

Markov chain—a basic statistical model—is also a fundamental network concept.
For a weighted network G D .V;E; W/, the standard random-walk transition�
Dout

W

��1 � W is the most widely-used stochastic matrix associated with G. Impor-
tantly, Sect. 3 illustrates that other Markov chains—such as PageRank Markov
chain PPRW;˛—are also natural with respect to network data W. Traditionally, a
Markov chain is characterized by its stochastic condition, stationary distribution,
mixing time, and detailed-balancedness. Theorem 3.5 highlights another important
feature of Markov chains in the context of network analysis: The PageRank Markov
chain is conforming with respect to PageRank centrality, that is, for any network
G D .V;E; W/ and ˛ > 0, we have:

PPRT
W;˛ � 1 D PageRankW;˛:
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How should we derive stochastic matrices from other network models? Can we construct
Markov chains that are centrality-confirming with respect to natural centrality measures of
these network models?

In this section, we will examine some centrality-confirming Markov chains
that can be derived from network data given by preference/incentive/cooperative/
powerset models.

4.1.1 The Preference Model

For the preference model, there is a family of natural Markov chains, based on
weighted aggregations in social-choice theory [10]. For a fixed n, let w 2 .RC [
f0g/n be a non-negative and monotonically non-increasing vector. For the discussion
below, we will assume that w is normalized such that

Pn
iD1 wŒi� D 1. For example,

while the famous Borda count [93] uses w D Œn; n � 1; : : : ; 1�T , the normalized
Borda count uses w D Œn; n � 1; : : : ; 1�T=

�n
2

�
.

Proposition 4.1 (Weighted Preference Markov Chain) Suppose A D .V; …/ is
a preference network over V D Œn� and w is non-negative and monotonically non-
increasing weight vector, with jjwjj1 D 1. Let MA;w be the matrix in which for each
u 2 V, the uth row of MA;w is:

�u ı w D ŒwŒ�u.1/�; : : : ; w.�u.n//�:

Then, MA;w defines a Markov chain, i.e., MA;w1 D 1.

Proof MA;w is a stochastic matrix because each row of MA;w is a permutation of w,
and permutations preserve the L1-norm of the vector. ut

Social-choice aggregation based on w also defines the following natural central-
ity measure, which can be viewed as the collective ranking over V based on the
preference profiles of A D .V; …/:

centrality…;wŒv� D
X

u2V
wŒ�u.v/� (25)

Like PageRank Markov chains, weighted preference Markov chains also enjoy
the centrality-conforming property:

Proposition 4.2 For any preference network A D .V; …/, in which … 2 L.V/jVj:

MT
A;w � 1 D centrality…;w (26)
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4.1.2 The Incentive Model

We now focus on a special family of incentive networks: We assume for U D .V; u/

and s 2 V:

1. us is monotonically non-decreasing, i.e., for all T1 	 T2, us.T1/ � us.T2/.
2. us is normalized, i.e., us.V n fsg/ D 1.

Each incentive network defines a natural cooperative network, HU D
.V; �SocialUtility/: For any S � V , let the social utility of S be:

�SocialUtility.S/ D
X

s2S
us.S n fsg/ (27)

The Shapley value [81]—a classical game-theoretical concept—provides a
natural centrality measure for cooperative networks.

Definition 4.3 (Shapley Value) Suppose � is the characteristic function of a
cooperative game over V D Œn�. Recall that L.V/ denotes the set of all permutations
of V . Let S�;v denotes the set of players preceding v in a permutation � 2 L.V/.
Then, the Shapley value �Shapley

� Œv� of a player v 2 V is:

�Shapley
� Œv� D E��L.V/ Œ�ŒS�;v [ fvg� � �ŒS�;v�� (28)

The Shapley value �Shapley
� Œv� of player v 2 V is the expected marginal

contribution of v over the set preceding v in a random permutation of the players.
The Shapley value has many attractive properties, and is widely considered to be the
fairest measure of a player’s power index in a cooperative game.

We can use Shapley values to define both the stochastic matrix and the centrality
of incentive networks U. Let centralityU be the Shapley value of the cooperative
game defined by �SocialUtility. Note that the incentive network U also defines jVj
natural individual cooperative networks: For each s 2 V and T 	 V , let:

�s.T/ D


us.T n fsg/ if s 2 T
0 if s 62 T

(29)

Proposition 4.4 (The Markov Chain of Monotonic Incentive Model) Suppose
U D .V; u/ is an incentive network over V D Œn�, such that 8s 2 V, us is
monotonically non-decreasing and us.V n fsg/ D 1. Let MU be the matrix in
which for each s 2 V, the sth row of MU is the Shapley value of the cooperative
game with characteristic function �s. Then, MU defines a Markov chain and is
centrality-conforming with respect to centralityU, i.e., (1) MU1 D 1 and (2)
MT

U1 D centralityU.



788 S.-H. Teng

Proof This proposition is the direct consequence of two basic properties of Shap-
ley’s beautiful characterization [81]:

1. The Shapley value is efficient:
P

v2V �� Œv� D �.V/.
2. The Shapley value is Linear: For any two characteristic functions � and !,

��C! D �� C �!.

By the assumption us is monotonically non-decreasing, we can show that every entry
of the Shapley value (as given by Eq. (28)) is non-negative. Then, it follows from
the efficiency of Shapley values and the assumption that 8s 2 V; us.V n fsg/ D 1,
that MU is a stochastic matrix, and hence it defines a Markov chain. Furthermore,
we have:

�SocialUtility D
X

s2V
�s (30)

Because centralityU is the Shapley value of the cooperative game with characteristic
function �SocialUtility, the linearity of the Shapley value then implies MT

U1 D
centralityU , i.e., MU is centrality-conforming with respect to centralityU. ut

4.1.3 The Influence Model

Centrality-conforming Markov chain can also be naturally constructed for a family
of powerset networks. Recall from Sect. 2.3 that an influence process D and social
network G D .V;E/ together define a powerset network, PG;D W 2V � 2V !
Œ0; 1�, where for each T 2 2V , PG;DŒS;T� specifies the probability that T is the
final activated set when S cascades its influence through G. As observed in [25],
the influence model also defines a natural cooperative game, whose characteristic
function is the influence spread function:

�G;D.S/ D
X

T�V

jTj � PG;DŒS;T�; 8S � V:

Chen and Teng [25] proposed to use the Shapley value of this social-influence game
as a centrality measure of the powerset network defined by PG;D . They showed
that this social-influence centrality measure, to be denoted by centralityG;D , can
be uniquely characterized by a set of five natrual axioms [25]. Motivated by the
PageRank Markov chain, they also constructed the following centrality-conforming
Markov chain for social-influence models.

Proposition 4.5 (Social-Influence Markov Chain) Suppose G D .V;E/ is a
social network andD is a social-influence process. Let MG;D be the matrix in which
for each v 2 V, the vth row of MG;D is given by the Shapley value of the cooperative
game with the following characteristic function:

�G;D;v.S/ D
X

T�V

Œv 2 T� � PG;DŒS;T� (31)
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where Œv 2 T� is the indicator function for event (v 2 T). Then, MG;D defines a
Markov chain and is centrality-conforming with respect to centralityG;D , i.e., (1)
MG;D1 D 1 and (2) MT

G;D1 D centralityG;D .

Proof For all v 2 V , the characteristic function �G;D;v satisfies the following two
conditions:

1. �G;D;v is monotonically non-decreasing.
2. �G;D;v.V/ D 1.

The rest of the proof is essentially the same as the proof of Proposition 4.4. ut

4.2 Networks Associated with Markov Chains

The common feature in the Markovian formulations of Sect. 4.1 suggests the
possibility of a general theory that various network models beyond graphs can be
succinctly analyzed through the worldview of Markov chains. Such analyses are
forms of dimension reduction of network data—the Markov chains derived, such as
from social-influence instances, usually have lower dimensionality than the original
network models. In dimension reduction of data, inevitably some information is
lost. Thus, which Markov chain is formulated from a particular network model may
largely depend on through which mathematical lens we are looking at the network
data. The Markovian formulations of Sect. 4.1 are largely based on centrality
formulations. Developing a more general Markovian formulation theory of various
network models remains the subject of future research.

But once we can reduce the network models specifying various aspects of
network data to a collection of Markov chains representing the corresponding
network facets, we effectively reduce multifaceted network analysis to a potentially
simpler task—the analysis of multilayer networks [57, 60]. Thus, we can apply
various emerging techniques for multilayer network analysis [47, 73, 94] and
network composition [60]. We can further use standard techniques to convert the
Markov chains into weighted graphs to examine these network models through the
popular graph-theoretical worldview.

4.2.1 Random-Walk Connection

Because of the following characterization, the random-walk is traditionally the most
commonly-used connection between Markov chains and weighted networks.

Proposition 4.6 (Markov Chains and Networks: Random-Walk Connection)
For any directed network G D .V;E; W/ in which every node has at least one
out-neighbor, there is a unique transition matrix:

MW D �
Dout

W

��1
W
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that captures the (unbiased) random-walkMarkov process on G. Conversely, given a
transition matrix M, there is an infinite family of weighted networks whose random-
walk Markov chains are consistent with M. This family is given by:

f� M W � is a positive diagonal matrixg:

The most commonly-used diagonal scaling is ˘ , the diagonal matrix of the
stationary distribution. This scaling is partially justified by the fact that ˘ M is an
undirected network if and only if M is a detailed-balanced Markov chain. In fact in
such a case, � M is symmetric if and only if there exists c > 0, � D c � ˘ . Let’s
call ˘ M the canonical Markovian network of transition matrix M. For a general
Markov chain, we have:

1˘ M D �T and ˘ M1 D � (32)

Thus, although canonical Markovian networks are usually directed, their nodes
always have the same in-degree and out-degree. Such graphs are also known as
the weighted Eulerian graphs.

4.2.2 PageRank Connection

Recall that Theorem 3.5 features the derivation of PageRank-conforming Markov
chains from weighted networks. In fact, Theorem 3.5 and its PageRank power series
can be naturally extended to any transition matrix M: For any finite irreducible and
ergodic Markov chain M and restart constant ˛ > 0, the matrix ˛

P1
kD0.1 � ˛/k �

Mk is a stochastic matrix that preserves the detailed-balancedness, the stationary
distribution, and the spectra of M.

Let’s call ˛
P1

kD0.1 � ˛/k � ˘ Mk the canonical PageRank-Markovian network
of transition matrix M.

Proposition 4.7 For any Markov chain M, the random-walk Markov chain of the
canonical PageRank-Markovian network ˛

P1
kD0.1�˛/k �˘ Mk is conforming with

respect to the PageRank of the canonical Markovian network ˘ M.

4.2.3 Symmetrization

Algorithmically, computational/optimization problems on directed graphs are usu-
ally harder than they are on undirected graphs. For example, many recent break-
throughs in scalable graph-algorithm design are for limited to undirected graphs
[9, 27, 53, 54, 59, 75, 83, 85–87]. To express Markov chains as undirect networks, we
can apply the following well-known Markavian symmetrization formulation. Recall
a matrix L is a Laplacian matrix if (1) L is a symmetric matrix with non-positive
off-diagonal entries, and (2) L � 1 D 0.
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Proposition 4.8 (Canonical Markovian Symmetrization) For any irreducible
and ergodic finite Markov chain M:

˘ � ˘ M C MT˘

2
(33)

is a Laplacian matrix, where ˘ the diagonal matrix associated with M’s stationary
distribution. Therefore, ˘ MCMT˘

2
is a symmetric network, whose degrees are

normalized to stationary distribution � D ˘ � 1. When M is detailed balanced,
˘ MCMT˘

2
is the canonical Markovian network of M.

Proof We include a proof here for completeness. Let � be the stationary distribution
of M. Then:

MT� D �

˘ � 1 D �

M � 1 D 1

Therefore:

�
˘ � ˘ M C MT˘

2

�
� 1 D

�
� � ˘ 1 C MT�

2

�
D 0 (34)

The Lemma then follows from the fact that 1
2
.˘ M C MT˘ / is symmetric and non-

negative. ut
Through the PageRank connection, Markov chains also have two extended

Markovian symmetrizations:

Proposition 4.9 (PageRank Markovian Symmetrization) For any irreducible
and ergodic finite Markov chain M and restart constant ˛ > 0, the two matrices
below:

˘ � ˛

1X

kD0

.1 � ˛/k � ˘ Mk C .MT/k˘

2
(35)

˘ � ˛

1X

kD0

.1 � ˛/k˘ �
�

˘ �1 � ˘ M C MT˘

2

�k

(36)

are both Laplacian matrices. Moreover, the second Laplacian matrix is 1
˛
-spectrally

similar to .1 � ˛/ �
�
˘ � ˘ MCMT˘

2

�
.
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4.2.4 Network Interpretations

We now return to Balcan et al.’s approach [11] for deriving preference networks
from affinity networks. Consider the following natural extension of linear orders to
express rankings with ties: An ordered partition of V is a total order of a partition
of V . Let L.V/ denote the set of all ordered partitions of V: For a � 2 L.V/, for
i; j 2 V , we i is ranked strictly ahead of j if i and j belong to different partitions,
and the partition containing i is ahead of the partition containing j in � . If i and j are
members of the same partition in � , we say � is indifferent of i and j.

Definition 4.10 (PageRank Preferences) Suppose G D .V;E; W/ is a weighted
graph and ˛ > 0 is a restart constant. For each u 2 V , let �u be the ordered partition
according to the descending ranking of V based on the personalized PageRank
vector pu D PPRW;˛Œu; W�. We call …W;˛ D f�ugu2V the PageRank preference
profile of V with respect to G, and AW;˛ D .V; …W;˛/ the PageRank preference
network of G.

As pointed out in [11], other methods for deriving preference networks from
weighted networks exist. For example, one can obtain individual preference rank-
ings by ordering nodes according to shortest path distances, effective resistances, or
maximum-flow/minimum-cut values.

Is the PageRank preference a desirable personalized-preference profile of an affinity
network?

This is a basic question in network analysis. In fact, much work has been done.
I will refer readers to the beautiful axiomatic approach of Altman and Tennenholtz
for characterizing personalized ranking systems [6]. Although they mostly studied
unweighted networks, many of their results can be extended to weighted networks.
Below, I will use Theorem 3.5 to address the following question that I was asked
when first giving a talk about PageRank preferences.

By taking the ranking information from PageRank matrices — which is usually asymmetric
— one may lose valuable network information. For example, when G D .V;E; W/ is a
undirected network, isn’t it desirable to define ranking information according to a symmetric
matrix?

At the time, I was not prepared to answer this question and replied that it was
an excellent point. Theorem 3.5 now provides an answer. Markov chain theory
uses an elegant concept to characterize whether or not a Markov chain M has
an undirected network realization. Although Markov-chain transition matrices are
usually asymmetric, if a Markov chain is detailed-balanced, then its transition matrix
M can be diagonally scaled into a symmetric matrix by its stationary distribution.
Moreover, ˘ M is the “unique” underlying undirected network associated with M.
By Theorem 3.5, PPRW;˛ is a Markov transition matrix with stationary distribution
DW, and thus, W˛ D DW � PPRW;˛ is symmetric if and only if W is symmetric.
Therefore, because the ranking given by pu is the same as the ranking given by
WŒu; W�, the PageRank preference profile is indeed derived from a symmetric matrix
when W is symmetric.
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We can also define clusterability and other network models based on personalized
PageRank matrices. For example:

• PageRank conductance:

PageRank-conductanceW.S/ WD
P

u2S;v 62S WŒu; v�

min
�P

u2S;v2V WŒu; v�;
P

u62S;v2V WŒu; v�
�

(37)

• PageRank utility:

PageRank-utilityW.S/ WD
X

u2S;v2S
PPRW;˛Œu; v� (38)

• PageRank clusterability:

PageRank-clusterabilityW.S/ WD PageRank-utilityW.S/

jSj (39)

Each of these functions defines a cooperative network based on G D .V;E; W/.
These formulations are connected with the PageRank of G. For example, the
Shapley value of the cooperative network given by � D PageRank-utilityW is the
PageRank of G.

PPRW;˛ can also be used to define incentive and powerset network models. The
former can be defined by us.T/ D P

v2T PPRW;˛Œs; v�, for s 2 V;T 	 V and s 62 T.

The latter can be defined by �W.S;T/ D
P

u2S;v2T PPRW;˛ Œu;v�

jSj for S;T � V . �W.S;T/

measures the rate of PageRank contribution from S to T.

4.3 Multifaceted Approaches to Network Analysis: Some Basic
Questions

We will now conclude this section with a few basic questions, aiming to study how
structural concepts in one network model can inspire structural concepts in other
network models. A broad view of network data will enable us to comprehensively
examine different facets of network data, as each network model brings out different
aspects of network data. For examples, the metric model is based on geometry,
the preference model is inspired by social-choice theory [10], the incentive and
cooperative models are based on game-theoretical and economical principles
[69, 70, 82], the powerset model is motivated by social influences [32, 55, 78], while
the graphon [18] is based on graph limits and statistical modeling. We hope that
addressing questions below will help us to gain comprehensive and comparative
understanding of these models and the network structures/aspects that these models



794 S.-H. Teng

may reveal. We believe that multifaceted and multimodal approaches to network
analysis will become increasingly more essential for studying major subjects in
network science.

• How should we formulate personalized centrality measures with respect to other
commonly-used network centrality measures [1, 13–17, 33, 36, 37, 41, 42, 51,
66, 71, 76, 80]? Can they be used to define meaningful centrality-conforming
Markov chains?

• How should we define centrality measures and personalized ranking systems
for general incentive or powerset networks? How should we define personalized
Shapley value for cooperative games? How should we define weighted networks
from cooperative/incentive/powerset models?

• What are natural Markov chains associated with the probabilistic graphical mod-
els [58]? How should we define centrality and clusterability for this important
class of network models that are central to statistical machine learning?

• What constitutes a community in a probabilistic graphical model? What consti-
tutes a community in a cooperative, incentive, preference, and powerset network?
How should we capture network similarity in these models? How should we
integrate them if they represents different facets of network data?

• How should we evaluate different clusterability measures and their usefulness to
community identification or clustering? For example, PageRank conductance and
PageRank clusterability are two different subset functions, but the latter applies
to directed networks. How should we define clusterability-conforming centrality
or centrality-forming clusterability?

• What are limitations of Markovian worldview of various network models? What
are other unified worldview models for multifaceted network data?

• What is the fundamental difference between “directed” and “undirected” net-
works in various models?

• How should we model networks with non-homogeneous nodes and edge types?

More broadly, the objective is to build a systematic algorithmic framework
for understanding multifaceted network data, particular given that many natural
network models are highly theoretical in that their complete-information profiles
have exponential dimensionality in jVj. In practice, they must be succinctly defined.
The algorithmic network framework consists of the complex and challenging
tasks of integrating sparse and succinctly-represented multifaceted network data
N D .V;F1; : : : ;Fk/ into an effective worldview .V;W/ based on which, one
can effectively build succinctly-represented underlying models for network facets,
analyzing the interplay between network facets, and identify network solutions that
are consistent with the comprehensive network data/models. What is a general
model for specifying multifaceted network data? How should we formulate the
problem of network composition for multifaceted network data?
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5 To Jirka

The sparsity, richness, and ubiquitousness of multifaceted networks data make them
wonderful subjects for mathematical and algorithmic studies. Network science has
truly become a “universal discipline,” with its multidisciplinary roots and interdis-
ciplinary presence. However, it is a fundamental and conceptually challenging task
to understand network data, due to the vast network phenomena.

The holy grail of network science is to understand the network essence that underlies the
observed sparse-and-multifaceted network data.

We need an analog of the concept of range space, which provides a united
worldview of a family of diverse problems that are fundamental in statistical
machine learning, geometric approximation, and data analysis. I wish that I had
a chance to discuss with you about the mathematics of networks—beyond just the
geometry of graphs—and to learn from your brilliant insights into the essence of
networks. You and your mathematical depth and clarity will be greatly missed, Jirka.
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