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Abstract We show that HEEGAARD GENUS � g, the problem of deciding whether
a triangulated 3-manifold admits a Heegaard splitting of genus less than or equal to
g, is NP-hard. The result follows from a quadratic time reduction of the NP-complete
problem CNF-SAT to HEEGAARD GENUS � g.

1 Introduction

While there is a tradition of studying decision problems in 3-manifold topology, the
historical focus has been showing that problems are decidable [9, 13–15, 20, 21,
31, 37]. More recently, the computational complexity of these and related problems
has gained attention [1, 5–7, 10, 18, 34]. Here we show that one of the most basic
decision problems for 3-manifolds, the problem of determining Heegaard genus, is
NP-hard.

Every closed, orientable 3-manifold M has a Heegaard surface: a closed surface
that splits the manifold into a pair of handlebodies (i.e., thickened graphs). The
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Heegaard genus, g.M/, is the minimal genus of a Heegaard surface for M, and is one
of the most basic 3-manifold invariants. Because Heegaard surfaces are generic, they
have been studied extensively and have been effectively classified for large classes
of manifolds [16, 23]. It is thus natural to ask (phrased as a decision problem):

Problem 1.1 HEEGAARD GENUS � g: Given a triangulated 3-manifold M and a
natural number g, does M have a Heegaard surface of genus � g?

HEEGAARD GENUS � g was shown to be decidable (computable) by Johannson
[14, 15] in the Haken case and by Li in the non-Haken case [20]. Our main result is
the following:

Theorem 1.2 HEEGAARD GENUS � g is NP-hard.
One way of obtaining a Heegaard surface in certain 3-manifolds is to amalgamate

Heegaard surfaces in submanifolds. This approach allows us to relate Heegaard
genus to satisfiability of Boolean formulas in conjunctive normal form, that is
Boolean formulas stated as a conjunction of disjunctions, for example:

Q D .a _ c/ ^ .:a _ b/ ^ .b _ c/

We will let jQj denote the length of Q without counting parentheses, e.g. jQj =
12 for the above example.

Problem 1.3 CNF-SAT: Given Q, a Boolean formula in conjunctive normal form,
is there a satisfying assignment (i.e., an assignment of truth values to the variables)
that makes the formula true?

CNF-SAT is well known to be NP-complete. We prove Theorem 1.2 by giving
a polynomial (quadratic) time reduction of CNF-SAT to HEEGAARD GENUS � g.
Our reduction will proceed in two steps, first proving that there are manifolds MQ

that encode a formula Q:

Proposition 3.1 Let Q be an instance of CNF-SAT. Then there is a manifold MQ

with Heegaard genus g.MQ/ � jQj C 2, with equality holding if and only if Q has a
satisfying assignment.

The proof of Proposition 3.1 is based on constructing MQ as a direct translation
of the formula Q (a schematic of MQ for the aforementioned Q is shown in Fig. 1),
formed by taking a collection of Heegaard genus two “block” manifolds, one block
for each term (VAR(iable), REP(licate), NOT, AND, OR) in Q, and gluing them
together along torus boundary components via high distance maps. Each gluing
surface then represents a sub-statement of Q. The high-distance gluings guarantee
that any minimal genus Heegaard surface for MQ is an amalgamation of Heegaard
surfaces of the blocks (we provide a proof of this fact in the appendix of this paper),
and this allows us to compute the Heegaard genus of MQ.

Every Heegaard surface induces a bipartition, a partition into two sets, of its
manifold’s boundary components. The blocks are constructed so that each block
emulates its logical operator via the way its minimal genus Heegaard surfaces
bipartition its boundary components. The OR block is flexible, in that every non-
trivial bipartition is possible, whereas all other block types have a fixed bipartition of
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Fig. 1 The construction of MQ, where Q D ..a _ c/ ^ .:a _ b// ^ .b _ c/

boundary components determined by the minimal genus Heegaard surfaces. When
Q is satisfiable, there is a minimal genus Heegaard surface for each block so that
the complementary pieces can be bicolored in a particular way (see Definition 2.7)
so that the Heegaard surfaces for the blocks can be amalgamated to a genus jQj C 2

Heegaard surface for MQ. The converse uses the same setup. We show that the genus
of MQ is at least jQj C 2, and that when equality is achieved it is possible to read off
a satisfying assignment for Q from a bicoloring induced by Heegaard surfaces for
the block manifolds.

There are many manifolds that fit the above description of MQ. The second step,
from which Theorem 1.2 follows, is that we can construct a triangulation for one
efficiently.

Proposition 4.1 A triangulated MQ can be produced in quadratic time (and
tetrahedra) in jQj.

The essential ingredient for our main result is our ability to choose block
manifolds whose minimal genus Heegaard surfaces bipartition their boundary
components in a way that emulates the required logical operators. It is then worth
asking: given a set of bipartitions, is there a 3-manifold whose minimal genus
Heegaard surfaces induce precisely that set? In fact, this is an easy corollary of
the techniques we use here.
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Corollary 3.8 Let P be a non-empty set of bipartitions of 1; 2; : : : ; n. Then there is
a 3-manifold X and a numbering of its boundary components, 1; 2; : : : ; n, so that
the set of bipartitions of @X induced by minimal genus Heegaard splittings of X is
precisely P .

This paper is organized as follows: Sect. 2 contains the required background
on Heegaard splittings, surfaces, and amalgamation. Section 3 gives a recipe for
producing MQ and proves Proposition 3.1 and Corollary 3.8. Section 4 shows how
to triangulate MQ and proves Proposition 4.1. Section 5 lists some related open
questions. The appendix proves Proposition 1, which explains how high distance
gluings ensure that minimal genus Heegaard surfaces are amalgamations.

2 Heegaard Splittings and Amalgamations

Definition 2.1 Consider a 3-ball B, and attach 1-handles to @B. The resulting 3-
manifold is a handlebody. Alternatively, let F be a closed, not necessarily connected,
orientable surface such that each component of F has genus greater than zero. Take
the product F � Œ0; 1� and attach 1-handles along F � f1g. Assuming it is connected,
the resulting 3-manifold V is a compression body, and we denote @�V D F � f0g
and @CV D @V � @�V . (We will consider a handlebody as a compression body with
@�V D ;.)

Let M denote a compact, connected, orientable 3-manifold.

Definition 2.2 A Heegaard splitting for M is a decomposition M D V [ W where
V and W are compression bodies such that @CV D @CW D V \ W. The surface
H D @CV D @CW in M is called a Heegaard surface, and when needed we may
include this surface in the notation for the Heegaard splitting as V [H W. The genus
of V [H W is the genus of H, denoted g.H/.

Remark 2.3 Note that the compression bodies V and W bipartition the boundary of
M into @V M D @M \ V D @�V and @WM D @M \ W D @�W. In particular, a
Heegaard splitting for M always induces a bipartition f@VMj@W Mg of the boundary
components of M, and thus it is proper to say that V [ W is a Heegaard splitting of
M with respect to the bipartition f@VMj@WMg.

Given M, one can find Heegaard splittings of M in several ways. For example, if
M is triangulated with t tetrahedra, then one can obtain a Heegaard splitting of M
of genus t C 1, taking the boundary of a regular neighborhood of the 1-skeleton
as the Heegaard surface. Alternatively, if M can be decomposed as a union of
submanifolds M D S

Mi, so that M is obtained by gluing the Mi together along
their boundary components (including possible self-gluings), one can potentially
amalgamate Heegaard splittings of the Mi to form a Heegaard splitting of M:

Example 2.4 Let M1 and M2 be 3-manifolds such that @M1 Š @M2 Š F, and let
V1 [ W1 be a Heegaard splitting of M1 with respect to the bipartition f;j@M1g and
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Fig. 2 A schematic for the amalgamation given in Example 2.4. The light and dark regions
represent compression bodies, with W1 and V2 expressed as F � Œ0; 1� [ .1-handles/. The dotted
lines represent Heegaard surfaces

V2 [ W2 a Heegaard splitting of M2 with respect to the bipartition f@M2j;g. Note
that both W1 and V2 are compression bodies of the form F � Œ0; 1� [ f1-handlesg.
Form the 3-manifold M by gluing M1 to M2 along their boundaries, and, abusing
notation slightly, let F be the image of the boundary components in M. Collapse the
product structures in W1 and V2 so that in each, F � Œ0; 1� is mapped to F � f0g D F,
and so that the 1-handles of each of W1 and V2 are attached disjointly on F. We then
obtain a new Heegaard splitting V [ W of M, where V D V1 [ f1-handles in V2g,
and W D f1-handles in W1g [ W2. The splitting V [ W is called the amalgamation
of V1 [ W1 and V2 [ W2 along F. See Fig. 2.

Constructing an amalgamation of M D S
Mi from component Heegaard

splittings of Mi, however, is not always possible.

Example 2.5 Suppose M is formed by taking M1 D T2 � Œ0; 1� and gluing the two
components of @M1 together. Let F be the image of @M1 (an embedded torus) in M.

It is well known that M1 admits two irreducible Heegaard surfaces up to isotopy
[32]: a “Type 1” surface that is a level torus T2 � f 1

2
g and induces the non-trivial

bipartition of boundary components fT2 �f0gjT2 �f1gg, and a “Type 2” surface that
is a genus two Heegaard surface obtained by tubing together two disjoint copies,
say T2 � f 1

4
g and T2 � f 3

4
g, of the level surface. Note that this latter surface induces

the trivial bipartition of boundary components fT2 � f0g; T2 � f1gj;g.
One cannot form an amalgamated splitting for M by taking a Type 2 Heegaard

splitting of M1 and amalgamating it to itself (See Fig. 3a). This is because in
attempting to apply the construction of Example 2.4, we do not end up with two
resulting compression bodies once we collapse the product structure of F � Œ0; 1�

(i.e. the resulting “Heegaard surface” is not separating).

Example 2.6 Let M1 and M2 each be copies of T2 � Œ0; 1�, and form M D M1 [ M2

by gluing @M1 to @M2 component-wise. Let F D @M1 D @M2, so that F consists of
two disjoint tori embedded in M. Then, one cannot form an amalgamated Heegaard
splitting of M from Type 1 Heegaard splittings of M1 and M2 (See Fig. 3b). The issue
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(a)

(b)

G

Fig. 3 (a) A Type 2 Heegaard splitting of T2 � Œ0; 1� cannot be amalgamated to itself; (b) two
Type 1 Heegaard splittings of T2 � Œ0; 1� cannot be amalgamated together (Note that G here is not
a DAG)

here is that the Heegaard splitting of Mi, i D 1; 2, does not partition the components
of @Mi into a single compression body, and thus one cannot simultaneously collapse
the product structure F � Œ0; 1� along each component of F as in Example 2.4 to
form an amalgamation.

Assume that M D S
Mi where the Mi meet along boundary components. Rather

than thinking of the Mi in a linear order, it is more natural to consider the following
construction. Let G be the dual graph of

S
Mi, so that each submanifold Mi is

assigned a vertex x, and two vertices corresponding to Mi and Mj are connected
by an edge for each component of @Mi \@Mj. (Note that i may equal j, in the case of
self-gluings.) Relabelling the submanifolds Mi as Mx, one for each vertex x of G, we
can consider M D S

x2G Mx. The following definition provides the conditions under
which Heegaard splittings of the Mx can form an amalgamated Heegaard splitting
of M.

Definition 2.7 A generalized Heegaard splitting of M D S
x2G Mx is a choice, for

each Mx, of a Heegaard splitting Mx D Vx [ Wx, so that:

(1) The compression bodies are bicolored “black” and “white” (or “V” and “W”).
That is Vx \ Vx0 D ;; Wx \ Wx0 D ;, for all x ¤ x0.

(2) Given this bicoloring, the graph G becomes a directed acyclic graph (DAG)
after assigning edges of G to point toward “white”: as each edge e of G is dual
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to a surface in M that has a black compression body Vx on one side and a white
compression body Wx0 on the other, assign an orientation to e that points from
x to x0 (“black” to “white”). We require that the resulting directed graph has no
directed cycles.

Theorem 2.8 If
S

x2G .Vx [ Wx/ is a generalized Heegaard splitting of M DS
x2G Mx, then the Heegaard splittings Vx [ Wx can be amalgamated to form a

Heegaard splitting of M.

Proof We construct the desired Heegaard splitting in stages. Assume that the graph
G is directed as per Definition 2.7. As G contains no directed cycles, the graph has
a vertex which is a sink (all edges meeting it point “in”). Remove this vertex and all
edges meeting it from the graph. In the remaining (potentially disconnected) graph,
find another sink, and repeat the process. Continue until all such sinks have been
removed. As G is a DAG, this means we are left only with a collection of vertices
(the sources of the original graph).

Now add back the last removed sink x0, along with the edges e1; : : : ; em that
point in toward it. Let x1; : : : ; xn be the set of vertices that bound the edges e1; : : : ; em

along with x0. Since x0 is a sink, the bicoloring of the compression bodies of
S

Vxi [
Wxi in the generalized Heegaard splitting implies Mx0 meets each Mxi only in Wx0

and Vxi , i D 1; : : : ; n, respectively. In particular, the components Fe1 ; : : : ; Fem of
@Mx0 corresponding to the edges e1; : : : ; em are all contained in Wx0 and

S
Vxi . Thus,

we may carry out the procedure of Example 2.4 and collapse the product structures
Fej �Œ0; 1� to Fej simultaneously for all j in the compression bodies Wx0 , Vx1 ; : : : ; Vxn

and obtain a new Heegaard splitting V 0 [ W 0 of M0 D Mx0 [ : : : [ Mxn . Note that
this new Heegaard splitting preserves the original bicoloring given by

S
Vx [Wx for

boundary components of M0: if F0 is a component of @M0, then F0 � @V 0 if and only
if F0 � @Vxi for some xi. (Boundary components of M0 stay “black” or “white.”)

Add back in the next sink x0
0. If Mx0

0
does not meet M0, then we simply repeat

the above process for the subset of G that consists of edges and bounding vertices
that meet x0

0. If Mx0

0
meets M0, then we consider M0 as a whole with the Heegaard

splitting V 0 [ W 0 obtained above. Since V 0 [ W 0 preserves the bicoloring of
boundary components of M0 given by the original generalized Heegaard splitting,
we can repeat the above process to obtain a new Heegaard splitting of Mx0

0
[ M0 [

fMy j y is a new vertex directed towards x0
0g.

Building in this way, we can continue to obtain new Heegaard splittings of larger
collections of submanifolds of M, until we complete the graph G and produce a
Heegaard splitting V [ W of M. ut

As before, the Heegaard splitting V [ W obtained in the above proof is called
the amalgamation of the Heegaard splittings of the Mx along the surfaces F,
where F is the collection of components of the @Mx that are dual to edges in G
(i.e. F D �S

x2G @Mx
�n@M). Note that V [W is obtained by sequential applications

of the technique in Example 2.4 to amalgamations of Heegaard splittings of “sink”
submanifolds to their adjacent submanifolds. The critical feature of a generalized
Heegaard splitting that allows one to construct V [ W is that each component
Heegaard splitting bipartitions the boundary components of the Mx suitably so that
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we can bicolor the set of compression bodies (this allows us to end up with two
compression bodies in the amalgamated Heegaard splitting, avoiding the problem
of Example 2.5), and can use the bicoloring to direct the edges of G so that we can
amalgamate in sequence “outward” from sinks at each stage (thereby avoiding the
problem of Example 2.6 – recall Fig. 3).

Theorem 2.9 Suppose
S

x2G .Vx [Hx Wx/ is a generalized Heegaard splitting of
M D S

x2G Mx. For every edge e of G, let Fe denote the component of
S

@Mx dual
to e in M. Let V [H W be the amalgamation of

S
x2G .Vx [Hx Wx/. Then

g.H/ D
X

x2G
g.Hx/ �

X

e2G
g.Fe/ C 1 � �.G/:

Proof Proceed with the same setup and notation as in the proof of Theorem 2.8.
In particular, for the first step in constructing an amalgamation of M, consider
Heegaard splittings Vxi [Hxi

Wxi of Mxi , i D 0; : : : ; n, respectively, and their corre-
sponding vertices x0; : : : ; xn and connecting edges e1; : : : ; em in G. Let Fe1 ; : : : ; Fem

denote the corresponding surfaces in M dual to e1; : : : ; em. Let M0 D Sn
iD0 Mxi .

By construction, the genus of the amalgamated Heegaard splitting is obtained
by adding the genus of Hx0 to the handle numbers of Vxi , i D 1; : : : ; n. If V is a
compression body, then the handle number of V is the number of 1-handles added
to @�V � Œ0; 1� along @�V � f1g to obtain V (see Fig. 4). There are two types of
potential such 1-handles: a minimal set that connects components of @�V � Œ0; 1�

(essentially fulfilling the role of “connected sum” of components of @�V �f1g), and
those that increase the genus of @CV . Thus, the handle number of V equals

#handle.V/ D g.@CV/ �
X

F2@�V

g.F/ C j@�Vj � 1:

Let V 0 [H0 W 0 be the amalgamation of
Sn

iD0

�
Vxi [Hxi

Wxi

�
. Using the handle

number, the genus of the Heegaard surface H0 is

g.H0/ D g.Hx0/ C
nX

iD1

#handle.Vxi/:

Fig. 4 A schematic of a compression body V with #handle.V/ D 5 (Note that @CV is denoted by
dotted lines)
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Plugging in the equations for the handle numbers for the Vxi produces

g.H0/ D g.Hx0/ C
nX

iD1

g.Hxi/ �
mX

jD1

g.Fej/ C
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

m[

jD1

Fej

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
� n

D
nX

iD0

g.Hxi/ �
mX

jD1

g.Fej/ C m � n:

Let G0 denote the graph connecting x0 to x1; : : : ; xn. Since m is the number of
edges in G0 and n is the number of vertices minus one, we conclude m � n D
1 � �.G0/. Hence

g.H0/ D
nX

iD0

g.Hxi/ �
mX

jD1

g.Fej/ C 1 � �.G0/:

For any new submanifold that is included in the amalgamation at a subsequent
stage, the above relationship is preserved. That is, suppose that M0 D V 0 [H0 W 0 has
already been obtained as above by amalgamating component Heegaard splittings,
and suppose My D Vy [Hy Wy is a submanifold and Heegaard splitting being
newly amalgamated to V 0 [H0 W 0 along surfaces Fe0

1
; : : : ; Fe0

m0

. Let G0 and G0
y be

the dual graphs for M0 and M0 [ My, respectively. Repeating the above argument
implies that the genus of the resulting amalgamation of M0 [ My increases by

g.Hy/ �
m0

X

kD1

g.Fe0

k
/ C m0 � 1:

Note that m0 is the number of edges of G0
y n G0, and so m0 � 1 D ��.G0

y n G0/. In
particular, this means that m � n C m0 � 1 D 1 � �.G0/ � �.G0

y n G0/ D 1 � �.G0
y/:

Thus, the resulting genus of the amalgamation of M0 [ My is

X

x2G0

y

g.Hx/ �
X

e2G0

y

g.Fe/ C 1 � �.G0
y/:

Amalgamating thusly along all remaining submanifolds My0 , y0 2 G, produces the
desired result. ut

It is important to note that one can find examples of (minimal genus) Heegaard
splittings of 3-manifolds that are not amalgamations. For example, by gluing the
bridge surface of a tunnel number n � 1, n-bridge knot complement to vertical
annuli in a Seifert fibered space over a disk with n exceptional fibers, one can
obtain a Heegaard surface of the resulting 3-manifold of genus n, whereas the
minimal genus amalgamation along the gluing surface has genus 2n. (See [36].)
Note that this Heegaard surface results from a very specific gluing map between the
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boundary components of the two submanifolds. In general, gluing maps between
boundary components can be chosen to be “sufficiently complicated” to ensure that
all minimal genus Heegaard splittings are amalgamations along the gluing surfaces.
(See the appendix.) Exploiting this property in the next sections allows us to ensure
that the minimal genus Heegaard splittings of our constructed 3-manifolds MQ are
amalgamations, to which we can thus apply the results of this section.

3 ConstructingMQ

In this section we give a recipe for producing MQ from Q and prove the following
result.

Proposition 3.1 Let Q be an instance of CNF-SAT. Then there is a manifold MQ

with Heegaard genus g.MQ/ � jQj C 2, with equality holding if and only if Q has a
satisfying assignment.

Recall that jQj is the length of Q without counting parentheses.

3.1 Constructing MQ

The sentence Q will guide our construction of MQ. To begin, rewrite Q by inserting
parentheses, if necessary, to make it clear how each logical connective joins exactly
two terms (i.e. Q is made fully parenthesized). The manifold MQ is then constructed
out of building blocks according to instructions provided by this modified version
of Q. Each building block will have Heegaard genus 2 and some number of torus
boundary components. Each such boundary component will be labelled with a
subsentence of Q, and also be designated as either an input or an output to that
block. We will depict such blocks so that the input boundary component is on top,
and the outputs are on the bottom. See Fig. 5. Each block is chosen based on a
desired bipartitioning of its boundary components by genus 2 Heegaard splittings as
follows.

• VAR(iable) – For each distinct variable in Q let the block manifold M be a trefoil
knot exterior (Fig. 8). Then M has one torus boundary component, @M D T, and
any genus 2 Heegaard splitting induces the only boundary bipartition possible (up
to ordering), fTj;g. We label the boundary component T with the corresponding
variable, and consider it an output of the block.

• REP(licate) – To create multiple copies of a given variable, we use a block
manifold M that is the exterior of the twisted torus link in Fig. 9. Then M has
three torus boundary components, @M D T0 [ T1 [ T2 where any genus two
Heegaard splitting induces the boundary bipartition fT0; T1jT2g (Lemma 4.9).
All three components will be labelled with the variable that is being duplicated.
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a

aa

a

a
¬a

BB AA

A ∧ B A ∨ B

Q

var rep

not

and or end

Fig. 5 Schematics indicating block types and their labelings. Input surfaces are depicted at the top
of each block, and outputs at the bottom. Minimal genus Heegaard surfaces are depicted with bold
lines (With the three possible such splittings of the OR block indicated with bold dashed lines)

We will say the boundary component T2 is preferred, and will be the input. The
other two boundary components are outputs.

• NOT – For each occurrence of “:a” in Q, the block manifold M will be a high
distance filling on the twisted torus link as described in Lemma 4.10. Then @M D
T0 [ T1 and any genus two Heegaard splitting induces the bipartition fT0; T1j;g.
Label one boundary component a, and consider it an input. The other boundary
component is labelled :a and is considered an output. Glue the input surface to
the output of a REP block corresponding to a.

Once we have created one labeled output surface for each instance of each
variable in Q, and each instance of its negation, we start gluing them to other kinds
of blocks determined by the logical structure of Q, as follows:

• AND – For each conjunction A ^ B in Q, we let M be the exterior of the twisted
torus link already used for REP. Then @M D T0 [ T1 [ T2, and all genus two
Heegaard splittings all induce the bipartition fT0; T1jT2g (Lemma 4.9). Label the
preferred boundary component T2 with the expression A ^ B, and consider it an
output. The other two boundary components are inputs, and are labelled with the
expressions A and B respectively.

• OR – For each disjunction A _ B in Q we let M be the exterior of the three
component chain indicated in Fig. 8. It is homeomorphic to {pair of pants} � S1,
has three boundary components @M D T0 [ T1 [ T2, and each of the three
boundary bipartitions of the form fTi; TjjTkg is realized by some genus two



70 D. Bachman et al.

Heegaard splitting (Lemma 4.8). Choose one boundary component to label as
A_B, and consider it an output. The remaining boundary components are inputs,
and are labelled with the expressions A and B respectively.

• END – We end by capping the statement off with the same M, the trefoil knot
exterior, used for VAR. The manifold M has one torus boundary component,
@M D T, and a single boundary bipartition fTj;g. It is labelled with the entire
expression Q, and is an input.

To glue the blocks, we choose “sufficiently complicated” maps so that every
Heegaard splitting of MQ of genus less than or equal to jQj C 2 is an amalgamation
of splittings of the blocks. (See the appendix.)

As an example, Fig. 1 gives the construction of the manifold MQ from the
expression

Q D ..a _ c/ ^ .:a _ b// ^ .b _ c/:

3.2 Proof of Proposition 3.1

Lemma 3.2 The Heegaard genus of MQ is at least jQj C 2, and in the case of
equality, any such minimal genus splitting is an amalgamation of minimal genus
splittings of the building blocks.

Proof Let S be a minimal genus Heegaard splitting of MQ. If the genus of S is strictly
greater than jQj C 2 then the result follows. By way of contradiction, we assume
the genus of S is at most jQj C 2. By construction, S is then an amalgamation of
Heegaard splittings of the building blocks. We now use Theorem 2.9 to compute the
genus of S:

g.S/ D
X

x2G
g.Hx/ �

X

e2G
g.Fe/ C 1 � �.G/:

Here G is the graph dual to the block structure. Let v be the number of vertices,
one for each block, and e the number of edges, one for each gluing torus. Note that
the number of variable occurrences in Q is the number of VAR and REP blocks. The
operators in Q each have a corresponding NOT, OR, or AND block, and there is a
final END block for the total statement Q. In particular, v D jQj C 1. Since each
block has genus 2, we have g.Hx/ � 2 for each x, with equality holding only for
those blocks with minimal splittings, and g.Fe/ D 1 for each e. Thus,

g.S/ � 2v � e C 1 � .�e C v/ D v C 1 D jQj C 2:

ut



Computing Heegaard Genus is NP-Hard 71

Lemma 3.3 If the Heegaard genus of MQ is equal to jQj C 2 then there is a
satisfying assignment of Q.

Proof Suppose S is a minimal genus Heegaard surface of MQ. If the genus of S
is jQj C 2, then by the previous lemma S is an amalgamation of minimal genus
Heegaard surfaces fSig in the building blocks.

Because S is an amalgamation, the surfaces fSig, together with the gluing
surfaces, separate the manifold MQ into compression bodies that can be colored
“black” and “white” so that no two compression bodies with the same color are
adjacent. Without loss of generality, we assume the compression body of the
END block which contains its sole input surface is colored white.

We will now assign truth values to the gluing surfaces between blocks, according
to this bicoloring. Let F be such a gluing surface. Then F is the input surface for
some block. If the compression body in that block containing F is white, then we
will say that F is true. Otherwise, we say it is false. Equivalently, we can say that
F is true if it is the output of a block, and the compression body in that block
that contains F is black. Thus, if the Heegaard surface in some block separates an
input surface A of that block from an output surface, B, then A and B will have the
same truth value. It follows immediately that the input and output surfaces of all
REP blocks have the same truth value. Similarly, the truth value of the input of a
NOT block labelled a will have the opposite truth value as the output labelled :a.
Finally, note that the surface at the input of the END block (which we have labelled
with the statement Q) is by choice assigned the truth value true.

In the next several claims, we show that our assignment of truth values respects
the logical structure of the subsentences of Q that appear at the labels of (most of)
the gluing surfaces.

Claim 3.4 All surfaces at the inputs and outputs of the AND blocks are true.

Proof The minimal genus Heegaard surface of an AND block separates the output
surface from both inputs. Thus, the output and input surfaces all have the same truth
value. The proof is complete by noting that since Q is in conjunctive normal form,
the output of every AND block is glued to the input of the END block (a true
surface), or the input of another AND block. ut

We say an OR-tree is a component of the union of the OR blocks in MQ.

Claim 3.5 The output of every OR-tree is true, and at least one of the input surfaces
of every OR-tree is true.

Proof Let F0 denote the output surface of an OR-tree. Since Q is in conjunctive
normal form, F0 is glued to the input of an AND block. By the previous claim, F0

must be true. By construction, the Heegaard surface of the OR block that contains
F0 separates it from at least one of the input surfaces F1 of that block. Thus, F1 will
also be true. Working up the tree, we now consider the OR block in the tree whose
output is the surface F1. By identical reasoning, one of its input surfaces F2 must
be true as well. Continuing in this way we eventually reach an input surface Fi of
the entire OR-tree and conclude that it must be true. ut
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Note that some of the truth values of the sentences that label gluing surfaces
interior to an OR-tree may not be correct, but the previous claim shows this does not
disturb the logical structure of the OR-tree, taken as a whole.

To complete the lemma, note that we have assigned a truth value to the output
surface of every VAR block. These surfaces correspond to the variables used in the
sentence Q. We have shown above that our assignment of truth values to the input
and output surfaces of REP, NOT, and AND blocks, as well as OR trees, respects
the logical structure of the sentences that label them. Thus, we have produced an
assignment of truth values for the variables that make the statement Q true. ut
Lemma 3.6 If there is a satisfying assignment of Q, then the Heegaard genus of
MQ is equal to jQj C 2.

Proof If there is a satisfying assignment of Q, then that assignment gives a
truth value to each expression at the gluing surfaces. In this way, each boundary
component of each building block gets assigned a truth value. We color the sides of
each such surface black/white so that if F is a true surface at the output of a block,
then the side of F facing into that block is black. Similarly, if F is a true surface at
the input of a block, then the side facing in is colored white. Conversely, the side
of a false surface at the output of a block is colored white, and the side of a false
surface at an input is black.

Claim 3.7 There is a minimal genus splitting of each block that separates all white
surfaces on the inside of the block from all black surfaces facing in.

Proof Consider first the END block. Since there is only one boundary component,
any Heegaard splitting (and in particular the minimal genus one) has the desired
separation property.

Next we consider the AND blocks. Since Q is in conjunctive normal form, the
output of each such block is either attached to the END block, or another AND block.
Hence, if there is a satisfying assignment for Q then the labels at every input and
output surface of an AND block are true logical sentences. It follows that the side
of the input surfaces that face into such a block are white, and the side of the output
surface facing into the block is black. Such a block has the output as a preferred
boundary component, meaning that a minimal genus splitting separates the output
surface from both input surfaces. Hence, the minimal genus splitting has the desired
separation property.

An OR block has no preferred boundary component. Thus, there is a minimal
genus splitting for each non-trivial bipartitioning of the boundary components. It
follows that the only way the separation property can fail is if the side of every
boundary surface facing in to the block is the same color. If they are all white, then
this corresponds to both inputs being true, and the output being false. If they are all
black, then both inputs are false, and the output is true. Neither situation obeys the
properties of the logical “or” operation, so we will not see these sets of truth values
for the labels of the surfaces at the boundary of an OR block.

By construction, a REP block has the same logical value at each input and output.
If they are all true, then the side of the input surface that faces into the block is white,
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and the side of the outputs that faces in is black. The input surface of this block is a
preferred boundary component, so the minimal genus splitting separates black from
white as desired. If all surfaces are false, the situation is reversed.

Finally, we consider the NOT blocks. The sentences at the boundary components
of a NOT block will have opposite truth values. Thus, the side of the input surface
facing into the block will have the same color as the side of the output surface
facing in. Both surfaces are on the same side of a minimal genus splitting of a
NOT block. ut

Assume we have now chosen splittings of each block in accordance with the
conclusion of Claim 3.7. Then the building blocks are separated into compression
bodies by these splittings, and these compression bodies inherit the color black or
white, according to the colors of their negative boundaries. Furthermore, because
opposite sides of any single gluing surface are different colors, it follows that
neighboring compression-bodies in MQ are colored differently.

According to Theorem 2.8, to show that we can amalgamate our choice of
splittings of the building blocks, it remains to show that the directed graph G that
is dual to the gluing surfaces has no directed cycles. (Recall that each edge of this
graph is oriented so that it passes from a black compression body into a white one.)

We have constructed MQ vertically so that the output surface(s) of any given
block is below its input surface(s). Any directed cycle must have a local maximum,
x. Let e1 and e2 be the edges of the cycle that meet x, where e1 is oriented toward x,
and e2 is oriented away. As x is a local maximum, both e1 and e2 correspond to
output surfaces of the building block corresponding to x. It follows that this building
block is a REP block, as this is the only type of block that has two output surfaces.
However, according to our coloring scheme, both output surfaces of a REP block are
on the boundary of the same compression body. If this compression body is black,
then both e1 and e2 are oriented away from x. If the compression body is white, then
both are oriented toward x. This contradiction establishes that there are no directed
cycles in G.

By Theorem 2.8 we can now amalgamate the chosen splittings of our building
blocks, creating a splitting of MQ. By the computation given in the proof of
Lemma 3.2, the genus of this splitting is jQj C 2. ut

Finally, note that if one were to remove the VAR blocks from MQ, we would
obtain a manifold with a boundary component corresponding to each variable, and,
for each satisfying assignment, a minimal genus Heegaard splitting that induces a
{true j false} bipartition of the corresponding boundary components. That is the
basis for the following corollary.

Corollary 3.8 Let P be a non-empty set of bipartitions of 1; 2; : : : ; n. Then there
is a 3-manifold X and a numbering of its boundary components, 1; 2; : : : ; n, so that
the set of bipartitions of @X induced by minimal genus Heegaard splittings of X is
precisely P .

Proof Suppose that P is a bipartition of 1; ::; n. That is, P D fPCjP�g so that PC [
P� D 1; ::; n and PC \ P� D ;. Let vi; i D 1; ::; n be variables and let the clause
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q.P/ be a conjunction of each variable or its negation, depending on which side of
the bipartition P its index belongs to:

q.P/ D
^

fviji 2 PCg
^

f:viji 2 P�g:

Of course, q.P/ accepts exactly one satisfying assignment, and that corresponds
(via the correspondence i 2 PC ” vi D true) to the bipartition P. Now let
P be a set of bipartitions of 1; : : : ; n and let PC be its complement, i.e. the set of
bipartitions not in P . Let

Q.PC/ D
_

fq.P/jP 2 PCg

Now, let Q D Q.P/ D :Q.PC/ which, after applying De Morgan’s laws, is an
instance of CNF-SAT. Let MQ be built according to the procedure above. Now it is
easy to check that satisfying assignments are in 1-1 correspondence with bipartitions
P 2 P , again by using the correspondence i 2 PC ” vi D true.

Let MQ be constructed as before. Note that since Q is satisfiable, MQ has
Heegaard genus jQj C 2. Let M0

Q be the manifold obtained by removing each
VAR block. Because each VAR block removed is a leaf in G, the graph dual to the
block structure, the proofs of Lemmas 3.3 and 3.6 apply to M0

Q as well as to MQ. In
particular, a minimal genus splitting of M0

Q determines a satisfying truth assignment
to the vi’s, and vice-versa. Note that each vi labels a boundary component of M0

Q, and
each minimal genus splitting separates the true variables from the false variables,
so bipartitions induced by minimal genus splittings are in 1-1 correspondence with
satisfying assignments which in turn are in 1-1 correspondence with bipartitions
P 2 P (via i 2 PC ” vi D true). ut

4 TriangulatingMQ

In this section, we describe how to triangulate the manifold MQ so that the number
of tetrahedra used is at most quadratic in jQj, the length of the statement Q. Our
goal is the following:

Proposition 4.1 A triangulated MQ can be produced in quadratic time (and
tetrahedra) in jQj.

We proceed in several steps. First, in Sects. 4.1 and 4.2 we give a method to
perform high distance triangulated gluings via layered triangulations. For the most
part, these are not new results. Our statements about distances in the Farey graph
in Sect. 4.1 are certainly well known, and layered triangulations (Sect. 4.2) are
described by Jaco and Rubinstein in [12]. We include these sections, instead of
just citing earlier work, because they are both accessible to the non-expert and also
make explicit the relationship between the distance of the gluing and the number
of layers.
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Next, in Sect. 4.3, we give a topological description of block manifolds whose
boundary components are appropriately bipartitioned by minimal genus Heegaard
splittings. We consolidate some well known results and substantially leverage the
work of Morimoto, Sakuma, and Yokota on Heegaard splittings of twisted torus
knots [27], and the work of Moriah, Rieck, Rubinstein and Sedgwick that character-
izes how and when a Dehn filling creates new Heegaard splittings [22, 25, 28–30].

We conclude, in Sect. 4.4, with a proof of Proposition 4.1 that describes how the
blocks can be triangulated and then glued together.

4.1 Slopes and the Farey Graph

A slope is the isotopy class of an essential simple closed curve on a torus. Fix a
pair of basis elements for the homology, Z � Z, of the torus. Then any slope can
be written as a pair .a; b/, and because it is realized by a simple (connected) curve,
we have gcd.a; b/ D 1. The usual convention is thus to represent the slope by the
extended rational a

b 2 Q [ f1g, where 1 D 1
0
.

We say that a pair of slopes have distance one if there are a pair of curves
representing the slopes that intersect transversely in a single point. It is well known
that a pair of slopes have distance one if and only if their extended rationals (with
respect to any basis), a

b and c
d , satisfy jad � bcj D 1.

Definition 4.2 Let T be a torus. The Farey graph for T is the graph whose vertex
set is the set of slopes and whose edges join any pair of vertices whose underlying
slopes have distance one. Of course, after choosing a basis for homology, we are
able to label each vertex of the graph with an extended rational a

b 2 Q [ f1g. Each
edge then joins a pair of extended rationals, a

b and c
d , which satisfies jad � bcj D 1.

Definition 4.3 If ˛ and ˇ are slopes in a torus T, then the Farey distance between
them dF .˛; ˇ/ is their distance in the Farey graph. If a � T and b � T are
closed essential curves, then we define their distance, dF .a; b/ D dF .˛; ˇ/, to be
the distance between ˛ and ˇ, isotopy classes of single components of a and b,
respectively.

Form a 2-complex, the curve complex of the torus T, by attaching to the Farey
graph a triangular face for every triple of slopes that pairwise intersect once. Fixing a
basis for T, every edge is specified by a pair

�
a
b ; c

d

�
satisfying jad �bcj D 1. It is not

hard to see that in the curve complex, there are precisely two triangles,
�

a
b ; c

d ; aCc
bCd

�

and
�

a
b ; c

d ; a�c
b�d

�
attached to the edge

�
a
b ; c

d

�
. This is described by the well known

Farey tessellation of the Poincaré disk model of H2, see Fig. 6.
Moreover, each triangular face identifies a triangulation of the torus T up to

isotopy: The slopes a
b and c

d can be realized by a pair of curves in the torus meeting in
a single point. Together, they cut the torus into a rectangle. This rectangle has exactly
two choices for a diagonal curve, with slopes aCc

bCd and a�c
b�d when connected through

the intersection point. Choose one, say aCc
bCd . Then the triple of curves

�
a
b ; c

d ; aCc
bCd

�
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Fig. 6 The Farey tessellation of the Poincaré disk

intersect in a single common point. Treating that point as a vertex, we have formed
a (non-simplicial) triangulation of the torus T with one vertex, three edges and
two faces. We call this a one-vertex triangulation of the torus. Note that the two
triangulations

�
a
b ; c

d ; aCc
bCd

�
and

�
a
b ; c

d ; a�c
b�d

�
meeting the edge

�
a
b ; c

d

�
are related by a

diagonal flip, that exchanges the diagonal aCc
bCd for the diagonal a�c

b�d , or vice-versa.

4.2 Layering

Later we will assume that our manifold X has been endowed with a triangulation that
restricts to a one vertex triangulation of each of its torus boundary components [11].

Let e be an edge in the triangulation of the boundary torus T � @X. Then e
can be regarded as the diagonal of a rectangle R bounded by the other two edges.
Picture a new tetrahedron, �, as being a slightly thickened horizontal rectangle.
Its bottom is a rectangle R� with diagonal e� and its top is a rectangle R0

�

with diagonal e0
�. See Fig. 7. One can form a new triangulated manifold X0 D

X [RDR� �, by gluing R to R� so that the diagonals e and e� are identified. This
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e eΔeΔ

eΔ

+ =

Fig. 7 Layering a tetrahedron on the boundary swaps a diagonal

process is called layering at e (see also [13]). It is not hard to see that the manifold X0
is homeomorphic to X (as it retracts onto X) but that the boundary triangulation has
changed. In particular, while e is no longer in the boundary torus, the boundary of R
is still in the boundary torus, but its diagonal is now opposite and realized by e0

�.
Thus, layering at e performs a diagonal flip on e in the boundary triangulation. The
two triangulations are represented in the Farey tessellation by a pair of triangles that
share a common edge.

Lemma 4.4 Let T � @X have a one-vertex triangulation with edge slopes
�

0
1
; 1

0
; 1

1

�
.

Then, by layering on k tetrahedra, we can obtain a new triangulation of X with edge

slopes
�

Fk�1

Fk�2
; Fk

Fk�1
;

FkC1

Fk

�
, where Fk is the kth Fibonacci number.

Proof Consider the sequence 0
1
; 1

0
; 1

1
; 2

1
; 3

2
; 5

3
; : : : ; Fk�1

Fk�2
; Fk

Fk�1
;

FkC1

Fk
. Note that each

successive triple of terms determines a triangulation, and that each successive pair
of triples share two slopes. Hence, the latter boundary triangulation can be obtained
by layering on the edge of the former that they do not share. It takes k steps, hence
k layers, to move from the first triple to the last. ut

Furthermore, continued layering in this fashion increases the distance between
the latest edge slopes and the original edge slopes:

Lemma 4.5 Let Fk be the kth Fibonacci number. Then,

dF
�

FkC1

Fk
; 1

�
D bk=2c C 1

Proof We will give an inductive proof. It is easy to verify that the statement holds
for k D 0; 1; 2, where FkC1

Fk
D 1

1
; 2

1
; 3

2
, respectively, and the distances to 1 D 1

0

are 1; 1; 2, respectively. Let k be the least k for which the conclusion of the lemma

does not hold. In the Poincaré disk, consider the triangle
�

Fk�1

Fk�2
; Fk

Fk�1
;

FkC1

Fk

�
which

is bounded by edges of the Farey Graph (see Fig. 6). This triangle separates the disk
into 3 components.

First, we claim that the points FkC1

Fk
and 1 D 1

0
lie on opposite sides of the

edge
�

Fk
Fk�1

; Fk�1

Fk�2

�
. To see this, note that the point Fk�2

Fk�3
is the other corner of the

second triangle that meets the edge
�

Fk
Fk�1

; Fk�1

Fk�2

�
. The inductive hypothesis implies
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dF
�

Fk�2

Fk�3
; 1

�
< dF

�
Fk

Fk�1
; 1

�
, so the second triangle must lie on the same side of

the edge
�

Fk
Fk�1

; Fk�1

Fk�2

�
as 1, hence the point FkC1

Fk
, lies on the other side.

Now, take a minimal path in the Farey Graph joining 1 to Fk�1

Fk�2
. By adjoining

the edge
�

Fk�1

Fk�2
;

FkC1

Fk

�
to that path, we obtain a path from 1 to FkC1

Fk
. It follows that

dF
�

FkC1

Fk
; 1

�
� dF

�
Fk�1

Fk�2
; 1

�
C 1.

Now, take a minimal path from 1 to FkC1

Fk
. Because 1 and Fk

Fk�1
lie on opposite

sides of the edge
�

Fk�1

Fk�2
; Fk

Fk�1

�
, this minimal path must pass through either the point

Fk�1

Fk�2
or the point Fk

Fk�1
. It follows that

dF
�

FkC1

Fk
; 1

�
� min

n
dF

�
Fk�1

Fk�2
; 1

�
C 1; dF

�
Fk

Fk�1
; 1

�
C 1

o

D dF
�

Fk�1

Fk�2
; 1

�
C 1:

Thus, dF
�

FkC1

Fk
; 1

�
D dF

�
Fk�1

Fk�2
; 1

�
C 1 and the desired result follows. ut

Lemma 4.6 Let X be a (possibly disconnected) 3-manifold given via a triangula-
tion that has a single vertex in each of two torus boundary components, T0 and T1.
If ˛0 � T0 and ˛1 � T1 are slopes and D 2 N, then there is a triangulated manifold
X0 obtained from X by gluing T0 to T1 so that

• dF .˛0; ˛1/ > D, where distance is measured in the common image of T0 and T1

in X0, and
• t.X0/ D t.X/ C 2D, where t.�/ is number of tetrahedra.

Proof Fix an orientation on X and assume that the Ti; i D 0; 1, have the induced
boundary orientation. For each i D 0; 1, we may choose a basis, .0; 1/, for the
homology of the boundary torus Ti so that the edges of the one-vertex triangulation
have slopes .0; 1; 1/, the basis .0; 1/ induces the boundary orientation, and ˛i has
non-positive slope, ˛i � 0.

Applying Lemma 4.4, layer 2D tetrahedra on the boundary component T0 so that

the resulting triangulation has edges with slopes
�

F2D�1

F2D�2
; F2D

F2D�1
;

F2DC1

F2D

�
.

Now, let X0 be the manifold obtained by gluing the boundary triangulations
together via an orientation reversing map that identifies the edge with slope F2DC1

F2D
in T0 with the edge with slope 0 in T1. This identifies the pair of edges with slopes�

F2D�1

F2D�2
; F2D

F2D�1

�
in T0, with the pair of edges with slopes .1; 1/ in T1, or its reverse.

Note that the edge
�

F2D�1

F2D�2
; F2D

F2D�1

�
in the Farey graph for T0 separates 1 and the

image of ˛1.
Now compute the distance in the original basis for T0 using Lemma 4.5. We have

distance dF .˛0; ˛1/ > dF
�
1; F2D�1

F2D�2

�
D b 2D�2

2
c C 1 D D, as claimed. ut
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4.3 Blocks from Links

In this section we construct the required block manifolds. In each case, we prescribe
a set of bipartitions of boundary components and then construct a manifold whose
minimal genus Heegaard surfaces induce precisely that set of bipartitions of
boundary components. All of our examples are Heegaard genus two. Three of the
four are realized as the exterior of a knot or link in S3, that is, each manifold is
homeomorphic to X.L/ D S3 � N.L/ where L is a knot or link in S3 and N.�/
denotes an open regular neighborhood. The boundary of each manifold is a union of
tori, and we often abuse notation by referring to components of the link, rather than
to their corresponding boundary components. The fourth block manifold is obtained
by Dehn filling on a torus boundary component of the third block manifold. Many
of the results in this section are not new, and are collected for the sake of specificity.

For VAR blocks and the END block we need a genus two manifold with a single
incompressible torus boundary component. The exterior of any tunnel number one
knot will do, we choose a simple one:

Lemma 4.7 (VAR, END) Let K � S3 be the trefoil knot (see Fig. 8) and X.K/ D
S3 � N.K/ be its exterior. Then X.K/ has Heegaard genus two.

Proof It is well known that K is tunnel number one (genus two), see e.g. [16]. ut
For OR blocks, we want a manifold whose minimal genus Heegaard surfaces

realize every non-trivial bipartition of its three boundary components. The simplest
such manifold seems to be the exterior of the three component chain, whose
irreducible, and even non-irreducible, Heegaard splittings are quite well understood
[24, 35]. Note that it is impossible for a genus two Heegaard surface to trivially
bipartition the boundary components, fT0; T1; T2j;g, as a genus two compression
body V cannot have three torus boundary components in @�V .

Lemma 4.8 (OR) Let C � S3 be the three component chain (see Fig. 8), and
X.C/ D S3 � N.C/ its exterior. Then,

(1) X.C/ has Heegaard genus two,
(2) every non-trivial bipartition fTi; TjjTkg of the three boundary components of

@X.C/ is induced by a genus two Heegaard surface for X.C/.

Fig. 8 Trefoil knot and three link chain
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Proof Again, these facts are well known: it is easy to see that for each pair of link
components, there is a handle and a short arc connecting them that induces a genus
two Heegaard splitting that separates the pair from the other link component. ut

For AND and REP blocks, we want a manifold whose minimal genus Heegaard
surfaces all prefer the same bipartition of its three boundary components. This is
a bit more challenging. Fortunately, Morimoto, Sakuma and Yokota showed that
certain twisted torus knots are not 1-bridge with respect to an unknotted torus in S3,
providing the basis for the following.

Lemma 4.9 (AND, REP) Let L � S3 be the link indicated in Fig. 9. It is the union
of the twisted torus knot T.7; 17; 6/ along with two unknotted components U0 and
U1. Let X.L/ be its exterior. Then,

(1) X.L/ has Heegaard genus two,
(2) any genus two Heegaard splitting of X.L/ induces the same bipartition of

boundary components, that is fU0; U1jT.7; 17; 6/g,
(3) X.L/ does not contain a Möbius band with its boundary contained on the

knotted boundary component.

Note that conclusion (3) is not needed for the AND or REP blocks themselves.
Rather, it is technical condition used for the construction of the NOT block via
Lemma 4.10, which follows.

Proof (1) It is well known [27] and easy to see that a short arc joining the pair
of twisted strands is a tunnel system for T.7; 17; 6/. The strands can be untwisted
by sliding them over the tunnel, after which the tunnel appears to be the “middle
tunnel” [26] for the torus knot T.7; 17/. Moreover, this gives a genus two splitting
of the entire link as the indicated unknots U0 and U1 are cores for the com-
plementary handlebody. Note that this genus two splitting induces the bipartition

Fig. 9 Link with three components: T.7; 17; 6/ and two unknots U0 and U1
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fT.7; 17; 6/jU0; U1g of the boundary components. This is also a minimal genus
splitting as no exterior of a link with 3 components has genus one.

(2) Suppose that a genus two Heegaard splitting induces a bipartition that
isolates one of the two unknotted components, fUijUj; T.7; 17; 6/g, for some i ¤ j.
In particular, this implies that the link T.7; 17; 6/ [ Uj is tunnel number one.
Lemma 4.13 of [26] states that any knot whose union with some unknot is a tunnel
number one link must be .1; 1/. That is, it has a 1-bridge presentation with respect
to an unknotted torus. However this is a contradiction, as Morimoto, Sakuma and
Yokota [27] demonstrated that the knot T.7; 17; 6/ is not .1; 1/. It follows that any
genus two Heegaard splitting of X.L/ induces the bipartition fU0; U1jT.7; 17; 6/g.

(3) Note that the exterior of the link U0 [ U1 is a product, T2 � Œ�1; 1�. Draw the
.7; 17/ torus knot as a curve on the level surface T2 � f0g in this product. Choose
two strands of the torus knot and give them 6 half twists to obtain the twisted torus
knot T.7; 17; 6/. Its union with the pair of unknots is our twisted torus link L.

Now, note that the .2; 5/ curve drawn on the same level torus meets the .7; 17/

curve in a single point. Then the product .2; 5/ � Œ�1; 1� is a properly embedded
annulus in the product that meets the torus knot once, and the unknots in slopes 2

5

and 5
2
, respectively. Moreover, the twisting needed to construct T.7; 17; 6/ can be

performed in the complement of this annulus. Drill out the twisted torus knot. The
annulus is punctured once (with slope 1 D 1

0
on the knot) and becomes an essential

pair of pants P in the link exterior.
Let B � X.L/ be a properly embedded Möbius band with its boundary in

the knotted component and that meets P in the minimal number of components.
Because both surfaces are essential, the intersection consists of a collection of arcs
that are essential in both surfaces.

In fact, there is only a single arc of intersection: if there were two or more, then
there would be a pair of arcs that are parallel and adjacent on P and that are also
parallel on B. Then the union B0 D RP [ RB, where RP and RB are the rectangles the
arcs bound in P and R, respectively, is a Möbius band (see for example [28]) that
can be isotoped to meet P in a single arc.

However, it is also impossible for P \ B to consist of a single arc: this implies
that the Möbius band has slope n

2
for some n as it meets the meridian 1

0
twice. But,

any n
2

curve also bounds a Möbius band in the solid torus that is attached to perform
the meridional (S3) filling on the knotted component. The union of the B and the
Möbius band in the solid torus is a Klein bottle embedded in S3, a contradiction. ut

Finally, for NOT blocks we want a manifold for which no minimal genus
Heegaard surface splits its two boundary components. Note that X.L/ is almost
what we want; no minimal Heegaard surface splits the two unknotted boundary
components. Nonetheless, there is an inconvenient third boundary component (the
knotted one). Can we get rid of it?

There are many results that demonstrate that after a “sufficiently large” Dehn
filling, the filled manifold inherits the qualities of the unfilled manifold. Fortunately,
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that is also true for Heegaard structure [22, 25, 28–30] and that is precisely what we
use here:

Lemma 4.10 (NOT) Let L � S3 be the link indicated in Fig. 9, and let X.LI �/ be
the manifold obtained by Dehn filling the knotted component along the slope � . If
dF .�; 1/ > 10, where dF is the distance in the Farey graph, then

(1) X.LI �/ has Heegaard genus two,
(2) every genus two Heegaard splitting of X.LI �/ induces the trivial boundary

bipartition fU0; U1j;g.

Proof Heegaard surfaces survive Dehn fillings. That is, after filling any slope � , a
Heegaard surface for X.L/ is also a Heegaard surface for X.LI �/. Thus the genus of
X.LI �/ is at most 2.

We now show that under the hypothesis dF .�; 1/ > 10, every genus two
Heegaard splitting of X.LI �/ is isotopic (in X.LI �/) to a Heegaard splitting of X.L/.
It will follow that the genus of X.LI �/ is exactly two, and any genus two splitting
induces the desired bipartition of boundary components.

We will say that a filled manifold X.LI ˛/ has a new Heegaard surface if there is a
Heegaard surface † � X.LI ˛/ for the filled manifold that is not isotopic in X.LI ˛/

to a Heegaard surface for X.L/. Rieck and Sedgwick [30] have shown that there
are two possibilities for a new Heegaard surface †, depending on whether the core
of the attached solid torus is isotopic into † in the filled manifold. In either case,
we can find a useful derived surface †0 � X.L/ by isotoping † in X.LI ˛/ and then
drilling out the core: if the attached core is not isotopic into †, then † is isotopic to a
“thick level” in some thin presentation of the core, which is a knot in X.LI ˛/. After
drilling out the core, we obtain a properly embedded surface † � X.L/ that meets
the knotted boundary component in curves of slope ˛. If the core is isotopic into †,
then drilling out the core and possibly compressing, we obtain a properly embedded
essential surface †0 � X.L/. Its genus is at most that of † and its boundary curves
meet the knotted boundary component in a slope ˛0, where dF .˛0; ˛/ D 1.

If two different filled manifolds X.LI ˛/ and X.LI ˇ/ have new Heegaard surfaces,
then the pair of bounded surfaces derived above, each either essential or “thick,” can
be isotoped to intersect essentially [8, 28]. Moreover, the previous lemma shows that
there is no Möbius band in X.L/ with its boundary in the knotted component. In that
case Rieck showed that the number of intersections between the slopes ˛ and ˇ is
bounded by a quadratic function, 36g1g2 C 36g1 C 18g2 C 18, where g1 and g2,
g1 � g2, are the genera of the derived surfaces ([28] Theorem 5.2). (Theorem 5.2
is stated with a stronger hypothesis, that X.L/ is a-cylindrical, but the proof clearly
states that either the bound holds or there is a Möbius band meeting the boundary
component that was filled.)

Now, we know that the manifold X.L; 1/ is the product T2 � Œ�1; 1� and thus
has a new Heegaard surface of genus 1. (As the knotted component is not a torus
knot, in this case the derived surface is a thick level with genus 1 and slope 1.)

Suppose then that X.L; �/ has a new Heegaard surface of genus at most 2. Then
the slopes of the derived surfaces intersect at most 180 times (applying the above
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quadratic function with g1 D 2 � g2 D 1) and thus have distance in the Farey graph
dF � log2 180C1 < 9. As the derived surface in X.L; �/ has distance 0 or 1 from � ,
we have dF .�; 1/ < 10, a contradiction.

It follows that X.L; �/ has no new Heegaard surfaces with genus at most 2. Then
the genus of X.L; �/ is 2. Moreover, every genus two Heegaard surface of X.L; �/

is isotopic in X.L; �/ to a Heegaard surface for X.L/, and in particular induces the
boundary bipartition fU0; U1j;g. This completes the proof. ut

Construct the NOT blocks by using Lemmas 4.6 and 4.10 to glue the triangulated
twisted torus link exterior to a one-tetrahedron solid torus (see for example, [13]) so
that �, the curve bounding a meridional disk of the solid torus, and 1 the meridian
of the twisted torus link, satisfy dF .�; 1/ > 11.

4.4 Proof of Proposition 4.1

Proof The manifold MQ is obtained by gluing a collection of blocks along pairs of
torus boundary components via high distance maps. There is exactly one block for
each term (VAR, AND, OR, NOT) in Q, plus the END block, for a total of jQj C 1

blocks.
As a preprocessing step, we triangulate each of the block types so that each

torus boundary component has a one-vertex triangulation. For each of the three link
exteriors, use the method Weeks describes in [38] and implements in his SnapPea
program, to convert the link diagrams given by Figs. 8 and 9 to ideal triangulations
of the link exteriors. Then construct a (non-ideal) triangulation by subdividing and
deleting tetrahedra meeting the ideal vertex. Use Jaco and Rubinstein’s method to
convert this triangulation to a 0-efficient triangulation [11], which has the desired
property that it restricts to a one-vertex triangulation of each torus boundary
component. For each torus boundary component of each block, use normal surface
theory to identify, among essential surfaces meeting the boundary component, a
surface maximizing Euler characteristic.

Let T be the maximal number of tetrahedra used by one of the four triangulated
blocks types. Since there are jQj C 1 blocks, we thus require at most T.jQj C 1/

tetrahedra before gluing.
There is a computable constant K, depending only on the homeomorphism types

of the blocks, so that if any set of blocks are glued with maps of distance at least Kg
(relative to the boundaries), then any Heegaard surface whose genus is at most g is an
amalgamation of splittings of the blocks. (The proof of this is given in the appendix;
distance is measured between the surfaces chosen above.) As we want to guarantee
that any splitting of genus at most jQj C 2 is an amalgamation, it is thus sufficient
to glue each pair of blocks with a map of distance K.jQj C 2/, which by Lemma 4.6
requires 2K.jQj C 2/ tetrahedra per gluing. Since each of the jQj C 1 blocks has
at most 3 boundary components, there are at most 3

2
.jQj C 1/ pairs of boundary

components to glue. We conclude that we need at most 3
2
.jQj C 1/2K.jQj C 2/

tetrahedra to glue the blocks.
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The total number of tetrahedra required to construct MQ is then the sum of those
for the blocks and those for gluings,

t.MQ/ � T.jQj C 1/ C 3K.jQj C 1/.jQj C 2/

which is clearly quadratically bounded in jQj. ut

5 Open Questions

We now discuss some questions that remain. The most obvious is:

Question 5.1 Is HEEGAARD GENUS � g in NP?
Next, since the 3-sphere is, by definition, the 3-manifold with genus 0,

3-SPHERE RECOGNITION is precisely HEEGAARD GENUS � 0, i.e., a special
case of our general problem with fixed parameter g D 0. Schleimer showed that
3-SPHERE RECOGNITION is in NP [34]. And, using Kuperberg’s work [17], Zentner
showed that 3-SPHERE RECOGNITION is also in co-NP if we assume that the
Generalized Riemann Hypothesis is true [39]. Thus, without disproving a major
conjecture, we do not expect the special case HEEGAARD GENUS � 0 to be NP-
hard. Since Heegaard genus is such an important invariant, it is worth asking about
the complexity of the problem for other small fixed values of g, in particular g � 2:

Question 5.2 What is the computational complexity of deciding HEEGAARD

GENUS � 1 and HEEGAARD GENUS � 2?
Finally, note that our construction produces non-hyperbolic manifolds because

the identified torus boundary components are incompressible after gluing. It seems
probable that hyperbolic examples can be constructed by gluing together hyperbolic
block manifolds that have higher genus boundary components. But, the resulting
manifolds would most definitely be Haken (have embedded incompressible sur-
faces). Do embedded essential surfaces explain NP-hardness or,

Question 5.3 Is HEEGAARD GENUS � g NP-hard when restricted to the class of
non-Haken manifolds?

Appendix: Sufficiently Complicated Amalgamations

In this section we provide a proof of the following proposition, based on several
well-known results.

Proposition 1 There is a computable constant K, depending only on the homeo-
morphism types of the blocks, so that if any set of blocks are glued with maps of
distance at least Kg (in the sense of Theorem 2 below), then any Heegaard surface
whose genus is at most g is an amalgamation of splittings of the blocks.
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Proof Suppose H is a minimal genus Heegaard splitting of MQ. It follows from
the results of [33] that there is a DAG � such that H is an amalgamation of
some generalized Heegaard splitting

S
x2� Mx of MQ, such that for each x 2 � ,

Vx \ Wx is strongly irreducible in Mx, and for each x ¤ y, Vx \ Wy is a (possibly
empty) incompressible surface in M. In the parlance of [2], both kinds of surfaces
are topologically minimal in M. Let H denote the union of all such topologically
minimal surfaces.

For each boundary component F of each block used in the original construction
of MQ (see Sect. 3), choose a maximal Euler characteristic, properly embedded,
incompressible, boundary incompressible surface in that block that is incident to
F. Let S be the collection of these chosen surfaces. (Note that the surfaces in S
need not be disjoint in each block).

Let M� and MC denote blocks used in the construction of MQ, such that MC \
M� ¤ ;. Let F be a component of MC\M�. Then F can be identified with boundary
components F� � @M� and FC � @MC. Let � W F� ! FC denote the gluing map
used to attach M� to MC along F in the construction of MQ. Let M� denote the
manifold obtained from M� and MC by gluing F� to FC via the map �. Note that
M� may be different from M� [ MC, as the latter manifold may be obtained from
M� and MC by gluing along multiple surfaces. However, if F denotes the collection
of surfaces at the interfaces between all blocks in MQ, then M� can be identified with
a component of the complement of F n F.

By [4], we can isotope each surface in H so that it meets the complementary
pieces of F n F in a collection of surfaces that are topologically minimal (in
particular, either incompressible or strongly irreducible). After such an isotopy, let
H0 denote a component of the intersection of such a surface with M� .

The first author, building on work of Tao Li [19], proved the following theorem,
restated here with notation consistent with that of the present paper:

Theorem 2 (cf. [3], Theorem 5.4.) Let S� and SC denote the surfaces in S chosen
to meet F� and FC in M� and MC. Let K D 24.1 � 3�.S�/ � 3�.SC//. If

d.�.S� \ F�/; SC \ FC/ � K � genus.H/

then H0 can be isotoped to be disjoint from F in M� .1

Note that H0 is a component of H \ M� . Applying this Theorem to every
such component (noting that genus.H0/ � genus .H/), we conclude H can be
isotoped to be disjoint from F in MQ. Each surface in the resulting collection is
now topologically minimal in MQ � F. Repeating this argument for every surface
in F shows that every surface in H can be isotoped entirely into some block. It
then follows from standard arguments that each surface of F can be identified
with a component of @Mx, for some x 2 � . Thus, for each block B in MQ, there
is a collection of vertices V of � such that B D S

x2V Mx. Amalgamating this

1The original theorem is stated so that H0 is a closed surface, but this assumption is never used in
the proof.
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generalized Heegaard splitting of B then produces a Heegaard splitting of B. Our
original Heegaard surface H is then an amalgamation of these Heegaard surfaces of
the blocks. ut
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