
Ruled Surface Theory and Incidence Geometry

Larry Guth

Abstract We survey the applications of ruled surface theory in incidence geometry.
We discuss some of the proofs and raise some open questions.

1 Introduction

In the last 5 years, there have been some interesting applications of ruled surface
theory in incidence geometry, which started in the work that Nets Katz and I did on
the Erdős distinct distance problem [5]. In this essay, we survey the role of ruled
surface theory in incidence geometry.

Ruled surface theory is a subfield of algebraic geometry. A ruled surface is an
algebraic variety that contains a line through every point. Ruled surface theory tries
to classify ruled surfaces and to describe their structure. The incidence geometry
questions that we study here are about finite sets of lines. A ruled surface can be
roughly thought of as an algebraic family of lines. Some of the questions in the two
fields are actually parallel, but they take place in two different settings – the discrete
setting and the algebraic setting. We will discuss a connection between these two
settings.

The applications of ruled surface theory are the most technical part of [5]. I wrote
a book about polynomial methods in combinatorics, [4], including a chapter about
applications of ruled surface theory. My goal in that chapter was to give a self-
contained proof of the results from [5] and to make the technical details as clean as
I could. In this essay, my goal is to give an overview – we will discuss some results,
some of the main ideas in the proofs, and some open problems.

Here is an outline of the survey. In Sect. 2, we discuss the combinatorial results
that have been proven using ruled surface theory. In Sect. 3, we sketch a proof of the
simplest result in Sect. 2. In the course of this sketch, we try to explain some tools
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from ruled surface theory and how those tools help us to understand combinatorial
problems. In Sect. 4, we discuss some open problems, exploring what other things
we could hope to learn about incidence geometry by using the theory of ruled
surfaces.

I would like to thank the anonymous referees for helpful suggestions.

2 Results and Open Questions

In [5], ruled surface theory is used to prove an estimate about the incidence geometry
of lines in R

3 (and this estimate eventually leads to estimates about the distinct
distance problem). Recall that if L is a set of lines, then a point x is an r-rich point
of L if x lies in at least r lines of L. We write Pr.L/ for the set of r-rich points of L.
The theorem says that a set of lines in R

3 with many 2-rich points must have some
special structure.

Before stating the theorem, we do a couple examples. Because any two lines
intersect in at most one point, a set of L lines can have at most

�L
2

�
2-rich points. A

generic set of lines in the plane achieves this bound. So a set of L lines in R
3 can

have at most
�L

2

�
2-rich points, and there is an example achieving this bound where

all the lines lie in a plane. This suggests the following question: if a set of L lines in
R

3 has on the order of L2 2-rich points, does it have to be the case that many of the
lines lie in a plane? Interestingly, the answer is no. The counterexample is based on
a degree 2 algebraic surface. Consider the surface defined by the equation

z � xy D 0:

This surface contains many lines. For any a 2 R, the surface contains the line
parametrized by

t 7! .a; t; at/:

Similarly, for any b 2 R, the surface contains the line parametrized by

t 7! .t; b; tb/:

If we choose L=2 values of a and L=2 values of b, we get a set of L lines contained
in our surface with L2=4 2-rich points. Any plane contains at most 2 of these lines.
The polynomial z�xy is not unique: there are many other degree 2 polynomials that
work equally well.

But in some sense, this is the only counterexample. If a set of L lines in R
3 has

many 2-rich points, then it must be the case that many of the lines lie in either a
plane or a degree 2 surface. Here is a precise version of this statement.
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Theorem 2.1 (Guth and Katz [5]) There is a constant K so that the following
holds. Suppose that L is a set of L lines in R

3. Then either

• jP2.L/j � KL3=2 or
• there is a plane or degree 2 algebraic surface that contains at least L1=2 lines of

L.

By using this theorem repeatedly, we can prove a stronger estimate, which
roughly says that if jP2.L/j is much bigger than L3=2, then almost all of the 2-rich
points “come from” planes or degree 2 surfaces.

Corollary 2.2 Suppose that L is a set of L lines in R
3. Then, there are disjoint

subsets Li � L so that

• For each i, the lines of Li lie in a plane or a degree 2 surface.
• jP2.L/ n [iP2.Li/j � KL3=2.

Proof We prove the corollary by induction on the number of lines. If jP2.L/j �
KL3=2, then we are done. Otherwise, by Theorem 2.1, there is a subset L1 � L, so
that jL1j � L1=2 and all the lines of L1 lie in a plane or degree 2 surface. We let
L0 D L n L1. By induction, we can assume the corollary holds for L0 – giving us
disjoint subsets Li � L0. Suppose that a point x is in P2.L/ n [iP2.Li/. Then either
x lies in a line from L1 and a line from L0, or else x 2 P2.L

0/ n [iP2.Li/. The lines
of L1 all lie in a plane or regulus, and each line of L0 intersects this plane or regulus
at most twice, so the number of points of the first type is at most 2L. By induction,
the number of points of the second type is at most KjL0j3=2 � K.L � L1=2/3=2. In
total, we see that

jP2.L/ n [iP2.Li/j � 2L C K.L � L1=2/3=2 � KL3=2;

closing the induction. (In the last step, we have to assume that K is sufficiently large,
say K � 100.) ut

Ruled surface theory plays a crucial role in the proof of Theorem 2.1. We will
explain how in the next section. Before doing that, we survey generalizations of
Theorem 2.1, discussing both known results and open problems.

The first question we explore is the choice of the field R. Does the same result
hold over other fields? This question was answered by Kollar in [11]. He first proved
that Theorem 2.1 holds over any field of characteristic zero. Next he addressed fields
of finite characteristic. As stated, Theorem 2.1 does not hold over finite fields. There
is a counterexample over the field Fq when q is not prime – see [3] for a description
of this example. Nevertheless, Kollar proved that Theorem 2.1 does hold over fields
of finite characteristic if we add a condition on the number of lines.

Theorem 2.3 (Corollary 40 in [11]) Suppose that k is any field. Suppose that L is
a set of L lines in k3. If the characteristic of k is p > 0, then assume in addition that
L � p2. Then either

• jP2.L/j � KL3=2 or
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• there is a plane or degree 2 algebraic surface that contains at least L1=2 lines
of L.

(In particular, this implies that Theorem 2.1 holds over prime finite fields Fp. The
reason is that jP2.L/j � jF3

pj D p3. So if L � p2, then jP2.L/j � L3=2 trivially, and
if L � p2, then Theorem 2.3 applies.)

For context, we compare this situation with the Szemerédi–Trotter theorem, the
most fundamental theorem in incidence geometry. The Szemerédi–Trotter theorem
says that for a set of L lines in R

2, the number of r-rich points is . L2r�3CLr�1. This
theorem is also true over C2, but the proof is much harder – cf. [25] and [26]. The
situation over finite fields is not understood and is a major open problem, cf. [1]. In
contrast, Theorem 2.3 works equally well over any field. This makes the finite field
case of Theorem 2.3 particularly interesting and useful. For instance, Rudnev [18]
and Roche–Newton–Rudnev–Shkredov [17] have applied Theorem 2.3 to prove new
bounds about the sum-product problem in finite fields. The preprint [19] discusses
some other combinatorial problems that can be addressed using Theorem 2.3.

The second question we explore is the role of lines. What happens if we replace
lines by circles? Or by other curves in R

3? In [6], Josh Zahl and I proved a version
of Theorem 2.1 for algebraic curves of controlled degree.

Theorem 2.4 ([6]) For any d there are constants C.d/; c1.d/ > 0 so that the
following holds. Suppose that k is any field. Suppose that � is a set of L irreducible
algebraic curves in k3 of degree at most d. If the characteristic of k is p > 0, then
assume in addition that L � c1.d/p2. Then either

• jP2.L/j � C.d/L3=2 or
• there is an algebraic surface of degree at most 100d2 that contains at least L1=2

curves of L.

There are a couple reasons why I think it is natural to consider various algebraic
curves instead of just straight lines. One reason is that the proof is closely based on
algebraic geometry. Once we have a good understanding of the ideas involved, they
apply naturally to all algebraic curves. A second reason is that this more general
result will probably have more applications. For instance, we recall a little about
the distinct distance problem in the plane. In [2] Elekes and Sharir suggested an
interesting new approach to the problem, connecting distinct distances in the plane
to problems about the incidence geometry of some degree 2 algebraic curves in R

3.
In [5], there is a clever change of coordinates so that these degree 2 curves become
lines, and then Theorem 2.1 applies to bound the number of 2-rich points. It appears
to me that this clever change of coordinates was rather fortuitous. I believe that
most problems about algebraic curves cannot be reduced to the straight line case by
a change of coordinates, and I think that when results along the lines of Theorem 2.4
arise in applications, the curves involved will only sometimes be straight lines.
Theorem 2.4 applies to the problem about degree 2 curves from [2], and I think
it will probably have more applications in the future.
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The third question that we discuss is what happens in higher dimensions. The
situation in higher dimensions is not yet understood. The following conjecture
seems natural to me. (Similar questions were raised in [21] and [27]).

Conjecture 2.5 Let k be any field. Suppose that � is a set of L irreducible algebraic
curves in kn, of degree at most d. If the characteristic of k is p > 0, then also assume
that L � pn�1. Then either

• jP2.�/j � C.d; n/L
n

n�1 or
• There is a dimension 2 � m � n � 1, and an algebraic variety Z of dimension m

and degree at most D.d; n/ so that Z contains at least L
m�1
n�1 curves of � .

There is some significant progress on this conjecture in four dimensions. In [22],
Sharir and Solomon prove estimates for r-rich points of a set of lines in R

4. These
estimates only apply for fairly large r, not r D 2, so they don’t literally address this
conjecture, but they establish sharp bounds in a similar spirit for larger values of r.
In [7], Josh Zahl and I prove a slightly weaker estimate of this form for algebraic
curves in R

4. So far nothing close to this conjecture is known for lines in C
4 or

over F4
p. Moreover, nothing close to this conjecture is known in higher dimensions.

I think that this is a natural question, and that if it is true, it would probably have
significant applications. If it is false, that would also be interesting, and it would
point to new subtleties in incidence geometry in higher dimensions.

In the next section, we discuss the proofs of the known results. Afterwards, we
come back and discuss how much these proofs can tell us about higher dimensions,
and what new issues arise.

3 How Does Ruled Surface Theory Help in the Proof

In this section, we discuss some of the ideas in the proofs of the results from the last
section. The ideas we want to discuss are easiest to explain over C, so we first state
a version of Theorem 2.1 over C.

Theorem 3.1 There is a large constant K so that the following holds. Suppose that
L is a set of L lines in C

3. Then either

• jP2.L/j � KL3=2 or
• there is a plane or degree 2 algebraic surface that contains at least L1=2 lines

of L.

To get started, we think a little about the role of planes and degree 2 algebraic
surfaces. What is special about planes and degree 2 algebraic surfaces that makes
them appear here? Planes and degree 2 surfaces are doubly ruled. A ruled surface is
an algebraic surface that contains a line through every point. A doubly ruled surface
is a surface that contains two distinct lines through every point.
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At this point, we can say a little about the connection between ruled surface
theory and incidence geometry. A doubly ruled surface can be roughly thought of
as an algebraic family of lines with many 2-rich points. In incidence geometry, one
tries to classify finite sets of lines with many 2-rich points. In ruled surface theory,
one tries to classify doubly ruled surfaces – that is, algebraic families of lines with
many 2-rich points. To prove Theorem 3.1, we begin with a finite set of lines with
many 2-rich points, and we build around it a whole doubly ruled surface. Tools from
ruled surface theory help to build this surface and they help to analyze the surface
once it is built, ultimately leading to information about the original finite set of lines.

Doubly ruled algebraic surfaces in C
3 were classified in the nineteenth century.

It turns out that planes and degree 2 surfaces are the only irreducible doubly ruled
surfaces. These surfaces appear in the statement of Theorem 3.1 because they are the
only irreducible doubly ruled surfaces. Roughly speaking, a doubly ruled surface is
an algebraic family of lines with many 2-rich points. Theorem 3.1 is telling us that a
finite configuration of lines with many 2-rich points must be related to an algebraic
family of lines with many 2-rich points.

At this point, let us pause to review some vocabulary from algebraic geometry
that we will use in the rest of the essay. After we set up this vocabulary, we can state
things precisely, starting with the classification of doubly ruled surfaces in C

3.
An algebraic set in C

n is the set of common zeroes of a finite list of polynomials
in CŒz1; : : : ; zn�. An algebraic set is called reducible if it is the union of two proper
algebraic subsets. Otherwise it is called irreducible. An irreducible algebraic set in
C

n is also called an affine variety.
Any affine variety V in C

n has a dimension. The dimension of V is the largest
number r so that there is a sequence of proper inclusions of non-empty varieties
V0 � : : : � Vr D V . The dimension of an algebraic set in C

n is the maximum
dimension of any irreducible subset. An algebraic curve is a variety of dimension 1.

Using the dimension, we can define a useful notion of the generic behavior of
points in a variety. We say that a generic point of an algebraic variety V obeys
condition .X/ if the set of points p 2 V where .X/ does not hold is contained
in an algebraic subset E � V with dimE < dimV . For instance, we say that a
2-dimensional algebraic variety † � C

3 is generically doubly ruled if there is a
1-dimensional algebraic set � � †, and every point of † n � is contained in two
lines in †.

An affine variety also has a degree. There is a non-trivial theorem which says
that for any affine variety V in C

n there is unique choice of r and d so that a generic
.n � r/-plane in C

n intersects V in exactly d points. The value of r is the dimension
of V , as defined above. The value of d is called the degree of V .

There is a nice short summary of facts about dimension and degree in Section 4 of
[24], which contains everything we have mentioned here. A fuller treatment appears
in Harris’s book on algebraic geometry [8].

This is all the terminology that we will need, and we now return to discussing
doubly ruled surfaces. We can now state a classification theorem for double ruled
surfaces in C

3.
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Theorem 3.2 (Classification of doubly ruled surfaces, cf. Proposition 13.30 in
[4]) Suppose that P 2 CŒz1; z2; z3� is an irreducible polynomial and that Z.P/ is
generically doubly ruled. Then P has degree 1 or 2, and so Z.P/ is a plane or a
degree 2 algebraic surface.

There are three somewhat different proofs of Theorem 3.1 in the literature – in
[5], in [11], and in [6]. All three proofs use ruled surface theory in a crucial way, and
this is the aspect that we will focus on. Other parts of the argument are somewhat
different in the three proofs. The proof I want to outline here is the one from [6].
Another reference is my book on polynomial methods in combinatorics, [4], which
will be published in the near future by the AMS. In the chapter on ruled surfaces in
[4], I give a detailed proof of Theorem 3.1 using this method.

For this sketch, let us suppose that each line of L contains about the same number
of 2-rich points. This is the most interesting case of Theorem 3.1. So each line
contains about KL1=2 points of P2.L/. I want to highlight three stages in the proof,
which I discuss in three subsections.

3.1 Degree Reduction

The first step of the argument is to find a (non-zero) polynomial P that vanishes on
the lines of L with a good bound on the degree of P. For reference, given any set
of N points in C

3, there is a non-zero polynomial that vanishes on all these points
with degree at most about N1=3. For a generic set of points, this bound is sharp. By
a similar argument, for any set of L lines in C

3, there is a non-zero polynomial that
vanishes on the lines with degree at most about L1=2. For a generic set of lines, this
bound is also sharp.

Given that each line of L contains about KL1=2 lines of P2.L/, we show that there
is a non-zero polynomial P vanishing on all the lines of L with degree O.K�1L1=2/.
As long as K is large enough, this degree is well below the degree required for a
generic set of lines. This shows that, compared to a generic set of lines, the set L
has a little algebraic structure.

Even though the degree of P is only a little smaller than the trivial bound L1=2,
this small improvement turns out to be a crucial clue to the structure of L, and
it eventually leads to a much more precise description of P: P is a product of
irreducible polynomials of degrees 1 and 2. Once we know this structure for the
polynomial P, the conclusion of the theorem is easy: the lines of L are contained in
O.K�1L1=2/ planes and degree 2 algebraic surfaces. By pigeonholing, one of these
surfaces must contain at least L1=2 lines of L.

Here is the idea of the degree bound for P. We randomly pick a subset L0 � L
with L0 � L lines, where L0 is a parameter that we can tune later. Then we find a
non-zero polynomial P that vanishes on the lines of L0 with degree at most C.L0/1=2.
(We will eventually choose L0 so that this bound is CK�1L1=2.) If L0 is big enough,
then with high probability the polynomial P actually vanishes on all the lines of L.
Here is the mechanism that makes this vanishing happen, which I call contagious
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vanishing. By hypothesis, each line l 2 L contains at least KL1=2 2-rich points of L.
With high probability many of these points will lie in lines of L0. The polynomial P
vanishes at every point where l intersects a line of L0. If the number of these points
is more than the degree of P, then P must vanish on the line l also. If we choose L0
carefully, then this mechanism will force P to vanish on all the lines of L. Carrying
out the details of this argument, the numbers work out so that the degree of P is at
most CK�1L1=2 – cf. Proposition 11.5 in [4].

At this point, we factor P into irreducible factors P D Q
j Pj. Each line of L must

lie in Z.Pj/ for at least one j. We let Lj � L be the set of lines of L that lie in Z.Pj/.
We subdivide the 2-rich points as

P2.L/ D [jP2.Lj/
[

“mixed 2-rich points”;

where a mixed 2-rich point is the intersection point of some line l 2 Lj with some
line l0 … Lj. A line not in Lj can intersect Z.Pj/ at most DegPj times. Therefore,
the total number of mixed 2-rich points is at most L.

P
j DegPj/ D LDegP D

O.K�1L3=2/, only a small fraction of the total number of 2-rich points. By factoring
the polynomial P we have broken the original problem of understanding L into
essentially separate subproblems of understanding each set Lj.

The most difficult case is when P is irreducible. The general case can be reduced
to this case by studying the set of lines Lj and the polynomial Pj. From now on we
assume that P is irreducible. It remains to show that P has degree 1 or 2.

3.2 Ruled Surface Theory

In this subsection, we discuss some tools from ruled surface theory and how they
help up to understand the polynomial P in our proof sketch.

At this point, we know that there is a polynomialP that vanishes on the lines of L
with degree significantly smaller than L1=2, and we are focusing on the case where
P is irreducible. Using this little bit of structure, we are going to find out a lot more
about the polynomial P and its zero set Z.P/. Ultimately, we will see that P has
degree 1 or 2. In this subsection, we sketch how to prove that Z.P/ is generically
doubly ruled.

For each 2-rich point x 2 P2.L/, the point x lies in two lines in Z.P/. Since L
has many 2-rich points, we know that there are many points in Z.P/ that lie in two
lines in Z.P/ – there are many points where Z.P/ “looks doubly-ruled”. Based on
this we will show that almost every point of Z.P/ lies in two lines in Z.P/. Loosely
speaking, the property of “looking doubly-ruled” is contagious – it spreads from the
2-rich points of L and fills almost every point of Z.P/. The tools to understand why
this property is contagious come from ruled surface theory.

The first topic from ruled surface theory that we introduce is flecnodal points. A
point z 2 Z.P/ is flecnodal if there is a line l through z which is tangent to Z.P/
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to third order. Here is a more formal definition, which also makes sense if z is a
singular point of Z.P/, where it’s not immediately obvious what tangent to Z.P/

means. A point z 2 Z.P/ is flecnodal if there is a line l with tangent vector v so that

0 D P.z/ D @vP.z/ D @2
vP.z/ D @3

vP.z/:

Here we write @v for the directional derivative in direction v:

@v WD
3X

iD1

vi
@

@zi
;

and we write @kv to denote repeatedly applying this differentiation – for instance,

@2
vP WD @v .@vP/ :

If a point z lies in a line in Z.P/, then it follows immediately that z is flecnodal.
Flecnodal points are useful because they also have a more algebraic description. A
basic theme of algebraic geometry is to take any geometric property of a surface,
and describe it in an algebraic way, in terms of the vanishing of some polynomials.

Theorem 3.3 (Salmon [20] Art. 588 pages 277–78) For any polynomial P 2
CŒz1; z2; z3�, there is a polynomial FlecP 2 CŒz1; z2; z3� so that

• A point z 2 Z.P/ is flecnodal if and only if FlecP.z/ D 0.
• Deg FlecP � 11 DegP.

(For some discussion of the history of this result, see the paragraph after
Remark 12 in [11].)

Our goal is to connect 2-rich points and doubly-ruled surfaces, so we introduce
a doubly-ruled analogue of being flecnodal. We say that a point z 2 Z.P/ is doubly
flecnodal if there are two (distinct) lines l1; l2 through z, with tangent vectors v1; v2,
so that for each i D 1; 2,

0 D P.z/ D @viP.z/ D @2
vi
P.z/ D @3

vi
P.z/:

Doubly flecnodal points were first introduced in [6] and [4]. There is an analogue
of Salmon’s theorem for doubly flecnodal polynomials – cf. Proposition 13.3 in [4].
It is a little more complicated to state. Instead of one flecnodal polynomial, there is
a finite list of them.

Theorem 3.4 There are universal constants J and C so that the following holds.
For any polynomial P 2 CŒz1; z2; z3�, there is a finite list of polynomials Flec2;j P,
with 1 � j � J, and a Boolean function ˆ W f0; 1gJ ! f0; 1g so that the following
holds.

• For each j, Deg Flec2;j P � C DegP.
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• Let V2;jP.z/ be equal to zero if Flec2;j P.z/ D 0 and equal to 1 otherwise. Then
z is a doubly flecnodal point of Z.P/ if and only if

ˆ .V2;1P.z/; : : : ;V2;JP.z// D 0:

This theorem sounds more complicated than Salmon’s theorem, but in the
applications we’re about to describe, it is essentially equally useful.

Because flecnodal and doubly flecnodal points have this algebraic description,
they behave contagiously. We start with the flecnodal points and then discuss the
doubly flecnodal points. We know that each line contains KL1=2 2-rich points of
L. At each of these points, FlecP vanishes. The degree of P is at most CK�1L1=2,
and the degree of FlecP is at most 11 DegP � C0K�1L1=2. As long as we choose
K large enough, the number of points is larger than Deg FlecP and it follows that
FlecP vanishes along each line of L. Actually, since the lines of L are contained in
Z.P/, we already know that every point of each line is flecnodal, but we included the
last discussion as a warmup for doubly flecnodal points. Now we know that FlecP
vanishes on all L lines of L. By a version of the Bezout theorem (cf. Theorem 6.7
in [4]), Z.P/ \ Z.FlecP/ can contain at most DegP � Deg FlecP lines, unless P and
FlecP have a common factor. Because DegP and Deg FlecP are much less than
L1=2, we see that P and FlecP must indeed have a common factor. Since P is
irreducible, P must divide FlecP. Therefore FlecP vanishes on Z.P/, and every
point of Z.P/ is flecnodal!

Doubly flecnodal points are contagious for a similar reason. We just do the first
step of the argument. There are J polynomials Flec2;j P. For each point z, there
are 2J possible values for the vector .V2;1P.z/; : : : ;V2;JP.z//. Fix a line l 2 L.
By hypothesis, l contains at least KL1=2 points of P2.L/. Now, by the pigeonhole
principle, we can find a vector � 2 f0; 1gJ and a subset X� � P2.L/ \ l so that

• for each point z 2 X� , V2;jP.z/ D �j.
• jX� j � 2�JKL1=2.

Because every point of X� is doubly flecnodal, we see that ˆ.�/ D 0. We choose
the constant K significantly larger than 2�J , and so jX� j > Deg Flec2;j P for each
j. Therefore, if �j D 0, then Flec2;j P vanishes on the whole line l. If �j D 1, then
Flec2;j P does not vanish on the whole line l, and so it vanishes at only finitely many
points of l. Therefore, for almost every z 2 l, Flec2;j P.z/ vanishes if and only if
�j D 0. In other words, at a generic point of the line l, V2;jP.z/ D �j. Therefore, at
a generic point of l, ˆ.V2;1P.z/; : : : ;V2;JP.z// D ˆ.�/ D 0, and so a generic point
of l is doubly flecnodal. Next, by making a similar argument to the flecnodal case
above, one can show that a generic point of Z.P/ is doubly flecnodal.

We have now sketched the proof that Z.P/ is generically doubly flecnodal. We
are starting to see how the combinatorial information that L has many 2-rich points
implies that Z.P/ must have a special structure.

Just because a point z 2 Z.P/ is flecnodal, it doesn’t mean that z lies in a line
in Z.P/. For instance, let P be the polynomial P.z/ D z10

1 C z10
2 C z12

3 � 1 and let
z be the point .1; 0; 0/ 2 Z.P/. If l is a line through z parallel to the .z2; z3/-plane,
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then l is tangent to Z.P/ to ninth order. So there are infinitely many different lines
through z that are tangent to Z.P/ to ninth order, but none of them lies in Z.P/. This
kind of behavior can indeed occur at some special points of Z.P/, but it turns out
that it cannot happen at a generic point of Z.P/.

Theorem 3.5 (Cayley–Salmon–Monge) If P 2 CŒz1; z2; z3�, and if every point of
Z.P/ is flecnodal, then Z.P/ is a ruled surface – every point of Z.P/ lies in a line in
Z.P/.

(For the history of this theorem and a sketch of the proof, see the discussion
around Theorem 13 in [11].)

There is also a version of this result for doubly flecnodal points (and in fact it is
a little easier):

Theorem 3.6 (cf. Proposition 13.30 in [4]) If P 2 CŒz1; z2; z3�, and if Z.P/ is
generically doubly flecnodal, then Z.P/ is generically doubly ruled.

This theorem implies that our surface Z.P/ is generically doubly ruled.
There are several sources to read more about ruled surface theory and about

the details of the arguments we have sketched here. I tried to write readable self-
contained proofs in the chapter on ruled surface theory in [4]. In Kollar’s paper [11],
there is a discussion of the proof of Theorem 3.5 and also some history. In Katz’s
ICM talk [10], there is another discussion of the proof of Theorem 3.5. Finally, [6]
gives a quite different proof of Theorem 3.5 which generalizes to algebraic curves
in place of straight lines. For ruled surfaces in general, the referee suggested the
classical work of Plucker [15] and the modern book [16].

This may be a good moment to say a bit more about the theorem in [6]. Suppose
that � is a set of L circles in R

3. For the case of circles, what kind of surfaces
should play the role of planes and degree 2 surfaces? We say that a surface Z.P/

is generically doubly ruled by circles if a generic point of Z.P/ lies in two distinct
circles in Z.P/. In [6], it is proven that either jP2.�/j � KL3=2 or � contains at
least L1=2 circles in an algebraic surface Z.P/ which is generically doubly ruled by
circles. The same holds if circles are replaced by other classes of curves, such as
parabolas, degree 3 curves, etc. The proof follows the same outline that we have
given here, and the main difficulty in the paper is to generalize the tools of ruled
surface to other classes of curves.

The definition of flecnodal and doubly flecnodal involve three derivatives. The
reader may wonder why we use three derivatives. In fact, using more than three
derivatives would also work. Using r derivatives instead of three derivatives, we can
define r-flecnodal points and doubly r-flecnodal points. Theorem 3.4 holds for any
choice of r – only the constants C and J depend on r – cf. Proposition 13.3 in
[4]. Three derivatives is the minimum number of derivatives necessary to prove
Theorems 3.5 and 3.6. These theorems would be false if we assumed that only
two derivatives vanish. Here is a dimensional heuristic why three derivatives are
important (suggested by the referee). Fix a point z in Z.P/. In three dimensions, the
space of lines through x is a 2-dimensional space. If we insist that r derivatives
of P vanish in the tangent direction of a line, this gives us r equations on the
space of lines. For r D 2, dimensional heuristics suggest that there will typically
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be such a line. But for r D 3, dimensional heuristics suggest that there will not
be typically be such a line. Indeed the theory of ruled surfaces shows that these
heuristics are correct – for a generic polynomial P 2 CŒz1; z2; z3�, every point of
Z.P/ is 2-flecnodal, but the subset of 3-flecnodal points is a lower-dimensional
subvariety.

3.3 Classification of Doubly Ruled Surfaces

At this point in our sketch, we have shown that Z.P/ is generically double ruled,
and we know that P is irreducible. To finish the proof of Theorem 3.1, we have to
prove that P has degree 1 or 2. This follows from the classification of (generically)
doubly ruled surfaces in Theorem 3.2.

To end our sketch, we briefly discuss the proof of the classification Theorem 3.2.
In fact, there is a more general classification theorem for degree d algebraic curves,
which we discuss at the same time.

Theorem 3.7 ([6]) Suppose that P 2 CŒz1; z2; z3� is an irreducible polynomial, and
that Z.P/ is generically doubly ruled by algebraic curves of degree at most d. Then
DegP � 100d2.

Because a generic point of Z.P/ lies in two algebraic curves in Z.P/, it is not hard
to find many algebraic curves in Z.P/ that intersect each other in many places. More
precisely, we can find two arbitrarily large families of curves �1;i and �2;j in Z.P/, so
that for each pair i; j, �1;i intersects �2;j, and all the intersection points are distinct –
cf. Lemma 11.8 in [6]. The proof strongly uses the fact that Z.P/ is 2-dimensional.
The idea of the argument is to study the curves passing through a small ball in Z.P/.
For the sake of this sketch, let us suppose that each point z 2 Z.P/ lies in exactly two
algebraic curves of degree d, �1.z/ and �2.z/. Let us suppose that these curves vary
smoothly with z, and let us suppose that �1.z/ and �2.z/ intersect transversely at z.
(This is the moment where we use that the dimension of Z.P/ is 2 – if the dimension
of Z.P/ is greater than 2, then two curves can never intersect transversely.) We fix a
smooth point z0 2 Z.P/, and then we let zi and wj be a generic sequence of points of
Z.P/ very close to z0. The curves �1;i and �2;j are just �1.zi/ and �2.wj/. Since zi and
wj are very close to z0, then �1;i and �2;j are small perturbations of �1.z0/ and �2.z0/.
Since �1.z0/ and �2.z0/ intersect transversely at z0, then �1;i and �2;j must intersect
at a point close to z0.

Once we have the curves �1;i and �2;j we can bound the degree of P by using a
contagious vanishing argument. For any degree D, we can choose a polynomial Q
of degree at most D that vanishes on roughly D2d�1 of the curves �1;i. On the other
hand, if �2;j does not lie in Z.Q/, then Q can vanish on at most dD points of �2;j.
We choose D so that D2d�1 � dD. Choosing D D 100d2 is big enough. Since Q
vanishes on D2d�1 curves �1;i, it vanishes at D2d�1 points of each curve �2;j, and
so it vanishes on each curve �2;j. Now we see that Z.Q/ \ Z.P/ contains infinitely
many algebraic curves �2;j. By the Bezout theorem, P and Q must have a common
factor. Since P is irreducible, P must divide Q. But then DegP � DegQ � 100d2.
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This degree reduction argument is essentially the same as the one in Sect. 3.1, but
we get a better bound for the degree because the curves �1;i and �2;j have so many
2-rich points. Here is a big picture summary of the proof of Theorem 3.1. First
we used the combinatorial information to prove that the set of lines L has a little
algebraic structure – the lines lie in Z.P/ where the degree of P is a bit smaller than
for generic lines. If P is reducible, we divide the problem into essentially disjoint
subproblems, and we assume from now on that P is irreducible. Second, we use the
degree bound on P and the combinatorial information about the lines to prove that
Z.P/ is generically doubly ruled. So our finite set of lines L fits into an algebraic
family of lines with many 2-rich points. Third, we extend L by adding a lot of other
lines from the surface Z.P/. By doing this, we can amplify the number of 2-rich
points. We get a new set of N � L lines in Z.P/ with around N2 2-rich points.
Finally, we apply degree reduction to this bigger set of lines, and we get a much
stronger estimate for the degree of P.

4 Thoughts About Higher Dimensions

In this last section, we reflect on how much ruled surface theory can tell us about
incidence geometry in higher dimensions, and we point out some open problems.
What happens if we try to adapt the proof of Theorem 3.1 that we just sketched
to higher dimensions? We broke the proof of Theorem 3.1 into three stages. We
discuss each stage, but especially focusing on the last stage – the classification of
doubly ruled surfaces.

We suppose that L is a set of L lines in C
n. We suppose that jP2.L/j � KL

n
n�1 .

We also make the minor assumption that each line contains about the same number
of 2-rich points: so each line contains at least KL

1
n�1 points of P2.L/.

4.1 Degree Reduction

The degree reduction stage works in any dimension. In n dimensions, for any set of
N points, there is a polynomial of degree at most CnN1=n vanishing on the set, and
this bound is sharp for generic sets. For any set of L lines, there is a polynomial of
degree at most CnL

1
n�1 vanishing on each line, and this bound is sharp for generic

sets of lines. But if each line of L contains at least KL
1

n�1 2-rich points of L, then
there is a polynomialP vanishing on the lines of L with degree at most CnK

�1
n�2 L

1
n�1 .

So we see that in any number of dimensions, if K is large enough then L has some
algebraic structure. I think this suggests that it is a promising avenue to try to study
L using algebraic geometry.
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4.2 Ruled Surface Theory

Some of the tools we used in the second stage have generalizations to higher
dimensions. Landsberg [12] has proven a version of Theorem 3.5 in any number
of dimensions. Sharir and Solomon [22] generalized the flecnode polynomial to
four dimensions and proved the four-dimensional analogue of Theorem 3.3. Double-
flecnode polynomials have so far only been defined in three dimensions. In higher
dimensions, there is one technical point which will be more difficult. In C

n, there are
doubly ruled varieties of every dimension between 2 and n � 1. Therefore, it is not
enough to consider algebraic hypersurfaces, which can be written in the form Z.P/

for a single polynomialP – we have to consider algebraic varieties of all dimensions.
If one could generalize the methods in this second stage to higher dimensions, it
might be possible to prove the following conjecture.

Conjecture 4.1 Suppose that L is a set of L lines in Cn. Then either

• jP2.L/j � C.n/L
n

n�1 or
• There is a dimension 2 � m � n � 1, and a generically double-ruled affine

variety Z of dimension m so that Z contains at least L
m�1
n�1 lines of L. (Recall that

an affine variety is irreducible by definition.)

We can generalize this conjecture to algebraic curves as follows.

Conjecture 4.2 Suppose that � is a set of L irreducible algebraic curves in C
n of

degree at most d. Then either

• jP2.�/j � C.d; n/L
n

n�1 or
• There is a dimension 2 � m � n � 1, and an (irreducible) affine variety Z of

dimension m which is generically doubly ruled by algebraic curves of degree at
most d and contains at least L

m�1
n�1 curves of � .

If Conjectures 4.1 and/or 4.2 is true, it would point to a strong connection
between incidence geometry and ruled surface theory. On the other hand, it would
probably not be useful in applications unless we could also prove a classification of
doubly ruled varieties – at least a very rough classification. So let us turn now to the
problem of the classification of doubly ruled varieties.

4.3 Classification of Doubly Ruled Varieties

The classification of doubly ruled surfaces in C
3 was fairly simple, but in higher

dimensions, this part of the problem may become a lot more complex. I would like
to propose a question about doubly ruled varieties that could be useful to understand
for applications to incidence geometry.

To get started, we might ask, if Ym � C
n is a generically doubly ruled

(irreducible) variety, does it follow that DegY � C.n/? The answer to this question
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is no. It may happen that every point of Y lies in a 2-plane in Y. Such a variety is
clearly doubly ruled, and it may have an arbitrarily high degree. For a high degree
example, suppose that Y is a graph of the form

z4 D P1.z3/z1 C P2.z3/z2 C Q.z3/;

where P1;P2; and Q are polynomials of high degree. If w D .w1;w2;w3;w4/ 2 Y,
then w lies in the following 2-plane in Y:

z3 D w3I z4 D P1.w3/z1 C P2.w3/z2 C Q.w3/:

If P1;P2, or Q have high degree, then Y will have high degree also. (Also the
algebraic set Y is in fact irreducible for any chocie of P1;P2;Q.)

Suppose for a moment that the variety Y that we find in the second stage is a
graph of this form, and suppose for simplicity that every line of L lies in Y. For a
typical P1;P2;Q, every line in Y is contained in one of the planes above. Suppose
for a moment that our variety Y has this convenient property. Then we can separate
the lines of L into subsets corresponding to different 2-planes. Since each line of
L contains at least KL

1
n�1 2-rich points, one of the 2-planes must contain at least

KL
1

n�1 lines of L, and this satisfies the conclusion of Conjecture 2.5.
I don’t know whether there are more exotic examples of doubly ruled varieties

than this one. Let me introduce a little vocabulary so that I can make an exact
question. We say that a variety Y is ruled by varieties with some property .�/ if
each point y 2 Y, lies in a variety X � Y where X has property .�/. We say that a
variety Y is doubly ruled by varieties with property .�/ if each point y lies in two
distinct varieties X1;X2 � Y with property .�/. We say that Y is generically ruled
by varieties with property .�/ if a generic point y 2 Y lies in a variety X � Y with
property .�/, and so on.

Question 4.3 Suppose that Y � C
n is a variety which is generically doubly ruled

(by lines). Does it follow that Y is generically ruled by varieties with dimension at
least 2 and degree at most C.n/?

To the best of my knowledge this question is open. Noam Solomon pointed me
to a relevant paper in the algebraic geometry literature by Mezzetti and Portelli [14].
Under a technical condition, this paper gives a classification of doubly ruled 3-
dimensional varieties in CP

4 – see Theorem 0.1. The technical condition is that the
Fano scheme of lines of Y is generically reduced. If Y is generically doubly ruled and
obeys this condition, then the classification from Theorem 0.1 of [14] implies that
either Y has degree at most 16 or Y is generically ruled by 2-dimensional varieties
of degree at most 2.

We can also pose more general questions in a similar spirit to Question 4.3.

Question 4.4 Suppose that Y � C
n is generically doubly ruled by (irreducible)

algebraic curves of degree at most d. Does it follow that Y is generically ruled by
varieties with dimension at least 2 and degree at most C.d; n/?
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Question 4.5 Suppose that Y � C
n is generically doubly ruled by varieties of

dimension m and degree at most d. Does it follow that Y is generically ruled by
varieties with dimension at least m C 1 and degree at most C.d;m; n/?

If the answers to Questions 4.3 and 4.4 are affirmative, then I think it would be
promising to try to prove Conjecture 2.5 using tools from ruled surface theory. If the
answer to Question 4.3 is no, then it means that there are some exotic doubly ruled
varieties Y � C

n. These varieties would be a potential source of new examples in
incidence geometry, and could possibly lead to counterexamples to Conjecture 2.5.

For a given variety Y containing many lines, it looks interesting to explore
incidence geometry questions for sets of lines in Y. This circle of questions was
raised by Sharir and Solomon in [22]. In particular, they raised the following
question.

Question 4.6 Suppose that Y is the degree 2 hypersurface in R
4 defined by the

equation

x1 D x2
2 C x2

3 � x2
4:

For a given r, what is the maximum possible size of jPr.L/j?
This question was studied by Solomon and Zhang in [23], building on earlier

work of Zhang [27]. They constructed an example with many r-rich points.
Counting the number of r-rich points in the example is non-trivial and they used
tools from analytic number theory to do so. Their construction gives 	 L3=2r�3 r-
rich points. Since a generic point of Y lies in infinitely many lines in Y, it is easy to
produce examples with 	 Lr�1 r-rich points, so their example is interesting when r
is smaller than L1=4. The best known upper bound on jPr.L/j is based on a random
projection argument. Rudnev used a closely related random projection argument in
[18] – cf. the bottom of page 6 of [18]. We note that Y does not contain any 2-plane.
Since Y is the zero set of a degree 2 polynomial, the intersection of Y with a 2-plane
may contain at most two lines. Therefore, we see that L contains at most two lines in
any 2-plane. Now we let L0 be the projection of L to a generic 3-plane. For a generic
choice of the projection we see that jL0j D jLj, jPr.L

0/j D jPr.L/j, and L0 contains
at most two lines in any 2-plane. We then bound jPr.L

0/j using Theorem 4.5 from
[5], giving the bound jPr.L/j D jPr.L

0/j . L3=2r�2 C Lr�1. There is a large gap
between the upper and lower bounds. The random projection argument does not
seem to use much of the structure of Y: as Rudnev points out in [18], the space of
lines in R

3 is 4-dimensional while the space of lines in Y is only 3-dimensional.
We can ask the same question over the complex numbers. The example of [23] is

still the best lower bound. For upper bounds, the random projection argument still
works, but Theorem 4.5 from [5] is not known over the complex numbers. In the
complex case, the best upper bound comes from applying Theorem 2 of [11], giving
the bound jPr.L/j . L3=2r�3=2 C Lr�1.

In Question 4.6, the interesting case is when r > 2. The variety Y contains the
subvariety x1 D x2

3 � x2
4, x2 D 0. It is not difficult to construct a set of L lines in this

subvariety with L2=4 2-rich points by modifying the example at the start of Sect. 2.
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But for cubic hypersurfaces, it looks hard to estimate the number of 2-rich points.
For example, we can ask the following question.

Question 4.7 Suppose that Y is the degree 3 hypersurface in C
4 defined by the

equation

z3
1 C z3

2 C z3
3 C z3

4 D 1:

Suppose that L is a set of L lines in Y. What is the maximum possible size of P2.L/?
(I believe that a generic point of this cubic hypersurface Y lies in six lines in Y.

Here is a heuristic argument for this guess. Fix a point p 2 Y and translate the
coordinate system so that p D 0. In the new coordinate system, Y is given as the
zero set of a polynomial P of the form P D P3.z/ C P2.z/ C P1.z/, where Pi.z/ is
homogeneous of degree i. (There is no zeroth order term because we have arranged
that 0 2 Z.P/ and so P.0/ D 0.) For a non-zero z, the line from 0 through z lies
in Y D Z.P/ if and only if P3.z/ D P2.z/ D P1.z/ D 0. So the set of lines in Y
through p is given by intersecting a degree 3 hypersurface, a degree 2 hypersurface,
and a degree 1 hypersurface in CP

3. For a generic choice of these hypersurfaces,
the intersection will consist of six elements of CP3, and I believe that this occurs at
a generic point of Y.)

Note that it does matter which cubic hypersurface we consider. The cubic
hypersurface z4 D z1z2z3 contains a 2-dimensional degree 2 surface defined by
z3 D 1, z4 D z1z2, and this surface contains L lines with L2=4 2-rich points, as in
the example at the start of Sect. 2. I believe that the cubic hypersurface z3

1 C z3
2 C

z3
3 C z3

4 D 1 does not contain any 2-dimensional variety of degree 2. If this is the
case, then we can get a non-trivial upper bound by a random projection argument.
By a version of the Bezout theorem, the intersection of Y with any degree 2
2-dimensional variety will contain at most 6 lines. Randomly projecting L to C

3,
we get a set of lines L0 with at most 6 lines of L0 in any 2-plane or degree 2 surface.
Then applying Theorem 3.1, we see that jP2.L/j D jP2.L

0/j . L3=2. But I suspect
that the maximum size of jP2.L/j is much smaller than L3=2.

I think that these questions about lines in low degree varieties are a natural
direction of research in incidence geometry. If there are more exotic doubly-ruled
varieties Y, then it would also be natural to study analogous questions for them.
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