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Abstract The induced Ramsey number rind.F/ of a k-uniform hypergraph F is
the smallest natural number n for which there exists a k-uniform hypergraph
G on n vertices such that every two-coloring of the edges of G contains an
induced monochromatic copy of F. We study this function, showing that rind.F/

is bounded above by a reasonable power of r.F/. In particular, our result implies
that rind.F/ � 22ct

for any 3-uniform hypergraph F with t vertices, mirroring the
best known bound for the usual Ramsey number. The proof relies on an application
of the hypergraph container method.

1 Introduction

The Ramsey number r.FI q/ of a k-uniform hypergraph F is the smallest natural
number n such that every q-coloring of the edges of K.k/

n , the complete k-uniform
hypergraph on n vertices, contains a monochromatic copy of F. In the particular
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case when q D 2, we simply write r.F/. The existence of r.FI q/ was established
by Ramsey in his foundational paper [17] and there is now a large body of work
studying the Ramsey numbers of graphs and hypergraphs. For a recent survey, we
refer the interested reader to [5].

In this paper, we will be concerned with a well-known refinement of Ramsey’s
theorem, the induced Ramsey theorem. We say that a k-uniform hypergraph F is
an induced subgraph of another k-uniform hypergraph G if V.F/ � V.G/ and any
k vertices in F form an edge if and only if they also form an edge in G. The induced
Ramsey number rind.FI q/ of a k-uniform hypergraph F is then the smallest natural
number n for which there exists a k-uniform hypergraph G on n vertices such that
every q-coloring of the edges of G contains an induced monochromatic copy of F.
Again, in the particular case when q D 2, we simply write rind.F/.

For graphs, the existence of induced Ramsey numbers was established inde-
pendently by Deuber [6], Erdős, Hajnal, and Pósa [9], and Rödl [18], while for
k-uniform hypergraphs with k � 3 their existence was shown independently by
Nešetřil and Rödl [16] and Abramson and Harrington [1]. The bounds that these
original proofs gave on rind.FI q/ were enormous. However, at that time it was noted
by Rödl (unpublished) that for bipartite graphs F the induced Ramsey numbers are
exponential in the number of vertices. Moreover, it was conjectured by Erdős [7] that
there exists a constant c such that every graph F with t vertices satisfies rind.F/ � 2ct.
If true, the complete graph would show that this is best possible up to the constant c.
A result of Conlon, Fox, and Sudakov [3], building on earlier work by Kohayakawa,
Prömel, and Rödl [13], comes close to establishing this conjecture, showing that

rind.F/ � 2ct log t:

However, the method used to prove this estimate only works in the 2-color case. For
q � 3, the best known bound, due to Fox and Sudakov [11], is rind.FI q/ � 2ct3 ,
where c depends only on q.

In this note, we study the analogous question for hypergraphs, showing that the
induced Ramsey number is never significantly larger than the usual Ramsey number.
Our main result is the following.

Theorem 1 Let F be a k-uniform hypergraph with t vertices and ` edges. Then
there are positive constants c1; c2; and c3 such that

rind.FI q/ � 2c1k`3 log.qt`/Rc2k`2Cc3t`;

where R D r.FI q/ is the classical q-color Ramsey number of F.
Define the tower function tk.x/ by t1.x/ D x and, for i � 1, tiC1.x/ D 2ti.x/.

A seminal result of Erdős and Rado [8] says that

r.K.k/
t I q/ � tk.ct/;
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where c depends only on k and q. This yields the following immediate corollary of
Theorem 1.

Corollary 1 For any natural numbers k � 3 and q � 2, there exists a constant c
such that if F is a k-uniform hypergraph with t vertices, then

rind.FI q/ � tk.ct/:

A result of Erdős and Hajnal (see, for example, Chapter 4.7 in [12] and [4]) says
that

r.K.k/
t I 4/ � tk.c

0t/;

where c0 depends only on k. Therefore, the Erdős–Rado bound is sharp up to the
constant c for q � 4. By taking F D K.k/

t , this also implies that Corollary 1 is tight
up to the constant c for q � 4. Whether it is also sharp for q D 2 and 3 depends
on whether r.K.k/

t / � tk.c0t/, though determining if this is the case is a famous, and
seemingly difficult, open problem.

The proof of Theorem 1 relies on an application of the hypergraph container
method of Saxton and Thomason [20] and Balogh, Morris, and Samotij [2]. In
Ramsey theory, the use of this method was pioneered by Nenadov and Steger [14]
and developed further by Rödl, Ruciński, and Schacht [19] in order to give an
exponential-type upper bound for Folkman numbers. Our modest results are simply
another manifestation of the power of this beautiful method.

2 Proof of Theorem 1

In order to state the container theorem we first need some definitions. Recall that
the degree d.�/ of a set of vertices � in a hypergraph H is the number of edges of
H containing � , while the average degree is the average of d.v/ WD d.fvg/ over all
vertices v.

Definition 2 Let H be an `-uniform hypergraph of order N with average degree d.
Let � > 0. Given v 2 V.H/ and 2 � j � `, let

d. j/.v/ D max
˚
d.�/ W v 2 � � V.H/; j� j D j

�
:

If d > 0, define ıj by the equation

ıj�
j�1Nd D

X

v

d. j/.v/:
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The codegree function ı.H; �/ is then defined by

ı.H; �/ D 2.`
2/�1

X̀

jD2

2�.j�1
2 /ıj:

If d D 0, define ı.H; �/ D 0.
The precise lemma we will need is a slight variant of Corollary 3.6 from Saxton

and Thomason’s paper [20]. A similar version was already used in the work of
Rödl, Ruciński, and Schacht [19] and we refer the interested reader to that paper for
a thorough discussion.

Lemma 3 Let H be an `-uniform hypergraph on N vertices with average degree d.
Let 0 < " < 1=2. Suppose that � satisfies ı.H; �/ � "=12`Š and � � 1=144`Š2`.
Then there exists a collection C of subsets of V.H/ such that

(i) for every set I � V.H/ such that e.HŒI�/ � "�`e.H/, there is C 2 C with
I � C,

(ii) e.HŒC�/ � "e.H/ for all C 2 C,
(iii) log jCj � 1000`Š3` log.1="/N� log.1=�/.

Before we give the proof of Theorem 1, we first describe the `-uniform
hypergraph H to which we will apply Lemma 3.

Construction 4 Given a k-uniform hypergraph F with ` edges, we construct an
auxiliary hypergraph H by taking

V.H/ D
 

Œn�

k

!

and E.H/ D
(

E 2
 

V.H/

`

!

W E Š F

)

:

In other words, the vertices of H are the k-tuples of Œn� and the edges of H are copies
of F in

�
Œn�
k

�
.

Proof of Theorem 1 Recall that R D r.FI q/, the q-color Ramsey number of F, and
suppose that F has t vertices and ` edges. Let us fix the following numbers:

� D n� 1
2` ; p D 1000Rkq˛; ˛ D n� 1

2` C 1
4`.`C1/ ;

" D 1=.2qRt/; n D `40`2.`C1/.1000q/8`.`C1/R4k`.`C1/C4t`

 
t

k

!4`

:

(1)

Remark 5 Note that n is bounded above by an expression of the form

2c1k`3 log.qt`/Rc2k`2Cc3t`;

as required.
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Obviously, R � t and one can check that p and n satisfy the following conditions,
which we will make use of during the course of the proof:

p � 1; (2)

n � .24 � 2.`
2/ttq`ŠRt/2; (3)

n > .144`Š2`/2`; (4)

n > `40`2.`C1/; (5)

n > .1000q/8`.`C1/R4k`.`C1/C4t`

 
t

k

!4`

: (6)

We will show that, with positive probability, a random hypergraph G 2 G.k/.n; p/

has the property that every q-coloring of its edges contains an induced monochro-
matic copy of F. The proof proceeds in two stages. First, we use Lemma 3 to
show that, with probability 1 � o.1/, G has the property that any q-coloring of its
edges yields many monochromatic copies of F. Then we show that some of these
monochromatic copies must be induced.

More formally, let X be the event that there is a q-coloring of the edges of G
which contains at most

M WD "�`.n/t

aut.F/

monochromatic copies of F in each color, and let Y be the event that G contains at
least M noninduced copies of F. Note that if X \Y happens, then, in any q-coloring,
there are more monochromatic copies of F in one of the q colors than there are
noninduced copies of F in G. Hence, that color class must contain an induced copy
of F.

We now proceed to show that the probability P.X/ tends to zero as n tends
to infinity. In order to apply Lemma 3, we need to check that � and " satisfy
the requisite assumptions with respect to the `-uniform hypergraph H defined in
Construction 4. Let � � V.H/ be arbitrary and define

V� D
[

v2�

v � Œn�:

For an arbitrary set W � Œn� X V� with jWj D t � jV� j, let embF.�; W/ denote
the number of copies eF of F with V.eF/ D W [ V� and � � E.eF/. Observe that
this number does not actually depend on the choice of W, so we will simply use
embF.�/ from now on.

Since there are clearly
�n�jV� j

t�jV� j
�

choices for the set W, we arrive at the following
claim.
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Claim 1 For any � � V.H/,

d.�/ D
 

n � jV� j
t � jV� j

!

embF.�/: ut

Let us denote by tj the minimum number of vertices of F which span j edges.
From Claim 1, it follows that for any � � V.H/ with j� j D j, we have

d.�/ D
 

n � jV� j
t � jV� j

!

embF.�/ �
 

n � tj
t � tj

!

embF.�/:

On the other hand, for a singleton �1 � V.H/, we have jV�1 j D k and therefore
d D d.�1/ is such that

d.�/

d
�
�n�tj

t�tj

�

�n�k
t�k

�
embF.�/

embF.�1/
�
�n�tj

t�tj

�

�n�k
t�k

� <
�n

t

�k�tj
:

It then follows from Definition 2 and (1) that

ıj <
.n=t/k�tj

� j�1
< ttnk�tjC. j�1/=.2`/: (7)

Since tj is increasing with respect to j, t2 � k C 1, and j � `, we have k � tj C j�1

2`
�

�1=2. Thus, in view of (7), we have

ıj < ttnk�tjC. j�1/=.2`/ � ttn�1=2 (8)

for all 2 � j � `.
Using Definition 2 and inequality (8), we can now bound the codegree function

ı.H; �/ by

ı.H; �/ D 2.`
2/�1

X̀

jD2

2�.j�1
2 /ıj � 2.`

2/�1ttn�1=2
X̀

jD2

2�.j�1
2 / � 2.`

2/ttn�1=2: (9)

Since n satisfies (3), inequality (9) implies that

ı.H; �/ � 2.`
2/ttn�1=2 � "

12`Š
:

That is, ı.H; �/ satisfies the condition in Lemma 3.
Finally, (4) implies that � satisfies the condition

� D n�1=.2`/ <
1

144`Š2`
:
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Therefore, the assumptions of Lemma 3 are met and we can let C be the collection
of subsets from V.H/ obtained from applying Lemma 3. Denote the elements of C
by C1; C2; : : : ; CjCj.

For every choice of 1 � a1; : : : ; aq � jCj (not necessarily distinct), let Ea1;:::;aq be
the event that G � Ca1 [ � � � [ Caq . Next we will show the following claim.

Claim 2

P.X/ � P
� _

a1;:::;aq

Ea1;:::;aq

�
�

X

a1;:::;aq

P.Ea1;:::;aq /: (10)

Proof Suppose that G 2 X. By definition, there exists a q-coloring of the edges of
G, say with colors 1; 2; : : : ; q, which contains at most M copies of F in each color.
For any color class j, let Ij denote the set of vertices of H which correspond to edges
of color j in G. Since each edge in HŒIj� corresponds to a copy of F in color j, we
have e.HŒIj�/ � M. Note that

M D "�`e.H/;

which means that each Ij satisfies the condition (i) of Lemma 3. Therefore, for each
color class j, there must be a set Caj 2 C such that Caj � Ij. Since G D S

j Ij, this
implies that G 2 Ea1;:::;aq . Since G 2 X was arbitrary, the bound (10) follows and the
claim is proved. ut

Owing to Claim 2, we now bound P.Ea1;:::;aq/. Recalling the definition of the
event Ea1;:::;aq , we note that

P.Ea1;:::;aq / D .1 � p/jV.H/X.Ca1[���[Caq /j: (11)

Hence, we shall estimate jV.H/ X .Ca1 [ � � � [ Caq /j to derive a bound for P.X/

by (10).

Claim 3 For all choices 1 � a1; : : : ; aq � jCj we have

jV.H/ X .Ca1 [ � � � [ Caq /j � 1

2

� n

R

�k
:

Proof Let a1; : : : ; aq be fixed and set

A D
	

A 2
 

Œn�

R

!

W
 

A

k

!

� Ca1 [ � � � [ Caq



: (12)

By the definition of R D r.FI q/, for each set A 2 A there is an index j D j.A/ 2 Œq�

such that Caj contains a copy of F with vertices from A. The element e 2 E.Caj/ that
corresponds to this copy of F satisfies e � �A

k

�
and, thus,

S
x2e x � A. We now give
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an upper bound for jAj by counting the number of pairs in

P D
	

.e; A/ 2
q[

iD1

E
�
Cai

� 	 A with
[

x2e

x � A



:

On the one hand, we have already established that jP j � jAj. On the other hand,
for any fixed e 2 E.H/, we have jSx2e xj D jV.F/j D t and, therefore, there are at
most

�n�t
R�t

�
sets A � S

x2e x. It follows that

jAj � jP j �
ˇ
ˇ
ˇ
ˇ

q[

iD1

E
�
Cai

�
ˇ
ˇ
ˇ
ˇ

 
n � t

R � t

!
.ii/� q"e.H/

 
n � t

R � t

!

(1)D e.H/

2Rt

 
n � t

R � t

!

� .n/t

2Rt

 
n � t

R � t

!

� 1

2

 
n

R

!

:

(13)

By definition, each A 2 �
Œn�
R

� X A satisfies
�A

k

� š Ca1 [ � � � [ Caq . Hence, V.H/ X
.Ca1 [� � �[Caq / intersects

�A
k

�
. Since an element of V.H/ can appear in at most

�n�k
R�k

�

sets A, it follows from (13) that there are at least

1

2

 
n

R

!� 
n � k

R � k

!

� 1

2

� n

R

�k

elements in V.H/ X .Ca1 [ � � � [ Caq/, as required. ut
In view of Claim 3, our choice of p D 1000Rkq˛, where ˛ D n�1=2`C1=4`.`C1/,

and (11), we have, for any Ca1 ; : : : ; Caq 2 C,

P.Ea1;:::;aq / � .1 � p/.n=R/k=2

� exp
� � pnk=2Rk

� D exp
� � .1000Rkq˛/nk=2Rk

�

D e�500q˛nk � e�1000q˛N ;

(14)

where, in the last step, we used N D �n
k

� � nk

2
. Therefore, (10) and (14) together

with the bound on jCj given by Lemma 3(iii) imply that

P.X/ �
X

Ca1 ;:::;Caq 2C
P.Ea1;:::;aq/ � jCjqe�1000q˛N

� exp
�
1000q`Š3` log.1="/N� log.1=�/ � 1000q˛N

�

D exp
�
1000qN�.`Š3` log.1="/ log.1=�/ � ˛=�/

�

� exp
�
1000qN�.`Š3 log2 n � n1=.4`.`C1///

� � 1=4;

where we used that n satisfies (5).
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Now, by Markov’s inequality, with probability at least 1=2, the number of
noninduced copies of F in G will be at most twice the expected number of copies,
which is fewer than

2p`C1 .n/t

aut.F/

 
t

k

!

D 2.1000q/`C1Rk.`C1/n�1=2�1=.4`/ .n/t

aut.F/

 
t

k

!

<
1

2qRt
.n�1=.2`//` .n/t

aut.F/
D "�` .n/t

aut.F/
D M;

where the inequality above follows from (6). In other words, P.Y/ � 1=2 and,
therefore, P.X \ Y/ � 1=4, so there exists a graph G such that X \ Y holds. By our
earlier observations, this completes the proof.

3 Concluding Remarks

Beginning with Fox and Sudakov [10], much of the recent work on induced Ramsey
numbers for graphs has used pseudorandom rather than random graphs for the target
graph G. The results of this paper rely very firmly on using random hypergraphs.
It would be interesting to know whether comparable bounds could be proved using
pseudorandom hypergraphs.

It would also be interesting to prove comparable bounds for the following variant
of the induced Ramsey theorem, first proved by Nešetřil and Rödl [15]: for every
graph F, there exists a graph G such that every q-coloring of the triangles of G
contains an induced copy of F all of whose triangles receive the same color. By
taking F D Kt and q D 4, we see that jGj may need to be double exponential in jFj.
We believe that a matching double-exponential upper bound should also hold.
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