
Using Brouwer’s Fixed Point Theorem

Anders Björner, Jiří Matoušek, and Günter M. Ziegler

Abstract Brouwer’s fixed point theorem from 1911 is a basic result in topology—
with a wealth of combinatorial and geometric consequences. In these lecture notes
we present some of them, related to the game of HEX and to the piercing of multiple
intervals. We also sketch stronger theorems, due to Oliver and others, and explain
their applications to the fascinating (and still not fully solved) evasiveness problem.

1 Introduction

The fixed point theorem of Brouwer is one of the most widely known results of
topology. It says that every continuous map f W Bd ! Bd of the d-dimensional closed
unit ball to itself has a fixed point, that is, a point x0 2 Bd such that f .x0/ D x0.

This result was established by Luitzen Egbertus Jan Brouwer (1881–1960)
at the end of his important 1911 paper [20], in which he also introduced the
fundamental concept (and proof technique) of the mapping degree. It has many
striking and famous applications to problems in Geometry, Analysis, Game Theory
and Combinatorics.

Brouwer’s fixed point theorem is in several ways similar to the Borsuk–Ulam
theorem from 1933, which has gotten a lot of attention and appreciation for being
unusually rich in applications. For example, the 1978 proofs of the 1956 Kneser
conjecture by Lovász and by Bárány employed the Borsuk–Ulam Theorem in order
to solve a problem about partitioning a set system, or equivalently, bounding the
chromatic numbers for a certain class of graphs. This unexpected use of a result
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from equivariant topology is one of the starting points (probably the most famous
one) for the field of “Topological Combinatorics” [11, 46]. We refer to the detailed,
elementary exposition in Matoušek’s book “Using the Borsuk–Ulam Theorem”
[52]. Current research continues this line of work, using more advanced methods
from Equivariant Algebraic Combinatorics; see for example the text “Beyond the
Borsuk–Ulam Theorem: The Topological Tverberg Story” [14] in this volume.

In various respects, Brouwer’s theorem is a simpler result than the Borsuk–Ulam
theorem: For example, it is very easy to state (as it does not involve symmetry, or a
group action), and it is quite easy to prove (see below). It can also easily be derived
from the Borsuk–Ulam theorem (see [73]), while indeed it is not as straightforward
to obtain “Borsuk–Ulam from Brouwer.”

Just like the Borsuk–Ulam theorem, Brouwer’s theorem has many equivalent
versions, as well as powerful and useful extensions. For instance, the Lefschetz fixed
point theorem that works for spaces much more general than a ball, the Schauder
fixed point theorem that works also for compact balls in infinite-dimensional Banach
spaces, the Kakutani fixed point theorem for set-valued maps, and so on. See
Shapiro [67] for a friendly introduction to fixed point theorems with Analysis
applications in mind.

The striking applications of the Brouwer theorem in Combinatorics and Geome-
try seem not to be as well known as the applications of the Borsuk–Ulam theorem.
In order to help to remedy this, we present three distinct areas of such applications
in the three main sections of these lecture notes:

1. Brouwer’s theorem can be invoked to prove that the game of HEX can never end
without a winner. And indeed, the d-dimensional version of this claim turns out
to be equivalent to Brouwer’s theorem! This observation of David Gale in his
award-winning 1979 paper [27] may also be counted among the starting points
of Topological Combinatorics. In our presentation we not only use this to prove
the HEX theorem, but we also give a combinatorial proof of the HEX theorem
and derive Brouwer’s theorem from this.

2. Some results about hypergraph matchings and transversals have a topological
core, to be derived from the Brouwer theorem. Our presentation treats one strik-
ing instance, concerning the relation between packing and transversal numbers
for systems of d-intervals.

3. The Evasiveness conjecture states that every non-trivial monotone graph property
is evasive, that is, it does not allow for a query strategy that cannot be tricked
into checking all potential edges of a graph in order to establish the property.
This conjecture is still open in general, but the special case of a graph on a prime
power number of vertices was proved using fixed point theorems of Smith and
Oliver. These theorems may be seen as extensions of Brouwer’s. The Appendix
to this paper collects and sketches the necessary tools.

Further remarkable applications of Brouwer’s fixed point theorem on geometric
problems, not treated here, include the work by Bondarenko and Viazovska [17] on
the construction of spherical designs, and the work on center points and regression
depth by Amenta et al. [5].
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Our presentation is based on lecture notes that were written about fifteen years
ago, with a history that for some parts goes back nearly thirty years. These notes
can be regarded as a companion or perhaps as a “prequel” to Matoušek’s book [52].

The three main parts do not depend on each other, so they can be read
indepenently. We refer to [52] for notation and terminology not explained here.

2 A Game Model for Brouwer’s Fixed Point Theorem

2.1 The Game of HEX

Let’s start with a game: “HEX” is a board game for two players, invented by
the ingenious Danish poet, designer and engineer Piet Hein in 1942 [29], and
rediscovered in 1948 by the mathematician John Nash [57], who got a Nobel
memorial prize in economics in 1994 (for his work on game theory, but not really
for this game . . . ).

HEX, in Hein’s version, is played on a rhombical board, as depicted in the figure.

W

B

B′

W ′

The rules of the game are simple: There are two players, whom we call White and
Black. The players alternate, with White going first. Each move consists of coloring
one “grey” hexagonal tile of the board white resp. black. White has to connect the
white borders of the board (marked W and W 0) by a path of his white tiles, while
Black tries to connect B and B0 by a black path. They can’t both win: Any winning
path for white separates the two black borders, and conversely. (This isn’t hard to
prove—however, the statement is closely related to the Jordan curve theorem, which
is trickier than it may seem when judged at first sight: see Exercise 13.)

However, here we concentrate on the opposite statement: There is no draw
possible—when the whole board is covered by black and white tiles, then there
always is a winner. (This is even true if one of the players has cheated badly and
ends up with much more tiles than his/her opponent! It is also true if the board isn’t
really “square,” that is, if it has sides of unequal lengths.) Our next figure depicts a
final HEX position—sure enough one of the players has won, and the proof of the
following “HEX theorem” will give us a systematic method to find out which one.
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Theorem 2.1 (The HEX theorem) If each tile of an .n�m/-HEX board is colored
black or white, then either there is a path of white tiles that connects the white
borders W and W 0, or there is a path of black tiles that connects the black borders
B and B0.

Our plan for this section is the following:

• We give a simple proof of the HEX theorem.
• We show that it implies the Brouwer fixed point theorem . . .
• . . . and conversely: The Brouwer fixed point theorem implies the HEX theorem.
• Then we prove that one of the players has a winning strategy.
• And then we see that on a square board, the first player can win, while on an

uneven board, the player with the longer borders has a strategy to win.

All of this is really quite simple, but it nicely illustrates how a topological theorem
enters the analysis of a discrete situation.

Proof of the HEX theorem For the proof we trace a certain path between the black
and the white tiles. It starts in the lower left-hand corner of the HEX board on the
edge that separates W and B. Whenever the path reaches a corner of degree 3, there
will be both colors present at the corner (due to the edge we reach it from), and so
there will be a unique edge to proceed on that does have different colors on its two
sides.

W

B

B′

W ′
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Our path can never get stuck or branch or turn back onto itself, otherwise we
would have found a vertex that has one or three edges that separate colors, whereas
this number clearly has to be even at each vertex. Thus the path can be continued
until it leaves the board—that is, until it reaches W 0 or B0. But that means that we
find a path that connects W to W 0, or B to B0, and on its sides keeps a white path of
tiles resp. a black path. That is, one of White and Black has won! ut

Now this was easy, and (hopefully) fun. We continue with a re-interpretation of
the HEX board—in Nash’s version—that buys us two drinks for the price of one:

(i) a d-dimensional version of the HEX theorem, and
(ii) the connection to the Brouwer fixed point theorem.

Definition 2.2 (The d-dimensional HEX board) The d-dimensional HEX board
is the graph H.n; d/ on the vertex set V D f�1; 0; 1; : : : ; n; n C 1gd, in which two
vertices v;w 2 V are connected by an edge if and only if v�w 2 f0; 1gd [f0; �1gd.

The colors for the d-dimensional HEX game are 1; 2; : : : ; d, where we identify
“1 D white” and “2 D black.” The interior of the HEX board is given by V 0 D
f0; 1; 2; : : : ; ngd. All the other vertices, in V n V 0, form the boundary of the board.
The vertices in the boundary of H.n; d/ get preassigned colors

�.v/ D �.v1; : : : ; vd/ WD
(

minfi W vi D �1g if this exists;

minfi W vi D n C 1g otherwise:

Our drawing depicts the 2-dimensional HEX board H.5; 2/, which represents
a dual graph for the .6 � 6/-board that we used in our previous figures, with the
preassigned colors on the boundary.

The d-dimensional HEX game is played between d players who take turns in
coloring the interior vertices of H.n; d/. The i-th player wins if he1 achieves a path
of vertices of color i that connects a vertex whose i-th coordinate is �1 to a vertex
whose i-th coordinate is n C 1.

1Using “he” here is not politically correct.
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Theorem 2.3 (The d-dimensional HEX theorem) For d-dimensional HEX at
least one of the players reaches his goal: When all interior vertices of H.d; n/ are
colored, then at least one player has won.

Proof The proof that we used for 2-dimensional HEX still works: It just has to
be properly translated for the new setting. For this we first check that H.n; d/ is the
graph of a triangulation �.n; d/ of Œ�1; nC1�d, which is given by the clique complex
of H.n; d/. That is, a set of lattice points S � f�1; 0; 1; : : : ; nC1gd forms a simplex
in �.n; d/ if and only if the points in S are pairwise connected by edges. To check
this, verify that each point x 2 Œ�1; nC1�d lies in the relative interior of a unique
simplex, which is given by

�.x/ WD conv
˚
v 2 f�1; : : : ; n C 1gd W

bxic � vi � dxie for all i;

bxi � xjc � vi � vj � dxi � xje for all i ¤ j
�
:

Every full-dimensional simplex in �.n; d/ has d C 1 vertices. A simplex S
in �.n; d/ is completely colored if it has all d colors on its vertices. Thus each
completely colored d-simplex in � has exactly two completely colored facets, which
are .d � 1/-faces of the complex �.n; d/. Conversely, every completely colored
.d� 1/-face is contained in exactly two completely colored d-simplices—if it is not
on the boundary of Œ�1; n C 1�d.

With this the (constructive) proof that we gave before for the 2-dimensional HEX
theorem generalizes to the following: We start at the d-simplex

�0 WD convf�1; �1 C e1; �1 C e1 C e2; : : : ; �1 C e1 C � � � C ed�1; �1 C e1 C � � � C edg
D convf�1; �1 C e1; �1 C e1 C e2; : : : ; �ed; 0g;

whose facet (.d � 1/-face) convf�1; �1 C e1; : : : ; �ed�1 � ed; �edg is completely
colored. (Verify this!) This simplex is shaded in the following figure for H.5; 2/,
which depicts the same final position that we considered before.
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Now we construct a sequence of completely colored d-dimensional simplices that
starts at �0: We find the second completely colored .d � 1/-face of �0, find the
second completely colored d-simplex it is contained in, etc. Thus we find a chain
of completely colored d-simplices that ends on the boundary of Œ�1; nC1�d—at a
different simplex than the one we started from. In particular, the last d-simplex in
the chain has a completely colored facet in the boundary, and by construction this
facet has to lie in a hyperplane HC

i D fx W xi D n C 1g. At this point we check that
every completely colored .d � 1/-simplex in the boundary of H.n; d/ is contained
in one of the hyperplanes HC

i , with the sole exception of the boundary facet of our
starting d-simplex. The chain of d-simplices then provides us with an i-colored path
from the i-colored vertex

�1 C e1 C � � � C ei�1 2 H�
i D fx W xi D �1g

to the i-colored vertex in HC
i : So the i-th player wins. ut

Our drawing illustrates the chain of completely colored simplices (shaded) and
the sequence of (white) vertices for the winning path that we get from it.

2.2 The Brouwer Fixed Point Theorem

Now we proceed from the discrete mathematics setting of the HEX game to the
continuous world of topological fixed point theorems. Here are three versions of the
Brouwer fixed point theorem.

Theorem 2.4 (Brouwer fixed point theorem) The following are equivalent (and
true):

(Br1) Every continuous map f W Bd �! Bd has a fixed point.
(Br2) Every continuous map f W Bd �! Sd�1 has a fixed point.
(Br3) Every null-homotopic map f W Sd�1 �! Sd�1 has a fixed point.
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(The term null-homotopic that appears here refers to a map that can be deformed
to a constant map.)

Proof of the equivalences (Br1)H)(Br2) is trivial, since Sd�1 � Bd.
For (Br2)H)(Br3) let hW Sd�1 � Œ0; 1� �! Sd�1 be a null-homotopy for f , i.e.,

a continuous map that interpolates between our original map f and a constant map,
with h.x; 0/ D f .x/ and h.x; 1/ D x0 for all x 2 Sd�1. From this we construct a
continuous map FW Bd �! Sd�1 that extends f , by

F.x/ WD
(
h. x

jxj ; 2 � 2jxj/ if 1
2

� jxj � 1;

x0 for jxj � 1
2
:

x →−� x0

x →−� f(x)

This map is continuous, and by (Br2) it has a fixed point, which must lie in the
image, that is, in Sd�1.

For the converse, (Br3)H)(Br2), let f W Bd �! Sd�1 be continuous. Then the
restriction f jSd�1 is null-homotopic, since h.xI t/ WD f ..1 � t/x/ provides a null-
homotopy. Thus, by (Br3) the map f jSd�1 has a fixed point, hence so does f .

Finally, we get (Br2)H)(Br1): If f W Bd �! Bd has no fixed point, then we
set g.x/ WD f .x/�x

j f .x/�xj . This defines a map gW Bd �! Sd�1 that has a fixed point

x0 2 Sd�1 by (Br2), with x0 D f .x0/�x0

j f .x0/�x0j . But this implies f .x0/ D x0.1 C t/ for

t WD j f .x0/ � x0j > 0, and this is impossible for x0 2 Sd�1. ut
In the following we use the unit cube Œ0; 1�d in place of the ball Bd: It should

be clear that the Brouwer fixed point theorem equally applies to self-maps of any
domain D that is homeomorphic to the ball Bd, resp. of the boundary @D of such a
domain.

Proof of the Brouwer fixed point theorem (“HEX H) (Br1)”). If f W Œ0; 1�d �!
Œ0; 1�d has no fixed point, then for some " > 0 we have that j f .x/ � xj1 � "

for all x 2 Œ0; 1�d (namely, one can take " WD minfj f .x/ � xj1 W x 2 Œ0; 1�dg, which
exists since Œ0; 1�d is compact).

Furthermore, any continuous function on the compact set Œ0; 1�d is uniformly
continuous (see e.g. Munkres [59, §27]), hence there exists some ı > 0 such that
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jx�x0j1 < ı implies j f .x/�f .x0/j1 < ". We take ı < " (without loss of generality),
and then choose n with 1

n < ı.
From f , we now define a d-coloring of H.n; d/, by setting

�.v/ WD minfi W j fi. vn / � vi
n j � "g

for the interior vertices v 2 H.n; d/, where fi denotes the ith component of f . This is
well-defined, since v

n 2 Œ0; 1�d, and thus the absolute value of at least one component
of f . vn / � v

n has to be at least ". Now, the d-dimensional HEX theorem guarantees
a chain v0; v1; : : : ; vN of vertices of color i, for some i, where v0

i D 0 and vN
i D n.

Furthermore, we know that j fi. vkn / � vki
n j � " for 0 � k � N. Also, at the ends of the

chain we know the signs:

f . v
0

n / 2 Œ0; 1�d implies fi. v
0

n / � 0 and hence fi.
v0

n / � v0
i
n � ", and

f . v
N

n / 2 Œ0; 1�d implies fi. v
N

n / � 1 and hence fi. v
N

n / � vNi
n � �".

It follows that for some k 2 f1; 2; : : : ;Ng we must have a sign change:

fi. v
k�1

n / � vk�1
i
n � " and fi. v

k

n / � vki
n � �".

All these facts taken together provide a contradiction, since

j vk�1

n � vk

n j1 D 1
n < ı;

whereas

j f . vk�1

n / � f . v
k

n /j1 � j fi. vk�1

n / � fi.
vk

n /j � 2" � j vk�1
i
n � vki

n j � 2" � 1
n > 2" � ı > ":

ut
Proof that the Brouwer fixed point theorem implies the HEX theorem (“Br1 H)
HEX”).Assume we have a coloring of H.n; d/. We use it to define a map Œ0; n�d �!
Œ0; n�d, as follows: On the points in f0; 1; : : : ; ngd we define

f .v/ D

8̂<
:̂
v C ei if v has color i, and there is a path on vertices of colori

that connects v to a vertex w with wi D 0

v � ei if v has color i, but there is no such path.

If for the given coloring there is no winning path for HEX, then these definitions
do not map any point v outside Œ0; n�d. Hence this by linear extension defines a
simplicial map f W Œ0; n�d �! Œ0; n�d on the simplices of the triangulation �.n; d/

that we have considered before.
The following two observations now give us a contradiction, showing that this f

cannot have a fixed point:

• If � D convfv0; v1; v2; : : : ; vdg � R
d is a simplex and f W � �! R

d is a linear
map defined by f .vi/ D vi C wi, then f has a fixed point on � if and only if
0 2 convfw0; : : : ;wdg.

• If v; v0 are adjacent vertices, then we cannot get f .v/ D v�ei and f .v0/ D v0Cei.
Hence for each simplex of �.n; d/, all the vectors wi lie in one orthant of Rd! ut



230 A. Björner et al.

2.3 The Joy of HEX: Who Wins?

So, who can win the 2-dimensional HEX game? A simple but ingenious argument
due to John Nash, known as “stealing a strategy,” shows that on a square board the
first player (“White”) always has a winning strategy. In the following we first define
winning strategies, then show that one of the players has one, and finally conclude
that the first player has one. Still: The proof will be non-constructive, and we don’t
know how to win HEX. So, the game still remains interesting . . .

Definition 2.5 A strategy is a set of rules that tells one of the players which move
to choose (i.e., which tile to color) for every legal position on the board. A winning
strategy here guarantees to lead to a win, starting from an empty board, for all
possible moves of the opponent.

A position of the HEX game is a board on which some tiles may have been
colored white or black, together with the information who moves next (unless all
tiles are colored). A position is legal if it can occur in a HEX game: That is, if either
White moves next, and the numbers of white and black tiles agree, or if Black moves
next, and White has one more tile.

A winning position for White is a position such that White has a winning strategy
that tells him how to proceed (for arbitrary moves of Black) and guarantees a win.
Similarly, a winning position for Black has a winning strategy that guarantees to
lead Black to a win.

Lemma 2.6 Every (legal) position for HEX is either a winning position for White
or a winning position for Black.

Proof Here we proceed by induction on the number g of “grey” tiles (i.e., “free”
positions on the board). If no grey tiles are present .g D 0/, then one of the players
has won—by the HEX theorem.

If g > 0 and White is to move, then any move that White could choose reduces g,
and thus (by induction) produces a winning position for one of the players. If there
is a move that leads to a winning position for White, then this is really nice and great
for White: This makes the present position into a winning position for White, and
any such move can be used for a winning position for White. Otherwise—too bad:
If every possible move for White produces a winning position for Black, then we
are at a winning position for Black already.

And the same argument applies for g > 0 if Black is to move. ut
Of course, the argument given here is much more general: Essentially we have

proved that for any finite deterministic 2-person game without a draw and with
“complete information” there is a winning strategy for one of the players. (This is a
theorem of Zermelo, which was rediscovered by von Neumann and Morgenstern).
Furthermore, for games where a draw is possible either one player has a winning
strategy, or both players can force a draw. We refer to Exercise 12, and to Blackwell
and Girshick [13, p. 21].
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For HEX, Lemma 2.6 shows that at the beginning (for the starting position, where
all tiles are grey, and White is to move), there is a winning strategy either for White
or for Black. But who is the winner?

Our first attempt might be to follow the proof of Lemma 2.6. Only for the 2 � 2

board this can be done:

In this drawing, you can decide for every position whether it is a winning position
for White or for Black, starting with the bottom row (g D 0) that has three winning
positions for each player, ending at the top node (g D 4), which turns out to be a
winning position for White.

For larger boards, this approach is hopeless—after all, there are
� n2

bn2=2c
�

final
positions to classify for “g D 0,” and from this one would have to work one’s way
up to the top node of a huge tree (of height n2). Nevertheless, people have worked
out winning strategies for White on the n � n boards for n � 5 (see Gardner [28]).

Theorem 2.7 For the HEX game played on a HEX board with equal side lengths,
White (the first player) has a winning strategy.

Proof Assume not. Then by Lemma 2.6 Black has a winning strategy. But then
White can start with an arbitrary move, and then—using the symmetry of the board
and of the rules—just ignore his first tile, and follow Black’s winning strategy “for
the second player.” This strategy will tell White always which move to take. Here
the “extra” white tiles cannot hurt White: If the move for White asks to occupy
a tile that is already white, then an arbitrary move is fine for White. But this
“stealing a strategy” argument produces a winning strategy for White, contradicting
our assumption! ut
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Notes Gale’s beautiful paper [27] was the source and inspiration for our
treatment of Brouwer’s fixed point theorem in terms of the HEX game.
Nash’s analysis for the winning strategies for HEX is from Gardner’s classical
account in [28], some of which reappears in Milnor’s [57]. See also the
accounts in Jensen and Toft [37, Sect. 17.14], and in Berlekamp, Conway
and Guy [9, p. 680], where other cases of “strategy stealing” are discussed.
(A theoretical set-up for this is in Hales and Jewett [33, Sect. 3].)

The traditional combinatorial approach to the Brouwer fixed point theorem
is via Sperner’s lemma [71]; see e.g. Exercise 4 below and the presentation
in [1]. Lovász’s [48] matroid version of Sperner’s lemma in Exercise 5 was
further generalized by Lindström [45]. Kryński [44], however, showed that
these results can easily be derived from earlier results.

A more geometric version of the combinatorial lemmas is given by
Mani [50].

Exercises

1. Stir your coffee cup. Show that the (moving, but flat) surface has at every
moment at least one point that stands still (has velocity zero).

2. Prove that if you tear a sheet of paper from your notebook, crumble it into a
small ball, and put that down on your notebook, then at least one point of the
sheet comes to rest exactly on top of its original position.

Could it happen that there are exactly two such points?
3. In the proof of the Brouwer fixed point theorem (Theorem 2.4, (Br2)H)(Br3)),

we could have tried to simply put F.x/ WD h. x
jxj ; 1 � jxj/. Is this continuous?

4. (a) Prove “Sperner’s Lemma” [71]: Let � be a triangulation of the d-
dimensional sphere and let us color the vertices of � using d C 1 colors.
Then � has an even number of colorful facets (meaning d-faces containing
vertices of all colors).

(b) Show that Sperner’s Lemma implies the Brouwer fixed point theorem.
5. (a) Let � be a triangulation of a d-dimensional manifold with vertex set V .

Assume that a matroid M of rank d C 1 without loops is defined on V . If �

has a facet that is a basis of M then it has at least two such facets. (Lovász
[48])

(b) Show that part (a) implies Sperner’s Lemma, and hence also Brouwer’s
theorem.

6. Let BE D 2E n f;;Eg be the poset of all proper subsets of a finite set E, ordered
by containment. Show that if an order-preserving map f W BE ! BE does not
have a fixed point then it is surjective, and hence an automorphism.

7. Let P D BE n fAg, for some proper subset A.

(a) Give a quick proof that P has the fixed point property, meaning that any
order-preserving self-map has a fixed point.

(b) Give a slow proof, not using topology, that P has the fixed point property.
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8. For HEX on a 3 � 3 board, how large is the tree of possible positions?
9. Can you write a computer program that plays HEX and wins (sometimes) [22]?

10. For d-dimensional HEX, is there always some “short” winning path? Show
that for every d � 2 there is a constant cd such that for all n there is a final
configuration such that only one player wins, but his shortest path uses more
than cd � nd tiles.

11. Construct an algorithm that, for given " > 0 and f W Œ0; 1�2 �! Œ0; 1�2,
calculates a point x0 2 Œ0; 1�2 with j f .x0/ � x0j < ". [27, p. 827]

12. If in a complete information two player game a draw is possible, argue why
either one of the players has a winning strategy, or both can force at least a
draw.

13. Prove that for 2-dimensional HEX, not both players can win! For this, prove
and use the “polygonal Jordan curve theorem”: any simple closed polygon in
the plane uniquely divides the plane into an “inside” region and an “outside”
region.

(The general Jordan curve theorem for simple “Jordan arcs” in the plane has
extensive discussions in many books; see for example Munkres [59], Stillwell
[72, Sect. 0.3], or Thomassen [75].)

14. On an .m� n/-board that is not square (that is, m ¤ n), the player who gets the
longer sides, and hence the shorter distance to bridge by a winning path, has a
winning strategy. Our figure illustrates the case of a .6 � 5/-board, where the
claim is that Black has a winning strategy.

(i) Show that for this, it is sufficient to consider the case where m D n C 1

(i.e., the second player Black, who gets the longer side, has a sure win).

I
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O

M
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B

C
D

E
E

D
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J
K
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K

J

N
N

(ii) Show that in the situation of (i), Black has the following winning strategy.
Label the tiles in the “symmetric” way that is indicated by the figure, such
that there are two tiles of each label. The strategy for Black is to always
take the second tile that has the same label as the one taken by White. Why
will this strategy always win for Black? (Hint: You will need the Jordan
curve theorem.)

(This is in Gardner [28] and in Milnor [57], but neither source gives the
proof. You’ll have to work yourself!)



234 A. Björner et al.

3 Piercing Multiple Intervals

3.1 Packing Number and Transversal Number

Let S be a system of subsets of a ground set X; both S and X may generally be
infinite. The packing number of S, usually denoted by �.S/ and often also called
the matching number, is the maximum cardinality of a system of pairwise disjoint
sets in S:

�.S/ D supfjMj W M � S; M1 \ M2 D ¿ for all M1;M2 2 M;M1 ¤ M2g:

The transversal number or piercing number of S is the smallest number of points
of X that capture all the sets in S:

�.S/ D minfjTj W T � X; S \ T ¤ ¿ for all S 2 Sg:

A subsystem M � S of pairwise disjoint sets is usually called a matching (this
refers to the graph-theoretical matching, which is a system of pairwise disjoint
edges), and a set T � X intersecting all sets of S is referred to as a transversal
of S. Clearly, any transversal is at least as large as any matching, and so always

�.S/ � �.S/:

In the reverse direction, very little can be said in general, since �.S/ can be
arbitrarily large even if �.S/ D 1. As a simple geometric example, we can take
the plane as the ground set of S and let the sets of S be lines in general position.
Then � D 1, since every two lines intersect, but � � 1

2
jSj, because no point is

contained in more than two of the lines.
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One of the basic general questions in combinatorics asks for interesting special
classes of set systems where the transversal number can be bounded in terms of the
matching number.2 Many such examples come from geometry. Here we restrict our
attention to one particular type of systems, the d-intervals, where the best results
have been obtained by topological methods.

Fractional packing and transversal numbers Before introducing d-intervals, we
mention another important parameter of a set system, which always lies between
� and � and often provides useful estimates for � or � . This parameter can be
introduced in two seemingly different ways. For simplicity, we restrict ourselves
to finite set systems (on possibly infinite ground sets). A fractional packing for a
finite set system S on a ground set X is a function wW S �! Œ0; 1� such that for
each x 2 X, we have

P
S2SW x2S w.S/ � 1. The size of a fractional packing w isP

S2S w.S/, and the fractional packing number ��.S/ is the supremum of the sizes
of all fractional packings for S. So in a fractional packing, we can take, say, one-
third of one set and two-thirds of another, but at each point, the fractions for the
sets containing that point must add up to at most 1. We always have �.S/ � ��.S/,
since a packing M defines a fractional packing w by setting w.S/ D 1 for S 2 M
and w.S/ D 0 otherwise.

Similar to the fractional packing, one can also introduce a fractional version of
a transversal. A fractional transversal for a (finite) set system S on a ground set X
is a function 'W X �! Œ0; 1� attaining only finitely many nonzero values such that
for each S 2 S, we have

P
x2S '.x/ � 1. The size of a fractional transversal ' isP

x2X '.x/, and the fractional transversal number ��.S/ is the infimum of the sizes
of fractional transversals.

By the duality theorem of linear programming (or by the theorem about
separation of disjoint convex sets by a hyperplane), it follows that ��.S/ D ��.S/

and thus that

�.S/ � ��.S/ D ��.S/ � �.S/

for any finite set system S.
When trying to bound � in terms of �, in many instances it proved very useful

to bound �� as a function of � first, and then � in terms of ��. The proof presented
below follows a somewhat similar approach.

2This kind of problem is certainly not restricted to combinatorics. For example, if S is the system
of all open sets in a topological space, �.S/ is the minimum size of a dense set and is called
the density, while �.S/ is known as the Souslin number or cellularity of the space. In 1920,
Souslin asked whether a linearly ordered topological space exists (the open sets are unions of open
intervals) with countable � but uncountable � . It turned out in the 1970s that the answer depends
on the axioms one is willing to assume beyond the usual (ZFC) axioms of set theory. For example,
it is yes if one assumes the continuum hypothesis; see e.g. [23].
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3.2 The d-Intervals

Let I1; I2; : : : ; Id be disjoint parallel segments in the plane. (We may assume without
loss of generality that they are horizontal unit length intervals at distinct heights/y-
coordinates.) A set J � Sd

iD1 Ii is a d-interval if it intersects each Ii in a closed
interval. We denote this intersection by Ji and call it the ith component of J. The
following drawing shows a 3-interval:

Intersection and piercing for d-intervals are taken in the set-theoretical sense: Two
d-intervals intersect if, for some i, their ith components intersect.

The 1-intervals, which are just intervals in the usual sense, behave nicely with
respect to packing and piercing, as for any family F of intervals, we have �.F/ D
�.F/. (This is well-known and easy to prove: Exercise 1!) This, however, does not
extend to d-intervals. For example, the family F of three 2-intervals

has �.F/ D 1 while �.F/ D 2. By taking multiple copies of this family, one obtains
families with � D 2� for all values of �.

Gyárfás and Lehel [31] showed by elementary methods that for any d and any
family F of d-intervals, �.F/ can be bounded by a function of �.F/ (also see [32]).
Their function was rather large (about �dŠ for d fixed). After an initial breakthrough
by Tardos [74], who proved �.F/ � 2�.F/ for any family of 2-intervals, Kaiser
[39] obtained the following result:

Theorem 3.1 (The Tardos–Kaiser theorem on d-intervals) Every family F of d-
intervals, d � 2, has a transversal of size at most .d2 � d/ � �.F/.

Here we present a proof using the Brouwer fixed point theorem. Alon [2] found
a short non-topological proof of the slightly weaker bound �.F/ � 2d2�.F/.
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Proof Let F be a fixed system of d-intervals with �.F/ D k, and let t D t.d; k/ be a
suitable (yet undetermined) integer. The general plan of the proof is this: Assuming
that there is no transversal of F of size dt, we show by a topological method that
the fractional packing number ��.F/ is at least t C 1. Then a simple combinatorial
argument proves that the packing number �.F/ is at least tC1

d , which leads to t <

d2 � �.F/. Sharper combinatorial reasoning in this step leads to the slightly better
bound in the theorem.

Our candidates for a transversal of F are all sets T with each Ti D T \ Ii having
exactly t points; so jTj D td. For technical reasons, we also permit that some of the
t points in Ii coincide, so T can be a multiset.

The letter T could also abbreviate a trap. The trap is set to catch all the d-intervals
inF , but if it is not set well enough, some of the d-intervals can escape. Each of them
escapes through a hole in the trap, namely through a d-hole. The points of Ti cut the
segment Ii into tC 1 open intervals (some of them may be empty), and these are the
holes in Ii; they are numbered 1 through tC1 from left to right. A d-hole consists of
d holes, one in each Ii. The type of a d-hole H is the set f.1; j1/; .2; j2/; : : : ; .d; jd/g,
where ji 2 ŒtC1� is the number of the hole in Ii contained in H. A d-interval J 2 F
escapes through a d-hole H if it is contained in the union of its holes. The drawing
shows a 3-hole, of type f.1; 2/; .2; 4/; .3; 4/g, and a 3-interval escaping through it:

Let H0 be the hypergraph with vertex set Œd� � ŒtC1� and with edges being all
possible types of d-holes; for example, the hole in the picture yields the edge
f.1; 2/; .2; 4/; .3; 4/g. So H0 is a complete d-partite d-uniform hypergraph. By
saying that a J 2 F escapes through an edge H of H0, we mean that J escapes
through the d-hole (uniquely) corresponding to H.

Next, we define weights on the edges of H0; these weights depend on the set T
(and also on F , but this is considered fixed). The weight of an edge H 2 H0 is

qH D supfdist.J;T/ W J 2 F ; J escapes through Hg:

Here dist.J;T/ WD min1�i�dfdist.Ji;Ti/g and dist.Ji;Ti/ is the distance of the ith
component of J to the closest point of Ti. Thus qH can be interpreted as the largest
margin by which some d-interval from F escapes through H. If no members of F
escape through H, we define qH as 0. Note that this is the only case where qH D 0.
Otherwise, if anything escapes, it does so by a positive margin, since we are dealing
with closed intervals.



238 A. Björner et al.

From the edge weights, we derive weights of vertices: The weight wv of a vertex
v D .i; j/ is the sum of the weights of the edges of H0 containing v. These weights,
too, are functions of T; to emphasize this, we write wv D wv.T/.

Lemma 3.2 For any d � 1, t � 1, and any F , there is a choice of T such that all
the vertex weights wv.T/, v 2 Œd� � ŒtC1�, coincide.

It is this lemma whose proof is topological. We postpone that proof and finish
the combinatorial part first.

Let us suppose that a trap T was chosen as in the lemma, with wv.T/ D W for
all v. If W D 0 then T is a transversal, since all edge weights are 0 and no J 2 F
escapes. So suppose that W > 0.

Let H D H.T/ � H0, the escape hypergraph of T, consist of the edges of H0

with nonzero weights. Note that

�.H/ � �.F/: (1)

Indeed, given a matching M in H, for each edge H 2 M choose a J 2 F escaping
through H—this gives a matching in F .

We note that the re-normalized edge weights QqH D 1
W qH determine a fractional

packing in H (since the weights at each vertex sum up to 1). For the size of this
fractional packing, which is the total weight of all vertices, we find by double
counting

X
H2H

QqH D 1

d

X
H2H

X
v2H

QqH D 1

d

X
v2Œd��ŒtC1�

wv

W
D 1

d

X
v

1 D t C 1:

As ��.H/ is the supremum of the weights of all fractional packings, and QqH is a
particular fractional packing, this yields ��.H/ � P

H2H QqH D t C 1.
The last step is to show that �.H/ cannot be small if ��.H/ is large. Here is a

simple argument leading to a slightly suboptimal bound, namely �.H/ � 1
d ��.H/.

Given a fractional matching Qq of size t C 1 in H, a matching can be obtained by
the following greedy procedure: Pick an edge H1 and discard all edges intersecting
it, pick H2 among the remaining edges, etc., until all edges are exhausted. The Qq-
weight of Hi plus all the edges discarded with it is at most d D jHij, while all
edges together have weight tC 1. Thus, the number of steps, and also the size of the
matching fH1;H2; : : : g, is at least d tC1

d e.
If we set t D d � �.F/, we get �.H/ > �.F/, which contradicts (1). Therefore,

for this choice of t, all the vertex weights must be 0, and T as in Lemma 3.2 is a
transversal of F of size at most d2�.F/.

The improved bound �.F/ � .d2 � d/ � �.F/ for d � 3 follows similarly using a
theorem of Füredi [26], which implies that the matching number of any d-uniform
d-partite hypergraph H satisfies ��.H/ � .d � 1/�.H/. (For d D 2, a separate
argument needs to be used, based on a theorem of Lovász stating that ��.G/ �
3
2
�.G/ for all graphs G.) The Tardos–Kaiser Theorem 3.1 is proved. ut
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Proof of Lemma 3.2 Let � t denote the standard t-dimensional simplex in R
tC1, i.e.

the set fx 2 R
tC1 W xj � 0; x1 C � � � C xtC1 D 1g. A point x 2 � t defines a t-point

multiset fz1; z2; : : : ; ztg � Œ0; 1�, z1 � z2 � � � � � zt, by setting zk D Pk
jD1 xj. Here

is a picture for t D 2:

A candidate transversal T with t points in each Ii can thus be defined by an ordered
d-tuple .x1; : : : ; xd/ of points, xi 2 � t, where xi determines Ti. Such an ordered
d-tuple can be regarded as a single point x in the Cartesian product P D � t � � t �
� � ��� t D .� t/d. To each x 2 P, we have thus assigned a candidate transversal T.x/.

For each vertex v D .i; j/ of the hypergraphH0, we define the function gijW P ! R

by gij.x/ D w.i;j/.T.x//, where wv.T/ is the vertex weight. This is a continuous
function of x, since the edge weights qH and hence the vertex weights w.i;j/.T.x//

change continuously when T.x/ moves—even if by this move new edges from F
escape, or fail to escape, through a hole: If this is due to a small change of T.x/,
then they escape, or fail to escape, by a narrow margin.

We note that for each x, the sum

Si.x/ D
tC1X
jD1

gij.x/

is independent of i; this is because Si.x/ equals the sum of the weights of all edges.
So we can write just S.x/ instead of Si.x/.

If there is an x 2 P with S.x/ D 0, then all the vertex weights w.i;j/.T.x// are 0
and we are done. Otherwise, we define the normalized functions

fij.x/ D 1

S.x/
gij.x/:

For each i, fi1.x/; : : : ; fi.tC1/.x/ are nonnegative and sum up to 1, and so they are the
coordinates of a point in the standard simplex � t. All the maps fij together can be
regarded as a map f W P ! P. To prove the lemma, we need to show that the image
of f contains the point of P with all the d.t C 1/ coordinates equal to 1

tC1
.
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The product P is a convex polytope, and its nonempty faces are exactly all
Cartesian products F1 � F2 � � � � � Fd, where the F1; : : : ;Fd are nonempty faces
of the factors � t; : : : ; � t of P D � t � � t � � � � � � t (Exercise 2). We note that
for any face F of P, we have f .F/ � F: Indeed, any face G of � t has the form
G D fx 2 � t W xi D 0 for all i 2 Ig, for some index set I, and the faces of P are
products of faces G of this form. So it suffices to know that fij.x/ D 0 whenever
.xi/j D 0. This holds, since .xi/j D 0 means that the jth hole in Ii is empty, so
nothing can escape through that hole, and thus fij.x/ D 0. The proof of Lemma 3.2
is now reduced to the following statement.

Lemma 3.3 Let P be a convex polytope and let f W P ! P be a continuous map
satisfying f .F/ � F for each face3 F of P. Then f is surjective.

Proof Since the condition is hereditary for faces, it suffices to show that each point
y in the interior of P has a preimage. For contradiction, suppose that some y 2 intP
is not in the image of f . For x 2 P, consider the ray that starts at f .x/ and passes
through y, and let g.x/ be the unique intersection of that ray with the boundary of P.

This g is a well-defined and continuous map P ! P, and by Brouwer’s fixed point
theorem, there is an x0 2 P with g.x0/ D x0. The point x0 lies on the boundary
of P, in some proper face F. But f .x0/ cannot lie in F, because the segment x0f .x0/

passes through the point y outside F—a contradiction. ut

3.3 Lower Bounds

It turns out that the bound in Theorem 3.1 is not far from being the best possible. In
particular, for �.F/ D 1 and d large, the transversal number can be near-quadratic
in d, which is rather surprising. For all k and d, systems F of d-intervals can be
constructed with �.F/ D k and

�.F/ � c
d2

.log d/2
k

3In fact, it suffices to require f .F/ � F for each facet of P (that is, for each face of dimension
dim.P/ � 1), since each face is the intersection of some facets.
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for a suitable constant c > 0 (Matoušek [51]). The construction involves an
extension of a construction due to Sgall [66] of certain systems of set pairs. Here we
outline a (non-topological!) proof of a somewhat simpler result concerning families
of homogeneous d-intervals, which are unions of at most d closed intervals on the
real line. These are more general than the d-intervals, but an upper bound only
slightly weaker than Theorem 3.1 can be proved for them along the same lines
(Exercise 4): � � .d2 � d C 1/�.

Proposition 3.4 There is a constant c > 0 such that for every d � 2 and k � 1,
there exists a system F of homogeneous d-intervals with �.F/ D k and

�.F/ � c
d2

log d
k:

Proof Given d and k, we want to construct a system F of homogeneous d-intervals.
Clearly, it suffices to consider the case k D 1, since for larger k, we can take
k disjoint copies of the F constructed for k D 1. Thus, we want an F in which
every two d-intervals intersect and with �.F/ large.

In the construction, we will use homogeneous d-intervals of a quite special
form: Each component is either a single point or a unit-length interval. First, it is
instructive to see why we cannot get a good example if all the components are only
points. In that case, the family F is simply a d-uniform hypergraph (whose vertices
happen to be points of the real line). We require that any two edges intersect, and
thus any edge is a transversal and we have �.F/ � d.

For the actual construction, let n and N be integer parameters (whose value will
be set later). Let V D Œn� be an index set, and Iv, for v 2 V , be auxiliary pairwise
disjoint unit intervals on the real line. In each Iv, we choose N distinct points xv;i,
i D 1; 2; : : : ;N.

The constructed systemF will consist of homogeneousd-intervals J1; J2; : : : ; JN .
For each i D 1; 2; : : : ;N, we choose auxiliary sets ; � Bi � Ai � V and then
construct Ji as follows:

Ji D
� [

v2Bi

Iv
�

[ fxu;i W u 2 Ai n Big:

The picture shows an example of J1 for n D 6, A1 D f1; 2; 4; 5g and B1 D f2; 4g:

I1
. . .

x1,1

I2
. . .

I3
. . .

I4
. . .

I5
. . .

I6
. . .

x5,1

The heart of the proof is the construction of suitable sets Ai and Bi on the ground
set V . Since the Ji should be homogeneous d-intervals, we obviously require

(C1) For all i D 1; 2; : : : ;N, ¿ � Bi � Ai and jAij � d.
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The condition that every two members of F intersect is implied by the following:

(C2) For all i1; i2, 1 � i1 < i2 � N, we have Ai1 \ Bi2 ¤ ; or Ai2 \ Bi1 ¤ ; (or
both).

Finally, we want F to have no small transversal. Since no two d-intervals of F
have a point component in common, a transversal of size t intersects no more than
t members of F in their point components, and all the other members of F must
be intersected in their interval components. Therefore, the transversal condition
translates to

(C3) Put t D cd2= log d for a sufficiently small constant c > 0, and let B D
fB1;B2; : : : ;BNg. Then �.B/ � 2t, and consequently �.B0/ � t for any B0
arising from B by removing at most t sets.

A construction of sets A1; : : : ;AN and B1; : : : ;BN as above was provided by Sgall
[66]. His results give the following:

Proposition 3.5 Let b be a given integer, let n � cb2= log b for a sufficiently small
constant c > 0, and let B1;B2; : : : ;BN be b-element subsets of V D Œn�. Then there
exist sets A1;A2; : : : ;AN, with Bi � Ai, jAij � 3b, and such that (C2) is satisfied.

With this proposition, the proof of Proposition 3.4 is easily finished. We set b D
b d

3
c, n D cb2= log b, and we let B1;B2; : : : ;BN be all the N D �n

b

�
subsets of V of

size b. We have �.fB1; : : : ;Bng/ D n�bC1 and condition (C3) holds. It remains to
construct the sets Ai according to Proposition 3.5; then (C1) and (C2) are satisfied
too. The proof of Proposition 3.4 is concluded by passing from the Ai and Bi to the
system F of homogeneous d-intervals as was described above. ut
Sketch of proof of Proposition 3.5 Let G D .V;E/ be a graph on n vertices of
maximum degree b with the following expander-type property: For any two disjoint
b-element subsets A;B � V , there is at least one edge e 2 E connecting a vertex
of A to a vertex of B. (The existence of such a graph can be easily shown by the
probabilistic method; the constant c arises in this argument. See [66] for references.)

For each i, let vi be an (arbitrary) element of the set Bi, and let

Ai D Bi [ N.vi/ [
�
V n

[
u2Bi

N.u/
�
;

where N.v/ denotes the set of neighbors in G of a vertex v 2 V . It is easy to check
that jAij � 3b, and some thought reveals that the condition (C2) is satisfied. ut

3.4 A Helly-Type Problem for d-Intervals

Kaiser and Rabinovich [41] investigated conditions on a family F of d-intervals
guaranteeing that F can be pierced by a “multipoint,” that is, �.F/ � d and there is
a transversal using one point of each Ii. They proved the following.
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Theorem 3.6 (The Kaiser–Rabinovich theorem on d-intervals)
Let k D dlog2.d C 2/e and let F be a family of d-intervals such that any k or fewer
members of F have a common point. Then F can be pierced by a multipoint.

Let’s put this result into context: The proof of the Kaiser–Tardos Theorem 3.1
sets out to show that there exists a transversal consisting of exactly t points in each
of the intervals Ii, for a suitable t. We eventually get that if every two d-intervals
meet (that is, �.F/ D 1), then we can take t < d. The Kaiser–Rabinovich theorem
says that if every dlog2.d C 2/e meet then t < 2 suffices. The upcoming proof of
Theorem 3.6 can be extended to yield an interpolation between this result and the
Kaiser–Tardos theorem: If every dlogb.d C 2/e edges meet, then we can take t < b.
For b D d this yields the result of Kaiser–Tardos for �.F/ D 1.

Proof We use notation from the proof of Theorem 3.1. We apply Lemma 3.2 with
t D 1, obtaining a set T with one point in each Ti such that all the 2d vertices of the
escape hypergraph H D H.T/ have the same weight W. If W D 0 we are done, so
let us assume W > 0.

By the assumption on F , every k edges of H share a common vertex. We will
prove the following claim for every `:

If every ` C 1 edges of H have at least m common vertices, then every ` edges of H have
at least 2m C 1 common vertices.

For ` D k, the assumption holds with m D 1, and so by .k � 1/-fold application
of this claim, we get that every edge of H “intersects itself” in at least 2k�1 vertices,
i.e. d > 2k � 2. The claim thus implies the theorem.

The claim is proved by contradiction. Suppose that A � H is a set of ` edges
such that C D TA has at most 2m vertices, and let NC WD f.i; 3 � j/ W .i; j/ 2 Cg.
No edge H 2 H contains both .i; 1/ and .i; 2/, thus also C does not contain both
.i; 1/ and .i; 2/, and thus NC is a subset of the complement of C; it is matched to C
by .i; 3 � j/ $ .i; j/, and thus jCj D j NCj.

By the assumption, A plus any other edge together intersect in at least m vertices.
Thus, any H 2 H n A contains at least m vertices of C, and consequently no more
than m vertices of NC.

Let U be the total weight of the vertices in C, and NU the total weight of the
vertices in NC. The edges in A contribute solely to U, while any other edge H
contributes at least as much to U as to NU, and so U > NU. But this is impossible
since all vertex weights are identical and jCj D j NCj. The claim, and Theorem 3.6
too, are proved. ut

An interesting open problem is whether k D dlog2.dC2/e in Theorem 3.6 could
be replaced by k D k0 for some constant k0 independent of d. The best known lower
bound is k0 � 3.

Notes Tardos [74] proved the optimal bound � � 2� for 2-intervals
by a topological argument using the homology of suitable simplicial com-
plexes. Kaiser’s argument [39] is similar to the presented one, but he proves
Lemma 3.2 using a rather advanced Borsuk–Ulam-type theorem of Ramos
[64] concerning continuous maps defined on products of spheres. The method
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with Brouwer’s theorem was used by Kaiser and Rabinovich [41] for a proof
of Theorem 3.6.

Lemma 3.3 seems to be new in the version that we give here, but
it relates to a vast literature of “KKM-type lemmas,” which starts with
a paper by Knaster, Kuratowski, and Mazurkiewicz [43] from 1929. We
refer to Bárány and Grinberg [7] and the references given there, such as
mathoverflow.net/questions/67318.

Alon’s short proof [2] of the bound � � 2d2� for families of d-intervals
applies a powerful technique developed in Alon and Kleitman [4]. For the
so-called Hadwiger–Debrunner . p; q/-problem solved in the latter paper,
the quantitative bounds are probably quite far from the truth. It would be
interesting to find an alternative topological approach to that problem, which
could perhaps lead to better bounds. See, for example, Hell [34].

The variant of the piercing problem for families of homogeneous d-
intervals has been considered simultaneously with d-intervals; see [2, 32, 39,
74]. The upper bounds obtained for the homogeneous case are slightly worse:
� � 3� for homogeneous 2-intervals, which is tight, and � � .d2 �dC1/� for
homogeneous d-intervals, d � 3 [39]. The reason for the worse bounds is that
the escape hypergraph needs no longer be d-partite, and so Füredi’s theorem
[26] relating � to �� gives a little worse bound (for d D 2, one uses a theorem
of Lovász instead, asserting that �� � 3

2
� for any graph).

Sgall’s construction [66] answered a problem raised by Wigderson in 1985.
The title of Sgall’s paper refers to a different, but essentially equivalent,
formulation of the problem dealing with labeled tournaments.

Alon [3] proved by the method of [2] that if T is a tree and F is a family of
subgraphs of T with at most d connected components, then �.F/ � 2d2�.F/.
More generally, he established a similar bound for the situation where T is
a graph of bounded tree-width (on the other hand, if the tree-width of T is
sufficiently large, then one can find a system of connected subgraps of T
with � D 1 and � arbitrarily large, and so the tree-width condition is
also necessary in this sense). A somewhat weaker bound for trees has been
obtained independently by Kaiser [40].

Strong results for piercing of d-trees, improving on Alon’s results, were
obtained by Berger [8], based on a topological approach via KKM-type
lemmas. (For these see the references given above.)

Exercises

1. We have claimed that for any family F of intervals, it is well-known and easy to
prove that �.F/ D �.F/. Prove this!

2. Let P and Q be convex polytopes. Show that there is a bijection between the
nonempty faces of the Cartesian product P�Q and all the products F�G, where
F is a nonempty face of P and G is a nonempty face of Q.

http://mathoverflow.net/questions/67318
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3. Show that the following “Brouwer-like” claim resembling Lemma 3.3 is not true:
If f W Bn �! Bn is a continuous map of the n-ball such that the boundary of Bn

is mapped surjectively onto itself, then f is surjective.
4. Prove the bound �.F/ � d2�.F/ for any family of homogeneous d-intervals

(unions of d intervals on a single line). Hint: Follow the proof for d-intervals
above, but encode a candidate transversal T by a point of a simplex (rather than
a product of simplices).

4 Evasiveness

4.1 A General Model

The idea of evasiveness comes from the theory of complexity of algorithms.
Evasiveness appears in different versions for graphs, digraphs and bipartite graphs.
We start with a general model that contains them all.

Definition 4.1 (Argument complexity of a set system; evasiveness) In the fol-
lowing, we are concerned with a fixed and known set system F � 2E, and with the
complexity of deciding whether some unknown set A � E is in the set system. Here
our “model of computation” is such that

given, and known, is a set system F � 2E, where E is fixed, jEj D m.
On the other hand, there is a

fixed, but unknown subset A � E.
We have to

decide whether A 2 F , using only
questions of the type “Is e 2 A?”

(It is assumed that we always get correct answers YES or NO. We only count the
number of questions that are needed in order to reach the correct conclusion: It is
assumed that it is not difficult to decide whether e 2 A. You can assume that some
“oracle” that knows both A and F is answering.)

The argument complexity c.F/ of the set system F is the number of elements of
the ground set E that we have to test in the worst case—with the optimal strategy.

Clearly 0 � c.F/ � m. The set system F is trivial if c.F/ D 0: then no questions
need to be asked; this can only be the case if F D fg or if F D 2E. Otherwise F is
non-trivial.

The set system F is evasive if c.F/ D m, that is, if even with an optimal strategy
one has to test all the elements of E in the worst case.

For example, if F D f;g, then c.F/ D m: If we again and again get the answer
NO, then we have to test all the elements to be sure that A D ;. So F D f;g is an
evasive set system: “being empty” is an evasive set property.
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4.2 Complexity of Graph Properties

Definition 4.2 (Graph properties) Here we consider graphs on a fixed vertex set
V D Œn�. Loops and multiple edges are excluded. Thus any graph G D .V;A/ is
determined by its edge set A, which is a subset of the set E D �n

2

�
of “potential

edges.”
We identify a property P of graphs with the family of graphs that have the

property P , and thus with the set family F.P/ � 2E given by

F.P/ WD fA � E W .Œn�;A/ has property Pg:

Furthermore, we will consider only graph properties that are isomorphism invariant;
that is, properties of abstract graphs that are preserved under renumbering the
vertices.

A graph property is evasive if the associated set system is evasive, and otherwise
it is non-evasive.

With the symmetry condition of Definition 4.2, we would accept “being con-
nected”, “being planar,” “having no isolated vertices,” and “having even vertex
degrees” as graph properties. However, “vertex 1 is not isolated,” “123 is a triangle,”
and “there are no edges between odd-numbered vertices” are not graph properties.

Example 4.3 (Graph properties) For the following properties of graphs on n ver-
tices we can easily determine the argument complexity.

Having no edge: Clearly we have to check every single e 2 E in order to be sure
that it is not contained in A, so this property is evasive: Its argument complexity
is c.F/ D m D �n

2

�
.

Having at most k edges: Let us assume that we ask questions, and the answer we
get is YES for the first k questions, and then we get NO-answers for all further
questions, except for possibly the last one. Assuming that k < m, this implies
that the property is evasive. Otherwise, for k � m, the property is trivial.

Being connected: This property is evasive for n � 2. Convince yourself that for
any strategy, a sequence of “bad” answers can force you to ask all the questions.

Being planar: This property is trivial for n � 4 but evasive for n � 5. In fact, for
n D 5 one has to ask all the questions (in arbitrary order), and the answer will be
A 2 F unless we get a YES answer for all the questions—including the last one.
This is, however, not at all obvious for n > 5: It was claimed by Hopcroft and
Tarjan [35], and proved by Best, Van Emde Boas and Lenstra [10, Example 2]
[15, p. 408].

A large star: Let P be the property of being a disjoint union of a star �1;n�4 and
an arbitrary graph on 3 vertices, and let F be the corresponding set system.
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k

Then c.F/ <
�n

2

�
for n � 7. For n � 12 we can easily see this, as follows. Test all

the b n
2
cd n

2
e edges fi; jg with i � b n

2
c < j. That way we will find exactly one vertex

k with at least b n
2
c � 3 � 3 neighbors (otherwise property P cannot be satisfied):

That vertex k has to be the center of the star. We test all other edges adjacent to k:
We must find that k has exactly n � 4 neighbors. Thus we have identified three
vertices that are not neighbors of k: At least one of the edges between those three
has not been tested. We test all other edges to check that .Œn�;A/ has property P .
(This property was found by L. Carter [10, Example 16].)

Being a scorpion graph: A scorpion graph is an n-vertex graph that has one
vertex of degree 1 adjacent to a vertex of degree 2 whose other neighbor has
degree n � 2. We leave it as an (instructive!) exercise to check that “being a
scorpion graph” is not evasive if n is large: In fact, Best, van Emde Boas and
Lenstra [10, Example 18] [15, p. 410] have shown that c.F/ � 6n.

1

2

n − 2

From these examples it may seem that most “interesting” graph properties are
evasive. In fact, many more examples of evasive graph properties can be found
in Bollobás [15, Sect. VIII.1], alongside with techniques to establish that graph
properties are evasive, such as Milner and Welsh’s “simple strategy” [15, p. 406].

Why is this model of interest? Finite graphs (similarly for digraphs and bipartite
graphs) can be represented in different types of data structures that are not at all
equivalent for algorithmic applications. For example, if a finite graph is given by an
adjacency list, which for every vertex lists the neighbors in some order, then one can
decide fast (“in linear time”) whether the graph is planar, e.g. using an old algorithm
of Hopcroft and Tarjan [35]; see also Mehlhorn [53, Sect. IV.10] and [54]. Note that
such a planar graph has at most 3n � 6 edges (for n � 3).

However, assume that a graph is given in terms of its adjacency matrix

M.G/ D �
mij

�
1�i;j�n

2 f0; 1gn�n;
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where mij D 1 means that fi; jg is an edge of G, and mij D 0 says that fi; jg is not
an edge. Here G is faithfully represented by the set of all

�n
2

�
superdiagonal entries

(with i < j). Then one possibly has to inspect a large part of the matrix until one
has enough information to decide whether the graph in question is planar. In fact, if
F � 2E is the set system corresponding to all planar graphs, then c.F/ is exactly
the number of superdiagonal matrix entries that every algorithm for planarity testing
has to inspect in the worst case.

The statement that “being planar” is evasive (for n � 5) thus translates into
the fact that every planarity testing algorithm that starts from an adjacency matrix
needs to read at least

�n
2

�
bits of the input, and hence its running time is bounded

from below by
�n

2

� D �.n2/. This means that such an algorithm—such as the one
considered by Fisher [24]—cannot run in linear time, and thus cannot be efficient.

Definition 4.4 (Digraph properties; bipartite graph properties)

(1) For digraph properties we again use the fixed vertex set V D Œn�. Loops
and parallel edges are excluded, but anti-parallel edges are allowed. Thus any
digraph G D .V;A/ is determined by its arc set A, which is a subset of the set
E0 of all m WD n2 � n “potential arcs” (corresponding to the off-diagonal entries
of an n � n adjacency matrix).

A digraph property is a property of digraphs .Œn�;A/ that is invariant under
relabelling of the vertex set. Equivalently, a digraph property is a family of arc
sets F � 2E

0

that is symmetric under the action of Sn that acts by renumbering
the vertices (and renumbering all arcs correspondingly). A digraph property is
evasive if the associated set system is evasive, otherwise it is non-evasive.

(2) For bipartite graph properties we use a fixed vertex set V ]W of size mCn, and
use E00 WD V � W as the set of potential edges. A bipartite graph property is a
property of graphs .V[W;A/ with A � E00 that is preserved under renumbering
the vertices in V , and also under permuting the vertices in W. Equivalently, a
bipartite graph property on V �W is a set system F � 2V�W that is stable under
the action of the automorphism group Sn �Sm that acts transitively on V �W.

Example 4.5 (Digraph properties) For the following digraph properties on n ver-
tices we can determine the argument complexity.

Having at most k arcs: Again, this is clearly evasive with c.F/ D m if k < m D
n2 � n, and trivial otherwise.

Having a sink: A sink in a digraph on n vertices is a vertex k for which all arcs
going into k are present, but no arc leaves k, that is, a vertex of out-degree
ıC.v/ D 0, and in-degree ı�.v/ D n� 1. Let F be the set system of all digraphs
on n vertices that have a sink. It is easy to see that c.F/ � 3n � 4. In particular,
for n � 3 “having a sink” is a non-trivial but non-evasive digraph property.
In fact, if we test whether .i; j/ 2 A, then either we get the answer YES, then
i is not a sink, or we get the answer NO, then j is not a sink. So, by testing arcs
between pairs of vertices that “could be sinks,” after n�1 questions we are down
to one single “candidate sink” k. At this point at least one arc adjacent to k has



Using Brouwer’s Fixed Point Theorem 249

been tested. So we need at most 2n � 3 further questions to test whether it is a
sink.

In the early 1970s Arnold L. Rosenberg conjectured that all non-trivial digraph
properties have quadratic argument complexity, that is, that there is a constant 	 > 0

such that for all non-trivial properties of digraphs on n vertices one has c.F/ �
	n2. However, Stål Aanderaa found the counter-example (for digraphs) of “having
a sink” [10, Example 15] [63, p. 372]. We have also seen that “being a scorpion
graph” is a counter-example for graphs.

Hence Rosenberg modified the conjecture: At least all monotone graph prop-
erties, that is, properties that are preserved under deletion of edges, should have
quadratic argument complexity. This is the statement of the Aanderaa–Rosenberg
conjecture [65]. Richard Karp considerably sharpened the statement, as follows.

Conjecture 4.6 (The evasiveness conjecture) Every non-trivial monotone graph
property or digraph property is evasive.

We will prove this below for graphs and digraphs in the special case when n is
a prime power; from this one can derive the Aanderaa–Rosenberg conjecture, with
	 	 1

4
. Similarly, we will prove that monotone properties of bipartite graphs on

a fixed ground set V [ W are evasive (without any restriction on jVj D m and
jWj D n). However, we first return to the more general setting of set systems.

4.3 Decision Trees

Any strategy to determine whether an (unknown) set A is contained in a (known) set
system F—as in Definition 4.1—can be represented in terms of a decision tree of
the following form.

Definition 4.7 A decision tree is a rooted, planar, binary tree whose leaves are
labelled “YES” or “NO,” and whose internal nodes are labelled by questions (here
they are of the type “e 2 A‹”). Its edges are labelled by answers: We will represent
them so that the edges labelled “YES” point to the right child, and the “NO” edges
point to the left child.

A decision tree for F � 2E is a decision tree such that starting at the root with
an arbitrary A � E, and going to the right resp. left child depending on whether the
question at an internal node we reach has answer YES or NO, we always reach a
leaf that correctly answers the question “A 2 F‹”.

e ∈ A?

NO YES
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The root of a decision tree is at level 0, and the children of a node at level i have
level i C 1. The depth of a tree is the greatest k such that the tree has a vertex at
level k (a leaf).

We assume (without loss of generality) that the trees we consider correspond to
strategies where we never ask the same question twice.

A decision tree for F is optimal if it has the smallest depth among all decision
trees for F , that is, if it leads us to ask the smallest number of questions for the worst
possible input.

Let us consider an explicit example.

32
23

31
13

21

12

The following figure represents an optimal algorithm for the “sink” problem on
digraphs with n D 3 vertices. This has a ground set E D f12; 21; 13; 31; 23; 32g of
size m D 6.

ON SEYON

NO NO

NO

YESYES

ON SEY

NO 31 ∈ A?

31

NO 31 ∈ A?

32 ∈ A?

21 ∈ A?
3

NO 31 ∈ A?

32 ∈ A?

23 ∈ A?

13 ∈ A?
2

32 ∈ A? NO

21 ∈ A?

13 ∈ A?

23 ∈ A?

12 ∈ A?

NO

SEYON

NO

NO

ONON

SEYSEYSEY ON

YES

YES

YES

YES

NO

NO YES

YES

NO

NO

YES

YES

NOYES

NO

The algorithm first asks, in the root node at level 0, whether 12 2 A. In case the
answer is YES (so we know that 1 is not a sink), it branches to the right, leading to
a question node at level 1 that asks whether 23 2 A‹, etc. In case the answer to the
question 12 2 A‹ is NO (so we know that 2 is not a sink), it branches to the left,
leading to a question node at level 1 that asks whether 13 2 A‹, etc.

For every possible input A (there are 26 D 32 different ones), after two questions
we have identified a unique “candidate sink”; after not more than 5 question nodes
one arrives at a leaf node that correctly answers the question whether the graph
.V;A/ has a sink node: YES or NO. (The number of the unique candidate is noted
next to each node at level 2.)
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For each node (leaf or inner) of level k, there are exactly 2m�k different inputs
that lead to this node. This proves the following lemma.

Lemma 4.8 The following are equivalent:

• F is non-evasive.
• The optimal decision trees TF for F have depth smaller than m.
• Every leaf of an optimal decision tree TF is reached by at least two distinct

inputs.

Corollary 4.9 If F is non-evasive, then jF j is even.
This can be used to show, for example, that the directed graph property “has a

directed cycle” is evasive [10, Example 4].
Another way to view a (binary) decision tree algorithm is as follows. In the

beginning, we do not know anything about the set A, so we can view the collection
of possible sets as the complete boolean algebra of all 2m subsets of E.

In the first node (at “level 0”) we ask a question of the type “e 2 A‹”; this
induces a subdivision of the boolean algebra into two halves, depending on whether
we get answer YES or NO. If you think of the boolean algebra as a partially ordered
set (indeed, a lattice), then each of the halves is an interval of length m � 1 of
the boolean algebra .2E; �/. If you prefer to think of it as a rendition of the m-
dimensional hypercube, then the halves are subcubes of codimension 1, containing
all the vertices of two opposite facets.

At level 1 we ask a new question, depending on the outcome of the first question.
Thus we independently bisect the two halves of level 0, getting four pieces of the
boolean algebra, all of the same size.

f ∈ A?

g ∈ A?

e ∈ A?

This process is iterated. It stops—as we do not need to ask a further question—on
parts that we create that either contain only sets that are in F (this yields a YES-leaf)
or that contain only sets not in F (corresponding to NO-leaves).

Thus the final result is a special type of partition of the boolean algebra into
intervals. Some of them are YES intervals, containing only sets of F , all the others
are NO-intervals, containing no sets fromF . If the property in question is monotone,
then the union of the YES intervals (i.e., the set system F ) forms an ideal in the
boolean algebra, that is, a “down-closed” set such that with any set that it contains
it must also contain all its subsets.
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Let pF .t/ be the generating function for the set system F , that is, the polynomial

pF .t/ WD
X
A2F

tjAj D f�1 C tf0 C t2f1 C t3f2 C : : : :

where fi D jfA 2 F W jAj D i C 1gj.
Proposition 4.10

.1 C t/m�c.F/
ˇ̌
pF .t/:

Proof Consider one interval I in the partition of 2E that is induced by any optimal
algorithm for F . If the leaf, at level k, corresponding to the interval is reached
through a sequence of kY YES-answers and kN NO-answers (with kY C kN D k),
then this means that there are sets AY � E with jAY j D kY and AN � E with
jAN j D kN , such that

I D fA � E W AY � A � EnANg:

In other words, the interval I contains all sets that give YES-answers when asked
about any of the kY elements of AY , NO-answers when asked about any of the
kN elements of AN , while the m�kY�kN elements of En.AY[AN/ may or may not be
contained in A. Thus the interval I has size 2m�kY�kN , and its counting polynomial
is

pI.t/ WD
X
A2I

tjAj D tkY .1 C t/m�kY�kN :

Now the complete set system F is a disjoint union of the intervals I, and we get

pF .t/ D
X
I

pI.t/:

In particular, for an optimal decision tree we have kY C kN D k � c.F/ and thus
m� c.F/ � m� kY � kN at every leaf of level k, which means that all the summands
pI.t/ have a common factor of .1 C t/m�c.F/. ut
Corollary 4.11 If F is non-evasive, then jF evenj D jFoddj, that is,

�f�1 C f0 � f1 C f2 
 � � � D 0:

Proof Use Proposition 4.10, and put t D �1. ut
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We can now draw the conclusion, based only on simple counting, that most set
families are evasive. This cannot of course be used to settle any specific cases, but it
can at least make the various evasiveness conjectures seem more plausible.

Corollary 4.12 Asymptotically, almost all set families F are evasive.

Proof The number of set families F � 2E such that

#fA 2 F j #A oddg D #fA 2 F j #A eveng D k

is
�

2m�1

k

�2
. Hence, using Stirling’s estimate of factorials,

Prob (F non-evasive) �
P2m�1

kD0

�
2m�1

k

�2

22m
D

�
2m

2m�1

�
22m

� 1p

2m�1

! 0;

as m ! 1. ut
Conjecture 4.13 (The “Generalized Aanderaa–Rosenberg Conjecture”, Rivest
and Vuillemin [62]) If F � 2E, with symmetry group G � SE that is transitive on
the ground set E, and if ; 2 F but E … F , then F is evasive.

Note that for this it is not assumed that F is monotone. However, the assumption
that ; 2 F but E … F is satisfied neither by “being a scorpion” nor by “having a
sink.”

Proposition 4.14 (Rivest and Vuillemin [62]) The Generalized Aanderaa–
Rosenberg Conjecture 4.13 holds if the size of the ground set is a prime power,
jEj D pt.

Proof Let O be any k-orbit of G, that is, a collection of k-sets O � F on which
G acts transitively. While every set in O contains k elements e 2 E, we know
from transitivity that every element of E is contained in the same number, say d,
of sets of the orbit O. Thus, double-counting the edges of the bipartite graph on
the vertex set E ] O defined by “e 2 A” (displayed in the figure below) we find
that kjOj D djEj D dpt. Thus for 0 < k < pt we have that p divides jOj, while
f¿g is one single “trivial” orbit of size 1, and k D pt doesn’t appear. Hence we
have

�f�1 C f0 � f1 C f2 
 � � � � �1 mod p;

which implies evasiveness by Corollary 4.11.
ut
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2E

O

E: has pt elements

Proposition 4.15 (Illies [36]) The Generalized Aanderaa–Rosenberg Conjec-
ture 4.13 fails for n D 12.

Proof Here is Illies’ counterexample: Take E D f1; 2; 3; : : : ; 12g, and let the cyclic
group G D Z12 permute the elements of E with the obvious cyclic action.

Take FI � 2E to be the following system of sets

• ;, so we have f�1 D 1

• f1g and all images under Z12, that is, all singleton sets: f0 D 12,
• f1; 4g and f1; 5g and all images under Z12, so f1 D 12 C 12 D 24,
• f1; 4; 7g and f1; 5; 9g and all their Z12-images, so f2 D 12 C 4 D 16,
• f1; 4; 7; 10g and their Z12-images, so f3 D 3.

An explicit decision tree of depth 11 for this FI is given in our figure below. Here
the pseudo-leaf “YES(7,10)” denotes a decision tree where we check all elements
e 2 E that have not been checked before, other than the elements 7 and 10. If
none of them is contained in A, then the answer is YES (irrespective of whether
7 2 A or 10 2 A), otherwise the answer is NO. The fact that two elements need
not be checked means that this branch of the decision tree denoted by this “pseudo-
leaf” does not go beyond depth 10. Similarly, a pseudo-leaf of the type “YES(7)”
represents a subtree of depth 11.

Thus the following figure completes the proof. Here dots denote subtrees that are
analogous to the ones just above. ut
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11 ∈ A?

10 ∈ A?

6 ∈ A?

9 ∈ A?

12 ∈ A?

7 ∈ A?

4 ∈ A?

7 ∈ A?

3 ∈ A? 10 ∈ A?

1 ∈ A?

2 ∈ A 4? ∈ A?

Note, however, that Illies’ example is not monotone: For example, we have
f1; 4; 7g 2 FI , whereas f1; 7g … FI .

4.4 Monotone Systems

We now concentrate on the case where F is closed under taking subsets, that is, F is
an abstract simplicial complex, which we also denote by � WD F . In this setting,
the symmetry group acts on � as a group of simplicial homeomorphisms. If F is a
graph or digraph property, then this means that the action of G is transitive on the
vertex set E of �, which corresponds to the edge set of the graph in question. Again
we denote the cardinality of the ground set (the vertex set of �) by jEj D m.

A complex � � 2E is a cone if it has a vertex v such that A [ fvg is a face of �

for any face A 2 �. For example, every simplex � D 2E is a cone, but also every
star graph Km;1, considered as a simplicial complex of dimension 1, is a cone.

A complex � � 2E is collapsible if it can be reduced to a one-point complex
(equivalently, to a simplex) by steps of the form

� �! �nfA 2 � W A0 � A � A1g;

where A0 � A1 are faces of � with ¿ ¤ A0 ¤ A1, and A1 is the unique maximal
element of � that contains A0. For example, every tree, considered as a simplicial
complex of dimension 1, is collapsible.
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Our figure illustrates a sequence of collapses that reduce a 2-dimensional
complex to a point. In each case the face A0 that is contained in a unique maximal
face is drawn fattened.

Theorem 4.16 We have the following implications:
� is a cone H) � is non-evasive H) � is collapsible H) � is contractible.

Proof The first implication is clear: For a cone we don’t have to test the apex e0 in
order to see whether a set A is a face of �, since A 2 � if and only if A [ fe0g 2 �.
The third implication is easy topology: One can write down explicit deformation
retractions. The middle implication we will derive from the following claim, which
uses the notion of a link of a vertex e in a simplicial complex �: This is the complex
�=e formed by all faces A 2 � such that e … A but A [ feg 2 �.

Claim � is non-evasive if and only if either � is a simplex, or it is not a simplex but
it has a vertex e such that both the deletion �ne and the link �=e are non-evasive.

Let us first verify this claim: If no questions need to be asked (that is, if
c.�/ D 0), then � is a simplex. Otherwise we have some e that corresponds to the
first question to be asked by an optimal algorithm. If one gets a YES answer, then
the problem is reduced to the link �=e, since the faces B 2 �=e correspond to the
faces A D B [ feg of � for which e 2 A. In the case of a NO-answer the problem
similarly reduces to the deletion �ne.

Now let us return to the proof of Theorem 4.16, where we still have to verify that
“� is non-evasive H) � is collapsible.” We use induction on the number of faces
of �.

If � is not a simplex, then by the Claim it has a vertex e such that the link �=e
and the deletion �ne are collapsible. If the link is a simplex, then deletion of e is a
collapsing step � ! �ne, where �ne is collapsible, so we are done by induction.

If the link is not a simplex, then it has faces ¿ � A0 � A1 such that A1 is
the unique maximal face in the link that contains A0. This means that � has faces
feg � A0 [ feg � A1 [ feg such that A1 [ feg is the unique maximal face in � that
contains A0 [feg. In this way any collapsing step in the link �=e yields a collapsing
step in �, and again we are done by induction. ut

4.5 A Topological Approach

The following simple lemma provides the step from the topological fixed point
theorems for complexes to combinatorial information.
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Lemma 4.17 If a (finite) group G acts vertex-transitively and with a fixed point on
a finite complex �, then � is a simplex.

Proof If V WD fv1; : : : ; vng is the vertex set of �, then any point x 2 k�k has a
unique representation of the form

x D
nX

iD1

�i vi;

with �i � 0 and
Pn

iD1 �i D 1. If the group action, with

gx D
nX

iD1

�i gvi;

is transitive, then this means that for every i; j there is some g 2 G with gvi D vj.
Furthermore, if x is a fixed point, then we have gx D x for all g 2 G, and hence we
get �i D �j for all i; j. From this we derive �i D 1

n for all i. Hence we get

x D 1

n

nX
iD1

vi

and this is a point in k�k only if � is the complete simplex with vertex set V .
Alternatively: The fixed point set of any group action is a subcomplex of the

barycentric subdivision, by Lemma A.4. Thus a vertex x of the fixed point complex
is the barycenter of a face A of �. Since x is fixed by the whole group, so is its
support, the set A. Thus vertex transitivity implies that A D E, and � D 2E. ut
Theorem 4.18 (The Evasiveness Conjecture for prime powers: Kahn, Saks
and Sturtevant [38]) All monontone non-trivial graph properties and digraph
properties for graphs on a prime power number of vertices jVj D q D pt are
evasive.

Proof We identify the fixed vertex set V with GF.q/. Corresponding to a non-
evasive monotone non-trivial graph property we have a non-evasive complex � on a
set E D �V

2

�
of

�q
2

�
vertices. By Theorem 4.16 � is collapsible and hence Zp-acyclic,

that is, all its reduced homology groups with Zp-coefficients vanish.
The symmetry group of � includes the symmetric group Sq, but we take only

the subgroup of all “affine maps”

G WD fx 7�! ax C b W a; b 2 GF.q/; a ¤ 0g;
and its subgroup

P WD fx 7�! x C b W b 2 GF.q/g
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that permute the vertex set V , and (since we are considering graph properties) extend
to an action on the vertex set E D �V

2

�
of �. Then we can easily verify the following

facts:

• G is doubly transitive on V , and hence induces a vertex transitive group of
symmetries of the complex � on the vertex set E D �V

2

�
(interpret GF.q/ as

a 1-dimensional vector space, then any (ordered) pair of distinct points can be
mapped to any other such pair by an affine map on the line);

• P is a p-group (of order pt D q);
• P is the kernel of the homomorphism that maps .x 7�! ax C b/ to a 2 GF.q/�,

the multiplicative group of GF.q/, and thus a normal subgroup of G;
• G=P Š GF.q/� is cyclic (this is known from your algebra class).

Taking these facts together, we have verified all the requirements of Oliver’s fixed
point theorem, as provided in the Appendix as Theorem A.7. Hence G has a fixed
point on �, and by Lemma 4.17 � is a simplex, and hence the corresponding
(di)graph property is trivial. ut

From this one can also deduce—with a lemma due to Kleitman and Kwiatowski
[42, Thm. 2]—that every non-trivial monotone graph property on n vertices has
complexity at least n2=4 C o.n2/ D m=2 C o.m/. (For the proof see [38, Thm.
6].) This establishes the Aanderaa–Rosenberg Conjecture. On the other hand, the
Evasiveness Conjecture is still an open problem for every n � 10 that is not a
prime power. Kahn, Saks and Sturtevant [38, Sect. 4] report that they verified it for
n D 6.

The following treats the bipartite version of the Evasiveness Conjecture. Note
that in the case where mn is a prime power it follows from Proposition 4.14.

Theorem 4.19 (The Evasiveness Conjecture for bipartite graphs, Yao [76]) All
monotone non-trivial bipartite graph properties are evasive.

Proof The ground set now is E D V � W, where any monotone bipartite graph
property is represented by a simplicial complex � � 2E.

An interesting aspect of Yao’s proof is that it does not use a vertex transitive
group. In fact, let the cyclic group G WD Zn act by cyclically permuting the vertices
in W, while leaving the vertices in V fixed. The group G satisfies the assumptions
of Oliver’s Theorem A.7, with P D f0g. It acts on the complex � which is acyclic
by Theorem 4.16. Thus we get from Oliver’s Theorem that the fixed point set �G

is acyclic. This fixed point set is not a subcomplex of � (it does not contain any
vertices of �), but it is a subcomplex of the order complex �.�/, which is the
barycentric subdivision of � (Lemma A.4).

The bipartite graphs that are fixed under G are those for which every vertex in V
is adjacent to none, or to all, of the vertices in W; thus they are complete bipartite
graphs of the type Kk;n for suitable k. Our figure illustrates this for the case where
m D 6, n D 5, and k D 3.
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V W

Monotonicity now implies that the fixed graphs under G are all the complete
bipartite graphs of type Kk;n with 0 � k � r for some r with 0 � r < m. (Here
r D m is impossible, since then � would be a simplex, corresponding to a trivial
bipartite graph property.)

Now we observe that �G is the order complex (the barycentric subdivision) of a
different complex, namely of the complex whose vertices are the complete bipartite
subgraphs K1;n, and whose faces are all sets of at most r vertices.

Thus �G is the barycentric subdivision of the .r � 1/-dimensional skeleton of
an .m � 1/-dimensional simplex. In particular, this space is not acyclic. Even its
reduced Euler characteristic, which can be computed to be .�1/r�1

�m�1

r

�
, does not

vanish. ut
We have the following sequence of implications:

non-evasive(1) H) collapsible(2) H) contractible(3) H)Q-acyclic(4) H) � D 1(5),

which corresponds to a sequence of conjectures:

Conjecture(k) Every vertex-homogeneous simplicial complex with property .k/ is
a simplex.

Here we call a simplicial complex vertex-homogeneous if its symmetry group
acts transitively on the vertices.

The above implications show that

Conj. (5) H) Conj. (4) H) Conj. (3) H) Conj. (2) H) Conj. (1) H) Evasiveness
Conjecture

Here Conjecture (5) is true for a prime power number of vertices, by Theorem 4.14.
However, Conjectures (5) and (4) fail for n D 6: A counterexample is

provided by the six-vertex triangulation of the real projective plane (see [52,
Section 5.8]). Even Conjectures (3) and possibly (2) fail for n D 60: a coun-
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terexample by Oliver (unpublished), of dimension 11, is based on the group A5;
see Lutz [49].

So, it seems that Conjecture (1)—the monotone version of the Generalized
Aanderaa–Rosenberg Conjecture 4.13—may be the right generality to prove, even
though its non-monotone version fails by Proposition 4.15.

4.6 Quillen’s Conjecture

In this final section we briefly comment on a well-known conjecture of Daniel
Quillen from 1978 concerning finite groups. Upon first sight it seems very remote
from the topic of evasiveness that we have just discussed, but under the surface one
finds some surprising similarities.

In this section we assume familiarity with basic finite group theory, and with the
topology of order complexes.

A finite group is a p-group if its order is a power of the prime number p. A
subgroup of a finite group G is a p-Sylow subgroup if it is a maximal p-group. The
number np of p-Sylow subgroups of G is called the p-Sylow number of G.

Let G be a finite group and pe a prime power such that jGj D pem and p does not
divide m. Here are some well known properties.

1. There exists a p-Sylow subgroup of G of order pe.
2. Any two p-Sylow subgroups of G are conjugate to each other.
3. np.G/ � 1 mod p.

These statements are the familiar Sylow theorems, the first substantial results in most
treatises on group theory.

For a finite groupG and a prime number p dividing its order, let Lp.G/ denote the
poset of non-trivial p-subgroups of G, ordered by inclusion. This is a ranked poset,
the maximal elements of which are the p-Sylow subgroups. It becomes a lattice if
one adds new bottom and top elements.

In 1978 Quillen published the following conjecture [61], which in a surprising
way connects a topological condition with an algebraic one.

Conjecture 4.20 (Quillen’s conjecture) Lp.G/ is contractible if and only if G has
a non-trivial normal p-subgroup.

Here Lp.G/ refers to the order complex, whose simplices are the totally ordered
chains x0 < x1 < � � � < xd of Lp.G/. The “if” direction, which is very easy, was
proved by Quillen, and he proved the “only if” direction for the case of solvable
groups. The conjecture has since then been verified in many cases, but the general
case is still wide open.
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In the previous section we considered an array of conjectures, among them this
one:

Conjecture (3) Every vertex-homogeneous contractible simplicial complex is a
simplex.

This conjecture turns out to be relevant both for evasiveness and for p-subgroups:

Conjecture (3) H) Evasiveness Conjecture,
Conjecture (3) H) Quillen’s Conjecture.

However, Conjecture (3) is false. It was mentioned in the previous section that
counterexamples on 60 vertices are known. So, why spend time on discussing it?
We believe that it is nevertheless instructive to see in which way Conjecture (3)
is relevant for Quillen’s Conjecture. It is conceivable that progress for one of the
Evasiveness Conjecture and the Quillen Conjecture can lead to progress for the
other.

Proposition 4.21 Conjecture .3/ H) Quillen’s Conjecture

Proof Suppose that Lp.G/ is contractible. We are to prove that G has a non-trivial
normal p-subgroup.

Define the auxiliary Sylow complex Sylp.G/ this way: The vertices are the p-
Sylow subgroups of G. A collection of such subgroups form a simplex (or, face)
of Sylp.G/ if their intersection is nontrivial (not just the identity). This is clearly a
simplicial complex.

An application of the nerve theorem (or the crosscut theorem), see Björner [12,
p. 1850], shows that these two complexes are of same homotopy type:

Sylp.G/ � Lp.G/

The group G acts by conjugation on the vertex set of Sylp.G/, and by the second
Sylow theorem this action is transitive. So, Sylp.G/ is a vertex-homogeneous and
contractible complex. Conjecture (3) then implies that Sylp.G/ is a big simplex. This
means precisely that the intersection of all p-Sylow subgroups is non-trivial and is
a fixed point under the action. Hence this is a non-trivial normal p-subgroup.

Following along the reasoning in this proof can help to verify the Quillen
conjecture in some special cases, such as this.

Proposition 4.22 If np D qe, that is, if the number of p-Sylow subgroups is the
power of some prime number q, then G satisfies the Quillen conjecture.

Here the Rivest–Vuillemin Theorem 4.14 is relevant. In fact, with this and
Conjecture (5) a sharper version of the Quillen conjecture can be obtained in the
case when np D qe, using trivial Euler characteristic instead of contractibility. We
leave further thoughts and experiments in this direction to the reader.

Notes The classical textbook account on evasiveness, from the Graph Theory
point of view, is in Bollobas [15, Chap. VIII].

A textbook account from a Topological Combinatorics point-of-view was
recently given in de Longueville [47, Chap. 3]. The appendices A–E to
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this book also provide a concise and user-friendly account of the Algebraic
Topology tools employed. See also Miller [55].

Gorenstein [30] is a standard text on finite groups. The book by Smith [70]
contains a wealth of material on subgroup lattices and can serve as our general
reference for these.

Exercises

1. What kind of values of c.F/ are possible for graph properties of graphs on
n vertices? For monotone properties, it is assumed that one has c.F/ 2 f0;mg,
and this is proved if n is a prime power. In general, it is known that c.F/ � 2n�4

unless c.F/ D 0, by Bollobás and Eldridge [16], see [15, Sect. VIII.5].
2. Show that the digraph property “has a sink” has complexity

c.Fsink/ � 3.n � 1/ � blog2.n/c:

Can you also prove that for any non-trivial digraph property one has c.F/ �
c.Fsink/?

(This is stated in Best, van Emde Boas and Lenstra [10, p. 17]; there are
analogous results by Bollobás and Eldridge [16] [15, Sect. VIII.5] in a different
model for digraphs.)

3. Show that if a complex � corresponds to a non-evasive monotone graph property,
then it has a complete 1-skeleton.

4. Give examples of simplicial complexes that are contractible, but not collapsible.
(The “dunce hat” is a key word for a search in the literature . . . )

5. Assume that when testing some unknown set A with respect to a set system F ,
you always get the answer YES if there is any set A 2 F for which this YES and
all the previous answers are correct, that is, unless this “YES” would allow you
to conclude A … F at this point.

(i) Show that with this type of answers you always need m questions for any
algorithm (and thus F is evasive) if and only if F satisfies the following
property:
(*) for any e 2 A 2 F there is some f 2 EnA such that Anfeg [ f f g 2 F .

(ii) Show that for n � 5, the family F of edge sets of planar graphs satisfies
property ./.

(iii) Give other examples of graph properties that satisfy ./, and are thus
evasive.

(This is the “simple strategy” of Milner and Welsh [56]; see Bollobás [15, p.
406].)

6. Let � be a vertex-homogeneous simplicial complex with n vertices and Euler
characteristic �.�/ D �1. Suppose that n D pe1

1 � � � pekk is the prime factorization
of n and let m D maxfpe1

1 ; : : : ; pekk g. Prove that dim � � m � 1:

7. Let Wq
n be the set of all words of length n in the alphabet f1; 2; : : : ; qg, q � 2.

For subsets F � Wq
n , let c.F/ be the least number of inspections of single letters
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(or rather, positions) that the best algorithm needs in the worst case s 2 Wq
n in

order to decide whether s 2 F .
Define the polynomial

pF .x1; : : : ; xq/ D
X
s2F

x1

1 � � � xq
q ;

where i D #fj W sj D ig for s D s1 � � � sq.
Show that

.x1 C � � � C xq/
n�c.F/

ˇ̌
pF .x1; : : : ; xq/:

Appendix: Fixed Point Theorems and Homology

Lefschetz’ Theorem

Fixed point theorems are “global–local tools”: From global information about a
space (such as its homology) they derive local effects, such as the existence of
special points where “something happens.”

Of course, in applications to combinatorial problems we need to combine
them with suitable “continuous–discrete tools”: From continous effects, such as
topological information about continuous maps of simplicial complexes, we have
to find our way back to combinatorial information.

In this Appendix we assume familiarity with more Algebra and Algebraic
Topology than in other parts of these lecture notes, including some basic finite group
theory, chain complexes, etc. As this is meant to be a reference and survey section,
no detailed proofs will be given. A main result we head for is Oliver’s Theorem A.7,
which is needed in Sect. 4. On the way to this, skim or skip, depending on your tastes
and familiarity4 with these notions.

A powerful tool on our agenda (which yields a classical proof for Brouwer’s fixed
point theorem and some of its extensions) is Hopf’s trace theorem. For this let V be
any finite-dimensional vector space, or a free abelian group of finite rank. When we
consider an endomorphism gW V �! V then the trace trace.g/ is the sum of the
diagonal elements of the matrix that represents g. The trace is independent of the
basis chosen for V . In the case when V is a free abelian group, then trace.g/ is an
integer.

Theorem A.1 (The Hopf trace theorem) Let � be a finite simplicial complex, let
f W k�k �! k�k be a self-map, and denote by f#i resp. f�i the maps that f induces
on i-dimensional chain groups resp. homology groups.

4See [52] for a detailed discussion of simplicial complexes, their geometric realizations, etc. In
particular, we use the notation kKk for the polyhedron (the geometric realization of a simplicial
complex �).
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Using an arbitrary field of coefficients k, one has

X
i

.�1/itrace.f#i/ D
X
i

.�1/itrace.f�i/:

The same identity holds if we use integer coefficients, and compute the traces for
homology in the quotients Hi.�;Z/=Ti.�;Z/ of the homology groups modulo their
torsion subgroups; these quotients are free abelian groups.

This theorem is remarkable as it allows to compute a topological invariant that
depends solely on the homotopy class of f , by means of a simple combinatorial
counting. The proof for this uses the definition of simplicial homology, and simple
linear algebra; we refer to Munkres [58, Thm. 22.1] or Bredon [19, Sect. IV.23].

For an arbitrary coefficient field k, the Lefschetz number of the map f W k�k �!
k�k is defined as

Lk.f / WD
X
i

.�1/itrace.f�i/ 2 k:

Similarly, taking integral homology modulo torsion, the integral Lefschetz number
is defined as

L.f / WD
X
i

.�1/itrace.f�i/ 2 Z:

The universal coefficient theorems imply that one always has LQ.f / D L.f /: Thus
the integral Lefschetz number L.f / can be computed in rational homology, but it is
an integer.

The Euler characteristic of a complex � coincides with the Lefschetz number of
the identity map id�W k�k �! k�k,

�.�/ D L.id�/; where trace..id�/�i/ D ˇi.�/:

Thus the Hopf trace theorem yields that the Euler characteristic of a finite simplicial
complex � can be defined resp. computed without a reference to homology, simply
as the alternating sum of the face numbers of the complex �, where fi D fi.�/

denotes the number of i-dimensional faces of �:

�.�/ WD f0.�/ � f1.�/ C f2.�/ � � � � :

This is then a finite sum that ends with .�1/dfd.�/ if � has dimension d. Thus the
Hopf trace theorem applied to the identity map just reproduces the Euler–Poincaré
formula. This proves, for example, the d-dimensional Euler polyhedron formula,
not only for polytopes, but also for general spheres, shellable or not (as discussed in
Ziegler [77]). The Hopf trace formula also has powerful combinatorial applications,
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see Ziegler [78]. However, for us its main consequence is the following theorem,
which is a vast generalization of the Brouwer fixed point theorem.

Theorem A.2 (The Lefschetz fixed point theorem) Let � be a finite simplicial
complex, and k an arbitrary field. If a self-map f W k�k �! k�k has Lefschetz
number Lk.f / ¤ 0, then f and every map homotopic to f have a fixed point.

In particular, if � is Zp-acyclic for some prime p, then every continuous map
f W k�k �! k�k has a fixed point.

(A complex is Zp-acyclic if its reduced homology with Zp-coefficients vanishes.
That is, in terms of homology it looks like a contractible space, say a d-ball.)

Proof (Sketch) For a finite simplicial complex �, the polyhedron k�k is compact.
So if f does not have a fixed point, there is some " > 0 such that j f .x/�xj > " for all
x 2 �. Now take a subdivision �0 of � into simplices of diameter smaller than ",
and a simplicial approximation of error smaller than "=2, so that the simplicial
approximation f 0 W �0 ! �0, which is homotopic to f , does not have a fixed point,
either.

Now apply the trace theorem to see that Lk.f / is zero, contrary to the assumption,
where the induced map f 0�0 D f�0 in 0-dimensional homology is the identity. ut

Note that Brouwer’s fixed point Theorem 2.4 is the special case of Theorem A.2
when � triangulates a ball.

For a reasonably large class of spaces, a converse to the Lefschetz fixed point
theorem is also true: If L.f / D 0, then f is homotopic to a map without fixed points.
See Brown [21, Chap. VIII].

The Theorems of Smith and Oliver

In addition to the usual game of connections between graphs, posets, complexes and
spaces, we will now add groups. Namely we will discuss some useful topological
effects caused by symmetry, that is, by finite group actions.

A (finite) group G acts on a (finite) simplicial complex � if each group
element corresponds to a permutation of the vertices of �, where composition of
group elements corresponds to composition of permutations, in such a way that
g.A/ WD fgv W v 2 Ag is a face of � for all g 2 G and for all A 2 �. This action on
the vertices is extended to the geometric realization of the complex �, so that G acts
as a group of simplicial homeomorphisms gW k�k �! k�k.

The action is faithful if only the identity element in G acts as the identity
permutation. In general, the set G0 WD fg 2 G W gv D v for all v 2 vert.�/g is
a normal subgroup of G. Hence we get that the quotient group G=G0 acts faithfully
on �, and we usually only consider faithful actions. In this case, we can interpret
G as a subgroup of the symmetry group of the complex �. The action is vertex
transitive if for any two vertices v;w of � there is a group element g 2 G with
gv D w.
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A fixed point (also known as stable point) of a group action is a point x 2 k�k
that satisfies gx D x for all g 2 G. We denote the set of all fixed points by �G. Note
that �G is in general not a subcomplex of �.

Example A.3 Let � D 2Œ3� be the complex of a triangle, and let G D Z3 be the
cyclic group (a proper subgroup of the symmetry group S3), acting such that a
generator cyclically permutes the vertices, 1 7�! 2 7�! 3 7�! 1.

This is a faithful action; its fixed point set consists of the center of the triangle
only—this is not a subcomplex of �, although it corresponds to a subcomplex of
the barycentric subdivision sd.�/.

Lemma A.4 (Two barycentric subdivisions)

(1) After replacing � by its barycentric subdivision (informally, let � WD sd.�/),
we get that the fixed point set �G is a subcomplex of �.

(2) After replacing � once again by its barycentric subdivision (so now � WD
sd2.�//, we even get that the quotient space k�k=G can be constructed from
� by identifying all faces with their images under the action of G. That is,
the equivalence classes of faces of �, with the induced partial order, form a
simplicial complex that is homeomorphic to the quotient space k�k=G.

We leave the proof as an exercise. It is not difficult; for details and further
discussion see Bredon [18, Sect. III.1].

“Smith Theory” was started by P. A. Smith [69] in the thirties. It analyzes finite
group actions on compact spaces (such as finite simplicial complexes), providing
relations between the structure of the group to its possible fixed point sets. Here is
one key result.

Theorem A.5 (Smith [68]) If P is a p-group (that is, a finite group of order jPj D
pt for a prime p and some t > 0), acting on a complex � that is Zp-acyclic, then the
fixed point set �P is Zp-acyclic as well. In particular, it is not empty.

Proof (Sketch) The key is that, with the preparations of Lemma A.4, the maps that
f induces on the chain groups (with Zp coefficients) nicely restrict to the chain
groups on the fixed point set �P. Passing to traces and using the Hopf trace theorem,
one can derive that �P is non-empty. A more detailed analysis leads to the “transfer
isomorphism” in homology, which proves that �P must be acyclic.

See Bredon [18, Thm. III.5.2] and Oliver [60, p. 157], and also de Longueville
[47, Appendix D and E]. ut
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On the combinatorial side, one has an Euler characteristic relation due to Floyd
[25] [18, Sect. III.4]:

�.�/ C . p � 1/�.�Zp/ D p�.�=Zp/:

If P is a p-group (in particular for P D Zp), then this implies that

�.�P/ � �.�/ .mod p/;

using induction on t, where jPj D pt.

Theorem A.6 (Oliver [60, Lemma I]) If G D Zn is a cyclic group, acting on a
Q-acyclic complex �, then the action has a fixed point.

In this case the fixed point set �G has the Euler characteristic of a point,
�.�G/ D 1.

Proof The first statement follows directly from the Lefschetz fixed point theorem:
Any cyclic group is generated by a single element g, this element has a fixed point,
this fixed point of g is also a fixed point of all powers of g, and hence of the whole
group G.

For the second part, take pt to be a maximal prime power that divides n, consider
the corresponding subgroup isomorphic to Zpt , and use induction on t and the
transfer homomorphism, as for the previous proof. ut

Unfortunately, results like these may give an overly optimistic impression of the
generality of fixed point theorems for acyclic complexes. There are fixed point free
finite group actions on balls: Examples were constructed by Floyd and Richardson
and others; see Bredon [18, Sect. I.8].

On the positive side we have the following result due to Oliver, which plays a
central role in Sect. 4.5.

Theorem A.7 (Oliver’s Theorem I [60, Prop. I]) If G has a normal subgroup
PGG that is a p-group, such that the quotient G=P is cyclic, acting on a complex �

that is Zp-acyclic, then the fixed point set �G is Zp-acyclic as well. In particular, it
is not empty.

This is as much as we will need in this chapter. Oliver proved, in fact, a more
general and complete theorem that includes a converse.

Theorem A.8 (Oliver’s Theorem II [60]) Let G be a finite group. Every action
of G on a Zp-acyclic complex � has a fixed point if and only if G has the following
structure:

G has normal subgroups PGQGG such that P is a p-group, G=Q is a q-group (for a prime
q that need not be distinct from p), and the quotient Q=P is cyclic.

In this situation one always has �.�G/ � 1 mod q.

Notes The Lefschetz–Hopf fixed point theorem was announced by Lefschetz
for a restriced class of complexes in 1923, with details appearing three years
later. The first proof for the general version was by Hopf in 1929. There are
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generalizations, for example to Absolute Neighborhood Retracts; see Bredon
[19, Cor. IV.23.5] and Brown [21, Chap. IIII]. We refer to Brown’s book [21].

We refer to Bredon [18, Chapter III] for a nice textbook treatment of
Smith Theory. The book by de Longueville [47, Appendix E] also has a very
accessible discussion of the fixed point theorems of Smith and Oliver. The
exercises concerning fixed point sets of poset maps P ! P are drawn from
Baclawski and Björner [6].

Exercises

1. Verify directly that if f maps kTk to kTk, where T is a graph-theoretic tree, then
f has a fixed point.

How would you derive this from the Lefschetz fixed point theorem?
2. Let P be a poset (finite partially ordered set), and denote by �.P/ its order

complex (whose faces are the totally ordered subsets). Suppose that f W P ! P is
an order-preserving mapping with fixed point set Pf WD fx 2 P j f .x/ D xg.

(a) Show that if �.P/ is acyclic over some field, then

.Pf / D 0;

where .Pf / denotes the Möbius function (reduced Euler characteristic) of
�.Pf /. In particular, Pf is not empty.

(b) Does it follow also that Pf itself is acyclic?

3. Suppose now that f W P ! P is order-reversing and let Pf WD fx 2 P j x D
f 2.x/ � f .x/g. Show that if �.P/ is acyclic over some field, then

.Pf / D 0:

In particular, if f has no fixed edge (i.e., no x such that x D f 2.x/ < f .x/) then
f has a unique fixed point.
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