
Martin Loebl · Jaroslav Nešetřil
Robin Thomas    Editors 

A Journey 
Through 
Discrete 
Mathematics
A Tribute to Jiří Matoušek



A Journey Through Discrete Mathematics



Martin Loebl • Jaroslav Nešetřil • Robin Thomas
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Introduction

Professor Jiří Matoušek passed away in March 2015 on the eve of his 52nd birthday.
He left behind a large body of work, including over 170 research articles, eight
books, and numerous unpublished lecture notes. This book is a celebration of his
mathematical, pedagogical, and personal legacy.

Jirka was an excellent researcher whose work transcended individual boundaries
of particular areas of mathematics and theoretical computer science. He excelled in
every subject in which he was active. The book’s content demonstrates Jirka’s broad
interests and influence. We hope that the carefully selected papers of this volume
show the beauty and relevance of his scientific contribution in shaping mathematics
and theoretical computer science research of today.

Jirka was an exceptional teacher as many of his colleagues and students can
confirm. Over the years, he taught and shaped most of the basic courses offered
by his home Department of Applied Mathematics, Charles University, Prague, and
later also at ETH Zurich. Several of Jirka’s courses, spiced with his particular sense
of humor, were the basis of his excellent textbooks and monographs, which became
the standard of scientific writing around the world. We tried to reflect the qualities
of Jirka’s style in this book.

Jirka was a great humanist. He used to say that mathematicians are useful for the
society through their wisdom. We hope that this book bears a testimony of the kind
wisdom of Jirka Matoušek. We believe that his legacy will be here for many years
to come.

Prague, Czech Republic Martin Loebl
Prague, Czech Republic Jaroslav Nešetřil
Atlanta, GA, USA Robin Thomas
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Diploma, RNDr. degree (analogue of master’s degree).

• CSc. degree (analogue of Ph.D.): Charles University, Prague, 1991.
• Habilitation (“docent” at Charles University) 1995.
• Dr.Sc. (higher doctorate) degree in mathematics, 1996.
• Professor at Charles University, 2000.
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• Invited lectures at several other conferences (e.g., Random Structures & Algo-
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• Erdős Memorial Lectures at the Hebrew University of Jerusalem (2000).
• Plenary lecture at the annual meeting of the London Mathematical Society

(1999).
• Plenary lecture at the joint meeting of the German Mathematical Society and the

German Society for Mathematical Education (Berlin, 2007).
• Colloquia and invited lectures at numerous universities and research centers

over the world, e.g., Institute for Advanced Study in Princeton, Princeton Univ.,
Univ. of Tokyo, Univ. College London, Cambridge Univ., Oxford Univ., ETH
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and others), see publications list.
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Organization, Program Committees, and Refereeing

• Member of the program committee of the Int. Congress of Mathematicians
(Section Combinatorics) 2006 and member of program committees of over
ten conferences in computer science (STOC, ESA, ICALP, SODA, Eurocomb,
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• Co-organized with J. Nešetřil three intensive 3-month international programs for
Ph.D. students in Prague “DocCourse”(2004–2006).

Research Interests

Discrete geometry, algorithms, combinatorics, topological methods, metric embed-
dings, and combinatorial optimization.

Professional Orientation and Summary of Major Results

Main Areas of Interest: Combinatorics and combinatorial geometry, geometric
discrepancy, computer science (design and analysis of algorithms mainly compu-
tational geometry), topology, and some aspects of metric space theory.

Most of the papers belong to the fields of discrete and computational geometry.
Series of works built efficient tools for removing randomization from geometric
algorithms. Other works give new solutions to simplex and halfspace range search-
ing problems, which have been investigated by many researchers for more than 10
years, and investigate various bounds on complexity of geometric configurations,
geometric discrepancy, linear programming algorithms, motion planning, etc.

Works on geometric discrepancy developed new techniques for proving upper
bounds. Asymptotically tight bounds were obtained in some long open cases, such
as for the discrepancy of point sets with respect to halfspaces.

In papers on embedding finite metric spaces into Banach spaces, new bounds on
the required distortion and dimensions were obtained; in particular, a question of
Johnson and Lindenstrauss was answered.

The joint work with J. Kratochvíl deals with intersection graphs of planar
geometric objects and some aspects of planar drawings of graphs.
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Other results concern problems in mathematical analysis, graph algorithms,
undecidability of combinatorial statements, Euclidean Ramsey theory, generalized
convexity, and numerical taxonomy (with microbiology applications).

Some experience in applied areas was gained while developing computer
software (e.g., numerical simulation of daylight conditions in a room, Lisp and
Prolog language interpreters, syntax-driven editor).
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with Jaroslav Nešetřil and Robin Thomas
Comment. Math. Univ. Carolinae 29,4(1988), 703–710.

13. A typical property of the symmetric differential quotient
Colloquium Math. 57,2(1989), 339–343.

14. Selecting a small well-discriminating subset of tests
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Simplex Range Searching and Its Variants:
A Review

Pankaj K. Agarwal

Abstract A central problem in computational geometry, range searching arises in
many applications, and numerous geometric problems can be formulated in terms
of range searching. A typical range-searching problem has the following form. Let
S be a set of n points in R

d, and let R be a family of subsets of Rd; elements of
R are called ranges. Preprocess S into a data structure so that for a query range
� 2 R, the points in S \ � can be reported or counted efficiently. Notwithstanding
extensive work on range searching over the last four decades, it remains an active
research area. A series of papers by Jirka Matoušek and others in the late 1980s
and the early 1990s had a profound impact not only on range searching but also
on computational geometry as a whole. This chapter reviews the known results
and techniques, including recent developments, for simplex range searching and
its variants.

1 Introduction

In the mid 1980s, the range-searching problem, especially simplex range searching,
was wide open: neither efficient algorithms nor nontrivial lower bounds were
known. A series of papers in the late 1980s and the early 1990s [42, 43, 65, 76,
77, 93] not only marked the beginning of a new chapter in range searching but also
revitalized computational geometry as a whole. The impact of techniques developed
for range searching—"-nets, .1=r/-cuttings, partition trees, simplicial partitions,
multi-level data structures, to name a few—is evident throughout computational
geometry. The papers by Jirka Matoušek [74–79] were at the center of this range-
searching revolution. This book honoring his work provides an excellent opportunity
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2 P.K. Agarwal

to review the current status of geometric range searching and to summarize the
recent progress in this area.

A typical range-searching problem has the following form: Let S be a set of
n points in R

d, and let R be a family of subsets of Rd; elements of R are called
ranges. The goal is to preprocess S into a data structure so that for a query range
� 2 R, the points in S \ � can be reported or counted efficiently. Typical examples
of ranges include rectangles, halfspaces, simplices, and balls. A single query can be
answered in linear time using linear space, by simply checking for each point of S
whether it lies in the query range. Most applications, however, call for querying the
same point set S several times, in which case it is desirable to answer a query faster
by preprocessing S into a data structure.

Range counting and range reporting are just two instances of range-searching
queries. Other examples include range-emptiness queries: determine whether S \
� D ;; and range-min/max queries: each point has a weight and one must return the
point in the query range with the minimum/maximum weight. Many different types
of range queries can be encompassed in the following general formulation of range
searching.

Let .S;C/ be a commutative semigroup. Each point p 2 S is assigned a weight
w. p/ 2 S. For any subset S0 � S, let w.S0/ D P

p2S0 w. p/, where addition is taken
over the semigroup.1 For a query range � 2 R, the goal is to compute w.S \ �/.
For example, counting queries can be answered by choosing the semigroup to be
.N;C/, whereC denotes standard integer addition, and setting w. p/ D 1 for every
p 2 S; emptiness queries by choosing the semigroup to be .f0; 1g;_/ and setting
w. p/ D 1; reporting queries by choosing the semigroup to be .2S;[/ and setting
w. p/ D f pg; and range-max queries by choosing the semigroup to be .R;max/.

The performance of a data structure is measured by the time spent in answering
a query, called the query time; by the size of the data structure; and by the time
spent in constructing the data structure, called the preprocessing time. Since the
data structure is constructed only once, its query time and size are generally more
important than its preprocessing time. We should remark that the query time of a
range-reporting query on any reasonable machine depends on the output size, so the
query time for a range-reporting query consists of two parts—search time, which
depends only on n and d; and reporting time, which depends on n, d, and the output
size. Throughout this chapter we will use k to denote the output size.

We assume that d is a small fixed constant, and that big-O and big-� notation
hide constants depending on d. The size of any range-searching data structure is
at least linear, since it has to store each point (or its weight) at least once, and the
query time in any reasonable model of computation such as pointer machine, RAM,
or algebraic decision tree is �.log n/ even for d D 1, assuming the coordinates of
input points are real values. Ideally, one would like to develop a linear-size data
structure with logarithmic query time. If such a data structure is not feasible, then
one seeks a tradeoff between the query time and the size of the data structure—

1Since S need not have an additive identity, we assign a special value nil to the empty sum.
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How fast can a query be answered using O.n polylog n/ space, how much space is
required to answer a query in O.polylog n/ time, and what kind of tradeoff between
the size and the query time can be achieved?

The early work on range searching focused on orthogonal range searching,
where ranges are axis-parallel boxes [22, 23]. Even after four decades of extensive
work on orthogonal range searching, some basic questions still remain open; see the
survey papers [4, 5]. Geometry plays almost no role in the known data structures
for orthogonal range searching. The most basic and most studied truly geometric
instance of range searching is with halfspaces, or more generally simplices, as
ranges. We therefore focus on simplex range searching and its variants. We refer
to [4] for a recent survey (more comprehensive but less detailed) on range searching,
and to [5, 62, 80, 86] for earlier surveys on this topic.

The chapter is organized as follows. We describe, in Sect. 2, different mod-
els of computation that have been used to prove upper and lower bounds on
the performance of range-searching data structures. Next, Sect. 3 surveys known
techniques and data structures for simplex range searching. Section 4 focuses on
the special case of halfspace range reporting for which faster data structures are
known. Section 5 reviews semialgebraic range searching, where there has been
some recent progress using algebraic techniques. Section 6 discusses a few variants
and extensions of range searching. We conclude in Sect. 7 by making a few final
remarks.

2 Models of Computation

Most algorithms and data structures in computational geometry are implicitly
described in the familiar random access machine (RAM) model or the real RAM
model. In the traditional RAM model, memory cells can contain arbitrary .log n/-
bit integers, which can be added, multiplied, subtracted, divided (computing bx=yc),
compared, and used as pointers to other memory cells in constant time. In a
real RAM, memory cells can store arbitrary real numbers (such as coordinates of
points), and basic arithmetic and relational operations between real numbers can
be performed in constant time. In the case of range searching over a semigroup
other than the integers, memory cells are allowed to contain arbitrary values from
the semigroup, but these values can only be added (using the semigroup’s addition
operator, of course).

All range-searching data structures discussed in this chapter can be described
in the more restrictive pointer machine model. The main difference between the
pointer-machine and the RAM models is that on a pointer machine, a memory cell
can be accessed only through a series of pointers, while in the RAM model, any
memory cell can be accessed in constant time. In the basic pointer-machine model,
a data structure is a directed graph with out-degree 2; each node is associated with a
label, which is an integer between 0 and n. Nonzero labels are indices of the points
in S, and the nodes with label 0 store auxiliary information. The query algorithm
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traverses a portion of the graph and visits at least one node with label i for each
point pi in the query range. Chazelle [31] defines generalizations of the pointer-
machine model that are more appropriate for answering counting and semigroup
queries. In these models, nodes are labeled with arbitrary O.log n/-bit integers, and
the query algorithm is allowed to perform arithmetic operations on these integers.

Most lower bounds, and a few upper bounds, are described in the so-called
semigroup arithmetic model, which was originally introduced by Fredman [60]
and refined by Yao [96]. In the semigroup arithmetic model, a data structure can
be informally regarded as a set of precomputed partial sums in the underlying
semigroup. The size of the data structure is the number of sums stored, and the query
time is the minimum number of semigroup operations required (on the precomputed
sums) to compute the answer to a query. The query time ignores the cost of various
auxiliary operations, including the cost of determining which of the precomputed
sums should be added to answer a query. Unlike the pointer-machine model, the
semigroup model allows immediate access, at no cost, to any precomputed sum.
The informal model we have just described is much too powerful. For example, in
this informal model, the optimal data structure for counting queries consists of the
nC 1 integers 0; 1; : : : ; n. To answer a counting query, we simply return the correct
answer; since no additions are required, we can answer queries in zero “time”, using
a “data structure” of only linear size! A more formal definition, using the notion of
a faithful semigroup, that avoids this problem can be found in [32].

A weakness of the semigroup model is that it does not allow subtractions even
if the weights of points belong to a group (e.g. range counting). Therefore, we will
also consider the group model, in which each point is assigned a weight from a
commutative group and the goal is to compute the group sum of the weights of
points lying in a query range. The data structure consists of a collection of group
elements and auxiliary data, and it answers a query by adding and subtracting a
subset of the precomputed group elements to yield the answer to the query. The
query time is the number of group operations performed. The lower-bound proofs
in the semigroup model have a strong geometric flavor because subtractions are not
allowed: the query algorithm can use a precomputed sum that involves the weight
of a point p only if p lies in the query range. A typical proof basically reduces to
arguing that not all query ranges can be “covered” with a small number of subsets
of input objects [35]. Unfortunately, no such property holds for the group model,
which makes proving lower bounds in the group model much harder. The known
lower bounds for range searching in the group model are much weaker than those
under the semigroup model.

Many geometric range-searching data structures are constructed by subdividing
space into several regions with nice properties and recursively constructing a data
structure for each region. Queries are answered with such a data structure by
performing a depth-first search through the resulting recursive space partition. The
partition-graph model, introduced by Erickson [57, 58], formalizes this divide-and-
conquer approach. This model can be used to study the complexity of emptiness
queries, which are trivial in semigroup and pointer-machine models.
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We conclude this section by noting that most of the range-searching data
structures discussed in this paper (halfspace range-reporting data structures being
a notable exception) are based on the following general scheme. Given a point set S,
they precompute a family F D F.S/ of canonical subsets of S and store the weight
w.C/ D P

p2C w. p/ of each canonical subset C 2 F. For a query range � , they
determine a partition C� D C.S; �/ � F of S\ � and add the weights of the subsets
in C� to compute w.S \ �/. Borrowing terminology from [79], we refer to such
a data structure as a decomposition scheme. There is a close connection between
decomposition schemes and partial sums stored in the semigroup arithmetic model
described earlier—w.C/, the weight of each canonical subset C, corresponds to a
precomputed partial sum.

How exactly the weights of canonical subsets are stored and how C� is computed
depends on the model of computation and on the specific range-searching problem.
In the semigroup (or group) arithmetic model, the query time depends only on the
number of canonical subsets in C� , regardless of how they are computed, so the
weights of canonical subsets can be stored in an arbitrary manner. In more realistic
models of computation, however, some additional structure must be imposed on
the decomposition scheme in order to efficiently compute C� . In a hierarchical
decomposition scheme, the weights are stored in a tree T. Each node v of T is
associated with a canonical subset Cv 2 F, and the children of v are associated with
subsets of Cv . Besides the weight of Cv , some auxiliary information is also stored at
v, which is used to determine whether Cv 2 C� for a query range � . Typically, this
auxiliary information consists of some geometric object, which plays the same role
as a query region in the partition graph model.

If the weight of each canonical subset can be stored in O.1/ memory cells, then
the total size of the data structure is just O.jFj/. If the underlying searching problem
is a range-reporting problem, however, then the “weight” of a canonical subset is
the set itself, and thus it is not realistic to assume that each “weight” requires only
constant space. In this case, the size of the data structure is O.

P
C2F jCj/ if each

subset is stored explicitly at each node of the tree. However, the size can be reduced
to O.jFj/ by storing the subsets implicitly (e.g., storing points only at leaves).

Finally, let r � 2 be a parameter, and set Fi D fC 2 F j ri�1 � jCj � rig. A
hierarchical decomposition scheme is called r-convergent if there exist constants
˛ � 1 and ˇ � 0 so that the degree of every node in T is O.r˛/ and for all
i � 1, jFij D O..n=ri/˛/ and, for all query ranges � , jC� \ Fij D O..n=ri/ˇ/,
i.e., the number of canonical subsets in the data structure and in any query output
decreases exponentially with their size. The size of the decomposition scheme is
O.n˛/, provided the weight of each canonical subset can be stored in O.1/ space.

To compute
P

pi2� w. pi/ for a query range � using a hierarchical decomposition
scheme T, a query procedure performs a depth-first search of T, starting from the
root. At each node v, using the auxiliary information stored at v, the procedure
determines whether the query range � contains Cv , intersects Cv , or is disjoint from
Cv . If � contains Cv , then Cv is added to C� (rather, the weight of Cv is added to
a running counter). Otherwise, if � intersects Cv , the query procedure identifies a
subset of children of v, say fw1; : : : ;wag, so that the canonical subsets Cwi \ � ,
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for 1 � i � a, form a partition of Cv \ � . Then the procedure searches each wi

recursively. If the decomposition scheme is r-convergent, then its query time, under
the semigroup model, is O.nˇ/ if ˇ > 0 and O.log n/ if ˇ D 0. A decomposition
scheme is called efficient if for any query range � , each C� \Fi can be computed in
time O

�
.n=ri/ˇ

�
.

We will see below in Sect. 6 that r-convergent hierarchical decomposition
schemes can be cascaded together to construct multi-level structures that answer
complex geometric queries.

3 Simplex Range Searching

In this section we focus on simplex range searching, the case in which the query
ranges are simplices. No data structure is known that can answer a simplex range
query in polylogarithmic time using near-linear storage. In fact, the lower bounds
stated below indicate that there is little hope of obtaining such a data structure, since
the query time of a linear-size data structure, under the semigroup model, is roughly
at least n1�1=d (thus saving only a factor of n1=d over the naïve approach). Since the
size and query time of any data structure have to be at least linear and logarithmic,
respectively, we consider these two ends of the spectrum: (i) How large should the
size of a data structure be in order to answer a query in logarithmic time, and (ii)
how fast can a simplex range query be answered using a linear-size data structure.
By combining these two extreme cases, as we describe below, a tradeoff between
space and query time can be obtained.

3.1 Data Structures with Logarithmic Query Time

The locus approach s often used to answer a range query in O.log n/ time, as
follows: Let S be a set of weighted points in R

d and R a family of ranges (e.g.
the set of all halfspaces, or the set of all simplices). If each range � 2 R is specified
by b real numbers, then � can be mapped to a point �� in a b-dimensional space,
which we denote by R�. Each input point p 2 S is mapped to a region p� � R�
such that p 2 � if and only if �� 2 p�. Set S� D f p� j p 2 Sg. R� is partitioned into
connected “cells” so that all points within each cell � lie in the same subset S�� of S�.
We store w� DPp�2S�

�
w. p/ for each cell � of the subdivision. A range query with

� 2 R then reduces to locating the point �� in this subdivision of R�, identifying
the cell � that contains ��, and returning w� .

For the sake of simplicity, we first illustrate this approach for the halfspace
range-counting problem. We assume that the query halfspace always lies above its
bounding hyperplane. We need a few definitions and concepts before we describe
the data structures.
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Fig. 1 A halfplange range-counting query in primal and dual

The dual of a point p D .a1; : : : ; ad/ 2 R
d is the hyperplane p� W xd D a1x1 C

� � �Cad�1xd�1�ad, and the dual of a hyperplane h W xd D b1x1C� � �Cbd�1xd�1Cbd

is the point h� D .b1; : : : ; bd�1;�bd/. A nice property of duality is that a point p is
above (resp. on below) a hyperplane h if and only if the dual point h� is above (resp.
on below) the dual hyperplane p�. In the dual setting, the halfspace range-counting
problem thus can be formulated as follows: Given a set H of n hyperplanes in R

d,
return the number of hyperplanes of H that lie below a query point �. See Fig. 1.

The arrangement of a set H of hyperplanes in R
d, denoted by A.H/, is the

subdivision of R
d into cells of dimensions k, for 0 � k � d, each cell being a

maximal connected set contained in the intersection of a fixed subset of H and not
intersecting any other hyperplane of H. Since the same subset of hyperplanes lies
below all points in a single cell of A.H/, the number of hyperplanes of H lying
below a query point � can be computed by locating the cell of A.H/ that contains �.
For d D 2, by computing the planar subdivision A.H/ and preprocessing it for
planar-point location queries into a data structure of size O.n2/, the cell of A.H/
containing � can be computed in O.log n/ time [51]. Point-location queries are,
however, more difficult in higher dimensions, and one needs geometric cuttings,
defined below.

For a parameter r 2 Œ1; n�, a .1=r/-cutting of H is a set „ of (relatively open)
disjoint simplices covering R

d so that at most n=r hyperplanes of H cross (i.e.,
intersect but do not contain) each simplex of „. Clarkson [45] and Haussler and
Welzl [65] were the first to show the existence of a .1=r/-cutting of H of size
O.rd logd r/. Chazelle and Friedman [36] improved the size bound to O.rd/, which
is optimal in the worst case. Matoušek [75] was the first to develop an efficient
algorithm for constructing a .1=r/-cutting. The best algorithm known for computing
a .1=r/-cutting was discovered by Chazelle [33]; his result is summarized in the
following theorem.

Theorem 3.1 (Chazelle [33]) Let H be a set of n hyperplanes in R
d, let r � n

be a parameter, and let b > 1 be a constant. Set s D dlogb re. There exist s
cuttings „1; : : : ;„s so that „i is a .1=bi/-cutting of size O.bid/, each simplex of
„i is contained in a simplex of „i�1, and each simplex of „i�1 contains a constant
number of simplices of„i. Moreover,„1; : : : ;„s can be computed in time O.nrd�1/.
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The key idea of Chazelle is that „i is constructed by refining each simplex4 2
„i�1. Let H4 � H be the set of hyperplanes that cross 4, let n4 D jH4j, and
let �4 be the number of vertices of A.H/ that lie in the interior of 4. Chazelle’s
algorithm computes a .1=b/-cutting of H4 within 4 whose size depends on �4.
More precisely, it partitions 4, in time O.n4bO.1//, into a set „4 of simplices so
that each of them is crossed by at most n4=b � n=bi hyperplanes of H, and more
importantly j„4j D O.�4. bi

n /
d C bd�1/.

Theorem 3.1 can be used in a straightforward manner to obtain a data structure
of size O.nd= logd�1 n/ that can return, in O.log n/ time, the number of hyperplanes
of H lying below a query point � as follows: Choose r D d n

log2 ne. Construct the
cuttings „1; : : : ;„s, for s D dlog2 re; for each simplex 4 2 „i, for i < s, store
pointers to the simplices of „iC1 that are contained in 4; and for each simplex
4 2 „s, store H4 � H, the set of hyperplanes that intersect4, and k4, the number
of hyperplanes of H that lie below4. Since j„sj D O.rd/, the total size of the data
structure is O.nrd�1/ D O.nd= logd�1 n/. For a query point � 2 R

d, by traversing
the pointers, find the simplex 4 2 „s that contains �, count in O.log n/ time the
number of hyperplanes of H4 that lie below � by checking each hyperplane of H4
explicitly, and return k4 plus this quantity. The total query time is O.log n/. Using
a linear-size partition tree described in the next subsection for counting the number
of hyperplanes of H4 lying below �, the size of the data structure can be reduced to
O.nd= logd n/ while keeping the query time to be O.log n/ [79] (see Sect. 3.3).

The above locus approach for halfspace range counting can be extended to the
simplex range-counting problem as well. That is, we map a d-simplex4 to a point
4� 2 R

d.dC1/ and each point p 2 S to a region p� � R
d.dC1/ such that p 2 4 if and

only if 4� 2 p�. Then a simplex range-counting query reduces to point location
in the arrangement A.S�/. Since A.S�/ has �.nd.dC1// cells, such an approach will
require �.nd.dC1// storage; see [49, 54]. More efficient data structures have been
developed using the multi-level decomposition scheme mentioned in Sect. 2 and
described in Sect. 6.1.

Cole and Yap [49] were the first to present a near-quadratic size data structure that
could answer a triangle range-counting query in the plane in O.log n/ time. They
present two data structures: the first one answers a query in time O.log n/ using
O.n2C"/ space, and the other in time O.log n log log n/ using O.n2= log n/ space.
For d D 3, their approach gives a data structure of size O.n7C"/ that can answer a
tetrahedron range-counting query in time O.log n/. Chazelle et al. [42] describe a
multi-level data structure of size O.ndC"/ that can answer a simplex range-counting
query in time O.log n/. The space bound can be reduced to O.nd/ by increasing the
query time to O.logdC1 n/ [79]. These data structures can answer simplex range-
reporting queries by spending an additional O.k/ time.
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3.2 Linear-Size Data Structures

Most of the linear-size data structures for simplex range searching are based on
partition trees, originally introduced by Willard [94]. Roughly speaking, partition
trees are based on the following idea: Given a set S of points in R

d, partition the
space into a few, say, a constant number of, regions, each containing roughly equal
number of points, so that for any hyperplane h, the number of points lying in the
regions that intersect h is much less than the total number of points. Then recursively
construct a similar partition for the subset of points lying in each region.

Willard’s original partition tree for a set S of n points in the plane is a 4-way tree,
constructed as follows. Let us assume that n is of the form 4k for some integer k, and
that the points of S are in general position. If k D 0, the tree consists of a single node
that stores the coordinates of the only point in S. Otherwise, using the ham-sandwich
theorem [81], find two lines `1; `2 so that each quadrant Qi, for 1 � i � 4, induced
by `1; `2 contains exactly n=4 points. The root stores the equations of `1; `2 and the
value of n. For each quadrant, recursively construct a partition tree for S \ Qi and
attach it as the ith subtree of the root. The total size of the data structure is linear,
and it can be constructed in O.n log n/ time. A halfplane range-counting query can
be answered by refining the generic procedure described in Sect. 2, as follows: Let
h be a query halfplane. Traverse the tree, starting from the root, and maintain a
global count. At each node v, perform the following step: If the line @h intersects
the quadrant Qv associated with v, recursively visit the children of v. If Qv\h D ;,
do nothing. Otherwise, since Qv � h, add the number of points of S lying in the
subtree rooted at Sv to the global count. The quadrants associated with the four
children of any interior node are induced by two lines, so @h intersects at most three
of them, which implies that the query procedure does not explore the subtree of
one of the children. Hence, the query time of this procedure is O.n˛/, where ˛ D
log4 3 � 0:7925. A similar procedure can answer a triangle range-counting query
within the same time bound, and a triangle range-reporting query in time O.n˛Ck/.
Edelsbrunner and Welzl [56] described a simple variant of Willard’s partition tree
that improved the exponent in the query-search time to log2.1C

p
5/� 1 � 0:695.

A partition tree for points in R
3 was first proposed by Yao [95], which can

answer a counting query in time O.n0:98/. Using the Borsuk-Ulam theorem (see the
monograph by Matoušek [81]), Yao et al. [97] showed that, given a set S of n points
in R

3, one can find three planes so that each of the eight (open) octants determined
by them contains at most bn=8c points of S. This approach leads to a linear-size data
structure with query time O.n0:899/. Avis [20] proved that such a partition of Rd by
d hyperplanes is not always possible for d � 5; the problem is still open for d D 4.
Weaker partitioning schemes for d � 4 were proposed in [48, 98].

After the initial improvements and extensions on Willard’s partition tree, a
major breakthrough was made by Haussler and Welzl [65]. They formulated range
searching in an abstract setting and, using elegant probabilistic methods, gave a
randomized algorithm to construct a linear-size partition tree with O.n˛/ query time,
where ˛ D 1 � 1

d.d�1/C1 C " for any " > 0. Besides an improved range searching
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data structure, the major contribution of their paper is the abstract framework and the
notion of "-nets. This and related abstract frameworks have popularized randomized
algorithms in computational geometry [51].

The first linear-size data structure with near-optimal query time for simplex
range queries in the plane was developed by Welzl [93]. His algorithm is based
on the following idea. A spanning path of a set S of points is a polygonal chain
whose vertices are the points of S. The crossing number of a polygonal path is
the maximum number of its edges that can be crossed by a hyperplane (i.e., the
endpoints of the edge lie in opposite open halfspaces bounded by the hyperplane).
Welzl constructs a spanning path … D ….S/ of any set S of n points in R

d

whose crossing number is O.n1�1=d log n/. The bound on the crossing number was
improved by Chazelle and Welzl [43] to O.n1�1=d/, which is tight in the worst
case.2 Let p1; p2; : : : ; pn be the vertices of …. If we know the edges of … that
cross h, then the weight of points lying in one of the halfspaces bounded by h
can be computed by answering O.n1�1=d/ partial-sum queries on the sequence
W D hw. p1/; : : : ;w. pn/i. Hence, by processing W for partial-sum queries, we
obtain a linear-size data structure for simplex range searching, with O.n1�1=d˛.n//
query time, in the semigroup arithmetic model, where ˛.n/ is the inverse Ackermann
function. (Recall that the time spent in finding the edges of … crossed by h is
not counted in the semigroup model.) In any realistic model of computation such
as pointer machines or RAMs, however, we also need an efficient linear-size data
structure for computing the edges of… crossed by a hyperplane. Chazelle and Welzl
[43] produced such a data structure for d � 3, but no such structure is known for
higher dimensions.

The first data structure with roughly n1�1=d query time and near-linear space, for
d > 3, was obtained by Chazelle et al. [42]. Given a set S of n points in R

d and
a parameter r > 1, they construct a family F D f„1; : : : ;„kg of triangulations of
R

d, each of size O.rd/. For any hyperplane h, there is at least one „i so that only
O.n=r/ points lie in the simplices of „i that intersect h. Applying this construction
recursively, they obtain a tree structure of size O.n1C"/ that can answer a halfspace
range-counting query in time O.n1�1=dC"/. The extra n" factor in the space is due to
the fact that they maintain a family of partitions instead of a single partition. Another
consequence of maintaining a family of partitions is that, unlike partition trees, this
data structure cannot be used directly to answer simplex range queries. Instead, they
construct a multi-level data structure (Sect. 6.1) to answer simplex range queries.

Matoušek [79] developed a simpler, slightly faster data structure for simplex
range queries, by returning to the theme of constructing a single partition, as in
the earlier partition-tree papers (though unlike earlier papers, the regions associated
with the children of a node in his partition tree could overlap). His algorithm is
based on the following partition theorem, which can be regarded as an extension of
the results by Welzl [93] and Chazelle and Welzl [43].

2Given a point set, the problem of computing a spanning path with the minimum corssing number
is NP-Complete [59].
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Theorem 3.2 (Matoušek [76]) Let S be a set of n points in R
d, and let 1 <

r � n=2 be a given parameter. Then there exists a family of pairs … D
f.S1;�1/; : : : ; .Sm; �m/g such that each Si � S lies inside the simplex �i, n=r �
jSij � 2n=r, Si \ Sj D ; for all i ¤ j, and every hyperplane crosses at most cr1�1=d

simplices of…; here c is a constant. If r � n˛ for some suitable constant 0 < ˛ < 1,
then … can be constructed in O.n log r/ time.

Note that although S is being partitioned into a family of subsets, unlike the
earlier results on partition trees, it does not partition R

d because�i’s may intersect.
Theorem 3.2 is proved by constructing a “test set” 	 of O.rd/ hyperplanes so that
if each hyperplane in 	 crosses O.r1�1=d/ simplices in …, then the same holds for
an arbitrary hyperplane [76]. Given 	 and S, the pairs in … are constructed one by
one using an iterative reweighing scheme that assigns weights to the hyperplanes in
	 and computes a (weighted) .1=crd/-cutting of 	 at each stage, analogous to the
construction of the spanning path in [43, 93]; see [76] for details.

Using Theorem 3.2, a partition tree T can be constructed as follows. Each interior
node v of T is associated with a canonical subset Cv � S and a simplex �v

containing Cv; if v is the root of T, then Cv D S and �v D R
d. Choose r to

be a sufficiently large constant. If jSj � 4r, T consists of a single node, and it
stores all points of S. Otherwise, v stores�v and jCvj, and we construct a family of
pairs …v D f.S1;�1/; : : : ; .Sm; �m/g using Theorem 3.2. We recursively construct
a partition tree Ti for each Si and attach Ti as the ith subtree of v. The total size of
the data structure is linear, and it can be constructed in time O.n log n/. A simplex
range-counting query can be answered in the same way as with Willard’s partition
tree. Since any hyperplane intersects at most cr1�1=d simplices of…, the query time
is O.n1�1=dClogr c/; the logr c term in the exponent can be reduced to any arbitrarily
small positive constant " by choosing r sufficiently large. The query time can be
improved to O.n1�1=d polylog n/ by choosing r D n".

In a subsequent paper, Matoušek [79] proved a stronger version of Theorem 3.2,
using some additional sophisticated techniques (including Theorem 3.1), that gives
a linear-size partition tree with O.n1�1=d/ query time. His scheme was subsequently
simplified by Chan [28]. Unlike the recursive construction of the partition tree
described above, Chan’s algorithm does not construct the subtree at each node of
the partition tree independently. Instead, roughly speaking, it constructs the partition
tree level by level, where each level corresponds to a triangulation that “covers” all
points of S (i.e., each point of S lie in a simplex of the triangulation), and each step
partitions one of the simplices of the previous level into subsimplices. Therefore the
triangulation at level iC1 is a refinement of the triangulation at level i, and the entire
tree corresponds to a hierarchical triangulation in R

d. The main result in [28] is the
following theorem:

Theorem 3.3 (Chan [28]) Let S be a set of n points in R
d, H a set of m hyperplanes

in R
d, and b � 1 a parameter. Given t disjoint simplices that cover P such that

each simplex contains at most 2n=t points of S and each hyperplane of H crosses
at most ` cells, each simplex can be partitioned into O.b/ (disjoint) subsimplices,
for a total of O.bt/ simplices such that each subsimplex contains at most 2n

bt points
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of S and each hyperplane of H crosses O..bt/1�1=d C b1�1=.d�1/` C b log t log m/
subsimplices.

Note that the first term is the same as in Theorem 3.2. It is crucial that the
coefficient b1�1=.d�1/ in the second term is asymptotically smaller than b1�1=d,
for this ensures that the repeated application of this theorem does not incur a
constant-factor blow up, as in the recursive construction based on Theorem 3.2. The
partition tree based on Theorem 3.3 can be constructed in O.n log n/ randomized
expected time. An interesting byproduct of Chan’s technique is that it can be used to
construct a triangulation of S so that any hyperplane crosses the interior of O.n1�1=d/

simplices, thereby solving a long-standing open problem.
If the points in S lie on a k-dimensional algebraic surface of constant degree,

the crossing number in Theorem 3.2 can be improved to O.r1�1=� /, where � D
1=b.d C k/=2c [7], which implies that in this case a simplex range query can be
answered in time O.n1�1=�C"/ using linear space.

3.3 Trading Space for Query Time

In the previous two subsections we surveyed data structures for simplex range
searching that either use near-linear space or answer a query in polylogarithmic
time. By combining these two types of data structures, a tradeoff between the size
and the query time can be obtained [9, 28, 42, 79]. For example, the hierarchical-
cutting based data structure of size O.nd= logd�1 n/ and O.log n/ query time by
Chazelle [33] and the linear-size partition tree with O.

p
n/ query time by Chan [28]

can be combined to construct a halfspace range-countig data structure of size m and
O.log.m=n/ C n=m1=d/ query time, for n � m � nd= logd n, as follows: Choose
a parameter r D d.m

n /
1=.d�1/e. Construct a hierarchical .1=r/-cutting „ of size

O.rd/ on S�, the set of hyperplanes dual to the points in S, using Theorem 3.1,
and build a tree data structure T as described in Sect. 3.1. For each simplex4 2 „,
let S4 � S be the set of points who dual hyperplanes intersect4; jS4j D O.n=r/.
We construct Chan’s partition tree T4 on S4. The overall size of the data structure is
O.rd CP42„ jS4j/ D O.nrd�1/ D O.m/. See Fig. 2. For a given query halfspace
hC lying above the hyperplane h, we first query the top tree T with the point h�,
dual to h, and compute in O.log r/ time: (i) the simplex 4 2 „ that contains h�,
and (ii) 
4, the number of hyperplanes of S� lying below 4. Next, we query the
partition tree on S4 and compute, in O.jS4j1�1=d/ time, �h;4 D jS4 \ hCj. We
return 
4 C �h;4 as jS \ hCj. The overall query time is O.log r C .n=r/1�1=d/ D
O.log.m=n/ C n=m1=d/. Note that by choosing r D n

logd=.d�1/ n
, we obtain a data

structure of O.nd= logd n/ with O.log n/ query time, as mentioned in Sect. 3.1.
The approach just described is very general and works for any geometric-

searching data structure that can be viewed as a hierarchical decomposition scheme
(described in Sect. 2), provided it satisfies certain assumptions. We state the general
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Fig. 2 Space/query-time trade-off for halfspace range counting. The top tree, constructed using
hierarchical cutting, has O.rd/ leaves, each corresponding to a simplex of the cutting „, and each
bottom tree T4 built on S4, using Chan’s algorithm, is of size O.n=r/;…h is the path in T followed
by the query procedure and4h is the simplex of „ that contains the query point h�

result here, though a slightly better bounds (by a polylogarithmic factor) can be
obtained by exploiting special properties of the data structures.

Theorem 3.4 Let S be a set of n points in R
d, and let r be a sufficiently large

constant. Let P be a range-searching problem. Let D1 be a decomposition scheme
for P of size O.n˛/ and query time O.log n/, and let D2 be another decomposition
scheme of size O.n/ and query time O.nˇ/. If either D1 or D2 is hierarchical,
efficient, and r-convergent, then for any n � m � n˛, then a decomposition scheme
for P of size O.m/ can be constructed that has O.. n˛

m /
ˇ=.˛�1/ C log m

n / query time.
For the d-dimensional halfspace range-counting problem, for example, we have

˛ D d and ˇ D 1 � 1=d. Thus, for any n � m � nd, a halfspace range-counting
query can be answered in time O.n=m1=d C log.m=n// using O.m/ space.

We conclude this discussion by making a few remarks on Theorem 3.4.

(i) Theorem 3.4 can be refined to balance polylogarithmic factors in the sizes and
query times of D1 and D2. For example, if the size of D1 is O.n˛ polylog n/
and rest of the parameters are the same as in the theorem, then the query time
of the new data structure is O.. n˛

m /
ˇ=.˛�1/ polylog.m

n //. For example, Matoušek
[79] showed that for any n � m � nd, a simplex range-counting query can be
answered in time O..n=m1=d/ logdC1.m=n// using O.m/ space.

(ii) it is not essential for D1 or D2 to be tree-based data structures. It is sufficient
to have an efficient, r-convergent decomposition scheme with a partial order on
the canonical subsets.

3.4 Lower Bounds

Fredman [61] showed that a sequence of n insertions, deletions, and halfplane
queries on a set of points in the plane requires �.n4=3/ time, in the semigroup
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model. His technique, however, does not extend to static data structures. In a
series of papers, Chazelle has proved nontrivial lower bounds on the complexity
of online simplex range searching, using various elegant mathematical techniques.
He showed that any data structure of size m, for n � m � nd, for simplex range
searching in the semigroup model requires a query time of �.n=

p
m/ for d D 2

and �.n=.m1=d log n// for d � 3 in the worst case. It should be pointed out that
this theorem holds even if the query ranges are wedges or strips, but not if the
ranges are halfspaces. For halfspaces, Brönnimann et al. [24] proved a lower bound

of �.. n
log n /

1� d�1
d.dC1/ =m1=d/ on the query time of any data structure that uses O.m/

space, under the semigroup model. Arya et al. [19] improved the lower bound to

�.. n
log n /

1� 1
dC1 =m

1
dC1 /. They also showed that if the semigroup is integral (i.e.,

for all non-zero elements of the semigroup and for all k � 2, the k-fold sum
xC � � � C x ¤ x), then the lower bound can be improved to �. n

m1=d = log1C 2
d n/.

A few lower bounds on simplex range searching have been proved under the
group model. Chazelle [34] proved an�.n log n/ lower bound for off-line halfspace
range searching (i.e., the time taken to answer n queries over a set of n points)
under the group model. Exploiting a close-connection between range searching and
discrepancy theory, Larsen [71] showed that for any dynamic data structure with tu
and tq worst-case update and query time, respectively, tu � tq D �.n1�1=d/.

Chazelle and Rosenberg [41] proved a lower bound of �. n1�"

m C k/ for simplex
range reporting under the pointer-machine model. Afshani [1] improved their bound
slightly by proving that the size of any data structure that answers a simplex range

reporting query in time O.tq C k/ is �.. n
tq
/d=2O.

p
log tq//.

A series of papers by Erickson established the first nontrivial lower bounds
for on-line and off-line emptiness query problems, in the partition-graph model
of computation. He first considered this model for Hopcroft’s problem—Given a
set of n points and m lines, does any point lie on a line?—for which he obtained
a lower bound of �.n log m C n2=3m2=3 C m log n/ [58], almost matching the
best known upper bound O.n log m C n2=3m2=32O.log�.nCm// C m log n/, due to
Matoušek [79]. He later established lower bounds on a trade-off between space
and query time, or preprocessing and query time, for on-line hyperplane emptiness
queries. For d-dimensional hyperplane queries, �.nd= polylog n/ preprocessing
time is required to achieve polylogarithmic query time, and the best possible query
time is �.n1�1=d= polylog n/ if O.n polylog n/ preprocessing time is allowed. For
d D 2, if the preprocessing time is tp, the query time is �.n=

p
tp/.

4 Halfspace Range Reporting

A halfspace range-reporting query can be answered more quickly than a simplex
range-reporting query using the so-called shallow cuttings and the filtering search
technique. We begin by considering a simpler problem: the halfspace-emptiness
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Fig. 3 (i) A .2=5/-cutting with seven triangles; (ii) a shallow .0; 2=5/-cutting with two triangles
covering points that lie below all lines of H (lying below the gold polygonal curve)

query, which asks whether a query halfspace contains any input point. For simplic-
ity, as in the previous section, assume the query halfspace to lie above its bounding
hyperplane. By the duality transform, the halfspace-emptiness query in R

d can be
formulated as asking whether a query point q 2 R

d lies below all hyperplanes in a
given set H of hyperplanes in R

d. This query is equivalent to asking whether q lies
inside a convex polyhedron P.H/, defined by the intersection of halfspaces lying
below the hyperplanes of H. For d � 3, a point-location query in P.H/ can be
answered optimally in O.log n/ time using O.n/ space and O.n log n/ preprocessing
since P.H/ has linear size [51]. For d � 4, point-location query in P.H/ becomes
more challenging. Clarkson [45] had described a random-sampling based data
structure of size O.nbd=2cC"/ that could anser a point-location query in O.log n/
time. Here we describe an approach, based on the concept of shallow-cutting, which
can be viewed as a refinement of Clarkson’s approach. Given a parameter r 2 Œ1; n�
and an integer q 2 Œ0; n� 1�, a shallow .q; 1=r/-cutting of H is a set „ of (relatively
open) disjoint simplices covering all points that lie above at most q hyperplanes of
H so that at most n=r hyperplanes of H cross each simplex of„ (see Fig. 3(ii)).

The following theorem by Matoušek can be used to construct a point-location
data structure for P.H/:

Theorem 4.1 (Matoušek [77]) Let H be a set of n hyperplanes and r � n a
parameter. A shallow (0,1=r)-cutting of H of size O.rbd=2c/ can be computed in time
O.nrc/, where c is a constant.

Choose r to be a sufficiently large constant and compute a shallow (0,1=r)-cutting
„ of H using Theorem 4.1. For each simplex 4 2 „, let H4 � H be the set
of hyperplanes that intersect 4. Recursively, construct the data structure for H4;
the recursion stops when jH4j � r. The size of the data structure is O.nbd=2cC"/,
where " > 0 is an arbitrarily small constant, and it can be constructed in O.nbd=2cC"/
time. If a query point q does not lie in a simplex of „, then one can conclude that
q 62 P.H/ and thus stop. Otherwise, if q lies in a simplex 4 2 „, recursively
determine whether q lies below all the hyperplanes of H4. The query time is
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O.log n/. Matoušek and Schwarzkopf [83] showed that the space can be reduced

to O. nbd=2c

logbd=2c�" n
/ while keeping the query time to O.log n/.

A linear-size data structure can be constructed for answering halfspace-emptiness
queries by constructing a simplicial partition analogous to Theorem 3.2, as follows.
A hyperplane h is called �-shallow if one of the halfspaces bounded by h contains
at most � points of S.

Theorem 4.2 (Matoušek [77]) Let S be a set of n points in R
d and let 1 � r < n be

a given parameter. Then there exists a family of pairs… D f.S1;�1/; : : : ; .Sm; �m/g
such that each Si � S lies inside the simplex �i, n=r � jSij � 2n=r, Si \ Sj D ; for
all i ¤ j, and the number of simplices of… crossed by any .n=r/-shallow hyperplane
is O.log r/ for d � 3 and O.r1�1=bd=2c/ for d > 3. If r � n˛ for some suitable
constant 0 < ˛ < 1, then… can be constructed in O.n log r/ time.

Using this theorem, a partition tree for S can be constructed in the same way
as for simplex range searching, by choosing r D n˛ for some ˛ < 1=d. While
answering a query for a halfspace hC, if hC crosses more than O.r1�1=bd=2c/
simplices of the partition …v associated with a node v, then we conclude that hC
is not .n=r/-shallow, i.e., hC \ S ¤ ;, and thus we stop. Similarly if for a pair
.�i; Si/, �i � hC, we conclude that hC \ S ¤ ; and we stop. Otherwise, the
procedure recursively visits the children of v corresponding to the pairs .�i; Si/

for which h crosses �i. The size of the data structure is O.n/, the query time is
O.n1�1=bd=2c polylog n/, and the preprocessing time is O.n log n/. The query time
can be improved to n1�1=bd=2c2O.log� n/ by increasing the preprocessing time to
O.n1C"/. For even dimensions, Chan’s approach [28] can be extended to construct
a linear-size partition tree with query time O.n1�1=bd=2c/.

The halfspace-emptiness data structures can be adapted to answer halfspace
range-reporting queries, using the so-called filtering search technique introduced
by Chazelle [30]. All the data structures mentioned above answer a range-reporting
query in two stages. The first stage “identifies” the k points of a query output, in time
f .n/ that is independent of the output size, and the second stage explicitly reports
these points in O.k/ time. Chazelle observes that since �.k/ time will be spent in
reporting k points, the first stage can compute in f .n/ time a superset of the query
output of size O.k/, and the second stage can “filter” the actual k points that lie in the
query range. This observation not only simplifies the data structure but also gives
better bounds in many cases, including halfspace range reporting. See [2, 12, 30, 77]
for some applications of filtering search.

An optimal halfspace reporting data structure in the plane was proposed by
Chazelle et al. [38]. They compute convex layers L1; : : : ;Lm of S, where Li is the set
of points lying on the boundary of the convex hull of S nSj<i Lj, and store them in a
linear-size data structure, so that a query can be answered in O.log nC k/ time. For
d D 3, after a series of papers with successive improvements (see e.g. [13, 40, 89]), a
linear-size data structure with O.log nCk/ query time was proposed by Afshani and
Chan [2] who combine the shallow-cutting with Theorem 4.2 cleverly; this structure
can be constructed in O.n log n/ time [29].
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For d > 3, the linear-size data partition tree for halfspace-emptiness queries
can be adapted for answering reporting queries as follows. For each node v of the
partition tree, we also preprocess the corresponding canonical subset Sv for simplex
range searching and store the resulting partition tree as a secondary data structure
of v. Because of the simplex range searching data structure being stored at each node
of the tree, the total size of the data structure is O.n log log n/. For a query halfspace
hC, if its boundary hyperplane h crosses more than O.r1�1=bd=2c/ simplices of…v at
a node v, then h is not .nv=r/-shallow, and the simplex range-reporting data structure
stored at v is used to report all kv points of Sv \ hC in time O.n1�1=d

v C kv/ D
O.kv/; the last equality follows because r � n1=d

v and kv D �.nv=r/ D �.n1�1=d
v /.

Otherwise, for each pair .Si; �i/ 2 …v , if �i � hC, it reports all points Si; and if �i

is crossed by h, it recursively visits the corresponding child of v. The overall query
time is O.n1�1=bd=2c polylog.n/C k/. The size of the data structure was improved to
O.n/ by Afshani and Chan [2], and the query time for even values of d was improved
to O.n1�1=bd=2c C k/ by Chan [28].

The technique by Afshani for simplex range-reporting lower bound [1] also
shows that the size of any halfspace range-reporting data structure in dimension

d.dC 3/=2 with query time tq has size �.. n
tq
/d=2O.

p
log tq//.

Finally, we comment that halfspace-emptiness data structures have been adapted
to answer halfspace range-counting queries approximately [2, 14, 15, 64, 68, 88].
For example, a set S of n points in R

3 can be preprocessed, in O.n log n/ time, into
a linear-size data structure that for a query halfspace � in R

3, can report in O.log n/
time a number t such that j�\Sj � t � .1Cı/j�\Sj, where ı > 0 is a constant [2, 3].
For d > 3, such a query can be answered in O.. n

t /
1�1=bd=2c polylog.n// time using

linear space [88].

5 Semialgebraic Range Searching

So far we assumed that the ranges were bounded by hyperplanes, but many
applications involve ranges bounded by nonlinear functions. For example, a query
of the form “for a given point p and a real number r, find all points of S lying
within distance r from p” is a range-searching problem in which ranges are balls.
As shown below, range searching with balls in R

d can be formulated as an instance
of halfspace range searching in R

dC1. So a ball range-reporting (resp. range-
counting) query in R

d can be answered in time O..n=m1=dd=2e/ polylog nC k/ (resp.
O..n=m1=.dC1// log.m=n//), using O.m/ space. (Somewhat better performance can
be obtained using a more direct approach, which we will describe shortly.) However,
data structures for more general ranges seem more challenging.

A natural class of more general ranges can be defined as follows. A semialgebraic
set is a subset of Rd obtained from a finite number of sets of the form fx 2 R

d j
g.x/ � 0g, where g is a d-variate polynomial with real coefficients, by Boolean
operations (union, intersection, and complement). Specifically, let 	d;�;s denote the
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family of all semialgebraic sets in R
d defined by at most s polynomial inequalities

of degree at most� each. If d; �; s are all constants, we refer to the sets in 	d;�;s as
constant-complexity semialgebraic sets; such sets are sometimes also called Tarski
cells. The range-searching problem in which query ranges belong to 	d;�;s for
constants d; �; s, is referred to as semialgebraic range searching.

It suffices to consider the ranges bounded by a single polynomial because the
ranges bounded by multiple polynomials can be handled using multi-level data
structures (see Sect. 6.1). We assume that the ranges are of the form

�f .a/ D fx 2 R
d j f .a; x/ � 0g;

where f is a .dCb/-variate polynomial specifying the type of range (disks, cylinders,
cones, etc.), and a is a b-tuple specifying a specific range of the given type (e.g., a
specific disk). Let 	f D f�f .a/ j a 2 R

bg. We will refer to the range-searching
problem in which the ranges are from the set 	f as 	f -range searching. We describe
two approaches for 	f -range searching.

Linearization One approach to answer 	f -range queries is to use linearization,
originally proposed by Yao and Yao [98]. We represent the polynomial f .a; x/ in the
form

f .a; x/ D  0.a/'0.x/C  1.a/'1.x/C � � � C  `.a/'`.x/

where '0; : : : ; '`;  0; : : : ;  ` are polynomials. A point x 2 R
d is mapped to the

point

'.x/ D Œ'0.x/; '1.x/; '2.x/; : : : ; '`.x/� 2 R
`;

represented in homogeneous coordinates. Then each range �f .a/ D fx 2 R
d j

f .x; a/ � 0g is mapped to a halfspace

 #.a/ W fy 2 R
` j  0.a/y0 C  1.a/y1 C � � � C  `.a/y` � 0g;

where, again, Œy0; y1; : : : ; y`� are homogeneous coordinates. The constant ` is called
the dimension of the linearization. Agarwal and Matoušek [7] have described an
algorithm for computing a linearization of the smallest dimension under certain
assumptions on 'i’s and  i’s.

A well-known example of linearization is the so-called lifting transform, which
maps a ball in R

d to a halfspace in R
dC1. A ball in R

d with center .a1; : : : ; ad/ and
radius adC1 can be regarded as a set of the form �f .a/, where a D .a1; : : : ; ad; adC1/
and f is a .2dC 1/-variate polynomial

f .a1; : : : ; adC1I x1; : : : ; xd/ D �
dX

iD1
.xi � ai/

2 C a2dC1:
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This polynomial can be linearized in d C 1 dimensions by the following set of
polynomials:

 0.a/ D a2dC1 �
Pd

iD1 a2i ;  i.a/ D 2ai i D 1; : : : ; d;  dC1.a/ D �1;
'0.x/ D 1; 'i.x/ D xi i D 1; : : : ; d; 'dC1.x/ DPd

iD1 x2i :

Another popular linearization in computational geometry is for lines in R
3. Based

on the so-called Plücker coordinates, it maps a line in R
3 to a hyperplane in R

5;
Using linearization, a 	f -range query can now be answered using an `-

dimensional halfspace range-searching data structure. Thus, for counting queries,
we immediately obtain a linear-size data structure with query time O.n1�1=`/ [79],
or a data structure of size O.n`= log` n/ with logarithmic query time [33]. For d < `,
the performance of the linear-size data structures can be improved by exploiting
the fact that the points '.x/ have only d degrees of freedom. As mentioned at the
end of Sect. 3.2, the query time in this case can be reduced to O.n1�1=b.dC`/=2cC"/.
It is an open question whether one can similarly exploit the fact that the halfspaces
 #.a/ have only b degrees of freedom to reduce the size of data structures with
logarithmic query time when b < `.

Algebraic methods In cases where the linearization dimension is very large,
semialgebraic queries can also be answered using the following more direct
approach proposed by Agarwal and Matoušek [7]. Let S be a set of n points in
R

d. For each point pi, we can define a b-variate polynomial gi.a/ 	 f .pi; a/. Then
	f .a/ \ S is the set of points pi for which gi.a/ � 0. Hence, the problem reduces to
point location in the arrangement of algebraic surfaces gi D 0 in R

b. Let G be the
set of resulting surfaces. Using a result by Koltun [70], a point-location query in an
arrangement of n algebraic surfaces in R

b can be answered in O.log n/ time using
O.n2b�4C"/ space.

Agarwal and Matoušek [7] extended Theorem 3.2 to Tarski cells and showed
how to construct partition trees using this extension, obtaining a linear-size data
structure with query time O.n1�1=�C"/, where � D 2 if d D 2 and � D 2d � 3 if
d � 3.3 Extending Matoušek’s shallow-cutting based data structure for halfspace
range-reporting queries, Sharir and Shaul [92] showed that the query time for 	f

range-reporting query can be improved in some special cases.
A better linear-size data structure has been proposed [8, 82] based on the

polynomial partitioning scheme introduced by Guth and Katz [63]. For a set S � R
d

of n points and a real parameter r, 1 < r � n, an r-partitioning polynomial
for S is a nonzero d-variate polynomial f such that each connected component of
R

d n Z. f / contains at most n=r points of S, where Z. f / WD fx 2 R
d j f .x/ D 0g

denotes the zero set of f . The decomposition of Rd into Z. f / and the connected
components of R

d n Z. f / is called a polynomial partition (induced by f ). Guth
and Katz showed that an r-partitioning polynomial of degree O.r1=d/ always exists.

3The paper by Agarwal and Matoušek [7] predates the result by Koltun [70]. Using Koltun’s result,
the value of � can be improved to � D d for d � 3 and � D 2d � 4 for d > 3.
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Agarwal et al. [8] described a randomized algorithm to compute such a polynomial
in expected time O.nr C r3/. Recent results in real algebraic geometry [21] imply
that an algebraic variety of dimension k defined by polynomials of constant-bounded
degree crosses O.rk=d/ components of Rd n Z. f /, and that these components can be
computed in time rO.1/. Therefore, one can recursively construct the data structure
for points lying in each component of Rd n Z. f /. The total time spent in recursively
searching in the components crossed by a query range will be roughly n1�1=d.
However, this ignores the points in S� D S \ Z. f /. Using a scheme based
on the so-called cylindrical algebraic decomposition, Agarwal et al. [8] project
the points of S� to R

d�1 and recursively construct a .d � 1/-dimensional data
structure to preprocess S�. A more elegant and simpler method was subsequently
proposed by Matoušek and Patáková [82], which basically applies a generalized
polynomial-partitioning scheme on S� and Z. f /. Roughly speaking, they choose
another parameter r0 and partition S� further by another polynomial g of degree
O.r01=d

/ such that Z. f ; g/ D Z. f /\Z.g/ has dimension d�2 and each component of
Z. f /nZ.g/ contains at most n�=r0 points of S�. If Z. f ; g/ also contains many points,
then they partition Z. f ; g/ by another polynomial h so that Z. f ; g; h/ has dimension
d�3, and so on. The main contribution of their paper is proving the existence of such
functions g and h and an algorithm for computing them. Putting everything together,
a semialgebraic range-counting query can be answered in O.n1�1=d polylog.n// time
using a linear-size data structure; all k points lying inside the query range can be
reported by spending an additional O.k/ time.

We conclude this section by noting that Arya and Mount [16] have presented
a linear-size data structure for approximate range-searching queries. Let � be a
constant-complexity semialgebraic set and " > 0 a parameter. Their data structure
returns in O. 1

"d log nCk"/ time a subset S" of k" points such that �\S � S" � �"\S
where �" is the set of points within distance " � diam.�/ of � . If � is convex, the
query time improves to O.log nC 1

"d�1 C k"/. A result by Larsen and Nguyen [72]

implies that query time of a linear-size data structure is �.log nC "� d
1Cı�1/ for any

arbitrarily small constant ı > 0. The data structure in [16] can also return a value
k", with jS \ � j � k" � jS \ �"j in time O. 1

"d log n/, or in O.log nC 1
"d�1 / time if

� is convex. See also [50]. Chazelle et al. [39] studied the approximate halfspace
range-counting problem in high dimensions, where d is not a constant, under a
similar notion of approximation—the points within distance " from the boundary
hyperplane may be misclassified. They presented a data structure of size dnO."�2/

that can answer a query in time O..d="2/ polylog.d="//.

6 Variants and Extensions

In this section we review some extensions of range-searching data structures, includ-
ing multi-level data structures, semialgebraic range searching, and dynamization.
As in the previous section, the preprocessing time for each of the data structures we
describe is at most a polylogarithmic or n" factor larger than its size.
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6.1 Multi-level Data Structures

A rather powerful property of data structures based on decomposition schemes
(described in Sect. 2) is that they can be cascaded together to answer more
complex queries, at the increase of a logarithmic factor in their performance. This
property has been implicitly used for a long time; see, for example, [55, 73, 91].
The real power of the cascading property was first observed by Dobkin and
Edelsbrunner [52], who used this property to answer several complex geometric
queries. Since their result, several papers have exploited and extended this property
to solve numerous geometric-searching problems; see [9, 28, 79]. In this subsection
we briefly sketch the general cascading scheme, as described in [79].

Let S be a set of weighted objects, let R be a set of ranges, and let ˙ � S 
 R

a “spatial” relation between objects and ranges. A geometric-searching problem P,
with underlying relation ˙, requires computing

P
p˙� w. p/ for a query range � .

Let P1 and P2 be two geometric-searching problems, and let ˙1 and ˙2 be the
corresponding relations. Then we define P1 ı P2 to be the conjunction of P1 and
P2, whose relation is ˙1 \ ˙2. That is, for a query range � , we want to computeP

p˙1�;p˙2� w. p/. Suppose we have hierarchical decomposition schemes D1 and
D2 for problems P1 and P2. Let F1 D F1.S/ be the set of canonical subsets
constructed by D1, and for a range � , let C1� D C1.S; �/ be the corresponding
partition of f p 2 S j p ˙1 �g into canonical subsets. For each canonical subset
C 2 F1, let F2.C/ be the collection of canonical subsets of C constructed by D2,
and let C2.C; �/ be the corresponding partition of f p 2 C j p ˙2 �g into level-two
canonical subsets. The decomposition scheme D1 ı D2 for the problem P1 ı P2
consists of the canonical subsets F D S

C2F1 F2.C/. For a query range � , the
query output is C� D S

C2C1� C
2.C; �/. Note that we can cascade any number of

decomposition schemes in this manner.
If we view D1 and D2 as tree data structures, then cascading the two decom-

position schemes can be regarded as constructing a two-level tree, as follows. We
first construct the tree induced by D1 on S. Each node v of D1 is associated with a
canonical subset Cv . We construct a second-level tree D2

v on Cv and store D2
v at v

as its secondary structure. A query is answered by first identifying the nodes that
correspond to the canonical subsets Cv 2 C1� and then searching the corresponding
secondary trees to compute the second-level canonical subsets C2.Cv; �/.

The O.polylog.n// query-time data structures for simplex range counting fit in
this framework. For example, a data structure for counting the number of points in
a wedge (i.e., intersection of two halfspaces) in R

d can be constructed by cascading
two d-dimensional halfspace range-counting data structures, as follows. Let S be a
set of n points. We define two binary relations ˙1 and ˙2, where for any wedge
� D �1 \ �2, where �1; �2 are half-spaces, p ˙i � if p 2 �i (i D 1; 2). Let Pi be the
searching problem associated with ˙i, and let Di be the halfspace range-counting
data structure corresponding to Pi. Then the wedge range-counting problem is the
same as P1ıP2. We can therefore cascade D1 and D2, as described above, to answer
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a wedge range-counting query. Similarly, a data structure for d-dimensional simplex
range-counting can be constructed by cascading d C 1 halfspace range-counting
data structures. The following theorem states a general result for multi-level data
structures.

Theorem 6.1 Let S;P1;P2;D1;D2 be as defined above, and let r be a constant.
Suppose the size and query time of each decomposition scheme are at most S.n/ and
Q.n/, respectively. If D1 is efficient and r-convergent, then we obtain a hierarchical
decomposition scheme D for P1 ı P2 whose size and query time are O.S.n/ logr n/
and O.Q.n/ logr n/. If D2 is also efficient and r-convergent, then D is also efficient
and r-convergent.

For example, the wedge range-counting data structure described above has
O. nd

logd�1 n
/ space and O.log2 n/ query time, and a simplex range counting query

can be answered in O.logdC1 n/ time using O.nd/ space [79].
The real power of multi-level data structures stems from the fact that there are

no restrictions on the relations ˙1 and ˙2. Hence, any query that can be represented
as a conjunction of a constant number of “primitive” queries, each of which admits
an efficient, r-convergent decomposition scheme, can be answered by cascading
individual decomposition schemes. The next two subsections will describe a few
multi-level data structures.

6.2 Intersection Searching

A general intersection-searching problem can be formulated as follows. Given a set
S of objects in R

d, a semigroup .S;C/, and a weight function w W S! S, preprocess
S into a data structure so that for a query object � , the weighted sum

P
p\�¤; w. p/,

where the sum is taken over all objects p 2 S that intersect � , can be computed
quickly. Range searching is a special case of intersection searching in which S is a
set of points.

Efficient data structures for many intersection-searching problems have been
developed by expressing the intersection test as a conjunction of simple primitive
tests (in low dimensions) and using a multi-level data structure to perform these
tests. For example, a segment � intersects another segment e if the endpoints of e
lie on the opposite sides of the line containing � and vice-versa. Suppose we want
to report those segments of S whose left endpoints lie below the line supporting a
query segment (the other case can be handled in a similar manner). We define three
searching problems P1;P2, and P3, with relations ˙1;˙2;˙3, as follows:

e ˙1 � : The left endpoint of e lies below the line supporting � .
e ˙2 � : The right endpoint of e lies above the line supporting � .
e ˙3 � : The line `e supporting e intersects � ; equivalently, in the dual plane, the

point dual to `e lies in the double wedge dual to e.
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Table 1 Asymptotic upper bounds for intersection-counting queries, with polylogarithmic factors
omitted. Reporting queries can be answered by paying an additional O.k/ cost

d Objects Range Size Query time Source

d D 2 Disk Point m .n=
p

m/4=3 [28]

Segment Segment m n=
p

m [28, 79]

Triangle Point m n=
p

m [28, 79]

Circular arc Segment m n=m1=3 [12]

d D 3 Tetrahedron Point m n=m1=3 [79]

Sphere Segment m n=m1=3 [7]

Triangle Segment m n=m1=4 [7]

d > 3 Simplex Point m n=m1=d [79]

For 1 � i � 3, let Di denote a data structure for Pi. Then D1 (resp.
D2) is a halfplane range-searching structure on the left (resp. right) endpoints of
segments in S, and D3 is (essentially) a triangle range-searching structure for points
dual to the lines supporting S. By cascading D1, D2, and D3, we obtain a data
structure for segment-intersection queries. Therefore, by Theorem 6.1, a segment-
intersection query can be answered in time O.n1=2 log2 n/ using O.n log2 n/ space,
or in O.log3 n/ time using O.n2/ space. Similarly, the condition for a query point p
lying inside a triangle can be expressed as the conjunction of three tests, each testing
whether p lies in a halfplane. So point-stabbing queries amid triangles, i.e., counting
all input triangles that intersect a query point, can also be answered in O.

p
n log2 n/

(resp. O.log3 n/) time using O.n log2 n/ (resp. O.n2/) space. Table 1 summarizes a
few intersection searching results.

6.3 Ray-Shooting Queries

Preprocess a set S of objects in R
d into a data structure so that the first object (if any)

hit by a query ray can be reported efficiently. Originally motivated by the ray-tracing
problem in computer graphics, this problem has found many applications and has
been studied extensively in computational geometry.

A general approach to the ray-shooting problem, using segment intersection-
detection structures and Megiddo’s parametric searching technique [85], was
proposed by Agarwal and Matoušek [6]. Suppose we have a segment intersection-
detection data structure for S. Let  be a query ray. Their algorithm maintains a
segment ab �  such that the first intersection point of ab with S is the same
as that of . If a lies on an object of S, it returns a. Otherwise, it picks a point
c 2 ab and determines, using the segment intersection-detection data structure,
whether the interior of the segment ac intersects any object of S. If the answer
is yes, it recursively finds the first intersection point of ac with S; otherwise,
it recursively finds the first intersection point of cb with S. Using parametric
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Table 2 Asymptotic upper bounds for ray shooting queries, with polylogarithmic factors omitted

d Objects Size Query time Source

d D 2 Simple polygon n log n [66]

s disjoint simple polygons n
p

s [10, 66]

s disjoint convex polygons s2 C n log n [87]

Segments m n=
p

m [9, 44]

Circular arcs m n=m1=3 [12]

Disjoint arcs n
p

n [12]

d D 3 Convex polytope n log n [53]

s convex polytopes s2n2C" log2 n [11, 69]

Halfplanes m n=m1=3 [6]

Triangles m n=m1=4 [7]

Spheres m n=m1=3 [7, 92]

d > 3 Hyperplanes m n=m1=d [6]

Convex polytope m n=m1=bd=2c [6, 84]

searching, the point c at each stage can be chosen in such a way that the algorithm
terminates after O.log n/ steps. In some cases, the query time can be improved by
a polylogarithmic factor by exploiting the additional structure of input objects, e.g.,
replacing parametric search with a randomized technique [26, 89].

Another approach for answering ray-shooting queries is the locus approach. A
ray in R

d can be represented as a point in R
d
Sd�1. Given a set S of objects, we can

partition the parametric space Rd 
 Sd�1 into cells so that all points within each cell
correspond to rays that hit the same object first; this partition is called the visibility
map of S. Using this approach and some other techniques, Chazelle and Guibas [37]
showed that a ray-shooting query in a simple polygon can be answered in O.log n/
time using O.n/ space. A simpler data structure was subsequently proposed by
Hershberger and Suri [66]. Table 2 gives a summary of known ray-shooting results.

6.4 Nearest-Neighbor Queries

The nearest-neighbor (NN) query problem is defined as follows: Preprocess a set
S of points in R

d into a data structure so that a point in S closest to a query
point � can be reported quickly. This is one of the most widely studied problems
not only in computational geometry but in many other fields such as machine
learning, computer vision, database systems, information retrieval, and geographic
information systems.

For simplicity, we assume that the distance between points is measured in the
Euclidean metric, though a more complicated metric can be used depending on the
application. For d D 2, one can construct the Voronoi diagram of S and answer NN
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queries by performing point-location queries in the Voronoi diagram. This approach
gives an optimal data structure with O.log n/ query time, O.n/ size, and O.n log n/
preprocessing [51]. No such data structure is known for even d D 3. A NN query
for a set of points under the Euclidean metric in R

d can be formulated as an instance
of the ray-shooting problem in a convex polyhedron in R

dC1, as follows. We map
each point p D .p1; : : : ; pd/ 2 S to a hyperplane Op in R

dC1, which is the graph of
the function

fp.x1; : : : ; xd/ D 2p1x1 C � � � C 2pdxd � .p21 C � � � C p2d/:

Then p is a closest neighbor of a point � D .�1; : : : ; �d/ if and only if

fp.�1; : : : ; �d/ D max
q2S

fq.�1; : : : ; �d/:

That is, if and only if fp is the first hyperplane intersected by the vertical ray .�/
emanating from the point .�1; : : : ; �d; 0/ in the negative xdC1-direction. If we define
P DTp2Sf.x1; : : : ; xdC1/ j xdC1 � fp.x1; : : : ; xd/g, then p is the nearest neighbor of
� if and only if the intersection point of .�/ and @P lies on the graph of fp. Thus
a nearest-neighbor query can be answered in time roughly n=m1=dd=2e using O.m/
space [6, 46, 84]. This approach can be extended to answer farthest-neighbor and
k-nearest-neighbor queries also. In general, if we have an efficient data structure
for answering disk-emptiness queries for disks under a given metric , we can
apply parametric searching to answer nearest-neighbor queries under the -metric,
provided the data structure satisfies certain mild assumptions [6].

Since answering NN queries is expensive even for moderate values of d, there
is extensive work on computing an "-approximate nearest neighbor ("-ANN), i.e.,
returning a point Qp 2 S such that k� Qpk � .1C "/minp2S k�pk, for a given parameter
" > 0; see e.g. [17, 18] and the references therein. The best known data structure
can answer an "-ANN query in O.log.n="// time using O.n="d=2/ space. More
generally, for a parameter log 1

"
� � � 1

"d=2 log.1="/
, a query can be answered in

O.log n C 1

�"d=2 / time using O.n�/ space [18]. The performance of this and many
earlier data structures for answering ANN queries depends exponentially on d, so
they are not efficient for large values of d. There is much work on data structures for
ANN-queries whose query time and size have polynomial dependence on d; see [67]
for a survey of higher dimensional NN queries.

6.5 Linear-Programming Queries

Let S be a set of n halfspaces in R
d. We wish to preprocess S into a data structure

so that for a direction vector Ev, we can determine the first point of
T

h2S h in the
direction Ev. For d � 3, such a query can be answered in O.log n/ time using O.n/
storage, by constructing the normal diagram of the convex polytope

T
h2S h and
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preprocessing it for point-location queries. For higher dimensions, Matoušek [78]
showed that, using multidimensional parametric searching and a data structure
for answering halfspace emptiness queries, a linear-programming query can be
answered in O..n=m1=bd=2c/ polylog n/ with O.m/ storage. Using a randomized LP
algorithm by Clarkson [47], Chan [25] described a randomized procedure that
reduces LP queries to halfspace-emptiness queries. Using the best-known data
structures for halfspace-emptiness queries, there exists a linear-size data structure
that can answer LP-queries in expected time O.n1�1=bd=2c/ for even values of d
and in n1�1=bd=2c2O.log� n/ time for odd values of d. See [27, 90] for other similar
reductions.

7 Concluding Remarks

This chapter reviewed data structures for range searching and a few related
problems. The quest for efficient range-searching data structures has resulted in
several elegant geometric techniques that have enriched computational geometry
as a whole. It would have been impossible to describe all techniques and results
on range searching and their applications, so we focused on a few of them.
Notwithstanding extensive research in this area, many challenging problems remain
open, including the following:

• Although near-optimal bounds are known for simplex range searching in the
semigroup model, the known lower bounds in the group model are far from
optimal. Also, can a lower bound of n=m1=2 be proved for simplex range counting
in the real RAM model of computation?

• Can a semialgebraic range query in R
d be answered in O.log n/ time using O.nd/

space? The simplest question in this direction is whether a disk range-counting
query in R

2 be answered in O.log n/ time using O.n2/ space?
• From a practical standpoint, simplex range searching is still largely open; known

data structures are rather complicated and do not perform well in practice. Lower
bounds suggest that we cannot hope for data structures that do significantly better
than the naïve algorithm in the worst case (and for some problems, even in the
average case). An interesting open question is to develop simple data structures
that work well under some assumptions on input points and query ranges.

Finally, let me conclude this chapter by noting that Jirka Matoušek played a
pivotal role not only in shaping the area of range searching but computational
geometry more broadly. The impact of his work is profound and will be felt for
many years to come.
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independent set. We look for classes of hypergraphs H in which any partition of
V.H/ can be represented almost fairly by some edge. We show that this is true when
H is the set of independent sets in a path, and conjecture that it is true when H is the
set of matchings in Kn;n. We prove that partitions of E.Kn;n/ into three sets can be
represented almost fairly. The methods of proofs are topological.

1 Introduction

1.1 Terminology and Main Theme

A hypergraph C is called a simplicial complex (or just a “complex”) if it is closed
down, namely e 2 C and f � e imply f 2 C. We denote by V.C/ the vertex set of
C, and by E.C/ its edge set. Let ˇ.C/ be the minimal number of edges (“simplices”)
of C whose union is V.C/. For any hypergraph H we denote by �.H/ the maximal
degree of a vertex in H.

We say that S 2 C represents a set A of vertices fairly if jS \ Aj >
j jAj
ˇ.C/

k
,

and that it represents A almost fairly if jS \ Aj >
j jAj
ˇ.C/

k
� 1. We say that S

represents fairly (almost fairly) a collection of sets if it does so to each set in the
collection, reminiscent of the way a parliament represents fairly the voters of the
different parties.

Clearly, every set A is fairly represented by some edge S 2 C. The aim of this
paper is to study complexes C in which for every partition V1; : : : ;Vm of V.C/ there
is an edge S 2 C representing all Vi’s fairly, or almost fairly.

In matroids, fair representation is always possible. The following can be proved,
for example, by the use of Edmonds’ matroids intersection theorem.

Theorem 1.1 If M is a matroid then for every partition V1; : : : ;Vm of V.M/ there

exists a set S 2M satisfying jS \ Vij >
j jVij
ˇ.C/

k
for all i.

Classical examples which do not always admit fair representation are complexes
of the form I.G/, the complex of independent sets in a graph G. In this case
ˇ.I.G// D �.G/, the chromatic number of G, which by Brooks’ theorem is at most
�.G/ C 1. Indeed, there are classes of graphs for which the correct proportion of
representation is 1

�.G/C1 . In [3] it was proved that if G is chordal and jVij > �.G/C1
then there is an independent set representing all sets Vi, from which there follows:

Theorem 1.2 If G is chordal and V1; : : : ;Vm is a partition of its vertex set, then
there exists an independent set of vertices S such that jS \ Vij > b jVij

�.G/C1c for all
i 6 m.

However, in general graphs this is not always true. The following theorem of
Haxell [16] pinpoints the correct parameter.



Fair Representation by Independent Sets 33

Theorem 1.3 If V D .V1;V2; : : : ;Vm/ is a partition of the vertex set of a graph
G, and if jVij > 2�.G/ for all i 6 m, then there exists a set S, independent in G,
intersecting all Vi’s.

This was an improvement over earlier results of Alon, who proved the same with
25�.G/ [8] and then with 2e�.G/ [9]. The result is sharp, as shown in [17, 22, 23].

Corollary 1.4 If the vertex set V of a graph G is partitioned into independent sets
V1;V2; : : : ;Vm then there exists an independent subset S of V, satisfying jS \ Vij >j jVij
2�.G/

k
for every i 6 m.

Proof For each i 6 m let Vj
i ( j 6

j jVij
2�.G/

k
) be disjoint subsets of size 2�.G/ of Vi.

By Theorem 1.3 there exists an independent set S meeting all Vj
i , and this is the set

desired in the theorem. ut

1.2 The Special Behavior of Matching Complexes

Matching complexes, namely the independence complexes of line graphs, behave
better than independence complexes of general graphs. For example, the following
was proved in [1]:

Theorem 1.5 If G is the line graph of a graph and V1; : : : ;Vm is a partition of V.G/

then there exists an independent set S such that jS\Vij >
j jVij
�.G/C2

k
for every i 6 m.

This follows from a bound on the topological connectivity of the independence
complexes of line graphs,

�.I.G// > jVj
�.G/C 2: (1)

Here �.C/ is a connectivity parameter of the complex C (for the definition
see, e.g., [1]). The way from (1) to Theorem 1.5 goes through a topological
version of Hall’s theorem, proved in [4]. A hypergraph version of (1) was proved
in Aharoni, Gorelik, Narins, (Connectivity of the independence complex of line
graphs, unpublished). Theorem 1.2 follows from the fact that if G is chordal then
�.I.G// > jVj

�.G/C1 .
So, matching complexes are more likely to admit fair representations. We suggest

four classes of complexes as candidates for having almost fair representation of
disjoint sets.

1. The matching complex of a path.
2. The matching complex of Kn;n.
3. The matching complex of any bipartite graph.
4. The intersection of two matroids.
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Since the third class contains the first two and the fourth contains the third,
conjecturing almost fair representation for them goes in ascending order of daring.
In fact, we only dare make the conjecture for the first two. As to the fourth, let us just
remark that intersections of matroids often behave unexpectedly well with respect
to partitions. For example, no instance is known to the authors in which, given two
matroids M and N , there holds ˇ.M \N / > max.ˇ.M/; ˇ.N //C 1.

1.3 Independence Complexes of Paths

In Sect. 2 we prove that the independence complex of a path always admits almost
fair representation. In fact, possibly more than that is true. Since the matching
complex of a path is the independence complex of a path one vertex shorter,
a conjecture in this direction (in a slightly stronger form) can be formulated as
follows:

Conjecture 1.6 Given a partition of the vertex set of a path into sets V1; : : : ;Vm

there exists an independent set S and integers bi; i 6 m , such that jS\Vij > jVij
2
�bi

for all i, and

1.
P

i6m bi 6 m
2

and
2. bi 6 1 for all i 6 m.

We prove the existence of sets satisfying either condition of Conjecture 1.6 (but
not necessarily both simultaneously).

Theorem 1.7 Given a partition of the vertex set of a path into sets V1; : : : ;Vm there
exists an independent set S and integers bi; i 6 m , such that

P
i6m bi 6 m

2
and

jS \ Vij > jVij
2
� bi for all i.

The proof of Theorem 1.7 uses the Borsuk-Ulam theorem.

Theorem 1.8 Given a partition of the vertex set of a cycle into sets V1; : : : ;Vm there
exists an independent set S such that jS \ Vij > jVij

2
� 1 for all i.

The proof uses a theorem of Schrijver, strengthening a famous theorem of Lovász
on the chromatic number of Kneser graphs. This means that it, too, uses indirectly
the Borsuk-Ulam theorem, since the Lovász-Schrijver proof uses the latter. We
refer the reader to Matoušek’s book [18] for background on topological methods
in combinatorics, in particular applications of the Borsuk-Ulam theorem.



Fair Representation by Independent Sets 35

1.4 The Matching Complex of Kn;n

Conjecture 1.9 For any partition E1;E2; : : : ;Em of E.Kn;n/ and any j 6 m there

exists a perfect matching F in Kn;n satisfying jF \ Eij >
j jEij

n

k
for all i ¤ j, and

jF \ Ejj >
j jEij

n

k
� 1.

We shall prove:

Theorem 1.10 Conjecture 1.9 is true for m D 2; 3.
For m D 2 the result is simple, and the weight of the argument is in a

characterization of those cases in which there necessarily exists an index j for which

jF \ Ejj D
j jEjj

n

k
� 1. The proof of the case m D 3 is topological, using Sperner’s

lemma.

1.5 Relationship to Known Conjectures

Conjecture 1.6 is related to a well known conjecture of Ryser on Latin squares.
Given an n
n array A of symbols, a partial transversal is a set of entries taken from
distinct rows and columns, and containing distinct symbols. A partial transversal of
size n is called simply a transversal. Ryser’s conjecture [19] is that if A is a Latin
square, and n is odd, then A necessarily has a transversal. The oddness condition is
indeed necessary - for every even n > 0 there exist n
n Latin squares not possessing
a transversal. An example is the addition table of Zn: if a transversal T existed
for this Latin square, then the sum of its elements, modulo n, is

P
k6n k D n.nC1/

2

.mod n/. On the other hand, since every row and every column is represented in
this sum, the sum is equal to

P
i6n iCPj6n j D n.nC 1/ .mod n/, and for n even

the two results do not agree. Arsovski [12] proved a closely related conjecture, of
Snevily, that every square submatrix (whether even or odd) of the addition table of
an odd order abelian group possesses a transversal.

Brualdi [13] and Stein [21] conjectured that for any n, any Latin square of order n
has a partial transversal of order n�1. Stein [21] observed that the same conclusion
may follow from weaker conditions – the square does not have to be Latin, and
it may suffice that the entries of the n 
 n square are equally distributed among
n symbols. Re-formulated, this becomes a special case of Conjecture 1.9:

Conjecture 1.11 If the edge set of Kn;n is partitioned into sets E1;E2; : : : ;En of
size n each, then there exists a matching in Kn;n consisting of one edge from all but
possibly one Ei.

Here, even for n odd there are examples without a full transversal. In matrix
terminology, take a matrix M with mi;j D i for j < n, mi;n D i C 1 for i < n, and
mn;n D 1.
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A related conjecture to Conjecture 1.9 was suggested in [2]:

Conjecture 1.12 If E1;E2; : : : ;Em are sets of edges in a bipartite graph, and jEij >
�.
S

i6m Ei/C 1 then there exists a rainbow matching.
Re-phrased, this conjecture reads: If H is a bipartite multigraph, G D L.H/ and

Vi � V.G/ satisfy jVij > �.H/C 2 for all i, then there exists an independent set in
G (namely a matching in H) meeting all Vi’s.

Remark 1.13

1. We know only one example, taken from [17, 23], in which jVij > �.H/ C 1
does not suffice. Take three vertex disjoint copies of C4, say A1;A2;A3. Number
the edges of Ai cyclically as a j

i . j D 1 : : : 4/. Let E1 D fa11; a31; a13g, E2 D
fa21; a41; a33g, E3 D fa12; a32; a23g and E4 D fa22; a42; a43g. Then �.

S
i6m Ei/ D 2,

jEij D 3 and there is no rainbow matching.
2. The conjecture is false if the sets Ei are allowed to be multisets. We omit the

example showing this.

An even stronger version of the conjecture is:

Conjecture 1.14 If the edge set of a graph H is partitioned into sets E1; : : : ;Em

then there exists a matching M satisfying jM \ Eij >
j jEij
�.H/C2

k
for all i 6 m

1.6 Over-Representation Vs. Under-Representation
and Representing General Systems of Sets

It is easy to find examples falsifying the above conjectures when the sets that
are to be fairly represented do not form a partition. Why is that? A possible
explanation is that a more natural formulation of our conjectures is not in terms
of over-representation, but in terms of under-representation by a large set. Here is a
conjecture in this direction:

Conjecture 1.15 For every m there exists a number c.m/ for which the following is
true: if G is a bipartite graph and E1; : : : ;Em are any sets of edges, then there exists
a matching S in G of size at least jE.G/j

�.G/ � c.m/ such that

jS \ Eij 6
� jEij
�.G/

�

for all i 6 m (2)

Possibly c.m/ D m
2

may suffice. When the Ei’s form a partition, condition (2)
implies that all but c.m/ sets are fairly represented. Of course, a stronger condition
is required to imply Conjecture 1.9. The reason that the under-representation
formulation is natural is that if the sets Ei form a partition, the condition in (2)
defines a generalized partition matroid. The conjecture thus concerns representation
by a set belonging to the intersection of three matroids.
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2 Fair Representation by Independent Sets in Paths: A
Borsuk-Ulam Approach

In this section we prove Theorem 1.7. Following an idea from the proof of the
“necklace theorem” [7], we shall use the Borsuk-Ulam theorem. In the necklace
problem two thieves want to divide a necklace with m types of beads, each occurring
in an even number of beads, so that the beads of every type are evenly split between
the two. The theorem is that the thieves can achieve this goal using at most m cuts
of the necklace. In our case, we shall employ as “thieves” the sets of odd and even
points, respectively, in a sense to be explained below.

We first quote the Borsuk-Ulam theorem. As usual, for n > 1, Sn denotes the set
of points Ex D .x1; : : : ; xnC1/ 2 RnC1 satisfying

P
i6nC1 x2i D 1.

Theorem 2.1 (Borsuk-Ulam) For all n > 1, if f W Sn ! Rn is a continuous odd
function, then there exists Ex 2 Sn such that f .Ex/ D 0.

Proof of Theorem 1.7 Let v1; : : : ; vn be the vertices of Pn, ordered along the path.
In order to use the Borsuk-Ulam theorem, we first make the problem continuous, by
replacing each vertex vp by the characteristic function of the pth of n intervals of
length 1

n in Œ0; 1�, open on the left and closed on the right, except for the firs interval

which is closed on both sdeis. We call the interval . p�1
n ; p

n � (Œ0; 1n � for p D 1) a bead
and denote it by Bp. Let �i be the characteristic function of

S
vp2Vi

Bp. Let g be the
characteristic function of the union of odd beads on the path, and let h.y/ D 1�g.y/.

Given a point Ex 2 Sm, let zkD P
j6k x2j , for all kD 0; : : : ;mC1 (where

z0D 0; zmC1D 1).
For each i 6 m define a function fi W Sm ! R by:

fi.x1; : : : ; xm/ D
X

16k6m

Z zk

zk�1

.g.y/� h.y//�i.y/sign.xk/dy

Here, as usual, sign.x/ D 0 if x D 0, sign.x/ D 1 if x > 0, and sign.x/ D �1
if x < 0. Since the set of points of discontinuity of the sign function is discrete, the
functions fi are continuous. The sign term guarantees that fi.�Ex/ D �fi.Ex/. Hence,
by the Borsuk-Ulam theorem there exists a point Ew D .w1; : : : ;wmC1/ 2 Sm such
that fi.Ew/ D 0 for all i 2 Œm�, where zk DPj6k w2j , for all k D 0; : : : ;mC 1.

For y 2 Œ0; 1� such that y 2 .zk�1; zk� define POS.y/ D 1 if wk > 0 and
POS.y/ D 0 otherwise. Let NEG.y/ D 1 � POS.y/. Let

J1.y/ D POS.y/g.y/C NEG.y/h.y/; J2.y/ D POS.y/h.y/C NEG.y/g.y/:

For fixed i 2 Œm�, the fact that fi.Ew/ D 0 means that

Z 1

yD0
�i.y/POS.y/Œg.y/� h.y/�dy D

Z 1

yD0
�i.y/NEG.y/Œg.y/� h.y/�dy
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Shuffling terms this gives:

Z 1

yD0
�i.y/ŒPOS.y/g.y/C NEG.y/h.y/�dy D

Z 1

yD0
�i.y/ŒPOS.y/h.y/C NEG.y/g.y/�dy

(3)

Denoting the integral
R 1
0

u.y/dy of a function u by juj, and noting that
J1.y/C J2.y/ D 1 for all y 2 Œ0; 1�, Equation (3) says that

j�iJ1j D j�iJ2j D j�ij
2

(4)

for every i 6 m.
A bead contained in an interval .zk�1; zk� is called positive if wk > 0 and

negative otherwise. For k D 1; : : : ;m let Tk be the bead containing zk. The beads
that are equal to Tk for some k are called transition beads. Let F be the set of
transition beads, and let Z D S

F. We next remove the transition beads from Jj,
by defining:

QJj.y/ D min.Jj.y/; 1 � �Z.y//

Thus QJ1 is the characteristic function of the union of those beads that are either
positive and odd, or negative and even, and QJ2 is the characteristic function of
the union of those beads that are either positive and even, or negative and odd.
Let Ij . j D 1; 2/ be the set of vertices vp on whose bead Bp the function QJj

is positive. Since the transition beads have been removed, I1 and I2 are indepen-
dent.

For i 6 m and j D 1; 2 let c.i; j/ be the amount of loss of QJj with respect to
Jj on beads belonging to Vi, namely beads Bp 2 F such that vp 2 Vi. Formally,

c.i; j/ D
X

vp2Vi;Bp2F

j�Bp � .Jj � QJj/j

Then

c.i; 1/C c.i; 2/ D 1

n
jfvp 2 Vi;Bp 2 Fgj (5)

and
P

i6m c.i; 1/ C P
i6m c.i; 2/ D m

n . Hence for either j D 1 or j D
2 we have

P
i6m c.i; j/ 6 m

2n . Let I D Ij for this particular j, and

denote c.i; j/ by bi. Then, by (4) and (5) we have jI \ Vij > jVij
2
� bi,

while
P

i6m bi 6 m
2

. Namely, the set I satisfies the conditions of the
theorem. ut
Example 2.2 Let P D P4, the path with 4 vertices vi; 1 6 i 6 4, and let V1 D
fv1; v2; v4g and V2 D fv3g. Then one possible set of points given by the Borsuk-
Ulam theorem is z1 D 1

8
; z2 D 5

8
, and w1 > 0; w2 < 0; w3 > 0 (or with all

three signs reversed), as illustrated in Fig. 1. Thus, J1 is the characteristic function
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Fig. 1 An example with four vertices divided into two sets

of Œ0; 1
8
�[.1; 2�[. 5

8
; 3
4
� and J2 is the characteristic function of . 1

8
; 1�[. 1

2
; 5
8
�[. 3

4
; 1�.

The set I1 is obtained from J1 by removing the zi-infected beads, namely I1 D fv2g,
and then I2 D fv4g. In this case

P
i6m c.i; j/ D m

2n D 2
4
D 1

2
for both j D 1 and

j D 2, and thus we can choose I as either I1 or I2. This is what the proof gives, but
in fact in this example we can do better – we can take I D fv1; v3g, in which only
V1 is under-represented.

Remark 2.3

1. The inequality
P

i6m bi 6 m
2

can possibly be improved, but not much. Namely,
there are examples in which the minimum of the sum

P
i6m bi in the theorem

is m�1
2

. To see this, let m D 2k C 1, and let each Vi be of size 2k. Consider a
sequence of length 2k 
 .2k C 1/, in which the ..i � 1/m C 2j � 1/-th element
belongs to Vi (i D 1; : : : ; 2k; j D 1; : : : ; k C 1) and the rest of the elements are
chosen in any way so as to satisfy the condition jVij D 2k. For example, if k D 2,
then the sequence is of the form:

1 � 1 � 1 � 2 � 2 � 2� 3 � 3 � 3 � 4 � 4 � 4

where the �’s can be filled in any way that satisfies jVij D 4 (namely, four of
them are replaced by the symbol 5 and one is replaced by i, for each symbol
i D 1; 2; 3; 4. The dashes are there to facilitate the reference to the four stretches).
If S is an independent set in the path, then we may assume that S contains no
more than k elements from the same Vi from each stretch (for example, in the
first stretch of the example above choosing all three 1s will result in deficit of 2
in the other sets), Thus jSj 6 2k 
 k, which is m�1

2
short of half the length of the

path.
2. It may be of interest to find the best bounds as a function of the sizes of the sets

Vi and their number. Note that in the example above the size of the sets is almost
equal to their number. As one example, if all Vi’s are of size 2, then the inequality
can be improved to:

P
i6m bi 6 m

3
. To see this, look at the multigraph obtained

by adding to Pn the pairs forming the sets Vi as edges. In the resulting graph
the maximum degree is 3, and hence by Brooks’ theorem it is 3-colorable. Thus
there is an independent set of size at least n

3
, which represents all Vi’s apart from

at most m
3

of them.
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3 Fair Representation by Independent Sets in Cycles: Using
a Theorem of Schrijver

In this section we shall prove Theorem 1.8. The proof uses a result of Schrijver [20],
which is a strengthening of a theorem of Lovász:

Theorem 3.1 (Schrijver [20]) For integers k; n satisfying n > 2k let K D K.n; k/
denote the graph whose vertices are all independent sets of size k in a cycle C of
length n, where two such vertices are adjacent iff the corresponding sets are disjoint.
Then the chromatic number of K is n � 2kC 2.

The hard part of this inequality is that the chromatic number of K is at least
n � 2kC 2, which can be formulated as follows:

Theorem 3.2 The family I.n; k/ of independent sets of size k in the cycle Cn cannot
be partitioned into fewer than n � 2kC 2 intersecting families.

We start with a simple case, in which all Vi’s but one are odd:

Theorem 3.3 Let m; r1; r2; : : : ; rm be positive integers, and put n D Pm
iD1.2ri C

1/� 1. Let G D .V;E/ be a cycle of length n, and let V D V1 [ V2 [ : : : [ Vm be a
partition of its vertex set, where jVij D 2ri C 1 for all 1 6 i < m and jVmj D 2rm.
Then there is an independent set S of G satisfying jSj D Pm

iD1 ri and jS \ Vij D ri

for all 1 6 i 6 m.

Proof of Theorem 3.3 Put k D Pm
iD1 ri and note that n � 2k C 2 D m C 1 > m.

Assume, for contradiction, that there is no S 2 I.n; k/ satisfying the assertion of
the theorem. Then for every S 2 I.n; k/ there is at least one index i for which
jS \ Vij > ri C 1. Indeed, otherwise jS \ Vij 6 ri for all i and hence jS \ Vij D ri

for all i, contradicting the assumption. Let Fi be the family of sets S 2 I.n; k/ for
which jS \ Vij > ri C 1. Clearly, Fi is intersecting (in fact, intersecting within Vi),
contradicting the conclusion of Theorem 3.2. �
Corollary 3.4 Let V D V1 [ V2 [ � � � [ Vm be a partition of the vertex set of a
cycle C.

(i) For every i such that jVij is even there exists an independent set Si of C
satisfying:

1. jSi \ Vij D jVij=2.
2. jSi \ Vjj D .jVjj � 1/=2 for all j for which jVjj is odd.
3. jS \ Vjj D jVjj=2� 1 for every j ¤ i for which jVjj is even. .

(ii) If jVij is odd for all i 6 m then for any vertex v of C there is an independent
set S of C not containing v and satisfying jS \ Vij D .jVij � 1/=2 for all i.

Proof of Corollary 3.4 Part (i) in case all sets Vj besides Vi are of odd sizes is
exactly the assertion of Theorem 3.3. If there are additional indices j ¤ i for which
jVjj is even, choose an arbitrary vertex from each of them and contract an edge
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incident with it. The result follows by applying the theorem to the shorter cycle
obtained. Part (ii) is proved in the same way, contracting an edge incident with v. �

4 More Applications of Schrijver’s Theorem
and Its Extensions

4.1 Hypergraph Versions

The results above can be extended by applying known hypergraph variants of
Theorem 3.1. For integers n > s > 2, let Cs�1

n denote the .s � 1/-th power of a
cycle of length n, that is, the graph obtained from a cycle of length n by connecting
every two vertices whose distance in the cycle is at most s � 1. Thus if s D 2 this
is simply the cycle of length n whereas if n 6 2s � 1 this is a complete graph on
n vertices. For integers n; k; s satisfying n > ks, let K.n; k; s/ denote the following
s-uniform hypergraph. The vertices are all independent sets of size k in Cs�1

n , and a
collection V1;V2; : : : ;Vs of such vertices forms an edge iff the sets Vi are pairwise
disjoint. Note that for s D 2, K.n; k; 2/ is exactly the graph K.n; k/ considered in
Theorem 3.1. The following conjecture appears in [10].

Conjecture 4.1 For n > ks, the chromatic number of K.n; k; s/ is d n�ksCs
s�1 e.

This is proved in [10] if s is any power of 2. Using this fact we can prove the
following.

Theorem 4.2 Let s > 2 be a power of 2, let m and r1; r2; : : : ; rm be integers, and
put n D s

Pm
iD1 ri C .s � 1/.m � 1/. Let V1;V2; : : : ;Vm be a partition of the vertex

set of Cs�1
n , where jVij D sri C s � 1 for all 1 6 i < m, and jVmj D srm. Then there

exists an independent set S in Cs�1
n satisfying jS \ Vij D ri for all 1 6 i 6 m.

Proof Put k D Pm
iD1 ri and note that the chromatic number of K.n; k; s/ is d.n �

ks C s/=.s � 1/e > m. Assume, for contradiction, that there is a partition of the
vertex set of Cs�1

n with parts Vi as in the theorem, with no independent set of Cs�1
n

of size k D Pm
iD1 ri satisfying the assertion of the theorem. In this case, for any

such independent set S there is at least one index i so that jS\ Vij > ri C 1. We can
thus define a coloring f of the independent sets of size k of Cs�1

n by letting f .S/ be
the smallest i such that jS \ Vij > ri C 1. Since the chromatic number of K.n; k; s/
exceeds m, there are s pairwise disjoint sets S1; S2; : : : ; Ss and an index i such that
jSj\Vij > riC 1 for all 1 6 j 6 s. But this implies that jVij > sriC s, contradicting
the assumption on the size of the set Vi, and completing the proof. �

Just as in the previous section, this implies the following.

Corollary 4.3 Let s > 1 be a power of 2. Let V1;V2; : : : ;Vm be a partition of the
vertex set of Cs�1

n , where n DPm
iD1 jVij. Then there is an independent set S in Cs�1

n
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satisfying

jS \ Vij D
� jVij � sC 1

s

�

for all 1 6 i < m, and

jS \ Vmj D
� jVij

s

�

:

The proof is by contracting edges, reducing each set Vi to one of size s
j jVij�sC1

s

k
C

s � 1 for 1 6 i < m, and reducing Vm to a set of size s
j jVmj

s

k
. The result follows by

applying Theorem 4.2 to this contracted graph.

4.2 The Du-Hsu-Wang Conjecture

Du, Hsu and Wang [14] conjectured that if a graph on 3n vertices is the edge
disjoint union of a Hamilton cycle of length 3n and n vertex disjoint triangles
then its independence number is n. Erdős conjectured that in fact any such graph
is 3-colorable. Using an algebraic approach introduced in [11], Fleischner and
Stiebitz [15] proved this conjecture in a stronger form – any such graph is in fact
3-choosable.

The original conjecture, in a slightly stronger form, can be derived from
Theorem 3.3: omit any vertex and apply the theorem with ri D 1 for all i. So, for
every vertex v there exists a representing set as desired in the conjecture omitting v.
The derivation of the statement of Theorem 3.3 from the result of Schrijver in [20]
actually supplies a quick proof of the following:

Theorem 4.4 Let C3n D .V;E/ be cycle of length 3n and let V D A1[A2[ : : :[An

be a partition of its vertex set into n pairwise disjoint sets, each of size 3. Then
there exist two disjoint independent sets in the cycle, each containing one point
from each Ai.

Proof Define a coloring of the independent sets of size n in C3n as follows. If S is
such an independent set and there is an index i so that jS \ Aij > 2, color S by the
smallest such i. Otherwise, color S by the color nC 1. By [20] there are two disjoint
independent sets S1; S2 with the same color. This color cannot be any i 6 n, since if
this is the case then

j.S1 [ S2/ \ Aij D jS1 \ Aij C jS2 \ Aij > 2C 2 D 4 > 3 D jAij;

which is impossible. Thus S1 and S2 are both colored n C 1, meaning that each of
them contains exactly one element of each Ai. ut
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The Fleischner–Stiebitz theorem implies that the representing set in the DHW
conjecture can be required to contain any given vertex. This can also be deduced
from the topological version of Hall’s Theorem first proved in [4] (for this derivation
see e.g. [5]). The latter shows also that the cycle of length 3n can be replaced
by a union of cycles, totalling 3n vertices, none being of length 1 mod 3. Simple
examples show that the Fleischner–Stiebitz theorem on 3-colorability does not apply
to this setting.

Note that none of the above proofs supplies an efficient algorithm for finding the
desired independent set.

5 Fair Representation by Matchings in Kn;n, the Case of Two
Parts

The case m D 2 of Conjecture 1.9 is easy. Here is its statement in this case:

Theorem 5.1 If F is a subset of E.Kn;n/, then there exists a perfect matching N such

that jN \ Fj >
j jFj

n

k
� 1 and jN n Fj >

j jE.G/nFj
n

k
� 1.

Partitioning E.Kn;n/ into n perfect matchings shows that there exist two perfect
matchings, N1 and N2, such that jN1 \ Fj 6 jFj

n 6 jN2 \ Fj. The fact that any
permutation can be reached from any other by a sequence of transpositions means
that it is possible to reach N2 from N1 by a sequence of exchanges, replacing at each
step two edges of the perfect matching by two other edges. Thus, by a mean value
argument, at some matching in the process the condition is satisfied.

The question remains of determining the cases in which the .�1/ term is
necessary. That this term is sometimes necessary is shown, for example, by the
case of n D 2 and F being a perfect matching. Another example – n D 6 and
F D .Œ3� 
 Œ3�/ [ .f4; 5; 6g 
 f4; 5; 6g/: it is easy to see that there is no perfect
matching containing precisely 3 edges from F, as required in Conjecture 1.9.

The appropriate condition is given by the following concept:

Definition 5.2 A subset F of E.Kn;n/ is said to be rigid if there exist subsets K and
L of Œn� such that F D K 
 L[ .Œn� n K/ 
 .Œn� n L/.

The rigidity in question is with respect to F-parity of perfect matchings:

Theorem 5.3 ([6]) A subset F of E.Kn;n/ is rigid if and only if jP\Fj has the same
parity for all perfect matchings P in Kn;n.

This characterization shows that when F is rigid, it is not always possible to drop
the “minus 1” term in Theorem 5.1. Conversely, if F is not rigid, then the “minus 1”
term can indeed be dropped, as indicated by Corollary 5.5 below.

We shall show:

Theorem 5.4 Let a < c < b be three integers and suppose that F � E.Kn;n/ is
not rigid. If there exists a perfect matching Pa such that jPa \ Fj D a and a perfect
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matching Pb such that jPb\Fj D b, then there exists a perfect matching Pc satisfying
jPc \ Fj D c.

It follows from Theorem 5.4 that if a subset F of E.Kn;n/ is not rigid then for
every integer c such that n � �.E.Kn;n/ n F/ 6 c 6 �.F/ there exists a perfect
matching N satisfying jN \ Fj D c. This implies,

Corollary 5.5 If a subset F of E.Kn;n/ is not rigid, or if n − jFj, then there exists a

perfect matching N such that jN \ Fj >
j jFj

n

k
and jN n Fj >

j jE.Kn;n/nFj
n

k
.

Proof of Theorem 5.4 We use the matrix language of the original Ryser conjecture
(Sect. 1.5). Let M be the n 
 n matrix in which mi;j D 1 if .i; j/ 2 F and
mi;j D 0 if .i; j/ 62 F. A perfect matching in G corresponds to a generalized
diagonal (abbreviated GD) in M, namely a set of n entries belonging to distinct
rows and columns. A GD will be called a k-GD if exactly k of its entries are 1.
By assumption there exist an a-GD Ta and a b-GD Tb. Assume, for contradiction,
that there is no c-GD. The case n D 2 is trivial, and hence, reversing the roles
of 0s and 1s if necessary, we may assume that c > 1. Since a GD corresponds
to a permutation in Sn, and since every permutation can be obtained from any
other permutation by a sequence of transpositions, there exists a sequence of GD’s
Ta D T1;T2; : : : ;Tk D Tb, where each pair Ti and TiC1, i D 1; : : : ; k � 1, differ in
two entries. By the contradictory assumption there exists i such that T WD TiC1 is a
.cC1/-GD and T 0 WD Ti is a .c�1/-GD. Without loss of generality we may assume
that T lies along the main diagonal, its first c C 1 entries are 1, and the rest of its
entries are 0.

Let I D Œc C 1�; J D Œn� n I and let A D MŒI j I�; B D MŒI j J�; C D MŒJ j
I�; D D MŒJ j J� (we are using here a common notation – MŒI j J� denotes the
submatrix of M induced by the row set I and column set J). We may assume that
the GD T 0 is obtained from T by replacing the entries .c; c/ and .c C 1; c C 1/ by
.cC 1; c/ and .c; cC 1/ (Fig. 2).

Claim 1 The matrices A and D are symmetric.

Proof of Claim 1 To prove that A is symmetric, assume, for contradiction, that there
exist i1 ¤ i2 2 I such that mi1;i2 ¤ mi2;i1 . Then, we can replace the entries .i1; i1/

Fig. 2 Obtaining T0 from T
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Fig. 3 Subcase II2 . Removed
entries are struck out by �
and added entries are circled

and .i2; i2/ in T by .i1; i2/ and .i2; i1/ to obtain a c-GD. The proof for D is similar,
applying the replacement in this case to T 0.

Claim 2 If i 2 I and j 2 J then mi;j ¤ mj;i.

Proof of Claim 2

Case I: mi;j D mj;i D 0. Replacing .i; i/ and . j; j/ in T by .i; j/ and . j; i/ results
in a c-GD.
Case II: mi;j D mj;i D 1.
Subcase II1: i 62 fc; cC1g. Replacing in T 0 the entries .i; i/ and . j; j/ by .i; j/ and
. j; i/ results in a c-GD.
Subcase II2: i 2 fc; c C 1g. Without loss of generality we may assume i D
c C 1 and j D c C 2 (Fig. 3). If mk;` D m`;k D 0 for some 1 6 k < ` 6 c
then replacing in T the entries .k; k/; .`; `/; .cC 1; cC 1/ and .cC 2; cC 2/ by
.k; `/; .`; k/; .cC 1; cC 2/ and .cC 2; cC 1/ results in a c-GD (Fig. 3). Thus, we
may assume that mk;` D m`;k D 1 for all k; ` 6 c.

We now consider three sub-subcases:

(i) mc;cC2 D 0;mcC2;c D 1. In this case we may replace the entries .c; c/; .c C
1; cC 1/ and .cC 2; cC 2/ in T by .c; cC 2/; .cC 1; c/ and .cC 2; cC 1/ and
obtain a c-GD (Fig. 4a).

(ii) mc;cC2 D 1;mcC2;c D 0. Replace the same entries as in Case (i) by .c; c C
1/; .cC 1; cC 2/ and .cC 2; c/, again obtaining a c-GD (Fig. 4b).

(iii) mc;cC2 D mcC2;c D 1. If mc�1;cC1 D 0 then, remembering that mc�1;c�1 D 1,
we can replace .c � 1; c � 1/; .c; c/; .cC 1; cC 1/ and .cC 2; cC 2/ in T by
.c� 1; cC 1/; .c; cC 2/; .cC 1; c� 1/; .cC 2; c/ and obtain a c-GD (Fig. 5a).
If mc�1;cC1 D 1, we can replace .c � 1; c � 1/; .c; c/ and .c C 1; c C 1/ in T
by .c � 1; c C 1/; .c; c � 1/ and .c C 1; c/ and obtain a c-GD (Fig. 5b.). This
proves Claim 2.

For a matrix K indexed by any set of indices X and indices i; j 2 X, denote by
K.i/ the row of K indexed by i, and by K. j/ the column of K indexed by j.
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Fig. 4 Subcases II2(i)–(ii)

Fig. 5 Subcase II2(iii)

Fig. 6 The submatrix A is the addition (modulo 2) table of row C. j/ and column B. j/

Claim 3 For any j 2 J, the submatrix A is the addition table modulo 2 of the row
C. j/ and the column B. j/ (See illustration in Fig. 6).

Proof of Claim 3 We need to show that for any i1; i2 2 I and j 2 J we have mi1;i2 D
mj;i2 C mi1;j .mod 2/. We may assume that i1 ¤ i2 since the case i1 D i2 follows
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Fig. 7 The three cases in the proof of Claim 3

from Claim 2 and the fact that A has 1’s in the main diagonal. Let x D mj;i2 2 C. j/

and y D mi1;j 2 B. j/. We consider three cases: (i) x ¤ y, (ii) x D y D 0, and (iii)
x D y D 1.

(i) Assume, for contradiction, that mi1;i2 D 0. Then, by Claim 1, mi2;i1 D 0 and
we can replace .i1; i1/; .i2; i2/ and . j; j/ in T by .i2; i1/; .i1; j/ and . j; i2/ and obtain
a c-GD (Fig. 7a). (ii) Assume, for contradiction, that mi1;i2 D 1. We perform the
same exchange as in Case (i) and, again, obtain a c-GD (Fig. 7b). (iii) By Claim 2,
we have mi2;j D mj;i1 D 0. Assume, for contradiction, that mi1;i2 D 1. We replace
.i1; i1/; .i2; i2/ and . j; j/ in T by .i1; i2/; .i2; j/ and . j; i1/ and obtain a c-GD (Fig. 7c).
This proves Claim 3.

We say that two (0,1)-vectors u and v of the same length are complementary
(denoted u ‰ v) if their sum is the vector .1; 1; : : : ; 1/. By Claim 3, for every
i1; i2 2 I, if for some j 2 J, it is true that mi1;j D mi2;j then the two rows A.i1/;A.i2/ are
identical, and if mi1;j ¤ mi2;j then these two rows are complementary. Furthermore -
the rows M.i1/;M.i2/ are identical or complementary. We summarize this in:

Claim 4 Any two rows in MŒI j Œn�� are either identical or complementary.
Next we show that the property in Claim 4 holds for any two rows in M.
For x; y 2 f0; 1g we define the operation x ı y D xC yC 1 .mod 2/ (Fig. 8).

Claim 5 The submatrix D is the ı-table between the column C.i/ and the row B.i/,
for any i 2 I.

Proof of Claim 5 We first consider i such that 1 6 i 6 c � 1 (we assumed c > 1).
Let j1; j2 2 J. We may assume that j1 ¤ j2 since the case j1 D j2 follows from
Claim 2 and the fact that D has 0’s in the diagonal. Let x D mj2;i and y D mi;j1 . We
consider three cases: (i) x D y D 0, (ii) x D y D 1, and (iii) x ¤ y.

(i) Assume, for contradiction, that mj2;j1 D 0. By Claim 1, mj1;j2 D 0, and we can
replace .i; i/; . j1; j1/ and . j2; j2/ in T by .i; j1/; . j1; j2/ and . j2; i/ and obtain a c-GD
(Fig. 9a). (ii) By Claim 2, mj1;i D mi;j2 D 0, and we can replace the same entries
as in Case 1 by .i; j2/, . j1; i/ and . j2; j1/ and obtain a c-GD (Fig. 9b). (iii) Here is
where we need the assumption i 6 c � 1. We perform the same replacement as in
Case 1, but this time on the GD T 0, and obtain a c-GD (Fig. 9c. Recall that T 0 is a
.c � 1/-GD).
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Fig. 8 The submatrix D is the ı-table between column C.i/ and row B.i/

Fig. 9 The three cases in the proof of Claim 5

It remains to prove the claim for i D c; c C 1. It follows from Claim 4 that any
two rows of B are either identical or complementary. Thus, by Claim 2, any two
columns of C are either identical or complementary. If there exists j < c such that
B.c/ D B. j/, then C.c/ D C. j/. Since D is the ı-table between C. j/ and B. j/, it is
also the ı-table between C.c/ and B.c/. If all j < c satisfy B.c/ ‰ B. j/, then for any
such j, we have C.c/ D BT

. j/ and C. j/ D BT
.c/ by Claim 2. Since ı is commutative we

again have that D is the ı-table between C.c/ and B.c/. A similar argument holds for
i D cC 1.

Claim 6 Any two rows of M are either identical or complementary.

Proof of Claim 6 The fact that any two rows in MŒJjŒn�� are either identical or
complementary follows in the same manner as Claim 4. Now, assume i 2 I; j 2 J.
We want to show that M.i/ is either identical or complementary to M. j/. From
Claim 3 we know that A.i/ is either identical or complementary to C. j/ and from
Claim 5 we have that B.i/ is either identical or complementary to D. j/. We need to
show that A.i/ is identical to C. j/ if and only if B.i/ is identical to D. j/. Note that



Fair Representation by Independent Sets 49

Fig. 10 The four regions in
the matrix M0

mii D 1, mjj D 0 and mij ¤ mji. So, if mji D 1 we have identity in both cases and if
mji D 0 we have complementarity in both cases.

Suppose all the rows of M are identical. Then, the first cC1 columns are all-1 and
the rest of the columns are all-0. So, any GD has exactly cC1 1s. So, a D b D cC1,
which is obviously not the case. Thus, by Claim 6, we can permute the rows and
columns to obtain a matrix M0 consisting of four submatrices M1;M2;M3 and M4 of
positive dimensions, where M1 and M4 are all-1, and M2 and M3 are all-0 (Fig. 10).

Thus, F is rigid (Definition 5.2), contrary to the hypothesis. We conclude that
there must be a c-GD in M. ut

In the case that the partition E.G/ D F [ .E.G/ n F/ is rigid, if there exists a
partition PcC1 such that jPcC1 \ Fj D c C 1, then clearly there is no partition Pc

such that jPc \ Fj D c. The proof of Theorem 5.4 shows that in this case, for any c
between a and b there is a partition Pc0 such that 0 6 jPc0 \ Fj � c 6 1.

Corollary 5.6 Let G D Kn;n and assume the partition E.G/ D F [ .E.G/ n F/ is

not rigid. Then, there exist perfect matchings P1 and P2 such that jP1 \ Fj D
j jFj

n

k

and jP2 \ Fj D
l jFj

n

m
.

6 Fair Representation by Perfect Matchings in Kn;n, the Case
of Three Parts

In this section we prove Conjecture 1.9 for m D 3, namely:

Theorem 6.1 Suppose that the edges of Kn;n are partitioned into sets E1;E2;E3.

Then, there exists a perfect matching F in Kn;n satisfying
l jEij

n

m
C 1 > jF \ Eij >

j jEij
n

k
� 1 for every i D 1; 2; 3.

It clearly suffices to prove the theorem for partitions of E.Kn;n/ into sets
E1;E2;E3 such that jEij D kin, for ki integers .i D 1; 2; 3/. Assuming negation
of Theorem 6.1 there is no perfect matching with exactly ki edges from each Ei. As
already mentioned, the theorem is patently true if one of the sets Ei is empty, so we
may assume k1; k2; k3 2 f1; : : : ; n � 2g.
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We identify perfect matchings in Kn;n with permutations in Sn. For �; � 2 Sn, the
Hamming distance (or plainly distance) d.�; �/ between � and � is jfi j �.i/ ¤
�.i/gj. We write � � � if d.�; �/ 6 3. Let C be the simplicial complex of the cliques
of this relation. So, the vertices of C are the permutations in Sn and the simplexes are
the sets of permutations each two of which have distance at most 3 between them.
The core of the proof of the theorem will be in showing that C is simply connected,
which will enable us to use Sperner’s lemma.

Here is a short outline of the proof of the theorem. Clearly, for each i 6 3 there

exits a matching Fi representing Ei fairly, namely jFi \ Eij >
j jEij

n

k
. We shall

connect every pair Fi;Fj .1 6 i < j 6 3/ by a path consisting of perfect matchings
representing fairly Ei [ Ej, in such a way that every two adjacent matchings are
�-related. This generates a triangle D that is not necessarily simple (namely it may
have repeating vertices), together with a triangulation T of its circumference, and
an assignment A of matchings to its vertices. We shall then show that there exists a
triangulation T 0 extending T and contained in C (meaning that there is an assignment
A0 extending A of perfect matchings to the vertices of T 0), such that the perfect
matchings assigned to adjacent vertices are �-related. We color a vertex v of T 0 by
color i if A0.v/ represents fairly the set Ei. By our construction, this coloring satisfies
the conditions of the 2-dimensional version of Sperner’s lemma, and applying the
lemma we obtain a multicolored triangle. We shall then show that at least one of the
matchings assigned to the vertices of this triangle satisfies the condition required in
the theorem.

6.1 Topological Considerations

Let us recall the 2-dimensional version of Sperner’s lemma:

Lemma 6.2 Let T be a triangulation of a triangle ABC and suppose that the
vertices of T are colored 1; 2; 3. Assume that

• The vertex A has color 1.
• The vertex B has color 2.
• The vertex C has color 3.
• Every vertex in the subdivision of the edge AB has either color 1 or color 2.
• Every vertex in the subdivision of the edge BC has either color 2 or color 3.
• Every vertex in the subdivision of the edge CA has either color 3 or color 1.

Then T contains a region triangle with three vertices colored 1, 2 and 3.
We shall need a “hexagonal” version of the lemma:

Lemma 6.3 Let T be a triangulation of a hexagon, whose outer cycle is the union
of six paths p1; : : : ; p6 (which are, in a cyclic order, subdivisions of the six edges of
the hexagon). Suppose that the vertices of T are colored 1; 2; 3, in such a way that

• No vertex in p1 has color 1.
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• No edge in p2 is between two vertices of colors 1 and 2.
• No vertex in p3 has color 2.
• No edge in p4 is between two vertices of colors 2 and 3.
• No vertex in p5 has color 3.
• No edge in p6 is between two vertices of colors 3 and 1.

Then T contains a region triangle with three vertices colored 1, 2 and 3.

Proof Add three vertices to T outside the circumference of the hexagon in the
following way. Add a vertex A of color 1 adjacent to all vertices in p4, a vertex
B of color 2 adjacent to all vertices in p6 and a vertex of color 3 adjacent to all
vertices in p2. Using Sperner’s Lemma on this augmented triangulation yields the
lemma. ut

Our strategy for the proof of Theorem 6.1 is the following. First we form
a triangulation of a hexagon and assign a permutation in Sn to each vertex of
the triangulatin, where adjacent permutations are � related. Afterwards we color
each permutation � with some color i, where Ei is fairly represented in � . We
then apply Lemma 6.3 to get three permutations �1; �2; �3 which are pairwise �
related, and fairly represent E1;E2;E3 respectively. We then show that how to use
this to construct a permutation almost fairly representing all three sets E1;E2;E3,
simultaneously.

For i 2 Œn� let shifti W Sn ! Sn be a function defined as follows. For every � 2 Sn,
if �.i/ D j then

shifti.�/.k/ D
8
<

:

i if k D i
j if �.k/ D i

�.k/ otherwise

Remark 6.4 Note that if �.i/ D i then shifti.�/ D � .

Lemma 6.5 If � � � then shifti.�/ � shifti.�/.

Proof Without loss of generality let i D 1. If shift1.�/ D � and shift1.�/ D � then
we are done.

Case I: shift1.�/ D � and shift1.�/ ¤ � . Without loss of generality � D I, the
identity permutation. For every k 2 Œn�, if �.k/ D k then also shift1.�/.k/ D k and
thus the distance between shift1.�/ and I is at most the distance between � and I,
yielding shift1.�/ � I D shift1.�/.

Case II: shift1.�/ ¤ � and shift1.�/ ¤ � . Without loss of generality � D .12/

and hence shift1.�/ D I. As in the previous case, for every k 2 Œn� if �.k/ D k
then also shift1.�/.k/ D k. We also note that shift1.�/.1/ D 1 but �.1/ ¤ 1

(since shift1.�/ ¤ �). Therefore d.shift1.�/; I/ < d.�; I/. If d.�; I/ 6 4 then
shift1.�/ � I D shift1.�/ and we are done. Since � � � , we have d.�; I/ 6 5

so we may assume that d.�; I/ D 5. Note that if �.1/ D j ¤ 2, then � and � differ
on 1,2 and j, and thus �.k/ D k for all k 62 f1; 2; jg, so d.�; I/ 6 3, contrary to the
assumption that this distance is 5. Thus, we must have that �.1/ D 2. It follows that
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A WD fi 2 Œn� W �.i/ ¤ �.i/g is a set of size 3 disjoint from f1; 2g. But then also
fi 2 Œn� W shift1.�.i// ¤ shift1.�.i//g D A, yielding shift1.�/ � shift1.�/. ut

At this point we need a connectivity result. This is best formulated in matrix
language.

Lemma 6.6 Let A D .aij/ be an n 
 n 0-1 matrix and let k 2 Œn � 1�. Let G be the
graph whose vertices are the permutations � 2 Sn satisfying

Pn
iD1 ai�.i/ > k and

whose edges correspond to the� relation. If there exists  2 Sn with
Pn

iD1 ai.i/ > k,
then G is connected.

Proof Without loss of generality  D I, meaning that
Pn

iD1 aii > k. We shall show
that there is a path in G from  to � for any � 2 V.G/ n fg. We prove this claim
by induction on d.�; /. Write ` DPn

iD1 ai�.i/. Our aim is to find distinct j 2 Œn� for
which �. j/ ¤ j and � 0 D shiftj.�/ 2 V.G/. Then the induction hypothesis can be
applied since � � � 0 and � 0 is closer to  than � .

If ` > k C 2 choose any j 2 Œn� with �. j/ ¤ j. Then we have
Pn

iD1 ai� 0.i/ >Pn
iD1 ai�.i/ � 2 > k, so � 0 2 V.G/.
Suppose next that ` D k C 1. By the assumption that

Pn
iD1 aii > k we havePn

iD1 ai�.i/ 6
Pn

iD1 aii and since � ¤  there must be some j 2 Œn� for which
�. j/ ¤ j and ajj > aj�. j/. Taking � 0 D shiftj.�/ 2 V.G/ yields

Pn
iD1 ai� 0.i/ >Pn

iD1 ai�.i/ � 1 D k, so � 0 2 V.G/.
Finally, if ` D k then

Pn
iD1 ai�.i/ <

Pn
iD1 aii and hence there must be some

j 2 Œn� for which ajj > aj�. j/. Taking � 0 D shiftj.�/ 2 V.G/ we get
Pn

iD1 ai� 0.i/ >Pn
iD1 ai�.i/ C 1 � 1 D k, so � 0 2 V.G/. ut

Corollary 6.7 Let A D .aij/ be an n 
 n 0-1 matrix and let k 2 Œn�. Let G be the
graph whose vertices are the permutations � 2 Sn with

Pn
iD1 ai�.i/ > k and whose

edges correspond to the � relation. If
P

i;j6n aij > kn then G is connected.

Proof If there exists a permutation  with
Pn

iD1 ai.i/ > k then we are done by
Lemma 6.6. If not, by König’s theorem there exist sets A;B � Œn� with jAjCjBj 6 k
such that aij D 0 for i 62 A and j 62 B. This is compatible with the conditionP

i;j6n aij > kn only if jAj D 0 and jBj D k or jBj D 0 and jAj D k, and aij D 1 for
all .i; j/ 2 A
 Œn�[ Œn�
B. In both cases V.G/ D Sn, implying that the relation� is
path connected since every permutation is reachable from every other permutation
by a sequence of transpositions. ut

In the next two lemmas let i 2 Œn� and �; � 2 Sn. We write shift for shifti.

Lemma 6.8 If d.�; �/ D 2, then the 4-cycle � � � � shift.�/ � shift.�/ � � is
null-homotopic in C (i.e., it can be triangulated.)

Proof If either � � shift.�/ or � � shift.�/ then we are done. So, we may assume
this does not happen and in particular � ¤ shift.�/ and � ¤ shift.�/. We may
assume, without loss of generality, that i D 1, � D .12/, � D .12/.34/, shift.�/ D I
and shift.�/ D .34/. We can now fill the cycle as in Fig. 11. ut
Lemma 6.9 If d.�; �/ D 3 then the 4-cycle � � � � shift.�/� shift.�/� � is a null
cycle in C.
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Fig. 11 Triangulation of the
4-cycle
����shift.�/�shift.�/��
when d.�; �/ D 2

Fig. 12 Triangulation of the
4-cycle
����shift.�/�shift.�/��
when d.�; �/ D 3

Proof Let  2 Sn have distance 2 from both � and � . Denote � 0 D shift.�/, � 0 D
shift.�/ and 0 D shift./. We use the previous lemma to fill the cycle as in Fig. 12.ut

As a corollary from the above two lemmas we get

Corollary 6.10 Let C be a cycle and let f W C ! C be a simplicial map, i.e.,
mapping each edge to an edge or a vertex. Let Nf W C ! C be defined by Nf .v/ D
shifti. f .v// for every v 2 V.C/. Then Nf is also simplicial and is homotopic to f .
(See Fig. 13. As above, shift.�/ is denoted by � 0.)

Lemma 6.11 The simplicial complex C is simply connected.

Proof Let C be a cycle and let f0 W C! C be a simplicial map. We need to show that
f0 is null-homotopic. For each i 2 Œn�, we define fi W C! C by fi.v/ D shifti. fi�1.v//
for every v 2 V.C/. Then by Corollary 6.10 f0; : : : ; fn are all homotopic to each
other. But fn.v/ D I for every v 2 V.C/. This means that f0; : : : ; fn are all null-
homotopic. ut
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Fig. 13 Obtaining Nf from f
in Corollary 6.10

6.2 Associating a Complex with the Graph

Lemma 6.12 Let the set E of edges of Kn;n be partitioned to three sets E D
E1 P[E2 P[E3. Then there exists a perfect matching M with at least

l jE1j
n

m
edges of

E1 and at most
l jE3j

n

m
edges of E3.

Proof Let H be the graph with the edge set E1[E2. König’s edge coloring theorem,
combined with an easy alternating paths argument, yields that H can be edge colored

with n colors in a way that each color class is of size either
j jE.H/j

n

k
or
l jE.H/j

n

m
.

Clearly, at least one of these classes contains at least jE1jn edges from E1. A matching
with the desired property can be obtained by completing this color class in any way
we please to a perfect matching of Kn;n. ut

In fact, a stronger property may hold:

Conjecture 6.13 Let G D .V;E/ be a bipartite graph with maximal degree � and
let f W E! f1; 2; 3; : : : ; kg for some positive integer k. Then there exists a matching
M in G such that every number j 2 f1; 2; 3; : : : ; kg satisfies

jfe 2 M j f .e/ 6 jgj >
� jfe 2 E W f .e/ 6 jgj

�

�

Clearly, we only need to see to it that the condition holds for j < k.
In Berger, et al. (Fair representation, unpublished) this conjecture was proved for

G D K6;6.
We shall say that a perfect matching F has property i.C/ if jF\Eij > ki, property

i.CC/ if jF \ Eij > ki, and property i.�/ if jF \ Eij 6 ki.

Lemma 6.14 There exists a triangulation of the boundary of a hexagon, and an
assignment of a perfect matching Mv and a color iv 2 f1; 2; 3g to each vertex v
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Fig. 14 Assigning perfect
matchings to the vertices of
the hexagon in Lemma 6.14

of the triangulation, such that Mv has property i.CC/v and the coloring satisfies the
conditions of Lemma 6.3.

Proof By Lemma 6.12 there exists a perfect matching M with properties 1.C/ and
3.�/. We assign it to one vertex of the hexagon. By permuting the roles of E1;E2;E3
we can find six such perfect matchings and assign them to the six vertices of the
hexagon as in Fig. 14.

By Corollary 6.7, we can fill the path between the two permutations with property
i.�/ in a way that all perfect matchings in the path have property i.�/. Similarly, we
can fill the path between the two permutations with property i.C/. For each vertex v
we assign a color iv such that Mv has property i.CC/v . If Lemma 6.3 does not hold,
then without loss of generality we have two perfect matchings M1 � M2, where M1

has properties 3.C/ and 1.CC/ and M2 has properties 3.C/ and 2.CC/. This yields
Lemma 6.14. ut

Since C is simply connected, we can extend the mapping we got in Lemma 6.14
to a triangulation of the hexagon. Applying Lemma 6.3 we obtain a triangle in the
triangulation whose vertices are colored 1, 2 and 3. This means that there exist
�1; �2; �3 2 Sn, pairwise � related and fairly representing E1;E2;E3 respectively.

6.3 Proof of Theorem 6.1

We form a matrix A D .aij/i;j6n, where aij D p . p D 1; 2; 3/ if the edge ij belongs
to Ep.

For each ` 2 f1; 2; 3g and � 2 Sn we write d`.�/ D jfi W ai�.i/ D `gj � k`.

Lemma 6.15 Suppose that the triple f�1; �2; �3g is in C, and that d`.�`/ > 0 for
each ` 2 f1; 2; 3g. Then there exists � 2 Sn with jd`.�/j 6 1 for each ` 2 f1; 2; 3g.

Since the existence of such �1; �2; �3 follows from Lemmas 6.3, 6.14 and 6.11,
this will finish the proof of Theorem 6.1.
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Proof Define a 3 
 3 matrix B D .bij/ by bij D di.�j/. We know that the diagonal
entries in B are positive, the sum in each column is zero, and any two entries in the
same row differ by at most 3. This means that the minimal possible entry in B is �2.
We may assume each column has some entry not in f�1; 0; 1g.

Let us start with the case that all of the diagonal entries of B are at least 2. This
implies that all off-diagonal entries are at least �1. Since each column must sum up
to zero, we must have

B D
0

@
2 �1 �1
�1 2 �1
�1 �1 2

1

A

This implie that the distance between any two of �1; �2; �3 is exactly 3, and
without loss of generality �1 D I, �2 D .123/, �3 D .132/, and the matrix A
has the form

A D

0

B
B
B
B
B
B
B
B
@

1 2 3 � : : : �
3 1 2 � : : : �
2 3 1 � : : : �
� � � � : : : �
:::
:::
:::
:::
: : :

:::

� � � � : : : �

1

C
C
C
C
C
C
C
C
A

We can now take � D .12/ and we are done.
We are left with the case that some diagonal entry of B is 1. Without loss of

generality b11 D 1. We also assume without loss of generality that b21 6 b31.
Since the first column must sum up to zero, we have b21 C b31 D �1, and thus
�0:5 D 0:5.b21C b31/ 6 b31 D �1� b21 6 1. In other words, either b21 D �1 and
b31 D 0 or b21 D �2 and b31 D 1. In the first case we can just take � D �1 and we
are done. Therefore we assume the second case.

B D
0

@
1 � �
�2 � �
1 � �

1

A

Since d3.�1/ > 0, we may assume �3 D �1, and due to the �2 entries in the
second row, we must have b22 D 1. We now get

B D
0

@
1 � 1

�2 1 �2
1 � 1

1

A
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Without loss of generality b12 6 b32 and by arguments similar to the above we
can fill the second column

B D
0

@
1 �2 1

�2 1 �2
1 1 1

1

A

The distance between �1 and �2 is exactly 3, so without loss of generality �1 D I
and �2 D .123/. In order to achieve the values of b12 D �2; b11 D 1; b21 D
�2; b22 D 1 we must have aii D 1 and ai�2.i/ D 2 for each i 2 f1; 2; 3g.

The only case in which none of the choices � D .12/ or � D .23/ or � D .13/

works is if a13 D a21 D a32 D 3, so once again we get

A D

0

B
B
B
B
B
B
B
B
@

1 2 3 � : : : �
3 1 2 � : : : �
2 3 1 � : : : �
� � � � : : : �
:::
:::
:::
:::
: : :

:::

� � � � : : : �

1

C
C
C
C
C
C
C
C
A

We have b31 D 1 which means that 3 appears k3 C 1 times on the diagonal.
Without loss of generality a44 D a55 D : : : D ak3C4 k3C4 D 3. In any of the
following cases one can easily find some � 2 Sn with jd`.�/j 6 1 for each
` 2 f1; 2; 3g:
• If either aij ¤ 3 or aji ¤ 3 for some i 2 f4; : : : ; k3 C 4g and j 2 f1; 2; 3g.
• If aij ¤ 3 for some i; j 2 f4; : : : ; k3 C 4g
• If both aij ¤ 3 and aji ¤ 3 for some i 2 f4; : : : ; k3 C 4g and j 2 fk3 C 5; : : : ; ng.

If none of the above occurs then

k3n D jf.i; j/ W aij D 3gj > 2 � 3 � .1C k3/C .1C k3/
2 C 1

2
� 2.k3 C 1/.n � k3 � 4/

which is a contradiction. ut
Remark 6.16 After the above topological proof of Theorem 6.1 was found, a
combinatorial proof was given in Berger, et al. (Fair representation, unpublished).

Acknowledgements The authors are grateful to Frédéric Meunier for pointing out an inaccuracy
in a previous version of the paper.
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Computing Heegaard Genus is NP-Hard

David Bachman, Ryan Derby-Talbot, and Eric Sedgwick

Dedicated to the memory of Jiří Matoušek

Abstract We show that HEEGAARD GENUS � g, the problem of deciding whether
a triangulated 3-manifold admits a Heegaard splitting of genus less than or equal to
g, is NP-hard. The result follows from a quadratic time reduction of the NP-complete
problem CNF-SAT to HEEGAARD GENUS � g.

1 Introduction

While there is a tradition of studying decision problems in 3-manifold topology, the
historical focus has been showing that problems are decidable [9, 13–15, 20, 21,
31, 37]. More recently, the computational complexity of these and related problems
has gained attention [1, 5–7, 10, 18, 34]. Here we show that one of the most basic
decision problems for 3-manifolds, the problem of determining Heegaard genus, is
NP-hard.

Every closed, orientable 3-manifold M has a Heegaard surface: a closed surface
that splits the manifold into a pair of handlebodies (i.e., thickened graphs). The
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Heegaard genus, g.M/, is the minimal genus of a Heegaard surface for M, and is one
of the most basic 3-manifold invariants. Because Heegaard surfaces are generic, they
have been studied extensively and have been effectively classified for large classes
of manifolds [16, 23]. It is thus natural to ask (phrased as a decision problem):

Problem 1.1 HEEGAARD GENUS � g: Given a triangulated 3-manifold M and a
natural number g, does M have a Heegaard surface of genus � g?

HEEGAARD GENUS � g was shown to be decidable (computable) by Johannson
[14, 15] in the Haken case and by Li in the non-Haken case [20]. Our main result is
the following:

Theorem 1.2 HEEGAARD GENUS � g is NP-hard.
One way of obtaining a Heegaard surface in certain 3-manifolds is to amalgamate

Heegaard surfaces in submanifolds. This approach allows us to relate Heegaard
genus to satisfiability of Boolean formulas in conjunctive normal form, that is
Boolean formulas stated as a conjunction of disjunctions, for example:

Q D .a _ c/ ^ .:a _ b/ ^ .b _ c/

We will let jQj denote the length of Q without counting parentheses, e.g. jQj =
12 for the above example.

Problem 1.3 CNF-SAT: Given Q, a Boolean formula in conjunctive normal form,
is there a satisfying assignment (i.e., an assignment of truth values to the variables)
that makes the formula true?

CNF-SAT is well known to be NP-complete. We prove Theorem 1.2 by giving
a polynomial (quadratic) time reduction of CNF-SAT to HEEGAARD GENUS � g.
Our reduction will proceed in two steps, first proving that there are manifolds MQ

that encode a formula Q:

Proposition 3.1 Let Q be an instance of CNF-SAT. Then there is a manifold MQ

with Heegaard genus g.MQ/ � jQj C 2, with equality holding if and only if Q has a
satisfying assignment.

The proof of Proposition 3.1 is based on constructing MQ as a direct translation
of the formula Q (a schematic of MQ for the aforementioned Q is shown in Fig. 1),
formed by taking a collection of Heegaard genus two “block” manifolds, one block
for each term (VAR(iable), REP(licate), NOT, AND, OR) in Q, and gluing them
together along torus boundary components via high distance maps. Each gluing
surface then represents a sub-statement of Q. The high-distance gluings guarantee
that any minimal genus Heegaard surface for MQ is an amalgamation of Heegaard
surfaces of the blocks (we provide a proof of this fact in the appendix of this paper),
and this allows us to compute the Heegaard genus of MQ.

Every Heegaard surface induces a bipartition, a partition into two sets, of its
manifold’s boundary components. The blocks are constructed so that each block
emulates its logical operator via the way its minimal genus Heegaard surfaces
bipartition its boundary components. The OR block is flexible, in that every non-
trivial bipartition is possible, whereas all other block types have a fixed bipartition of
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a

a

a

bb

b

c

c

c

¬a

a ∨ c ¬a ∨ b
b ∨ c

(a ∨ c) ∧ (¬a ∨ b)
((a ∨ c) ∧ (¬a ∨ b)) ∧ (b ∨ c)

Fig. 1 The construction of MQ, where QD ..a_ c/ ^ .:a_ b//^ .b_ c/

boundary components determined by the minimal genus Heegaard surfaces. When
Q is satisfiable, there is a minimal genus Heegaard surface for each block so that
the complementary pieces can be bicolored in a particular way (see Definition 2.7)
so that the Heegaard surfaces for the blocks can be amalgamated to a genus jQj C 2
Heegaard surface for MQ. The converse uses the same setup. We show that the genus
of MQ is at least jQj C 2, and that when equality is achieved it is possible to read off
a satisfying assignment for Q from a bicoloring induced by Heegaard surfaces for
the block manifolds.

There are many manifolds that fit the above description of MQ. The second step,
from which Theorem 1.2 follows, is that we can construct a triangulation for one
efficiently.

Proposition 4.1 A triangulated MQ can be produced in quadratic time (and
tetrahedra) in jQj.

The essential ingredient for our main result is our ability to choose block
manifolds whose minimal genus Heegaard surfaces bipartition their boundary
components in a way that emulates the required logical operators. It is then worth
asking: given a set of bipartitions, is there a 3-manifold whose minimal genus
Heegaard surfaces induce precisely that set? In fact, this is an easy corollary of
the techniques we use here.
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Corollary 3.8 Let P be a non-empty set of bipartitions of 1; 2; : : : ; n. Then there is
a 3-manifold X and a numbering of its boundary components, 1; 2; : : : ; n, so that
the set of bipartitions of @X induced by minimal genus Heegaard splittings of X is
precisely P .

This paper is organized as follows: Sect. 2 contains the required background
on Heegaard splittings, surfaces, and amalgamation. Section 3 gives a recipe for
producing MQ and proves Proposition 3.1 and Corollary 3.8. Section 4 shows how
to triangulate MQ and proves Proposition 4.1. Section 5 lists some related open
questions. The appendix proves Proposition 1, which explains how high distance
gluings ensure that minimal genus Heegaard surfaces are amalgamations.

2 Heegaard Splittings and Amalgamations

Definition 2.1 Consider a 3-ball B, and attach 1-handles to @B. The resulting 3-
manifold is a handlebody. Alternatively, let F be a closed, not necessarily connected,
orientable surface such that each component of F has genus greater than zero. Take
the product F
 Œ0; 1� and attach 1-handles along F 
 f1g. Assuming it is connected,
the resulting 3-manifold V is a compression body, and we denote @�V D F 
 f0g
and @CV D @V �@�V . (We will consider a handlebody as a compression body with
@�V D ;.)

Let M denote a compact, connected, orientable 3-manifold.

Definition 2.2 A Heegaard splitting for M is a decomposition M D V [W where
V and W are compression bodies such that @CV D @CW D V \ W. The surface
H D @CV D @CW in M is called a Heegaard surface, and when needed we may
include this surface in the notation for the Heegaard splitting as V [H W. The genus
of V [H W is the genus of H, denoted g.H/.

Remark 2.3 Note that the compression bodies V and W bipartition the boundary of
M into @V M D @M \ V D @�V and @WM D @M \ W D @�W. In particular, a
Heegaard splitting for M always induces a bipartition f@VMj@W Mg of the boundary
components of M, and thus it is proper to say that V [W is a Heegaard splitting of
M with respect to the bipartition f@VMj@WMg.

Given M, one can find Heegaard splittings of M in several ways. For example, if
M is triangulated with t tetrahedra, then one can obtain a Heegaard splitting of M
of genus t C 1, taking the boundary of a regular neighborhood of the 1-skeleton
as the Heegaard surface. Alternatively, if M can be decomposed as a union of
submanifolds M D S

Mi, so that M is obtained by gluing the Mi together along
their boundary components (including possible self-gluings), one can potentially
amalgamate Heegaard splittings of the Mi to form a Heegaard splitting of M:

Example 2.4 Let M1 and M2 be 3-manifolds such that @M1 Š @M2 Š F, and let
V1 [ W1 be a Heegaard splitting of M1 with respect to the bipartition f;j@M1g and
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M1

M2

M

V1

V2

W1

W2

V

W

∂M1

1-handles

F

Fig. 2 A schematic for the amalgamation given in Example 2.4. The light and dark regions
represent compression bodies, with W1 and V2 expressed as F � Œ0; 1� [ .1-handles/. The dotted
lines represent Heegaard surfaces

V2 [ W2 a Heegaard splitting of M2 with respect to the bipartition f@M2j;g. Note
that both W1 and V2 are compression bodies of the form F 
 Œ0; 1� [ f1-handlesg.
Form the 3-manifold M by gluing M1 to M2 along their boundaries, and, abusing
notation slightly, let F be the image of the boundary components in M. Collapse the
product structures in W1 and V2 so that in each, F
 Œ0; 1� is mapped to F
f0g D F,
and so that the 1-handles of each of W1 and V2 are attached disjointly on F. We then
obtain a new Heegaard splitting V [ W of M, where V D V1 [ f1-handles in V2g,
and W D f1-handles in W1g [W2. The splitting V [W is called the amalgamation
of V1 [W1 and V2 [W2 along F. See Fig. 2.

Constructing an amalgamation of M D S
Mi from component Heegaard

splittings of Mi, however, is not always possible.

Example 2.5 Suppose M is formed by taking M1 D T2 
 Œ0; 1� and gluing the two
components of @M1 together. Let F be the image of @M1 (an embedded torus) in M.

It is well known that M1 admits two irreducible Heegaard surfaces up to isotopy
[32]: a “Type 1” surface that is a level torus T2 
 f 1

2
g and induces the non-trivial

bipartition of boundary components fT2
f0gjT2
f1gg, and a “Type 2” surface that
is a genus two Heegaard surface obtained by tubing together two disjoint copies,
say T2 
 f 1

4
g and T2 
 f 3

4
g, of the level surface. Note that this latter surface induces

the trivial bipartition of boundary components fT2 
 f0g;T2 
 f1gj;g.
One cannot form an amalgamated splitting for M by taking a Type 2 Heegaard

splitting of M1 and amalgamating it to itself (See Fig. 3a). This is because in
attempting to apply the construction of Example 2.4, we do not end up with two
resulting compression bodies once we collapse the product structure of F 
 Œ0; 1�
(i.e. the resulting “Heegaard surface” is not separating).

Example 2.6 Let M1 and M2 each be copies of T2 
 Œ0; 1�, and form M D M1 [M2

by gluing @M1 to @M2 component-wise. Let F D @M1 D @M2, so that F consists of
two disjoint tori embedded in M. Then, one cannot form an amalgamated Heegaard
splitting of M from Type 1 Heegaard splittings of M1 and M2 (See Fig. 3b). The issue
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(a)

(b)

G

Fig. 3 (a) A Type 2 Heegaard splitting of T2 � Œ0; 1� cannot be amalgamated to itself; (b) two
Type 1 Heegaard splittings of T2 � Œ0; 1� cannot be amalgamated together (Note that G here is not
a DAG)

here is that the Heegaard splitting of Mi, i D 1; 2, does not partition the components
of @Mi into a single compression body, and thus one cannot simultaneously collapse
the product structure F 
 Œ0; 1� along each component of F as in Example 2.4 to
form an amalgamation.

Assume that M D SMi where the Mi meet along boundary components. Rather
than thinking of the Mi in a linear order, it is more natural to consider the following
construction. Let G be the dual graph of

S
Mi, so that each submanifold Mi is

assigned a vertex x, and two vertices corresponding to Mi and Mj are connected
by an edge for each component of @Mi\@Mj. (Note that i may equal j, in the case of
self-gluings.) Relabelling the submanifolds Mi as Mx, one for each vertex x of G, we
can consider M D Sx2G Mx. The following definition provides the conditions under
which Heegaard splittings of the Mx can form an amalgamated Heegaard splitting
of M.

Definition 2.7 A generalized Heegaard splitting of M D S
x2G Mx is a choice, for

each Mx, of a Heegaard splitting Mx D Vx [Wx, so that:

(1) The compression bodies are bicolored “black” and “white” (or “V” and “W”).
That is Vx \ Vx0 D ;;Wx \Wx0 D ;, for all x ¤ x0.

(2) Given this bicoloring, the graph G becomes a directed acyclic graph (DAG)
after assigning edges of G to point toward “white”: as each edge e of G is dual



Computing Heegaard Genus is NP-Hard 65

to a surface in M that has a black compression body Vx on one side and a white
compression body Wx0 on the other, assign an orientation to e that points from
x to x0 (“black” to “white”). We require that the resulting directed graph has no
directed cycles.

Theorem 2.8 If
S

x2G .Vx [Wx/ is a generalized Heegaard splitting of M DS
x2G Mx, then the Heegaard splittings Vx [ Wx can be amalgamated to form a

Heegaard splitting of M.

Proof We construct the desired Heegaard splitting in stages. Assume that the graph
G is directed as per Definition 2.7. As G contains no directed cycles, the graph has
a vertex which is a sink (all edges meeting it point “in”). Remove this vertex and all
edges meeting it from the graph. In the remaining (potentially disconnected) graph,
find another sink, and repeat the process. Continue until all such sinks have been
removed. As G is a DAG, this means we are left only with a collection of vertices
(the sources of the original graph).

Now add back the last removed sink x0, along with the edges e1; : : : ; em that
point in toward it. Let x1; : : : ; xn be the set of vertices that bound the edges e1; : : : ; em

along with x0. Since x0 is a sink, the bicoloring of the compression bodies of
S

Vxi[
Wxi in the generalized Heegaard splitting implies Mx0 meets each Mxi only in Wx0
and Vxi , i D 1; : : : ; n, respectively. In particular, the components Fe1 ; : : : ;Fem of
@Mx0 corresponding to the edges e1; : : : ; em are all contained in Wx0 and

S
Vxi . Thus,

we may carry out the procedure of Example 2.4 and collapse the product structures
Fej
Œ0; 1� to Fej simultaneously for all j in the compression bodies Wx0 , Vx1 ; : : : ;Vxn

and obtain a new Heegaard splitting V 0 [ W 0 of M0 D Mx0 [ : : : [ Mxn . Note that
this new Heegaard splitting preserves the original bicoloring given by

S
Vx[Wx for

boundary components of M0: if F0 is a component of @M0, then F0 � @V 0 if and only
if F0 � @Vxi for some xi. (Boundary components of M0 stay “black” or “white.”)

Add back in the next sink x00. If Mx0

0
does not meet M0, then we simply repeat

the above process for the subset of G that consists of edges and bounding vertices
that meet x00. If Mx0

0
meets M0, then we consider M0 as a whole with the Heegaard

splitting V 0 [ W 0 obtained above. Since V 0 [ W 0 preserves the bicoloring of
boundary components of M0 given by the original generalized Heegaard splitting,
we can repeat the above process to obtain a new Heegaard splitting of Mx0

0
[M0 [

fMy j y is a new vertex directed towards x00g.
Building in this way, we can continue to obtain new Heegaard splittings of larger

collections of submanifolds of M, until we complete the graph G and produce a
Heegaard splitting V [W of M. ut

As before, the Heegaard splitting V [ W obtained in the above proof is called
the amalgamation of the Heegaard splittings of the Mx along the surfaces F,
where F is the collection of components of the @Mx that are dual to edges in G
(i.e. F D �Sx2G @Mx

�n@M). Note that V[W is obtained by sequential applications
of the technique in Example 2.4 to amalgamations of Heegaard splittings of “sink”
submanifolds to their adjacent submanifolds. The critical feature of a generalized
Heegaard splitting that allows one to construct V [ W is that each component
Heegaard splitting bipartitions the boundary components of the Mx suitably so that
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we can bicolor the set of compression bodies (this allows us to end up with two
compression bodies in the amalgamated Heegaard splitting, avoiding the problem
of Example 2.5), and can use the bicoloring to direct the edges of G so that we can
amalgamate in sequence “outward” from sinks at each stage (thereby avoiding the
problem of Example 2.6 – recall Fig. 3).

Theorem 2.9 Suppose
S

x2G .Vx [Hx Wx/ is a generalized Heegaard splitting of
M D S

x2G Mx. For every edge e of G, let Fe denote the component of
S
@Mx dual

to e in M. Let V [H W be the amalgamation of
S

x2G .Vx [Hx Wx/. Then

g.H/ D
X

x2G
g.Hx/ �

X

e2G
g.Fe/C 1 � �.G/:

Proof Proceed with the same setup and notation as in the proof of Theorem 2.8.
In particular, for the first step in constructing an amalgamation of M, consider
Heegaard splittings Vxi [Hxi

Wxi of Mxi , i D 0; : : : ; n, respectively, and their corre-
sponding vertices x0; : : : ; xn and connecting edges e1; : : : ; em in G. Let Fe1 ; : : : ;Fem

denote the corresponding surfaces in M dual to e1; : : : ; em. Let M0 D Sn
iD0 Mxi .

By construction, the genus of the amalgamated Heegaard splitting is obtained
by adding the genus of Hx0 to the handle numbers of Vxi , i D 1; : : : ; n. If V is a
compression body, then the handle number of V is the number of 1-handles added
to @�V 
 Œ0; 1� along @�V 
 f1g to obtain V (see Fig. 4). There are two types of
potential such 1-handles: a minimal set that connects components of @�V 
 Œ0; 1�
(essentially fulfilling the role of “connected sum” of components of @�V
f1g), and
those that increase the genus of @CV . Thus, the handle number of V equals

#handle.V/ D g.@CV/�
X

F2@�V

g.F/C j@�Vj � 1:

Let V 0 [H0 W 0 be the amalgamation of
Sn

iD0
�
Vxi [Hxi

Wxi

�
. Using the handle

number, the genus of the Heegaard surface H0 is

g.H0/ D g.Hx0/C
nX

iD1
#handle.Vxi/:

Fig. 4 A schematic of a compression body V with #handle.V/ D 5 (Note that @CV is denoted by
dotted lines)
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Plugging in the equations for the handle numbers for the Vxi produces

g.H0/ D g.Hx0/C
nX

iD1
g.Hxi/ �

mX

jD1
g.Fej/C

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

m[

jD1
Fej

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
� n

D
nX

iD0
g.Hxi/ �

mX

jD1
g.Fej/C m � n:

Let G0 denote the graph connecting x0 to x1; : : : ; xn. Since m is the number of
edges in G0 and n is the number of vertices minus one, we conclude m � n D
1 � �.G0/. Hence

g.H0/ D
nX

iD0
g.Hxi/ �

mX

jD1
g.Fej/C 1 � �.G0/:

For any new submanifold that is included in the amalgamation at a subsequent
stage, the above relationship is preserved. That is, suppose that M0 D V 0[H0 W 0 has
already been obtained as above by amalgamating component Heegaard splittings,
and suppose My D Vy [Hy Wy is a submanifold and Heegaard splitting being
newly amalgamated to V 0 [H0 W 0 along surfaces Fe0

1
; : : : ;Fe0

m0

. Let G0 and G0y be

the dual graphs for M0 and M0 [ My, respectively. Repeating the above argument
implies that the genus of the resulting amalgamation of M0 [My increases by

g.Hy/ �
m0

X

kD1
g.Fe0

k
/C m0 � 1:

Note that m0 is the number of edges of G0y n G0, and so m0 � 1 D ��.G0y n G0/. In
particular, this means that m � nC m0 � 1 D 1 � �.G0/ � �.G0y n G0/ D 1 � �.G0y/:
Thus, the resulting genus of the amalgamation of M0 [My is

X

x2G0

y

g.Hx/ �
X

e2G0

y

g.Fe/C 1 � �.G0y/:

Amalgamating thusly along all remaining submanifolds My0 , y0 2 G, produces the
desired result. ut

It is important to note that one can find examples of (minimal genus) Heegaard
splittings of 3-manifolds that are not amalgamations. For example, by gluing the
bridge surface of a tunnel number n � 1, n-bridge knot complement to vertical
annuli in a Seifert fibered space over a disk with n exceptional fibers, one can
obtain a Heegaard surface of the resulting 3-manifold of genus n, whereas the
minimal genus amalgamation along the gluing surface has genus 2n. (See [36].)
Note that this Heegaard surface results from a very specific gluing map between the



68 D. Bachman et al.

boundary components of the two submanifolds. In general, gluing maps between
boundary components can be chosen to be “sufficiently complicated” to ensure that
all minimal genus Heegaard splittings are amalgamations along the gluing surfaces.
(See the appendix.) Exploiting this property in the next sections allows us to ensure
that the minimal genus Heegaard splittings of our constructed 3-manifolds MQ are
amalgamations, to which we can thus apply the results of this section.

3 Constructing MQ

In this section we give a recipe for producing MQ from Q and prove the following
result.

Proposition 3.1 Let Q be an instance of CNF-SAT. Then there is a manifold MQ

with Heegaard genus g.MQ/ � jQj C 2, with equality holding if and only if Q has a
satisfying assignment.

Recall that jQj is the length of Q without counting parentheses.

3.1 Constructing MQ

The sentence Q will guide our construction of MQ. To begin, rewrite Q by inserting
parentheses, if necessary, to make it clear how each logical connective joins exactly
two terms (i.e. Q is made fully parenthesized). The manifold MQ is then constructed
out of building blocks according to instructions provided by this modified version
of Q. Each building block will have Heegaard genus 2 and some number of torus
boundary components. Each such boundary component will be labelled with a
subsentence of Q, and also be designated as either an input or an output to that
block. We will depict such blocks so that the input boundary component is on top,
and the outputs are on the bottom. See Fig. 5. Each block is chosen based on a
desired bipartitioning of its boundary components by genus 2 Heegaard splittings as
follows.

• VAR(iable) – For each distinct variable in Q let the block manifold M be a trefoil
knot exterior (Fig. 8). Then M has one torus boundary component, @M D T, and
any genus 2 Heegaard splitting induces the only boundary bipartition possible (up
to ordering), fTj;g. We label the boundary component T with the corresponding
variable, and consider it an output of the block.

• REP(licate) – To create multiple copies of a given variable, we use a block
manifold M that is the exterior of the twisted torus link in Fig. 9. Then M has
three torus boundary components, @M D T0 [ T1 [ T2 where any genus two
Heegaard splitting induces the boundary bipartition fT0;T1jT2g (Lemma 4.9).
All three components will be labelled with the variable that is being duplicated.
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a

aa

a

a
¬a

BB AA

A ∧ B A ∨ B

Q

var rep

not

and or end

Fig. 5 Schematics indicating block types and their labelings. Input surfaces are depicted at the top
of each block, and outputs at the bottom. Minimal genus Heegaard surfaces are depicted with bold
lines (With the three possible such splittings of the OR block indicated with bold dashed lines)

We will say the boundary component T2 is preferred, and will be the input. The
other two boundary components are outputs.

• NOT – For each occurrence of “:a” in Q, the block manifold M will be a high
distance filling on the twisted torus link as described in Lemma 4.10. Then @M D
T0 [ T1 and any genus two Heegaard splitting induces the bipartition fT0;T1j;g.
Label one boundary component a, and consider it an input. The other boundary
component is labelled :a and is considered an output. Glue the input surface to
the output of a REP block corresponding to a.

Once we have created one labeled output surface for each instance of each
variable in Q, and each instance of its negation, we start gluing them to other kinds
of blocks determined by the logical structure of Q, as follows:

• AND – For each conjunction A ^ B in Q, we let M be the exterior of the twisted
torus link already used for REP. Then @M D T0 [ T1 [ T2, and all genus two
Heegaard splittings all induce the bipartition fT0;T1jT2g (Lemma 4.9). Label the
preferred boundary component T2 with the expression A ^ B, and consider it an
output. The other two boundary components are inputs, and are labelled with the
expressions A and B respectively.

• OR – For each disjunction A _ B in Q we let M be the exterior of the three
component chain indicated in Fig. 8. It is homeomorphic to {pair of pants} 
 S1,
has three boundary components @M D T0 [ T1 [ T2, and each of the three
boundary bipartitions of the form fTi;TjjTkg is realized by some genus two
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Heegaard splitting (Lemma 4.8). Choose one boundary component to label as
A_B, and consider it an output. The remaining boundary components are inputs,
and are labelled with the expressions A and B respectively.

• END – We end by capping the statement off with the same M, the trefoil knot
exterior, used for VAR. The manifold M has one torus boundary component,
@M D T, and a single boundary bipartition fTj;g. It is labelled with the entire
expression Q, and is an input.

To glue the blocks, we choose “sufficiently complicated” maps so that every
Heegaard splitting of MQ of genus less than or equal to jQj C 2 is an amalgamation
of splittings of the blocks. (See the appendix.)

As an example, Fig. 1 gives the construction of the manifold MQ from the
expression

Q D ..a _ c/ ^ .:a _ b// ^ .b _ c/:

3.2 Proof of Proposition 3.1

Lemma 3.2 The Heegaard genus of MQ is at least jQj C 2, and in the case of
equality, any such minimal genus splitting is an amalgamation of minimal genus
splittings of the building blocks.

Proof Let S be a minimal genus Heegaard splitting of MQ. If the genus of S is strictly
greater than jQj C 2 then the result follows. By way of contradiction, we assume
the genus of S is at most jQj C 2. By construction, S is then an amalgamation of
Heegaard splittings of the building blocks. We now use Theorem 2.9 to compute the
genus of S:

g.S/ D
X

x2G
g.Hx/ �

X

e2G
g.Fe/C 1 � �.G/:

Here G is the graph dual to the block structure. Let v be the number of vertices,
one for each block, and e the number of edges, one for each gluing torus. Note that
the number of variable occurrences in Q is the number of VAR and REP blocks. The
operators in Q each have a corresponding NOT, OR, or AND block, and there is a
final END block for the total statement Q. In particular, v D jQj C 1. Since each
block has genus 2, we have g.Hx/ � 2 for each x, with equality holding only for
those blocks with minimal splittings, and g.Fe/ D 1 for each e. Thus,

g.S/ � 2v � eC 1 � .�eC v/ D v C 1 D jQj C 2:

ut
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Lemma 3.3 If the Heegaard genus of MQ is equal to jQj C 2 then there is a
satisfying assignment of Q.

Proof Suppose S is a minimal genus Heegaard surface of MQ. If the genus of S
is jQj C 2, then by the previous lemma S is an amalgamation of minimal genus
Heegaard surfaces fSig in the building blocks.

Because S is an amalgamation, the surfaces fSig, together with the gluing
surfaces, separate the manifold MQ into compression bodies that can be colored
“black” and “white” so that no two compression bodies with the same color are
adjacent. Without loss of generality, we assume the compression body of the
END block which contains its sole input surface is colored white.

We will now assign truth values to the gluing surfaces between blocks, according
to this bicoloring. Let F be such a gluing surface. Then F is the input surface for
some block. If the compression body in that block containing F is white, then we
will say that F is true. Otherwise, we say it is false. Equivalently, we can say that
F is true if it is the output of a block, and the compression body in that block
that contains F is black. Thus, if the Heegaard surface in some block separates an
input surface A of that block from an output surface, B, then A and B will have the
same truth value. It follows immediately that the input and output surfaces of all
REP blocks have the same truth value. Similarly, the truth value of the input of a
NOT block labelled a will have the opposite truth value as the output labelled :a.
Finally, note that the surface at the input of the END block (which we have labelled
with the statement Q) is by choice assigned the truth value true.

In the next several claims, we show that our assignment of truth values respects
the logical structure of the subsentences of Q that appear at the labels of (most of)
the gluing surfaces.

Claim 3.4 All surfaces at the inputs and outputs of the AND blocks are true.

Proof The minimal genus Heegaard surface of an AND block separates the output
surface from both inputs. Thus, the output and input surfaces all have the same truth
value. The proof is complete by noting that since Q is in conjunctive normal form,
the output of every AND block is glued to the input of the END block (a true
surface), or the input of another AND block. ut

We say an OR-tree is a component of the union of the OR blocks in MQ.

Claim 3.5 The output of every OR-tree is true, and at least one of the input surfaces
of every OR-tree is true.

Proof Let F0 denote the output surface of an OR-tree. Since Q is in conjunctive
normal form, F0 is glued to the input of an AND block. By the previous claim, F0
must be true. By construction, the Heegaard surface of the OR block that contains
F0 separates it from at least one of the input surfaces F1 of that block. Thus, F1 will
also be true. Working up the tree, we now consider the OR block in the tree whose
output is the surface F1. By identical reasoning, one of its input surfaces F2 must
be true as well. Continuing in this way we eventually reach an input surface Fi of
the entire OR-tree and conclude that it must be true. ut
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Note that some of the truth values of the sentences that label gluing surfaces
interior to an OR-tree may not be correct, but the previous claim shows this does not
disturb the logical structure of the OR-tree, taken as a whole.

To complete the lemma, note that we have assigned a truth value to the output
surface of every VAR block. These surfaces correspond to the variables used in the
sentence Q. We have shown above that our assignment of truth values to the input
and output surfaces of REP, NOT, and AND blocks, as well as OR trees, respects
the logical structure of the sentences that label them. Thus, we have produced an
assignment of truth values for the variables that make the statement Q true. ut
Lemma 3.6 If there is a satisfying assignment of Q, then the Heegaard genus of
MQ is equal to jQj C 2.

Proof If there is a satisfying assignment of Q, then that assignment gives a
truth value to each expression at the gluing surfaces. In this way, each boundary
component of each building block gets assigned a truth value. We color the sides of
each such surface black/white so that if F is a true surface at the output of a block,
then the side of F facing into that block is black. Similarly, if F is a true surface at
the input of a block, then the side facing in is colored white. Conversely, the side
of a false surface at the output of a block is colored white, and the side of a false
surface at an input is black.

Claim 3.7 There is a minimal genus splitting of each block that separates all white
surfaces on the inside of the block from all black surfaces facing in.

Proof Consider first the END block. Since there is only one boundary component,
any Heegaard splitting (and in particular the minimal genus one) has the desired
separation property.

Next we consider the AND blocks. Since Q is in conjunctive normal form, the
output of each such block is either attached to the END block, or another AND block.
Hence, if there is a satisfying assignment for Q then the labels at every input and
output surface of an AND block are true logical sentences. It follows that the side
of the input surfaces that face into such a block are white, and the side of the output
surface facing into the block is black. Such a block has the output as a preferred
boundary component, meaning that a minimal genus splitting separates the output
surface from both input surfaces. Hence, the minimal genus splitting has the desired
separation property.

An OR block has no preferred boundary component. Thus, there is a minimal
genus splitting for each non-trivial bipartitioning of the boundary components. It
follows that the only way the separation property can fail is if the side of every
boundary surface facing in to the block is the same color. If they are all white, then
this corresponds to both inputs being true, and the output being false. If they are all
black, then both inputs are false, and the output is true. Neither situation obeys the
properties of the logical “or” operation, so we will not see these sets of truth values
for the labels of the surfaces at the boundary of an OR block.

By construction, a REP block has the same logical value at each input and output.
If they are all true, then the side of the input surface that faces into the block is white,
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and the side of the outputs that faces in is black. The input surface of this block is a
preferred boundary component, so the minimal genus splitting separates black from
white as desired. If all surfaces are false, the situation is reversed.

Finally, we consider the NOT blocks. The sentences at the boundary components
of a NOT block will have opposite truth values. Thus, the side of the input surface
facing into the block will have the same color as the side of the output surface
facing in. Both surfaces are on the same side of a minimal genus splitting of a
NOT block. ut

Assume we have now chosen splittings of each block in accordance with the
conclusion of Claim 3.7. Then the building blocks are separated into compression
bodies by these splittings, and these compression bodies inherit the color black or
white, according to the colors of their negative boundaries. Furthermore, because
opposite sides of any single gluing surface are different colors, it follows that
neighboring compression-bodies in MQ are colored differently.

According to Theorem 2.8, to show that we can amalgamate our choice of
splittings of the building blocks, it remains to show that the directed graph G that
is dual to the gluing surfaces has no directed cycles. (Recall that each edge of this
graph is oriented so that it passes from a black compression body into a white one.)

We have constructed MQ vertically so that the output surface(s) of any given
block is below its input surface(s). Any directed cycle must have a local maximum,
x. Let e1 and e2 be the edges of the cycle that meet x, where e1 is oriented toward x,
and e2 is oriented away. As x is a local maximum, both e1 and e2 correspond to
output surfaces of the building block corresponding to x. It follows that this building
block is a REP block, as this is the only type of block that has two output surfaces.
However, according to our coloring scheme, both output surfaces of a REP block are
on the boundary of the same compression body. If this compression body is black,
then both e1 and e2 are oriented away from x. If the compression body is white, then
both are oriented toward x. This contradiction establishes that there are no directed
cycles in G.

By Theorem 2.8 we can now amalgamate the chosen splittings of our building
blocks, creating a splitting of MQ. By the computation given in the proof of
Lemma 3.2, the genus of this splitting is jQj C 2. ut

Finally, note that if one were to remove the VAR blocks from MQ, we would
obtain a manifold with a boundary component corresponding to each variable, and,
for each satisfying assignment, a minimal genus Heegaard splitting that induces a
{true j false} bipartition of the corresponding boundary components. That is the
basis for the following corollary.

Corollary 3.8 Let P be a non-empty set of bipartitions of 1; 2; : : : ; n. Then there
is a 3-manifold X and a numbering of its boundary components, 1; 2; : : : ; n, so that
the set of bipartitions of @X induced by minimal genus Heegaard splittings of X is
precisely P .

Proof Suppose that P is a bipartition of 1; ::; n. That is, P D fPCjP�g so that PC [
P� D 1; ::; n and PC \ P� D ;. Let vi; i D 1; ::; n be variables and let the clause
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q.P/ be a conjunction of each variable or its negation, depending on which side of
the bipartition P its index belongs to:

q.P/ D
^
fviji 2 PCg

^
f:viji 2 P�g:

Of course, q.P/ accepts exactly one satisfying assignment, and that corresponds
(via the correspondence i 2 PC ” vi D true) to the bipartition P. Now let
P be a set of bipartitions of 1; : : : ; n and let PC be its complement, i.e. the set of
bipartitions not in P . Let

Q.PC/ D
_
fq.P/jP 2 PCg

Now, let Q D Q.P/ D :Q.PC/ which, after applying De Morgan’s laws, is an
instance of CNF-SAT. Let MQ be built according to the procedure above. Now it is
easy to check that satisfying assignments are in 1-1 correspondence with bipartitions
P 2 P , again by using the correspondence i 2 PC ” vi D true.

Let MQ be constructed as before. Note that since Q is satisfiable, MQ has
Heegaard genus jQj C 2. Let M0Q be the manifold obtained by removing each
VAR block. Because each VAR block removed is a leaf in G, the graph dual to the
block structure, the proofs of Lemmas 3.3 and 3.6 apply to M0Q as well as to MQ. In
particular, a minimal genus splitting of M0Q determines a satisfying truth assignment
to the vi’s, and vice-versa. Note that each vi labels a boundary component of M0Q, and
each minimal genus splitting separates the true variables from the false variables,
so bipartitions induced by minimal genus splittings are in 1-1 correspondence with
satisfying assignments which in turn are in 1-1 correspondence with bipartitions
P 2 P (via i 2 PC ” vi D true). ut

4 Triangulating MQ

In this section, we describe how to triangulate the manifold MQ so that the number
of tetrahedra used is at most quadratic in jQj, the length of the statement Q. Our
goal is the following:

Proposition 4.1 A triangulated MQ can be produced in quadratic time (and
tetrahedra) in jQj.

We proceed in several steps. First, in Sects. 4.1 and 4.2 we give a method to
perform high distance triangulated gluings via layered triangulations. For the most
part, these are not new results. Our statements about distances in the Farey graph
in Sect. 4.1 are certainly well known, and layered triangulations (Sect. 4.2) are
described by Jaco and Rubinstein in [12]. We include these sections, instead of
just citing earlier work, because they are both accessible to the non-expert and also
make explicit the relationship between the distance of the gluing and the number
of layers.
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Next, in Sect. 4.3, we give a topological description of block manifolds whose
boundary components are appropriately bipartitioned by minimal genus Heegaard
splittings. We consolidate some well known results and substantially leverage the
work of Morimoto, Sakuma, and Yokota on Heegaard splittings of twisted torus
knots [27], and the work of Moriah, Rieck, Rubinstein and Sedgwick that character-
izes how and when a Dehn filling creates new Heegaard splittings [22, 25, 28–30].

We conclude, in Sect. 4.4, with a proof of Proposition 4.1 that describes how the
blocks can be triangulated and then glued together.

4.1 Slopes and the Farey Graph

A slope is the isotopy class of an essential simple closed curve on a torus. Fix a
pair of basis elements for the homology, Z 
 Z, of the torus. Then any slope can
be written as a pair .a; b/, and because it is realized by a simple (connected) curve,
we have gcd.a; b/ D 1. The usual convention is thus to represent the slope by the
extended rational a

b 2 Q [ f1g, where1 D 1
0
.

We say that a pair of slopes have distance one if there are a pair of curves
representing the slopes that intersect transversely in a single point. It is well known
that a pair of slopes have distance one if and only if their extended rationals (with
respect to any basis), a

b and c
d , satisfy jad � bcj D 1.

Definition 4.2 Let T be a torus. The Farey graph for T is the graph whose vertex
set is the set of slopes and whose edges join any pair of vertices whose underlying
slopes have distance one. Of course, after choosing a basis for homology, we are
able to label each vertex of the graph with an extended rational a

b 2 Q[ f1g. Each
edge then joins a pair of extended rationals, a

b and c
d , which satisfies jad � bcj D 1.

Definition 4.3 If ˛ and ˇ are slopes in a torus T, then the Farey distance between
them dF .˛; ˇ/ is their distance in the Farey graph. If a � T and b � T are
closed essential curves, then we define their distance, dF .a; b/ D dF .˛; ˇ/, to be
the distance between ˛ and ˇ, isotopy classes of single components of a and b,
respectively.

Form a 2-complex, the curve complex of the torus T, by attaching to the Farey
graph a triangular face for every triple of slopes that pairwise intersect once. Fixing a
basis for T, every edge is specified by a pair

�
a
b ;

c
d

�
satisfying jad�bcj D 1. It is not

hard to see that in the curve complex, there are precisely two triangles,
�

a
b ;

c
d ;

aCc
bCd

�

and
�

a
b ;

c
d ;

a�c
b�d

�
attached to the edge

�
a
b ;

c
d

�
. This is described by the well known

Farey tessellation of the Poincaré disk model of H2, see Fig. 6.
Moreover, each triangular face identifies a triangulation of the torus T up to

isotopy: The slopes a
b and c

d can be realized by a pair of curves in the torus meeting in
a single point. Together, they cut the torus into a rectangle. This rectangle has exactly
two choices for a diagonal curve, with slopes aCc

bCd and a�c
b�d when connected through

the intersection point. Choose one, say aCc
bCd . Then the triple of curves

�
a
b ;

c
d ;

aCc
bCd

�
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Fig. 6 The Farey tessellation of the Poincaré disk

intersect in a single common point. Treating that point as a vertex, we have formed
a (non-simplicial) triangulation of the torus T with one vertex, three edges and
two faces. We call this a one-vertex triangulation of the torus. Note that the two
triangulations

�
a
b ;

c
d ;

aCc
bCd

�
and

�
a
b ;

c
d ;

a�c
b�d

�
meeting the edge

�
a
b ;

c
d

�
are related by a

diagonal flip, that exchanges the diagonal aCc
bCd for the diagonal a�c

b�d , or vice-versa.

4.2 Layering

Later we will assume that our manifold X has been endowed with a triangulation that
restricts to a one vertex triangulation of each of its torus boundary components [11].

Let e be an edge in the triangulation of the boundary torus T � @X. Then e
can be regarded as the diagonal of a rectangle R bounded by the other two edges.
Picture a new tetrahedron, �, as being a slightly thickened horizontal rectangle.
Its bottom is a rectangle R� with diagonal e� and its top is a rectangle R0�
with diagonal e0�. See Fig. 7. One can form a new triangulated manifold X0 D
X [RDR� �, by gluing R to R� so that the diagonals e and e� are identified. This
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e eΔeΔ

eΔ

+ =

Fig. 7 Layering a tetrahedron on the boundary swaps a diagonal

process is called layering at e (see also [13]). It is not hard to see that the manifold X0
is homeomorphic to X (as it retracts onto X) but that the boundary triangulation has
changed. In particular, while e is no longer in the boundary torus, the boundary of R
is still in the boundary torus, but its diagonal is now opposite and realized by e0�.
Thus, layering at e performs a diagonal flip on e in the boundary triangulation. The
two triangulations are represented in the Farey tessellation by a pair of triangles that
share a common edge.

Lemma 4.4 Let T � @X have a one-vertex triangulation with edge slopes
�
0
1
; 1
0
; 1
1

�
.

Then, by layering on k tetrahedra, we can obtain a new triangulation of X with edge

slopes
�

Fk�1

Fk�2
; Fk

Fk�1
;

FkC1

Fk

	
, where Fk is the kth Fibonacci number.

Proof Consider the sequence 0
1
; 1
0
; 1
1
; 2
1
; 3
2
; 5
3
; : : : ; Fk�1

Fk�2
; Fk

Fk�1
;

FkC1

Fk
. Note that each

successive triple of terms determines a triangulation, and that each successive pair
of triples share two slopes. Hence, the latter boundary triangulation can be obtained
by layering on the edge of the former that they do not share. It takes k steps, hence
k layers, to move from the first triple to the last. ut

Furthermore, continued layering in this fashion increases the distance between
the latest edge slopes and the original edge slopes:

Lemma 4.5 Let Fk be the kth Fibonacci number. Then,

dF
�

FkC1

Fk
;1

	
D bk=2c C 1

Proof We will give an inductive proof. It is easy to verify that the statement holds
for k D 0; 1; 2, where FkC1

Fk
D 1

1
; 2
1
; 3
2
, respectively, and the distances to 1 D 1

0

are 1; 1; 2, respectively. Let k be the least k for which the conclusion of the lemma

does not hold. In the Poincaré disk, consider the triangle
�

Fk�1

Fk�2
; Fk

Fk�1
;

FkC1

Fk

	
which

is bounded by edges of the Farey Graph (see Fig. 6). This triangle separates the disk
into 3 components.

First, we claim that the points FkC1

Fk
and 1 D 1

0
lie on opposite sides of the

edge
�

Fk
Fk�1

; Fk�1

Fk�2

	
. To see this, note that the point Fk�2

Fk�3
is the other corner of the

second triangle that meets the edge
�

Fk
Fk�1

; Fk�1

Fk�2

	
. The inductive hypothesis implies
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dF
�

Fk�2

Fk�3
;1

	
< dF

�
Fk

Fk�1
;1

	
, so the second triangle must lie on the same side of

the edge
�

Fk
Fk�1

; Fk�1

Fk�2

	
as1, hence the point FkC1

Fk
, lies on the other side.

Now, take a minimal path in the Farey Graph joining 1 to Fk�1

Fk�2
. By adjoining

the edge
�

Fk�1

Fk�2
;

FkC1

Fk

	
to that path, we obtain a path from1 to FkC1

Fk
. It follows that

dF
�

FkC1

Fk
;1

	
� dF

�
Fk�1

Fk�2
;1

	
C 1.

Now, take a minimal path from1 to FkC1

Fk
. Because1 and Fk

Fk�1
lie on opposite

sides of the edge
�

Fk�1

Fk�2
; Fk

Fk�1

	
, this minimal path must pass through either the point

Fk�1

Fk�2
or the point Fk

Fk�1
. It follows that

dF
�

FkC1

Fk
;1

	
� min

n
dF
�

Fk�1

Fk�2
;1

	
C 1; dF

�
Fk

Fk�1
;1

	
C 1

o

D dF
�

Fk�1

Fk�2
;1

	
C 1:

Thus, dF
�

FkC1

Fk
;1

	
D dF

�
Fk�1

Fk�2
;1

	
C 1 and the desired result follows. ut

Lemma 4.6 Let X be a (possibly disconnected) 3-manifold given via a triangula-
tion that has a single vertex in each of two torus boundary components, T0 and T1.
If ˛0 � T0 and ˛1 � T1 are slopes and D 2 N, then there is a triangulated manifold
X0 obtained from X by gluing T0 to T1 so that

• dF .˛0; ˛1/ > D, where distance is measured in the common image of T0 and T1
in X0, and

• t.X0/ D t.X/C 2D, where t.�/ is number of tetrahedra.

Proof Fix an orientation on X and assume that the Ti; i D 0; 1, have the induced
boundary orientation. For each i D 0; 1, we may choose a basis, .0;1/, for the
homology of the boundary torus Ti so that the edges of the one-vertex triangulation
have slopes .0;1; 1/, the basis .0;1/ induces the boundary orientation, and ˛i has
non-positive slope, ˛i � 0.

Applying Lemma 4.4, layer 2D tetrahedra on the boundary component T0 so that

the resulting triangulation has edges with slopes
�

F2D�1

F2D�2
; F2D

F2D�1
;

F2DC1

F2D

	
.

Now, let X0 be the manifold obtained by gluing the boundary triangulations
together via an orientation reversing map that identifies the edge with slope F2DC1

F2D
in T0 with the edge with slope 0 in T1. This identifies the pair of edges with slopes�

F2D�1

F2D�2
; F2D

F2D�1

	
in T0, with the pair of edges with slopes .1;1/ in T1, or its reverse.

Note that the edge
�

F2D�1

F2D�2
; F2D

F2D�1

	
in the Farey graph for T0 separates 1 and the

image of ˛1.
Now compute the distance in the original basis for T0 using Lemma 4.5. We have

distance dF .˛0; ˛1/ > dF
�
1; F2D�1

F2D�2

	
D b 2D�2

2
c C 1 D D, as claimed. ut



Computing Heegaard Genus is NP-Hard 79

4.3 Blocks from Links

In this section we construct the required block manifolds. In each case, we prescribe
a set of bipartitions of boundary components and then construct a manifold whose
minimal genus Heegaard surfaces induce precisely that set of bipartitions of
boundary components. All of our examples are Heegaard genus two. Three of the
four are realized as the exterior of a knot or link in S3, that is, each manifold is
homeomorphic to X.L/ D S3 � N.L/ where L is a knot or link in S3 and N.�/
denotes an open regular neighborhood. The boundary of each manifold is a union of
tori, and we often abuse notation by referring to components of the link, rather than
to their corresponding boundary components. The fourth block manifold is obtained
by Dehn filling on a torus boundary component of the third block manifold. Many
of the results in this section are not new, and are collected for the sake of specificity.

For VAR blocks and the END block we need a genus two manifold with a single
incompressible torus boundary component. The exterior of any tunnel number one
knot will do, we choose a simple one:

Lemma 4.7 (VAR, END) Let K � S3 be the trefoil knot (see Fig. 8) and X.K/ D
S3 � N.K/ be its exterior. Then X.K/ has Heegaard genus two.

Proof It is well known that K is tunnel number one (genus two), see e.g. [16]. ut
For OR blocks, we want a manifold whose minimal genus Heegaard surfaces

realize every non-trivial bipartition of its three boundary components. The simplest
such manifold seems to be the exterior of the three component chain, whose
irreducible, and even non-irreducible, Heegaard splittings are quite well understood
[24, 35]. Note that it is impossible for a genus two Heegaard surface to trivially
bipartition the boundary components, fT0;T1;T2j;g, as a genus two compression
body V cannot have three torus boundary components in @�V .

Lemma 4.8 (OR) Let C � S3 be the three component chain (see Fig. 8), and
X.C/ D S3 � N.C/ its exterior. Then,

(1) X.C/ has Heegaard genus two,
(2) every non-trivial bipartition fTi;TjjTkg of the three boundary components of

@X.C/ is induced by a genus two Heegaard surface for X.C/.

Fig. 8 Trefoil knot and three link chain
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Proof Again, these facts are well known: it is easy to see that for each pair of link
components, there is a handle and a short arc connecting them that induces a genus
two Heegaard splitting that separates the pair from the other link component. ut

For AND and REP blocks, we want a manifold whose minimal genus Heegaard
surfaces all prefer the same bipartition of its three boundary components. This is
a bit more challenging. Fortunately, Morimoto, Sakuma and Yokota showed that
certain twisted torus knots are not 1-bridge with respect to an unknotted torus in S3,
providing the basis for the following.

Lemma 4.9 (AND, REP) Let L � S3 be the link indicated in Fig. 9. It is the union
of the twisted torus knot T.7; 17; 6/ along with two unknotted components U0 and
U1. Let X.L/ be its exterior. Then,

(1) X.L/ has Heegaard genus two,
(2) any genus two Heegaard splitting of X.L/ induces the same bipartition of

boundary components, that is fU0;U1jT.7; 17; 6/g,
(3) X.L/ does not contain a Möbius band with its boundary contained on the

knotted boundary component.

Note that conclusion (3) is not needed for the AND or REP blocks themselves.
Rather, it is technical condition used for the construction of the NOT block via
Lemma 4.10, which follows.

Proof (1) It is well known [27] and easy to see that a short arc joining the pair
of twisted strands is a tunnel system for T.7; 17; 6/. The strands can be untwisted
by sliding them over the tunnel, after which the tunnel appears to be the “middle
tunnel” [26] for the torus knot T.7; 17/. Moreover, this gives a genus two splitting
of the entire link as the indicated unknots U0 and U1 are cores for the com-
plementary handlebody. Note that this genus two splitting induces the bipartition

Fig. 9 Link with three components: T.7; 17; 6/ and two unknots U0 and U1
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fT.7; 17; 6/jU0;U1g of the boundary components. This is also a minimal genus
splitting as no exterior of a link with 3 components has genus one.

(2) Suppose that a genus two Heegaard splitting induces a bipartition that
isolates one of the two unknotted components, fUijUj;T.7; 17; 6/g, for some i ¤ j.
In particular, this implies that the link T.7; 17; 6/ [ Uj is tunnel number one.
Lemma 4.13 of [26] states that any knot whose union with some unknot is a tunnel
number one link must be .1; 1/. That is, it has a 1-bridge presentation with respect
to an unknotted torus. However this is a contradiction, as Morimoto, Sakuma and
Yokota [27] demonstrated that the knot T.7; 17; 6/ is not .1; 1/. It follows that any
genus two Heegaard splitting of X.L/ induces the bipartition fU0;U1jT.7; 17; 6/g.

(3) Note that the exterior of the link U0 [U1 is a product, T2 
 Œ�1; 1�. Draw the
.7; 17/ torus knot as a curve on the level surface T2 
 f0g in this product. Choose
two strands of the torus knot and give them 6 half twists to obtain the twisted torus
knot T.7; 17; 6/. Its union with the pair of unknots is our twisted torus link L.

Now, note that the .2; 5/ curve drawn on the same level torus meets the .7; 17/
curve in a single point. Then the product .2; 5/ 
 Œ�1; 1� is a properly embedded
annulus in the product that meets the torus knot once, and the unknots in slopes 2

5

and 5
2
, respectively. Moreover, the twisting needed to construct T.7; 17; 6/ can be

performed in the complement of this annulus. Drill out the twisted torus knot. The
annulus is punctured once (with slope1D 1

0
on the knot) and becomes an essential

pair of pants P in the link exterior.
Let B � X.L/ be a properly embedded Möbius band with its boundary in

the knotted component and that meets P in the minimal number of components.
Because both surfaces are essential, the intersection consists of a collection of arcs
that are essential in both surfaces.

In fact, there is only a single arc of intersection: if there were two or more, then
there would be a pair of arcs that are parallel and adjacent on P and that are also
parallel on B. Then the union B0 D RP [RB, where RP and RB are the rectangles the
arcs bound in P and R, respectively, is a Möbius band (see for example [28]) that
can be isotoped to meet P in a single arc.

However, it is also impossible for P \ B to consist of a single arc: this implies
that the Möbius band has slope n

2
for some n as it meets the meridian 1

0
twice. But,

any n
2

curve also bounds a Möbius band in the solid torus that is attached to perform
the meridional (S3) filling on the knotted component. The union of the B and the
Möbius band in the solid torus is a Klein bottle embedded in S3, a contradiction. ut

Finally, for NOT blocks we want a manifold for which no minimal genus
Heegaard surface splits its two boundary components. Note that X.L/ is almost
what we want; no minimal Heegaard surface splits the two unknotted boundary
components. Nonetheless, there is an inconvenient third boundary component (the
knotted one). Can we get rid of it?

There are many results that demonstrate that after a “sufficiently large” Dehn
filling, the filled manifold inherits the qualities of the unfilled manifold. Fortunately,
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that is also true for Heegaard structure [22, 25, 28–30] and that is precisely what we
use here:

Lemma 4.10 (NOT) Let L � S3 be the link indicated in Fig. 9, and let X.LI �/ be
the manifold obtained by Dehn filling the knotted component along the slope � . If
dF .�;1/ > 10, where dF is the distance in the Farey graph, then

(1) X.LI �/ has Heegaard genus two,
(2) every genus two Heegaard splitting of X.LI �/ induces the trivial boundary

bipartition fU0;U1j;g.
Proof Heegaard surfaces survive Dehn fillings. That is, after filling any slope � , a
Heegaard surface for X.L/ is also a Heegaard surface for X.LI �/. Thus the genus of
X.LI �/ is at most 2.

We now show that under the hypothesis dF .�;1/ > 10, every genus two
Heegaard splitting of X.LI �/ is isotopic (in X.LI �/) to a Heegaard splitting of X.L/.
It will follow that the genus of X.LI �/ is exactly two, and any genus two splitting
induces the desired bipartition of boundary components.

We will say that a filled manifold X.LI˛/ has a new Heegaard surface if there is a
Heegaard surface† � X.LI˛/ for the filled manifold that is not isotopic in X.LI˛/
to a Heegaard surface for X.L/. Rieck and Sedgwick [30] have shown that there
are two possibilities for a new Heegaard surface †, depending on whether the core
of the attached solid torus is isotopic into † in the filled manifold. In either case,
we can find a useful derived surface †0 � X.L/ by isotoping † in X.LI˛/ and then
drilling out the core: if the attached core is not isotopic into†, then† is isotopic to a
“thick level” in some thin presentation of the core, which is a knot in X.LI˛/. After
drilling out the core, we obtain a properly embedded surface † � X.L/ that meets
the knotted boundary component in curves of slope ˛. If the core is isotopic into †,
then drilling out the core and possibly compressing, we obtain a properly embedded
essential surface †0 � X.L/. Its genus is at most that of † and its boundary curves
meet the knotted boundary component in a slope ˛0, where dF .˛

0; ˛/ D 1.
If two different filled manifolds X.LI˛/ and X.LIˇ/ have new Heegaard surfaces,

then the pair of bounded surfaces derived above, each either essential or “thick,” can
be isotoped to intersect essentially [8, 28]. Moreover, the previous lemma shows that
there is no Möbius band in X.L/ with its boundary in the knotted component. In that
case Rieck showed that the number of intersections between the slopes ˛ and ˇ is
bounded by a quadratic function, 36g1g2 C 36g1 C 18g2 C 18, where g1 and g2,
g1 � g2, are the genera of the derived surfaces ([28] Theorem 5.2). (Theorem 5.2
is stated with a stronger hypothesis, that X.L/ is a-cylindrical, but the proof clearly
states that either the bound holds or there is a Möbius band meeting the boundary
component that was filled.)

Now, we know that the manifold X.L;1/ is the product T2 
 Œ�1; 1� and thus
has a new Heegaard surface of genus 1. (As the knotted component is not a torus
knot, in this case the derived surface is a thick level with genus 1 and slope1.)

Suppose then that X.L; �/ has a new Heegaard surface of genus at most 2. Then
the slopes of the derived surfaces intersect at most 180 times (applying the above
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quadratic function with g1 D 2 � g2 D 1) and thus have distance in the Farey graph
dF � log2 180C1 < 9. As the derived surface in X.L; �/ has distance 0 or 1 from � ,
we have dF .�;1/ < 10, a contradiction.

It follows that X.L; �/ has no new Heegaard surfaces with genus at most 2. Then
the genus of X.L; �/ is 2. Moreover, every genus two Heegaard surface of X.L; �/
is isotopic in X.L; �/ to a Heegaard surface for X.L/, and in particular induces the
boundary bipartition fU0;U1j;g. This completes the proof. ut

Construct the NOT blocks by using Lemmas 4.6 and 4.10 to glue the triangulated
twisted torus link exterior to a one-tetrahedron solid torus (see for example, [13]) so
that �, the curve bounding a meridional disk of the solid torus, and1 the meridian
of the twisted torus link, satisfy dF .�;1/ > 11.

4.4 Proof of Proposition 4.1

Proof The manifold MQ is obtained by gluing a collection of blocks along pairs of
torus boundary components via high distance maps. There is exactly one block for
each term (VAR, AND, OR, NOT) in Q, plus the END block, for a total of jQj C 1
blocks.

As a preprocessing step, we triangulate each of the block types so that each
torus boundary component has a one-vertex triangulation. For each of the three link
exteriors, use the method Weeks describes in [38] and implements in his SnapPea
program, to convert the link diagrams given by Figs. 8 and 9 to ideal triangulations
of the link exteriors. Then construct a (non-ideal) triangulation by subdividing and
deleting tetrahedra meeting the ideal vertex. Use Jaco and Rubinstein’s method to
convert this triangulation to a 0-efficient triangulation [11], which has the desired
property that it restricts to a one-vertex triangulation of each torus boundary
component. For each torus boundary component of each block, use normal surface
theory to identify, among essential surfaces meeting the boundary component, a
surface maximizing Euler characteristic.

Let T be the maximal number of tetrahedra used by one of the four triangulated
blocks types. Since there are jQj C 1 blocks, we thus require at most T.jQj C 1/
tetrahedra before gluing.

There is a computable constant K, depending only on the homeomorphism types
of the blocks, so that if any set of blocks are glued with maps of distance at least Kg
(relative to the boundaries), then any Heegaard surface whose genus is at most g is an
amalgamation of splittings of the blocks. (The proof of this is given in the appendix;
distance is measured between the surfaces chosen above.) As we want to guarantee
that any splitting of genus at most jQj C 2 is an amalgamation, it is thus sufficient
to glue each pair of blocks with a map of distance K.jQjC 2/, which by Lemma 4.6
requires 2K.jQj C 2/ tetrahedra per gluing. Since each of the jQj C 1 blocks has
at most 3 boundary components, there are at most 3

2
.jQj C 1/ pairs of boundary

components to glue. We conclude that we need at most 3
2
.jQj C 1/2K.jQj C 2/

tetrahedra to glue the blocks.
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The total number of tetrahedra required to construct MQ is then the sum of those
for the blocks and those for gluings,

t.MQ/ � T.jQj C 1/C 3K.jQj C 1/.jQj C 2/

which is clearly quadratically bounded in jQj. ut

5 Open Questions

We now discuss some questions that remain. The most obvious is:

Question 5.1 Is HEEGAARD GENUS � g in NP?
Next, since the 3-sphere is, by definition, the 3-manifold with genus 0,

3-SPHERE RECOGNITION is precisely HEEGAARD GENUS � 0, i.e., a special
case of our general problem with fixed parameter g D 0. Schleimer showed that
3-SPHERE RECOGNITION is in NP [34]. And, using Kuperberg’s work [17], Zentner
showed that 3-SPHERE RECOGNITION is also in co-NP if we assume that the
Generalized Riemann Hypothesis is true [39]. Thus, without disproving a major
conjecture, we do not expect the special case HEEGAARD GENUS � 0 to be NP-
hard. Since Heegaard genus is such an important invariant, it is worth asking about
the complexity of the problem for other small fixed values of g, in particular g � 2:

Question 5.2 What is the computational complexity of deciding HEEGAARD

GENUS � 1 and HEEGAARD GENUS � 2?
Finally, note that our construction produces non-hyperbolic manifolds because

the identified torus boundary components are incompressible after gluing. It seems
probable that hyperbolic examples can be constructed by gluing together hyperbolic
block manifolds that have higher genus boundary components. But, the resulting
manifolds would most definitely be Haken (have embedded incompressible sur-
faces). Do embedded essential surfaces explain NP-hardness or,

Question 5.3 Is HEEGAARD GENUS � g NP-hard when restricted to the class of
non-Haken manifolds?

Appendix: Sufficiently Complicated Amalgamations

In this section we provide a proof of the following proposition, based on several
well-known results.

Proposition 1 There is a computable constant K, depending only on the homeo-
morphism types of the blocks, so that if any set of blocks are glued with maps of
distance at least Kg (in the sense of Theorem 2 below), then any Heegaard surface
whose genus is at most g is an amalgamation of splittings of the blocks.
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Proof Suppose H is a minimal genus Heegaard splitting of MQ. It follows from
the results of [33] that there is a DAG 	 such that H is an amalgamation of
some generalized Heegaard splitting

S
x2	 Mx of MQ, such that for each x 2 	 ,

Vx \ Wx is strongly irreducible in Mx, and for each x ¤ y, Vx \ Wy is a (possibly
empty) incompressible surface in M. In the parlance of [2], both kinds of surfaces
are topologically minimal in M. Let H denote the union of all such topologically
minimal surfaces.

For each boundary component F of each block used in the original construction
of MQ (see Sect. 3), choose a maximal Euler characteristic, properly embedded,
incompressible, boundary incompressible surface in that block that is incident to
F. Let S be the collection of these chosen surfaces. (Note that the surfaces in S
need not be disjoint in each block).

Let M� and MC denote blocks used in the construction of MQ, such that MC \
M� ¤ ;. Let F be a component of MC\M�. Then F can be identified with boundary
components F� � @M� and FC � @MC. Let � W F� ! FC denote the gluing map
used to attach M� to MC along F in the construction of MQ. Let M� denote the
manifold obtained from M� and MC by gluing F� to FC via the map �. Note that
M� may be different from M� [ MC, as the latter manifold may be obtained from
M� and MC by gluing along multiple surfaces. However, if F denotes the collection
of surfaces at the interfaces between all blocks in MQ, then M� can be identified with
a component of the complement of F n F.

By [4], we can isotope each surface in H so that it meets the complementary
pieces of F n F in a collection of surfaces that are topologically minimal (in
particular, either incompressible or strongly irreducible). After such an isotopy, let
H0 denote a component of the intersection of such a surface with M� .

The first author, building on work of Tao Li [19], proved the following theorem,
restated here with notation consistent with that of the present paper:

Theorem 2 (cf. [3], Theorem 5.4.) Let S� and SC denote the surfaces in S chosen
to meet F� and FC in M� and MC. Let K D 24.1� 3�.S�/ � 3�.SC//. If

d.�.S� \ F�/; SC \ FC/ � K � genus.H/

then H0 can be isotoped to be disjoint from F in M� .1

Note that H0 is a component of H \ M� . Applying this Theorem to every
such component (noting that genus.H0/ � genus .H/), we conclude H can be
isotoped to be disjoint from F in MQ. Each surface in the resulting collection is
now topologically minimal in MQ � F. Repeating this argument for every surface
in F shows that every surface in H can be isotoped entirely into some block. It
then follows from standard arguments that each surface of F can be identified
with a component of @Mx, for some x 2 	 . Thus, for each block B in MQ, there
is a collection of vertices V of 	 such that B D S

x2V Mx. Amalgamating this

1The original theorem is stated so that H0 is a closed surface, but this assumption is never used in
the proof.
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generalized Heegaard splitting of B then produces a Heegaard splitting of B. Our
original Heegaard surface H is then an amalgamation of these Heegaard surfaces of
the blocks. ut
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Approximation-Friendly Discrepancy Rounding

Nikhil Bansal and Viswanath Nagarajan

Abstract Rounding linear programs using techniques from discrepancy is a recent
approach that has been very successful in certain settings. However this method also
has some limitations when compared to approaches such as randomized and iterative
rounding. We provide an extension of the discrepancy-based rounding algorithm due
to Lovett–Meka that (i) combines the advantages of both randomized and iterated
rounding, (ii) makes it applicable to settings with more general combinatorial
structure such as matroids. As applications of this approach, we obtain new results
for various classical problems such as linear system rounding, degree-bounded
matroid basis and low congestion routing.

1 Introduction

A very common approach for solving discrete optimization problems is to solve
some linear programming relaxation, and then round the fractional solution into
an integral one, without (hopefully) incurring much loss in quality. Over the years
several ingenious rounding techniques have been developed (see e.g. [24, 25]) based
on ideas from optimization, probability, geometry, algebra and various other areas.
Randomized rounding and iterative rounding are two of the most commonly used
methods.

Recently, discrepancy-based rounding approaches have also been very success-
ful; a particularly notable result is for bin packing due to Rothvoss [18]. Discrepancy
is a well-studied area in combinatorics with several surprising results (see e.g. [16]),
and as observed by Lovász et al. [14], has a natural connection to rounding.
However, until the recent algorithmic developments [1, 9, 15, 17, 19], most of
the results in discrepancy were non-constructive and hence not directly useful
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for rounding. These algorithmic approaches combine probabilistic approaches like
randomized rounding with linear algebraic approaches such as iterated rounding
[12], which makes them quite powerful.

Interestingly, given the connection between discrepancy and rounding, these
discrepancy algorithms can in fact be viewed as meta-algorithms for rounding. We
discuss this in Sect. 1.1 in the context of the Lovett–Meka (LM) algorithm [15]. This
suggests the possibility of one single approach that generalizes both randomized and
iterated rounding. This is our motivating goal in this paper.

While the LM algorithm is already an important step in this direction, it still has
some important limitations. For example, it is designed for obtaining additive error
bounds and it does not give good multiplicative error bounds (like those given by
randomized rounding). This is not an issue for discrepancy applications, but crucial
for many approximation algorithms. Similarly, iterated rounding can work well with
exponentially sized LPs by exploiting their underlying combinatorial structure (e.g.,
degree-bounded spanning tree [21]), but the current discrepancy results [15, 19] give
extremely weak bounds in such settings.

Our Results: We extend the LM algorithm to overcome the limitations stated
above. In particular, we give a new variant that also gives Chernoff type multiplica-
tive error bounds (sometimes with an additional logarithmic factor loss). We also
show how to adapt the above algorithm to handle exponentially large LPs involving
matroid constraints, as in iterated rounding.

This new discrepancy-based algorithm gives new results for problems such as
linear system rounding with violations [4, 13], degree-bounded matroid basis [6, 11],
low congestion routing [10, 13] and multi-budgeted matroid basis [8], These
results simultaneously combine non-trivial guarantees from discrepancy, random-
ized rounding and iterated rounding and previously such bounds were not even
known existentially.

Our results are described formally in Sect. 1.2. To place them in the proper
context, we first need to describe some existing rounding approaches (Sect. 1.1).
The reader familiar with the LM algorithm can directly go to Sect. 1.2.

1.1 Preliminaries

We begin by describing LM rounding [15], randomized rounding and iterated
rounding in a similar form, and then discuss their strengths and weaknesses.

LM Rounding: Let A be a m 
 n matrix with 0–1 entries,1 x 2 Œ0; 1�n a fractional
vector and let b D Ax. Lovett and Meka [15] showed the following rounding result.

1The results below generalize to arbitrary real matrices A and vectors x in natural ways, but we
consider 0–1 case for simplicity.
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Theorem 1 (LM Rounding [15]) Given A and x as above, For j D 1; : : : ;m, pick
any �j satisfying

X

j

exp.��2j =4/ � n=16: (1)

Then there is an efficient randomized algorithm to find a solution x0 such that: (i) at
most n=2 variables of x0 are fractional (strictly between 0 and 1) and, (ii) jhaj; x0 �
xij � �jkajk2 for each j D 1; : : : ;m, where aj denotes the j-th row of A.

Remark The right hand side of (1) can be set to .1 � �/n for any fixed constant
� > 0, at the expense of O�.1/ factor loss in other parameters of the theorem; see
e.g. [2].

Randomized Rounding: Chernoff bounds state that if X1; : : : ;Xn are independent
Bernoulli random variables, and X DPi Xi and � D EŒX�, then

PrŒjX � �j � ��� � 2 exp.��2�=4/ for � � 1:

Then independent randomized rounding can be viewed as the following (by using
Chernoff bounds and union bound, and denoting �j D �j

p
bj).

Theorem 2 (Randomized Rounding) For j D 1; : : : ;m, pick any �j satisfying
�j �

p
bj, and

X

j

exp.��2j =4/ < 0:5 (2)

Then independent randomized rounding gives a solution x0 such that: (i) All
variables are 0–1, and (ii) jhaj; x0 � xij � �j

p
bj for each j D 1; : : : ;m.

Iterated Rounding [12]: This is based on the following linear-algebraic fact.

Theorem 3 If m < n, then there is a solution x0 2 Œ0; 1�n such that (i) x0 has at least
n �m variables set to 0 or 1 and, (ii) A.x0 � x/ D 0 (i.e., b D Ax0).
In iterated rounding applications, if m > n then some cleverly chosen constraints
are dropped until m < n and integral variables are obtained. This is done repeatedly.

Strengths of LM rounding: Note that if we set �j 2 f0;1g in LM rounding, then
it gives a very similar statement to Theorem 3. E.g., if we only care about some
m D n=2 constraints then Theorem 3 gives an x0 with at least n=2 integral variables
and ajx D ajx0 for all these m constraints. Theorem 1 (and the remark below it) give
the same guarantee if we set �j D 0 for all constraints. In general, LM rounding can
be much more flexible as it allows arbitrary �j.

Second, LM rounding is also related to randomized rounding. Note that (2)
and (1) have the same left-hand-side. However, the right-hand-side of (1) is �.n/,
while that of (2) is O.1/. This actually makes a huge difference. In particular, in (2)
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one cannot set �j D 1 for more than a couple of constraints (to get an o.
p

bj/ error
bound on constraints), while in (1), one can even set �j D 0 for O.n/ constraints.
In fact, almost all non-trivial results in discrepancy [16, 22, 23] are based on this
ability.

Weaknesses of LM rounding: First, Theorem 1 only gives a partially integral
solution instead of a fully integral one as in Theorem 2.

Second, and more importantly, it only gives additive error bounds instead of
multiplicative ones. In particular, note the �jkajk2 vs �j

p
bj error in Theorems

1 and 2. E.g., for a constraint
P

i xi D log n, Theorem 2 gives �
p

log n error but
Theorem 1 gives a much higher �

p
n error. So, while randomized rounding can

give a good multiplicative error like ajx0 � .1˙ �j/bj, LM rounding is completely
insensitive to bj.

Finally, iterated rounding works extremely well in many settings where The-
orem 1 does not give anything useful. E.g., in problems involving exponentially
many constraints such as the degree bounded spanning tree problem. The problem
is that if m is exponentially large, then the �j’s in Theorem 1 need to be very large
to satisfy (2).

1.2 Our Results and Techniques

Our first result is the following improvement over Theorem 1.

Theorem 4 There is a constant K0 > 0 and randomized polynomial time algorithm
that given any n > K0, fractional solution y 2 Œ0; 1�n, m � 2n linear constraints

a1; : : : ; am 2 R
n and �1; � � � ; �m � 0 with

Pm
jD1 e��

2
j =K0 < n

16
, finds a solution

y0 2 Œ0; 1�n such that:

jhy0 � y; ajij � �j �
q

Wj.y/C 1

n2
� kajk; 8j D 1; � � �m (3)

y0i 2 f0; 1g; for�.n/ indices i 2 f1; � � � ; ng (4)

Here Wj.y/ WDPn
iD1 a2ji �minfyi; 1 � yig2 for each j D 1; � � �m.

Remarks

(1) The error �j

p
Wj.y/ is always smaller than �jkajk in LM-rounding and

�j.
Pn

iD1 a2ji � yi.1 � yi//
1=2 in randomized rounding. In fact it could even be

much less if the yi are very close to 0 or 1.
(2) The term n=16 above can be made .1 � �/n for any fixed constant � > 0, at the

expense of worsening other constants ( just as in LM rounding).
(3) The additional error term 1

n2
� kajk above is negligible and can be reduced to

1
nc � kajk for any constant c, at the expense of a larger running time nO.c/.
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We note that Theorem 4 can also be obtained in a “black box” manner from LM-
rounding (Theorem 1) by rescaling the polytope and using its symmetry.2 However,
such an approach does not work in the setting of matroid polytopes (Theorem 5). In
the matroid case, we need to modify LM-rounding as outlined below.

Applications: We focus on linear system rounding as the prime example. Here,
given matrix A 2 Œ0; 1�m�n and vector b 2 Z

mC, the goal is to find a vector z 2 f0; 1gn
satisfying Az D b. As this is NP-hard, the focus has been on finding a z 2 f0; 1gn
where Az � b.

Given any fractional solution y 2 Œ0; 1�n satisfying Ay D b, using Theorem 4
iteratively we can obtain an integral vector z 2 f0; 1gn with

jajz � bjj � min
n
O.
p

n log.2C m=n// ;
p

L � bj C L
o
; 8j 2 Œm�; (5)

where L D O.log n log m/ and Œm� WD f1; 2; : : : ;mg.3 Previously known algorithms
could provide a bound of either O.

p
n log.m=n// for all constraints [15] or

O.
p

log m �pbj C log m/ for all constraints (Theorem 2). Note that this does not

imply a minfpn log.m=n/;
p

log m � pbj C log mg violation per constraint, as in
general it is not possible to combine two integral solutions and achieve the better
of their violation bounds on all constraints. To the best of our knowledge, even the
existence of an integral solution satisfying the bounds in (5) was not known prior to
our work.

In the setting where the matrix A is “column sparse”, i.e. each variable appears
in at most � constraints, we obtain a more refined error of

jajy � bjj � min
n
O.
p
� log n/ ;

p
L � bj C L

o
; 8j 2 Œm�; (6)

where L D O.log n � log m/. Previous algorithms could separately achieve bounds
of�� 1 [4], O.

p
� log n/ [15] or O.

p
log� �pbjC log�/ [13]. For clarity, Fig. 1

plots the violation bounds achieved by these different algorithms as a function of
the right-hand-side b when m D n (we assume b; � � log2 n). Note again that since
there are multiple constraints we can not simply combine algorithms to achieve the
smaller of their violation bounds.

One can also combine the bounds in (5) and (6), and use some additional ideas
from discrepancy to obtain:

jajy�bjj � O.1/�min



p

j;

r

n log.2C m

n
/;
p

L � bj C L;
p
� log n

�

; 8j 2 Œm�:
(7)

2We thank an anonymous reviewer for pointing this out.
3For any integer t � 1, we use the notation Œt� WD f1; 2; : : : ; tg.
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error
bound

b

√
log n · √

b (Theorem 2)
√
logΔ · √

b (reference [14])

Δ − 1 (Theorem 3)
√
Δ · log n (Theorem 1)

min{√
b,

√
Δ} · log n (this paper)

log2 n

Fig. 1 Additive violation bounds for linear system rounding when � � log2 n and b � log2 n

Matroid Polytopes: Our main result is an extension of Theorem 4 where the
fractional solution lies in a matroid polytope in addition to satisfying the linear
constraints fajgmjD1. Recall that a matroid M is a tuple .V; I/ where V is the
groundset of elements and I � 2V is a collection of independent sets satisfying
the hereditary and exchange properties [20]. The rank function r W 2V ! Z of a
matroid is defined as r.S/ D maxI2I;I�S jIj. The matroid polytope (i.e. convex hull
of all independent sets) is given by the following linear inequalities:

P.M/ WD
(

x 2 R
n W

X

i2S

xi � r.S/ 8S � V; x � 0
)

:

As is usual when dealing with matroids, we assume access to an “independent set
oracle” for M that given any subset S � V returns whether/not S 2 I in polynomial
time.

Theorem 5 There is a randomized polynomial time algorithm that given matroid
M, fractional solution y 2 P.M/, linear constraints faj 2 R

ngmjD1 and values
f�jgmjD1 satisfying the conditions in Theorem 4, finds a solution y0 2 P.M/

satisfying (3) and (4).
We note that the same result can be obtained even if we want to compute a base
(maximal independent set) in the matroid: the only difference here is to add the
equality

P
i2V xi D r.V/ to P.M/ which corresponds to the base polytope of M.

The fact that we can exactly preserve matroid constraints leads to a number of
improvements:

Degree-bounded matroid basis (DEGMAT). Given a matroid on elements Œn� WD
f1; 2; : : : ; ng with costs d W Œn� ! ZC and m “degree constraints” fSj; bjgmjD1 where
each Sj � Œn� and bj 2 ZC, the goal is to find a minimum-cost basis I in the matroid
that satisfies jI \ Sjj � bj for all j 2 Œm�. Since even the feasibility problem is
NP-hard, we consider bicriteria approximation algorithms that violate the degree
bounds. We obtain an algorithm where the solution costs at most the optimal and
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the degree bound violation is as in (7); here� denotes the maximum number of sets
fSjgmjD1 containing any element.

Previous algorithms achieved approximation ratios of .1; bC O.
p

b log n// [6],
based on randomized swap rounding, and .1; b C � � 1/ [11] based on iterated
rounding. Again, these bounds could not be combined together as they used different
algorithms. We note that in general the .1; bC O.

p
n log.m=n/// approximation is

the best possible (unless P=NP) for this problem [3, 5].

Multi-criteria matroid basis. Given a matroid on elements Œn� with k different cost
functions di W Œn� ! ZC (for i D 1; � � � ; k) and budgets fBigkiD1, the goal is to find
(if possible) a basis I with di.I/ � Bi for each i 2 Œk�. We obtain an algorithm that
for any � > 0 finds in nO.k1:5 = �/ time, a basis I with di.I/ � .1C �/Bi for all i 2 Œk�.
Previously, [8] obtained such an algorithm with nO.k2 = �/ running time.

Low congestion routing. Given a directed graph G D .V;E/ with edge capacities
b W E ! ZC, k source-sink pairs f.si; ti/gkiD1 and a length bound �, the goal is to
find an si � ti path Pi of length at most � for each pair i 2 Œk� such that the number
Ne of paths using any edge e is at most be. Using an LP-based reduction [6] this can
be cast as an instance of DEGMAT. So we obtain violation bounds as in (7) which
implies:

Ne � be Cmin
n
O.
p
� log n/; O.

p
be log nC log2 n/

o
; 8e 2 E:

Here n D jVj is the number of vertices. Previous algorithms achieved bounds of
� � 1 [10] or O.

p
log� � pbj C log�/ [13] separately. We can also handle a

richer set of routing requirements: given a laminar family L on the k pairs, with a
requirement rT on each set T 2 L, we want to find a multiset of paths so that there
are at least rT paths between the pairs in each T 2 L. Although this is not an instance
of DEGMAT, the same approach works.

Overview of techniques: Our algorithm in Theorem 4 is similar to the Lovett–
Meka algorithm, and is also based on performing a Gaussian random walk at each
step in a suitably chosen subspace. However, there some crucial differences. First,
instead of updating each variable by the standard Gaussian N.0; 1/, the variance for
variable i is chosen proportional to min.yi; 1 � yi/, i.e. proportional to how close it
is to the boundary 0 or 1. This is crucial for getting the multiplicative error instead
of the additive error in the constraints. However, this slows down the “progress”
of variables toward reaching 0 or 1. To get around this, we add O.log n/ additional
constraints to define the subspace where the walk is performed: these restrict the
total fractional value of variables in a particular “scale” to remain fixed. Using these
we can ensure that enough variables eventually reach 0 or 1.

In order to handle the matroid constraints (Theorem 5) we need to incorporate
them (although they are exponentially many) in defining the subspace where the
random walk is performed. One difficulty that arises here is that we can no longer
implement the random walk using “near tight” constraints as in [15] since we are
unable to bound the dimension of near-tight matroid constraints. However, as is
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well known, the dimension of exactly tight matroid constraints is at most n=2 at any
(strictly) fractional solution, and so we implement the random walk using exactly
tight constraints. This requires us to truncate certain steps in the random walk (when
we move out of the polytope), but we show that the effect of such truncations is
negligible.

2 Matroid Partial Rounding

In this section we will prove Theorem 5 which also implies Theorem 4.
We may assume, without loss of generality, that maxm

jD1 �j � n. This is because

setting �j D minf�j; ng we have
Pm

jD1 e��
2
j =K0 �Pm

jD1 e��
2
j =K0 Cm � e�n < n

16
C 1

(we used the assumption m � 2n). So we can apply Theorem 5 with �js instead of
�js to obtain a stronger result.

Let y 2 R
n denote the initial solution. The algorithm will start with X0 D y and

update this vector over time. Let Xt denote the vector at time t for t D 1; : : : ;T. The
value of T will be defined later. Let ` D 3dlog2 ne. We classify the n elements into
2` classes based on their initial values y.i/ as follows.

Uk WD

 ˚

i 2 Œn� W 2�k�1 < y.i/ � 2�k
�

if 1 � k � ` � 1˚
i 2 Œn� W y.i/ � 2�`� if k D `:

Vk WD

 ˚

i 2 Œn� W 2�k�1 < 1 � y.i/ � 2�k
�

if 1 � k � ` � 1˚
i 2 Œn� W 1 � y.i/ � 2�`� if k D `:

Note that the Uk’s partition elements of value (in y) between 0 and 1
2

and the Vk’s
form a symmetric partition of elements valued between 1

2
and 1. This partition does

not change over time, even though the value of variables might change. We define
the “scale” of each element as:

si WD 2�k; 8i 2 Uk [ Vk; 8k 2 Œ`�:

Define Wj.s/ DPn
iD1 a2ji � s2i for each j 2 Œm�. Note that Wj.s/ � Wj.y/ and

Wj.s/ � 4 �Wj.y/ �
nX

iD1
a2ji �

1

n6
D kajk2

n6
:

So
p

Wj.y/ �
p

Wj.s/ � 2
p

Wj.y/C kajk
n3

. Our algorithm will find a solution y0 with
�.n/ integral variables such that:

jhy0 � y; ajij � �j �
q

Wj.s/C 1

n3
� kajk; 8j 2 Œm�:
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This suffices to prove Theorem 5 as

�j �
q

Wj.s/C 1

n3
� kajk � 2�j �

q
Wj.y/C


1

n3
C �j

n3

�

� kajk � 2�j �
q

Wj.y/C kajk
n2

:

Consider the polytope Q of points x 2 R
n satisfying the following constraints.

x 2 P.M/; (8)

jhx� y; ajij � �j �
q

Wj.s/C 1

n3
� kajk 8j 2 Œm�; (9)

X

i2Uk

xi D
X

i2Uk

yi 8k 2 Œ`�; (10)

X

i2Vk

xi D
X

i2Vk

yi 8k 2 Œ`�; (11)

0 � xi � minf˛ � 2�k; 1g 8i 2 Uk; 8k 2 Œ`�; (12)

0 � 1 � xi � minf˛ � 2�k; 1g 8i 2 Vk; 8k 2 Œ`�: (13)

Above ˛ D 40 is a constant whose choice will be clear later. The algorithm will
maintain the invariant that at any time t 2 ŒT�, the solution Xt lies in Q. In particular
the constraint (8) requires that Xt stays in the matroid polytope. Constraint (9)
controls the violation of the side constraints over all time steps. The last two
constraints (12) and (13) enforce that variables in Uk (and symmetrically Vk) do
not deviate far beyond their original scale of 2�k. The constraints (10) and (11)
ensure that throughout the algorithm, the total value of elements in Uk (and Vk)
stay equal to their initial sum (in y). These constraints will play a crucial role in
arguing that the algorithm finds a partial coloring. Note that there are only 2` such
constraints.

In order to deal with complexity issues, we will assume (without loss of
generality, by scaling) that all entries in the constraints describing Q are integers
bounded by some value B. Our algorithm will then run in time polynomial in n;m
and log2 B, given an independent set oracle for the matroid M. Also, our algorithm
will only deal with points having rational entries of small “size”. Recall that the size
of a rational number is the number of bits needed to represent it, i.e. the size of p=q
(where p; q 2 Z) is log2 jpj C log2 jqj.
The Algorithm: Let � D n�6 and T D K=�2 where K WD 10˛2. The algorithm
starts with solution X0 D y 2 Q, and does the following at each time step t D
0; 1; : : : ;T:

1. Consider the set of constraints of Q that are tight at the point x D Xt, and define
the following sets based on this.
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(a) Let Cvar
t be the set of tight variable constraints among (12) and (13). This

consists of:

i. i 2 Uk (for any k) with Xt.i/ D 0 or Xt.i/ D minf˛ � 2�k; 1g; and
ii. i 2 Vk (for any k) with Xt.i/ D 1 or Xt.i/ D maxf1� ˛ � 2�k; 0g.

(b) Let Cside
t be the set of tight side constraints from (9), i.e. those j 2 Œm� with

jhXt � y; ajij D �j �
q

Wj.s/C 1

n3
kajk:

(c) Let Cpart
t denote the set of the 2` equality constraints (10) and (11).

(d) Let Crank
t be a maximal linearly independent set of tight rank constraints

from (8). As usual, a set of constraints is said to be linearly independent
if the corresponding coefficient vectors are linearly independent. Since Crank

t
is maximal, every tight rank constraint is a linear combination of constraints
in Crank

t . By Claim 2, jCrank
t j � n=2.

2. Let Vt denote the subspace orthogonal to all the constraints in Cvar
t , Cside

t , Cpart
t

and Crank
t . Let D be an n 
 n diagonal matrix with entries dii D 1=si, and let V 0t

be the subspace V 0t D fDv W v 2 Vtg: As D is invertible, dim.V 0t / D dim.Vt/.
3. Let fb1; : : : ; bkg be an almost orthonormal basis of V 0t given by Fact 2. Note that

all entries in these vectors are rationals of size O.n2 log B/.
4. Let Gt be a random direction defined as Gt WD Pk

hD1 ghbh where the gh are
independent f�1;C1g Bernoulli random variables.

5. Let Gt WD D�1Gt. As Gt 2 V 0t , it must be that Gt D Dv for some v 2 Vt and thus
Gt D D�1Gt 2 Vt. Note that all entries in Gt are rationals of size O.n3 log B/.

6. Set Yt D Xt C � � Gt.

(a) If Yt 2 Q then XtC1  Yt and continue to the next iteration.
(b) Else XtC1  the point in Q that lies on the line segment .Xt;Yt/ and is

closest to Yt. This can be found by binary search and testing membership in
the matroid polytope. By Claim 1 it follows that the number of steps in the
binary search is at most O.n log B/.

This completes the description of the algorithm. We actually do not need to
compute the tight constraints from scratch in each iteration. We start the algorithm
off with a strictly feasible solution y 2 Q which does not have any tight constraint
other than (10) and (11). Then, the only place a new constraint gets tight is Step 6b:
at this point, we add the new constraint to the appropriate set among Cvar

t , Cside
t and

Cvar
t and continue.

In order to keep the analysis clean and convey the main ideas, we will assume that
the basis fb1; : : : ; bkg in Step 3 is exactly orthonormal. When the basis is “almost
orthonormal” as given in Fact 2, the additional error incurred is negligible.

Running Time Since the number of iterations is polynomial, we only need to show
that each of the steps in any single iteration can be implemented in polynomial
time. The only step that requires justification is 6b, which is shown in Claim 1.
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Moreover, we need to ensure that all points considered in the algorithm have rational
coefficients of polynomial size. This is done by a rounding procedure (see Fact 1)
that given an arbitrary point, finds a nearby rational point of size O.n2 log B/. Since
the number of steps in the algorithm is polynomial, the total error incurred by such
rounding steps is small.

Claim 1 The number of binary search iterations performed in Step 6b is
O.n4 log B/.

Proof To reduce notation let a D Xt, d D �Gt and Y.�/ WD aC � � d 2 R
n for any

� 2 R. Recall that Step 6b involves finding the maximum value of � such that point
Y.�/ 2 Q.

By the rounding procedure (Fact 1) we know that a has rational entries of size
O.n2 log B/.

We now show that the direction d has rational entries of size O.n3 log B/. This
is because (i) the basis vectors fb1; � � � ; bkg have rational entries of size O.n2 log B/
by Fact 2, (ii) Gt D Pk

hD1 gh � bh (where each gh D ˙1) has rational entries of
size O.n3 log B/ and (iii) Gt D D�1Gt where D�1 is a diagonal matrix with rational
entries of size O.n log B/.

Next, observe that for any constraint ha0; xi � ˇ in Q, the point of intersection
of the hyperplane ha0; xi D ˇ with line fY.�/ W � 2 Rg is � D ˇ�ha0 ;ai

ha0;di which is

a rational of size at most � D O.n4 log B/ as a0; a; d; ˇ all have rational entries of
size O.n3 log B/. Let � D 2�2� be a value such that the difference between any two
distinct rationals of size at most � is more than �.

In Step 6b, we start the binary search with the interval Œ0; 1� for � where
Y.0/ 2 Q and Y.1/ 62 Q. We perform this binary search until the interval width
falls below �, which requires log2

1
�
D O.n4 log B/ iterations. At the end, we have

two values �0 < �1 with �1 � �0 < � such that Y.�0/ 2 Q and Y.�1/ 62 Q.
Moreover, we obtain a constraint ha0; xi � ˇ in Q that is not satisfied by Y.�1/. We
set �0 to be the (unique) value such that Y.�0/ satisfies this constraint at equality,
and set XtC1 D Y.�0/. Note that �0 � �0 < �1. To see that Y.�0/ 2 Q,
suppose (for contradiction) that some constraint in Q is not satisfied at Y.�0/; then
the point of intersection of line fY.�/ W � 2 Rg with this constraint must be at
� 2 Œ�0; �0/ which (by the choice of �) can not be a rational of size at most �— a
contradiction. ut
Analysis The analysis involves proving the following main lemma.

Lemma 1 With constant probability, the final solution XT has jCvar
T j � n

20
.

We first show how this implies Theorem 5.

Proof of Theorem 5 from Lemma 1 The algorithm outputs the solution y0 WD XT . By
design the algorithm ensures that XT 2 Q, and thus XT 2 P.M/ and it satisfies the
error bounds (9) on the side constraints. It remains to show that �.n/ variables in
XT must be integer valued whenever jCvar

T j � n
20

. For each k 2 Œ`� define uk WD jfi 2
Uk W XT.i/ D ˛ � 2�kgj and vk WD jfi 2 Vk W XT.i/ D 1 � ˛ � 2�kgj. By the equality
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constraints (10) for Uk, it follows that

uk � ˛ � 2�k �
X

i2Uk

XT.i/ D XT.Uk/ D y.Uk/ � jUkj � 2�k:

This gives that uk � 1
˛
jUkj. Similarly, vk � 1

˛
jVkj. This implies that

P`
kD1.uk C

vk/ � n=˛. As the tight variables in Cvar
t have values either 0 or 1 or ˛ � 2�k or

1 � ˛ � 2�k, it follows that the number of f0; 1g variables is at least

jCvar
t j �

X̀

kD1
.uk C vk/ �

�
jCvar

t j �
n

˛

	
�

1

20
� 1
˛

�

n

which is at least n=40 by choosing ˛ D 40. �
In the rest of this section we prove Lemma 1.

Claim 2 Given any x 2 P.M/ with 0 < x < 1, the maximum number of tight
linearly independent rank constraints is n=2.

Proof Recall that a tight constraint in P.M/ is any subset T � V with
P

i2T xi D
r.T/. The claim follows from the known property (see e.g. [20]) that for any
x 2 P.M/ there is a linearly independent collection C of tight constraints such that
(i) C spans all tight constraints and (ii) C forms a chain family. Since all right-
hand-sides are integer and each variable is strictly between 0 and 1, it follows that
jCj � n

2
. ut

Claim 3 The truncation Step 6b occurs at most n times.

Proof We will show that whenever Step 6b occurs (i.e. the random move gets
truncated) the dimension dim.VtC1/ decreases by at least 1, i.e. dim.VtC1/ �
dim.Vt/� 1. As the maximum dimension is n this would imply the claim.

Let Et denote the subspace spanned by all the tight constraints of Xt 2 Q; Recall
that Vt D E?t is the subspace orthogonal to Et, and thus dim.Et/ D n � dim.Vt/.
We also have E0 � E1 � � � �ET . Suppose that Step 6b occurs in iteration t. Then we
have Xt 2 Q, Yt 62 Q and Yt � Xt 2 Vt. Moreover XtC1 D Xt C �.Yt � Xt/ 2 Q
where � 2 Œ0; 1/ is such that Xt C �0.Yt � Xt/ 62 Q for all �0 > �. So there is some
constraint ha0; xi � ˇ in Q with:

ha0;Xti � ˇ; ha0;XtC1i D ˇ and ha0;Yti > ˇ:

Since this constraint satisfies ha0;Yt � Xti > 0 and Yt � Xt 2 Vt, we have a0 62 Et.
As a0 is added to EtC1, we have dim.EtC1/ � 1C dim.Et/. This proves the desired
property and the claim. ut

The statements of the following two lemmas are similar to those in [15], but the
proofs require additional work since our random walk is different. The first lemma
shows that the expected number of tight side constraints at the end of the algorithm
is not too high, and the second lemma shows that the expected number of tight
variable constraints is large.
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Lemma 2 EŒjCside
T j� < n

4
.

Proof Note that XT � y D �
PT

tD0 Gt CPn
qD1 �t.q/ where �s correspond to the

truncation incurred during the iterations t D t.1/; � � � ; t.n/ for which Step 6b applies
(by Claim 3 there are at most n such iterations). Moreover for each q,�t.q/ D ı �Gt.q/

for some ı with 0 < jıj < � .
If j 2 Cside

T , then jhXT � y; ajij D �j

p
Wj.s/C 1

n3
� kajk. We have

jhXT � y; ajij � j�
TX

tD0
hGt; ajij C

nX

qD1
� jhGa.q/; ajij � j�

TX

tD0
hGt; ajij

Cn� � T
max
tD0 jhGt; ajij:

Note that at any iteration t,

jhGt; ajij D jhD�1Gt; ajij � jhGt; ajij �
kX

hD1
jhbh; ajij � nkajk:

The first inequality above uses that D�1 is a diagonal matrix with entries at most
one, the second inequality is by definition of Gt where fbhg is an orthonormal basis
of V 0t , and the last inequality uses that each bh is a unit vector. As � D n�6, we have
n� �maxT

tD0 jhGt; ajij � kajk=n4. So it follows that if j 2 Cside
T , then we must have:

j�
TX

tD0
hGt; ajij � �j

q
Wj.s/:

In order to bound the probability of this event, we consider the sequence fZtg
where Zt D hGt; aji, and note the following useful facts.

Observation 1 The sequence fZtg forms a martingale satisfying:

1. E ŒZt j Zt�1; : : : ;Z0� D 0 for all t.
2. jZtj � nkajk whp for all t.
3. E

�
Z2t j Zt�1; : : : ;Z0

� �Pn
iD1 s2i � a2ji D Wj.s/ for all t.

Proof As GtD Pk
hD1 gh�bh where eachEŒgh� D 0, we haveEŒGtjG0; : : : ;Gt�1�D 0.

Note that Gt is not independent of G0; : : : ;Gt�1, as these choices determine the
subspace where Gt lies. So fZtg forms a martingale sequence with the first property.

For the remaining two properties, we fix j 2 Œm� and t and condition on
Z0; : : : ;Zt�1. To reduce notation we drop all subscripts: so a D aj, G D Gt, V 0 D V 0t
and Z D Zt.
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Let fbrg denote an orthonormal basis for the linear subspaceV 0. Then G DPr gr�
br where each gr is iid ˙1 with probability half. As G D D�1G, we have Z D
hG; ai DPrhD�1br; ai gr DPrhD�1a; bri gr. So, we can bound

jZj �
X

r

jhD�1a; brij � jgrj � kD�1ak
X

r

jgrj � nkak:

The first inequality follows from the triangle inequality, the second by Cauchy–
Schwartz and as br is a unit-vector, and the third follows as D�1 is a diagonal matrix
with entries at most one. This proves property 2.

Finally, EŒZ2� DP
rhD�1a; bri2 EŒg2r � D

P
rhD�1a; bri2 � kD�1ak2, where the

last step follows as fbrg is an orthonormal basis for a subspace of Rn. This proves
property 3. ut

Using a martingale concentration inequality, we obtain:

Claim 4 Pr
h
j�PT

tD0hGt; ajij � �j

p
Wj.s/

i
D Pr

h
jPT

tD0 Ztj � �j

�

p
Wj.s/

i
� 2 �

exp.��2j =3K/.

Proof The first equality is by definition of the Zts. We now use the following
concentration inequality:

Theorem 6 (Freedman [7] (Theorem 1.6)) Consider a real-valued martingale
sequence fZtgt�0 such that Z0 D 0, E ŒZt j Zt�1; : : : ;Z0� D 0 for all t, and jZtj � M

almost surely for all t. Let Wt DPt
jD0 E

h
Z2j j Zj�1;Zj�2; : : : Z0

i
for all t � 1. Then

for all ` � 0 and �2 > 0, and any stopping time � we have

Pr

2

4j
�X

jD0
Zjj � ` and W� � �2

3

5 � 2 exp



� `2=2

�2 CM`=3

�

We apply this with M D nkajk, ` D �j

�

p
Wj.s/, �2 D T �Wj.s/ and � D T. Note

that

`2

2�2 C 2
3
M`

D �2j

2�2T C 2
3
�nkajk�j=

p
Wj.s/

� �2j

2�2T C 1 ;

where the last inequality uses Wj.s/ � kajk2=n6, �j � n and � D n�6. Thus

Pr

"

j�
TX

tD0
hGt; ajij � �j

q
Wj.s/

#

� 2 exp

 ��2j
2�2T C 1

!

� 2 � exp.��2j =3K/:

The last inequality uses T D K=�2 and K � 1. This completes the proof of the
claim. ut
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By the above claim, we have EŒjCside
T j� < 2

Pm
jD1 exp.��2j =.30˛2// < 0:25n.

This completes the proof of Lemma 2. ut
We now prove that in expectation, at least 0:1n variables become tight at the end

of the algorithm. This immediately implies Lemma 1.

Lemma 3 EŒjCvar
T j� � 0:1n.

Proof Define the following potential function, which will measure the progress of
the algorithm toward the variables becoming tight.

ˆ.x/ WD
X̀

kD1
22k �

0

@
X

i2Uk

x.i/2 C
X

i2Vk

.1 � x.i//2

1

A ; 8x 2 Q:

Note that since XT 2 Q, we have XT.i/ � ˛ � 2�k for i 2 Uk and 1� XT.i/ � ˛ � 2�k

for i 2 Vk. So ˆ.XT/ � ˛2 � n. We also define the “incremental function” for any
x 2 Q and g 2 R

n, f .x; g/ WD ˆ.xC �D�1g/ � ˆ.x/. Recall that D�1 is the n 
 n
diagonal matrix with entries .s1; : : : ; sn/ where si D 2�k for i 2 Uk [ Vk. So

f .x; g/ D �2
nX

iD1
g.i/2 C 2

X̀

kD1
22k �

0

@
X

i2Uk

x.i/�si � g.i/�
X

i2Vk

.1 � x.i//�si � g.i/
1

A

D �2
nX

iD1
g.i/2 C 2�

X̀

kD1

0

@
X

i2Uk

x.i/g.i/

si
�
X

i2Vk

.1 � x.i//g.i/

si

1

A

Suppose the algorithm was modified to never have the truncation step 6b, then
in any iteration t, the increase ˆ.Yt/ � ˆ.Xt/ D f .Xt;Gt/ where Gt is the random
direction chosen in V 0t . The following is by simple calculation.

f .Xt;Gt/ � f .Xt; ıGt/ D �2.1 � ı2/kGtk22 C 2�.1� ı/
X̀

kD1

0

@
X

i2Uk

Xt.i/

si
� Gt.i/�

X

i2Vk

1 � Xt.i/

si
� Gt.i/

1

A

� �2.1 � ı2/kGtk22 C 2˛�.1 � ı/
nX

iD1
jGt.i/j

� �2kGtk22 C 2�˛kGtk1
� �2nC 2�˛n3=2 � 1

n
(14)

The first inequality in (14) uses the fact that Gt is the sum of orthogonal unit vectors,
and the second inequality uses � D n�6 and ˛ D O.1/.
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This implies that

ˆ.XT/ �ˆ.X0/ D
TX

tD0
f .Xt; ıtGt/ �

TX

tD0
f .Xt;Gt/

�1
n

TX

tD0
1Œstep 6b occurs in iteration t�

�
TX

tD0
f .Xt;Gt/� 1 (by Claim 3) (15)

Claim 5 EŒˆ.XT/� �ˆ.y/ � �2T � EŒdim.VT/� � 1.

Proof From (15) we have:

EŒˆ.XT/� �ˆ.X0/ �
TX

tD0
EŒ f .Xt;Gt/� � 1: (16)

In any iteration t, as Gt DPk
hD1 ghbh where fbhg is an orthonormal basis for V 0t and

gh D ˙1,

EŒ f .Xt;Gt/� D �2
nX

iD1
EŒGt.i/

2� D �2
kX

hD1
kbhk2 D �2k D �2EŒdim.V 0t /�

D �2EŒdim.Vt/�:

Moreover, because V0  V1  � � �VT , we have EŒdim.Vt/� � EŒdim.VT/�. So

TX

tD0
EŒ f .Xt;Gt/� � �2T � EŒdim.VT/�: (17)

Combining (16) and (17), we complete the proof of Claim 5. ut
By Claim 2 and the fact that jCpart

T j D 2`, we have

dim.VT/ � n � dim.Cvar
T /� dim.Cside

T / � dim.Crank
T /� dim.Cpart

T /

� n

2
� 2` � dim.Cvar

T / � dim.Cside
T /

Taking expectations and by Claim 2, this gives

EŒdim.VT/� � n

4
� 2` � dim.Cvar

T / (18)
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Using ˆ.XT/ � ˛2n and Claim 5, we obtain:

˛2n � EŒˆT � � �2T �
�n

4
� 2` � EŒdim.Cvar

T /�
	
� 1:

Rearranging and using T D K=�2, K D 10˛2 and ` D log n gives that

EŒdim.Cvar
T /� � n

4
� ˛

2n

K
� 2` � 1

K
� 0:1n;

where we used K D 10˛2, ˛ D 40 and ` D O.log n/. This completes the proof of
Lemma 3. ut

3 Applications

3.1 Linear System Rounding with Violations

Consider a 0–1 integer program on n variables where each constraint j 2 Œm�
corresponds to some subset Sj � Œn� of the variables having total value bj 2 ZC.
That is,

P D
8
<

:
x 2 f0; 1gn W

X

i2Sj

xi D bj; 8j 2 Œm�
9
=

;
:

Theorem 7 There is a randomized polynomial time algorithm that given any
fractional solution satisfying the constraints in P, finds an integer solution x 2
f0; 1gn where for each j 2 Œm�,

jx.Sj/ � bjj � O.1/ �min
np

j;
p

n log.m=n/;
p

log m log n � bj

C log m log n;
p
� log n

o
:

Above � D maxn
iD1 jfj 2 Œm� W i 2 Sjgj is the maximum number of constraints that

any variable appears in.

Proof Let y 2 Œ0; 1�n be a fractional solution with
P

i2Sj
yi D bj for all j 2 Œm�. The

algorithm in Theorem 7 uses Theorem 4 iteratively to obtain the integral solution x.
In each iteration, we start with a fractional solution y0 with f � n fractional

variables and set the parameters �j suitably so that
Pm

jD1 e��
2
j =K0 � f

16
. That is,

the condition in Theorem 4 is satisfied. Note that Wj.y0/ DP
i2Sj
.y0i/2 � y0.Sj/ and
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Wj.y0/ � f . Now, by applying Theorem 4, we would obtain a new fractional solution
y00 such that:

• For each j 2 Œm�, jy00.Sj/� y0.Sj/j � �j

p
Wj.y0/C 1

n � O.�j/ � pf .

• The number of fractional variables in y00 is at most f
K for some constant K > 1.

Therefore, after log n
log K D O.log n/ iterations we obtain a solution with O.1/ fractional

variables. Setting these fractional variables arbitrarily to 0–1 values, we obtain an
integral solution x.

Let us partition the constraints into sets M1;M2;M3 and M4 based on which of
the four terms in Theorem 7 is minimum. That is, M1 � Œm� consists of constraints
j 2 Œm� where

p
j is smaller than the other three terms; M2;M3;M4 are defined

similarly. Below we show how to set the parameters �j and bound the constraint
violations for these parts separately.

Error bound of minfpj;
p

n log.m=n/g for j 2 M1 [ M2 In any iteration with
f � n fractional variables, we set the parameters �js in Theorem 4 as follows:

�j D
(
0 if j < c1fq

c2 log j
c1f if j � c1f

Here c1 and c2 are constants that will be fixed later. Note that

mX

j2M1[M2

e��
2
j =K0 � c1f C

X

j�c1f

e�
c2
K0

log j
c1 f � c1f C

X

i�0
2ic1f � e�ic2=K0

� c1f C c1f
X

i�0
2�i � 3c1f ;

which is at most f=48 for c1 < 1=150. The second inequality above is obtained by
bucketing the js into intervals of the form Œ2i � c1f ; 2iC1 � c1f �. The third inequality
uses c2 � 2K0.

We now bound the error incurred.

1. Consider first a constraint j � n. Note that �j stays zero until the number of
fractional variables f drops below j=c1. So we can bound jx.Sj/� bjj by:

X

i�0

s

c2
j

c1Ki
� log Ki � O.

p
j/
X

i�0

p
iK�i=2 D O.

p
j/;

where i indexes the iterations of the algorithm after f drops below j=c1 for the
first time.
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2. Now consider a constraint j > n. Similarly, we bound jx.Sj/� bjj by:

X

i�0

s

c2
n

Ki
� log.

j

c1n
Ki/ � O.

p
n log. j=n//

X

i�0

p
iK�i=2 D O.

p
n log. j=n//:

Here i indexes the number of iterations of the algorithm from its start.

Error bound of
p

L � bj C L for j 2 M3, where L D ‚.log m log n/ Note that the
additive term in this expression is at least L. If any bj < L then we increase it to L
(and add dummy elements to Sj and ensure y.Sj/ D L); this only affects the error
term by a constant factor as L � pL � bj C L � 2L. So in the following we assume
that minj bj � L.

Here we set �j D 1 in all iterations, which satisfies
P

j2M3
e��

2
j =K0 D 0.

The analysis of the error incurred is similar to that in Lemma 2 and we only
sketch the details; the main difference is that we analyze the deviation in a combined
manner over all O.log n/ iterations. Fix any constraint j 2 Œm�. If we ignore the error
due to the truncation steps over all iterations4 then we can write jx.Sj/ � bjj D
jPP

tD0 �Ztj where � D n�6 and Zt D hGt; 1Sji; recall that each Gt D D�1Gt for
random direction Gt as in Step 4 of the algorithm in Sect. 2. Here P D O.log n=�2/
since there are O.log n/ iterations and O.1=�2/ steps in each iteration. We will use
the concentration inequality in Theorem 6 with martingale fZtgt�0 and stopping

time � being the first time t0 where jPt0

tD0 Ztj > 1
�

p
Lbj. Then it follows that at any

step t0 before stopping, the current solution y0 satisfies y0.Sj/� y.Sj/ D �Pt0

tD0 Zt �p
Lbj � bj (using the assumption bj � L), i.e. y0.Sj/ � 2bj. Now we can bound

W� � P �O.bj/ D O.log n=�2/ � bj. Using Theorem 6 with ` D pLbj=� , we obtain:

Pr

"

j�
�X

tD0
Ztj �

p
Lbj

#

� 2 exp

 �Lbj

O.log n/bj

�

� 1

m2
;

by choosing a large enough constant in L D O.log m log n/. It follows that with
probability at least 1�m�2, we have � D P and jx.Sj/�bjj D jPP

tD0 �Ztj �
p

L � bj.
Finally, taking a union bound over jM3j � m such events, we obtain that with high
probability, jx.Sj/� bjj �

p
L � bj for all j 2 M3.

Error bound of
p

� log n for j 2 M4 Here we set �j D
p

K1�=
pjSjj in all

iterations, where K1 is a constant to be fixed later. We first bound
P

j2M4
e��

2
j =K0 .

Note that when restricted to the f fractional variables in any iteration,
Pm

jD1 jSjj �
�f since each variable appears in at most � constraints. So the number of
constraints with jSjj > 64� is at most f

64
. For h � 0, the number of constraints

4This can be bounded by o.1/ exactly as in Event 2 of Lemma 2.
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with jSjj 2 Œ2�h�164�; 2�h64�/ is at most 2hC1 f
64

. So,

X

j2M4

e��
2
j =K0 � f

64
C
1X

hD0
2hC1 f

64
exp

 �K1�

2�h64� � K0
�

� f

64
C f

64

1X

hD0
2hC1e�2hC2 � f

48
:

The second inequality is by choosing large enough constant K1.
We now bound the error incurred for any constraint j 2 M4. The error in a single

iteration is at most O.
p
�/C 1

n . So the overall error jx.Sj/� bjj D O.
p
� log n/.

Overall iteration By setting the �j parameters for the different parts M1;M2;

M3;M4 as above, it follows that in any iteration with f fractional variables, we have
Pm

jD1 e��
2
j =K0 � f

24
which satisfies the condition in Theorem 4. ut

Remark The above result also extends to the following “group sparse” setting.
Suppose the constraints in M4 are further partitioned into g groups fGkggkD1 where
the column sparsity restricted to constraints in each group Gk is�k. Then we obtain
an integral solution with jx.Sj/ � bjj D O.

p
g ��k log n/ for all j 2 Gk. The only

modification required in the above proof is to set �j D pK1 � g ��k=
pjSjj for

j 2 Gk.

3.2 Minimum Cost Degree Bounded Matroid Basis

The input to the minimum cost degree bounded matroid problem (DEGMAT) is a
matroid defined on elements V D Œn� with costs d W V ! ZC and m “degree
constraints” fSj; bjgmjD1 where each Sj � Œn� and bj 2 ZC. The objective is to find a
minimum-cost base I in the matroid that obeys all the degree bounds, i.e. jI \ Sjj �
bj for all j 2 Œm�. Here we make a minor technical assumption that all costs are
polynomially bounded integers.

An algorithm for DEGMAT is said to be an .˛; ˇ �bC�/-bicriteria approximation
algorithm if for any instance, it finds a base I satisfying jI \ Sjj � ˇ � bj C � for
all j 2 Œm� and having cost at most ˛ times the optimum (which satisfies all degree
bounds).

Theorem 8 There is a randomized algorithm for DEGMAT, that on any instance,
finds a base I� of cost at most the optimum where for each j 2 Œm�:

jI�\Sjj � O.1/�min
np

j;
p

n log.m=n/;
p

log m log n � bj C log m log n;
p
� log n

o
:
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Proof Let y 2 Œ0; 1�n be an optimal solution to the natural LP relaxation of
DEGMAT. We now describe the rounding algorithm: this is based on iterative
applications of Theorem 5. First, we incorporate the cost as a special degree
constraint v0 D d indexed zero. We will require zero violation in the cost during
each iteration, i.e. �0 D 0 always. We partition the degree constraints Œm� as in
Theorem 7: recall the definitions of M1;M2;M3;M4, and the setting of their �j

parameters in each iteration.
In each iteration, we start with a fractional solution y0 with f � n fractional

variables. Using the same calculations as Theorem 7, we have
Pm

jD0 e��
2
j =K0 � 1C

f
24
� f

16
assuming f � 48. For now assume f � maxfK0; 48g; applying Theorem 5,

we obtain a new fractional solution y00 that has:

• jhv0; y00 � y0ij � kdk=nO.1/ � 1
n .

• For each j 2 Œm�, jy00.Sj/� y0.Sj/j � �j

p
Wj.y0/C 1

n .

• The number of fractional variables in y00 is at most f
K0

for some constant K0 > 1.

The first condition uses the fact that the error term kajk=n2 in Theorem 5 can be
reduced to kajk=nc for any constant c, and that kdk � poly.n/ as we assumed all
costs to be polynomially bounded.

We repeat these iterations as long as f � maxfK0; 48g : this takes T � log n
log K0 D

O.log n/ iterations. The violation in the cost (i.e. constraint j D 0) is at most T
n < 1.

For any degree constraint j 2 Œm�, the violation is exactly as in Theorem 7.
At the end of the above iterations, we are left with an almost integral solution x:

it has O.1/ fractional variables. Notice that x lies in the matroid base polytope: so
it can be expressed as a convex combination of (integral) matroid bases. We output
the minimum cost base I� in this convex decomposition of x. Note that the cost of
solution I� is at most that of x which is less than hd; yi C 1. Moreover, I� agrees
with x on all integral variables of x: so the worst case additional violation of any
degree constraint is just O.1/. ut

We state two special cases of this result, which improve on prior work.

Corollary 1 There are randomized bicriteria approximation algorithms for DEG-
MAT with ratios .1; bC O.

p
n log.m=n/// and .1;O.

p
� log n//.

Previously, [6] obtained a .1; b C O.
p

n log.m/// bicriteria approximation
and [11] obtained a .1;� � 1/ bicriteria approximation for DEGMAT.

3.3 Multi-criteria Matroid Basis

The input to the multi-criteria matroid basis is a matroid M defined on elements
V D Œn� with k different cost functions dj W Œn�! ZC (for j D 1; : : : ; k) and budgets
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fBjgkjD1. The goal is to find (if possible) a basis I with dj.I/ � Bj for each j 2 Œk�.
We obtain:

Theorem 9 There is a randomized algorithm for multi-criteria matroid basis, that
given any � > 0 finds in nO.k1:5 = �/ time, a basis I with dj.I/ � .1 C �/Bj for all
j 2 Œk�.
Previously, [8] obtained a deterministic algorithm for MCM that required nO.k2 = �/

time. One could also use the algorithm of [6] to obtain a randomized PTAS for
MCM, but this approach requires at least n�.k = �

2/ time. Our running time is better
when � < 1=

p
k.

We now describe the algorithm in Theorem 9. An element e is said to be heavy
if its jth cost dj.e/ >

�p
k
Bj for any j 2 Œk�. Note that the optimal solution contains

at most k1:5

�
heavy elements. The algorithm first guesses by enumeration all heavy

elements in the optimal solution. Let M0 denote the matroid obtained by contracting
these heavy elements. Let B0j denote the residual budget for each j 2 Œk�. The
algorithm now solves the natural LP relaxation:

x 2 P.M0/; hdj; xi � B0j; 8j 2 Œk�:

The rounding algorithm is an iterative application of Theorem 5: the number of
fractional variables decreases by a factor of K > 1 in each iteration.

As long as the number of fractional variables n0 < 16k, we use �j D 0 for all

j 2 Œk�; note that this satisfies the condition
Pk

jD1 e��
2
j =K0 � n0=16. Note that there

is no loss in any of the budget constraints in this first phase of the rounding.
Once n0 � N WD 16k, we choose each �j D

p
K0 log.N=n0/ which satisfies

the condition on �s. The loss in the jth budget constraint in such an iteration is at
most �j

p
n0 � dmax

j where dmax
j � �p

k
Bj is the maximum cost of any element. So the

increase in the jth budget constraint over all iterations is at most:

dmax
j �

t�1X

iD0

r

K0
N

Ki
log.Ki/ � O.

p
N/ � dmax

j D O.�/Bj:

Above i indexes iterations in the second phase of rounding.

3.4 Low Congestion Routing on Short Paths

The routing on short paths (RSP) problem is defined on an n-vertex directed graph
G D .V;E/ with edge capacities b W E ! ZC. There are k source-sink pairs
f.si; ti/gkiD1 and a length bound �. The goal in RSP is to find an si � ti path Pi

of length at most � for each pair i 2 Œk� such that the number of paths using any
edge e is at most be.
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The decision problem of determining whether there exist such paths is NP-
complete. Hence we focus on bicriteria approximation algorithms, where we attempt
to find paths Pis that violate the edge capacities by a small amount. As noted
in [6], we can use any LP-based algorithm for DEGMAT to obtain one for RSP:
for completeness we describe this briefly below.

Let Pi denote the set of all si�ti paths of length at most�. Consider the following
LP relaxation for RSP.

X

P2Pi

xi;P � 1; 8i 2 Œk�

kX

iD1

X

P2PiWe2P

xi;P � be; 8e 2 E

x � 0:

Although this LP has an exponential number of variables, it can be solved in
polynomial time by an equivalent polynomial-size formulation using a “time-
expanded network”.

Given any feasible instance of RSP, we obtain a fractional solution to the above
LP. Moreover, the number of non-zero variables xi;P is at most k C jEj D poly.n/.
Let P 0i denote the set of si � ti paths with non-zero value in this fractional solution.
Consider now an instance of DEGMAT on groundset U D [k

iD1P 0i where the matroid
is a partition matroid that requires one element from each P 0i . The degree constraints
correspond to edges e 2 E, i.e. Se D fP 2 U W e 2 Pg. The goal is to find a
base I in the partition matroid such that jSe \ Ij � be for all e 2 E. Note that the
column sparsity of the degree constraints is � since each path in U has length at
most �. Moreover fxi;P W P 2 P 0i ; i 2 Œk�g is a feasible fractional solution to the LP
relaxation of this DEGMAT instance. So we obtain:

Corollary 2 There is an algorithm that given any feasible instance of RSP,
computes an si � ti path of length at most � for each i 2 Œk� where the number of

paths using any edge e is at most beCmin
n
O.
p
� log n/; O.

p
be log nC log2 n/

o
.

Multipath routing with laminar requirements Our techniques can also handle
a richer set of requirements in the RSP problem. In addition to the graph G, pairs
f.si; ti/gkiD1 and length bound�, there is a laminar family L defined on the pairs Œk�
with an integer requirement rT on each set T 2 L. The goal in the laminar RSP
problem is to find a multiset of si � ti paths (for i 2 Œk�) such that:

1. each path has length at most �,
2. for each T 2 L, there are at least rT paths between pairs of T, and
3. the number of paths using any edge e is at most be.
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Consider the following LP relaxation for this problem.

X

i2T

X

P2Pi

xi;P � rT ; 8T 2 L

kX

iD1

X

P2PiWe2P

xi;P � be; 8e 2 E

x � 0:

This LP can again be solved using an equivalent polynomial-sized LP. Let P 0i
denote the set of si � ti paths with non-zero value in this fractional solution, and
define groundset U D [k

iD1P 0i . As before, we also define “degree constraints”
corresponding to edges e 2 E, i.e. at most be elements can be chosen from
Se D fP 2 U W e 2 Pg. Unlike the usual RSP problem we can not directly cast
these laminar requirements as a matroid constraint, but a slight modification of the
DEGMAT algorithm works.

The main idea is that the partial rounding result (Theorem 5) also holds if we
want to exactly preserve any laminar family L of constraints (instead of a matroid).
Note that a laminar family on jUj elements might have 2jUj sets. However, it is easy
to see that the number of tight constraints of L at any strictly fractional solution is
at most jUj=2. Using this observation in place of Claim 2, we obtain the partial
rounding result also for laminar constraints.

Finally using this partial rounding as in Theorem 8, we obtain:

Theorem 10 There is an algorithm that given any feasible instance of laminar
RSP, computes a multiset Q of si � ti paths such that:

1. each path in Q has length at most �,
2. for each T 2 L, there are at least rT paths in Q between pairs of T, and
3. the number of paths in Q using any edge e is at most:

be Cmin
n
O.
p
� log n/; O.

p
be log nC log2 n/

o
:

Appendix: Useful Linear Programming Facts

Fact 1 Consider any polyhedron given by P D fx W Ax � bg where all entries in
A; b are integers of size at most log2 B. Then there is a polynomial (in log B and size
of A) time algorithm that given any point u 2 P, finds another point v� 2 P where
(i) ku � v�k1 � 1

n7B
and (ii) all entries in v� are rationals of size O.n2 log B/.

Proof Let L WD 2n8B and u0 denote the point with coordinates u0i D 1
LbL � uic for all

i 2 Œn�. We now write a linear program that computes the point v 2 P with minimum
`1 distance from u0.
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min
Pn

iD1 di

s.t. Av � b
jLvi � Lu0ij � Ldi 8i 2 Œn�
Pn

iD1 di � 1
d; v 2 R

n:

Note that the feasible region of this LP is a polytope (bounded polyhedron) due
to the last two constraints. So there is an optimal extreme point solution v� that
can be found in polynomial time. Since all constraint coefficients in this LP are
integers bounded by L, the entries in v� must be rationals bounded by .2nL/2n.
Finally, u 2 P corresponds to a feasible solution to this LP with v D u, di D jvi�uij
(for i 2 Œn�) and objective ku� u0k1 � n

L . It now follows that kv� � u0k1 � n
L and so

kv� � uk1 � kv� � u0k1 C ku0 � uk1 � 2n
L . ut

Fact 2 Consider any linear subspace given by fx W Ax D 0g where all entries in A
are integers of size at most log2 B. Then there is a polynomial (in log B and size of A)
time algorithm that computes a basis fbjgkjD1 of this subspace where (i) all entries

are rationals of size O.n2 log B/, (ii) jhbj; bji � 1j � 1
n4B

for all j 2 Œk�, and (iii)
jhbj; b`ij � 1

n4B
for all j ¤ `, j; ` 2 Œk�.

Proof We can obtain an orthonormal basis fb0jgkjD1 of this subspace using Gaussian
elimination and Gram-Schmidt orthogonalization. This clearly satisfies the last two
conditions. But some more work is needed since we require the entries in the basis
vectors to be bounded integers.

To ensure this, we modify each vector b0j into bj separately by applying Fact 1
with polyhedron P D fx W Ax D 0g, u D b0j, and then set bj D v�. Now the
last condition follows from Fact 1(ii). The first and second conditions follow from
Fact 1(i) since fb0jgkjD1 is orthonormal. ut
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A Tverberg Type Theorem for Matroids

Imre Bárány, Gil Kalai, and Roy Meshulam

In memory of Jirka Matousek

Abstract Let b.M/ denote the maximal number of disjoint bases in a matroid M. It
is shown that if M is a matroid of rank d C 1, then for any continuous map f from
the matroidal complex M into R

d there exist t � p
b.M/=4 disjoint independent

sets �1; : : : ; �t 2 M such that
Tt

iD1 f .�i/ ¤ ;.

1 Introduction

Tverberg’s theorem [15] asserts that if V � R
d satisfies jVj � .k � 1/.d C 1/C 1,

then there exists a partition V D V1 [ � � � [ Vk such that
Tk

iD1 conv.Vi/ ¤ ;.
Tverberg’s theorem and some of its extensions may be viewed in the following
general context. For a simplicial complex X and d � 1, let the affine Tverberg
number T.X; d/ be the maximal t such that for any affine map f W X ! R

d, there
exist disjoint simplices �1; : : : ; �t 2 X such that

Tt
iD1 f .�i/ ¤ ;. The topological

Tverberg number TT.X; d/ is defined similarly where now f W X ! R
d can be an

arbitrary continuous map.
Let �n denote the n-simplex and let �.d/

n be its d-skeleton. Using the above
terminology, Tverberg’s theorem is equivalent to T.�.k�1/.dC1/; d/ D k which
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is clearly the same as T.�.d/
.k�1/.dC1/; d/ D k. Similarly, the topological Tver-

berg theorem of Bárány, Shlosman and Szűcs [2] states that if p is prime then
TT.�. p� 1/.dC 1/; d/D p. Schöneborn and Ziegler [14] proved that this implies

the stronger statement TT.�.d/
. p�1/.dC1/; d/ D p. This result was extended by

Özaydin [13] for the case when p is a prime power. The question whether the
topological Tverberg theorem holds for every p that is not a prime power had been
open for long. Very recently, and quite surprisingly, Frick [7] has constructed a
counterexample for every non-prime power p. His construction is built on work by
Mabillard and Wagner [10]. See also [4] and [1] for further counterexamples.

There is a colourful version of Tverberg theorem. To state it let n D r.dC 1/� 1
and assume that the vertex set V of �n is partitioned into d C 1 classes (called
colours) and that each colour class contains exactly r vertices. We define Yr;d as
the subcomplex of �n (or �.d/

n ) consisting of those � � V that contain at most
one vertex from each colour class. The colourful Tverberg theorem of Živaljević
and Vrećica [16] asserts that TT.Y2p�1;d; d/ � p for prime p which implies that
TT.Y4k�1;d; d/ � k for arbitrary k. A neat and more recent theorem of Blagojević,
Matschke, and Ziegler [5] says that TT.Yr;d; d/ D r if r C 1 is a prime, which is
clearly best possible. Further information on Tverberg’s theorem can be found in
Matoušek’s excellent book [11].

Let M be a matroid (possibly with loops) with rank function  on the set V . We
identify M with the simplicial complex on V whose simplices are the independent
sets of M. It is well known (see e.g. Theorem 7.8.1 in [3]) that M is ..V/ � 2/-
connected. Note that both �.d/

n and Yr;d are matroids of rank d C 1. In this note we
are interested in bounding TT.M; d/ for a general matroidal complex M. Let b.M/
denote the maximal number of pairwise disjoint bases in M. Our main result is the
following

Theorem 1 Let M be a matroid of rank dC 1. Then

TT.M; d/ � pb.M/=4 :

In Sect. 2 we give a lower bound on the topological connectivity of the deleted
join of matroids. In Sect. 3 we use this bound and the approach of [2, 16] to prove
Theorem 1.

2 Connectivity of Deleted Joins of Matroids

We recall some definitions. For a simplicial complex Y on a set V and an element
v 2 V such that fvg 2 Y, denote the star and link of v in Y by

st.Y; v/ D f� � V W fvg [ � 2 Yg
lk.Y; v/ D f� 2 st.Y; v/ W v 62 �g:
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For a subset V 0 � V let YŒV 0� D f� � V 0 W � 2 Yg be the induced complex on V 0.
We regard st.Y; v/, lk.Y; v/ and YŒV 0� as complexes on the original set V (keeping
in mind that not all elements of V have to be vertices of these complexes). Let fi.Y/
denote the number of i-simplices in Y. Let X1; : : : ;Xk be simplicial complexes on the
same set V and let V1; : : : ;Vk be k disjoint copies of V with bijections �i W V ! Vi.
The join X1�� � ��Xk is the simplicial complex on

Sk
iD1 Vi with simplices

Sk
iD1 �i.�i/

where �i 2 Xi. The deleted join .X1 � � � � � Xk/� is the subcomplex of the join
consisting of all simplices

Sk
iD1 �i.�i/ such that �i \ �j D ; for 1 � i ¤ j � k.

When all Xi are equal to X, we denote their deleted join by X�k
� . Note that Zk acts

freely on X�k
� by cyclic shifts.

Claim 2 Let M1; : : : ;Mk be matroids on the same set V, with rank functions
1; : : : ; k. Suppose A1; : : : ;Ak are disjoint subsets of V such that Ai is a union of at
most m independent sets in Mi. Then Y D .M1�� � ��Mk/� is .d 1

mC1
Pk

iD1 jAije�2/-
connected.

Proof Let c D d 1
mC1

Pk
iD1 jAije � 2. If k D 1 then 1.V/ �

l jA1j
m

m
and hence

Y D M1 is .
l jA1j

m

m
� 2/-connected. For k � 2 we establish the Claim by induction

on f0.Y/ D Pk
iD1 f0.Mi/. If f0.Y/ D 0 then all Ai’s are empty and the Claim holds.

We henceforth assume that f0.Y/ > 0 and consider two cases:

(a) If Mi D MiŒAi� for all 1 � i � k then Y D M1 � � � � �Mk is a matroid of rank

kX

iD1
i.V/ �

kX

iD1

� jAij
m

�

�
&Pk

iD1 jAij
m

'

:

Hence Y is .
lPk

iD1 jAij
m

m
� 2/-connected.

(b) Otherwise there exists an 1 � i0 � k such that Mi0 ¤ Mi0 ŒAi0 �. Choose an
element v 2 V � Ai0 such that fvg 2 Mi0 . Without loss of generality we may
assume that i0 D 1 and that v 62 Sk�1

iD1 Ai. Let S D Sk
iD1 Vi and let Y1 D

YŒS � f�1.v/g�, Y2 D st.Y; �1.v//. Then

Y1 D .M1ŒV � fvg� �M2 � � � � �Mk/�:

Noting that f0.Y1/ D f0.Y/�1 and applying the induction hypothesis to the matroids
M1ŒV � fvg�;M2; : : : ;Mk and the sets A1; : : : ;Ak, it follows that Y1 is c-connected.
We next consider the connectivity of Y1 \ Y2. Write A1 D St

jD1 Cj where t � m,
Cj 2 M1 for all 1 � j � t, and the Cj’s are pairwise disjoint. Since fvg 2 M1, it
follows that there exist fC0jgtjD1 such that C0j � Cj, jC0jj � jCjj�1, and C0j 2 lk.M1; v/

for all 1 � j � t. Let

M0i D



lk.M1; v/ i D 1;
MiŒV � fvg� 2 � i � k;
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and

A0i D
8
<

:

St
jD1 C0j i D 1;

Ai 2 � i � k � 1;
Ak � fvg i D k:

Observe that

Y1 \ Y2 D lk.Y; �1.v// D .M01 � � � � �M0k/�

and that A0i is a union of at most m independent sets in M0i for all 1 � i � k. Noting
that f0.Y1 \ Y2/ � f0.Y/ � 1 and applying the induction hypothesis to the matroids
M01; : : : ;M0k and the sets A01; : : : ;A0k, it follows that Y1 \ Y2 is c0-connected where

c0 D
&

1

mC 1
kX

iD1
jA0ij

'

� 2

D
2

6
6
6

1

mC 1

0

@
tX

jD1
jC0jj C

k�1X

iD2
jAij C jAk � fvgj

1

A

3

7
7
7
� 2

�
&

1

mC 1

 

jA1j �mC
k�1X

iD2
jAij C jAkj � 1

!'

� 2 D c � 1:

As Y1 is c-connected, Y2 is contractible and Y1 \ Y2 is .c� 1/-connected, it follows
that Y D Y1 [ Y2 is c-connected. ut
Let M be a matroid on V with b.M/ D b disjoint bases B1; : : : ;Bb. Let I1 [ � � � [ Ik

be a partition of Œb� into almost equal parts b b
k c � jIij � d b

k e. Applying Claim 2
with M1 D � � � D Mk D M and Ai D [j2Ii Bj, we obtain:

Corollary 3 The connectivity of M�k
� is at least

b.V/

d b
k e C 1

� 2 :

We suggest the following:

Conjecture 4 For any k � 1 there exists an f .k/ such that if b.M/ � f .k/ then M�k
�

is .k.V/ � 2/-connected.

Remark Let M be the rank 1 matroid on m points M D �
.0/
m�1. The chessboard

complex C.k;m/ is the k-fold deleted join M�k
� . Chessboard complexes play a key

role in the works of Živaljević and Vrećica [16] and Blagojević, Matschke, and
Ziegler [5] on the colourful Tverberg theorem. Let k � 2. Garst [9] and Živaljević
and Vrećica [16] proved that C.k; 2k � 1/ is .k � 2/-connected. On the other hand,
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Friedman and Hanlon [8] showed that QHk�2.C.k; 2k � 2/IQ/ ¤ 0, so C.k; 2k � 2/
is not .k � 2/-connected. This implies that the function f .k/ in Conjecture 4 must
satisfy f .k/ � 2k � 1.

3 A Tverberg Type Theorem for Matroids

We recall some well-known topological facts (see [2]). For m � 1; k � 2we identify
the sphere Sm.k�1/�1 with the space

(

. y1; : : : ; yk/ 2 .Rm/k W
kX

iD1
jyij2 D 1 ;

kX

iD1
yi D 0 2 R

m

)

:

The cyclic shift on this space defines a Zk action on Sm.k�1/�1. The action is free for
prime k.

The k-fold deleted product of a space X is the Zk-space given by

Xk
D D Xk � f.x; : : : ; x/ 2 Xk W x 2 Xg :

For m � 1 define a Zk-map

�m;k W .Rm/kD ! Sm.k�1/�1

by

�m;k.x1; : : : ; xk/ D
.x1 � 1

k

Pk
iD1 xi; : : : ; xk � 1

k

Pk
iD1 xi/

.
Pk

jD1 jxj � 1
k

Pk
iD1 xij2/1=2

:

We’ll also need the following result of Dold [6] (see also Theorem 6.2.6 in [12]):

Theorem 5 (Dold) Let p be a prime and suppose X and Y are free Zp-spaces such
that dim Y D k and X is k-connected. Then there does not exist a Zp-map from X
to Y.

Proof of Theorem 1 Let M be a matroid on the vertex set V , and let f W M ! R
d be

a continuous map. Let b D b.M/ and choose a prime
p

b=4 � p � pb=2. We’ll
show that there exist disjoint simplices (i.e. independent sets) �1; : : : ; �p 2 M such
that

Tp
iD1 f .�i/ ¤ ;. Suppose for contradiction that

Tp
iD1 f .�i/ D ; for all such

choices of �i’s. Then f induces a continuous Zp-map

f� W M�p
� ! .RdC1/pD
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as follows. If x1; : : : ; xp have pairwise disjoint supports in M and .t1; : : : ; tp/ 2 R
p
C

satisfies
Pp

iD1 ti D 1 then

f�.t1�1.x1/C � � � C tp�p.xp// D .t1; t1f .x1/; : : : ; tp; tpf .xp// 2 .RdC1/pD :

Hence �dC1;pf� is a Zp-map between the free Zp-spaces M�p
� and S.dC1/.p�1/�1. This

however contradicts Dold’s Theorem since by Corollary 3 the connectivity of M�p
�

is at least

b.dC 1/
d b

pe C 1
� 2 � .dC 1/. p� 1/� 1

by the choice of p.

�
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Gershgorin Disks for Multiple Eigenvalues
of Non-negative Matrices

Imre Bárány and József Solymosi

Dedicated to the memory of Jiří Matoušek

Abstract Gershgorin’s famous circle theorem states that all eigenvalues of a square
matrix lie in disks (called Gershgorin disks) around the diagonal elements. Here we
show that if the matrix entries are non-negative and an eigenvalue has geometric
multiplicity at least two, then this eigenvalue lies in a smaller disk. The proof uses
geometric rearrangement inequalities on sums of higher dimensional real vectors
which is another new result of this paper.

1 Introduction and Main Result

Gershgorin’s circle theorem [4] is a fundamental and widely used result on
localizing the eigenvalues of square matrices. It states that all eigenvalues are in
disks (called Gershgorin disks) around the diagonal elements.

The main goal of this paper is to improve Gershgorin’s theorem under special
conditions, namely, when the matrix is non-negative and has a multiple eigenvalue.
We show that such an eigenvalue lies in disks of smaller radius around a diagonal
element. For the proof we establish various geometric inequalities concerning
rearrangements of vector sums. This is an interesting connection between convex
geometry and matrix theory. The geometric point of view in eigenvalue problems is
certainly not new but this particular connection seems to be new.
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Here we show that if the matrix entries are non-negative and an eigenvalue has
geometric multiplicity at least two, then this eigenvalue lies in a smaller disk.

Let D.a; r/ denote the disk with center a and radius r on the complex plane:

D.a; r/ D fx 2 C W jx � aj 6 rg :

For an n
 n complex matrix, A D Œaij�; the Gershgorin disks are D.aii;Ri/ where
Ri DPjWi¤j jaijj: The most commonly cited form of Gershgorin’s theorem says that
every eigenvalue of A lies in some D.aii;Ri/. Varga’s nice book Gershgorin and His
Circles [15] surveys various applications and extensions of this important theorem.
An interesting and recent theorem of Marsli and Hall [7] states that if an eigenvalue
of a matrix A has geometric multiplicity k; then it lies in at least k of the Gershgorin
disks of A: They have extended this result in subsequent papers [3, 8–10]. Here we
focus on the k D 2 case for non-negative matrices.

Understanding the spectra of a matrix is a central question both in applied
and pure mathematics. Here are some facts and results. There are two particular
eigenvalues for which the multiplicity is of great importance; the largest eigenvalue
which determines the spectral radius of the matrix and the multiplicity of the
eigenvalue “0” since it determines the rank of the matrix. There are also applications
using the smallest eigenvalue. For example Roy shows in [12] that the Euclidean
representation number of a graph is closely related to the multiplicity of the smallest
eigenvalue. The multiplicity of the largest and the second largest eigenvalues play
a key role in some numerical methods. Del Corso [2] considers the problem of
approximating an eigenvector belonging to the largest eigenvalue by the so called
power method. It is proved that the rate of convergence depends on the ratio of
the two largest eigenvalues and on their multiplicities. The rate increases with the
multiplicity of the largest eigenvalue and decreases with the multiplicity of the
second eigenvalue. In graph theory the Colin de Verdière number is the multiplicity
of the second largest eigenvalue of the adjacency matrix, maximized by weighting
the edges and nodes. For more details and the exact definition we refer to the papers
[6] and [14].

Gershgorin’s circle theorem is intertwined with the Perron–Frobenius theory. It
is one of the tools used to bound the spectral radius of a matrix. It follows from
the Perron–Frobenius theorem that the largest magnitude eigenvalue of any non-
negative matrix is a positive real number, see in e.g. [1].

Let us define the half Gershgorin disks, D.aii; ri/; which are subsets of the
original. Instead of Ri D P

jWi¤j jaijj we take the partial sum of the bn=2c largest
terms. This sum is denoted by ri.

Recall that the geometric multiplicity of an eigenvalue � of A is the dimension
of the corresponding eigenspace of A, that is, the kernel of A � �I. (Its algebraic
multiplicity is the multiplicity of the root � of the polynomial det.A � xI/.)

We are going to show that multiple geometric eigenvalues are in smaller
Gershgorin disks when the matrix is non-negative.
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Theorem 1 Let A D faijg be an n 
 n non-negative (real) matrix and � an
eigenvalue of A with geometric multiplicity at least two. Then � is in a half
Gershgorin disk, D.aii; ri/; for some i:

Actually we are going to prove that such an eigenvalue lies in the disk D.aii; r/
and various values of r for some suitable i. The proofs are based on geometric
estimates that are of independent interest. They are given in the next section.

2 Rearrangement Inequalities for Vectors

Assume V D fv1; : : : ; vng � R
d and

Pn
1 vi D 0. Further, let ˛1 � : : : � ˛n � 0 be

real numbers. We write Œn� for the set f1; : : : ; ng.
Theorem 2 Under the above conditions set ˇ D ˛bn=2cC1. Then for every
permutation � of Œn�

�
�
�
�
�

nX

1

˛iv�.i/

�
�
�
�
�
� max

i2Œn�
kvik

nX

1

j˛i � ˇj:

Corollary 1 Under the above conditions, for every permutation � of Œn�

�
�
�
�
�

nX

1

˛iv�.i/

�
�
�
�
�
� max

i2Œn�
kvik

bn=2cX

1

˛i:

In the second geometric estimate we need a technical assumption.

Theorem 3 Let V D fv1; : : : ; vng � R
d satisfy the previous assumption. Suppose

further that the vi are ordered with decreasing (Euclidean) length, that is, kv1k �
: : : � kvnk. Let � 2 Œ˛jC1; ˛j� for some j 2 Œn � 1�. Then for every permutation �
of Œn�

�
�
�
�
�

nX

1

˛iv�.i/

�
�
�
�
�
�

jX

1

˛ikvik � �
2

2

4
jX

1

kvik �
nX

jC1
kvik

3

5 :

Here of course one wants to choose j and � so that the right hand side is as
small as possible. When j D dn=2e, the sum between the brackets is non-negative.
Choosing any � from the interval Œ˛jC1; ˛j� gives the following.

Corollary 2 Under the above conditions for every permutation � of Œn�

�
�
�
�
�

nX

1

˛iv�.i/

�
�
�
�
�
�
dn=2eX

1

˛ikvik:
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We mention that the estimates in Theorems 2 and 3 are incomparable; sometimes
the first, other times the second gives the better bound.

3 Proof of the Rearrangement Inequalities

Proof of Theorem 2 First fix some � � 0. Then

nX

1

˛iv�.i/ D
nX

1

˛iv�.i/ �
nX

1

�v�.i/ D
nX

1

.˛i � �/v�.i/:

By the triangle inequality

�
�
�
�
�

nX

1

˛iv�.i/

�
�
�
�
�
� max

i2Œn� kvik
nX

1

j˛i � � j:

Set k D bn=2c and define ˇ D ˛kC1. It can be proven that the function � !Pn
1 j˛i � � j takes its minimum at � D ˇ when n is odd, and at every � from the

interval Œ˛kC1; ˛k� when n is even. ut
Corollary 1 follows immediately since with the above k and ˇ

nX

1

j˛i � ˇj D
kX

1

.˛i � ˇ/C
nX

kC1
.ˇ � ˛i/

D
kX

1

˛i �
nX

`

˛i �
kX

1

˛i

where ` equals kC 1 for even n and kC 2 for odd n.

Proof of Theorem 3 The zonotope Z.V/ spanned by V is, by definition, the set

Z.V/ D
8
<

:

X

i2Œn�
�ivi W 0 � �i � 1 .8i/

9
=

;
:

Let B denote the Euclidean unit ball of Rd. We claim first that

Z.V/ � 1

2

�
kv1k C � � � C kvnk

	
B: (1)

It is well-known [11] and easy to check that Z.V/ is the convex hull of the points
s.W/ D P

v2W v where W � V . Thus it suffices to show that for every W � V ,
ks.W/k � 1

2
.kv1k C : : : C kvnk/. Fix U � V such that s.U/ has maximal length
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among all s.W/. Set z D s.U/ and observe that �z D s.V n U/ as s.V/ D 0. Since
kzk D k � zk evidently, we have

2kzk D kzk C k � zk D ks.U/k C ks.V nU/k �
nX

1

kvik

by the triangle inequality. This implies that kzk � 1
2

Pn
1 kvik.

We observe next that

nX

1

˛iv�.i/ D
jX

1

.˛i � �/v�.i/ C
jX

1

�v�.i/ C
nX

jC1
˛iv�.i/

D
jX

1

.˛i � �/v�.i/ C �
2

4
jX

1

v�.i/ C
nX

jC1

˛i

�
v�.i/

3

5 :

The expression between the brackets is a vector u in Z.V/ so kuk � 1
2

Pn
1 kvik.

By the triangle inequality the norm of
Pn

1 ˛iv�.i/ is at most

jX

1

.˛i � �/kv�.i/k C �kuk �
jX

1

.˛i � �/kvik C �

2

nX

1

kvik

D
jX

1

˛ikvik � �
2

2

4
jX

1

kvik �
nX

jC1
kvik

3

5 :

ut

4 Proof of Theorem 1

We first recall the simple proof of Gershgorin’s original theorem. Let v D
.v1; : : : ; vn/ be an eigenvector with eigenvalue � where vi are complex numbers.
Assume jvij D maxj2Œn� jvjj. Then

Pn
jD1 aijvj D �vi implying

.� � aii/vi D
X

jWj¤i

aijvj: (2)

Taking absolute value on both sides and using jvij � jvjj shows that � 2 D.aii;Ri/

with Ri DPjWj¤i aij indeed.
When the eigenvalue � has geometric multiplicity at least two, then its

eigenspace contains a nonzero vector v D .v1; : : : ; vn/ whose components sum
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to zero:
Pn

1 vi D 0. Indeed, let u and w be two linearly independent eigenvectors
from the eigenspace of �. If

Pn
1 ui D 0, then v D u is a suitable eigenvector. If not,

then v D �Pn
1 wi

�
u � �Pn

1 ui
�

w has the required property.
As any multiplier of v is still an eigenvector, we can suppose that the largest

magnitude component of v; vi, is a positive real number. Actually we can and do
assume that vi D 1. Then the other components, vj, are complex numbers with
jvjj � 1.

The proof of Theorem 1 is based on equation (2) plus the condition thatPn
1 vj D 0. As C is a vector space of dimension 2 over R, we can consider the

components vj of v as vectors in R
2. Then Theorem 2 with d D 2 applies to the

vj 2 R
2, we just have to imagine that on the right hand side of (2) vi is added with

coefficient zero. So define bii D 0 and bij D aij if i ¤ j. Let b� be the median of the
sequence bi1; : : : ; bin. Theorem 2 gives then that � lies in the disk D.aii; r/ where

r D
X

j¤i

jbij � b�j: (3)

The proof of Theorem 1 uses Corollary 1: � lies in the disk D.aii; r/ where r is
the sum of the largest bn=2c entries in the ith row of A (disregarding aii/. Note that
in general the estimate in (3) is gives a better bound on r than Theorem 1. ut

We can also apply Corollary 2 to the components of v, considered again as
vectors in R

2. This gives that � lies in the disk D.aii; r/ where r is the sum of the
k D dn=2e largest entries in row i of A (disregarding aii again). In any special case
a better estimate may come from the more general Theorem 3.

Remark 1 One could hope that an eigenvalue with (geometric) multiplicity 3 or
higher should lie strictly inside the half Gershgorin disk. The simple example below
shows that this is not the case.

Let A be an n 
 n matrix with n D 3k, consisting of three k 
 k blocks along the
main diagonal, with each block being a doubly stochastic matrix. Then � D 1 is an
eigenvalue with multiplicity 3, which lies on the boundary of each half Gershgorin
disk D.aii; ri/. Indeed ri is the sum of the largest bn=2c entries of the ith row
(disregarding aii) which equals 1� aii.

This example shows, however, that � lies in the “third Gershgorin disk”. This is
the disk centred at aii and of radius r which is the sum of the largest n=3 entries
in the ith row (disregarding again aii). We return to this question at the end of the
paper.

5 Examples

In what follows we show examples illustrating the limits of possible extensions of
the results above. Note that one can not expect in general that a multiple eigenvalue
is strictly inside the half Gershgorin disk. The simplest illustration to this is the
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matrix A below where 1 is an eigenvalue with (geometric) multiplicity two.

A D
2

4
0 1 1

1 0 1

1 1 0

3

5

Next we are going to give further examples. The first two show that Theorem 1
does not extend to real matrices that have both positive and negative entries. The
second is a positive semidefinite Hermitian matrix (with complex entries) where the
triple eigenvalue “0” lies on the boundary of the half Gershgorin disk. Perhaps some
form of Theorem 1 can be extended to such matrices.

5.1 Real Matrices with Both Positive and Negative Entries

The matrices in Theorem 1 have non-negative entries. This condition cannot be
deleted as the following symmetric circulant matrix with 0;˙1 entries shows:

B D

2

6
6
6
6
6
4

0 1 �1 �1 1

1 0 1 �1 �1
�1 1 0 1 �1
�1 �1 1 0 1

1 �1 �1 1 0

3

7
7
7
7
7
5

Like every 5 
 5 symmetric circulant matrix, B has two multiple eigenvalues. They
are
p
5 � 2:236 and �p5 and both lie outside the half Gershgorin disk.

The following 7 
 7 matrix is again circulant and has 0;˙1 entries. Its multiple
eigenvalue � �3:494 is even further from the half Gershgorin disk which has
radius 3 around the origin.

C D

2

6
6
6
6
6
6
6
6
6
4

0 1 �1 1 1 �1 1

1 0 1 �1 1 1 �1
�1 1 0 1 �1 1 1

1 �1 1 0 1 �1 1

1 1 �1 1 0 1 �1
�1 1 1 �1 1 0 1

1 �1 1 1 �1 1 0

3

7
7
7
7
7
7
7
7
7
5
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5.2 A Positive Semidefinite Matrix

The next construction gives a 9 
 9 positive semidefinite Hermitian matrix H with
the triple eigenvalue “0” lying on the boundary of the half Gershgorin disk. (This
is very different from the example in Remark 1 where the half disk and the third
disk were the same.) The other eigenvalue is 6 and it lies on the boundary of the
“quarter disk”. This example comes from the Hesse configuration of 9 points and
12 lines in CP

2 [5]. The matrix H looks interesting on its own right. It shows further
that strengthening Theorem 1 to more general matrices (with high multiplicity
eigenvalues) might be difficult.

One possible realization of the Hesse configuration is given by the following 9
points on the complex projective plane

p1 D .0; 1;�1/ p2 D .0; 1;�!/ p3 D .0; 1;�!2/
p4 D .1; 0;�1/ p5 D .1; 0;�!2/ p6 D .1; 0;�!/
p7 D .1;�1; 0/ p8 D .1;�!; 0/ p9 D .1;�!2; 0/

where ! D �1Ci
p
3

2
is a third root of unity. In this arrangement each point lies on

four lines and each line contains three points. Our first matrix, A; records the linear
dependencies of the points. It has 9 columns, one for each point, and 12 rows, one
for each line. If pi; pj and pk are collinear, then there are nonzero complex multipliers
˛; ˇ; � such that ˛pi C ˇpj C �pk D 0: For example the sixth (highlighted) row in
the matrix A below represents the equation

�!2.0; 1;�1/� .0; 1;�!/� !.0; 1;�!2/ D .0; 0; 0/:

Thus the matrix A encodes the linear dependencies of collinear triples in the
point-line arrangement of the Hesse configuration.

A D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 �1 0 0 1 0 0

0 0 1 0 �1 0 1 0 0

0 1 0 0 0 �1 1 0 0

0 0 0 0 0 0 �!2 �1 �!
0 0 0 �!2 �! �1 0 0 0

�!2 �1 �! 0 0 0 0 0 0
0 ! 0 0 �1 0 0 1 0

0 0 �!2 0 0 1 0 0 �1
�!2 0 0 0 1 0 0 0 �1
! 0 0 0 0 �1 0 1 0

0 1 0 �! 0 0 0 0 !

0 0 ! �1 0 0 0 1 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5
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The points of the Hesse configuration satisfy the homogeneous system of
equations Ax D 0 where xi 2 CP

2. An affine image of a solution is also a solution,
implying that the rank of A is at most 6. It is easy to see that the rank is exactly 6:
the rank remains the same if one multiplies a matrix with its Hermitian transpose
(complex conjugate transpose). So consider the 9 
 9 matrix H D ATA.

H D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

4 ! !2 �1 �! �!2 1 !2 !

!2 4 ! �! �!2 �1 1 !2 !

! !2 4 �!2 �1 �! 1 !2 !

�1 �!2 �! 4 !2 ! �1 �1 �1
�!2 �! �1 ! 4 !2 �1 �1 �1
�! �1 �!2 !2 ! 4 �1 �1 �1
1 1 1 �1 �1 �1 4 ! !2

! ! ! �1 �1 �1 !2 4 !

!2 !2 !2 �1 �1 �1 ! !2 4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

Matrix H is a positive semidefinite Hermitian matrix that has two eigenvalues:
0 with multiplicity 3 (so the rank of A is indeed 6) and 6 with multiplicity 6. All
non-diagonal entries have norm one and the diagonal entries are 4. Thus � D 0 is
on the boundary of the half Gershgorin disk D.4; 4/ and � D 6 on the boundary of
D.4; 2/, the “quarter disk” (Fig. 1).

6

4

2

2 4 6 8 10 12–4

–4

–6

–2

–2

0

Fig. 1 The Gershgorin disk and half-disk of H
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6 Remarks

There are several questions that remain open.

• What can be said about the location of an eigenvalue with larger multiplicity? Our
method, using the zonotope Z.V/ in the proof of Theorem 3 has its limitations.
Perhaps inequality (1) can be improved. For instance, for an eigenvalue with
multiplicity at least k one would like to use an eigenvector v D .v1; : : : ; vn/ such
that the corresponding zonotope Z.V/ satisfies

Z.V/ � c .kv1k C : : :C kvnk/B

where c decreases as k grows. Unfortunately one can not expect c to go below 1
�

,
(see Exercise 14.9 in [13])

• How about other matrices? What is the radius of the shrunken Gershgorin disk
which contains a multiple eigenvalue of a general complex matrix? Are there
better bounds for special matrices, like real or positive semidefinite Hermitian
matrices?
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Computing the Partition Function
of a Polynomial on the Boolean Cube

Alexander Barvinok

Abstract For a polynomial f W f�1; 1gn �! C, we define the partition function as
the average of e�f .x/ over all points x 2 f�1; 1gn, where � 2 C is a parameter.
We present a quasi-polynomial algorithm, which, given such f , � and � > 0

approximates the partition function within a relative error of � in NO.ln n�ln �/ time
provided j�j � .2L

p
deg f /�1, where L D L. f / is a parameter bounding the

Lipschitz constant of f from above and N is the number of monomials in f . As
a corollary, we obtain a quasi-polynomial algorithm, which, given such an f with
coefficients ˙1 and such that every variable enters not more than 4 monomials,
approximates the maximum of f on f�1; 1gn within a factor of O

�
ı�1
p

deg f
�
,

provided the maximum is Nı for some 0 < ı � 1. If every variable enters not
more than k monomials for some fixed k > 4, we are able to establish a similar
result when ı � .k � 1/=k.

1991 Mathematics Subject Classification. 90C09, 68C25, 68W25, 68R05.

1 Introduction and Main Results

1.1 Polynomials and Partition Functions

Let f�1; 1gn be the n-dimensional Boolean cube, that is, the set of all 2n n-vectors
x D .˙1; : : : ;˙1/ and let f W f�1; 1gn �! C be a polynomial with complex
coefficients. We assume that f is defined as a linear combination of square-free
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monomials:

f .x/ D
X

I�f1;:::;ng
˛IxI where ˛I 2 C for all I

and xI D
Y

i2I

xi for x D .x1; : : : ; xn/ ;

(1)

where we agree that x; D 1. As is known, the monomials xI for I � f1; : : : ; ng
constitute a basis of the vector space of functions f W f�1; 1gn �! C.

We introduce two parameters measuring the complexity of the polynomial f in
(1). The degree of f is the largest degree of a monomial xI appearing in (1) with a
non-zero coefficient, that is, the maximum cardinality jIj such that ˛I ¤ 0:

deg f D max
IW ˛I¤0

jIj:

We also introduce a parameter which controls the Lipschitz constant of f :

L. f / D max
iD1;:::;n

X

I�f1;:::;ng
i2I

j˛I j:

Indeed, if dist is the metric on the cube,

dist.x; y/ D
nX

iD1
jxi � yij where x D .x1; : : : ; xn/ and y D . y1; : : : ; yn/

then

j f .x/� f . y/j � L. f / dist.x; y/:

We consider f�1; 1gn as a finite probability space endowed with the uniform
measure.

For � 2 C and a polynomial f W f�1; 1gn �! C, we introduce the partition
function

1

2n

X

x2f�1;1gn
e�f .x/ D Ee�f :

Our first main result bounds from below the distance from the zeros of the
partition function to the origin.
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Theorem 1.1 Let f W f�1; 1gn �! C be a polynomial and let � 2 C be such that

j�j � 0:55

L. f /
p

deg f
:

Then

E e�f ¤ 0:

If, additionally, the constant term of f is 0 then

ˇ
ˇE e�f

ˇ
ˇ � .0:41/n:

We prove Theorem 1.1 in Sect. 4. As a simple example, let f .x1; : : : ; xn/ D x1C
� � � C xn. Then

E e�f D �E e�x1
� � � � �E e�xn

� D


e� C e��

2

�n

:

We have L. f / D deg f D 1 and Theorem 1.1 predicts that E e�f ¤ 0 provided
j�j � 0:55. Indeed, the smallest in the absolute value root of E e�f is � D �i=2
with j�j D �=2 � 1:57. If we pick f .x1; : : : ; xn/ D ax1 C : : : C axn for some real
constant a > 0 then the smallest in the absolute value root of E e�f is �i=2a with
j�j inversely proportional to L. f /, just as Theorem 1.1 predicts. It is not clear at the
moment whether the dependence of the bound in Theorem 1.1 on deg f is optimal.

As we will see shortly, Theorem 1.1 implies that E e�f can be efficiently
computed if j�j is strictly smaller than the bound in Theorem 1.1. When computing
E e�f , we may assume that the constant term of f is 0, since

E e�. fC˛/ D e�˛E e�f

and hence adding a constant to f results in multiplying the partition function by a
constant.

For a given f , we consider a univariate function

� 7�! E e�f :

As follows from Theorem 1.1, we can choose a branch of

g.�/ D ln
�
E e�f

�
for j�j � 0:55

L. f /
p

deg f

such that g.0/ D 0. It follows that g.�/ is well-approximated by a low degree Taylor
polynomial at 0.
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Theorem 1.2 Let f W f�1; 1gn �! C be a polynomial with zero constant term and
let

g.�/ D ln
�
E e�f

�
for j�j � 0:55

L. f /
p

deg f
:

For a positive integer m � 5n, let

Tm. f I�/ D
mX

kD1

�k

kŠ

dk

d�k
g.�/

ˇ
ˇ
ˇ
�D0

be the degree m Taylor polynomial of g.�/ computed at � D 0. Then for n � 2

jg.�/� Tm. f I�/j � 50n

.mC 1/.1:1/m C e�n

provided

j�j � 1

2L. f /
p

deg f
: (2)

In Sect. 3, we deduce Theorem 1.2 from Theorem 1.1.
As we discuss in Sect. 3.1, for a polynomial f given by (1), the value of Tm. f I�/

can be computed in nNO.m/ time, where N is the number of monomials in the
representation (1). Theorem 1.2 implies that as long as � � e�n, by choosing
m D O

�
ln n � ln �

�
, we can compute the value of E e�f within relative error � in

NO.ln n�ln �/ time provided � satisfies the inequality (2). For � exponentially small
in n, it is more efficient to evaluate E e�f directly from the definition.

1.2 Relation to Prior Work

This paper is a continuation of a series of papers by the author [3, 4] and by
the author and P. Soberón [5, 6] on algorithms to compute partition functions in
combinatorics, see also [16]. The main idea of the method is that the logarithm of
the partition function is well-approximated by a low-degree Taylor polynomial at
the temperatures above the phase transition (the role of the temperature is played by
1=�), while the phase transition is governed by the complex zeros of the partition
function, cf. [15, 18].

The main work of the method consists of bounding the complex roots of the
partition function, as in Theorem 1.1. While the general approach of this paper
looks similar to the approach of [3–5] and [6] (a martingale type and a fixed point
type arguments), in each case bounding complex roots requires some effort and new
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ideas. Once the roots are bounded, it is relatively straightforward to approximate the
partition function as in Theorem 1.2.

Another approach to computing partition functions, also rooted in statistical
physics, is the correlation decay approach, see [17] and [1]. While we did not
pursue that approach, in our situation it could conceivably work as follows: given
a polynomial f W f�1; 1gn �! R and a real � > 0, we consider the Boolean
cube as a finite probability space, where the probability of a point x 2 f�1; 1gn is
e�f .x/=E e�f . This makes the coordinates x1; : : : ; xn random variables. We consider
a graph with vertices x1; : : : ; xn and edges connecting two vertices xi and xj if there
is a monomial of f containing both xi and xj. This introduces a graph metric on
the variables x1; : : : ; xn and one could hope that if � is sufficiently small, we have
correlation decay: the random variable xi is almost independent on the random
variables sufficiently distant from xi in the graph metric. This would allow us to
efficiently approximate the probabilities P .xi D 1/ and P .xi D �1/ and then
recursively estimate E e�f .

While both approaches treat the phase transition as a natural threshold for
computability, the concepts of phase transition in our method (complex zeros of the
partition function) and in the correlation decay approach (non-uniqueness of Gibbs
measures) though definitely related and even equivalent for some spin systems [8],
in general are different.

Theorem 1.2 together with the algorithm of Sect. 3.1 below implies that to
approximate E e�f within a relative error of � > 0, it suffices to compute moments
E f k for k D O

�
ln ��1

�
. This suggests some similarity with one of the results of [13],

where (among other results) it is shown that the number of satisfying assignments
of a DNF on n Boolean variables is uniquely determined by the numbers of
satisfying assignments for all possible conjunctions of k � 1 C log2 n clauses of
the DNF (though this is a purely existential result with no algorithm attached). Each
conjunction of the DNF can be represented as a polynomial

�j.x/ D 1

2jSjj
Y

i2Sj

.1C �ixi/ where

Sj � f1; : : : ; ng and �i 2 f�1; 1g;

and we let

f .x/ D
mX

jD1
�j.x/:

Then the number of points x 2 f�1; 1gn such that f .x/ > 0 is uniquely determined
by various expectations E�j1 � � ��jk for k � 1Clog2 n. The probability that f .x/ D 0
for a random point x 2 f�1; 1gn sampled from the uniform distribution, can be
approximated by E e��f for a sufficiently large� > 0. The expectations are precisely
those that arise when we compute the moments E f k. It is not clear at the moment
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whether the results of this paper can produce an efficient way to compute the number
of satisfying assignments.

2 Applications to Optimization

2.1 Maximizing a Polynomial on the Boolean Cube

Let f W f�1; 1gn �! R be a polynomial with real coefficients defined by its
monomial expansion (1). As is known, various computationally hard problems of
discrete optimization, such as finding the maximum cardinality of an independent
set in a graph, finding the minimum cardinality of a vertex cover in a hypergraph
and the maximum constraint satisfaction problem can be reduced to finding the
maximum of f on the Boolean cube f�1; 1gn, see, for example, [7].

The problem is straightforward if deg f � 1. If deg f D 2, it may already be quite
hard even to solve approximately: Given an undirected simple graph G D .V;E/
with set V D f1; : : : ; ng of vertices and set E � �V

2

�
of edges, one can express

the largest cardinality of an independent set (a set vertices no two of which are
connected by an edge of the graph), as the maximum of

f .x/ D 1

2

nX

iD1
.xi C 1/� 1

4

X

fi;jg2E

.1C xi/
�
1C xj

�

on the cube f�1; 1gn. It is an NP-hard problem to approximate the size of the largest
independent set in a given graph on n vertices within a factor of n1�� for any 0 <
� � 1, fixed in advance [10, 19]. If deg f D 2 and f does not contain linear or
constant terms, the problem reduces to the max cut problem in a weighted graph
(with both positive and negative weights allowed on the edges), where there exists a
polynomial time algorithm achieving an O.ln n/ approximation factor, see [14] for
a survey.

If deg f � 3, no efficient algorithm appears to be known that would outperform
choosing a random point x 2 f�1; 1gn. The maximum of a polynomial f with
deg f D 3 and no constant, linear or quadratic terms can be approximated within an
O
�p

n= ln n
�

factor in polynomial time, see [14]. Finding the maximum of a general
real polynomial (1) on the Boolean cube f�1; 1gn is equivalent to the problem of
finding the maximum weight of a subset of a system of weighted linear equations
over Z2 that can be simultaneously satisfied [12]. Assuming that deg f is fixed in
advance, f contains N monomials and the constant term of f is 0, a polynomial time
algorithm approximating the maximum of f within a factor of O.

p
N/ is constructed

in [12]. More precisely, the algorithm from [12] constructs a point x such that f .x/
is within a factor of O.

p
N/ from

P
I j˛I j for f defined by (1). If deg f � 3, it is

unlikely that a polynomial time algorithm exists approximating the maximum of f
within a factor of 2.ln N/1�� for any fixed 0 < � � 1 [12], see also [10].
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Let us choose

� D 1

2L. f /
p

deg f

as in Theorem 1.2. As is discussed in Sect. 3.2, by successive conditioning, we can
compute in NO.ln n�ln �/ time a point y 2 f�1; 1gn which satisfies

e�f . y/ � .1 � �/E e�f (3)

for any given 0 < � � 1.
How well a point y satisfying (3) approximates the maximum value of f on the

Boolean cube f�1; 1gn? We consider polynomials with coefficients �1, 0 and 1,
where the problem of finding an x 2 f�1; 1gn maximizing f .x/ is equivalent to
finding a vector in Z

n
2 satisfying the largest number of linear equations from a given

list of linear equations over Z2.

Theorem 2.1 Let

f .x/ D
X

I2F
˛IxI

be a polynomial with zero constant term, where F is a family of non-empty subsets
of the set f1; : : : ; ng and ˛I D ˙1 for all I 2 F . Let

max
x2f�1;1gn

f .x/ D ıjF j for some 0 � ı � 1:

Suppose further that every variable xi enters at most four monomials xI for I 2 F .
Then

E e�f � exp



3�2ı2

16
jF j

�

for 0 � � � 1:

Since E f D 0, the maximum of f is positive unless F D ; and f 	 0. It
is not clear whether the restriction on the number of occurrences of variables in
Theorem 2.1 is essential or an artifact of the proof. We can get a similar estimate for
any number occurrences provided the maximum of f is sufficiently close to jF j.
Theorem 2.2 Let

f .x/ D
X

I2F
˛IxI

be a polynomial with zero constant term, where F is a family of non-empty subsets
of the set f1; : : : ; ng and ˛I D ˙1 for all I 2 F . Let k > 2 be an integer and suppose
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that every variable xi enters at most k monomials xI for I 2 F . If

max
x2f�1;1gn

f .x/ � k � 1
k
jF j

then

E e�f � exp



3�2

16
jF j

�

for all 0 � � � 1:

We prove Theorems 2.1 and 2.2 in Sect. 5.
Let f be a polynomial of Theorem 2.1 and suppose that, additionally, jIj � d for

all I 2 F , so that deg f � d. We have L. f / � 4 and we choose

� D 1

8
p

d
:

Let y 2 f�1; 1gn be a point satisfying (3). Then

f . y/ � 1

�
ln E e�f C ln.1 � �/

�
� 3�ı2

16
jF j C ln.1 � �/

�
:

That is, if the maximum of f is at least ıjF j for some 0 < ı � 1, we can approximate

the maximum in quasi-polynomial time within a factor of O
�
ı�1
p

d
	

. Equivalently,

if for some 0 < ı � 0:5 there is a vector in Z
n
2 satisfying at least .0:5 C ı/jF j

equations of a set F of linear equations over Z2, where each variable enters at most
4 equations, in quasi-polynomial time we can compute a vector v 2 Z

n
2 satisfying

at least .0:5C ı1/jF j linear equations from the system, where ı1 D �.ı2=
p

d/ and
d is the largest number of variables per equation.

Similarly, we can approximate in quasi-polynomial time the maximum of f in
Theorem 2.2 within a factor of O.k

p
d/ provided the maximum is sufficiently close

to jF j, that is, is at least k�1
k jF j.

In Theorems 2.1 and 2.2, one can check in polynomial time whether the
maximum of f is equal to jF j, as this reduces to testing the feasibility of a system
of linear equations over Z2. However, for any fixed 0 < ı < 1, testing whether the
maximum is at least ıjF j is computationally hard, cf. [10].

Håstad [9] constructed a polynomial time algorithm that approximates the
maximum of f within a factor of O.kd/. In [2], see also [11], a polynomial algorithm
is constructed that finds the maximum of f within a factor of eO.d/

p
k, provided

f is an odd function. More precisely, the algorithm finds a point x such that f .x/ is
within a factor of eO.d/

p
k from jF j.
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3 Computing the Partition Function

3.1 Computing the Taylor Polynomial of g.�/ D ln
�
E e�f

�

First, we discuss how to compute the degree m Taylor polynomial Tm. f I�/ at � D 0
of the function

g.�/ D ln
�
E e�f

�
;

see Theorem 1.2. Let us denote

h.�/ D E e�f and g.�/ D ln h.�/:

Then

g0 D h0

h
and hence h0 D g0h:

Therefore,

h.k/.0/ D
kX

jD1

 
k � 1
j� 1

!

g.j/.0/h.k�j/.0/ for k D 1; : : : ;m: (4)

If we calculate the derivatives

h.0/; h.1/.0/; : : : ; h.m/.0/; (5)

then we can compute

g.0/; g.1/.0/; : : : ; g.m/.0/

by solving a non-singular triangular system of linear equations (4) which has
h.0/ D 1 on the diagonal. Hence our goal is to calculate the derivatives (5).

We observe that

h.k/.0/ D 1

2n

X

x2f�1;1gn
f k.x/ D E f k:

For a polynomial f defined by its monomial expansion (1) we have

E f D ˛;:
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We can consecutively compute the monomial expansion of f ; f 2; : : : ; f m by using
the following multiplication rule for monomials on the Boolean cube f�1; 1gn:

xIxJ D xI�J ;

where I�J is the symmetric difference of subsets I; J � f1; : : : ; ng. It follows then
that for a polynomial f W f�1; 1gn �! C given by its monomial expansion (1) and a
positive integer m, the Taylor polynomial

Tm. f I�/ D
mX

kD1

�k

kŠ

dk

d�k
g.�/

ˇ
ˇ
ˇ
�D0

can be computed in nNO.m/ time, where N is the number of monomials in f .
Our next goal is deduce Theorem 1.2 from Theorem 1.1. The proof is based on

the following lemma.

Lemma 3.1 Let p W C �! C be a univariate polynomial and suppose that for some
ˇ > 0 we have

p.z/ ¤ 0 provided jzj � ˇ:

Let 0 < � < ˇ and for jzj � � , let us choose a continuous branch of

g.z/ D ln p.z/:

Let

Tm.z/ D g.0/C
mX

kD1

zk

kŠ

dk

dzk
g.z/

ˇ
ˇ
ˇ
zD0

be the degree m Taylor polynomial of g.z/ computed at z D 0. Then for

� D ˇ

�
> 1

we have

jg.z/ � Tm.z/j � deg p

.mC 1/�m.� � 1/ for all jzj � �:

Proof Let n D deg p and let ˛1; : : : ; ˛n be the roots of p, so we may write

p.z/ D p.0/
nY

iD1



1 � z

˛i

�

where j˛ij � ˇ for i D 1; : : : ; n:
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Then

g.z/ D g.0/C
nX

iD1
ln



1 � z

˛i

�

;

where we choose the branch of the logarithm which is 0 when z D 0. Using the
Taylor series expansion of the logarithm, we obtain

ln



1 � z

˛i

�

D �
mX

kD1

zk

k˛k
i

C �m provided jzj � �;

where

j�mj D
ˇ
ˇ
ˇ
ˇ
ˇ
�
C1X

kDmC1

zk

k˛k
i

ˇ
ˇ
ˇ
ˇ
ˇ
�

C1X

kDmC1

� k

kˇk
� 1

.mC 1/�m.� � 1/ :

Therefore,

g.z/ D g.0/�
nX

iD1

mX

kD1

zk

k˛k
i

C �m for jzj � �;

where

j�mj � n

.mC 1/�m.� � 1/ :

It remains to notice that

Tm.z/ D g.0/�
nX

iD1

mX

kD1

zk

k˛k
i

:

ut
Next, we need a technical bound on the approximation of ez by its Taylor

polynomial.

Lemma 3.2 Let  > 0 be a real number and let m � 5 be an integer. Then

ˇ
ˇ
ˇ
ˇ
ˇ
ez �

mX

kD0

zk

kŠ

ˇ
ˇ
ˇ
ˇ
ˇ
� e�2 for all z 2 C such that jzj � :
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Proof For all z 2 C such that jzj � , we have

ˇ
ˇ
ˇ
ˇ
ˇ
ez �

mX

kD0

zk

kŠ

ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ

C1X

kDmC1

zk

kŠ

ˇ
ˇ
ˇ
ˇ
ˇ
�

C1X

kDmC1

k

kŠ
D mC1

.mC 1/Š
C1X

kD0

k.mC 1/Š
.kC mC 1/Š

� mC1

.mC 1/Š
C1X

kD0

k

kŠ
D mC1e

.mC 1/Š �
mC1eCmC1

.mC 1/mC1 :

Since m � 5, we obtain

ˇ
ˇ
ˇ
ˇ
ˇ
ez �

C1X

kD0

zk

kŠ

ˇ
ˇ
ˇ
ˇ
ˇ
� mC1eCmC1

5mC1mC1 D
e

.5=e/mC1
� e

.5=e/5
� e�2:

and the proof follows. ut
Proof of Theorem 1.2 Without loss of generality, we assume that L. f / D 1. Since
the constant term of f is 0, for any x 2 f�1; 1gn, we have

jf .x/j �
nX

iD1

X

IW i2I

j˛I j � n:

Applying Lemma 3.2, we conclude that

ˇ
ˇ
ˇ
ˇ
ˇ
e�f .x/ �

5nX

kD0

�
�f .x/

�k

kŠ

ˇ
ˇ
ˇ
ˇ
ˇ
� e�2n for all x 2 f�1; 1gn (6)

provided j�j � 1. Let

p.�/ D 1C
5nX

kD1

�k

kŠ

dk

d�k

�
E e�f

� ˇˇ
ˇ
�D0

be the degree 5n Taylor polynomial of the function � 7�! E e�f at � D 0. From (6)
it follows that

ˇ
ˇE e�f � p.�/

ˇ
ˇ � e�2n provided j�j � 1:

From Theorem 1.1, we conclude that

p.�/ ¤ 0 for all � 2 C such that j�j � 0:55p
deg f
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and, moreover,

ˇ
ˇln p.�/� ln

�
E e�f

�ˇ
ˇ � e�n provided j�j � 0:55p

deg f
and n � 2: (7)

Applying Lemma 3.1 with

ˇ D 0:55p
deg f

; � D 0:5p
deg f

and � D ˇ

�
D 1:1;

we conclude that for the Taylor polynomial of ln p.�/ at � D 0,

Tm.�/ D ln p.0/C
mX

kD1

�k

kŠ

dk

d�k
ln p.�/

ˇ
ˇ
ˇ
�D0

we have

jTm.�/ � ln p.�/j � 50n

.mC 1/.1:1/m provided j�j � 1

2
p

deg f
: (8)

It remains to notice that the Taylor polynomials of degree m � 5n of the functions

� 7�! ln
�
E e�f

�
and � 7�! ln p.�/

at � D 0 coincide, since both are determined by the first m derivatives of respectively
E e�f and p.�/ at � D 0, cf. Sect. 3.1, and those derivatives coincide. The proof now
follows by (7) and (8). ut

3.2 Computing a Point y in the Cube with a Large
Value of f. y/

We discuss how to compute a point y 2 f�1; 1gn satisfying (3). We do it by
successive conditioning and determine one coordinate of y D . y1; : : : ; yn/ at a time.
Let FC and F� be the facets of the cube f�1; 1gn defined by the equations xn D 1

and xn D �1 respectively for x D .x1; : : : ; xn/, x 2 f�1; 1gn. Then FC and F� can
be identified with the .n � 1/-dimensional cube f�1; 1gn�1 and we have

E e�f D 1

2
E
�
e�f jFC�C 1

2
E
�
e�f jF�� :

Moreover, for the restrictions fC and f� of f onto FC and F� respectively,
considered as polynomials on f�1; 1gn�1, we have

deg fC; deg f� � deg f and L. fC/; L. f�/ � L. f /:
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Using the algorithm of Sect. 3.1 and Theorem 1.2, we compute E
�
e�f jFC� and

E
�
e�f jF�� within a relative error �=2n, choose the facet with the larger computed

value, let yn D 1 if the value of E
�
e�f jFC� appears to be larger and let yn D �1

if the value of E
�
e�f jF�� appears to be larger and proceed further by conditioning

on the value of yn�1. For polynomials with N monomials, the complexity of the
algorithm is NO.ln n/.

4 Proof of Theorem 1.1

To prove Theorem 1.1, we consider restrictions of the partition function onto faces
of the cube.

4.1 Faces

A face F � f�1; 1gn consists of the points x where some of the coordinates of x are
fixed at 1, some are fixed at �1 and others are allowed to vary (a face is always non-
empty). With a face F, we associate three subsets IC.F/; I�.F/; I.F/ � f1; : : : ; ng
as follows:

IC.F/ D
˚
i W xi D 1 for all x 2 F; x D .x1; : : : ; xn/

�
;

I�.F/ D
˚
i W xi D �1 for all x 2 F; x D .x1; : : : ; xn/

�
and

I.F/ Df1; : : : ; ng n .IC.F/[ I�.F// :

Consequently,

F D
n
.x1; : : : ; xn/ where xi D 1 for i 2 IC.F/ and

xi D �1 for i 2 I�.F/
o
:

In particular, if IC.F/ D I�.F/ D ; and hence I.F/ D f1; : : : ; ng, we have
F D f�1; 1gn. We call the number

dim F D jI.F/j

the dimension of F.
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For a subset J 2 f1; : : : ; ng, we denote by f�1; 1gJ the set of all points

x D �xj W j 2 J
�

where xj D ˙1:

Let F � f�1; 1gn be a face. For a subset J � I.F/ and a point � 2 f�1; 1gJ,
� D ��j W j 2 J

�
, we define

F� D ˚x 2 F; x D .x1; : : : ; xn/ W xj D �j for j 2 J
�
:

In words: F� is obtained from F by fixing the coordinates from some set J � I.F/
of free coordinates to 1 or to �1. Hence F� is also a face of f�1; 1gn and we think
of F� � F as a face of F. We can represent F as a disjoint union

F D
[

�2f�1;1gJ
F� for any J � I.F/: (9)

4.2 The Space of Polynomials

Let us fix a positive integer d. We identify the set of all polynomials f as in (1) such
that deg f � d and the constant term of f is 0 with C

N , where

N D N.n; d/ D
dX

kD1

 
n

k

!

:

For ı > 0, we consider a closed convex set U.ı/ � C
N consisting of the polynomials

f W f�1; 1gn �! C such that deg f � d and L. f / � ı. In other words, U.ı/ consists
of the polynomials

f .x/ D
X

I�f1;:::;ng
1�jIj�d

˛IxI where
X

IW i2I

j˛Ij � ı for i D 1; : : : ; n:

4.3 Restriction of the Partition Function onto a Face

Let f W f�1; 1gn �! C be a polynomial and let F � f�1; 1gn be a face. We define

E
�
e f jF� D 1

2dim F

X

x2F

ef .x/:
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We suppose that f is defined by its monomial expansion as in (1) and consider
E
�
e f jF� as a function of the coefficients ˛I . Using (9) we deduce

@

@˛J
E
�
e f jF� D 1

2dim F

X

x2F

xJef .x/

D .�1/jI�.F/\Jj

2jI.F/j



X

�2f�1;1gI.F/\J

�D.�jW j2I.F/\J/

0

@
Y

j2I.F/\J

�j

1

A
X

x2F�

ef .x/

D .�1/jI�.F/\Jj

2jI.F/\Jj



X

�2f�1;1gI.F/\J

�D.�jW j2I.F/\J/

0

@
Y

j2I.F/\J

�j

1

AE
�
e f jF�� :

(10)

In what follows, we identify complex numbers with vectors in R
2 D C and

measure angles between non-zero complex numbers.

Lemma 4.1 Let 0 < � � 1 and ı > 0 be real numbers and let F � f�1; 1gn be a
face. Suppose that for every f 2 U.ı/ we have E

�
e f jF� ¤ 0 and, moreover, for any

K � I.F/ we have

ˇ
ˇE
�
e f jF�ˇˇ �

��

2

	jKj X

�2f�1;1gK

ˇ
ˇE
�
e f ;F�

�ˇ
ˇ :

Given f 2 U.ı/ and a subset J � f1; : : : ; ng such that jJj � d, letbf 2 U.ı/ be
the polynomial obtained from f by changing the coefficient ˛J of the monomial xJ

in f to �˛J and leaving all other coefficients intact. Then the angle between the two

non-zero complex numbers E
�
e f jF� and E

�
ebf jF

	
does not exceed

2j˛Jj
�d

:

Proof Without loss of generality, we assume that ˛J ¤ 0.
We note that for any f 2 U.ı/, we havebf 2 U.ı/. Since E

�
e f jF� ¤ 0 for all

f 2 U.ı/, we may consider a branch of ln E
�
e f jF� for f 2 U.ı/.
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Let us fix coefficients ˛I for I ¤ J in

f .x/ D
X

I�f1;:::;ng
1�jIj�d

˛IxI (11)

and define a univariate function

g.˛/ D ln E
�
e f jF� where j˛j � j˛J j

obtained by replacing ˛J with ˛ in (11).
We obtain

g0.˛/ D @

@˛J
ln E

�
e f jF� D


@

@˛J
E
�
e f jF�

�.
E
�
e f jF� : (12)

Let

k D jI.F/\ Jj � jJj � d:

Using (10) we conclude that

ˇ
ˇ
ˇ
ˇ
@

@˛J
E
�
e f jF�

ˇ
ˇ
ˇ
ˇ �

1

2k

X

�2f�1;1gI.F/\J

ˇ
ˇE
�
e f jF��ˇˇ : (13)

On the other hand,

ˇ
ˇE
�
e f jF�ˇˇ �

��

2

	k X

�2f�1;1gI.F/\J

ˇ
ˇE
�
e f jF��ˇˇ : (14)

Comparing (12), (13), and (14), we conclude that

jg0.˛/j D
ˇ
ˇ
ˇ
ˇ
@

@˛J
ln E

�
e f jF�

ˇ
ˇ
ˇ
ˇ �

1

� k
� 1

�d
:

Then

ˇ
ˇ
ˇln E

�
e f jF�� ln E

�
ebf jF

	ˇ
ˇ
ˇ D jg .˛J/ � g .�˛J/j � 2j˛J j max

j˛j�j˛J j
ˇ
ˇg0.˛/

ˇ
ˇ � 2j˛Jj

�d

and the proof follows. ut
Lemma 4.2 Let � � 0 and ı > 0 be real numbers such that �ı < � , let F �
f�1; 1gn be a face such that dim F < n and suppose that E

�
e f jF� ¤ 0 for all

f 2 U.ı/. Assume that for any f 2 U.ı/, for any J � f1; : : : ; ng such that jJj � d,
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and for the polynomialbf obtained from f by changing the coefficient ˛J to �˛J and
leaving all other coefficients intact, the angle between non-zero complex numbers

E
�
e f jF� and E

�
ebf jF

	
does not exceed � j˛J j.

Suppose thatbF � f�1; 1gn is a face obtained from F by changing the sign of one
of the coordinates in IC.F/[ I�.F/. Then G D F [bF is a face of f�1; 1gn and for

� D cos
�ı

2

we have

ˇ
ˇE
�
e f jG�ˇˇ � �

2

�ˇ
ˇE
�
e f jF�ˇˇC

ˇ
ˇ
ˇE
�

e f jbF
	ˇ
ˇ
ˇ
	

for any f 2 U.ı/.

Proof Suppose thatbF is obtained from F by changing the sign of the i-th coordinate.
Let Qf be a polynomial obtained from f by replacing the coefficients ˛I by �˛I

whenever i 2 I and leaving all other coefficients intact. Then Qf 2 U.ı/ and the

angle between E
�
e f jF� and E

�
eQf jF

	
does not exceed

�
X

IW i2I

j˛Ij � �ı:

On the other hand, E
�

eQf jF
	
D E

�
ef jbF

	
and

E
�
e f jG� D 1

2
E
�
e f jF�C 1

2
E
�

e f jbF
	
D 1

2
E
�
e f jF�C 1

2
E
�

eQf jF
	
:

Thus E
�
e f jG� is the sum of two non-zero complex numbers, the angle between

which does not exceed �ı < � . Interpreting the complex numbers as vectors in
R
2 D C, we conclude that the length of the sum is at least as large as the length of

the sum of the orthogonal projections of the vectors onto the bisector of the angle
between them, and the proof follows. ut
Proof of Theorem 1.1 Let us denote d D deg f .

One can observe that the equation

2

cos


�ˇ

2

� D �
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has a solution � � 0 for all sufficiently small ˇ > 0. Numerical computations show
that one can choose

ˇ D 0:55;

in which case

� � 2:748136091:

Let

ı D ˇp
d
D 0:55p

d
:

We observe that

0 < �ı � �ˇ � 1:511474850 < �:

Let

� D cos
�ı

2
D cos

�ˇ

2
p

d
:

In particular,

� � cos
�ˇ

2
� 0:7277659962:

Next, we will use the inequality



cos
˛p
d

�d

� cos˛ for 0 � ˛ � �

2
and d � 1: (15)

One can obtain (15) as follows. Since tan.0/ D 0 and the function tan˛ is convex
for 0 � ˛ < �=2, we have

p
d tan

˛p
d
� tan ˛ for 0 � ˛ < �

2
:

Integrating, we obtain

d ln cos
˛p
d
� ln cos˛ for 0 � ˛ < �

2

and (15) follows.
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Using (15), we obtain

2
�

cos �ı
2

	d D
2



cos �ˇ
2
p

d

�d �
2

cos


�ˇ
2

� D �: (16)

We prove by induction on m D 0; 1; : : : ; n the following three statements.

1. Let F � f�1; 1gn be a face of dimension m. Then, for any f 2 U.ı/, we have
E
�
e f jF� ¤ 0.

2. Let F � f�1; 1gn be a face of dimension m, let f 2 U.ı/ and letbf be a polynomial
obtained from f by changing one of the coefficients ˛J to �˛J and leaving all
other coefficients intact. Then the angle between two non-zero complex numbers

E
�
e f jF� and E

�
ebf jF

	
does not exceed � j˛J j.

3. Let F � f�1; 1gn be a face of dimension m and let f 2 U.ı/. Assuming that
m > 0 and hence I.F/ ¤ ;, let us choose any i 2 I.F/ and let FC and F� be
the corresponding faces of F obtained by fixing xi D 1 and xi D �1 respectively.
Then

ˇ
ˇE
�
e f jF�ˇˇ � �

2

�ˇ
ˇE
�
e f jFC�ˇˇC ˇˇE �

e f jF��ˇˇ� :

If m D 0 then F consists of a single point x 2 f�1; 1gn, so

E
�
e f jF� D ef .x/ ¤ 0

and statement 1 holds. Assuming that bf is obtained from f by replacing the
coefficient ˛J with �˛J and leaving all other coefficients intact, we get

E
�
e f jF�

E
�

ebf jF
	 D exp

˚
2˛JxJ

�
:

Since

j2˛JxJ j D 2j˛Jj � � j˛J j;

the angle between E
�
e f jF� and E

�
ebf jF

	
does not exceed � j˛J j and statement 2

follows. The statement 3 is vacuous for m D 0.
Suppose that statements 1 and 2 hold for faces of dimension m < n. Lemma 4.2

implies that if F is a face of dimension m C 1 and FC and F� are m-dimensional
faces obtained by fixing xi for some i 2 I.F/ to xi D 1 and xi D �1 respectively,
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then

ˇ
ˇE
�
e f jF�ˇˇ �



cos
�ı

2

� ˇˇE
�
e f jFC�ˇˇC ˇˇE �

e f jF��ˇˇ
2

D�
2

�ˇ
ˇE
�
e f jFC�ˇˇC ˇˇE �

e f jF��ˇˇ�

and the statement 3 holds for .mC 1/-dimensional faces.
The statement 3 for .m C 1/-dimensional faces and the statement 1 for m-

dimensional faces imply the statement 1 for .mC 1/-dimensional faces.
Finally, suppose that the statements 1 and 3 hold for all faces of dimension at

most mC1. Let us pick a face F � f�1; 1gn of dimension mC1, where 0 � m < n.
Applying the condition of statement 3 recursively to the faces of F, we get that for
any K � I.F/,

ˇ
ˇE
�
e f jF�ˇˇ �

��

2

	jKj X

�2f�1;1gK

ˇ
ˇE
�
e f jF��ˇˇ :

Then, by Lemma 4.1, the angle between two non-zero complex numbers E
�
e f jF�

and E
�

ebf jF
	

does not exceed

2j˛Jj
�d
D 2j˛J j
�

cos �ı
2

	d
� � j˛J j

by (16), and the statement 2 follows for faces of dimension mC 1.
This proves that statements 1–3 hold for faces F of all dimensions. Iterating

statement 3, we obtain that for any f 2 U.ı/, we have

ˇ
ˇE e f

ˇ
ˇ �

��

2

	n X

x2f�1;1gn
jef .x/j:

Since for any x 2 f�1; 1gn and for any f 2 U.ı/, we have

jf .x/j �
nX

iD1

X

I�f1;:::;ng
i2I

j˛Ij � nı � ˇn;

we conclude that

ˇ
ˇE e f

ˇ
ˇ � �ne�ˇn � .0:41/n:
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The proof follows since if f W f�1; 1gn �! C is a polynomial with zero constant
term and

j�j � 0:55

L. f /
p

deg f
;

then �f 2 U.ı/. ut

5 Proofs of Theorems 2.1 and 2.2

The proofs of Theorems 2.1 and 2.2 are based on the following lemma.

Lemma 5.1 Let

f .x/ D
X

I2F
˛IxI

be a polynomial such that ˛I � 0 for all I 2 F . Then

E e f �
Y

I2F


e˛I C e�˛I

2

�

:

Proof Since

e˛x D


e˛ C e�˛

2

�

C x


e˛ � e�˛

2

�

for x D ˙1;

we have

E e f D E
Y

I2F
e˛I xI D E

Y

I2F


e˛I C e�˛I

2

�

C xI


e˛I � e�˛I

2

��

: (17)

Since

e˛I � e�˛I

2
� 0 provided ˛I � 0

and

E
�
xI1 � � � xIk

� � 0 for all I1; : : : ; Ik;

expanding the product in (17) and taking the expectation, we get the desired
inequality. ut
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Next, we prove a similar estimate for functions f that allow some monomials
with negative coefficients.

Lemma 5.2 Let f .x/ D g.x/� h.x/ where

g.x/ D
X

I2G
xI; h.x/ D

X

I2H
xI; G \H D ;:

Suppose that the constant terms of g and h are 0 and that every variable xi enters
not more than k monomials of f for some integer k > 0. Then

E e�f � exp



3�2

8
.jGj � .k � 1/jHj/

�

for 0 � � � 1:

Proof Since E f D 0, by Jensen’s inequality we have

E e�f � 1

and the estimate follows if jGj � .k � 1/jHj. Hence we may assume that jGj >
.k � 1/jHj.

Given a function f W f�1; 1gn �! R and a set J � f1; : : : ; ng of indices, we
define a function (conditional expectation) fJ W f�1; 1gn�jJj �! R obtained by
averaging over variables xj with j 2 J:

fJ .xi W i … J/ D 1

2jJj
X

xjD˙1
j2J

f .x1; : : : ; xn/ :

In particular, fJ D f if J D ; and fJ D E f if J D f1; : : : ; ng. We obtain the
monomial expansion of fJ by erasing all monomials of f that contain xj with j 2 J.
By Jensen’s inequality we have

E e�f � E e�fJ for all real �: (18)

Let us choose a set J of indices with jJj � jHj such that every monomial in h.x/
contains at least one variable xj with j 2 J. Then every variable xj with j 2 J is
contained in at most .k � 1/ monomials of g.x/ and hence fJ is a sum of at least
jGj � .k � 1/jHj monomials.

From (18) and Lemma 5.1, we obtain

E e�f � E e�fJ �


e� C e��

2

�jGj�.k�1/jHj
�


1C �2

2

�jGj�.k�1/jHj
:
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Using that

ln.1C x/ � x � x2

2
D x

�
1 � x

2

	
for x � 0; (19)

we conclude that

E e�f � exp



�2

2



1 � �
2

4

�

.jGj � .k � 1/jHj/
�

� exp



3�2

8
.jGj � .k � 1/jHj/

�

as desired. ut
Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2 Let x0 2 f�1; 1gn, x0 D .�1; : : : ; �n/ be a maximum point
of f , so that

max
x2f�1;1gn

f .x/ D f .x0/:

Let us define Qf W f�1; 1gn �! R by

Qf .x1; : : : ; xn/ D f .�1x1; : : : ; �nxn/ :

Then

max
x2f�1;1gn

f .x/ D max
x2f�1;1gn

Qf .x/; E e�f D E e�Qf

and the maximum value of Qf on the cube f�1; 1gn is attained at u D .1; : : : ; 1/.
Hence without loss of generality, we may assume that the maximum value of f on
the cube f�1; 1gn is attained at u D .1; : : : ; 1/.

We write

f .x/ D g.x/� h.x/ where g.x/ D
X

I2G
xI and h.x/ D

X

I2H
xI

for some disjoint sets G and H of indices. Moreover,

max
x2f�1;1gn

f .x/ D f .u/ D jGj � jHj � k � 1
k
jF j:

Since

jGj C jHj D jF j;
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we conclude that

jGj � 2k � 1
2k
jF j and jHj � 1

2k
jF j:

By Lemma 5.2,

E e�f � exp



3�2

8
.jGj � .k � 1/jHj/

�

� exp



3�2

16
jF j

�

as desired. ut
To prove Theorem 2.1, we need to handle negative terms with more care.

Lemma 5.3 Let f .x/ D g.x/� h.x/ where

g.x/ D
X

I2G
xI; h.x/ D

X

I2H
xI; G \H D ;

and

jGj � jHj:

Suppose that the constant terms of g and h are 0 and that the supports I 2 H of
monomials in h.x/ are pairwise disjoint. Then

E e�f � exp



3�2

8

�p
jGj �

p
jHj

	2
�

for 0 � � � 1:

Proof By Jensen’s inequality we have

E e�f � exp f�E f g D 1;

which proves the lemma in the case when jGj D jHj. Hence we may assume that
jGj > jHj.

If jHj D 0 then, applying Lemma 5.1, we obtain

E e�f D E e�g �


e� C e��

2

�jGj
�


1C �2

2

�jGj
:

Using (19), we conclude that

E e�f � exp



�2

2



1� �
2

4

�

jGj
�

� exp



3�2

8
jGj
�

;

which proves the lemma in the case when jHj D 0. Hence we may assume that
jGj > jHj > 0.
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Since the supports I 2 H of monomials in h are pairwise disjoint, we have

E e�h D
Y

I2H
E e�xI D


e� C e��

2

�jHj
: (20)

Let us choose real p; q � 1, to be specified later, such that

1

p
C 1

q
D 1:

Applying the Hölder inequality, we get

E e�g=p D E
�
e�f=pe�h=p

� � �
E e�f

�1=p �
E e�qh=p

�1=q

and hence

E e�f �
�
E e�g=p

�p

�
E e�qh=p

�p=q
:

Applying Lemma 5.1 and formula (20), we obtain

E e�f �


e�=p C e��=p

2

�jGjp 
e�q=p C e��q=p

2

��jHjp=q

:

Since

ex2=2 � ex C e�x

2
� 1C x2

2
for x � 0;

we obtain

E e�f �


1C �2

2p2

�jGjp
exp




��
2qjHj
2p

�

:

Applying (19), we obtain

E e�f � exp



�2jGj
2p
� �

2qjHj
2p

� �
4jGj
8p3

�

:

Let us choose

p D
pjGj

pjGj �pjHj and q D
pjGj
pjHj :
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Then

E e�f � exp

8
<̂

:̂

�2

2

�p
jGj �

p
jHj

	2 �
�4
�pjGj �pjHj

	3

8
pjGj

9
>=

>;

D exp

8
<

:

�2

2

�p
jGj �

p
jHj

	2
0

@1 �
�2
�pjGj �pjHj

	

4
pjGj

1

A

9
=

;

� exp



3�2

8

�p
jGj �

p
jHj

	2
�

and the proof follows. ut
Lemma 5.4 Let f .x/ D g.x/� h.x/ where

g.x/ D
X

I2G
xI; h.x/ D

X

I2H
xI; G \H D ;

and

jGj � jHj:

Suppose that the constant terms of g and h are 0, that every variable xi enters at
most two monomials in h.x/ and that if xi enters exactly two monomials in h.x/ then
xi enters at most two monomials in g.x/. Then for 0 � � � 1, we have

E e�f � exp



3�2

8

�p
jGj �

p
jHj

	2
�

:

Proof We proceed by induction on the number k of variables xi that enter exactly
two monomials in h.x/. If k D 0 then the result follows by Lemma 5.3.

Suppose that k > 0 and that xi is a variable that enters exactly two monomials in
h.x/ and hence at most two monomials in g.x/. As in the proof of Lemma 5.2, let
fi W f0; 1gn�1 �! R be the polynomial obtained from f by averaging with respect to
xi. As in the proof of Lemma 5.2, we have

E e�f � E e�fi where fi.x/ D
X

I2Gi

xI �
X

I2Hi

xI

and Gi, respectively Hi, is obtained from G, respectively H, by removing supports
of monomials containing xi. In particular,

jHij D jHj � 2 and jGij � jGj � 2:
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Applying the induction hypothesis to fi, we obtain

E e�f � E e�fi � exp



3�2

8

�p
jGij �

p
jHij

	2
�

� exp



3�2

8

�p
jGj � 2 �

p
jHj � 2

	2
�

� exp



3�2

8

�p
jGj �

p
jHj

	2
�

and the proof follows. ut
Finally, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1 As in the proof of Theorem 2.2, without loss of generality we
may assume that the maximum of f is attained at u D .1; : : : ; 1/.

We write

f .x/ D g.x/� h.x/ where g.x/ D
X

I2G
xI and h.x/ D

X

I2H
xI

for some disjoint sets G and H of indices. Moreover,

max
x2f�1;1gn

f .x/ D f .u/ D jGj � jHj D ıjF j:

Since

jGj C jHj D jF j;

we conclude that

jGj D 1C ı
2
jF j and jHj D 1 � ı

2
jF j: (21)

For i D 1; : : : ; n let �Ci be the number of monomials in g that contain variable i and
let ��i be the number of monomials in h that contain xi. Then

�Ci C ��i � 4 for i D 1; : : : ; n: (22)

If for some i we have �Ci < ��i then for the point ui obtained from u by switching
the sign of the i-th coordinate, we have

f .ui/ D
�jGj � 2�Ci

� � �jHj � 2��i
� D jGj � jHj C 2 ���i � �Ci

�
> f .u/;

contradicting that u is a maximum point of f . Therefore,

�Ci � ��i for i D 1; : : : ; n
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and, in view of (22), we conclude that

��i � 2 for i D 1; : : : ; n and if ��i D 2 then �Ci D 2:

By Lemma 5.4,

E e�f � exp



3�2

8

�p
jGj �

p
jHj

	2
�

:

Using (21), we deduce that

E e�f � exp

8
<

:

3�2

8

 r
1C ı
2
�
r
1 � ı
2

!2

jF j
9
=

;

D exp



3�2

8

�
1 �
p
1 � ı2

	
jF j

�

� exp



3�2ı2

16
jF j

�

;

which completes the proof. ut
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Siegel’s Lemma Is Sharp

József Beck

Abstract Siegel’s Lemma is concerned with finding a “small” nontrivial integer
solution of a large system of homogeneous linear equations with integer coefficients,
where the number of variables substantially exceeds the number of equations (for
example, n equations and N variables with N � 2n), and “small” means small in the
maximum norm. Siegel’s Lemma is a clever application of the Pigeonhole Principle,
and it is a pure existence argument. The basically combinatorial Siegel’s Lemma is
a key tool in transcendental number theory and diophantine approximation. David
Masser (a leading expert in transcendental number theory) asked the question
whether or not the Siegel’s Lemma is best possible. Here we prove that the so-
called “Third Version of Siegel’s Lemma” is best possible apart from an absolute
constant factor. In other words, we show that no other argument can beat the
Pigeonhole Principle proof of Siegel’s Lemma (apart from an absolute constant
factor). To prove this, we combine a concentration inequality (i.e., Fourier analysis)
with combinatorics.

1 Introduction

What we study is a discrepancy problem at the crossroads of number theory and
combinatorics. It is about the sharpness of the well-known Siegel’s Lemma, which
was formally introduced in 1929 (but it was already used by others before, e.g., Thue
already used “Siegel’s Lemma” in his famous paper from 1909). Siegel’s Lemma
is a key tool in transcendental number theory and diophantine approximation; see
e.g. Lemma 1 of Chapter 2 in Baker’s well known book [3]. (In particular, Siegel’s
Lemma is a key step in the applications of the method of “constructing auxiliary
polynomials in several variables”, that includes the so-called Thue method. The
two most famous applications of the Thue method are Roth’s 2 C � theorem
and Schmidt’s Subspace Theorem, representing the main results in the theory
of rational approximations of algebraic numbers. Another famous application of
Siegel’s Lemma is Baker’s method about linear form in logarithms.)

J. Beck (�)
Mathematics Department, Rutgers University, New Brunswick, NJ, USA
e-mail: jbeck@math.rutgers.edu

© Springer International Publishing AG 2017
M. Loebl et al. (eds.), A Journey Through Discrete Mathematics,
DOI 10.1007/978-3-319-44479-6_8

165

mailto:jbeck@math.rutgers.edu


166 J. Beck

To formulate the original form of Siegel’s Lemma, we consider a linear system

X

1� j�N

di;jxj D 0; 1 � i � n

with n equations and N variables, where N > n, and for all coefficients we have
di;j 2 Z with jdi;jj � A. (Note that Siegel’s Lemma was enormously generalized
in the last 30 years in number theory to such an extent that the original form is
almost unrecognizable. Here we do not discuss these far-reaching generalizations
that include different “heights” and “subspace” versions; see e.g. the book [4].) Of
course we can rewrite the linear system in the short matrix form Dx D 0, where the
matrix D D .di;j/, 1 � i � n, 1 � j � N has n rows and N columns. The problem
is to give an upper bound to the maximum norm of the smallest nontrivial solution
x D .x1; : : : ; xN/ 2 Z

N n 0. That is, we are looking for the minimum of

max
1�j�N

jxjj:

Note that the maximum norm is the hard one; it is substantially harder than (say)
the euclidean norm (see Vaaler [11]).

The simplest statement of the original Siegel’s Lemma goes as follows. Consider
all integer vectors v D .v1; : : : ; vN/ 2 Z

N n 0 with 0 � vj � B, 1 � j � N, where
B is a positive integer to be specified later. Note that every row-sum

P
1�j�N di;jvj

(1 � i � n) is in an interval of at most NBA integers, so, if

.BC 1/N > .NBA/n; (1)

then the pigeonhole principle implies that there exist two different vectors vh D
.vh;1; : : : ; vh;N/ 2 Z

N n 0, h D 1; 2 with 0 � vh;j � B, 1 � j � N such that
Dv1 D Dv2, and so Dx D 0 with x D v1 � v2. Thus we obtain a nontrivial solution
x D .x1; : : : ; xN/ 2 Z

N n 0 such that

max
1�j�N

jxjj � B:

Inequality (1) holds if

B D �.NA/n=.N�n/
˘

(lower integral part), implying

max
1�j�N

jxjj �
�
.NA/n=.N�n/

˘
: (2)

Note that (2) suffices for many number-theoretic applications (in fact, (2) is
Lemma 1 of Chapter 2 in [3]), but, by using probability theory, we can substantially
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improve on (2). To apply probability theory, it is convenient to have zero expecta-
tion: we replace the integer vectors v D .v1; : : : ; vN/ 2 Z

N n 0, 0 � vj � B with
jvjj � B, 1 � j � N (where B is a positive integer to be specified later). First,
for illustration, we simply repeat the argument of (1)–(2) working with these new
vectors that may have negative coordinates. If

.2BC 1/N > .2NBAC 1/n; (3)

then the pigeonhole principle implies that there exist two different vectors vh D
.vh;1; : : : ; vh;N/ 2 Z

N n 0, h D 1; 2 with jvh;jj � B, 1 � j � N such that Dv1 D
Dv2, and so Dx D 0 with x D v1 � v2. Thus we obtain a nontrivial solution x D
.x1; : : : ; xN/ 2 Z

N n 0 such that

max
1�j�N

jxjj � 2B: (4)

Inequality (3) holds if

2B D .2NA/n=.N�n/;

and so by (4),

max
1�j�N

jxjj � .2NA/n=.N�n/;

which is basically the same as (2).
So far we did not take advantage of allowing negative coordinates (in fact, we

got a slightly weaker result). The term .2NBA C 1/n on the right-hand side of (3)
is a trivial upper bound on the number of “pigeonholes”, and it is based on the fact
that NBA is a trivial upper bound for the absolute value of a row-sum. However, by
allowing negative coordinates, we can apply the central limit theorem with expected
value zero, which implies that a typical row-sum has absolute value� const

p
NBA,

and using the large deviation theorem, we can guarantee that a typical maximum
row-sum has absolute value � const

p
N
p

log n � BA. (Here the factor
p

log n
comes from the superexponentially small tail of the normal distribution.) Thus, the
application of the pigeonhole principle (1) or (3) is replaced by

1

2
.2BC 1/N > .2const

p
N log n � BAC 1/n: (5)

That is, by using the large deviation theorem, we can substantially reduce the
number of “pigeonholes”. Inequality (5) holds if

2B D
�

c
p

N log nA
	n=.N�n/

; (6)
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where c > 0 is some absolute constant. So, by (4),

max
1�j�N

jxjj �
�

c
p

N log nA
	n=.N�n/

: (7)

Since
p

N log n <
p

N log N < N if N is large, (7) represents a substantial
improvement on (2).

By using an extra twist in the argument above, we can even get rid of the
relatively small factor

p
log n in (7). Indeed, a more sophisticated application of the

large deviation theorem gives that, for a typical set of n row-sums we can guarantee
the following: at least n=2 row-sums have absolute value � c

p
NBA, at most n=4

row-sums have absolute value between c
p

NBA and 2c
p

NBA, at most n=8 row-
sums have absolute value between 2c

p
NBA and 3c

p
NBA, at most n=16 row-sums

have absolute value between 3c
p

NBA and 4c
p

NBA, and so on. This implies, via
routine calculations, that the number of “pigeonholes” reduces to

� .const
p

NBA/n:

(Note that a similar argument shows up in Spencer [10].)
The choice

2B D
�

c
p

NA
	n=.N�n/

guarantees that

1

2
.2BC 1/m > .const

p
N � BA/n � number of pigenholes;

so, applying the pigeonhole principle the usual way, we have

max
1�j�N

jxjj �
�

c
p

NA
	n=.N�n/

: (8)

Here is a precise form of (8).

Third Version of Siegel’s Lemma Let

X

1�j�N

di;jxj D 0; 1 � i � n;

be a linear system such that N > n, and for all coefficients we have di;j 2 Z with
jdi;jj � A. Then there exists a nontrivial solution x D .x1; : : : ; xN/ 2 Z

N n 0 such
that

max
1�j�N

jxjj �
�
70
p

NA
	n=.N�n/

: (9)
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For the sake of completeness, and the convenience of the reader, we include
a detailed proof of (9), which converts the intuition outlined above into a precise
argument; see the “Appendix: Proof of the Third Version of Siegel’s Lemma” at the
end of the paper.

Note that in this paper we do not make any serious effort to find the best constant
factors. For example, the constant factor 70 in (9) is far from optimal—in fact,
it can be eliminated completely. Indeed, see e.g. the book Bombieri–Gubler [4],
Ch.2, Section 2.9, Corollary 2.9.9, or the papers Bombieri–Vaaler [5] and Vaaler–
van der Poorten [12] in the appropriate special case. The novelty of these proofs
is to use arguments from the geometry of numbers, which is just another—more
sophisticated—way of applying the pigeonhole principle.

The reason why we nevertheless include our “naive” pigeonhole principle proof
in the Appendix (with the weaker constant factor 70) is that our proof is much more
accessible for a typical combinatorist—the likely reader of this paper.

The Third Version raises the question: can the factor
p

NA in (9) be further
improved to o.

p
NA/?

It is easy to see that the factor A in (9) cannot be replaced by o.A/. Indeed, in
the simplest case N D 2 and n D 1, we choose two different primes p and q in the
interval A=2 < p < q < A (A is large enough); then the equation px1 D qx2 has the
property that for every nontrivial solution x D .x1; x2/ 2 Z

2 n 0 there is a nonzero
coordinate of x that is divisible by p or q, implying

max
1�j�2 jxjj � p > A=2:

In the general case N > n � 1, we refine the construction above as follows. Write
m D N � n, and choose n.mC 1/ primes pi;j, 1 � i � n, 1 � j � m C 1 between
.1 � "/A1=m and A1=m, where 0 < " < 1

2n and A is large. Write

Pi D
Y

1�j�mC1
pi;j; 1 � i � n;

and consider the linear system

X

1�j�m

Pi

pi;j
xj D Pi

pi;mC1
xmCi; 1 � i � n (10)

of n equations and mCn D N variables. Every coefficient in (10) has absolute value
� �

A1=m
�m D A. Notice that every nontrivial solution x D .x1; : : : ; xN/ 2 Z

N n 0
of (10) has a nonzero coordinate xj with some 1 � j � m. Then by (10), xj is
divisible by the product

Y

1�i�n

pi;j;
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implying that

jxjj �
Y

1�i�n

pi;j >
�
.1 � "/A1=m

�n
>
1

2
An=.N�n/ since " <

1

2n
: (11)

(11) proves that the factor A in (9) cannot be replaced by o.A/. (For a similar
example, see also page 2 in Schmidt [9].)

This raises the question: Can one reduce the other factor
p

N in (9)? For
simplicity we just study the case

N � 3n=2: (12)

Theorem 1 below shows that in the special case A D 1 and (12) the factor
p

N in (9)

cannot be replaced by o
�p

N
	

. Note that A D 1 is the most interesting special case,

because we cannot take advantage of “large” coefficients.

Theorem 1 There is a (small) positive absolute constant c0 > 0 with the following
property: for every pair N > n � 1 of positive integers satisfying (12), there exists
a matrix D D .di;j/, 1 � i � n, 1 � j � N with n rows, N columns, entries
di;j 2 f1;�1g such that for every nontrivial integer solution

x D .x1; x2; : : : ; xN/ 2 Z
N n 0

of the homogeneous linear system Dx D 0, meaning the long form

X

1�j�N

di;jxj D 0; 1 � i � n;

the maximum norm of x has the lower bound

max
1�j�N

jxjj > c0
�p

N
	n=.N�n/

:

Actually we have much more than pure existence: for large n the overwhelming
majority of the n-by-N ˙ 1 matrices D satisfy the theorem. In fact, the violators
D D .di;j/, 1 � i � n, 1 � j � N of Theorem 1 represent an exponentially small
O.2�n=2/ part of the total 2nN.

For an explicit value of c0 that works for all sufficiently large n; see (87).
Note that Theorem 1 is a “large discrepancy” type result in the following sense.

A homogeneous linear system always has the trivial solution (with maximum norm
zero). The message of Theorem 1 is that, for the overwhelming majority of large
homogeneous linear systems, every nontrivial integer solution is “large” (in terms
of the maximum norm). That is, there is a large discrepancy between the trivial and
nontrivial integer solutions.
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Next we explain how to extend Theorem 1 beyond the special case A D 1. For
illustration, we start with the case where

A � Nn=.2N�4n/ and N � 3n: (13)

Let p be a prime between A=2 and A, write m D N � n, and consider the linear
system

mX

jD1
pdi;jxj D xmCi; 1 � i � n; (14)

where D D .di;j/, 1 � i � n, 1 � j � m is a matrix with n rows, m columns and
entries di;j 2 f1;�1g, satisfying Theorem 1 for the pair m; n. Note that m D N�n �
2n follows from (13), so (12) clearly holds (for notational simplicity we just apply
Theorem 1 in the range N � 2n). Let

x D .x1; x2; : : : ; xN/ 2 Z
N n 0

be a nontrivial integer solution of the homogeneous linear system (14).
If xmCi D 0 for all 1 � i � n, then (dividing by p) Theorem 1 yields,

max
1�j�m

jxjj > c0
�p

m
�n=.m�n/

: (15)

If xmCi ¤ 0 for some 1 � i � n, then of course xmCi is divisible by p, so

jxmCij � p > A=2: (16)

Combining (15) and (16), we have

max
1�j�N

jxjj > min
n
c0
�p

m
�n=.m�n/

;A=2
o
: (17)

On the other hand, assuming

c0
�p

m
�n=.m�n/ D A=2; (18)

we have

min
n
c0
�p

m
�n=.m�n/

;A=2
o
D
�

c0
�p

m
�n=.m�n/

	.m�n/=.N�n/
.A=2/.N�m/=N�n/ D

D c1
�p

mA=2
�n=.N�n/

: (19)
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Combining (17), (18), and (19), we have

max
1�j�N

jxjj > c1
�p

NA
	n=.N�n/

; (20)

if (13) holds. (20) proves the sharpness of (9) under the condition (13).
Next, let n be even, let p1; p2 be two different primes between A=2 and A, write

m D N � .n=2/, and assume m � 2n. Consider the linear system

mX

jD1
p1di;jxj D xmCi; 1 � i � n=2;

mX

jD1
p2di;jxj D xmCi�.n=2/; n=2 < i � n; (21)

where D D .di;j/, 1 � i � n, 1 � j � m is a matrix with n rows, m columns
and entries di;j 2 f1;�1g, satisfying Theorem 1 for the pair m; n (note that m D
N � .n=2/ � 2n follows from the hypothesis). Let

x D .x1; x2; : : : ; xN/ 2 Z
N n 0

be a nontrivial integer solution of the homogeneous linear system (21).
If xmCi D 0 for all 1 � i � n=2, then (dividing by p1 and p2, respectively)

Theorem 1 yields,

max
1�j�m

jxjj > c0
�p

m
�n=.m�n//

: (22)

If xmCi ¤ 0 for some 1 � i � n=2, then of course xmCi is divisible by both p1 and
p2, so

jxmCij � p1p2 > A2=4: (23)

Combining (22) and (23), we have

max
1�j�N

jxjj > min
n
c0
�p

m
�n=.m�n/

;A2=4
o
: (24)

On the other hand, assuming

A � Nn=.4N�6n/ and N � 5n=2; (25)
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we have

min
n
c0
�p

m
�n=.m�n/

;A2=4
o
D
�

c0
�p

m
�n=.m�n/

	.m�n/=.N�n/
.A2=4/.N�m/=N�n/ D

D c1
�p

mA
�n=.N�n/

: (26)

(26) proves the sharpness of (9) under the condition (25). Notice that (25) is
substantially different from (13).

In general, let r � 3 be an integer, let n be divisible by r, let p1; p2; : : : ; pr be
r different primes between .1 � 1

r /A and A (n and A are sufficiently large), write
m D N � .n=r/, and assume m � 2n. Consider the linear system

mX

jD1
p1di;jxj D xmCi; 1 � i � n=r;

mX

jD1
p2di;jxj D xmCi�.n=r/; n=r < i � 2n=r;

and so on, where the last block of n=r equations goes as follows:

mX

jD1
prdi;jxj D xmCi�..r�1/n=r/; .r � 1/n=r < i � n; (27)

where D D .di;j/, 1 � i � n, 1 � j � m is a matrix with n rows, m columns
and entries di;j 2 f1;�1g, satisfying Theorem 1 for the pair m; n (note that m D
N � .n=r/ � 2n follows from the hypothesis). Let

x D .x1; x2; : : : ; xN/ 2 Z
N n 0

be a nontrivial integer solution of the homogeneous linear system (27).
If xmCi D 0 for all 1 � i � n=r, then (dividing by p1; p2; : : : ; pr, respectively)

Theorem 1 yields,

max
1�j�m

jxjj > c0
�p

m
�n=.m�n//

: (28)

If xmCi ¤ 0 for some 1 � i � n=r, then of course xmCi is divisible by the r primes
p1; p2; : : : ; pr, so

jxmCij � p1p2 � � � pr >



1 � 1
r

�r

Ar > Ar=4: (29)
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Combining (28) and (29), we have

max
1�j�N

jxjj > min
n
c0
�p

m
�n=.m�n/

;Ar=4
o
: (30)

On the other hand, assuming

A � Nn=.2rN�.2rC2/n/ and N � .2rC 1/n=r; (31)

we have

min
n
c0
�p

m
�n=.m�n/

;Ar=4
o
D
�

c0
�p

m
�n=.m�n/

	.m�n/=.N�n/
.Ar=4/.N�m/=.N�n/ D

D c1
�p

mA
�n=.N�n/

: (32)

(32) proves the sharpness of (9) under the condition (31). Notice that (31) with r � 3
is substantially different from (13) and (25).

Summarizing, (31)–(32) prove the sharpness of (9) for infinitely many very
different types of triples N; n;A with N � 2n. These corollaries of Theorem 1 show
that the Third Version (9) of Siegel’s Lemma is best possible (apart from an absolute
constant factor). Or, we may say that no other argument can beat the Pigeonhole
Principle proof of Siegel’s Lemma (apart from an absolute constant factor).

In the Remark at the end of Sect. 3 we explain why the proof technique of this
paper (based on the concentration inequality Lemma 4) breaks down in the range


3

2
� "

�

n > N > n:

We also discuss the “between range”

3n=2 > N �

3

2
� "

�

n;

see Theorem 2 there.
Theorem 1 is about the majority of the 2nN homogeneous linear systems Dx D 0,

where D D .di;j/ with entries di;j 2 f1;�1g, 1 � i � n, 1 � j � N, and it states that
every nontrivial integer solution is “large”.

In the other direction, it is easy to construct a huge family of homogeneous linear
systems Dx D 0 with entries di;j 2 f1;�1g such that there exists a small nontrivial
integer solution. Indeed, assume that N is even, and for every i in 1 � i � n, exactly
half of the entries di;j 2 f1;�1g, 1 � j � N are equal to 1. There are

 
N

N=2

!n

D
 

.1C o.1//
2N

p
�N=2

!n
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such homogeneous linear systems Dx D 0, and each has the small solution
.1; 1; 1; : : : ; 1/ (for which the maximum norm is as small as possible).

Of course,

 
N

N=2

!n

D
 

.1C o.1//
2N

p
�N=2

!n

� 2nN

Nn=2
D o

�
2nN

�

represents a minority; nevertheless,

 
N

N=2

!n

D
 

.1C o.1//
2N

p
�N=2

!n

� 2nN

.2N/n=2

is certainly very large—it is in the “rough order of magnitude” of 2nN .
For an analog of Theorem 1 for inhomogeneous linear systems; see Theorem 3

at the end of Sect. 3.

2 Proof of Theorem 1

We can clearly assume that n is “large”. We can also assume that N � n log N, since
otherwise

�p
N
	n=.N�n/ � exp

 
1
2

log N

log N � 1

!

< 2;

and then already the trivial lower bound

max
1�j�N

jxjj � 1

implies Theorem 1.
We cannot explicitly construct the desired matrix D; we just prove the existence

of such a matrix by applying the so-called “probabilistic method” (also called
“Erdős’s method”). It is very interesting that the proof of Siegel’s Lemma and the
proof of Theorem 1 are both non-constructive, pure existence arguments.

To apply the “probabilistic method”, we need a “concentration inequality” in
combinatorial number theory (see Lemma 4 below). Up to Lemma 4 we closely
follow a paper of Halász [7]. Lemma 4 is not covered by any of the theorems in [7],
but we use Halász’s method to prove it.

We start with a simple lemma in additive measure theory.

Lemma 1 Let U and V be two periodic sets on the real line, both having period one,
and assume that both sets are Jordan measurable (i.e., the characteristic function
of each set restricted to the unit interval Œ0; 1/ is Riemann integrable). Define the
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set-sum U C V D fuC v W u 2 U; v 2 Vg. Then either U C V is the whole line, or
meas.U C V/ � meas.U/ C meas.V/. Here meas.W/ is the Lebesgue measure of
W \ Œ0; 1/.
Remarks Lemma 1 is in Macbeath [8] who proved it in a few lines (in fact
for Lebesgue measurable sets). Lemma 1 is also a simple corollary of the well
known Cauchy–Davenport theorem in additive group theory. Indeed, the Cauchy–
Davenport theorem states that, for any prime p and for any nonempty subsets S1 and
S2 of the additive cyclic group Z=pZ of order p, we have the inequality

jS1 C S2j � minf p; jS1j C jS2j � 1g

(where we use the standard notation jSj for the number of elements of a finite set S).
We apply the unit circle representation of the group: the elements are the vertices of
the regular p-gon on the unit circle with one vertex at .1; 0/, and the group operation
means to add the angles.

Since the Riemann sum approaches the Riemann integral, the continuous
Lemma 1 follows from the discrete Cauchy–Davenport theorem (with the unit circle
representation) by taking limit with p!1.

We actually need the following corollary of Lemma 1.

Lemma 2 Let U be a periodic set on the real line with period one, and assume
that U is Jordan measurable. For every integer ` � 2 write `U D fu C v W
u 2 U; v 2 .` � 1/Ug. Then for every integer ` � 2, either `U is the whole line, or
meas.`U/ � `meas.U/.

Proof of Lemma 2 It follows from Lemma 1 by induction on `. �
Let B D fb1; b2; : : : ; brg be an arbitrary finite multiset of integers (i.e., some

integers may have multiplicity greater than one). We introduce the unconventional
concept of strength of the multiset B. First, for every positive nonzero integer s � 1
write

mult.BI s/ D
X

1�h�rW
jbhjDs

1;

that is, mult.BI s/ represents the multiplicity of˙s in B. Now let

Str.B/ D Strength.B/ D
1X

sD1
.mult.BI s//2 : (33)

We emphasize that B may contain several zeros, but the multiplicity of zero does
not contribute to (33).

We apply Lemma 2 in the proof of the following technical result about certain
trigonometric sums.
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Lemma 3 Let B D fb1; : : : ; brg be an arbitrary multiset of nonzero integers, and
let y be a positive real number with r=2 � y > 0. Then

meas

8
<

:
t 2 Œ0; 1/ W

rX

jD1
.1 � cos.2�bjt// � y

9
=

;
� min

C�BW
jCj�2y

2Str.C/
jq jCj

2y

k
jCj2

:

Remark We basically repeat some of Halász’s arguments in [7].

Proof of Lemma 3 Note that for every integer k � 2,

ˇ
ˇ
ˇ
ˇ
ˇ
sin

 
kX

hD1
xh

!ˇ
ˇ
ˇ
ˇ
ˇ
�

kX

hD1
jsin xhj ; (34)

which follows from the elementary fact

j sin.xC y/j D j sin x cos yC sin y cos xj � j sin xj C j sin yj
by induction.

Combining (34) with the inequality between the arithmetic and quadratic means,
we obtain the inequality

1 � cos

 

2

kX

hD1
˛h

!

D 2
0

@sin

0

@
kX

jD1
˛h

1

A

1

A

2

� 2
 

kX

hD1
jsin˛hj

!2

�

� 2k
kX

hD1
.sin ˛h/

2 D k
kX

hD1
.1 � cos.2˛h// : (35)

For an arbitrary nonempty subset C � B write

T.CI y/ D
8
<

:
t 2 R W

X

bj2C
.1 � cos.2�bjt// � y

9
=

;
; (36)

which clearly implies

T.BI y/ � T.CI y/: (37)

If th 2 T.CI y/, 1 � h � k, then for every fixed bj 2 C we use (35) with
˛h D �bjth, and obtain

X

bj2C

 

1 � cos

 

2�bj

kX

hD1
th

!!

� k
kX

hD1

X

bj2C

�
1 � cos.2�bjth/

� � k2y:
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Combining this with (36), we obtain the following information about the set-sum
kT.CI y/:

kT.CI y/ D T.CI y/C � � � C T.CI y/ � T.CI k2y/: (38)

Applying Lemma 2 in (38), we have

meas
�
T.CI k2y/� � meas .kT.CI y// � min f1; k �meas.T.CI y//g ; (39)

which holds for every integer k � 2.
Let

c D jCj D
X

bj2C
1 � 1

(of course counted with multiplicity). Choosing y D c=2 in (36), we have

T.CI c=2/ D
8
<

:
t 2 R W

X

bj2C
.1 � cos.2�bjt// � c=2

9
=

;
D

D
8
<

:
t 2 R W

X

bj2C
cos.2�bjt/ � c=2

9
=

;
: (40)

Clearly meas.T.CI c=2// < 1. Combining (33), (40) and Parseval’s formula, we
obtain the following non-trivial upper bound

meas.T.CI c=2//
�c

2

	2 �
Z 1

0

0

@
X

bj2C
cos.2�bjt/

1

A

2

dt D 1

2
Str.C/;

which implies

meas.T.CI c=2// � 2

c2
Str.C/: (41)

Let k be the largest integer satisfying k2y � c=2, that is, let

k D
�r

c

2y

�

.lower integral part/: (42)
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By (39), (41) and (42),

2

c2
Str.C/ � meas.T.CI c=2// � meas

�
T.CI k2y/� � min f1; k �meas.T.CI y//g :

(43)

Since trivially 1 > meas.T.CI c=2//, (43) implies

2

c2
Str.C/ � k �meas.T.CI y//;

and so

meas.T.CI y// � 1

k

2

c2
Str.C/ D 2Str.C/

jq jCj
2y

k
jCj2

;

assuming jCj � 2y. Combining this with (37), Lemma 3 follows. �
Next we use Lemma 3 to prove an upper bound on a “concentration problem” in

combinatorial number theory. Again we closely follow the paper of Halász [7].
Let A D fa1; a2; : : : ; akg be a multiset of positive nonzero integers. For an

arbitrary integer d 2 Z let Z.AI d/ denote the number of solutions .z1; z2; : : : ; zk/ 2
f�1; 1gk of the equation

kX

hD1
ahzh D d: (44)

Clearly (where of course i D p�1)

Z.AI d/ D
Z 1

0

e�2� id
kY

hD1

�
e2� iaht C e�2� iaht

�
dt D

D 2k
Z 1

0

e�2� id
kY

hD1
cos .2�aht/ dt � 2k

Z 1

0

kY

hD1
jcos .2�aht/j dt;

which imples

Z.A/ D max
d2Z Z.AI d/ � 2k

Z 1

0

kY

hD1
jcos .2�aht/j dt: (45)
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Applying the inequality y � e�.1�y/ for y � 0 in (45), and also using the elementary
fact 2 cos2 x � 2 D cos.2x/� 1, we have

jcos .2�aht/j D �cos2 .2�aht/
�1=2 �

� exp




�1
2

�
1 � cos2 .2�aht/

�
�

D exp




�1
4
.1 � cos .4�aht//

�

;

and so

kY

hD1
jcos .2�aht/j � exp

(

�1
4

kX

hD1
.1 � cos .4�aht//

)

: (46)

Write

f .t/ D f .AI t/ D
kX

hD1
.1 � cos .4�aht// : (47)

Combining (45), (46) and (47), we have

Z.A/
2k
�
Z 1

0

kY

hD1
jcos .2�aht/j dt �

Z 1

0

exp




�1
4

f .AI t/
�

dt: (48)

Using f .t/ D f .AI t/ we obtain the trivial upper bound

Z 1

0

exp




�1
4

f .t/

�

dt �
1X

jD0
meas.ft 2 Œ0; 1/ W j � f .t/ < jC 1g/e�j=4: (49)

To estimate the right-hand side of (49), we apply Lemma 3 for the multiset 2A D
f2a1; 2a2; : : : ; 2akg, and obtain the concentration upper bound (see (48) and (49))

Z.A/
2k
�
1X

jD0
meas.ft 2 Œ0; 1/ W j � f .t/ < jC 1g/e�. j�1/=4 �

�

0

B
B
@

X

1�`�k=2

e�.`�1/=4 min
C�2AW
jCj�2`

2Str.C/
�q

jCj
2`

�

jCj2

1

C
C
AC e�.k�2/=8 D

D

0

B
B
@

X

1�`�k=2

e�.`�1/=4 min
B�AW
jBj�2`

2Str.B/
�q

jBj
2`

�

jBj2

1

C
C
AC e�.k�2/=8; (50)

with B D C=2 (since clearly Str.B/ D Str.C/).
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Using the trivial fact

bxc � x=2 for every real x � 1

in (50), we have

Z.A/
2k
�
0

@
X

1�`�k=2

min
B�AW
jBj�2`

8
p
`e�.`�1/=4Str.B/
jBj5=2

1

AC e�.k�2/=8:

Moreover, we have the alternative upper bound

Z.A/
2k
� min



1p
k
;
1

2

�

:

Here the first half

Z.A/
2k
� 1p

k

immediately follows from a classical result of Erdős [6]

Z.A/ �
 

k

bk=2c

!

:

For the sake of completeness we outline the elegant idea: it is an application of
Sperner’s theorem in combinatorics, and goes as follows. For a fixed integer d,
we associate with every integer solution of the equation

Pk
hD1 ahzh D d, z D

.z1; z2; : : : ; zk/ 2 f�1; 1gk the subset

S.z/ D fj 2 f1; 2; 3; : : : ; kg W zj D 1g

of f1; 2; 3; : : : ; kg. The family Fd of sets S.z/ is an antichain of f1; 2; 3; : : : ; kg, i.e.,
there are no two sets S.z1/; S.z2/ 2 Fd such that one is a subset of the other. By a
well-known theorem of Sperner every antichain on a k-element underlying set has
at most

 
k

bk=2c

!
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sets, proving Erdős’s upper bound

Z.A/ �
 

k

bk=2c

!

:

We finish with the simple upper bound

Z.A/
2k
�
 

k

bk=2c

!

2�k � 1p
k
;

Note that the last inequality is clear for “small” k by brute force checking, and for
“large” k it easily follows from applying Stirling’s formula

nŠ D .1C o.1//
�n

e

	p
2�n

for the three factorials in
 

k

bk=2c

!

D kŠ

bk=2cŠdk=2eŠ :

This completes the proof of the first half.
Finally, note that the upper bound

Z.A/
2k
� 1

2

is completely trivial. Indeed, if the first k� 1 variables zh, 1 � h � k� 1 are already
fixed, then from the two values zk D ˙1 of the last variable at least one does not
work (i.e.,

Pk
hD1 ahzh ¤ d), proving the upper bound 1

2
.

Combining the three upper bounds, we obtain the following lemma.

Lemma 4 Let A D fa1; a2; : : : ; akg be a multiset of positive nonzero integers, let
Z.AI d/ denote the number of solutions .z1; z2; : : : ; zk/ 2 f�1; 1gk of the equation

kX

hD1
ahzh D d;

and write

Z.A/ D max
d2Z Z.AI d/:
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Then

Z.A/
2k
� min

8
<

:

0

@
X

1�`�k=2

min
B�AW
jBj�2`

12
p
`e�`=4Str.B/
jBj5=2

1

AC e�.k�2/=8;
1p
k
;
1

2

9
=

;

where Str.A/ is defined in (33). �
After these preparations we are now ready to apply the “probabilistic method”.

Since we work with discrete probability, the “probabilistic method” is just a
“counting method”; in fact, “counting the average value”.

Let x D .x1; x2; : : : ; xN/ 2 Z
N n 0 be an arbitrary but fixed nontrivial integer

vector such that

jxij � L D
�

c0
�p

N
	n=.N�n/

�

; 1 � i � N

(the value of the absolute constant c0 > 0 will be specified later; see (87)). Let
k D k.x/ � 1 denote the number of nonzero coordinates of vector x, and let

xi1 ; xi2 ; : : : ; xik be the nonzero coordinates of vector x (51)

with 1 � i1 < i2 < : : : < ik � N.
Let Q.x/ denote the cardinality of the set of solutions . y1; y2; : : : ; yk/ 2 f1;�1gk

of the equation

kX

jD1
xij yj D 0: (52)

We emphasize that here xi1 ; xi2 ; : : : ; xik are the fixed coefficients, and y1; y2; : : : ; yk 2
f1;�1g are the variables.

Write (see (51))

X D X .x/ D fxi1 ; xi2 ; : : : ; xikg: (53)

We can give an upper bound for Q.x/ by applying Lemma 4 with ah D jxih j and
zh D yh (1 � h � k):

Q.x/
2k
� Z.X /

2k
� min

8
<

:

0

@
X

1�`�k=2

min
Z�X W

jZj�2`

12
p
`e�`=4Str.Z/
jZj5=2

1

AC e�.k�2/=8;
1p
k
;
1

2

9
=

;
;

(54)

where k D k.x/ � 1 denotes the number of nonzero coordinates of vector x.
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Next we introduce a discrete probability space. Let � D �n;N denote the sets of
all matrices Y D . yi;j/, 1 � i � n, 1 � j � N with n rows and N columns such that
every entry yi;j is 1 or �1. So j�j D 2nN , and assume that the matrices Y are equally
likely. In other words, the entries yi;j, 1 � i � n, 1 � j � N of the matrix Y represent
nN independent random variables, each having values˙1 with probability 1=2.

Let ˆ D ˆn;N denote the set of all nontrivial integer vectors
x D .x1; x2; : : : ; xN/ 2 Z

N n 0 such that

jxij � L D
�

c0
�p

N
	n=.N�n/

�

; 1 � i � N: (55)

For every x 2 ˆ define the set

Zero.x/ D fY 2 � W Yx D 0g ;

where of course Yx D 0 has the long form

NX

jD1
yi;jxj D 0; 1 � i � n:

By using (51), (52), (53), and (54), we have the upper bound for the correspond-
ing (discrete) probability

Pr ŒZero.x/� D jZero.x/j2�nN �

�
0

@min

8
<

:

0

@
X

1�`�k=2

min
Z�X W
jZj�2`

12
p
`e�`=4Str.Z/
jZj5=2

1

AC e�.k�2/=8;
1p
k
;
1

2

9
=

;

1

A

n

; (56)

where the n-th power comes from the independence of the n rows of Y. (More
precisely, different rows of Y contain disjoint sets of independent random variables
yi;j, so the product rule applies.)

By using upper bound (56), we are able to prove the following lemma.

Lemma 5 There is a positive absolute constant c0 > 0 (see the definition of L
in (55)) such that for all N � 3n=2,

X

x2ˆn;N

jZero.x/j2�nN D O.2�n=2/:
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First we derive Theorem 1 from Lemma 5. Simple double-counting gives the
equality

X

x2ˆn;N

jZero.x/j D
X

Y2�n;N

X

x2ˆn;N W
YxD0

1:

Combining (2) and the fact j�j D 2nN with Lemma 5, we have

1

j�j
X

Y2�n;N

X

x2ˆn;N W
YxD0

1 D O.2�n=2/: (57)

(57) means that the average number of “small” (=max norm is � L) nontrivial
integral solutions x 2 ˆn;N is O.2�n=2/. This implies that for the overwhelming
majority of the 2nN homogeneous linear systems Yx D 0, Y 2 �n;N there is no
“small” nontrivial integral solution (if n is large).

In fact, (57) implies that the violators of Theorem 1 represent exponentially small
O.2�n=2/ part of the total 2nN .

This completes the deduction of Theorem 1 from Lemma 5.

3 Proof of Lemma 5

We recall the notation introduced in (33): for every 1 � s � L we use ms D
mult.X I s/ to denote the multiplicity of ˙s in X D X .x/, where X .x/ is defined
in (53).

Let N D f0; 1; 2; 3; : : :g denote the set of natural numbers including zero. Given
a multiplicity vector m D .m1;m2;m3; : : : ;mL/ 2 N

L, we can define its Strength in
the analogous way (see (33))

Str.m/ D
LX

sD1
m2

s :

Given two vectors

r D .r1; r2; r3; : : :/ 2 N
L and m D .m1;m2;m3; : : :/ 2 N

L;

we write r � m if and only if rs � ms for all 1 � s � L.
For a fixed index-sequence 1 � i1 < i2 < : : : < ik � N in (51), let

ˆ.i1; i2; : : : ; ik/ denote the set of vectors x D .x1; : : : ; xN/ 2 ˆ such that

xi1 ; xi2 ; : : : ; xik are the nonzero coordinates of x:
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Then by (56)

X

x2ˆ.i1;i2;:::;ik/
jZero.x/j2�nN �

� 2k
X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

 
k

m1

! 
k �m1

m2

! 
k � m1 � m2

m3

!

� � �

�
0

@min

8
<

:

0

@
X

1�`�k=2

min
r�mW

r1Cr2Cr3C:::�2`

12
p
`e�`=4Str.r/

.r1 C r2 C r3 C : : :/5=2

1

AC e�.k�2/=8;
1p
k
;
1

2

9
=

;

1

A

n

;

(58)

where the factor 2k at the beginning of the middle line comes from the k choices of
the signs˙ in˙s.

Therefore, by (58) we have

X

x2ˆ
jZero.x/j2�nN D

D
X

1�k�N

X

.i1;i2;:::;ik/W
1�i1<i2<:::<ik�N

X

x2ˆ.i1;i2;:::;ik/
jZero.x/j2�nN �

�
NX

kD1

 
N

k

!

2k
X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

 
k

m1

! 
k � m1

m2

! 
k �m1 �m2

m3

!

� � �

� .ƒ.m//n ; (59)

where we used the new notation

ƒ.m/ D min

8
<

:

0

@
X

1�`�k=2

min
r�mWP
i ri�2`

12
p
`e�`=4

�P
i r2i
�

�P
i ri
�5=2

1

AC e�.k�2/=8;
1p
k
;
1

2

9
=

;
:

(60)

We recall (55):

L D
�

c0
�p

N
	n=.N�n/

�

; and of course L � 1;
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since otherwise Theorem 1 is trivial. Theorem 1 and Lemma 5 are about the case
N � 3n=2, but for technical reasons we study the slightly larger range

N � 11n=8:

Then we have

L � N4=3: (61)

Also, we have N � n log N.
We split the right-hand side of (59) into two parts according as 1 � k � c1N and

c1N < k � N, where c1 > 0 is a sufficiently small absolute constant to be specified
later (note in advance that c1 D 1=4 is a good choice; see (70)). Our goal is to show
that the contribution of the first part 1 � k � c1N is negligible if n is large.

By using the trivial estimation (see (60))

ƒ.m/ � min



1p
k
;
1

2

�

;

we have

first part of the right hand side of (59) D

D
X

1�k�c1N

 
N

k

!

2k
X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

 
k

m1

! 
k � m1

m2

! 
k �m1 �m2

m3

!

� � �

� .ƒ.m//n �

�
X

1�k�c1N

 
N

k

!

2k
X

.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

 
k

m1

! 
k � m1

m2

! 
k �m1 �m2

m3

!

� � �

�


min



1p
k
;
1

2

��n

�

�
X

1�k� 1
10 n= log n

 
N

k

!

2k�

�

0

B
B
@

X

.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

 
k

m1

! 
k � m1

m2

! 
k �m1 �m2

m3

!

� � �

1

C
C
A


1

2

�n

C
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C
X

1
10 n= log n<k�c1N

 
N

k

!

2k�

�

0

B
B
@

X

.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

 
k

m1

! 
k �m1

m2

! 
k � m1 � m2

m3

!

� � �

1

C
C
A


1p
k

�n

�

�
X

1�k� 1
10 n= log n

 
N

k

!

2kLk2�n C
X

1
10 n= log n<k�c1N

 
N

k

!

2kLkk�n=2; (62)

where the factor Lk comes from the multinomial theorem.
By using the inequality kŠ � .k=e/k—we call it the “weak form of Stirling’s

formula”—we have

X

1�k� 1
10 n= log n

 
N

k

!

2kLk2�n �
X

1�k� 1
10 n= log n


2eNL

k

�k

2�n �

�
X

1�k� 1
10 n= log n


2eNN4=3

k

�k

2�n < 2�n=2; (63)

if n is large (here we used N � n log N and (61)).
Next we split the last sum in (61) into two parts

X

1
10 n= log n<k�c1N

 
N

k

!

2kLkk�n=2 D

D
X

1
10 n= log n<k�n=3

 
N

k

!

2kLkk�n=2 C
X

n=3<k�c1N

 
N

k

!

2kLkk�n=2; (64)
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and estimate the first part by using the weak form of Stirling’s formula as above:

X

1
10 n= log n<k�n=3

 
N

k

!

2kLkk�n=2 �
X

1
10 n= log n<k�n=3


2eNL

k

�k

k�n=2 �

�
X

1
10 n= log n<k�n=3

�
N.4=3/Co.1/

�k �
N�1Co.1/

��n=2
< 2�n; (65)

since 4=9 < 1=2 and N � n log N.
Next we estimate the second part in (65); again by using the weak form of

Stirling’s formula,

X

n=3<k�c1N

 
N

k

!

2kLkk�n=2 �
X

n=3<k�c1N

f .k/; (66)

where

f .x/ D

2eNL

x

�x

x�n=2 D exp .x log A � .xC B/ log x/ with A D 2eNL and B D n=2:

(67)

The derivative of the function

g.x/ D gA;B.x/ D x log A � .xC B/ log x

is very simple:

g0.x/ D log A � log x � 1 � B

x
D log

A

ex
� B

x
:

Since

min
n=3�x�c1N



log
A

ex
� B

x

�

� log
2L

c1
� n=2

n=3
> 0 if c1 � 1=3; (68)

we obtain that f .x/ is monotone increasing in the interval n=3 � x � c1N, and using
this fact in (66), (67), and (68), we have the upper bound

X

n=3<k�c1N

 
N

k

!

2kLkk�n=2 � N �

2eNL

c1N

�c1N

.c1N/
�n=2 �

� N �

2e

c1

�c1N �
c0N

n
2.N�n/

	c1N
.c1N/

�n=2 �

� N �

2ec0
c1

�c1N
 

N
c1N
N�n�1

c1

!n=2

: (69)
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If

2ec0 � c1; N � 7

5
n and c1 D 1

4
; (70)

then

c1N

N � n
� c17=2 D 7=8; (71)

and using (70)–(71) in (69), we have

X

n=3<k�c1N

 
N

k

!

2kLkk�n=2 � N �
 

N
c1N
N�n�1

c1

!n=2

� N �


N.7=8/�1

c1

�n=2

� 2�n: (72)

Thus in the rest it suffices to focus on the range c1N D N=4 < k � N, which
means that we study the second part at the end of (59):

second part of the right hand side of (59) D

D
X

c1N�k�N

 
N

k

!

2kkŠ
X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

1

m1Šm2Šm3Š � � � � .ƒ.m//
n : (73)

Given a multiplicity vector m D .m1;m2;m3; : : :/ 2 N
L and an integer j � 0,

consider the following power-of-two decomposition

Mj D Mj.m/ D
X

1�i�LW
2j�mi<2

jC1

mi:

So

X

j�0
Mj D

X

1�i�L

mi D k:

Let

max
j�0 M3=2

j 2�j D M3=2
j0
2�j0 ;

that is, the maximum is attained at j D j0.
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Clearly

M3=2
j0
2�j0 DpMj0

Mj0

2j0
<
p

k
2j0C1L
2j0

D 2pkL:

For notational convenience to be used later, we write

M3=2
j0
2�j0 D 2�p

p
NL; (74)

where p D p.m/ > �1 is an appropriate real number.
Let r D r.mI j0/ D .r1; r2; r3; : : :/ be defined as follows: ri D mi if 2j0 � mi <

2j0C1, and ri D 0 otherwise. By using the definition of ƒ.m/ (see (60)) with this
r D r.mI j0/, we have

ƒ.m/ �
X

1�`�Mj0 =2

12
p
`e�`=4

0

B
B
@

X

1�i�LW
2j0�mi<2

j0C1

m2
i

1

C
C
AM�5=2j0

C

C
X

Mj0 =2<`�k=2

12
p
`e�`=4 C e�.k�2/=8 �

�
X

1�`�Mj0 =2

12
p
`e�`=4

�
2j0C1Mj0

�
M�5=2j0

C
X

Mj0 =2<`�k=2

12
p
`e�`=4 C e�.k�2/=8 D

D 2j0M�3=2j0

X

1�`�Mj0 =2

24
p
`e�`=4 C

X

Mj0 =2<`�k=2

12
p
`e�`=4 C e�.k�2/=8: (75)

We need the following almost trivial lower bound

Mj0 � k1=4: (76)

To prove (76), consider the maximum

Mj1 D max
j�0 Mj � average �

P
j�0 Mj

1C log2 k
D k

1C log2 k
;

which implies

M3=2
j0
� M3=2

j0
2�j0 D max

j�0 M3=2
j 2�j � M3=2

j1
2�j1 �

� M3=2
j1

k�1 �


k

1C log2 k

�3=2
k�1 > k3=8; (77)

and (76) follows.
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Applying (76) in (75), we have

ƒ.m/ � 103 2
j0

M3=2
j0

D 1032p

p
NL

<
2pC10
p

NL
; (78)

where in the last step we used (74).
For an arbitrary integer j � 0 write

q. j/ D log2 N � log2 L � j; or equivalently; 2j D N

2q. j/L
:

Using this, (74), (78) and Stirling’s formula in (73), we have

second part of the right hand side of (59) D

D
X

c1N�k�N

.2N/k
X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

Y

j�0

Y

1�i�LW
2j�mi<2

jC1

.miŠ/
�1 � .ƒ.m//n �

�
X

c1N�k�N

.2N/k
X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

Y

j�0

Y

1�i�LW
2j�mi<2

jC1

�mi

e

	�mi � .ƒ.m//n �

�
X

c1N�k�N

.2N/k
X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

Y

j�0


2j

e

��Mj

� .ƒ.m//n D

D
X

c1N�k�N

X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

Y

j�0


2eN

2j

�Mj

� .ƒ.m//n �

�
X

c1N�k�N

X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

Y

j�0


2eN

2j

�Mj

�

2pC10
p

NL

�n

D

D
X

c1N�k�N

X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

Y

j�0

�
2e2q. j/L

�Mj �

2pC10
p

NL

�n

D
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D
X

c1N�k�N

X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

Y

j�0

 

2e2q. j/L


2pC10
p

NL

�n=k
!Mj

D

D
X

c1N�k�N

X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

Y

j�0

 

2e2q. j/L1�.n=k/


2pC10
p

N

�n=k
!Mj

: (79)

We claim that the function

h.x/ D L�.n=x/


2pC10
p

N

�n=x

D

4pC10

NL2

�.n=2/=x

(80)

is monotone increasing in the interval c1N D N=4 � x � N. Indeed, it clearly
suffices to verify the inequality

NL2 � 4pC10: (81)

We recall (74):

2�p
p

NL D M3=2
j0
2�j0 > k3=8; (82)

where in the last step we used (77). By (82),

4�p�10NL2 > k3=44�10 > 1

(if n is large), which gives (81).
Applying the monotonicity of the function h.x/ defined in (80), we have the upper

bound

max
c1N�k�N

L1�.n=k/


2pC10
p

N

�n=k

D L1�.n=N/


2pC10
p

N

�n=N

�

� c.N�n/=N
0 � 2. pC10/n=N ; (83)

where in the last step we used the definition of L (see (55)), which implies

L1�.n=N/ �
�

c0N
n

2.N�n/

	1�.n=N/ D c.N�n/=N
0 .

p
N/n=N :
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Using (83) in (79), we obtain

second part of the right hand side of (59) �

�
X

c1N�k�N

X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

Y

j�0

�
c.N�n/=N
0 � 2e2q. j/C.. pC10/n=N/

	Mj

; (84)

where

q. j/ D log2 N � log2 L � j: (85)

If m is fixed then of course p D p.m/ is also fixed. As j � 0 runs through the
integers, q. j/ D log2 N�log2 L�j (see (85)) runs through an arithmetic progression
with gap one.

Furthermore, by using the maximum property of the index j0, we have (see
also (74))

M3=2
j 2�j � M3=2

j0
2�j0 D pNL2�p;

and so

M3=2
j � 2j

p
NL2�p D N

2q. j/L

p
NL2�p D

D N3=22�p�q. j/ � .k=c1/
3=22�p�q. j/;

which implies

Mj � k2�2. pCq. j//=3c�11 :

Combining this with the trivial upper bound Mj � k, we have

Mj � min
˚
k2�2. pCq. j//=3c�11 ; k

� D k min
˚
2�2. pCq. j//=3=c1; 1

�
: (86)

We are ready now to define c0 (expressed in terms of c1 D 1=4): let

c0 D


c61
32e

�4

2�30 D 2�98e�4: (87)

This choice of c0 clearly satisfies the requirement 2ec0 � c1 D 1=4 in (70).
Note that in the range N � 4n=3 definition (87) implies

c0 �


c61
32e

� N
N�n

2
�10n
N�n ;
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which is equivalent to

c.N�n/=N
0 2e21C.10n=N/c�61 �

1

8
: (88)

We distinguish two cases:
Case 1: Index j � 0 has the property that

2q. j/C.. pC10/n=N/ � 21C.10n/=Nc�61 ;

and
Case 2: Index j � 0 has the property that

2q. j/C..pC10/n=N/ < 2.1C.10n=N/c�61 :

Let j2 � 0 be the smallest index satisfying Case 2 (i.e., q. j2/ D log2 N � log2 L� j2
is the largest member of the arithmetic progression of gap one in Case 2). Then
by (88),

c.N�n/=N
0 � 2e2q. j2/C..pC10/n=N/ < c.N�n/=N

0 2e21C.10n=N/c�61 �
1

8
: (89)

Combining (84), (86) and Cases 1–2, we have

second part of the right hand side of (59) �

�
X

c1N�k�N

X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

Y

j�0W Case 1

�
c.N�n/=N
0 � 2e2q. j/C..pC10/n=N/

	Mj �

�
Y

j�0W Case 2

�
c.N�n/=N
0 � 2e2q. j/C.. pC10/n=N/

	Mj �
X

c1N�k�N

X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

�

�
Y

j�0W Case 1

�
max

n
c.N�n/=N
0 � 2e2q. j/C.. pC10/n=N/; 1

o	k minf1;2�2. pCq. j//=3=c1g �

�
Y

j�0W Case 2

�
c.N�n/=N
0 � 2e2q. j/C..pC10/n=N/

	Mj

: (90)
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Combining (89) and the definition of Case 2, we have

Y

j�0W Case 2

�
c.N�n/=N
0 � 2e2q. j/C..pC10/n=N/

	Mj �

�
Y

j�0W Case 2

8�Mj D
Y

j�j2

8�Mj D 8�k
Y

j�0W Case 1

8Mj D

D 8�k
Y

0�j<j2

8Mj ; (91)

where at the end we used the fact

X

j�0
Mj D k:

Since p D p.m/ > �1 (see (74)), in Case 1 we have

2q. j/C. pC1/210n=N � 2q. j/C. pn=N/210n=N D 2q. j/C.. pC10/n=N/ � 21C.10n=N/c�61 ;

which implies

2q. j/Cp � c�61 ;

and so

2�2. pCq. j//=3=c1 �
�
c61
�2=3

=c1 D c31: (92)

Combining (89), (92), and the definition of Case 1, we have

Y

j�0W Case 1

�
max

n
c.N�n/=N
0 � 2e2q. j/C.. pC10/n=N/; 1

o	k minf1;2�2. pCq. j//=3=c1g �

�
Y

0�j<j2

�
2jj�j2j�1

	k minf1;2�2. pCq. j//=3=c1g �
Y

0�j<j2

�
2jj�j2j�1

	c31k22.1�jj�j2j/=3

�

�
Y

r�0
.2r/c

3
1k2�2r=3 D exp

8
<

:
log 2 � c31k

X

r�0
r2�2r=3

9
=

;
; (93)
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where r � 0 runs over the non-negative integers. Using the well known fact

1X

rD0
rxr D x

.1 � x/2
for jxj < 1

in (93), we obtain

Y

j�0W Case 1

�
max

n
c.N�n/=N
0 � 2e2q. j/C.. pC10/n=N/; 1

o	k minf1;2�2. pCq. j//=3=c1g �

�
Y

r�0
.2r/c

3
1k2�2r=3 D exp

n
log 2 � c31k2�2=3

�
1 � 2�2=3��2

o
� 210c31k: (94)

Repeating the same argument, we have

Y

j�0W Case 1

8Mj � 810c31k: (95)

By (90), (91), (94) and (95),

second part of the right hand side of (59) �
X

c1N�k�N

X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

�

�
Y

j�0W Case 1

�
max

n
c.N�n/=N
0 � 2e2q. j/C.. pC10/n=N/; 1

o	k minf1;2�2. pCq. j//=3=c1g �

�
Y

j�0W Case 2

�
c.N�n/=N
0 � 2e2q. j/C.. pC10/n=N/

	Mj �

�
X

c1N�k�N

X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

210c31k8�.1�10c31/k D

D
X

c1N�k�N

X

mD.m1;m2;m3;:::/2NLW
m1Cm2Cm3C:::Dk

2�.3�40c31/k D

D
X

c1N�k�N

 
kC L � 1

L � 1

!

2�.3�40c31/k; (96)
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where in the last step we used the well known combinatorial fact that the number of
vectors m D .m1;m2;m3; : : :/ 2 N

L satisfying m1 C m2 C m3 C : : : D k is
�kCL�1

L�1
�

(called the number of k-combinations of a multiset with L types of elements, each
type with unlimited repetition).

We are now ready to complete the proof of Lemma 5. By (59), (62), (63), (65),
(72) and (96),

X

x2ˆ
jZero.x/j2�nN � first part of the right hand side of (59)C

Csecond part of the right hand side of (59) �

�
X

1�k� 1
10 n= log n

 
N

k

!

2kLk2�n C
X

1
10 n= log n<k�n=3

 
N

k

!

2kLkk�n=2C

C
X

n=3<k�c1N

 
N

k

!

2kLkk�n=2 �

� 2�n=2 C 2�n C 2�n C
X

c1N�k�N

 
kC L � 1

L� 1

!

2�.3�40c31/k; (97)

assuming we are in the range N � 7n=5. Since c1 D 1=4, we have

.3 � 40c31/k � .3 � 40c31/N=4 D


3 � 2
3

�

N=4 D 7N=12;

and using this in (97), we obtain

X

x2ˆ
jZero.x/j2�nN � 2 � 2�n=2 C

 
N C L

L

!

2�7N=12: (98)

If

L � N=120; (99)

then by Stirling’s formula,

 
N C L

L

!

�


e.N C L/

L

�L

� .121e/N=120 <
�
210
�N=120 D 2N=12;
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and using it in (98), we have

X

x2ˆ
jZero.x/j2�nN � 2 � 2�n=2 C 2N=122�7N=12 < 3 � 2�n=2: (100)

By (55),

L � c0
�p

N
	n=.N�n/

; (101)

and the inequality

c0
�p

N
	n=.N�n/ � N=120 (102)

clearly holds if N � 3n=2 (since the constant c0 is much smaller than 1=120;
see (87)). Combining (99), (100), (101) and (102), Lemma 5 follows. �

This completes the proof of Theorem 1. �
Remark The proof technique of Theorem 1 is based on Lemma 4. Lemma 4 is a
concentration inequality that makes use of “large multiplicities”. If


3

2
� "

�

n � N > n; (103)

then

L D
�

c0
�p

N
	n=.N�n/

�

� N1C";

and a typical vector .x1; : : : ; xN/ 2 Z
N with jxij � L has very few coordinate

repetitions, i.e., the contribution of “large multiplicities” is negligible. It means that
in the range (103) Lemma 4 becomes useless.

Theorem 1 is about the range

N � 3n=2; (104)

and we can save the proof of Theorem 1 in the slight extension of (104)

3n=2 > N �

3

2
� "

�

n (105)

by replacing the definition of L in (55) with the slightly smaller threshold

L D
j

N
.1�3"/n
2.N�n/

k
: (106)
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Indeed, all that we needed in the proof of Lemma 5 (the hard part of Theorem 1)
was to be in the range N � 7n=5 and to satisfy the inequality L � N=120 (see (99)),
and in the range (105) with 0 < " � 1=10 we have N � 7n=5 and

.1 � 3"/n
2.N � n/

� .1� 3"/n
2
�
1
2
� "� n

D 1 � 3"
1 � 2" < 1 � ";

and using it in (106), we obtain the desired inequality

L � N
.1�3"/n
2.N�n/ < N1�" < N=120:

Thus we obtain the following result.

Theorem 2 For every 0 < " � 10 there is a finite threshold n0 D n0."/ < 1
with the following property: for every pair N > n � n0 of positive integers
satisfying (105), there exists a matrix D D .di;j/, 1 � i � n, 1 � j � N with n rows,
N columns, entries di;j 2 f1;�1g such that for every nontrivial integer solution

x D .x1; x2; : : : ; xN/ 2 Z
N n 0

of the homogeneous linear system Dx D 0, meaning the long form

X

1�j�N

di;jxj D 0; 1 � i � n;

the maximum norm of x has the lower bound

max
1�j�N

jxjj > N
.1�3"/n
2.N�n/ : (107)

What is more, the overwhelming majority of the n-by-N ˙ 1 matrices D satisfy the
theorem: the violators D D .di;j/, 1 � i � n, 1 � j � N of Theorem 2 represent an
exponentially small O.2�n=2/ part of the total 2nN. �

To extend Theorem 1 to the range (103) one needs a more sophisticated version
of Lemma 4. We are going to return to this problem in another paper. Theorem 2
will be the starting point of our study of the range (103).

Note that the same proof works for inhomogeneous linear systems, since every
solution of an inhomogeneous linear system is automatically nontrivial. Thus we
obtain the following theorem.

Theorem 3 There is a positive absolute constant c0 > 0 with the following
property: for every pair N > n � 1 of positive integers satisfying N � 3n=2,
and every nontrivial integer vector

d D .d1; d2; : : : ; dn/ 2 Z
n n 0;
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there exists a matrix D D .di;j/, 1 � i � n, 1 � j � N with n rows, N columns,
entries di;j 2 f1;�1g such that for every integer solution

x D .x1; x2; : : : ; xN/ 2 Z
N

of the inhomogeneous linear system Dx D d, meaning the long form

X

1�j�N

di;jxj D di; 1 � i � n;

the maximum norm of x has the lower bound

max
1�j�N

jxjj > c0
�p

N
	n=.N�n/

: (108)

Actually we have much more than pure existence: given an arbitrary but fixed vector

d D .d1; d2; : : : ; dn/ 2 Z
n n 0;

for large n the overwhelming majority of the n-by-N ˙ 1 matrices D satisfy (108).
In fact, the violators D D .di;j/, 1 � i � n, 1 � j � N of Theorem 3 represent an
exponentially small O.2�n=2/ part of the total 2nN. �

Note that Theorem 3 is trivial for “large” vectors d 2 Z
n n 0, where “large”

means that the maximum norm of d is much larger than N. But for “small” vectors
d 2 Z

n n 0 the statement of Theorem 3 is far from trivial.

Concluding Remarks After my talk about the sharpness of Siegel’s Lemma in
the Matousek Conference in Praga (Summer of 2016) Noga Alon mentioned two
of his earlier results—with co-authors—that are somewhat related to the subject of
this paper. The first one is Proposition 3.4.3 in Alon–Vu [2], which corresponds to
the extreme case N D n C 1 not covered in Theorem 1. In the case N D n C 1
Proposition 3.4.3 gives a lower bound roughly .n=2/n=4 for˙1-matrices. Moreover,
Noga Alon pointed out that their method also gives a lower bound in the more
general case of N D k C n where k � 2 is fixed and n is large. The idea is to take
tensor products with any non-singular k-by-k˙1-matrix, which gives a lower bound
roughly .n=2k/n=4k.

Noga Alon also mentioned the paper Alon–Kozlov [1] which is closer to
the range of N and n that I am considering. They proved lower bounds—see
Lemma 5.2—that are substantially weaker than mine in Theorem 1, but their paper
represents a different approach that has its own advantages.

Note that some of these results are explicit constructions.

Acknowledgements I am grateful to David Masser (Basel) who called my attention to the
problem.
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Appendix: Proof of the Third Version of Siegel’s Lemma

We combine the usual pigeonhole principle argument with probability theory; in
particular, we borrow some ideas from the paper of Spencer [10]. We use the
following variant of the large deviation theorem in probability theory.

Bernstein’s inequality Let Z1;Z2; : : : ;ZN be real-valued independent random
variables with zero expectation EZj D 0 and jZjj � M, 1 � j � N. Then, for
all positive � > 0,

Pr

2

4

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

NX

jD1
Zj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
� �

3

5 � 2 exp

0

@� �2=2
�PN

jD1 EZ2j

	
C .�M=3/

1

A :

Consider now the i-th row of the homogeneous linear system

NX

jD1
di;jxj D 0; where jdi;jj � A:

For a positive integer B � 1 and an integer j in 1 � j � N, let Xj denote the
random variable with PrŒXj D b� D 1

2BC1 , where b runs over the integers �B;
�BC 1;�BC 2; : : : ;B. Moreover, assume that X1;X2; : : : ;XN are independent. We
apply Bernstein’s inequality with Zj D di;jXj, � D �

p
NAB and M D AB:

Pr

2

4

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

NX

jD1
Zj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
� �pNAB

3

5 � 2 exp

0

@� �2NA2B2=2

.NA2B2/C
�
�
p

NA2B2=3
	

1

A D

D 2 exp



� �2

2C 2N�1=2�=3

�

: (109)

Let

�h D 6h; 1 � h � log n: (110)

Then by (109), for every 1 � h � log n,

Pr

2

4

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

NX

jD1
di;jXj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
� 6h
p

NAB

3

5 � 2 exp



� 36h2

2C .12N�1=2h=3/

�

�

� 2 exp



� 36h2

2hC .12h=3/

�

D 2e�6h: (111)
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For every integer h in 1 � h � log n, define the random variable

Yh D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

8
<

:
i 2 f1; 2; : : : ; ng W

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

NX

jD1
di;jXj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
� 6h
p

NAB

9
=

;

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
: (112)

By using (111), we obtain the following upper bound for the expected value of Yh:

EYh � 2e�6hn; 1 � h � log n: (113)

Since the random variable Yh has non-negative values, we can use the simple
Markov inequality stating that for any random variable Y with non-negative values
and finite expectation

PrŒY � a� � EY

a
for any a > 0:

Applying Markov inequality in (113) we have

Pr
�
Yh � 2h.hC 1/ � 2e�6hn

� � 1

2h.hC 1/ ; 1 � h � log n:

Using the telescoping sum

1X

hD1

1

h.hC 1/ D
1X

hD1


1

h
� 1

hC 1
�

D 1;

we obtain that

X

1�h�log n

1

2h.hC 1/ <
1

2
;

so, with probability greater than 1=2 we have

Yh < 2h.hC 1/ � 2e�6hn for every 1 � h � log n: (114)

(114) means that, with probability greater than 1=2, the number of row-sumsPN
jD1 di;jXj that have absolute value � 6h

p
NAB, is less than

2h.hC 1/ � 2e�6hn for every 1 � h � log n:

It follows that, with probability greater than 1=2, the number of row-sumsPN
jD1 di;jXj that have absolute value between 6h

p
NAB and 6.h C 1/

p
NAB, is
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less than

2h.hC 1/ � 2e�6hn for every 1 � h � log n; (115)

and there is no row-sum with absolute value � 6 log n
p

NAB. In the last step we
used the fact that

2h.hC 1/ � 2e�6hn < 1 with h D blog nc

(lower integral part).
Write (see (115))

kh D b2h.hC 1/ � 2e�6hnc; 1 � h � log n; (116)

and

k0 D n �
X

1�h�log n

kh: (117)

The total number of row-sum vectors (with n coordinates) satisfying (115) can
be estimated from above by using the parameters kh in (116)–(117) as follows:

�
 

n

k0

!
�
2 � 6pNABC 1

	k0 Y

1�h�log n

  
n

kh

!
�
2 � 6.hC 1/pNABC 1

	kh

!

:

(118)
On the other hand, “with probability greater than 1=2” means more than

1

2
.2BC 1/N (119)

possible vectors v 2 f�B;�BC 1;�BC 2; : : : ;BgN .
So, if (119) is greater or equal to (118), than the Pigeonhole Principle applies,

and there exist two different vectors

v1; v2 2 f�B;�BC 1;�BC 2; : : : ;BgN

such that they generate the same row-vector, i.e., Dv1 D Dv2. Then x D v1 � v2
satisfies the homogeneous linear system Dx D 0 with

max
1�j�N

jxjj � 2B: (120)
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The rest is routine estimation. Clearly

 
n

k0

!
�
2 � 6pNABC 1

	k0 Y

1�h�log n

  
n

kh

!
�
2 � 6.hC 1/pNABC 1

	kh

!

�

�
 

n

k0

!
�
13
p

mAB
�k0

Y

1�h�log n

  
n

kh

!
�
13.hC 1/pNAB

	kh

!

D

D
�
13
p

NAB
	n
 

n

k0

!
Y

1�h�log n

  
n

kh

!

.hC 1/kh

!

: (121)

By using sŠ � .s=e/s and (116), we have

 
n

k0

!
Y

1�h�log n

  
n

kh

!

.hC 1/kh

!

�
 

n

k0

!
Y

1�h�log n

�
e6h.hC 1/�kh �

�
 

n

k0

!
Y

1�h�log n

e7hkh D
 

n

k0

!

exp

0

@
X

1�h�log n

7hkh

1

A �

�
 

n

k0

!

exp

0

@
X

1�h�log n

7h � 3h.hC 1/e�6hn

1

A �

�
 

n

k0

!

exp

 

21n
1X

hD1
h2.hC 1/e�6h

!

� 2nen: (122)

Using (122) in (121), we have

 
n

k0

!
�
2 � 6pNABC 1

	k0 Y

1�h�log n

  
n

kh

!
�
2 � 6.hC 1/pNABC 1

	kh

!

�

�
�
13
p

NAB
	n
2nen <

�
70
p

NAB
	n
: (123)

Combining (118), (119) and (123), it suffices to guarantee the inequality

1

2
.2BC 1/N �

�
70
p

NAB
	n
: (124)
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Inequality (124) clearly holds with

2B D
��
70
p

NA
	n=.N�n/

�

; (125)

and using (120) in (125), we conclude

max
1�j�N

jxjj �
�
70
p

NA
	n=.N�n/

;

completing the proof of the Third Version of Siegel’s Lemma. �

References

1. N. Alon, D.N. Kozlov, Coins with arbitrary weights. J. Algorithms 25, 162–176 (1997)
2. N. Alon, V.H. Vu, Anti-Hadamard matrices, coin weighing, threshold gates and indecompos-

able hypergraphs. J. Comb. Theory Ser. A 79, 133–160 (1997)
3. A. Baker, Transcendental Number Theory (Cambridge University Press, Cambridge, 1975)
4. E. Bombieri, W. Gubler, Heights in Diophantine Geometry. New Mathematical Monographs,

vol. 4 (Cambridge University Press, Cambridge, 2006)
5. E. Bombieri, J.D. Vaaler, On Siegel’s lemma. Invent. Math. 73(1), 11–32 (1983)
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On Codimension One Embedding of Simplicial
Complexes

Anders Björner and Afshin Goodarzi

Dedicated to the memory of Jiří Matoušek

Abstract We study d-dimensional simplicial complexes that are PL embeddable in
R

dC1. It is shown that such a complex must satisfy a certain homological condition.
The existence of this obstruction allows us to provide a systematic approach to
deriving upper bounds for the number of top-dimensional faces of such complexes,
particularly in low dimensions.

1 Introduction

The question of embeddability of a d-dimensional simplicial complex into k-
dimensional Euclidean space R

k has a long history. In the following section we
sketch some of this background. Technical definitions and details appear in later
sections. See J. Matoušek’s book [13, chapter 5] and his paper with M. Tancer and
U. Wagner [14] for nice introductions to the field.

In this note we provide a homological obstruction to codimension one (k D dC1)
piecewise linear (PL) embeddability of simplicial complexes. For the case of graphs
(d D 1) this kind of obstruction was used by S. Mac Lane [11] in his work on
planarity.
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As corollaries we derive upper bounds for the number of top-dimensional faces in
a complex with codimension one PL embedding, in terms of the lower dimensional
face numbers and Betti numbers. For instance, we show that

fd.†/ � g.†/

g.†/� 2

  
dX

iD1
.�1/i�1 . fd�i.†/ � ˇd�i.†//

!

� 1
!

;

where fi.†/ is the number of faces of dimension i, ˇi is the Betti number in
dimension i, and g.†/ is the girth (smallest size of a d-cycle in non-zero homology).
See Theorem 3 for details. For d D 1 and g.†/ D 3 this specializes to Euler’s 3n�6
upper bound for the maximal number of edges of a planar graph.

The method used enables us to provide a unified approach and to give more
detailed versions of face number inequalities for such complexes in low dimensions.
For instance, we obtain that

f2.†/ � 2 . f1.†/ � f0.†/ � ˇ1.†//

for any connected 2-dimensional complex † that PL embeds into R
3, see Propo-

sition 8. Furthermore, we give a new upper bound for the number of facets of
complexes with codimension one PL embedding, in terms only of the number of
vertices. This slightly improves the upper bound given by Dey and Pach [6].

Finally, some of our face number inequalities are adapted to the case of balanced
complexes, i.e., complexes whose 1-skeleton is .d C 1/-colorable in the graph-
theoretic sense.

2 Background

The concept of planarity has been of interest to mathematicians ever since the
subject of graph theory was founded. For instance, the impossibility for a planar
graph on n (�3) vertices of having more than 3n�6 edges was mentioned in a letter
from L. Euler to C. Goldbach in 1750, see [1, p. 75].

A topological characterisation of planarity was given by K. Kuratowski in 1929
and independently (a few months later) by O. Frink and P.A. Smith. This result
asserts that a finite graph is planar if and only if it does not contain a subgraph
homeomorphic to K5 or K3;3. Since then other characterisations of planarity have
been given. Among them one can mention the more combinatorial approaches by
H. Whitney [23] and S. Mac Lane [11], and the more topological approach of
H. Hanani and W.T. Tutte (see [20], for instance).

What can be said about the situation in higher dimensions? Let † be a finite
d-dimensional simplicial complex. It was known since the early days of topology
that† is linearly embeddable into R

2dC1. In his 1933 article, E. R. van Kampen [21]
showed that this result is best possible, by presenting d-dimensional complexes (now
known as the van Kampen–Flores complexes) that do not embed into R

2d. Thus, the
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natural question is, for d � k � 2d, does † admit an embedding into R
k? The most

intensively investigated cases are when k D 2d or k D dC1. Note that these are the
two natural generalisations to higher dimensions of the concept of planarity.

There is no satisfactory analogue of Kuratowski’s characterisation in higher
dimensions. Indeed, for every d > 1 and d C 1 � k � 2d, J. Zaks [24]
constructed infinitely many pairwise non-homeomorphic d-dimensional complexes
that are minimal with respect to the property of being not embeddable in R

k.
Based on the aforementioned work of van Kampen, in 1957 A. Shapiro [18]

introduced the van Kampen obstruction; a cohomological obstruction to embed-
dability of d-dimensional complexes into R

2d. See [14] for a geometric description.
The van Kampen obstruction can be seen as a higher-dimensional analogue of
the Hanani–Tutte theorem, though the strong version of Hanani–Tutte theorem
appeared much later in [20].

3 Embedding

A simplicial complex † is said to admit a linear embedding into R
k if † has a

geometric realisation k†k in R
k. More generally,† admits a topological embedding

into R
k if there is a continuous injection k†k ,! R

k, from some geometric
realisation of † to R

k. An intermediate concept is that of PL embedding. We say
that † is piecewise linear (PL) embeddable into R

k if there is a subdivision of k†k
that linearly embeds into R

k. In this paper we focus on PL embeddings.
It is a consequence of Steinitz’ Theorem [25, Lect. 4] that every planar graph can

be drawn in the plane with straight edges. However, for higher dimensional objects
the situation is more complicated.

Example 1 (Brehm’s triangulated Möbius strip) In [3], Brehm presented a triangu-
lation of the Möbius strip that can not be geometrically realised in R

3. The idea is
simple but elegant: A non null-homotopic curve, different from the center line, and
the boundary curve of the Möbius strip are linked together, with absolute value
of the linking number at least 2. This can easily be visualised by, for instance,
considering the blue curve on the left hand side of Fig. 1 below. Now, triangulate the
Möbius strip in such a way that the blue curve and the boundary curve are induced
triangles; see the right hand side of Fig. 1. Two triangles with straight edges in R

3 are
either the unlink or the Hopf link. Hence, these two triangles cannot be realised by
straight edges. Iterated simplicial suspensions produce examples of d-dimensional
complexes that are PL embeddable into R

dC1 but do not admit a linear embedding.
The difference between linear and PL embedding is even more dramatic. One can

show that the problem of linear embeddability is algorithmically decidable. On the
other hand, it is shown in [14, Theorem 1.1] that codimension one PL embeddability
is algorithmically undecidable for d � 4. See [14] for a thorough discussion.
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ca

ab

b

x

xy

yz

Fig. 1 Brehm’s triangulated Möbius strip

Let us also remark that topological and PL embeddings do not coincide in
codimension one. In fact, by the double suspension theorem [4], the suspension
of the Poincaré homology 3-sphere topologically embeds into R

5. However, it does
not admit a PL embedding into R

5 [22, p. 576].

4 Main Results

Let † be a d-dimensional simplicial complex. We consider simplicial homology of
† with Z2 coefficients. Let c D P

��� be a d-chain, where the sum is over all
d-dimensional faces of† and �� 2 Z2. We let the support supp.c/ of c be the set of
all d-faces � such that �� D 1.

Let us say that a basis B of Hd.†IZ2/ is m-complete if every d-dimensional face
of† appears in the support of at most m elements in B. When d D 1, this definition
agrees with Mac Lane’s concept of m-fold complete set of cycles for graphs. He
showed that having a 2-fold complete set of cycles is equivalent to planarity for
graphs [11]. In this section we generalise one direction of Mac Lane’s result. Before
doing so, we need to show the following topological invariance property.

Lemma 1 Let† and 	 be two triangulations of a d-dimensional topological space
X. Then † has an m-complete basis if and only if 	 has a m-complete basis.

Proof Let Hd.XIZ2/ be the singular homology group of X (this is the only place in
this paper where we use singular homology theory). We refer to the book [16] by
Munkres for the definition and properties of the singular homology.

Let Hd.XIZ2/ D Z
r
2. We can always assume that there are d-dimensional

pseudomanifolds M1; : : : ;Mr and continuous maps f i W Mi ! X, for 1 � i � r,
so that the d-dimensional homology classes of X are f i

]ŒMi�, where ŒMi� is the
fundamental class of Mi. We claim that a triangulation of X has an m-complete basis
if and only if there is a choice of Mi and f i such that for any subset I of f1; 2; : : : ; rg
of size greater than m one has

dim

 
\

i2I

f i.Mi/

!

< d:
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Observe that once the claim is verified the desired statement is immediate. However,
the verification of the claim is standard and we leave it to the reader. ut
Remark 1 Since we are working with Z2 coefficients, it follows from a result by
Thom that, M1; : : : ;Mr in the proof of Lemma 1 can be taken to be closed manifolds.
See, for instance, [19, p. 343].

Theorem 1 Let † be a d-dimensional simplicial complex that admits a PL
embedding into R

dC1. Then Hd.†IZ2/ has a 2-complete basis.

Proof First notice that, by Lemma 1, † has a 2-complete basis if and only if any
subdivision of † has this property. This allows us to replace † by a subdivision of
† if needed. Also, observe that since † is PL embeddable into R

dC1, then † is PL
embeddable into the .dC 1/-simplex�dC1. Thus there is a subdivision†0 of† and
a subdivision B of �dC1 such that †0 is a subcomplex of B. So, we may assume
that †0 is a subcomplex of a simplicial .d C 1/-sphere S, say by embedding B into
a hyperplane H of RdC2 and taking S D fpg � @B[ B, where p is a point outside H
and � denotes the simplicial cone.

Now, set r WD ˇd.†
0IZ2/ C 1. There is nothing to prove if r D 1. So, we

may assume that r > 1. It follows from Alexander duality [16, Theorem 71.1] that
kSk�k†0k has r connected components, say K1; : : : ;Kr . For 1 � j � r, let cj be the
formal sum (modulo 2) of all facets F of S such that the barycenter of F lies in Kj.
Let bj be the boundary @dC1cj of cj. Notice that bj ¤ 0, since r > 1 and therefore, cj

cannot be a .dC 1/-cycle.
We will show that b1; : : : ; br�1 form a 2-complete basis for Hd.†

0IZ2/.
Let � 2 supp.bj/ for some 1 � j � r. Then � is a facet of †0. Otherwise,

the facets F� and F0� of S that contain � lie in the same connected component Kj.
This implies that F� and F0� are in the support of cj. Hence, � … supp.bj/, which
is a contradiction. Also, observe that there exists exactly one i ¤ j such that � 2
supp.bi/, since every codimension one face of S is in exactly two facets.

It is immediate that @dbj D @d@dC1cj D 0, hence every bj is a d-cycle in S.
However, since supp.bj/ is a subset of the set of faces of †0, then every bj is a
d-cycle in †0.

Finally, we have that
P

i2A bi ¤ 0 for all proper subsets A of f1; : : : ; rg.
Otherwise,

@dC1

 
X

i2A

ci

!

D
 
X

i2A

@dC1ci

!

D
X

i2A

bi D 0;

that is, the subcomplex of S whose set of facets are ci, i 2 A, has non-trivial
.d C 1/-dimensional homology. However, this cannot happen, since every proper
subcomplex of S has trivial .dC 1/-dimensional homology. Therefore, b1; : : : ; br�1
is a 2-complete basis for Hd.†

0IZ2/, as promised. ut
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Remark 2 It might be possible that the conclusion of Theorem 1 is still valid if
we consider the more general case of topological embedding. However, since we
use Alexander duality, our method would not be directly applicable in that general
setting.
Notice that the converse to Theorem 1 is obviously false for all d > 1. For
instance, there are d-manifolds that do not admit an embedding into R

dC1; non-
orientable manifolds for example. In fact, it follows from Alexander duality that if
† is embeddable into the .d C 1/-sphere S

dC1, then the cohomology Hd.†IZ/ is
isomorphic to eH0.S

dC1 n†IZ/ and, thus, is torsion-free.
Having Theorem 1 in mind it is tempting to conjecture that if a d-dimensional

simplicial complex † embeds into R
dCm�1, then Hd.†IZ2/ has an m-complete

basis. The following example shows that this is not the case.

Example 2 Let n be an integer and let� be the 2-dimensional complex obtained by
suspending the complete bipartite graph Kn;n. Clearly, f .�/ D .nC 2; n2C 2n; 2n2/
and ˇ2.�/ D n2 � 2nC 1. On the other hand, � (being a suspension of a complex
embeddable in 3-space) is embeddable into R

4. However, we show that for large
enough n, H2.�IZ2/ does not have a 3-complete basis. First observe that if � is
a minimal cycle in �, then � has at least 8 triangles. Now, let B be a basis for
H2.�IZ2/ and let M be the n2�2nC1 by 2n2 f0; 1g-matrix whose rows are labeled
by the elements � of B and whose columns are labeled by the facets of �, and for
which the entry .F; �/ is the coefficient of F in �. Since the number of facets with
non-zero coefficient in each element of B is at least 8, the minimum number of 1s
in M is 8.n2�2nC1/. On the other hand, if H2.�IZ2/ has a 3-complete basis, then
the maximum number of 1 s in M must be 3 times the number of facets, that is, 6n2.
Therefore, if n is large enough then H2.�IZ2/ does not have a 3-complete basis.

5 Face Numbers

In this section we provide upper bounds for the number of top dimensional faces
of complexes that admit a codimension one embedding in terms of the lower
dimensional face numbers and Betti numbers.

For a d-dimensional simplicial complex †, with non-trivial top Betti number,
let us define the girth of †, denoted g.†/, to be the minimum number of d-
dimensional faces of a subcomplex with non-zero d-dimensional Betti number. This
notion extends the graph theoretic notion of girth as the minimal size of a circuit. If
ˇd.†/ D 0 we define the girth to be d C 2. Note that the girth of a d-dimensional
complex satisfies g.†/ � dC 2.

Theorem 2 Let † be a d-dimensional simplicial complex such that Hd.†IZ2/
admits a 2-complete basis. Then

g.†/ .ˇd.†IZ2/C 1/ � 2fd.†/: (1)
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Proof Let r and b1; : : : ; br be as defined in the proof of Theorem 1. On the one
hand, for 1 � j � r, supp.bj/ has at least g.†/ elements. On the other hand, a d-
dimensional face of † appears, if at all, in the support of two of the bj’s. Therefore,
g.†/r � 2fd.†/, as desired. ut

To help simplify the notation, let ıj D fj.†/� ˇj.†IZ2/, for all j. Then, let

�j�1.†/ D
jX

iD1
.�1/i�1ıj�i

It follows from the rank-nullity theorem that �j�1.†/ � 0 for all j. These
inequalities, sometimes called the strong Morse inequalities, are discussed in Milnor
[15], and appear in slightly sharper form in [2].

Theorem 3 Let † be a d-dimensional simplicial complex that admits a PL
embedding into R

dC1. Then,

fd.†/ � g.†/

g.†/� 2.ıd�1 � ıd�2 C ıd�3 � � � � C ıd�k � 1/ (2)

for all odd k � 1.

Proof Our point of departure is the inequality (1) of Theorem 2. Replace ˇd.†IZ2/
in the left hand side of the inequality by the right hand side of the following form of
the Euler-Poincaré formula:

ˇd.†IZ2/ D fd.†/� �d�1.†/;

and then simplify and use �d�k�1 � 0 to get the desired inequality. ut
Corollary 4 Let † be a d-dimensional simplicial complex that admits a PL
embedding into R

dC1. Then,

fd.†/ � dC 2
d

. fd�1 � ˇd�1 � 1/:

Proof This is the k D 1 case of Theorem 3, using that g.†/ � dC 2. ut
Next, we focus on balanced simplicial complexes. Recall that a d-dimensional

simplicial complex is said to be balanced if its underlying graph (1-skeleton) is
.dC 1/-colorable in the graph theoretic sense.

Theorem 5 Let † be a balanced d-dimensional simplicial complex that admits a
PL embedding into R

dC1. Then the following hold true:

(a) 2d.ˇd.†IZ2/C 1/ � fd.†/;
(b) fd.†/ � 2d

2d�1 .�d�1 � 1/.
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Proof It suffices to show that the girth of a balanced d-dimensional simplicial
complex is at least 2dC1. The crucial point is that a balanced d-dimensional complex
with non-zero top dimensional homology has at least 2dC1 faces of dimension d. To
see this one can observe that such a complex must contain a balanced d-dimensional
pseudomanifold without boundary; the pure complex whose facets are support of a
d-cycle. The claim then can be proved easily for pseudomanifolds, say by induction
on the dimension. We leave it to the reader to fill in the details. ut

Our method is applicable also to complexes that admit a codimension zero
embedding. For this, we first need to prove an auxiliary result.

Lemma 2 Let † be a d-dimensional simplicial complex and let †.�1/ denote its
codimension one skeleton. Then one has

fd.†/ D ˇd.†IZ2/� ˇd�1.†IZ2/C ˇd�1.†.�1/IZ2/:

Proof We have that fi.†.�1// D fi.†/ for all i � d � 1, and ˇi.†
.�1// D ˇi.†/ for

all i � d � 2. Hence, by the Euler-Poincaré formula

.�1/dfd.†/ D �.†/ � �.†.�1// D .�1/d
�
ˇd.†/ � ˇd�1.†/C ˇd�1.†.�1/

�

ut
Corollary 6 Let † be a d-dimensional simplicial complex that admits a PL
embedding into R

d. Then fd.†/ � 2
dC1 fd�1.†/� 1.

Proof It can easily be shown, say by using Alexander duality, that the top
dimensional homology of † must be zero. Thus, it follows from Lemma 2 that
ˇd�1.†.�1/IZ2/ � fd.†/. Now, applying Theorem 2 to †.�1/ we get

.dC 1/. fd.†/C 1/ � .dC 1/.ˇd�1.†.�1/IZ2/C 1/ � 2fd�1.†.�1// D 2fd�1.†/:

ut

6 Corollaries in Low Dimensions

In this section we summarise direct consequences of the main results for embed-
dings into dimensions 2, 3 and 4. Throughout, the number of vertices of a simplicial
complex is denoted by n (rather than f0).

Proposition 7 Let † be a 2-dimensional complex that PL embeds into R
2. Then

f2.†/ � 2
3
f1.†/� 1. In particular, f2.†/ � 2n� 5.

Proof The first inequality follows from Corollary 6. The second inequality follows
from the fact that the underlying graph of † is planar. ut
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Proposition 8 Let † be a connected 2-dimensional complex that PL embeds into
R
3. Then f2.†/ � 2. f1.†/ � ˇ1.†/� n/.

Proof This follows easily from Theorem 3. ut
Corollary 9 (Dey–Edelsbrunner [5]) Let † be a 2-dimensional complex that PL
embeds into R

3. Then f2.†/ � n.n� 3/.
Proof Without loss of generality, we may assume that † is connected. The
inequality is an immediate consequence of Proposition 8 and the trivial

�n
2

�
upper

bound for f1.†/. ut
Corollary 10 Let † be a 3-dimensional complex that PL embeds into R

3. Then
f3.†/ � n.n� 3/=2� 1.

Proof This follows from Corollaries 6 and 9. ut
Proposition 11 Let † be a connected balanced 2-dimensional complex that
embeds into R

3. Then f2.†/ � 4
9
.n2 � 3n/.

Proof It follows from Theorem 5 that f2.†/ � 4
3
. f1.†/ � n/. Now, since the

underlying graph of † is 3-colorable, one has f1.†/ � 3. n
3
/2. The conclusion now

follows easily. ut
For embeddings into dimension 4 much less is known. It was conjectured by

Kalai and Sarkaria (see Kalai’s blog [9], for instance) that if a 2-dimensional
complex is embedded into R

4, then it has at most 2n.n�1/ triangles. This conjecture
is wide open. Currently, the best known bound [17] is C �n8=3, where C is a constant.
Here is what our method yields in the case of embeddings into dimension four.

Proposition 12 Let † be a connected 3-dimensional complex that PL embeds into
R
4. Then f3.†/ � 5

3
. f2.†/� f1.†/ � ˇ2.†/C ˇ1.†/C n � 2/.

Proof This follows from Theorem 3. ut
Corollary 13 Let † be a connected 3-dimensional complex that PL embeds into
R
4. Then,

f3.†/ � 5

3
. f2.†/C ˇ1.†/ � 1/ and f3.†/ � 5

3

  
n

3

!

C n � 2/
!

:

If † is simply connected, then f3.†/ � 5
3
. f2.†/ � 1/.

Proof The inequalities are immediate consequences of Proposition 12 and the trivial�n
3

�
upper bound for f2.†/. ut
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7 Estimates

In the following we give an upper bound for the number of top dimensional faces
of a d-dimensional simplicial complex embedded into R

dC1 in terms of the number
of its vertices. Let us begin by observing that for a d-complex † on n vertices one
has fd�1.†/ �

�n
d

�
. Hence, it follows from Theorem 3 that fd.†/ < .1 C 2

d /
�n

d

�
.

Therefore, we can easily obtain the upper bound fd.†/ D O.nd/ due to Dey and
Pach [6, Theorem 3.1], where O is the big O notation.

Below we present a slightly better upper bound by using our Theorem 3 and a
combination of an idea due to Gundert [10] and Sperner’s Lemma [7, Lemma 4.5].
Recall that Sperner’s Lemma asserts that for a simplicial complex † on n vertices
the quantity fi.†/=fi�1.†/ is at most

� n
iC1
�
=
�n

i

�
. Notice that Sperner’s Lemma can

easily be strengthened to

fi.†/=fj.†/ �
 

n

iC 1

!

=

 
n

jC 1

!

D O.ni�j/;

for all i > j.

Theorem 14 Let † be a d-dimensional simplicial complex that admits a PL

embedding into R
dC1. Then fd.†/ D O.nd��/, where � D 3�d dC1

2 e.

Proof Let us, to simplify notation, put ` D d dC1
2
e. Let � be the `-dimensional

skeleton of †. Since � is embeddable into R
d, it follows from [10, Proposi-

tion 3.3.5] that

f`.†/ D f`.�/ D O.n`C1�3�`

/:

Now, it follows from Sperner’s Lemma that fd�1.†/ D O.nd�`�1/f`.†/. Therefore,
one obtains that fd�1.†/ D O.nd�3�`

/. Finally, the conclusion follows from
Theorem 3. ut

We remark that the upper bound provided in Theorem 14 is probably far from the
true upper bound. Actually, it was shown by Dey and Pach [6] that if a k-dimensional
complex † embeds into R

k then fk.†/ D O.nd k
2 e/. Indeed, for k � 4 it is an open

problem to show that if a simplicial complex embeds into R
k, then the total number

of its faces is bounded above by O.nd k
2 e/.

8 An Upper Bound by Grünbaum

In the 1970 paper [8] Branko Grünbaum shows that if a d-dimensional complex
† embeds into R

dC1, then fd.†/ � 6
dC1 fd�1.†/. He also proves slightly sharper

versions of this result for pure complexes, see Proposition 15 below.
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How do the different bounds compare? Due to their different structure it is hard
to make a general comparison. In view of having leading constant 6

dC1 , it is clear
that Grünbaum’s upper bound is better than ours in several cases, particularly when
one has only some partial f -vector information. However, our bound is tighter in
other cases, especially if much structural information, expressed in terms of f - and
ˇ-vectors, is available. In this section, we present one such case.

Let us begin with the following result, which extends the validity of Grünbaum’s
inequality [8, 5(iii)] to embeddability into manifolds.

Proposition 15 Let † be a pure d-dimensional simplicial complex that is PL
embeddable into a .dC 1/-dimensional PL manifold. Then

fd.†/ � 6

dC 1 fd�1.†/� 10

d.dC 1/ fd�2.†/: (3)

Proof We know that if † is a planar graph which contains at least one edge, then1

f1.†/ � 3f0.†/ � 5. This verifies the first step d D 1 of an inductive argument.
Now assume that the statement is valid for every 1 � k < d and † is a pure d-

dimensional simplicial complex that is PL embeddable into a .d C 1/-dimensional
PL manifold. Let V denote the vertex set of † and for v 2 V , let Lv be the link of v
in †. Since † is embeddable into a .d C 1/-manifold, Lv must be embeddable into
a d-sphere and we have

dŠ fd�1.Lv/ � 6.d � 1/Š fd�2.Lv/� 10.d � 2/Š fd�3.Lv/:

Summing over all vertices v 2 V and using the equation
P

v fi.Lv/ D .iC2/fiC1.†/
yields the desired conclusion. ut

Say we are interested in the question whether the d-skeleton of a .dC1/-manifold
is embeddable into R

dC1. If the manifold in question has non-vanishing homology
in dimension d (or equivalently in dimension one) our inequalities turn out to be
sharp enough to provide a negative answer, while Grünbaum’s inequality (3) is not.

Proposition 16 Let † be the d-skeleton of a triangulated .d C 1/-dimensional PL
manifold with non-zero d-dimensional Betti number. Then † is not PL-embeddable
into R

dC1.

Proof Let M denote the .d C 1/-dimensional manifold in question. We know from
Lemma 2 that

fdC1.M/ D ˇdC1.MIZ2/� ˇd.MIZ2/C ˇd.†IZ2/:

1Note that “�5” is needed here, instead of “�6”, in order to include the case when f0 D 2 for the
inductive argument.
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Since M is a manifold, one has .dC 2/fdC1.M/ D 2fd.M/ and ˇdC1.M/ D 1. This,
together with the assumption ˇd.M/ � 1 imply that

.dC 2/ .ˇd.†/C 1/ D .dC 2/ .ˇdC1.M/C ˇd.†// > .d C 2/fdC1.M/ D 2fd.M/;

which violates the inequality (1) of Theorem 5. Therefore,† is not PL embeddable
into R

dC1. Also the inequality (2) is violated.
Observe, however, that Grünbaum’s inequality (3) is satisfied by f .†/. This

follows from Proposition 15, since † is PL embeddable into a .dC 1/-dimensional
manifold, namely M. ut
Example 3 As a concrete example of this type, one may take T to be a triangulation
of the 3-torus with f .T/ D .15; 105; 180; 90/. Such a triangulation exists and
happens to be the smallest (w.r.t. the f -vector) known triangulation of the 3-torus
S1 
 S1 
 S1. See [12, Table 7] for instance. Let † be the 2-skeleton of T. Then one
has f .†/ D .15; 105; 180/ and ˇ.†/ D .1; 3; 92/.
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Using Brouwer’s Fixed Point Theorem

Anders Björner, Jiří Matoušek, and Günter M. Ziegler

Abstract Brouwer’s fixed point theorem from 1911 is a basic result in topology—
with a wealth of combinatorial and geometric consequences. In these lecture notes
we present some of them, related to the game of HEX and to the piercing of multiple
intervals. We also sketch stronger theorems, due to Oliver and others, and explain
their applications to the fascinating (and still not fully solved) evasiveness problem.

1 Introduction

The fixed point theorem of Brouwer is one of the most widely known results of
topology. It says that every continuous map f W Bd ! Bd of the d-dimensional closed
unit ball to itself has a fixed point, that is, a point x0 2 Bd such that f .x0/ D x0.

This result was established by Luitzen Egbertus Jan Brouwer (1881–1960)
at the end of his important 1911 paper [20], in which he also introduced the
fundamental concept (and proof technique) of the mapping degree. It has many
striking and famous applications to problems in Geometry, Analysis, Game Theory
and Combinatorics.

Brouwer’s fixed point theorem is in several ways similar to the Borsuk–Ulam
theorem from 1933, which has gotten a lot of attention and appreciation for being
unusually rich in applications. For example, the 1978 proofs of the 1956 Kneser
conjecture by Lovász and by Bárány employed the Borsuk–Ulam Theorem in order
to solve a problem about partitioning a set system, or equivalently, bounding the
chromatic numbers for a certain class of graphs. This unexpected use of a result
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from equivariant topology is one of the starting points (probably the most famous
one) for the field of “Topological Combinatorics” [11, 46]. We refer to the detailed,
elementary exposition in Matoušek’s book “Using the Borsuk–Ulam Theorem”
[52]. Current research continues this line of work, using more advanced methods
from Equivariant Algebraic Combinatorics; see for example the text “Beyond the
Borsuk–Ulam Theorem: The Topological Tverberg Story” [14] in this volume.

In various respects, Brouwer’s theorem is a simpler result than the Borsuk–Ulam
theorem: For example, it is very easy to state (as it does not involve symmetry, or a
group action), and it is quite easy to prove (see below). It can also easily be derived
from the Borsuk–Ulam theorem (see [73]), while indeed it is not as straightforward
to obtain “Borsuk–Ulam from Brouwer.”

Just like the Borsuk–Ulam theorem, Brouwer’s theorem has many equivalent
versions, as well as powerful and useful extensions. For instance, the Lefschetz fixed
point theorem that works for spaces much more general than a ball, the Schauder
fixed point theorem that works also for compact balls in infinite-dimensional Banach
spaces, the Kakutani fixed point theorem for set-valued maps, and so on. See
Shapiro [67] for a friendly introduction to fixed point theorems with Analysis
applications in mind.

The striking applications of the Brouwer theorem in Combinatorics and Geome-
try seem not to be as well known as the applications of the Borsuk–Ulam theorem.
In order to help to remedy this, we present three distinct areas of such applications
in the three main sections of these lecture notes:

1. Brouwer’s theorem can be invoked to prove that the game of HEX can never end
without a winner. And indeed, the d-dimensional version of this claim turns out
to be equivalent to Brouwer’s theorem! This observation of David Gale in his
award-winning 1979 paper [27] may also be counted among the starting points
of Topological Combinatorics. In our presentation we not only use this to prove
the HEX theorem, but we also give a combinatorial proof of the HEX theorem
and derive Brouwer’s theorem from this.

2. Some results about hypergraph matchings and transversals have a topological
core, to be derived from the Brouwer theorem. Our presentation treats one strik-
ing instance, concerning the relation between packing and transversal numbers
for systems of d-intervals.

3. The Evasiveness conjecture states that every non-trivial monotone graph property
is evasive, that is, it does not allow for a query strategy that cannot be tricked
into checking all potential edges of a graph in order to establish the property.
This conjecture is still open in general, but the special case of a graph on a prime
power number of vertices was proved using fixed point theorems of Smith and
Oliver. These theorems may be seen as extensions of Brouwer’s. The Appendix
to this paper collects and sketches the necessary tools.

Further remarkable applications of Brouwer’s fixed point theorem on geometric
problems, not treated here, include the work by Bondarenko and Viazovska [17] on
the construction of spherical designs, and the work on center points and regression
depth by Amenta et al. [5].
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Our presentation is based on lecture notes that were written about fifteen years
ago, with a history that for some parts goes back nearly thirty years. These notes
can be regarded as a companion or perhaps as a “prequel” to Matoušek’s book [52].

The three main parts do not depend on each other, so they can be read
indepenently. We refer to [52] for notation and terminology not explained here.

2 A Game Model for Brouwer’s Fixed Point Theorem

2.1 The Game of HEX

Let’s start with a game: “HEX” is a board game for two players, invented by
the ingenious Danish poet, designer and engineer Piet Hein in 1942 [29], and
rediscovered in 1948 by the mathematician John Nash [57], who got a Nobel
memorial prize in economics in 1994 (for his work on game theory, but not really
for this game . . . ).

HEX, in Hein’s version, is played on a rhombical board, as depicted in the figure.

W

B

B′

W ′

The rules of the game are simple: There are two players, whom we call White and
Black. The players alternate, with White going first. Each move consists of coloring
one “grey” hexagonal tile of the board white resp. black. White has to connect the
white borders of the board (marked W and W 0) by a path of his white tiles, while
Black tries to connect B and B0 by a black path. They can’t both win: Any winning
path for white separates the two black borders, and conversely. (This isn’t hard to
prove—however, the statement is closely related to the Jordan curve theorem, which
is trickier than it may seem when judged at first sight: see Exercise 13.)

However, here we concentrate on the opposite statement: There is no draw
possible—when the whole board is covered by black and white tiles, then there
always is a winner. (This is even true if one of the players has cheated badly and
ends up with much more tiles than his/her opponent! It is also true if the board isn’t
really “square,” that is, if it has sides of unequal lengths.) Our next figure depicts a
final HEX position—sure enough one of the players has won, and the proof of the
following “HEX theorem” will give us a systematic method to find out which one.
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W

B

B′

W ′

Theorem 2.1 (The HEX theorem) If each tile of an .n
m/-HEX board is colored
black or white, then either there is a path of white tiles that connects the white
borders W and W 0, or there is a path of black tiles that connects the black borders
B and B0.

Our plan for this section is the following:

• We give a simple proof of the HEX theorem.
• We show that it implies the Brouwer fixed point theorem . . .
• . . . and conversely: The Brouwer fixed point theorem implies the HEX theorem.
• Then we prove that one of the players has a winning strategy.
• And then we see that on a square board, the first player can win, while on an

uneven board, the player with the longer borders has a strategy to win.

All of this is really quite simple, but it nicely illustrates how a topological theorem
enters the analysis of a discrete situation.

Proof of the HEX theorem For the proof we trace a certain path between the black
and the white tiles. It starts in the lower left-hand corner of the HEX board on the
edge that separates W and B. Whenever the path reaches a corner of degree 3, there
will be both colors present at the corner (due to the edge we reach it from), and so
there will be a unique edge to proceed on that does have different colors on its two
sides.

W

B

B′

W ′
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Our path can never get stuck or branch or turn back onto itself, otherwise we
would have found a vertex that has one or three edges that separate colors, whereas
this number clearly has to be even at each vertex. Thus the path can be continued
until it leaves the board—that is, until it reaches W 0 or B0. But that means that we
find a path that connects W to W 0, or B to B0, and on its sides keeps a white path of
tiles resp. a black path. That is, one of White and Black has won! ut

Now this was easy, and (hopefully) fun. We continue with a re-interpretation of
the HEX board—in Nash’s version—that buys us two drinks for the price of one:

(i) a d-dimensional version of the HEX theorem, and
(ii) the connection to the Brouwer fixed point theorem.

Definition 2.2 (The d-dimensional HEX board) The d-dimensional HEX board
is the graph H.n; d/ on the vertex set V D f�1; 0; 1; : : : ; n; n C 1gd, in which two
vertices v;w 2 V are connected by an edge if and only if v�w 2 f0; 1gd[f0;�1gd.

The colors for the d-dimensional HEX game are 1; 2; : : : ; d, where we identify
“1 Dwhite” and “2 D black.” The interior of the HEX board is given by V 0 D
f0; 1; 2; : : : ; ngd. All the other vertices, in V n V 0, form the boundary of the board.
The vertices in the boundary of H.n; d/ get preassigned colors


.v/ D 
.v1; : : : ; vd/ WD
(

minfi W vi D �1g if this exists;

minfi W vi D nC 1g otherwise:

Our drawing depicts the 2-dimensional HEX board H.5; 2/, which represents
a dual graph for the .6 
 6/-board that we used in our previous figures, with the
preassigned colors on the boundary.

The d-dimensional HEX game is played between d players who take turns in
coloring the interior vertices of H.n; d/. The i-th player wins if he1 achieves a path
of vertices of color i that connects a vertex whose i-th coordinate is �1 to a vertex
whose i-th coordinate is nC 1.

1Using “he” here is not politically correct.
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Theorem 2.3 (The d-dimensional HEX theorem) For d-dimensional HEX at
least one of the players reaches his goal: When all interior vertices of H.d; n/ are
colored, then at least one player has won.

Proof The proof that we used for 2-dimensional HEX still works: It just has to
be properly translated for the new setting. For this we first check that H.n; d/ is the
graph of a triangulation�.n; d/ of Œ�1; nC1�d, which is given by the clique complex
of H.n; d/. That is, a set of lattice points S � f�1; 0; 1; : : : ; nC1gd forms a simplex
in �.n; d/ if and only if the points in S are pairwise connected by edges. To check
this, verify that each point x 2 Œ�1; nC1�d lies in the relative interior of a unique
simplex, which is given by

�.x/ WD conv
˚
v 2 f�1; : : : ; nC 1gd W

bxic � vi � dxie for all i;

bxi � xjc � vi � vj � dxi � xje for all i ¤ j
�
:

Every full-dimensional simplex in �.n; d/ has d C 1 vertices. A simplex S
in �.n; d/ is completely colored if it has all d colors on its vertices. Thus each
completely colored d-simplex in� has exactly two completely colored facets, which
are .d � 1/-faces of the complex �.n; d/. Conversely, every completely colored
.d� 1/-face is contained in exactly two completely colored d-simplices—if it is not
on the boundary of Œ�1; nC 1�d.

With this the (constructive) proof that we gave before for the 2-dimensional HEX
theorem generalizes to the following: We start at the d-simplex

�0 WD convf�1;�1C e1;�1C e1 C e2; : : : ;�1C e1 C � � � C ed�1;�1C e1 C � � � C edg
D convf�1;�1C e1;�1C e1 C e2; : : : ;�ed; 0g;

whose facet (.d � 1/-face) convf�1;�1C e1; : : : ;�ed�1 � ed;�edg is completely
colored. (Verify this!) This simplex is shaded in the following figure for H.5; 2/,
which depicts the same final position that we considered before.
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Now we construct a sequence of completely colored d-dimensional simplices that
starts at �0: We find the second completely colored .d � 1/-face of �0, find the
second completely colored d-simplex it is contained in, etc. Thus we find a chain
of completely colored d-simplices that ends on the boundary of Œ�1; nC1�d—at a
different simplex than the one we started from. In particular, the last d-simplex in
the chain has a completely colored facet in the boundary, and by construction this
facet has to lie in a hyperplane HCi D fx W xi D nC 1g. At this point we check that
every completely colored .d � 1/-simplex in the boundary of H.n; d/ is contained
in one of the hyperplanes HCi , with the sole exception of the boundary facet of our
starting d-simplex. The chain of d-simplices then provides us with an i-colored path
from the i-colored vertex

�1C e1 C � � � C ei�1 2 H�i D fx W xi D �1g

to the i-colored vertex in HCi : So the i-th player wins. ut
Our drawing illustrates the chain of completely colored simplices (shaded) and

the sequence of (white) vertices for the winning path that we get from it.

2.2 The Brouwer Fixed Point Theorem

Now we proceed from the discrete mathematics setting of the HEX game to the
continuous world of topological fixed point theorems. Here are three versions of the
Brouwer fixed point theorem.

Theorem 2.4 (Brouwer fixed point theorem) The following are equivalent (and
true):

(Br1) Every continuous map f W Bd �! Bd has a fixed point.
(Br2) Every continuous map f W Bd �! Sd�1 has a fixed point.
(Br3) Every null-homotopic map f W Sd�1 �! Sd�1 has a fixed point.
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(The term null-homotopic that appears here refers to a map that can be deformed
to a constant map.)

Proof of the equivalences (Br1)H)(Br2) is trivial, since Sd�1 � Bd.
For (Br2)H)(Br3) let hW Sd�1 
 Œ0; 1� �! Sd�1 be a null-homotopy for f , i.e.,

a continuous map that interpolates between our original map f and a constant map,
with h.x; 0/ D f .x/ and h.x; 1/ D x0 for all x 2 Sd�1. From this we construct a
continuous map FW Bd �! Sd�1 that extends f , by

F.x/ WD
(

h. x
jxj ; 2 � 2jxj/ if 1

2
� jxj � 1;

x0 for jxj � 1
2
:

x →−� x0

x →−� f(x)

This map is continuous, and by (Br2) it has a fixed point, which must lie in the
image, that is, in Sd�1.

For the converse, (Br3)H)(Br2), let f W Bd �! Sd�1 be continuous. Then the
restriction f jSd�1 is null-homotopic, since h.xI t/ WD f ..1 � t/x/ provides a null-
homotopy. Thus, by (Br3) the map f jSd�1 has a fixed point, hence so does f .

Finally, we get (Br2)H)(Br1): If f W Bd �! Bd has no fixed point, then we
set g.x/ WD f .x/�x

j f .x/�xj . This defines a map gW Bd �! Sd�1 that has a fixed point

x0 2 Sd�1 by (Br2), with x0 D f .x0/�x0
j f .x0/�x0j . But this implies f .x0/ D x0.1 C t/ for

t WD j f .x0/ � x0j > 0, and this is impossible for x0 2 Sd�1. ut
In the following we use the unit cube Œ0; 1�d in place of the ball Bd: It should

be clear that the Brouwer fixed point theorem equally applies to self-maps of any
domain D that is homeomorphic to the ball Bd, resp. of the boundary @D of such a
domain.

Proof of the Brouwer fixed point theorem (“HEX H) (Br1)”). If f W Œ0; 1�d �!
Œ0; 1�d has no fixed point, then for some " > 0 we have that j f .x/ � xj1 � "

for all x 2 Œ0; 1�d (namely, one can take " WD minfj f .x/� xj1 W x 2 Œ0; 1�dg, which
exists since Œ0; 1�d is compact).

Furthermore, any continuous function on the compact set Œ0; 1�d is uniformly
continuous (see e.g. Munkres [59, §27]), hence there exists some ı > 0 such that
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jx�x0j1 < ı implies j f .x/�f .x0/j1 < ". We take ı < " (without loss of generality),
and then choose n with 1

n < ı.
From f , we now define a d-coloring of H.n; d/, by setting


.v/ WD minfi W j fi. v
n / � vi

n j � "g
for the interior vertices v 2 H.n; d/, where fi denotes the ith component of f . This is
well-defined, since v

n 2 Œ0; 1�d, and thus the absolute value of at least one component
of f . v

n / � v
n has to be at least ". Now, the d-dimensional HEX theorem guarantees

a chain v0; v1; : : : ; vN of vertices of color i, for some i, where v0i D 0 and vN
i D n.

Furthermore, we know that j fi. vk

n /� vk
i

n j � " for 0 � k � N. Also, at the ends of the
chain we know the signs:

f . v0

n / 2 Œ0; 1�d implies fi.
v0

n / � 0 and hence fi.
v0

n /� v0i
n � ", and

f . vN

n / 2 Œ0; 1�d implies fi. vN

n / � 1 and hence fi. vN

n /� vN
i
n � �".

It follows that for some k 2 f1; 2; : : : ;Ng we must have a sign change:

fi. vk�1

n /� vk�1
i
n � " and fi. vk

n /� vk
i

n � �".
All these facts taken together provide a contradiction, since

j vk�1

n � vk

n j1 D 1
n < ı;

whereas

j f . vk�1

n /� f . vk

n /j1 � j fi. vk�1

n /� fi.
vk

n /j � 2"� j v
k�1
i
n � vk

i
n j � 2"� 1

n > 2"� ı > ":
ut

Proof that the Brouwer fixed point theorem implies the HEX theorem (“Br1 H)
HEX”). Assume we have a coloring of H.n; d/. We use it to define a map Œ0; n�d �!
Œ0; n�d, as follows: On the points in f0; 1; : : : ; ngd we define

f .v/ D

8
<̂

:̂

vC ei if v has color i, and there is a path on vertices of colori
that connects v to a vertex w with wi D 0

v � ei if v has color i, but there is no such path.

If for the given coloring there is no winning path for HEX, then these definitions
do not map any point v outside Œ0; n�d. Hence this by linear extension defines a
simplicial map f W Œ0; n�d �! Œ0; n�d on the simplices of the triangulation �.n; d/
that we have considered before.

The following two observations now give us a contradiction, showing that this f
cannot have a fixed point:

• If � D convfv0; v1; v2; : : : ; vdg � R
d is a simplex and f W � �! R

d is a linear
map defined by f .vi/ D vi C wi, then f has a fixed point on � if and only if
0 2 convfw0; : : : ;wdg.

• If v; v0 are adjacent vertices, then we cannot get f .v/ D v�ei and f .v0/ D v0Cei.
Hence for each simplex of�.n; d/, all the vectors wi lie in one orthant of Rd! ut
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2.3 The Joy of HEX: Who Wins?

So, who can win the 2-dimensional HEX game? A simple but ingenious argument
due to John Nash, known as “stealing a strategy,” shows that on a square board the
first player (“White”) always has a winning strategy. In the following we first define
winning strategies, then show that one of the players has one, and finally conclude
that the first player has one. Still: The proof will be non-constructive, and we don’t
know how to win HEX. So, the game still remains interesting . . .

Definition 2.5 A strategy is a set of rules that tells one of the players which move
to choose (i.e., which tile to color) for every legal position on the board. A winning
strategy here guarantees to lead to a win, starting from an empty board, for all
possible moves of the opponent.

A position of the HEX game is a board on which some tiles may have been
colored white or black, together with the information who moves next (unless all
tiles are colored). A position is legal if it can occur in a HEX game: That is, if either
White moves next, and the numbers of white and black tiles agree, or if Black moves
next, and White has one more tile.

A winning position for White is a position such that White has a winning strategy
that tells him how to proceed (for arbitrary moves of Black) and guarantees a win.
Similarly, a winning position for Black has a winning strategy that guarantees to
lead Black to a win.

Lemma 2.6 Every (legal) position for HEX is either a winning position for White
or a winning position for Black.

Proof Here we proceed by induction on the number g of “grey” tiles (i.e., “free”
positions on the board). If no grey tiles are present .g D 0/, then one of the players
has won—by the HEX theorem.

If g > 0 and White is to move, then any move that White could choose reduces g,
and thus (by induction) produces a winning position for one of the players. If there
is a move that leads to a winning position for White, then this is really nice and great
for White: This makes the present position into a winning position for White, and
any such move can be used for a winning position for White. Otherwise—too bad:
If every possible move for White produces a winning position for Black, then we
are at a winning position for Black already.

And the same argument applies for g > 0 if Black is to move. ut
Of course, the argument given here is much more general: Essentially we have

proved that for any finite deterministic 2-person game without a draw and with
“complete information” there is a winning strategy for one of the players. (This is a
theorem of Zermelo, which was rediscovered by von Neumann and Morgenstern).
Furthermore, for games where a draw is possible either one player has a winning
strategy, or both players can force a draw. We refer to Exercise 12, and to Blackwell
and Girshick [13, p. 21].
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For HEX, Lemma 2.6 shows that at the beginning (for the starting position, where
all tiles are grey, and White is to move), there is a winning strategy either for White
or for Black. But who is the winner?

Our first attempt might be to follow the proof of Lemma 2.6. Only for the 2 
 2
board this can be done:

In this drawing, you can decide for every position whether it is a winning position
for White or for Black, starting with the bottom row (g D 0) that has three winning
positions for each player, ending at the top node (g D 4), which turns out to be a
winning position for White.

For larger boards, this approach is hopeless—after all, there are
� n2

bn2=2c
�

final
positions to classify for “g D 0,” and from this one would have to work one’s way
up to the top node of a huge tree (of height n2). Nevertheless, people have worked
out winning strategies for White on the n 
 n boards for n � 5 (see Gardner [28]).

Theorem 2.7 For the HEX game played on a HEX board with equal side lengths,
White (the first player) has a winning strategy.

Proof Assume not. Then by Lemma 2.6 Black has a winning strategy. But then
White can start with an arbitrary move, and then—using the symmetry of the board
and of the rules—just ignore his first tile, and follow Black’s winning strategy “for
the second player.” This strategy will tell White always which move to take. Here
the “extra” white tiles cannot hurt White: If the move for White asks to occupy
a tile that is already white, then an arbitrary move is fine for White. But this
“stealing a strategy” argument produces a winning strategy for White, contradicting
our assumption! ut
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Notes Gale’s beautiful paper [27] was the source and inspiration for our
treatment of Brouwer’s fixed point theorem in terms of the HEX game.
Nash’s analysis for the winning strategies for HEX is from Gardner’s classical
account in [28], some of which reappears in Milnor’s [57]. See also the
accounts in Jensen and Toft [37, Sect. 17.14], and in Berlekamp, Conway
and Guy [9, p. 680], where other cases of “strategy stealing” are discussed.
(A theoretical set-up for this is in Hales and Jewett [33, Sect. 3].)

The traditional combinatorial approach to the Brouwer fixed point theorem
is via Sperner’s lemma [71]; see e.g. Exercise 4 below and the presentation
in [1]. Lovász’s [48] matroid version of Sperner’s lemma in Exercise 5 was
further generalized by Lindström [45]. Kryński [44], however, showed that
these results can easily be derived from earlier results.

A more geometric version of the combinatorial lemmas is given by
Mani [50].

Exercises

1. Stir your coffee cup. Show that the (moving, but flat) surface has at every
moment at least one point that stands still (has velocity zero).

2. Prove that if you tear a sheet of paper from your notebook, crumble it into a
small ball, and put that down on your notebook, then at least one point of the
sheet comes to rest exactly on top of its original position.

Could it happen that there are exactly two such points?
3. In the proof of the Brouwer fixed point theorem (Theorem 2.4, (Br2)H)(Br3)),

we could have tried to simply put F.x/ WD h. x
jxj ; 1 � jxj/. Is this continuous?

4. (a) Prove “Sperner’s Lemma” [71]: Let � be a triangulation of the d-
dimensional sphere and let us color the vertices of � using d C 1 colors.
Then� has an even number of colorful facets (meaning d-faces containing
vertices of all colors).

(b) Show that Sperner’s Lemma implies the Brouwer fixed point theorem.
5. (a) Let � be a triangulation of a d-dimensional manifold with vertex set V .

Assume that a matroid M of rank dC 1 without loops is defined on V . If�
has a facet that is a basis of M then it has at least two such facets. (Lovász
[48])

(b) Show that part (a) implies Sperner’s Lemma, and hence also Brouwer’s
theorem.

6. Let BE D 2E n f;;Eg be the poset of all proper subsets of a finite set E, ordered
by containment. Show that if an order-preserving map f W BE ! BE does not
have a fixed point then it is surjective, and hence an automorphism.

7. Let P D BE n fAg, for some proper subset A.

(a) Give a quick proof that P has the fixed point property, meaning that any
order-preserving self-map has a fixed point.

(b) Give a slow proof, not using topology, that P has the fixed point property.
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8. For HEX on a 3 
 3 board, how large is the tree of possible positions?
9. Can you write a computer program that plays HEX and wins (sometimes) [22]?

10. For d-dimensional HEX, is there always some “short” winning path? Show
that for every d � 2 there is a constant cd such that for all n there is a final
configuration such that only one player wins, but his shortest path uses more
than cd � nd tiles.

11. Construct an algorithm that, for given " > 0 and f W Œ0; 1�2 �! Œ0; 1�2,
calculates a point x0 2 Œ0; 1�2 with j f .x0/ � x0j < ". [27, p. 827]

12. If in a complete information two player game a draw is possible, argue why
either one of the players has a winning strategy, or both can force at least a
draw.

13. Prove that for 2-dimensional HEX, not both players can win! For this, prove
and use the “polygonal Jordan curve theorem”: any simple closed polygon in
the plane uniquely divides the plane into an “inside” region and an “outside”
region.

(The general Jordan curve theorem for simple “Jordan arcs” in the plane has
extensive discussions in many books; see for example Munkres [59], Stillwell
[72, Sect. 0.3], or Thomassen [75].)

14. On an .m
 n/-board that is not square (that is, m ¤ n), the player who gets the
longer sides, and hence the shorter distance to bridge by a winning path, has a
winning strategy. Our figure illustrates the case of a .6 
 5/-board, where the
claim is that Black has a winning strategy.

(i) Show that for this, it is sufficient to consider the case where m D n C 1
(i.e., the second player Black, who gets the longer side, has a sure win).
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(ii) Show that in the situation of (i), Black has the following winning strategy.
Label the tiles in the “symmetric” way that is indicated by the figure, such
that there are two tiles of each label. The strategy for Black is to always
take the second tile that has the same label as the one taken by White. Why
will this strategy always win for Black? (Hint: You will need the Jordan
curve theorem.)

(This is in Gardner [28] and in Milnor [57], but neither source gives the
proof. You’ll have to work yourself!)
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3 Piercing Multiple Intervals

3.1 Packing Number and Transversal Number

Let S be a system of subsets of a ground set X; both S and X may generally be
infinite. The packing number of S, usually denoted by �.S/ and often also called
the matching number, is the maximum cardinality of a system of pairwise disjoint
sets in S:

�.S/ D supfjMj W M � S; M1 \M2 D ¿ for all M1;M2 2M;M1 ¤ M2g:

The transversal number or piercing number of S is the smallest number of points
of X that capture all the sets in S:

�.S/ D minfjTj W T � X; S \ T ¤ ¿ for all S 2 Sg:

A subsystem M � S of pairwise disjoint sets is usually called a matching (this
refers to the graph-theoretical matching, which is a system of pairwise disjoint
edges), and a set T � X intersecting all sets of S is referred to as a transversal
of S. Clearly, any transversal is at least as large as any matching, and so always

�.S/ � �.S/:

In the reverse direction, very little can be said in general, since �.S/ can be
arbitrarily large even if �.S/ D 1. As a simple geometric example, we can take
the plane as the ground set of S and let the sets of S be lines in general position.
Then � D 1, since every two lines intersect, but � � 1

2
jSj, because no point is

contained in more than two of the lines.
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One of the basic general questions in combinatorics asks for interesting special
classes of set systems where the transversal number can be bounded in terms of the
matching number.2 Many such examples come from geometry. Here we restrict our
attention to one particular type of systems, the d-intervals, where the best results
have been obtained by topological methods.

Fractional packing and transversal numbers Before introducing d-intervals, we
mention another important parameter of a set system, which always lies between
� and � and often provides useful estimates for � or � . This parameter can be
introduced in two seemingly different ways. For simplicity, we restrict ourselves
to finite set systems (on possibly infinite ground sets). A fractional packing for a
finite set system S on a ground set X is a function wW S �! Œ0; 1� such that for
each x 2 X, we have

P
S2SW x2S w.S/ � 1. The size of a fractional packing w isP

S2S w.S/, and the fractional packing number ��.S/ is the supremum of the sizes
of all fractional packings for S. So in a fractional packing, we can take, say, one-
third of one set and two-thirds of another, but at each point, the fractions for the
sets containing that point must add up to at most 1. We always have �.S/ � ��.S/,
since a packing M defines a fractional packing w by setting w.S/ D 1 for S 2M
and w.S/ D 0 otherwise.

Similar to the fractional packing, one can also introduce a fractional version of
a transversal. A fractional transversal for a (finite) set system S on a ground set X
is a function 'W X �! Œ0; 1� attaining only finitely many nonzero values such that
for each S 2 S, we have

P
x2S '.x/ � 1. The size of a fractional transversal ' isP

x2X '.x/, and the fractional transversal number ��.S/ is the infimum of the sizes
of fractional transversals.

By the duality theorem of linear programming (or by the theorem about
separation of disjoint convex sets by a hyperplane), it follows that ��.S/ D ��.S/
and thus that

�.S/ � ��.S/ D ��.S/ � �.S/

for any finite set system S.
When trying to bound � in terms of �, in many instances it proved very useful

to bound �� as a function of � first, and then � in terms of ��. The proof presented
below follows a somewhat similar approach.

2This kind of problem is certainly not restricted to combinatorics. For example, if S is the system
of all open sets in a topological space, �.S/ is the minimum size of a dense set and is called
the density, while �.S/ is known as the Souslin number or cellularity of the space. In 1920,
Souslin asked whether a linearly ordered topological space exists (the open sets are unions of open
intervals) with countable � but uncountable � . It turned out in the 1970s that the answer depends
on the axioms one is willing to assume beyond the usual (ZFC) axioms of set theory. For example,
it is yes if one assumes the continuum hypothesis; see e.g. [23].
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3.2 The d-Intervals

Let I1; I2; : : : ; Id be disjoint parallel segments in the plane. (We may assume without
loss of generality that they are horizontal unit length intervals at distinct heights/y-
coordinates.) A set J � Sd

iD1 Ii is a d-interval if it intersects each Ii in a closed
interval. We denote this intersection by Ji and call it the ith component of J. The
following drawing shows a 3-interval:

Intersection and piercing for d-intervals are taken in the set-theoretical sense: Two
d-intervals intersect if, for some i, their ith components intersect.

The 1-intervals, which are just intervals in the usual sense, behave nicely with
respect to packing and piercing, as for any family F of intervals, we have �.F/ D
�.F/. (This is well-known and easy to prove: Exercise 1!) This, however, does not
extend to d-intervals. For example, the family F of three 2-intervals

has �.F/ D 1while �.F/ D 2. By taking multiple copies of this family, one obtains
families with � D 2� for all values of �.

Gyárfás and Lehel [31] showed by elementary methods that for any d and any
family F of d-intervals, �.F/ can be bounded by a function of �.F/ (also see [32]).
Their function was rather large (about �dŠ for d fixed). After an initial breakthrough
by Tardos [74], who proved �.F/ � 2�.F/ for any family of 2-intervals, Kaiser
[39] obtained the following result:

Theorem 3.1 (The Tardos–Kaiser theorem on d-intervals) Every family F of d-
intervals, d � 2, has a transversal of size at most .d2 � d/ � �.F/.

Here we present a proof using the Brouwer fixed point theorem. Alon [2] found
a short non-topological proof of the slightly weaker bound �.F/ � 2d2�.F/.
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Proof Let F be a fixed system of d-intervals with �.F/ D k, and let t D t.d; k/ be a
suitable (yet undetermined) integer. The general plan of the proof is this: Assuming
that there is no transversal of F of size dt, we show by a topological method that
the fractional packing number ��.F/ is at least tC 1. Then a simple combinatorial
argument proves that the packing number �.F/ is at least tC1

d , which leads to t <
d2 � �.F/. Sharper combinatorial reasoning in this step leads to the slightly better
bound in the theorem.

Our candidates for a transversal of F are all sets T with each Ti D T \ Ii having
exactly t points; so jTj D td. For technical reasons, we also permit that some of the
t points in Ii coincide, so T can be a multiset.

The letter T could also abbreviate a trap. The trap is set to catch all the d-intervals
inF , but if it is not set well enough, some of the d-intervals can escape. Each of them
escapes through a hole in the trap, namely through a d-hole. The points of Ti cut the
segment Ii into tC 1 open intervals (some of them may be empty), and these are the
holes in Ii; they are numbered 1 through tC1 from left to right. A d-hole consists of
d holes, one in each Ii. The type of a d-hole H is the set f.1; j1/; .2; j2/; : : : ; .d; jd/g,
where ji 2 ŒtC1� is the number of the hole in Ii contained in H. A d-interval J 2 F
escapes through a d-hole H if it is contained in the union of its holes. The drawing
shows a 3-hole, of type f.1; 2/; .2; 4/; .3; 4/g, and a 3-interval escaping through it:

Let H0 be the hypergraph with vertex set Œd� 
 ŒtC1� and with edges being all
possible types of d-holes; for example, the hole in the picture yields the edge
f.1; 2/; .2; 4/; .3; 4/g. So H0 is a complete d-partite d-uniform hypergraph. By
saying that a J 2 F escapes through an edge H of H0, we mean that J escapes
through the d-hole (uniquely) corresponding to H.

Next, we define weights on the edges of H0; these weights depend on the set T
(and also on F , but this is considered fixed). The weight of an edge H 2 H0 is

qH D supfdist.J;T/ W J 2 F ; J escapes through Hg:

Here dist.J;T/ WD min1�i�dfdist.Ji;Ti/g and dist.Ji;Ti/ is the distance of the ith
component of J to the closest point of Ti. Thus qH can be interpreted as the largest
margin by which some d-interval from F escapes through H. If no members of F
escape through H, we define qH as 0. Note that this is the only case where qH D 0.
Otherwise, if anything escapes, it does so by a positive margin, since we are dealing
with closed intervals.



238 A. Björner et al.

From the edge weights, we derive weights of vertices: The weight wv of a vertex
v D .i; j/ is the sum of the weights of the edges of H0 containing v. These weights,
too, are functions of T; to emphasize this, we write wv D wv.T/.

Lemma 3.2 For any d � 1, t � 1, and any F , there is a choice of T such that all
the vertex weights wv.T/, v 2 Œd� 
 ŒtC1�, coincide.

It is this lemma whose proof is topological. We postpone that proof and finish
the combinatorial part first.

Let us suppose that a trap T was chosen as in the lemma, with wv.T/ D W for
all v. If W D 0 then T is a transversal, since all edge weights are 0 and no J 2 F
escapes. So suppose that W > 0.

Let H D H.T/ � H0, the escape hypergraph of T, consist of the edges of H0

with nonzero weights. Note that

�.H/ � �.F/: (1)

Indeed, given a matching M in H, for each edge H 2M choose a J 2 F escaping
through H—this gives a matching in F .

We note that the re-normalized edge weights QqH D 1
W qH determine a fractional

packing in H (since the weights at each vertex sum up to 1). For the size of this
fractional packing, which is the total weight of all vertices, we find by double
counting

X

H2H
QqH D 1

d

X

H2H

X

v2H

QqH D 1

d

X

v2Œd��ŒtC1�

wv
W
D 1

d

X

v

1 D tC 1:

As ��.H/ is the supremum of the weights of all fractional packings, and QqH is a
particular fractional packing, this yields ��.H/ �PH2H QqH D tC 1.

The last step is to show that �.H/ cannot be small if ��.H/ is large. Here is a
simple argument leading to a slightly suboptimal bound, namely �.H/ � 1

d �
�.H/.

Given a fractional matching Qq of size t C 1 in H, a matching can be obtained by
the following greedy procedure: Pick an edge H1 and discard all edges intersecting
it, pick H2 among the remaining edges, etc., until all edges are exhausted. The Qq-
weight of Hi plus all the edges discarded with it is at most d D jHij, while all
edges together have weight tC 1. Thus, the number of steps, and also the size of the
matching fH1;H2; : : : g, is at least d tC1

d e.
If we set t D d � �.F/, we get �.H/ > �.F/, which contradicts (1). Therefore,

for this choice of t, all the vertex weights must be 0, and T as in Lemma 3.2 is a
transversal of F of size at most d2�.F/.

The improved bound �.F/ � .d2 � d/ � �.F/ for d � 3 follows similarly using a
theorem of Füredi [26], which implies that the matching number of any d-uniform
d-partite hypergraph H satisfies ��.H/ � .d � 1/�.H/. (For d D 2, a separate
argument needs to be used, based on a theorem of Lovász stating that ��.G/ �
3
2
�.G/ for all graphs G.) The Tardos–Kaiser Theorem 3.1 is proved. ut
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Proof of Lemma 3.2 Let � t denote the standard t-dimensional simplex in R
tC1, i.e.

the set fx 2 R
tC1 W xj � 0; x1 C � � � C xtC1 D 1g. A point x 2 � t defines a t-point

multiset fz1; z2; : : : ; ztg � Œ0; 1�, z1 � z2 � � � � � zt, by setting zk D Pk
jD1 xj. Here

is a picture for t D 2:

A candidate transversal T with t points in each Ii can thus be defined by an ordered
d-tuple .x1; : : : ; xd/ of points, xi 2 � t, where xi determines Ti. Such an ordered
d-tuple can be regarded as a single point x in the Cartesian product P D � t 
 � t 

� � �
� t D .� t/d. To each x 2 P, we have thus assigned a candidate transversal T.x/.

For each vertex vD .i; j/ of the hypergraphH0, we define the function gijW P!R

by gij.x/ D w.i;j/.T.x//, where wv.T/ is the vertex weight. This is a continuous
function of x, since the edge weights qH and hence the vertex weights w.i;j/.T.x//
change continuously when T.x/ moves—even if by this move new edges from F
escape, or fail to escape, through a hole: If this is due to a small change of T.x/,
then they escape, or fail to escape, by a narrow margin.

We note that for each x, the sum

Si.x/ D
tC1X

jD1
gij.x/

is independent of i; this is because Si.x/ equals the sum of the weights of all edges.
So we can write just S.x/ instead of Si.x/.

If there is an x 2 P with S.x/ D 0, then all the vertex weights w.i;j/.T.x// are 0
and we are done. Otherwise, we define the normalized functions

fij.x/ D 1

S.x/
gij.x/:

For each i, fi1.x/; : : : ; fi.tC1/.x/ are nonnegative and sum up to 1, and so they are the
coordinates of a point in the standard simplex � t. All the maps fij together can be
regarded as a map f W P! P. To prove the lemma, we need to show that the image
of f contains the point of P with all the d.tC 1/ coordinates equal to 1

tC1 .
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The product P is a convex polytope, and its nonempty faces are exactly all
Cartesian products F1 
 F2 
 � � � 
 Fd, where the F1; : : : ;Fd are nonempty faces
of the factors � t; : : : ; � t of P D � t 
 � t 
 � � � 
 � t (Exercise 2). We note that
for any face F of P, we have f .F/ � F: Indeed, any face G of � t has the form
G D fx 2 � t W xi D 0 for all i 2 Ig, for some index set I, and the faces of P are
products of faces G of this form. So it suffices to know that fij.x/ D 0 whenever
.xi/j D 0. This holds, since .xi/j D 0 means that the jth hole in Ii is empty, so
nothing can escape through that hole, and thus fij.x/ D 0. The proof of Lemma 3.2
is now reduced to the following statement.

Lemma 3.3 Let P be a convex polytope and let f W P ! P be a continuous map
satisfying f .F/ � F for each face3 F of P. Then f is surjective.

Proof Since the condition is hereditary for faces, it suffices to show that each point
y in the interior of P has a preimage. For contradiction, suppose that some y 2 int P
is not in the image of f . For x 2 P, consider the ray that starts at f .x/ and passes
through y, and let g.x/ be the unique intersection of that ray with the boundary of P.

This g is a well-defined and continuous map P! P, and by Brouwer’s fixed point
theorem, there is an x0 2 P with g.x0/ D x0. The point x0 lies on the boundary
of P, in some proper face F. But f .x0/ cannot lie in F, because the segment x0f .x0/
passes through the point y outside F—a contradiction. ut

3.3 Lower Bounds

It turns out that the bound in Theorem 3.1 is not far from being the best possible. In
particular, for �.F/ D 1 and d large, the transversal number can be near-quadratic
in d, which is rather surprising. For all k and d, systems F of d-intervals can be
constructed with �.F/ D k and

�.F/ � c
d2

.log d/2
k

3In fact, it suffices to require f .F/ � F for each facet of P (that is, for each face of dimension
dim.P/� 1), since each face is the intersection of some facets.
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for a suitable constant c > 0 (Matoušek [51]). The construction involves an
extension of a construction due to Sgall [66] of certain systems of set pairs. Here we
outline a (non-topological!) proof of a somewhat simpler result concerning families
of homogeneous d-intervals, which are unions of at most d closed intervals on the
real line. These are more general than the d-intervals, but an upper bound only
slightly weaker than Theorem 3.1 can be proved for them along the same lines
(Exercise 4): � � .d2 � dC 1/�.

Proposition 3.4 There is a constant c > 0 such that for every d � 2 and k � 1,
there exists a system F of homogeneous d-intervals with �.F/ D k and

�.F/ � c
d2

log d
k:

Proof Given d and k, we want to construct a system F of homogeneous d-intervals.
Clearly, it suffices to consider the case k D 1, since for larger k, we can take
k disjoint copies of the F constructed for k D 1. Thus, we want an F in which
every two d-intervals intersect and with �.F/ large.

In the construction, we will use homogeneous d-intervals of a quite special
form: Each component is either a single point or a unit-length interval. First, it is
instructive to see why we cannot get a good example if all the components are only
points. In that case, the family F is simply a d-uniform hypergraph (whose vertices
happen to be points of the real line). We require that any two edges intersect, and
thus any edge is a transversal and we have �.F/ � d.

For the actual construction, let n and N be integer parameters (whose value will
be set later). Let V D Œn� be an index set, and Iv, for v 2 V , be auxiliary pairwise
disjoint unit intervals on the real line. In each Iv, we choose N distinct points xv;i,
i D 1; 2; : : : ;N.

The constructed systemF will consist of homogeneous d-intervals J1; J2; : : : ; JN .
For each i D 1; 2; : : : ;N, we choose auxiliary sets ; � Bi � Ai � V and then
construct Ji as follows:

Ji D
� [

v2Bi

Iv
	
[ fxu;i W u 2 Ai n Big:

The picture shows an example of J1 for n D 6, A1 D f1; 2; 4; 5g and B1 D f2; 4g:

I1

. . .
x1,1

I2

. . .

I3

. . .

I4

. . .

I5

. . .

I6

. . .
x5,1

The heart of the proof is the construction of suitable sets Ai and Bi on the ground
set V . Since the Ji should be homogeneous d-intervals, we obviously require

(C1) For all i D 1; 2; : : : ;N, ¿ � Bi � Ai and jAij � d.
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The condition that every two members of F intersect is implied by the following:

(C2) For all i1; i2, 1 � i1 < i2 � N, we have Ai1 \ Bi2 ¤ ; or Ai2 \ Bi1 ¤ ; (or
both).

Finally, we want F to have no small transversal. Since no two d-intervals of F
have a point component in common, a transversal of size t intersects no more than
t members of F in their point components, and all the other members of F must
be intersected in their interval components. Therefore, the transversal condition
translates to

(C3) Put t D cd2= log d for a sufficiently small constant c > 0, and let B D
fB1;B2; : : : ;BNg. Then �.B/ � 2t, and consequently �.B0/ � t for any B0
arising from B by removing at most t sets.

A construction of sets A1; : : : ;AN and B1; : : : ;BN as above was provided by Sgall
[66]. His results give the following:

Proposition 3.5 Let b be a given integer, let n � cb2= log b for a sufficiently small
constant c > 0, and let B1;B2; : : : ;BN be b-element subsets of V D Œn�. Then there
exist sets A1;A2; : : : ;AN, with Bi � Ai, jAij � 3b, and such that (C2) is satisfied.

With this proposition, the proof of Proposition 3.4 is easily finished. We set b D
b d
3
c, n D cb2= log b, and we let B1;B2; : : : ;BN be all the N D �n

b

�
subsets of V of

size b. We have �.fB1; : : : ;Bng/ D n�bC1 and condition (C3) holds. It remains to
construct the sets Ai according to Proposition 3.5; then (C1) and (C2) are satisfied
too. The proof of Proposition 3.4 is concluded by passing from the Ai and Bi to the
system F of homogeneous d-intervals as was described above. ut
Sketch of proof of Proposition 3.5 Let G D .V;E/ be a graph on n vertices of
maximum degree b with the following expander-type property: For any two disjoint
b-element subsets A;B � V , there is at least one edge e 2 E connecting a vertex
of A to a vertex of B. (The existence of such a graph can be easily shown by the
probabilistic method; the constant c arises in this argument. See [66] for references.)

For each i, let vi be an (arbitrary) element of the set Bi, and let

Ai D Bi [ N.vi/ [
�

V n
[

u2Bi

N.u/
	
;

where N.v/ denotes the set of neighbors in G of a vertex v 2 V . It is easy to check
that jAij � 3b, and some thought reveals that the condition (C2) is satisfied. ut

3.4 A Helly-Type Problem for d-Intervals

Kaiser and Rabinovich [41] investigated conditions on a family F of d-intervals
guaranteeing that F can be pierced by a “multipoint,” that is, �.F/ � d and there is
a transversal using one point of each Ii. They proved the following.
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Theorem 3.6 (The Kaiser–Rabinovich theorem on d-intervals)
Let k D dlog2.dC 2/e and let F be a family of d-intervals such that any k or fewer
members of F have a common point. Then F can be pierced by a multipoint.

Let’s put this result into context: The proof of the Kaiser–Tardos Theorem 3.1
sets out to show that there exists a transversal consisting of exactly t points in each
of the intervals Ii, for a suitable t. We eventually get that if every two d-intervals
meet (that is, �.F/ D 1), then we can take t < d. The Kaiser–Rabinovich theorem
says that if every dlog2.d C 2/e meet then t < 2 suffices. The upcoming proof of
Theorem 3.6 can be extended to yield an interpolation between this result and the
Kaiser–Tardos theorem: If every dlogb.dC 2/e edges meet, then we can take t < b.
For b D d this yields the result of Kaiser–Tardos for �.F/ D 1.

Proof We use notation from the proof of Theorem 3.1. We apply Lemma 3.2 with
t D 1, obtaining a set T with one point in each Ti such that all the 2d vertices of the
escape hypergraph H D H.T/ have the same weight W. If W D 0 we are done, so
let us assume W > 0.

By the assumption on F , every k edges of H share a common vertex. We will
prove the following claim for every `:

If every `C 1 edges of H have at least m common vertices, then every ` edges of H have
at least 2mC 1 common vertices.

For ` D k, the assumption holds with m D 1, and so by .k � 1/-fold application
of this claim, we get that every edge of H “intersects itself” in at least 2k�1 vertices,
i.e. d > 2k � 2. The claim thus implies the theorem.

The claim is proved by contradiction. Suppose that A � H is a set of ` edges
such that C D T

A has at most 2m vertices, and let NC WD f.i; 3 � j/ W .i; j/ 2 Cg.
No edge H 2 H contains both .i; 1/ and .i; 2/, thus also C does not contain both
.i; 1/ and .i; 2/, and thus NC is a subset of the complement of C; it is matched to C
by .i; 3 � j/$ .i; j/, and thus jCj D j NCj.

By the assumption, A plus any other edge together intersect in at least m vertices.
Thus, any H 2 H n A contains at least m vertices of C, and consequently no more
than m vertices of NC.

Let U be the total weight of the vertices in C, and NU the total weight of the
vertices in NC. The edges in A contribute solely to U, while any other edge H
contributes at least as much to U as to NU, and so U > NU. But this is impossible
since all vertex weights are identical and jCj D j NCj. The claim, and Theorem 3.6
too, are proved. ut

An interesting open problem is whether k D dlog2.dC2/e in Theorem 3.6 could
be replaced by k D k0 for some constant k0 independent of d. The best known lower
bound is k0 � 3.

Notes Tardos [74] proved the optimal bound � � 2� for 2-intervals
by a topological argument using the homology of suitable simplicial com-
plexes. Kaiser’s argument [39] is similar to the presented one, but he proves
Lemma 3.2 using a rather advanced Borsuk–Ulam-type theorem of Ramos
[64] concerning continuous maps defined on products of spheres. The method
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with Brouwer’s theorem was used by Kaiser and Rabinovich [41] for a proof
of Theorem 3.6.

Lemma 3.3 seems to be new in the version that we give here, but
it relates to a vast literature of “KKM-type lemmas,” which starts with
a paper by Knaster, Kuratowski, and Mazurkiewicz [43] from 1929. We
refer to Bárány and Grinberg [7] and the references given there, such as
mathoverflow.net/questions/67318.

Alon’s short proof [2] of the bound � � 2d2� for families of d-intervals
applies a powerful technique developed in Alon and Kleitman [4]. For the
so-called Hadwiger–Debrunner . p; q/-problem solved in the latter paper,
the quantitative bounds are probably quite far from the truth. It would be
interesting to find an alternative topological approach to that problem, which
could perhaps lead to better bounds. See, for example, Hell [34].

The variant of the piercing problem for families of homogeneous d-
intervals has been considered simultaneously with d-intervals; see [2, 32, 39,
74]. The upper bounds obtained for the homogeneous case are slightly worse:
� � 3� for homogeneous 2-intervals, which is tight, and � � .d2�dC1/� for
homogeneous d-intervals, d � 3 [39]. The reason for the worse bounds is that
the escape hypergraph needs no longer be d-partite, and so Füredi’s theorem
[26] relating � to �� gives a little worse bound (for d D 2, one uses a theorem
of Lovász instead, asserting that �� � 3

2
� for any graph).

Sgall’s construction [66] answered a problem raised by Wigderson in 1985.
The title of Sgall’s paper refers to a different, but essentially equivalent,
formulation of the problem dealing with labeled tournaments.

Alon [3] proved by the method of [2] that if T is a tree and F is a family of
subgraphs of T with at most d connected components, then �.F/ � 2d2�.F/.
More generally, he established a similar bound for the situation where T is
a graph of bounded tree-width (on the other hand, if the tree-width of T is
sufficiently large, then one can find a system of connected subgraps of T
with � D 1 and � arbitrarily large, and so the tree-width condition is
also necessary in this sense). A somewhat weaker bound for trees has been
obtained independently by Kaiser [40].

Strong results for piercing of d-trees, improving on Alon’s results, were
obtained by Berger [8], based on a topological approach via KKM-type
lemmas. (For these see the references given above.)

Exercises

1. We have claimed that for any family F of intervals, it is well-known and easy to
prove that �.F/ D �.F/. Prove this!

2. Let P and Q be convex polytopes. Show that there is a bijection between the
nonempty faces of the Cartesian product P
Q and all the products F
G, where
F is a nonempty face of P and G is a nonempty face of Q.

http://mathoverflow.net/questions/67318
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3. Show that the following “Brouwer-like” claim resembling Lemma 3.3 is not true:
If f W Bn �! Bn is a continuous map of the n-ball such that the boundary of Bn

is mapped surjectively onto itself, then f is surjective.
4. Prove the bound �.F/ � d2�.F/ for any family of homogeneous d-intervals

(unions of d intervals on a single line). Hint: Follow the proof for d-intervals
above, but encode a candidate transversal T by a point of a simplex (rather than
a product of simplices).

4 Evasiveness

4.1 A General Model

The idea of evasiveness comes from the theory of complexity of algorithms.
Evasiveness appears in different versions for graphs, digraphs and bipartite graphs.
We start with a general model that contains them all.

Definition 4.1 (Argument complexity of a set system; evasiveness) In the fol-
lowing, we are concerned with a fixed and known set system F � 2E, and with the
complexity of deciding whether some unknown set A � E is in the set system. Here
our “model of computation” is such that

given, and known, is a set system F � 2E, where E is fixed, jEj D m.
On the other hand, there is a

fixed, but unknown subset A � E.
We have to

decide whether A 2 F , using only
questions of the type “Is e 2 A?”

(It is assumed that we always get correct answers YES or NO. We only count the
number of questions that are needed in order to reach the correct conclusion: It is
assumed that it is not difficult to decide whether e 2 A. You can assume that some
“oracle” that knows both A and F is answering.)

The argument complexity c.F/ of the set system F is the number of elements of
the ground set E that we have to test in the worst case—with the optimal strategy.

Clearly 0 � c.F/ � m. The set system F is trivial if c.F/ D 0: then no questions
need to be asked; this can only be the case if F D fg or if F D 2E. Otherwise F is
non-trivial.

The set system F is evasive if c.F/ D m, that is, if even with an optimal strategy
one has to test all the elements of E in the worst case.

For example, if F D f;g, then c.F/ D m: If we again and again get the answer
NO, then we have to test all the elements to be sure that A D ;. So F D f;g is an
evasive set system: “being empty” is an evasive set property.
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4.2 Complexity of Graph Properties

Definition 4.2 (Graph properties) Here we consider graphs on a fixed vertex set
V D Œn�. Loops and multiple edges are excluded. Thus any graph G D .V;A/ is
determined by its edge set A, which is a subset of the set E D �n

2

�
of “potential

edges.”
We identify a property P of graphs with the family of graphs that have the

property P , and thus with the set family F.P/ � 2E given by

F.P/ WD fA � E W .Œn�;A/ has property Pg:

Furthermore, we will consider only graph properties that are isomorphism invariant;
that is, properties of abstract graphs that are preserved under renumbering the
vertices.

A graph property is evasive if the associated set system is evasive, and otherwise
it is non-evasive.

With the symmetry condition of Definition 4.2, we would accept “being con-
nected”, “being planar,” “having no isolated vertices,” and “having even vertex
degrees” as graph properties. However, “vertex 1 is not isolated,” “123 is a triangle,”
and “there are no edges between odd-numbered vertices” are not graph properties.

Example 4.3 (Graph properties) For the following properties of graphs on n ver-
tices we can easily determine the argument complexity.

Having no edge: Clearly we have to check every single e 2 E in order to be sure
that it is not contained in A, so this property is evasive: Its argument complexity
is c.F/ D m D �n

2

�
.

Having at most k edges: Let us assume that we ask questions, and the answer we
get is YES for the first k questions, and then we get NO-answers for all further
questions, except for possibly the last one. Assuming that k < m, this implies
that the property is evasive. Otherwise, for k � m, the property is trivial.

Being connected: This property is evasive for n � 2. Convince yourself that for
any strategy, a sequence of “bad” answers can force you to ask all the questions.

Being planar: This property is trivial for n � 4 but evasive for n � 5. In fact, for
n D 5 one has to ask all the questions (in arbitrary order), and the answer will be
A 2 F unless we get a YES answer for all the questions—including the last one.
This is, however, not at all obvious for n > 5: It was claimed by Hopcroft and
Tarjan [35], and proved by Best, Van Emde Boas and Lenstra [10, Example 2]
[15, p. 408].

A large star: Let P be the property of being a disjoint union of a star �1;n�4 and
an arbitrary graph on 3 vertices, and let F be the corresponding set system.



Using Brouwer’s Fixed Point Theorem 247

k

Then c.F/ <
�n
2

�
for n � 7. For n � 12 we can easily see this, as follows. Test all

the b n
2
cd n

2
e edges fi; jgwith i � b n

2
c < j. That way we will find exactly one vertex

k with at least b n
2
c� 3 � 3 neighbors (otherwise property P cannot be satisfied):

That vertex k has to be the center of the star. We test all other edges adjacent to k:
We must find that k has exactly n � 4 neighbors. Thus we have identified three
vertices that are not neighbors of k: At least one of the edges between those three
has not been tested. We test all other edges to check that .Œn�;A/ has property P .
(This property was found by L. Carter [10, Example 16].)

Being a scorpion graph: A scorpion graph is an n-vertex graph that has one
vertex of degree 1 adjacent to a vertex of degree 2 whose other neighbor has
degree n � 2. We leave it as an (instructive!) exercise to check that “being a
scorpion graph” is not evasive if n is large: In fact, Best, van Emde Boas and
Lenstra [10, Example 18] [15, p. 410] have shown that c.F/ � 6n.

1

2

n − 2

From these examples it may seem that most “interesting” graph properties are
evasive. In fact, many more examples of evasive graph properties can be found
in Bollobás [15, Sect. VIII.1], alongside with techniques to establish that graph
properties are evasive, such as Milner and Welsh’s “simple strategy” [15, p. 406].

Why is this model of interest? Finite graphs (similarly for digraphs and bipartite
graphs) can be represented in different types of data structures that are not at all
equivalent for algorithmic applications. For example, if a finite graph is given by an
adjacency list, which for every vertex lists the neighbors in some order, then one can
decide fast (“in linear time”) whether the graph is planar, e.g. using an old algorithm
of Hopcroft and Tarjan [35]; see also Mehlhorn [53, Sect. IV.10] and [54]. Note that
such a planar graph has at most 3n� 6 edges (for n � 3).

However, assume that a graph is given in terms of its adjacency matrix

M.G/ D �
mij
�
1�i;j�n

2 f0; 1gn�n;
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where mij D 1 means that fi; jg is an edge of G, and mij D 0 says that fi; jg is not
an edge. Here G is faithfully represented by the set of all

�n
2

�
superdiagonal entries

(with i < j). Then one possibly has to inspect a large part of the matrix until one
has enough information to decide whether the graph in question is planar. In fact, if
F � 2E is the set system corresponding to all planar graphs, then c.F/ is exactly
the number of superdiagonal matrix entries that every algorithm for planarity testing
has to inspect in the worst case.

The statement that “being planar” is evasive (for n � 5) thus translates into
the fact that every planarity testing algorithm that starts from an adjacency matrix
needs to read at least

�n
2

�
bits of the input, and hence its running time is bounded

from below by
�n
2

� D �.n2/. This means that such an algorithm—such as the one
considered by Fisher [24]—cannot run in linear time, and thus cannot be efficient.

Definition 4.4 (Digraph properties; bipartite graph properties)

(1) For digraph properties we again use the fixed vertex set V D Œn�. Loops
and parallel edges are excluded, but anti-parallel edges are allowed. Thus any
digraph G D .V;A/ is determined by its arc set A, which is a subset of the set
E0 of all m WD n2 � n “potential arcs” (corresponding to the off-diagonal entries
of an n 
 n adjacency matrix).

A digraph property is a property of digraphs .Œn�;A/ that is invariant under
relabelling of the vertex set. Equivalently, a digraph property is a family of arc
sets F � 2E0

that is symmetric under the action of Sn that acts by renumbering
the vertices (and renumbering all arcs correspondingly). A digraph property is
evasive if the associated set system is evasive, otherwise it is non-evasive.

(2) For bipartite graph properties we use a fixed vertex set V]W of size mCn, and
use E00 WD V 
W as the set of potential edges. A bipartite graph property is a
property of graphs .V[W;A/ with A � E00 that is preserved under renumbering
the vertices in V , and also under permuting the vertices in W. Equivalently, a
bipartite graph property on V 
W is a set system F � 2V�W that is stable under
the action of the automorphism group Sn 
Sm that acts transitively on V 
W.

Example 4.5 (Digraph properties) For the following digraph properties on n ver-
tices we can determine the argument complexity.

Having at most k arcs: Again, this is clearly evasive with c.F/ D m if k < m D
n2 � n, and trivial otherwise.

Having a sink: A sink in a digraph on n vertices is a vertex k for which all arcs
going into k are present, but no arc leaves k, that is, a vertex of out-degree
ıC.v/ D 0, and in-degree ı�.v/ D n� 1. Let F be the set system of all digraphs
on n vertices that have a sink. It is easy to see that c.F/ � 3n � 4. In particular,
for n � 3 “having a sink” is a non-trivial but non-evasive digraph property.
In fact, if we test whether .i; j/ 2 A, then either we get the answer YES, then
i is not a sink, or we get the answer NO, then j is not a sink. So, by testing arcs
between pairs of vertices that “could be sinks,” after n�1 questions we are down
to one single “candidate sink” k. At this point at least one arc adjacent to k has
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been tested. So we need at most 2n � 3 further questions to test whether it is a
sink.

In the early 1970s Arnold L. Rosenberg conjectured that all non-trivial digraph
properties have quadratic argument complexity, that is, that there is a constant � > 0
such that for all non-trivial properties of digraphs on n vertices one has c.F/ �
�n2. However, Stål Aanderaa found the counter-example (for digraphs) of “having
a sink” [10, Example 15] [63, p. 372]. We have also seen that “being a scorpion
graph” is a counter-example for graphs.

Hence Rosenberg modified the conjecture: At least all monotone graph prop-
erties, that is, properties that are preserved under deletion of edges, should have
quadratic argument complexity. This is the statement of the Aanderaa–Rosenberg
conjecture [65]. Richard Karp considerably sharpened the statement, as follows.

Conjecture 4.6 (The evasiveness conjecture) Every non-trivial monotone graph
property or digraph property is evasive.

We will prove this below for graphs and digraphs in the special case when n is
a prime power; from this one can derive the Aanderaa–Rosenberg conjecture, with
� � 1

4
. Similarly, we will prove that monotone properties of bipartite graphs on

a fixed ground set V [ W are evasive (without any restriction on jVj D m and
jWj D n). However, we first return to the more general setting of set systems.

4.3 Decision Trees

Any strategy to determine whether an (unknown) set A is contained in a (known) set
system F—as in Definition 4.1—can be represented in terms of a decision tree of
the following form.

Definition 4.7 A decision tree is a rooted, planar, binary tree whose leaves are
labelled “YES” or “NO,” and whose internal nodes are labelled by questions (here
they are of the type “e 2 A‹”). Its edges are labelled by answers: We will represent
them so that the edges labelled “YES” point to the right child, and the “NO” edges
point to the left child.

A decision tree for F � 2E is a decision tree such that starting at the root with
an arbitrary A � E, and going to the right resp. left child depending on whether the
question at an internal node we reach has answer YES or NO, we always reach a
leaf that correctly answers the question “A 2 F‹”.

e ∈ A?

NO YES
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The root of a decision tree is at level 0, and the children of a node at level i have
level i C 1. The depth of a tree is the greatest k such that the tree has a vertex at
level k (a leaf).

We assume (without loss of generality) that the trees we consider correspond to
strategies where we never ask the same question twice.

A decision tree for F is optimal if it has the smallest depth among all decision
trees for F , that is, if it leads us to ask the smallest number of questions for the worst
possible input.

Let us consider an explicit example.

32
23

31
13

21

12

The following figure represents an optimal algorithm for the “sink” problem on
digraphs with n D 3 vertices. This has a ground set E D f12; 21; 13; 31; 23; 32g of
size m D 6.

ON SEYON

NO NO

NO

YESYES

ON SEY

NO 31 ∈ A?

31

NO 31 ∈ A?

32 ∈ A?

21 ∈ A?
3

NO 31 ∈ A?

32 ∈ A?

23 ∈ A?

13 ∈ A?
2

32 ∈ A? NO

21 ∈ A?

13 ∈ A?

23 ∈ A?

12 ∈ A?

NO

SEYON

NO

NO

ONON

SEYSEYSEY ON

YES

YES

YES

YES

NO

NO YES

YES

NO

NO

YES

YES

NOYES

NO

The algorithm first asks, in the root node at level 0, whether 12 2 A. In case the
answer is YES (so we know that 1 is not a sink), it branches to the right, leading to
a question node at level 1 that asks whether 23 2 A‹, etc. In case the answer to the
question 12 2 A‹ is NO (so we know that 2 is not a sink), it branches to the left,
leading to a question node at level 1 that asks whether 13 2 A‹, etc.

For every possible input A (there are 26 D 32 different ones), after two questions
we have identified a unique “candidate sink”; after not more than 5 question nodes
one arrives at a leaf node that correctly answers the question whether the graph
.V;A/ has a sink node: YES or NO. (The number of the unique candidate is noted
next to each node at level 2.)
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For each node (leaf or inner) of level k, there are exactly 2m�k different inputs
that lead to this node. This proves the following lemma.

Lemma 4.8 The following are equivalent:

• F is non-evasive.
• The optimal decision trees TF for F have depth smaller than m.
• Every leaf of an optimal decision tree TF is reached by at least two distinct

inputs.

Corollary 4.9 If F is non-evasive, then jF j is even.
This can be used to show, for example, that the directed graph property “has a

directed cycle” is evasive [10, Example 4].
Another way to view a (binary) decision tree algorithm is as follows. In the

beginning, we do not know anything about the set A, so we can view the collection
of possible sets as the complete boolean algebra of all 2m subsets of E.

In the first node (at “level 0”) we ask a question of the type “e 2 A‹”; this
induces a subdivision of the boolean algebra into two halves, depending on whether
we get answer YES or NO. If you think of the boolean algebra as a partially ordered
set (indeed, a lattice), then each of the halves is an interval of length m � 1 of
the boolean algebra .2E;�/. If you prefer to think of it as a rendition of the m-
dimensional hypercube, then the halves are subcubes of codimension 1, containing
all the vertices of two opposite facets.

At level 1 we ask a new question, depending on the outcome of the first question.
Thus we independently bisect the two halves of level 0, getting four pieces of the
boolean algebra, all of the same size.

f ∈ A?

g ∈ A?

e ∈ A?

This process is iterated. It stops—as we do not need to ask a further question—on
parts that we create that either contain only sets that are in F (this yields a YES-leaf)
or that contain only sets not in F (corresponding to NO-leaves).

Thus the final result is a special type of partition of the boolean algebra into
intervals. Some of them are YES intervals, containing only sets of F , all the others
are NO-intervals, containing no sets fromF . If the property in question is monotone,
then the union of the YES intervals (i.e., the set system F ) forms an ideal in the
boolean algebra, that is, a “down-closed” set such that with any set that it contains
it must also contain all its subsets.
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Let pF .t/ be the generating function for the set system F , that is, the polynomial

pF .t/ WD
X

A2F
tjAj D f�1 C tf0 C t2f1 C t3f2 C : : : :

where fi D jfA 2 F W jAj D iC 1gj.
Proposition 4.10

.1C t/m�c.F/ ˇˇ pF .t/:

Proof Consider one interval I in the partition of 2E that is induced by any optimal
algorithm for F . If the leaf, at level k, corresponding to the interval is reached
through a sequence of kY YES-answers and kN NO-answers (with kY C kN D k),
then this means that there are sets AY � E with jAY j D kY and AN � E with
jAN j D kN , such that

I D fA � E W AY � A � EnANg:

In other words, the interval I contains all sets that give YES-answers when asked
about any of the kY elements of AY , NO-answers when asked about any of the
kN elements of AN , while the m�kY�kN elements of En.AY[AN/may or may not be
contained in A. Thus the interval I has size 2m�kY�kN , and its counting polynomial
is

pI.t/ WD
X

A2I
tjAj D tkY .1C t/m�kY�kN :

Now the complete set system F is a disjoint union of the intervals I, and we get

pF .t/ D
X

I
pI.t/:

In particular, for an optimal decision tree we have kY C kN D k � c.F/ and thus
m� c.F/ � m� kY � kN at every leaf of level k, which means that all the summands
pI.t/ have a common factor of .1C t/m�c.F/. ut
Corollary 4.11 If F is non-evasive, then jF evenj D jFoddj, that is,

�f�1 C f0 � f1 C f2 � � � � D 0:

Proof Use Proposition 4.10, and put t D �1. ut
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We can now draw the conclusion, based only on simple counting, that most set
families are evasive. This cannot of course be used to settle any specific cases, but it
can at least make the various evasiveness conjectures seem more plausible.

Corollary 4.12 Asymptotically, almost all set families F are evasive.

Proof The number of set families F � 2E such that

#fA 2 F j #A oddg D #fA 2 F j #A eveng D k

is
�
2m�1

k

�2
. Hence, using Stirling’s estimate of factorials,

Prob (F non-evasive) �
P2m�1

kD0
�
2m�1

k

�2

22
m D

�
2m

2m�1

�

22
m � 1p

�2m�1 ! 0;

as m!1. ut
Conjecture 4.13 (The “Generalized Aanderaa–Rosenberg Conjecture”, Rivest
and Vuillemin [62]) If F � 2E, with symmetry group G � SE that is transitive on
the ground set E, and if ; 2 F but E … F , then F is evasive.

Note that for this it is not assumed that F is monotone. However, the assumption
that ; 2 F but E … F is satisfied neither by “being a scorpion” nor by “having a
sink.”

Proposition 4.14 (Rivest and Vuillemin [62]) The Generalized Aanderaa–
Rosenberg Conjecture 4.13 holds if the size of the ground set is a prime power,
jEj D pt.

Proof Let O be any k-orbit of G, that is, a collection of k-sets O � F on which
G acts transitively. While every set in O contains k elements e 2 E, we know
from transitivity that every element of E is contained in the same number, say d,
of sets of the orbit O. Thus, double-counting the edges of the bipartite graph on
the vertex set E ] O defined by “e 2 A” (displayed in the figure below) we find
that kjOj D djEj D dpt. Thus for 0 < k < pt we have that p divides jOj, while
f¿g is one single “trivial” orbit of size 1, and k D pt doesn’t appear. Hence we
have

�f�1 C f0 � f1 C f2 � � � � 	 �1 mod p;

which implies evasiveness by Corollary 4.11.
ut
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2E

O

E: has pt elements

Proposition 4.15 (Illies [36]) The Generalized Aanderaa–Rosenberg Conjec-
ture 4.13 fails for n D 12.

Proof Here is Illies’ counterexample: Take E D f1; 2; 3; : : : ; 12g, and let the cyclic
group G D Z12 permute the elements of E with the obvious cyclic action.

Take FI � 2E to be the following system of sets

• ;, so we have f�1 D 1
• f1g and all images under Z12, that is, all singleton sets: f0 D 12,
• f1; 4g and f1; 5g and all images under Z12, so f1 D 12C 12 D 24,
• f1; 4; 7g and f1; 5; 9g and all their Z12-images, so f2 D 12C 4 D 16,
• f1; 4; 7; 10g and their Z12-images, so f3 D 3.

An explicit decision tree of depth 11 for this FI is given in our figure below. Here
the pseudo-leaf “YES(7,10)” denotes a decision tree where we check all elements
e 2 E that have not been checked before, other than the elements 7 and 10. If
none of them is contained in A, then the answer is YES (irrespective of whether
7 2 A or 10 2 A), otherwise the answer is NO. The fact that two elements need
not be checked means that this branch of the decision tree denoted by this “pseudo-
leaf” does not go beyond depth 10. Similarly, a pseudo-leaf of the type “YES(7)”
represents a subtree of depth 11.

Thus the following figure completes the proof. Here dots denote subtrees that are
analogous to the ones just above. ut
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11 ∈ A?

10 ∈ A?

6 ∈ A?

9 ∈ A?

12 ∈ A?

7 ∈ A?

4 ∈ A?

7 ∈ A?

3 ∈ A? 10 ∈ A?

1 ∈ A?

2 ∈ A 4? ∈ A?

Note, however, that Illies’ example is not monotone: For example, we have
f1; 4; 7g 2 FI , whereas f1; 7g … FI .

4.4 Monotone Systems

We now concentrate on the case where F is closed under taking subsets, that is, F is
an abstract simplicial complex, which we also denote by � WD F . In this setting,
the symmetry group acts on � as a group of simplicial homeomorphisms. If F is a
graph or digraph property, then this means that the action of G is transitive on the
vertex set E of�, which corresponds to the edge set of the graph in question. Again
we denote the cardinality of the ground set (the vertex set of �) by jEj D m.

A complex� � 2E is a cone if it has a vertex v such that A [ fvg is a face of �
for any face A 2 �. For example, every simplex � D 2E is a cone, but also every
star graph Km;1, considered as a simplicial complex of dimension 1, is a cone.

A complex � � 2E is collapsible if it can be reduced to a one-point complex
(equivalently, to a simplex) by steps of the form

� �! �nfA 2 � W A0 � A � A1g;

where A0 � A1 are faces of � with ¿ ¤ A0 ¤ A1, and A1 is the unique maximal
element of � that contains A0. For example, every tree, considered as a simplicial
complex of dimension 1, is collapsible.
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Our figure illustrates a sequence of collapses that reduce a 2-dimensional
complex to a point. In each case the face A0 that is contained in a unique maximal
face is drawn fattened.

Theorem 4.16 We have the following implications:
� is a cone H) � is non-evasive H) � is collapsible H) � is contractible.

Proof The first implication is clear: For a cone we don’t have to test the apex e0 in
order to see whether a set A is a face of�, since A 2 � if and only if A[ fe0g 2 �.
The third implication is easy topology: One can write down explicit deformation
retractions. The middle implication we will derive from the following claim, which
uses the notion of a link of a vertex e in a simplicial complex�: This is the complex
�=e formed by all faces A 2 � such that e … A but A [ feg 2 �.

Claim � is non-evasive if and only if either� is a simplex, or it is not a simplex but
it has a vertex e such that both the deletion�ne and the link �=e are non-evasive.

Let us first verify this claim: If no questions need to be asked (that is, if
c.�/ D 0), then � is a simplex. Otherwise we have some e that corresponds to the
first question to be asked by an optimal algorithm. If one gets a YES answer, then
the problem is reduced to the link �=e, since the faces B 2 �=e correspond to the
faces A D B [ feg of � for which e 2 A. In the case of a NO-answer the problem
similarly reduces to the deletion�ne.

Now let us return to the proof of Theorem 4.16, where we still have to verify that
“� is non-evasive H) � is collapsible.” We use induction on the number of faces
of �.

If � is not a simplex, then by the Claim it has a vertex e such that the link �=e
and the deletion �ne are collapsible. If the link is a simplex, then deletion of e is a
collapsing step �! �ne, where �ne is collapsible, so we are done by induction.

If the link is not a simplex, then it has faces ¿ � A0 � A1 such that A1 is
the unique maximal face in the link that contains A0. This means that � has faces
feg � A0 [ feg � A1 [ feg such that A1 [ feg is the unique maximal face in � that
contains A0[feg. In this way any collapsing step in the link�=e yields a collapsing
step in �, and again we are done by induction. ut

4.5 A Topological Approach

The following simple lemma provides the step from the topological fixed point
theorems for complexes to combinatorial information.
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Lemma 4.17 If a (finite) group G acts vertex-transitively and with a fixed point on
a finite complex �, then � is a simplex.

Proof If V WD fv1; : : : ; vng is the vertex set of �, then any point x 2 k�k has a
unique representation of the form

x D
nX

iD1
�i vi;

with �i � 0 and
Pn

iD1 �i D 1. If the group action, with

gx D
nX

iD1
�i gvi;

is transitive, then this means that for every i; j there is some g 2 G with gvi D vj.
Furthermore, if x is a fixed point, then we have gx D x for all g 2 G, and hence we
get �i D �j for all i; j. From this we derive �i D 1

n for all i. Hence we get

x D 1

n

nX

iD1
vi

and this is a point in k�k only if � is the complete simplex with vertex set V .
Alternatively: The fixed point set of any group action is a subcomplex of the

barycentric subdivision, by Lemma A.4. Thus a vertex x of the fixed point complex
is the barycenter of a face A of �. Since x is fixed by the whole group, so is its
support, the set A. Thus vertex transitivity implies that A D E, and� D 2E. ut
Theorem 4.18 (The Evasiveness Conjecture for prime powers: Kahn, Saks
and Sturtevant [38]) All monontone non-trivial graph properties and digraph
properties for graphs on a prime power number of vertices jVj D q D pt are
evasive.

Proof We identify the fixed vertex set V with GF.q/. Corresponding to a non-
evasive monotone non-trivial graph property we have a non-evasive complex� on a
set E D �V

2

�
of
�q
2

�
vertices. By Theorem 4.16� is collapsible and hence Zp-acyclic,

that is, all its reduced homology groups with Zp-coefficients vanish.
The symmetry group of � includes the symmetric group Sq, but we take only

the subgroup of all “affine maps”

G WD fx 7�! axC b W a; b 2 GF.q/; a ¤ 0g;
and its subgroup

P WD fx 7�! xC b W b 2 GF.q/g
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that permute the vertex set V , and (since we are considering graph properties) extend
to an action on the vertex set E D �V

2

�
of�. Then we can easily verify the following

facts:

• G is doubly transitive on V , and hence induces a vertex transitive group of
symmetries of the complex � on the vertex set E D �V

2

�
(interpret GF.q/ as

a 1-dimensional vector space, then any (ordered) pair of distinct points can be
mapped to any other such pair by an affine map on the line);

• P is a p-group (of order pt D q);
• P is the kernel of the homomorphism that maps .x 7�! axC b/ to a 2 GF.q/�,

the multiplicative group of GF.q/, and thus a normal subgroup of G;
• G=P Š GF.q/� is cyclic (this is known from your algebra class).

Taking these facts together, we have verified all the requirements of Oliver’s fixed
point theorem, as provided in the Appendix as Theorem A.7. Hence G has a fixed
point on �, and by Lemma 4.17 � is a simplex, and hence the corresponding
(di)graph property is trivial. ut

From this one can also deduce—with a lemma due to Kleitman and Kwiatowski
[42, Thm. 2]—that every non-trivial monotone graph property on n vertices has
complexity at least n2=4 C o.n2/ D m=2 C o.m/. (For the proof see [38, Thm.
6].) This establishes the Aanderaa–Rosenberg Conjecture. On the other hand, the
Evasiveness Conjecture is still an open problem for every n � 10 that is not a
prime power. Kahn, Saks and Sturtevant [38, Sect. 4] report that they verified it for
n D 6.

The following treats the bipartite version of the Evasiveness Conjecture. Note
that in the case where mn is a prime power it follows from Proposition 4.14.

Theorem 4.19 (The Evasiveness Conjecture for bipartite graphs, Yao [76]) All
monotone non-trivial bipartite graph properties are evasive.

Proof The ground set now is E D V 
 W, where any monotone bipartite graph
property is represented by a simplicial complex� � 2E.

An interesting aspect of Yao’s proof is that it does not use a vertex transitive
group. In fact, let the cyclic group G WD Zn act by cyclically permuting the vertices
in W, while leaving the vertices in V fixed. The group G satisfies the assumptions
of Oliver’s Theorem A.7, with P D f0g. It acts on the complex � which is acyclic
by Theorem 4.16. Thus we get from Oliver’s Theorem that the fixed point set �G

is acyclic. This fixed point set is not a subcomplex of � (it does not contain any
vertices of �), but it is a subcomplex of the order complex �.�/, which is the
barycentric subdivision of� (Lemma A.4).

The bipartite graphs that are fixed under G are those for which every vertex in V
is adjacent to none, or to all, of the vertices in W; thus they are complete bipartite
graphs of the type Kk;n for suitable k. Our figure illustrates this for the case where
m D 6, n D 5, and k D 3.
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V W

Monotonicity now implies that the fixed graphs under G are all the complete
bipartite graphs of type Kk;n with 0 � k � r for some r with 0 � r < m. (Here
r D m is impossible, since then � would be a simplex, corresponding to a trivial
bipartite graph property.)

Now we observe that �G is the order complex (the barycentric subdivision) of a
different complex, namely of the complex whose vertices are the complete bipartite
subgraphs K1;n, and whose faces are all sets of at most r vertices.

Thus �G is the barycentric subdivision of the .r � 1/-dimensional skeleton of
an .m � 1/-dimensional simplex. In particular, this space is not acyclic. Even its
reduced Euler characteristic, which can be computed to be .�1/r�1�m�1

r

�
, does not

vanish. ut
We have the following sequence of implications:

non-evasive(1) H) collapsible(2) H) contractible(3) H)Q-acyclic(4) H)� D 1(5),

which corresponds to a sequence of conjectures:

Conjecture(k) Every vertex-homogeneous simplicial complex with property .k/ is
a simplex.

Here we call a simplicial complex vertex-homogeneous if its symmetry group
acts transitively on the vertices.

The above implications show that

Conj. (5) H) Conj. (4) H) Conj. (3) H) Conj. (2) H) Conj. (1) H) Evasiveness
Conjecture

Here Conjecture (5) is true for a prime power number of vertices, by Theorem 4.14.
However, Conjectures (5) and (4) fail for n D 6: A counterexample is

provided by the six-vertex triangulation of the real projective plane (see [52,
Section 5.8]). Even Conjectures (3) and possibly (2) fail for n D 60: a coun-
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terexample by Oliver (unpublished), of dimension 11, is based on the group A5;
see Lutz [49].

So, it seems that Conjecture (1)—the monotone version of the Generalized
Aanderaa–Rosenberg Conjecture 4.13—may be the right generality to prove, even
though its non-monotone version fails by Proposition 4.15.

4.6 Quillen’s Conjecture

In this final section we briefly comment on a well-known conjecture of Daniel
Quillen from 1978 concerning finite groups. Upon first sight it seems very remote
from the topic of evasiveness that we have just discussed, but under the surface one
finds some surprising similarities.

In this section we assume familiarity with basic finite group theory, and with the
topology of order complexes.

A finite group is a p-group if its order is a power of the prime number p. A
subgroup of a finite group G is a p-Sylow subgroup if it is a maximal p-group. The
number np of p-Sylow subgroups of G is called the p-Sylow number of G.

Let G be a finite group and pe a prime power such that jGj D pem and p does not
divide m. Here are some well known properties.

1. There exists a p-Sylow subgroup of G of order pe.
2. Any two p-Sylow subgroups of G are conjugate to each other.
3. np.G/ 	 1 mod p.

These statements are the familiar Sylow theorems, the first substantial results in most
treatises on group theory.

For a finite group G and a prime number p dividing its order, let Lp.G/ denote the
poset of non-trivial p-subgroups of G, ordered by inclusion. This is a ranked poset,
the maximal elements of which are the p-Sylow subgroups. It becomes a lattice if
one adds new bottom and top elements.

In 1978 Quillen published the following conjecture [61], which in a surprising
way connects a topological condition with an algebraic one.

Conjecture 4.20 (Quillen’s conjecture) Lp.G/ is contractible if and only if G has
a non-trivial normal p-subgroup.

Here Lp.G/ refers to the order complex, whose simplices are the totally ordered
chains x0 < x1 < � � � < xd of Lp.G/. The “if” direction, which is very easy, was
proved by Quillen, and he proved the “only if” direction for the case of solvable
groups. The conjecture has since then been verified in many cases, but the general
case is still wide open.
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In the previous section we considered an array of conjectures, among them this
one:

Conjecture (3) Every vertex-homogeneous contractible simplicial complex is a
simplex.

This conjecture turns out to be relevant both for evasiveness and for p-subgroups:

Conjecture (3)H) Evasiveness Conjecture,
Conjecture (3)H) Quillen’s Conjecture.

However, Conjecture (3) is false. It was mentioned in the previous section that
counterexamples on 60 vertices are known. So, why spend time on discussing it?
We believe that it is nevertheless instructive to see in which way Conjecture (3)
is relevant for Quillen’s Conjecture. It is conceivable that progress for one of the
Evasiveness Conjecture and the Quillen Conjecture can lead to progress for the
other.

Proposition 4.21 Conjecture .3/ H) Quillen’s Conjecture

Proof Suppose that Lp.G/ is contractible. We are to prove that G has a non-trivial
normal p-subgroup.

Define the auxiliary Sylow complex Sylp.G/ this way: The vertices are the p-
Sylow subgroups of G. A collection of such subgroups form a simplex (or, face)
of Sylp.G/ if their intersection is nontrivial (not just the identity). This is clearly a
simplicial complex.

An application of the nerve theorem (or the crosscut theorem), see Björner [12,
p. 1850], shows that these two complexes are of same homotopy type:

Sylp.G/ � Lp.G/

The group G acts by conjugation on the vertex set of Sylp.G/, and by the second
Sylow theorem this action is transitive. So, Sylp.G/ is a vertex-homogeneous and
contractible complex. Conjecture (3) then implies that Sylp.G/ is a big simplex. This
means precisely that the intersection of all p-Sylow subgroups is non-trivial and is
a fixed point under the action. Hence this is a non-trivial normal p-subgroup.

Following along the reasoning in this proof can help to verify the Quillen
conjecture in some special cases, such as this.

Proposition 4.22 If np D qe, that is, if the number of p-Sylow subgroups is the
power of some prime number q, then G satisfies the Quillen conjecture.

Here the Rivest–Vuillemin Theorem 4.14 is relevant. In fact, with this and
Conjecture (5) a sharper version of the Quillen conjecture can be obtained in the
case when np D qe, using trivial Euler characteristic instead of contractibility. We
leave further thoughts and experiments in this direction to the reader.

Notes The classical textbook account on evasiveness, from the Graph Theory
point of view, is in Bollobas [15, Chap. VIII].

A textbook account from a Topological Combinatorics point-of-view was
recently given in de Longueville [47, Chap. 3]. The appendices A–E to
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this book also provide a concise and user-friendly account of the Algebraic
Topology tools employed. See also Miller [55].

Gorenstein [30] is a standard text on finite groups. The book by Smith [70]
contains a wealth of material on subgroup lattices and can serve as our general
reference for these.

Exercises

1. What kind of values of c.F/ are possible for graph properties of graphs on
n vertices? For monotone properties, it is assumed that one has c.F/ 2 f0;mg,
and this is proved if n is a prime power. In general, it is known that c.F/ � 2n�4
unless c.F/ D 0, by Bollobás and Eldridge [16], see [15, Sect. VIII.5].

2. Show that the digraph property “has a sink” has complexity

c.Fsink/ � 3.n� 1/� blog2.n/c:

Can you also prove that for any non-trivial digraph property one has c.F/ �
c.Fsink/?

(This is stated in Best, van Emde Boas and Lenstra [10, p. 17]; there are
analogous results by Bollobás and Eldridge [16] [15, Sect. VIII.5] in a different
model for digraphs.)

3. Show that if a complex� corresponds to a non-evasive monotone graph property,
then it has a complete 1-skeleton.

4. Give examples of simplicial complexes that are contractible, but not collapsible.
(The “dunce hat” is a key word for a search in the literature . . . )

5. Assume that when testing some unknown set A with respect to a set system F ,
you always get the answer YES if there is any set A 2 F for which this YES and
all the previous answers are correct, that is, unless this “YES” would allow you
to conclude A … F at this point.

(i) Show that with this type of answers you always need m questions for any
algorithm (and thus F is evasive) if and only if F satisfies the following
property:
(*) for any e 2 A 2 F there is some f 2 EnA such that Anfeg [ f f g 2 F .

(ii) Show that for n � 5, the family F of edge sets of planar graphs satisfies
property .�/.

(iii) Give other examples of graph properties that satisfy .�/, and are thus
evasive.

(This is the “simple strategy” of Milner and Welsh [56]; see Bollobás [15, p.
406].)

6. Let � be a vertex-homogeneous simplicial complex with n vertices and Euler
characteristic �.�/ D �1. Suppose that n D pe1

1 � � � pek
k is the prime factorization

of n and let m D maxfpe1
1 ; : : : ; p

ek
k g. Prove that dim� � m � 1:

7. Let Wq
n be the set of all words of length n in the alphabet f1; 2; : : : ; qg, q � 2.

For subsets F � Wq
n , let c.F/ be the least number of inspections of single letters
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(or rather, positions) that the best algorithm needs in the worst case s 2 Wq
n in

order to decide whether s 2 F .
Define the polynomial

pF .x1; : : : ; xq/ D
X

s2F
x�11 � � � x�q

q ;

where �i D #fj W sj D ig for s D s1 � � � sq.
Show that

.x1 C � � � C xq/
n�c.F/ ˇˇ pF .x1; : : : ; xq/:

Appendix: Fixed Point Theorems and Homology

Lefschetz’ Theorem

Fixed point theorems are “global–local tools”: From global information about a
space (such as its homology) they derive local effects, such as the existence of
special points where “something happens.”

Of course, in applications to combinatorial problems we need to combine
them with suitable “continuous–discrete tools”: From continous effects, such as
topological information about continuous maps of simplicial complexes, we have
to find our way back to combinatorial information.

In this Appendix we assume familiarity with more Algebra and Algebraic
Topology than in other parts of these lecture notes, including some basic finite group
theory, chain complexes, etc. As this is meant to be a reference and survey section,
no detailed proofs will be given. A main result we head for is Oliver’s Theorem A.7,
which is needed in Sect. 4. On the way to this, skim or skip, depending on your tastes
and familiarity4 with these notions.

A powerful tool on our agenda (which yields a classical proof for Brouwer’s fixed
point theorem and some of its extensions) is Hopf’s trace theorem. For this let V be
any finite-dimensional vector space, or a free abelian group of finite rank. When we
consider an endomorphism gW V �! V then the trace trace.g/ is the sum of the
diagonal elements of the matrix that represents g. The trace is independent of the
basis chosen for V . In the case when V is a free abelian group, then trace.g/ is an
integer.

Theorem A.1 (The Hopf trace theorem) Let � be a finite simplicial complex, let
f W k�k �! k�k be a self-map, and denote by f#i resp. f�i the maps that f induces
on i-dimensional chain groups resp. homology groups.

4See [52] for a detailed discussion of simplicial complexes, their geometric realizations, etc. In
particular, we use the notation kKk for the polyhedron (the geometric realization of a simplicial
complex �).
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Using an arbitrary field of coefficients k, one has

X

i

.�1/itrace.f#i/ D
X

i

.�1/itrace.f�i/:

The same identity holds if we use integer coefficients, and compute the traces for
homology in the quotients Hi.�;Z/=Ti.�;Z/ of the homology groups modulo their
torsion subgroups; these quotients are free abelian groups.

This theorem is remarkable as it allows to compute a topological invariant that
depends solely on the homotopy class of f , by means of a simple combinatorial
counting. The proof for this uses the definition of simplicial homology, and simple
linear algebra; we refer to Munkres [58, Thm. 22.1] or Bredon [19, Sect. IV.23].

For an arbitrary coefficient field k, the Lefschetz number of the map f W k�k �!
k�k is defined as

Lk.f / WD
X

i

.�1/itrace.f�i/ 2 k:

Similarly, taking integral homology modulo torsion, the integral Lefschetz number
is defined as

L.f / WD
X

i

.�1/itrace.f�i/ 2 Z:

The universal coefficient theorems imply that one always has LQ.f / D L.f /: Thus
the integral Lefschetz number L.f / can be computed in rational homology, but it is
an integer.

The Euler characteristic of a complex� coincides with the Lefschetz number of
the identity map id�W k�k �! k�k,

�.�/ D L.id�/; where trace..id�/�i/ D ˇi.�/:

Thus the Hopf trace theorem yields that the Euler characteristic of a finite simplicial
complex� can be defined resp. computed without a reference to homology, simply
as the alternating sum of the face numbers of the complex �, where fi D fi.�/
denotes the number of i-dimensional faces of�:

�.�/ WD f0.�/ � f1.�/C f2.�/� � � � :

This is then a finite sum that ends with .�1/dfd.�/ if � has dimension d. Thus the
Hopf trace theorem applied to the identity map just reproduces the Euler–Poincaré
formula. This proves, for example, the d-dimensional Euler polyhedron formula,
not only for polytopes, but also for general spheres, shellable or not (as discussed in
Ziegler [77]). The Hopf trace formula also has powerful combinatorial applications,
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see Ziegler [78]. However, for us its main consequence is the following theorem,
which is a vast generalization of the Brouwer fixed point theorem.

Theorem A.2 (The Lefschetz fixed point theorem) Let � be a finite simplicial
complex, and k an arbitrary field. If a self-map f W k�k �! k�k has Lefschetz
number Lk.f / ¤ 0, then f and every map homotopic to f have a fixed point.

In particular, if � is Zp-acyclic for some prime p, then every continuous map
f W k�k �! k�k has a fixed point.

(A complex is Zp-acyclic if its reduced homology with Zp-coefficients vanishes.
That is, in terms of homology it looks like a contractible space, say a d-ball.)

Proof (Sketch) For a finite simplicial complex �, the polyhedron k�k is compact.
So if f does not have a fixed point, there is some " > 0 such that j f .x/�xj > " for all
x 2 �. Now take a subdivision �0 of � into simplices of diameter smaller than ",
and a simplicial approximation of error smaller than "=2, so that the simplicial
approximation f 0 W �0 ! �0, which is homotopic to f , does not have a fixed point,
either.

Now apply the trace theorem to see that Lk.f / is zero, contrary to the assumption,
where the induced map f 0�0 D f�0 in 0-dimensional homology is the identity. ut

Note that Brouwer’s fixed point Theorem 2.4 is the special case of Theorem A.2
when� triangulates a ball.

For a reasonably large class of spaces, a converse to the Lefschetz fixed point
theorem is also true: If L.f / D 0, then f is homotopic to a map without fixed points.
See Brown [21, Chap. VIII].

The Theorems of Smith and Oliver

In addition to the usual game of connections between graphs, posets, complexes and
spaces, we will now add groups. Namely we will discuss some useful topological
effects caused by symmetry, that is, by finite group actions.

A (finite) group G acts on a (finite) simplicial complex � if each group
element corresponds to a permutation of the vertices of �, where composition of
group elements corresponds to composition of permutations, in such a way that
g.A/ WD fgv W v 2 Ag is a face of � for all g 2 G and for all A 2 �. This action on
the vertices is extended to the geometric realization of the complex�, so that G acts
as a group of simplicial homeomorphisms gW k�k �! k�k.

The action is faithful if only the identity element in G acts as the identity
permutation. In general, the set G0 WD fg 2 G W gv D v for all v 2 vert.�/g is
a normal subgroup of G. Hence we get that the quotient group G=G0 acts faithfully
on �, and we usually only consider faithful actions. In this case, we can interpret
G as a subgroup of the symmetry group of the complex �. The action is vertex
transitive if for any two vertices v;w of � there is a group element g 2 G with
gv D w.
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A fixed point (also known as stable point) of a group action is a point x 2 k�k
that satisfies gx D x for all g 2 G. We denote the set of all fixed points by�G. Note
that �G is in general not a subcomplex of�.

Example A.3 Let � D 2Œ3� be the complex of a triangle, and let G D Z3 be the
cyclic group (a proper subgroup of the symmetry group S3), acting such that a
generator cyclically permutes the vertices, 1 7�! 2 7�! 3 7�! 1.

This is a faithful action; its fixed point set consists of the center of the triangle
only—this is not a subcomplex of �, although it corresponds to a subcomplex of
the barycentric subdivision sd.�/.

Lemma A.4 (Two barycentric subdivisions)

(1) After replacing � by its barycentric subdivision (informally, let � WD sd.�/),
we get that the fixed point set �G is a subcomplex of �.

(2) After replacing � once again by its barycentric subdivision (so now � WD
sd2.�//, we even get that the quotient space k�k=G can be constructed from
� by identifying all faces with their images under the action of G. That is,
the equivalence classes of faces of �, with the induced partial order, form a
simplicial complex that is homeomorphic to the quotient space k�k=G.

We leave the proof as an exercise. It is not difficult; for details and further
discussion see Bredon [18, Sect. III.1].

“Smith Theory” was started by P. A. Smith [69] in the thirties. It analyzes finite
group actions on compact spaces (such as finite simplicial complexes), providing
relations between the structure of the group to its possible fixed point sets. Here is
one key result.

Theorem A.5 (Smith [68]) If P is a p-group (that is, a finite group of order jPj D
pt for a prime p and some t > 0), acting on a complex� that is Zp-acyclic, then the
fixed point set �P is Zp-acyclic as well. In particular, it is not empty.

Proof (Sketch) The key is that, with the preparations of Lemma A.4, the maps that
f induces on the chain groups (with Zp coefficients) nicely restrict to the chain
groups on the fixed point set�P. Passing to traces and using the Hopf trace theorem,
one can derive that�P is non-empty. A more detailed analysis leads to the “transfer
isomorphism” in homology, which proves that �P must be acyclic.

See Bredon [18, Thm. III.5.2] and Oliver [60, p. 157], and also de Longueville
[47, Appendix D and E]. ut
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On the combinatorial side, one has an Euler characteristic relation due to Floyd
[25] [18, Sect. III.4]:

�.�/ C . p� 1/�.�Zp/ D p�.�=Zp/:

If P is a p-group (in particular for P D Zp), then this implies that

�.�P/ 	 �.�/ .mod p/;

using induction on t, where jPj D pt.

Theorem A.6 (Oliver [60, Lemma I]) If G D Zn is a cyclic group, acting on a
Q-acyclic complex �, then the action has a fixed point.

In this case the fixed point set �G has the Euler characteristic of a point,
�.�G/ D 1.

Proof The first statement follows directly from the Lefschetz fixed point theorem:
Any cyclic group is generated by a single element g, this element has a fixed point,
this fixed point of g is also a fixed point of all powers of g, and hence of the whole
group G.

For the second part, take pt to be a maximal prime power that divides n, consider
the corresponding subgroup isomorphic to Zpt , and use induction on t and the
transfer homomorphism, as for the previous proof. ut

Unfortunately, results like these may give an overly optimistic impression of the
generality of fixed point theorems for acyclic complexes. There are fixed point free
finite group actions on balls: Examples were constructed by Floyd and Richardson
and others; see Bredon [18, Sect. I.8].

On the positive side we have the following result due to Oliver, which plays a
central role in Sect. 4.5.

Theorem A.7 (Oliver’s Theorem I [60, Prop. I]) If G has a normal subgroup
PGG that is a p-group, such that the quotient G=P is cyclic, acting on a complex�
that is Zp-acyclic, then the fixed point set �G is Zp-acyclic as well. In particular, it
is not empty.

This is as much as we will need in this chapter. Oliver proved, in fact, a more
general and complete theorem that includes a converse.

Theorem A.8 (Oliver’s Theorem II [60]) Let G be a finite group. Every action
of G on a Zp-acyclic complex � has a fixed point if and only if G has the following
structure:

G has normal subgroups PGQGG such that P is a p-group, G=Q is a q-group (for a prime
q that need not be distinct from p), and the quotient Q=P is cyclic.

In this situation one always has �.�G/ 	 1 mod q.

Notes The Lefschetz–Hopf fixed point theorem was announced by Lefschetz
for a restriced class of complexes in 1923, with details appearing three years
later. The first proof for the general version was by Hopf in 1929. There are
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generalizations, for example to Absolute Neighborhood Retracts; see Bredon
[19, Cor. IV.23.5] and Brown [21, Chap. IIII]. We refer to Brown’s book [21].

We refer to Bredon [18, Chapter III] for a nice textbook treatment of
Smith Theory. The book by de Longueville [47, Appendix E] also has a very
accessible discussion of the fixed point theorems of Smith and Oliver. The
exercises concerning fixed point sets of poset maps P ! P are drawn from
Baclawski and Björner [6].

Exercises

1. Verify directly that if f maps kTk to kTk, where T is a graph-theoretic tree, then
f has a fixed point.

How would you derive this from the Lefschetz fixed point theorem?
2. Let P be a poset (finite partially ordered set), and denote by �.P/ its order

complex (whose faces are the totally ordered subsets). Suppose that f W P! P is
an order-preserving mapping with fixed point set Pf WD fx 2 P j f .x/ D xg.
(a) Show that if �.P/ is acyclic over some field, then

�.Pf / D 0;
where �.Pf / denotes the Möbius function (reduced Euler characteristic) of
�.Pf /. In particular, Pf is not empty.

(b) Does it follow also that Pf itself is acyclic?

3. Suppose now that f W P ! P is order-reversing and let Pf WD fx 2 P j x D
f 2.x/ � f .x/g. Show that if �.P/ is acyclic over some field, then

�.Pf / D 0:

In particular, if f has no fixed edge (i.e., no x such that x D f 2.x/ < f .x/) then
f has a unique fixed point.

Acknowledgements We are grateful to Marie-Sophie Litz and to the referees for very careful
reading and a great number of very valuable comments and suggestions on the manuscript. Thanks
to Moritz Firsching and Stephen D. Smith, and in particular to Penny Haxell, for additional
references and very helpful explanations.

References

1. M. Aigner, G.M. Ziegler, Proofs from THE BOOK, 5th edn. (Springer, Heidelberg, 2014)
2. N. Alon, Piercing d-intervals. Discret. Comput. Geometry 19, 333–334 (1998)
3. N. Alon, Covering a hypergraph of subgraphs. Discret. Math. 257, 249–254 (2002)
4. N. Alon, D. Kleitman, Piercing convex sets and the Hadwiger Debrunner . p; q/-problem. Adv.

Math. 96, 103–112 (1992)



Using Brouwer’s Fixed Point Theorem 269

5. N. Amenta, M. Bern, D. Eppstein, S.-H. Teng, Regression depth and center points. Discret.
Comput. Geomet. 23, 305–323 (2000)

6. K. Baclawski, A. Björner, Fixed points in partially ordered sets Adv. Math. 31, 263–287 (1979)
7. I. Bárány, V.S. Grinberg, Block partitions of sequences. Israel J. Math. 206, 155–164 (2015)
8. E. Berger, KKM – a topological approach for trees. Combinatorica 25, 1–18 (2004)
9. E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways. Vol. 2: Games in Particular

(Academic Press, London, 1982)
10. M.R. Best, P. van Emde Boas, H.W. Lenstra Jr., A sharpened version of the Anderaa–Rosenberg

conjecture. Technical Report ZW 30/74, Mathematisch Centrum Amsterdam, Afd. Zuivere
Wisk., 1974, 20 pp.

11. A. Björner, Combinatorics and topology. Not. Am. Math. Soc. 32, 339–345 (1985)
12. A. Björner, Topological methods, Chap. 34, in Handbook of Combinatorics, vol. II, ed. by R.

Graham, M. Grötschel, L. Lovász (North Holland, Amsterdam), pp. 1819–1872
13. D. Blackwell, M.A. Girshick, Theory of Games and Statistical Decisions (Wiley, New York,

1954)
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Beyond the Borsuk–Ulam Theorem: The
Topological Tverberg Story

Pavle V.M. Blagojević and Günter M. Ziegler

Dedicated to the memory of Jiří Matoušek.

Abstract Bárány’s “topological Tverberg conjecture” from 1976 states that any
continuous map of an N-simplex �N to R

d, for N � .d C 1/.r � 1/, maps points
from r disjoint faces in �N to the same point in R

d. The proof of this result for the
case when r is a prime, as well as some colored version of the same result, using the
results of Borsuk–Ulam and Dold on the non-existence of equivariant maps between
spaces with a free group action, were main topics of Matoušek’s 2003 book “Using
the Borsuk–Ulam theorem.”

In this paper we show how advanced equivariant topology methods allow one to
go beyond the prime case of the topological Tverberg conjecture.

First we explain in detail how equivariant cohomology tools (employing the
Borel construction, comparison of Serre spectral sequences, Fadell–Husseini index,
etc.) can be used to prove the topological Tverberg conjecture whenever r is a
prime power. Our presentation includes a number of improved proofs as well as
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new results, such as a complete determination of the Fadell–Husseini index of
chessboard complexes in the prime case.

Then, we introduce the “constraint method,” which applied to suitable “unavoid-
able complexes” yields a great variety of variations and corollaries to the topological
Tverberg theorem, such as the “colored” and the “dimension-restricted” (Van
Kampen–Flores type) versions.

Both parts have provided crucial components to the recent spectacular counter-
examples in high dimensions for the case when r is not a prime power.

1 Introduction

Jiří Matoušek’s 2003 book “Using the Borsuk–Ulam Theorem: Lectures on Topo-
logical Methods in Combinatorics and Geometry” [34] is an inspiring introduction
to the use of equivariant methods in Discrete Geometry. Its main tool is the Borsuk–
Ulam theorem, and its generalization by Albrecht Dold, which says that there is
no equivariant map from an n-connected space to an n-dimensional finite complex
that is equivariant with respect to a non-trivial finite group acting freely. One
of the main applications of this technology in Matoušek’s book was a proof for
Bárány’s “topological Tverberg conjecture” on r-fold intersections in the case when
r is a prime, originally due to Imre Bárány, Senya Shlosman and András Szűcs
[8]. This conjecture claimed that for any continuous map f W �N ! R

d, when
N � .d C 1/.r � 1/, there are r points in disjoint faces of the simplex �N that
f maps to the same point in R

d.
The topological Tverberg conjecture was extended to the case when r is a prime

power by Murad Özaydin in an unpublished paper from 1987 [36]. This cannot,
however, be achieved via the Dold theorem, since in the prime power case the group
actions one could use on the codomain are not free. So more advanced methods
are needed, such as the Serre spectral sequence for the Borel construction and
the Fadell–Husseini index. In this paper we present the area about and around the
topological Tverberg conjecture, with complete proofs for all of the results, which
include the prime power case of the topological Tverberg conjecture.

Özaydin in 1987 not only proved the topological Tverberg theorem for prime
power r, but he also showed, using equivariant obstruction theory, that the approach
fails when r is not a prime power: In this case the equivariant map one looks for
does exist.

In a spectacular recent development, Isaac Mabillard and Uli Wagner [31, 32]
have developed an r-fold version of the classical “Whitney trick” (cf. [50]), which
yields the failure of the generalized Van Kampen–Flores theorem when r � 6 is not
a prime power. Then Florian Frick observed that this indeed implies the existence
of counterexamples to the topological Tverberg conjecture [13, 25] by a lemma of
Gromov [26, p. 445] that is an instance of the constraint method of Blagojević, Frick
and Ziegler [12, Lemma 4.1(iii) and Lemma 4.2]. (See [5] for a popular rendition of
the story.)
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The Tverberg theorem from 1966 [45] and its conjectured extension to con-
tinuous maps (the topological Tverberg conjecture) have seen a great number
of variations and extensions, among them “colored” variants as well as versions
with restricted dimensions (known as generalized Van Kampen–Flores theorems).
Although many of these were first obtained as independent results, sometimes with
very similar proof patterns, our presentation shows that there are many easy impli-
cations between these results, using in particular the “constraint method” applied
to “unavoidable complexes,” as developed by the present authors with Florian
Frick [12]. (Mikhail Gromov [26, p. 445] had sketched one particular instance:
The topological Tverberg theorem for maps to R

nC1 implies a generalized Van
Kampen–Flores theorem for maps to R

n.) Thus we can summarize the implications
in the following scheme, which shows that all further main results follow from
two sources, the topological Tverberg theorem for prime powers, and the optimal
colored Tverberg theorem of the present authors with Benjamin Matschke [17],
which up to now even for affine maps is available only for the prime case:

Topological Tverberg for pn

Generalized Van Kampen–Flores for pn

Optimal colored Tverberg for p

Topological Tverberg for p Bárány–Larman for p –1

Vrećica–Živaljević colored Tverberg for pn type B

Živaljević–Vrećica colored Tverberg for pn type A

Colored Van Kampen–Flores for pn

Weak colored Tverberg for pn

Our journey in this paper starts with Radon’s 1921 theorem and its topological
version, in Sect. 2. Here the Borsuk–Ulam theorem is all that’s needed. In Sect. 3 we
state the topological Tverberg conjecture and first prove it in the prime case (with
a proof that is close to the original argument by Bárány, Shlosman and Szűcs), and
then for prime powers—this is where we go “beyond the Borsuk–Ulam theorem.”
Implications and corollaries of the topological Tverberg theorem are developed in
Sect. 4—so that’s where we put constraints, and “add color.” In Sect. 5 we get to the
counterexamples. And finally in Sect. 6 we discuss the “optimal colored Tverberg
conjecture,” which is a considerable strengthening of Tverberg’s theorem, but up to
now has been proven only in the prime case.

A summary of the main topological concepts and tools used in this paper is given
at the end in the form of a dictionary, where a reference to the dictionary in the text
is indicated by concept dict.
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2 The Beginning

2.1 Radon’s Theorem

One of the first cornerstone results of convex geometry is a 1921 theorem of Johann
Radon about overlapping convex hulls of points in a Euclidean space.

Let Rd be a d-dimensional Euclidean space. Let x1; : : : ; xm be points in R
d and let

˛1; : : : ; ˛m be non-negative real numbers that sum up to 1, that is, ˛1 � 0; : : : ; ˛m �
0 and ˛1C� � �C˛m D 1. The convex combination of the points x1; : : : ; xm determined
by the scalars ˛1; : : : ; ˛m is the following point in R

d:

x D ˛1x1 C � � � C ˛mxm:

For a subset C of Rd we define the convex hull of C, denoted by conv.C/, to be the
set of all convex combinations of finitely many points in C:

conv.C/ WD f˛1x1 C � � � C ˛mxm W m 2 N; xi 2 C; ˛i 2 R�0; ˛1 C � � � C ˛m D 1g:

Now Radon’s theorem can be stated as follows and proved using elementary linear
algebra.

Theorem 2.1 (Radon’s theorem, point configuration version [37]) Let Rd be a
d-dimensional Euclidean space, and let X � R

d be a subset with (at least) d C 2
elements. Then there are disjoint subsets P and N of X with the property that

conv.P/\ conv.N/ ¤ ;:

Proof Let X D fx1; : : : ; xdC2g � R
d. The homogeneous system of d C 1 linear

equations in dC 2 variables

˛1x1 C � � � C ˛dC2xdC2 D 0; ˛1 C � � � C ˛dC2 D 0

has a non-trivial solution, say ˛1 D a1; : : : ; ˛dC2 D adC2. Denote

P WD fi W ai > 0g and N WD fi W ai � 0g:

Then P \ N D ; while P ¤ ; and N ¤ ;, and

a1x1 C � � � C adC2xdC2 D 0)
X

i2P

aixi D
X

i2N

�aixi;

a1 C � � � C adC2 D 0)
X

i2P

ai D
X

i2N

�ai DW A;
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where A > 0. Consequently, the following point is in the intersection of convex
hulls of P and N:

x WD
X

i2P

ai

A
xi D

X

i2N

�ai

A
xi 2 conv.fxi W i 2 Pg/\ conv.fxi W i 2 Ng/:

ut
In order to reformulate Radon’s theorem we recall the notion of an affine map.

A map f W D ! R
d defined on a subset D � R

k is affine if for every m 2 N,
x1; : : : ; xm 2 D, and ˛1; : : : ; ˛m 2 R with ˛1C� � �C˛m D 1 and ˛1x1C� � �C˛mxm 2
D, we have

f .˛1x1 C � � � C ˛mxm/ D ˛1f .x1/C � � � C ˛mf .xm/:

Here and in the following let �k WD convfe1; : : : ; ekC1g be the standard k-
dimensional simplex: This simplex given as the convex hull of the standard basis of
R

kC1 has the disadvantage of not being full-dimensional in R
k, but it has the extra

advantage of being obviously symmetric (with symmetry given by permutation of
coordinates). With this, Radon’s theorem can be restated as follows (Fig. 1).

Theorem 2.2 (Radon’s theorem, affine map version) Let f W �dC1 ! R
d be an

affine map. Then there are disjoint faces �1 and �2 of the .dC1/-simplex�dC1 with
the property that

f .�1/ \ f .�2/ ¤ ;:

With this version of Radon’s theorem at hand, it is natural to ask: Would Radon’s
theorem still hold if instead of an affine map we consider an arbitrary continuous
map f W �dC1 ! R

d?

Fig. 1 Illustration of Radon’s theorem in the plane for both versions of the theorem
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2.2 The Topological Radon Theorem

The question we have just asked was answered in 1979 by Ervin Bajmóczy and Imre
Bárány [4], using the Borsuk–Ulam theorem.

Theorem 2.3 (Topological Radon theorem) Let f W �dC1 ! R
d be any

continuous map. Then there are two disjoint faces �1 and �2 of �dC1 whose images
under f intersect,

f .�1/ \ f .�2/ ¤ ;:

Proof Let �dC1 D convfe1; : : : ; edC2g be the standard simplex. Consider the
subcomplex X of the polyhedral complex�dC1 
�dC1 given by

X WD f.x1; x2/ 2 �dC1 
�dC1 W there are faces �1; �2 � �dC1
such that �1 \ �2 D ;; x1 2 �1; x2 2 �2g:

The group Z=2 D h"i acts freely on X by " � .x1; x2/ D .x2; x1/.
Let us assume that the theorem does not hold. Then there exists a continuous map

f W �dC1 ! R
d such that f .x1/ ¤ f .x2/ for all .x1; x2/ 2 X. Consequently the map

g W X ! Sd�1 given by

g.x1; x2/ WD f .x1/� f .x2/

kf .x1/� f .x2/k ;

is continuous and Z=2-equivariant, where the action on Sd�1 D S.Rd/, the unit
sphere in R

d, is the standard antipodal action.
Next we define a continuous Z=2-equivariant map from a d-sphere to X. For this

we do not use the standard d-sphere, but the unit sphere S.WdC2/ in the hyperplane
WdC2 WD f.a1; : : : ; adC2/ 2 R

dC2 W a1 C � � � C adC2 D 0g � R
dC2, that is,

S.WdC2/ D f.a1; : : : ; adC2/ 2 R
dC2 W a1C � � � C adC2 D 0; a21C � � � C a2dC2 D 1g:

This representation of the d-sphere also has the standard antipodal Z=2-action. The
map h W S.WdC2/! X is defined by

h.a1; : : : ; adC2/ WD
�X

ai�0

ai

A
ei;
X

ai<0

�ai

A
ei

	
;

where A WD P
ai>0

ai D �Pai<0
ai > 0. This is easily checked to be well-defined

and continuous; the image point lies in the cell convfei W ai > 0g
 convfej W aj < 0g
of the complex�dC1 
�dC1.
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The composition map g ı h W S.WdC2/ ! Sd�1 yields a continuous Z=2-
equivariant map from a free d-sphere to a free .d � 1/-sphere that contradicts the
Borsuk–Ulam theorem dict. Thus the theorem holds. ut

2.3 The Van Kampen–Flores Theorem

The topological Radon theorem guarantees that for every continuous map �dC1 !
R

d there exist two pairwise disjoint faces whose f -images overlap. It is natural
to ask: Is it possible to say something about the dimension of the disjoint faces
whose f -images intersect? In the spirit of Poincaré’s classification of mathematical
problems [2, Lec. 1] this binary problem has a quick answer no, but if understood
as an interesting problem it has an answer: If we are willing to spend an extra
vertex/dimension, meaning, put the simplex �dC2 in place of �dC1, we get the
following theorem from the 1930s of Egbert R. Van Kampen and Antonio Flores
[23, 46].

Theorem 2.4 (Van Kampen–Flores theorem) Let d � 2 be an even integer,
and let f W �dC2 ! R

d be a continuous map. Then there are disjoint faces
�1 and �2 of �dC2 of dimension at most d=2 whose images under f intersect,

f .�1/ \ f .�2/ ¤ ;:

Proof Let g W �dC2 ! R
dC1 be a continuous map defined by

g.x/ WD � f .x/; dist.x; skd=2.�dC2//
�

where skd=2.�dC2/ denotes the d=2-skeleton of the simplex �dC2, and
dist.x; skd=2.�dC2// is the distance of the point x from the subcomplex skd=2.�dC2/.
Observe that if x 2 relint � and dist.x; skd=2.�dC2// D 0, then the simplex �
belongs to the subcomplex skd=2.�dC2/.

Now the topological Radon theorem can be applied to the continuous map g W
�dC2 ! R

dC1. It yields the existence of points x1 2 relint�1 and x2 2 relint�2,
with �1 \ �2 D ;, such that g.x1/ D g.x2/, that means,

f .x1/ D f .x2/ and dist.x1; skd=2.�dC2// D dist.x2; skd=2.�dC2//:

If one of the simplices �1, or �2, would belong to skd=2.�dC2/, then

dist.x1; skd=2.�dC2// D dist.x2; skd=2.�dC2// D 0

implying that both �1 and �2 belong to skd=2.�dC2/, which would concludes the
proof of the theorem.
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In order to prove that at least one of the faces �1 and �2 belongs to skd=2.�dC2/,
note that these are two disjoint faces of the simplex�dC2, which has dC 3 vertices,
so by the pigeonhole principle one of them has at most b.d C 3/=2c D d=2 C 1
vertices. ut

The proof we have presented is an example of the constraint method developed in
[12]. An important message of this proof is that the Van Kampen–Flores theorem is a
corollary of the topological Radon theorem. It is clear that we could have considered
a continuous map f defined only on the d=2-skeleton.

All the results we presented so far have always claimed something about
intersections of the images of two disjoint faces �1 and �2, which we refer to as
2-fold overlap, or intersection. What about r-fold overlaps, for r > 2?

3 The Topological Tverberg Theorem

3.1 The Topological Tverberg Conjecture

In 1964, freezing in a hotel room in Manchester, the Norwegian mathematician
Helge Tverberg proved the following r-fold generalization of Radon’s theorem [45].
It had been conjectured by Bryan Birch in 1954, who had established the result in
the special case of dimension d D 2 [9]. The case d D 1 is easy, see below. (See
[51] for some of the stories surrounding these discoveries.)

Theorem 3.1 (Tverberg’s theorem) Let d � 1 and r � 2 be integers, N D .d C
1/.r�1/, and let f W �N ! R

d be an affine map. Then there exist r pairwise disjoint
faces �1; : : : ; �r of the simplex �N whose f -images overlap,

f .�1/ \ � � � \ f .�r/ ¤ ;: (1)

Any collection of r pairwise disjoint faces �1; : : : ; �r of the simplex �N having
property (1) is called a Tverberg partition of the map f .

The dimension of the simplex in the theorem is optimal, it cannot be decreased.
To see this consider the affine map h W �N�1 ! R

d given on the vertices of�N�1 D
convfe1; : : : ; eNg by

ei
h7�! ub.i�1/=.r�1/c (2)

where fu0; : : : ; udg is an affinely independent set in R
d, e.g., .u0; : : : ; ud/ D

.0; e1; : : : ; ed/. For each vertex of the simplex convfu0; : : : ; udg the cardinality of
its preimage is r � 1

jh�1.fu0g/j D � � � D jh�1.fudg/j D r � 1;

and so the map h has no Tverberg partition. Even more is true: Any affine map
h W �N�1 ! R

d that is in general position cannot have a Tverberg partition.
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As in the case of Radon’s theorem it is natural to ask: Would the Tverberg
theorem still hold if instead of an affine map f W �N ! R

d we would consider
an arbitrary continuous map? This was first asked by Bárány in a 1976 letter to
Tverberg. In May of 1978 Tverberg posed the question in Oberwolfach, stating it for
a general N-polytope in place of the N-simplex, see [27]. (The problem for a general
N-polytope can be reduced to the case of the N-simplex by a theorem of Grünbaum:
Every N-polytope as a cell complex is a refinement of the N-simplex [28, p. 200].)
Thus, the topological Tverberg conjecture started its life in the late 1970s.

Conjecture 3.2 (Topological Tverberg conjecture) Let d � 1 and r � 2 be
integers, N D .dC1/.r�1/, and let f W �N ! R

d be a continuous map. Then there
exist r pairwise disjoint faces �1; : : : ; �r of the simplex�N whose f -images overlap,

f .�1/ \ � � � \ f .�r/ ¤ ;: (3)

The case r D 2 of the topological Tverberg conjecture amounts to the topological
Radon theorem, so it holds. The topological Tverberg conjecture is also easy to
verify for d D 1, as follows.

Theorem 3.3 (Topological Tverberg theorem for d D 1) Let r � 2 be an integer,
and let f W �2r�2 ! R be a continuous map. Then there exist r pairwise disjoint
faces �1; : : : ; �r of the simplex �2r�2 whose f -images overlap,

f .�1/ \ � � � \ f .�r/ ¤ ;:

Proof Let f W �2r�2 ! R be continuous. Sort the vertices of the simplex �2r�2 D
convfe1; : : : ; e2r�1g such that f .e�.1// � f .e�.2// � � � � � f .e�.2r�2// � f .e�.2r�1//.
Then the collection of r � 1 edges and one vertex of �2r�2

�1 D Œe�.1/; e�.2r�1/�; �2 D Œe�.2/; e�.2r�2/�; : : : ; �r�1 D Œe�.r�1/; e�.rC1/�;
�r D ferg

is a Tverberg partition for the map f . ut
At first glance the topological Tverberg conjecture is a binary problem in the

Poincaré classification of mathematical problems. To our surprise it is safe to say,
at this point in time, that the topological Tverberg conjecture was one of the most
interesting problems that shaped interaction between Geometric Combinatorics on
one hand and Algebraic and Geometric Topology on the other hand for almost
four decades.

After settling the topological Tverberg conjecture for d D 1 and r D 2 we want
to advance. How?
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3.2 Equivariant Topology Steps in

Let d � 1 and r � 2 be integers, and let N D .d C 1/.r � 1/. Our effort to
handle the topological Tverberg conjecture starts with an assumption that there
is a counterexample to the conjecture with parameters d and r. Thus there is a
continuous map f W �N ! R

d such that for every r-tuple �1; : : : ; �r of pairwise
disjoint faces of the simplex �N their f -images do not intersect, that is,

f .�1/ \ � � � \ f .�r/ D ;: (4)

In order to capture this feature of our counterexample f we parametrize all r-
tuples of pairwise disjoint faces of the simplex�N . This can be done in two similar,
but different ways.

3.2.1 The r-fold 2-wise Deleted Product

The r-fold 2-wise deleted product dict of a simplicial complex K is the cell complex

K�r
�.2/ WD f.x1; : : : ; xr/ 2 �1 
 � � � 
 �r � K�r W �i \ �j D ; for i ¤ jg;

where �1; : : : ; �r are non-empty faces of K. The symmetric group Sr acts (from the
left) on K�r

�.2/ by

� � .x1; : : : ; xr/ WD .x��1.1/; : : : ; x��1.r//;

for � 2 Sr and .x1; : : : ; xr/ 2 K�r
�.2/. This action is free due to the fact that

if .x1; : : : ; xr/ 2 K�r
�.2/ then xi ¤ xj for all i ¤ j. We have seen a particular

instance before: The complex X that we used in the proof of the topological Radon
Theorem 2.3 was .�dC1/�2�.2/. For more details on the deleted product construction
see for example [8] or [34, Sec. 6.3].

In the case when K is a simplex the topology of the deleted product K�r
�.2/ is

known from the following result of Bárány, Shlosman and Szűcs [8, Lem. 1].

Theorem 3.4 Let N and r be positive integers with N � r� 1. Then .�N/
�r
�.2/ is an

.N � rC 1/-dimensional and .N � r/-connected CW complex.

Proof A typical face of the CW complex .�N/
�r
�.2/ is of the form �1
� � �
�r , where

�1; : : : ; �r are pairwise disjoint simplices. Consequently, the number of vertices of
these simplices together cannot exceed N C 1, or in the language of dimension

dim.�1/C 1C � � � C dim.�r/C 1 � N C 1:
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The equality is attained when all the vertices are used, this is when �1; : : : ; �r is a
maximal face of dimension

dim.�1 
 � � � 
 �r/ D dim.�1/C � � � C dim.�r/ D N � rC 1:

Thus .�N/
�r
�.2/ is an .N � rC 1/-dimensional CW complex.

For N D r � 1 the deleted product .�N/
�r
�.2/ is the 0-dimensional simplicial

complex Œr� and the statement of the theorem holds. Thus, we can assume that N � r.
For N � r we establish the connectivity of the deleted product of a simplex

by induction on r making repeated use of the following classical 1957 theorem of
Stephen Smale [41, Main Thm.]:

Smale’s Theorem Let X and Y be connected, locally compact, separable metric spaces,
and in addition let X be locally contractible. Let f W X ! Y be a continuous
surjective proper map, that is, any preimage of a compact set is compact. If for every
y 2 Y the preimage f �1.fyg/ is locally contractible and n-connected, then the induced
homomorphism

f# W �i.X/! �i.Y/

is an isomorphism for all 0 � i � n, and is an epimorphism for i D nC 1.

Recall that �N denotes the standard simplex, whose vertices e1; : : : ; eNC1 form the
standard basis of RNC1. The induction starts with r D 1 and the theorem claims that
the simplex�N , a contractible space, is .N�1/-connected, which is obviously true.

In the case r D 2 consider the surjection p1 W .�N/
�2
�.2/ ! skN�1.�N/ given by

the projection on the first factor. Any point x1 of the .N � 1/-skeleton skN�1.�N/ of
the simplex�N lies in the relative interior of a face,

x1 2 relint
�
convfei W i 2 T � ŒN C 1�g�

where 1 � jTj � N. Let us denote the complementary set of vertices by S WD fei W
i … Tg ¤ ; and its convex hull by �S WD conv.S/ Š �jSj�1. The fiber of the
projection map p1 over x1 is given by

p�11 .fx1g/ D f.x1; x2/ 2 .�N/
�2
�.2/ W x2 2 �Sg Š �S;

and consequently it is contractible. By Smale’s theorem the projection p1 induces
an isomorphism between homotopy groups. Since we are working in the category
of CW complexes the Whitehead theorem [19, Thm. 11.2] implies a homotopy
equivalence of .�N/

�2
�.2/ and skN�1.�N/. The .N � 1/-skeleton of a simplex is

.N � 2/-connected and thus the theorem holds in the case r D 2.
For the induction hypothesis assume that .�N/

�i
�.2/ is .N � i/-connected for all

i � k < r. In the induction step we want to prove that .�N/
�.kC1/
�.2/ is .N � k � 1/-

connected.
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Now consider the projection onto the first k factors,

pk W .�N/
�.kC1/
�.2/ ! skN�k

�
.�N/

�k
�.2/

�
:

Since .�N/
�k
�.2/ is .N � k/-connected by induction hypothesis, its .N � k/-skeleton

skN�k
�
.�N/

�k
�.2/

�
is .N � k � 1/-connected. For a typical point of the codomain we

have that

.x1; : : : ; xk/ 2 relint
�
convfei W i 2 T1 � ŒN C 1�g

�


 � � � 
 relint
�
convfei W i 2 Tk � ŒN C 1�g

�
;

where Ti \ Tj D ; for all 1 � i < j � k, and jT1j � 1C � � � C jTkj � 1 � N � k. As
before, consider the complementary set of vertices S WD fei W i … T1[ � � �[ Tkg ¤ ;
and its convex hull�S D conv.S/ Š �jSj�1. The fiber of the projection map pk over
.x1; : : : ; xk/ is given by

p�1k .f.x1; : : : ; xk/g/ D f.x1; : : : ; xk; xkC1/ 2 .�N/
�.kC1/
�.2/ W xkC1 2 �Sg Š �S;

so it is contractible. Again Smale’s theorem applied to the projection pk induces
an isomorphism between homotopy groups of .�N/

�.kC1/
�.2/ and skN�k

�
.�N/

�k
�.2/

�
.

Moreover, the Whitehead theorem implies that these spaces are homotopy equiv-
alent. Since, skN�k

�
.�N/

�k
�.2/

�
is .N � k � 1/-connected we have concluded the

induction step and the theorem is proved. ut
Remark 3.5 Our proof of Theorem 3.4 may be traced back to a proof in the lost
preprint version of the paper [8]. Indeed, in the published version the first sentence
of [8, Proof of Lem. 1] says:

For this elementary proof we are indebted to the referee. Our original proof used the Leray
spectral sequence.

Here we used Smale’s theorem in place of the Leray spectral sequence argument.

3.2.2 The r-fold k-wise Deleted Join

Let K be a simplicial complex. The r-fold k-wise deleted join dict of the simplicial
complex K is the simplicial complex

K�r
�.k/ WD

˚
�1x1 C � � � C �rxr 2 �1 � � � � � �r � K�r W
.8I � Œn�/ card I � k)

\

i2I

�i D ;
�
;
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where �1; : : : ; �n are faces of K, including the empty face. Thus in the case k D 2

we have

K�r
�.2/ WD f�1x1 C � � � C �rxr 2 �1 � � � � � �r � K�r W �i \ �j D ; for i ¤ jg:

The symmetric group Sr acts (from the left) on K�r
�.2/ as follows

� � .�1x1 C � � � C �rxr/ WD ���1.1/x��1.1/ C � � � C ���1.r/x��1.r/;

where � 2 Sn and �1x1 C � � � C �rxr 2 K�r
�.2/. This action is free only in the case

when r D 2.

Examples 3.6 (Compare Fig. 2)

(1) Let K D �1 be the 1-simplex. Then K�2�.2/ D S0 while K�2�.2/ Š S1.

(2) For K D S0 we have that K�2�.2/ D S0, and K�2�.2/ is a disjoint union of two
intervals.

(3) If K D Œ3� then K�2�.2/ Š S1.

(4) When K D Œk�, the deleted join K�r
�.2/ is the k
 r chessboard complex dict, which

is denoted by �k;r.

The following lemma establishes the commutativity of the join and the deleted
join operations on simplicial complexes. We state it for k-wise deleted joins and
prove it here only for 2-wise deleted joins. For more details and insight consult the
sections “Deleted Products Good” and “. . . Deleted Joins Better” in Matoušek’s
book, [34, Sections. 5.4 and 5.5].

Lemma 3.7 Let K and L be simplicial complexes, and let n � 2 and k � 2 be
integers. There exists an isomorphism of simplicial complexes:

.K � L/�n
�.k/ Š K�n

�.k/ � L�n
�.k/:

Proof We give a proof only for the case k D 2. Let �1; : : : ; �n and �1; : : : ; �n be
simplices in K and L, respectively, such that �i\�j D ; and �i\�j D ; for all i ¤ j.

Fig. 2 The complexes K�2 and K�2
�.2/ for K D �1 and K D Œ3�



286 P.V.M. Blagojević and G.M. Ziegler

In addition, since the simplicial complexes K and L have disjoint vertex sets, we get
that �i \ �j D ; as well for all i and j. Thus, for all i ¤ j we obtain an equivalence:

.�i [ �i/ \ .�j [ �j/ D ; if and only if �i \ �j D ; and �i \ �j D ;:

It induces a bijection between the following simplices of .K � L/�n
�.2/ and

K�n
�.2/ � L�n

�.2/ by:

.�1��1/��.2/ � � ���.2/ .�n��n/  ! .�1��.2/ � � ���.2/�n/�.�1��.2/ � � ���.2/�n/:

ut
A direct consequence of the previous lemma is the following useful fact.

Lemma 3.8 Let r � 2 and 2 � k � r be integers. Then

(1) .�N/
�r
�.2/ Š Œr��.NC1/,

(2) .�N/
�r
�.k/ Š .skk�2.�r�1//�.NC1/.

Proof .�N/
�r
�.k/ Š .Œ1��.NC1//�r

�.k/ Š .Œ1��r
�.k//

�.NC1/ Š .skk�2.�r�1//�.NC1/. ut

Thus the r-fold 2-wise deleted join of an N-simplex .�N/
�r
�.2/ is an N-

dimensional and .N � 1/-connected simplicial complex.

3.2.3 Equivariant Maps Induced by f

Recall that, at the beginning of Sect. 3.2, we have fixed integers d � 1 and r � 2,
and in addition we assumed the existence of the continuous map f W �N ! R

d that
is a counterexample to the topological Tverberg theorem.

Define continuous maps induced by f in the following way:

• the product map is

Pf W .�N/
�r
�.2/ ! .Rd/�r Š .Rd/˚r; .x1; : : : ; xr/ 7�! . f .x1/; : : : ; f .xr//I

• the join map is

Jf W .�N/
�r
�.2/ ! .RdC1/˚r; �1x1 C � � � C �rxr

7�! .�1; �1f .x1//˚ � � � ˚ .�r; �rf .xr//:

The codomains .Rd/˚r and .RdC1/˚r of the maps Pf and Jf are equipped with
the action of the symmetric group Sr given by permutation of the corresponding
r factors, that is

� � .y1; : : : ; yr/ D .y��1.1/; : : : ; y��1.r//;

� � .z1; : : : ; zr/ D .z��1.1/; : : : ; z��1.r//;
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for .y1; : : : ; yr/ 2 .Rd/˚r and .z1; : : : ; zr/ 2 .RdC1/˚r. Then both maps Pf and Jf

are Sr-equivariant. Indeed, the following diagrams commute:

and

The Sr-invariant subspaces

DP WD f.y1; : : : ; yr/ 2 .Rd/˚r W y1 D � � � D yrg;
DJ WD f.z1; : : : ; zr/ 2 .RdC1/˚r W z1 D � � � D zrg;

of the codomains .Rd/˚r and .RdC1/˚r, respectively, are called the thin diagonals.
The crucial property of the maps Pf and Jf , for a counterexample continuous map
f W �N ! R

d, is that

im.Pf / \DP D ; and im.Jf /\ DJ D ;: (5)

Indeed, the property (4) of the map f immediately implies that im.Pf / and DP are
disjoint. For the second relation of (5) assume that

.�1; �1f .x1//˚ � � � ˚ .�r; �rf .xr// 2 im.Jf / \DJ ¤ ;

for some �1x1 C � � � C �rxr 2 .�N/
�r
�.2/. Then �1 D � � � D �r D 1

r and consequently
f .x1/ D � � � D f .xr/.

Therefore, the maps Pf and Jf induce Sr-equivariant maps

.�N/
�r
�.2/ ! .Rd/˚rnDP and .�N/

�r
�.2/ ! .RdC1/˚rnDJ (6)

that, with an obvious abuse of notation, are again denoted by Pf and Jf , respectively.
Let us denote by

RP W .Rd/˚rnDP ! D?P nf0g ! S.D?P /;

RJ W .RdC1/˚rnDJ ! D?J nf0g ! S.D?J /; (7)
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the compositions of projections and deformation retractions. Here U? denotes the
orthogonal complement of the subspace U in the relevant ambient real vector space,
while S.V/ denotes the unit sphere in the real vector space V . Both maps RP and RJ

are Sr-equivariant maps with respect to the introduced actions.
Furthermore, let Rr be a vectors space with the (left) action of the symmetric

group Sr given by the permutation of coordinates. Then the subspace Wr D˚
.t1; : : : ; tr/ 2 R

r W Pr
iD1 ti D 0

�
is an Sr-invariant subspace of dimension r � 1.

There is an isomorphism of real Sr-representations

D?P Š W˚d
r and D?J Š W˚.dC1/r :

Using this identification of Sr-representations the Sr-equivariant maps RP and RJ ,
defined in (7), can be presented by

RP W .Rd/˚rnDP ! S.W˚d
r /; RJ W .RdC1/˚rnDJ ! S.W˚.dC1/r /: (8)

Finally we have the theorem we were looking for. It will give us a chance to
employ methods of algebraic topology to attack the topological Tverberg conjecture.

Theorem 3.9 Let d � 1 and r � 2 be integers, and let N D .d C 1/.r � 1/.
If there exists a counterexample to the topological Tverberg conjecture, then there
exist Sr-equivariant maps

.�N/
�r
�.2/ ! S.W˚d

r / and .�N/
�r
�.2/ ! S.W˚.dC1/r /:

Proof If f W �N ! R
d is a counterexample to the topological Tverberg conjecture,

then by composing maps from (6) and (8) we get Sr-equivariant maps

RP ı Pf W .�N/
�r
�.2/ ! S.W˚d

r / and RJ ı Jf W .�N/
�r
�.2/ ! S.W˚.dC1/r /:

ut
Now we have constructed our equivariant maps. The aim is to find as many r’s

as possible such that an Sr-equivariant map

.�N/
�r
�.2/ ! S.W˚d

r /; or .�N/
�r
�.2/ ! S.W˚.dC1/r /; (9)

cannot exist. For this we keep in mind that the Sr-action on .�N/
�r
�.2/ is free, while

for r � 3 the Sr-action on .�N/
�r
�.2/ is not free.

3.3 The Topological Tverberg Theorem

The story of the topological Tverberg conjecture continues with a 1981 break-
through of Bárány, Shlosman and Szűcs [8]. They proved that in the case when r is a
prime, there is no Z=r-equivariant map .�N/

�r
�.2/ ! S.W˚d

r /, and consequently no



Beyond the Borsuk–Ulam Theorem 289

Sr-equivariant map can exist. Hence, Theorem 3.9 settles the topological Tverberg
conjecture in the case when r is a prime. We give a proof of this result relying on
the following theorem of Dold [21] [34, Thm. 6.2.6]:

Dold’s theorem Let G be a non-trivial finite group. For an n-connected G-space X and at
most n-dimensional free G-CW complex Y there cannot be any continuous G-equivariant
map X! Y.

Theorem 3.10 (Topological Tverberg theorem for primes r) Let d � 1 be an
integer, let r � 2 be a prime, N D .d C 1/.r � 1/, and let f W �N ! R

d be a
continuous map. Then there exist r pairwise disjoint faces �1; : : : ; �r of the simplex
�N whose f -images overlap, that is

f .�1/ \ � � � \ f .�r/ ¤ ;:

Proof According to Theorem 3.9 it suffices to prove that there cannot be any Sr-
equivariant map .�N/

�r
�.2/ ! S.W˚d

r /. Let Z=r be the subgroup of Sr generated by
the cyclic permutation .123 : : : r/. Then it is enough to prove that there is no Z=r-
equivariant map .�N/

�r
�.2/ ! S.W˚d

r /. For that we are going to use Dold’s theorem.
The assumption that r is a prime implies that the action of Z=r on the sphere

S.W˚d
r / is free. Now, since

• .�N/
�r
�.2/ is an .N � r/-connected Z=r-space, and

• S.W˚d
r / is a free .N � r/-dimensional Z=r-CW complex,

the theorem of Dold implies that a Z=r-equivariant map .�N/
�r
�.2/ ! S.W˚d

r /

cannot exist. ut
The same argument yields that there cannot be any Sr-equivariant map .�N/

�r
�.2/ !

S.W˚.dC1/r /, when r is a prime. Observe that for an application of the theorem of
Dold the nature of the group action on the domain is of no importance.

The next remarkable step followed a few years later. In 1987 in his landmark
unpublished manuscript Özaydin [36] extended the result of Bárány, Shlosman and
Szűcs and proved that the topological Tverberg conjecture holds for r a prime power.
He proved even more and left the topological Tverberg conjecture as a teaser for
generations of mathematicians to come. But this story will come a bit later.

The first published proof of the topological Tverberg theorem for r a prime power
appeared in a paper of Aleksei Yu. Volovikov [47]; see Remark 3.12. Here we give a
proof of the topological Tverberg theorem for prime powers based on a comparison
of Serre spectral sequences which uses a consequence of the localization theorem dict

for equivariant cohomology dict [29, Cor. 1, p. 45]. For background on spectral
sequences we refer to the textbooks by John McCleary [35] and by Anatoly
Fomenko and Dmitry Fuchs [24].

Theorem 3.11 (Topological Tverberg theorem for prime powers r) Let d � 1

be an integer, let r � 2 be a prime power, N D .dC 1/.r� 1/, and let f W �N ! R
d



290 P.V.M. Blagojević and G.M. Ziegler

be a continuous map. Then there exist r pairwise disjoint faces �1; : : : ; �r of the
simplex �N whose f -images overlap, that is

f .�1/ \ � � � \ f .�r/ ¤ ;:

Proof Let d � 1 be an integer, and let r D pn for p a prime. By Theorem 3.9 it
suffices to prove that there cannot be any Sr-equivariant map .�N/

�r
�.2/ ! S.W˚d

r /.
Consider the elementary abelian group .Z=p/n and the regular embedding reg W

.Z=p/n ! Sr, as explained in [1, Ex. 2.7, p. 100]. It is given by the left translation
action of .Z=p/n on itself: To each element g 2 .Z=p/n we associate the permutation
Lg W .Z=p/n ! .Z=p/n from Sym..Z=p/n/ Š Sr given by Lg.x/ D g C x.
We identify the elementary abelian group .Z=p/n with the subgroup im.reg/ of
the symmetric group Sr. Thus, in order to prove the non-existence of an Sr-
equivariant map it suffices to prove the non-existence of a .Z=p/n-equivariant map
.�N/

�r
�.2/ ! S.W˚d

r /.
Our proof takes several steps; the crucial ingredient is a comparison of Serre

spectral sequences. As it will be by contradiction, let us now assume that a .Z=p/n-
equivariant map ' W .�N/

�r
�.2/ ! S.W˚d

r / exists.

(1) Let � denote the Borel construction dict fiber bundle

� W .�N/
�r
�.2/ ! E.Z=p/n 
.Z=p/n .�N/

�r
�.2/ ! B.Z=p/n;

while  denotes the Borel construction fiber bundle

 W S.W˚d
r /! E.Z=p/n 
.Z=p/n S.W˚d

r /! B.Z=p/n:

Then the map ' would induce the following morphism between fiber bundles �
and :

This bundle morphism induces a morphism of associated cohomology Serre
spectral sequences:

Ei;j
s .�/ WD Ei;j

s .E.Z=p/n 
.Z=p/n .�N/
�r
�.2//

ˆ
i;j
s � Ei;j

s .E.Z=p/n 
.Z=p/n S.W˚d
r // DW Ei;j

s ./
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such that on the zero row of the second term

Ei;0
2 .�/ WD Ei;0

2 .E.Z=p/n 
.Z=p/n .�N/
�r
�.2//

ˆ
i;0
2 � Ei;0

2 .E.Z=p/n 
.Z=p/n S.W˚d
r // DW Ei;0

2 ./

is the identity. Here for the morphisms we use the simplified notation ˆi;j
s WD

Ei;j
s .id
.Z=p/n'/.

Before calculating both spectral sequences we recall the cohomology of B.Z=p/n

with coefficients in the field Fp. For p D 2 we have:

H�.B ..Z=2/n/ IF2/DH�..Z=2/nIF2/ŠF2Œt1; : : : ; tn�;

where deg tiD 1, and for p�3 we set:

H�.B ..Z=p/n/ IFp/DH�..Z=p/nIFp/ŠFpŒt1; : : : ; tn�˝ƒŒe1; : : : ; en�;

where deg tiD 2; deg eiD 1; and ƒŒ � � denotes the exterior algebra.

(2) First, we consider the Serre spectral sequence, with coefficients in the field Fp,
associated to the fiber bundle �. The E2-term of this spectral sequence can be
computed as follows:

Ei;j
2 .�/ D Hi.B ..Z=p/n/ IHj..�N/

�r
�.2/IFp// D Hi..Z=p/nIHj..�N/

�r
�.2/IFp//

D

8
ˆ̂
<

ˆ̂
:

Hi..Z=p/nIFp/; for j D 0;
Hi..Z=p/nIHN�rC1..�N/

�r
�.2/IFp//; for j D N � rC 1;

0; otherwise;

since by Theorem 3.4 the deleted product .�N/
�r
�.2/ is an .N � r C 1/-

dimensional, .N � r/-connected simplicial complex and consequently
Hj..�N/

�r
�.2/IFp/ ¤ 0 only for j D 0 or j D N � r C 1. Thus, the only

possibly non-zero differential of the spectral sequence is @N�rC2 and therefore
Ei;0
2 .�/ Š Ei;01.�/ for i � N � rC 1.

(3) The second Serre spectral sequence, with coefficients in the field Fp, we
consider is associated to the fiber bundle . In this case the fundamental group
of the base space �1.B.Z=p/n/ Š .Z=p/n acts trivially on the cohomology
H�.S.W˚d

r /IFp/. Indeed, when p D 2 the group .Z=2/n can only act trivially on
H0.S.W˚d

r /IF2/ Š F2 and on HN�r.S.W˚d
r /IF2/ Š F2. For p an odd prime all

elements of the group .Z=p/n have odd order and therefore the action is trivial
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on the Fp vector spaces H0.S.W˚d
r /IFp/ Š Fp and HN�r.S.W˚d

r /IFp/ Š Fp.
Thus the E2-term of this spectral sequence is of the form

Ei;j
2 ./ D Hi.B ..Z=p/n/ IHj.S.W˚d

r /IFp// D Hi..Z=p/nIHj.S.W˚d
r /IFp//

Š Hi..Z=p/nIFp/˝Fp Hj.S.W˚d
r /IFp/

Š
(

Hi..Z=p/nIFp/; for j D 0 or N � r;

0; otherwise:

Moreover, if ` 2 HN�r.S.W˚d
r /IFp/ Š Fp denotes a generator then the

.N � r/-row of the E2-term is a free H�..Z=p/nIFp/-module generated by the
element 1˝Fp ` 2 E0;N�r

2 ./ Š HN�r.S.W˚d
r /IFp/. The only possible non-zero

differential is

@N�rC1 W E0;N�r
N�rC1./! EN�rC1;0

N�rC1 ./:

Consequently we have that

• E2 and EN�rC1 terms coincide, that is E�;�2 ./ Š E�;�N�rC1./,
• .N � r/-row of the EN�rC1-term is a free H�..Z=p/nIFp/-module generated

by 1˝Fp ` 2 E0;N�r
N�rC1./,

• @N�rC1, as all differentials, is an H�..Z=p/nIFp/-module morphism.

Therefore, the differential @N�rC1 is zero if and only if

@N�rC1.1˝Fp `/ D 0 2 EN�rC1;0
N�rC1 ./ Š EN�rC1;0

2 ./:

Furthermore, if @N�rC1.1 ˝Fp `/ D 0, then E�;�2 ./ Š E�;�1 ./. Hence, the
projection map

E.Z=p/n 
.Z=p/n S.W˚d
r /! B.Z=p/n

induces a monomorphism in cohomology

H�.B.Z=p/nIFp/! H�.E.Z=p/n 
.Z=p/n S.W˚d
r /IFp/:

Now the following consequence of the localization theorem [29, Cor. 1, p. 45],
which in the case of finite groups holds only for elementary abelian groups,
comes into play:

Theorem Let p be a prime, G D .Z=p/n with n � 1, and let X be a finite G-CW
complex. The fixed point set XG of the space X is non-empty if and only if the map in
cohomology H�.BGIFp/! H�.EG�G XIFp/, induced by the projection EG�G X!
BG, is a monomorphism.
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aa

N − r + 1

N − r

N − r + 1 N − r + 1

Fig. 3 Illustration of the spectral sequences E�;�
� .�/ and E�;�

� ./ and the morphism between them
ˆ

�;�
� W E�;�

� .�/ E�;�
� ./ that is the identity between the 0-rows up to the EN�rC1-term

Since the fixed point set S.W˚d
r /.Z=p/n D ; of the sphere is empty, the theorem

we just quoted implies that the map in cohomology

H�.B.Z=p/nIFp/! H�.E.Z=p/n 
.Z=p/n S.W˚d
r /IFp/:

is not a monomorphism. Consequently, the element

a WD @N�rC1.1˝Fp `/ ¤ 0 2 EN�rC1;0
N�rC1 ./ Š EN�rC1;0./

is not zero.
(4) Finally, to reach a contradiction with the assumption that the .Z=p/n-equivariant

map ' exists we track the element a WD @N�rC1.1˝Fp `/ ¤ 0 2 EN�rC1;0
N�rC1 ./ Š

EN�rC1;0
2 ./ along the morphism of spectral sequences (Fig. 3)

ˆN�rC1;0
s W EN�rC1;0

s ./! EN�rC1;0
s .�/:

Since the differentials in both spectral sequences are zero in all terms Es./ and
Es.�/ for 2 � s � N�r we have thatˆ�;0s0 is the identity for 2 � s0 � N�rC1.
In particular, the morphism

ˆ
N�rC1;0
N�rC1 W EN�rC1;0

N�rC1 ./! EN�rC1;0
N�rC1 .�/

is still identity as it was in the second term, and so ˆN�rC1;0
N�rC1 .a/ D a. Passing to

the .N � rC 1/-term, with a slight abuse of notation, we have that

ˆ
N�rC1;0
N�rC2 .Œa�/ D Œa�;

where Œa� denotes the class induced by a in the appropriate .N � r C 2/-term
of the spectral sequences. Since a WD @N�rC1.1 ˝Fp `/ 2 EN�rC1;0

N�rC1 ./ and
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0 ¤ a 2 EN�rC1;0
2 .�/ Š EN�rC1;01 .�/ passing to the next EN�rC2-term we reach

a contradiction:

ˆN�rC1;0
N�rC2 .0/ D Œa� D a ¤ 0;

because the class of the element a in EN�rC1;0
N�rC2 ./ vanishes (domain of

ˆ
N�rC1;0
N�rC2 ) while in EN�rC1;0

N�rC2 .�/ it does not vanish (codomain of ˆN�rC1;0
N�rC2 ).

Hence, there cannot be any .Z=p/n-equivariant map .�N/
�r
�.2/ ! S.W˚d

r /, and
the proof of the theorem is complete.

ut
In the language of the Fadell–Husseini index dict, as introduced in [22], we have

computed that

index.Z=p/n..�N/
�r
�.2/IFp/ � H�N�rC2.B.Z=p/nIFp/:

Furthermore, we showed the existence of an element a 2 H�N�rC1.B.Z=p/nIFp/

that has the property

0 ¤ a 2 index.Z=p/n.S.W
˚d
r /IFp/\ HN�rC1.B.Z=p/nIFp/: (10)

Consequently index.Z=p/n.S.W˚d
r /IFp/ 6� index.Z=p/n..�N/

�r
�.2/IFp/ and so the

monotonicity property of the Fadell–Husseini index implies the non-existence of
a .Z=p/n-equivariant map .�N/

�r
�.2/ ! S.W˚d

r /.
The element a with the property (10) can be specified explicitly. It is the Euler

class of the vector bundle

W˚d
r ! E.Z=p/n 
.Z=p/n W˚d

r ! B.Z=p/n:

From the work of Mann and Milgram [33] we get that for an odd prime p

a D ! �
� Y

.˛1;:::;˛n/2Fn
pnf0g

.˛1t1 C � � � C ˛ntn/
	d=2

;

where ! 2 Fpnf0g, while for p D 2 we have that

a D
� Y

.˛1;:::;˛n/2Fn
2nf0g

.˛1t1 C � � � C ˛ntn/
	d
:

The square root in FpŒt1; : : : ; tn� is not uniquely determined for an odd prime p and
d odd: The factor ! accounts for an arbitrary square root being taken.



Beyond the Borsuk–Ulam Theorem 295

Remark 3.12 Volovikov, in his 1996 paper [47], proved the following extension of
the topological Tverberg theorem for continuous maps to manifolds:

Theorem Let d � 1 be an integer, let r � 2 be a prime power, and N D .dC 1/.r � 1/.
For any topological d-manifold M and any continuous map f W �N ! M, there exist r
pairwise disjoint faces �1; : : : ; �r of the simplex �N whose f -images overlap, that is

f .�1/\ 	 	 	 \ f .�r/ ¤ ;:

4 Corollaries of the Topological Tverberg Theorem

Over time many results were discovered that were believed to be substantial
extensions or analogs of the topological Tverberg theorem, such as the generalized
Van Kampen–Flores theorem of Karanbir Sarkaria [38] and Aleksei Volovikov [48],
the colored Tverberg theorems of Rade Živaljević and Siniša Vrećica [49, 53] and
Pablo Soberón’s result on Tverberg points with equal barycentric coordinates [42].
It turned out only recently that the elementary idea of constraint functions together
with the concept of “unavoidable complexes” introduced in [12] transforms all these
results into simple corollaries of the topological Tverberg theorem.

Well, if all these results are corollaries, is there any genuine extension of the
topological Tverberg theorem? The answer to this question will bring us to the
fundamental work of Bárány and Larman [7], and the optimal colored Tverberg
theorem [17] from 2009. But this will be the story of the final section of this paper.

4.1 The Generalized Van Kampen–Flores Theorem

The first corollary we prove is the following generalized Van Kampen–Flores
Theorem that was originally proved by Sarkaria [38] for primes and then by
Volovikov [48] for prime powers. The fact that this result can be derived easily
from the topological Tverberg theorem by adding an extra component to the map
was first sketched by Gromov in [26, Sec. 2.9c]; this can be seen as a first instance
of the constraint method [12, Thm. 6.3] “at work.”

Theorem 4.1 (The generalized Van Kampen–Flores Theorem) Let d � 1 be an
integer, let r be a prime power, let k � d r�1

r de and N D .d C 2/.r � 1/, and
let f W �N ! R

d be a continuous map. Then there exist r pairwise disjoint faces
�1; : : : ; �r in the k-skeleton skk.�N/ of the simplex �N whose f -images overlap,

f .�1/ \ � � � \ f .�r/ ¤ ;:
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Proof For the proof we use two ingredients, the topological Tverberg theorem and
the pigeonhole principle. First, consider the continuous map g W �N ! R

dC1
defined by

g.x/ D . f .x/; dist.x; skk.�N//:

Since N D .d C 2/.r � 1/ D ..d C 1/C 1/.r � 1/ and r is a prime power we can
apply the topological Tverberg theorem to the map g. Consequently, there exist r
pairwise disjoint faces �1; : : : ; �r with points x1 2 relint�1; : : : ; xr 2 relint �r such
that g.x1/ D � � � D g.xr/, that is,

f .x1/ D � � � D f .xr/ and dist.x1; skk.�N// D � � � D dist.xr; skk.�N//:

One of the faces �1; : : : ; �r has to belong to skk.�N/. Indeed, if all the faces
�1; : : : ; �r , which are disjoint, would not belong to skk.�N/, then the simplex �N

should have at least

j�1j C � � � C j�rj � r.kC 2/ � r
�d r�1

r de C 2� � .r � 1/.dC 2/C 2 D N C 2
vertices. Thus, since one of the faces is in the k-skeleton dist.x1; skk.�N// D
� � � D dist.xr; skk.�N// D 0, and consequently �1 2 skk.�N/; : : : ; �r 2 skk.�N/,
completing the proof of the theorem. ut

4.2 The Colored Tverberg Problem of Bárány and Larman

In their 1990 study on halving lines and halving planes, Bárány, Zoltan Füredi and
László Lovász [6] realized a need for a colored version of the Tverberg theorem.
The sentence from this paper

For this we need a colored version of Tverberg’s theorem.

opened a new chapter in the study of extensions of the Tverberg theorem, both affine
and topological. Soon after, in 1992, Bárány and David Larman in [7] formulated
the colored Tverberg problem and brought to light a conjecture that motivated the
progress in the area for decades to come.

Let N � 1 be an integer and let C be the set of vertices of the simplex �N . A
coloring of the set of vertices C by ` colors is a partition .C1; : : : ;C`/ of C, that is
C D C1 [ � � � [C` and Ci \Cj D ; for 1 � i < j � `. The elements of the partition
.C1; : : : ;C`/ are called color classes. A face � of the simplex�N is a rainbow face
if j�\Cij � 1 for all 1 � i � `. The subcomplex of all rainbow faces of the simplex
�N induced by the coloring .C1; : : : ;C`/ will be denoted by R.C1;:::;C`/ and will be
called the rainbow subcomplex. There is an isomorphism of simplicial complexes
R.C1;:::;C`/ Š C1 � � � � � C`.

Problem 4.2 (Bárány–Larman colored Tverberg problem) Let d � 1 and r � 2
be integers. Determine the smallest number n D n.d; r/ such that for every affine



Beyond the Borsuk–Ulam Theorem 297

map f W �n�1 ! R
d, and every coloring .C1; : : : ;CdC1/ of the vertex set C of

the simplex �n�1 by d C 1 colors with each color of size at least r, there exist
r pairwise disjoint rainbow faces �1; : : : ; �r of �n�1 whose f -images overlap,

f .�1/ \ � � � \ f .�r/ ¤ ;:
A trivial lower bound for the function n.d; r/ is .d C 1/r. Bárány and Larman
proved that the trivial lower bound is tight in the cases n.r; 1/ D 2r and n.r; 2/ D 3r,
and presented a proof by Lovász for n.2; d/ D 2.d C 1/. Furthermore, they
conjectured the following equality.

Conjecture 4.3 (Bárány–Larman conjecture) Let r � 2 and d � 1 be integers.
Then n.d; r/ D .dC 1/r.

Now we present the proof of Lovász for the Bárány–Larman conjecture in the
case r D 2 from the paper of Bárány and Larman [7, Thm. (iii)].

Theorem 4.4 Let d � 1 be an integer. Then n.2; d/ D 2.dC 1/.
Proof Let n D 2.d C 1/, and let f W �n�1 ! R

d be an affine map. Furthermore,
consider a coloring .C1; : : : ;CdC1/ of the vertex set C of the simplex �n�1 by
d C 1 colors where jC1j D � � � D jCdC1j D 2. Denote Ci D fvi;�vig for
1 � i � d C 1. The subcomplex of all rainbow faces of the simplex �n�1 is the
join R WD R.C1;:::;CdC1/ D C1 � � � � � CdC1. In this case, the rainbow subcomplex R
can be identified with the boundary of the cross-polytope Œ2��.dC1/ Š Sd. Here Œ2�,
as before, denotes the 0-dimensional simplicial complex with two vertices.

The restriction map f jR W Œ2��.dC1/ ! R
d is a piecewise affine map, and

therefore continuous. The Borsuk–Ulam theorem yields the existence of a point
x 2 Œ2��.dC1/ Š Sd on the sphere with the property that f jR.x/ D f jR.�x/. The point
x 2 Œ2��.dC1/ belongs to the relative interior of a unique simplex in the boundary of
the cross-polytope Œ2��.dC1/,

x 2 relint
�
convf"i1vi1 ; : : : ; "ikvikg

�
;

where "ia 2 f�1;C1g and 1 � k � dC 1. Thus,

�x 2 relint
�
convf�"i1vi1 ; : : : ;�"ikvikg

�
:

Since the rainbow faces

convf"i1vi1 ; : : : ; "ikvikg and convf�"i1vi1 ; : : : ;�"ikvikg

are disjoint, and

f jR.x/ D f jR.�x/ 2
f jR� relint.convf"i1 vi1 ; : : : ; "ikvik g/

�\ f jR� relint.convf�"i1vi1 ; : : : ;�"ikvik g/
�
;

we have proved the theorem. ut
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4.3 The Colored Tverberg Problem of Živaljević and Vrećica

In response to the work of Bárány and Larman a modified colored Tverberg problem
was presented by Živaljević and Vrećica in their influential paper [53] from 1992.

Problem 4.5 (The Živaljević–Vrećica colored Tverberg problem) Let d � 1

and r � 2 be integers. Determine the smallest number t D t.d; r/ (or t D tt.d; r/)
such that for every affine (or continuous) map f W � ! R

d, and every coloring
.C1; : : : ;CdC1/ of the vertex set C of the simplex� by dC 1 colors with each color
of size at least t, there exist r pairwise disjoint rainbow faces �1; : : : ; �r of � whose
f -images overlap, that is

f .�1/ \ � � � \ f .�r/ ¤ ;:

Observe that in the language of the function t.d; r/ the Bárány–Larman conjec-
ture says that t.d; r/ D r for all r � 2 and d � 1. Furthermore, proving that
t.d; r/ < C1 does not imply n.d; r/ < C1, while proving t.d; r/ D r would
imply that n.d; r/ D r.dC 1/.

In order to address the modified problem Živaljević and Vrećica needed to know
the connectivity of chessboard complexes. For that they recalled the following result
of Anders Björner, Lovász, Vrećica and Živaljević [11, Thm. 1.1]. Its connectivity
lower bound is best possible according to [39].

Theorem 4.6 Let m � 1 and n � 1 be integers. The chessboard �m;n is �-
connected, where

� D min
˚
m; n;

�
mCnC1

3

˘� � 2:

Proof Without loss of generality we can assume that 1 � m � n. The proof
proceeds by induction on minfm; ng D m. In the case m D 1 the statement of
the theorem is obviously true. For m D 2 we distinguish between two cases:

• If n D 2, then � D minf2; 2; � 5
3

˘g � 2 D �1 and �2;2 is just a disjoint union of
two edges, and

• If n � 3, then � D minf2; 2; � nC3
3

˘g � 2 D 0 and �2;n is path connected.

Let m � 3, and let us assume that the statement of the theorem holds for every
chessboard �m0;n0 where 1 � minfm0; n0g < m. Now we prove the statement of the
theorem for the chessboard�m;n.

Let K` for 1 � ` � n be a subcomplex of �m;n defined by

f.i0; j0/; : : : ; .ik; jk/g 2 K` ” f.i0; j0/; : : : ; .ik; jk/; .1; `/g 2 �m;n:
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The family of subcomplexes K WD fK` W 1 � ` � ng covers the chessboard
�m;n. Moreover, each subcomplex K` is a cone over the chessboard �m�1;n�1, and
therefore contractible. Since, for � � Œn� we have that

\
fK` W ` 2 �g D ; ” � D Œn�;

the nerve dict NK of the family K is homeomorphic to the boundary of an .n � 1/-
simplex @�n�1. Thus, NK Š Sn�2 is .n � 3/-connected. Furthermore, for � �
Œn� with the property that 2 � j� j � n � 1 the intersection

TfK` W ` 2 �g is
homeomorphism with the chessboard �m�1;n�j� j. The induction hypothesis can be
applied to each of these intersections. Therefore,

conn
�\fK` W ` 2 �g

� D conn.�m�1;n�j� j/

� min
n
m � 1; n� j� j;

j
mCn�j� j

3

ko
� 2:

Now we will apply the following connectivity version of the Nerve theorem dict due
to Björner, see [10, Thm. 10.6].

Theorem Let K be a finite simplicial complex, or a regular CW-complex, and let K WD
fKi W i 2 Ig be a cover of K by a family of subcomplexes, K D SfKi W i 2 Ig.
(1) If for every face � of the nerve NK the intersection

TfKi W i 2 �g is contractible, then
K and NK are homotopy equivalent, K ' NK.

(2) If for every face � of the nerve NK the intersection
TfKi W i 2 �g is .k� j� j C 1/-

connected, then the complex K is k-connected if and only if the nerve NK is
k-connected.

In the case of the covering K of the chessboard �m;n, where 2 < m � n, we
have that

• for every face � of the nerve NK the intersection
TfKi W i 2 �g is contractible

when j� j D 1, and

conn
�\fK` W ` 2 �g

� � min
n
m � 1; n � j� j;

j
mCn�j� j

3

ko
� 2

� min
˚
m; n;

�
mCnC1

3

˘� � 2 � j� j C 1
� � � j� j C 1;

when 2 � j� j � n � 1, while
• the nerve NK of the family K is .n � 3/-connected with

n � 3 � min
˚
m; n;

�
mCnC1

3

˘� � 2 D �:

Therefore, according to the Nerve theorem applied for the cover K the chessboard
�m;n is �-connected. This concludes the induction step. ut
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The knowledge on the connectivity of the chessboard complexes was the decisive
information both for the original proof of the Živaljević and Vrećica colored
Tverberg theorem [53, Thm. 1], which worked only for primes, and for the following
version of the proof for prime powers; see also the proof of Živaljević [52,
Thm. 3.2 (2)].

Theorem 4.7 (Colored Tverberg theorem of Živaljević and Vrećica) Let d � 1
be an integer, and let r � 2 be a prime power. For every continuous map f W � !
R

d, and every coloring .C1; : : : ;CdC1/ of the vertex set C of the simplex � by dC 1
colors with each color of size at least 2r� 1, there exist r pairwise disjoint rainbow
faces �1; : : : ; �r of � whose f -images overlap, that is

f .�1/ \ � � � \ f .�r/ ¤ ;:

In the language of the function tt.d; r/ the previous theorem yields the upper
bound tt.d; r/ � 2r � 1 when r is a prime power. This bound implies the bound
t.d; r/ � tt.d; r/ � 4r � 3 for arbitrary r via Bertrand’s postulate.

Proof Let r D pn for p a prime and n � 1. Let f W � ! R
d be a continuous map

from a simplex� whose set of vertices C is colored by dC1 colors .C1; : : : ;CdC1/.
Without loss of generality assume that jC1j D � � � D jCdC1j D 2r � 1. In addition
assume that the map f is a counterexample for the statement of the theorem. Set
M WD .d C 1/.2r � 1/ � 1 and N WD .d C 1/.r � 1/, so � is an M-dimensional
simplex. Now, the proof of the theorem will be presented in several steps.

(1) The rainbow subcomplex of the simplex � induced by the coloring
.C1; : : : ;CdC1/ in this case is

R.C1;:::;CdC1/ Š C1 � � � � � CdC1 Š Œ2r � 1��.dC1/:

The r-fold 2-wise deleted join of the rainbow subcomplex R.C1;:::;CdC1/ can be
identified, with the help of Lemma 3.7 and Example 3.6, as follows

.R.C1;:::;CdC1//
�r
�.2/ Š

�
Œ2r � 1��.dC1/��r

�.2/

Š �Œ2r � 1��r
�.2/

��.dC1/ Š .�2r�1;r/�.dC1/:

The action of the symmetric group Sr on the chessboard�2r�1;r is assumed to
be given by permutation of columns of the chessboard, that is

� � f.i0; j0/; : : : ; .ik; jk/g D f.i0; �.j0//; : : : ; .ik; �.jk//g;
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for � 2 Sr and f.i0; j0/; : : : ; .ik; jk/g a simplex in �2r�1;r . Furthermore, the
chessboard �2r�1;r is an .r � 1/-dimensional and according to Theorem 4.6 an
.r � 2/-connected simplicial complex. Therefore

dim
�
.�2r�1;r/�.dC1/

� D .d C 1/r � 1 D N C d;

conn
�
.�2r�1;r/�.dC1/

� D .d C 1/r � 2 D N C d � 1:
(11)

(2) Now, along the lines of Sect. 3.2.3, the continuous map f W �! R
d induces the

join map

Jf W .�/�r
�.2/! .RdC1/˚r;

�1x1 C � � � C �rxr 7�! .�1; �1f .x1//˚ � � � ˚ .�r; �rf .xr//:

Both domain and codomain of the join map Jf are equipped with the action
of the symmetric group Sr in such a way that Jf is an Sr-equivariant map.
The deleted join of the rainbow complex .R.C1;:::;CdC1//

�r
�.2/ is an Sr-invariant

subcomplex of .�/�r
�.2/. Thus, the restriction map

J0f WD Jf j.R.C1;:::;CdC1/
/�r
�.2/
W .R.C1;:::;CdC1//

�r
�.2/ ! .RdC1/˚r

is also an Sr-equivariant map. Next consider the thin diagonal

DJ D f.z1; : : : ; zr/ 2 .RdC1/˚r W z1 D � � � D zrg:

This is an Sr-invariant subspace of .RdC1/˚r. The key property of the map J0f
we have constructed for any counterexample continuous map f W � ! R

d, is
that im.J0f /\ DJ D ;. Thus J0f induces an Sr-equivariant map

.R.C1;:::;CdC1//
�r
�.2/ ! .RdC1/˚rnDJ (12)

which we, with an obvious abuse of notation, again denote by J0f . Further-
more, let

RJ W .RdC1/˚rnDJ ! D?J nf0g ! S.D?J / (13)

be the composition of the appropriate projection and deformation retraction.
The map RJ is Sr-equivariant. Recall from Sect. 3.2.3 that there is an isomor-
phism of real Sr-representations D?J Š W˚.dC1/r . Here Wr D

˚
.t1; : : : ; tr/ 2

R
r W Pr

iD1 ti D 0
�

and it is equipped with the (left) action of the symmetric
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group Sr given by permutation of coordinates. After the identification of the
Sr-representations the Sr-equivariant map RJ defined in (13) has the form

RJ W .RdC1/˚rnDJ ! S.W˚.dC1/r /: (14)

Thus we have proved that if there exists a counterexample map f for the
theorem, then there exists an Sr-equivariant map

.R.C1;:::;CdC1//
�r
�.2/ ! S.W˚.dC1/r /: (15)

In the final step we reach a contradiction by proving that an Sr-equivariant
map (15) cannot exist, concluding that a counterexample f could not exist in the
first place. The proof of the non-existence of an equivariant map is following the
footsteps of the proof of Theorem 3.11.

(3) Consider the elementary abelian group .Z=p/n and its regular embedding
reg W .Z=p/n ! Sr. Now it suffices to prove the non-existence of a .Z=p/n-
equivariant map .R.C1;:::;CdC1//

�r
�.2/ ! S.W˚.dC1/r /. To prove the non-existence

of such a map assume the opposite: let ' W .R.C1;:::;CdC1//
�r
�.2/ ! S.W˚.dC1/r / be

a .Z=p/n-equivariant map.

Denote by � the Borel construction fiber bundle

� W .R.C1;:::;CdC1//
�r
�.2/ ! E.Z=p/n 
.Z=p/n .R.C1;:::;CdC1//

�r
�.2/ ! B.Z=p/n;

and by  the following Borel construction fiber bundle

 W S.W˚.dC1/r /! E.Z=p/n 
.Z=p/n S.W˚.dC1/r /! B.Z=p/n:

Then the map ' induces the following morphism of fiber bundles

In turn, this morphism induces a morphism of corresponding Serre spectral
sequences

Ei;j
s .�/ WD Ei;j

s .E.Z=p/n 
.Z=p/n .R.C1;:::;CdC1//
�r
�.2//

ˆ
i;j
s � Ei;j

s .E.Z=p/n 
.Z=p/n S.W˚.dC1/r // DW Ei;j
s ./
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with the property that on the zero row of the second term the induced map

Ei;0
2 .�/ WD Ei;0

2 .E.Z=p/n 
.Z=p/n .R.C1;:::;CdC1//
�r
�.2//

ˆ
i;0
2 � Ei;0

2 .E.Z=p/n 
.Z=p/n S.W˚.dC1/r // DW Ei;0
2 ./

is the identity. Again we use simplified notation by setting ˆi;j
s WD Ei;j

s .id
.Z=p/n'/.
In the case when the prime p is 2 then

H�.B ..Z=2/n/ IF2/DH�..Z=2/nIF2/ŠF2Œt1; : : : ; tn�;

where deg tiD 1, while in the case p � 3 we have

H�.B ..Z=p/n/ IFp/DH�..Z=p/nIFp/ŠFpŒt1; : : : ; tn�˝ƒŒe1; : : : ; en�;

where deg tiD2; deg eiD 1; andƒŒ � � denotes the exterior algebra.

(4) First we consider the Serre spectral sequence, with coefficients in the field Fp,
associated to the fiber bundle �. Using the connectivity of .R.C1;:::;CdC1//

�r
�.2/

derived in (11), we get that the E2-term of this spectral sequence is

Ei;j
2 .�/ D Hi.B ..Z=p/n/ IHj..R.C1;:::;CdC1//

�r
�.2/IFp//

D Hi..Z=p/nIHj..R.C1;:::;CdC1//
�r
�.2/IFp//

Š

8
ˆ̂
<

ˆ̂
:

Hi..Z=p/nIFp/; for j D 0;
Hi..Z=p/nIHNCd..R.C1;:::;CdC1//

�r
�.2/IFp//; for j D N C d;

0; otherwise:

Consequently, the only possibly non-zero differential of this spectral sequence
is @NCdC1 and therefore Ei;0

2 .�/ Š Ei;01.�/ for i � N C d.
(5) The Serre spectral sequence, with coefficients in the field Fp, associated to the

fiber bundle  is similar to the one appearing in the proof of Theorem 3.11.
Briefly, the E2-term of this spectral sequence is

Ei;j
2 ./ D Hi..Z=p/nIHj.S.W˚.dC1/r /IFp//

Š
(

Hi..Z=p/nIFp/; for j D 0 or N � 1;
0; otherwise:

Letting ` 2 HN�1.S.W˚.dC1/r /IFp/ Š Fp denote a generator, then the .N � 1/-
row of the E2-term can be seen as a free H�..Z=p/nIFp/-module generated by

1˝Fp ` 2 E0;N�12 ./ Š HN�1.S.W˚.dC1/r /IFp/. Thus the only possible non-zero

differential is @N W Ei;N�1
N ./ ! ENCi;0

N ./ and it is completely determined by
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bb

N − 1

N + d

N N

Fig. 4 Illustration of the spectral sequences E�;�
� .�/ and E�;�

� ./ and the morphism between them
ˆ

�;�
� W E�;�

� .�/ E�;�
� ./ that is the identity between the 0-rows up to the EN -term

the image @N.1˝Fp `/. As in the proof of Theorem 3.11, a consequence of the

localization theorem implies that b WD @N.1˝Fp `/ ¤ 0 2 EN;0
N ./ Š EN;0

2 ./

is not zero.
(6) To reach the desired contradiction we track the element b 2 EN;0

N ./ Š EN;0
2 ./

along the morphism of spectral sequences (Fig. 4)

ˆN;0
s W EN;0

s ./! EN;0
s .�/:

The differentials in both spectral sequences are zero in all terms Es./ and Es.�/

for 2 � s � N � 1. Thus, ˆ�;0s0 is an isomorphism for all 2 � s0 � N. In
particular, the morphism ˆ

N;0
N W EN;0

N ./ ! EN;0
N .�/ is the identity, as it was in

the second term, and so ˆN;0
N .b/ D b. When passing to the .N C 1/-term, with

a slight abuse of notation, we get

ˆN;0
NC1.Œb�/ D Œb�;

where Œb� denotes the class induces by b in the appropriate .N C 1/-term of the
spectral sequences. Since b WD @N.1˝Fp `/ 2 EN;0

N ./ and 0 ¤ b 2 EN;0
2 .�/ Š

EN;01 .�/ we have reached a contradiction:

ˆ
N;0
NC1.0/ D Œb� D b ¤ 0:

Therefore, there cannot be any .Z=p/n-equivariant map .R.C1;:::;CdC1//
�r
�.2/ !

S.W˚.dC1/r /, and the proof of the theorem is complete.
ut

As part of the proof of the previous theorem the following general criterion
was derived.
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Corollary 4.8 Let .C1; : : : ;Cm/ be a coloring of the simplex� by m colors. If there
is no Sr-equivariant map

�jC1j;r � � � � ��jCmj;r Š .R.C1;:::;Cm//
�r
�.2/ ! S.W˚.dC1/r /;

then for every continuous map f W � ! R
d there exist r pairwise disjoint rainbow

faces �1; : : : ; �r of � whose f -images overlap,

f .�1/ \ � � � \ f .�r/ ¤ ;:

The proof of Theorem 4.7 could have been written in the language of the
Fadell–Husseini index [22]. The non-existence of an .Z=p/n-equivariant map
.R.C1;:::;CdC1//

�r
�.2/ ! S.W˚.dC1/r / would then follow from the observation that

index.Z=p/n..R.C1;:::;CdC1//
�r
�.2/IFp/ 6 index.Z=p/n.S.W

˚.dC1/
r /IFp/:

More precisely, we have computed that

index.Z=p/n..R.C1;:::;CdC1//
�r
�.2/IFp/ D index.Z=p/n..�2r�1;r/�.dC1/IFp/

� H�NCdC1.B.Z=p/nIFp/;

when jC1j D � � � D jCdC1j D 2r � 1. Actually we proved more:

index.Z=p/n..�2r�1;r/�kIFp/ � H�kr.B.Z=p/nIFp/: (16)

Furthermore we have found an element b 2 HN.B.Z=p/nIFp/ with the property that

0 ¤ b 2 index.Z=p/n.S.W
˚.dC1/
r /IFp/\ HN.B.Z=p/nIFp/;

and moreover

index.Z=p/n.S.W
˚.dC1/
r /IFp/ D hbi: (17)

The element b with this property is the Euler class of the vector bundle

W˚.dC1/r ! E.Z=p/n 
.Z=p/n W˚.dC1/r ! B.Z=p/n:

The work of Mann and Milgram [33] allows us to specify the element b completely:
For p an odd prime it is

b D ! �
� Y

.˛1;:::;˛n/2Fn
pnf0g

.˛1t1 C � � � C ˛ntn/
	.dC1/=2

;
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where ! 2 Fpnf0g, while for p D 2 it is

b D
� Y

.˛1;:::;˛n/2Fn
2nf0g

.˛1t1 C � � � C ˛ktn/
	dC1

:

The square root in FpŒt1; : : : ; tn� is not uniquely determined for an odd prime p and
d odd. Thus we consider an arbitrary square root.

Combining these index computations we have that

0 ¤ b 2 index.Z=p/n.S.W
˚.dC1/
r /IFp/\ HN.B.Z=p/nIFp/

6� index.Z=p/n..�2r�1;r/�.dC1/IFp/ (18)

� H�NCdC1.B.Z=p/nIFp/:

If a .Z=p/n-equivariant map .R.C1;:::;CdC1//
�r
�.2/ ! S.W˚.dC1/r / exists, then the

monotonicity property of the Fadell–Husseini index yields the inclusion

index.Z=p/n..R.C1;:::;CdC1//
�r
�.2/IFp/  index.Z=p/n.S.W

˚.dC1/
r /IFp/;

which does not hold, as we just proved. Thus the .Z=p/n-equivariant map in question
does not exist.

Now observe the difference of dimensions in (18) and compare the dimension
of the element b and the dimension of the group cohomology where the index of
the join .�2r�1;r/�.dC1/ lives. We could have proved more. Indeed, using the index
computation (16) we have that

0 ¤ b 2 index.Z=p/n.S.W
˚.dC1/
r /IFp/\ HN.B.Z=p/nIFp/

6� index.Z=p/n..�2r�1;r/�kIFp/

� H�kr.B.Z=p/nIFp/

as long as kr � N C 1. We have just concluded that, if kr � N C 1, then there is no
.Z=p/n-equivariant map

.�2r�1;r/�k Š .R.C1;:::;Ck//
�r
�.2/ ! S.W˚.dC1/r /:

Thus with Corollary 4.8 we have proved the following “colored Tverberg theorem
of type B” [49, Thm. 4].

Theorem 4.9 (The Colored Tverberg theorem of type B of Vrećica and
Živaljević) Let d � 1 and k � 1 be integers, N D .d C 1/.r � 1/, and let
r � 2 be a prime power. For every continuous map f W �! R

d, and every coloring
.C1; : : : ;Ck/ of the vertex set C of the simplex � by k colors, with each color of
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size at least 2r � 1 and kr � N C 1, there exist r pairwise disjoint rainbow faces
�1; : : : ; �r of � whose f -images overlap, that is

f .�1/ \ � � � \ f .�r/ ¤ ;:

As we have just seen, the proof of the colored Tverberg theorem of Živaljević and
Vrećica is in fact also a proof of a type B colored Tverberg theorem. Is it possible
that this proof hides a way to prove, for example the Bárány–Larman conjecture?
For this we would need to prove that for some or all r and jC1j D � � � D jCdC1j D r
there is no Sr-equivariant map

��.dC1/r;r Š .R.C1;:::;CdC1//
�r
�.2/ ! S.W˚.dC1/r /: (19)

The connectivity of the chessboard �r;r is only
�b 2rC1

3
c � 2� and therefore the

scheme of the proof of Theorem 4.7 cannot be used. Even worse, the complete
approach fails, as the following theorem of Blagojević, Matschke and Ziegler [17,
Prop. 4.1] shows that an Sr-equivariant map (19) does exist.

Theorem 4.10 Let r � 2 and d � 1 be integers. There exists an Sr-equivariant
map

��.dC1/r;r ! S.W˚.dC1/r /:

Proof For this we use equivariant obstruction theory, as presented by Tammo tom
Dieck [44, Sec. II.3].

Let N WD .d C 1/.r � 1/, M WD r.d C 1/ � 1, and let .C1; : : : ;CdC1/ be a
coloring of the vertex set of the simplex �M by d C 1 colors of the same size r,
that is jC1j D � � � D jCdC1j D r. As we know the deleted join .R.C1;:::;CdC1//

�r
�.2/ of

the rainbow complex is isomorphic to the join of chessboards ��.dC1/r;r . The action
of the symmetric group Sr on the complex ��.dC1/r;r is not free. The subcomplex of
�
�.dC1/
r;r whose points have non-trivial stabilizers with respect to the action of Sr

can be described as follows:

.�
�.dC1/
r;r />1 D ..R.C1;:::;CdC1//

�r
�.2//

>1

D f�1x1 C � � � C �rxr 2 .R.C1;:::;CdC1//
�r
�.2/ W �i D �j D 0 for some i ¤ jg:

Here for a G-space (CW complex) X we use notation X>1 for the subspace
(subcomplex) of all points (cells) with non-trivial stabilizer, meaning that XnX>1
is a free G-space.

Let f W �M ! R
d be any continuous map. As explained in Sect. 3.2.3 the map f

induces the join map given by

Jf W .�M/
�r
�.2/ ! .RdC1/˚r; �1x1C� � �C�rxr 7�! .�1; �1f .x1//˚� � �˚ .�r; �rf .xr//:
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Since the rainbow complex .R.C1;:::;CdC1//
�r
�.2/ is an Sr-invariant subcomplex of

.�/�r
�.2/, the restriction

J0f WD Jf j.R.C1;:::;CdC1/
/�r
�.2/
W .R.C1;:::;CdC1//

�r
�.2/ ! .RdC1/˚r

is also an Sr-equivariant map. Moreover im.J0f j..R.C1;:::;CdC1/
/�r
�.2//

>1/\DJ D ; where,

as before, DJ D f.z1; : : : ; zr/ 2 .RdC1/˚r W z1 D � � � D zrg. Thus the map J0f induces
an Sr-equivariant map

.��.dC1/r;r />1 D ..R.C1;:::;CdC1//
�r
�.2//

>1 ! .RdC1/˚rnDJ :

Composing this map with the Sr-equivariant retraction Rj W .RdC1/˚rnDJ !
S.D?J / Š S.W˚.dC1/r / introduced in (7), we get a continuous Sr-equivariant map

.��.dC1/r;r />1 D ..R.C1;:::;CdC1//
�r
�.2//

>1 ! S.W˚.dC1/r /: (20)

The .r � 1/-dimensional chessboard complex �r;r equivariantly retracts to a
subcomplex of dimension r�2. Indeed, for each facet of�r;r there is an elementary
collapse obtained by deleting all of its subfacets (faces of dimension r � 2) that
contain the vertex in the r-th column. Performing these collapses to all facets of�r;r,
we get that �r;r collapses Sr-equivariantly to an .r � 2/-dimensional subcomplex
of �r;r. Consequently, the join .�r;r/

�.dC1/ equivariantly retracts to a subcomplex
K of dimension .d C 1/.r � 1/ � 1. Thus in order to prove the existence of an Sr-
equivariant map ��.dC1/r;r ! S.W˚.dC1/r / it suffices to construct an Sr-equivariant
map K ! S.W˚.dC1/r /. Since

• dim K D dim S.W˚.dC1/r / D N � 1,
• S.W˚.dC1/r / is .N � 1/-simple dict and .N � 2/-connected,

and the groups where the obstructions would live are zero, the equivariant obstruc-
tion theory yields the existence of an Sr-equivariant map K ! S.W˚.dC1/r /,
provided that an Sr-equivariant map K>1 ! S.W˚.dC1/r / exists. The subcomplex
of all points with non-trivial stabilizer K>1 D K \ .��.dC1/r;r />1 is a subcomplex of
.�
�.dC1/
r;r />1 and therefore the map (20) restricted to K>1 completes the argument.

ut
After this theorem an urgent question emerges: How are we going to handle the

Bárány–Larman conjecture? An answer to this question will bring us to our last
section and the optimal colored Tverberg theorem.
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4.4 The Weak Colored Tverberg Theorem

How many colored Tverberg theorems can we get directly from the topological
Tverberg theorem without major topological machinery? Here is an answer given
by [12, Thm. 5.3].

Theorem 4.11 (The weak colored Tverberg theorem) Let d � 1 be an integer,
let r be a prime power, N D .2dC 2/.r � 1/, and let f W �N ! R

d be a continuous
map. If the vertices of the simplex�N are colored by dC1 colors, where each color
class has cardinality at most 2r�1, then there are r pairwise disjoint rainbow faces
�1; : : : ; �r of �N whose f -images overlap, that is

f .�1/ \ � � � \ f .�r/ ¤ ;:

Proof Let C be the set of vertices of the simplex �N and let .C1; : : : ;CdC1/ be a
coloring of C where jCij � 2r � 1 for all 1 � i � d C 1. To each color class Ci we
associate the subcomplex†i of �N defined by

†i WD f� 2 �N W j� \ Cij � 1g:

Observe that the intersection †1 \ � � � \ †dC1 is the subcomplex of all rainbow
faces of �N with respect to the given coloring. Next consider the continuous map
g W �N ! R

2dC1 defined by

g.x/ D . f .x/; dist.x; †1/; dist.x; †2/; : : : ; dist.x; †dC1//:

Since N D .2d C 2/.r � 1/ D ..2d C 1/ C 1/.r � 1/ and r is a prime power, we
can apply the topological Tverberg theorem to g. Consequently there are r pairwise
disjoint faces �1; : : : ; �r with points x1 2 relint�1; : : : ; xr 2 relint�r such that
g.x1/ D � � � D g.xr/, that is,

f .x1/ D � � � D f .xr/;

dist.x1; †1/ D � � � D dist.xr; †1/;

� � �
dist.x1; †dC1/ D � � � D dist.xr; †dC1/:

Now observe that for every subcomplex†i one of the faces �1; : : : ; �r is contained in
it. Indeed, if this would not hold then we would have j�1\Cij � 2; : : : ; j�r\Cij � 2,
and consequently we would obtain the following contradiction:

2r � 1 � jCij � j�1 \ Cij C � � � C j�r \ Cij � 2r:
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Hence the distances, which were previously know to be equal, have to vanish,

dist.x1; †1/ D � � � D dist.xr; †1/ D 0;
� � �

dist.x1; †dC1/ D � � � D dist.xr; †dC1/ D 0;

implying that xi 2 †1 \ � � � \ †dC1 for every 1 � i � r. Since †1; : : : ; †dC1
are subcomplexes of �N and x1 2 relint�1; : : : ; xr 2 relint�r it follows that the
faces �1; : : : ; �r belong to the subcomplex †1 \ � � � \ †dC1, that is, �1; : : : ; �r are
rainbow faces. ut

A special case of the weak colored Tverberg theorem we just proved, namely
jC1j D � � � D jCdC1j D 2r � 1, yields t.d; r/ � tt.d; r/ � 2r � 1 for r a prime
power. This is the colored Tverberg theorem of Živaljević and Vrećica presented in
Theorem 4.7.

Along the lines of the previous theorem we can prove the following colored Van
Kampen–Flores theorem, where the number of color classes is at most d C 1.

Theorem 4.12 (The colored Van Kampen–Flores theorem) Let d � 1 be an
integer, let r be a prime power, let k � dd r�1

r e C 1 be an integer, and N D
.d C k C 1/.r � 1/. Let f W �N ! R

d be a continuous map. If the vertices of
the simplex �N are colored by k colors, where each color class has cardinality at
most 2r�1, then there are r pairwise disjoint rainbow faces �1; : : : ; �r of�N whose
f -images overlap,

f .�1/ \ � � � \ f .�r/ ¤ ;:

Proof Let C be the set of vertices of the simplex �N and let .C1; : : : ;Ck/ be a
coloring where jCij � 2r � 1 for all 1 � i � k. Such a coloring exists because
k.2r� 1/ � .dC kC 1/.r� 1/ is equivalent to our assumption k � dd r�1

r eC 1. To
each color class Ci we associate the subcomplex†i of �N defined as before by

†i WD f� 2 �N W j� \ Cij � 1g:

The subcomplex †1 \ � � � \ †k is a subcomplex of all rainbow faces of �N with
respect to the given coloring. Consider the continuous map g W �N ! R

dCk

defined by

g.x/ D . f .x/; dist.x; †1/; dist.x; †2/; : : : ; dist.x; †k//:

Since N D .dCkC1/.r�1/ and r is a prime power the topological Tverberg theorem
can be applied to the map g. Therefore, there are r pairwise disjoint faces �1; : : : ; �r
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with points x1 2 relint�1; : : : ; xr 2 relint �r such that g.x1/ D � � � D g.xr/, that is,

f .x1/ D � � � D f .xr/;

dist.x1; †1/ D � � � D dist.xr; †1/;

� � �
dist.x1; †k/ D � � � D dist.xr; †k/:

Now observe that every subcomplex†i contains one of the faces �1; : : : ; �r . Indeed,
if this would not hold then j�1 \ Cij � 2; : : : ; j�r \ Cij � 2, and we would get the
contradiction

2r � 1 � jCij � j�1 \ Cij C � � � C j�r \ Cij � 2r:

Consequently the distances, which were previously known to be equal, have
to vanish

dist.x1; †1/ D � � � D dist.xr; †1/ D 0; � � � ; dist.x1; †k/ D � � � D dist.xr; †k/ D 0;

implying that xi 2 †1 \ � � � \ †k for every 1 � i � r. Since †1; : : : ; †k are
subcomplexes and x1 2 relint�1; : : : ; xr 2 relint�r, it follows that

�1 2 †1 \ � � � \†k; : : : ; �r 2 †1 \ � � � \†k;

that is, �1; : : : ; �r are rainbow faces. ut
The “colored Tverberg theorem of type B” of Vrećica and Živaljević, The-

orem 4.9, is a particular case of this theorem, when the color classes have the
same size.

4.5 Tverberg Points with Equal Barycentric Coordinates

The last corollary of the Topological Tverberg theorem that we present here is the
topological version [12, Thm. 8.1] of a recent result by Soberón [42, Thm. 1.1]
[43, Thm. 1].

Let N � 1 be an integer, let C be the set of vertices of the simplex �N , and let
.C1; : : : ;C`/ be a coloring of C. Every point x in the rainbow subcomplex R.C1;:::;C`/
has a unique presentation in barycentric coordinates as x D P`

iD1 �x
i v

x
i where 0 �

�x
i � 1 and vx

i 2 Ci for all 0 � i � ` � 1. Two points x D P`
iD1 �x

i v
x
i and y D

P`
iD1 �

y
i v

y
i in the rainbow subcomplex R.C1;:::;C`/ have equal barycentric coordinates

if �x
i D �y

i for all 1 � i � `.
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Theorem 4.13 Let d � 1 be an integer, let r be a prime power, N D r..r � 1/d C
1/ � 1 D .r � 1/.rd C 1/, and let f W �N ! R

d be a continuous map. If the
vertices of the simplex �N are colored by .r � 1/d C 1 colors where each colored
class is of size r, then there are points x1; : : : ; xr with equal barycentric coordinates
that belong to r pairwise disjoint rainbow faces �1; : : : ; �r of �N whose f -images
coincide, that is

f .x1/ D � � � D f .xr/:

Proof Let ` D .r�1/dC1, and let .C1; : : : ;C`/ be a coloring of the vertex set C D
fv0; : : : ; vNg of the simplex �N . Each point x of the simplex �N can be uniquely
presented in the barycentric coordinates as x DPN

jD0 �x
j vj. For every color class Ci,

1 � i � `, we define the function hi W �N ! R by hi
�PN

jD0 �x
j vj
� DPvj2Ci

�x
j . All

functions hj are affine functions and
P`

iD1 hi.x/ DPN
jD0 �x

j D 1 for every x 2 �N .
Now consider the function g W �N ! R

rd given by

g.x/ D . f .x/; h1.x/; : : : ; h`�1.x//:

Since N D .r�1/.rdC1/, the topological Tverberg theorem applied to the function
g implies that there exist r pairwise disjoint faces �1; : : : ; �r of �N and r points
x1 2 relint�1; : : : ; xr 2 relint�r such that f .x1/ D � � � D f .xr/ and hi.x1/ D � � � D
hi.xr/ for 1 � i � ` � 1. In addition, the equality

P`
iD1 hi.x/ D 1 implies that also

h`.x1/ D � � � D h`.xr/.
Assume now that j�j \ Cij � 1 for some 1 � j � r and some 1 � i � `. Then

hi.xj/ > 0 since xj 2 relint�j. Consequently, hi.x1/ D � � � D hi.xr/ > 0 implying
that j�j \ Cij � 1 for all 1 � j � r. Since jCij D r and �1; : : : ; �r are pairwise
disjoint it follows that each �j has precisely one vertex in the color class Ci. Thus,
repeating the argument for each color class we conclude that all faces �1; : : : ; �r are
rainbow faces. The immediate consequence of this fact is that hi.xj/, 1 � i � `, are
the barycentric coordinates of the point xi and so all the points x1; : : : ; xr have equal
barycentric coordinates. ut

5 Counterexamples to the Topological Tverberg Conjecture

Now we are going to get to a very recent piece of the topological Tverberg puzzle:
We show how counterexamples to the topological Tverberg conjecture for any
number of parts that his not a prime power were derived by Frick [13, 25] from
the remarkable works of Özaydin [36] and of Mabillard and Wagner [31, 32], via
a lemma of Gromov [26, p. 445] that is an instance of the constraint method of
Blagojević, Frick, Ziegler [12, Lemmas 4.1(iii) and 4.2].
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5.1 Existence of Equivariant Maps if r is not a prime power

First we present the second main result of Özaydin’s landmark manuscript [36,
Thm. 4.2].

Theorem 5.1 Let d � 1 and r � 6 be integers, and let N D .d C 1/.r � 1/. If r is
not a prime power, then there exists an Sr-equivariant map

.�N/
�r
�.2/ ! S.W˚d

r /: (21)

Proof In order to prove the existence of a continuous Sr-equivariant map
.�N/

�r
�.2/ ! S.W˚d

r / we again use the equivariant obstruction theory. Since

• .�N/
�r
�.2/ is an .N�rC1/-dimensional, .N�r/-connected free Sr-CW complex,

and
• S.W˚d

r / is a path-connected .N � r � 1/-connected, .N � r/-simple Sr-space,

we have that an Sr-equivariant map .�N/
�r
�.2/ ! S.W˚d

r / exists if and only if the

primary obstruction dict

ŒoN�rC1
Sr

.pt/� 2 HN�rC1
Sr

..�N/
�r
�.2/; �N�rS.W˚d

r //

vanishes. The obstruction element ŒoN�rC1
Sr

.pt/� D ŒoN�rC1
Sr

. f /� does not depend on
the particular Sr-equivariant map f W skN�r

�
.�N/

�r
�.2/

� ! S.W˚d
r / used to define

the obstruction cocycle oN�rC1
Sr

. f /. Thus, in order to prove the existence of an Sr-

equivariant map (21) it suffices to prove that the obstruction element ŒoN�rC1
Sr

. f /�
vanishes for some particular choice of f .

Let p be a prime such that p j jSrj D rŠ, and let S.p/
r denotes a p-Sylow subgroup

of Sr. Since r is not a prime power each p-Sylow subgroup of Sr does not act

transitively on the set Œr�, and hence the fixed point set S.W˚d
r /S

.p/
r ¤ ; is non-

empty. Thus there exists a (constant) S.p/
r -equivariant map .�N/

�r
�.2/ ! S.W˚d

r /,

or equivalently the primary obstruction element with respect to S
.p/
r vanishes, that

is, ŒoN�rC1
S
.p/
r

.pt/� D ŒoN�rC1
S
.p/
r

. f /� D 0. Here, the Sr-equivariant map f is considered

only as an S
.p/
r -equivariant map.

The restriction dict homomorphism

res W HN�rC1
Sr

..�N/
�r
�.2/; �N�rS.W˚d

r //! HN�rC1
S
.p/
r

..�N/
�r
�.2/; �N�rS.W

˚d
r //;

is defined on the cochain level in [14, Lem. 5.4]. According to the definition of the
obstruction cochain (already on the cochain level) the restriction homomorphism
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sends the obstruction cochain oN�rC1
Sr

. f / to the obstruction cochain oN�rC1
S
.p/
r

. f /.

Consequently the same hold for obstruction elements

res.ŒoN�rC1
Sr

. f /�/ D ŒoN�rC1
S
.p/
r

. f /�:

Now, composing the restriction homomorphism with the transfer dict homomorphism

tr W HN�rC1
S
.p/
r

..�N/
�r
�.2/; �N�rS.W˚d

r //! HN�rC1
Sr

..�N/
�r
�.2/; �N�rS.W

˚d
r //;

also defined on the cochain level in [14, Lem. 5.4], we get

ŒSr W S.p/
r � � ŒoN�rC1

Sr
. f /� D tr ı res.ŒoN�rC1

Sr
. f /�/ D tr.ŒoN�rC1

S
.p/
r

. f /�/ D tr.0/ D 0:

Finally, since ŒSr W S.p/
r � � ŒoN�rC1

Sr
. f /� D 0 for every prime p that divides the

order of the group Sr, it follows that the obstruction element ŒoN�rC1
Sr

. f /� must
vanish, and the existence of an Sr-equivariant map (21) is established. ut
Corollary 5.2 Let d � 1 be an integer, let r � 6 be an integer that is not a prime
power and let N D .dC 1/.r � 1/. For any free Sr-CW complex X of dimension at
most N � rC 1 there exists an Sr-equivariant map

X ! S.W˚d
r /:

Proof The free Sr-CW complex X has dimension at most N�rC1, and the deleted
product .�N/

�r
�.2/ is .N � r/-connected, therefore there are no obstructions for the

existence of an Sr-equivariant map h W X ! .�N/
�r
�.2/. Next, let f W .�N/

�r
�.2/ !

S.W˚d
r / be an Sr-equivariant map whose existence was guaranteed by Theorem 5.1.

The composition f ı h W X ! S.W˚d
r / yields the required Sr-equivariant map. ut

With this theorem Özaydin only proved that the “deleted product approach”
towards solving the topological Tverberg conjecture fails in the case that r is not a
prime power. What about the “deleted join approach”? This question was discussed
in [16, Sec. 3.4].

Theorem 5.3 Let d � 1 and r be integers, and let N D .dC 1/.r � 1/. If r is not a
prime power, then there exists an Sr-equivariant map

.�N/
�r
�.2/ ! S.W˚.dC1/r /: (22)

Proof Since r � 6 is not a prime power Theorem 5.1 implies the existence of an
Sr-equivariant map

f W .�N/
�r
�.2/ ! S.W˚d

r /:



Beyond the Borsuk–Ulam Theorem 315

Now an Sr-equivariant map

g W .�N/
�r
�.2/ ! S.W˚.dC1/r / Š S.Wr ˚W˚d

r /

can be defined by

g.�1x1 C � � � C �rxr/ D 1

�

�
.�1 � 1

r ; : : : ; �r � 1
r /˚

rY

iD1
�i � f .x1; : : : ; xr/

�
;

where � WD k�.�1� 1
r ; : : : ; �r� 1

r /˚
Qr

iD1 �i � f .x1; : : : ; xr/
�k. The function g is well

defined, continuous and Sr-equivariant. Thus an Sr-equivariant map (22) exists.
ut

Now we see that not only the “deleted product approach” fails if r is not a prime
power, but the “deleted join approach” fails as well. Is this an indication that the
topological Tverberg theorem fails if the number of parts is not a prime power?

5.2 The Topological Tverberg Conjecture does not hold if r is
not a prime power

It is time to show that the topological Tverberg conjecture fails in the case that r is
not a prime power. This will be done following the presentation given in [13].

Based on the work of Mabillard and Wagner [31, 32] we will prove that the
generalized Van Kampen–Flores theorem for any r that is not a prime power fails,
as demonstrated by Frick [13, 25]. Since, by the constraint method, the generalized
Van Kampen–Flores theorem for fixed number of overlaps r is a consequence of
the topological Tverberg theorem for the same number of overlaps r, failure of
the generalized Van Kampen–Flores theorem implies the failure of the topological
Tverberg theorem.

Theorem 5.4 (The generalized Van Kampen–Flores theorem fails when r is not
a prime power) Let k � 3 be an integer, and let r � 6 be an integer that is not a
prime power. For any integer N > 0 there exists a continuous map f W �N ! R

rk

such that for any r pairwise disjoint faces �1; : : : ; �r from the ..r � 1/k/-skeleton
sk.r�1/k.�N/ of the simplex �N the corresponding f -images do not overlap,

f .�1/ \ � � � \ f .�r/ D ;:

Proof The deleted product .sk.r�1/k.�N//
�r
�.2/ is a free Sr-space of dimension at

most d WD .r � 1/rk. Since r is not a power of a prime, according to Corollary 5.2,
there exists an Sr-equivariant map

h W .sk.r�1/k.�N//
�r
�.2/ ! S.W˚d

r /: (23)
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Now we use the following result of Mabillard and Wagner [31, Thm. 3], [32,
Thm. 7], for which an alternative proof is given in [3]. Skopenkov [40] gives a
user’s guide.

Theorem Let r � 2 and k � 3 be integers, and let K be an ..r � 1/k/-dimensional
simplicial complex. Then the following statements are equivalent:

(i) There exists a continuous Sr-equivariant map K�r
�.2/! S.W˚rk

r /.

(ii) There exists a continuous map f W K ! R
rk such that for any r pairwise disjoint faces

�1; : : : ; �r of K we have that f .�1/\ 	 	 	 \ f .�r/ D ;.

If we apply this result to the Sr-equivariant map h in (23) we get a continuous
map f W sk.r�1/k.�N/ ! R

rk with the property that for any collection of r pairwise
disjoint faces �1; : : : ; �r in sk.r�1/k.�N/ the corresponding f -images do not overlap,

f .�1/ \ � � � \ f .�r/ D ;:

ut
Thus we have proved that in the case when r is not a prime power the generalized

Van Kampen–Flores theorem fails. As we have pointed out this means that the
corresponding topological Tverberg theorem also fails [13, Thm. 4.3].

Theorem 5.5 (The topological Tverberg theorem fails for any r that is not a
prime power) Let k � 3 and r � 6 be integers, and let N D .r � 1/.rk C 2/. If
r is not a prime power, then there exists a continuous map g W �N ! R

rkC1 such
that for any r pairwise disjoint faces �1; : : : ; �r of �N the corresponding g images
do not overlap,

g.�1/ \ � � � \ g.�r/ D ;:

Proof Since r is not a power of a prime, Theorem 5.4 yields a continuous map
f W �N ! R

rk such that for any r pairwise disjoint faces �1; : : : ; �r in sk.r�1/k �N

f .�1/ \ � � � \ f .�r/ D ;:

Motivated by the proof of Theorem 4.1 we consider the function g W �N ! R
rkC1

defined by

g.x/ D . f .x/; dist.x; sk.r�1/k.�N///:

We prove that the map g fails the topological Tverberg conjecture.
Assume, to the contrary, that there are r pairwise disjoint faces �1; : : : ; �r in �N

and r points

x1 2 relint�1; : : : ; xr 2 relint �r
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such that g.x1/ D � � � D g.xr/. Consequently,

dist.x1; sk.r�1/k.�N// D � � � D dist.xr; sk.r�1/k.�N//:

Next, at least one of the faces �1; : : : ; �r is in sk.r�1/k.�N/. Indeed, if all the faces
�i would have dimension at least .r � 1/k C 1, then we would get the following
contradiction:

N C 1 D .r � 1/.rkC 2/C 1 D j�N j � j�1j C � � � C j�rj � ..r � 1/rkC 2/
D .r � 1/.rkC 2/C 2 > N C 1:

Since one of the faces �1; : : : ; �r is in sk.r�1/k.�N/, all the distances vanish,
meaning that

dist.x1; sk.r�1/k.�N// D � � � D dist.xr; sk.r�1/k.�N// D 0:

Therefore, all the faces �1; : : : ; �r belong to sk.r�1/k.�N/ contradicting the choice of
the map f . Thus the map g is a counterexample to the topological Tverberg theorem.

ut
Remark 5.6 The smallest counterexample to the topological Tverberg theorem
that can be obtained from Theorem 5.5 is a continuous map �100 ! R

19

with the property that no six pairwise disjoint faces in �100 have f -images that
overlap. Recently, using additional ideas, Sergey Avvakumov, Isaac Mabillard,
Arkadiy Skopenkov and Uli Wagner [3] have improved this to get counterexamples
�65 ! R

12.

6 The Bárány–Larman Conjecture and the Optimal Colored
Tverberg Theorem

Let us briefly recall the original colored Tverberg problem posed by Bárány and
Larman in their 1992 paper [7], see Sect. 4.2.

Problem 6.1 (Bárány–Larman colored Tverberg problem) Let d � 1 and r � 2
be integers. Determine the smallest number n D n.d; r/ such that for every affine
(continuous) map f W �n�1 ! R

d, and every coloring .C1; : : : ;CdC1/ of the vertex
set C of the simplex �n�1 by d C 1 colors with each color of size at least r, there
exist r pairwise disjoint rainbow faces �1; : : : ; �r of �n�1 whose f -images overlap,
that is

f .�1/ \ � � � \ f .�r/ ¤ ;:
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A trivial lower bound for the function n.d; r/ is .dC1/r and it is natural to conjecture
the following.

Conjecture 6.2 (Bárány–Larman Conjecture) Let r � 2 and d � 1 be integers.
Then n.d; r/ D .dC 1/r.

In Sect. 4.3 we tried to use the approach of Živaljević and Vrećica to solve the
Bárány–Larman conjecture and we failed dramatically. We hoped to prove that an
Sr-equivariant map

��.dC1/r;r ! S.W˚.dC1/r /

does not exist, but Theorem 4.10 gave us exactly the opposite, the existence of this
map. What can we do now? We change the question, and prove the non-existence of
an SrC1-equivariant map

.R.C1;:::;CdC2//
�rC1
�.2/ Š ��.dC1/r;rC1 � ŒrC 1�! S.W˚.dC1/rC1 /

instead; here jC1j D � � � D jCdC1j D r, and jCdC2j D 1. Still, why should we be
interested in such a result?

Theorem 6.3 Let r � 2 and d � 1 be integers. If there is no SrC1-equivariant map

�
�.dC1/
r;rC1 � ŒrC 1�! S.W˚.dC1/rC1 /;

then n.d; r/ D .dC 1/r and tt.d; r/ D r.

Proof Let .C1; : : : ;CdC1/ be a coloring of the vertices of the simplex�with jC1j D
� � � D jCdC1j D r, and let f W � ! R

d be a continuous map. Construct a simplex
�0 as a pyramid over �, and let CdC2 be the additional color class containing only
the apex of the pyramid. Thus, .C1; : : : ;CdC2/ is a coloring of the vertices of the
simplex�0.

Let us assume that an SrC1-equivariant map ��.dC1/r;rC1 � Œr C 1� ! S.W˚.dC1/rC1 /

does not exist. The non-existence of this map in combination with Corollary 4.8
implies that there exist r C 1 pairwise disjoint rainbow faces �1; : : : ; �rC1 of the
simplex�0 whose f -images overlap, f .�1/\ � � � \ f .�rC1/ ¤ ;.

Without loss of generality we can assume that �rC1 \ CdC2 ¤ ;. Then the
faces �1; : : : ; �r are rainbow faces of the simplex � with respect to the coloring
.C1; : : : ;CdC1/ and

f .�1/ \ � � � \ f .�r/ ¤ ;:

Hence, tt.d; r/ D r and consequently n.d; r/ D .dC 1/r. ut
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The theorem we just proved tells us that in order to make an advance on the
Bárány–Larman conjecture we should try to prove the non-existence of a continuous
SrC1-equivariant map

�
�.dC1/
r;rC1 � ŒrC 1�! S.W˚.dC1/rC1 / (24)

at least for some values of r.
Now in order to prove the non-existence of a continuous SrC1-equivariant

map (24), for rC 1 DW p an odd prime, we will compute the Fadell–Husseini index
of the join ��.dC1/r;rC1 � Œr C 1� D �

�.dC1/
p�1;p � Œp� with respect to the cyclic group and

compare the result with the index of the sphere S.W˚.dC1/rC1 /.

6.1 The Fadell–Husseini Index of Chessboards

Let p WD r C 1 be an odd prime. In this section we compute the Fadell–Husseini
index of chessboards

indexZ=p.�k;pIFp/ � H�.B.Z=p/IFp/ D H�.Z=pIFp/; k � 1;

and their joins with respect to the cyclic subgroup Z=p of the symmetric group Sp.
Recall that

H�.B.Z=p/IFp/ D H�.Z=pIFp/ D FpŒt�˝ƒŒe�;

where deg t D 2, deg e D 1, and ƒŒ � � denotes the exterior algebra. First, we collect
some simple facts about the Fadell–Husseini index of chessboards.

Lemma 6.4 Let k � 1 be an integer, and let p be an odd prime. Then

(i) indexZ=p�1;p D H�1.B.Z=p/IFp/,
(ii) indexZ=p�2p�1;p D H�p.B.Z=p/IFp/,

(iii) indexZ=p�1;p � indexZ=p�2;p � � � � � indexZ=p�2p�1;p D indexZ=p�2p;p D
� � � D H�p.B.Z=p/IFp/.

Proof For the statement (i) observe that �1;p D Œp� and therefore E.Z=p/ 
Z=p

�1;p Š E.Z=p/. Since E.Z=p/ is a contractible space,

indexZ=p�1;p D ker
�
H�.B.Z=p/IFp/! H�.E.Z=p/IFp/

� D H�1.B.Z=p/IFp/:

In order to prove (ii) recall that �2p�1;p is a .p � 1/-dimensional .p � 2/-
connected free Z=p simplicial complex, see Theorem 4.6. The Serre spectral
sequence associated to the Borel construction fiber bundle

�2p�1;p ! E.Z=p/
Z=p �2p�1;p ! B.Z=p/
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has the E2-term given by

Ei;j
2 D Hi.B.Z=p/IHj.�2p�1;pIFp// D Hi.Z=pIHj.�2p�1;pIFp//

D

8
ˆ̂
<

ˆ̂
:

Hi.Z=pIFp/; for j D 0;
Hi.Z=pIHp�1.�2p�1;pIFp//; for j D p � 1;
0; otherwise:

Thus, Ei;01 Š Ei;0
2 Š Hi.Z=pIFp/ for 0 � i � p � 1. Consequently

indexZ=p�2p�1;p � H�p.B.Z=p/IFp/. Since �2p�1;p is a free Z=p simplicial
complex, we get E.Z=p/ 
Z=p �2p�1;p ' �2p�1;p=Z=p, implying that
Hi.E.Z=p/ 
Z=p �2p�1;pIFp/ D 0 for i � p. Since the spectral sequence
E�;�� converges to the cohomology of the Borel construction H�.E.Z=p/ 
Z=p

�2p�1;pIFp/, we have that Ei;j1 D 0 for iC j � p. In particular, Ei;01 D 0 for i � p,
implying that

indexZ=p�2p�1;p D H�p.B.Z=p/IFp/:

For (iii) observe that there is a sequence of Z=p-equivariant inclusions

�1;p ,�! �2;p ,�! � � � ,�! �k;p ,�! �kC1;p ,�! � � �
given by the inclusions of the corresponding vertex sets

Œ1� 
 Œp� ,�! Œ2� 
 Œp� ,�! � � � ,�! Œk� 
 Œp� ,�! Œk C 1� 
 Œp� ,�! � � � :
Consequently the monotonicity property of the Fadell–Husseini index, combined
with the fact that for k � 2p � 1 all chessboards �k;p are .p � 1/-dimensional and
.p � 2/-connected free Z=p simplicial complexes, implies that

indexZ=p�1;p � indexZ=p�2;p � � � � � indexZ=p�2p�1;p
D indexZ=p�2p;p D � � � D H�p.B.Z=p/IFp/:

ut
In the next step we compute the index of the chessboard�p�1;p. For that we need

to establish the following fact.

Lemma 6.5 Let p be an odd prime. There exists a Z=p-equivariant map

f W �p�1;p ! S.Wp/

such that the induced map in cohomology

f � W Hp�2.S.Wp/IFp/! Hp�2.�p�1;pIFp/

is an isomorphism.
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Proof Let e1; : : : ; ep be a standard basis of Rp, let e WD 1
p .e1 C � � � C ep/, and let

vi WD ei�e for 1 � i � p. Denote now by�p�1 � Wp the simplex convfv1; : : : ; vpg,
which is invariant with respect to the action of the cyclic group Z=p. Moreover, its
boundary @�p�1 is equivariantly homeomorphic to the representation sphere S.Wp/.

We define a continuous map f W �p�1;p ! @�p�1 Š S.Wp/ to be the Z=p-
equivariant simplicial map given on the vertex set of �p�1;p by .i; j/ 7�! vj, where
.i; j/ 2 Œp � 1� 
 Œp�. It remains to be verified that f � W Hp�2.S.Wp/IFp/ !
Hp�2.�p�1;pIFp/ is an isomorphism.

Since p � 3, the chessboard complex �p�1;p is a connected, orientable pseudo-
manifold of dimension p � 2, for this see [30, p. 145]. Thus Hp�2.�p�1;pIZ/ D Z

and an orientation class is given by the chain

zp�1;p D
X

�2Sp

.sgn�/h.1; �.1//; : : : ; .p � 1; �.p � 1//i:

Then on the chain level we have that

f#.zp�1;p/ D
X

�2Sp

.sgn�/hv�.1/; : : : ; v�.p�1/i

D
X

�2Sp

. sgn�/hv�.1/; : : : ; v�.p�1/;bv�.p/i

D
pX

kD1

X

�2SpW�.p/Dk

.�1/pCk.sgn�/2hv1; : : : ; bvk; : : : ; vpi

D
pX

kD1
.�1/k�1

X

�2SpW�.p/Dk

hv1; : : : ; bvk; : : : ; vpi

D
pX

kD1
.�1/k�1.p � 1/Šhv1; : : : ; bvk; : : : ; vpi

D .p � 1/Š
pX

kD1
.�1/k�1hv1; : : : ; bvk; : : : ; vpi:

For this calculation keep in mind that p is an odd prime. The chainPp
kD1.�1/k�1hv1; : : : ; bvk; : : : ; vpi is a generator of the top homology of the sphere

@�p�1 Š S.Wp/. Therefore, the induced map in homology

f� W Hp�2.�p�1;pIZ/! Hp�2.S.Wp/IZ/

is just a multiplication by .p � 1/Š 	 �1 .mod p/. Using the naturality of the
universal coefficient isomorphism [19, Cor. 7.5] we have that the induced map in
homology with Fp field coefficients

f� W Hp�2.�p�1;pIFp/! Hp�2.S.Wp/IFp/
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is again multiplication by .p � 1/Š. Since .p � 1/Š and p are relatively prime the
multiplication by .p � 1/Š is an isomorphism. Now using yet another universal
coefficient isomorphism [19, Cor. 7.2] for the coefficients in a field we get that the
induced map in cohomology with Fp coefficients

f � W Hp�2.S.Wp/IFp/! Hp�2.�p�1;pIFp/

is an isomorphism. ut
Now we have all ingredients needed to compute the index of the chessboard

�p�1;p.

Theorem 6.6 indexZ=p�p�1;p D indexZ=p S.Wp/ D H�p�1.B.Z=p/IFp/.

Proof Let us denote by � the Borel construction fiber bundle

� W �p�1;p ! E.Z=p/
Z=p �p�1;p ! B.Z=p/;

and by  the Borel construction fiber bundle

 W S.Wp/! E.Z=p/n 
Z=p S.Wp/! B.Z=p/:

The Z=p-equivariant map f W �p�1;p ! S.Wp/ constructed in Lemma 6.5 induces a
morphism of the Borel construction fiber bundles � and :

This morphism induces a morphism of the corresponding Serre spectral sequences

Ei;j
s .�/ WD Ei;j

s .E.Z=p/
Z=p �p�1;p/
f

i;j
s � Ei;j

s .E.Z=p/
Z=p S.Wp// DW Ei;j
s ./

with the property that on the zero row of the second term the induced map

Ei;0
2 .�/ D Ei;0

2 .E.Z=p/
Z=p �p�1;p/
f i;0
2 � Ei;0

2 .E.Z=p/
Z=p S.Wp// D Ei;0
2 ./

is the identity. Here we use simplified notation f i;j
s WD Ei;j

s .id
Z=pf /. In the
E2-term, since the homomorphism f � W Hp�2.S.Wp/IFp/ ! Hp�2.�p�1;pIFp/

induces an isomorphism on the .p � 2/-cohomology, and Z=p acts trivially on
both cohomologies Hp�2.S.Wp/IFp/ Š Hp�2.�p�1;pIFp/ Š Fp, the morphism of
spectral sequences

f i;p�2
2 W Ei;p�2

2 ./! Ei;p�2
2 .�/ (25)

is an isomorphism.
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The E2-term of the Serre spectral sequence associated to the fiber bundle  is
given by

Ei;j
2 ./ D Hi.B.Z=p/IHj.S.Wp/IFp// D Hi.Z=pIHj.S.Wp/IFp//

Š Hi.Z=pIFp/˝Fp Hj.S.Wp/IFp/;

because Z=p acts trivially on the cohomology H�.S.Wp/IFp/. Thus the only
possible non-trivial differential is

@p�1 W Ei;p�2
2 ./ Š Ei;p�2

p�1 ./! EiCp�1;0
2 ./ Š EiCp�1;0

p�1 ./:

Let ` 2 Hp�2.S.Wp/IFp/ denote a generator. Then the .p�2/-row of the E2-term, as
an H�.Z=pIFp/-module, is generated by 1˝Fp ` 2 E0;p�22 ./. Since the differentials
are H�.Z=pIFp/-module maps it follows that the differential @p�1 is completely
determined by its image @p�1.1 ˝Fp `/ 2 Ep�1;0

p�1 ./ Š Ep�1;0
2 ./. In order to find

the image of the differential notice that Z=p acts freely on the sphere S.Wp/ and
consequently E.Z=p/ 
Z=p S.Wp/ ' S.Wp/=Z=p. Since the spectral sequence Ei;j

s

converges to the cohomology H�.E.Z=p/ 
Z=p S.Wp/IFp/ we have that Ei;j1./ Š
Ei;j

p ./ D 0 for iC j � p � 1. Thus,

@p�1.1˝Fp `/ D ! � t.p�1/=2 ¤ 0

for some ! 2 Fpnf0g. Moreover,

indexZ=p S.Wp/ D
˝
t.p�1/=2

˛ D H�p�1.B.Z=p/IFp/:

The E2-term of the Serre spectral sequence associated to the fiber bundle � is
given by

Ei;j
2 .�/ D Hi.B.Z=p/IHj.�p�1;pIFp// D Hi.Z=pIHj.�p�1;pIFp//:

In particular, Ei;0
2 .�/ Š Hi.Z=pIFp/ and Ei;p�2

2 .�/ Š Hi.Z=pIFp/, because Z=p
acts trivially on the cohomology Hp�2.�p�1;pIFp/ Š Fp. Let z WD f 0;p�22 .1˝Fp `/.

As we have seen in (25) the map f 0;p�22 is an isomorphism. Thus z is a generator of
E0;p�22 .�/ Š Fp, and moreover z is a generator of the .p � 2/-row of the E2-term
as an H�.Z=pIFp/-module. As in the case of the spectral sequence Ei;j

s ./ the fact
that Z=p-acts freely on the chessboard�p�1;p implies that Ei;j1.�/ Š Ei;j

p .�/ D 0 for
iC j � p � 1.
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Since f i;j
s is a morphism of spectral sequences it has to commute with the

differentials. In particular, for 2 � s � p � 2 we have

@s.z/ D @s. f 0;p�2s .1˝Fp `// D f s;p�s�1
s .@s.1˝Fp `// D 0:

Now the fact that z is a generator of the .p � 2/-row of the E2-term as an
H�.Z=pIFp/-module yields

Ei;p�2
p�1 .�/ Š Ei;p�2

2 .�/ Š Hi.Z=pIFp/:

If in addition @p�1.z/ D 0, then for every i � 0

Ei;p�2
p .�/ Š Ei;p�2

p�1 .�/ Š Ei;p�2
2 .�/ Š Hi.Z=pIFp/ ¤ 0;

which contradicts the fact that Ei;j1.�/ Š Ei;j
p .�/ D 0 for iC j � p � 1. In summary

we have that

@p�1.z/ D @p�1. f 0;p�2s .1˝Fp `// D f p�1;0
p�1 .@p�1.1˝Fp `// D f p�1;o

p�1 .! � t.p�1/=2/
D ! � f p�1;0

p�1 .t.p�1/=2/ ¤ 0:

Moreover, we have that

@p�1 W Ei;p�2
p�1 .�/! EiCp�1;0

p�1 .�/

must be an isomorphism for every i � 0. Hence, for i � 0 we have that

EiCp�1;0
p�1 .�/ Š EiCp�1;0

2 .�/ Š HiCp�1.Z=pIFp/ Š Fp: (26)

Since, f p�1;0
p�1 .t.p�1/=2/ ¤ 0 and f p�1;0

2 is the identity map we conclude that

f p�1;0
p�1 .t.p�1/=2/ D t.p�1/=2 and consequently,

indexZ=p�p�1;p �
˝
t.p�1/=2

˛ D H�p�1.B.Z=p/IFp/:

Finally we claim that no non-zero differential can arrive to the 0-row on Es-term
for 2 � s � p � 2, implying that

indexZ=p�p�1;p D
˝
t.p�1/=2

˛ D H�p�1.B.Z=p/IFp/;

and concluding the proof of the theorem. Indeed, if this is not true, then there exists
a minimal s such that 2 � s � p � 2 and 0 ¤ @s.y/ D taeb 2 Ei;0

s .�/ for some
y and 0 � i � p � 2. Since differentials are H�.Z=pIFp/-module maps we have
that @s.tc � y/ D tc � @s.y/ D taCceb 2 EiC2c;0

s .�/ for every c � 0. Consequently,
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EiC2c;0
sC1 .�/ D 0 for every c � 0 contradicting the existence of the isomorphisms (26).

Thus, no non-zero differential can arrive to the 0-row before the Ep�1-term. ut
The proof of the previous theorem, combined together with the fact that a join of

pseudomanifolds is a pseudomanifold, yields the following corollary [15, Cor. 2.6].

Corollary 6.7 Let m � 1 be an integer. Then

(i) indexZ=p�
�m
p�1;p D indexZ=p S.W˚m

p / D H�m.p�1/.B.Z=p/IFp/,

(ii) indexZ=p.�
�m
p�1;p � Œp�/ D indexZ=p.S.W˚m

p /� Œp�/ D H�m.p�1/C1.B.Z=p/IFp/,
(iii) indexZ=p.�

�m
p�1;p � �2p�1;p/ D indexZ=p.S.W˚m

p / � Œp��p�1/ D
H�m.p�1/Cp.B.Z=p/IFp/.

In the next step we compute the index of the chessboard�k;p for 1 � k � p � 2.

Theorem 6.8 indexZ=p�k;p D H�k.B.Z=p/IFp/, for 1 � k � p � 1.

Proof Let 1 � k � p � 2 be an integer. The chessboard �k;p is a .k � 1/-
dimensional free Z=p simplicial complex. Thus E.Z=p/
Z=p �k;p ' �k;p=Z=p and
consequently Hi.E.Z=p/
Z=p�k;pIFp/ D 0 for all i � k. Therefore, indexZ=p�k;p 
H�k.B.Z=p/IFp/. For k D 1 the theorem follows from Lemma 6.4(i). Furthermore,
for k D p � 1 the statement is the content of Theorem 6.6.

Now let us assume that 2 � k � p� 3 is even. Then p� 1� k is also even. Now
consider the Z=p-equivariant inclusion map

�p�1;p ! �k;p ��p�1�k;p:

From the monotonicity and join properties of the Fadell–Husseini index we have that

indexZ=p�k;p � indexZ=p�p�1�k;p � indexZ=p.�k;p ��p�1�k;p/ � indexZ=p�p�1;p:

Since p � 1 � k is even and, as we have seen,

indexZ=p�p�1�k;p  H�p�1�k.B.Z=p/IFp/ D ht.p�1�k/=2i

we have that t.p�1�k/=2 2 indexZ=p�p�1�k;p. On the other hand, assume that there
is an element u 2 indexZ=p�k;p such that deg.u/ � k � 1. Then we have reached a
contradiction

0 ¤ u � t.p�1�k/=2 2 indexZ=p�k;p � indexZ=p�p�1�k;p � indexZ=p�p�1;p

D H�p�1.B.Z=p/IFp/;

because deg.u � t.p�1�k/=2/ D deg.u/Cdeg.t.p�1�k/=2/ D deg.u/Cp�1�k � p�2.
Thus we have proved that for even k

indexZ=p�k;p D H�k.B.Z=p/IFp/:
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Next let us assume that 3 � k � p � 2 is odd. As we observed at the start of
the proof

indexZ=p�k;p  H�k.B.Z=p/IFp/ D ht.k�1/=2e; t.kC1/=2i:

The Z=p-equivariant inclusion map�k�1;p � �k;p together with the computation of
the index for even integers implies that

ht.k�1/=2i D H�k�1.B.Z=p/IFp/

D indexZ=p�k�1;p  indexZ=p�k;p  H�k.B.Z=p/IFp/:

In order to conclude the proof of the theorem it remains to prove that t.k�1/=2 …
indexZ=p�k;p. This would yield the equality

indexZ=p�k;p D H�k.B.Z=p/IFp/

for all odd k. Indeed, assume the opposite, that is, t.k�1/=2 2 indexZ=p�k;p. The Z=p-
equivariant inclusion�kC1;p � �1;p��k;p combined with the monotonicity and join
properties of the Fadell–Husseini index imply that

indexZ=p�1;p � indexZ=p�k;p � indexZ=p.�1;p ��k;p/ � indexZ=p�kC1;p:

Since e 2 indexZ=p�1;p, and we have assumed that t.k�1/=2 2 indexZ=p�k;p, the
previous relation implies that

t.k�1/=2e 2 indexZ=p�kC1;p D H�kC1.B.Z=p/IFp/ D ht.kC1/=2i;

a contradiction. Hence t.k�1/=2 … indexZ=p�k;p, and the proof of the theorem
is complete. ut

Let us review the results on the Fadell–Husseini index of chessboards we have
obtained so far:

The remaining question indicated by this diagram is: For which chessboard �k;p

with p � 1 � k � 2p � 1 does the first jump in the index H�p�1.B.Z=p/IFp/ to
H�p.B.Z=p/IFp/ happen?

Theorem 6.9 indexZ=p�k;p D H�p�1.B.Z=p/IFp/, for p � 1 � k � 2p� 2.

Proof It suffices to show that indexZ=p�2p�2;p D H�p�1.B.Z=p/IFp/. For this we
are going to prove that t.p�1/=2 2 indexZ=p�2p�2;p.
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Consider the following composition of maps

�2p�2;p ! �p�1;p ��.2/ �p�1;p
f�f! @�p�1 ��.2/ @�p�1 !

f�xC .1 � �/y 2 Sp�2 � Sp�2 W � ¤ 1
2

or x ¤ yg ! Sp�2 Š S.Wp/;

where the first map is an inclusion, the second map is the two-fold join of the map
f W �p�1;p ! @�p�1, �p�1 Š S.Wp/ introduced in Lemma 6.5, the third map
is again an inclusion, while the last map is a deformation retraction. All the maps
in this composition are Z=p-equivariant. The monotonicity property of the Fadell–
Husseini index implies that

indexZ=p�2p�2;p  indexZ=p S.Wp/ D ht.p�1/=2i D H�p�1.B.Z=p/IFp/;

according to (17). Thus t.p�1/=2 2 indexZ=p�2p�2;p, and we have concluded the
proof of the theorem. ut

Now we have the answer to our question. The jump happens in the last possible
moment, that is for the index of�2p�1;p. The proof of this is due to Carsten Schultz.

We conclude the section with a very useful corollary [15, Cor. 2.6], which also
hides a proof for the upcoming optimal colored Tverberg theorem 6.14.

Corollary 6.10 Let 1 � k1; : : : ; kn � p � 1. Then

indexZ=p.�k1;p � � � � ��kn;p/ D H�k1C			Ckn.B.Z=p/IFp/:

Proof Let K WD �k1;p�� � ���kn;p, K0 WD �p�1�k1;p�� � ���p�1�kn;p, and L WD ��n
p�1;p.

Then there is a Z=p-equivariant inclusion L! K � K0. Again the monotonicity and
join properties of the Fadell–Husseini index imply that

indexZ=p L  indexZ=p.K � K0/  indexZ=p K � indexZ=p K0:

Furthermore dim L D dim K C dim K0 C 1. The complexes K and K0 are free Z=p-
spaces and therefore, as previously observed, it follows that

indexZ=p K  H�dim KC1.B.Z=p/IFp/ and

indexZ=p K0  H�dim K0C1.B.Z=p/IFp/:

Since, by Corollary 6.7, indexZ=p L D H�dim LC1.B.Z=p/IFp/ and dim L C 1 is an
even integer, the relation between the indexes

indexZ=p L  indexZ=p K � indexZ=p K0
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implies that

indexZ=p K D H�dim KC1.B.Z=p/IFp/;

as claimed. We have also proved that indexZ=p K0 D H�dim K0C1.B.Z=p/IFp/. ut

6.2 The Bárány–Larman Conjecture and the Optimal Colored
Tverberg Theorem

Finally we will, motivated by Theorem 6.3, utilize the computation of the Fadell–
Husseini index for the chessboards to prove the following result [17, Prop. 4.2].

Theorem 6.11 Let d � 1 be an integer, and let p be an odd prime. There is no
Sp-equivariant map

�
�.dC1/
p�1;p � Œp�! S.W˚.dC1/p /:

Proof It suffices to prove that there is no Z=p-equivariant map ��.dC1/p�1;p � Œp� !
S.W˚.dC1/p /, where Z=p is a subgroup of the symmetric group Sp generated by
the cycle .12 : : : p/. The proof uses the monotonicity property of the Fadell–
Husseini index.

According to (17) and the join property for the spheres, the index of the sphere
S.W˚.dC1/p / is

indexZ=p S.W˚.dC1/p / D ht.dC1/.p�1/=2i D H�.dC1/.p�1/.B.Z=p/IFp/:

Using Corollary 6.7 we get that

indexZ=p.�
�.dC1/
p�1;p � Œp�/ D H�.dC1/.p�1/C1.E.Z=p/IFp/;

and consequently t.dC1/.p�1/=2 … indexZ=p.�
�.dC1/
p�1;p � Œp�/. Thus,

indexZ=p S.W˚.dC1/p / 6� indexZ=p.�
�.dC1/
p�1;p � Œp�/;

implying that a Z=p-equivariant map��.dC1/p�1;p � Œp�! S.W˚.dC1/p / cannot exist. ut
A direct corollary of Theorems 6.3 and 6.11 is that the Bárány–Larman conjec-

ture holds for all integers r such that rC 1 is a prime [17, Cor. 2.3].

Corollary 6.12 (The Bárány–Larman conjecture for primes�1) Let r � 2 and
d � 1 be integers such that r C 1 DW p is a prime. Then n.d; r/ D .d C 1/r and
tt.d; r/ D r.
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Using the pigeonhole principle and the index computation for the chessboards we
can in addition prove that in the case when p is an odd prime the Bárány–Larman
function n.d; p/ is finite.

Theorem 6.13 Let p be an odd prime. Then n.d; p/ � .dC 1/.2p� 2/C 1.

Proof Let n D .d C 1/.2p � 2/ C 1, and let .C1; : : : ;CdC1/ be a coloring of the
vertex set of the simplex �n�1 by dC 1 colors with each color class of size at least
p. Then by the pigeonhole principle at least one of the colors, let say CdC1, has to
be of the size at least 2p� 1. According to Corollary 4.8: If we can prove that there
is no Sp- or Z=p-equivariant map

�jC0j;p � � � � ��jCdC1j;p Š .R.C1;:::;CdC1//
�p
�.2/ ! S.W˚.dC1/p /;

then for every continuous map f W �n�1 ! R
d there are p pairwise disjoint rainbow

faces �1; : : : ; �r of �n�1 whose f -images overlap, that is f .�1/ \ � � � \ f .�p/ ¤ ;.
Thus we will now prove that there is no Z=r-equivariant map

�jC0j;p � � � � ��jCdC1j;p ! S.W˚.dC1/p /:

Again, using (17) and the join property for the spheres, we have that

indexZ=p S.W˚.dC1/p / D ht.dC1/.p�1/=2i D H�.dC1/.p�1/.BZ=pIFp/:

Since jC0j � p; : : : ; jCdj � p and jCdC1j � 2p � 1, there is a Z=p-equivariant
inclusion

�p�1;p � � � � ��p�1;p ��2p�1;p ! �jC0j;p � � � � ��jCdj;p ��jCdC1j;p:

Thus the monotonicity property of the Fadell–Husseini index and Corollary 6.7 (iii)
imply that

H�.dC1/.p�1/C1.BZ=pIFp/ D indexZ=p.�p�1;p � � � � ��p�1;p ��2p�1;p/

 indexZ=p.�jC0j;p � � � � ��jCdj;p ��jCdC1j;p/:

Therefore,

indexZ=p S.W˚.dC1/p / 6� indexZ=p.�jC0j;p � � � � ��jCd j;p ��jCdC1j;p/;

and consequently there is no Z=p-equivariant map �jC0j;p � � � � � �jCdC1j;p !
S.W˚.dC1/p /. This concludes the proof of the theorem. ut

While focusing on the Bárány–Larman conjecture and the corresponding func-
tion n.d; r/, we almost overlooked that the index computations for the chessboards
establish a considerable strengthening of the topological Tverberg theorem that is
known as the optimal colored Tverberg theorem [17, Thm. 2.1].
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Theorem 6.14 (The optimal colored Tverberg theorem) Let d � 1 be an integer,
let p be a prime, N � .dC 1/.p� 1/, and let f W �N ! R

d be a continuous map. If
the vertices of the simplex �N are colored by m colors, where each color class has
cardinality at most p�1, then there are p pairwise disjoint rainbow faces �1; : : : ; �p

of �N whose f -images overlap,

f .�1/\ � � � \ f .�p/ ¤ ;:

7 Dictionary

7.1 Borel Construction

References [1, 29, 44]. Let G be a finite group and let X be a (left) G-space. The Borel
construction of X is the space given by EG
G X WD .EG
X/=G, where EG is a free,
contractible right G-space and G acts on the product by g � .e; x/ D .e � g�1; g � x/.
The projection EG 
 X ! EG induces the following fiber bundle

X ! EG 
G X ! BG:

This fiber bundle is called the Borel construction fiber bundle. The Serre spectral
sequence associated to the Borel construction fiber bundle has the E2-term given by

Er;s
2 D Hr.BGIHs.XIR// Š Hr.GIHs.XIR//;

where the coefficients are local and determined by the action of �1.BG/ Š G on the
cohomology of X. Moreover, each row of the spectral sequence has the structure of
an H�.BGIR/-module, while all differentials are H�.BGIR/-module morphisms.

The Borel construction and the associated fibration are natural with respect to
equivariant maps, that is, any G-equivariant map f W X ! Y between G-spaces
induces the following morphism of fiber bundles

This morphism of fiber bundle induces a morphism of associated Serre spectral
sequences

Er;s
t . f / W Er;s

t .EG 
G Y/! Er;s
t .EG 
G X/;
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such that

Er;0
2 . f / W Er;0

2 .EG 
G Y/! Er;0
2 .EG 
G X/

is the identity.

7.2 BG

References [1, 29]. For a finite group G the classifying space is the quotient space
BG D EG=G. The projection EG ! BG is the universal principal G-bundle, that
is, the set of all homotopy classes of maps ŒX;BG� is in bijection with the set of all
isomorphism classes of principal G bundles over X.

7.3 Borsuk–Ulam Theorem

Reference [34]. Let Sn and Sm be free Z=2-spaces. Then a continuous Z=2-
equivariant map Sm ! Sn exists if and only if m � n.

7.4 Cohomology of a Group (Algebraic Definition)

References [1, 20]. Let G be a finite group, and let M be a (left) G-module. Consider
a projective resolution .Pn; dn/n�0 of the trivial (left) G module Z, that is, an exact
sequence

where each Pn is a projective (left) G-module. The group cohomology of G with
coefficients in the module M is the cohomology of the following cochain complex

7.5 Cohomology of Group (Topological Definition)

References [1, 20]. Let G be a finite group, and let M be a (left) G-module. The
group cohomology of G with coefficients in the module M is the cohomology of BG
with local coefficients in the �1.BG/ Š G-module M, that is

H�.GIM/ WD H�.BGIM/:
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7.6 Connectedness

References [19, 34]. Let n � �1 be an integer. A topological space X is n-connected
if any continuous map f W Sk ! X, where�1 � k � n, can be continuously extended
to a continuous map g W BkC1 ! X, that is gj@BkC1DSk D f . Here BkC1 denotes
a .k C 1/-dimensional closed ball whose boundary is the sphere Sk. A topological
space X is .�1/-connected if it is non-empty; it is 0-connected if and only if it is
path-connected. If the space X is n-connected and Y is m-connected, then the join
X � Y is .nC mC 2/-connected.

If the space X is n-connected, but not .nC 1/-connected, we write conn.X/ D n.
Then

conn.X � Y/ � conn.X/C conn.Y/C 2:

7.7 Chessboard Complex

References [30, 34]. The m 
 n chessboard complex �m;n is the simplicial complex
whose vertex set is Œm�
 Œn�, and where the set of vertices f.i0; j0/; : : : ; .ik; jk/g spans
a k-simplex if and only if

Q
0�a<b�k.ia � ib/.ja � jb/ ¤ 0. For example,�2;3 Š S1,

�3;4 Š S1 
 S1. The chessboard complex�m;n is an .Sm 
Sn/-space by

.�1; �2/ � f.i0; j0/; : : : ; .ik; jk/g D f.�1.i0/; �2.j0//; : : : ; .�1.ik/; �2.jk//g;
where .�1; �2/ 2 Sm 
 Sn, and f.i0; j0/; : : : ; .ik; jk/g is a simplex in �m;n. The
connectivity of the chessboard complex�m;n is

conn.�m;n/ D min
˚
m; n;

�
mCnC1

3

˘� � 2:
For n � 3, the chessboard complex �n�1;n is a connected, orientable pseudo-
manifold of dimension n � 2. Therefore, Hn�2.�n�1;nIZ/ D Z and an orientation
homology class is given by the chain

zn�1;n D
X

�2Sn

.sgn�/h.1; �.1//; : : : ; .n � 1; �.n � 1//i:

The symmetric group Sn Š 1 
Sn � Sn�1 
Sn acts on �n�1;n by the restriction
action. Then � � zn;n�1 D .sgn�/ zn�1;n�1.
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7.8 Deleted Join

Reference [34]. Let K be a simplicial complex, let n � 2, k � 2 be integers, and let
Œn� WD f1; : : : ; ng. The n-fold k-wise deleted join of the simplicial complex K is the
simplicial complex

K�n
�.k/ WD f�1x1 C � � � C �nxn 2 �1 � � � � � �n � K�n W

.8I � Œn�/ card I � k)
\

i2I

�i D ;g;

where �1; : : : ; �n are faces of K, including the empty face. The symmetric group Sn

acts on K�n
�.k/ by

� � .�1x1 C � � � C �nxn/ WD ���1.1/x��1.1/ C � � � C ���1.n/x��1.n/;

for � 2 Sn and �1x1 C � � � C �nxn 2 K�n
�.k/.

7.9 Deleted Product

Reference [34]. Let K be a simplicial complex, let n � 2, k � 2 be integers, and let
Œn� WD f1; : : : ; ng. The n-fold k-wise deleted product of the simplicial complex K is
the cell complex

K�n
�.k/ WD f.x1; : : : ; xn/ 2 �1 
 � � � 
 �n � K�n W

.8I � Œn�/ card I � k)
\

i2I

�i D ;g;

where �1; : : : ; �n are non-empty faces of K. The symmetric group Sn acts on
K�n
�.k/ by

� � .x1; : : : ; xn/ WD .x��1.1/; : : : ; x��1.n//;

for � 2 Sn and .x1; : : : ; xn/ 2 K�n
�.k/.

7.10 Dold’s Theorem

Reference [34]. Let G be a non-trivial finite group. For an n-connected G-space
X and an at most n-dimensional free G-CW complex Y there is no continuous G-
equivariant map X ! Y.
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7.11 EG

References [1, 29, 44]. For a finite group G any contractible free G-CW complex
equipped with the right G cellular action is a model for an EG space. Milnor’s
model is given by EG D colimn2N G�n where G stands for a 0-dimensional free
G-simplicial complex whose vertices are indexed by the elements of the group G
and the action on G is given by the right translation, and G�n is an n-fold join of the
0-dimensional simplicial complex with induced diagonal (right) action.

7.12 Equivariant Cohomology (via the Borel Construction)

References [1, 29, 44]. Let G be a finite group and let X be a (left) G-space. The
singular or Čech cohomology of the Borel construction EG 
G X of the space X is
called the equivariant cohomology of X and is denoted by HG.XIR/. Here R denotes
a group, or a ring of coefficients.

7.13 Equivariant Cohomology of a relative G-CW complex

Reference [44]. Let G be a finite group, let .X;A/ be a relative G-CW complex
with a free action on XnA, and let C�.X;AIZ/ denote the integral cellular chain
complex. The cellular free G-action on every skeleton of XnA induces a free G-
action on the chain complex C�.X;AIZ/. Thus C�.X;AIZ/ is a chain complex of
free ZG-modules.

For a ZG-module M consider

• the G-equivariant chain complex

CG� .X;AIM/ D C�.X;AIZ/˝ZG M;

and define the equivariant homology HG� .X;AIM/ of .X;A/ with coefficients in
M to be the homology of the chain complex CG� .X;AIM/;

• the G-equivariant cochain complex

C�G.X;AIM/ D HomZG.C�.X;AIZ/;M/;

and define the equivariant cohomology H�G.X;AIM/ of .X;A/ with coefficients
in M to be the cohomology of the cochain complex C�G.X;AIM/.
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7.14 Exact Obstruction Sequence

Reference [44]. Let G be a finite group, let n � 1 be an integer and let Y be a path-
connected n-simple G-space. For every relative G-CW complex .X;A/ with a free
action of G on the complement XnA, there exists the obstruction exact sequence

ŒsknC1 X;Y�G ! im
�
Œskn X;Y�G ! Œskn�1 X;Y�G

� ŒonC1
G ��! HnC1

G .X;AI�nY/;

The sequence is natural in X and Y. This should be understood as follows:

• A G-equivariant map f W skn�1 X ! Y that can be equivariantly extended to
the n-skeleton f 0 W skn X ! Y, that is f 0jskn�1 X D f , defines a unique element
ŒonC1

G . f /� living in HnC1
G .X;AI�nY/, called the obstruction element associated to

the map f ;
• The exactness of the sequence means that the obstruction element ŒonC1

G . f /� is
zero if and only if there is a G-equivariant map f 0 W skn X ! Y whose restriction
is in the G homotopy class of the restriction of f , that is f 0jskn�1 X 'G f jskn�1 X ,
which extends to the .nC 1/-skeleton sknC1 X.

The obstruction element ŒonC1
G . f /� associated with the homotopy class Œf � 2

Œskn X;Y�G can be introduced on the cochain level as well. Let h W .DnC1; Sn/ !
.sknC1 X; skn X/ be an attaching map and e 2 CnC1.X;AIZ/ the corresponding
generator. The obstruction cochain onC1

G . f / 2 CnC1
G .X;AI�nY/ of the map f is

defined on e by

onC1
G .h/.e/ D Œf ı h� 2 ŒSn;Y�:

The cohomology class of the obstruction cocycle coincides with the obstruction
element defined via the exact sequence.

7.15 Fadell–Husseini Index

Reference [22]. Let G be a finite group and R be a commutative ring with unit.
For a G-space X and a ring R, the Fadell–Husseini index of X is defined to be the
kernel ideal of the map in equivariant cohomology induced by the G-equivariant
map pX W X ! pt:

indexG.XIR/ D ker
�

H�.BGIR/! H�.EG 
G XIR/
	
:

Some basic properties of the index are:

• Monotonicity: If X ! Y is a G-equivariant map then

indexG.XIR/  indexG.YIR/:
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• Additivity: If .X1 [ X2;X1;X2/ is an excisive triple of G-spaces, then

indexG.X1IR/ � indexG.X2IR/ � indexG.X1 [ X2IR/:

• Join: Let X and Y be G-spaces, then

indexG.XIR/ � indexG.YIR/ � indexG.X � Y/:

• Generalized Borsuk–Ulam–Bourgin–Yang theorem: Let f W X ! Y be a G-
equivariant map, and let Z � Y be a closed G-invariant subspace. Then

indexG. f�1.Z/IR/ � indexG.YnZIR/ � indexG.XIR/:

• Let U and V be finite dimensional real G-representations. If H�.S.U/;R/
and H�.S.V/;R/ are trivial G-modules, indexG.S.U/IR/ D hf i and
indexG.S.V/IR/ D hgi, then

indexG.S.U ˚ V/IR/ D hf � gi � H�.BGIR/:

7.16 G-Action

Let G be a group and let X be a non-empty set. A (left) G-action on X is a function
G 
 X ! X, .g; x/ 7�! g � x with the property that:

g � .h � x/ D .gh/ � x and 1 � x D x;

for every g; h 2 G and x 2 X. A set X with a G-action is called a G-set. Let G and X
in addition be topological spaces. Then a G-action is continuous if the function
G 
 X ! X is continuous with respect to the product topology on G 
 X. A
topological space equipped with a continuous G-action is called a G-space.

7.17 G-equivariant Map

Let X and Y be G-sets (spaces). A (continuous) map f W X ! Y is a G-equivariant
map if f .g � x/ D g � f .x/ for all x 2 X and all g 2 G.
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7.18 G-CW Complex

References [18, 44]. Let G be a finite group. A CW-complex X is a G-CW complex
if the group G acts on X by cellular maps and for every g 2 G the subspace fx 2 X W
g � x D xg is a CW-subcomplex of X.

Let X be a G-CW complex, and let A be a subcomplex of X that is invariant with
respect to the action of the group G and consequently a G-CW complex in its own
right. The pair of G-CW complex .X;A/ is a relative G-CW complex.

7.19 Localization Theorem

References [29, 44]. The following result is a consequence of the localization
theorem for elementary abelian groups: Let p be a prime, G D .Z=p/n for n � 1, and
let X be a finite G-CW complex. The fixed points set XG of the space X is non-empty
if and only the map in cohomology H�.BGIFp/ ! H�.EG 
G XIFp/, induced by
the projection EG 
G X ! BG, is a monomorphism.

7.20 n-Simple

Reference [19]. A topological space X is n-simple if the fundamental group
�1.X; x0/ acts trivially on the n-th homotopy group �n.X; x0/ for every x0 2 X.

7.21 Nerve of a Family of Subsets

Let X be a set and let X WD fXi W i 2 Ig be a family of subsets of X. The nerve of
the family X is the simplical complex NX with the vertex set I, and a finite subset
� � I is a face of the complex if and only if

TfXi W i 2 �g ¤ ;.

7.22 Nerve Theorem

Reference [10]. Let K be a finite simplicial complex, or a regular CW-complex,
and let K WD fKi W i 2 Ig be a cover of K by a family of subcomplexes, that is
K DSfKi W i 2 Ig.
(1) If for every face � of the nerve NK the intersection

TfKi W i 2 �g is contractible,
then K and NK are homotopy equivalent, that is K ' NK.

(2) If for every face � of the nerve NK the intersection
TfKi W i 2 �g is .k�j� jC1/-

connected, then the complex K is k-connected if and only if the nerve NK is
k-connected.
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7.23 Primary Obstruction

References [18, 44]. Let G be a finite group, let n � 1 be an integer and let Y be an
.n�1/-connected and n-simple G-space. Furthermore, let .X;A/ be a relative G-CW
complex with the free G action on XnA, and let f W A! Y be a G-equivariant map.
Then

• there exists a G-equivariant map f 0 W skn X ! Y extending f , that is f 0jA D f ,
• every two G-equivariant extensions f 0; f 00 W skn X ! Y of f are G-homotopic,

relative to A, on skn�1 X, that is

im
�
Œskn X;Y�G ! Œskn�1 X;Y�G

� D fptg;

• if H W A 
 I ! Y is a G-equivariant homotopy between G-equivariant maps
f W A ! Y and f 0 W A ! Y, and if h W skn X ! Y and h0 W skn X ! Y are
G-equivariant extensions of f and f 0, then there exists a G-equivariant homotopy
K W skn�1 X 
 I ! Y between hjskn�1 X and h0jskn�1 X that extends H.

In the case when im
�
Œskn X;Y�G ! Œskn�1 X;Y�G

� D fptg the obstruction sequence
becomes

ŒsknC1 X;Y�G ! fptg Œo
nC1
G �! HnC1

G .X; �nY/:

The obstruction element ŒonC1
G .pt/� 2 HnC1

G .X; �nY/ is called the primary obstruc-
tion and does not depend on the choice of a G-equivariant map on the n-th skeleton
of X.

7.24 Restriction and Transfer

References [14, 20]. Let G be a finite group and let H � G be its subgroup.
Consider a ZG-chain complex C� D .Cn; cn/ and a ZG-module M. Denote by res
the restriction from G to H. For every integer n there exists a homomorphism

res W Hn
�

homZG.C�;M/
�! Hn

�
homZH.res C�; res M/

�

that we call the restriction from G to H, and a homomorphism

tr W Hn
�

homZH.res C�; res M/
�! Hn

�
homZG.C�;M/

�

that is called the transfer from H to G, with the property

tr ı res D ŒG W H� � id :
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One-Sided Epsilon-Approximants

Boris Bukh and Gabriel Nivasch

In memory of a great teacher,
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Abstract Given a finite point set P � R
d, we call a multiset A a one-sided weak

"-approximant for P (with respect to convex sets), if jP\Cj=jPj � jA\ Cj=jAj � "
for every convex set C.

We show that, in contrast with the usual (two-sided) weak "-approximants, for
every set P � R

d there exists a one-sided weak "-approximant of size bounded by a
function of " and d.

1 Introduction

A common theme in mathematics is approximation of large, complicated objects
by smaller, simpler objects. This paper proposes a new notion of approximation
in combinatorial geometry, which we call one-sided "-approximants. It is a notion
of approximation that is in strength between "-approximants and "-nets. We recall
these two notions first.

Let P � R
d be a finite set, and F � 2Rd

a family of sets in R
d. In applications,

the family F is usually a geometrically natural family, such as the family of all
halfspaces, the family of all simplices, or the family of all convex sets. A finite set
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A � R
d is called an "-approximant for P with respect to F if

ˇ
ˇ
ˇ
ˇ
jC \ Pj
jPj �

jC \ Aj
jAj

ˇ
ˇ
ˇ
ˇ � " for all C 2 F :

The notion of an "-approximant was introduced by Vapnik and Chervonenkis [23] in
the context of statistical learning theory. They associated to each family F a number
VC-dim.F / 2 f1; 2; 3; : : : ;1g, which has become known as VC dimension, and
proved that if VC-dim.F / < 1, then every set P admits an "-approximant A
of size jAj � CVC-dim.F /"

�2, a bound which does not depend on the size of P.
The "-approximants that they constructed had the additional property that A � P.
Following tradition, we say that A is a strong "-approximant if A � P. When
we wish to emphasize that our "-approximants are not necessarily subsets of
P, we call them weak "-approximants. The bound has been improved to jAj �
CVC-dim.F /"

�2C2=.VC-dim.F /C1/ (see [18, Theorem 1.2] and [19, Exercise 5.2.7])
which is optimal [1].

In a geometric context, Haussler and Welzl [17] introduced "-nets. With P and F
as above, a set N is called an "-net for P with respect to F if

jC \ Pj
jPj > " H) C \ N ¤ ; for all C 2 F :

An "-approximant is an "-net, but not conversely. While an "-net is a weaker notion
of approximation, its advantage over an "-approximant is that every set P admits
an "-net of size only CVC-dim.F /"

�1 log "�1, which is smaller than the bound for the
"-approximants. The "-nets constructed by Haussler and Welzl are also strong, i.e.,
they satisfy N � P.

Most geometrically important families F have a bounded VC dimension. A
notable exception is the family Fconv of all convex sets. Indeed, it is easy to see
that a set of n points in convex position does not admit any strong "-net of size
smaller than .1 � "/n with respect to Fconv. Alon, Bárány Füredi, and Kleitman [3]
showed that for every P � R

d there exists a (weak) "-net of size bounded solely by
a function of " and d. No extension of their result to "-approximants is possible.

Proposition 1 If P � R
2 is a set of n points in convex position, then every "-approx-

imant with respect to Fconv has size at least n. 1
4
� "=2/.

Proof Let p1; p2; : : : ; pn be the enumeration of the vertices of P in clockwise order
along the convex hull of P. For i D 1; : : : ; b.n � 1/=2c write Ti for the triangle
p2i�1; p2i; p2iC1. Suppose A � R

2 is an "-approximant for P. Let I
defD fi W Ti \

A D ;g. Note that jIj � n=2 � 2jAj � 1 since each point of A lies in at most
two triangles. Define S

defD f p1; p3; p5; : : : g to be the odd-numbered points, and let
S0 defD S[ f p2i W i 2 Ig. Let C

defD conv S and C0 defD conv S0. Then C\A D C0 \ A, but
jC0 \ Pj=jPj � jC \ Pj=jPj D jIj=jPj > " if jAj < jPj. 1

4
� "=2/. ut
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In light of Proposition 1, we introduce a new concept. A multiset1 A � R
d is a

one-sided "-approximant for P with respect to the family F if

jC \ Pj
jPj �

jC \ Aj
jAj � " for all C 2 F :

In other words, if C 2 F , then C might contain many more points of A than
expected, but never much fewer. It is clear that an "-approximant is a one-sided
"-approximant, and that a one-sided "-approximant is an "-net.

Our main result shows that allowing one-sided errors is enough to sidestep the
pessimistic Proposition 1.

Theorem 2 Let P � R
d be a finite set, and let " 2 .0; 1� be a real number. Then P

admits a one-sided "-approximant with respect to Fconv of size at most g."; d/, for
some g that depends only on " and on d.

Unfortunately, due to the use of a geometric Ramsey theorem, our bound on g is
very weak:

g."; d/ � twd
�
"�c
�

for some constant c > 1 that depends only on d, where the tower function is given
by tw1.x/

defD x and twiC1.x/
defD 2twi.x/. We believe this bound to be very far from

sharp.
In the rest of the paper we omit the words “with respect to Fconv” when referring

to one-sided approximants.

2 Outline of the Construction and of the Paper

At a high level, the proof of Theorem 2 can be broken into three steps:

1. We replace the given set P by a bounded-size set OP. The price of this replacement
is an extra condition that a one-sided "-approximant A for OP would need to satisfy
to be a one-sided "-approximant for P. Namely, A must be a one-sided "-approx-
imant for a semialgebraic reason.

2. We break OP into long orientation-homogeneous subsequences S1; S2; : : : ; Sm.
3. For each Si we give an explicit one-sided "-approximant Ai satisfying the semial-

gebraicity condition. The union of A1; : : : ;Am is then the desired "-approximant.

Step 1 relies on the semialgebraic regularity lemma from [16], which we recall
in Sect. 3.3. Given a fixed set ˆ of semialgebraic predicates, this lemma permits us

1In this paper we allow A to be a multiset. While the results of this paper continue to hold if we
require A to be a set, the proofs become more technical. We sketch the necessary changes in the
final section.
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to replace P with a constant-sized OP that behaves similarly to P with respect to the
predicates in ˆ. Since in steps 2 and 3 we employ only one predicate, in our case
we have jˆj D 1. We define that predicate in Sect. 3.

In step 1 we lose some control on the interaction between parts of OP. To remedy
this, we use a well-known hypergraph Turán theorem, discussed in Sect. 4, to extract
well-behaved chunks from OP.

The construction of Ai in step 3 consists of Tverberg points of a certain family F
of subsets of Si. The property that F needs to satisfy is most naturally described in
terms of interval chains, which are introduced in Sect. 5. The actual construction of
requisite interval chains is based on the idea behind the regularity lemma for words
from [5, 14]. To obtain a better quantitative bound, we eschew using the lemma
directly and provide an alternative argument. This is also done in Sect. 5.

All the ingredients are put together in Sect. 6.
The paper concludes with several remarks and open problems.

3 Geometric Preliminaries

The convex hull of a point set P is denoted conv P, and its affine hull is denoted
ahull P.

Tverberg’s theorem (see, e.g., [20, p. 200]) asserts that any set Q � R
d of .s �

1/.dC1/C1 points can be partitioned into s pairwise disjoint subsets whose convex
hulls intersect. We denote by Tvers.Q/ an arbitrary point in such an intersection. A
special case of Tverberg’s theorem is the case s D 2, which is due to Radon [21]. In
that case, if Q is in general position (no d C 1 points are affinely dependent), then
the partition is unique and Tver2.Q/ is also unique.

A (geometric) predicate of arity k is a property that a k-tuple of points p1; : : : ; pk

might or might not satisfy. A predicate is semialgebraic if it is a Boolean combina-
tion of expressions of the form f . p1; : : : ; pk/ � 0, where the f ’s are polynomials.
Predicates that depend on the sign of a single polynomial are especially useful, we
call then polynomial predicates. For brevity we will identify polynomial predicates
with the underlying polynomials.

An important polynomial predicate is the orientation of a .dC 1/-tuple of points
in R

d. The orientation of p0; : : : ; pd 2 R
d is given by

orient. p0; : : : ; pd/
defD sgn det

�
p0 � � � pd

1 � � � 1
�

:

We have orient. p0; : : : ; pd/ D 0 if and only if the points are affinely dependent.
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3.1 Orientation-Homogeneous Sequences

We will call a sequence of points in R
d orientation-homogeneous if all its

.d C 1/-tuples have the same nonzero orientation. It is well known that every
orientation-homogeneous sequence is in convex position, and that the convex hull
of such a sequence is combinatorially equivalent to a cyclic polytope (see, e.g., [24]
for background).

Let P D . p1; : : : ; pn/ be an orientation-homogeneous sequence. For a set I D
fi1 < � � � < img, define the subsequence of P indexed by I by PI

defD . pi1 ; : : : ; pim/. If

jIj D d, then the d points PI span a hyperplane HI
defD ahull PI in R

d. It is simple to
tell to which side of HI a point pj 2 P n PI belongs: The index set I partitions Œn� n I
into d C 1 intervals (some of which might be empty). The side of HI to which pj

belongs depends only on the parity of the interval number to which pj belongs. In
other words, pj is on one side if j 2 .�1; i1/ [ .i2; i3/ [ � � � , and on the other side
if j 2 .i1; i2/ [ .i3; i4/[ � � � . Hence, two points pj and pj0 with j < j0 lie on the same
side of HI if and only if Œ j; j0� \ I is of even size.

Of particular interest to us are sets I of size d C 2. We define, for such a set
I D fi1 < i2 < � � � < idC2g, a partition I D Iodd[ Ieven, where Iodd

defD fi1; i3; : : : g and
Ieven

defD fi2; i4; : : : g.
Lemma 3 If P is orientation-homogeneous and jIj D d C 2, then the convex sets
conv PIodd and conv PIeven intersect.

Proof Indeed, suppose they are disjoint, and hence there exists a hyperplane H that
separates PIodd from PIeven . Then H can be perturbed into a hyperplane H0 that goes
through some d points of PI , i.e., H0 D HJ for some J � I, jJj D d. The set PInJ
consists of two points, say pi; pi0 with i < i0, and they belong to the same part of
the partition P D PIodd [ PIeven precisely when Œi; i0� \ J is of odd size. This is in
contradiction with the criterion for HJ to separate pi from pi0 . ut

By Ramsey’s theorem, there is a number OTd.n/ such that each sequence of
OTd.n/ points in general position contains an orientation-homogeneous subse-
quence of length n. The growth rate of OTd.n/ is known quite precisely: For all
d � 2 we have twd.c0dn/ � OTd.n/ � twd.cdn/ for positive constants c0d < cd. The
upper bound is due to Suk [22], and the lower bound is due to Bárány, Matoušek
and Pór [6], which is based on an earlier work by Eliáš, Matoušek, Roldán-Pensado
and Safernová [13].

3.2 Point Selection

The following lemma is a minor variation on Lemma 2.2 from [4]:

Lemma 4 Let s
defD bd=2cC1, and let D

defD .s�1/.dC1/C1. Let . p1; p2; : : : ; p2DC1/
be an orientation-homogeneous sequence of 2D C 1 points in R

d. Let Q D
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f p2; p4; : : : ; p2Dg and R D f p1; p3; : : : ; p2DC1g (so jQj D D and jRj D D C 1).
Then Tvers.Q/ 2 conv R.

Proof Let x
defD Tvers.Q/. If x … conv R, then there exists a hyperplane H separating

x from R. There must be at least s points of Q on the same side of H as x (at least one
from each part in the Tverberg partition). Let Q0 be any s of these points. Pick any
set R0 � R of dd=2e C 1 points that interleaves Q0. By Lemma 3, the sets conv Q0
and conv R0 intersect, contradicting the fact that H separates Q0 from R. ut

3.3 A Regularity Lemma for Semialgebraic Predicates

We shall use a regularity lemma of Fox–Pach–Suk [16], which is a quantita-
tive improvement over the prior version due to Fox–Gromov–Lafforgue–Naor–
Pach [15]. The improvement is due to the use of the efficient cuttings of Chazelle–
Friedman [9] and Clarkson [10].

Consider a polynomial f 2 RŒEx1; : : : ; Exk�, where each Exi is a vector of d
indeterminates. The degree of f in Exi is the degree of f as a polynomial in Exi while
regarding Exj for i ¤ j as constants. We say that f is of complexity at most D if it is
of degree at most D in each of Ex1; : : : ; Exk.

Lemma 5 (Theorem 1.3 in [16]) For any k; d; t;D 2 N there exists a constant
c D c.k; d; t;D/ > 0 with the following property. Let 0 < � < 1=2, let P � R

d

be a finite multiset, and let f1; : : : ; ft 2 RŒEx1; : : : ; Exk� be t polynomials of complexity
at most D each. Then there exists a partition P D P1 [ � � � [ PM of P into at most
M � .1=�/c parts, and a small set E � ŒM�k of “exceptional” k-tuples, satisfying
the following:

1. The exceptions are few: jE j � �Mk,
2. Almost all k-tuples are regular: whenever .i1; : : : ; ik/ … E and p1 2 Pi1 ; : : : ; pk 2

Pik , then the sign of

fj. p1; : : : ; pk/

depends only on j and on the tuple .i1; : : : ; ik/ but not on the actual choice of
the points p1; : : : ; pk. (Note that the elements i1; : : : ; ik of the tuple need not be
distinct nor in increasing order.)

3. The partition is an equipartition: For all i; j the cardinalities of Pi and of Pj differ
by at most one.

(The statement appearing in [16] is slightly different: In part (2) instead of
claiming that the signs of all fj are constant, the original merely states that an
arbitrary fixed Boolean formula in signs of fj is constant. However, their proof
actually establishes the stronger statement above. Alternatively, one may refine the
partition P by iterative application of the original statement to each fj in turn. The
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only minor drawback is that instead of a true equipartition one would then obtain a
partition whose parts differ by as much as t, the number of polynomials.)

The main point of Lemma 5 is that the number M of parts is independent of
jPj (otherwise we could trivially partition P into parts of size 1). The price for this
independence is the small set E which indexes “irregular” tuples.

Invoking Lemma 5 with the orientation predicate, we obtain the following result,
which is what we actually need:

Corollary 6 For each d there exists a constant c D c.d/ > 0 with the following
property. Let 0 < � < 1=2, and let P � R

d be a finite point set in general position.
Then there exists a partition P D P1 [ � � � [ PM of P into M parts, with 1=� �
M � 2.1=�/c, and a small hypergraph H � �

ŒM�
dC1
�

of “exceptional" .d C 1/-sets,
satisfying the following:

1. jHj � �� M
dC1
�
,

2. Whenever fi0; i1; : : : ; idg 2
�
ŒM�
dC1
� nH and p0 2 Pi0 ; p1 2 Pi1 ; : : : ; pd 2 Pid , then

the sign of orient. p0; p1; : : : ; pd/ depends only on the tuple .i0; : : : ; id/ but not
on the actual choice of the points p0; : : : ; pd. (The sign of orient obviously does
depend on the permutation of the elements i0; : : : ; id.)

3. For all i; j the cardinalities of Pi and of Pj differ by at most one.

Proof If jPj � 2.1=�/c, then simply partition P into parts of size 1. So, assume
jPj � 2.1=�/c. We apply Lemma 5 with t

defD 1 and f1
defD orient. We obtain a

partition of P into M � .1=�/c parts, each of size at least 2, and a set E � ŒM�dC1
of size at most �MdC1.

We now show that all tuples .i0; : : : ; id/ 2 ŒM�dC1 that contain repeated elements
must belong to E . Indeed, consider one such tuple, and say ij D ij0 . Since the part
Pij has at least two elements, say p and q, swapping p and q causes orient to flip its
nonzero sign (recall that P is in general position). Hence, the tuple .i0; : : : ; id/ is not
regular, i.e., it does not satisfy property 2 above.

This consideration implies the lower bound for M: We have �MdC1 � jE j �
MdC1 � .dC 1/Š� M

dC1
� � MdC1 �Md.M � 1/ D Md, and hence M � 1=� .

Finally, we let H consist of all tuples in E whose elements are pairwise distinct
(this definition makes sense since, in our case, E is invariant under permutations).
Since E contains all the tuples with repeated elements, it can contain at most a � -
fraction of the remaining tuples. Therefore, the same is true for H. ut

4 Independent Sets in Hypergraphs

We will also need the following bound on hypergraph Turán numbers. We give a
simple probabilistic proof based on [2, Theorem 3.2.1], though a stronger bound
can be found in [12].
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Lemma 7 Let r � 2, and suppose H is an r-uniform hypergraph on n vertices with
ˇnr edges, where n � 1

2
ˇ�1=.r�1/. Then H contains an independent set on at least

1
4
ˇ�1=.r�1/ vertices.

Proof Let p
defD ˇ�1=.r�1/=.2n/. Note that p � 1 by the assumption on n. Let S �

V.H/ be a random set where PrŒv 2 S� D p for each v 2 V.H/ independently. Then
the expected number of edges spanned by S is prˇnr. For each edge in S we may
remove one vertex to obtain an independent set. Hence, H contains an independent
set of size at least EŒI� D pn� prˇnr � 1

2
ˇ�1=.r�1/ � 1

2r ˇ
1�r=.r�1/=nr � nr. ut

5 Interval Chains

We will reduce the geometric problem of constructing one-sided "-approximants to a
combinatorial problem about interval chains. Let Œi; j� denote the interval of integers
fi; iC 1; : : : ; jg. We still write Œt� for f1; 2; : : : ; tg. An interval chain of size k (also
called k-chain) in Œt� is a sequence of k consecutive, disjoint, nonempty intervals

I
defD Œa1; a2 � 1�Œa2; a3 � 1� � � � Œak; akC1 � 1�;

where 1 � a1 < a2 < � � � < akC1 � t C 1. Interval chains were introduced by
Condon and Saks [11]. They were subsequently used by Alon, Kaplan, Nivasch,
Sharir and Smorodinsky [4] and by Bukh, Matoušek, Nivasch [8] to obtain bounds
for weak "-nets for orientation-homogeneous point sets.

A D-tuple of integers .x1; : : : xD/ is said to stab a k-chain I if each xi lies in a
different interval of I.

The problem considered in [4] was to build, for given D, k, and t, a small-sized
familyF of D-tuples that stab all k-chains in Œt�. Phrased differently, for each interval
chain I with at least k intervals, there should be at least one D-tuple in F that stabs I.

In contrast, here we will consider the following problem: Given D, ", and t,
we want to build a small-sized family (multiset) F of D-tuples such that, for each
interval chain I in Œt�, if ˛t is the number of intervals in I, then at least an .˛ � "/-
fraction of the D-tuples in F stab I. We call such an F an "-approximating family.

Our construction of "-approximating families is similar to the statement of
the regularity lemma for words, due to Axenovich, Person and Puzynina [5].
The lemma, which was also independently discovered by Feige, Koren and Ten-
nenholtz [14] under the name of ‘local repetition lemma’, can be used directly
to construct "-approximating families. Doing so yields a family whose size is
exponential in 1=". In contrast, we avoid using the full strength of the regularity
lemma and obtain a construction of polynomial size.

Lemma 8 Suppose D � 2 and 0 < " < 1. Let K
defD d.D � 1/ ln.4="/e and t

defD
m.D � 1/K for some integer m � 4=". Then there exists an "-approximating family
F of D-tuples in Œt�, of size jF j � t.
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Proof The argument is more conveniently phrased in the “dual” setting, in which
D-tuples become .D � 1/-interval chains and `-interval chains become .` C 1/-
tuples. Namely, the D-tuple .x1; : : : ; xD/ becomes the interval chain Œx1 C 1; x2� � � �
ŒxD�1C1; xD�, and the `-interval chain Œa1; a2�1� � � � Œa`; a`C1�1� becomes the tuple
.a1; a2; : : : ; a`C1/. Then a .D� 1/-chain C “stabs” a tuple T if T contains points on
both sides of C, as well as inside each interval of C.

For each k D 0; 1; : : : ;K � 1, we partition Œt� into disjoint intervals of length
.D� 1/k, by letting Bk;i

defD �.i� 1/.D� 1/k C 1; i.D� 1/k� for 1 � i � t=.D � 1/k.
Then we group these intervals into disjoint .D � 1/-chains, by letting

Fk
defD fBk;.i�1/.D�1/C1 � � �Bk;i.D�1/ W 1 � i � t=.D � 1/kC1g:

We call each Fk a layer. Note that each chain in Fk fits exactly in an interval of layer
kC 1.

Then we define the multiset F by taking wk copies of Fk for each 0 � k � K�1,
where

wk
defD .D � 2/k:

Hence, letting E
defD .D � 2/=.D � 1/, we have jF j D PK�1

kD0 wkjFkj D t.1 � EK/.
Therefore, by the choice of K,

t=2 � jF j < t

Let J be a subset of Œt�, and let ˛t be the size of J. We claim that at least an
.˛ � "/-fraction of the chains in F stab J.

Call a .D � 1/-chain C 2 F empty if J does not intersect any interval of C, and
occupied otherwise. If C is occupied, then call it fully occupied if J intersects all
intervals of C, and partially occupied otherwise.

For each 0 � k � K � 1, let ˇk denote the fraction of chains of Fk that are
occupied by J, and let �k � ˇk denote the fraction of chains of Fk that are partially
occupied by J.

Claim 1 For each k we have ˇk � ˛ C .�0 C � � � C �k/=.D � 1/.
Proof For each layer j, Let F 0j be the set of occupied chains of Fj, and let F 00j � F 0j
be the set of those that are only partially occupied. Hence, F 00j covers a �j-fraction
of Œt�. From each chain C 2 F 00j choose an empty interval, and let Bj be the union of
these empty intervals. Hence, Bj covers a .�j=.D � 1//-fraction of Œt�. Furthermore,
since each chain in F 00j contains a point of J, the sets B0; : : : ;Bk must be pairwise

disjoint, as well as disjoint from J, and their union U defD B0 [ � � �Bk [ J must be
completely contained in the union of F 0k. Hence, F 0k covers at least an

�
˛ C .�0 C

� � � C �k/=.D � 1/
�
-fraction of Œt�, and the claim follows. ut



352 B. Bukh and G. Nivasch

Let us now derive a lower bound on the number of fully occupied chains in F .
By some tedious calculations we obtain:

K�1X

kD0
.ˇk � �k/wkjFkj �

K�1X

kD0

�
˛ C �0 C � � � C �k

D � 1 � �k

	
wkjFkj

D ˛jF j C
K�1X

kD0
�k

0

@ 1

D � 1
K�1X

jDk

wjjFjj � wkjFkj
1

A

D ˛jF j � t
EK

D � 1
K�1X

kD0
�k � ˛jF j � tEKˇK�1

� �˛ � 2EK
� jF j � .˛ � "=2/jF jI

where the upper bound for
P
�k was obtained from Claim 1.

Finally, note that in each layer Fk there are at most two fully occupied chains
that do not stab J. Since jFkj � m � 4=", the said chains constitute at most an
."=2/-fraction of F . ut

6 Construction of the One-Sided Approximants

In this section we prove Theorem 2.
Let s and D be as in Lemma 4. Then let t be as small as possible to satisfy the

condition of Lemma 8 with "=2 in place of " (so t is polynomial in 1="). Then define

u
defD d4="e; n0

defD tu; N
defD OTd.n0/; ˇ

defD .4N/�d; �
defD ˇ."=5/dC1I

(1)
where the function OTd.n0/ is defined at the end of Sect. 3.1. Invoking Lemma 8,
let F be an ."=2/-approximating family of D-tuples in Œt�, of size jF j � t.

Let P � R
d be a given finite point set, and let n

defD jPj. We will construct a
one-sided "-approximant multiset A for P. If n � 40=."� c/ for the constant c of
Corollary 6, then simply let A

defD P. Hence, assume n � 40=."� c/. In this case, our
multiset A will consist of Tverberg points of certain D-tuples of points of P.

We first handle the case when P is in general position; then we handle
degeneracies with a simple perturbation argument. Hence, suppose the point set
P � R

d is in general position (no dC 1 points are affinely dependent).
We start by invoking Corollary 6 on P and the parameter � given in (1). We obtain

a partition of P into 1=� � M � 2.1=�/c almost-equal-sized parts P1; : : : ;PM , and
a corresponding hypergraph H � � ŒM�dC1

�
of size jHj � �� M

dC1
�
.

We make all parts have exactly the same size by discarding at most one point
from each part. Hence we discard at most M � 2.1=�/c points. Since n � 40=."� c/,
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we discarded at most an ."=20/-fraction of the points of P. By a slight abuse of
notation, we denote the new parts by the same names P1; : : : ;PM . We will consider
P1; : : : ;PM as an ordered sequence (where the order was chosen arbitrarily).

LetbP D . p1; : : : ; pM/, where pi 2 Pi for all i, be an arbitrarily chosen sequence
of representatives from the parts. We will now repeatedly “fish out” equal-length
orientation-homogeneous subsequences from bP, until there are too few points left
to continue the process. For this purpose, let bP1

defD bP, and let i  1. Repeat the
following: If

ˇ
ˇbPi

ˇ
ˇ < "M=5 then stop. Otherwise, bPi is large enough so that the

number of edges of H spanned bybPi is at most

jHj � �
 

M

dC 1

!

� �MdC1 D ˇ."M=5/dC1 � ˇˇˇbPi

ˇ
ˇdC1:

In view of M � 1=� , we also have "M=5 � .5="/d=ˇ � 1
2
ˇ�1=d. Hence, we can

apply Lemma 7 onbPi with r D dC1. We conclude thatbPi has an independent set of
size N. By the definition of N, that independent set has an orientation-homogeneous
subsequence Si of length n0. Let bPiC1

defD bPi n Si, increase i by 1, and return to the
beginning of the loop.

At the end of this process, we get orientation-homogeneous sequences S1; S2;
: : : ; Sm for some m � M=n0, and a leftover sequence S� defD bPmC1 of size at most
"M=5. From each Si we will now construct a multiset Ai of Tverberg points; their
union will be our desired multiset A.

So fix i, and denote Si D .q0; q1; q2; : : : ; qn0�1/. Let vj
defD q. j�1/u for all 1 �

j � t. We will call the elements vj separators. Let v
defD .v1; : : : ; vt/. For each j D

1; : : : ; t, define the block bj
defD .q. j�1/uC1; : : : ; qju�1/, which contains the elements

of Si between separators vj and vjC1. Let

Bj
defD
[

pk2bj

Pk

be the union of all the parts that correspond to points of block bj.

To each D-tuple x D .x1; : : : ; xD/ 2 F , associate the D-tuple of separators Qx
defD

fvx1 ; : : : ; vxDg. Then define the multiset

Ai
defD fTvers.Qx/ W x 2 Fg:

Lemma 9 Let C � R
d be a convex set. Take the set of indices J

defD fj W Bj\C ¤ ;g.
List the elements of J in increasing order as J D fj1; j2; : : : ; j`g. Let I be the .`� 1/-
interval chain:

I
defD Œ j1 C 1; j2�Œ j2 C 1; j3� � � � Œ j`�1 C 1; j`�:
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Then, if the D-tuple x 2 F stabs I, then C contains the corresponding Tverberg
point Tvers.Qx/.

Proof Suppose x D .x1; : : : ; xD/ stabs I. Then there exists a subset J0 defD
. j00; : : : ; j0D/ � J such that j00 < x1 � j0q < � � � < xD � j0D. For each
j 2 J there is a part P. j/ whose representative point p. j/ belongs to the block
bj, and such that C contains some point p0. j/ 2 P. j/. The sequence of represen-
tatives p. j00/; vx1 ; p. j01/; : : : ; vxD ; p. j0D/, being a subsequence of Si, is orientation-
homogeneous. Therefore, by regularity, and since Si avoids the hypergraph H,
the sequence p0. j00/; vx1 ; p

0. j01/; : : : ; vxD ; p
0. j0D/ is also orientation-homogeneous.

Therefore, by Lemma 4, we have

Tvers.Qx/ 2 conv f p0. j00/; : : : ; p0. j0D/g � C;

as desired. ut
Let Si

defD S
pj2Si

Pj be the union of all the parts whose representative points
belong to Si.

Corollary 10 Let C � R
d be a convex set, and let ˛ be the fraction of the points

of Si contained in C. Then C contains at least an .˛ � 3"=4/-fraction of the points
of Ai.

Proof Since jvj D t � "n0=4, and since all the parts P1; : : : ;PM have equal size,
the set C meets at least an .˛ � "=4/-fraction of the sets Bj. The desired conclusion
follows from Lemma 9 since F is ."=2/-approximating. ut

Finally, let

A
defD

m[

iD1
Ai:

With some patience, we can use (1) and the bound OTd.n/ � twd.cdn/ mentioned
above to obtain the bound jAj D MjF j � twd

�
"�c0

�
for some constant

c0 D c0.d/ > 1.
Note that at most ."=20/nC ."=5/n D "n=4 points of P were either discarded in

making P1; : : : ;PM equal or were relegated to the “leftover” S� DbPn.S1[� � �[Sm/.
So, if a convex set C contains an ˛-fraction of the points of P, and an ˛i-fraction of
the points of Si for each i, then avgi ˛i � ˛ � "=4.

By Corollary 10, C contains at least an .˛i � 3"=4/-fraction of the points of Ai.
Hence, averaging again, C contains an .˛ � "/-fraction of the points of A.

This concludes the proof of Theorem 2 for the case when P is in general position.
If P D f p1; : : : ; png is not in general position, take an arbitrarily small continuous

perturbation P.t/
defD f p1.t/; : : : ; pn.t/g such that P.0/ D P and P.t/ is in general

position for all 0 < t � 1. For each t > 0 we apply the above argument on P.t/;
we get a family I.t/ � � Œn�DC1

�
such that multiset A.t/

defD fTvers.P.t/I/ W I 2 I.t/g is
a one-sided "-approximant for P.t/. Since P is finite, there are only a finitely many
possible values for I.t/, so one of them occurs infinitely often for t D t1; t2; t3; : : :
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with lim ti D 0. Then, by a standard argument, the limit multiset limi!1 A.ti/ exists
and is a one-sided "-approximant for P.

7 Problems and Remarks

• The main problem is to prove reasonable upper bounds on g."; d/. The only
known lower bound on g."; d/ is of the form cd.1="/ logd�1.1="/. It is a
consequence of the lower bounds on the size of weak "-nets [8] and the fact
that every one-sided "-approximant is an "-net.

• Much smaller one-sided approximants can be constructed if P is orientation-
homogeneous: We apply the same construction that was applied to individual
sets Si in Sect. 6 to the set P (with u

defD jPj=t instead of u D n0=t), obtaining
one-sided "-approximants of size polynomial in 1=". While this bound is much
better than the general bound on g."; d/ from Theorem 2, it is still far from the
known bounds for "-nets: Every orientation-homogeneous set admits an "-net
of size only O

�
"�1˛."�1/

�
in the plane and of size only "�12˛."�1/O.1/ in R

d for
d � 3, where ˛ is the inverse Ackermann function [4].

• The diagonal of the stretched grid is a specific orientation-homogeneous
sequence considered in [7] and in [8]. Denote it D. The authors in [8] obtained
a lower bound for "-nets for D from the lower bound for the interval chains
problem considered in [4]. Similarly, a lower bound for the interval chains
problem discussed in Sect. 5 would yield a lower bound for "-approximants
for D.

• In Theorem 2 it is possible to assure that the one-sided approximant A is a
genuine set rather than a multiset. It is easy to do so if P is in general position, as
we may simply perturb each point of A slightly. In general, we cannot ensure that
each sequence Si is orientation-homogeneous, but we can ensure that each Si is
orientation-homogeneous inside the affine subspace ahull Si. That can be done by
using Ramsey’s theorem to extract subsequences of bP that lie in a proper affine
subspace, and then using the induction on the dimension. We can then perturb
the points of Ai within ahull Si. The rest of the argument remains the same.
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356 B. Bukh and G. Nivasch

3. N. Alon, I. Bárány, Z. Füredi, D.J. Kleitman, Point selections and weak �-nets for convex hulls.
Combin. Probab. Comput. 1(3), 189–200 (1992). http://www.tau.ac.il/~nogaa/PDFS/abfk3.pdf

4. N. Alon, H. Kaplan, G. Nivasch, M. Sharir, S. Smorodinsky, Weak �-nets and interval chains.
J. ACM 55(6), Art. 28, 32 (2008). http://www.gabrielnivasch.org/academic/publications/
interval_chains.pdf

5. M. Axenovich, Y. Person, S. Puzynina, A regularity lemma and twins in words. J. Combin.
Theory Ser. A 120(4), 733–743 (2013). arXiv:1204.2180

6. I. Bárány, J. Matoušek, A. Pór, Curves in R
d intersecting every hyperplane at most d C

1 times, in Computational Geometry (SoCG’14) (ACM, New York, 2014), pp. 565–571.
arXiv:1309.1147

7. B. Bukh, J. Matoušek, G. Nivasch, Stabbing simplices by points and flats. Discret. Comput.
Geom. 43(2), 321–338 (2010). arXiv:0804.4464

8. B. Bukh, J. Matoušek, G. Nivasch, Lower bounds for weak epsilon-nets and stair-convexity.
Israel J. Math. 182, 199–208 (2011). arXiv:0812.5039

9. B. Chazelle, J. Friedman, A deterministic view of random sampling and its use in geometry.
Combinatorica 10(3), 229–249 (1990)

10. K.L. Clarkson, A randomized algorithm for closest-point queries. SIAM J. Comput. 17(4),
830–847 (1988)

11. A. Condon, M. Saks, A limit theorem for sets of stochastic matrices. Linear Algebra Appl. 381,
61–76 (2004)

12. D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs. Ars Combin.
16, 5–10 (1983)

13. M. Eliáš, J. Matoušek, E. Roldán-Pensado, Z. Safernová, Lower bounds on geometric Ramsey
functions. SIAM J. Discret. Math. 28(4), 1960–1970 (2014). arXiv:1307.5157

14. U. Feige, T. Koren, M. Tennenholtz, Chasing ghosts: competing with stateful policies, in 55th
Annual IEEE Symposium on Foundations of Computer Science—FOCS 2014 (IEEE Computer
Society, Los Alamitos, 2014), pp. 100–109. arXiv:1407.7635

15. J. Fox, M. Gromov, V. Lafforgue, A. Naor, J. Pach, Overlap properties of geometric expanders.
J. Reine Angew. Math. 671, 49–83 (2012). arXiv:1005.1392

16. J. Fox, J. Pach, A. Suk, A polynomial regularity lemma for semi-algebraic hypergraphs and
its applications in geometry and property testing, in Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms (2015). arXiv:1502.01730v1

17. D. Haussler, E. Welzl, "-nets and simplex range queries. Discret. Comput. Geom. 2(2),
127–151 (1987)

18. J. Matoušek, Tight upper bounds for the discrepancy of half-spaces. Discret. Comput. Geom.
13(3–4), 593–601 (1995)

19. J. Matoušek, Geometric Discrepancy: An Illustrated Guide. Volume 18 of Algorithms and
Combinatorics (Springer, Berlin, 1999)

20. J. Matoušek, Lectures on Discrete Geometry. Volume 212 of Graduate Texts in Mathematics
(Springer, New York, 2002)

21. J. Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math.
Ann. 83(1–2), 113–115 (1921). http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=
GDZPPN002267888

22. A. Suk, A note on order-type homogeneous point sets. Mathematika 60, 37–42 (2014).
arXiv:1305.5934

23. V.N. Vapnik, A.Ja. Červonenkis, The uniform convergence of frequencies of the appearance
of events to their probabilities. Teor. Verojatnost. i Primenen. 16, 264–279 (1971). http://mi.
mathnet.ru/tvp2146

24. G.M. Ziegler, Lectures on Polytopes. Volume 152 of Graduate Texts in Mathematics (Springer,
New York, 1995)

http://www.tau.ac.il/~nogaa/PDFS/abfk3.pdf
http://www.gabrielnivasch.org/academic/publications/interval_chains.pdf
http://www.gabrielnivasch.org/academic/publications/interval_chains.pdf
http://arxiv.org/abs/1204.2180
http://arxiv.org/abs/1309.1147
http://arxiv.org/abs/0804.4464
http://arxiv.org/abs/0812.5039
http://arxiv.org/abs/1307.5157
http://arxiv.org/abs/1407.7635
http://arxiv.org/abs/1005.1392
http://arxiv.org/abs/1502.01730v1
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002267888
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002267888
http://arxiv.org/abs/1305.5934
http://mi.mathnet.ru/tvp2146
http://mi.mathnet.ru/tvp2146


A Note on Induced Ramsey Numbers
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Abstract The induced Ramsey number rind.F/ of a k-uniform hypergraph F is
the smallest natural number n for which there exists a k-uniform hypergraph
G on n vertices such that every two-coloring of the edges of G contains an
induced monochromatic copy of F. We study this function, showing that rind.F/
is bounded above by a reasonable power of r.F/. In particular, our result implies
that rind.F/ � 22ct

for any 3-uniform hypergraph F with t vertices, mirroring the
best known bound for the usual Ramsey number. The proof relies on an application
of the hypergraph container method.

1 Introduction

The Ramsey number r.FI q/ of a k-uniform hypergraph F is the smallest natural
number n such that every q-coloring of the edges of K.k/

n , the complete k-uniform
hypergraph on n vertices, contains a monochromatic copy of F. In the particular
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case when q D 2, we simply write r.F/. The existence of r.FI q/ was established
by Ramsey in his foundational paper [17] and there is now a large body of work
studying the Ramsey numbers of graphs and hypergraphs. For a recent survey, we
refer the interested reader to [5].

In this paper, we will be concerned with a well-known refinement of Ramsey’s
theorem, the induced Ramsey theorem. We say that a k-uniform hypergraph F is
an induced subgraph of another k-uniform hypergraph G if V.F/ � V.G/ and any
k vertices in F form an edge if and only if they also form an edge in G. The induced
Ramsey number rind.FI q/ of a k-uniform hypergraph F is then the smallest natural
number n for which there exists a k-uniform hypergraph G on n vertices such that
every q-coloring of the edges of G contains an induced monochromatic copy of F.
Again, in the particular case when q D 2, we simply write rind.F/.

For graphs, the existence of induced Ramsey numbers was established inde-
pendently by Deuber [6], Erdős, Hajnal, and Pósa [9], and Rödl [18], while for
k-uniform hypergraphs with k � 3 their existence was shown independently by
Nešetřil and Rödl [16] and Abramson and Harrington [1]. The bounds that these
original proofs gave on rind.FI q/were enormous. However, at that time it was noted
by Rödl (unpublished) that for bipartite graphs F the induced Ramsey numbers are
exponential in the number of vertices. Moreover, it was conjectured by Erdős [7] that
there exists a constant c such that every graph F with t vertices satisfies rind.F/ � 2ct.
If true, the complete graph would show that this is best possible up to the constant c.
A result of Conlon, Fox, and Sudakov [3], building on earlier work by Kohayakawa,
Prömel, and Rödl [13], comes close to establishing this conjecture, showing that

rind.F/ � 2ct log t:

However, the method used to prove this estimate only works in the 2-color case. For
q � 3, the best known bound, due to Fox and Sudakov [11], is rind.FI q/ � 2ct3 ,
where c depends only on q.

In this note, we study the analogous question for hypergraphs, showing that the
induced Ramsey number is never significantly larger than the usual Ramsey number.
Our main result is the following.

Theorem 1 Let F be a k-uniform hypergraph with t vertices and ` edges. Then
there are positive constants c1; c2; and c3 such that

rind.FI q/ � 2c1k`3 log.qt`/Rc2k`2Cc3t`;

where R D r.FI q/ is the classical q-color Ramsey number of F.
Define the tower function tk.x/ by t1.x/ D x and, for i � 1, tiC1.x/ D 2ti.x/.

A seminal result of Erdős and Rado [8] says that

r.K.k/
t I q/ � tk.ct/;
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where c depends only on k and q. This yields the following immediate corollary of
Theorem 1.

Corollary 1 For any natural numbers k � 3 and q � 2, there exists a constant c
such that if F is a k-uniform hypergraph with t vertices, then

rind.FI q/ � tk.ct/:

A result of Erdős and Hajnal (see, for example, Chapter 4.7 in [12] and [4]) says
that

r.K.k/
t I 4/ � tk.c

0t/;

where c0 depends only on k. Therefore, the Erdős–Rado bound is sharp up to the
constant c for q � 4. By taking F D K.k/

t , this also implies that Corollary 1 is tight
up to the constant c for q � 4. Whether it is also sharp for q D 2 and 3 depends
on whether r.K.k/

t / � tk.c0t/, though determining if this is the case is a famous, and
seemingly difficult, open problem.

The proof of Theorem 1 relies on an application of the hypergraph container
method of Saxton and Thomason [20] and Balogh, Morris, and Samotij [2]. In
Ramsey theory, the use of this method was pioneered by Nenadov and Steger [14]
and developed further by Rödl, Ruciński, and Schacht [19] in order to give an
exponential-type upper bound for Folkman numbers. Our modest results are simply
another manifestation of the power of this beautiful method.

2 Proof of Theorem 1

In order to state the container theorem we first need some definitions. Recall that
the degree d.�/ of a set of vertices � in a hypergraph H is the number of edges of
H containing � , while the average degree is the average of d.v/ WD d.fvg/ over all
vertices v.

Definition 2 Let H be an `-uniform hypergraph of order N with average degree d.
Let � > 0. Given v 2 V.H/ and 2 � j � `, let

d. j/.v/ D max
˚
d.�/ W v 2 � � V.H/; j� j D j

�
:

If d > 0, define ıj by the equation

ıj�
j�1Nd D

X

v

d. j/.v/:
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The codegree function ı.H; �/ is then defined by

ı.H; �/ D 2.`2/�1
X̀

jD2
2�.

j�1
2 /ıj:

If d D 0, define ı.H; �/ D 0.
The precise lemma we will need is a slight variant of Corollary 3.6 from Saxton

and Thomason’s paper [20]. A similar version was already used in the work of
Rödl, Ruciński, and Schacht [19] and we refer the interested reader to that paper for
a thorough discussion.

Lemma 3 Let H be an `-uniform hypergraph on N vertices with average degree d.
Let 0 < " < 1=2. Suppose that � satisfies ı.H; �/ � "=12`Š and � � 1=144`Š2`.
Then there exists a collection C of subsets of V.H/ such that

(i) for every set I � V.H/ such that e.HŒI�/ � "�`e.H/, there is C 2 C with
I � C,

(ii) e.HŒC�/ � "e.H/ for all C 2 C,
(iii) log jCj � 1000`Š3` log.1="/N� log.1=�/.

Before we give the proof of Theorem 1, we first describe the `-uniform
hypergraph H to which we will apply Lemma 3.

Construction 4 Given a k-uniform hypergraph F with ` edges, we construct an
auxiliary hypergraph H by taking

V.H/ D
 
Œn�

k

!

and E.H/ D
(

E 2
 

V.H/

`

!

WE Š F

)

:

In other words, the vertices of H are the k-tuples of Œn� and the edges of H are copies
of F in

�
Œn�
k

�
.

Proof of Theorem 1 Recall that R D r.FI q/, the q-color Ramsey number of F, and
suppose that F has t vertices and ` edges. Let us fix the following numbers:

� D n�
1
2` ; p D 1000Rkq˛; ˛ D n�

1
2`C 1

4`.`C1/ ;

" D 1=.2qRt/; n D `40`2.`C1/.1000q/8`.`C1/R4k`.`C1/C4t`

 
t

k

!4`

:

(1)

Remark 5 Note that n is bounded above by an expression of the form

2c1k`3 log.qt`/Rc2k`2Cc3t`;

as required.
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Obviously, R � t and one can check that p and n satisfy the following conditions,
which we will make use of during the course of the proof:

p � 1; (2)

n � .24 � 2.`2/ttq`ŠRt/2; (3)

n > .144`Š2`/2`; (4)

n > `40`
2.`C1/; (5)

n > .1000q/8`.`C1/R4k`.`C1/C4t`

 
t

k

!4`

: (6)

We will show that, with positive probability, a random hypergraph G 2 G
.k/.n; p/

has the property that every q-coloring of its edges contains an induced monochro-
matic copy of F. The proof proceeds in two stages. First, we use Lemma 3 to
show that, with probability 1 � o.1/, G has the property that any q-coloring of its
edges yields many monochromatic copies of F. Then we show that some of these
monochromatic copies must be induced.

More formally, let X be the event that there is a q-coloring of the edges of G
which contains at most

M WD "�`.n/t
aut.F/

monochromatic copies of F in each color, and let Y be the event that G contains at
least M noninduced copies of F. Note that if X\Y happens, then, in any q-coloring,
there are more monochromatic copies of F in one of the q colors than there are
noninduced copies of F in G. Hence, that color class must contain an induced copy
of F.

We now proceed to show that the probability P.X/ tends to zero as n tends
to infinity. In order to apply Lemma 3, we need to check that � and " satisfy
the requisite assumptions with respect to the `-uniform hypergraph H defined in
Construction 4. Let � � V.H/ be arbitrary and define

V� D
[

v2�
v � Œn�:

For an arbitrary set W � Œn� X V� with jWj D t � jV� j, let embF.�;W/ denote
the number of copies eF of F with V.eF/ D W [ V� and � � E.eF/. Observe that
this number does not actually depend on the choice of W, so we will simply use
embF.�/ from now on.

Since there are clearly
�n�jV� j

t�jV� j
�

choices for the set W, we arrive at the following
claim.
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Claim 1 For any � � V.H/,

d.�/ D
 

n � jV� j
t � jV� j

!

embF.�/: ut

Let us denote by tj the minimum number of vertices of F which span j edges.
From Claim 1, it follows that for any � � V.H/ with j� j D j, we have

d.�/ D
 

n � jV� j
t � jV� j

!

embF.�/ �
 

n � tj
t � tj

!

embF.�/:

On the other hand, for a singleton �1 � V.H/, we have jV�1 j D k and therefore
d D d.�1/ is such that

d.�/

d
�
�n�tj

t�tj

�

�n�k
t�k

�
embF.�/

embF.�1/
�
�n�tj

t�tj

�

�n�k
t�k

� <
�n

t

	k�tj
:

It then follows from Definition 2 and (1) that

ıj <
.n=t/k�tj

� j�1 < ttnk�tjC. j�1/=.2`/: (7)

Since tj is increasing with respect to j, t2 � kC 1, and j � `, we have k� tjC j�1
2`
�

�1=2. Thus, in view of (7), we have

ıj < ttnk�tjC. j�1/=.2`/ � ttn�1=2 (8)

for all 2 � j � `.
Using Definition 2 and inequality (8), we can now bound the codegree function

ı.H; �/ by

ı.H; �/ D 2.`2/�1
X̀

jD2
2�.

j�1
2 /ıj � 2.`2/�1ttn�1=2

X̀

jD2
2�.

j�1
2 / � 2.`2/ttn�1=2: (9)

Since n satisfies (3), inequality (9) implies that

ı.H; �/ � 2.`2/ttn�1=2 � "

12`Š
:

That is, ı.H; �/ satisfies the condition in Lemma 3.
Finally, (4) implies that � satisfies the condition

� D n�1=.2`/ <
1

144`Š2`
:
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Therefore, the assumptions of Lemma 3 are met and we can let C be the collection
of subsets from V.H/ obtained from applying Lemma 3. Denote the elements of C
by C1;C2; : : : ;CjCj.

For every choice of 1 � a1; : : : ; aq � jCj (not necessarily distinct), let Ea1;:::;aq be
the event that G � Ca1 [ � � � [ Caq . Next we will show the following claim.

Claim 2

P.X/ � P
 _

a1;:::;aq

Ea1;:::;aq

�

�
X

a1;:::;aq

P.Ea1;:::;aq/: (10)

Proof Suppose that G 2 X. By definition, there exists a q-coloring of the edges of
G, say with colors 1; 2; : : : ; q, which contains at most M copies of F in each color.
For any color class j, let Ij denote the set of vertices of H which correspond to edges
of color j in G. Since each edge in HŒIj� corresponds to a copy of F in color j, we
have e.HŒIj�/ � M. Note that

M D "�`e.H/;

which means that each Ij satisfies the condition (i) of Lemma 3. Therefore, for each
color class j, there must be a set Caj 2 C such that Caj � Ij. Since G D S

j Ij, this
implies that G 2 Ea1;:::;aq . Since G 2 X was arbitrary, the bound (10) follows and the
claim is proved. ut

Owing to Claim 2, we now bound P.Ea1;:::;aq/. Recalling the definition of the
event Ea1;:::;aq , we note that

P.Ea1;:::;aq/ D .1 � p/jV.H/X.Ca1[			[Caq /j: (11)

Hence, we shall estimate jV.H/ X .Ca1 [ � � � [ Caq/j to derive a bound for P.X/
by (10).

Claim 3 For all choices 1 � a1; : : : ; aq � jCj we have

jV.H/ X .Ca1 [ � � � [ Caq/j �
1

2

� n

R

	k
:

Proof Let a1; : : : ; aq be fixed and set

A D



A 2
 
Œn�

R

!

W
 

A

k

!

� Ca1 [ � � � [ Caq

�

: (12)

By the definition of R D r.FI q/, for each set A 2 A there is an index j D j.A/ 2 Œq�
such that Caj contains a copy of F with vertices from A. The element e 2 E.Caj/ that
corresponds to this copy of F satisfies e � �A

k

�
and, thus,

S
x2e x � A. We now give
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an upper bound for jAj by counting the number of pairs in

P D



.e;A/ 2
q[

iD1
E
�
Cai

� 
A with
[

x2e

x � A

�

:

On the one hand, we have already established that jP j � jAj. On the other hand,
for any fixed e 2 E.H/, we have jSx2e xj D jV.F/j D t and, therefore, there are at
most

�n�t
R�t

�
sets A �Sx2e x. It follows that

jAj � jP j �
ˇ
ˇ
ˇ
ˇ

q[

iD1
E
�
Cai

�
ˇ
ˇ
ˇ
ˇ

 
n � t

R � t

!
.ii/� q"e.H/

 
n � t

R � t

!

(1)D e.H/

2Rt

 
n � t

R � t

!

� .n/t
2Rt

 
n� t

R � t

!

� 1

2

 
n

R

!

:

(13)

By definition, each A 2 �Œn�R

� X A satisfies
�A

k

� š Ca1 [ � � � [ Caq . Hence, V.H/ X
.Ca1[� � �[Caq/ intersects

�A
k

�
. Since an element of V.H/ can appear in at most

�n�k
R�k

�

sets A, it follows from (13) that there are at least

1

2

 
n

R

!� 
n � k

R � k

!

� 1

2

� n

R

	k

elements in V.H/ X .Ca1 [ � � � [ Caq/, as required. ut
In view of Claim 3, our choice of p D 1000Rkq˛, where ˛ D n�1=2`C1=4`.`C1/,

and (11), we have, for any Ca1 ; : : : ;Caq 2 C,

P.Ea1;:::;aq/ � .1 � p/.n=R/k=2

� exp
� � pnk=2Rk

� D exp
� � .1000Rkq˛/nk=2Rk

�

D e�500q˛nk � e�1000q˛N ;

(14)

where, in the last step, we used N D �n
k

� � nk

2
. Therefore, (10) and (14) together

with the bound on jCj given by Lemma 3(iii) imply that

P.X/ �
X

Ca1 ;:::;Caq2C
P.Ea1;:::;aq/ � jCjqe�1000q˛N

� exp
�
1000q`Š3` log.1="/N� log.1=�/� 1000q˛N

�

D exp
�
1000qN�.`Š3` log.1="/ log.1=�/� ˛=�/�

� exp
�
1000qN�.`Š3 log2 n � n1=.4`.`C1///

� � 1=4;

where we used that n satisfies (5).



A Note on Induced Ramsey Numbers 365

Now, by Markov’s inequality, with probability at least 1=2, the number of
noninduced copies of F in G will be at most twice the expected number of copies,
which is fewer than

2p`C1
.n/t

aut.F/

 
t

k

!

D 2.1000q/`C1Rk.`C1/n�1=2�1=.4`/
.n/t

aut.F/

 
t

k

!

<
1

2qRt
.n�1=.2`//`

.n/t
aut.F/

D "�` .n/t
aut.F/

D M;

where the inequality above follows from (6). In other words, P.Y/ � 1=2 and,
therefore, P.X \ Y/ � 1=4, so there exists a graph G such that X \ Y holds. By our
earlier observations, this completes the proof.

3 Concluding Remarks

Beginning with Fox and Sudakov [10], much of the recent work on induced Ramsey
numbers for graphs has used pseudorandom rather than random graphs for the target
graph G. The results of this paper rely very firmly on using random hypergraphs.
It would be interesting to know whether comparable bounds could be proved using
pseudorandom hypergraphs.

It would also be interesting to prove comparable bounds for the following variant
of the induced Ramsey theorem, first proved by Nešetřil and Rödl [15]: for every
graph F, there exists a graph G such that every q-coloring of the triangles of G
contains an induced copy of F all of whose triangles receive the same color. By
taking F D Kt and q D 4, we see that jGjmay need to be double exponential in jFj.
We believe that a matching double-exponential upper bound should also hold.

References

1. F.G. Abramson, L.A. Harrington, Models without indiscernibles. J. Symb. Log. 43(3), 572–600
(1978). doi:10.2307/2273534. MR503795

2. J. Balogh, R. Morris, W. Samotij, Independent sets in hypergraphs. J. Am. Math. Soc. 28(3),
669–709 (2015). doi:10.1090/S0894-0347-2014-00816-X MR3327533

3. D. Conlon, J. Fox, B. Sudakov, On two problems in graph Ramsey theory. Combinatorica
32(5), 513–535 (2012). doi:10.1007/s00493-012-2710-3. MR3004807

4. D. Conlon, J. Fox, B. Sudakov, An improved bound for the stepping-up lemma. Discret. Appl.
Math. 161(9), 1191–1196 (2013). doi:10.1016/j.dam.2010.10.013. MR3030610

5. D. Conlon, J. Fox, B. Sudakov, Recent Developments in Graph Ramsey Theory. Surveys in
Combinatorics 2015, London Mathematical Society Lecture Note Series, vol. 424 (Cambridge
University Press, Cambridge, 2015), pp. 49–118. doi:10.1017/CBO9781316106853.003

6. W. Deuber, Generalizations of Ramsey’s Theorem. Infinite and Finite Sets (Colloquium,
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15. J. Nešetřil, V. Rödl, Partitions of Subgraphs. Recent Advances in Graph Theory (Proceedings
of the Second Czechoslovak Symposium, Prague, 1974) (Academia, Prague, 1975), pp. 413–
423. MR0429655
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ARRIVAL: A Zero-Player Graph Game
in NP \ coNP

Jérôme Dohrau, Bernd Gärtner, Manuel Kohler, Jiří Matoušek,
and Emo Welzl

Abstract Suppose that a train is running along a railway network, starting from a
designated origin, with the goal of reaching a designated destination. The network,
however, is of a special nature: every time the train traverses a switch, the switch will
change its position immediately afterwards. Hence, the next time the train traverses
the same switch, the other direction will be taken, so that directions alternate with
each traversal of the switch.

Given a network with origin and destination, what is the complexity of deciding
whether the train, starting at the origin, will eventually reach the destination?

It is easy to see that this problem can be solved in exponential time, but we are not
aware of any polynomial-time method. In this short paper, we prove that the problem
is in NP \ coNP. This raises the question whether we have just failed to find a
(simple) polynomial-time solution, or whether the complexity status is more subtle,
as for some other well-known (two-player) graph games (Halman, Algorithmica
49(1):37–50, 2007).

1 Introduction

In this paper, a switch graph is a directed graph G in which every vertex has at most
two outgoing edges, pointing to its even and to its odd successor. Formally, a switch
graph is a 4-tuple G D .V;E; s0; s1/, where s0; s1 W V ! V , E D f.v; s0.v// W
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v 2 Vg [ f.v; s1.v// W v 2 Vg, with loops .v; v/ allowed. Here, s0.v/ is the even
successor of v, and s1.v/ the odd successor. We may have s0.v/ D s1.v/ in which
case v has just one outgoing edge. We always let n D jVj; for v 2 V , EC.v/ denotes
the set of outgoing edges at v, while E�.v/ is the set of incoming edges.

Given a switch graph G D .V;E; s0; s1/ with origin and destination o; d 2 V , the
following procedure describes the train run that we want to analyze; our problem
is to decide whether the procedure terminates. For the procedure, we assume arrays
s_curr and s_next, indexed by V , such that initially s_currŒv� D s0.v/ and
s_nextŒv� D s1.v/ for all v 2 V .

procedure RUN(G; o; d)
v WD o
while v ¤ d do

w WD s_currŒv�
swap (s_currŒv�;s_nextŒv�)
v WD w F traverse edge .v;w/

end while
end procedure

Definition 1 Problem ARRIVAL is to decide whether procedure RUN.G; o; d/
terminates for a given switch graph G D .V;E; s0; s1/ and o; d 2 V .

Theorem 1 Problem ARRIVAL is decidable.

Proof The deterministic procedure RUN can be interpreted as a function that maps
the current state .v;s_curr;s_next/ to the next state. We can think of the state
as the current location of the train, and the current positions of all the switches.
As at most n2n different states may occur, RUN either terminates within this many
iterations, or some state repeats, in which case RUN enters an infinite loop. Hence,
to decide ARRIVAL, we have to go through at most n2n iterations of RUN. ut

Figure 1 shows that a terminating run may indeed take exponential time.
Existing research on switch graphs (with the above, or similar definitions) has

mostly focused on actively controlling the switches, with the goal of attaining some
desired behavior of the network (e.g. reachability of the destination); see e.g. [5].
The question we address here rather fits into the theory of cellular automata. It is
motivated by the online game Looping Piggy (https://scratch.mit.edu/
projects/1200078/) that the second author has written for the Kinderlabor, a

o d
· · ·

v1 v2 v3 vn

Fig. 1 Switch graph G with nC2 vertices on which RUN.G; o; d/ traverses an exponential number
of edges. If we encode the current positions of the switches at vn; : : : ; v1 with an n-bit binary
number (0: even successor is next; 1: odd successor is next), then the run counts from 0 to 2n � 1,
resets the counter to 0, and terminates. Solid edges point to even or unique successors, dashed
edges to odd successors
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Swiss-based initiative to educate children at the ages 4–12 in natural sciences and
computer science (http://kinderlabor.ch).

In Sects. 2 and 3, we prove that ARRIVAL is in NP as well as in coNP; Sect. 4
shows that a terminating run can be interpreted as the unique solution of a flow-
type integer program with balancing conditions whose LP relaxation may have only
fractional optimal solutions.

2 ARRIVAL Is in NP

A natural candidate for an NP-certificate is the run profile of a terminating run. The
run profile assigns to each edge the number of times it has been traversed during the
run. The main difficulty is to show that fake run profiles cannot fool the verifier. We
start with a necessary condition for a run profile: it has to be a switching flow.

Definition 2 Let G D .V;E; s0; s1/ be a switch graph, and let o; d 2 V , o ¤ d. A
switching flow is a function x W E ! N0 (where x.e/ is denoted as xe) such that the
following two conditions hold for all v 2 V .

X

e2EC.v/

xe �
X

e2E�.v/

xe D
8
<

:

1; v D o;
�1; v D d;
0; otherwise:

(1)

0 � x.v;s1.v// � x.v;s0.v// � x.v;s1.v// C 1: (2)

Observation 1 Let G D .V;E; s0; s1/ be a switch graph, and let o; d 2 V, o ¤ d,
such that RUN.G; o; d/ terminates. Let x.G; o; d/ W E ! N0 (the run profile) be the
function that assigns to each edge the number of times it has been traversed during
RUN.G; o; d/. Then x.G; o; d/ is a switching flow.

Proof Condition (1) is simply flow conservation (if the run enters a vertex, it has
to leave it, except at o and d), while (2) follows from the run alternating between
successors at any vertex v, with the even successor s0.v/ being first. ut

While every run profile is a switching flow, the converse is not always true.
Figure 2 shows two switching flows for the same switch graph, but only one of them

o d

1 2 1

1

w o d

1 3 1

2

w

Fig. 2 Run profile (left) and fake run profile (right); both are switching flows. Solid edges point
to even or unique successors, dashed edges to odd successors

http://kinderlabor.ch
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is the actual run profile. The “fake” run results from going to the even successor
of w twice in a row, before going to the odd successor d. This shows that the
balancing condition (2) fails to capture the strict alternation between even and odd
successors. Despite this, and maybe surprisingly, the existence of a switching flow
implies termination of the run.

Lemma 1 Let G D .V;E; s0; s1/ be a switch graph, and let o; d 2 V, o ¤ d. If
there exists a switching flow x, then RUN.G; o; d/ terminates, and x.G; o; d/ � x
(componentwise).

Proof We imagine that for all e 2 E we put xe pebbles on edge e, and then start
RUN.G; o; d/. Every time an edge is traversed, we let the run collect one pebble.
The claim is that we never run out of pebbles, which proves termination as well as
the inequality for the run profile.

To prove the claim, we first observe two invariants: during the run, flow
conservation (w.r.t. to the remaining pebbles) always holds, except at d, and at
the current vertex which has one more pebble on its outgoing edges. Moreover, by
alternation, starting with the even successor, the numbers of pebbles on .v; s0.v//
and .v; s1.v// always differ by at most one, for every vertex v.

For contradiction, consider now the first iteration of RUN.G; o; d/ where we run
out of pebbles, and let e D .v;w/ be the edge (now holding�1 pebbles) traversed in
the offending iteration. By the above alternation invariant, the other outgoing edge
at v cannot have any pebbles left, either. Then the flow conservation invariant at v
shows that already some incoming edge of v has a deficit of pebbles, so we have run
out of pebbles before, which is a contradiction. ut
Theorem 2 Problem ARRIVAL is in NP.

Proof Given an instance .G; o; d/, the verifier receives a function x W E ! N0, in
form of binary encodings of the values xe, and checks whether it is a switching flow.
For a Yes-instance, the run profile of RUN.G; o; d/ is a witness by Observation 1; the
proof of Theorem 1 implies that the verification can be made to run in polynomial
time, since every value xe is bounded by n2n. For a No-instance, the check will fail
by Lemma 1. ut

3 ARRIVAL Is in coNP

Given an instance .G; o; d/ of ARRIVAL, the main idea is to construct in poly-
nomial time an instance . NG; o; Nd/ such that RUN.G; o; d/ terminates if and only
if RUN. NG; o; Nd/ does not terminate. As the main technical tool, we prove that
nontermination is equivalent to the arrival at a “dead end”.

Definition 3 Let G D .V;E; s0; s1/ be a switch graph, and let o; d 2 V , o ¤ d.
A dead end is a vertex from which there is no directed path to the destination d in
the graph .V;E/. A dead edge is an edge e D .v;w/ whose head w is a dead end.
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An edge that is not dead is called hopeful; the length of the shortest directed path
from its head w to d is called its desperation.

By computing the tree of shortest paths to d, using inverse breadth-first
search from d, we can identify the dead ends in polynomial time. Obviously, if
RUN.G; o; d/ ever reaches a dead end, it will not terminate, but the converse is also
true. For this, we need one auxiliary result.

Lemma 2 Let G D .V;E; s0; s1/ be a switch graph, o; d 2 V, o ¤ d, and let
e D .v;w/ 2 E be a hopeful edge of desperation k. Then RUN.G; o; d/ will traverse
e at most 2kC1 � 1 times.

Proof Induction on the desperation k of e D .v;w/. If k D 0, then w D d, and
indeed, the run will traverse e at most 21 � 1 D 1 times. Now suppose k > 0

and assume that the statement is true for all hopeful edges of desperation k � 1.
In particular, one of the two successor edges .w; s0.w// and .w; s1.w// is such a
hopeful edge, and is therefore traversed at most 2k � 1 times. By alternation at w,
the other successor edge is traversed at most once more, hence at most 2k times. By
flow conservation, the edges entering w (in particular e) can be traversed at most
2k C 2k � 1 D 2kC1 � 1 times. ut
Lemma 3 Let G D .V;E; s0; s1/ be a switch graph, and let o; d 2 V, o ¤ d. If
RUN.G; o; d/ does not terminate, it will reach a dead end.

Proof By Lemma 2, hopeful edges can be traversed only finitely many times, hence
if the run cycles, it eventually has to traverse a dead edge and thus reach a dead
end. ut

Now we can prove the main result of this section.

Theorem 3 Problem ARRIVAL is in coNP.

Proof Let .G; o; d/ be an instance, G D .V;E; s0; s1/. We transform .G; o; d/ into a
new instance . NG; o; Nd/, NG D . NV; NE; Ns0; Ns1/ as follows. We set NV D V [ fNdg, where
Nd is an additional vertex, the new destination. We define Ns0; Ns1 as follows. For every
dead end w, we set

Ns0.w/ D Ns1.w/ WD Nd: (3)

For the old destination d, we install the loop

Ns0.d/ D Ns1.d/ WD d: (4)

For the new destination, Ns0.Nd/ and Ns1.Nd/ are chosen arbitrarily. In all other cases,
Ns0.v/ WD s0.v/ and Ns1.v/ WD s1.v/. This defines NE and hence NG.

The crucial properties of this construction are the following:

(i) If RUN.G; o; d/ reaches the destination d, it has not visited any dead ends, hence
s0 and Ns0 as well as s1 and Ns1 agree on all visited vertices except d. This means
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that RUN. NG; o; Nd/ will also reach d, but then cycle due to the loop that we have
installed in (4).

(ii) If RUN.G; o; d/ cycles, it will at some point reach a first dead end w, by
Lemma 3. As s0 and Ns0 as well as s1 and Ns1 agree on all previously visited
vertices, RUN. NG; o; Nd/ will also reach w, but then terminate due to the edges
from w to Nd that we have installed in (3).

To summarize, RUN.G; o; d/ terminates if and only if RUN. NG; o; Nd/ does not
terminate. Since . NG; o; Nd/ can be constructed in polynomial time, we can verify in
polynomial time that .G; o; d/ is a No-instance by verifying that . NG; o; Nd/ is a Yes-
Instance via Theorem 2. ut

4 Is ARRIVAL in P?

Observation 1 and Lemma 1 show that ARRIVAL can be decided by checking
the solvability of a system of linear (in)equalities (1) and (2) over the nonnegative
integers.

The latter is an NP-complete problem in general: many of the standard NP-
complete problems, e.g. SAT (satisfiability of boolean formulas) can easily be
reduced to finding an integral vector that satisfies a system of linear (in)equalities.

In our case, we have a flow structure, though, and finding integral flows in
a network is a well-studied and easy problem [6, Chapter 8]. In particular, if
only the flow conservation constraints (1) are taken into account, the existence
of a nonnegative integral solution is equivalent to the existence of a nonnegative
real solution. This follows from the classical Integral Flow Theorem, see [6,
Corollary 8.7]. Real solutions to systems of linear (in)equalities can be found in
polynomial time through linear programming [6, Chapter 4].

However, the additional balancing constraints (2) induced by alternation at the
switches, make the situation more complicated. Figure 3 depicts an instance which
has a real-valued “switching flow” satisfying constraints (1) and (2), but no integral
one (since the run does not terminate).

Fig. 3 The run will enter the
loop at t and cycle, so there is
no (integral) switching flow.
But a real-valued “switching
flow” (given by the numbers)
exists. Solid edges point to
even or unique successors,
dashed edges to odd
successors
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We conclude with a result that summarizes the situation and may be the basis for
further investigations.

Theorem 4 Let G D .V;E; s0; s1/ be a switch graph, and let o; d 2 V, o ¤ d.
RUN.G; o; d/ terminates if and only if there exists an integral solution satisfying the
constraints (1) and (2). In this case, the run profile x.G; o; d/ is the unique integral
solution that minimizes the linear objective function†.x/ DPe2E xe subject to the
constraints (1) and (2).

Proof Observation 1 and Lemma 1 show the equivalence between termination
and existence of an integral solution (a switching flow). Suppose that the run
terminates with run profile x.G; o; d/. We have x.G; o; d/ � x for every switching
flow x, by Lemma 1. In particular, †.x.G; o; d// � †.x/, so the run profile has
minimum value among all switching flows. A different switching flow x of the
same value would have to be smaller in at least one coordinate, contradicting
x.G; o; d/ � x. ut

Theorem 4 shows that the existence of x.G; o; d/ and its value can be established
by solving an integer program [6, Chapter 5]. Moreover, this integer program is of
a special kind: its unique optimal solution is at the same time a least element w.r.t.
the partial order “�” over the set of feasible solutions.

5 Conclusion

The main question left open is whether the zero-player graph game ARRIVAL is
in P. There are three well-known two-player graph games in NP \ coNP for which
membership in P is also not established: simple stochastic games, parity games,
and mean-payoff games. All three are even in UP \ coUP, meaning that there exist
efficient verifiers for Yes- and No-instances that accept unique certificates [1, 3]. In
all three cases, the way to prove this is to assign payoffs to the vertices in such a
way that they form a certificate if and only if they solve a system of equations with
a unique solution.

It is natural to ask whether also ARRIVAL is in UP\ coUP. We do not know the
answer. The natural approach suggested by Theorem 4 is to come up with a verifier
that does not accept just any switching flow, but only the unique one of minimum
norm corresponding to the run profile. However, verifying optimality of a feasible
integer program solution is hard in general, so for this approach to work, one would
have to exploit specific structure of the integer program at hand. We do not know
how to do this.

As problems in NP \ coNP cannot be NP-hard (unless NP and coNP collapse),
other concepts of hardness could be considered for ARRIVAL. As a first step in
this direction, Karthik [4] has shown that a natural search version of ARRIVAL
is contained in the complexity class PLS (Polynomial Local Search) which has
complete problems not known to be solvable in polynomial time. PLS-hardness of
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ARRIVAL would not contradict common complexity theoretic beliefs; establishing
such a hardness result would at least provide a satisfactory explanation why we have
not been able to find a polynomial-time algorithm for ARRIVAL.

Acknowledgements We thank the referees for valuable comments and Rico Zenklusen for
constructive discussions.
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Constant-Factor Approximation for TSP
with Disks

Adrian Dumitrescu and Csaba D. Tóth

Abstract We revisit the traveling salesman problem with neighborhoods (TSPN)
and present the first constant-ratio approximation for disks in the plane: Given a set
of n disks in the plane, a TSP tour whose length is at most O.1/ times the optimal
can be computed in time that is polynomial in n. Our result is the first constant-ratio
approximation for a class of planar convex bodies of arbitrary size and arbitrary
intersections.

In order to achieve a O.1/-approximation, we reduce the traveling salesman
problem with disks, up to constant factors, to a minimum weight hitting set problem
in a geometric hypergraph. The connection between TSPN and hitting sets in
geometric hypergraphs, established here, is likely to have future applications.

1 Introduction

In the Euclidean Traveling Salesman Problem (ETSP), given a set of points in the
Euclidean space R

d, d � 2, one seeks a shortest closed curve (a.k.a. tour) that
visits each point. In the TSP with neighborhoods (TSPN), each point is replaced
by a point-set, called region or neighborhood, and the TSP tour must visit at least
one point in each region, i.e., it must intersect each region. The oldest record
that we could trace of this variant goes back to Arkin and Hassin [2]. Since the
Euclidean TSP is known to be NP-hard in R

d for every d � 2 [21, 22, 40], TSPN
is also NP-hard for every d � 2. TSP is recognized as one of the corner-stone
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problems in combinatorial optimization. Other related problems in geometric
network optimization can be found in the two surveys by Mitchell [32, 33].

It is known that the Euclidean TSP admits a polynomial-time approximation
scheme in R

d, where d D O.1/, due to classic results of Arora [3] and Mitchell [31].
Subsequent running time improvements have been obtained by Rao and Smith [41];
specifically, the running time of their PTAS is O. f ."/ n log n/, where f ."/ grows
exponentially in 1=". In contrast, TSPN is generally harder to approximate.
Typically, somewhat better approximations are available when the neighborhoods
are pairwise disjoint, or fat, or have comparable sizes. We briefly review some of
the previous work concerning approximation algorithms for TSPN.

Related work Arkin and Hassin [2] gave constant-factor approximations for
translates of a connected region, and more generally, for neighborhoods of pairwise
parallel diameters, where the ratio between the longest and the shortest diameter is
bounded by a constant. Dumitrescu and Mitchell [16] extended the above result
to connected neighborhoods with comparable diameters. Bodlaender et al. [8]
described a PTAS for TSPN with disjoint fat neighborhoods of about the same
size in R

d, where d is constant (this includes the case of disjoint unit disks in
the plane). Earlier Dumitrescu and Mitchell [16] proposed a PTAS for TSPN with
fat neighborhoods of about the same size and bounded depth in the plane, where
Spirkl [44] recently reported and filled a gap; see also a follow-up note in [36].

Mata and Mitchell [29] gave a O.log n/-approximation for TSPN with n con-
nected and arbitrarily intersecting neighborhoods in the plane; see also [7]. Elbas-
sioni et al. [19] and Gudmundsson and Levcopoulos [24] improved the running time
of the algorithm. The O.log n/-approximation relies on the following early result by
Levcopoulos and Lingas [28]: Every (simple) rectilinear polygon P with n vertices,
r of which are reflex, can be partitioned in O.n log n/ time into rectangles whose
total perimeter is log r times the perimeter of P.

Using an approximation algorithm due to Slavik [43] for Euclidean group TSP,
de Berg et al. [6] obtained constant-factor approximations for disjoint fat convex
regions (of arbitrary diameters) in the plane. Subsequently, Elbassioni et al. [19]
gave constant-factor approximations for arbitrarily intersecting fat convex regions of
comparable size. Preliminary work by Mitchell [34] gave a PTAS for planar regions
of bounded depth and arbitrary size, in particular for disjoint fat regions. Chan and
Jiang [12] gave a PTAS for fat, weakly disjoint regions in metric spaces of constant
doubling dimension (combining an earlier QPTAS by Chan and Elbassioni [11] with
a PTAS for TSP in doubling metrics by Bartal et al. [4]).

Disks and balls are undoubtedly among the simplest neighborhood types [2, 16,
25]. TSPN for disks is NP-hard, and it remains so for congruent disks, since when
the disk centers are fixed and the radius tends to zero, the problem reduces to TSP
for points. Regarding approximations, the case of congruent balls is relatively well
understood: Given a set of n congruent (say, unit) balls in R

d, a TSP tour whose
length is at most O.1/ times the optimal can be computed in polynomial time,
when d is constant [18]. However, for disks of arbitrary radii and intersections,
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no constant-ratio approximation was known. Some of the difficulties with disks of
arbitrary radii in the plane where uncovered in [17].

Recent work of Dumitrescu and Tóth [18] focused on unbounded neighborhoods,
such as lines or hyperplanes: They gave a constant-factor approximation for TSPN
with n hyperplanes in R

d in O.n/ time; and a O.log3 n/-approximation for n
lines in R

d in time polynomial in n, where d is constant. In contrast, the current
paper considers TSPN with arbitrary disks in R

2, which requires quite different
approximation techniques and new ideas.

Degree of approximation Regarding the degree of approximation achievable,
TSPN with arbitrary neighborhoods is generally APX-hard [6, 15, 42], and it
remains so even for segments of nearly the same length [19]. For disconnected
neighborhoods, TSPN cannot be approximated within any constant ratio unless P D
NP [42]. Further, approximating TSPN for (arbitrary) connected neighborhoods
in the plane within a factor smaller than 2 is NP-hard [42]. Delineating the class
of neighborhoods for which constant-factor approximations are possible remains
mysterious, at least at the moment. It is conjectured that approximating TSPN for
disconnected regions in the plane within a O.log1=2 n/ factor is intractable unless
P D NP [42]. Similarly, it is conjectured that approximating TSPN for connected
regions in R

3 within a O.log1=2 n/ factor and for disconnected regions in R
3 within

a O.log2=3 n/ factor [42] are probably intractable.

Our results In this paper we present a polynomial-time (deterministic) algorithm
that, given a set of n disks in R

2 (with arbitrary radii and intersections), returns a
TSP tour whose length is O.1/ times the optimal.

Theorem 1 Given a set of n disks in the plane, a TSP tour whose length is at most
O.1/ times the optimal can be computed in time polynomial in n.

In their seminal paper on TSPN, Arkin and Hassin [2] suggested disks as the
most natural type of neighborhood—in which the traveling salesman can meet each
potential buyer at some point close to the respective buyer’s location. Here the
radius of each disk indicates how much each potential buyer is willing to travel
to meet the salesman. While constant-ratio approximations for disks of the same
(or comparable) radius [2, 16] and for disjoint disks of arbitrary radii [6] have been
obtained early on, the case of disks with arbitrary radii and arbitrary intersections
has remained open until now.

2 Preliminaries

We achieve a O.1/-approximation for TSP with disks by reducing the problem,
up to constant factors, to a minimum weight hitting set problem in a geometric
hypergraph, for which a constant-factor approximation algorithm was found only
recently [13].
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Hitting sets Hitting sets are defined in general in terms of hypergraphs (i.e., set
systems or range spaces). A hypergraph is a pair G D .V;E/ where V is a finite
vertex set and E � 2V is a finite collection of subsets of V (called edges). In a
geometric (primal) hypergraph, the vertex set V is a finite set of n points in Euclidean
space R

d, and all sets in E are of the form V \ Q where Q is a certain geometric
shape of bounded description complexity, e.g., halfspace, ball, triangle, axis-aligned
rectangle, etc. Geometric hypergraphs often have nice properties such as bounded
VC-dimension or bounded union complexity; see [20, 39].

A hitting set in a hypergraph G D .V;E/ is a subset of vertices H � V such that
every hyperedge in E contains some point in H. The minimum hitting set (MHS)
problem asks for a hitting set of minimum cardinality in a given hypergraph. The
minimum weight hitting set (MWHS) problem asks for a hitting set of minimum
weight in a given hypergraph with vertex weights w W V ! R

C.
Brönnimann and Goodrich [9] gave a O.logOPT/-approximation for MHS in

geometric hypergraphs using LP-relaxations and the fact that geometric hypergraphs
have bounded VC-dimension. Clarkson and Varadarajan [14] gave a O.log log n/-
approximation for some geometric hypergraphs, by observing a connection between
hitting sets and the combinatorial complexity of the union of the corresponding
geometric objects. Mustafa and Ray [38] gave a PTAS for MHS with disks and
pseudo-disks in the plane using a local search paradigm; see also [1, 10]. However,
this method does not seem to extend to the weighted version (MWHS).

Varadarajan [45] gave a O.log log n/-approximation for MWHS, extending
the results from [14]. His approach was further extended by Chan et al. [13]
who obtained a randomized polynomial-time O.1/-approximation algorithm for
MWHS in geometric hypergraphs of linear union complexity, including geometric
hypergraphs defined by disks in R

2 [26]; their algorithm can be derandomized [13,
Section 3]. Specifically, we use the following result due to Chan et al. [13].

Theorem 2 ([13, Corollary 1.4 and Section 3]) There is a polynomial-time
(deterministic) O.1/-approximation algorithm for the minimum weight hitting set
problem for disks in R

2.

Definitions Let R be a set of regions (neighborhoods) in R
2. An optimal TSP tour

for R, denoted by OPT.R/, is a shortest closed curve in the plane that intersects
every region in R; when R is clear from the context, OPT.R/ and OPT are used
interchangeably.

The Euclidean length of a curve � is denoted by len.�/. Similarly, the total
(Euclidean) length of the edges of a geometric graph G is denoted by len.G/. The
perimeter of a polygon P is denoted by per.P/; the boundary and the interior of a
region R are denoted by @R and Rı, respectively; the convex hull of a planar set S is
denoted by conv.S/.

The distance between two planar point sets S1; S2 � R
2, is dist.S1; S2/ D

inffdist.s1; s2/ W s1 2 S1; s2 2 S2g. The distance between a point set S1 and a
geometric graph G is defined as dist.S1;G/ WD dist.S1; SG/, where SG is the set
of all points at vertices and on the edges of G.
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Algorithm Outline Given a set S of n disks in Euclidean plane, we construct a
connected geometric graph G that intersects every disk in S and such that len.G/ D
O.len.OPT//. An Eulerian tour of the multi-graph obtained by doubling each edge
of G visits each disk and its length is 2 len.G/ D O.len.OPT//, as desired.

The graph G is the union of three geometric graphs, G1, G2 and G3. The graph G1

is a O.1/-approximation of an optimal tour for a maximal subset of pairwise disjoint
disks in S; this step is based on earlier results [6, 19] (Sect. 3). The graph G2 connects
G1 to nearby disks that are guaranteed to be at distance at most len.OPT/=n from
G1. The graph G3 connects any remaining disks to G1; this step is based on recent
results on minimum weight hitting sets due to Chan et al. [13] (Sect. 5).

The interface between TSP and the hitting set problem is established by a
quadtree subdivision [5, Ch. 14]. Previously, Arora [3] and Mitchell [35] used
quadtrees for approximating Euclidean TSP and TSP with disjoint neighborhoods,
respectively. The quadtree variety that we need, a so-called stratified grid, was
introduced by Mitchell [35] for certain orthogonal polygons. Here we define
stratified grids in a more general setting, for arbitrary geometric graphs (Sect. 4).

3 Preprocessing

Let S be a set of n disks in the plane. The algorithm first constructs the graphs G1

and G2 as follows (Fig. 1).

1. Select an independent subset I, I � S, of pairwise disjoint disks by the following
greedy algorithm: Set I WD ;. Consider the disks in S in increasing order of radius
(with ties broken arbitrarily), and successively place a disk D 2 S into I if it is
disjoint from all previous disks in I.

2. Compute a constant-factor approximate TSP tour �0 for I using the algorithm
in [6] or [19]. (A PTAS for disjoint disks in the plane is available [16, 44] but not
needed here.) It is clear that len.�0/ D O.len.OPT//.

I

ξ0
ξ0

R RR

Fig. 1 Left: a set of disks in the plane; the independent set I selected by a greedy algorithm is
highlighted; a TSP tour �0 for I, and a minimum square R intersecting all disks are shown. Middle:
G1 is the union of �0, R, and a shortest line segment connecting them; only the disks in S2[S3 that
do not intersect G1 are shown. Right: a stratified grid for R and G1
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3. Let R be a minimum axis-parallel square such that conv.R/ intersects every
disk in S (i.e., every disk intersects @R or is contained in Rı). The square R is
determined by up to 3 disks in S, thus R can be trivially computed in O.n4/ time:
there are O.n3/ squares that pairs and triples define, and each can be checked in
O.n/ time as to whether it intersects all disks. Alternatively, finding R is an LP-
type problem of combinatorial dimension 3 that can be solved in O.n/ time [30,
Section 5]; see also [23] for a modern treatment of LP-type problems and violator
spaces. Let r denote its side-length of R; obviously, we have r � len.OPT/.

4. Let G1 be the union of �0, R, and a shortest line segment connecting �0 and R (if
disjoint).

The graph G1 intersects all disks in I and possibly some disks in SnI. Our primary
interest is in the disks in S that are disjoint from G1.

Lemma 1 For every disk D 2 S, we have dist.D;G1/ � diam.D/.

Proof Let D 2 S. If G1 intersects D, then dist.D;G1/ D 0, and the claim is trivial.
Assume that D is disjoint from G1. Since �0 intersects every disk in I and �0 �
G1, we have D 2 S n I. By the greedy choice of I � S, the disk D intersects
some disk D0 2 I of equal or smaller radius, where G1 intersects D0. Consequently,
dist.D;G1/ � diam.D0/ � diam.D/. ut
Connecting nearby disks to G1 We partition S into three subsets: let S1 be the
set of disks in S that intersect G1; let S2 be the set of disks D 2 S n S1 such that
dist.D;G1/ � r

n ; and let S3 D Sn.S1[S2/. Let G2 be a graph that consists of jS2j line
segments: specifically for every D 2 S2, G2 contains a shortest segment connecting
D and G1. Then len.G2/ D P

D2S2
dist.D;G1/ � jS2j � r

n � r � len.OPT/. By
construction, we have

dist.D;G1/ >
r

n
for every D 2 S3: (1)

By Lemma 1 and inequality (1) we have

Corollary 1 For every disk D 2 S3, we have diam.D/ > r
n .

In the next section, we show how to find a geometric graph G3 such that G3

intersects every disk in S3 and G1 [ G3 is connected (note, however, that G3 need
not be connected).

4 Stratified Grids

Recall that we have a geometric graph G1, and a set S3 of at most n disks in the
interior of an axis-aligned square R of side-length r, r � len.OPT/, satisfying
(1). Let OPT.S3;G1/ denote a geometric graph 	 of minimum length such that
G1 [ 	 is connected and intersects every disk in S3. Note that len.OPT.S3;G1// �
len.OPT.S3// � len.OPT/, for every G1.
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In Sects. 5 and 6, we use hitting sets to compute a O.1/-approximation of
OPT.S3;G1/. Similarly to a quadtree decomposition, we recursively construct a
subdivision of R into squares of side-lengths r=2i, for i D 0; 1; : : : ; dlog ne. Refer to
Fig. 1(right).

Previously, Mitchell [35] used a similar quadtree decomposition for TSPN with
disjoint regions in the plane, coined the term “stratified grid,” and derived several
basic properties of quadtrees that we rederive here. Specifically, he proved analogues
of Lemmas 2 and 5 for the problem studied in [35]. However, Mitchell used stratified
grids only for special types of orthogonal polygons, called histograms [27]; here we
generalize this tool to arbitrary geometric graphs.

The following algorithm subdivides a square Q unless it is too small (i.e.,
diam.Q/ < r

2n ) or it is relatively far from G1 (i.e., diam.Q/ < dist.Q;G1/).

Stratify .R;G1/ Let L be a FIFO queue and Q be a set of axis-aligned squares. Set
L D .R/ and Q D ;. Repeat the following while L is nonempty. Set Q dequeue.L/.
If diam.Q/ � max. r

2n ; dist.Q;G1//, then subdivide Q into four congruent axis-aligned
squares, and enqueue them onto L. Otherwise, let Q Q[ fQg. Return Q.

It is worth noting that Q does not directly depend on the disks in S3, but only
indirectly, via G1. By construction, the squares in Q are interior-disjoint, and every
square in Q has diameter at least r=.4n/. Consequently, the number of squares in
Q is O.n2/. Thus the algorithm Stratify.R;G1/ runs in polynomial time in n, since
O.n2/ squares are enqueued onto L, and dist.Q;G1/ can be computed in polynomial
time for all Q 2 L. We show that the squares in Q have a property similar to the
disks in S3 (cf. Lemma 1): only larger squares can be farther from G1.

Lemma 2 For every square Q 2 Q, we have dist.Q;G1/ � 3 diam.Q/.

Proof Put q D diam.Q/. Recall that Q is obtained by subdividing a square Q0,
Q � Q0, with diam.Q0/ D 2q. Since Q0 is subdivided by the algorithm, we have
diam.Q0/ � max. r

2n ; dist.Q0;G1//. Since dist. p0;Q/ � q for every point p0 2 Q0,
the triangle inequality yields dist.Q;G1/ � 3q. ut

For every square Q 2 Q, we define a graph �.Q/ that consists of the boundary
of Q and a shortest line segment from Q to G1; see Fig. 2(left). By Lemma 2, we
have len.�.Q// � .3C 2p2/ diam.Q/; on the other hand, len.�.Q// � per.Q/ D
2
p
2 diam.Q/, and so we have the following.

Corollary 2 For every Q 2 Q, we have len.�.Q// D ‚.diam.Q//.
The following observation is crucial for reducing the problem of approximating

OPT.S3;G1/ to a minimum weight hitting set problem.

Lemma 3 If a square Q 2 Q intersects a disk D 2 S3, then

(i) diam.Q/ � 2 diam.D/, and
(ii) D intersects the boundary of Q (and the graph �.Q/ in particular).
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R R

α
Q

Fig. 2 Left: a square Q of the stratified grid, and the graph �.Q/. Right: a polygonal curve ˛;
the intersections of ˛ with horizontal (resp., vertical) edges of the stratified grid are marked with
empty (resp., full) dots

Proof
(i) Since Q 2 Q, Algorithm Stratify.R;G1/ did not subdivide Q, and so we have
diam.Q/ < r

2n or diam.Q/ < dist.Q;G1/. If diam.Q/ < r
2n , then Corollary 1 yields

diam.Q/ <
r

2n
<

r

n
< diam.D/ < 2 diam.D/:

If diam.Q/ < dist.Q;G1/, then dist.Q;G1/ � dist.D;G1/ C diam.D/ follows
from the intersection condition and the triangle inequality. Consequently,

diam.Q/ < dist.Q;G1/ � dist.D;G1/C diam.D/ � 2 diam.D/;

where the last inequality holds by Lemma 1.
(ii) Suppose, to the contrary, that the boundary of Q is disjoint from D, hence D

lies in the interior of Q. This immediately implies

dist.Q;G1/ � dist.D;G1/: (2)

Since Q 2 Q, Algorithm Stratify.R;G1/ did not subdivide Q, and so we have
diam.Q/ < r

2n or diam.Q/ < dist.Q;G1/. If diam.Q/ < r
2n , Corollary 1 yields

diam.Q/ < r
2n <

r
n < diam.D/. If diam.Q/ < dist.Q;G1/, then the combination of

(2) and Lemma 1 yield

diam.Q/ < dist.Q;G1/ � dist.D;G1/ < diam.D/:

In both cases, we have shown that diam.Q/ < diam.D/. Therefore D cannot lie
in the interior of Q, which contradicts the assumption. ut

Recall that the squares in Q can only intersect at common boundary points; we
call such squares adjacent.
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Lemma 4 If two squares Q1;Q2 2 Q are adjacent and diam.Q1/ � diam.Q2/,
then

1

2
diam.Q2/ � diam.Q1/ � diam.Q2/ � 2 diam.Q1/:

Proof If diam.Q1/ D diam.Q2/, the inequalities are satisfied. We may thus assume
that diam.Q1/ < diam.Q2/ D q. Then Algorithm Stratify.R;G1/ subdivided a
square Q01 such that Q1 � Q01, diam.Q01/ � q, and Q01 \ Q2 ¤ ;. The algorithm
subdivided Q01 but did not subdivide Q2. This implies

q � max
� r

2n
; dist.Q01;G1/

	
and q < max

� r

2n
; dist.Q2;G1/

	
:

The first inequality yields q � max. r
2n ; dist.Q01;G1// � r

2n , and then the
second inequality yields q < max. r

2n ; dist.Q2;G1// D dist.Q2;G1/. Consequently,
dist.Q01;G1/ � q < dist.Q2;G1/.

Since Q01 and Q2 intersect, and their diameters are at most q, the triangle
inequality yields jdist.Q01;G1/� dist.Q2;G1/j � q. It follows that

q < dist.Q2;G1/ � dist.Q01;G1/C q � 2q:

Similarly, since Q1 and Q2 intersect, dist.Q1;G1/ � dist.Q2;G1/ � diam.Q1/ >

q � diam.Q1/. Combining with Lemma 2, we get

3 diam.Q1/ � dist.Q1;G1/ > q � diam.Q1/;

that is, diam.Q1/ > q=4. Finally, recall that the ratio between the diameters of
any two squares in Q is a power of 2. Therefore q=4 < diam.Q1/ < q yields
diam.Q1/ D q=2, as required. ut

5 Hitting Sets for Squares and Disks

For the graph G1 and the set of disks S3, we define a hypergraphG D .Q;E/, where
the vertex set is the set Q of squares in the stratified grid; and for every disk D 2 S3,
the set of squares in Q that intersect D forms a hyperedge in E. Thus, a subset
H � Q of squares is a hitting set in the hypergraph G if and only if every disk in S3
intersects some square in H.

For every hitting set H, the geometric graph 	 D [Q2H�.Q/ intersects every
disk in S3 by Lemma 3, and G1 [ 	 is connected by construction. Let the weight of
a square Q 2 Q be w.Q/ D diam.Q/. In this section, we show that the minimum-
weight hitting set for G D .Q;E/ is a O.1/-approximation for OPT.S3;G1/. The
following technical lemma considers a single curve (i.e., a Jordan arc). For a curve
˛, let Q.˛/ denote the set of squares in Q that intersect ˛. Refer to Fig. 2(right).
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Lemma 5 Let ˛ be a directed polygonal curve whose start and end points lie on
G1. If ˛ intersects at least one disk in S3, then len.˛/ D �.PQ2Q.˛/ diam.Q//.

Proof By (1), we have dist.D;G1/ >
r
n for every disk D 2 S3. Since ˛ intersects at

least one disk in S3, we have len.˛/ � 2r
n .

Let A D .Q0;Q1; : : : ;Qm/ be the sequence of distinct squares that intersect ˛
in the order in which they are first encountered by ˛ (with no repetitions and ties
broken arbitrarily). Since Q0 intersects G1, we have diam.Q0/ < max. r

2n ; 0/ D r
2n ,

and consequently

len.˛/ � 2r

n
� 4 diam.Q0/: (3)

Let B D .Q�.0/;Q�.1/; : : : ;Q�.`// be the subsequence of A such that �.0/ D 0

and a square Qi, 1 � i � m, is added to B if it is disjoint from Qj for all 0 � j < i. By
construction, B consists of pairwise disjoint squares, and every square in A is either
in B or adjacent to some square in B. By Lemma 4, the sizes of adjacent squares in
Q differ by a factor of at most 2. Consequently, each square in Q is adjacent to at
most 12 squares in Q (at most two along each side and at most one at each corner).
It follows that

mX

iD0
diam.Qi/ D ‚

0

@
X̀

jD0
diam.Q�. j//

1

A : (4)

For j D 0; : : : ; `, let p�. j/ be the first intersection point of ˛ with Q�. j/. For two
points p; q 2 ˛, denote by ˛. p; q/ the portion of ˛ between p and q. Since the
squares in B are pairwise disjoint, and the sizes of adjacent squares differ by at most
a factor of 2 (Lemma 4), we have

len
�
˛. p�. j/; p�. jC1//

� � jp�. j/p�. jC1/j � 1

2
p
2

max
�
diam.Q�. j//; diam.Q�. jC1//

�

for j D 0; : : : ; ` � 1. Consequently, if ` � 1, we have

len.˛/ D
`�1X

jD0
len
�
˛. p�. j/; p�. jC1//

� D �
0

@
X̀

jD0
diam.Q�. j//

1

A : (5)

The combination of (3), (4), and (5) yields len.˛/ D �.
Pm

iD0 diam.Qi//, as
required. ut
Lemma 6 If 	 is a geometric graph such that 	 intersects every disk in S3 and
G1 [ 	 is connected, then there is a hitting set H � Q for G D .Q;E/ such that

len.	/ D �
0

@
X

Q2H
diam.Q/

1

A : (6)
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Proof Let H be the set of squares in Q that intersect 	 , and observe that H is
a hitting set for G. For each connected component C of 	 , let ˛ be a directed
polygonal curve that starts and ends at some points in G1 \ C and traverses
every edge of C at least once and at most twice. Then len.C/ � 1

2
len.˛/, and

len.˛/ D �.
P

Q2Q.˛/ diam.Q// by Lemma 5. Summation over all the components
of 	 yields (6). ut

Recall that OPT.S3;G1/ is a geometric graph 	 of minimum length such that
G1 [ 	 is connected and intersects every disk in S3. Let W0 denote the minimum
weight of a hitting set in the hypergraph G. The main result of this section is the
following.

Corollary 3 We have W0 D O.len.OPT.S3;G1///.

Proof Invoke Lemma 6 with 	 D OPT.S3;G1/. Then G has a hitting set H � Q
of weight

P
Q2H diam.Q/ D O.len.	// D O.len.OPT.S3;G1///. This is clearly an

upper bound on the minimum weight W0 of a hitting set in G. ut

6 Hitting Sets for Points and Disks

In Sect. 5 we defined a hypergraph G D .Q;E/ for squares and disks; that is, the
vertices are squares in Q and the hyperedges are the squares intersecting a disk in
S3. In order to apply Theorem 2 by Chan et al. [13], we reduce the problem to a
traditional geometric hypergraph problem, where the vertices are points in R

2 and a
hyperedge corresponds to the set of points contained in a disk D 2 S3.

For each square Q 2 Q, we define a set of 25 sentinel points, and show
(Lemma 7) that if a disk D 2 S3 intersects Q, then D contains one of the sentinel
points of Q. A constant number of sentinels suffice if none of the disks intersecting
Q is too small, and indeed, Lemma 3 has shown that this is the case.

For a square Q 2 Q, where Q D Œa; aC h�
 Œb; bC h�, let the 25 sentinel points
be .aC ih=2; bC jh=2/ for all i; j 2 f�1; 0; 1; 2; 3g; see Fig. 3(left).

Q

(a, b)

h

h

Q

D

D′
Q′

Fig. 3 Left: the set of 25 sentinel points for a square Q. Right: a disk D 2 S3 intersects a square
Q 2 Q
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Lemma 7 If a disk D 2 S3 intersects a square Q 2 Q, then D contains a sentinel
point corresponding to Q.

Proof Assume that a disk D 2 S3 intersects a square Q 2 Q of side length h;
refer to Fig. 3(right). By Lemma 3, diam.Q/ � 2 diam.D/. By scaling down D from
an arbitrary center in D \ Q, we find a disk D0 intersecting Q with diam.D0/ D
1
2

diam.Q/. The inscribed axis-aligned square Q0 of D0 has diam.Q0/ D 1
2

diam.Q/.
That is, the side-length of Q0 is h=2, and dist.Q0;Q/ � .p2�1/h. Since the sentinels
of Q form a section of a square lattice of (the same) side-length h=2, within distancep
2
2

h from Q, some sentinel of Q lies in Q0, and hence in D0 � D, as claimed. ut
We define a new weighted hypergraph G0 D .V 0;E0/, where V 0 is the union of

sentinel point sets for all Q 2 Q that lie in R (sentinels in the exterior of R are
discarded); and each hyperedge in E0 is the set of sentinels in V 0 contained in a disk
D 2 S3. Note that a sentinel s 2 V 0 may correspond to several squares in Q. Let the
weight of a sentinel s 2 V 0 be the sum of the diameters of the squares Q 2 Q that
correspond to s. Hence the total weight of all sentinels is at most 25

P
Q2Q diam.Q/.

We next derive a bound on the weight of each sentinel.

Lemma 8 For every Q 2 Q, the weight of every sentinel corresponding to Q is
O.diam.Q//.

Proof By Lemma 4, the side-lengths of adjacent squares of the stratified grid differ
by at most a factor of 2. Consequently, every sentinel in V 0 corresponding to a square
Q 2 Q is contained in Q or in a square of Q adjacent to Q.

Let s 2 V 0 be a sentinel. Then s may correspond to all squares in Q that contain s,
and to adjacent squares in Q. Every point is contained in at most 4 squares of Q,
whose side-lengths differ by a factor of at most 2; and they are each adjacent to O.1/
additional squares whose side-lengths differ by another factor of at most 2. Overall,
s corresponds to O.1/ squares in Q whose side-lengths differ by a factor of ‚.1/.
Therefore, the weight of s is O.diam.Q// for every square Q 2 Q corresponding
to s. ut

By Theorem 2, there is a polynomial-time O.1/-approximation algorithm for
MWHS on G0 D .V 0;E0/. It remains to show that a O.1/-approximation for MWHS
on the hypergraph G0 D .V 0;E0/ provides a O.1/-approximation for MWHS on the
hypergraph G D .Q;E/.
Lemma 9

1. For every hitting set H � Q for G, the set H0 of sentinels in V 0 corresponding to
the squares Q 2 H is a hitting set for G0 of weight O.

P
Q2H diam.Q//.

2. For every hitting set H0 � V 0 for G0, the set H of squares Q 2 Q that contain the
sentinel points in H0 is a hitting set for G of weight O.

P
s2H0 w.s//.

Proof
(1) If H is a hitting set for G, then every disk D 2 S3 intersects some square Q 2 H.
By Lemma 7, D contains one of the sentinels of Q. Consequently, every disk D 2 S3
contains a sentinel in H0. Every square Q 2 H corresponds to 25 sentinels, each of
weight O.diam.Q/ by Lemma 8. The weight of H0 is O.

P
Q2H diam.Q//.
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(2) If H0 is a hitting set for G0, then every disk D 2 S3 contains some point s 2 H0.
The point s lies in a square Q 2 Q of the stratified grid, which is in H. Consequently,
every disk D 2 S3 intersects some square Q 2 H. By construction, the weight of
each sentinel s is the sum of weights of the corresponding squares in Q, including
all squares in Q that contain s. Therefore, the weight of H is at most

P
s2H0 w.s/, as

required. ut
We are now ready to prove Theorem 1 by analyzing the constructed graph G D

G1 [ G2 [G3.

Proof of Theorem 1. Let S be a set of n disks in R
2. Compute an independent set

I � S as described in Sect. 3, and a TSP tour �0 for I with len.�0/ D O.len.OPT//
(as in [6] or [19]). Compute the graph G1 with len.G1/ D O.len.OPT//, and the
partition S D S1 [ S2 [ S3 as described in Sect. 3. The graph G1 intersects the disks
in S1.

Construct the graph G2, which contains a shortest segment between G1 and every
disk D 2 S2. The length of this graph is len.G2/ DP

D2S2
dist.D;G1/ � jS2j � r

n �
r � len.OPT/.

Compute the stratified grid Q, and construct the weighted hypergraph G0 D
.V 0;E0/, where V 0 is the set of sentinel points for all squares Q 2 Q, the weight
of a sentinel s is the sum of diameters of the corresponding squares Q 2 Q, and for
every disk D 2 S3, the set of sentinels lying in D forms a hyperedge in E0. Use the
algorithm by Chan et al. [13] to compute a hitting set H0 for G0 whose weight is O.1/
times the minimum. Let H be the set of squares in Q containing the sentinels in H0.
By Lemma 9, H is a hitting set for the hypergraph G D .Q;E/ whose weight is
at most O.1/ times the minimum W0. Put G3 D [Q2H�.Q/. Then G3 intersects
every disk in S3 by Lemma 3, and len.G3/ D ‚.

P
Q2H diam.Q// D ‚.W0/

by Corollary 2. Finally, Corollary 3 yields len.G3/ D O.len.OPT.S3;G1///. By
the definition of OPT.S3;G1//, we have len.OPT.S3;G1// � len.OPT.S3// �
len.OPT/, and consequently len.G3/ D O.len.OPT//.

Note that the graph G D G1[G2[G3 is connected by construction, it intersects
every disk in S D S1 [ S2 [ S3, and len.G/ D len.G1/ C len.G2/ C len.G3/ D
O.len.OPT//. Consequently, an Eulerian tour of the multi-graph containing each
edge of G twice visits each disk and its length is 2 len.G/ D O.len.OPT//, as
required.

Since the above steps as well as algorithm Stratify.R;G1/ all run in time that
is polynomial in n, the constant-factor approximation algorithm for TSP with disks
runs in polynomial time. ut

7 Conclusions

In this paper, we obtained the first constant-ratio approximation for TSP with disks
in the plane. This is the first result of this kind for a class of planar convex bodies
of arbitrary size that can intersect in an arbitrary fashion. In light of the connection
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we established between TSPN and MWHS in geometric hypergraphs, the following
question emerges:

1. Besides regions of linear union complexity (e.g., disks and pseudo-disks1), what
other types of regions admit a constant-factor approximation for the minimum
weight hitting set problem?

Obviously, a constant-factor approximation for MWHS with a certain type of
neighborhoods does not automatically imply a constant-factor approximation for
TSPN with the same type of neighborhoods. We conclude with a few, perhaps the
simplest still unsolved questions on TSPN that we could identify:

2. Is there a constant-factor approximation algorithm for TSP with a set of objects
of linear union complexity, e.g., pseudo-disks?

3. Is there a constant-factor approximation algorithm for TSP with convex bodies
in the plane?2

4. Is TSP with disks in the plane APX-hard? Is TSP with convex bodies in the plane
APX-hard?

5. Is there a constant-factor approximation algorithm for TSP with balls (with
arbitrary radii and intersections) in R

d, in fixed dimension d � 3?
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23. B. Gärtner, J. Matoušek, L. Rüst, P. Škovroň, Violator spaces: structure and algorithms. Discret.
Appl. Math. 156(11), 2124–2141 (2008)

24. J. Gudmundsson, C. Levcopoulos, A fast approximation algorithm for TSP with neighbor-
hoods. Nord. J. Comput. 6(4), 469–488 (1999)

25. P. Kamousi, S. Suri, Euclidean traveling salesman tours through stochastic neighborhoods,
in Proceedings of 24th International Symposium on Algorithms and Computation (ISAAC).
Lecture Notes in Computer Science, vol 8283 (Springer, 2013), pp. 644–654

26. K. Kedem, R. Livne, J. Pach, M. Sharir, On the union of Jordan regions and collision-free
translational motion amidst polygonal obstacles. Discret. Comput. Geom. 1(1), 59–70 (1986)

27. C. Levcopoulos, Heuristics for minimum decompositions of polygons. Ph.D. thesis, Linköping
Studies in Science and Technology, No. 74 (1987)

28. C. Levcopoulos, A. Lingas, Bounds on the length of convex partitions of polygons, in
Proceedings of 4th Conference on Foundations of Software Technology and Theoretical
Computer Science. Lecture Notes in Computer Science, vol 181 (Springer, 1984), pp. 279–
295

29. C. Mata, J.S.B. Mitchell, Approximation algorithms for geometric tour and network design
problems, in Proceedings of 11th ACM Symposium on Computational Geometry (SOCG)
(ACM, 1995), pp. 360–369



390 A. Dumitrescu and C.D. Tóth

30. J. Matoušek, M. Sharir, E. Welzl, A subexponential bound for linear programming. Algorith-
mica 16(4), 498–516 (1996)

31. J.S.B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: a simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM J. Comput. 28(4), 1298–1309 (1999)

32. J.S.B. Mitchell, Geometric shortest paths and network optimization, in Handbook of Compu-
tational Geometry, ed. by J.-R. Sack, J. Urrutia (Elsevier, Amsterdam, 2000), pp. 633–701

33. J.S.B. Mitchell, Shortest paths and networks, in Handbook of Discrete and Computational
Geometry, 3rd edn., ed. by J.E. Goodman, J. O’Rourke, C.D. Tóth (Chapman & Hall/CRC,
Boca Raton, 2017, to appear)

34. J.S.B. Mitchell, A PTAS for TSP with neighborhoods among fat regions in the plane, in
Proceedings of 18th ACM-SIAM Symposium on Discrete Algorithms (SODA) (SIAM, 2007),
pp. 11–18

35. J.S.B. Mitchell, A constant-factor approximation algorithm for TSP with pairwise-disjoint
connected neighborhoods in the plane, in Proceedings of 26th Symposium on Computational
Geometry (SOCG) (ACM, 2010), pp. 183–191

36. A. Dumitrescu, J.S.B. Mitchell, Approximation algorithms for TSP with neighborhoods in the
plane, CoRR abs/1703.01640 (2017). https://arxiv.org/abs/1703.01640

37. J.S.B. Mitchell, Updated version of “A constant-factor approximation algorithm for TSP with
pairwise-disjoint connected neighborhoods in the plane,” manuscript, http://www.ams.sunysb.
edu/~jsbm/papers/tspn-socg10-updated.pdf. Accessed in Feb 2016

38. N.H. Mustafa, S. Ray, Improved results on geometric hitting set problems. Discret. Comput.
Geom. 44(4), 883–895 (2010)

39. J. Pach, P.K. Agarwal, Combinatorial Geometry (Wiley, New York, 1995)
40. C.H. Papadimitriou, Euclidean TSP is NP-complete. Theor. Comput. Sci. 4(3), 237–244 (1977)
41. S.B. Rao, W.D. Smith, Approximating geometrical graphs via “spanners” and “banyans,” in

Proceedings of 30th ACM Symposium on Theory of Computing (STOC) (ACM, 1998), pp. 540–
550

42. S. Safra, O. Schwartz, On the complexity of approximating TSP with neighborhoods and
related problems. Comput. Complex. 14(4), 281–307 (2005)

43. P. Slavik, The errand scheduling problem, CSE technical report 97-02, University of Buffalo,
Buffalo (1997)

44. S. Spirkl, The guillotine subdivision approach for TSP with neighborhoods revisited (2014,
preprint). arXiv:1312.0378v2

45. K.R. Varadarajan, Epsilon nets and union complexity, in Proceedings of 25th Symposium on
Computational Geometry (SOCG) (ACM, 2009), pp. 11–16

https://arxiv.org/abs/1703.01640
http://www.ams.sunysb.edu/~jsbm/papers/tspn-socg10-updated.pdf
http://www.ams.sunysb.edu/~jsbm/papers/tspn-socg10-updated.pdf
arXiv:1312.0378v2


Transport-Entropy Inequalities and Curvature
in Discrete-Space Markov Chains

Ronen Eldan, James R. Lee, and Joseph Lehec

Abstract Let G D .�;E/ be a graph and let d be the graph distance. Consider
a discrete-time Markov chain fZtg on � whose kernel p satisfies p.x; y/ > 0 )
fx; yg 2 E for every x; y 2 �. In words, transitions only occur between neighboring
points of the graph. Suppose further that .�; p; d/ has coarse Ricci curvature at least
1=˛ in the sense of Ollivier: For all x; y 2 �, it holds that

W1.Z1 j fZ0 D xg;Z1 j fZ0 D yg/ �


1 � 1
˛

�

d.x; y/;

where W1 denotes the Wasserstein 1-distance.
In this note, we derive a transport-entropy inequality: For any measure � on �,

it holds that

W1.�; �/ �
s

2˛

2 � 1=˛D.� k�/ ;

where � denotes the stationary measure of fZtg and D.� k �/ is the relative entropy.
Peres and Tetali have conjectured a stronger consequence of coarse Ricci

curvature, that a modified log-Sobolev inequality (MLSI) should hold, in analogy
with the setting of Markov diffusions. We discuss how our approach suggests a
natural attack on the MLSI conjecture.

1 Introduction

In geometric analysis on manifolds, it is by now well-established that the Ricci
curvature of the underlying manifold has profound consequences for functional
inequalities and the rate of convergence of Markov semigroups toward equilibrium.
One can consult, in particular the books [1] and [17]. Indeed, in the setting of
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diffusions (see [1, §1.11]), there is an elegant theory around the Bakry–Emery
curvature-dimension condition.

Roughly speaking, in the setting of diffusion on a continuous space, when there is
an appropriate “integration by parts” formula (that connects the Dirichlet form to the
Laplacian), a positive curvature condition implies powerful functional inequalities.
Most pertinent to the present discussion, positive curvature yields transport-entropy
and logarithmic Sobolev inequalities.

For discrete state spaces, the situation appears substantially more challenging.
There are numerous attempts at generalizing lower bounds on the Ricci curvature to
discrete metric measure spaces. At a broad level, these approaches suffer from one
of two drawbacks: Either the notion of “positive curvature” is difficult to verify for
concrete spaces, or the “expected” functional analytic consequences do not follow
readily.

In the present note, we consider the notion of coarse Ricci curvature due to
Ollivier [14]. It constitutes an approach of the latter type: There is a large body
of finite-state Markov chains that have positive curvature in Ollivier’s sense, but for
many of them we do not yet know if strong functional-analytic consequences hold.
This study is made more fascinating by the straightforward connection between
coarse Ricci curvature on graphs and the notion of path coupling arising in the
study of rapid mixing of Markov chains [3]. This is a powerful method to establish
fast convergence to the stationary measure; see, for example, [10, Ch. 14].

In particular, if there were an analogy to the diffusion setting that allowed coarse
Ricci curvature lower bounds to yield logarithmic Sobolev inequalities (or variants
thereof), it would even imply new mixing time bounds for well-studied chains
arising from statistical physics, combinatorics, and theoretical computer science. A
conjecture of Peres and Tetali asserts that a modified log-Sobolev inequality (MLSI)
should always hold in this setting. Roughly speaking, this means that the underlying
Markov chain has exponential convergence to equilibrium in the relative entropy
distance.

Our aim is to give some preliminary results in this direction and to suggest a
new approach to establishing MLSI. In particular, we prove a W1 transport-entropy
inequality. By results of Bobkov and Götze [2], this is equivalent to a sub-
Gaussian concentration estimate for Lipschitz functions. Sammer has shown that
such an inequality follows formally from MLSI [16], thus one can see verification
as evidence in support of the Peres-Tetali conjecture. Our result also addresses
PROBLEM J in Ollivier’s survey [15].

1.1 Coarse Ricci Curvature and Transport-Entropy
Inequalities

Let � be a countable state space, and let p W � 
 � ! Œ0; 1� denote a transition
kernel. For x 2 �, we will use the notation p.x; �/ to denote the function y 7! p.x; y/.
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For a probability measure � on � and f W �! RC, we define the entropy of f by

Ent�. f / D E�

�

f log


f

E� Œ f �

��

:

We also equip � with a metric d. If � and � are two probability measures on �,
we denote by W1.�; �/ the transportation cost (or Wasserstein 1-distance) between
� and �, with the cost function given by the distance d. Namely,

W1.�; �/ D inf fE Œd.X;Y/�g

where the infimum is taken on all couplings .X;Y/ of .�; �/. Recall the Monge–
Kantorovitch duality formula for W1 (see, for instance, [17, Case 5.16]):

W1.�; �/ D sup


Z

�

f d� �
Z

�

f d�

�

; (1)

where the supremum is taken over 1–Lipschitz functions f . We consider the
following notion of curvature introduced by Ollivier [14].

Definition 1.1 The coarse Ricci curvature of .�; p; d/ is the largest 
 2 Œ�1; 1�
such that the inequality

W1. p.x; �/; p.y; �// � .1 � 
/ d.x; y/

holds true for every x; y 2 �.
In the sequel we will be interested in positive Ricci curvature. Under this

condition the map � 7! �p is a contraction for W1. As a result, it has a unique
fixed point and �pn converges to this fixed point as n ! 1. In other words the
Markov kernel p has a unique stationary measure and is ergodic. The main purpose
of this note is to show that positive curvature yields a transport-entropy inequality,
or equivalently a Gaussian concentration inequality for the stationary measure.

Definition 1.2 We say that a probability measure � on � satisfies the Gaussian
concentration property with constant C if the inequality

Z

�

exp. f / d� � exp

Z

�

f d�C C k fk2Lip

�

holds true for every Lipschitz function f .
Now we spell out the dual formulation of the Gaussian concentration property

in terms of transport inequality. Recall first the definition of the relative entropy (or
Kullback divergence): for two measures �; � on .�;B/,

D.� k�/ D Ent�Œ d�
d� � D

Z

�

log


d�

d�

�

d�
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if � is absolutely continuous with respect to � and D.� k�/ D C1 otherwise. As
usual, if X and Y are random variables with laws � and �, we will take D.X kY/ to
be synonymous with D.� k�/.
Definition 1.3 We say that � satisfies .T1/ with constant C if for every probability
measure � on � we have

W1.�; �/
2 � C � D.� k�/ : (T1)

As observed by Bobkov and Götze [2], the inequality (T1) and the Gaussian
concentration property are equivalent.

Lemma 1.4 A probability measure� satisfies the Gaussian concentration property
with constant C if and only if it satisfies (T1) with constant 4C.

This is a relatively straightforward consequence of the Monge–Kantorovitch
duality (1); we refer to [2] for details.

Theorem 1.5 Assume that .�; p; d/ has positive coarse Ricci curvature 1=˛ and
that the one–step transitions all satisfy (T1) with the same constant C: Suppose that
for every x 2 � and for every probability measure � we have

W1.�; p.x; �//2 � C � D.� k p.x; �// : (2)

Then the stationary measure � satisfies (T1) with constant C˛
2�1=˛ .

Remark 1.6 Observe that Theorem 1.5 does not assume reversibility.
The hypothesis (2) might seem unnatural at first sight but it is automatically

satisfied for the random walk on a graph when d is the graph distance. Indeed, recall
Pinsker’s inequality: For every probability measures �; � we have

TV.�; �/ �
r
1

2
D.� k �/;

where TV denotes the total variation distance. This yields the following lemma.

Lemma 1.7 Let � be a probability measure on a metric space .M; d/ and assume
that the support of � has finite diameter �. Then � satisfies (T1) with constant
�2=2.

Proof Let � be absolutely continuous with respect to �. Then both � and � are
supported on a set of diameter �. This implies that

W1.�; �/ � � � TV.�; �/:

Combining this with Pinsker’s inequality we get W1.�; �/
2 � �2

2
D.� k�/, which is

the desired result. ut
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Random walks on graphs A particular case of special interest will be random
walks on finite graphs. Let G D .V;E/ be a connected, undirected graph, possibly
with self-loops. Given non-negative conductances c W E ! RC on the edges, we
recall the Markov chain fXtg defined by

PrŒXtC1 D y j Xt D x� D c.fx; yg/
P

z2V c.fx; zg/ :

We refer to any such chain as a random walk on the graph G. If it holds that
c.fx; xg/ � 1

2

P
Z2V c.fx; zg/ for all x 2 V , we say that the corresponding random

walk is lazy. We will equip G with its graph distance d.
In this setting, the transitions of the walk are supported on a set of diameter 2. So

combining the preceding lemma with Theorem 1.5, one arrives at the following.

Corollary 1.8 If a random walk on a graph has positive coarse Ricci curvature 1
˛

(with respect to the graph distance), then the stationary measure � satisfies

W1.�; �/
2 � 2˛

2 � 1=˛ D.� k�/ ;

for every probability measure �.

Remark 1.9 One should note that in this context we have

d.x; y/ � W1 . p.x; �/; p.y; �//C 2; 8x; y 2 �;

just because after one step the walk is at distance 1 at most from its starting point.
As a result, having coarse Ricci curvature 1=˛ implies that the diameter � of the
graph is at most 2˛. So by the previous lemma, every measure on the graph satisfies
T1 with constant 2˛2. The point of Corollary 1.8 is that for the stationary measure �
the constant is order ˛ rather than ˛2.

We now present two proofs of Theorem 1.5. The first proof is rather short and
based on the duality formula (1). The second argument provides an explicit coupling
based on an entropy-minimal drift process. In Sect. 3, we discuss logarithmic
Sobolev inequalities. In particular, we present a conjecture about the structure of
the entropy-minimal drift that is equivalent to the Peres–Tetali MLSI conjecture.

After the first version of this note was released we were notified that Theorem 1.5
was proved by Djellout, Guillin and Wu in [4, Proposition 2.10]. Note that this
article actually precedes Ollivier’s work. The proof given there corresponds to our
first proof, by duality. Our second proof is more original but does share some
similarities with the argument given by K. Marton in [11, Proposition 1]. Also,
after hearing about our work, Fathi and Shu [5] used their transport-information
framework to provide yet another proof.
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2 The W1 Transport-Entropy Inequality

We now present two proofs of Theorem 1.5. Recall the relevant data .�; p; d/.
Define the process fBtg to be the discrete-time random walk on � corresponding to
the transition kernel p. For x 2 �, we will use Bt.x/ to denote the random variable
Bt j fB0 D xg. For t � 0, we make the definition

PtŒ f �.x/ D EŒ f .Bt.x//� :

2.1 Proof by Duality

Let f W � ! R be a Lipschitz function. Using the hypothesis (2) and Lemma 1.4
we get

P1Œexp. f /�.x/ � exp



P1Œ f �.x/C C

4
k fk2Lip

�

;

for all x 2 �. Applying this inequality repeatedly we obtain

PnŒexp. f /�.x/ � exp

 

PnŒ f �.x/C C

4

n�1X

kD0
kPk fk2Lip

!

; (3)

for every integer n and all x 2 �. Now we use the curvature hypothesis. Note that
the Monge–Kantorovitch duality (1) yields easily

1� 1
˛
D sup

x¤y



W1. p.x; �/; p.y; �//

d.x; y/

�

D sup
x¤y;g



P1Œg�.x/ � P1Œg�.y/

kgkLipd.x; y/

�

D sup
g


 kP1Œg�kLip

kgkLip

�

:

Therefore kP1Œg�kLip � .1� 1=˛/kgkLip for every Lipschitz function g and thus

kPnŒ f �kLip � .1 � 1=˛/nk fkLip;

for every integer n. Inequality (3) then yields

Pn Œexp. f /� .x/ � exp



PnŒ f �.x/C C˛

4.2 � 1=˛/k fk2Lip

�

:
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Letting n!1 yields

Z

�

exp. f / d� � exp

Z

�

f d� C C˛

4 .2� 1=˛/k fk2Lip

�

:

The stationary measure � thus satisfies Gaussian concentration with constant
C˛

4 .2�1=˛/ . Another application of the duality, Lemma 1.4, yields the desired outcome,
proving Theorem 1.5.

2.2 An Explicit Coupling

As promised, we now present a second proof of Theorem 1.5 based on an explicit
coupling. The proof does not rely on duality, and our hope is that the method
presented will be useful for establishing MLSI; see Sect. 3.

The first step of the proof follows a similar idea to the one used in [11, Propo-
sition 1]. Given the random walk fBtg and another process fXtg (not necessarily
Markovian), there is a natural coupling between the two processes that takes
advantage of the curvature condition and gives a bound on the distance between
the processes at time T in terms of the relative entropy. This step is summarized in
the following result.

Proposition 2.1 Assume that .�; p; d/ satisfies the conditions of Theorem 1.5. Fix a
time T and a point x0 2 M. Let fB0 D x0;B1; : : : ;BTg be the corresponding discrete
time random walk starting from x0 and let fX0 D x0;X1; : : : ;XTg be an arbitrary
random process on � starting from x0. Then, there exists a coupling between the
processes .Xt/ and .Bt/ such that

EŒd.XT ;BT/� �
s

C˛

2 � 1=˛D.fX0;X1; : : : ;XTg k fB0;B1; : : : ;BTg/:

In view of the above proposition, proving a transportation-entropy inequality for
.�; p; d/ is reduced to the following: given a measure � on �, we are looking for
a process fXtg which satisfies: (i) XT � � and (ii) the relative entropy between
.X0; : : : ;XT/ and .B0; : : : ;BT/ is as small as possible.

To achieve the above, our key idea is the construction of a process Xt which is
entropy minimal in the sense that it satisfies

XT � � and D.fX0;X1; : : : ;XTg k fB0;B1; : : : ;BTg/ D D.XT kBT/ : (4)

This process can be thought of as the Doob transform of the random walk with
a given target law. In the setting of Brownian motion on R

n equipped with the
Gaussian measure, the corresponding process appears in work of Föllmer [6, 7].
See [8] for applications to functional inequalities, and the work of Léonard [9] for a
somewhat different perspective on the connection to optimal transportation.
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2.2.1 Proof of Proposition 2.1: Construction of the Coupling

Given t 2 f1; : : : ;Tg and x1; : : : ; xt�1 2 M, let �.t; x0; : : : ; xt�1; �/ be the conditional
law of Xt given X0 D x0; : : : ;Xt�1 D xt�1. Now we construct the coupling of X and
B as follows. Set X0 D B0 D x0 and given .X1;B1/; : : : ; .Xt�1;Bt�1/ set .Xt;Bt/ to
be a coupling of �.t;X0; : : : ;Xt�1; �/ and p.Bt�1; �/ which is optimal for W1. Then by
construction the marginals of this process coincide with the original processes fXtg
and fBtg.

The next lemma follows from the coarse Ricci curvature property and the
definition of our coupling.

Lemma 2.2 For every t 2 f1; : : : ;Tg,

Et�1 Œd.Xt;Bt/��
p

C � D.�.t;X0; : : : ;Xt�1; �/ k p.Xt�1; �//C


1 � 1
˛

�

d.Xt�1;Bt�1/

where Et�1Œ�� stands for the conditional expectation given .X0;B0/; : : : ; .Xt�1;Bt�1/.

Proof By definition of the coupling, the triangle inequality for W1, the one-step
transport inequality (2) and the curvature condition

Et�1 Œd.Xt;Bt/�

D W1 .�.t;X0; : : : ;Xt�1; �/; p.Bt�1; �//
� W1 .�.t;X0; : : : ;Xt�1; �/; p.Xt�1; �//CW1 . p.Xt�1; �/; p.Bt�1; �//

�
p

C � D.�.t;X0; : : : ;Xt�1; �/ k p.Xt�1; �//C


1 � 1
˛

�

d.Xt�1;Bt�1/ : ut

Remark that the chain rule for relative entropy asserts that

TX

tD1

EŒD.�.t;X0; : : : ;Xt�1; �/ k p.Xt�1; �//� D D.fX0;X1; : : : ;XTg k fB0;B1; : : : ;BTg/ :
(5)

Using the preceding lemma inductively and then Cauchy-Schwarz yields

EŒd.XT ;BT /� �
TX

tD1



1 � 1
˛

�T�t

E

hp
C � D.�.t;X0; : : : ;Xt�1; �/ k p.Xt�1; �//

i

�
v
u
u
t

TX

tD1



1 � 1
˛

�2.T�t/
v
u
u
t

TX

tD1

C � E ŒD.�.t;X0; : : : ;Xt�1; �/ k p.Xt�1; �//�

(5)�
r

˛

2 � 1=˛
p

C � D.fX0;X1; : : : ;XTg k fB0;B1; : : : ;BTg/;

completing the proof of Proposition 2.1.
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2.2.2 The Entropy-Optimal Drift Process

Our goal in this section is to construct a process x0 D X0;X1; : : : ;XT satisfying
equation (4). Suppose that we are given a measure � on � along with an initial
point x0 2 � and a time T � 1. We define the Föllmer drift process associated to
.�; x0;T/ as the stochastic process fXtgTtD0 defined as follows.

Let �T be the law of BT.x0/ and denote by f the density of � with respect to �T .
Note that f is well-defined as long as the support of �T is�. Now let fXtgTtD0 be the
non homogeneous Markov chain on � whose transition probabilities at time t are
given by

qt.x; y/ WD P.Xt D y/ j Xt�1 D x/ D PT�t f .y/

PT�tC1f .x/
p.x; y/: (6)

We will take care in what follows to ensure the denominator does not vanish. Note
that .qt/ is indeed a transition matrix as

X

y2�
PT�tf .y/ p.x; y/ D PT�tC1f .x/: (7)

We now state a key property of the drift.

Lemma 2.3 If pT.x0; x/ > 0 for all x 2 supp.�/, then fXtg is well-defined.
Furthermore, for every x1; : : : c; xT 2 � we have

P ..X1; : : : ;XT/ D .x1; : : : ; xT// D P ..B1; : : : ;BT/ D .x1; : : : ; xT// f .xT/: (8)

In particular XT has law d� D f d�T .

Proof By definition of the process .Xt/ we have

P ..X1; : : : ;XT/D.x1; : : : ; xT// D
TY

tD1
P .Xt D xt j .X1; : : : ;Xt�1/ D .x1; : : : ; xt�1//

D
TY

tD1

PT�t f .xt/

PT�tC1f .xt�1
p.xt�1; xt/

D f .xT/

PTf .x0/

 
TY

tD1
p.xt�1; xt/

!

;

which is the result. ut
In words, the preceding lemma asserts that the law of the process fXtg has density

f .xT/ with respect to the law of the process fBtg. As a result we have in particular

D.fX0;X1; : : : ;XTg k fB0;B1; : : : ;BTg/ D EŒlog f .XT/� D D.� k�T / ;
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since XT has law �. Note that for any other process fYtg such that Y0 D x0 and YT

has law �, one always has the inequality

D.fY0;Y1; : : : ;YTg k fB0;B1; : : : ;BTg/ � D.YT kBT/ D D.� k�T/ : (9)

Besides fXtg is the unique random process for which this inequality is tight.
Uniqueness follows from strict convexity of the relative entropy.

We summarize this section in the following lemma.

Lemma 2.4 Let .�; p/ be a Markov chain. Fix x0 2 � and let x0 D B0;B1; : : :
be the associated random walk. Let � be a measure on � and let T > 0 be such
that for any y 2 � one has that P.BT D y/ > 0. Then there exists a process
x0 D X0;X1; : : : ;XT such that:

• fX0; : : : ;XTg is a (time inhomogeneous) Markov chain.
• XT is distributed with the law �.
• The process satisfies Eq. (4), namely

D.XT kBT/ D D.fX0;X1; : : : ;XTg k fB0;B1; : : : ;BTg/ :

2.3 Finishing up the Proof

Fix an arbitrary x0 2 � and consider some T � diam.�; d/. Let fXtg be the Föllmer
drift process associated to the initial data .�; x0;T/. Then combining Proposition 2.1
and Eq. (4), we have

W1.�; �T/ D EŒd.XT ;BT/� �
s

C˛

2 � 1=˛ D.� k�T /: (10)

Now let T !1 so that �T ! � , yielding the desired claim.

3 The Peres–Tetali Conjecture and Log-Sobolev Inequalities

Recall that p W � 
 � ! Œ0; 1� is a transition kernel on the finite state space �
with a unique stationary measure � . Let L2.�; �/ denote the space of real-valued
functions f W � ! R equipped with the inner product h f ; gi D E� Œ fg�. From now
on we assume that the measure � is reversible, which amounts to saying that the
operator f 7! pf is self-adjoint in L2.�; �/.

We define the associated Dirichlet form

E. f ; g/ D h f ; . p � I/gi D 1
2

X

x;y2�
�.x/p.x; y/. f .x/� f .y//.g.x/� g.y// :
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Recall the definition of the entropy of a function f W �! RC:

Ent�. f / D E�

�

f log


f

E� f

��

:

Now define the quantities

 D inf
f W�!RC

E.
p

f ;
p

f /

Ent�. f /

0 D inf
f W�!RC

E. f ; log f /

Ent�. f /
:

These numbers are called, respectively, the log-Sobolev and modified log-Sobolev
constants of the chain .�; p/. We refer to [13] for a detailed discussion of such
inequalities on discrete-space Markov chains and their relation to mixing times.

One can understand both numbers as measuring the rate of convergence to
equilibrium in appropriate senses. The modified log-Sobolev constant, in particular,
can be equivalently characterized as the largest value 0 such that

Ent�.Ht f / � e�0tEnt�. f / (11)

for all f W � ! RC and t > 0 (see [13, Prop. 1.7]). Here, Ht W L2.�; �/ !
L2.�; �/ is the heat-flow operator associated to the continuous-time random walk,
i.e., Ht D e�t.I�P/, where P is the operator defined by Pf .x/ DPy2� p.x; y/f .y/.

The log-Sobolev constant  controls the hypercontractivity of the semigroup
.Ht/, which in turn yields a stronger notion of convergence to equilibrium; again
see [13] for a precise statement. Interestingly, in the setting of diffusions, there is
no essential distinction between the two notions; one should consider the following
calculation only in a formal sense:

E. f ; log f / D
Z

rfr log f D
Z jrf j2

f
D 4

Z ˇ
ˇ
ˇr
p

f
ˇ
ˇ
ˇ
2 D 4 E

�p
f ;
p

f
	
:

However, in the discrete-space setting, the tools of differential calculus are not
present. Indeed, one has the bound  � 20 [13, Prop 1.10], but there is no uniform
bound on 0 in terms of .

3.1 MLSI and Curvature

We are now in position to state an important conjecture linking curvature and the
modified log-Sobolev constant; it asserts that on spaces with positive coarse Ricci
curvature, the random walk should converge to equilibrium exponentially fast in the
relative entropy distance.
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Conjecture 3.1 (Peres–Tetali, unpublished) Suppose .�; p/ corresponds to lazy
random walk on a finite graph and d is the graph distance. If .�; p; d/ has coarse
Ricci curvature 
 > 0, then the modified log-Sobolev constant satisfies

0 � C
 : (12)

where C > 0 is a universal constant.
A primary reason for our interest in Corollary 1.8 is that, by results of Sammer

[16], Conjecture 3.1 implies Corollary 1.8. We suspect that a stronger conclusion
should hold in many cases; under stronger assumptions, it should be that one can
obtain a lower bound on the (non-modified) log-Sobolev constant  � C
. See,
for instance, the beautiful approach of Marton [12] that establishes a log-Sobolev
inequality for product spaces assuming somewhat strong contraction properties of
the Gibbs sampler.

However, we recall that this cannot hold under just the assumptions of Conjec-
ture 3.1. Indeed, if G D .V;E/ is the complete graph on n vertices, it is easy to see
that the coarse Ricci curvature 
 of the lazy random walk is 1=2. On the other hand,
one can check that the log-Sobolev constant  decays asymptotically like 1

log n (use
the test function f D ıx for some fixed x 2 V).

3.2 An Entropic Interpolation Formulation of MLSI

We now suggest an approach to Conjecture 3.1 using an entropy-optimal drift
process. While we chose to work with discrete-time chains in Sect. 2.2.2, working
in continuous-time will allow us more precision in exploring Conjecture 3.1. We
will use the notation introduced at the beginning of this section.

A continuous-time drift process Suppose we have some initial data . f ; x0;T/
where x0 2 � and f W � ! RC satisfies E� Œ f � D 1. Let fBt W t 2 Œ0;1/g denote
the continuous-time random walk with jump rates p on the discrete state space �
starting from x0. We let �T be the law of BT and let � be the probability measure
defined by

d� D f

HTf .x0/
d�T ;

where .Ht/ is the semigroup associated to the jump rates p.x; y/. Note that � is
indeed a probability measure as

R
f d�T D HTf .x0/ by definition of �T .

We now define the continuous-time Föllmer drift process associated to the data
.x0;T; f / as the (time inhomogeneous) Markov chain fXt; t � Tg starting from x0
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and having transition rates at time t given by

qt.x; y/ D p.x; y/
HT�tf .y/

HT�tf .x/
: (13)

Informally this means that the conditional probability that the process fXtg jumps
from x to y between time t and t C dt given the past is qt.x; y/dt. This should be
thought as the continuous-time analogue of the discrete Föllmer process defined
by (6). We claim that again the law of the process fXt; t � Tg has density
f .xT/=HTf .x0/ with respect to the law of fBt; t � Tg. Let us give a brief justification
of this claim. Define a new probability measure Q by setting

dQ

dP
D f .BT/

HTf .x0/
: (14)

We want to prove that the law of B under Q coincides with the law of X under P.
Let .Ft/ be the natural filtration of the process .Bt/, let t 2 Œ0;T/ and let y 2 M. We
then have the following computation:

Q.BtC�t D y j Ft/ D
E
PŒ f .BT/ 1fBtC�tDyg j Ft�

EPŒ f .BT/ j Ft�
C o.�t/

D HT�tf .y/

HT�tf .Bt/
P.BtC�.t/ D y j Ft/C o.�t/

D HT�tf .y/

HT�tf .Bt/
p.Bt; y/�tC o.�t/:

This shows that under Q, the process fBt; t � Tg is Markovian (non homogeneous)
with jump rates at time t given by (13). Hence the claim.

This implies in particular that XT has law �. This also yields the following
formula for the relative entropy of fXtg:

D.fXt; t � Tg k fBt; t � Tg/ D E

�

log
f .XT/

HTf .x0/

�

D D.� k�T / : (15)

The process fXtg starts from x0 and has law � at time T. Because XT has law �

and BT has law �T , the two processes must evolve differently. One can think of the
process fXtg as “spending information” in order to achieve the discrepancy between
XT and BT . The amount of information spent must at least account for the difference
in laws at the endpoint, i.e.,

D.fXt; t � Tg k fBT ; t � Tg/ � D.XT kBT/ :

As pointed out in Sect. 2.2.2, the content of (15) is that fXtg spends exactly this
minimum amount.
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For 0 � s � s0, we use the notations BŒs;s0� D fBt W t 2 Œs; s0�g and XŒs;s0� D fXt W
t 2 Œs; s0�g for the corresponding trajectories. From the definition of Q we easily get

dQ

dP

ˇ
ˇ
ˇ
Ft

D E

�
f .BT/

HTf .x0/
j Ft

�

D HT�tf .Bt/

HTf .x0/
: (16)

As a result

D
�
XŒ0;t� kBŒ0;t�

� D E

�

log
HT�t f .Xt/

HTf .x0/

�

(17)

for all t � T. Let us now define the rate of information spent at time t:

It D d

dt
D
�
XŒ0;t� kBŒ0;t�

�
:

Intuitively, the entropy-optimal process fXtgwill spend progressively more informa-
tion as t approaches T. Information spent earlier in the process is less valuable (as
the future is still uncertain). Let us observe that a formal version of this statement
for random walks on finite graphs is equivalent to Conjecture 3.1.

Conjecture 3.2 Suppose .�; p/ corresponds to a lazy random walk on a finite
graph and d is the graph distance, and that .�; p; d/ has coarse Ricci curvature
1=˛. Given f W �! RC with E� Œ f � D 1 and x0 2 �, for all sufficiently large times
T, it holds that if fXt W t 2 Œ0;T�g is the associated continuous-time Föllmer drift
process process with initial data . f ; x0;T/, then

D.XT kBT/ � C˛IT ; (18)

where C > 0 is a universal constant.
As T !1, we have PTf .x0/! E� f D 1 and thus

D.XT kBT/! Ent�. f /

Moreover, we claim that IT ! E. f ; log f / as T ! 1. Together, these show that
Conjectures 3.1 and 3.2 are equivalent.

To verify the latter claim, note that from (17) and (16) we have

D
�
XŒ0;t� kBŒ0;t�

� D E

�

log


HT�t f .Xt/

HTf .x0/

��

D E

�

log


HT�t f .Bt/

HTf .x0/

�
HT�tf .Bt/

HTf .x0/

�

D 1

HTf .x0/
Ht .HT�tf log HT�t f / .x0/� log HTf .x0/:
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Differentiating at t D T yields

IT D 1

HTf .x0/
HT .�. f log f / � .�f /.log f C 1// .x0/:

where � D I � p denotes the generator of the semigroup .Ht/. Recall that ıx0HT

converges weakly to � , and that by stationarity E��g D 0 for every function g.
Thus

lim
T!1 IT D �E� Œ.�f / log f �:

The latter equals E. f ; log f / by reversibility, hence the claim.
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1 Introduction

Helly’s classical theorem [27] states that a finite family of convex subsets of Rd must
have a point in common if any d C 1 of the sets have a point in common. Together
with Radon’s and Caratheodory’s theorems, two other “very finite properties”
of convexity, Helly’s theorem is a pillar of combinatorial geometry. Along with
its variants (e.g. colorful or fractional), it underlies many fundamental results in
discrete geometry, from the centerpoint theorem [44] to the existence of weak "-
nets [2] or the . p; q/-theorem [1].

In the contrapositive, Helly’s theorem asserts that any finite family of convex
subsets of Rd with empty intersection contains a sub-family of size at most d C 1
that already has empty intersection. This inspired the definition of the Helly number
of a family F of arbitrary sets. If F has empty intersection then its Helly number is
defined as the size of the largest sub-family G � F with the following properties:
G has empty intersection and any proper sub-family of G has nonempty intersection;
if F has nonempty intersection then its Helly number is, by convention, 1. With this
terminology, Helly’s theorem simply states that any finite family of convex sets in
R

d has Helly number at most dC 1.
Helly already realized that bounds on Helly numbers independent of the cardi-

nality of the family are not a privilege of convexity: his topological theorem [28]
asserts that a finite family of open subsets of R

d has Helly number at most
d C 1 if the intersection of any sub-family of at most d members of the family
is either empty or a homology cell.1 Such uniform bounds are often referred to
as Helly-type theorems. In discrete geometry, Helly-type theorems were found in
a variety of contexts, from simple geometric assumptions (eg. homothets of a
planar convex curve [53]) to more complicated implicit conditions (sets of line
intersecting prescribed geometric shapes [10, 23, 56], sets of norms making a given
subset of R

d equilateral [43, Theorem 5], etc.) and several surveys [16, 54, 61]
were devoted to this abundant literature. These Helly numbers give rise to similar
finiteness properties in other areas, for instance in variants of Whitney’s extension
problem [48] or the combinatorics of generators of certain groups [18].

1By definition, a homology cell is a topological space X all of whose (reduced, singular, integer
coefficient) homology groups are trivial, as is the case if X D R

d or X is a single point. Here
and in what follows, we refer the reader to standard textbooks like [26, 42] for further topological
background and various topological notions that we leave undefined.
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Many Helly numbers are established via ad hoc arguments, and decades some-
times go by before a conjectured bound is effectively proven, as illustrated by
Tverberg’s proof [56] of a conjecture of Grünbaum [24]. This is true not only
for the quantitative question (what is the best bound?) but also for the existential
question (is the Helly number uniformly bounded?); in this example, establishing
a first bound [31] was already a matter of decades. Substantial effort was devoted
to identify general conditions ensuring bounded Helly numbers, and topological
conditions, as opposed to more geometric ones like convexity, received particular
attention. The general picture that emerges is that requiring that intersections
have trivial low-dimensional homotopy [35] or have trivial high-dimensional
homology [11] is sufficient (see below for a more comprehensive account).

1.1 Problem Statement and Results

In this paper, we focus on the existential question and give the following new
homological sufficient condition for bounding Helly numbers. Throughout the
paper, we consider homology with coefficients2 in Z2, and denote by Q̌i.X/ the ith
reduced Betti number (over Z2) of a space X. Furthermore, we use the notationT

F WD TU2F U as a shorthand for the intersection of a family of sets.

Theorem 1 For any non-negative integers b and d there exists an integer h.b; d/
such that the following holds. If F is a finite family of subsets of Rd such that
Q̌
i .
T

G/ � b for any G ¨ F and every 0 � i � dd=2e � 1 then F has Helly
number at most h.b; d/.

Our proof, which we sketch in Sect. 1.4, hinges on a general principle, which
we learned from Matoušek [35] but which already underlies the classical proof of
Helly’s theorem from Radon’s lemma, to derive Helly-type theorems from results
of non-embeddability of certain simplicial complexes. The novelty of our approach
is to examine these non-embeddability arguments from a homological point of
view. This turns out to be a surprisingly effective idea, as homological analogues
of embeddings appear to be much richer and easier to build than their homotopic
counterparts. More precisely, our proof of Theorem 1 builds on two contributions of
independent interest:

• We reformulate some non-embeddability results in homological terms. We obtain
a homological analogue of the Van Kampen–Flores Theorem (Corollary 13)

2The choice of Z2 as the ring of coefficient ring has two reasons. On the one hand, we work with
the van Kampen obstruction to prove certain non-embeddability results, and the obstruction is
naturally defined either for integer coefficients or over Z2 (it is a torsion element of order two). On
the other hand, the Ramsey arguments used in our proof require working over a fixed finite ring of
coefficients to ensure a finite number of color classes (cf. Claim 1).
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and, as a side-product, a homological version of Radon’s lemma (Lemma 15).
This is part of a systematic effort to translate various homotopy technique to a
more tractable homology setting. It builds on, and extends, previous work on
homological minors [58].

• By working with homology rather than homotopy, we can generalize a technique
of Matoušek [35] that uses Ramsey’s theorem to find embedded structures. In
this step, roughly speaking, we construct some auxiliary (chain) map, with certain
homological constraints, inductively by increasing the dimension of the preimage
complex while decreasing the size of it. This approach turned out to be also
useful in a rather different setting, regarding the (non-)embeddability of skeleta
of complexes into manifolds [20].

Our method also proves:

• A bound of dC1 on the Helly number of any family F of subsets of Rd such that
Q̌
i .
T

G/ D 0 for all G ¨ F and all i � d (see Corollary 24), which generalizes
Helly’s topological theorem as the sets of F are, for instance, not assumed to be
open. (In the original proof, this assumption is crucial and used to ensure that the
union of the sets must have trivial homology in dimensions larger than d; this
may fail if the sets are not open.)

• A bound of d C 2 on the Helly number of any family F of subsets of Rd such
that Q̌i .TG/ D 0 for all G ¨ F but only for i � dd=2e � 1 (see Corollary 23).

In both cases the bounds are tight.
Quantitatively, the bound on h.b; d/ that we obtain in the general case is

very large as it follows from successive applications of Ramsey’s theorems. The
conditions of Theorem 1 relax the conditions of a Helly-type theorem of Amenta [4]
(see the discussion below) for which a lower bound of b.d C 1/ is known [33];
a stronger lower bound is possible for h.b; d/ (see Example 2) but we consider
narrowing this gap further to be outside the scope of the present paper. Qualitatively,
Theorem 1 is sharp in the sense that all (reduced) Betti numbers Q̌i with 0 � i �
dd=2e � 1 need to be bounded to obtain a bounded Helly number (see Example 3).

Example 2 First, we observe that for every d � 2 there is a geometric simplicial
complex 	d with dC2 vertices, embedded in R

d, such that every nonempty induced
subcomplex L of 	d is connected and satisfies Q̌i.L/ D 0 for i ¤ d � 1 and
Q̌
d�1.L/ � 1.

Indeed, we can take 	d to be the stellar subdivision of the d-simplex (i.e., the
cone over the boundary of the d-simplex): Among the vertices of 	d, d C 1 of
them, say v1; : : : ; vdC1, form a d-simplex, and the last one, say w, is situated in the
barycenter of that simplex. The maximal simplices of 	d contain w and d of the
vertices vi. Given an induced subcomplex L, either L misses one of the v-vertices,
and then L is a k-simplex for some k � d; or L contains all the vi, in which case
either L D 	d or L is the boundary of the simplex spanned by the vertices vi.
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Fig. 1 The simplex � (left) and the 1-skeleton of 	 0

3 (right)

Now, let 	b;d be a complex that consists of b disjoint copies of 	d, embedded in
R

d. For a vertex v of	b;d, let Uv be the union of all simplices of 	b;d not containing v
(i.e., Uv is the geometric realization of the induced subcomplex of	b;d on all vertices
but v). We define F to be the collection of all subcomplexes Fv , where v ranges over
all vertices of 	b;d. Thus, by construction, F contains b.dC 2/ sets,

T
F D ;, and

for any nonempty proper subsystem G � F , the intersection
T

G is nonempty, and
by the properties of 	d, the reduced Betti numbers of

T
G are bounded by b.3

Example 3 Let us fix some k with 0 � k � dd=2e � 1. For n arbitrarily large,
consider a geometric realization in R

d of the k-skeleton of the .n � 1/-dimensional
simplex (see [36, Section 1.6]); more specifically, let V D fv1; : : : ; vng be a set of
points in general position in R

d and consider all geometric simplices �A WD conv.A/
spanned by subsets A � V of cardinality jAj � kC 1.

Similarly as in the previous example, let Uj be the union of all the simplices not
containing the vertex vj, for 1 � j � n. We set F D fU1; : : : ;Ung. Then,

T
F D ;,

and for any proper sub-family G ¨ F , the intersection
T

G is either Rd (if G D ;)
or (homeomorphic to) the k-dimensional skeleton of a .n � 1 � jGj/-dimensional
simplex. Thus, the Helly number of F equals n. Moreover, the k-skeleton �.k/

m�1 of
an .m � 1/-dimensional simplex has reduced Betti numbers Q̌i D 0 for i ¤ k and
Q̌
k D

�m�1
kC1
�
. Thus, we can indeed obtain arbitrarily large Helly number as soon as

at least one Q̌k is unbounded.

3We remark that this construction can be further improved (at the cost of simplicity). For example,
for d D 3, it is possible to find a geometric simplicial complex 	 0

3 with six vertices (instead of five)
with properties analogous to 	3: Consider a simplex � � R

3 with vertices v1; v2; v3 and v4. Let
b the barycenter of this simplex and we set v5 to be the barycenter of the triangle v1v2b and v6 to
be the barycenter of v3v4b. Finally, we set 	 0

3 to be the subdivision of � with vertices v1; : : : ; v6
and with maximal simplices 1245, 1235, 3416, 3426, 5613, 5614, 5623, and 5624 where the label
ABCD stands for convfvA; vB; vC; vDg. One can check that this indeed yields a simplicial complex
with the required properties. See the 1-skeleton of 	 0

3 in Fig. 1. We believe that an analogous
example can be also constructed for d � 4.
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1.2 Relation to Previous Work

The search for topological conditions that ensure bounded Helly numbers started
with Helly’s topological theorem [28] (see also [12] for a modern version of
the proof) and organized along several directions related to classical questions in
topology. Theorem 1 unifies topological conditions originating from two different
approaches:

• Helly-type theorem can be derived from non-embeddability results, in the
spirit of the classical proof of Helly’s theorem from Radon’s lemma. Using
this approach, Matoušek [35] showed that it is sufficient to control the low-
dimensional homotopy of intersections of sub-families to ensure bounded Helly
numbers: for any non-negative integers b and d there exists a constant c.b; d/
such that any finite family of subsets of Rd in which every sub-family intersects
in at most b connected components, each .dd=2e � 1/ -connected, has Helly
number at most c.b; d/. (We recall that a topological space X is k-connected,
for some integer k � 0, if every continuous map Si ! X from the i-dimensional
sphere to X, 0 � i � k, can be extended to a map DiC1 ! X from the .i C 1/-
dimensional disk to X.) By Hurewicz’ Theorem and the Universal Coefficient
Theorem [26, Theorem 4.37 and Corollary 3A.6], a k-connected space X satisfies
Q̌
i.X/ D 0 for all i � k. Thus, our condition indeed relaxes Matoušek’s, in two

ways: by using Z2-homology instead of the homotopy-theoretic assumptions of
k-connectedness,4 and by allowing an arbitrary fixed bound b instead of b D 0.

• Helly’s topological theorem can be easily derived from classical results in
algebraic topology relating the homology/homotopy of the nerve of a family
to that of its union: Leray’s acyclic cover theorem [9, Sections III.4.13, VI.4
and VI.13] for homology, and Borsuk’s Nerve theorem [7, 8] for homotopy (in
that case one considers finite open good covers5). More general Helly numbers
were obtained via this approach by Dugundji [15], Amenta [4],6 Kalai and
Meshulam [30], and7 Colin de Verdière et al. [11]. The outcome is that if
a family of subsets of R

d is such that any sub-family intersects in at most
b connected components, each a homology cell (over Q), then it has Helly
number at most b.d C 1/. This therefore relaxes Helly’s original assumption by
allowing intersections of sub-families to have Q̌0’s bounded by an arbitrary fixed

4We also remark that our condition can be verified algorithmically since Betti numbers are
easily computable, at least for sufficiently nice spaces that can be represented by finite simplicial
complexes, say. By contrast, it is algorithmically undecidable whether a given 2-dimensional
simplicial complex is 1-connected, see, e.g., the survey [50].
5An open good cover is a finite family of open subsets of R

d such that the intersection of any
sub-family is either empty or is contractible (and hence, in particular, a homology cell).
6The role of nerves is implicit in Amenta’s proof but becomes apparent when compared to an
earlier work of Wegner [60] that uses similar ideas.
7The result of Colin de Verdière et al. [11] holds in any paracompact topological space; Theorem 1
only subsumes the R

d case.
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bound b instead of b D 0. Theorem 1 makes the same relaxation for the Q̌1’s,
Q̌
2’s, : : : Q̌dd=2e�1’s and drops all assumptions on higher-dimensionnal homology,

including the requirement that sets be open (which is used to control the .> d/-
dimensional homology of intersections).

Let us highlight two Helly-type results that stand out in this line of research as not
subsumed (qualitatively) by Theorem 1. On the one hand, Eckhoff and Nischke [17]
gave a purely combinatorial argument that derives the theorems of Amenta [4] and
Kalai and Meshulam [30] from Helly’s convex and topological theorems. On the
other hand, Montejano [40] relaxed Helly’s original assumption on the intersection
of sub-families of size k � dC1 from being a homology cell into having trivial d�k
homology (so only one Betti number needs to be controlled for each intersection,
but it must be zero). These results neither contain nor are contained in Theorem 1.

We remark that another non-topological structural condition, known to ensure
bounded Helly numbers, also falls under the umbrella of Theorem 1. As observed
by Motzkin [41, Theorem 7] (see also Deza and Frankl [14]), any family of real
algebraic subvarieties of Rd defined by polynomials of degree at most k has Helly
number bounded by a function of d and k (more precisely, by the dimension of the
vector subspace of RŒx1; x2; : : : ; xd� spanned by these polynomials); since the Betti
numbers of an algebraic variety in R

n can be bounded in terms of the degree of the
polynomials that define it [39, 55], this also follows from Theorem 1. We give some
other examples in Sect. 1.3, where we easily derive from Theorem 1 generalizations
of various existing Helly-type theorems.

Note that Theorem 1 is similar, in spirit, to some of the general relations between
the growth of Betti numbers and fractional Helly theorems conjectured by Kalai
and Meshulam [29, Conjectures 6 and 7]. Kalai and Meshulam, in their conjectures,
allow a polynomial growth of the Betti numbers in jTGj. As the following example
shows, Theorem 1 is also sharp in the sense that even a linear growth of Betti
numbers, already in R

1, may yield unbounded Helly numbers. In particular, the
conjectures of Kalai and Meshulam cannot be strengthened to include Theorem 1.

Example 4 Consider a positive integer n and open intervals Ii WD .i � 1:1I iC 0:1/
for i 2 Œn�. Let Xi WD Œ0; n�nIi. The intersection of all Xi is empty but the intersection
of any proper subfamily is nonempty. In addition, the intersection of k such Xi can
be obtained from Œ0; n� by removing at most k open intervals, thus the reduced Betti
numbers of such an intersection are bounded by k.

1.3 Further Consequences

We conclude this introduction with a few implications of our main result.

New geometric Helly-type theorems The main strength of our result is that very
weak topological assumptions on families of sets are enough to guarantee a bounded
Helly number. This can be used to identify new Helly-type theorems, for instance
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by easily detecting generalizations of known results, as we now illustrate on two
Helly-type theorems of Swanepoel.

A first example is given by a Helly-type theorem for hollow boxes [52], which
generalizes (qualitatively) as follows:

Corollary 5 For all integers s; d � 1, there exists an integer h0.s; d/ such that
the following holds. Let S be a set of s nonzero vectors in R

d, and let F D
fU1;U2; : : : ;Ung where each Ui is a polyhedral subcomplex of some polytope Pi

in R
d which can be obtained as an intersection of half-spaces with normal vectors

in S. Then F has Helly number at most h0.s; d/.
Swanepoel’s result corresponds to the case S D f˙e1;˙e2; : : : ;˙edg where

e1; : : : ; ed form a basis of Rd.

Proof of Corollary 5 We verify the assumptions of Theorem 1, i.e., we consider a
subfamily G D fUiW i 2 Ig � F and we check that Q̌i.TG/ is bounded by a function
of s and d for any i � 0 (to apply Theorem 1, it would be sufficient to consider
i � dd=2e�1, but in the present setting, there is no difference in reasoning for other
values of i).

Let P D P.S/ be the set of all polytopes which can be obtained as an intersection
of half-spaces with normal vectors in S. Let Pi 2 P be a polytope such that Ui is a
polyhedral subcomplex of Pi.

Let us consider the polytope P D T
i2I Pi. From the definition of P we

immediately deduce that P 2 P . Moreover, the intersection U WD T
G is a

polyhedral subcomplex of P. (The faces U are of form
T

i2I �i where �i is a face
of Ui; see [46, Exercise 2.8(5) + hint].)

Since P 2 P we deduce that it has at most 2s facets. By the dual version of the
upper bound theorem [62, Theorem 8.23], the number of faces of P is bounded by a
function of s and d. Consequently, Q̌i.U/ is bounded by a function of s and d, since
U is a subcomplex of P. ut

A second example concerns a Helly-type theorem for families of translates
and homothets of a convex curve [53], which are special cases of families of
pseudo-circles. More generally, a family of pseudo-spheres is defined as a set
F D fU1;U2; : : : ;Ung of subsets of Rd such that or any G � F , the intersection
\.G/ is homeomorphic to a k-dimensional sphere for some k 2 f0; 1; : : : ; d � 1g or
to a single point. The case b D 1 of Theorem 1 immediately implies the following:

Corollary 6 For any integer d there exists an integer h.d/ such that the Helly
number of any finite family of pseudo-spheres in R

d is at most h.d/.
We note that the special case of Euclidean spheres falls under the umbrella of

intersections of real algebraic varieties of bounded degree, for which the Helly
number is bounded as observed by Motzkin and others, as discussed above [14, 34].
For the more general setting pseudo-spheres, however, the above result is new,
to the best of our knowledge. An optimal bound h.d/ D d C 1 as soon as the
family contains at least dC 3 pseudo-spheres was obtained by Sosnovec [51], after
discussing the contents of Corollary 6 with us.
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Generalized linear programming Theorem 1 also has consequences in the direc-
tion of optimization problems. Various optimization problems can be formulated as
the minimization of some function f W Rd ! R over some intersection

Tn
iD1 Ci

of subsets C1;C2; : : : ;Cn of R
d. If, for t 2 R, we let Lt D f�1 ..�1; t�/ and

Ft D fC1;C2; : : : ;Cn;Ltg then

min
x2Tn

iD1 Ci

f .x/ D min
n
t 2 R W

\
Ft ¤ ;

o
:

If the Helly number of the families Ft can be bounded uniformly in t by some
constant h then there exists a subset of h � 1 constraints Ci1 ;Ci2 ; : : : ;Cih�1 that
suffice to define the minimum of f :

min
x2Tn

iD1 Ci

f .x/ D min
x2Th�1

jD1 Cij

f .x/:

A consequence of this observation, noted by Amenta [3], is that the minimum
of f over C1 \ C2 \ : : : \ Cn can8 be computed in randomized O.n/ time by
generalized linear programming [47] (see de Loera et al. [13] for other uses of
this idea). Together with Theorem 1, this implies that an optimization problem of
the above form can be solved in randomized linear time if it has the property that
every intersection of some subset of the constraints with a level set of the function
has bounded “topological complexity” (measured in terms of the sum of the first
dd=2e Betti numbers). Let us emphasize that this linear-time bound holds in a real-
RAM model of computation, where any constant-size subproblems can be solved
in O.1/-time; it therefore concerns the combinatorial difficulty of the problem and
says nothing about its numerical difficulty.

1.4 Proof Outline

Let us briefly sketch the proof of Theorem 1.
Consider the simplified setting where we have subsets A1;A2; : : : ;A5 of R

2

such that any four have non-empty intersection and any three have path-connected
intersection. Draw K5, the complete graph on 5 vertices, inside the union of the five
sets by picking points pi 2 \j¤iAj and connecting any two points pu, pv inside the
intersection \j¤u;vAj. The (stronger form of the) non-planarity of K5 ensures that
two edges that share no vertex must cross, and the intersection point witnesses that
\5iD1Ai is non-empty (cf. Fig. 3). This idea, more systematically, ensures that any
family of planar sets with path-connected intersections has Helly number at most 4.

8This requires f and C1;C2; : : : ;Cn to be generic in the sense that the number of minima of f over
\i2ICi is bounded uniformly for I � f1; 2; : : : ; ng.
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Now consider subsets A1;A2; : : : ;An of R
2 such that the intersection of any

proper subfamily is nonempty and has at most b path-connected components. We
can again pick pi 2 \j¤iAj. Two points pu, pv may end up in different connected
components of \j¤u;vAj, but among any bC 1 points pi1 ; pi2 ; : : : ; pibC1

, two can be
connected inside \j¤i1;i2;:::;ibC1

Aj. We can thus still draw a large graph inside the
union, but each edge misses an extra set of Ai’s. A Ramsey-type argument ensures
that for n large enough, we can find a copy of K5 where each edge misses distinct
extra sets, and therefore that \n

iD1Ai is non-empty.
These arguments generalize to higher dimension: once we can draw pupv , pvpw

and pupw inside the intersection of some family of subsets, we can fill the triangle
in that intersection if it is 1-connected (in homotopy). More systematically, given a
family of subsets of R2k whose proper intersections are k-connected (in homotopy),
we can draw�.k/

2kC2 inside their union and find, via the Van Kampen-Flores theorem,
that the complete intersection is non-empty (and similarly in odd dimensions). This
is, in short, Matoušek’s theorem [35].

We extend Matoušek’s approach to allow intersections to have bounded but
non-trivial homotopy in dimension 1 or more. The main difficulty is that we may
not be able to fill any elementary cycle: as illustrated on the figure below, for
n arbitrarily large, Kn can be drawn in an annulus so that no triangle can be filled.
There still exist cycles that can be filled, for instance 2435; they are simply not
boundaries of triangles. Such cycles are more easily found by working with the
additive structure of Z2-homology: the sum of any two homologous cycles is a
boundary (and therefore “fillable”), and many pairs of homologous cycles exist
because a bounded Betti number ensures a constant number of homology classes.

1

2 3 4 5

The key idea is, then, to look for sufficiently large sets of vertices where, as
in the example above, every triangle has the same Z2-homology, and to map the
barycentric subdivision of a triangle to these vertices (as described in Fig. 7); the
resulting sum of evenly many homologous simplices must be a boundary. These
large sets of vertices with homologous triangles exist as soon as the Betti number
is bounded: indeed, one can simply apply Ramsey’s theorem to the 3-uniform
hypergraph on the vertices where every triangle is “colored” by its homology class.
This idea generalizes to arbitrary dimension.
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Because of the switch to homology, we do not build a map of�.k/
2kC2 into the target

space R
d (d D 2k or d D 2k � 1) but only a chain map from the simplicial chain

complex of �.k/
2kC2 into the singular chain complex of Rd. Hence, we can no longer

rely on the classical non-embeddability results and have to develop homological
analogs.

We set up our homological machinery in Sect. 2 (homological almost-
embeddings, homological Van Kampen-Flores Theorem, and homological Radon
lemma). We then spell out, in Sect. 3, variations of the technique that derives Helly-
type theorems from non-embeddability. We finally introduce our refinement of this
technique and the proof of Theorem 1 in Sect. 4.

1.5 Notation

We assume that the reader is familiar with basic topological notions and facts con-
cerning simplicial complexes and singular and simplicial homology, as described in
textbooks like [26, 42]. As remarked above, throughout this paper we will work with
homology with Z2-coefficients unless explicitly stated otherwise. Moreover, while
we will consider singular homology groups for topological spaces in general, for
simplicial complexes we will work with simplicial homology groups. In particular,
if X is a topological space then C�.X/ will denote the singular chain complex of X,
while if K is a simplicial complex, then C�.K/ will denote the simplicial chain
complex of K (both with Z2-coefficients).

We use the following notation. Let K be a (finite, abstract) simplicial complex.
The underlying topological space of K is denoted by jKj. Moreover, we denote by
K.i/ the i-dimensional skeleton of K, i.e., the set of simplices of K of dimension at
most i; in particular K.0/ is the set of vertices of K. For an integer n � 0, let �n

denote the n-dimensional simplex.

2 Homological Almost-Embeddings

In this section, we define homological almost-embedding, an analogue of topo-
logical embeddings on the level of chain maps, and show that certain simplicial
complexes do not admit homological almost-embeddings in R

d, in analogy to
classical non-embeddability results due to Van Kampen and Flores. In fact, when
this comes at no additional cost we phrase the auxiliary results in a slightly
more general setting, replacing R

d by a general topological space R. Readers
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that focus on the proof of Theorem 1 can safely replace every occurrence of R
with R

d.

2.1 Non-embeddable Complexes

We recall that an embedding of a finite simplicial complex K into R
d is simply

an injective continuous map jKj ! R
d. The fact that the complete graph on five

vertices cannot be embedded in the plane has the following generalization.

Proposition 7 (Van Kampen [57], Flores [19]) For k � 0, the complex�.k/
2kC2, the

k-dimensional skeleton of the .2kC2/-dimensional simplex, cannot be embedded in
R
2k.
A basic tool for proving the non-embeddability of a simplicial complex is the so-

called Van Kampen obstruction. To be more precise, we emphasize that in keeping
with our general convention regarding coefficients, we work with the Z2-coefficient
version9 of the Van Kampen obstruction, which will be reviewed in some detail in
Sect. 2.3 below. Here, for the benefit of readers who are willing to accept certain
topological facts as given, we simply collect those statements necessary to motivate
the definition of homological almost-embeddings and to follow the logic of the proof
of Theorem 1.

Given a simplicial complex K, one can define, for each d � 0, a certain
cohomology class od.K/ that resides in the cohomology group Hd.K/ of a certain
auxiliary complex K (the quotient of the combinatorial deleted product by the nat-
ural Z2-action, see below); see the paragraph on obstructions following Lemma 19
for a more proper definition of od.K/. This cohomology class od.K/ is called
the Van Kampen obstruction to embeddability into R

d because of the following
fact:

Proposition 8 Suppose that K is a finite simplicial complex with od.K/ ¤ 0. Then
K is not embeddable into R

d. In fact, a slightly stronger conclusion holds: there is
no almost-embedding f W jKj ! R

d, i.e., no continuous map such that the images of
disjoint simplices of K are disjoint.

Another basic fact is the following result (for a short proof see, for instance, [37,
Example 3.5]).

Proposition 9 ([19, 57]) For every k � 0, o2k
�
�
.k/
2kC2

	
¤ 0.

As a consequence, one obtains Proposition 7, and in fact the slightly stronger
statement that �.k/

2kC2 does not admit an almost-embedding into R
2k.

9There is also a version of the Van Kampen obstruction with integer coefficients, which in general
yields more precise information regarding embeddability than the Z2-version, but we will not need
this here. We refer to [37] for further background.
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2.2 Homological Almost-Embeddings and a Van
Kampen–Flores Result

For the proof of Theorem 1, we wish to replace homotopy-theoretic notions (like k-
connectedness) by homological assumptions (bounded Betti numbers). The simple
but useful observation that allows us to do this is that in the standard proof of
Proposition 8, which is based on (co)homological arguments, maps can be replaced
by suitable chain maps at every step.10 The appropriate analogue of an almost-
embedding is the following.

Definition 10 Let R be a (nonempty) topological space, K be a simplicial complex,
and consider a chain map11 � WC�.K/ ! C�.R/ from the simplicial chains in K to
singular chains in R.

(i) The chain map � is called nontrivial12 if the image of every vertex of K is a
finite set of points in R (a 0-chain) of odd cardinality.

(ii) The chain map � is called a homological almost-embedding of a simplicial
complex K in R if it is nontrivial and if, additionally, the following holds:
whenever � and � are disjoint simplices of K, their image chains �.�/ and
�.�/ have disjoint supports, where the support of a chain is the union of (the
images of) the singular simplices with nonzero coefficient in that chain.

Remark 11 Suppose that f W jKj ! R
d is a continuous map.

(i) The induced chain map13 f]WC�.K/! C�.Rd/ is nontrivial.
(ii) If f is an almost-embedding then the induced chain map is a homological

almost-embedding.

Moreover, note that without the requirement of being nontrivial, we could simply
take the constant zero chain map, for which the second requirement is trivially
satisfied.

We have the following analogue of Proposition 8 for homological almost-
embeddings.

10This observation was already used in [58] to study the (non-)embeddability of certain simplicial
complexes. What we call a homological almost-embedding in the present paper corresponds to the
notion of a homological minor used in [58].
11We recall that a chain map �WC� ! D� between chain complexes is simply a sequence of
homomorphisms �nWCn! Dn that commute with the respective boundary operators, �n�1 ı @C D
@D ı �n.
12If we consider augmented chain complexes with chain groups also in dimension �1, then being
nontrivial is equivalent to requiring that the generator of C�1.K/ Š Z2 (this generator corresponds
to the empty simplex in K) is mapped to the generator of C�1.R/ Š Z2.
13The induced chain map is defined as follows: We assume that we have fixed a total ordering of
the vertices of K. For a p-simplex � of K, the ordering of the vertices induces a homeomorphism
h� W j�pj ! j� j � jKj. The image f].�/ is defined as the singular p-simplex f ı h� .



420 X. Goaoc et al.

Proposition 12 Suppose that K is a finite simplicial complex with od.K/ ¤ 0. Then
K does not admit a homological almost-embedding in R

d.
As a corollary, we get the following result, which underlies our proof of

Theorem 1.

Corollary 13 For any k � 0, the k-skeleton �.k/
2kC2 of the .2k C 2/-dimensional

simplex has no homological almost-embedding in R
2k.

We conclude this subsection by two facts that are not needed for the proof of the
main result but are useful for the presentation of our method in Sect. 3.

If the ambient dimension d D 2kC 1 is odd, we can immediately see that�.kC1/
2kC4

has no homological almost-embedding in R
2kC1 since it has no homological almost-

embedding in R
2kC2; this result can be slightly improved:

Corollary 14 For any d � 0, the dd=2e-skeleton�.dd=2e/
dC2 of the .dC2/-dimensional

simplex has no homological almost-embedding in R
d.

Proof The statement for even d is already covered by the case k D d=2 of
Corollary 13, so assume that d is odd and write d D 2kC1. If K is a finite simplicial
complex with od.K/ ¤ 0 and if CK is the cone over K then odC1.CK/ ¤ 0 (for a
proof, see, for instance, [6, Lemma 8]). Since we know that o2k.�

.k/
2kC2/ ¤ 0 it

follows that o2kC1.C�.k/
2kC2/ ¤ 0. Consequently, o2kC1.�.kC1/

2kC3 / ¤ 0 since C�.k/
2kC2

is a subcomplex of �.kC1/
2kC3 and there exists an equivariant map from the deleted

product of the subcomplex to the deleted product of the complex. Proposition 12
then implies that �.kC1/

2kC3 admits no homological almost-embedding in R
2kC1. ut

The next fact is the following analogue of Radon’s lemma, proved in the next
subsection along the proof of Proposition 12.

Lemma 15 (Homological Radon’s lemma) For any d � 0, od.@�dC1/ ¤ 0.
Consequently, the boundary of .d C 1/-simplex @�dC1 admits no homological
almost-embedding in R

d.

2.3 Deleted Products and Obstructions

Here, we review the standard proof of Proposition 8 and explain how to adapt it to
prove Proposition 12, which will follow from Lemma 19 and Lemma 20(b) below.
The reader unfamiliar with cohomology and willing to accept Proposition 12 can
safely proceed to Sect. 3.

Z2-spaces and equivariant maps We begin by recalling some basic notions of
equivariant topology: An action of the group Z2 on a space X is given by an
automorphism �WX ! X such that � ı � D 1X; the action is free if � does not
have any fixed points. If X is a simplicial complex (or a cell complex), then the
action is called simplicial (or cellular) if it is given by a simplicial (or cellular) map.
A space with a given (free) Z2-action is also called a (free) Z2-space.
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A map f WX ! Y between Z2-spaces .X; �/ and .Y; �/ is called equivariant if it
commutes with the respective Z2-actions, i.e., f ı � D � ı f . Two equivariant maps
f0; f1WX ! Y are equivariantly homotopic if there exists a homotopy FWX
 Œ0; 1�!
Y such that all intermediate maps ft WD F.�; t/, 0 � t � 1, are equivariant.

A Z2-action � on a space X also yields a Z2-action on the chain complex C�.X/,
given by the induced chain map �]WC�.X/ ! C�.X/ (if � is simplicial or cellular,
respectively, then this remains true if we consider the simplicial or cellular chain
complex of X instead of the singular chain complex), and if f WX ! Y is an
equivariant map between Z2-spaces then the induced chain map is also equivariant
(i.e., it commutes with the Z2-actions on the chain complexes).

Spheres Important examples of free Z2-spaces are the standard spheres Sd, d � 0,
with the action given by antipodality, x 7! �x. There are natural inclusion maps
S

d�1 ,! S
d, which are equivariant. Antipodality also gives a free Z2-action on the

union S
1 D S

d�0 Sd, the infinite-dimensional sphere. Moreover, one can show
that S1 is contractible, and from this it is not hard to deduce that S1 is a universal
Z2-space, in the following sense (see [38] or also [32, Prop. 8.16 and Thm. 8.17] for
a more detailed textbook treatment).

Proposition 16 If X is any cell complex with a free cellular Z2-action, then there
exists an equivariant map f WX ! S

1. Moreover, any two equivariant maps
f0; f1WX ! S

1 are equivariantly homotopic.
Any equivariant map f WX ! S

1 induces a nontrivial equivariant chain map
f]WC�.X/ ! C�.S1/. A simple fact that will be crucial in what follows is that
Proposition 16 has an analogue on the level of chain maps.

We first recall the relevant notion of homotopy between chain maps: Let C�.X/
and C�.Y/ be (singular or simplicial, say) chain complexes, and let '; WC�.X/!
C�.Y/ be chain maps. A chain homotopy � between ' and  is a family of
homomorphisms �jWCj.X/! CjC1.Y/ such that

'j �  j D @Y
jC1 ı �j C �j�1 ı @X

j

for all j.14 If X and Y are Z2-spaces then a chain homotopy is called equivariant if it
commutes with the (chain maps induced by) the Z2-actions.15

Lemma 17 If X is a cell complex with a free cellular Z2-action then any two
nontrivial equivariant chain maps '; WC�.X/! C�.S1/ are equivariantly chain
homotopic.16

14Here, we use subscripts and superscripts on the boundary operators to emphasize which
dimension and which chain complex they belong to; often, these indices are dropped and one
simply writes ' �  D @�C �@.
15We also recall that if f ; g X ! Y are (equivariantly) homotopic then the induced chain maps
are (equivariantly) chain homotopic. Moreover, chain homotopic maps induce identical maps in
homology and cohomology.
16We stress that we work with the cellular chain complex for X.
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Proof of Lemma 17 Let the Z2-action on X be given by the automorphism �WX !
X. For each dimension i � 0, the action partitions the i-dimensional cells of X (the
basis elements of Ci.X/) into pairs �; �.�/. For each such pair, we arbitrarily pick
one of the cells and call it the representative of the pair.

We define the desired equivariant chain homotopy � between ' and  by
induction on the dimension, using the fact that all reduced homology groups of
S
1 are zero. (This just mimics the argument for the existence of an equivariant

homotopy, which uses the contractibility of S1.)
We start the induction in dimension at j D �1 (and for convenience, we also use

the convention that all chain groups, chain maps, and �i are understood to be zero in
dimensions i < �1). Since we assume that both ' and are nontrivial, we have that
'�1;  �1WC�1.X/! C�1.S1/ are identical, and we set ��1WC�1.X/! C0.S1/ to
be zero.

Next, assume inductively that equivariant homomorphisms �iWCi.X/! Ci.S
1/

have already been defined for i < j and satisfy

'i �  i D �i�1 ı @C @ ı �i (1)

for all i < j (note that initially, this holds true for j D 0).
Suppose that � is a j-dimensional cell of X representing a pair �; �.�/. Then

@� 2 Cj�1.X/, and so �j�1.@�/ 2 Cj.S
1/ is already defined. We are looking for a

suitable chain c 2 CjC1.S1/ which we can take to be �j.�/ in order to satisfy the
chain homotopy relation (1) also for i D j, such a chain c has to satisfy @c D b,
where

b WD 'j.�/ �  j.�/ � �j�1.@.�//:

To see that we can find such a c, we compute

@b D @'j.�/ � @ j.�/ � @�j�1.@.�//

D 'j�1.@�/ �  j�1.@�/ �
�
'j�1.@�/ �  j�1.@�/ � �j�2.@@�/

	
D 0

Thus, b is a cycle, and since Hj.S
1/ D 0, b is also a boundary. Pick an arbitrary

chain c 2 CjC1.S1/ with @c D b and set �j.�/ WD c and �j.�.�// WD �].c/. We do
this for all representative j-cells � and then extend �j by linearity. By definition, �j

is equivariant and (1) is now satisfied also for i D j. This completes the induction
step and hence the proof. ut
Deleted products and Gauss maps Let K be a finite simplicial complex. Then the
Cartesian product K 
K is a cell complex whose cells are the Cartesian products of
pairs of simplices of K. The (combinatorial) deleted product eK of K is defined as
the polyhedral subcomplex of K 
 K whose cells are the products of vertex-disjoint
pairs of simplices of K, i.e., eK WD f� 
 � W �; � 2 K; � \ � D ;g. The deleted
product is equipped with a natural free Z2-action that simply exchanges coordinates,
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.x; y/ 7! .y; x/. Note that this action is cellular since each cell � 
 � is mapped to
� 
 � .

Lemma 18 If f W jKj ,! R
d is an embedding (or, more generally, an almost-

embedding) then17 there exists an equivariant map Qf WeK ! Sd�1.

Proof Define Qf .x; y/ WD f .x/�f .y/
kf .x/�f .y/k . This map, called the Gauss map, is clearly

equivariant. ut
For the proof of Proposition 12, we use the following analogue of Lemma 18.

Lemma 19 Let K be a finite simplicial complex. If � WC�.K/ ! C�.Rd/ is a
homological almost-embedding then there is a nontrivial equivariant chain map
(called the Gauss chain map) Q� WC�.eK/! C�.Sd�1/.
The proof of this lemma is not difficult but a bit technical, so we postpone it until
the end of this section.

Obstructions Here, we recall a standard method for proving the non-existence of
equivariant maps between Z2-spaces. The arguments are formulated in the language
of cohomology, and, as we will see, what they actually establish is the non-existence
of nontrivial equivariant chain maps.

Let K be a finite simplicial complex and let eK be its (combinatorial) deleted
product. By Proposition 16, there exists an equivariant map GK WeK ! S

1, which is
unique up to equivariant homotopy. By factoring out the action of Z2, this induces a
map GK WK ! RP

1 between the quotient spaces K D eK=Z2 and RP
1 D S

1=Z2
(the infinite-dimensional real projective space), and the homotopy class of the map
GK depends only18 on K. Passing to cohomology, there is a uniquely defined induced
homomorphism

G
�
K WH�.RP1/! H�.K/:

It is known that Hd.RP1/ Š Z2 for every d � 0. Letting �d denote the unique
generator of Hd.RP1/, there is a uniquely defined cohomology class

od.K/ WD G
�
K.�

d/;

called the van Kampen obstruction (with Z2-coefficients) to embedding K into R
d.

For more details and background regarding the van Kampen obstruction, we refer
the reader to [37].

17We remark that a classical result due to Haefliger and Weber [25, 59] asserts that if dim K �
.2d � 3/=3 (the so-called metastable range) then the existence of an equivariant map fromeK to
S

d�1 is also sufficient for the existence of an embedding K ,! R
d (outside the metastable range,

this fails); see [49] for further background.
18We stress that this does not mean that there is only one homotopy class of continuous maps
K! RP

1; indeed, there exist such maps that do not come from equivariant mapseK! S
1, for

instance the constant map that maps all of K to a single point.
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The basic fact about the van Kampen obstruction (and the reason for its name)
is that K does not embed (not even almost-embed) into R

d if od.K/ ¤ 0

(Proposition 8). This follows from Lemma 18 and Part (a) of the following lemma:

Lemma 20 Let K be a simplicial complex and suppose that od.K/ ¤ 0.

(a) Then there is no equivariant map eK ! S
d�1.

(b) In fact, there is no nontrivial equivariant chain map C�.eK/! C�.Sd�1/.

Together with Lemma 19, Part (b) of the lemma also implies Proposition 12, as
desired. The simple observation underlying the proof of Lemma 20 is the following

Observation 21 Suppose 'WC�.eK/ ! C�.S1/ is a nontrivial equivariant chain
map (not necessarily induced by a continuous map). By factoring out the action of
Z2, ' induces a chain map 'WC�.K/! C�.RP1/. The induced homomorphism in
cohomology

'�WH�.RP1/! H�.K/

is equal to the homomorphism G
�
K used in the definition of the Van Kampen

obstruction, hence in particular

od.K/ D '�.�d/:

Proof By Lemma 17, ' is equivariantly chain homotopic to the nontrivial equivari-
ant chain map .GK/] induced by the map GK . Thus, after factoring out the Z2-action,
the chain maps ' and .GK/] from C�.K/ to C�.RP1/ are chain homotopic, and so
induce identical homomorphisms in cohomology. ut
Proof of Lemma 20 If there exists an equivariant map f WeK ! S

d�1, then the
induced chain map f]WC�.eK/ ! C�.Sd�1/ is equivariant and nontrivial, so (b)
implies (a), and it suffices to prove the former.

Next, suppose for a contradiction that  WC�.eK/ ! C�.Sd�1/ is a nontrivial
equivariant chain map. Let i WSd�1 ! S

1 denote the inclusion map, and let
i]WC�.Sd�1/ ! C�.S1/ denote the induced equivariant, nontrivial chain map.
Then the composition ' D .i] ı  /WC�.eK/ ! C�.S1/ is also nontrivial and
equivariant, and so, by the preceding observation, for the induced homomorphism
in cohomology, we get

od.K/ D .i] ı  /�.�d/ D  �
�

i
�
.�d/

	
:

However, i
�
.�d/ 2 Hd.RPd�1/ D 0 (for reasons of dimension), hence od.K/ D 0,

contradicting our assumption. ut
Remark 22 The same kind of reasoning also yields the well-known Borsuk–Ulam
Theorem, which asserts that there is no equivariant map S

d ! S
d�1, using the fact

that the inclusion iWRPd ! RP
1 (induced by the equivariant inclusion iWSd !
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S
1) has the property that i

�
.�d/, the pullback of the generator �d 2 Hd.RP1/, is

nonzero.19 In fact, once again one gets a homological version of the Borsuk–Ulam
theorem for free: there is no nontrivial equivariant chain map C�.Sd/! C�.Sd�1/.

Proof of Lemma 15 It is not hard to see that the deleted product A@�dC1 DA�dC1 of
the boundary of .dC1/-simplex is combinatorially isomorphic to the boundary of a
certain convex polytope and hence homeomorphic to S

d(respecting the antipodality
action), see [36, Exercise 5.4.3]. Thus, the assertion od.@�dC1/ ¤ 0 follows
immediately from the preceding remark (the homological proof of the Borsuk–Ulam
theorem). Together with Proposition 12, this implies that there is no homological
almost-embedding of @�dC1 in R

d. ut
The proof of Proposition 12 is complete, except for the following:

Proof of Lemma 19 Once again, we essentially mimic the definition of the Gauss
map on the level of chains. There is one minor technical difficulty due to the fact that
the cells ofeK are products of simplices, whereas the singular homology of spaces is
based on maps whose domains are simplices, not products of simplices (this is the
same issue that arises in the proof of Künneth-type formulas in homology).

Assume that � WC�.K/ ! C�.Rd/ is a homological almost-embedding. The
desired nontrivial equivariant chain map e� WC�.eK/ ! C�.Sd�1/ will be defined
as the composition of three intermediate nontrivial equivariant chain maps

These maps and intermediate chain complexes will be defined presently.
We define D� as a chain subcomplex of the tensor product C�.Rd/ ˝ C�.Rd/.

The tensor product chain complex has a basis consisting of all elements of the form
s˝ t, where s and t range over the singular simplices of Rd, and we take D� as the
subcomplex spanned by all s˝ t for which s and t have disjoint supports (note that
D� is indeed a chain subcomplex, i.e., closed under the boundary operator, since
if s and t have disjoint supports, then so do any pair of simplices that appear in
the boundary of s and of t, respectively). The chain complex C�.eK/ has a canonical
basis consisting of cells �
� , and the chain map ˛ is defined on these basis elements
by “tensoring” � with itself, i.e.,

˛.� 
 �/ WD �.�/˝ �.�/:

Since � is nontrivial, so is ˛, the disjointness properties of � ensure that the image
of ˛ does indeed lie in D�, and ˛ is clearly Z2-equivariant.

19In fact, it is known that H�.RP1/ is isomorphic to the polynomial ring Z2Œ��, that H�.RPd/ Š
Z2Œ��=.�

dC1/, and that i
�

is just the quotient map.
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Next, consider the Cartesian product Rd 
 R
d with the natural Z2-action given

by flipping coordinates. This action is not free since it has a nonempty set of fixed
points, namely the “diagonal” � D f.x; x/ W x 2 R

dg. However, the action on
R

d 
 R
d restricts to a free action on the subspace fRd WD .Rd 
 R

d/ n � obtained
by removing the diagonal (this subspace is sometimes called the topological deleted
product of Rd). Moreover, there exists an equivariant map pWfRd ! S

d�1 defined
as follows: we identify S

d�1 with the unit sphere in the orthogonal complement
�? D f.w;�w/ 2 R

d W w 2 R
dg and take pWfRd ! S

d�1 to be the orthogonal
projection onto�? (which sends .x; y/ to 1

2
.x�y; y�x/), followed by renormalizing,

p.x; y/ WD
1
2
.x � y; y � x/

k 1
2
.x � y; y � x/k 2 S

d�1 � �?:

The map p is equivariant and so the induced chain map p] is equivariant and
nontrivial.

It remains to define ˇWD� ! C�.fRd/. For this, we use a standard chain map

EMLWC�.Rd/˝ C�.Rd/! C�.Rd 
 R
d/;

sometimes called the Eilenberg–Mac Lane chain map, and then take ˇ to be the
restriction to D�.

Given a basis element s ˝ t of C�.Rd/ ˝ C�.Rt/, where sW�p ! R
d and

tW�q ! R
d are singular simplices, we can view s˝ t as the map s˝ tW�p 
�q !

R
d
Rd with .x; y/ 7! .s.x/; t.y//: This is almost like a singular simplex in R

d
Rd,
except that the domain is not a simplex but a prism (product of simplices). The
Eilenberg–Mac Lane chain map is defined by prescribing a systematic and coherent
way of triangulating products of simplices �p 
 �q that is consistent with taking
boundaries; then EML.s ˝ t/ 2 CpCq.R

d 
 R
d/ is defined as the singular chain

whose summands are the restrictions of the map � ˝ � W�p 
 �q to the . p C q/-
simplices that appear in the triangulation of �p 
 �q. We refer to [22] for explicit
formulas for the chain map EML. What is important for us is that the chain map
EML is equivariant and nontrivial. Both properties follow more or less directly
from the construction of the triangulation of the prisms �p 
 �q, which can be
explained as follows: Implicitly, we assume that the vertex sets f0; 1; : : : ; pg and
f0; 1; : : : ; qg are totally ordered in the standard way. The vertex set of �p 
 �q

is the grid f0; 1; : : : ; pg 
 f0; 1; : : : ; qg, on which we consider the coordinatewise
partial order defined by .x; y/ � .x0; y0/ if x � x0 and y � y0. Then the simplices
of the triangulation are all totally ordered subsets of this partial order. Thus, if
� D f.x0; y0/; .x1; y1/; : : : ; .xr; yr/g is a simplex that appears in the triangulation of
�p 
�q then the simplex � D f.y0; x0/; .y1; x1/; : : : ; .yr; xr/g obtained by flipping
all coordinates appears in the triangulation of �q 
 �p; see Fig. 2. This implies
equivariance of EML (and it is nontrivial since it maps a single vertex to a single
vertex). ut
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Δp

Δq

Δq

Δp

Fig. 2 A simplex in a triangulation of �p ��q and its twin in �q ��p

3 Helly-Type Theorems from Non-embeddability

We now detail the technique outlined in Sect. 1.4 and illustrate it on a few examples
before formalizing its ingredients.

Notation Given a set X we let 2X and
�X

k

�
denote, respectively, the set of all subsets

of X (including the empty set) and the set of all k-element subsets of X. If f W X ! Y
is an arbitrary map between sets then we abuse the notation by writing f .S/ for
f f .s/ j s 2 Sg for any S � X; that is, we implicitly extend f to a map from 2X to 2Y

whenever convenient.

3.1 Homotopic Assumptions

Let F D fU1;U2; : : : ;Ung denote a family of subsets of Rd. We assume that F has
empty intersection and that any proper subfamily of F has nonempty intersection.
Our goal is to show how various conditions on the topology of the intersections
of the subfamilies of F imply bounds on the cardinality of F . For any (possibly
empty) proper subset I of Œn� D f1; 2; : : : ; ng we write UI for

T
i2Œn�nI Ui. We also

put UŒn� D R
d.

Path-connected intersections in the plane Consider the case where d D 2 and
the intersections

T
G are path-connected for all subfamilies G ¨ F . Since every

intersection of n � 1 members of F is nonempty, we can pick, for every i 2 Œn�, a
point pi in Ufig. Moreover, as every intersection of n�2members of F is connected,
we can connect any pair of points pi and pj by an arc si;j inside Ufi;jg. We thus obtain
a drawing of the complete graph on Œn� in the plane in a way that the edge between
i and j is contained in Ufi;jg (see Fig. 3). If n � 5 then the stronger form of non-
planarity of K5 implies that there exist two edges fi; jg and fk; `g with no vertex
in common and whose images intersect (see Proposition 8 and Lemma 9). Since
Ufi;jg \ Ufk;`g D

T
F D ;, this cannot happen and F has cardinality at most 4.
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Fig. 3 Two edges (arcs) with
no common vertices intersect
(in this case s1;4 and s2;5). The
point in the intersection then
belongs to all sets in F

p1

p2

p3

p4

p5

s2,5

s1,4

dd=2e-connected intersections in R
d The previous argument generalizes to higher

dimension as follows. Assume that the intersections
T

G are dd=2e-connected20 for
all subfamilies G ¨ F . Then we can build by induction a function f from the dd=2e-
skeleton of�n�1 to R

d in a way that for any simplex � , the image f .�/ is contained
in U� . The previous case shows how to build such a function from the 1-skeleton
of �n�1. Assume that a function f from the `-skeleton of �n�1 is built. For every
.`C 1/-simplex � of �n�1, for every facet � of � , we have f .�/ � U� � U� . Thus,
the set

[

� facet of �

f .�/

is the image of an `-dimensional sphere contained in U� , which has vanishing
homotopy of dimension `. We can extend f from this sphere to an .` C 1/-
dimensional ball so that the image is still contained in U� . This way we extend
f to the .`C 1/-skeleton of �n�1.

The Van Kampen-Flores theorem asserts that for any continuous function from
�
.k/
2kC2 to R

2k there exist two disjoint faces of �.k/
2kC2 whose images intersect (see

Proposition 8 and Lemma 9). So, if n � 2dd=2e C 3, then there exist two disjoint
simplices � and � of�.dd=2e/

2dd=2eC2 such that f .�/\ f .�/ is nonempty. Since f .�/\ f .�/
is contained in U� \ U� D T

F D ;, this is a contradiction and F has cardinality
at most 2dd=2e C 2.

By a more careful inspection of odd dimensions, the bound 2dd=2e C 2 can be
improved to d C 2. We skip this in the homotopic setting, but we will do so in the
homological setting (which is stronger anyway); see Corollary 23 below.

Contractible intersections Of course, the previous argument works with other
non-embeddability results. For instance, if the intersections

T
G are contractible

for all subfamilies then the induction yields a map f from the d-skeleton of �n�1

20Recall that a set is k-connected if it is connected and has vanishing homotopy in dimension 1 to k.
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to R
d with the property that for any simplex � , the image f .�/ is contained in U� .

The topological Radon theorem [5] (see also [36, Theorem 5.1.2]) states that for
any continuous function from �dC1 to R

d there exist two disjoint faces of �dC1
whose images intersect. So, if n � d C 2 we again obtain a contradiction (the
existence of two disjoint simplices � and � such that f .�/ \ f .�/ ¤ ; whereas
U� \ U� DTF D ;), and the cardinality of F must be at most dC 1.

3.2 From Homotopy to Homology

The previous reasoning can be transposed to homology as follows. Assume that for
i D 0; 1; : : : ; k � 1 and all subfamilies G ¨ F we have Q̌i.TG/ D 0. We construct
a nontrivial21 chain map f from the simplicial chains of �.k/

n�1 to the singular chains
of Rd by increasing dimension:

• For every fig � Œn� we let pi 2 Ufig. This is possible since every intersection
of n � 1 members of F is nonempty. We then put f .fig/ D pi and extend it by
linearity into a chain map from �

.0/
n�1 to R

d. Notice that f is nontrivial and that
for any 0-simplex � � Œn�, the support of f .�/ is contained in U� .

• Now, assume, as an induction hypothesis, that there exists a nontrivial chain map
f from the simplicial chains of�.`/

n�1 to the singular chains of Rd with the property
that for any .� `/-simplex � � Œn�; ` < k, the support of f .�/ is contained
in U� . Let � be a .` C 1/-simplex in �.`C1/

n�1 . For every `-dimensional face �
of � , the support of f .�/ is contained in U� � U� . It follows that the support
of f .@�/ is contained in U� , which has trivial homology in dimension ` C 1.
As a consequence, f .@�/ is a boundary in U� . We can therefore extend f to
every simplex of dimension `C 1 and then, by linearity, to a chain map from the
simplicial chains of �.`C1/

n�1 to the singular chains of Rd. This chain map remains
nontrivial and, by construction, for any .� `C 1/-simplex � � Œn�, the support
of f .�/ is contained in U� .

If � and � are disjoint simplices of �.k/
n�1 then the intersection of the supports of

f .�/ and f .�/ is contained in U� \ U� D TF D ; and these supports are disjoint.
It follows that f is not only a nontrivial chain map, but also a homological almost-
embedding in R

d. We can then use obstructions to the existence of homological
almost-embeddings to bound the cardinality of F . Specifically, since we assumed
that F has empty intersection and any proper subfamily of F has nonempty
intersection, Corollary 14 implies:

Corollary 23 Let F be a family of subsets of Rd such that Q̌i.TG/ D 0 for every
G ¨ F and i D 0; 1; : : : ; dd=2e � 1. Then the Helly number of F is at most dC 2.

21See Definition 10.
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The homological Radon’s lemma (Lemma 15) yields (noting @�dC1 D �.d/
dC1):

Corollary 24 Let F be a family of subsets of Rd such that Q̌i.TG/ D 0 for every
G ¨ F and i D 0; 1; : : : ; d � 1. Then the Helly number of F is at most dC 1.

Remark 25 The following modification of Example 3 shows that the two previous
statements are sharp in various ways. First assume that for some values k; n there
exists some embedding f of�.k/

n�1 into R
d. Let Ki be the simplicial complex obtained

by deleting the ith vertex of�.k/
n�1 (as well as all simplices using that vertex) and put

Ui WD f .Ki/. The family F D fU1; : : : ;Ung has Helly number exactly n, since it
has empty intersection and all its proper subfamilies have nonempty intersection.
Moreover, for every G � F ,

T
G is the image through f of the k-skeleton of a

simplex on jF n Gj vertices, and therefore Q̌i.TG/ D 0 for every G � F and
i D 0; : : : ; k � 1. Now, such an embedding exists for:

k D d and n D dC 1, as the d-dimensional simplex easily embeds into R
d. Con-

sequently, the bound of d C 1 is best possible under the assumptions of
Corollary 24.

k D d � 1 and n D d C 2, as we can first embed the .d � 1/-skeleton of the d-
simplex linearly, then add an extra vertex at the barycentre of the vertices of that
simplex and embed the remaining faces linearly. This implies that if we relax the
condition of Corollary 24 by only controlling the first d � 2 Betti numbers then
the bound of d C 1 becomes false. It also implies that the bound of dC 2 is best
possible under (a strengthening of) the assumptions of Corollary 23.

(Recall that, as explained in Example 3, the dd=2e � 1 in the assumptions of
Corollary 23 cannot be reduced without allowing unbounded Helly numbers.)

Constrained chain map Let us formalize the technique illustrated by the previous
example. We focus on the homological setting, as this is what we use to prove
Theorem 1, but this can be easily transposed to homotopy.

Considering a slightly more general situation, we let F D fU1;U2; : : : ;Ung
denote a family of subsets of some topological space R. As before for any (possibly
empty) proper subset I of Œn� D f1; 2; : : : ; ng we write UI for

T
i2Œn�nI Ui and we put

UŒn� D R.
Let K be a simplicial complex and let � W C�.K/! C�.R/ be a chain map from

the simplicial chains of K to the singular chains of R. We say that � is constrained
by .F ; ˆ/ if:

(i) ˆ is a map from K to 2Œn� such that ˆ.� \ �/ D ˆ.�/ \ ˆ.�/ for all �; � 2 K
and ˆ.;/ D ;.

(ii) For any simplex � 2 K, the support of �.�/ is contained in Uˆ.�/.

See Fig. 4. We also say that a chain map � from K is constrained by F if there exists
a mapˆ such that � is constrained by .F ; ˆ/. In the above constructions, we simply
set ˆ to be the identity. As we already saw, constrained chain maps relate Helly
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Fig. 4 An example of a constrained map �WK ! R
2. A label at a face � of K denotes ˆ.�/.

Note, for example, that the support of �.fa; b; cg/ needn’t be a triangle since we work with chain
maps. Constrains by ˆ mean that a set Ui must contain cover images of all faces without label i. It
is demonstrated by U3 and U8 for example

numbers to homological almost-embeddings (see Definition 10) via the following
observation:

Lemma 26 Let � W C�.K/ ! C�.R/ be a nontrivial chain map constrained by F .
If
T

F D ; then � is a homological almost-embedding of K.

Proof Let ˆ W K ! 2Œn� be such that � is constrained by .F ; ˆ/. Since � is
nontrivial, it remains to check that disjoint simplices are mapped to chains with
disjoint support. Let � and � be two disjoint simplices of K. The supports of �.�/
and �.�/ are contained, respectively, in Uˆ.�/ and Uˆ.�/, and

Uˆ.�/ \Uˆ.�/ D Uˆ.�/\ˆ.�/ D Uˆ.�\�/ D Uˆ.;/ D U; D
\

F :

Therefore, if
T

F D ; then � is a homological almost-embedding of K. ut

3.3 Relaxing the Connectivity Assumption

In all the examples listed so far, the intersections
T

G must be connected.
Matoušek [35] relaxed this condition into “having a bounded number of connected
components”, the assumptions then being on the topology of the components, by
using Ramsey’s theorem. The gist of our proof is to extend his idea to allow a
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bounded number of homology classes not only in the first dimension but in any
dimension. Let us illustrate how Matoušek’s idea works in two dimension:

Theorem 27 ([35, Theorem 2 with d D 2]) For every positive integer b there is an
integer h.b/ with the following property. If F is a finite family of subsets of R2 such
that the intersection of any subfamily has at most b path-connected components,
then the Helly number of F is at most h.b/.

Let us fix b from above and assume that for any subfamily G ¨ F the intersectionT
G consists of at most b path-connected components and that

T
F D ;. We

start, as before, by picking for every i 2 Œn�, a point pi in Ufig. This is possible
as every intersection of n � 1 members of F is nonempty. Now, if we consider
some pair of indices i; j 2 Œn�, the points pi and pj are still in Ufi;jg but may lie
in different connected components. It may thus not be possible to connect pi to pj

inside Ufi;jg. If we, however, consider bC1 indices i1; i2; : : : ; ibC1 then all the points
pi1 ; pi2 ; : : : ; pibC1

are in Ufi1;i2;:::;ibC1g which has at most b connected components,
so at least one pair among of these points can be connected by a path inside
Ufi1;i2;:::;ibC1g. Thus, while we may not get a drawing of the complete graph on n
vertices we can still draw many edges.

To find many vertices among which every pair can be connected we will use the
hypergraph version of the classical theorem of Ramsey:

Theorem 28 (Ramsey [45]) For any x, y and z there is an integer Rx.y; z/ such that
any x-uniform hypergraph on at least Rx.y; z/ vertices colored with at most y colors
contains a subset of z vertices inducing a monochromatic sub-hypergraph.

From the discussion above, for any bC1 indices i1 < i2 < : : : < ibC1 there exists
a pair fk; `g 2 �ŒbC1�

2

�
such that pik and pi` can be connected inside Ufi1;i2;:::;ibC1g. Let

us consider the .b C 1/-uniform hypergraph on Œn� and color every set of indices
i1 < i2 < : : : < ibC1 by one of the pairs in

�
ŒbC1�
2

�
that can be connected inside

Ufi1;i2;:::;ibC1g (if more than one pair can be connected, we pick one arbitrarily). Let

t be some integer to be fixed later. By Ramsey’s theorem, if n � RbC1
��bC1

2

�
; t
	

then

there exist a pair fk; `g 2 �ŒbC1�
2

�
and a subset T � Œn� of size t with the following

property: for any .bC1/-element subset S � T, the points whose indices are the kth
and `th indices of S can be connected inside US.

Now, let us set t D 5C�5
2

�
.b�1/ D 10b�5. We claim that we can find five indices

in T, denoted i1; i2; : : : ; i5, and, for each pair fiu; ivg among these five indices, some
.bC 1/-element subset Qu;v � T with the following properties:

(i) iu and iv are precisely in the kth and `th position in Qu;v , and
(ii) for any 1 � u; v; u0; v0 � 5, Qu;v \ Qu0;v0 D fiu; ivg \ fiu0 ; iv0g.
We first conclude the argument, assuming that we can obtain such indices and sets.
Observe that from the construction of T, the iu’s and the Qu;v’s we have the following
property: for any u; v 2 Œ5�, we can connect piu and piv inside UQu;v

. This gives a
drawing of K5 in the plane. Since K5 is not planar, there exist two edges with no
vertex in common, say fu; vg and fu0; v0g, that cross. This intersection point must lie
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in

UQu;v
\ UQu0;v0

D UQu;v\Qu0 ;v0
D Ufiu;ivg\fiu0 ;iv0 g D U; D

\
F D ;;

a contradiction. Hence the assumption that n � RbC1
��bC1

2

�
; t
	

is false and F has

cardinality at most RbC1
��bC1

2

�
; 10b� 5

	
� 1, which is our h.b/.

The selection trick It remains to derive the existence of the iu’s and the Qu;v’s. It
is perhaps better to demonstrate the method by a simple example to develop some
intuition before we formalize it.

Example Let us fix b D 4 and fk; `g D f2; 3g 2 �Œ4C1�
2

�
. We first make a ‘blueprint’

for the construction inside the rational numbers. For any two indices u; v 2 Œ5� we
form a totally ordered set Q0u;v � Q of size b C 1 D 5 by adding three rational
numbers (different from 1; : : : ; 5) to the set fu; vg in such a way that u appears
at the second and v at the third position of Q0u;v . For example, we can set Q01;4 to
be f0:5I 1I 4I 4:7I 5:13g. Apart from this we require that we add a different set of
rational numbers for each fu; vg. Thus Q0u;v\Q0u0 ;v0 D fu; vg\fu0; v0g. Our blueprint
now appears inside the set T 0 WD S

1�u<v�5 Q0u;v; note that both this set T 0 and the
set T in which we search for the sets Qu;v have 35 elements. To obtain the required
indices iu and sets Qu;v it remains to consider the unique strictly increasing bijection
�0WT 0 ! T and set iu WD �0.u/ and Qu;v WD �0.Q0u;v/.
The general case Let us now formalize the generalization of this trick that we will
use to prove Theorem 1. Let Q be a subset of Œw�. If e1 < e2 < : : : < ew are the
elements of a totally ordered set W then we call fei W i 2 Qg the subset selected by
Q in W.

Lemma 29 Let 1 � q � w be integers and let Q be a subset of Œw� of size q. Let Y
and Z be two finite totally ordered sets and let A1;A2; : : : ;Ar be q-element subsets
of Y. If jZj � jYj C r.w � q/, then there exist an injection � W Y ! Z and r subsets
W1;W2; : : : ;Wr 2

�Z
w

�
such that for every i 2 Œr�, Q selects �.Ai/ in Wi. We can

further require that Wi \Wj D �.Ai \ Aj/ for any two i; j 2 Œr�, i ¤ j.

Proof Let �0 denote the monotone bijection between Y and ŒjYj�. For i 2 Œr� we
let Di denote a set of w � q rationals, disjoint from ŒjYj�, such that Q selects �0.Ai/

in Di [ �0.Ai/. We further require that the Di are pairwise disjoint, and put Z0 D
ŒjYj�[

�S
i2Œr� Di

	
. Since jZj � jYjCr.w�q/ D jZ0j there exists a strictly increasing

map � W Z0 ! Z. We set � WD � ı �0 and Wi WD �.Di [ �0.Ai// 2
�Z

w

�
. The desired

condition is satisfied by this choice. See Fig. 5. ut
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Fig. 5 Illustration for the proof of Lemma 29. We assume that w D 4 and Q D f1; 3; 4g

4 Constrained Chain Maps and Helly Number

We now generalize the technique presented in Sect. 3 to obtain Helly-type theorems
from non-embeddability results. We will construct constrained chain maps for
arbitrary complexes. As above, F D fU1;U2; : : : ;Ung denotes a family of subsets
of some topological space R and for I � Œn� we keep the notation UI as used in the
previous section (see the beginning of Sect. 3.1). Note that although so far we only
used the reduced Betti numbers Q̌, in this section it will be convenient to work with
standard (non-reduced) Betti numbers ˇ, starting with the following proposition.

Proposition 30 For any finite simplicial complex K and non-negative integer b
there exists a constant hK.b/ such that the following holds. For any finite family
F of at least hK.b/ subsets of a topological space R such that

T
G ¤ ; and

ˇi .\G/ � b for any G ¨ F and any 0 � i < dim K, there exists a nontrivial
chain map � W C�.K/! C�.R/ that is constrained by F .

The case K D �
.k/
2kC2, with k D dd=2e and R D R

d, of Proposition 30 implies
Theorem 1.

Proof of Theorem 1 Let b and d be fixed integers, let k D dd=2e and let K D �.k/
2kC2.

Let hK.b C 1/ denote the constant from Proposition 30 (we plug in bC 1 because
we need to switch between reduced and non-reduced Betti numbers). Let F be a
finite family of subsets of Rd such that Q̌i .TG/ � b for any G ¨ F and every
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0 � i � dim K D dd=2e � 1, in particular ˇi .
T

G/ � b C 1 for such G. Let F�
denote an inclusion-minimal sub-family of F with empty intersection:

T
F� D ;

and
T
.F� n fUg/ ¤ ; for any U 2 F�. If F� has size at least hK.b C 1/,

it satisfies the assumptions of Proposition 30 and there exists a nontrivial chain
map from K that is constrained by F�. Since F� has empty intersection, this
chain map is a homological almost-embedding by Lemma 26. However, no such
homological almost-embedding exists by Corollary 13, so F� must have size at
most hK.bC 1/ � 1. As a consequence, the Helly number of F is bounded and the
statement of Theorem 1 holds with h.b; d/ D hK.bC 1/� 1. ut

The rest of this section is devoted to proving Proposition 30. We proceed by
induction on the dimension of K, Sect. 4.1 settling the case of 0-dimensional
complexes and Sect. 4.3 showing that if Proposition 30 holds for all simplicial
complexes of dimension i then it also holds for all simplicial complexes of
dimension iC 1. As the proof of the induction step is quite technical, as a warm-up,
we provide the reader with a simplified argument for the induction step from i D 0

to i D 1 in Sect. 4.2. We let V.K/ and v.K/ denote, respectively, the set of vertices
and the number of vertices of K.

4.1 Initialization (dim K D 0)

If K is a 0-dimensional simplicial complex then Proposition 30 holds with hK.b/ D
v.K/. Indeed, consider a family F of at least v.K/ subsets of R such that all
proper subfamilies have nonempty intersection. We enumerate the vertices of K
as fv1; v2; : : : ; vv.K/g and define ˆ.fvig/ D fig; in plain English, ˆ is a bijection
between the set of vertices of K and f1; 2; : : : ; v.K/g. We first define � on K by
mapping every vertex v 2 K to a point p.v/ 2 Uˆ.v/, then extend it linearly into a
chain map � W C0.K/ ! C0.R/. It is clear that � is nontrivial and constrained by
.F ; ˆ/, so Proposition 30 holds when dim K D 0.

4.2 Principle of the Induction Mechanism (dim K D 1)

As a warm-up, we now prove Proposition 30 for 1-dimensional simplicial com-
plexes. While this merely amounts to reformulating Matoušek’s proof for embed-
dings [35] in the language of chain maps, it still introduces several key ingredients
of the induction while avoiding some of its complications. To avoid further
technicalities, we use the non-reduced version of Betti numbers here.

Let K be a 1-dimensional simplicial complex with vertices fv1; v2; : : : ; vv.K/g and
assume that F is a finite family of subsets of a topological space R such that for any
G ¨ F ,

T
G ¤ ; and ˇ0 .\G/ � b. Let s 2 N denote some parameter, to be fixed

later. We assume that the cardinality of F is large enough (as a function of s) so that,
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Fig. 6 Injecting V.K/ into V.�s/ by f in a way that the constrained chain map � 0 from V.�s/

(top) can give rise to a constrained chain map from V.K/ (bottom); for the sake of illustration we
use maps instead of chain maps. The situation considered here is simple, for instance � 0.aC b/ is
a boundary in U‰.fa;bg/ so � 0 ı f] can be extended to the edge f f �1.a/; f �1.b/g of K. Note that if
we wanted to use the edge ad, since � 0.aC d/ is not a boundary in U‰.fa;dg/ we would need to add
“dummy” elements to ‰.fa; dg/

as argued in Sect. 4.1, there exist a bijection ‰ W �.0/
s ! Œs C 1� and a nontrivial

chain map � 0 W C�.�.0/
s / ! C�.R/ constrained by .F ; ‰/. We extend ‰ to �s by

putting ‰.�/ D [v2�‰.v/ for any � 2 �s and ‰.;/ D ;. Remark that for any
�; � 2 �s we have ‰.� \ �/ D ‰.�/ \‰.�/.

We now look for an injection f of V.K/ into V.�s/ such that the chain map
� 0 ı f]WC�.K.0// ! C�.R/ can be extended into a chain map � W C�.K/ ! C�.R/
constrained by F . Let e D fu; vg be an edge in K. If we could arrange that � 0. f .u/C
f .v// is a boundary in U‰.f f .u/;f .v/g/ then we could simply define �.e/ to be a chain in
U‰.f f .u/;f .v/g/ bounded by � 0. f .u/Cf .v// (see Fig. 6). Unfortunately this is too much
to ask for but we can still follow the Ramsey-based approach of Sect. 3.3: we add
“dummy” vertices to f‰.f f .u/; f .v/g/g to obtain a set We such that � 0. f .u/C f .v//
is a boundary in UWe

. If we use different dummy vertices for distinct edges then
setting �.e/ to be a chain in UWe

bounded by � 0. f .u/ C f .v// still yields a chain
map constrained by F . We spell out the details in four steps.

Step 1. Any set S of 2bC1 vertices of�s contains two vertices uS; vS 2 S such that
� 0.uS C vS/ is a boundary in U‰.S/.

22 Indeed, notice first that for any u 2 S, the
support of � 0.u/ is contained in U‰.S/. The assumption on F about bounded Betti

22We could require that � 0 sends every vertex to a point in U‰.S/, i.e. is a chain map induced by a
map, and simply argue that since U‰.S/ has at most b connected components, any bC 1 vertices of
�s contains some pair that can be connected inside U‰.S/. This argument does not, however, work
in higher dimension. Since Sect. 4.2 is meant as an illustration of the general case, we choose to
follow the general argument.
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numbers of intersections of subfamilies ofF then ensures that there are at most 2b

distinct elements in H0.U‰.S//, as H0.U‰.S// ' Z
m
2 for some m � b. Thus, there

are two vertices uS; vS 2 S such that � 0.uS/ and � 0.vS/ are in the same homology
class in H0.U‰.S//. Since we consider homology with coefficients over Z2, the
sum of two chains that are in the same homology class is always a boundary. In
particular, � 0.uS C vS/ D � 0.uS/C � 0.vS/ is a boundary in U‰.S/.

Step 2. We use Ramsey’s theorem (Theorem 28) to ensure a uniform “2-in-
.2b C 1/” selection. Let t be some parameter to be fixed in Step 3 and let
H denote the .2b C 1/-uniform hypergraph with vertex set V.�s/. For every
hyperedge S 2 H there exists (by Step 1) a pair QS 2

�
Œ2bC1�
2

�
that selects a pair

whose sum is mapped by � 0 to a boundary in U‰.S/. We color H by assigning
to every hyperedge S the “color” QS. Ramsey’s theorem thus ensures that if

s � R2bC1
��
2bC1
2

�
; t
	

then there exist a set T of t vertices of �s and a pair

Q� 2 �
Œ2bC1�
2

�
so that Q� selects in any S 2 � T

2bC1
�

a pair fuS; vSg such that
� 0.uS C vS/ is a boundary in U‰.S/.

Step 3. Now, let r be the number of edges of K and let �1; �2; : : : ; �r denote the
edges of K. We define

hK.b/ D R2bC1

  
2b C 1
2

!

; r.2b � 1/C v.K/
!

C 1

and assume that s � hK.b/ � 1. We set the parameter t introduced in Step 2 to
t D r.2b � 1/ C v.K/. We can now apply Lemma 29 with Y D V.K/, Z D T,
q D 2, w D 2b C 1, and Ai D �i for i 2 Œr�. As a consequence, there exist an
injection f W V.K/! T and W1;W2; : : : ;Wr in

� T
2bC1

�
such that (i) for each i, Q�

selects f .�i/ in Wi, and (ii) Wi \Wj D f .�i \ �j/ for i; j 2 Œr�; i ¤ j.
Step 4. We defineˆ by

ˆ.;/ D ;
ˆ.fvig/ D ‰. f .vi// for i D 1; 2; : : : ; v.K/
ˆ.�i/ D ‰.Wi/ for i D 1; 2; : : : ; r

We define � on the vertices of K by putting �.v/ D � 0. f .v// for any v 2 V.K/.
Now remark that for any edge �i D fu; vg of K, � 0. f .u/ C f .v// is a boundary
in U‰.Wi/

; this follows from the definition of T and the fact that Q� selects
f f .u/; f .v/g in Wi. We can therefore define �.fu; vg/ to be some (arbitrary) chain
in U‰.Wi/

with boundary � 0. f .u/C f .v//. We then extend this map linearly into
a chain map � W C�.K/! C�.R/.

To conclude the proof of Proposition 30 for 1-dimensional complexes it remains
to check that the chain map � and the functionˆ defined in Step 4 have the desired
properties.

Observation 31 � is a nontrivial chain map constrained by .F ; ˆ/.
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Proof First, it is clear from the definition that � is a chain map. Moreover, the
definition of � 0 ensures that for every vertex v 2 K the support of �.v/ is a finite set
of points with odd cardinality. So � is indeed a nontrivial chain map.

The map ˆ is from K to 2ŒsC1� and ˆ.;/ is by definition the empty set. The
next property to check is that the identity ˆ.� \ �/ D ˆ.�/ \ ˆ.�/ holds for all
�; � 2 K. When � and � are vertices this follows from the injectivity of ‰ and f .
When � and � are edges this follows from the same identity for ‰ and the fact that
Step 4 guaranteed that Wi \Wj D f .�i \ �j/ for i; j 2 Œr�; i ¤ j. The remaining case
is when � D �i is an edge and � a vertex. Then, by construction, � 2 �i if and only
if f .�/ 2 Wi, and

ˆ.�i/\ˆ.�/ D ‰.Wi/ \‰. f .�// D ‰.Wi \ f .�//

D



‰.;/ if f .�/ … Wi

‰. f .�// if f .�/ 2 Wi

�

D ˆ.�i \ �/:

It remains to check that for any simplex � 2 K, the support of �.�/ is contained
in Uˆ.�/. When � D fvg is a vertex then �.�/ D � 0. f .v//. Since � 0 is constrained
by .F ; ‰/, the support of � 0. f .v// is contained in U‰. f .v// D Uˆ.v/, so the property
holds. When � D �i is an edge, �.�i/ is, by construction, a chain in U‰.Wi/

D Uˆ.�i/

and the property also holds. ut

4.3 The Induction

Let k � 2, let K be a simplicial complex of dimension k and assume that
Proposition 30 holds for all simplicial complexes of dimension k � 1 or less. Let
F be a finite family of subsets of a topological space R such that for any G ¨ F and
any 0 � i � k�1,

T
G ¤ ; and ˇi .\G/ � b. Assuming that F contains sufficiently

many sets, we want to construct a nontrivial chain map � W C�.K/ ! C�.R/
constrained by F .

Preliminary example When going from k D 0 to k D 1, the first step (as described
in Sect. 4.2) is to start with a constrained chain map � 0 W C�.K.0// ! C�.R/ and
observe that for some 1-simplices

1

2 3 4 5
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fu; vg 2 K the chain � 0.@fu; vg/ must already be a boundary. To see that this is not
the case in general, consider the drawing of�.1/

4 in an annulus depicted in the figure

above. Observe that for every triangle fi; j; kg 2 �.2/
4 the image, in this drawing,

of @fi; j; kg is a cycle going around the hole of the annulus and is therefore not
a boundary. So, if we start with a chain map � 0 corresponding to that drawing,
we will not be able to extend it by “filling” any triangle directly. This is not a
peculiar example, and a similar construction can easily be done with arbitrarily
many vertices. Observe, though, that the cycle going from 1 to 2, then 4, then 3
and then back to 1 is a boundary; in other words, if we replace, in the triangle
@f1; 2; 3g, the edge from 2 to 3 by the concatenation of the edges from 2 to 4 and
from 4 to 3, we build, using a chain map of �.1/

4 where no 2-face can be filled, a

chain map of �.2/
2 where the 2-face can be filled. We systematize this observation

using the barycentric subdivision of K.

Barycentric subdivision The idea behind the notion of barycentric subdivision
is that the geometric realization of a simplicial complex K0 can be subdivided by
inserting a vertex at the barycentre of every face, resulting in a new, finer, simplicial
complex, denoted sd K0, that is still homeomorphic to K0. Formally, the vertices of
sd K0 consist of the faces of K0, except for the empty face, and the faces of sd K0 are
the collections f�1; : : : ; �`g of faces of K0 such that

; ¤ �1 ¨ �2 ¨ � � � ¨ �`:

In other words, the set of vertices of sd K0 is K0 n f;g and the faces of sd K0 are
the chains of K0 n f;g. For � 2 K0 we abuse the notation and let sd � denote the
subdivision of � regarded as a subcomplex of sd K0, that is,

sd � D ff�1; : : : ; �`g � K0 W ; ¤ �1 ¨ �2 ¨ � � � ¨ �` � �g:

We will mostly manipulate barycentric subdivisions through the sd � . For further
reading on barycentric subdivisions we refer the reader, for example, to [36,
Section 1.7].

Overview of the construction of � Let s 2 N be some parameter depending on K
and to be determined later. To construct � we will define three auxiliary chain maps

C�

�
K.k�1/

� ˛����! C�

�
.sd K/.k�1/

� ˇ]������! C�

�
�.k�1/

s

� � 0

����! C�.R/

As before, � 0 is a chain map from C�.�.k�1/
s / constrained by F and is obtained by

applying the induction hypothesis. Unlike in Sect. 4.2, we do not inject the vertices
of K into those of�s directly but proceed through sd K, the barycentric subdivision
of K. We “inject” K.k�1/ into sd K.k�1/ by means of a chain map ˛ (which will be the
standard chain map corresponding to a subdivision). We then construct an injection
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ˇ of the vertices of sd K into the vertices of�s which we extend linearly into a chain
map ˇ]. The key idea is the following:

The boundary of any k-simplex � of K is mapped, under ˛, to a sum of kŠ boundaries of
k-simplices of sd K, all of which are mapped through ˇ] to chains with the same homology
in some appropriate UW�

.

Since kŠ is even and we consider homology with coefficients in Z2, it follows that
� 0 ı ˇ] ı ˛.�/ is a boundary in UW�

. We therefore construct � as an extension of
� 0 ı ˇ] ı ˛.

Definition of � 0 Since�.k�1/
s has dimension k�1, the induction hypothesis ensures

that if the cardinality of F is large enough then there exists a nontrivial chain map
� 0 W C�.�.k�1/

s / ! C�.R/ constrained by F . We denote by ‰ a map such that � 0
is constrained by .F ; ‰/. Remark that ‰ must be monotone over �.k�1/

s as for any
� � � 2 �.k�1/

s we have ‰.�/ D ‰.� \ �/ D ‰.�/ \ ‰.�/ � ‰.�/. It follows
that for any � 2 �.k�1/

s we have

‰.�/ D
[

�2�.k�1/
s ;���

‰.�/

We use this identity to extend ‰ to �s, that is we define:

8A � V.�s/; ‰.A/ D
[

�2�.k�1/
s ;��A

‰.�/:

Remark that the extended map still commutes with the intersection:

Lemma 32 For any A;B � V.�s/ we have ‰.A/\‰.B/ D ‰.A \ B/.

Proof For any A;B � V.�s/ we have

‰.A/\‰.B/ D
0

@
[

�2�.k�1/
s ;��A

‰.�/

1

A \
0

@
[

�2�.k�1/
s ;��B

‰.�/

1

A

Distributing the union over the intersections we get

‰.A/\‰.B/ D
[

�;�2�.k�1/
s ;��A;��B

‰.�/ \‰.�/

and as ‰.� \ �/ D ‰.�/ \‰.�/ if �; � are simplices of �.k�1/
s , this rewrites as

‰.A/\‰.B/ D
[

�;�2�.k�1/
s ;��A;��B

‰.� \ �/:
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Finally, observing that

f� \ � W �; � 2 �.k�1/
s ; � � A; � � Bg D f# W # 2 �.k�1/

s ; # � A \ Bg

we get

‰.A/\‰.B/ D
[

#2�.k�1/
s ;#�A\B

‰.#/ D ‰.A \ B/

which proves the desired identity. ut
Definition of ˛ Now we define a chain map ˛ W C�

�
K.k�1/� ! C�

�
sd K.k�1/� by

first putting

˛ W � 2 K.k�1/ 7!
X

�2sd�
dim �Ddim �

�;

and then extending that map linearly to C�
�
K.k�1/�. See Fig. 7. Remark that ˛

behaves nicely with respect to the differential:

˛.@�/ D
X

�2sd�
dim �Ddim �

@�:

Note that the formula above makes sense and is valid even if � is a k-simplex
although we define ˛ only up to dimension k � 1.

Definition of ˇ We now construct the injection ˇ W V.sd K/ ! V.�s/ and, for
constraining purposes, an auxiliary function 
 associating with every k-dimensional
simplex of K some simplex of �s. We want these functions to satisfy:

(P1) For any simplex � 2 K, 
.�/\ Imˇ D ˇ.V.sd �//.
(P2) For any k-simplices �; � 2 K, 
.�/\ 
.�/ D ˇ.V.sd �// \ ˇ.V.sd �//.

σ α(σ)
α(∂σ)

∑

τ∈sd σ
dim τ=dim σ

∂τ

=

Fig. 7 The map ˛ applied to a simplex � (left) and to @� (right). Significant parts of the boundaries
@� cancel out
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(P3) For any k-simplex � 2 K, when � ranges over all k-simplices of sd � , all
chains � 0 ı ˇ].@�/ have support in U‰.
.�// and are in the same homology
class in Hk�1.U‰.
.�///.

The intuition behind these properties is that 
.�/ should augment ˇ.V.sd �// by
“dummy” vertices (P1) in a way that distinct simplices use disjoint sets of “dummy”
vertices (P2). Property (P3), will allow building � over k-simplices as explained in
the preceding overview.

We start the construction of ˇ and 
 with a combinatorial lemma. Let
` D 2kC1 � 1 stand for the number of vertices of the barycentric subdivision
of a k-dimensional simplex, and set m D RkC1.2b; `/.

Claim 1 For any integer t, if s � Rm
��m
`

�
; t
�

then there exist a set T of t vertices

of �s and a set Q� 2 �Œm�
`

�
such that Q� selects in any M 2 �T

m

�
a subset LM with

the following property: when � ranges over all k-simplices of �s with � � LM, all

chains � 0.@�/ are in the same homology class in Hk�1
�

U‰.M/

	
.

Proof Let M be a subset of m vertices of �s. Since � 0 is constrained by .F ; ‰/, for
every k-simplex � � M the support of � 0.@�/ is contained in U‰.@�/ � U‰.�/ �
U‰.M/. We can therefore color the .kC1/-uniform hypergraph on M by assigning to

every hyperedge� the homology class of � 0.@�/ in U‰.M/. Since ˇk�1
�

U‰.M/

	
� b,

there are at most 2b colors in this coloring. As m D RkC1.2b; `/, Ramsey’s Theorem
implies that there exists a subset L � M of ` vertices inducing a monochromatic
hypergraph. We let QM denote an element of

�
Œm�
`

�
that selects such a subset L.

It remains to find a subset T of vertices of�s so that all m-element subsets M � T
give rise to the same QM . This is done by another application of Ramsey’s theorem to
the m-uniform hypergraph on the vertices of�s where each hyperedge M is colored
by the `-element subset QM . The subset T can have size t as soon as s � Rm

��m
`

�
; t
�
,

which proves the statement. ut
Now, back to the construction of ˇ and 
. We first want a subset of V.�s/ with a

“uniform `-in-m selection” property of Claim 1 large enough so that we can inject
V.sd K/ using Lemma 29. We set:

t D v.sd K/C r.m � `/ and s� D Rm

  
m

`

!

; t

!

;

and assume that s � s�; since s� only depends on b and K, this merely requires that
F is large enough, again as a function of b and K, so that � 0 still exists. We let T
and Q� denote the subset of V.�s/ and the element of

�
Œm�
`

�
whose existence follows

from applying Claim 1. Let �1; �2; : : : ; �r denote the k-dimensional simplices of K.
We apply Lemma 29 with

Y D V.sd K/; Z D T; Ai D V.sd �i/; q D `; and w D m;
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and obtain an injection � W Y ! Z and W1;W2; : : : ;Wr 2
�Z

m

�
such that (i) for every

i � r, Q� selects �.Ai/ in Wi, and (ii) for any i ¤ j � r, Wi\Wj D �.Ai\Aj/. This
injection � is our map ˇ and we put 
.�i/ D Wi. It is clear that Property (P1) holds,
and since


.�i/ \ 
.�j/ D Wi \Wj D �.Ai \ Aj/ D ˇ.V.sd �i/\ V.sd �j//

D ˇ.V.sd �i//\ ˇ.V.sd �j//;

Property (P2) also holds. The set Q� selects �.Ai/ in Wi (Lemma 29) so Claim 1
ensures that when � ranges over all k-simplices of �s with � � �.Ai/, all chains

� 0.@�/ have support in U‰.Wi/
and are in the same homology class in Hk�1

�
U‰.Wi/

	
.

Substituting �.Ai/ D ˇ.V.sd �i// and Wi D 
.�i/, we see that (P3) holds.

Construction of � Recall that we have the chain maps23:

C�

�
K.k�1/

� ˛����! C�

�
.sd K/.k�1/

� ˇ]������! C�

�
�.k�1/

s

� � 0

����! C�.R/:

We define � D � 0 ı ˇ] ı ˛ as a chain map from C�
�
K.k�1/� to C�.R/. Let � be a

k-dimensional simplex of K. From the definition of ˛ we have

� .@�/ D
X

�2sd�
dim �Ddim �

� 0 ı ˇ].@�/:

By property (P3), all summands in the above chain have support in U‰.
.�// and

belong to the same homology class in Hk�1
�

U‰.
.�//

	
. There is an even number of

summands, namely kŠ and we are using homology over Z2, so � 0 ı ˇ] ı ˛.@�/ has
support in U‰.
.�// and is a boundary in U‰.
.�//. We can therefore extend � into a
chain map from C�.K/ to C�.R/ in a way that for any k-simplex � of K, the support
of �.�/ is contained in U‰.
.�//.

Properties of � First we verify that � is nontrivial. If v is a vertex of K then sd v
consists of a single simplex, also a vertex. The chain ˛.v/ is thus a single vertex of
sd K, and ˇ] ı ˛.v/ is still a single vertex ˇ.sd v/. Since � 0 is nontrivial, the support
of �.v/ is an odd number of points and therefore � is also nontrivial. It remains to
argue that � is constrained by .F ; ˆ/ where:

ˆ W
8
<

:

K ! 2F

� 7!


‰.ˇ.V.sd �/// if dim � � k � 1
‰.
.�// if dim � D k

23ˇ] is the chain map induced by ˇ restricted to chains of dimension at most .k� 1/.
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It is clear that ˆ.;/ D ‰.;/ D ; by definition of ‰. Also, the construction of �
immediately ensures that for any � 2 K the support of �.�/ is contained in Uˆ.�/.
To conclude the proof that � is constrained by .F ; ˆ/ and therefore the induction it
only remains to check that ˆ commutes with the intersection:

Claim 2 For any �; � 2 K, ˆ.� \ �/ D ˆ.�/ \ˆ.�/.
Proof The claim is obvious for � D � , so from now on assume that this is not the
case. First assume that � and � have dimension at most k � 1. Then,

ˆ.�/ \ˆ.�/ D ‰.ˇ.V.sd �/// \‰.ˇ.V.sd �/// D ‰.ˇ.V.sd �// \ ˇ.V.sd �///;

the last equality following from Lemma 32. Since the map ˇ on subsets of V.�s/

is induced by a map ˇ on vertices of �s we have ˇ.V.sd �// \ ˇ.V.sd �// D
ˇ.V.sd �/ \ V.sd �//. Moreover, by the definition of the barycentric subdivision
we have V.sd �/ \ V.sd �/ D V.sd.� \ �//. Thus,

‰.ˇ.V.sd �// \ ˇ.V.sd �/// D ‰.ˇ.V.sd.� \ �//// D ˆ.� \ �/;

and the statement holds for simplices of dimension at most k � 1.
Now assume that � and � are both k-dimensional so that

ˆ.�/\ˆ.�/D ‰.
.�//\‰.
.�//D ‰.
.�/\
.�//D ‰.ˇ.V.sd�//\ˇ.V.sd �///;

the last identity following from Property (P2) of the map 
. Again, from the
definition of ˇ and the barycentric subdivision we have

ˇ.V.sd �// \ ˇ.V.sd �// D ˇ.V.sd.� \ �///:

We thus obtain

ˆ.�/ \ˆ.�/ D ‰ ı ˇ ı V.sd.� \ �// D ˆ.� \ �/;

the last identity following from the definition of ˆ on simplices of dimension at
most k � 1. The statement also holds for simplices of dimension k.

Finally assume that � and � are of dimension k and at most k � 1 respectively.
Then, applying Lemma 32 we have:

ˆ.�/ \ˆ.�/ D ‰.
.�// \‰.ˇ.V.sd �/// D ‰.
.�/ \ ˇ.V.sd �///:

Note that ˇ.V.sd �// � Imˇ and that, by property (P1), 
.�/\Imˇ D ˇ.V.sd �//.
We thus have


.�/ \ ˇ.V.sd �// D ˇ.V.sd �// \ ˇ.V.sd �// D ˇ.V.sd.� \ �///;
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the last equality following, again, from the definition of barycentric subdivision. As
� \ � has dimension at most k � 1 we have

ˆ.�/ \ˆ.�/ D ‰.ˇ.V.sd.� \ �//// D ˆ.� \ �/

and the statement holds for the last case. ut
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for raising the problem addressed in the present paper and valuable discussions about it, but, much
more generally, for the privilege of having known him, as our teacher, mentor, collaborator, and
friend. Through his tremendous depth and insight, and the generosity with which he shared them,
he greatly influenced all of us.

We further thank Jürgen Eckhoff for helpful comments on a preliminary version of the paper,
and Andreas Holmsen and Gil Kalai for providing us with useful references.

References

1. N. Alon, G. Kalai, Bounding the piercing number. Discrete Comput. Geom. 13, 245–256
(1995)

2. N. Alon, I. Bárány, Z. Füredi, D.J. Kleitman. Point selections and weak epsilon-nets for convex
hulls. Combin. Probab. Comput. 1, 189–200 (1992)

3. N. Amenta, Helly-type theorems and generalized linear programming. Discrete Comput.
Geom. 12, 241–261 (1994)

4. N. Amenta, A short proof of an interesting Helly-type theorem. Discrete Comput. Geom. 15,
423–427 (1996)

5. E.G. Bajmóczy, I. Bárány, On a common generalization of Borsuk’s and Radon’s theorem.
Acta Math. Acad. Sci. Hungar. 34(3–4), 347–350 (1979)

6. M. Bestvina, M. Kapovich, B. Kleiner, Van Kampen’s embedding obstruction for discrete
groups. Invent. Math. 150(2), 219–235 (2002)

7. A. Björner, Nerves, fibers and homotopy groups. J. Combin. Theory Ser. A 102(1), 88–93
(2003)

8. K. Borsuk, On the imbedding of systems of compacta in simplicial complexes. Fundamenta
Mathematicae 35, 217–234 (1948)

9. G.E. Bredon, Sheaf Theory. Volume 170 of Graduate Texts in Mathematics, 2nd edn. (Springer,
New York, 1997)

10. O. Cheong, X. Goaoc, A. Holmsen, S. Petitjean, Hadwiger and Helly-type theorems for disjoint
unit spheres. Discrete Comput. Geom. 1–3, 194–212 (2008)

11. E. Colin de Verdiere, G. Ginot, X. Goaoc, Helly numbers of acyclic families. Adv. Mathe.
253, 163–193 (2014)

12. H. Debrunner, Helly type theorems derived from basic singular homology. Am. Math. Mon.
77, 375–380 (1970)
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Ruled Surface Theory and Incidence Geometry

Larry Guth

Abstract We survey the applications of ruled surface theory in incidence geometry.
We discuss some of the proofs and raise some open questions.

1 Introduction

In the last 5 years, there have been some interesting applications of ruled surface
theory in incidence geometry, which started in the work that Nets Katz and I did on
the Erdős distinct distance problem [5]. In this essay, we survey the role of ruled
surface theory in incidence geometry.

Ruled surface theory is a subfield of algebraic geometry. A ruled surface is an
algebraic variety that contains a line through every point. Ruled surface theory tries
to classify ruled surfaces and to describe their structure. The incidence geometry
questions that we study here are about finite sets of lines. A ruled surface can be
roughly thought of as an algebraic family of lines. Some of the questions in the two
fields are actually parallel, but they take place in two different settings – the discrete
setting and the algebraic setting. We will discuss a connection between these two
settings.

The applications of ruled surface theory are the most technical part of [5]. I wrote
a book about polynomial methods in combinatorics, [4], including a chapter about
applications of ruled surface theory. My goal in that chapter was to give a self-
contained proof of the results from [5] and to make the technical details as clean as
I could. In this essay, my goal is to give an overview – we will discuss some results,
some of the main ideas in the proofs, and some open problems.

Here is an outline of the survey. In Sect. 2, we discuss the combinatorial results
that have been proven using ruled surface theory. In Sect. 3, we sketch a proof of the
simplest result in Sect. 2. In the course of this sketch, we try to explain some tools
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from ruled surface theory and how those tools help us to understand combinatorial
problems. In Sect. 4, we discuss some open problems, exploring what other things
we could hope to learn about incidence geometry by using the theory of ruled
surfaces.

I would like to thank the anonymous referees for helpful suggestions.

2 Results and Open Questions

In [5], ruled surface theory is used to prove an estimate about the incidence geometry
of lines in R

3 (and this estimate eventually leads to estimates about the distinct
distance problem). Recall that if L is a set of lines, then a point x is an r-rich point
of L if x lies in at least r lines of L. We write Pr.L/ for the set of r-rich points of L.
The theorem says that a set of lines in R

3 with many 2-rich points must have some
special structure.

Before stating the theorem, we do a couple examples. Because any two lines
intersect in at most one point, a set of L lines can have at most

�L
2

�
2-rich points. A

generic set of lines in the plane achieves this bound. So a set of L lines in R
3 can

have at most
�L
2

�
2-rich points, and there is an example achieving this bound where

all the lines lie in a plane. This suggests the following question: if a set of L lines in
R
3 has on the order of L2 2-rich points, does it have to be the case that many of the

lines lie in a plane? Interestingly, the answer is no. The counterexample is based on
a degree 2 algebraic surface. Consider the surface defined by the equation

z � xy D 0:

This surface contains many lines. For any a 2 R, the surface contains the line
parametrized by

t 7! .a; t; at/:

Similarly, for any b 2 R, the surface contains the line parametrized by

t 7! .t; b; tb/:

If we choose L=2 values of a and L=2 values of b, we get a set of L lines contained
in our surface with L2=4 2-rich points. Any plane contains at most 2 of these lines.
The polynomial z�xy is not unique: there are many other degree 2 polynomials that
work equally well.

But in some sense, this is the only counterexample. If a set of L lines in R
3 has

many 2-rich points, then it must be the case that many of the lines lie in either a
plane or a degree 2 surface. Here is a precise version of this statement.
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Theorem 2.1 (Guth and Katz [5]) There is a constant K so that the following
holds. Suppose that L is a set of L lines in R

3. Then either

• jP2.L/j � KL3=2 or
• there is a plane or degree 2 algebraic surface that contains at least L1=2 lines of

L.

By using this theorem repeatedly, we can prove a stronger estimate, which
roughly says that if jP2.L/j is much bigger than L3=2, then almost all of the 2-rich
points “come from” planes or degree 2 surfaces.

Corollary 2.2 Suppose that L is a set of L lines in R
3. Then, there are disjoint

subsets Li � L so that

• For each i, the lines of Li lie in a plane or a degree 2 surface.
• jP2.L/ n [iP2.Li/j � KL3=2.

Proof We prove the corollary by induction on the number of lines. If jP2.L/j �
KL3=2, then we are done. Otherwise, by Theorem 2.1, there is a subset L1 � L, so
that jL1j � L1=2 and all the lines of L1 lie in a plane or degree 2 surface. We let
L0 D L n L1. By induction, we can assume the corollary holds for L0 – giving us
disjoint subsets Li � L0. Suppose that a point x is in P2.L/ n [iP2.Li/. Then either
x lies in a line from L1 and a line from L0, or else x 2 P2.L0/ n [iP2.Li/. The lines
of L1 all lie in a plane or regulus, and each line of L0 intersects this plane or regulus
at most twice, so the number of points of the first type is at most 2L. By induction,
the number of points of the second type is at most KjL0j3=2 � K.L � L1=2/3=2. In
total, we see that

jP2.L/ n [iP2.Li/j � 2LC K.L� L1=2/3=2 � KL3=2;

closing the induction. (In the last step, we have to assume that K is sufficiently large,
say K � 100.) ut

Ruled surface theory plays a crucial role in the proof of Theorem 2.1. We will
explain how in the next section. Before doing that, we survey generalizations of
Theorem 2.1, discussing both known results and open problems.

The first question we explore is the choice of the field R. Does the same result
hold over other fields? This question was answered by Kollar in [11]. He first proved
that Theorem 2.1 holds over any field of characteristic zero. Next he addressed fields
of finite characteristic. As stated, Theorem 2.1 does not hold over finite fields. There
is a counterexample over the field Fq when q is not prime – see [3] for a description
of this example. Nevertheless, Kollar proved that Theorem 2.1 does hold over fields
of finite characteristic if we add a condition on the number of lines.

Theorem 2.3 (Corollary 40 in [11]) Suppose that k is any field. Suppose that L is
a set of L lines in k3. If the characteristic of k is p > 0, then assume in addition that
L � p2. Then either

• jP2.L/j � KL3=2 or
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• there is a plane or degree 2 algebraic surface that contains at least L1=2 lines
of L.

(In particular, this implies that Theorem 2.1 holds over prime finite fields Fp. The
reason is that jP2.L/j � jF3pj D p3. So if L � p2, then jP2.L/j � L3=2 trivially, and
if L � p2, then Theorem 2.3 applies.)

For context, we compare this situation with the Szemerédi–Trotter theorem, the
most fundamental theorem in incidence geometry. The Szemerédi–Trotter theorem
says that for a set of L lines in R

2, the number of r-rich points is . L2r�3CLr�1. This
theorem is also true over C2, but the proof is much harder – cf. [25] and [26]. The
situation over finite fields is not understood and is a major open problem, cf. [1]. In
contrast, Theorem 2.3 works equally well over any field. This makes the finite field
case of Theorem 2.3 particularly interesting and useful. For instance, Rudnev [18]
and Roche–Newton–Rudnev–Shkredov [17] have applied Theorem 2.3 to prove new
bounds about the sum-product problem in finite fields. The preprint [19] discusses
some other combinatorial problems that can be addressed using Theorem 2.3.

The second question we explore is the role of lines. What happens if we replace
lines by circles? Or by other curves in R

3? In [6], Josh Zahl and I proved a version
of Theorem 2.1 for algebraic curves of controlled degree.

Theorem 2.4 ([6]) For any d there are constants C.d/; c1.d/ > 0 so that the
following holds. Suppose that k is any field. Suppose that � is a set of L irreducible
algebraic curves in k3 of degree at most d. If the characteristic of k is p > 0, then
assume in addition that L � c1.d/p2. Then either

• jP2.L/j � C.d/L3=2 or
• there is an algebraic surface of degree at most 100d2 that contains at least L1=2

curves of L.

There are a couple reasons why I think it is natural to consider various algebraic
curves instead of just straight lines. One reason is that the proof is closely based on
algebraic geometry. Once we have a good understanding of the ideas involved, they
apply naturally to all algebraic curves. A second reason is that this more general
result will probably have more applications. For instance, we recall a little about
the distinct distance problem in the plane. In [2] Elekes and Sharir suggested an
interesting new approach to the problem, connecting distinct distances in the plane
to problems about the incidence geometry of some degree 2 algebraic curves in R

3.
In [5], there is a clever change of coordinates so that these degree 2 curves become
lines, and then Theorem 2.1 applies to bound the number of 2-rich points. It appears
to me that this clever change of coordinates was rather fortuitous. I believe that
most problems about algebraic curves cannot be reduced to the straight line case by
a change of coordinates, and I think that when results along the lines of Theorem 2.4
arise in applications, the curves involved will only sometimes be straight lines.
Theorem 2.4 applies to the problem about degree 2 curves from [2], and I think
it will probably have more applications in the future.
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The third question that we discuss is what happens in higher dimensions. The
situation in higher dimensions is not yet understood. The following conjecture
seems natural to me. (Similar questions were raised in [21] and [27]).

Conjecture 2.5 Let k be any field. Suppose that 	 is a set of L irreducible algebraic
curves in kn, of degree at most d. If the characteristic of k is p > 0, then also assume
that L � pn�1. Then either

• jP2.	/j � C.d; n/L
n

n�1 or
• There is a dimension 2 � m � n� 1, and an algebraic variety Z of dimension m

and degree at most D.d; n/ so that Z contains at least L
m�1
n�1 curves of 	 .

There is some significant progress on this conjecture in four dimensions. In [22],
Sharir and Solomon prove estimates for r-rich points of a set of lines in R

4. These
estimates only apply for fairly large r, not r D 2, so they don’t literally address this
conjecture, but they establish sharp bounds in a similar spirit for larger values of r.
In [7], Josh Zahl and I prove a slightly weaker estimate of this form for algebraic
curves in R

4. So far nothing close to this conjecture is known for lines in C
4 or

over F4p. Moreover, nothing close to this conjecture is known in higher dimensions.
I think that this is a natural question, and that if it is true, it would probably have
significant applications. If it is false, that would also be interesting, and it would
point to new subtleties in incidence geometry in higher dimensions.

In the next section, we discuss the proofs of the known results. Afterwards, we
come back and discuss how much these proofs can tell us about higher dimensions,
and what new issues arise.

3 How Does Ruled Surface Theory Help in the Proof

In this section, we discuss some of the ideas in the proofs of the results from the last
section. The ideas we want to discuss are easiest to explain over C, so we first state
a version of Theorem 2.1 over C.

Theorem 3.1 There is a large constant K so that the following holds. Suppose that
L is a set of L lines in C

3. Then either

• jP2.L/j � KL3=2 or
• there is a plane or degree 2 algebraic surface that contains at least L1=2 lines

of L.

To get started, we think a little about the role of planes and degree 2 algebraic
surfaces. What is special about planes and degree 2 algebraic surfaces that makes
them appear here? Planes and degree 2 surfaces are doubly ruled. A ruled surface is
an algebraic surface that contains a line through every point. A doubly ruled surface
is a surface that contains two distinct lines through every point.
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At this point, we can say a little about the connection between ruled surface
theory and incidence geometry. A doubly ruled surface can be roughly thought of
as an algebraic family of lines with many 2-rich points. In incidence geometry, one
tries to classify finite sets of lines with many 2-rich points. In ruled surface theory,
one tries to classify doubly ruled surfaces – that is, algebraic families of lines with
many 2-rich points. To prove Theorem 3.1, we begin with a finite set of lines with
many 2-rich points, and we build around it a whole doubly ruled surface. Tools from
ruled surface theory help to build this surface and they help to analyze the surface
once it is built, ultimately leading to information about the original finite set of lines.

Doubly ruled algebraic surfaces in C
3 were classified in the nineteenth century.

It turns out that planes and degree 2 surfaces are the only irreducible doubly ruled
surfaces. These surfaces appear in the statement of Theorem 3.1 because they are the
only irreducible doubly ruled surfaces. Roughly speaking, a doubly ruled surface is
an algebraic family of lines with many 2-rich points. Theorem 3.1 is telling us that a
finite configuration of lines with many 2-rich points must be related to an algebraic
family of lines with many 2-rich points.

At this point, let us pause to review some vocabulary from algebraic geometry
that we will use in the rest of the essay. After we set up this vocabulary, we can state
things precisely, starting with the classification of doubly ruled surfaces in C

3.
An algebraic set in C

n is the set of common zeroes of a finite list of polynomials
in CŒz1; : : : ; zn�. An algebraic set is called reducible if it is the union of two proper
algebraic subsets. Otherwise it is called irreducible. An irreducible algebraic set in
C

n is also called an affine variety.
Any affine variety V in C

n has a dimension. The dimension of V is the largest
number r so that there is a sequence of proper inclusions of non-empty varieties
V0 � : : : � Vr D V . The dimension of an algebraic set in C

n is the maximum
dimension of any irreducible subset. An algebraic curve is a variety of dimension 1.

Using the dimension, we can define a useful notion of the generic behavior of
points in a variety. We say that a generic point of an algebraic variety V obeys
condition .X/ if the set of points p 2 V where .X/ does not hold is contained
in an algebraic subset E � V with dim E < dim V . For instance, we say that a
2-dimensional algebraic variety † � C

3 is generically doubly ruled if there is a
1-dimensional algebraic set � � †, and every point of † n � is contained in two
lines in †.

An affine variety also has a degree. There is a non-trivial theorem which says
that for any affine variety V in C

n there is unique choice of r and d so that a generic
.n� r/-plane in C

n intersects V in exactly d points. The value of r is the dimension
of V , as defined above. The value of d is called the degree of V .

There is a nice short summary of facts about dimension and degree in Section 4 of
[24], which contains everything we have mentioned here. A fuller treatment appears
in Harris’s book on algebraic geometry [8].

This is all the terminology that we will need, and we now return to discussing
doubly ruled surfaces. We can now state a classification theorem for double ruled
surfaces in C

3.
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Theorem 3.2 (Classification of doubly ruled surfaces, cf. Proposition 13.30 in
[4]) Suppose that P 2 CŒz1; z2; z3� is an irreducible polynomial and that Z.P/ is
generically doubly ruled. Then P has degree 1 or 2, and so Z.P/ is a plane or a
degree 2 algebraic surface.

There are three somewhat different proofs of Theorem 3.1 in the literature – in
[5], in [11], and in [6]. All three proofs use ruled surface theory in a crucial way, and
this is the aspect that we will focus on. Other parts of the argument are somewhat
different in the three proofs. The proof I want to outline here is the one from [6].
Another reference is my book on polynomial methods in combinatorics, [4], which
will be published in the near future by the AMS. In the chapter on ruled surfaces in
[4], I give a detailed proof of Theorem 3.1 using this method.

For this sketch, let us suppose that each line of L contains about the same number
of 2-rich points. This is the most interesting case of Theorem 3.1. So each line
contains about KL1=2 points of P2.L/. I want to highlight three stages in the proof,
which I discuss in three subsections.

3.1 Degree Reduction

The first step of the argument is to find a (non-zero) polynomial P that vanishes on
the lines of L with a good bound on the degree of P. For reference, given any set
of N points in C

3, there is a non-zero polynomial that vanishes on all these points
with degree at most about N1=3. For a generic set of points, this bound is sharp. By
a similar argument, for any set of L lines in C

3, there is a non-zero polynomial that
vanishes on the lines with degree at most about L1=2. For a generic set of lines, this
bound is also sharp.

Given that each line of L contains about KL1=2 lines of P2.L/, we show that there
is a non-zero polynomial P vanishing on all the lines of L with degree O.K�1L1=2/.
As long as K is large enough, this degree is well below the degree required for a
generic set of lines. This shows that, compared to a generic set of lines, the set L
has a little algebraic structure.

Even though the degree of P is only a little smaller than the trivial bound L1=2,
this small improvement turns out to be a crucial clue to the structure of L, and
it eventually leads to a much more precise description of P: P is a product of
irreducible polynomials of degrees 1 and 2. Once we know this structure for the
polynomial P, the conclusion of the theorem is easy: the lines of L are contained in
O.K�1L1=2/ planes and degree 2 algebraic surfaces. By pigeonholing, one of these
surfaces must contain at least L1=2 lines of L.

Here is the idea of the degree bound for P. We randomly pick a subset L0 � L
with L0 � L lines, where L0 is a parameter that we can tune later. Then we find a
non-zero polynomial P that vanishes on the lines of L0 with degree at most C.L0/1=2.
(We will eventually choose L0 so that this bound is CK�1L1=2.) If L0 is big enough,
then with high probability the polynomial P actually vanishes on all the lines of L.
Here is the mechanism that makes this vanishing happen, which I call contagious
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vanishing. By hypothesis, each line l 2 L contains at least KL1=2 2-rich points of L.
With high probability many of these points will lie in lines of L0. The polynomial P
vanishes at every point where l intersects a line of L0. If the number of these points
is more than the degree of P, then P must vanish on the line l also. If we choose L0
carefully, then this mechanism will force P to vanish on all the lines of L. Carrying
out the details of this argument, the numbers work out so that the degree of P is at
most CK�1L1=2 – cf. Proposition 11.5 in [4].

At this point, we factor P into irreducible factors P DQj Pj. Each line of L must
lie in Z.Pj/ for at least one j. We let Lj � L be the set of lines of L that lie in Z.Pj/.
We subdivide the 2-rich points as

P2.L/ D [jP2.Lj/
[

“mixed 2-rich points”;

where a mixed 2-rich point is the intersection point of some line l 2 Lj with some
line l0 … Lj. A line not in Lj can intersect Z.Pj/ at most Deg Pj times. Therefore,
the total number of mixed 2-rich points is at most L.

P
j Deg Pj/ D L Deg P D

O.K�1L3=2/, only a small fraction of the total number of 2-rich points. By factoring
the polynomial P we have broken the original problem of understanding L into
essentially separate subproblems of understanding each set Lj.

The most difficult case is when P is irreducible. The general case can be reduced
to this case by studying the set of lines Lj and the polynomial Pj. From now on we
assume that P is irreducible. It remains to show that P has degree 1 or 2.

3.2 Ruled Surface Theory

In this subsection, we discuss some tools from ruled surface theory and how they
help up to understand the polynomial P in our proof sketch.

At this point, we know that there is a polynomial P that vanishes on the lines of L
with degree significantly smaller than L1=2, and we are focusing on the case where
P is irreducible. Using this little bit of structure, we are going to find out a lot more
about the polynomial P and its zero set Z.P/. Ultimately, we will see that P has
degree 1 or 2. In this subsection, we sketch how to prove that Z.P/ is generically
doubly ruled.

For each 2-rich point x 2 P2.L/, the point x lies in two lines in Z.P/. Since L
has many 2-rich points, we know that there are many points in Z.P/ that lie in two
lines in Z.P/ – there are many points where Z.P/ “looks doubly-ruled”. Based on
this we will show that almost every point of Z.P/ lies in two lines in Z.P/. Loosely
speaking, the property of “looking doubly-ruled” is contagious – it spreads from the
2-rich points of L and fills almost every point of Z.P/. The tools to understand why
this property is contagious come from ruled surface theory.

The first topic from ruled surface theory that we introduce is flecnodal points. A
point z 2 Z.P/ is flecnodal if there is a line l through z which is tangent to Z.P/
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to third order. Here is a more formal definition, which also makes sense if z is a
singular point of Z.P/, where it’s not immediately obvious what tangent to Z.P/
means. A point z 2 Z.P/ is flecnodal if there is a line l with tangent vector v so that

0 D P.z/ D @vP.z/ D @2vP.z/ D @3vP.z/:

Here we write @v for the directional derivative in direction v:

@v WD
3X

iD1
vi
@

@zi
;

and we write @k
v to denote repeatedly applying this differentiation – for instance,

@2vP WD @v .@vP/ :

If a point z lies in a line in Z.P/, then it follows immediately that z is flecnodal.
Flecnodal points are useful because they also have a more algebraic description. A
basic theme of algebraic geometry is to take any geometric property of a surface,
and describe it in an algebraic way, in terms of the vanishing of some polynomials.

Theorem 3.3 (Salmon [20] Art. 588 pages 277–78) For any polynomial P 2
CŒz1; z2; z3�, there is a polynomial Flec P 2 CŒz1; z2; z3� so that

• A point z 2 Z.P/ is flecnodal if and only if Flec P.z/ D 0.
• Deg Flec P � 11Deg P.

(For some discussion of the history of this result, see the paragraph after
Remark 12 in [11].)

Our goal is to connect 2-rich points and doubly-ruled surfaces, so we introduce
a doubly-ruled analogue of being flecnodal. We say that a point z 2 Z.P/ is doubly
flecnodal if there are two (distinct) lines l1; l2 through z, with tangent vectors v1; v2,
so that for each i D 1; 2,

0 D P.z/ D @vi P.z/ D @2vi
P.z/ D @3vi

P.z/:

Doubly flecnodal points were first introduced in [6] and [4]. There is an analogue
of Salmon’s theorem for doubly flecnodal polynomials – cf. Proposition 13.3 in [4].
It is a little more complicated to state. Instead of one flecnodal polynomial, there is
a finite list of them.

Theorem 3.4 There are universal constants J and C so that the following holds.
For any polynomial P 2 CŒz1; z2; z3�, there is a finite list of polynomials Flec2;j P,
with 1 � j � J, and a Boolean function ˆ W f0; 1gJ ! f0; 1g so that the following
holds.

• For each j, Deg Flec2;j P � C Deg P.
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• Let V2;jP.z/ be equal to zero if Flec2;j P.z/ D 0 and equal to 1 otherwise. Then
z is a doubly flecnodal point of Z.P/ if and only if

ˆ.V2;1P.z/; : : : ;V2;JP.z// D 0:

This theorem sounds more complicated than Salmon’s theorem, but in the
applications we’re about to describe, it is essentially equally useful.

Because flecnodal and doubly flecnodal points have this algebraic description,
they behave contagiously. We start with the flecnodal points and then discuss the
doubly flecnodal points. We know that each line contains KL1=2 2-rich points of
L. At each of these points, Flec P vanishes. The degree of P is at most CK�1L1=2,
and the degree of Flec P is at most 11Deg P � C0K�1L1=2. As long as we choose
K large enough, the number of points is larger than Deg Flec P and it follows that
Flec P vanishes along each line of L. Actually, since the lines of L are contained in
Z.P/, we already know that every point of each line is flecnodal, but we included the
last discussion as a warmup for doubly flecnodal points. Now we know that Flec P
vanishes on all L lines of L. By a version of the Bezout theorem (cf. Theorem 6.7
in [4]), Z.P/\ Z.Flec P/ can contain at most Deg P �Deg Flec P lines, unless P and
Flec P have a common factor. Because Deg P and Deg Flec P are much less than
L1=2, we see that P and Flec P must indeed have a common factor. Since P is
irreducible, P must divide Flec P. Therefore Flec P vanishes on Z.P/, and every
point of Z.P/ is flecnodal!

Doubly flecnodal points are contagious for a similar reason. We just do the first
step of the argument. There are J polynomials Flec2;j P. For each point z, there
are 2J possible values for the vector .V2;1P.z/; : : : ;V2;JP.z//. Fix a line l 2 L.
By hypothesis, l contains at least KL1=2 points of P2.L/. Now, by the pigeonhole
principle, we can find a vector � 2 f0; 1gJ and a subset X� � P2.L/ \ l so that

• for each point z 2 X� , V2;jP.z/ D �j.
• jX� j � 2�JKL1=2.

Because every point of X� is doubly flecnodal, we see thatˆ.�/ D 0. We choose
the constant K significantly larger than 2�J , and so jX� j > Deg Flec2;j P for each
j. Therefore, if �j D 0, then Flec2;j P vanishes on the whole line l. If �j D 1, then
Flec2;j P does not vanish on the whole line l, and so it vanishes at only finitely many
points of l. Therefore, for almost every z 2 l, Flec2;j P.z/ vanishes if and only if
�j D 0. In other words, at a generic point of the line l, V2;jP.z/ D �j. Therefore, at
a generic point of l, ˆ.V2;1P.z/; : : : ;V2;JP.z// D ˆ.�/ D 0, and so a generic point
of l is doubly flecnodal. Next, by making a similar argument to the flecnodal case
above, one can show that a generic point of Z.P/ is doubly flecnodal.

We have now sketched the proof that Z.P/ is generically doubly flecnodal. We
are starting to see how the combinatorial information that L has many 2-rich points
implies that Z.P/ must have a special structure.

Just because a point z 2 Z.P/ is flecnodal, it doesn’t mean that z lies in a line
in Z.P/. For instance, let P be the polynomial P.z/ D z101 C z102 C z123 � 1 and let
z be the point .1; 0; 0/ 2 Z.P/. If l is a line through z parallel to the .z2; z3/-plane,
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then l is tangent to Z.P/ to ninth order. So there are infinitely many different lines
through z that are tangent to Z.P/ to ninth order, but none of them lies in Z.P/. This
kind of behavior can indeed occur at some special points of Z.P/, but it turns out
that it cannot happen at a generic point of Z.P/.

Theorem 3.5 (Cayley–Salmon–Monge) If P 2 CŒz1; z2; z3�, and if every point of
Z.P/ is flecnodal, then Z.P/ is a ruled surface – every point of Z.P/ lies in a line in
Z.P/.

(For the history of this theorem and a sketch of the proof, see the discussion
around Theorem 13 in [11].)

There is also a version of this result for doubly flecnodal points (and in fact it is
a little easier):

Theorem 3.6 (cf. Proposition 13.30 in [4]) If P 2 CŒz1; z2; z3�, and if Z.P/ is
generically doubly flecnodal, then Z.P/ is generically doubly ruled.

This theorem implies that our surface Z.P/ is generically doubly ruled.
There are several sources to read more about ruled surface theory and about

the details of the arguments we have sketched here. I tried to write readable self-
contained proofs in the chapter on ruled surface theory in [4]. In Kollar’s paper [11],
there is a discussion of the proof of Theorem 3.5 and also some history. In Katz’s
ICM talk [10], there is another discussion of the proof of Theorem 3.5. Finally, [6]
gives a quite different proof of Theorem 3.5 which generalizes to algebraic curves
in place of straight lines. For ruled surfaces in general, the referee suggested the
classical work of Plucker [15] and the modern book [16].

This may be a good moment to say a bit more about the theorem in [6]. Suppose
that 	 is a set of L circles in R

3. For the case of circles, what kind of surfaces
should play the role of planes and degree 2 surfaces? We say that a surface Z.P/
is generically doubly ruled by circles if a generic point of Z.P/ lies in two distinct
circles in Z.P/. In [6], it is proven that either jP2.	/j � KL3=2 or 	 contains at
least L1=2 circles in an algebraic surface Z.P/ which is generically doubly ruled by
circles. The same holds if circles are replaced by other classes of curves, such as
parabolas, degree 3 curves, etc. The proof follows the same outline that we have
given here, and the main difficulty in the paper is to generalize the tools of ruled
surface to other classes of curves.

The definition of flecnodal and doubly flecnodal involve three derivatives. The
reader may wonder why we use three derivatives. In fact, using more than three
derivatives would also work. Using r derivatives instead of three derivatives, we can
define r-flecnodal points and doubly r-flecnodal points. Theorem 3.4 holds for any
choice of r – only the constants C and J depend on r – cf. Proposition 13.3 in
[4]. Three derivatives is the minimum number of derivatives necessary to prove
Theorems 3.5 and 3.6. These theorems would be false if we assumed that only
two derivatives vanish. Here is a dimensional heuristic why three derivatives are
important (suggested by the referee). Fix a point z in Z.P/. In three dimensions, the
space of lines through x is a 2-dimensional space. If we insist that r derivatives
of P vanish in the tangent direction of a line, this gives us r equations on the
space of lines. For r D 2, dimensional heuristics suggest that there will typically
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be such a line. But for r D 3, dimensional heuristics suggest that there will not
be typically be such a line. Indeed the theory of ruled surfaces shows that these
heuristics are correct – for a generic polynomial P 2 CŒz1; z2; z3�, every point of
Z.P/ is 2-flecnodal, but the subset of 3-flecnodal points is a lower-dimensional
subvariety.

3.3 Classification of Doubly Ruled Surfaces

At this point in our sketch, we have shown that Z.P/ is generically double ruled,
and we know that P is irreducible. To finish the proof of Theorem 3.1, we have to
prove that P has degree 1 or 2. This follows from the classification of (generically)
doubly ruled surfaces in Theorem 3.2.

To end our sketch, we briefly discuss the proof of the classification Theorem 3.2.
In fact, there is a more general classification theorem for degree d algebraic curves,
which we discuss at the same time.

Theorem 3.7 ([6]) Suppose that P 2 CŒz1; z2; z3� is an irreducible polynomial, and
that Z.P/ is generically doubly ruled by algebraic curves of degree at most d. Then
Deg P � 100d2.

Because a generic point of Z.P/ lies in two algebraic curves in Z.P/, it is not hard
to find many algebraic curves in Z.P/ that intersect each other in many places. More
precisely, we can find two arbitrarily large families of curves �1;i and �2;j in Z.P/, so
that for each pair i; j, �1;i intersects �2;j, and all the intersection points are distinct –
cf. Lemma 11.8 in [6]. The proof strongly uses the fact that Z.P/ is 2-dimensional.
The idea of the argument is to study the curves passing through a small ball in Z.P/.
For the sake of this sketch, let us suppose that each point z 2 Z.P/ lies in exactly two
algebraic curves of degree d, �1.z/ and �2.z/. Let us suppose that these curves vary
smoothly with z, and let us suppose that �1.z/ and �2.z/ intersect transversely at z.
(This is the moment where we use that the dimension of Z.P/ is 2 – if the dimension
of Z.P/ is greater than 2, then two curves can never intersect transversely.) We fix a
smooth point z0 2 Z.P/, and then we let zi and wj be a generic sequence of points of
Z.P/ very close to z0. The curves �1;i and �2;j are just �1.zi/ and �2.wj/. Since zi and
wj are very close to z0, then �1;i and �2;j are small perturbations of �1.z0/ and �2.z0/.
Since �1.z0/ and �2.z0/ intersect transversely at z0, then �1;i and �2;j must intersect
at a point close to z0.

Once we have the curves �1;i and �2;j we can bound the degree of P by using a
contagious vanishing argument. For any degree D, we can choose a polynomial Q
of degree at most D that vanishes on roughly D2d�1 of the curves �1;i. On the other
hand, if �2;j does not lie in Z.Q/, then Q can vanish on at most dD points of �2;j.
We choose D so that D2d�1 � dD. Choosing D D 100d2 is big enough. Since Q
vanishes on D2d�1 curves �1;i, it vanishes at D2d�1 points of each curve �2;j, and
so it vanishes on each curve �2;j. Now we see that Z.Q/ \ Z.P/ contains infinitely
many algebraic curves �2;j. By the Bezout theorem, P and Q must have a common
factor. Since P is irreducible, P must divide Q. But then Deg P � Deg Q � 100d2.
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This degree reduction argument is essentially the same as the one in Sect. 3.1, but
we get a better bound for the degree because the curves �1;i and �2;j have so many
2-rich points. Here is a big picture summary of the proof of Theorem 3.1. First
we used the combinatorial information to prove that the set of lines L has a little
algebraic structure – the lines lie in Z.P/ where the degree of P is a bit smaller than
for generic lines. If P is reducible, we divide the problem into essentially disjoint
subproblems, and we assume from now on that P is irreducible. Second, we use the
degree bound on P and the combinatorial information about the lines to prove that
Z.P/ is generically doubly ruled. So our finite set of lines L fits into an algebraic
family of lines with many 2-rich points. Third, we extend L by adding a lot of other
lines from the surface Z.P/. By doing this, we can amplify the number of 2-rich
points. We get a new set of N � L lines in Z.P/ with around N2 2-rich points.
Finally, we apply degree reduction to this bigger set of lines, and we get a much
stronger estimate for the degree of P.

4 Thoughts About Higher Dimensions

In this last section, we reflect on how much ruled surface theory can tell us about
incidence geometry in higher dimensions, and we point out some open problems.
What happens if we try to adapt the proof of Theorem 3.1 that we just sketched
to higher dimensions? We broke the proof of Theorem 3.1 into three stages. We
discuss each stage, but especially focusing on the last stage – the classification of
doubly ruled surfaces.

We suppose that L is a set of L lines in C
n. We suppose that jP2.L/j � KL

n
n�1 .

We also make the minor assumption that each line contains about the same number
of 2-rich points: so each line contains at least KL

1
n�1 points of P2.L/.

4.1 Degree Reduction

The degree reduction stage works in any dimension. In n dimensions, for any set of
N points, there is a polynomial of degree at most CnN1=n vanishing on the set, and
this bound is sharp for generic sets. For any set of L lines, there is a polynomial of
degree at most CnL

1
n�1 vanishing on each line, and this bound is sharp for generic

sets of lines. But if each line of L contains at least KL
1

n�1 2-rich points of L, then
there is a polynomial P vanishing on the lines of L with degree at most CnK

�1
n�2 L

1
n�1 .

So we see that in any number of dimensions, if K is large enough then L has some
algebraic structure. I think this suggests that it is a promising avenue to try to study
L using algebraic geometry.
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4.2 Ruled Surface Theory

Some of the tools we used in the second stage have generalizations to higher
dimensions. Landsberg [12] has proven a version of Theorem 3.5 in any number
of dimensions. Sharir and Solomon [22] generalized the flecnode polynomial to
four dimensions and proved the four-dimensional analogue of Theorem 3.3. Double-
flecnode polynomials have so far only been defined in three dimensions. In higher
dimensions, there is one technical point which will be more difficult. In C

n, there are
doubly ruled varieties of every dimension between 2 and n � 1. Therefore, it is not
enough to consider algebraic hypersurfaces, which can be written in the form Z.P/
for a single polynomial P – we have to consider algebraic varieties of all dimensions.
If one could generalize the methods in this second stage to higher dimensions, it
might be possible to prove the following conjecture.

Conjecture 4.1 Suppose that L is a set of L lines in C
n. Then either

• jP2.L/j � C.n/L
n

n�1 or
• There is a dimension 2 � m � n � 1, and a generically double-ruled affine

variety Z of dimension m so that Z contains at least L
m�1
n�1 lines of L. (Recall that

an affine variety is irreducible by definition.)

We can generalize this conjecture to algebraic curves as follows.

Conjecture 4.2 Suppose that 	 is a set of L irreducible algebraic curves in C
n of

degree at most d. Then either

• jP2.	/j � C.d; n/L
n

n�1 or
• There is a dimension 2 � m � n � 1, and an (irreducible) affine variety Z of

dimension m which is generically doubly ruled by algebraic curves of degree at
most d and contains at least L

m�1
n�1 curves of 	 .

If Conjectures 4.1 and/or 4.2 is true, it would point to a strong connection
between incidence geometry and ruled surface theory. On the other hand, it would
probably not be useful in applications unless we could also prove a classification of
doubly ruled varieties – at least a very rough classification. So let us turn now to the
problem of the classification of doubly ruled varieties.

4.3 Classification of Doubly Ruled Varieties

The classification of doubly ruled surfaces in C
3 was fairly simple, but in higher

dimensions, this part of the problem may become a lot more complex. I would like
to propose a question about doubly ruled varieties that could be useful to understand
for applications to incidence geometry.

To get started, we might ask, if Ym � C
n is a generically doubly ruled

(irreducible) variety, does it follow that Deg Y � C.n/? The answer to this question
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is no. It may happen that every point of Y lies in a 2-plane in Y. Such a variety is
clearly doubly ruled, and it may have an arbitrarily high degree. For a high degree
example, suppose that Y is a graph of the form

z4 D P1.z3/z1 C P2.z3/z2 C Q.z3/;

where P1;P2; and Q are polynomials of high degree. If w D .w1;w2;w3;w4/ 2 Y,
then w lies in the following 2-plane in Y:

z3 D w3I z4 D P1.w3/z1 C P2.w3/z2 CQ.w3/:

If P1;P2, or Q have high degree, then Y will have high degree also. (Also the
algebraic set Y is in fact irreducible for any chocie of P1;P2;Q.)

Suppose for a moment that the variety Y that we find in the second stage is a
graph of this form, and suppose for simplicity that every line of L lies in Y. For a
typical P1;P2;Q, every line in Y is contained in one of the planes above. Suppose
for a moment that our variety Y has this convenient property. Then we can separate
the lines of L into subsets corresponding to different 2-planes. Since each line of
L contains at least KL

1
n�1 2-rich points, one of the 2-planes must contain at least

KL
1

n�1 lines of L, and this satisfies the conclusion of Conjecture 2.5.
I don’t know whether there are more exotic examples of doubly ruled varieties

than this one. Let me introduce a little vocabulary so that I can make an exact
question. We say that a variety Y is ruled by varieties with some property .�/ if
each point y 2 Y, lies in a variety X � Y where X has property .�/. We say that a
variety Y is doubly ruled by varieties with property .�/ if each point y lies in two
distinct varieties X1;X2 � Y with property .�/. We say that Y is generically ruled
by varieties with property .�/ if a generic point y 2 Y lies in a variety X � Y with
property .�/, and so on.

Question 4.3 Suppose that Y � C
n is a variety which is generically doubly ruled

(by lines). Does it follow that Y is generically ruled by varieties with dimension at
least 2 and degree at most C.n/?

To the best of my knowledge this question is open. Noam Solomon pointed me
to a relevant paper in the algebraic geometry literature by Mezzetti and Portelli [14].
Under a technical condition, this paper gives a classification of doubly ruled 3-
dimensional varieties in CP

4 – see Theorem 0.1. The technical condition is that the
Fano scheme of lines of Y is generically reduced. If Y is generically doubly ruled and
obeys this condition, then the classification from Theorem 0.1 of [14] implies that
either Y has degree at most 16 or Y is generically ruled by 2-dimensional varieties
of degree at most 2.

We can also pose more general questions in a similar spirit to Question 4.3.

Question 4.4 Suppose that Y � C
n is generically doubly ruled by (irreducible)

algebraic curves of degree at most d. Does it follow that Y is generically ruled by
varieties with dimension at least 2 and degree at most C.d; n/?
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Question 4.5 Suppose that Y � C
n is generically doubly ruled by varieties of

dimension m and degree at most d. Does it follow that Y is generically ruled by
varieties with dimension at least mC 1 and degree at most C.d;m; n/?

If the answers to Questions 4.3 and 4.4 are affirmative, then I think it would be
promising to try to prove Conjecture 2.5 using tools from ruled surface theory. If the
answer to Question 4.3 is no, then it means that there are some exotic doubly ruled
varieties Y � C

n. These varieties would be a potential source of new examples in
incidence geometry, and could possibly lead to counterexamples to Conjecture 2.5.

For a given variety Y containing many lines, it looks interesting to explore
incidence geometry questions for sets of lines in Y. This circle of questions was
raised by Sharir and Solomon in [22]. In particular, they raised the following
question.

Question 4.6 Suppose that Y is the degree 2 hypersurface in R
4 defined by the

equation

x1 D x22 C x23 � x24:

For a given r, what is the maximum possible size of jPr.L/j?
This question was studied by Solomon and Zhang in [23], building on earlier

work of Zhang [27]. They constructed an example with many r-rich points.
Counting the number of r-rich points in the example is non-trivial and they used
tools from analytic number theory to do so. Their construction gives � L3=2r�3 r-
rich points. Since a generic point of Y lies in infinitely many lines in Y, it is easy to
produce examples with � Lr�1 r-rich points, so their example is interesting when r
is smaller than L1=4. The best known upper bound on jPr.L/j is based on a random
projection argument. Rudnev used a closely related random projection argument in
[18] – cf. the bottom of page 6 of [18]. We note that Y does not contain any 2-plane.
Since Y is the zero set of a degree 2 polynomial, the intersection of Y with a 2-plane
may contain at most two lines. Therefore, we see that L contains at most two lines in
any 2-plane. Now we let L0 be the projection of L to a generic 3-plane. For a generic
choice of the projection we see that jL0j D jLj, jPr.L

0/j D jPr.L/j, and L0 contains
at most two lines in any 2-plane. We then bound jPr.L

0/j using Theorem 4.5 from
[5], giving the bound jPr.L/j D jPr.L

0/j . L3=2r�2 C Lr�1. There is a large gap
between the upper and lower bounds. The random projection argument does not
seem to use much of the structure of Y: as Rudnev points out in [18], the space of
lines in R

3 is 4-dimensional while the space of lines in Y is only 3-dimensional.
We can ask the same question over the complex numbers. The example of [23] is

still the best lower bound. For upper bounds, the random projection argument still
works, but Theorem 4.5 from [5] is not known over the complex numbers. In the
complex case, the best upper bound comes from applying Theorem 2 of [11], giving
the bound jPr.L/j . L3=2r�3=2 C Lr�1.

In Question 4.6, the interesting case is when r > 2. The variety Y contains the
subvariety x1 D x23 � x24, x2 D 0. It is not difficult to construct a set of L lines in this
subvariety with L2=4 2-rich points by modifying the example at the start of Sect. 2.
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But for cubic hypersurfaces, it looks hard to estimate the number of 2-rich points.
For example, we can ask the following question.

Question 4.7 Suppose that Y is the degree 3 hypersurface in C
4 defined by the

equation

z31 C z32 C z33 C z34 D 1:

Suppose that L is a set of L lines in Y. What is the maximum possible size of P2.L/?
(I believe that a generic point of this cubic hypersurface Y lies in six lines in Y.

Here is a heuristic argument for this guess. Fix a point p 2 Y and translate the
coordinate system so that p D 0. In the new coordinate system, Y is given as the
zero set of a polynomial P of the form P D P3.z/ C P2.z/ C P1.z/, where Pi.z/ is
homogeneous of degree i. (There is no zeroth order term because we have arranged
that 0 2 Z.P/ and so P.0/ D 0.) For a non-zero z, the line from 0 through z lies
in Y D Z.P/ if and only if P3.z/ D P2.z/ D P1.z/ D 0. So the set of lines in Y
through p is given by intersecting a degree 3 hypersurface, a degree 2 hypersurface,
and a degree 1 hypersurface in CP

3. For a generic choice of these hypersurfaces,
the intersection will consist of six elements of CP3, and I believe that this occurs at
a generic point of Y.)

Note that it does matter which cubic hypersurface we consider. The cubic
hypersurface z4 D z1z2z3 contains a 2-dimensional degree 2 surface defined by
z3 D 1, z4 D z1z2, and this surface contains L lines with L2=4 2-rich points, as in
the example at the start of Sect. 2. I believe that the cubic hypersurface z31 C z32 C
z33 C z34 D 1 does not contain any 2-dimensional variety of degree 2. If this is the
case, then we can get a non-trivial upper bound by a random projection argument.
By a version of the Bezout theorem, the intersection of Y with any degree 2
2-dimensional variety will contain at most 6 lines. Randomly projecting L to C

3,
we get a set of lines L0 with at most 6 lines of L0 in any 2-plane or degree 2 surface.
Then applying Theorem 3.1, we see that jP2.L/j D jP2.L0/j . L3=2. But I suspect
that the maximum size of jP2.L/j is much smaller than L3=2.

I think that these questions about lines in low degree varieties are a natural
direction of research in incidence geometry. If there are more exotic doubly-ruled
varieties Y, then it would also be natural to study analogous questions for them.

References

1. J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, and applications. Geom.
Funct. Anal. 14(1), 27–57 (2004)

2. Gy. Elekes, M. Sharir, Incidences in three dimensions and distinct distances in the plane, in
Proceedings 26th ACM Symposium on Computational Geometry (2010), pp. 413–422

3. J. Ellenberg, M. Hablicsek, An incidence conjecture of Bourgain over fields of positive
characteristic. Forum Math. Sigma 4, e23, 9pp (2016). arXiv:1311.1479



466 L. Guth

4. L. Guth, Polynomial Methods in Combinatorics. University Lecture Series, vol. 64 (AMS,
2016)

5. L. Guth, N. Katz, On the Erdős distinct distance problem in the plane. Ann. Math. 181, 155–
190 (2015)

6. L. Guth, J. Zahl, Algebraic curves, rich points, and doubly-ruled surfaces. arXiv:1503.02173
7. L. Guth, J. Zahl, Curves in R

4 and 2-rich points. arXiv:1512.05648
8. J. Harris, Algebraic Geometry, a First Course. Corrected reprint of the 1992 original. Graduate

Texts in Mathematics, vol. 133 (Springer, New York, 1995)
9. H. Kaplan, J. Matoušek, M. Sharir, Simple proofs of classical theorems in discrete geometry

via the Guth-Katz polynomial partitioning technique. Discrete Comput. Geom. 48(3), 499–517
(2012)

10. N. Katz, The flecnode polynomial: a central object in incidence geometry, in Proceedings of
the 2014 ICM. arXiv:1404.3412

11. J. Kollár, Szemerédi-Trotter-type theorems in dimension 3. Adv. Math. 271, 30–61 (2015)
12. J.M. Landsberg, Is a linear space contained in a submanifold – on the number of the derivatives

needed to tell. Journal für die reine und angewandte Mathematik 508, 53–60 (1999)
13. J. Matoušek, Using the Borsuk-Ulam Theorem (Springer). Universitext, 2nd printing 2008
14. E. Mezzetti, D. Portelli, On threefolds covered by lines. Abh. Math. Sem. Univ. Hamburg 70,

211–238 (2000)
15. J. Plucker, Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als

Raumelemente (Leipzig 1869)
16. H. Pottmann, J. Wallner, Computational Line Geometry (Springer, Heidelberg/Berlin, 2001)
17. O. Roche-Netwon, M. Rudnev, I. Shkredov, New sum-product type estimates over finite fields.

Adv. Math. 293, 589–605 (2016). arXiv:1408.0542
18. M. Rudnev, On the number of incidences between points and planes in three dimensions.

arXiv:1407.0426
19. M. Rudnev, J. Selig, On the use of Klein quadric for geometric incidence problems in two

dimensions. SIAM J. Discrete Math. 30(2), 934–954 (2016). arxiv:1412.2909
20. G. Salmon, A Treatise on the Analytic Geometry of Three Dimensions, vol. 2, 5th edn. (Hodges,

Figgis And Co. Ltd., 1915)
21. M. Sharir, A. Sheffer, N. Solomon, Incidences with curves in R

d , in Algorithms–ESA 2015.
Lecture Notes in Computer Science, vol. 9294 (Springer, Heidelberg, 2015), pp. 977–988.
arXiv:1512.08267

22. M. Sharir, N. Solomon, Incidences between points and lines in R
4. arXiv:1411.0777

23. N. Solomon, R. Zhang, Highly incidental patterns on a quadratic hypersurface in R
4.

arXiv:1601.01817
24. J. Solymosi, T. Tao, An incidence theorem in higher dimensions. Discrete Comput. Geom.

48(2), 255–280 (2012)
25. The Szemerédi-Trotter theorem in the complex plane. Combinatorica 35(1), 95–126 (2015).

aXiv:math/0305283, 2003
26. J. Zahl, A Szemerédi-Trotter type theorem in R

4. Discrete Comput. Geom. 54(3), 513–572
(2015)

27. R. Zhang, Polynomials with dense zero sets and discrete models of the Kakeya conjecture and
the Furstenberg set problem. arXiv:1403.1352



Approximating the k-Level
in Three-Dimensional Plane Arrangements

Sariel Har-Peled, Haim Kaplan, and Micha Sharir

Abstract Let H be a set of n non-vertical planes in three dimensions, and let
r < n be a parameter. We give a construction that approximates the .n=r/-level
of the arrangement A.H/ of H by a terrain consisting of O.r="3/ triangular faces,
which lies entirely between the levels n=r and .1C "/n=r. The proof does not use
sampling, and exploits techniques based on planar separators and various structural
properties of levels in three-dimensional arrangements and of planar maps. This
leads to conceptually cleaner constructions of shallow cuttings in three dimensions.

On the way, we get two other results that are of independent interest: (a) We
revisit an old result of Bambah and Rogers (J Lond Math Soc 1(3):304–314, 1952)
about triangulating a union of convex pseudo-disks, and provide an alternative
proof that yields an efficient algorithmic implementation. (b) We provide a new
construction of cuttings in two dimensions.
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1 Introduction

A tribute to Jirka Matoušek We were very fortunate to have Jirka as a friend and
colleague. He has entered our community in the late 1980s, and has been a giant
lighthouse ever since, showing us the way into new discoveries, solving mysteries
for us, and providing us with new tools, ideas, and techniques, that have made
our work much more interesting and productive. He has been everywhere, making
seminal contributions to so many topics in computational and discrete geometry
(and to other fields too). We have been avid readers of his many books, most notably
Lectures on Discrete Geometry, and have been admiring his clear yet precise style of
exposition and presentation. We have also learned to appreciate his personality, his
dry but touching sense of humor, his love for nature, his infinite devotion to science
on one hand, and to his family and friends on the other hand. His departure has been
painful to us, and we will miss him badly. We thank you, Jirka, for all the gifts you
gave us, and may your soul be blessed.

This paper is about a topic that Jirka has worked on, rather extensively, during
the early 1990s, concerning cuttings and related techniques for decompositions
of arrangements or of point sets, and their applications to range searching and
other algorithmic and combinatorial problems in geometry. In particular, in 1992
he has written a seminal paper on “Reporting points in halfspaces” [41], where he
introduced and analyzed shallow cuttings, a technique that had many applications
during the following decades.

In a later paper, following his earlier work [38] (probably his first entry into
computational geometry), Jirka [42] presented a construction of .1=r/-cuttings, for
a set of lines in the plane, with � 8r2 C 6r C 4 cells. This construction uses, as
a basic building block, a strikingly simple procedure for approximating a level in
a line arrangement: Since a specific level is an x-monotone polygonal chain, one
can pick every qth vertex, for q � n=r, and connect these vertices consecutively
to form an approximate level, which is at line-crossing distance at most q=2 from
the original level. As is well known, this construction is asymptotically optimal
for any arrangement of lines in general position. This elegant level approximation
algorithm, in two dimensions, raises the natural question of whether one can
approximate a level in three dimensions for a given set of planes, by an xy-monotone
polyhedral terrain constructed directly, in an analogous manner, from the original
level.

This paper provides an affirmative answer to this question, thereby pushing
Jirka’s work further, for the special case of three-dimensional arrangements of
planes. Our new scheme for approximating a level by a terrain, while significantly
more involved than Jirka’s two-dimensional construction, still echoes and general-
izes his basic idea of “shortcutting” the original level by a coarser triangular mesh
(instead of a simplified polygonal chain in the plane) spanned by selected vertices
of the level.

Cuttings Let H be a set of n (non-vertical) hyperplanes in R
d, and let r < n be

a parameter. A .1=r/-cutting of the arrangement A.H/ is a collection of pairwise
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openly disjoint simplices (or other regions of constant complexity) such that the
closure of their union covers R

d, and each region is crossed (intersected in its
interior) by at most n=r hyperplanes of H.

Cuttings have proved to be a powerful tool for a variety of problems in discrete
and computational geometry, because they provide an effective divide-and-conquer
mechanism for tackling such problems; see Agarwal [7] for an early survey.
Applications include a variety of range searching techniques [10], partition trees
[39], incidence problems involving points and lines, curves, and surfaces [26], and
many more.

The first (albeit suboptimal) construction of cuttings is due to Clarkson [24].
This concept was formalized later on by Chazelle and Friedman [22], who gave
a sampling-based construction of optimal-size cuttings (see below). An optimal
deterministic construction algorithm was provided by Chazelle [20]. Matoušek [42]
studied the number of cells in a .1=r/-cutting in the plane (see also [29]). See
Agarwal and Erickson [10] and Chazelle [21] for comprehensive reviews of this
topic.

To be effective, it is imperative that the number of simplices in the cutting be
asymptotically as small as possible. Chazelle and Friedman [22] were the first to
show the existence of a .1=r/-cutting of the entire arrangement of n hyperplanes in
R

d, consisting of O.rd/ simplices, which is asymptotically the best possible bound.
(We note in passing that cuttings of optimal size are not known for arrangements of
(say, constant-degree algebraic) surfaces in R

d, except for d D 2, where the known
bound, O.r2/, is tight, and for d D 3; 4, where nearly tight bounds, i.e., nearly cubic
and quartic in r, respectively, are known [23, 35, 36].)

For additional works related to cuttings and their applications, see [1–6, 8, 13,
19, 29, 39, 40, 48].

Shallow cuttings The level of a point p in the arrangement A.H/ of H is the
number of hyperplanes lying vertically below it (that is, in the .�xd/-direction).
For a given parameter 0 � k � n� 1, the k-level, denoted as Lk, is the closure of all
the points that lie on some hyperplane of H and are at level exactly k, and the .� k/-
level, denoted as L�k, is the union of all the j-levels, for j D 0; : : : ; k. A collection
of pairwise openly disjoint simplices such that the closure of their union covers
L�k, and such that each simplex is crossed by at most n=r hyperplanes of H, is a
k-shallow .1=r/-cutting. Naturally, the parameters k and r can vary independently,
but the interesting case, which is the one that often arises in many applications, is
the case where k D ‚.n=r/. Furthermore, shallow cuttings for any value of k can be
reduced to this case—see Chan and Tsakalidis [19, Section 5].

In his paper on reporting points in halfspaces [41], Matoušek has proved the
existence of small-size shallow cuttings in arrangements of hyperplanes in any
dimension, showing that the bound on the size of the cutting can be significantly
improved for shallow cuttings. Specifically, he has shown the existence of a
k-shallow .1=r/-cutting, for n hyperplanes in R

d, whose size is O
�
qdd=2erbd=2c

�
,

where q D k.r=n/ C 1. For the interesting special case where k D ‚.n=r/, we
have q D 1 and the size of the cutting is O

�
rbd=2c

�
, a significant improvement over
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the general bound O.rd/. (For example, in three dimensions, we get O.r/ simplices,
instead of O.r3/ simplices for the whole arrangement.) This has lead to improved
solutions of many range searching and related problems.

In his paper, Matoušek presented a deterministic algorithm that can construct
such a shallow cutting in polynomial time; the running time improves to O.n log r/
but only when r is small, i.e., r < nı for a sufficiently small constant ı (that
depends on the dimension d). Later, Ramos [48] presented a (rather complicated)
randomized algorithm for d D 2; 3, that constructs a hierarchy of shallow
cuttings for a geometric sequence of O.log n/ values of r, where for each r the
corresponding cutting is a .1=r/-cutting of the first‚.n=r/ levels of A.H/. Ramos’s
algorithm runs in O.n log n/ total expected time. Recently, Chan and Tsakalidis
[19] provided a deterministic O.n log r/-time algorithm for computing an O.n=r/-
shallow .1=r/-cutting. Their algorithm can also construct a hierarchy of shallow
cuttings for a geometric sequence of O.log n/ values of r, as above, in O.n log n/
time (deterministically). Interestingly, they use Matoušek’s theorem on the existence
of an O.n=r/-shallow .1=r/-cutting of size O.r/ in the analysis of their algorithm.

Each simplex � in the cutting has a conflict list associated with it, which is the
set of hyperplanes intersecting �. The algorithms mentioned above for computing
cuttings also compute the conflict lists associated with the simplices of the cutting.
Alternatively, given the cutting, one can produce the conflict lists in O.n log r/ time
using a result of Chan [16], as we outline in Sect. 4.3.

Matoušek’s proof of the existence of small-size shallow cuttings, as well as
subsequent studies of this technique, are technically involved. They rely on random
sampling, combined with a clever variant of the so-called exponential decay lemma
of [22], and with several additional (and rather intricate) techniques.

Approximating a level An early study of Matoušek [38] gives a construction
of a .1=r/-cutting of small (optimal) size in arrangements of lines in the plane.
The construction chooses a sequence of r levels, n=r apart from one another, and
approximates each of them by a coarser polygonal line, by choosing every n=.2r/-
th vertex of the level, and by connecting them by an x-monotone polygonal path.
Each approximate level does not deviate much from its original level, so they
remain disjoint from one another. Then, partitioning the region between every pair
of consecutive approximate levels into vertical trapezoids produces a total of O.r2/
such trapezoids, each crossed by at most O.n=r/ lines.

It is thus natural to ask whether one can approximate, in a similar fashion, a k-
level of an arrangement of a set H of n planes in 3-space. This is significantly more
challenging, as the k-level is now a polyhedral terrain, and while it is reasonably
easy to find a good (suitably small) set of vertices that “represent” this level (in an
appropriate sense, detailed below), it is less clear how to triangulate them effectively
to form an xy-monotone terrain, such that (i) none of its triangles is crossed by too
many planes of H, and (ii) it remains close to the original level. To be more precise,
given k and " > 0, we want to find a polyhedral terrain with a small number of faces,
which lies entirely between the levels k and .1C "/k of A.H/. A simple tweaking
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of Matoušek’s technique produces such an approximation in the planar case, but it
is considerably more involved to do it in 3-space.

Algorithms for terrain approximation, such as in [9, 12], do not apply imme-
diately in this case, as they produce a suboptimal output, of size larger than the
optimal by a logarithmic factor. More importantly, they are not geared to handle
our measure of approximation (in terms of lying close to a specified level, in the
sense that no point on the approximation is separated by too many planes from
the level). Nevertheless, we note that the algorithm in [12] can be modified to
provide a logarithmic approximation in our sense, but the resulting running time (at
least �.n8/, and probably much worse) is quite large. Perhaps more significantly,
without the results in the present work, it is not even clear that such an optimal-size
approximation exists at all.

Such an approximation to the k-level, whose size is almost optimal up to a
polylogarithmic factor, can be obtained by using a relative-approximation sample
of H, and by extracting the appropriate level in the sample [30]. A more natural
approach, of using the triangular faces of an optimal-size shallow cutting to form an
approximate k-level, seems to fail in this case, as the shallow cutting is in general just
a collection of simplices, stacked on top of one another, with no clearly defined xy-
monotonicity. Such a monotonicity is obtained in Chan [17], by replacing a standard
shallow cutting by the upper convex hull of its simplices. However, the resulting
cuttings do not lead to a sharp approximation of the level, of the sort we seek.

In short, an effective and optimal technique for approximating a level in three
dimensions as a terrain (let alone in higher dimensions) does not follow easily from
existing techniques.

An additional advantage of such an approximation is that it immediately yields
a simply-shaped shallow cutting of the first k levels of A.H/, by replacing each
triangle� of the approximate level by the vertical semi-unbounded triangular prism
�� having � as its top face, and consisting of all points that lie on or vertically
below�. Such a cutting (by prisms) has already been constructed by Chan [17], but
it does not yield (that is, come from) a .1 C "/-approximation to the level. Such a
shallow cutting, by vertical semi-unbounded triangular prisms, was a central tool in
Chan’s algorithm for dynamic convex hulls in three dimensions [18].

This discussion suggests that resolving the question of approximating the k-level
by an xy-monotone terrain of small, optimal size is not a mere technical issue, but
rather a tool that will shed more light on the geometry of arrangements of planes in
three dimensions.

1.1 Our Results

In this paper we give an alternative and constructive proof of the existence of
optimal-size shallow cuttings in a three-dimensional plane arrangement, by vertical
semi-unbounded triangular prisms. We obtain this cutting in a straightforward
manner from an optimal-size approximate level, as discussed above. Specifically,
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we show that given r and ", one can approximate the .n=r/-level in an arrangement
of n non-vertical planes in R

3, by a polyhedral terrain with O.r="3/ triangular faces,
that lies entirely between the levels n=r and .1C "/n=r.

The construction does not use sampling, nor does it use the exponential decay
lemma of [22, 41]. It is based on the planar separator theorem of Lipton and
Tarjan [37], or, more precisely, on recent separator-based decomposition techniques
of planar maps, as in Klein et al. [34] (see also Frederickson [28]), and on several
insights into the structure and properties of levels in three dimensions and of planar
maps, which we believe to be of independent interest.

Sketch of our technique The k-level in a plane arrangement in three dimensions
is an xy-monotone polyhedral terrain. After triangulating each of its faces, its xy-
projection forms a (straight-edge) triangulated biconnected planar map. Since the
overall complexity of the first k levels is O.nk2/ (see, e.g., [25]), we may assume,
by moving from a specified level to a nearby one, that the complexity of our level
is near the average value O.nk/. The decomposition techniques of planar graphs
mentioned above (as in [28]) allow us to partition the level into O.n=k/ clusters,
where each cluster has O.k2/ vertices and O.k/ boundary vertices (vertices that also
belong to other clusters). In the terminology of [28], this is a k2-division of the
graph. Each such cluster, projected to the xy-plane, is a polygon with O.k/ boundary
edges (and with O.k2/ interior projected edges of the original level). We show that
replacing each such projected polygon by its convex hull results in a collection of
O.n=k/ convex pseudo-disks, namely, each hull is (trivially) simply connected, and
the boundaries of any pair of hulls cross at most twice. Moreover, the decomposition
has the property that, for each triangle � that is fully contained in such a pseudo-
disk, lifting its vertices back to the k-level yields a triple of points that span a triangle
�0 with a small number of planes crossing it, so it lies close to the k-level.

An old result of Bambah and Rogers [15], proving a statement due to L. Fejes-
Tóth, and reviewed in [47, Lemma 3.9] (and also briefly below), shows that a
union of m convex pseudo-disks that covers the plane induces a triangulation
of the plane by O.m/ triangles, such that each triangle is fully contained inside
one of the pseudo-disks. (As a matter of fact, it shows that each pseudo-disk
can be shrunk into a convex polygon so that these polygons are pairwise openly
disjoint, with the same union, and the total number of edges of the polygons is at
most 6m; the desired triangulation is obtained by simply triangulating, arbitrarily,
each of these polygons.) Lifting (the vertices of) this triangulation to the k-level,
with a corresponding lifting of its triangular faces, results in the desired terrain
approximating the level. A shallow cutting of the first k levels is obtained by simply
replacing each triangle � of the approximate level by the semi-unbounded vertical
prism of points lying below�.

Planar cuttings Interestingly, a simplified version of the algorithm for approxi-
mating the k-level in 3-space can also be applied to arrangement of lines in the
plane, yielding a new construction of cuttings in the plane, which is different from
previous approaches. We present this warm-up exercise in Sect. 3, and believe it to
be of independent interest.
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Confined triangulations One of the main contributions of this work is providing
an alternative proof of the aforementioned result of Bambah and Rogers [15].
The original proof in [15], and its simplified presentation in [47], do not seem
to lead to a sufficiently efficient construction. In contrast, the new proof leads to
an algorithm with near linear running time that constructs a triangulation with the
desired properties; see Sect. 2.

The idea of decomposing the union of objects (pseudo-disks here) into pairwise
openly disjoint simply-shaped fragments, each fully contained in some original
object, is implicit in algorithms for efficiently computing the union of objects; see
the work of Ezra et al. [27], which was in turn inspired by Mulmuley’s work on
hidden surface removal [45]. Mustafa et al. [46] use a more elaborate version of
such a decomposition, for situations where the objects are weighted. While these
decompositions are useful for a variety of applications, they still suffer from the
problem that the complexity of a single region in the decomposition might be
arbitrarily large. In contrast, the triangulation scheme that we use (following [15])
is simpler, optimal, and independent of the complexity of the relevant pseudo-
disks. We are pleased that this nice property of convex pseudo-disks is (effectively)
applicable to the problems studied here, and expect it to have many additional
potential applications.

Our analysis extends to a collection of convex pseudo-disks whose union does not
cover the plane. In this setting our triangulation consists of triangles and caps (where
a cap is the intersection of an input pseudo-disk with a halfplane). This provides a
representation of “most” of the union by triangles, where the more complicated
caps are only used to fill in the “fringe” of the union (and are absent when the union
covers the entire plane, as in [15]). We believe that this triangulation could be useful
in practice, in situations where, given a query point q, one wants to decide whether
q is inside the union, and if so, provide a witness shape that contains q. For this, we
simply locate the triangle or cap that contains q in our triangulation, from which the
desired witness shape is immediately available.

We also extend our analysis, and show that such a decomposition exists for
arbitrary convex shapes, with the number of pieces being proportional to the union
complexity.

Additional applications Two additional applications of our construction, that are
described in the arXiv version of this paper [32], are the following:

(a) We extend Matoušek’s construction [38] of cuttings in planar arrangements to
three dimensions. That is, we construct a “layered” .1=r/-cutting of the entire
arrangement A.H/ of a set H of n non-vertical planes in R

3, of optimal size
O.r3/, by approximating each level in a suitable sequence of levels, and then by
triangulating each layer between consecutive levels in the sequence.

(b) We present yet another construction of cuttings in two-dimensional line arrange-
ments that is based on a packing argument combined with the new techniques
of this paper.
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Paper organization We start by presenting the construction of the confined
triangulation in Sect. 2. As a warm-up exercise, we use this result in Sect. 3 to
present a new algorithm for constructing cuttings of arrangements of lines in the
plane. We then describe the construction of approximate levels, and the construction
of shallow cuttings that it leads to, in Sect. 4.

2 Triangulating the Union of Convex Pseudo-disks
and Other Shapes

In this section we show that, given a finite collection of m convex pseudo-disks
covering the plane, one can construct a triangulation of the plane, consisting of
O.m/ triangles, such that each triangle is contained in a single original pseudo-
disk—see Theorem 2.4 below for details. Our result can be extended to situations
where the union of the pseudo-disks is not the entire plane; see below. This claim
is a key ingredient in our construction of approximate k-levels, detailed in Sect. 4,
but it is not new, as it is an immediate consequence of an old result of Bambah and
Rogers [15] (proving a statement by L. Fejes-Tóth), whose proof is sketched below.
Our analysis provides an alternative constructive proof.

We use this result (i.e., Theorem 2.4) as a black box later on in the paper, and
the impatient reader might want to skip this (somewhat tedious) section for later
reading, and go directly to Sect. 3.

Bambah and Rogers’ proof For the sake of completeness, we briefly sketch the
proof of Bambah and Rogers (as presented in Pach and Agarwal [47, Lemma 3.9]).
Let K be a collection of m convex pseudo-disks in the plane, and assume, for
simplicity, that their union is a triangle T (extending this simpler scenario to the
more general case is straightforward). We may also assume that no pseudo-disk of
K is contained in the union of the other regions of K, as one can simply throw away
any such redundant pseudo-disk. Finally, since the construction will create regions
with overlapping boundaries, we use the more general definition of pseudo-disks,
requiring, for each pair C;D 2 K, that C n D and D n C be both connected. See
Fig. 1A.
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Fig. 1 The proof of Bambah and Rogers
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Let C and D be two pseudo-disks of K, such that the intersection int.C/\ int.D/
of their interiors is nonempty and minimal in terms of containment (that is, it does
not contain any other such intersection). Let p and q be the two intersection points
of @C and @D (since C \ D has a nonempty interior, @C and @D cannot overlap,
so p and q are well defined). Cut C and D along the segment pq, and let C0 � C
and D0 � D be the two resulting pieces whose union is C [ D, see Fig. 1B. Let
K0 D .K n fC;Dg/ [ fC0;D0g : We claim that K0 is a collection of m pseudo-disks
covering T.

Indeed, consider a pseudo-disk E 2 K0 other than C0, D0. We need to show that
E n C0 and C0 n E are both connected, and similarly for E and D0. The pseudo-disk
property is immediate if E \ pq is empty. If E contains exactly one endpoint, say p,
of pq, then it must intersect @C \ D at exactly one point, which is eliminated in C0
and is replaced by the single intersection point of @E with pq. Finally, assume that
E does not contain p or q, but still intersects the segment pq at two points. If E � C
then the pseudo-disk property for E and C0 is obvious, so assume that @E intersects
@C at two points. These points must either both lie in @C \ D or both lie in @C n D.
In the former case, @E crosses @C0 only at the two points on pq. In the latter case,
E \ C � C \ D, contradicting the minimality of C \ D; see Fig. 1C.

We thus replace K by K0, and repeat this process till all the pseudo-disks in
the resulting collection are pairwise interior disjoint. At this point, K is a pairwise
openly disjoint cover of the triangle T, by m convex polygons (each contained inside
its original pseudo-disk). By Euler’s formula, these polygons have a total of O.m/
edges, and can thus be triangulated into O.m/ triangles with the desired property.

This elegant proof is significantly simpler than what follows, but it does not
seem to lead to an efficient algorithm for constructing the desired triangulation
in near-linear running time. We present here a different alternative (efficiently)
constructive proof, which leads to an O.m log m/-time algorithm for constructing
the triangulation for a set of m pseudo-disks, in a suitable model of computation.
(As an aside, we also think that such a nice property deserves more than one proof.)
We also establish extensions of this result to the case where the union of the pseudo-
disks does not cover the plane, and for more general convex shapes, not necessarily
pseudo-disks.

2.1 Preliminaries

The notion of a triangulation that we use here is slightly non-standard, as it might
be a triangulation of the entire plane, and not just of the convex hull of some input
set of points. As such, it contains unbounded triangles, where the boundary of each
such triangle consists of one bounded segment and two unbounded rays (where the
segment might degenerate into a single point, in which case the triangle becomes a
wedge).

Given a convex shape D, a cap of D is the region formed by the intersection
of D with a halfplane. A crescent is a portion of a cap obtained by removing from
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cap
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Fig. 2 A cap and a crescent

Fig. 3 A union of three disks, and its decomposition into triangles and caps. Note that the
decomposition computed by our algorithm is somewhat different for this case

it a convex polygon that has the base chord of the cap as an edge, but is otherwise
contained in the interior of the cap. See Fig. 2.

Definition 2.1 Given a collection D of convex shapes in the plane, a decomposition
T of their union into pairwise openly disjoint regions is a confined triangulation if
(i) every region in T is either a triangle or a cap, and (ii) every such region is fully
contained in one of the original input shapes. See Fig. 3.

2.2 Construction

We are given a collection D of m convex pseudo-disks, and our goal is to construct a
confined triangulation for D, as described above, with O.m/ pieces. In what follows
we consider both the case where the union of D covers the plane, and the case where
it does not.

2.2.1 Painting the Union from Front to Back

A basic property of a collection D of m pseudo-disks is that the combinatorial
complexity of the boundary of the union U WD U.D/ D S

C2D C of D is at most
6m�12, where we ignore the complexity of individual members of D, and just count
the number of intersection points of pairs of boundaries of members of D that lie on
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@U ; see [33]. For convenience, we also (i) include the leftmost and rightmost points
of each D 2 D in the set of intersection points (if they lie on the union boundary),
thus increasing the complexity of the union by at most 2m, and (ii) assume general
position of the pseudo-disks.

An intersection point v of a pair of boundaries is at depth k (of the arrangement
A.D/ of D) if it is contained in the interiors of exactly k members of D. The
boundary intersection points are thus at depth 0, and a simple application of the
Clarkson–Shor technique [25] implies that the number of boundary intersection
points that lie at depth 1 is also O.m/. Hence there exists at least one pseudo-disk
D 2 D that contains at most c intersection points at depths 0 or 1 (including leftmost
and rightmost points of disks), for some suitable absolute constant c. Clearly, these
considerations also apply to any subset of D.

This allows us to order the members of D as D1; : : : ;Dm, so that the following
property holds. Set Di WD fD1; : : : ;Dig, for i D 1; : : : ;m. Then Di contains at most c
intersection points at depths 0 and 1 of A.Di/. Equivalently, for each i, the boundary
of D0

i WD Di n U.Di�1/ contains at most c intersection points.
To prepare for the algorithmic implementation of the construction in this

proof, which will be presented later, we note that this ordering is not easy to
obtain efficiently in a deterministic manner. Nevertheless, a random insertion order
(almost) satisfies the above property: As we will show, the expected sum of the
complexities of the regions D0

i , for a random insertion order, is O.m/, which is the
property that our analysis really needs. See later for more details.

We thus have U.Dj/ D Si�j D0
i (as a pairwise openly disjoint union), for each j;

for the convenience of presentation (and for the algorithm to follow), we interpret
this ordering as an incremental process, where the pseudo-disks of D are inserted,
one after the other, in the order D1; : : : ;Dm, and we maintain the partial unions
U.Dj/, after each insertion, by the formula U.Dj/ D U.Dj�1/[ D0

j .

2.2.2 Decomposing the Union into Vertical Trapezoids

Since the boundary of D0
i D Di n U.Di�1/ contains at most c intersection points,

we can decompose D0
i into O.1/ vertical pseudo-trapezoids, using the standard

vertical decomposition technique; see, e.g., [50]. Let Tj be the collection of pseudo-
trapezoids in the decomposition of U.Dj/, collected from the decompositions of
the regions D0

i , for i D 1; : : : ; j, and let Vj be the set of vertices of these pseudo-
trapezoids, each of which is either an intersection point (more precisely, a boundary
intersection or an x-extreme point) of A.Dj/, or an intersection between some @Di

and a vertical segment erected from an intersection point of A.Dj/.
Each of the pseudo-trapezoids in Tj is bounded by (at most) two vertical

segments, a portion of the boundary of a single pseudo-disk as its top edge, and
a portion of the boundary of (another) single pseudo-disk as its bottom edge; see
the top parts of the subfigures in Fig. 4. We have D0

1 D D1, which we regard as a
single pseudo-trapezoid, in which the vertical sides degenerate to the leftmost and
rightmost points of @D1; see Fig. 4(1). Note that in the vertical decomposition of D0

i
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Fig. 4 A step-by-step illustration of the decomposition T into pseudo-trapezoids and of the
polygonalization of the union. See Sect. 2.2.4. An animation of the steps depicted in this figure
is available online at http://sarielhp.org/blog/?p=8920, see also the animated figure in the arXiv
version of the paper [32]

we split it by vertical segments through the intersection points on its boundary, but
not through vertices of Vi�1 on U.Di�1/ that are not intersection points of A.D/.
(Informally, these vertices are “internal” to U.Di�1/, and are not “visible” from the
outside.) See, e.g., Fig. 4(4). The set Vi is obtained by adding to Vi�1 the vertices of
the pseudo-trapezoids in the decomposition of D0

i .
If D0

i is bounded then each pseudo-trapezoid � in its decomposition has a top
boundary and a bottom boundary, but one or both of the vertical sides may be
missing (see, e.g., Fig. 4(1) for the single pseudo-trapezoid D0

1 D D1 and Fig. 4(3)

http://sarielhp.org/blog/?p=8920
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for the left pseudo-trapezoid of 3). From the point of view of � , each of the top and
bottom boundaries of � may be either convex (if it is a subarc of @Di on @D0

i ), or
concave (if it is part of the boundary of some previously inserted pseudo-disk); If
D0

i is not bounded then some of the vertical pseudo-trapezoids covering D0
i will also

be unbounded and missing some of their boundaries. Note that D0
i is not necessarily

connected; in case it is not connected we separately decompose each of its connected
components into vertical pseudo-trapezoids in the above manner; see Fig. 4(4).

At the end of the incremental process, after inserting all the m pseudo-disks in D,
the pseudo-trapezoids in T WD Tm cover U.D/, which may or may not be the entire
plane, and they are pairwise openly disjoint. By construction, each pseudo-trapezoid
in T is contained in a single pseudo-disk of D. Moreover, since the complexity of
each D0

i is O.1/, the total number of pseudo-trapezoids in T is O.m/. So T possesses
some of the properties that we want, but it is not a triangulation.

2.2.3 Polygonalizing the Pseudo-trapezoids

To get a triangulation, we associate a polygonal vertical pseudo-trapezoid �� with
each pseudo-trapezoid � 2 T . We obtain �� from � by replacing the bottom
boundary �b and the top boundary �t of � by respective polygonal chains ��b and
��t , that are defined as follows.1 Let Di be the pseudo-disk during whose insertion �
was created; in particular, � � D0

i . Let u and v denote the endpoints of �b. Consider
the region R�b between �b and the straight segment uv; clearly, by the convexity of
Di, R�b is fully contained in Di. See figure on the below.

τ
Di

τb

τt

Rτb vu

If R�b contains no vertices of Vi, other than u and v (this will always be the case
when R�b � �), we replace �b by ��b D uv. Otherwise, we replace �b by the chain
��b of edges of the convex hull of Vi \ R�b , other than the edge uv. We define ��t
analogously, and take �� to be the polygonal vertical pseudo-trapezoid that has the
same vertical edges as � , and its top (resp., bottom) part is ��t (resp., ��b ). See figure
on the below.

1The term “polygonal” is somewhat misleading, as some of the boundaries of the pseudo-disks of
D may also be polygonal. To avoid confusion, think of the boundaries of the pseudo-disks of D as
smooth convex arcs (as drawn in the figures) even though they might be polygonal.
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τ ∗
t

τ ∗
b

τ ∗

vu

Note that, by construction, ��b is a convex polygonal chain. From the point of
view of � , it is convex (resp., concave) if and only if �b is convex (resp., concave).
(These statements become somewhat redundant when ��b is the straight segnment
uv.) An analogous property holds for ��t and �t. We denote the crescent-like region
bounded by �b and ��b by R�b ; R�t is defined analogously. (Formally, R�b D R�b n
CH.Vi\R�b/ and R�t D R�t nCH.Vi\R�t /.) Let T �i be the set of polygonal vertical
pseudo-trapezoids associated in this manner with the pseudo-trapezoids in Ti. See
the figure below.

τ

R τb

τ ∗
t

R τtτb

τ ∗
b

Note that R�b and R�t need not be disjoint, as illustrated in the figure on the below.
Nevertheless, ��b and ��t cannot cross one another, as follows from Invariant (I2) that
we establish below (in Lemma 2.2). This implies that �� is well defined. If ��b and
��t are not disjoint then they may only be pinched together at common vertices, or
overlap in a single common connected portion (in the extreme case they may be
identical).

τ

τt

Rτb

Rτt

τb

This pinching or overlap, if it occurs, causes the interior of �� to be disconnected
(into at most two pieces, as depicted in the figure below; it may also be empty, as is
the case for D0

1, illustrated in Fig. 4(1)).
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τ ∗
b

τ ∗
t

τ ∗

2.2.4 Filling the Cavities

The insertion of Di may in general split some arcs of @U.Di�1/ into subarcs, whose
new endpoints are either points of contact between @Di and @U.Di�1/, or endpoints
of vertical segments erected from other vertices of D0

i . This can be seen all over
Fig. 4. For example, see the subdivision of the top arc of D7 caused by the insertion
of D8 in Fig. 4(80). Some of these subarcs are boundaries of the new pseudo-
trapezoids of D0

i and thus do not belong to @U.Di/, and some remain subarcs of
@U.Di/. We refer to subarcs of the former kind as hidden, and to those of the latter
kind as exposed. Note that, among the subarcs into which an arc of @U.Di�1/ is
split, only the leftmost and rightmost extreme subarcs can be exposed (this follows
from the pseudo-disk property of the objects of D).

We take each new exposed arc � , with endpoints u; v, and apply to it the same
polygonalization that we applied above to �b and �t. That is, we take the region R�
enclosed between � and the segment uv, and define �� to be either uv, if R� does
not contain any vertex of Vi, or else the boundary of CH

�
R� \ Vi

�
, except for uv.

We note that �� is a convex polygonal chain that shares its endpoints with � , and
denote the region enclosed between � and �� as R� .

γ1 γ2

γ∗
1 γ∗

2

Let Ei denote the collection of all straight edges in the polygonal boundaries of
the pseudo-trapezoids in T �i and in the polygonal chains �� corresponding to new
exposed subarcs � of @U.Dj�1/, 1 � j � i, which were created and polygonalized
when adding the corresponding pseudo-disk Dj. See figure above.

2.2.5 Putting It All Together

When the pseudo-disks cover the plane When the polygonalization process
terminates, there are no more regions R� , for boundary arcs � of the union (because
there is no boundary), so we are left with a straight-edge planar map M with Em as
its set of edges. (Invariant (I1) in Lemma 2.2 below asserts that the edges in Em do
not cross each other.) By Euler’s formula, the complexity of M is O.m/. We then
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triangulate each face of M, and, as the analysis in the next subsection will show,
obtain the desired triangulation.

The general case In general, the construction decomposes the union into (pairwise
openly disjoint) triangles and crescent regions. To complete the construction, we
decompose each crescent region into triangles and caps. A crescent region with
t � 2 vertices on its concave boundary can be decomposed into t � 2 triangles
and at most t � 1 caps. The case t D 2 is vacuous, as the crescent is then a cap,
so assume that t � 3. To get such a decomposition, take an extreme edge of the
concave polygonal chain, and extend it till it intersects the convex boundary of the
crescent, at some point w, thereby chopping off a cap from the crescent. We then
create the triangles that w spans with all the concave edges that it sees, and then
recurse on the remaining crescent; see the figure above. It is easily seen that this
results in t� 2 triangles and at most t� 1 caps, as claimed. After this fix-up, we get
a decomposition of the union into triangles and caps. Here too, by Euler’s formula,
the complexity of M is O.m/.

2.3 Analysis

The correctness of the construction is established in the following lemma.

Lemma 2.2 The pseudo-trapezoids in T �i and the edges of Ei satisfy the following
invariants:

(I1) The segments in Ei do not cross one another.
(I2) Each subarc � of @U.Di/ with endpoints u and v has an associated convex

polygonal arc �� � Ei between u and v. The chains �� are pairwise openly
disjoint, and their union forms the boundary of a polygonal region U�i �
U.Di/.

(I3) The pseudo-trapezoids in T �i are pairwise openly disjoint, and each of them is
fully contained in some pseudo-disk of Di.

(I4) U.Di/ n S

��2T �

i

�� consists of a collection of pairwise openly disjoint holes.

Each hole is a region between two x-monotone convex chains or between two
x-monotone concave chains, with common endpoints, where either both chains
are polygonal, or one is polygonal and the other is a portion of the boundary of
a single pseudo-disk that lies on @U.Di/. (Each of the latter holes is a crescent-
like region of the form R�b , R�t , for some trapezoid � , or R� , for some exposed
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arc � , as defined above.) The union of the holes of the latter kind (crescents) is
U.Di/ n U�i . Each hole, of either kind, is fully contained in some pseudo-disk
Dj, j � i.

We refer to holes of the former (resp., latter) kind in (I4) of the lemma as internal
polygonal holes (resp., external half-polygonal holes).

Proof We prove that these invariants hold by induction on i. The invariants clearly
hold for T �1 and E1 after starting the process with D0

1 D D1. Concretely, T �1 consists
of the single degenerate pseudo-trapezoid uv, where u and v are the leftmost and
rightmost points of D1, respectively, and E1 D fuvg. The (external half-polygonal)
holes are the portions of D1 lying above and below uv. It is obvious that (I1)–(I4)
hold in this case.

Suppose the invariants hold for T �i�1 and Ei�1. We first prove (I1) for Ei. By
construction, the new edges in Ei n Ei�1 form a collection of convex or concave
polygonal chains, where each chain �� starts and ends at vertices u; v of either @D0

i
or @U.Di�1/. Moreover, by construction, u and v are connected to one another by
a single arc � of the respective boundary @D0

i or @U.Di�1/ (� is either an exposed
or a hidden subarc of @U.Di�1/, or a subarc of @Di along @D0

i ), and the region R�
between � and �� does not contain any vertex of Vi in its interior.

Clearly, the edges in a single chain �� do not cross one another. Suppose to the
contrary that an edge e of some (new) chain �� is crossed by an edge e0 of some
other (new or old) chain. Then either e0 has an endpoint inside R� , contradicting
the construction, or e0 crosses � too, to exit from R� , which again is impossible by
construction, since no edge crosses @D0

i or @U.Di�1/. This establishes (I1).
(I2) follows easily from the construction and from the preceding discussion. Note

that, for each polygonal chain ��, each of its endpoints is also an endpoint of exactly
one neighboring arc O��, so the union of these arcs consists of closed polygonal
cycles, which bound some polygonal region, which we call U�i , as claimed.

By construction, the vertical boundaries of the new polygonal pseudo-trapezoids
of D0

i are contained in D0
i and do not cross any boundaries of other polygonal

pseudo-trapezoids. This, together with (I1), imply that the new pseudo-trapezoids
are pairwise openly disjoint, and are also openly disjoint from the polygonal
pseudo-trapezoids in T �i�1. It is also clear from the construction that each new
pseudo-trapezoid �� 2 T �i n T �i�1 is contained in Di. So (I3) follows.

Finally consider (I4). Each new hole that is created when adding D0
i is of one of

the following kinds:

τ

R̄τt
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(a) The hole is a region of the form R�b or R�t , for some � 2 TinTi�1, such that R�b or
R�t is contained in � (if it lies outside � , it becomes part of ��). Such a hole is con-
tained in Di, and is bounded by two concave or two convex chains, one of which, call
it ��, is polygonal, and the other, �, is part of @D0

i . Moreover, ��, if different from
the chord e connecting the endpoints of �, passes through inner vertices of @U.Di�1/
that “stick into” the corresponding portion R�b or R�t of � ; see figure above.
(b) The hole is a region of the form R� , for an exposed subarc � of an arc of
@U.Di�1/, that got delimited by a new vertex (an endpoint of some arc of @Di).
These holes are similar to those of type (a).
(c) The hole was part of a hole of type (a) or (b) in U.Di�1/, bounded by an arc
� of @U.Di�1/ and its associated polygonal chain ��, so that � has been split into
several subarcs (some hidden and some exposed) when adding Di. For each of these
subarcs �, we construct an associated polygonal chain ��, either as a top or bottom
side of some polygonal pseudo-trapezoid �� (constructed from a pseudo-trapezoid
� that has � as its top or bottom side), or as the polygonalization of an exposed
subarc. The concatenation of the chains �� results in a convex polygonal chain that
is contained in R� and connects the endpoints of � . The region enclosed between
�� and �� is an internal polygonal hole. Again, holes of type (c) can be seen all
over Fig. 4; for example, see the top part of D1 in Fig. 4(20).

Holes of type (a) and (b) are boundary half-polygonal holes, whereas holes of
type (c) are internal polygonal holes. Using the induction hypothesis that (I4) holds
for U.Di�1/, we get that the union of the new holes of type (a) and (b), together with
the old holes of type (a) and (b) corresponding to subarcs of @U.Di/\ @U.Di�1/, is
U.Di/ n U�i . This completes the proofs of (I1)–(I4). �

Theorem 2.3

(a) Let D be a collection of m � 3 planar convex pseudo-disks, whose union covers
the plane. Then there exists a set V of O.m/ points and a triangulation T of V
that covers the plane, such that each triangle � 2 T is fully contained in some
member of D.

(b) If U.D/ is not the entire plane, it can be partitioned into O.m/ pairwise openly
disjoint triangles and caps, such that each triangle and cap is fully contained
in some member of D.

Proof Since the number of vertices of M is O.m/, Euler’s formula implies that
jEmj D O.m/ too. It is easily seen from the construction and from the invariants
of Lemma 2.2, that each face of M is fully contained in some original pseudo-disk,
so the same holds for each triangle. This establishes (a). Part (b) follows in a similar
manner from the construction. �
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2.4 Efficient Construction of the Triangulation

With some care, the proof of Theorem 2.3 can be turned into an efficient algorithm
for constructing the required triangulation. This is a major advantage of the new
proof over the older one. The algorithm is composed of building blocks that are vari-
ants of well-known tools, so we only give a somewhat sketchy description thereof.

2.4.1 Construction of the Original Pseudo-trapezoids

(A similar approach is mentioned in Matoušek et al. [43].) The construction
proceeds by inserting the pseudo-disks ofD in a random order, which, for simplicity,
we denote as D1; : : : ;Dm. (Unlike the deterministic construction given above, here
we do not guarantee that each D0

i has constant complexity. Nevertheless, as argued
below, the random nature of the insertion order guarantees that this property holds
on average.) As before, we put Di D fD1; : : : ;Dig for each i, and we maintain
U.Di/ after each insertion of a pseudo-disk. To do so efficiently, we maintain a
vertical decomposition Ki of the complement U c

i of the union U.Di/ into vertical
pseudo-trapezoids (as depicted in Fig. 5), and maintain, for each � 2 Ki, a conflict
list, consisting of all the pseudo-disks Dj that have not yet been inserted (i.e., with
j > i), and that intersect � .

Since the number of pseudo-trapezoids in the decomposition of the complement
of the union of any k pseudo-disks (as depicted in Fig. 5) is O.k/ (an easy
consequence of the linear bound on the union complexity [33]), a simple application
of the Clarkson-Shor technique (similar to those used to analyze many other
randomized incremental algorithms) shows that the expected overall number of
these “complementary” pseudo-trapezoids that arise during the construction is
O.m/, and that the expected overall size of their conflict lists is O.m log m/.

When we insert a pseudo-disk Di, we retrieve all the pseudo-trapezoids of Ki�1
that intersect Di. The union

S
�2Ki�1

.Di \ �/ is precisely D0
i . For each � 2 Ki�1,

the intersection Di \ � (if nonempty) decomposes � into O.1/ sub-trapezoids (this
follows from the property that each of the four sides of � crosses @Di at most twice),

Fig. 5 The vertical
decomposition of the
complement of the union
U.Di/
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some of which lie inside Di (and, as just noted, form D0
i ), and some lie outside Di,

and form part of the new complement of the union U c
i .

Typically, the new pseudo-trapezoidal pieces are not necessarily real pseudo-
trapezoids, as they may contain one or two “fake” vertical sides, because the feature
that created such a side got “chopped off” by the insertion of Di, and is no longer on
the pseudo-trapezoid boundary. In this case, we “glue” these pieces together, across
common fake vertical sides, to form the new real pseudo-trapezoids. We do it both
for pseudo-trapezoids that are interior to Di, and for those that are exterior. (This
gluing step is a standard theme in randomized incremental constructions; see, e.g.,
[49].) This will produce (a) the desired vertical decomposition of D0

i , and (b) the
vertical decomposition Ki of the new union complement U c

i . The conflict lists of
the new exterior pseudo-trapezoids (interior ones do not require conflict lists) are
assembled from the conflict lists of the pseudo-trapezoids that have been destroyed
during the insertion of Di, again, in a fully standard manner.

To recap, this procedure constructs the vertical decompositions of all the regions
D0

i , so that the overall expected number of these pseudo-trapezoids is O.m/, and
the total expected cost of the construction (dominated by the cost of handling the
conflict lists) is O.m log m/.

2.4.2 Construction of the Polygonal Chains and the Triangulation

By (I2) of Lemma 2.2, before Di was inserted, each arc � of @U.Di�1/ has an
associated convex polygonal arc �� with the same endpoints. The union of the
arcs �� forms a (possibly disconnected) polygonal curve within U.Di�1/, which
partitions it into two subsets, the (polygonal) interior, U�i�1, which is disjoint from
@U.Di�1/ (except at the endpoints of the arcs ��), and the (half-polygonal) exterior,
which is simply the (pairwise openly disjoint) union of the corresponding regions
R� .

To construct the triangulation, we maintain, for each polygonal chain �� of the
boundary between the interior and the exterior, a list of its segments, sorted in
left-to-right order of their x-projections, in a separate binary search tree (since the
leftmost and rightmost points of each pseudo-disk are vertices in the construction,
each chain �� is indeed x-monotone). We also maintain a triangulation of the
interior. When we add Di we update the lists representing the arcs � and extend
the triangulation of the interior to cover the “newly annexed” interior, as follows.

When Di is inserted, some of the arcs � of @U.Di�1/ are split into several
subarcs. At most two of these arcs still appear on @U.Di/, and each of them is an
extreme subarc of � (we call them, as above, exposed arcs). All the others are now
contained in Di (we call them hidden). Each endpoint of any new subarc is either an
intersection point of @Di with @U.Di�1/, or an endpoint of a vertical segment erected
from some other vertex of D0

i . (This also includes the case where an arc of @U.Di�1/
is fully “swallowed” by Di and becomes hidden in its entirety.) In addition, @U.Di/

contains fresh arcs, which are subarcs of @Di along @D0
i . The fresh subarcs and

the hidden subarcs form the top and bottom sides of the new pseudo-trapezoids in
the decomposition of D0

i (where each top or bottom side may be either fresh or
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Fig. 6 Constructing the
polygonal curve �� from �

δ
δ ∗

γ

v

u

γ ∗
u ′ v ′

hidden). To obtain the top or bottom sides of some new pseudo-trapezoids we may
have to concatenate several previously exposed subarcs of @U.Di�1/. These subarcs
are connected at “inner” vertices of @U.Di�1/ which are not intersection points of
the arrangement but intersections of vertical sides of pseudo-trapezoids which we
already generated within U.Di�1/.)

The algorithm needs to construct, for each new exposed, hidden, and fresh arc � ,
its associated polygonal curve ��. It does so in two stages, first handling exposed
and hidden arcs, and then the fresh ones. Let � be an exposed or hidden subarc, let ı
denote the arc of @U.Di�1/, or the concatenation of several such arcs, containing � ,
and let ı� be its associated polygonal chain, or, in case of concatenation, the
concatenation of the corresponding polygonal chains. As already noted, since the
x-extreme points of each pseudo-disk boundary are vertices in the construction,
ı and ı� are both x-monotone.

If � D ı, we do nothing, as �� D ı�. Otherwise, let u and v be the respective left
and right endpoints of � . If uv does not intersect ı� then �� is just the segment uv.
Otherwise, �� is obtained from a portion of ı�, delimited on the left by the point
u0 of contact of the right tangent from u to ı�, and on the right by the point v0 of
contact of the left tangent from v to ı�, to which we append the segments uu0 on the
left and v0v on the right. See Fig. 6 for an illustration.

Note that the old arc ı may contain several new exposed or hidden arcs � , so we
apply the above procedure to each such arc � . After doing this, the endpoints of ı
(and of ı�) are now connected by a new convex polygonal chain Oı�, which visits
each of the new vertices along ı (the endpoints of the new arcs � ) and lies in between
ı and ı�. The region between Oı� and ı� is a new interior polygonal hole, and we
partition it into simple cells, e.g., into vertical trapezoids, by a straightforward left-
to-right scan.

Recall that some arcs �b and �t of new trapezoids � may be concatenations of
several hidden subarcs �i (connected at inner vertices which are not vertices of
new trapezoids, as explained above). For each such arc, say �b, we obtain ��b by
concatenating the polygonal chains ��i in x-monotone order.
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We next handle the fresh arcs. Each such arc is the top or bottom side of some
new pseudo-trapezoid � , say it is the bottom side �b. If �t is also fresh, then � is
a convex pseudo-trapezoid, and we replace each of �b, �t by the straight segment
connecting its endpoints. If �t is hidden, we take its associated chain ��t , which
we have constructed in the preceding stage, and form ��b from it using the same
procedure as above: Letting u and v denote the endpoints of �b, we check whether
uv intersects ��t . If not, ��b is the segment uv. Otherwise, we compute the tangents
from u and v to ��t , and form ��b from the tangent segments and the portion of ��t
between their contact points. See the figure above. We triangulate each polygonal
pseudo-trapezoid � once we have computed ��b and ��t .

2.4.3 Further Implementation Details

The actual implementation of the construction of the polygonal chains �� proceeds
as follows. Given a new arc � , which is a subarc of an old arc ı, we construct
�� from ı� as follows. Let u and v be the endpoints of � . We (binary) search the
list of edges of ı� for the edge eu whose x-projection contains the x-projection of
u and for the edge ev whose x-projection contains the x-projection of v. We then
walk along the list representing ı� from eu towards ev until we find the point u0
of contact of the right tangent from u to ı�. We perform a similar search from ev
towards eu to find v0. (If we have traversed the entire portion of ı� between eu and ev
without encountering a tangent, we conclude that uv does not intersect ı�, and set
�� WD uv.) We extract the sublist between u0 and v0 from ı� by splitting ı� at u0 and
v0 and we insert the segments uu0 and vv0 at the endpoints of this sublist to obtain
��. We create the polygonalization of fresh arcs from their hidden counterparts in
an analogous manner. Note that we destroy the representation of ı� to produce the
representation of ��. So in case the arc ı is split into several new subarcs, �i, some
care has to be taken to maintain a representation of the remaining part of ı� after
producing each ��j , from which we can produce the representation of the remaining
subarcs �i.

For the analysis, we note that to produce �� we perform two binary searches to
find eu and ev, each of which takes O.log m/ time, and then perform linear scans to
locate u0 and v0. Each edge e traversed by these linear scans (except for O.1/ edges)
drops off the boundary of the interior so we can charge this step to e and the total
number of such charges is linear in the size of the triangulation.
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2.5 The Result

The computation model In the preceding description, we implicitly assume a
convenient model of computation, in which each primitive geometric operation
that is needed by the algorithm, and that involves only a constant number of
pseudo-disks (e.g., deciding whether two pseudo-disks or certain subarcs thereof
intersect, computing these intersection points, and sorting them along a pseudo-disk
boundary) takes constant time. In our application, described in the next section,
the pseudo-disks are convex polygons, each having O.k/ edges. In this case, each
primitive operation can be implemented in O.log k/ time in the standard (say, real
RAM) model, so the running time should be multiplied by this factor.

The preceding analysis implies the following theorem.

Theorem 2.4 A confined triangulation of the union of m convex pseudo-disks, with
O.m/ triangles and caps, can be computed in O.m log m/ expected time, in a suitable
model of computation where every primitive operation on a constant number of
pseudo-disks takes O.1/ time. If the pseudo-disks are convex polygons each with at
most k edges, then such a confined triangulation can be computed O.m log m log k/
expected time. If the pseudo-disks cover the plane then the triangulation consists
only of triangles (each contained in a single pseudo-disk as required by a confined
triangulation).

2.6 Extension to General Convex Shapes

Theorem 2.4 uses only peripherally the property that the input shapes are pseudo-
disks, and a simple modification (of the analysis, not of the construction itself)
allows us to extend it to general convex shapes. Specifically, let D be a collection
of m simply-shaped convex regions in the plane, such that the union complexity of
any i of them is at most u.i/, where the complexity is measured, as before, by the
number of boundary intersection points on the union boundary, and where u.�/ is a
monotone increasing function satisfying u.i/ D �.i/. We assume that the regions
in D are simple enough so that the boundaries of any pair of them intersect only
a constant number of times, and so that each primitive operation on them can be
performed in reasonable time (which we take to be O.1/ in the statement below).
The interesting cases are those in which u.i/ is small (that is, near-linear). They
include, e.g., the case of fat triangles, or a low-density collection of convex regions;
see [14] and references therein.

Deploying the algorithm of Theorem 2.4 results in the desired confined trian-
gulation of U.D/. Extending the analysis to this general setup (and omitting the
straightforward technical details), we obtain the following theorem.

Theorem 2.5 Let D be a collection of n convex shapes in the plane, such that
the union complexity of any i of them is at most u.i/, where u.i/ is a monotone



490 S. Har-Peled et al.

increasing function with u.i/ D �.i/. Then, a confined triangulation of U.D/ with
O.u.m// triangles and caps (or just triangles if the union covers the entire plane),
can be computed, in O.u.m/ log m/ expected time, under the assumption that every
primitive geometric operation takes O.1/ time.

3 Warm-Up Exercise: Constructing Cuttings in the Plane

In this section we apply the machinery developed in the previous section to obtain a
new construction of .1=r/-cuttings in arrangements of lines in the planes.

Let L be a set of n lines in the plane in general position, and let 0 < r � n be a
parameter. In the planar setup, a .1=r/-cutting for L is a partition of the plane into
O.r2/ pairwise openly disjoint triangles, such that (the interior of) each triangle is
crossed by at most n=r lines of L.

The construction of cuttings in the plane that we present here is similar in spirit
to the more involved scheme for approximating the level in arrangements of planes
in three dimensions, as presented in the following Sect. 4.

3.1 Tools

3.1.1 Divisions

We begin by reviewing the construct of a 
-division of a planar graph, which
is a decomposition of such a graph into subgraphs, and a refined and stronger
variant of the planar separator theorem of Lipton and Tarjan [37] and Miller’s cycle
separator theorem [44]. It goes back to Frederickson’s 30-years-old work [28], and
has eventually culminated in the fast 
-division algorithm of Klein et al. [34]. We
remind the reader that a graph is biconnected if any pair of vertices are connected
by at least two vertex-disjoint paths.

Definition 3.1 (Frederickson [28]) Given a non-crossing plane drawing of a
planar triangulated and biconnected graph G with N vertices, and a parameter

 < N, a 
-division of G is a decomposition of G into m connected subgraphs
G1; : : : ;Gm, such that

(i) m D O.N=
/,
(ii) each Gi has at most 
 vertices,

(iii) each Gi has at most ˇ
p

 boundary vertices, for some absolute constant ˇ,

namely, vertices that belong to at least one additional subgraph; and
(iv) each Gi has at most O.1/ holes, namely, faces of the induced drawing of Gi

that are not faces of G (as they contain additional edges and vertices of G).
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Fig. 7 Illustrating the proof
of Lemma 3.2

u

o z

w

C ∗

v

As shown in Klein et al. [34], a 
-division of a planar triangulated and biconnected
graph with N vertices can be computed in O.N/ time.2

3.1.2 The Convex Hulls of Pairwise Openly Disjoint Polygons
Are Pseudo-disks

Another tool that we need is the following folklore result, whose proof is included
for the sake of completeness.

Lemma 3.2 Let P and P0 be two connected polygons in the plane with disjoint
interiors, and let C and C0 denote their respective convex hulls. Then @C and @C0
intersect each other at most twice.

Proof For simplicity of exposition, we assume that P and P0 are in general position,
in a sense that will become more concrete from the proof. The analysis easily
extends to the more general case too.

Assume, for the sake of contradiction, that @C and @C0 cross more than twice
(in general position, the boundaries do not overlap). This implies that each of @C n
C0, @C0 n C is disconnected, and thus there exist four vertices u;w; v, and z of the
boundary of the convex hull C� D CH .C [ C0/, that appear along @C� in this
circular order, so that u; v 2 @C n C0 and w; z 2 @C0 n C, see Fig. 7. Clearly, u and v
are also vertices of P, and w and z are vertices of P0.

We show that this scenario leads to an impossible planar drawing of K5. For this,
let o be an arbitrary point outside C�. Connect o to each of u; v;w; z by noncrossing
arcs that lie outside C�, and connect u;w; v, and z by the four respective portions of
@C� between them. Finally, connect u to v by a path contained in P, and connect w to
z by a path contained in P0. The resulting ten edges are pairwise noncrossing, where,
for the last pair of edges, the property follows from the disjointness of (the interiors

2The algorithm of [34] constructs 
-divisions for a geometrically increasing sequence of values of
the parameter 
, in overall O.N/ time.
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of) P and P0. The contradiction resulting from this impossible planar drawing of K5
establishes the claim. �
Note that the above proof does not require the polygons to be simply connected.

Corollary 3.3 Let P D fP1; : : : ;Pmg be a set of m pairwise openly disjoint
connected polygons in the plane, and let Ci denote the convex hull of Pi, for
i D 1; : : : ;m. Then C WD fC1; : : : ;Cmg is a collection of m convex (polygonal)
pseudo-disks.

3.2 Construction of Cuttings in Two Dimensions

Combining the tools from the previous subsection, we obtain the following new
construction of cuttings in the plane.

Theorem 3.4 Given a set L of n lines in the plane, in general position, and a
parameter 0 < r � n, one can decompose the plane into O.r2/ pairwise openly
disjoint triangles, such that (the interior of) each triangle is crossed by at most n=r
lines of L.

Proof Consider the arrangement A .L/, add a “fake” vertex at infinity, which serves
as a common endpoint of all the unbounded rays in A.L/, and triangulate every
(bounded or unbounded) face of A .L/ with more than three boundary edges, by
adding diagonals. Let G be the resulting planar graph, whose vertices are the vertices
ofA .L/, and each of whose edges is either an original (bounded or unbounded) edge
of A .L/, or one of the added diagonals. Clearly, G is planar, triangulated and, as is
easily checked, also biconnected. It has N WD 1C �n

2

�
vertices.

Construct a 
-division of G, for 
 D �
n
ˇr

�2
, where ˇ is the constant from the

construction of 
-divisions. We get a partition of the plane into m D O.N=
/ D
O.n2=
/ D O.r2/ subgraphs G1; : : : ;Gm, and we turn each subgraph Gi into a (not
necessarily simple) polygon Pi by forming the union of all the faces of Gi that are
also faces of G. By the properties of 
-divisions, each Pi has at most ˇ

p

 � n=r

vertices (and edges) of A .L/ on its boundary.
We clean up the construction, as follows. If one of the polygons B in this

collection has a hole, we remove the hole from B (i.e., add its area to B), and remove
all the polygons contained inside the hole from the collection. We repeat this process
until all the polygons are simple, and obtain a partition of the plane into m D O.r2/
simple pairwise openly disjoint polygons B1; : : : ;Bm, such that each polygon has at
most t WD n=r vertices of A .L/ on its boundary.

Since every line of L intersects @B at a vertex, and every line that intersects the
interior of B must cross its boundary at least twice, it follows that the interior of B
is crossed by at most t lines of L.

Now form the convex hulls Ci D CH .Bi/, for i D 1; : : :m. By Corollary 3.3, the
set fC1; : : : ;Cmg is a set of m convex pseudo-disks. Hence, by Theorem 2.5, one can
compute a triangulation of the plane into O.m/ triangles, such that each triangle is
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fully contained in one of these hulls. Since a line intersects the interior of Ci if and
only if it intersects the interior of Bi, it follows that at most t lines of L can intersect
the interior of Ci, for i D 1; : : : ;m, and therefore every triangle in the triangulation
is crossed by at most t D n=r lines. This shows that T is a .1=r/-cutting of A.L/ of
size O.r2/, as desired. �

We remark that a disadvantage of this construction is that it takes O.N/ D O.n2/
time to perform. This also holds, by the way, for a naive implementation of
Matoušek’s deterministic construction of planar cuttings [38].

4 Construction of Shallow Cuttings and Approximate Levels
in Three Dimensions

We begin by presenting a high-level description of the technique, filling in the
technical details in subsequent subsections. The high-level part does not pay too
much attention to the efficiency of the construction; this is taken care of later in this
section.

4.1 Sketch of the Construction

Let H be a set of n planes in three dimensions in general position. Assume that, for
a given parameter 0 < r � n, we want to approximate level k D n=r of A.H/. Note
that when r is too close to n, that is, when k is a constant, we can simply compute
the k-level explicitly and use it as its own approximation. The complexity of such a
level is O.n/, and it can be computed in O.n log n/ time [11, 18] (better than what
is stated in Theorem 4.6 below for such a large value of r). We therefore assume in
the remainder of this section that r� n.

Put k1 WD .1 C c/n=r and k2 WD .1 C 2c/n=r, for a suitable sufficiently small
(but otherwise arbitrary) constant fraction c. The analysis of Clarkson and Shor [25]
implies that the overall complexity of L�k2 (the first k2 levels of A.H/) is O.nk2/.
This in turn implies that there exists an index k1 � � � k2 for which the complexity
jL� j of L� is O.nk2=.cn=r// D O.nk=c/ D O.n2=.cr//. We fix such a level �, and
continue the construction with respect to L� (slightly deviating from the originally
prescribed value of k). However, to simplify the notation for the current part of the
analysis, we use k to denote the nearby level �, and will only later return to the
original value of k.

The next step is to decompose the xy-projection of the k-level Lk, using the 
-
division technique reviewed in Sect. 3.1.1. Specifically, we set


 WD


cn � 43:5r

9ˇr

�2
;
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where ˇ is the constant from property (iii) of 
-divisions (see Sect. 3.1.1). Notice
that since r � n we have 
 > 1. Let L0k denote the projection of Lk onto the xy-
plane. We turn L0k into a triangulated and biconnected planar graph G0k, similarly to
the way in which we handled planar arrangements of lines in Sect. 3.2. That is, we
add a new vertex v1 at infinity, replace each ray Œp;1/ of L0k by the edge .p; v1/,
and triangulate each bounded or unbounded face, if needed, by adding diagonals.
The resulting graph is planar and triangulated, and, as is easily checked, is also
biconnected. We can therefore apply to G0k the planar 
-division algorithm of Klein
et al. [34], as reviewed in Sect. 3.1.1, with the value of 
 given above. The resulting

-division of G0k consists of

m WD O.jLkj=
/ D O


n2=.cr/

c2n2=r2

�

D O.r=c3/

connected, possibly unbounded, polygons, P1; : : : ;Pm, with pairwise disjoint inte-
riors. The union of P1; : : : ;Pm covers the entire xy-plane, and the edges of these
polygon are projections of (some) edges of Lk (including the diagonals drawn to
triangulate the original faces of Lk).

By construction, each Pi is connected and has at most ˇ
p

 D .cn� 43:5r/=.9r/

edges (and also contains O.
/ edges and vertices of the projected k-level in its
interior). Let Ci denote the convex hull of Pi, for i D 1; : : : ;m. As shows in
Corollary 3.3, C WD fC1; : : : ;Cmg is a collection of m (possibly unbounded) convex
pseudo-disks whose union is the entire plane.

We then apply Theorem 2.3 to C and obtain a set S of O.m/ points in the xy-plane,
and a triangulation T of S that covers the plane, such that each triangle � 2 T is
fully contained in some hull Ci in C.

For a point p in the xy-plane, we denote by "k.p/ the lifting of p to the k-level, i.e.,
the unique point on the level that is co-vertical with p. For a bounded triangle� of T,
"k.�/ is defined as the triangle spanned by the lifted images of the three vertices
of �. We lift an unbounded triangle � with vertices p, q, and v1 by lifting pq to
"k.p/"k.q/, as before, and lifting each of its rays, say Œp;1/, as follows. If Œp;1/
is the projection of an original ray of Lk, we simply lift it to that ray. Otherwise,
we lift Œp;1/ to a ray ".Œp;1// that emanates from "k.p/ in a direction parallel
to the plane which lies vertically above Œp;1/ at infinity. If the liftings ".Œp;1//,
and ".Œq;1//, and the edge "k.p/"k.q/ are not coplanar, we add another ray r
emanating from "k.p/ parallel to ".Œq;1//. We add to T 0 the unbounded triangle
spanned by ".Œq;1//, "k.p/"k.q/, and r, and the unbounded wedge spanned by r
and ".Œp;1//. Let T 0 denote the corresponding collection of lifted (bounded and
unbounded) triangles and wedges in R

3, given by T 0 D f"k.�/ j � 2 Tg.
Note that the triangles of T 0 are in general not contained in Lk. However, for each

triangle�0 2 T 0, its (finite) vertices lie on Lk, and, as we show in Lemma 4.5 below,
at most 9ˇ

p

C43:5 D cn=r planes of H can cross�0. This implies, returning now

to the original value of k, that �0 fully lies between the levels � ˙ cn=r of A.H/. In
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particular,�0 lies fully above the level

� � cn=r � k1 � cn=r D n=r D k;

and fully below the level

� C cn=r � k2 C cn=r D .1C 3c/n=r D .1C 3c/k:

The lifted triangulation T 0 forms a polyhedral terrain that consists of O.r=c3/
triangles and is contained between the levels k D n=r and .1C 3c/k. That is, for a
given " > 0, choosing c D "=3 makes T 0 an "-approximation of Lk, and we obtain
the following result.

Theorem 4.1 Let H be a set of n non-vertical planes in R
3 in general position, and

let 0 < r � n, " > 0 be given parameters. Then there exists a polyhedral terrain
consisting of O.r="3/ triangles, that is fully contained between the levels n=r and
.1C "/n=r of A.H/, which can be computed in polynomial time.

(The last assertion in the theorem is a consequence of the constructive nature of
our analysis. Efficient implementation of this construction is described later in this
section.)

To turn this approximate level into a shallow cutting, replace each �0 2 T 0
(including each of the unbounded triangles and wedges, as constructed above) by
the semi-unbounded vertical prism �� consisting of all the points that lie vertically
below �0. This yields a collection „ of prisms, with pairwise disjoint interiors,
whose union covers L�n=r, so that, for each prism � of „, we have (a) each vertex
of � lies at level (at least k and) at most .1 C 2

3
"/k, and, as will be established in

Lemma 4.5 below, (b) the top triangle of � is crossed by at most 1
3
"k planes of H (in

the preceding analysis, we wrote this bound as cn
r ; this is the same value, recalling

that " D 3c and k D n=r). Hence, as is easily seen, each prism of „ is crossed by
at most .1C "/n=r planes, so „ is the desired shallow cutting. That is, we have the
following result.

Theorem 4.2 Let H be a set of n non-vertical planes in R
3 in general position,

let k < n and " > 0 be given parameters, and put r D n=k. Then there exists
a k-shallow ..1 C "/=r/-cutting of A.H/, consisting of O.r="3/ vertical prisms
(unbounded from below). The top of each prism is a triangle or a wedge that is
fully contained between the levels k and .1C "/k of A.H/, and these triangles form
a polyhedral terrain (we say that such a terrain approximates the k-level Lk up to a
relative error of ").

4.2 Crossing Properties of the Planar Subdivision

Recall that our construction computes a 
-division of the xy-projection L0k of Lk

where 
 WD ..cn � 43:5r/=9ˇr/2 (and recall that k D n=r, r � n, and ˇ is a
constant). Our goal in the rest of this section is to show that the lifting "k.�/ of
any triangle� contained in the convex hull C of a polygon P of this decomposition
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intersects at most ck planes of H. We prove this explicitly for bounded triangles, and
the proof for unbounded triangles (or wedges) is similar.

Recall that, for a point p in the xy-plane, we denote by "k.p/ the (unique) point
that lies on Lk and is co-vertical with p. The crossing distance cr.p; q/ between
any pair of points p; q 2 R

3, with respect to H, is the number of planes of H that
intersect the closed segment pq. The crossing distance is a quasi-metric, in that
it is symmetric and satisfies the triangle inequality. For a connected set X � R

3,
the crossing number cr.X/ of X is the number of planes of H intersecting X (thus
cr.p; q/ is the crossing number of the closed segment pq).

Lemma 4.3 Let p; q; r be three collinear points in the xy-plane, such that q 2 pr,
and let p0 D "k.p/, q0 D "k.q/, and r0 D "k.r/; these points, which lie on the
k-level, are in general not collinear. Let q00 be the intersection of the vertical line
through q with the segment p0r0. Then we have cr.q00; q0/ � 1

2
cr.p0; r0/ C 8:5. See

figure below.

Proof For a point u, we denote by level.u/ the number of planes lying vertically
strictly below u. Put k00 D level.q00/. The point p0 lies at level k, which is the closure
of all points of level k. Thus the number of planes lying vertically strictly below q is
k if p0 is in the relative interior of a face of level k, at least k�1 if p0 is in the relative
interior of an edge of level k, and at least k � 2 if p0 is a vertex of level k. In either
case, we have level.p0/ � k � 2, and similarly for r0, and thus

cr.p0; q00/ � jlevel.p0/ � level.q00/j � jk � k00j � 2 ;

and

cr.q00; r0/ � jlevel.p0/ � level.q00/j � jk � k00j � 2 :

Lk

p q r

p ′

q ′ r ′

q ′′

On the other hand we have

cr.q0; q00/ � jk00 � level.q0/j C 3 � jk � k00j C 5 :

(Indeed, if q00 lies above q0 then jk00 � level.q0/j � jk00 � .k � 2/j � jk00 � kj C 2,
and if q0 lies above q00 then jk00 � level.q0/j � jk00 � kj. In addition, the difference in
the levels of q0 and q00 does not count the at most three planes that intersect q0q00 at
q00, if q00 is above q0, or at q0, otherwise; this accounts for the terms 3 and 5 in the
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preceding inequality.) Hence,

cr.q0; q00/ � 1

2

�
cr.p0; q00/C cr.q00; r0/C 4

	
C 5 � 1

2

�
cr.p0; r0/C 3�C 7

D 1

2
cr.p0; r0/C 8:5;

where the term 3 in the next-to-last expression is due to the potential double
counting of the (up to) three planes passing through q00, in both terms cr.p0; q00/
and cr.q00; r0/. �

In what follows, we consider polygonal regions contained in Lk, where each such
region R is a connected union of some of the faces of Lk. The xy-projection of R is a
connected polygon in the xy-plane, and, for simplicity, we refer to R itself also as a
polygon.

q ′′q ′′

q

q ′
u ′

v ′

π2

π1

u

p ′ p

v

Lemma 4.4 Let H be a set of n non-vertical planes in R
3 in general position. Let

P0 be a bounded connected polygon with t edges that lies on the k-level Lk of A.H/,
such that all the boundary edges of P0 are edges of Lk. Let p0 be a vertex of the
external boundary of P0, and let q be any point in the convex hull C of the xy-
projection P of P0. Then the crossing distance between p0 and q0 D "k.q/ is at most
3tC 14:5.

Proof Since q lies in C, we can find two points u, v on the external boundary of P
such that q 2 uv. Put q0 D "k.q/, u0 D "k.u/, and v0 D "k.v/, and denote by q00
the point that lies on the segment u0v0 and is co-vertical with q. See figure above.
We have

cr.p0; q0/ � cr.p0; u0/C cr.u0; q00/C cr.q00; q0/ � cr.p0; u0/C cr.u0; v0/Ccr.q00; q0/:

Let �1 and �2 be the two portions of the external boundary that connect p0 and u0,
and u0 and v0, respectively, and that do not overlap. Now, by Lemma 4.3, we have
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cr.q00; q0/ � 1
2
cr.u0; v0/C 8:5; so we get

cr.p0; q0/ � cr.p0; u0/C 3

2
cr.u0; v0/C 8:5 � cr.�1/C 3

2
cr.�2/C 8:5

� 3

2
cr.@P0/C 13;

where @P0 denotes the external boundary of P0, and where the last inequality follows
because 3

2
cr.�1/C 3

2
cr.�2/ double counts the planes that pass through u0, adding at

most 3
2
� 3 D 4:5 to the bound.

To bound the number of planes of H that intersect @P0, consider its vertices
p1; p2; : : : ; pt (the actual number of vertices might be smaller since P0 may not be
simply connected). Observe that p1 is contained in three planes. For each i, pi lies on
at most two planes that do not contain pi�1 (there are two such planes when pi�1pi is
a diagonal of an original face of the untriangulated level Lk). Furthermore, the open
segment pi�1pi does not cross any plane, and each plane that contains it contains
both its endpoints. Therefore, the number cr.@P0/ of planes of H that intersect @P0
satisfies cr.@P0/ � 3C2.t�1/ D 2tC1; from which the lemma follows. (Note that
this analysis is somewhat conservative—for example, if the polygon P0 uses only
original edges of the k-level, the bound drops to tC 2.) �

Lemma 4.5 Let H be a set of n non-vertical planes in R
3 in general position, and

let P0 be a connected polygon with t edges, such that P0 lies on the k-level Lk of
A.H/, and such that all the boundary edges of P0 are edges of Lk. Then, for any
triangle � D �pqr that is fully contained in the convex hull of the xy-projection of
P0, the number cr.�0/ of planes of H that cross the triangle �0 D �p0q0r0, where
p0 D "k.p/, q0 D "k.q/, r0 D "k.r/, is at most 9tC 43:5.

Proof Let w be any vertex of the external boundary of P0. Any plane that crosses�0
must also cross two of its sides. Moreover, by Lemma 4.4 and the triangle inequality,

cr.p0; q0/ � cr.w; p0/C cr.w; q0/ � 2.3tC 14:5/;

and similarly for cr.p0; r0/ and cr.q0; r0/. Adding up these bounds and dividing by 2,
implies the claim. �

By Property (iii) of Definition 3.1 our polygons have at most t D ˇp
 D .cn �
43:5r/=9r edges. Therefore by Lemma 4.5 any triangle of the polyhedral terrain of
Theorem 4.1 is crossed by at most cn=r planes.
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4.3 Efficient Implementation

We next turn our constructive proof into an efficient algorithm, and show:

Theorem 4.6 Let H be a set of n non-vertical planes in R
3 in general position, let

k < n and " > 0 be given parameters, and put r D n=k. Then we have:

(a) One can construct the k-shallow ..1 C "/=r/-cutting of A.H/ given in Theo-
rem 4.2, or, equivalently, the "-approximating terrain of the k-level in Theo-
rem 4.1, in O.nC r"�6 log3 r/ expected time. This algorithm computes a correct
"-approximating terrain with probability at least 1 � 1=rO.1/.

(b) Computing the conflict lists of the vertical prisms takes an additional O.n."�3C
log r

"
// expected time.

(c) If we also compute the conflict lists then we can verify, in O.n="3/ time, that the
cutting is indeed correct and thereby make the algorithm always succeed, at the
cost of increasing its expected running time by a constant factor.

Proof

(a) We first describe a straightforward implementation of the algorithm described
in Sect. 4.1. We then apply this implementation to a random sample to get the
desired time bound.

The first step of the algorithm is to construct level L� of smallest complexity
between levels k1 D .1C "/k and k2 D .1C 2"/k in A.H/. To get this level we
compute all the first k2 levels in A.H/, using a randomized algorithm of Chan
[16],3 which takes O.n log nC nk2/ expected time and then extract the desired
level L� . Recall that the complexity of L� is jL� j WD O.nk="/.

We project L� onto the xy-plane, and construct a 
-division of the projection
for 
 D ‚.k2/, in O.jL� j/ time. This 
-division consists of m D O.r="3/
pieces and the boundary of each piece consists of O.

p

/ edges. We compute

the convex hull of each piece of the 
-division, in O.m
p

/ overall time and

construct the confined triangulation of these convex hulls in O.m log m log
p

/

time.
Finally, we lift the vertices of the resulting triangles to L� . This can be

done, using a point location data structure over the xy-projection of L� , in
O.jL� j log jL� j C m log jL� j/ time. This completes the construction (excluding
the construction of the conflict lists). Summing up over all stages, we obtain
that the overall expected construction time is

O
�
n log nC nk2 C m

p

 C m log m log

p

 C jL� j log jL� j C m log jL� j

�
:

3The paper of Chan [16] does not use shallow cuttings.
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Substituting
p

 D O.k/, k D n=r, jL� j WD O.nk="/, and m D O.r="3/, we

obtain that the running time is

O



n log nC n3

r2
C n

"3
C r

"3
log

r

"
log

n

r
C n2

r"
log

n

r"
C r

"3
log

n

r"

�

: (1)

The idea is to apply this construction to an approximate level k0 D n0

r D
b
"2

log r of a random sample S of n0 D br
"2

log r planes of H, where b is a suitable
constant. The dominant term in the running time bound is the second term in
Eq. (1), which is O.r"�6 log3 r/.

We prove the correctness of this procedure as follows.
Let .H;R/ denote the range space in which each range in R corresponds to

some vertical segment or ray e, and is equal to the subset of the planes of H that
cross e. Clearly, .H;R/ has finite VC-dimension (see, e.g., [50]). A random
sample S of n0 D br

"2
log r planes from H, for a sufficiently large constant b,

is a relative
�
1
r ; "
�
-approximation for .H;R/, with probability � 1 � 1=rO.1/;

see [30] for full details concerning the definition and properties of relative
approximations. In our context, this means (assuming that the sample is indeed a
relative approximation) that each vertical segment or ray that intersects x � n=r
planes of H intersects between .1C "/ n0

n x and .1 � "/ n0

n x planes of S, and each
vertical segment or ray that intersects x < n=r planes of H intersects at most
n0

n xC" n0

r planes of S. (This holds, with probability� 1�1=rO.1/, for all vertical
segments and rays.)

It follows from Theorem 4.1 that our approximation of level k0 of A.S/ is a
terrain T of size O.r="3/ that lies between level k0 and level .1C "/k0 of A.S/.
We claim that T also lies between levels k and .1C 4"/k of A.H/ and therefore
(up to a scaling of ") gives the desired level approximation.

To justify this claim, consider a point p on level k of A.H/. By the properties
specified above, of a relative

�
1
r ; "
�
-approximation, it follows that the level of

p in A.S/ is at most .1 C "/.n0=n/.n=r/ D k0. Similarly, let p be a point at
level larger than, say, .1C 4"/k of A.H/. Then the level of p in A.S/ is at least
.1 � "/.n0=n/.1 C 4"/.n=r/ � .1 C "/k0 D k0 C t0, for " � 1=2. Since this
holds with probability � 1 � 1=rO.1/, for every point p, we conclude that T lies
between levels k and .1C 4"/k of A.H/, with probability� 1 � 1=rO.1/.

Our algorithm can fail only if S fails to be a relative approximation. As
mentioned, this happens with probability at most 1=rO.1/.

(b) We now describe an algorithm that computes for every semi-unbounded vertical
prism �� stretching below a triangle � of our approximating terrain T, the set
of planes of H that intersect it (i.e., the conflict list of the prism). To this end,
we put the vertices of T into the range reporting data structure of Chan [16]. In
this structure, after preprocessing, in O. r

"3
log r

"
/ expected time, one can report,

for any given query half-space hC, the points in hC \ T, in O.log r
"
CjhC\ Tj/

expected time (we recall again that this data range reporting structure of Chan
is simple and does not use shallow cuttings). We query this data structure with
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the set of halfspaces hC, bounded from below by the respective planes h 2 H,
and, for each vertex x of T that we report, we add h to the conflict lists of the
prisms incident to x. This takes O.n log r

"
C n

"3
/ expected time, since the total

size of the conflict lists is O. r
"3
� nr / D O. n

"3
/ (in expectation and with probability

� 1 � 1=rO.1/).
(c) The probability that the sample S fails to be a relative

�
1
r ; "
�
-approximation

for .H;R/ is at most 1=rO.1/. When the sample does indeed fail, T may fail
to be the desired k-shallow ..1 C "/=r/-cutting. Such a failure happens if and
only if there exists a vertex of T whose conflict list is of size smaller than k or
larger than .1 C "/k. When we detect such a conflict list, we repeat the entire
computation. Since the failure probability is small the expected number of times
we will repeat the computation is (a small) constant. �
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Schrijver Graphs and Projective
Quadrangulations

Tomáš Kaiser and Matěj Stehlík

Abstract In a recent paper, Kaiser and Stehlík (J Combin Theory Ser B 113:1–
17, 2015) have extended the concept of quadrangulation of a surface to higher
dimension, and showed that every quadrangulation of the n-dimensional projective
space P

n is at least .n C 2/-chromatic, unless it is bipartite. They conjectured that
for any integers k � 1 and n � 2k C 1, the Schrijver graph SG.n; k/ contains a
spanning subgraph which is a non-bipartite quadrangulation of Pn�2k. The purpose
of this paper is to prove the conjecture.

1 Introduction

Given any integers k � 1 and n � 2k, the Kneser graph KG.n; k/ is the graph whose
vertex set consists of all k-subsets of Œn� D f1; : : : ; ng, and with edges joining pairs
of disjoint subsets. It was conjectured by Kneser [5], and proved by Lovász [6] in
1978, that the chromatic number of KG.n; k/ is n � 2kC 2.

Schrijver [10] found a vertex-critical subgraph SG.n; k/ of KG.n; k/ whose
chromatic number is also n � 2k C 2. (Recall that a graph is vertex-critical if the
deletion of any vertex decreases the chromatic number.) Let Cn be the cycle with
vertices 1; : : : ; n (in this order). The vertices of the Schrijver graph SG.n; k/ are all
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Fig. 1 The Kneser graph
KG.5; 2/ with its induced
subgraph SG.5; 2/ drawn by
thick lines. Vertex labels such
as f1; 3g are abbreviated to 13

13 24

35

14

25

45 15

12

23

34

the independent sets of Cn of size k, and the edges of SG.n; k/ join disjoint subsets.
Thus, SG.n; k/ is an induced subgraph of KG.n; k/. See Fig. 1 for an example.

In [4], a quadrangulation of a space triangulated by a (generalised) simplicial
complex K is defined as a spanning subgraph G of the 1-skeleton K.1/ such that the
induced subgraph of G on the vertex set of any maximal simplex of K is complete
bipartite with at least one edge.

Particular attention was given in [4] to quadrangulations of projective spaces,
and it was shown that if G is a non-bipartite quadrangulation of the (real) projective
space Pn, then the chromatic number of G is at least nC 2. By constructing suitable
projective quadrangulations of Pn homomorphic to Schrijver graphs, an alternative
proof of Schrijver’s result was obtained.

The purpose of this paper is to prove Conjecture 7.1 from [4] by establishing the
following result:

Theorem 1 For any k � 1 and n > 2k, the graph SG.n; k/ contains a spanning
subgraph QG.n; k/ that embeds in P

n�2k as a non-bipartite quadrangulation. In
particular, �.QG.n; k// D n � 2kC 2.

To prove Theorem 1, we need to construct a suitable triangulation of the
sphere Sn�2k. We first review some topological preliminaries (Sect. 2) and explore
combinatorial relations among the vertices of Schrijver graphs (Sect. 3).

In Sect. 4, the required properties of the sought triangulation of Sn�2k are
formulated in Theorem 10, which is then proved by giving an explicit recursive
construction. Theorem 1 is derived at the end of Sect. 4.

In Sect. 5, two open problems are given to conclude the paper. In particular, we
conjecture that the graph QG.n; k/ of Theorem 1 is edge-critical.
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2 Topological Preliminaries

In this section, we recall the necessary topological concepts. For a background on
topological methods in combinatorics, we refer the reader to Matoušek [7]. For an
introduction to algebraic topology, consult Hatcher [3] or Munkres [8].

A simplicial complex C with vertex set V is a hereditary set system on V; the
elements of this set system are the faces of C. A geometric simplicial complex K
in R

d is obtained if we associate each vertex in V with a point in R
d in such a way

that

1. the set of points P� associated with each face � is in convex position, and
2. for distinct faces � and � , the relative interiors of the convex hulls of P� and P�

are disjoint.

The convex hulls of the sets P� , where � is a face of the underlying simplicial
complexC, will be referred to as the faces of K. Since we will be dealing exclusively
with geometric simplicial complexes in this paper, we will often drop the adjectives
‘geometric’ and ‘simplicial’. Throughout the paper, we use sans-serif symbols such
as C or QK to denote complexes.

A face such as fa; b; cg is also written as abc. Two vertices v;w of K are adjacent
if vw is a face of K. The dimension of a face � is j� j�1. Faces of dimension one are
called edges. The vertex set of a geometric simplicial complex K will be referred to
as V.K/.

The space kKk of a geometric simplicial complex K in R
d is the subspace of Rd

obtained as the union of all faces of K. If a space X � R
d is homeomorphic to kKk,

we say that K triangulates X.
The induced subcomplex of K on a set X � V.K/, denoted by KŒX�, has vertex

set X and its faces are all the faces of K contained in X.
The closed star of a set X of vertices in K is the subcomplex of K consisting

of all the faces of K containing a vertex of X, together with their subfaces. If X is
contained in a subcomplex L of K, then the closed star of X in L is the intersection
of the closed star of X (in K) with L. The closed star of a vertex v of K is defined as
the closed star of fvg.

The link of a face � of K, denoted by lk.�/, is the subcomplex consisting of all
faces � such that � [ � is a face of K and � \ � D ;.

A 2-coloured complex K in R
d is a geometric simplicial complex in R

d, with
each vertex coloured black or white. For any point p 2 R

d, its antipode is the point
�p. The complex K is antisymmetric if the following holds:

• for every vertex v of K, the antipode�v of v is also a vertex of K, and the colours
of v and �v are different,

• for each face � of K, the antipodes of the vertices of � form a face of K.

Suppose that a 2-coloured complex K triangulates the ball Bd. The boundary of
K is the subcomplex triangulating the boundary sphere Sd�1 D @Bd. We will say
that K is boundary-antisymmetric if its boundary is antisymmetric.
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We recall several notions related to homotopy (cf. [3, Chapter 0]). Let X and Y
be topological spaces. Continuous maps f ; g W X ! Y are homotopic if there exists
a continuous map H W X 
 Œ0; 1�! Y such that H.x; 0/ D f .x/ and H.x; 1/ D g.x/
for all x 2 X. A homotopy equivalence between spaces X and Y is a continuous map
f W X ! Y such that there is a continuous map g W Y ! X with the property that
each of f ı g and g ı f is homotopic to an identity map. Homotopy equivalent spaces
are also said to have the same homotopy type.

Closely related to homotopy equivalence is the notion of deformation retraction.
Given a subspace A of a space X, a family of continuous maps ft W X ! X (where
t 2 Œ0; 1�) is a deformation retraction of X onto A if f0 is the identity, so is the
restriction of each ft to A, the image of f1 is A, and the family is continuous when
viewed as a map from X 
 Œ0; 1� ! X. If such a deformation retraction exists, A is
said to be a deformation retract of X (and X is said to deformation retract to A). It
is easy to see from the definitions that the space X is homotopy equivalent to any
deformation retract of X.

A space X is contractible if the identity map on X is nullhomotopic (homotopic
to a constant map), which is somewhat weaker than the property of having a
deformation retraction to a single point.

Next, let K be a 2-coloured complex whose space is a deformation retract of the
thickened sphere Sd 
 I in R

dC1, where d � 1, Sd is the unit d-sphere and I is a
short interval in R. Thus, we can define the interior of K as the bounded component
of RdC1 n kKk, and similarly for the exterior of K. Note that the origin of RdC1
is contained in the interior. We define the interior boundary of K, IB.K/, as the
subcomplex of K consisting of all the faces of K contained in the closure of the
interior of K. The exterior boundary EB.K/ is defined analogously. Note that IB.K/
and EB.K/ need not be disjoint.

In the above setting, we will utilise the operation of adding the cone over a
subcomplexS of IB.K/. We add a vertex vS and all faces �[fvSg, where � is a face
of S. The vertex vS is the apex of the cone. By placing vS suitably in the interior
of K and deforming K slightly if necessary, we obtain a realisation of the resulting
complex K0 as a geometric complex. While this operation may change the homotopy
type of the complex, we will always use it in cases where K0 is again a deformation
retract of the thickened sphere. In addition, the colour of vS will always be specified.
The cone over S is the complex consisting of all the added faces (including fvSg)
and all the faces of S. It is well known that the space of this complex is contractible.

A vertex z of IB.K/ is an inside vertex of S if the closed star of z (within IB.K/)
is contained in S.

Observation 2 With K as above, let K0 be obtained by adding the cone vS over a
subcomplex S of IB.K/. Then IB.K0/ contains vS and does not contain any inside
vertex of S. In fact, a face � of IB.K/ is a face of IB.K0/ if and only if � n fvSg is a
(possibly empty) face of IB.K/ containing no inside vertex of S.

Let K be a 2-coloured complex and u; v two adjacent vertices of K of the same
colour. The contraction of the edge uv is the operation replacing each incident face
� of K with �[fwgnfu; vg, where w is a new vertex (assigned the colour of u and v).
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Geometrically, it corresponds to shrinking the segment uv to a point. By definition,
the operation does not introduce multiple copies of any face. Although contraction
may in general change the topological properties of the complex, we will only apply
it in situations where the contraction yields a complex of the same homotopy type.
The key property is the link condition for the edge uv (cf. [1, 9]):

lk.u/\ lk.v/ D lk.uv/: (1)

Let K and L be 2-coloured complexes. A mapping f W V.K/ ! V.L/ is a
homomorphism (of 2-coloured complexes) from K to L if f preserves vertex colours
and for any face � of K, its image f Œ�� is a face of L. (We stress that f Œ�� is a set,
without repeated elements.)

A homomorphism f from K to L is an isomorphism if f is a bijection and f�1 is a
homomorphism.

For an antisymmetric 2-coloured complex K, we define its associated graph
G.K/ as the graph with vertex set V.K/ and with the edge set consisting of all edges
of K with one end black and the other white.

3 Combinatorial Preliminaries

Before we present the construction proving Theorem 1, we need to do some
preparatory work. In this section, we introduce some terminology and notation that
is useful for the classification of the vertices of the Schrijver graph SG.n; k/.

Let k � 1 and n � 2kC 1. Recall from Sect. 1 that Cn denotes the n-cycle on the
vertex set Œn� D f1; : : : ; ng. Let V.n; k/ be the set of all subsets of Œn� of size k that
are independent sets in Cn. (Thus, V.n; k/ is the vertex set of SG.n; k/.) Note that
V.n � 1; k/ is a subset of V.n; k/.

Addition and subtraction on Œn� are defined ‘with wrap-around’: for instance, if
i; j 2 Œn� and .i� 1/C . j� 1/ 	 `� 1 .mod n/, where ` 2 Œn�, then iC j is defined
as `. The core of a set A 2 V.n; k/ is the set

core.A/ D
(

A n f1g if 1 2 A;

A n fmax.A/g otherwise.

Thus, core.f1; 3; 5g/ D f3; 5g, while core.f2; 4; 6g/ D f2; 4g.
Observation 3 For A 2 V.n; k/,

core.A/\ f1; ng D ;:
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Fig. 2 Examples of the sets ƒn;i for n D 9, pictured as subsets of V.C9/. Black dots represent
elements included in the subset, white dots show the other vertices of C9. (a) ƒ9;3. (b) ƒ9;4

Let 0 � i � n=2. We define the set ƒn;i � Œn� as follows:

ƒn;i D
(
fn � iC 1; n � iC 3; : : : ; n; 2; 4; : : : ; i� 1g if i is odd,

fn � iC 1; n � iC 3; : : : ; n � 1; 1; 3; : : : ; i� 1g if i is even.

See Fig. 2 for examples. Note that for each i, ƒn;i 2 V.n; i/. For small i, the sets
ƒn;i are given in the following table:

ƒn;0 ƒn;1 ƒn;2 ƒn;3 ƒn;4

; fng f1; n� 1g f2; n � 2; ng f1; 3; n � 3; n � 1g
The n-level of a set A 2 V.n; k/, `n.A/, is the maximum i such that ƒn;i � A.

Note that 0 � `n.A/ � k. For 0 � i � k, we define

Vi.n; k/ D fA 2 V.n; k/ W `n.A/ D ig :

Furthermore, we let VC.n; k/ be the union of all Vi.n; k/ with i � 1.

Lemma 4 We have

V0.n; k/ D V.n � 1; k/:

Proof We need to show that for any set A 2 V.n; k/, we have `n.A/ D 0 if and only
if A 2 V.n� 1; k/. By definition, `n.A/ D 0 if and only if A contains neither fng nor
f1; n � 1g as a subset. In turn, this holds if and only if A 2 V.n � 1; k/. ut

Let B 2 V.n � 1; k/. We define the set Bhni 2 V.n; k/ by

Bhni D core.B/[ fng :
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By Observation 3, the operation is well defined. The following lemma will be useful:

Lemma 5 For 2kC 1 � i < m and A 2 V.i� 1; k/, .Ahii/hmi D Ahmi.
Proof By definition, Ahii D core.A/[fig. Since 1 … core.A/, core.Ahii/ D core.A/.
Thus, .Ahii/hmi D Ahmi. ut

For a set A 2 V.n; k/ such that 1 … A, we define A � 1 as the set obtained by
subtracting 1 from each element of A (and similarly for AC 1 when n … A, or when
the result is interpreted in V.nC 1; k/).

Let us define a mapping f from V.n; k/ to V.n � 2; k � 1/, and a mapping gn in
the inverse direction. Let X 2 V.n; k/ and Y 2 V.n� 2; k� 1/. The mappings are as
follows:

f .X/ D core.X/� 1;

gn.Y/ D
(
.Y C 1/[ f1g if n � 2 2 Y;

.Y C 1/[ fng otherwise.

Lemma 6 The restriction of f to VC.n; k/ is a bijection

f W VC.n; k/! V.n � 2; k � 1/;

and gn is its inverse. Furthermore, f maps disjoint pairs of sets to disjoint pairs.

Proof The first assertion follows from the fact that the image of gn is contained in
VC.n; k/, and from the easily verified equalities

f .gn.Y// D Y and gn. f .X// D X

for X 2 VC.n; k/, Y 2 V.n � 2; k � 1/.
The assertion that the images of disjoint sets under f are disjoint follows directly

from the definition of f . ut
Corollary 7 All the sets in VC.n; k/ have distinct cores.

Define an equivalence � on V.n; k/ by putting A � B if core.A/ D core.B/.
Corollary 7 can be strengthened as follows:

Lemma 8 If A 2 V.n; k/ and B 2 VC.n; k/ are distinct sets such that A � B, then
A 2 V0.n; k/ and B 2 V1.n; k/.

Proof By Corollary 7, A 2 V0.n; k/. Suppose that `n.B/ � 2. We have either
f2; n � 2; ng � B or f1; n � 1g � B. In the former case, f2; n � 2g � core.B/ D
core.A/, which is impossible as A 2 V0.n; k/ (so n … A). In the latter case,
n � 1 2 core.B/ D core.A/ and hence necessarily 1 2 A, which would imply
that `n.A/ � 2, a contradiction. We have shown that A 2 V0.n; k/ and B 2 V1.n; k/.

ut
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Observation 9 For any set B 2 V.n � 1; k/, we have f .Bhni/ D f .B/. Thus, the
appropriate restriction of f is a bijection

fBhni W B 2 VC.n � 1; k/g ! V.n � 3; k � 1/:

Finally, we define a set A 2 V.n; k/ to be singular if A 2 V.2k; k/. Thus, the
singular sets in V.7; 3/ are f1; 3; 5g and f2; 4; 6g.

4 Constructing the Embedding

In this section, we shall construct the antisymmetric 2-coloured complex QK.n; k/
in R

n�2kC1 triangulating the sphere Sn�2k. The vertices will be coloured black and
white; both the black vertices and the white vertices will be labelled bijectively
with elements of V.n; k/. We will identify each vertex with its label and speak,
for instance, of the black copy of f1; 3; 5g or the white copy of f2; 6; 8g. For a set
A 2 V.n; k/, its black copy will be denoted by A
 and its white copy by Aı. (In all
the complexes we construct, each label will appear at most once at a black vertex
and at most once at a white vertex.)

We extend some of the combinatorial notions defined in Sect. 3 to vertices. Thus,
we say that a vertex A
 is singular if A is singular (and similarly for Aı). Likewise,
the core of A
 is core.A/.

Theorem 10 For any k � 1 and n � 2k C 1, there is a 2-coloured geometric
complex QK.n; k/ in R

n�2kC1 with the following properties:

(i) QK.n; k/ is an antisymmetric triangulation of the sphere Sn�2k such that no
face contains a pair of antipodal vertices.

(ii) QK.n; k/ contains no monochromatic maximal faces.
(iii) The graph obtained from the associated graph of QK.n; k/ by identifying each

pair of antipodal vertices is a spanning subgraph of SG.n; k/.
(iv) For n > 2k C 1, QK.n; k/ contains QK.n � 1; k/ as an antisymmetric

subcomplex.

Let us embark on the construction of QK.n; k/ which eventually proves Theo-
rem 10. We start by introducing some more notation. Let L be a 2-coloured complex
whose vertices are labelled with elements of V.n; k/ (which will be the case most of
the time). For a vertex A
 of L, we define ŒA
� as the set of all black vertices B
 of
L such that A � B. The region of A in L, denoted by Reg.A
;L/, is defined as the
closed star of ŒA
�. The region of a white vertex is defined in an analogous way.
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In the construction, we will ensure that the following (more technical) conditions
hold in addition to those in Theorem 10:

(P1) If A
Bı is a face of QK.n; k/, then j`n.A/� `n.B/j � 1, and `n.A/ D `n.B/
only if `n.A/ D `n.B/ D 0.

(P2) For k � 2, and A 2 V.n; k/, every nonsingular vertex of QK.n; k/ belongs to
a maximum face of QK.n; k/ containing no black vertex B
 with core.B/ D
core.C/. An analogous condition holds with the colours inverted.

(P3) For any vertex A
 of QK.n; k/, the induced subcomplex of QK.n; k/ on ŒA
� is
either a face, or (in the case that ŒA
� contains a singular vertex) the join of a
face with a subcomplex consisting of two points.

The definition of QK.n; k/ is straightforward in case that n D 2k C 1. For j 2
Œ2kC 1�, let

Ij D f j; jC 2; : : : ; jC 2k � 2g 2 V.2kC 1; k/:

The complex QK.2kC 1; k/ is 1-dimensional, so we can describe it as a graph: it is
the cycle of length 2.2kC 1/ with vertices

I
1 ; Iı2 ; I
3 ; : : : ; I
2kC1; Iı1 ; I
2 ; : : : ; Iı2kC1; I
1

in this order. See Fig. 3 for an illustration.
Suppose thus that n > 2kC1 and that QK.n�1; k/ has already been constructed.

Recall that QK.n � 1; k/ is an antisymmetric triangulation of Sn�2k�1 in R
n�2k. A

quick summary of the construction of QK.n; k/ (illustrated in Fig. 4) is as follows:

• we extend QK.n � 1; k/ to a 2-coloured complex QR
.n; k/ triangulating a
‘partially thickened’ sphere Sn�2k�1 if k � 2,

Fig. 3 The complex
QK.7; 3/. Set brackets are
omitted in vertex labels such
as f1; 3; 5g

135

246

357
146

257

136

247

135

246

357
146

257

136

247
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QK(n − 1, k)

QR•(n, k)

QK(n − 3, k − 1)

(a)

QK(n − 1, k)

QR•(n, k)

QB◦(n − 2, k − 1)

QK(n − 3, k − 1)

(b)

QB•(n, k)

QB◦(n, k)

QK(n − 1, k)

(c)

Fig. 4 A schematic illustration of the construction of QK.n; k/. (a) QR�

.n; k/ (light gray) has
exterior boundary QK.n�1; k/ and interior boundary QK.n�3; k�1/. (b) QB�

.n; k/ triangulates
Bn�2k; it can be decomposed into QR�

.n; k/ (outer layer) and QBı

.n � 2; k � 1/ (filling, dark
gray). (c) QK.n; k/ triangulates Sn�2k; it is obtained by pasting QB�

.n; k/ and QBı

.n; k/ together
along their common boundary QK.n� 1; k/

• we fill in the interior of QR
.n; k/ using a complexQBı.n�2; k�1/ (constructed
at an earlier stage of this recursive procedure) to obtain a 2-coloured boundary-
antisymmetric triangulation QB
.n; k/ of the .n � 2k/-ball Bn�2k,

• we obtain the complex QBı.n; k/ in an analogous way, inverting the colours,
• we form an antisymmetric 2-coloured triangulation QK.n; k/ of Sn�2k by pasting

QB
.n; k/ and QBı.n; k/ together.

We remark that the letter B in QB
.n; k/ stands for ‘ball’, while the R in
QR
.n; k/ was chosen to represent ‘rind’, the outer layer of QB
.n; k/.

As the first step of the construction, we now extendQK.n�1; k/ to the 2-coloured
complex QR
.n; k/ by adding cones over certain subcomplexes and contracting
some of the edges. For k � 2, the exterior boundary QK.n � 1; k/ of QR
.n; k/
as well as its interior boundary will be deformation retracts of QR
.n; k/. The
interior boundary of QR
.n; k/ will be shown to be isomorphic (as a complex) to
QK.n � 3; k � 1/, enabling us to fill in the interior by recursion.
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1
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(a)

135
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146

257

136

247

135
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146
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136

247

358
258

248

468

368

(b)

Fig. 5 Cases k D 1 and n D 2kC2 of the construction of QR�

.n; k/. Set brackets in vertex labels
are omitted. (a) QR�

.4; 1/. (b) QR�

.8; 3/

In the special case k D 1, the construction is particularly simple (see Fig. 5a):
QR
.n; 1/ is obtained just by adding the cone over QK.n � 1; 1/, with the apex
coloured black and labelled n.

To construct QR
.n; k/ from QK.n � 1; k/ for k > 1, we proceed as follows (we
urge the reader to consult the illustration in Figs. 5b and 6):

(B1) For each class of the equivalence� on V.n�1; k/, we choose a representative
A, add the cone over Reg.A
;QK.n � 1; k//, colour the apex black and label
it by Ahni. Let K1 denote the interior boundary of the resulting complex after
all the classes of� are processed.

(B2) For each class of � on V0.n � 1; k/, we choose a nonsingular representative
B, we add the cone over Reg.Bı;K1/, colour the apex white and label it by
B�. We contract the edge Bı�Bhn � 1iı. The resulting vertex retains the label
Bhn� 1iı. (This step is justified by Observation 11.)

An application of the above rules to a particular equivalence class is referred to
as processing that class.

By switching colours in the above description (for example, adding the cone over
Reg.Aı;QK.n � 1; k// in step (B1)), we obtain the complex QRı.n; k/.

The following observation provides a justification for step (B2).

Observation 11 Each class of � on V0.n � 1; k/ contains a nonsingular set.
Moreover, the following hold for a nonsingular B 2 V0.n � 1; k/:
(i) The vertex Bı is contained in the complex K1 defined in step (B1) above, so

Reg.Bı;K1/ is nonempty.
(ii) In step (B2), Bı� is adjacent to Bhn� 1iı and the edge joining them satisfies the

link condition (1).
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358
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258248
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247 257 357136 146
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(a)

(b)

(c)

Fig. 6 The construction of QR�

.9; 3/ from QK.8; 3/. (a) A portion of the complex QK.8; 3/
which triangulates B2. The equator QK.7; 3/ is shown by a thick line. Note that the vertex set
of QK.7; 3/ equals V0.8; 3/. (b) Part of the subcomplex Reg.368�;QK.8; 3// in QK.8; 3/ (gray).
(c) The result of step (B1). The complex QK.8; 3/ should be pictured in a base plane, and the added
apex vertices (such as 369�) above it. Dotted and solid lines represent visibility
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(e)

(f)

Fig. 6 The construction of QR�

.9; 3/ from QK.8; 3/ (continued). (d) Part of the subcomplex
Reg.257ı;K1/ (gray) in the complex resulting from step (B1). (e) The complex obtained in step
(B2) after adding the cone over Reg.257ı;K1/ (assuming 257 is the first set whose equivalence
class is processed in this step). (f) The result of step (B2)
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Proof The first assertion follows from the fact that if A is a singular set in V0.n �
1; k/, then Ah2kC 1i is nonsingular and A � Ah2kC 1i. Furthermore, Ah2kC 1i 2
V0.n � 1; k/ since n � 2kC 2.

(i) Since B is nonsingular, Bı is not an inside vertex of Reg.A
;QK.n � 1; k//
for any A 2 V.n � 1; k/ by property (P2). Observation 2 implies that Bı is a vertex
of K1.

(ii) Similarly as in (i), Bhn�1i is contained in K1. Since core.Bhn�1i/ D core.B/,
Bhn�1i is a vertex of Reg.Bı;K1/. It follows that it is adjacent to Bı� after step (B2).

To verify the link condition, let u D Bhn � 1i and v D Bı�. Since lk.uv/ �
lk.u/ \ lk.v/, it suffices to establish the other inclusion. However, if � is a face of
lk.u/, then the definition of the cone with apex v implies that � is a face of lk.uv/.

ut
Let us summarise the crucial topological properties of QR
.n; k/:

Lemma 12 For k � 2, the following hold:

(i) The space of QR
.n; k/ is homotopy equivalent to QK.n � 1; k/.
(ii) The space of the interior boundary of QR
.n; k/ is homeomorphic to the sphere

Sn�2k�1.

Proof (i) Property (P3) and the fact that QK.n�1; k/ is a geometric complex implies
that each complex Reg.A
;QK.n � 1; k// is contractible for each A 2 V.n � 1; k/.
Furthermore, it is not hard to see that the latter property remains true if QK.n �
1; k/ is replaced by the interior boundaries of complexes obtained in subsequent
applications of rule (B1). Thus, each of these applications of rule (B1) adds a cone
over a contractible subcomplex of the interior boundary, which does not change the
homotopy type.

The discussion of rule (B2) is similar; the fact that the edge contractions do not
change the homotopy type follows, e.g., from [1, Theorem 2] together with the link
condition verified in Observation 11(ii).

To prove (ii), we observe that as we apply rules (B1) and (B2), the effect on the
interior boundary is equivalent to contracting the subcomplexes of condition (P3).
The statement essentially follows by checking the link condition for these contrac-
tions and using [9, Theorem 4]; we omit the details. ut

It is easy to describe the vertex set of QR
.n; k/:

Observation 13 The vertex set of QR
.n; k/ is

[

A2V.n�1;k/
fA
;Aıg [ fAhni
 W A 2 VC.n � 1; k/g :

Proof The vertex set of QK.n � 1; k/ is

[

A2V.n�1;k/
fA
;Aıg :
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Step (B1) adds one vertex per equivalence class of �, which accounts for the
remaining vertices in the statement as each equivalence class intersects VC.n�1; k/
in precisely one vertex (cf. Corollary 7). No new vertices are added in step (B2). ut

We can now state the following lemma, which completely describes the interior
boundary of QR
.n; k/ and enables us to use a recursive construction.

Lemma 14 Let IB be the interior boundary of QR
.n; k/, where n � 2k C 2 and
k > 1. The following properties hold:

(i) The vertex set of IB is

W D
[

A2VC.n�1;k/
fAhni
;Aıg ;

and IB is the induced subcomplex of QR
.n; k/ on W.
(ii) IB is isomorphic to QK.n � 3; k � 1/, with the isomorphism determined by the

mapping f W A 7! core.A/� 1 and preserving the colours (where A is a vertex
of IB).

Proof (i) In view of Observation 13, we need to show that IB does not include any
vertex A
 with A 2 V.n�1; k/ nor any vertex Aı with A 2 V0.n�1; k/, and includes
all the other vertices of QR
.n; k/.

Let A 2 V.n� 1; k/ and let L be any intermediate complex obtained in step (B1).
Since A
 is an inside vertex of Reg.A
;L/, Observation 2 implies that it is not
contained in the interior boundary of L, and hence also not in IB.

An analogous argument shows that no vertex Aı with A 2 V0.n � 1; k/ is
contained in IB. The contractions of the edges in step (B2) do not make a substantial
difference, since their only effect on the interior boundary of the complex is to
replace Aı� with Ahn � 1iı in each face containing Aı�.

We prove that IB includes the vertices Ahni
 and Aı, where A 2 VC.n � 1; k/.
Consider a vertex Aı. Condition (P2) ensures that Aı is not an inside vertex of any
complex Reg.B
;QK.n � 1; k//, so by Observation 2, Aı is a vertex of the interior
boundary of the complex obtained by adding the cone over Reg.B
;QK.n� 1; k//.
Furthermore, it is not hard to prove by induction that (P2) is preserved when we
replace QK.n�1; k/with the interior boundary of a complex obtained in subsequent
applications of rule (B1). In this way, we show that Aı is contained in the complex
K1. The argument for rule (B2) is similar, and so is the proof for the vertices of the
type Ahni
. Summing up, these arguments show that the vertex set of IB is W.

The proof that IB is the induced subcomplex on W is based on property (P3) and
induction; we leave it to the reader.

(ii) Assume first that n D 2k C 2. For j 2 Œ2k � 1�, let I0j be the analogue of the
independent set Ij used in the definition of QK.2kC 1; k/, but defined in C2k�1 and
of size k � 1. Thus, I0j D f j; jC 2; : : : ; jC 2k � 4g with arithmetic performed in
Œ2k � 1�. The assertion follows from the following property of the mapping f , valid
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for any j 2 Œ2kC 1�:

f .Ij/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

I02 if j D 1;
I01 if j D 2;
I0j�1 if 3 � j � 2k;

I01 if j D 2kC 1:

Let us now assume that n > 2kC 2. Consider the mapping h from the vertex set
of QK.n � 1; k/ to the vertex set of IB, defined as follows:

h.A
/ D Ahni
 for A 2 V.n � 1; k/;
h.Bı/ D Bhn� 1iı for B 2 V0.n � 1; k/;
h.Bı/ D Bı for B 2 VC.n � 1; k/:

We claim that h is a homomorphism of 2-coloured complexes from QK.n� 1; k/ to
IB. We need to show that the image of any face of QK.n � 1; k/ under h is a face
of IB.

Thus, let � be a face of QK.n�1; k/. List the black vertices of � as A
1; : : : ;A
t in
the order their equivalence classes (or rather, the equivalence classes of their labels)
were processed in step (B1). (If two of them belong to the same class, we order them
arbitrarily.)

When the equivalence class of A1 is being processed, we add the cone over
Reg.A
1;L/, where L is the interior boundary of the complex constructed until that
point. By Observation 2, the interior boundary L0 of the resulting complex will
contain the face � n ˚A
1

� [ fA1hni
g. In a similar fashion, A
2 will eventually be
replaced by A2hni
 etc., and in the end we obtain a face � 0 of IB in which each
vertex A
 of � is replaced by the corresponding ‘apex’ vertex Ahni
.

The procedure for the white vertices Bı of � 0 is similar: we replace each such
vertex with B 2 V0.n� 1; k/ by the vertex Bhn� 1iı in one application of step (B2).
It follows that h is a homomorphism as claimed.

Consider the exterior boundary QK.n � 1; k/ of QR
.n; k/. By steps (K1)–(K3)
below, QK.n � 1; k/ is obtained from QB
.n � 1; k/ and QBı.n � 1; k/ by glueing
them along their common boundary QK.n�2; k/ (viewed as the equator of QK.n�
1; k/). Let X be the set of vertices of QB
.n� 1; k/; it follows from the construction
of QB
.n � 1; k/ and Lemma 16 below that

X D
[

A2V.n�2;k/
fA
;Aıg [

8
<

:
A
 W A 2

[

i�1
V2i�1.n � 1; k/

9
=

;

[
8
<

:
Aı W A 2

[

i�1
V2i.n � 1; k/

9
=

;
:
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Fig. 7 Complexes defined in the proof of Lemma 14 (for n D 9; k D 3). Compare to parts (a)
and (f) of Fig. 6. (a) A portion of the complex QK.8; 3/. The thick line shows the complex K0.
The complex QR�

.8; 3/ is shown in dark gray, the complex KC in light gray. (b) A portion of the
complex QR�

.9; 3/. The thick line shows the complex L0 . The complex LC is shown in light gray

In fact, the construction implies that QB
.n � 1; k/ is the induced subcomplex of
QK.n � 1; k/ on X.

As described in steps (B6)–(B9) below, the complex QB
.n � 1; k/ has been
constructed as the union of the complex QR
.n � 1; k/ and a complex, say KC,
isomorphic to QBı.n � 3; k � 1/. The intersection of QR
.n � 1; k/ and KC is
the interior boundary K0 of QR
.n � 1; k/. (See the illustration in Fig. 7a.) By the
induction hypothesis, K0 is isomorphic to QK.n � 4; k � 1/, and by part (i) of the
lemma, it is the induced subcomplex of QR
.n � 1; k/ on vertex set

X0 D
[

A2VC.n�2;k/
fAhn� 1i
;Aıg : (2)
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The said construction of QB
.n � 1; k/ also implies that KC is obtained from
QB
.n � 1; k/ by removing the set of all the vertices of QR
.n � 1; k/ that are not
contained in X0 (cf. Observation 15 below). Comparing (2) to Observation 13, we
find that this set is

Y D fA
 W A 2 V0.n� 1; k/g [ fAı W A 2 V0.n � 2; k/g :

Using Corollary 7 and inspecting the definition of h, we find that the restriction
of h to the vertex set of KC, namely X n Y, is one-to-one. Let LC be the image of
KC under h (thus, h maps KC isomorphically to LC), and define L0 as the image of
K0. (See Fig. 7b.) Furthermore, let K� be the antipodal copy of KC, and let L� be
the image of K� under h. Since h is also one-to-one when restricted to the vertex set
of K�, L� is isomorphic to QB
.n � 3; k � 1/.

It can be shown using the definition of h and Lemma 8 that a vertex A
 or Aı of
QK.n � 1; k/ is mapped by h to L0 if and only if A 2 V0.n � 1; k/ [ V1.n � 1; k/.
Consequently, K0 is mapped isomorphically to L0. Furthermore, it follows that the
intersection of LC and L� equals L0.

We have expressed IB as the union of two complexes, one isomorphic to
QB
.n � 3; k � 1/ and the other one to QBı.n � 3; k � 1/, intersecting in a
subcomplex isomorphic to QK.n � 4; k � 1/. In view of steps (K1)–(K3) below,
this implies that IB is isomorphic to QK.n � 3; k � 1/ as claimed. ut

We can now finish the construction of QB
.n; k/ (see Fig. 8 for a concrete
example):

(B6) We identify the interior boundary of QR
.n; k/ with QK.n � 3; k � 1/ via the
isomorphism of Lemma 14(ii).

(B7) Applying the recursion, we extend this embedding of QK.n � 3; k � 1/ to an
embedding of QBı.n � 2; k � 1/ (note the change of colour).

(B8) We form the complex QB
.n; k/ as the union of QR
.n; k/ (constructed
above) and QBı.n � 2; k � 1/.

(B9) We give an explicit rule to relabel the vertices of QBı.n � 2; k � 1/ with
elements of V.n; k/ in such a way that the labelling of the boundary matches
the original labelling in QR
.n; k/ and each element of V.n; k/ appears as the
label of a vertex of QB
.n; k/ (either a unique non-boundary vertex, or two
antipodal boundary vertices).

Observation 15 Let Y be the set of vertices not contained in the interior boundary
IB of QR
.n; k/. Then the complex QB
.n; k/ n Y, obtained by removing all the
vertices in Y, is isomorphic to QBı.n � 2; k � 1/.

To relabel the vertices of QBı.n � 2; k � 1/ so as to accomplish step (B9), we
will use the mapping gn of Sect. 3; recall that for A 2 V.n � 2; k � 1/,

gn.A/ D
(
.AC 1/[ f1g if n � 2 2 A;

.AC 1/[ fng otherwise.
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Fig. 8 The construction of QB�

.8; 3/. (a) QR�

.8; 3/. (b) QBı

.6; 2/ (deformed so as to match the
interior boundary of QR�

.8; 3/). (c) Filling in QR�

.8; 3/ using QBı

.6; 2/ produces QB�

.8; 3/.
The labelling of the vertices inside the disk is discussed in rule (B9)

We relabel each black vertex A
 of QBı.n � 2; k � 1/ to gn.A/
 (cf. Fig. 8). A
white vertex Aı is relabelled to

gn.A/
ı if A 2 VC.n � 2; k � 1/;

gn�1.A/ı otherwise.

We need to check that any vertex at the interior boundary of QR
.n; k/ is mapped
to itself by gn ı f (gn�1 ı f , respectively). These are the vertices in the set W defined
in Lemma 14(i). Recall that

W D
[

A2VC.n�1;k/
fAhni
;Aıg :
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It follows from Lemma 6 that for A 2 VC.n � 1; k/, gn�1. f .A// D A and
gn. f .Ahni// D Ahni, proving the requested property. Further properties of the
labelling will be proved in Lemmas 16 and 18 below.

We finally construct QK.n; k/ as follows:

(K1) We embed a deformed copy of QB
.n; k/ in R
n�2kC1, with its vertices placed

in the closed upper hemisphere HC of Sn�2k, in such a way that the embedded
complex is boundary-antisymmetric (thus, the boundary QK.n � 1; k/ is
necessarily embedded in the ‘equator’ Sn�2k�1).

(K2) Projecting each vertex of QB
.n; k/ to its antipode in Sn�2k and inverting its
colour, we obtain a copy of QBı.n; k/ in the closed lower hemisphere H� that
matches the former copy at the boundary.

(K3) QK.n; k/ is the result of glueing the above (deformed) copies of QB
.n; k/
and QBı.n; k/ together along their boundaries.

To finish the proof of Theorem 10, we need to establish several lemmas that
verify the required properties of QK.n; k/.

Lemma 16 Each element of V.n; k/ appears as (the label of) a vertex of QK.n; k/.

Proof The assertion is easy to check for n D 2kC 1. If n > 2kC 1, we inductively
assume that it is true for n� 1. Thus, any set A 2 V.n� 1; k/ is the label of a vertex
of QK.n � 1; k/ � QK.n; k/.

By Lemma 4, it is sufficient to consider a set A 2 VC.n; k/. Let B D f .A/,
where B 2 V.n � 2; k � 1/. By the induction hypothesis, B is the label of a vertex
of QK.n � 2; k � 1/, and hence of the complex QBı.n � 2; k � 1/ used in the
construction of QB
.n; k/. We may assume that the vertex is B
 (the argument for
Bı being symmetric). The vertex was labelled with gn.B/ in QB
.n; k/; by Lemma 6,
gn. f .A// D A when A 2 VC.n; k/, so A does appear as a vertex label in QB
.n; k/
and QK.n; k/. ut
Lemma 17 Any edge A
Bı of QR
.n; k/, where A;B 2 V.n � 1; k/, is an edge of
QK.n � 1; k/.
Proof Consider an edge A
Bı of QR
.n; k/ but not of QK.n � 1; k/, where A;B 2
V.n � 1; k/. In the construction of QR
.n; k/, which starts from QK.n � 1; k/, the
edge A
Bı was not added in step (B1) as this step consists in adding cones whose
apex does not belong to QK.n�1; k/. There is an application of rule (B1) where the
equivalence class of A is processed. If L is the interior boundary of the complex
obtained at the point of this application, then A
 is clearly an inside vertex of
Reg.A
;L/. By Observation 2, after step (B1) is completed, A
 is not contained
in the interior boundary K1 of the resulting complex. Consequently, step (B2) does
not influence the set of edges incident with A
. Thus, there is no step where A
Bı
can be added, which is a contradiction. ut
Lemma 18 For any A;B 2 V.n; k/ such that A
 and Bı are adjacent in QK.n; k/,
A \ B D ;.
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Proof We proceed by induction on n. The claim is easy to verify for n D 2k C 1.
Assume that this is not the case; in addition, we may assume that k > 1. Let A
Bı
be an edge of QK.n; k/.

By the induction hypothesis, it may be assumed that A
Bı is an edge of QB
.n; k/
but not of QK.n� 1; k/. Suppose first that A
Bı is an edge of QR
.n; k/. By the fact
that each white vertex of QR
.n; k/ is a vertex of QK.n � 1; k/ and by Lemma 17,
we find that A
 is not a vertex of QK.n � 1; k/. Inspecting steps (B1)–(B2) of the
construction, we observe that there are two possibilities:

• there is a set C 2 V.n � 1; k/ such that A D Chni and C
Bı is an edge of
QK.n � 1; k/, or

• there are sets C 2 V.n�1; k/, D 2 V0.n�1; k/ such that A D Chni, B D Dhn�1i
and C
Dı is an edge of QK.n� 1; k/.

In the first case, C \ B D ; by the induction hypothesis and n … C, so A \ B D ;.
In the second case, we similarly have C\D D ; by the induction hypothesis; since
n � 1 … A and n … B, we conclude that A \ B D ;.

It remains to consider the case that the edge A
Bı is not an edge of QR
.n; k/.
By the construction of QB
.n; k/, f .A/
f .B/ı is an edge of QBı.n � 2; k � 1/. By
the induction hypothesis, f .A/ \ f .B/ D ;. By Lemma 6, since A;B 2 VC.n; k/,
A D gn. f .A// and B D gn. f .B//. The definition of gn shows that A \ B D ; if
one of f .A/, f .B/ contains n � 2. Suppose thus that n � 2 … f .A/ [ f .B/. Then the
.n � 2/-level of both f .A/ and f .B/ is even. Since the vertices f .A/
 and f .B/ı have
different colours, the .n � 2/-levels actually have to be zero by property (P1) of
QK.n � 2; k � 1/. Thus, f .A/; f .B/ 2 V0.n � 2; k � 1/, so f .A/
f .B/ı is an edge of
the exterior boundary QK.n� 3; k� 1/ of QBı.n� 2; k� 1/—but then A
Bı would
be an edge of the exterior boundary of QR
.n; k/, a contradiction. ut

Lemmas 16 and 18 imply part (iii) of Theorem 10. Parts (i) and (iv) follow easily
from the construction. Part (ii) is a consequence of the following lemma:

Lemma 19 The complex QK.n; k/ contains no monochromatic maximal faces.

Proof By induction. The claim is evident for QK.2k C 1; k/. For n > 2k C 1,
let us assume that QK.n � 1; k/ has no monochromatic maximal faces. The
complex QR
.n; k/ is obtained by two operations: adding cones and contract-
ing 1-dimensional monochromatic faces. None of these operations can create a
monochromatic maximal face, so QR
.n; k/ has no such faces. The rest follows
using Lemma 14 and induction. ut

It only remains to check properties (P1)–(P3) of QK.n; k/. This verification is
left to the reader, which concludes the proof of Theorem 10.

Theorem 1 is a direct consequence of Theorem 10 and the results in [4]. Indeed,
let the graph QG.n; k/ be obtained from the associated graph of QK.n; k/ by
identifying antipodal pairs of vertices (and discarding the colours). By Theorem 10
(i)–(ii) and [4, Lemma 3.2], QG.n; k/ is a quadrangulation of the projective space
P

n�2k. Theorem 10 (iii) implies that the quadrangulation is a spanning subgraph
of SG.n; k/, while part (iv) implies that QG.n; k/ contains the .2k C 1/-cycle



526 T. Kaiser and M. Stehlík

QG.2k C 1; k/ and is therefore non-bipartite. Finally, by [4, Theorem 1.1] and the
easy upper bound on �.SG.n; k//, the chromatic number of QG.n; k/ is n � 2kC 2.

5 Conclusion

We conclude this paper with two open problems.
While the proof of Theorem 10 provides a recursive characterisation of the pairs

of sets in V.n; k/ that are adjacent in the graph QG.n; k/, it would be desirable to
define this graph directly, without recursion. We have no such definition so far.

Recall that the Schrijver graph SG.n; k/ is a vertex-critical subgraph of the
Kneser graph KG.n; k/ with the same chromatic number, namely n � 2k C 2. By
Theorem 1, the spanning subgraph QG.n; k/ of SG.n; k/ has the same chromatic
number, and we conjecture that it is the natural next step in the direction set by
Schrijver:

Conjecture 20 For any k � 1 and n � 2kC 1, QG.n; k/ is edge-critical.
The conjecture is clearly true for n D 2k C 1 (odd cycles) and its validity for

n D 2kC 2 can be derived from a result of Gimbel and Thomassen [2].
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Near-Optimal Lower Bounds for �-Nets
for Half-Spaces and Low Complexity Set
Systems

Andrey Kupavskii, Nabil H. Mustafa, and János Pach

Abstract Following groundbreaking work by Haussler and Welzl (1987), the use of
small �-nets has become a standard technique for solving algorithmic and extremal
problems in geometry and learning theory. Two significant recent developments are:
(i) an upper bound on the size of the smallest �-nets for set systems, as a function of
their so-called shallow-cell complexity (Chan, Grant, Könemann, and Sharpe); and
(ii) the construction of a set system whose members can be obtained by intersecting
a point set in R

4 by a family of half-spaces such that the size of any �-net for them
is �.1

�
log 1

�
/ (Pach and Tardos).

The present paper completes both of these avenues of research. We (i) give a
lower bound, matching the result of Chan et al., and (ii) generalize the construction
of Pach and Tardos to half-spaces in R

d; for any d � 4, to show that the general
upper bound, O. d

�
log 1

�
/, of Haussler and Welzl for the size of the smallest �-nets is

tight.
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1 Introduction

Let X be a finite set and let R be a system of subsets of an underlying set containing
X. In computational geometry, the pair .X;R/ is usually called a range space. A
subset X0 � X is called an �-net for .X;R/ if X0 \ R ¤ ; for every R 2 R with
jR\Xj � �jXj. The use of small-sized �-nets in geometrically defined range spaces
has become a standard technique in discrete and computational geometry, with many
combinatorial and algorithmic consequences. In most applications, �-nets precisely
and provably capture the most important quantitative and qualitative properties that
one would expect from a random sample. Typical applications include the existence
of spanning trees and simplicial partitions with low crossing number, upper bounds
for discrepancy of set systems, LP rounding, range searching, streaming algorithms;
see [13, 18].

For any subset Y � X, define the projection of R on Y to be the set system

RjY WD
˚
Y \ R W R 2 R

�
:

The Vapnik-Chervonenkis dimension or, in short, the VC-dimension of the range
space .X;R/ is the minimum integer d such that jRjY j < 2jRj for any subset Y � X
with jYj > d. According to the Sauer–Shelah lemma [21, 23] (discovered earlier by
Vapnik and Chervonenkis [24]), for any range space .X;R/ whose VC-dimension
is at most d and for any subset Y � X, we have jRjY j �Pd

iD0
�jYj

i

� D O.jYjd/.
A straightforward sampling argument shows that every range space .X;R/ has

an �-net of size O. 1
�

log jRjXj/. The remarkable result of Haussler and Welzl [10],
based on the previous work of Vapnik and Chervonenkis [24], shows that much
smaller �-nets exist if we assume that our range space has small VC-dimension.
Haussler and Welzl [10] showed that if the VC-dimension of a range space .X;R/
is at most d, then by picking a random sample of size ‚. d

�
log d

�
/, we obtain an

�-net with positive probability. Actually, they only used the weaker assumption
that jRjY j D O.jYjd/ for every Y � X. This bound was later improved to
.1 C o.1//. d

�
log 1

�
/, as 1

�
! 1 and d is large [11]. In the sequel, we will refer

to this result as the �-net theorem. The key feature of the �-net theorem is that
it guarantees the existence of an �-net whose size is independent of both jXj and
jRjXj. Furthermore, if one only requires the VC-dimension of .X;R/ to be bounded
by d, then this bound cannot be improved. It was shown in [11] that given any � > 0
and integer d � 2, there exist range spaces with VC-dimension at most d, and for
which any �-net must have size at least

�
1 � 2

d C 1
d.dC2/ C o.1/

�
d
�

log 1
�
.

The effectiveness of �-net theory in geometry derives from the fact that most
“geometrically defined” range spaces .X;R/ arising in applications have bounded
VC-dimension and, hence, satisfy the preconditions of the �-net theorem.

There are two important types of geometric set systems, both involving points
and geometric objects in R

d, that are used in such applications. Let R be a family of
possibly unbounded geometric objects in R

d, such as the family of all half-spaces,
all balls, all polytopes with a bounded number of facets, or all semialgebraic sets of
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bounded complexity, i.e., subsets of Rd defined by at most D polynomial equations
or inequalities in the d variables, each of degree at most D. Given a finite set of
points X � R

d, we define the primal range space .X;R/ as the set system “induced
by containment” in the objects from R. Formally, it is a set system with the set of
elements X and sets fX \ R W R 2 Rg. The combinatorial properties of this range
space depend on the projection RjX . Using this terminology, Radon’s theorem [13]
implies that the primal range space on a ground set X, induced by containment in
half-spaces in R

d, has VC-dimension at most dC1 [18]. Thus, by the �-net theorem,
this range space has an �-net of size O. d

�
log 1

�
/.

In many applications, it is natural to consider the dual range space, in which the
roles of the points and ranges are swapped. As above, let R be a family of geometric
objects (ranges) in R

d. Given a finite set of objects S � R, the dual range space
“induced” by them is defined as the set system (hypergraph) on the ground set S,
consisting of the sets Sx WD fS 2 S W x 2 Sg for all x 2 R

d. It can be shown that
if for any X � R

d the VC-dimension of the range space .X;R/ is less than d, then
the VC-dimension of the dual range space induced by any subset of R is less than
2d [13].

Recent progress In many geometric scenarios, however, one can find smaller �-
nets than those whose existence is guaranteed by the �-net theorem. It has been
known for a long time that this is the case, e.g., for primal set systems induced by
containment in balls in R

2 and half-spaces in R
2 and R

3. Over the past two decades,
a number of specialized techniques have been developed to show the existence of
small-sized �-nets for such set systems [3–7, 9, 11, 12, 14, 15, 20, 25, 26]. Based
on these successes, it was generally believed that in most geometric scenarios one
should be able to substantially strengthen the �-net theorem, and obtain perhaps
even a O

�
1
�

�
upper bound for the size of the smallest �-nets. In this direction, there

have been two significant recent developments: one positive and one negative.

Upper bounds Following the work of Clarkson and Varadarajan [9], it has been
gradually realized that if one replaces the condition that the range space .X;R/ has
bounded VC-dimension by a more refined combinatorial property, one can prove
the existence of �-nets of size o. 1

�
log 1

�
/. To formulate this property, we need to

introduce some terminology.
Given a function ' W N ! R

C, we say that the range space .X;R/ has shallow-
cell complexity ' if there exists a constant c D c.R/ > 0 such that, for every
Y � X and for every positive integer l, the number of at most l-element sets in RjY
is O

�jYj � '.jYj/ � lc�. Note that if the VC-dimension of .X;R/ is d, then for every
Y � X, the number of elements of the projection of the set system R to Y satisfies
jRjY j D O.jYjd/. However, the condition that .X;R/ has shallow-cell complexity '
for some function '.n/ D O.nd0

/; 0 < d0 < d � 1 and some constant c D c.R/,
implies not only that jRjY j D O.jYj1Cd0Cc/, but it reveals some nontrivial finer
details about the distribution of the sizes of the smaller members of RjY .

Several of the range spaces mentioned earlier turned out to have low shallow-cell
complexity. For instance, the primal range spaces induced by containment of points
in disks in R

2 or half-spaces in R
3 have shallow-cell complexity '.n/ D O.1/. In
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general, it is known [13] that the primal range space induced by containment of
points by half-spaces in R

d has shallow-cell complexity '.n/ D O
�
nbd=2c�1

�
.

Define the union complexity of a family of objects R, as the maximum number
of faces (boundary pieces) of all dimensions that the union of any n members
of R can have; see [1]. Applying a simple probabilistic technique developed by
Clarkson and Shor [8], one can find an interesting relationship between the union
complexity of a family of objects R and the shallow-cell complexities of the dual
range spaces induced by subsets S � R. Suppose that the union complexity of
a family R of objects in the plane is O

�
n'.n/

�
, for some “well-behaved” non-

decreasing function '. Then the number of at most l-element subsets in the dual
range space induced by any S � R is O

�
l2 � jSjl '. jSjl /

� D O
�jSj'.jSj/l� [22]; i.e.,

the dual range space induced by S has shallow-cell complexity O
�
'.n/

�
. According

to the above definitions, this means that for any S � R and for any positive integer
l, the number of subsets S 0 2 �S�l

�
for which there is a point p0 2 R

2 contained in all

elements of S 0, but in none of the elements of S n S 0, is at most O
�jSj'.jSj/l�. For

small values of l, the points p0 are not heavily covered. Thus, the corresponding cellsT
S2S0 S nST2SnS0 T of the arrangement S are “shallow,” and the number of these

shallow cells is bounded from above. This explains the use of the term “shallow-cell
complexity”.

A series of elegant results [3, 6, 20, 26] illustrate that if the shallow-cell
complexity of a set system is '.n/ D o.n/, then it permits smaller �-nets than what
is guaranteed by the �-net theorem. The following theorem represents the current
state of the art; see [17] for a simple proof of this statement.

Theorem A Let .X;R/ be a range space with shallow-cell complexity '.�/, where
'.n/ D O.nd/ for some constant d. Then, for every � > 0, it has an �-net of size
O
�
1
�

log'.1
�
/
�
, where the constant hidden in the O-notation depends on d.

Proof (Sketch.) The main result in [6] shows the existence of �-nets of size
O
�
1
�

log'.jXj/� for any non-decreasing function '1. To get a bound independent
of jXj, first compute a small .�=2/-approximation A � X for .X;R/ [13]. It is
known that there is such an A with jAj D O

�
d
�2

log 1
�

� D O. 1
�3
/, and for any R 2 R,

we have jR\Aj
jAj � jRj

jXj � �
2
. In particular, any R 2 R with jRj � �jXj contains at

least an �
2
-fraction of the elements of A. Therefore, an .�=2/-net for .A;RjA/ is an

�-net for .X;R/. Computing an .�=2/-net for .A;RjA/ gives the required set of size
O
�
2
�

log'.jAj/� D O
�
1
�

log'. 1
�3
/
� D O

�
1
�

log'.1
�
/
�
. ut

Note that in the bounds on the sizes of �-nets based on VC-dimension, we
explicitly state the dependence on d. On the other hand, in the bounds based on
shallow-cell complexity, we will assume that d is a constant.

Lower bounds It was conjectured for a long time [14] that most geometrically
defined range spaces of bounded Vapnik-Chervonenkis dimension have “linear-
sized” �-nets, i.e., �-nets of size O

�
1
�

�
. These hopes were shattered by Alon [2],

1Their result is in fact for the more general problem of small weight �-nets.
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who established a superlinear (but barely superlinear!) lower bound on the size of
�-nets for the primal range space induced by straight lines in the plane. Shortly after,
Pach and Tardos [19] managed to establish a tight lower bound of�.1

�
log 1

�
/ for the

size of �-nets in primal range spaces induced by half-spaces in R
4, and in several

other geometric scenarios.

Theorem B ([19]) Let F denote the family of half-spaces in R
4. For any � > 0 and

any sufficiently large integer n, there exists a set X � R
4 of n points such that in the

(primal) range spaces .X;F/, the size of every �-net is at least 1
9�

log 1
�
.

Our contributions The aim of this paper is to complete both avenues of research
opened by Theorems A and B. Our first theorem, proved in Sect. 2, generalizes
Theorem B to R

d, for d � 4. It provides an asymptotically tight bound in terms of
both " and d, and hence completely settles the �-net problem for half-spaces.

Theorem 1 For any integer d � 4, real � > 0 and any sufficiently large integer
n � n0.�/, there exist primal range spaces .X;F/ induced by n-element point sets
X and collections of half-spaces F in R

d such that the size of every �-net for .X;F/
is at least bd=4c

9�
log 1

�
.

As was mentioned in the first subsection, for any d � 1, the VC-dimension of
any range space induced by points and half-spaces in R

d is at most d C 1. Thus,
Theorem 1 matches, up to a constant factor independent of d and �, the upper bound
implied by the �-net theorem of Haussler and Welzl. Noga Alon pointed out to us
that it is very easy to show that for a fixed � > 0, the lower bound for �-nets in range
spaces induced by half-spaces in R

d has to grow at least linearly in d. To see this,
suppose that we want to obtain a 1

3
-net, say, for the range space induced by open

half-spaces on a set X of 3d points in general position in R
d. Notice that for this we

need at least d C 1 points. Indeed, any d points of X span a hyperplane, and one of
the open half-spaces determined by this hyperplane contains at least jXj

3
points.

The key element of the proof of Theorem B [19] was to construct a set B of
.k C 3/2k�2 axis-parallel rectangles in the plane such that for any subset of them
there is a set Q of at most 2k�1 points that hit none of the rectangles that belong to
this subset and all the rectangles in its complement (the precise statement is given in
Sect. 3). We generalize this statement to R

d by constructing roughly d
2

times more
axis-parallel boxes2 than in the planar case, but the size of the set Q remains the
same size. In Sect. 3, we prove

Lemma 2 Let k; d � 2 be integers. Then there exists a set B of b d
2
c.kC3/2k�2 axis-

parallel boxes in R
d such that for any subset S � B, one can find a 2k�1-element

set Q of points with the property that

(i) Q \ B ¤ ; for any B 2 B n S, and
(ii) Q \ B D ; for any B 2 S.

2An axis-parallel box in R
d is the Cartesian product of d intervals. For simplicity, in the sequel,

they will be called “boxes”.
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In the next section we show how this lemma implies the bound of Theorem 1,
which is b d

4
c times better than the bound in Theorem B. The proof of Lemma 2 will

be given in Sect. 3.
In Sect. 4, we show that the bound in Theorem A cannot be improved.

Definition 1 A function ' W RC ! R
C is called submultiplicative if there exists a

x0 2 R
C such that for every ˛; 0 < ˛ < 1; and x > x0, we have '˛.x1=˛/ � '.x/.

Some examples of submultiplicative functions are xc for any positive c, 2
p

log x,
log x, log log x, log� x, and the inverse Ackermann function.

Theorem 3 Let d be a fixed positive integer and let ' W RC ! R
C; '.n/!1; be

a monotonically increasing submultiplicative function that tends to infinity such that
'.n/ D O.nd/. Then, for any � > 0, there exist range spaces .X;F/ that have

(i) shallow-cell complexity '.�/, and for which
(ii) the size of any �-net is �.1

�
log'.1

�
//.

Theorem 3 becomes interesting when '.n/ D o.n/ and the upper bound
O
�
1
�

log'.1
�
/
�

in Theorem A improves on the general upper bound O
�
1
�

log 1
�

�

guaranteed by the �-net theorem. Theorem 3 shows that, even if '.n/ D o.n/, this
improved bound is asymptotically tight.

The best upper and lower bounds for the size of small �-nets in range spaces with
a given shallow-cell complexity '.�/ are based on purely combinatorial arguments,
and they imply directly or indirectly all known results on �-nets in geometrically
defined range spaces (see [16] for a detailed discussion). This suggests that the
introduction of the notion of shallow-cell complexity provided the right framework
for �-net theory.

2 Proof of Theorem 1 Using Lemma 2

Let B be a set of d-dimensional axis-parallel boxes in R
d. We recall that the dual

range space induced by B is the set system (hypergraph) on the ground set B
consisting of the sets Bp WD fB 2 B W p 2 Bg for all p 2 R

d.

Lemma 4 Let d � 1 be an integer, and consider the dual range space induced by
a set of axis-parallel boxes B in R

d. Then there exists a function f W B ! R
2d such

that for every point p 2 R
d, there is a half-space H in R

2d with ff .B/ W B 2 Bpg D
H \ ff .B/ W B 2 Bg.
Proof By translation, we can assume that all boxes in B lie in the positive orthant
of Rd.

Consider the function g W B! R
2d mapping a box B D Œxl

1; x
r
1� 
 Œxl

2; x
r
2� 
 � � � 


Œxl
d; x

r
d� to the point .xl

1; 1=xr
1; x

l
2; 1=xr

2; : : : ; x
l
d; 1=xr

d/ lying in the positive orthant of
R
2d. Furthermore, for any p D .a1; a2; : : : ; ad/ 2 R

d in the positive orthant, let Cp

denote the box Œ0; a1� 
 Œ0; 1=a1� 
 Œ0; a2� 
 Œ0; 1=a2� 
 � � � 
 Œ0; ad� 
 Œ0; 1=ad� in
R
2d. Clearly, a point p lies in a box B in R

d if and only if g.B/ 2 Cp in R
2d. Thus,
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g maps the set of boxes in B to a set of points in R
2d, such that for any point p in the

positive orthant of Rd, the set of boxes Bp � B that contain p are mapped to the set
of points that belong to the box Cp. (Note that Cp contains the origin.)

We complete the proof by applying the following simple transformation ([19,
Lemma 2.3]) to the set Q D g.B/: to each point q 2 Q in the positive orthant
of R2d, we can assign another point q0 in the positive orthant of R2d such that for
each box in R

2d that contains the origin, there is a half-space with the property that
q belongs to the box if and only if q0 belongs to the corresponding half-space. The
mapping f .B/ D .g.B//0 for every B 2 B meets the requirements of the lemma. ut
Lemma 5 Given any integer d � 2, a real number � > 0, and a sufficiently large
integer n � n0.�/, there exists a set B of n axis-parallel boxes in R

d such that the

size of any �-net for the dual set system induced by B is at least

�
d
2

˘

9�
log 1

�
.

Proof Let � D ˛
2k�1 with k 2 N; k � 2; and 1

3
� ˛ � 2

3
. Applying Lemma 2, we

obtain a set B of
�

d
2

˘
.k C 3/2k�2 boxes in R

d. We claim that the dual range space
induced by these boxes does not admit an �-net of size .1 � ˛/jBj.

Assume for contradiction that there is an �-net S � B with jSj � .1 � ˛/jBj.
According to Lemma 2, there exists a set Q of 2k�1 points in R

d with the property
that no box in S contains any point of Q, but every member of B n S does. By the
pigeonhole principle, there is a point p 2 Q contained in at least

jB n Sj
jQj �

˛jBj
jQj D

˛jBj
2k�1 D �jBj

members of B n S. Thus, none of the at least �jBj members of B hit by p belong
to S, contradicting the assumption that S was an �-net.

Hence, the size of any �-net in the dual range space induced by B is at least

.1�˛/jBj D .1�˛/
�

d

2

�

.kC3/2k�2 D .1 � ˛/˛
2

�
�

d

2

�

� kC 3
�
� 1

9
�
�

d

2

�

� 1
�
�log

1

�
:

The system of boxes constructed above has a fixed number of elements,
depending on the value of 1=�. We can obtain arbitrarily large constructions by
replacing each box of B 2 B with several slightly translated copies of B (we refer
the reader to [19] for details). ut

Now we are in a position to establish Theorem 1. By Lemma 4, any lower bound
for the size of �-nets in the dual range space induced by the set B of boxes in R

d

gives the same lower bound for the size of an �-net in the (primal) range space on
the set of points f .B/ � R

2d corresponding to these boxes, in which the ranges are
half-spaces in R

2d. For any integer d � 4 and any real � > 0, Lemma 5 guarantees
the existence of a set B of n axis-parallel boxes in R

bd=2c such that any �-net for the

dual set system induced by B has size at least

�
bd=2c
2

˘

9�
log 1

�
D bd=4c

9�
log 1

�
. This fact,

together with Lemma 4, implies the stated bound. ut
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3 Proof of Lemma 2

The proof of Lemma 2 is based on the following key statement.

Lemma C ([19]) Let k � 2 be an integer. Then there exists a set R of .kC 3/2k�2
axis-parallel rectangles in R

2 such that for any S � R, there exists a 2k�1-element
set Q of points in R

2 with the property that

(i) Q \ R ¤ ; for any R 2 R n S, and
(ii) Q \ R D ; for any R 2 S.

Denote the x- and y-coordinates of a point p 2 R
2 by x.p/ and y.p/ respectively,

and set m D �
d
2

˘
. Let R D fR1; : : : ;Rtg, t D .k C 3/2k�2, be a set of rectangles

satisfying the conditions of Lemma C. By scaling, one can assume that R � Œ0; 1�2
for every R 2 R.

Given that a box in R
d is the product of d intervals, the idea of the construction

is to ‘lift’ the rectangles in Lemma C, i.e., the set R, to boxes in R
d. So a rectangle

R 2 R can be mapped to a box in R
d which is the product d intervals: the first two

being the intervals defining R, and the other d � 2 intervals in the product being the
full interval Œ0; 1�. One can then again lift the same set R in a ‘non-interfering’ way
by mapping R to a box whose 3-rd and 4-th intervals are the intervals of R and the
remaining intervals are Œ0; 1�. In this way, by packing intervals of each R 2 R into
disjoint coordinates, one can lift R m times to get a set of

�
d
2

˘ � jRj boxes in R
d.

Formally, for i D 1 : : :m, define the injective functions fi that map a point in R
2

to a product of d intervals in R
d, as follows.

fi.p/ D Œ0; 1� 
 � � � 
 Œ0; 1�
„ ƒ‚ …

2i�2 intervals


x.p/ 
 y.p/ 
 Œ0; 1� 
 � � � 
 Œ0; 1�
„ ƒ‚ …

d�2i intervals

; p 2 R
2:

This mapping lifts each rectangle R 2 R to the box fi.R/ D ffi.p/ W p 2 Rg, and
each set of rectangles R0 � R to the set of boxes fi.R0/ D ffi.R/ W R 2 R0g.

We now show that B D Sm
iD1 fi.R/ is the desired set of

�
d
2

˘
.k C 3/2k�2 boxes

in R
d. Let S � B be a fixed set of boxes. For any index i 2 Œ1;m�, set Ri � R to

be the set of preimage rectangles under fi of the boxes in S \ fi.R/, i.e., Ri satisfies
S \ fi.R/ D fi.Ri/. Let Qi D fqi

1; : : : ; q
i
2k�1g � R

2 be the set of points hitting all
rectangles in R nRi and no rectangle in Ri; such a set exists by Lemma C. Now we
argue that the set

Q D

8
<̂

:̂

n�
x.q1j /; y.q

1
j /; : : : ; x.q

m
j /; y.q

m
j /
� W j 2 Œ1; 2k�1�

o
if d is even,

n�
x.q1j /; y.q

1
j /; : : : ; x.q

m
j /; y.q

m
j /; 1

� W j 2 Œ1; 2k�1�
o

if d is odd,

of 2k�1 points in R
d is the required set for S; i.e., Q hits all the boxes in B n S, and

none of the boxes in B 2 S. Take any box B 2 B n S; then there exists an index i
and a rectangle R 2 R nRi such that R is the preimage rectangle of B under fi. By
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Lemma C, R contains a point q 2 Qi, and thus B D fi.R/ contains the point q0 2 Q
with x.q/ and y.q/ in its .2i � 1/-th and 2i-th coordinates, as all the remaining
intervals defining B are Œ0; 1� and so each such interval contains the corresponding
coordinate of q0. On the other hand, let B 2 S be a box with the preimage rectangle
R 2 Ri. By Lemma C, R is not hit by any point of Qi, and thus for any point q0 2 Q,
the .2i� 1/-th and 2i-th coordinates cannot both be contained in the corresponding
two intervals defining B. Therefore, q0 does not hit B. ut

4 Proof of Theorem 3

The goal of this section is to establish lower bounds on the sizes of �-nets in range
spaces with given shallow-cell complexity '.�/, where '.�/ is a submultiplicative
function. We will use the following property of submultiplicative functions.

Claim 6 Let ' W RC ! R
C be a submultiplicative function. Then

(i) for all sufficiently large x; y 2 R
C, we have '.xy/ � '.x/'.y/, and

(ii) if there exists a sufficiently large x 2 R
C and a constant c such that '.x/ � xc,

then '.n/ � nc for every n � x.

Proof Both of these properties follow immediately from the submultiplicativity of
'.�/:

.i/: '.xy/ D �'.xy/
�logxy x � �'.xy/

�logxy y � '�.xy/logxy x
� � '�.xy/logxy y

� D '.x/ � '.y/:
.ii/: ' logn x.n/ � '.x/ � xc H) '.n/ � x

c
logn x D xc logx n D nc:

ut
Theorem 3 is a consequence of the following more precise statement.

Theorem 7 Let ' W RC ! R
C be a monotonically increasing submultiplicative

function which tends to infinity and is bounded from above by a polynomial of
constant degree. For any 0 < ı < 1

10
, one can find an �0 > 0 with the following

property: for any 0 < � < �0, there exists a range space with shallow-cell

complexity '.�/ on a set of n D log '
�
1
�

�

�
elements, in which the size of any �-net

is at least

�
1
2�ı
�

�
log'

�
1
�

�
.

Proof The parameters of the range space are as follows:

n D log'
�
1
�

�

�
; m D �n D log'


1

�

�

; p D n'1�2ı.n/
�n

m

� :

Let d be the smallest integer such that '.n/ D O.nd/. By Claim 6, part .ii/, for any
large enough n0, we have .n0/d�1 � '.n0/ � c1.n0/d, for a suitable constant c1 � 1.
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In the most interesting case where '.n/ D o.n/, we have d D 1. For a small enough
�, we have c1 � log'

�
1
�

�
, so that

m D log'


1

�

�

� log
�
c1�
�d
� � d log

c1
�
� d log n: (1)

Consider a range space .Œn�;F/ with a ground set Œn� D f1; 2; : : : ; ng and with a
system of m-element subsets F , where each m-element subset of Œn� is added to F
independently with probability p. The next claim follows by a routine application of
the Chernoff bound.

Claim 8 With high probability, jF j � 2n'1�2ı.n/.
Theorem 7 follows by combining the next two lemmas that show that, with high

probability, the range space .Œn�;F/

(i) does not admit an �-net of size less than
1
2�ı
�

log'.1
�
/, and

(ii) has shallow-cell complexity '.�/.
For the proofs, we need to assume that n D n.ı; d; '/ is a sufficiently large constant,
or, equivalently, that �0 D �0.ı; d/ is sufficiently small.

Lemma 9 With high probability, the range space .Œn�;F/ has shallow-cell com-
plexity '.�/.

The reason why this lemma holds is that for any X � Œn� and any k, it is very
unlikely that the number of at most k-element sets exceeds the number permitted
by the shallow-cell complexity condition. To bound the probability of the union of
these events for all X and k, we simply use the union bound.

Proof It is enough to show that for all sufficiently large x � x0, every X � Œn�; jXj D
x, and every l � m, the number of sets of size exactly l in F jX is O.x'.x//, as
this implies that the number of sets in F jX of size at most l is O

�
x'.x/l

�
. In the

computations below, we will also assume that l � d C 1 � 2; otherwise if l � d,
and assuming x � x0 � 2d, we have

 
x

l

!

�
 

x

d

!

� xd � x'.x/;

where the last inequality follows by the assumption on '.x/, provided that x is
sufficiently large. We distinguish two cases.

Case 1: x > n
'ı=d.x/

. In this case, we trivially upper-bound jF jXj by jF j. By Claim 8,
with high probability, we have

jF j � 2n � '1�2ı.n/ � 2n �
�
'.x/ � '

�n

x

		1�2ı �
by Claim 6

�

� 2n �
�
'.x/ � '�'ı=d.x/

�	1�2ı �
as

n

x
� 'ı=d.x/

�
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� 2n �
�

c1'.x/'
ı.x/

	1�2ı �
using '.t/ � c1t

d
�

� 2c01n'.x/1�ı � 2c01x'.x/1�ıCı=d D O.x'.x//:

Case 2: x � n
'ı=d.x/

. Denote the largest integer x that satisfies this inequality by x1.

It is clear that x1 D o.n/ (recall that '.�/ is monotonically increasing and tends to
infinity). We also denote the system of all l-element subsets of F jX by F jlX and the
set of all l-element subsets of X by

�X
l

�
. Let E be the event that F does not have the

required '.�/-shallow-cell complexity property. Then PrŒE� � Pm
lD2 PrŒEl�, where

El is the event that for some X � Œn�, jXj D x, there are more than x'.x/ elements
in F jlX . Then, for any fixed l � dC 1 � 2, we have

PrŒEl� �
x1X

xDx0

Pr
h
9X � Œn�; jXj D x; jF jlXj > x'.x/

i

�
x1X

xDx0

 
n

x

! .x
l/X

sDdx'.x/e
Pr
h
For a fixed X; jXj D x; jfS 2 F jX; jSj D lgj D s

i

�
x1X

xDx0

 
n

x

! .x
l/X

sDdx'.x/e

 �x
l

�

s

!

Pr
h
For a fixed X; jXj D x;S �

 
X

l

!

; jSj D s;

we have F jlX D S
i

�
x1X

xDx0

 
n

x

! .x
l/X

sDdx'.x/e

 �x
l

�

s

!
�
1 � .1 � p/.

n�x
m�l/

	s
.1 � p/.

n�x
m�l/..

x
l/�s/ (2)

�
x1X

xDx0

.x
l/X

sDdx'.x/e

�en

x

	x
 

e
�

ex
l

�l

s

!s �
p

 
n � x

m � l

!
	s

(3)

�
x1X

xDx0

.x
l/X

sDdx'.x/e

�en

x

	x
 

elC1xl�1

ll'.x/
p

 
n

m

!
ml

.n � x �m/l

!s

(4)

�
x1X

xDx0

.x
l/X

sDdx'.x/e

�en

x

	x
�emx

n

	l�1 e2m'1�2ı.n/
'.x/

�s

(5)

In the transition to the expression (3), we used several times .i/ the bound
�a

b

� �
�

ea
b

�b
for any a; b 2 N; .ii/ the inequality .1 � p/b � 1 � bp for any integer b � 1

and real 0 � p � 1; and .iii/ we upper-bounded the last factor of (2) by 1.
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In the transition from (3) to (4) we lower-bounded s by x'.x/. We also used the
estimate

�n�x
m�l

� � �n
m

�
ml

.n�x�m/l
; which can be verified as follows.

 
n � x

m � l

!

D
 

n � x

m

!
l�1Y

iD0

m � i

n � x �mC .iC 1/

�
 

n � x

m

!
� m

n � x �m

	l �
 

n

m

!
ml

.n � x �m/l
:

Finally, to obtain (5), we substituted the formula for p and used the fact that

ll.n � x � m/l D �l � .n � x �m/
�l �

�
l � n

2

	l � nl;

as x � x1 D o.n/, m D �n � n
4

for � < �0 � 1=4 and l � 2.
Denote x2 D

˙
n1�ı

�
: We split the expression (5) into two sums †1 and †2. Let

†1 WD
x2�1X

xDx0

.x
l/X

sDdx'.x/e

�en

x

	x
�emx

n

	l�1 e2m'1�2ı.n/
'.x/

�s

†2 WD
x1X

xDx2

.x
l/X

sDdx'.x/e

�en

x

	x
�emx

n

	l�1 e2m'1�2ı.n/
'.x/

�s

These two sums will be bounded separately. We have

†1 �
x2�1X

xDx0

.x
l/X

sDdx'.x/e

�en

x

	x
�emx

n

	l�1 c1�2ı1 e2mnd�2dı

xd�2dı'2ı.x/

�s

(6)

�
x2�1X

xDx0

.x
l/X

sDdx'.x/e

�en

x

	x
�emx

n

	l�1�dC2dı
CmdC1�2dı

�s

(for some C > 0/

�
x2�1X

xDx0

.x
l/X

sDdx'.x/e

�en

x

	x ��
n�ı=2

�l�1�dC2dı
CmdC1

	s
(7)

�
x2�1X

xDx0

xl
�en

x

	x �
n�

ı
2 	2dın

ı2

2

	x'.x/ �
x2�1X

xDx0

xl
�en

x

	x
n�

x'.x/dı2

2 (8)

�
x2�1X

xDx0

n2x� x'.x/dı2

2 �
x2�1X

xDx0

n�2x � n

n2x0
D o


1

m

�

: (9)
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To obtain (6), we used the property that '.n/ � '.x/'� n
x

� � c1'.x/
�

n
x

�d
, provided

that n; x; n
x are sufficiently large. To establish (7), we used the fact that x � x2 D n1�ı

and that em � ed log n � nı=2. In the transition to (8), we needed that l � dC1; d �
1 and that CmdC1 � C.d log n/dC1 D o

�
nı

2=2
�
. Then we lower-bounded s by x'.x/.

To arrive at (9), we used that l � x. The last inequality follows from the fact that x0
is large enough, so that '.x/ � '.x0/ � 8=

�
dı2

�
and that m D o.n/.

Next, we turn to bounding†2. First, observe that

'1�2ı.n/ � ' 1�2ı
1�ı .n1�ı/ � ' 1�2ı

1�ı .x/ � '1�ı.x/;

where we used the submultiplicativity and monotonicity of the function '.n/ and
the fact that x � x2 D dn1�ıe. Second, note by that restricting � to be small enough,
by the submultiplicativity of '.�/, we have that for any x � x2,

m � log'


1

�

�

� 'ı=4

1

�

�

� 'ı=3.x2/ � 'ı=3.x/: (10)

Substituting the bound for '1�2ı.n/ in †2, setting C D e2, and by (10), we obtain

†2 �
x1X

xDx2

.x
l/X

sDdx'.x/e

�en

x

	x
�emx

n

	l�1
C'�2ı=3.x/

�s

�
x1X

xDx2

xl
�en

x

	x �emx

n
C'�2ı=3.x/

	x'.x/
(11)

�
x1X

xDx2

�n

x

	x�x'.x/ �
e1Cx=.x'.x//mxl=.x'.x//C'�2ı=3.x/

�x'.x/

�
x1X

xDx2

�n

x

	x�x'.x/ �
C0'�ı=3.x/

�x'.x/
.for some constant C0 > 0/ (12)

�n


n

x1

�x2�x2'.x2/ �
C'�ı=3.x2/

�x2'.x2/ �


n

x1

�x2�x2'.x2/

(13)

D
�x1

n

	x2'.x2/�x2 D o


1

m

�

:

In the transition to (11), we used that l � 2 and n1�ı � x1 � n='ı=d.x1/, which
implies that x � x1 � n='ı=2d.n/ and, therefore,

emx < e log'.1=�/
n

'ı=2d.n/
� e log'.n/

n

'ı=2d.n/
� n

'ı=3d.n/
� n:
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To get (12), we used that for some constant c > 1 we have xl=.x'.x// � cm='.x/ �
clog '.x/='.x/ D O.1/ and that m � 'ı=3.x/ for x � x2 by (10). To obtain (13), observe
that n1=.x2'.x2// D O.1/. At the last equation, we used that x1 D o.n/, ne=x1 ! 1
as n!1 and that x2'.x2/ � x2 � x2 D �.n1�ı/.

We have shown that for every l D 2; : : : ;m, we have PrŒEl� D o.1=m/; as m tends
to infinity. Thus, we can conclude that PrŒE� �Pm

lD2 PrŒEl� D o.1/ and, hence, with
high probability the range space .Œn�;F/ has shallow-cell complexity '.:/. ut

Now we are in a position to prove that with high probability the range space
.Œn�;F/ does not admit a small �-net.

Lemma 10 With high probability, the size of any �-net of the range space .Œn�;F/

is at least

�
1
2�ı
�

�
log'

�
1
�

�
.

Proof Denote by � the probability that the range space has an �-net of size t D�
1
2�ı
�

�
log'

�
1
�

� D � 1
2
� ı�n. Then we have

� � X

X�Œn�
jXjDt

Pr
�
X is an �-net for F� �

 
n

t

!

.1� p/.
n�t

m / �
 

n

t

!

e�p.n�t
m / � 2ne�n'ı=2.n/ D o.1/:

(14)

To verify the last two inequalities, notice that, since 1 � ax > e�bx for b > a; 0 <
x < 1

a � 1
b , we have

p

 
n� t

m

!

� p

 
n

m

!
n� m� t

n� t

�t

� n'1�2ı.n/



1� m

n� t

�t

D n'1�2ı.n/

 

1� m

. 1
2
C ı/n

!t

� n'1�2ı.n/e
�

mt
1
2 .1Cı/n

D n'1�2ı.n/e�
1�2ı
1Cı log '. 1� / D n'1�2ı.n/'�

1�2ı
1Cı

�1

�

� � n'1�2ı.n/'�
1�2ı
1Cı

�
n
� � n'ı=2.n/:

Here the last but one inequality follows from n � 1
�

and from the monotonicity of
'.�/. The last inequality holds, because ı � 1=10. ut
Thus, Lemmas 9 and 10 imply that with high probability the range space .Œn�;F/ has

shallow-cell complexity '.�/ and it admits no �-net of size less than

�
1
2�ı
�

�
log'

�
1
�

�
.

This completes the proof of the theorem. ut
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Random Simplicial Complexes:
Around the Phase Transition

Nathan Linial and Yuval Peled

Abstract This article surveys some of the work done in recent years on random
simplicial complexes. We mostly consider higher-dimensional analogs of the well
known phase transition in G.n; p/ theory that occurs at p D 1

n . Our main objective is
to provide a more streamlined and unified perspective of some of the papers in this
area.

1 Introduction

There are at least two different perspectives from which our subject can be viewed.
We survey some recent developments in the emerging field of high-dimensional
combinatorics. However, these results can be viewed as well as part of an ongoing
effort to apply the probabilistic method in topology. The systematic study of
random graphs was started by Erdős and Rényi in the early 1960s and had a major
impact on discrete mathematics, computer science and engineering. Since graphs
are one-dimensional simplicial complexes, why not develop an analogous theory of
d-dimensional random simplicial complexes for all d � 1? To this end, an analog
of Erdős and Rényi’s G.n; p/ model, called Yd.n; p/, was introduced in [12]. Such
a simplicial complex Y is d-dimensional, it has n vertices and has a full .d � 1/-
dimensional skeleton. Each d-face is placed in Y independently with probability
p D p.n/. Note that Y1.n; p/ is identical with G.n; p/. Throughout the paper
we consider a fixed dimension d > 1 and investigate the asymptotic topological
properties of Yd.n; p/. We say that a property holds asymptotically-almost-surely
(a.a.s.) if its probability tends to 1 as n tends to infinity.

One of the most natural questions to ask in any model of random graphs concerns
graph connectivity. As Erdős and Rényi famously showed, the threshold for graph
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connectivity in G.n; p/ is p D ln n
n . To draw the analogy from a topological

perspective, one should seek the threshold for the vanishing of the .d � 1/-st
homology. This indeed was the motivating problem in [12]. As that paper showed,
and together with subsequent work [17] this threshold in Yd.n; p/ is p D d ln n

n . Here
the coefficients can come from any fixed finite abelian group. The same question
for integral .d� 1/-st homology has attracted considerable attention and the answer
is believed to be the same. This was recently confirmed for d D 2 [15], and is
not yet fully resolved for higher dimensions (but see [10]). The threshold for the
vanishing of the fundamental group of Y2.n; p/ is fairly well (but still not perfectly)
understood [7, 11].

Since we tend to work by analogy with the G.n; p/ theory, it is a very challenging
problem to seek a high-dimensional counterpart to the phase transition that occurs
at p D 1

n . It is here that the random graph a.a.s. acquires cycles. Namely, for every
0 < c < 1 there is a 0 < q D q.c/ < 1 such that a graph in G.n; c

n / is a forest with
probability qC on.1/, but for p � 1

n , a G.n; p/ graph has, a.a.s. at least one cycle.
These notions have natural analogs in higher-dimensional complexes that suggest
what is being sought. However, even more famously, a giant connected component
with �.n/ vertices emerges at p D 1

n . Since there is no natural notion of connected
components at dimensions d > 1, it is not even clear what to ask. Finding the correct
framework for asking this question and discovering the answer is indeed one of the
main accomplishments of the research that we survey here.

Another reason that makes the high-dimensional scenario more complicated than
the graph-theoretic picture is that there are several natural analogs for acyclicity. A
.d � 1/-face � in a d-dimensional complex Y is free if it is contained in exactly one
d-dimensional face � of Y. In the corresponding elementary collapse step, which is
a special case of homotopy equivalence, � and � are removed from Y. We say that
Y is d-collapsible if it is possible to eliminate all its d-faces by a series of elementary
collapses. Otherwise, the maximal subcomplex of Y in which all .d � 1/-faces are
contained in at least two d-faces is called the core of Y. Note that a graph (i.e., a
1-dimensional complex) is 1-collapsible if and only if it is acyclic, i.e., a forest.

A d-dimensional complex Y is said to be d-acyclic if its d-th homology group
vanishes. Namely, if the d-dimensional boundary matrix @d.Y/ has a trivial right
kernel. Unless otherwise stated, we consider this matrix over the reals. The real
d-Betti number of Y is ˇd.YIR/ WD dimHd.YIR/ D dim.ker@d.Y//.

Whereas acyclicity and 1-collapsibility are equivalent for graphs, this is no longer
the case for d-dimensional complexes. Clearly, a d-collapsible simplicial complex
has a trivial d-th homology, but the reverse implication does not hold in dimension
d � 2.

In this view, there are now two potentially separate thresholds to determine in
Yd.n; p/: For d-collapsibility and for the vanishing of the d-th homology. These
questions were answered and the respective thresholds were determined in a series
of four papers. A lower bound on the threshold for d-collapsibility was found in [6]
and a matching upper bound was proved in [4]. An upper bound on the threshold
for the vanishing of the d-th homology was found in [5], with a recent matching
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Table 1 The critical constants �d and cd

d 2 3 4 5 10 100 1000

�d 2.455 3.089 3.509 3.822 4.749 7.555 10.175

cd 2.754 3.907 4.962 5.984 11� 10�3:73 101� 10�41:8 1001� 10�431:7

lower bound for real homology [13]. We conjecture that the same bound holds for
all coefficient rings, but this remains open at present. In the present article we note
an error in the proof that is presented in [4], and we indicate how to overcome it.
The main theorem in the paper is correct, and here we also derive some additional
information on the face numbers of the core.

The purpose of this paper is to survey these results and present the main
ingredients of the proofs. In particular, we highlight the key role of the local
structure of random complexes in all these proofs.

Both thresholds are of the form p D c
n . Namely there is a constant c D �d

corresponding to the d-collapsibility threshold and c D cd for acyclicity. As
functions of the dimension d, the constants �d and cd differ substantially. Our results
allow us to numerically compute them to desirable accuracy (See Table 1).

We briefly refer to a d-dimensional complexes as a d-complex. Before stating
the theorems, a small technical remark is in order. An obvious obstacle for a d-
complex Y to be either d-collapsible or d-acyclic is that it contains the boundary of
a .dC 1/-simplex @�dC1, i.e. all the d C 2 d-faces that are spanned by some dC 2
vertices. In the random complex Yd

�
n; c

n

�
, these objects appear with probability

bounded away from both zero and one, and it is easy to see that their number is
Poisson distributed with a constant expectation. In particular, Yd

�
n; c

n

�
is @�dC1-

free with positive probability. There are several ways to go around this technical
difficulty. In [6] a model of random complexes conditioned on being @�dC1-free
was considered, which allowed a cleaner form for the theorems. Here we work with
the simple binomial model, and consequently must mention these simplices.

We turn to the main theorem. Let d � 2 be an integer, c > 0 real and denote
the core of Y D Yd

�
n; c

n

�
by QY . We define �d as the minimum of the function

 .x/ WD � ln x
.1�x/d

; 0 < x < 1. Furthermore, we let x� be the unique root in .0; 1/
of .dC 1/.1� x/C .1C dx/ ln x D 0; and cd WD  .x�/.

In addition, for an integer k and � > 0 real, we let ‰k.�/ WD PrŒPoi.�/ � k�, and
t D t.c; d/ be the smallest positive root of

t D e�c.1�t/d ; (1)

or equivalently 1 � t D ‰1.c.1 � t/d/.

Theorem 1.1 Let d � 2 be an integer, c > 0 real, and Y D Yd
�
n; c

n

�
.

(I) The collapsible regime: If c < �d then a.a.s. either Y is d-collapsible or its
core is comprised of Od.1/ vertex disjoint @�dC1’s.

(II) The intermediate regime: If �d < c < cd then a.a.s.
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(a) Y is not d-collapsible. Moreover, its core QY contains a constant fraction of
the .d � 1/-faces:

fd�1. QY/ D ‰2.c.1�t/d/

 
n

d

!

.1Co.1//; fd. QY/ D c

n

 
n

dC 1

!

.1�t/dC1.1Co.1//:

(2)
In particular, fd. QY/ < fd�1. QY/.

(b) Either Y is d-acyclic or Hd.YIR/ is generated by Od.1/ vertex disjoint
@�dC1’s.

(III) The cyclic regime: If c > cd then a.a.s. Hd.YIR/ is non-trivial. Furthermore,
fd�1. QY/ and fd. QY/ still satisfy equation (2), but in this regime fd�1. QY/ < fd. QY/
and

ˇd.Y/ D


c

dC 1.1 � t/dC1 � .1 � t/C ct.1 � t/d
� 

n

d

!

.1C o.1//

D � fd. QY/� fd�1. QY/
�
.1C o.1//:

See an illustration of Theorem 1.1 for d D 2 in Fig. 1. It is not hard to determine the
asymptotic behaviour (in d) of these expressions, namely,

cd D .d C 1/.1 � e�.dC1//C Od.d
3e�2d/

and

�d D .1C od.1// ln d:

Fig. 1 Illustration of Theorem 1.1 for d D 2. Here f1; f2 are the face numbers of QY and ˇ2 is the
second Betti number. The functions are normalized by

�
n
2

�
, and n!1
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Consequently, there is a wide range of the parameter p D p.d; n/ for which almost
all the complexes in Yd.n; p/ are acyclic and non-collapsible.

Note that fd. QY/ � fd�1. QY/ > 0 implies that Hd.YIR/ ¤ 0. Moreover, this
difference of the face numbers is a lower bound for the d-th Betti number.
Theorem 1.1 shows that for all 0 � p � 1, and up to the appearance of @�dC1’s
these two conditions are typically equivalent and the lower bound is asymptotically
tight. This is clearly a probabilistic statement which does not hold in general.

We turn to deal with the emergence of the giant component, a subject on which
there exists an extensive body of literature. As mentioned above, there is no obvious
high-dimensional counterpart to the notion of connected components, and we need
a conceptual idea in order to even get started. The notion of shadows, introduced
in [14], offers a way around this difficulty. The idea is to tie connected components
with cycles, which do have natural high dimensional counterparts. The shadow of
a graph G is the set of those edges that are not in G, whose addition to G creates a
new cycle. It turns out that the giant component emerges exactly when the shadow
of the evolving random graph acquires positive density. In particular, for c > 1 the
shadow of G.n; c

n / has density .1� t/2C o.1/, where t is the unique root in .0; 1/ of
t D e�c.1�t/ (See Fig. 2a).

Fig. 2 Illustration of Theorem 1.2 for d D 2, and comparison to the density of the shadow of a
random graph. (a) Density of the shadow of G.n; c

n /. (b) Density of the C-shadow and R-shadow
of Y2

�
n; c

n

�
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This suggests how we should define SHR.Y/, the shadow of Y, a d-dimensional
complex with full .d � 1/-skeleton. Namely, it is the following set of d-faces:

SHR.Y/ D f� … Y W Hd.YIR/ is a proper subspace of Hd.Y [ f�gIR/g:

In words, a d-face belongs to SHR.Y/ if it is not in Y and its addition to Y creates a
new d-cycle.

We are considering throughout the vanishing of the d-th homology and d-
collapsibility. These two notions capture acyclicity from an algebraic, respectively,
combinatorial, perspective. For d D 1 the two coincide, but they differ widely for
d � 2. This dual perspective carries over to two notions of shadows. A d-face � that
does not belong to a d-complex Y is in Y’s R-shadow if its addition to Y increases
the d-homology. It is in the C-shadow of Y if its addition to Y increases the core.
Again, these notions coincide for d D 1, and the R-shadow is always contained in
the C-shadow, but for d � 2 they may differ.

The notion of shadows lets us compare the phase transitions of random graphs
and random complexes of higher dimensions, and a substantial qualitative difference
reveals itself. While the density of the shadow of G.n; p/ undergoes a smooth
transition around p D 1=n, when d � 2 both the C-shadow and the R-shadow
of Yd

�
n; c

n

�
undergo discontinuous first-order phase transitions at the critical points

�d and cd respectively.

Theorem 1.2 Let d � 2 be an integer, c > 0 real, and Y D Yd
�
n; c

n

�
.

(I) The collapsible regime: If c < �d then a.a.s. jSHR.Y/j � jSHC.Y/j D ‚.n/:
(II) The intermediate regime: If �d < c < cd then a.a.s. jSHR.Y/j D ‚.n/, and

jSHC.Y/j D
 

n

dC 1

!

..1 � t/dC1 C o.1//:

(III) The cyclic regime: If c > cd then a.a.s. the size of both SHR.Y/ and SHC.Y/ is� n
dC1
�
..1 � t/dC1 C o.1//:

An essential idea that is common to all these results is that in the range p D ‚.1n /
many of the interesting properties of Yd.n; p/ can be revealed by studying its local
structure. Initially, this seemed as merely a useful tool in studying the threshold for
d-collapsibility, and in establishing an upper bound on the threshold of the vanishing
of the d-th homology. However, in obtaining a lower bound on this threshold, it
became apparent that this idea should be viewed in the wider context of local weak
limits. This framework was introduced by Benjamini and Schramm [8] and Aldous
and Steele [3]. In recent years, this approach was used in deriving new asymptotic
results in various fields of mathematics (e.g. [1, 16]).

The study of d-collapsibility in random complexes was significantly influenced
by work on k-cores in random hypergraphs and specifically the works by Molloy
[18] and Riordan [20]. Also, the proof of Theorem 1.1 makes substantial use of tools
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from the paper of Bordenave, Lelarge and Salez [9] on the rank of the adjacency
matrix of random graphs.

The rest of the paper is organized as follows. Section 2 gives some necessary
background material about simplicial complexes. In Sect. 3 we introduce the
concept of a Poisson d-tree which is the local weak limit of random simplicial
complexes. The main ingredients of the proofs of the main theorems are presented
in Sects. 4.1 and 5.1, that respectively addressing the subjects of collapsibility and
acyclicity. Concluding remarks and open questions are presented in Sect. 6.

2 Preliminaries

A simplicial complex Y is a collection of subsets of its vertex set V that is closed
under taking subsets. Namely, � 2 Y and � � � imply that � 2 Y as well.
Members of Y are called faces or simplices. The dimension of the simplex � 2 Y
is defined as j� j � 1, and dim.Y/ is defined as max dim.A/ over all faces A 2 Y.
A d-dimensional simplex is also called a d-simplex or a d-face, and a d-dimensional
simplicial complex is also referred to as a d-complex. The set of j-faces in Y is
denoted by Yj, and the face numbers by fj.Y/ WD jYjj. For t < dim.Y/, the t-skeleton
of Y is the simplicial complex that consists of all faces of dimension � t in Y, and
Y is said to have a full t-dimensional skeleton if its t-skeleton contains all the t-faces
of V . In this paper, the degree dY.�/ of a face � in a complex Y is the number of
dim.Y/-faces that contain it. A face of degree zero is said to be exposed. Although
we are directly interested only in finite complexes, infinite ones do play a role here,
but we consider only locally-finite complexes in which every face has a finite degree.
We occasionally use the bipartite incidence graph between .d�1/-faces and d-faces
of a d-complex Y. This allows us, in particular, to speak about distances among such
faces.

The permutations on the vertices of a face � are split in two orientations,
according to the permutation’s sign. The boundary operator @ D @d maps an
oriented d-simplex � D .v0; : : : ; vd/ to the formal sum

Pd
iD0.�1/i.� i/, where � i D

.v0; : : : vi�1; viC1; : : : ; vd/ is an oriented .d�1/-simplex. We fix some commutative
ring R and linearly extend the boundary operator to free R-sums of simplices. We
denote by @d.Y/ the d-dimensional boundary operator of a d-complex Y.

When Y is finite, we consider the fd�1.Y/ 
 fd.Y/ matrix form of @d by choosing
arbitrary orientations for .d � 1/-simplices and d-simplices. Note that changing
the orientation of a d-simplex (resp. d � 1-simplex) results in multiplying the
corresponding column (resp. row) by �1.

The d-th homology group Hd.YIR/ (or vector space if R is a field) of a d-complex
Y is the (right) kernel of its boundary operator @d. Most of the homology groups in
this paper are considered over R. An element in Hd.YIR/ is called a d-cycle, and
the whole group is called the d-cycle space of Y. The d-th Betti number ˇd.YIR/ of
a complex Y is defined to be the dimension of Hd.YIR/.
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Recall the concept of elementary collapse as defined in the introduction. A d-
collapse phase is a procedure in which all the possible elementary d-collapses take
place at once. In case more than one .d � 1/-face can collapse some d-face, one of
them is chosen by some predetermined arbitrary criteria. Given a d-complex Y, the
complex Rk.Y/ is the complex that is obtained from Y after k phases of d-collapse.
Similarly, R1.Y/ is obtained after all possible d-collapse steps are carried out. A
d-core (or core, for brevity) is a d-complex in which all the .d � 1/-faces are of
degree � 2. The d-core of Y is the maximal d-core subcomplex of Y. Note that the
d-core of Y is obtained from R1.Y/ by removing the exposed .d � 1/-faces.

3 Poisson d-Tree

The concept of a Poisson d-tree process was introduced in [6] and turned out to be
extremely useful in the study of random simplicial complexes. It can be viewed as
a high-dimensional counterpart of the Poisson Galton-Watson process which plays
a key role in the study of the giant component in G.n; p/ graphs.

A rooted d-tree is a pair .T; o/ where T is a d-complex and o is some .d�1/-face
of T. A d-tree is generated by the following process. Initially the complex consists
of the .d � 1/-face o. At every step k � 0, every .d � 1/-face � of distance k from
o picks a non-negative number m D m� of new vertices v1; : : : ; vm, and adds the
d-faces v1�; : : : ; vm� to T.

We use some self-explanatory terminology in our study of d-trees. A leaf is a
.d � 1/-face with no descendant d-faces. If .T; o/ is a rooted d-tree and T 0 is a
subtree of T which contains the root o we refer to .T 0; o/ as a rooted subtree. If � is
a .d� 1/-face of T, the branch of T rooted at � is the subtree that contains � and all
its descendants. A .d � 1/-face � is an ancestor of a .d � 1/-face � 0 if � 0 belongs to
the branch rooted at � . The depth of a .d � 1/-face is its distance from the root, and
the depth of the d-tree is the maximal depth of any of its .d � 1/-faces.

A Poisson d-tree with parameter c, denoted by Td.c/, is a rooted d-tree in which
all the numbers m� throughout this generative process are i.i.d. Poi.c/-distributed.
The rooted subtree of Td.c/ that consists of the first k generations of this process is
denoted Td;k.c/.

The most important fact about Td.c/ in this context is that it approximates the
local neighborhood of a .d � 1/-face in Yd

�
n; c

n

�
. This fact is well-known and very

useful in the Erdős-Rényi random graphs.

Lemma 3.1 ([6]) For every fixed integer k > 0, the k-neighborhood of a fixed .d �
1/-face � in Y D Yd

�
n; c

n

�
converges in distribution to the k-neighborhood of the

root of Td.c/ as n!1.

Proof First, we observe that a.a.s. the k-neighborhood of a fixed .d � 1/-face � is
a d-tree. Indeed, the violation of this statement requires that at least k C 1 d-faces
are spanned in Y by �’s fixed vertices and k additional ones. The fact that this event
is negligible follows from a first moment argument. In addition, conditioned on the
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k-neighborhood being a d-tree, the number m� of new vertices that a .d � 1/-face
� adds to this d-tree is Bin

�
n � o.n/; c

n

�
-distributed, which tends to Poisson with

parameter c as n!1. ut
This lemma easily implies convergence of Yd

�
n; c

n

� ! Td.c/ in the sense of local
weak convergence introduced by Benjamini and Schramm [8] and Aldous and Steele
[3]. Here is a brief explanation of this concept. A rooted d-complex is a pair .Y; �/
of a d-complex and some .d � 1/-face in it. We denote by .Y; �/k the �-rooted
subcomplex of .Y; �/ comprised of all the d-faces of distance at most k from � and
their subfaces. Let Yd be the set of all (isomorphism types of) rooted d-complexes,
equipped with the metric

dist..Y; �/; .Y 0; � 0// D inf



1

tC 1 W .Y; �/k Š .Y
0; � 0/k

�

:

It can be easily verified that .Yd; dist/ is a separable and complete metric space,
which comes, as usual, equipped with its Borel �-algebra (See [2]). The fact that
Yd
�
n; c

n

�
converges to Td.c/ means that for every bounded and continuous function

f W Yd ! R,

EYDYd.n; c
n /
Œ f .Y; �/� ���!

n!1 ETDTd.c/Œ f .T; o/�;

for every fixed .d � 1/-face � and the root o of T.
As we explain below, this fact will be applied directly to a function of particular

interest in this context, namely, the degree of the root � after k phases of �-rooted
collapse. In addition, it will be used in combination with the spectral theorem to
bound the Betti numbers of Yd

�
n; c

n

�
with the spectral measure of the Poisson d-tree.

3.1 Rooted Collapse

Let Y be a d-complex and � some .d � 1/-face of Y. A �-rooted collapse of Y is a
d-collapse process in which we forbid to collapse � . Let k be a non-negative integer.
The complex obtained from Y after k phases in the �-rooted collapse process is
denoted by Rk.Y; �/.

In the case Y D Yd
�
n; c

n

�
, the degree dRk.Y;�/.�/ turns out to be relevant to several

different questions. We approximate it using ık WD dRk.T;o/.o/, where T D Td.c/, the
Poisson d-tree with root o.

Lemma 3.2 With the above notations

EŒdRk.Y;�/.�/� ���!n!1 EŒık�:
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Note that this is not a direct corollary of the local weak convergence. Even
though the function dRk.Y;�/.�/ is continuous, being dependent only on some fixed
neighborhood of the root, it is not bounded. Nevertheless, we allow ourselves to
omit the proof, since this difficulty can be bypassed by a simple calculus trick.
Namely, by considering the function minfdRk.Y;�/.�/;Ag, where A is a sufficiently
large constant.

Lemma 3.3 Let c > 0 and .tk/k��1 a sequence of real numbers defined by

t�1 D 0 ; tkC1 D e�c.1�tk/d ; 8k � 0:

Then, ık is Poisson distributed with parameter c.1 � tk�1/d, for every k � 0.
We refer throughout the paper to the sequences tk of real numbers and ık of random
variables that are defined here without denoting the underlying parameter c > 0 that
is clear from the context.

Proof By induction on k. The case k D 0 is trivial since ı0 is Poisson distributed
with parameter c. For the induction step, let us consider the distribution of ık. A
d-face � that contains the root o survives k phases of rooted collapse if and only if
each of its .d � 1/-faces � other than the root (there are d such �’s) is contained in
a d-face other then � after k � 1 phases. This occurs if and only if � has a positive
degree in the branch of T rooted at � after k � 1 phases of �-rooted collapse. Since
this subtree is also a Poisson d-tree with parameter c, this occurs, by the induction
hypothesis, with probability PrŒık�1 > 0� D 1 � tk�1. Moreover, different branches
of the tree are independent, so these events for different �’s and �’s are independent.
Namely, the distribution of ık is a Binomial distribution with ı0 D Poi(c) trials and
success probability .1� tk�1/d. By a standard computation in probability theory, this
implies that ık is Poisson distributed with parameter c.1 � tk�1/d. ut

We say that a rooted d-tree is collapsible if its root gets exposed in the rooted
collapse process. For instance, the previous lemma shows that the probability that
Td.c/ is collapsed after k phases is tk, and the probability that Td.c/ is collapsible is
t D t.c; d/.

4 d-Collapsibility

The behavior of the sequence .tk/ of Lemma 3.3 changes quite substantially when
c D �d. A simple calculus exercise tells us that limk!1 tk D t.c; d/, which is
defined in (1). In addition, t D t.c; d/ equals to 1 if c < �d, and if c > �d then t is
strictly smaller then 1.

In other words, if c < �d then the root of Td.c/ gets exposed after k collapse
phases with probability 1�ok.1/. Moreover, the expected degree of the root is ok.1/.
On the other hand, if c > �d then, for arbitrarily large k, with probability bounded
away from zero some d-faces that contain the root will survive the collapse process.
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How do these facts reflect on the behavior of the random simplicial complex Y D
Yd
�
n; c

n

�
under d-collapse phases? Many parameters of Rk.Y/ can be understood

almost directly from the �-rooted collapse of Y, where � is a typical .d � 1/-
face. Moreover, the Poisson d-tree plays a key role here since k phases of �-rooted
collapse depend only on the k-neighborhood of � . Consequently, as k grows, almost
all .d � 1/-faces of Y will either collapse or become exposed in Rk.Y/ if c < �d.
On the other hand, if c > �d, a constant fraction of the .d � 1/-faces survive
k phases of d-collapse, but only very few of them remain with degree 1, giving
the collapse process a slim chance to continue much further. In fact, the fraction
of the .d�1/-faces that are contained in Y’s core is asymptotically approximated by
the probability that the root of Td.c/ has degree � 2 after infinitely many collapse
phases.

While the transition from the Poisson d-tree to the random simplicial complex
is straightforward in the subcritical regime, in the supercritical regime we follow
an involved argument of Riordan [20] for k-cores of random graphs. The reader is
encouraged to read the introduction of Riordan’s paper for an intuitive discussion of
the proof method.

4.1 The Collapsible Regime: Theorem 1.1 (I)

Let Y D Yd
�
n; c

n

�
, c < �d, and let � be some .d � 1/-face in Y.

EŒ fd.R1.Y//� � EŒ fd.Rk.Y//�

D 1

d C 1E
2

4
X

�2Yd�1

1�2Rk.Y/ � dRk.Y/.�/

3

5

D 1

d C 1

 
n

d

!

E
�
1�2Rk.Y/ � dRk.Y/.�/

�
(3)

� 1

d C 1

 
n

d

!

E
�
dRk.Y;�/.�/

�
(4)

D 1

d C 1

 
n

d

!

.1C o.1//EŒık�

D 1

d C 1

 
n

d

!

.1C o.1//c.1� tk�1/d:

Identity (3) is obtained by considering some fixed .d � 1/-face � , using linearity of
expectation and symmetry. The subsequent inequality (4) is due to the fact that in the
�-rooted collapse process fewer collapses occur than in d-collapse phases, whence
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an inequality dRk.Y/.�/ � dRk.Y;�/.�/ between �’s degrees after k phases in either
d-collapse processes. The following equations are straightforward applications of
the lemmas in Sect. 3.

Consequently, fd.R1.Y// D o.nd/ a.a.s. for every c < �d.
The argument which completes the proof says that for every c > 0, the complex

Yd
�
n; c

n

�
has no core subcomplex with o.nd/ d-faces, other than vertex disjoint

@�dC1’s. This is proved in Theorem 4.1 of [6], concerning inclusion-minimal core
complexes. It turns out that a slight modification of that proof yields a more general
conclusion.

A d-complex whose d-faces are comprised of a vertex-disjoint union of bound-
aries of .dC 1/-simplices is called here a d-gravel.

Lemma 4.1 For every integer d � 2 and real c > 0 real there is ˛ > 0 such that
a.a.s. the following holds. Let Y D Yd

�
n; c

n

�
, then either R1.Y/ is a d-gravel or

fd.R1.Y// > ˛nd.

Proof Let m1 WD .d3 log n/d. Our first goal is to show that every core d-subcomplex
C of Y with fd.C/ � m1 is a d-gravel. A simple first moment argument yields that
Y cannot contain two intersecting copies of @�dC1, nor can it contain more than
log log n copies of @�dC1. A core d-complex C that is comprised of exactly l vertex
disjoint @�dC1’s and m additional d-faces is said to have type .l;m/.

Let C have type .l;m/. We partition its vertex set into S P[T, where S is the set of
the vertices in some @�dC1 of C. Let T 0 � T be those vertices in T of degree dC 1
in C (i.e., such a vertex is in exactly d C 1 of C’s d-faces). Since C is a core, the
degree of every vertex in C is at least dC 1.

In addition, every d-face of C with two or more vertices of degree d C 1 is
included in a @�dC1. Recall the notion of a link of a vertex v in a simplicial
complex Y. Namely, lkY.v/ D f� 2 Y W v P[ � 2 Yg. In particular, the link of
a vertex in a d-core is a .d � 1/-core. Therefore, if a vertex has degree d C 1 in
C then its link is a @�d. Suppose that the vertices v; u 2 C have degree d C 1 in
C and are contained in a common d-face � D .u; v; x1; : : : ; xd�1/. Their links are
@�d’s so there exist vertices u0; v0 … � such that lkC.u/ D @.u0; v; x1; : : : ; xd�1/ and
lkC.v/ D @.u; v0; x1; : : : ; xd�1/. This can occur only if u0 D v0 and the claim follows.

As a result, every non-gravel d-face contains at most one vertex of T 0, so that
m � jT 0j.dC 1/: Counting incidences of vertices and d-faces in C yields

�
mC l.dC 2/� � .d C 1/ � .jSj C jTj/.dC 1/C .jTj � jT 0j/:

But jSj D l.d C 2/, and a simple manipulation of these inequalities gives jTj �
m � dC3

dC4 :We can assume w.l.o.g. that m � m1; l � log log n and derive the following
upper bound on the number of type .l;m/ core d-complexes with at most n vertices

nl.dC2/C dC3
dC4m � .jSj C jTj/.dC1/m D nl.dC2/ �

h
n

dC3
dC4 � O.logd.dC1/ n/

im
:
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The first term counts the choices for S;T, and the second the choice of non-gravel
d-faces. We conclude that a.a.s. Y contains no core of type .l;m/ with l < log log n
and 0 < m � m1. This is because any subcomplex of type .l;m/ appears in Y with
probability .c=n/l.dC2/Cm.

The proof of Theorem 4.1 in [6] yields a constant ˛ D ˛.c; d/ such that a.a.s.
Yd
�
n; c

n

�
has no inclusion-minimal subcomplex that is a core with m1 � m � ˛nd

d-faces. In fact, the argument presented at [6] only uses the fact that a minimal core
C is connected in the sense that between every two .d � 1/-faces �; � 0 in C there is
a path alternating between .d� 1/-faces and d-faces of C with an inclusion relation.
However, since every core is a union of connected cores, this means that there are
no cores of size m in Y. It follows that the only possible cores that Y can contain
have type .l; 0/, i.e., it is a d-gravel. ut

4.2 The Core of Yd
�
n; c

n

�
: Theorem 1.1 (II.a)

The proof of this theorem closely follows the argument of Riordan [20]. We fix the
dimension d and refer to r.c/ WD 1� t.c; d/ as a function of c. For brevity we denote
rC.c/ WD ‰2.cr.c/d/. Note that both r.c/ and rC.c/ are continuous, bounded away
from 0 and increasing when c > �d. Our main goal is to show that for every Qc > �d

and " > 0, fd�1. QY/ > .rC.Qc/� "/
�n

d

�
, where QY is the d-core of Yd

�
n; Qcn

	
.

This is motivated by the fact that rC.Qc/ is the probability that the root’s degree
is � 2 after every finite number of rooted collapse phases in Td.Qc/. In other
words, this is the probability that the root survives the non-rooted collapse process.
Although this argument is simple and appealing, the actual proof is substantially
more involved. Our strategy is to define some carefully crafted propertyA of d-trees
of depth log log n� S D S.n/� log n such that the following two statements hold
a.a.s. First, the subset A � Yd�1 of .d � 1/-faces � such that Y contains a �-rooted
d-tree with property A is of density at least .rC.Qc/ � "/. Second, for every � 2 A
there exists a d-tree T� � Y in which �’s degree is at least 2 and every leaf also
belongs to A. Consequently, no .d � 1/-face in A can be collapsed.

We refer throughout the proof to certain properties of rooted d-trees .T; o/, and
occasionally write T 2 P to say that T has property P . Every property P of rooted
d-trees induces a property of .d�1/-faces in a d-complex Y. Namely, we say that the
.d�1/-face � has property P if Y contains a d-tree rooted on � that has property P .

Here are some relevant properties: D�L means T has depth� L, and D<1 means
that it has finite depth. Let P1 and P be properties of finite (resp. general) d-trees.
A d-tree .T; o/ has property P1 ı P when: (i) T has a finite rooted subtree T 0 with
property P1, and (ii) For every leaf � of T 0, the branch of T rooted at � has property
P . For example, we consider the property that T has depth k C 1 and it does not
collapse in k phases, i.e., Bk WD fT 2 D�kC1 j ık.T/ > 0g and note that Bk D
B0 ı Bk�1. Property B means that T does not collapse at finite time.
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We also define for k � 0, the properties Rk which are stronger than Bk as follows

R0 D fT 2 D�1 j ı0.T/ � 2g ; Rk D R0 ı Bk�1 [ B0 ıRk�1; k > 0:

The difference between Bk and Rk is this: T 2 Bk means that T has depth k C 1
and every non-leaf .d � 1/-face has at least one descendant d-face. In defining Rk

we add the requirement that along every root-to-leaf path we encounter at least one
.d � 1/-face with � 2 descendant d-faces.

Finally, we introduce a stochastic version of P , a property of finite rooted d-trees
.T; o/. For some 0 � p � 1 we mark each leaf of T independently with probability
p, and remove every d-face that contains any unmarked leaf. We say that the event
M.P ; p;T/ holds if the remaining d-tree has property P . Marking is a convenient
way of capturing the following phenomenon: We let each leaf in a finite d-tree
grow a Poisson d-tree and we only ask whether or not this “tail” has some desired
property. This is expressed in the simple identity

PrŒM.P1; p;Td;k.c//� D PrŒTd.c/ 2 P1 ı P � (5)

where d; k are integers, c > 0, P1 is a property of depth-k trees and P is a property
of probability p for Poisson d-trees with parameter c. For instance,

PrŒM.Bk; r.c/;Td;kC1.c//� D PrŒTd.c/ 2 B� D r.c/

The following lemma can be viewed as a variation on this identity. It shows that
although property Rk is stronger than Bk, the two are almost equally likely in a
Poisson d-tree.

Lemma 4.2 For every c > c1 > �d there is a sufficiently large k such that

PrŒM.Rk; r.c1/;Td;kC1.c//� > r.c1/:

Proof Consider the following probabilistic experiment where we randomize thrice.
Initially we generate the first k C 1 generations of Td.c/. Then we do the random
marking that yields the d-tree T. Finally we remove each d-face of T independently
with probability c1=c. We denote the component of the root by T 0. Note that T 0 is
distributed like a Td;kC1.c1/ to which random r.c1/-marking is applied. In particular,
PrŒT 0 2 Bk� D r.c1/, hence we need to prove that PrŒT 2 Rk� > PrŒT 0 2 Bk�. Since
T 0 2 Bk implies that T 2 Bk it suffices to show that PrŒW� > PrŒL�, where

W D ŒT 2 Rk; T 0 … Bk� and L D ŒT 2 Bk nRk; T 0 2 Bk�:

To this end we show that PrŒL�! 0 as k!1 whereas PrŒW� stays bounded away
from 0.

Indeed, if T 2 Bk nRk, then there exists some d-face of depth k whose removal
violates property Bk. This d-face survives in T 0 with probability .c1=c/k, so that
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PrŒL� < .c1=c/k. On the other hand W contains the event that ı0.T/ D 2, T 2
R0 ı Bk�1 and ı0.T 0/ D 0 whose probability is positive and independent of k. ut

A d-tree T of depth LC 1 is . p; �/-rigid if PrŒM.RL; p;T/� > 1 � �.

Lemma 4.3 For every c > c1 > �d and � > 0 and for a large enough integer L
there holds

PrŒTd;LC1.c/ is .r.c/; �/-rigid� � r.c1/:

Proof Below we assume that k is large enough, as required in Lemma 4.2. We claim
that

PrŒTd.c/ 2 RkıB� D PrŒM.Rk; r.c/; Td;kC1.c//� � PrŒM.Rk; r.c1/;Td;kC1.c//� > r.c1/:

The equality is a special case of identity (5). The first inequality follows by a simple
monotonicity consideration and the fact that r.c/ > r.c1/. The last inequality comes
from Lemma 4.2. The condition of . p; �/-rigidity is stronger the smaller � is, so we
fix it to satisfy

PrŒTd.c/ 2 Rk ı B�� r.c1/ > �:

For fixed k the conditions Td;kClC2.c/ 2 RkıBl become more strict as l grows and
their conjunction over all l � 0 is exactly the condition Td.c/ 2 Rk ı B. Therefore,
we can and will choose l large enough so that

PrŒTd;kClC2.c/ 2 Rk ı Bl� � PrŒTd.c/ 2 Rk ı B�C �2:

For a d-tree T of depth LC1 D kClC2, let �.T/ WD PrŒM.RkıBl; r.c/;T/�. We
denote by L the property that T is .r.c/; �/-rigid. The expectation of �.T/, where
T is Td;LC1.c/ distributed, equals the probability PrŒTd.c/ 2 Rk ı B�. In addition,
�.T/ D 0 if T … Rk ı Bl and �.T/ � 1 � � if T … L since Rk ı Bl implies RL.
Therefore

PrŒTd.c/ 2 Rk ıB� � PrŒTd;LC1.c/ 2 .Rk ıBl/\L�C.1��/ PrŒTd;LC1.c/ 2 .Rk ıBl/nL�;

whence

� � PrŒTd;LC1.c/ 2 Rk ı Bl n L� � PrŒTd;LC1.c/ 2 Rk ı Bl� � PrŒTd.c/ 2 Rk ı B�:

Putting everything together we conclude that PrŒTd;LC1.c/ 2 L� � PrŒTd;LC1.c/ 2
Rk ı Bl� � � > r.c1/, as stated. ut

We set all the parameters that appear in the discussion below. Recall that our goal
is to show that for every Qc > �d and " > 0, fd�1. QY/ > .rC.Qc/� "/

�n
d

�
. Let �d < c1 <

c < Qc such that rC.c1/ � rC.Qc/ � "=2 and ‰1.Qcr.c1/d/ > r.c/. Again we choose k
large enough to make Lemma 4.2 hold, and we fix some 0 < � < d�2.kC1/=8. Also
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L is so large that Lemma 4.3 holds. Recall that L denotes the property .r.c/; �/-
rigidity of d-trees of depth LC 1.

Consider an integer S D S.n/ such that log log n� S� log n, and we define for
0 � s � S, the properties As by

A0 D L ; As D Rk ıAs�1; 0 < s � S:

Note that AS depends on the first Q WD .k C 1/SC L C 1 generations. Finally, we
define two key properties:

A D R0 ıD�L ıAS ; P D R0 ıD<1 ıA:

In words, T 2 A means that T has a rooted subtree T 0 of depth � L C 1 in which
the root’s degree is � 2 and the branch of T rooted at every leaf of T 0 has property
AS. T 2 P means that T has a finite rooted subtree T 0 in which the root’s degree is
� 2 and the branch of T rooted at every leaf of T 0 has property A.

It follows by induction that PrŒTd;.kC1/sCLC1 2 As� > r.c1/ for every s � 0.
Indeed, Lemma 4.3 yields the case s D 0, and the inductive step follows from
Lemma 4.2. Also, since R0 ıAS implies A, the probability that Td.c/ has a rooted
subtree that satisfies A is at least

PrŒTd;QC1.c/ 2 R0 ıAS� � ‰2.cr.c1/
d/ � ‰2.c1r.c1/d/ D rC.c1/: (6)

Indeed, the probability that in a d-face which contains the root all the branches
rooted at a .d � 1/-face of depth 1 has AS is at least r.c1/d. Hence, the number of
such d-faces is Poi.cr.c1/d/ distributed.

We come to the most significant step in the proof: We show, by a first-moment

argument, that a.a.s. every .d � 1/-face in Y D Yd

�
n; Qcn

	
that has property A also

has P . This implies that every such .d� 1/-face � is contained in a d-tree T� � Y in
which (i) � is of degree� 2, and (ii) every leaf of T� has property A. Consequently,
the union of these d-trees fT� j � has property Ag is contained in the core QY .

Claim 4.4 For every s � 0, and every T 2 As,

PrŒM.B.kC1/s ıRL; r.c/;T/� � 1 � 2�2s

4d2.kC1/
:

Proof We proceed by induction on s. Our definition of L and the choice of � yield
the case s D 0. Let s � 0 be an integer, and T 2 AsC1 D Rk ı As. Let T 0 � T be
a minimal d-tree of depth k C 1 such that T 0 2 Rk and every branch of T rooted at
a leaf of T 0 has the property As. By a straightforward computation, T 0 has exactly
2dkC1 leaves. By induction, after the marking process the branch rooted at every
leaf of T 0 fails to have property B.kC1/s ıRL independently with probability at most
2�2s

4d2.kC1/ . Let us refer to such a leaf as bad, and remove from T 0 every d-face that
contains a bad leaf. Since initially T 0 had the property Rk, it now has property Bk
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unless at least 2 d-faces were removed. But this can only occur if at least 2 leaves
are bad, an event of probability at most

 
2dkC1

2

!
2�2s

4d2.kC1/

�2

� 2�2sC1

4d2.kC1/
:

Namely, the tree T has the property Bk ı B.kC1/s ıRL D B.kC1/.sC1/ ıRL with the
desired probability. ut
This leads to the following key lemma.

Lemma 4.5 For every fixed .d � 1/-face � in Y D Yd

�
n; Qcn

	
, the probability that

� has property A but does not have P is o.n�d/.

Proof It is easy to show that with probability o.n�d/ the .1CLC2Q/-neighborhood
of � consists of at most n1=3 vertices, and we condition on this event. Suppose that
� has the property A, and consider � 2 T � Y such that T 2 A. In particular, there
exists a d-tree T 0 � T rooted at � of depth at most LC 1 such that dT0.�/ D 2 and
every branch T 00� � T rooted at a leaf � of T 0 has property AS. Denote by X � Yd�1
the union of the leaves of T 00� over all the leaves � of T 0.

We now expose an additional subset of the .QC1/-neighborhoods of the .d�1/-
faces of X with the following precaution. When we reach some .d � 1/-face  and
query whether a d-face that contains it belongs to Y, we only consider d-faces of
the form v where v is a vertex that does not belong to T nor did it appear in the
exposing process upto the current query. In this manner, every  2 X is the root of a
d-tree QT � Y in which every .d� 1/-face has at least Bin.n� n1=3; Qcn / descendants.
Therefore, the probability that QT 2 B0 ıAS is at least

PrŒTd;Q.Qc/ 2 B0 ıAS� � o.1/ � ‰1.Qcr.c1/
d/� o.1/ > r.c/;

and these events are independent over  2 X. Therefore we can consider the event
QT 2 B0 ı AS as an alternative for marking the leaves of d-trees T 00� and plug it
in Claim 4.4. Since the number of leaves of T 0 is bounded, the claim implies that

with probability 1 � O
�
2�2S

	
D 1 � o.n�d/, after the described exposure of the

additional neighborhoods, all the subtrees rooted in these leaves have the property
B.kC1/S ıRL ı B0 ıAS. But recall that RL means that in every path from the root of
the d-tree to a .d � 1/-face of depth LC 1, there is a .d � 1/-face with at least two
descendants. In other words, RL ıB0 ıAS implies D�L ıR0 ıD�L ıAS D D�L ıA.
In particular, all the leaves of T 0 have the property D<1 ıA, and since dT0.�/ D 2,
it follows that � has the property P . ut

We are now ready to prove the theorem.

Proof of Theorem 1.1 (II.a) Let NA denote the number of .d � 1/-faces in Y D
Yd

�
n; Qcn

	
that have property A. By the previous discussion, we know that fd�1. QY/ �

NA. We approximate the expectation of NA by PrQcŒA�, the probability that Td.Qc/ has
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a rooted subtree that satisfies A,

EŒNA� D .PrQcŒA�C o.1//

 
n

d

!

� rC.c1/
 

n

d

!

� .rC.Qc/ � "=2/
 

n

d

!

by Eq. (6). Since A depends only on the O.S/-neighborhood of the .d � 1/-face,
and two .d � 1/-faces have non-disjoint neighborhoods with negligible probability,
it follows that EŒN2

A� D EŒNA�
2.1Co.1//:By the second moment method PrŒNA <

.rC.Qc/�"/�n
d

�
� D o.1/. The upper bound is much simpler. Let Nk denote the number

of .d�1/-faces that survive (D did not collapse nor become free) the first k phases of
collapse. Clearly, fd�1. QY/ � Nk for every k. Similarly to NA, this property depends
on the k-neighborhood of a .d � 1/-face and by the same argument as before, Nk is
concentrated around its expectation. The expectation of Nk can be bounded by the
Poisson d-tree as follows.

EŒNk� � .PrQcŒık�1 � 2�C o.1//

 
n

d

!

D .‰2.Qc.1� tk�2/d/C o.1//

 
n

d

!

;

and since tk ! t, we obtain that ‰2.Qc.1� tk�2/d/ tends to rC.Qc/ as k!1.
We turn to prove that a.a.s. the number of d-faces in the core fd. QY/ D

r.Qc/dC1 Qcn
� n

dC1
�
.1 C o.1//. Let MA denote the number of d-faces in Y all of whose

.d � 1/-faces have property A. Clearly, fd. QY/ � MA since no .d � 1/-face with
property A is collapsed. In addition, since this is a local property it suffices, as
before, to compute the expectation of MA. The probability that a d-simplex �
belongs to Y is Qcn , and we can expose a subset T of its neighborhood in the same
careful fashion as done in the proof of Lemma 4.5. The probability that all the
d-trees growing from �’s .d � 1/-faces have property AS is at least PrQcŒAS�

dC1 �
o.1/ > r.c1/dC1. If this occurs, then every .d � 1/-face � � � has property A by
letting � be the root of the d-tree T [ f�g. Consequently EŒMA� � r.c1/dC1 Qcn

� n
dC1
�
:

The upper bound is proved similarly, by showing that the probability that a d-face
survives the first k collapse phases tends to r.Qc/dC1 as k grows. ut

4.3 C-Shadow of Yd
�
n; c

n

�

Here we prove the parts of Theorem 1.2 that deal with the C-shadow of Yd
�
n; c

n

�
.

Namely, we show that for c < �d, the C-shadow of Y D Yd
�
n; c

n

�
has size ‚.n/,

and for c > �d its size is

jSHC.Y/j D
 

n

dC 1

!

..1 � t/dC1 C o.1//:
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Both statements follow directly from the previous proofs. Regarding the range c <
�d, a simple second moment calculation shows that a.a.s. there are‚.n/ sets of dC2
vertices in Y that span all but one of the d-faces in the boundary of a .dC1/-simplex.
The missing d-face in every such configuration is obviously in the C-shadow. On the
other hand, if the C-shadow is large, viz., jSHC.Y/j � n, then for every c < c0 < �d,

with probability bounded away from zero, the core of Yd

�
n; c0

n

	
contains a complex

that is not the boundary of .dC 1/-simplex. But this contradicts Theorem 1.1(I).
We prove the supercritical case c > �d in much the same way that we calculated

the number of d-faces in the core. Namely, for the lower bound we count d-simplices
not in Y all of whose .d � 1/-faces have property A. For the upper bound we count
d-simplices that if added into Y do not survive k phases of collapse. As before, both
properties are local and by a second moment argument are concentrated around their
means, which are computed by Poisson d-tree approximations.

5 d-Acyclicity

In the previous section we saw that the threshold �d for d-collapsibility in Yd
�
n; c

n

�

coincides with the threshold in which rooted collapsibility in Td.c/ almost surely
eliminates all the d-faces containing the root. In the case of d-acyclicity, the
correspondence is similar but more intricate. In fact, the threshold cd for d-acyclicity
coincides with two seemingly separate thresholds of Td.c/’s parameters. These will
used to bound the d-acyclicity threshold from below and above respectively. Since
both occur at c D cd it follows that these bounds are tight. Furthermore, if c > cd,
these two parameters yield upper and lower bounds for ˇd.Y;R/ which are tight
upto small order error terms. Finally, the tight estimation for ˇd.Y;R/ allows us to
compute the density of the shadow of Y.

If a d-complex Y has more d-faces than .d � 1/-faces, then ˇd.Y;R/ � fd.Y/ �
fd�1.Y/ > 0. For Y D Yd

�
n; c

n

�
, this happens only when c > d C 1, but we can

say a bit more. Even though Y and its core QY have the same d-th Betti number, it
turns out that there is a wider range of the parameter c for which QY has more d-faces
than .d � 1/-faces. In fact, one can show that fd. QY/ > fd�1. QY/ if and only if c > cd,
using the expressions for these face numbers in Theorem 1.1(II.a). However, it is
significantly easier to prove the same lower bound on ˇd.Y/ by analyzing Td.c/ as
follows. Let Sk.Y/ be obtained by removing all exposed .d� 1/-faces in Rk.Y/. The
average degree of the .d � 1/ faces in Sk.Y/ is approximated using the conditional
expectation

EŒık j ık > 0 ^ ık�1 > 1�:

In words, this is the expected degree of the root of Td.c/ after k phases of rooted
collapses, conditioned on the fact that its degree remains strictly greater than 1
throughout the collapse process. We claim that this captures the average degree of
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.d�1/-faces in Sk.Y/. A .d�1/-face � of Y belongs to Sk.Y/ if and only if its degree
after k � 1 phases of �-rooted collapse is larger than 1 and stays positive after one
more phase. Indeed, as long as d� > 1 the �-rooted collapse and non-rooted collapse
are identical. A difference occurs when d� D 1, at which point the rooted collapse
continues as usual, but the non-rooted collapse eliminates � . If the average degree
of .d � 1/-faces exceeds dC 1, this yields, via a simple double-counting argument,
a positive lower bound for ˇd.Y/. A simple calculus exercise then shows that this
condition holds if and only if c > cd. Namely,

lim
k!1EŒık j ık > 0 ^ ık�1 > 1� > dC 1 ” c > cd:

The most substantial role of local weak convergence is in proving the lower
bound on the d-acyclicity threshold. We analyze T D Td.c/ using tools from
spectral theory and functional analysis. For this reason we are still unable to resolve
this question over finite fields of coefficients. As further detailed below, we define
xT WD �L.T/;eo.f0g/ to be the measure of the atom f0g according to the spectral
measure � of the Laplacian L.T/ of T with respect to the characteristic vector eo

of the root o. Local weak convergence implies that xT is an upper bound on the
normalized dimension of the left kernel Z of @d.Y/. Note that if Yd

�
n; c

n

�
is d-acyclic

then dimZ equals .1 C o.1//
�n

d

� �
1 � c

dC1
�
, and otherwise it is greater. Indeed, the

proof shows that

ETDTd.c/ŒxT � D 1 � c

dC 1 ” c < cd;

and if c > cd, this expectation is greater than 1 � c
dC1 :

5.1 Acyclicity Beyond Collapsibility: Theorem 1.1(II.b)

To prove that a random complex is d-acyclic beyond the d-collapsibility threshold,
we cannot restrict ourselves to purely combinatorial arguments. It is not a-priori
clear that the local weak limit of a random complex holds enough information to
prove such a statement. Surprisingly, perhaps, this is the case when we work over
R. In this section we describe the main ingredients of this method, which appears in
[13], where complete proofs can be found.

Let Y D Yd
�
n; c

n

�
. The primary goal in the proof is to find a tight upper bound

for limn!1 1

.n
d/
EŒˇd.Y/�. It turns out more useful to work with the corresponding

Laplace operator L.Y/ D @d.Y/@d.Y/�. We consider its kernel Z which coincides
with the left kernel of @d.Y/. Let PZ W RYd�1 ! Z be the orthogonal projection to
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the space Z. By linear algebra,

dim Z D
X

�2Yd�1

kPZ.e� /k2;

where e� is the unit vector of � .
The spectral theorem from functional analysis offers a new perspective of

kPZ.e� /k2. Associated with every self-adjoint operator L on a Hilbert space H, and
a vector  2 H is the spectral measure of L with respect to  . It is a real measure
denoted �L; which satisfies

hF.L/ ; i D
Z

R

F.x/d�L; .x/;

for every measurable function F W R ! C. The operator F.L/ is uniquely defined
by extending the action of polynomials on the operator L.

If H is finite-dimensional, �L; is a discrete measure supported on the spectrum
of L and �L; .�/ D kP� k2, where P� is the orthogonal projection to the �-
eigenspace.

We use this theorem with the measure �L.Y/;e� . Here Y is a d-complex and H D
`2.Yd�1/. The self adjoint operator is the Laplacian L.Y/, and e� is the characteristic
vector of some .d � 1/-face of Y.

In particular, with Y D Yd
�
n; c

n

�
and Z as before, kPZ.e� /k2 is simply the

measure of the atom f0g according to the spectral measure �L.Y/;e� .
The difficulty with applying the spectral theorem to the Poisson d-tree is that the

degrees in this tree may be unbounded. We must, therefore, consider the subtleties
of the theory of unbounded operators [19]. Briefly, the Laplacian L.T/ of an infinite
d-tree T is a symmetric operator, directly defined on the dense subset of finitely
supported vectors of H D `2.Td�1/: The symmetric densely-defined operator L.T/
has a unique extension to H. This extension need not be self-adjoint, and when it
does we say that the tree T is self-adjoint. In such cases the spectral theorem can be
applied on L.T/. It can be shown that a Poisson d-tree is, almost surely, self-adjoint.

We employ the useful property that spectral measures are continuous with
respect to local weak convergence. Since Y D Yd

�
n; c

n

�
converges in local

weak convergence to the Poisson d-tree T D Td.c/, which is almost-surely self-
adjoint, we conclude that the expected measure EY Œ�L.Y/;e� �weakly converges to the
expected measure ET Œ�L.T/;eo �, where o is the root of T. In particular, by measuring
the closed set f0g,

lim sup
n!1

E
�kPZ.e� /k2

� � EŒxT �;

where xT WD �L.T/;eo .f0g/. Consequently,

EŒdim Z� � .1C on.1//

 
n

d

!

EŒxT �:
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By the Rank-Nullity Theorem from linear algebra,

dim Z � ˇd.Y/ D fd�1.Y/ � fd.Y/;

and we conclude that

1
�n

d

�EŒˇd.Y/� � EŒxT � � 1C c

dC 1 C on.1/:

There remains the problem of bounding the expectation ET ŒxT � without directly
computing the operator’s kernel. This difficulty is bypassed using the recursive
structure of d-trees to derive a simple recursion formulas on these spectral measures,
as in the following lemma.

Let T be a self-adjoint d-tree with root o, and let �1; : : : ; �m be the d-faces that
contain the root. For 1 � j � m and 1 � r � d we denote by �j;r the .d � 1/-faces
of �j other than the root. Also, Tj;r denotes the branch rooted at �j;r .

Lemma 5.1 xT D 0 if there exists some 1 � j � m such that xTj;1 D : : : D xTj;d D 0.
Otherwise,

xT D
0

@1C
mX

jD1

 
dX

rD1
xTj;r

!�11

A

�1

:

Proof sketch Consider the following bounded family of measurable functions fHs W
R! C j s 2 R n f0gg;

Hs.x/ D is

xC is
:

Note that Hs approaches the Kronecker delta function ıx;0 as s ! 0. Given a self-
adjoint d-tree T with root o, we define

hT.s/ WD
Z

R

Hs.x/d�L.T/;eo .x/:

In particular, xT D lims!0 hT.s/. The proof is concluded by showing that the
functions hTj;r ’s and hT satisfy the formula

hT.s/

0

@1C
mX

jD1

 

isC
dX

rD1
hTj;r.s/

!�11

A D 1; (7)

and letting s! 0.
We turn to describe the derivation of Eq. (7). Denote L WD L.T/, QL WDLj;r L.Tj;r/

and M the Laplacian of the subcomplex of T which contains �1; : : : ; �m and their
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subfaces. In particular, L D M ˚ QL. The operators Hs.L/ and Hs. QL/ are scalar
multiples of the resolvents R WD .LC is � I/�1 and QR WD . QLC is � I/�1. In particular,
hT.s/ D is � hRe0; e0i. Simple observations about the d-tree structure yields that (i)
QReo D 1

is eo and (ii)
D QRe�j;r ; e�j0 ;r0

E
D 0 when . j; r/ ¤ . j0; r0/: In addition, we use

the Second Resolvent Identity which states that RM QR D QR � R. Here the operator
M has a very concrete and usable form, being the Laplacian of a d-complex which
consists of m distinct d-faces with a common .d � 1/-subface o. Equation (7) is
obtained using simple algebraic manipulations by comparing terms of the form˝
.RM QR/e� ; e� 0

˛ D ˝
. QR � R/e� ; e� 0

˛
, when �; � 0 are .d � 1/-faces of T of distance

at most 1 from the root o. ut
The remaining step of the argument is an application of the recursive formula in

Lemma 5.1 to the Poisson d-tree.

Lemma 5.2 Let T D Td.c/ be a rooted Poisson d-tree with parameter c. Then,

EŒxT � � max




tC ct.1 � t/d � c

d C 1
�
1� .1 � t/dC1

	
j t 2 Œ0; 1�; t D e�c.1�t/d

�

:

Note that this maximum is taken over a finite set, due to the condition t D e�c.1�t/d .

Proof Let T be a Poisson d-tree with root degree m and fTj;r j 1 � j � m; 1 �
r � dg its subtrees as above. The parameters xT ; fxTj;rg can be considered as random
variables when T is Td.c/-distributed. The random variables fxTj;rg are i.i.d. and
are distributed like xT since all the subtrees Tj;r are independent Poisson d-trees. In
addition, these variables satisfy the equation of Lemma 5.1.

These observations suggest the following equivalent description of D, the
distribution of the random variable xT . First sample a Poi.c/-distributed integer m,
and xTj;r D D i.i.d for every 1 � j � m and 1 � r � d. Given these samples, the
value of xT is determined by Lemma 5.1.

In particular, if we let t WD Pr.xT > 0/, then t satisfies the equation

t D
1X

mD0

e�ccm

mŠ

�
1 � .1 � t/d

	m D e�c.1�t/d : (8)

Let X be a D-distributed random variable,

EŒX� D E

"
1f8j2Œm�; Sj>0g
1CPm

jD1 S�1j

#

Here S1; S2; : : : ; Sm are random variables whose distribution is that of a sum of d
i.i.d. D-distributed variables. By expressing the probability PrŒ1f8j2Œm�; Sj>0g� as t,
exploiting the symmetry between the different Sj’s and using basic properties of the
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Poisson distribution, we are able to express this expectation in terms of t,

EŒX� D tC ct.1 � t/d � c

dC 1
�
1 � .1 � t/dC1

�
;

as was claimed. ut
It requires only basic calculus to conclude the following.

1. For c < cd, the maximum of

tC ct.1 � t/d � c

d C 1
�
1 � .1 � t/dC1

�
; s.t. t D e�c.1�t/d

is attained at t D 1. Consequently, EŒˇd.Y/� � o.nd/:

2. For c > cd, the maximum is attained at t D t.c; d/. Consequently,

EŒˇd.Y/� � .1C on.1//

 
n

d

!
c.1 � t/dC1

dC 1 � 1C tC ct.1 � t/d
�

: (9)

The proof of Theorem 1.1 (II.b) is concluded by the following standard prob-
abilistic argument. Let c < cd and " > 0. The absence of small non-collapsible
subcomplexes in Y (Lemma 4.1) implies that it has no small d-cycles except
@�dC1’s. The computation above shows that the dimension of the cycle space is
o.nd/. Therefore, removing Bin

�� n
dC1
�
; "=n

� D ‚.nd/ random d-faces eliminates
all large (non @�dC1) d-cycles with high probability, hence Yd

�
n; c�"

n

�
is a.a.s.

d-acyclic except @�dC1’s.

5.2 The Cyclic Regime: Theorem 1.1(III)

The key idea of [5] for the computation of a matching upper bound for the d-
acyclicity threshold uses an analysis of the collapse process. Let Y be a d-complex
and k some positive integer. Recall that Rk.Y/ is the simplicial complex obtained
from Y by k phases of d-collapse and Sk.Y/ is its subcomplex obtained by removing
the exposed .d � 1/-faces. Clearly, ˇd.Y/ D ˇd.Sk.Y// since d-collapsing and
removing exposed faces does not affect the right kernel of @d. The final ingredient
of the strategy is the observation that ˇd.Sk.Y// � fd.Sk.Y// � fd�1.Sk.Y//; and the
fact that the parameter fd.Sk.Y// � fd�1.Sk.Y// can be studied from the local weak
limit.
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Let Y D Yd
�
n; c

n

�
where c > cd, and Y 0 WD Sk.Y/ for a sufficiently large integer k.

EŒˇd.Y/� � EŒ fd.Y
0/ � fd�1.Y 0/�

D E

2

4
X

�2Y0
d�1


dY0.�/

dC 1 � 1
�
3

5

D
 

n

d

!

PrŒ� 2 Y 0�

E ŒdY0.�/j� 2 Y 0�

d C 1 � 1
�

: (10)

For the last equation we can, due to symmetry, consider a fixed � and apply the
Law of Total Expectation to the event f� 2 Y 0g. As mentioned above, the .d � 1/-
face � of Y belongs to Y 0 if and only if in the �-rooted collapse process of Y, the
degree of � is greater than 1 after .k � 1/ phases and positive after k steps. By
approximating the �-rooted collapse process of Y with the rooted collapse process
on Td.c/ we obtain that up to 1C on.1/ factor,

PrŒ� 2 Y 0� � PrŒık > 1� D 1 � tk � c.1 � tk�2/dtk�1: (11)

Furthermore, upto 1C on.1/ factor,

E
�
dY0.�/j� 2 Y 0

� D EŒık j ık > 0 ^ ık�1 > 1�

�
1X

jD2
j � PrŒık D j j ık > 0 ^ ık�1 > 1�

�
1X

jD2
j � PrŒık D j�

PrŒık�1 > 1�

D c.1 � tk�1/d.1� tk/

1 � tk�1 � c.1 � tk�2/dtk�1
: (12)

By combining Inequalities (10), (11) and (12), and letting k!1, we obtain that

EŒˇd.Y/� � .1C on.1//

 
n

d

!
c.1 � t/dC1

dC 1 � 1C tC ct.1 � t/d
�

:

This bound starts to be meaningful for c > cd, where this expression matches
the upper bound from (9). Since ˇd is 1-Lipschitz, a straightforward application of
Azuma’s inequality yields that a.a.s. ˇd deviates from its expectation by only o.nd/.
In particular, this shows a matching upper bound for the threshold of d-acyclicity.
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5.3 R-Shadow of Yd
�
n; c

n

�

The behavior of the R-shadow when c < cd is studied similarly to the C-shadow in
the collapsible regime (See Sect. 4.3).

We turn to the range c > cd. Here we do not give a proof, but only a general
intuitive explanation. An accurate analysis of the measure concentration can be
found in [13]. Recall that

1
�n

d

�EŒˇd.YIR/� ���!
n!1 gd.c/ WD c

dC 1.1 � t/dC1 � .1 � t/C ct.1 � t/d :

A simple technical claim shows that for every c > cd, the limit function gd.c/ is
differentiable with respect to the variable c and its derivative equals to 1

dC1.1�t/dC1.
It turns out to be more convenient to work here with a d-dimensional analog of the

so-called evolution of random graphs. Let Yd.n;m/ be a random simplicial complex
with n vertices, a complete .d � 1/-skeleton and m uniformly random d-faces.
Y 0 D Yd.n;m C 1/ can be sampled by the following procedure. First sample
Y D Yd.n;m/ and then add a random d-face which does not belong to Y. Therefore,
the following equation holds in expectation,

ˇd.Y
0IR/ � ˇd.YIR/ D 1

� n
dC1
� jSHR.Y/j :

Letting m D Bin
�� n

dC1
�
; c

n

�
yields that Y D Yd

�
n; c

n

�
, and its real d-Betti

number is
�n

d

� � gd.c/ C o.nd/. The previous equation suggests, at least intuitively,
the following relation between the growth of gd and the R-shadow. Namely,

 
n

d

! 

gd

 

cC dC 1
�n

d

�

!

� gd.c/

!

� 1
� n

dC1
� jSHR .Y/j ;

and by letting n!1,

1
� n

dC1
� jSHR .Y/j � .dC 1/g0d.c/ D .1 � t/dC1:

This argument can be made rigorous by incrementing Y with "nd random d-faces
at a time rather than one by one, and applying standard measure concentration
inequalities.
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6 Concluding Remarks

Although this article is mostly a review of previous work, it does contain several new
results, e.g. Theorem 1.1(I) that deals with the collapsible regime is a little stronger
than the original result of [6]. Other notable new results concern the asymptotic
densities of the core and the C-shadow of Yd

�
n; c

n

�
for c > �d, improving the main

theorem of [4] which says that Yd
�
n; c

n

�
is a.a.s. non-collapsible for c > �d. As

mentioned above, although the main result in that paper is correct, there is an error
in the proof, which we are able to remedy here using the techniques of Riordan [20].

The results surveyed here can be viewed from several perspectives which suggest
different problems for future research.

From the combinatorial perspective, the phase transition in the density of the
shadow of Yd

�
n; c

n

�
is of great interest. We conjecture that the R-shadow grows

from linear in n to a giant (order ‚.ndC1/) in a single step in a random evolution
of simplicial complexes. This starkly contrasts with the gradual growth of the giant
component in random graphs. It is of particular interest to understand the structure
of the critical complex. Numerical experiments suggest that its .d � 1/-homology
group has torsion of size exp.‚.nd//, but we do not know a proof of this yet.

On the topological side, it would be very interesting to better understand the giant
d-cycles which appear in Yd

�
n; c

n

�
when c > cd. Provably, they consist of ‚.nd/

d-faces, but numerical experiments suggest that they lie in an unknown territory in
the realm of homological d-cycles. Unlike closed manifolds, in which the degree
of all .d � 1/-faces equals to 2, it seems that in these d-cycles the average degree
approaches dC1, which is the largest possible for a minimal d-cycle. Namely, these
d-cycles are in some sense the opposite of manifolds.

In addition, the random complexes Yd
�
n; c

n

�
, where �d < c < cd have the nice

property of being d-acyclic but not d-collapsible. What other interesting topological
or combinatorial properties do they have?

There is much more to study about random simplicial complexes in the regime
p D c=n. In particular, the question regarding the vanishing of the top homology
over finite fields is still open and presently out of reach. It is interesting to resolve
whether homology thresholds over other fields can also be read off some parameter
of the Poisson d-tree.
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Abstract We study relations between geometric embeddings of graphs and the
spectrum of associated matrices, focusing on outerplanar embeddings of graphs.
For a simple connected graph G D .V;E/, we define a “good” G-matrix as a
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 V matrix with negative entries corresponding to adjacent nodes, zero entries
corresponding to distinct nonadjacent nodes, and exactly one negative eigenvalue.
We give an algorithmic proof of the fact that if G is a 2-connected graph, then either
the nullspace representation defined by any “good” G-matrix with corank 2 is an
outerplanar embedding of G, or else there exists a “good” G-matrix with corank 3.
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Spectral parameters of graphs The basic connection between graphs, matri-
ces, and geometric embeddings considered in this paper can be described as follows.
We define a G-matrix for an undirected graph G D .V;E/ as a symmetric real-
valued V 
 V matrix M with Mij D 0 if i and j are distinct nonadjacent nodes. The
matrix is well-signed if Mij < 0 for adjacent nodes i and j. (There is no condition on
the diagonal entries.) If, in addition, M has exactly one negative eigenvalue, then let
us call it good (for the purposes of this introduction). Let 
.G/ denote the largest d
for which there exists a good G-matrix with corank d. (The corank is the dimension
of the nullspace.)

The parameter 
 is closely tied to certain topological properties of the graph.
Combining results of [1, 5, 7, 9] and [8], one gets the following facts:

If G is connected, then 
.G/ � 1, G is a path,
If G is 2-connected, then 
.G/ � 2, G is outerplanar,
If G is 3-connected, then 
.G/ � 3, G is planar,
If G is 4-connected, then 
.G/ � 4, G is linklessly embeddable in R

3.

We study algorithmic aspects of the first two facts. Let us discuss here the second,
which says that if G is a 2-connected graph, then either it has an embedding in the
plane as an outerplanar map, or else there exists a good G-matrix with corank 3 (and
so the graph is not outerplanar). To construct an outerplanar embedding, we use the
nullspace of any good G-matrix with corank 2.

Nullspace representations To describe this construction, suppose that a G-
matrix M has corank d. Let U 2 R

d�n be a matrix whose rows form a basis of
the nullspace of M. This matrix satisfies the equation UM D 0. Let ui be the column
of U corresponding to node i 2 V . The mapping u W V ! R

d is called the nullspace
representation of V defined by M. It is unique up to linear transformations of Rd.
(For the purist: the map V ! ker.M/� is canonically defined; choosing the basis in
ker.M/ just identifies ker.M/� with R

d.)
If G D .V;E/ is a graph and u W V ! R

d is any map, we can extend it to
the edges by mapping the edge ij to the straight line segment between ui and uj. If
u is the nullspace representation of V defined by M, then this extension gives the
nullspace representation of G defined by M.

In this paper we give algorithmic proofs of two facts:

1. If G is a connected graph with 
.G/ D 1, then the nullspace representation
defined by any good G-matrix with corank 1 yields an embedding of G in the
line.

2. If G is 2-connected and 
.G/ D 2, then the nullspace representation defined by
any good G-matrix with corank 2 yields an outerplanar embedding of G.

(The word “yields” above hides some issues concerning normalization, to be
discussed later.) The proofs are algorithmic in the sense that (say, in the case of
(2)) for every 2-connected graph we either construct an outerplanar embedding or a
good G-matrix with corank 3 in polynomial time. The alternative proof that can be
derived from the results of [6] uses the minor-monotonicity of the Colin de Verdière
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parameter (see below), and this way it involves repeated reference to the Implicit
Function Theorem, and does not seem to be implementable in polynomial time.
Our algorithms use exact real arithmetic and a subroutine for finding roots of one-
variable polynomials, which are steps that can be easily turned into polynomial-time
algorithms (say, in binary arithmetic).

Suppose that the input to our algorithm is a 3-connected planar graph. Then the
algorithm outputs a good G-matrix with corank at least 3. Paper [6] also contains
the analogous result for planar graphs, which was extended in [4]:

3. If G is 3-connected and 
.G/ D 3, then the nullspace representation defined by
any good G-matrix with corank 3 yields a representation of G as the skeleton of
a convex 3-polytope.

Thus computing the nullspace representation defined by the matrix M, and perform-
ing node-scaling as described in [4], we get a representation of G as the skeleton of
a 3-polytope.

Unfortunately, the proof of (3) uses the minor-monotonicity of the Colin de
Verdière parameter and the Implicit Function Theorem, and hence it does not yield
an efficient algorithm: if the input is not a planar graph, then it does not provide
a polynomial-time algorithm to compute a good G-matrix with corank at least 4.
It would be interesting to see whether our approach can be extended to the case

 � 3. (While we focus on the case 
;� 2, some of our results do bear upon higher
dimensions, in particular the results in Sect. 2.2 below.)

A further extension to dimension 4 would be particularly interesting, since for
4-connected graphs G, linkless embeddability is characterized by the property that

.G/ � 4, but it is not known whether the nullspace representation obtained from a
good G-matrix of corank 4 yields a linkless embedding of the graph.

The Strong Arnold Hypothesis and the Colin de Verdière number We con-
clude this introduction with a discussion of the connection between the parameter

.G/ and the graph parameter �.G/ introduced by Colin de Verdière (cf. [11]).
This latter is defined similarly to 
 as the maximum corank of a good G-matrix M,
where it is required, in addition, that M has a nondegeneracy property called the
Strong Arnold Property. There are several equivalent forms of this property; let
us formulate one that is related to our considerations in the sense that it uses any
nullspace representation u defined by M: if a symmetric d 
 d matrix N satisfies
uT

i Nui D 0 for all i 2 V and uT
i Nuj D 0 for each edge ij of G, then N D 0. In more

geometric terms this means that the nullspace representation of the graph defined by
M is not contained in any nontrivial homogeneous quadric.

The relationship between � and 
 is not completely clarified. Trivially �.G/ �

.G/. Equality does not hold in general: consider the graph Gl;m made from an
.l C m/-clique by removing the edges of an m-clique. If l � 1 and m � 3, then
�.Gl;m/ D lC1whereas 
.Gl;m/ D lCm�2. (Note that Gl;m is not lC1-connected.)

Colin de Verdière’s parameter has several advantages over 
. First, it is minor-
monotone, while 
.G/ is not minor-monotone, not even subgraph-monotone: any
path P satisfies 
.P/ � 1, but a disjoint union of paths can have arbitrarily large
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.G/. Furthermore, the connection with topological properties of graphs holds for
� without connectivity conditions:

�.G/ � 1, G is a disjoint union of paths,
�.G/ � 2, G is outerplanar,
�.G/ � 3, G is planar,
�.G/ � 4, G is linklessly embeddable in R

3.

Our use of 
 is motivated by its easier definition and by the (slightly) stronger,
algorithmic results.

We see from the facts above that by requiring that G is �.G/-connected, we have
�.G/ D 
.G/ for �.G/ � 4. In fact, it was shown by Van der Holst [10] that if G is
2-connected outerplanar or 3-connected planar, then every good G-matrix has the
Strong Arnold Property. This also holds true for 4-connected linklessly embeddable
graphs [8]. One may wonder whether this remains true for �.G/-connected graphs
with larger �.G/. This would imply that �.G/ D 
.G/ for every �.G/-connected
graph.

Remark 1 Our setup is related to rigidity theory of bar-and-joint structures. To
formulate just one connection, let G be a graph, M a well-signed G-matrix, and
u W V.G/ ! R

d a nullspace representation, considered as specifying a position for
each node. Replace the edges by rubber bands of strength Mij (i.e., stretching an edge
to length t results in a force of �Mijt pulling the endpoints together). Add “braces”
(rigid bars) from the origin to each node; these braces can carry an arbitrary force,
as long as it is parallel to the brace. Then the equation UM D 0 just says that the
structure is in equilibrium (where, as before, U is the matrix with columns ui). The
matrix M is called a (braced) stress matrix on the structure .G; u/.

Other conditions like the rank of the matrix M, its signature and its Strong Arnold
Property also play a significant role in rigidity theory; see [2, 3].

2 G-Matrices

2.1 Nullspace Representations

Let us fix a connected graph G D .V;E/ on node set V D Œn�, and an integer
d � 1. We denote by W the set of well-signed G-matrices with corank at least d,
and by WD, the set of well-signed G-matrices with corank exactly d. We denote by
W1 the set of G-matrices in W with exactly one negative eigenvalue (counted with
multiplicity).

Suppose that we are also given a vector labeling u W V ! R
d, which we can

encode as a d 
 V matrix U, whose column corresponding to i 2 V is the vector
ui. For p 2 R

d, let us write u � p for the representation .u1 � p; : : : ; un � p/. We
denote by Mu the linear space of G-matrices M with UM D 0, by Wu, the set of
well-signed G-matrices in Mu, by W1

u , the set of matrices in Wu with exactly one
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negative eigenvalue, and by W2
u , the set of matrices in Wu with at least two negative

eigenvalues.
We can always perform a linear transformation of R

d, i.e., replace U by AU,
where A is any nonsingular d 
 d matrix. In the case when corank.M/ D d (which
will be the important case for us), the matrix U is determined by M up to such a
linear transformation of Rd.

Another simple transformation we use is “node scaling”: replacing U by U0 D
UD and M by M0 D D�1MD�1, where D is a nonsingular diagonal matrix with
positive diagonal. Then M0 is a G-matrix and U0M0 D 0. Moreover, it maintains
well-signedness of M. Through this transformation, we may assume that every
nonzero vector ui has unit length. We call such a representation normalized.

One of our main tools will be to describe more explicit solutions of the basic
equation UM D 0 in dimensions 1 and 2. More precisely, given a graph G D .V;E/
and a vector labeling u W V ! R

2, our goal is to describe all G-matrices M with
UM D 0. Note that if the vector labels are nonzero, then it suffices to find the off-
diagonal entries: if Mij is given for ij 2 E in such a way that

P
j2N.i/ Mijuj is a scalar

multiple of ui for every node i, then there is a unique choice of diagonal entries Mii

that gives a matrix with UM D 0:

Mii D �
X

j

Mij

uT
j ui

uT
i ui
: (1)

2.2 G-Matrices and Eigenvalues

In this section we consider eigenvalues of well-signed G-matrices; we consider the
connected graph G and the dimension parameter d fixed. We start with a couple of
simple observations.

Lemma 2 Let M be a well-signed G-matrix and let U 2 R
d�n such that UM D 0

and rank.U/ D d.

(a) If M is positive semidefinite, then corank.M/ D d D 1, and all entries of U are
nonzero and have the same sign.

(b) If M has a negative eigenvalue, then the origin is an interior point of the convex
hull of the columns of U.

Proof Let � be the smallest eigenvalue of M. As G is connected, � has multiplicity
one by the Perron–Frobenius theorem, and M has a positive eigenvector v belonging
to �. If � D 0, then this multiplicity is d D 1, and U consists of a single row parallel
to v. If � < 0, then every row of U, being in the nullspace of M, is orthogonal to v.
Thus the entries of v provide a representation of 0 as a convex combination of the
columns of U with positive coefficients. ut
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Lemma 3 If d � 2, then the set W1 is relatively closed in W , and W1 \WD is
relatively open in W .

Proof Let �i.M/ denote the i-th smallest eigenvalue of the matrix M. We claim that
for any M 2W ,

M 2W1 , �2.M/ � 0: (2)

Indeed, if M 2 W1, then trivially �2.M/ � 0. Conversely, if �2.M/ � 0, then M
has at most one negative eigenvalue. By Lemma 2(a), it has exactly one, that is,
M 2 W1. This proves (2). Since �2.M/ is a continuous function of M, the first
assertion of the lemma follows.

We claim that if d � 2, for any M 2W ,

M 2W1 \WD , �dC2.M/ > 0: (3)

Indeed, if M 2 W1 \ WD, then M has one negative eigenvalue and exactly d
zero eigenvalues, and so �dC2.M/ > 0. Conversely, assume that �dC2.M/ > 0.
Since M has at least d zero eigenvalues and at least one negative eigenvalue
(by Lemma 2(a)), we must have equality in both bounds, which means
that M 2W1 \WD. This proves (3). Continuity of �dC2.M/ implies the
second assertion. ut

This last lemma implies that each nonempty connected subset of WD is either
contained in W1 or is disjoint from W1. We formulate several consequences of this
fact.

Lemma 4 Suppose that G is 2-connected, and let M be a well-signed G-matrix
with one negative eigenvalue and with corank d D 
.G/. Let u be the nullspace
representation defined by M, let v 2 R

d, and let J WD fi W ui D vg. If jJj � 2, then
the origin 0 belongs to the convex hull of u.V n J/.

Proof For i 2 V , let ei be the i-th unit basis vector, and for i; j 2 V , let Dij be the
matrix .ei � ej/.ei � ej/

T. Define

M˛ WD M C ˛
X

ij2E
i;j2J

MijD
ij .˛ 2 Œ0; 1�/:

The definition of J implies that ker.M/ � ker.Dij/ for all i; j 2 J, and hence
ker.M/ � ker.M˛/ for each ˛ 2 Œ0; 1�. So corank.M˛/ � corank.M/ D 
.G/
for each ˛ 2 Œ0; 1�. Moreover, M˛ is a well-signed G-matrix for each ˛ 2 Œ0; 1/.
So M˛ 2 W for each ˛ 2 Œ0; 1/. As 
.G/ D d, we know W1 � WD, hence
W1 \WD D W1. So by Lemma 3, W1 is relatively open and closed in W . Since
M D M0 2 W1, this implies that M˛ 2 W1 for each ˛ 2 Œ0; 1/. By the continuity
of eigenvalues, M1 has at most one negative eigenvalue. Note that M1

ij D 0 for any
two distinct i; j 2 J.
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Assume that 0 does not belong to the convex hull of fui W i 62 Jg. Then there
exists c 2 R


.G/ such that uT
i c < 0 for each i 62 J. As 0 belongs to interior of the

convex hull of u.V/ by Lemma 2(b), this implies that uT
i c D vTc > 0 for each i 2 J.

As jJj � 2, the 2-connectivity of G implies that J contains two distinct nodes,
say nodes 1 and 2, that have neighbors outside J. Since ker.M/ � ker.M1/, we haveP

j M1
1juj D 0, and hence

M1
11u

T
1c D �

X

j¤1
M1
1ju

T
j c D �

X

j62J

M1
1ju

T
j c:

As uT
1c > 0 and uT

j c < 0 for j 62 J, and as M1
1j � 0 for all j 62 J, and M1

1j < 0 for
at least one j 62 J, this implies M1

11 < 0. Similarly, M1
22 < 0. As M1

12 D 0, the first
two rows and columns of M1 induce a negative definite 2
 2 submatrix of M1. This
contradicts the fact that M1 has at most one negative eigenvalue. ut

For the next step we need a simple lemma from linear algebra.

Lemma 5 Let A and M be symmetric n 
 n matrices. Assume that A is 0 outside
a k 
 k principal submatrix, and let M0 be the complementary .n � k/ 
 .n � k/
principal submatrix of M. Let a and b denote the number of negative eigenvalues of
A and M0, respectively. Then for some s > 0, the matrix sM C A has at least aC b
negative eigenvalues.

Proof We may assume A D
�

A0 0
0 0

	
and M D

�
M1 MT

2

M2 M0

	
, with A0 and M1 having

order k 
 k. By scaling the last n � k rows and columns of sM C A by 1=
p

s, we

get the matrix
�

sM1 C A0
p

sMT
2p

sM2 M0

	
. Letting s ! 0, this tends to B D

�
A0 0

0 M0

	
. Clearly,

B has aC b negative eigenvalues, and by the continuity of eigenvalues, the lemma
follows. ut
Lemma 6 Let M be a well-signed G-matrix with one negative eigenvalue and with
corank d D 
.G/, let u be the nullspace representation defined by M, and let C be
a clique in G of size at most 
.G/ such that the origin belongs to the convex hull of
u.C/. Then G � C is disconnected.

Proof Since the origin belongs to the convex hull of u.C/, we can write 0 DPi aiui

with ai � 0,
P

i ai D 1, and ai D 0 if i 62 C. Let A be the matrix �aaT. Since a is
nonzero, A has a negative eigenvalue.

Since
P

i aiui D 0, we have ker.M/ � ker.M C sA/ for each s. This implies
that corank.M C sA/ � corank.M/ for each s. Moreover, M C sA is a well-signed
G-matrix for s � 0. So M C sA 2 W for each s � 0. Hence, as M 2 W1 and as
W1 � WD (since d D 
.G/), we know by Lemma 3 that M C sA 2 W1 for every
s � 0. In other words, M C sA has one negative eigenvalue for every s � 0.

Let M0 be the matrix obtained from M by deleting the rows and columns with
index in C. Note that M0 has no negative eigenvalue: otherwise by Lemma 5, MCsA
has at least two negative eigenvalues for some s > 0, a contradiction.
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Now suppose that G � C is connected. As u.C/ is linearly dependent and jCj �
corank.M/, ker.M/ contains a nonzero vector x with xi D 0 for all i 2 C. Then by the
Perron–Frobenius theorem, corank.M0/ D 1 and ker.M0/ is spanned by a positive
vector y. As G is connected, x is orthogonal to the positive eigenvector belonging
to the negative eigenvalue of M. So x has both positive and negative entries. On the
other hand, xjVnC 2 ker.M0/, and so xjVnC must be a multiple of y, a contradiction.

ut
Taking C a singleton, we derive:

Corollary 7 Let G be a 2-connected graph, let M 2W1 have corank 
.G/, and let
u be the nullspace representation defined by M. Then ui ¤ 0 for every node i.

Equivalently, the nullspace representation defined by M can be normalized by
node scaling.

2.3 Auxiliary Algorithms

Now we turn to the algorithmic part, starting with some auxiliary algorithms. The
following general argument will be needed repeatedly.

Algorithm 1 (Interpolation)
Input: a continuous family of full-row-rank matrices U.t/ 2 R

d�n, and a
continuous family of symmetric matrices M.t/ 2 R

n�n (0 � t � 1) such that
U.t/M.t/ D 0, M.0/ has exactly one negative eigenvalue and M.1/ has at least two
negative eigenvalues.

Output: a value t 2 Œ0; 1� for which M.t/ has at most one negative eigenvalue and
at least d C 1 zero eigenvalues.

Let X WD ft j �2.M.t// � 0g and Y WD ft j �dC2.M.t// � 0g. Since U.t/M.t/ D
0 and U.t/ has full row rank, every matrix M.t/ has at least d zero eigenvalues.
Hence X [ Y D Œ0; 1�. Therefore, as X and Y are closed, and as X is a nonempty
proper subset of Œ0; 1� (since 0 2 X, 1 62 X), we have X \ Y ¤ ;, that is, t 2 X \ Y
for some t.

How to compute such a value of t? By binary search, we can compute it with
arbitrary precision. In our applications, we can do better, since the entries of
the families U.t/ and M.t/ will be (very simple) rational functions of t. We can
find those values of t for which M.t/ has corank at least d C 1 by considering
any nonsingular .n � d/ 
 .n � d/ submatrix of M.0/, and finding the roots of
det.B.t// D 0, where B.t/ is the corresponding submatrix of M.t/. Then every value
of t with corank.M.t// > d is one of these roots. The smallest such value of t will
give a matrix M.t/with corank at least dC1. Since the matrices M.s/with s < t have
at most one negative eigenvalue (as otherwise Œ0; t/\ Y ¤ ; (since X [ Y D Œ0; 1�),
hence Œ0; t/ \ X \ Y ¤ ; (as 0 2 X and X and Y are closed), so corank.M.s// > d
for some s < t), the matrix M.t/ has at most one.

We describe two simple applications of this general method.



Nullspace Embeddings for Outerplanar Graphs 579

Algorithm 2 (Double zero node)
Input: a connected graph G D .V;E/, a full-dimensional vector labeling u in R

d,
two nodes i and j with ui D uj D 0, and a matrix M 2W1

u .
Output: a matrix M0 2W1

u with corank.M0/ � d C 1.
Subtract t > 0 from both diagonal entries Mii and Mjj, to get a matrix M.t/.

Trivially M.t/ 2 Wu. Furthermore, if t > 2maxfjMiij; jMjjj; jMijjg, then the
submatrix of M.t/ formed by rows and columns i and j has negative trace and
positive determinant, and so it has two negative eigenvalues. This implies by
Interlacing Eigenvalues that M.t/ has at least two negative eigenvalues. Calling
Algorithm 1, we get a 0 � s � t such that M.s/ has at most one negative eigenvalue
and at least dC1 zeroes. Lemma 2 implies that M.s/ cannot be positive semidefinite,
so M.s/ 2W1

u .

Algorithm 3 (Zero node)
Input: a 2-connected graph G D .V;E/, a full-dimensional vector labeling u in

R
d, a node i with ui D 0, and a matrix M 2W1

u .
Output: a matrix M00 2W1

u with corank.M00/ � dC 1.
We may assume i D 1. Let N be the matrix obtained from M by deleting row and

column 1. Any coordinate of the vectors uj ( j 6D 1) is in the nullspace of N. Since
G n 1 is connected, the Perron–Frobenius Theorem implies that N is not positive
semidefinite (otherwise d D 1 by Lemma 2(a), and then .ui j i ¤ 1/ would be
the eigenvector of N belonging to the smallest eigenvalue 0, while this vector is not
constant in sign). So N has a negative eigenvalue �, with eigenvector y (jyj D 1).
Replacing M11 by a sufficiently small negative number s, we get a matrix M0 2Wu

with two negative eigenvalues. Simple linear algebra shows that s <
�
eT1M

�
0
y

��2
=�

suffices. We conclude by calling Algorithm 1 as before.

3 1-Dimensional Nullspace Representations

As a warmup, let us settle the case d D 1. For every connected graph G D .V;E/, it
is easy to construct a singular G-matrix with exactly one negative eigenvalue: start
with any G-matrix, and subtract an appropriate constant from the main diagonal.
Our goal is to show that unless the graph is a path and the nullspace representation
is a monotone embedding in the line, we can modify the matrix to get a G-matrix
with one negative eigenvalue and with corank at least 2.

3.1 Nullspace and Neighborhoods

We start with noticing that given a vector u 2 R
V , it is easy to describe the matrices

in Wu. Indeed, consider any matrix M 2 Mu. Then for every node i with ui D 0,
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we have

X

j2N.i/

Mijuj D
X

j

Mijuj D 0: (4)

Furthermore, for every node i with ui 6D 0, we have

Mii D � 1
ui

X

j2N.i/

Mijuj: (5)

Conversely, if we specify the off-diagonal entries of a G-matrix M so that (4) is
satisfied for each i with ui D 0, then we can define Mii for nodes i 2 supp.u/
according to (5), and for nodes i with ui D 0 arbitrarily, we get a matrix in Mu.

As an application of this construction, we prove the following lemma.

Lemma 8 Let u 2 R
V . Then Wu 6D ; if and only if for every node i with ui D 0,

either all its neighbors satisfy uj D 0, or it has neighbors both with uj < 0 and
uj > 0.

Proof By the remark above, it suffices to specify negative numbers Mij for the edges
ij so that (4) is satisfied for each i with ui D 0. The edges between two nodes with
ui D 0 play no role, and so the conditions (4) can be considered separately. For a
fixed i, the single linear equation for the Mij can be satisfied by negative numbers if
and only if the condition in the lemma holds. ut

We need the following fact about the neighbors of the other nodes.

Lemma 9 Let u 2 R
V , M 2 Wu, and suppose that M has a negative eigenvalue

� < 0, with eigenvector � > 0. Then every node i with ui > 0 has a neighbor j for
which uj=�j < ui=�i.

Proof Suppose not. Then uj � �jui=�i for every j 2 N.i/, and so

0 D
X

j

Mijuj � Miiui C
X

j2N.i/

Mij
�j

�i
ui D ui

�i

�X

j

Mij�j

	
D �ui < 0;

a contradiction. ut
Algorithm 4 (Double cover)

Input: a vector u 2 R
V , two edges ab and cd with uaub � 0, ucud � 0, b ¤ d,

ua ¤ 0, uc ¤ 0, and a matrix M 2W1
u .

Output: a matrix M0 2W1
u of corank at least 2.

Define the symmetric matrix Nab 2 R
V�V by

.Nab/ij D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

uaub; if fi; jg D fa; bg;
�u2b; if i D j D a;

�u2a; if i D j D b;

0; otherwise;
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and define Ncd analogously. Then Nabu D Ncdu D 0, and so M0 D MCtNabCtNcd 2
Wu for every t > 0. Moreover, NabCNcd has two negative eigenvalues, as one may
(case-)check. So M C tNab C tNcd 2 W2

u for some t, by Lemma 5. So with the
Interpolation Algorithm 1 we find M0 as required.

3.2 Embedding in the Line

Now we come to the main algorithm for dimension 1.

Algorithm 5
Input: A connected graph G D .V;E/.
Output: Either an embedding u W V ! R of G (then G is a path), or a well-signed

G-matrix with one negative eigenvalue and corank at least 2.

Preparation We find a matrix M 2 W1. This is easy by creating any well-
signed G-matrix and subtracting its second smallest eigenvalue from the diagonal.
We may assume that corank.M/ D 1, else we are done.

Let u 6D 0 be a vector in the nullspace of M, and let � be an eigenvector belonging
to its negative eigenvalue. Then the matrix M0 D diag.�/Mdiag.�/ is in W1.G/ and
the vector w D .ui=�i W i 2 V/ is in its nullspace. By Lemma 9, this means that if
we replace M by M0 and u by w, then we get a vector u 2 R

n and a matrix M 2W1
u

such that every node i with ui > 0 has a neighbor j with uj < ui, and every node i
with ui < 0 has a neighbor j with uj > ui.

If ui D uj D 0 for some distinct i; j, we can apply Algorithm 2. So we can assume
that ui D 0 for at most one i.

Let us define a cell as an open interval between two consecutive points ui. If every
cell is covered by only one edge, then G is a path and u defines an embedding of G
in the line, and we are done. Indeed, suppose first ui D uj with j ¤ i. By assumption
ui ¤ 0. If ui > 0, then both i and j have a neighbour i0 and j0 respectively, with
ui0 < ui and uj0 < uj, hence some cell is covered twice by edges. Similarly if ui < 0.
So the ui are all distinct. Assuming that each cell is covered at most once by an edge,
u must be an embedding of G into R, and so G is a path.

So we can assume that there exists a cell .a; b/ covered by at least two edges. We
choose .a; b/ nearest to the origin. Replacing u by �u if necessary, we may assume
that b > 0.

Main step Below, we are going to maintain the following conditions. We have
a vector u 2 R

V and a matrix M 2 W1
u ; every node i with ui > 0 has a neighbor

j with uj < ui; there is a cell .a; b/ with b > 0 that is doubly covered, and that is
nearest the origin among such cells.

We have to distinguish some cases.
Case 1. If a < 0, then we use the Double Cover Algorithm 4 to obtain a matrix

with the desired properties.
Case 2. If a � 0, then let up be the smallest nonnegative entry of u.
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Case 2.1. Assume that up D 0. Let .0; c/ be the cell incident with 0 and with
c > 0, and let M0 be obtained from M by replacing the . p; p/ diagonal entry by 0.
Then M0 2 Wu. It follows by Lemma 2(a) that M0 is not positive semidefinite.
If M0 has more than one negative eigenvalue, then we can run the Interpolation
Algorithm 1. So we may assume that M0 2W1

u .
For 0 < t < c, consider the G-matrices A.t/ defined for edges ij by

A.t/ij D A.t/ji D

8
<̂

:̂

Mij; if i; j 6D p;

uj

uj � t
Mpj; if i D p;

and on the diagonal by

A.t/ii D � 1

ui � t

X

j2N.i/

A.t/ij.uj � t/:

Clearly A.t/ 2 Wu�t. Lemma 2(a) implies that A.t/ has at least one negative
eigenvalue. Furthermore, if t ! 0, then A.t/ij ! Mij; this is trivial except for
i D j D p, when, using that

P
j2N. p/ Mpjuj D �Mppup D 0, we have

A.t/pp D 1

t

X

j2N. p/

Mpjuj D 0:

Thus defining A.0/ D M0 the family A.t/ remains continuous.
If the matrix A.c=2/ has one negative eigenvalue, then replace M by A.c=2/ and

u by u�c=2, and return to the Main Step. Note that the number of nodes with ui � 0
has decreased, while those with ui > 0 did not change.

If A.c=2/ has at least two negative eigenvalues, then the Interpolation Algo-
rithm 1 can be applied to the families .A.t// and .u� t/ to get a number 0 � s � c=2
with A.s/ 2W1

u�t and corank.A.s// > 1.
Case 2.2. Assume that up > 0. Let � and � denote the cells to the left and to the

right of up (so 0 2 �). There is no other node q with uq D up (since from both nodes,
an edge would start to the left, whereas 0 is covered only once). From up, there is an
edge starting to the left, and also one to the right (since by connectivity, there is an
edge covering � , and this must start at p, since � is covered only once). Therefore,
Wu�up 6D ; by Lemma 8. Following the proof of this Lemma, we can construct a
matrix B 2Wu�up with Bpp D 0. Since u� up has a zero entry, Lemma 2(a) implies
that B has at least one negative eigenvalue.

For t 2 Œ0; up/, consider the G-matrices B.t/ defined for edges ij by

B.t/ij D B.t/ji D
8
<

:

Bij; if i; j 6D p;
uj � up

uj � t
Bpj; if i D p;
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and on the diagonal by

B.t/ii D � 1

ui � t

X

j2N.i/

B.t/ij.uj � t/:

Clearly, B.t/ 2Wu�t. Furthermore, limt!up B.t/ D B.
If B has one negative eigenvalue, then replace M by B and u by u � up, and go

to the Main Step. Note that the number of nodes with ui > 0 has decreased, while
those with ui � 0 did not change.

If B has more than one negative eigenvalue and B.0/ has only one, then the
Interpolation Algorithm 1 gives a value 0 � s < up such that B.s/ 2 W1

u�s and
corank.B.s// > 1.

Finally, if B.0/ has more than one negative eigenvalue, then we call the
Interpolation Algorithm 1 for the family of matrices .1 � t/M C tB.0/, keeping
u fixed.

4 2-Dimensional Nullspace Representations

4.1 G-Matrices and Circulations

Our goal in this section is to provide a characterization of G-matrices and their
nullspace representations in dimension 2.

A circulation on an undirected simple graph G is a real V
V matrix f such that it
is supported on adjacent pairs, is skew-symmetric and satisfies the flow conditions:

fij D 0 .ij … E/; fij D �fji .i; j 2 V/;
X

j

fij D 0 .i 2 V/:

If we fix an orientation of the graph, then it suffices to specify the values of f on
the oriented edges; the values on the reversed edges follow by skew symmetry. A
positive circulation on an oriented graph .V;A/ is a circulation on the underlying
undirected graph that takes positive values on the arcs in A.

For any representation u W V ! R
2, we define its area-matrix as the (skew-

symmetric) matrix T D T.u/ by Tij WD det.ui; uj/. This number is the signed area of
the parallelogram spanned by ui and uj. If R denotes counterclockwise rotation by
90ı, then Tij D uT

i Ruj.
Given a graph G and a representation u W V ! R

2 by nonzero vectors, we define
a directed graph .V;Au/ and an undirected graph .V;Eu/ by

Au W D f.i; j/ 2 V 
 V j ij 2 E;T.u/ij > 0g
Eu W D fij 2 E j T.u/ij D 0g:
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So E is partitioned into Au and Eu, where .V;Au/ is an oriented graph in which
each edge is oriented counterclockwise as seen from the origin. The graph .V;Eu/

consists of all edges that are contained in a line through the origin.
Given a representation u W V ! R

2, a circulation f on .V;Au/, and a function
g W Eu ! R, we define a G-matrix M.u; f ; g/ by

M.u; f ; g/ij D
(
�fij=T.u/ij; if ij 2 Au;

g.ij/; if ij 2 Eu:

We define the diagonal entries by (1), and let the other entries be 0. The first main
ingredient of our proof and algorithm is the following representation of G-matrices
with a given nullspace.

Lemma 10 Let G D .V;E/ be a graph and let u W V ! R
2 be a labeling of V by

nonzero vectors. Then

Mu D
˚
M.u; f ; g/ W f is a circulation on .V;Au/ and g W Eu ! R

�
:

Proof First, we prove that M.u; f ; g/ 2 Mu for every circulation on .V;Au/ and
every g W Eu ! R. Using that M.u; f ; g/ D M.u; f ; 0/ C M.u; 0; g/, it suffices to
prove that M.u; f ; g/ 2Mu if either f D 0 or g D 0. If M D M.u; f ; 0/, then using
that f is a circulation, we have

�X

j

Mijuj

	T
Rui D

X

j

fij D 0:

This means that
P

j MijuT
j is orthogonal to Rui, and so parallel to ui. As remarked

above, this means that M.u; f ; 0/ 2Mu. If M D M.u; 0; g/, then for every i 2 V ,

X

j2N.i/

Mijuj D
X

jW ij2Eu

g.ij/uj

This vector is clearly parallel to ui, proving that M.u; 0; g/ 2Mu.
Second, given a matrix M 2Mu, define fij D �TijMij for ij 2 Au and gij D Mij

for ij 2 Eu. Then f is a circulation. Indeed, for i 2 V ,

X

ij2Au

fij D �
X

ij2Au

Miju
T
j Rui D �

X

j2V

Miju
T
j Rui D

�
�
X

j2V

Mijuj

	T
Rui D 0:

Furthermore, M.u; f ; g/ D M by simple computation. ut
Note that the G-matrix M.u; f ; g/ is well-signed if and only if f is a positive

circulation on .V;Au/ and g < 0. Thus,



Nullspace Embeddings for Outerplanar Graphs 585

Corollary 11 Let G D .V;E/ be a graph, let u W V ! R
2 be a representation of V

by nonzero vectors. Then

Wu D
˚
M.u; f ; g/ W f is a positive circulation on .V;Au/;

g W Eu ! R; g < 0
�
:

In particular, it follows that Wu ¤ ; if and only if Au carries a positive
circulation. This happens if and only if each arc in Au is contained in a directed
cycle in Au; that is, if and only if each component of the directed graph .V;Au/ is
strongly connected.

The signature of eigenvalues of M.u; f ; g/ is a more difficult question, but we
can say something about M.u; 0; g/ if g < 0. Let H be a connected component
of the graph .V;Eu/, and let MH be the submatrix of M.u; 0; g/ formed by the
rows and columns whose index belongs to V.H/. Then MH is a well-signed H-
matrix. The vectors ui representing nodes i 2 V.H/ are contained in a single line
through the origin. Lemma 2 implies that MH has at least one negative eigenvalue
unless u.V.H// is contained in a semiline starting at the origin. Let us call such a
component degenerate. Then we can state:

Lemma 12 Let u W V ! R
2 be a representation of V with nonzero vectors, and

let g W Eu ! R be a function with negative values. Then the number of negative
eigenvalues of M.u; 0; g/ is at least the number of nondegenerate components of
.V;Eu/.

4.2 Shifting the Origin

Consider the cell complex made by the (two-way infinite) lines through distinct
points ui and uj with ij 2 E. The 1- and 2-dimensional cells are called 1-cells and
2-cells, respectively. Two cells c and d are incident if d � c n c or c � d n d.

Two points p and q belong to the same cell if and only if Au�p D Au�q and
Eu�p D Eu�q. Hence, for any cell c, we can write Ac and Ec for Au�p and Eu�p,
where p is an arbitrary element of c. For any cell c, set Wc WD S

p2c Wu�p. It
follows by Lemma 10 that if Wc 6D ;, then Wu�p 6D ; for every p 2 c. It also
follows that Wc is connected for each cell c, as it is the range of the continuous
function M.u� p; f ; g/ on the connected topological space of triples . p; f ; g/ where
p 2 c, f is a positive circulation on Ac, and g is a negative function on Ec.

The following lemma is an essential tool in the proof.

Lemma 13 Let c be a cell with Wc ¤ ; and let q 2 c. Then M.u � q; 0; g/ 2 Wc

for some negative function g on Eu�q.
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Proof Choose any p 2 c. Note that q 2 c implies that Eu�p � Eu�q. Let M 2Wu�p.
Define g.ij/ D Mij for ij 2 Eu�q and let N D M.u�q; 0; g/. We prove that N belongs
to Wc.

By Lemma 10 we can write M D M.u � p; f ; g0/ with some positive circulation
f on Au�p and negative function g0 on Eu�p. Define g.ij/ D Mij for ij 2 Eu�q and let
N D M.u � q; 0; g/. For ˛ 2 .0; 1�, define p˛ D .1 � ˛/q C ˛p, and consider the
G-matrices M˛ D M.u� p˛; ˛f ; g0/. Clearly M˛ 2Wc. We show lim˛!0 M˛ D N.

Let f0 D maxij2E j fijj, ` D minui 6Duj jui�ujj, ˇ D maxi;j juij=jujj, and let ı denote
the distance of q from the closest edge in Au�q. Let 0 < ˛ � ı=jq� pj. It suffices to
prove that

kM˛ � Nk1 � 4˛ˇf0
ı`

; (6)

which implies that M˛ ! N as ˛! 0.

• If ij 2 Eu�p, then .M˛/ij D Nij D g0.ij/, independently of ˛.
• If ij 2 Eu�q nEu�p, then for each ˛ 2 .0; 1� we have ij 62 Eu�˛p. The points ui, uj,

and q are collinear, hence T.u � p˛/ij D ˛T.u � p/ij for each ˛ 2 .0; 1�. Thus

.M˛/ij D �˛fij
T.u � p˛/ij

D �fij
T.u � p/ij

D Mij D gij D Nij: (7)

• If ij 2 E n Eu�q, then Nij D 0 and

jT.u�p˛/ijj � jT.u�q/ijj� 1
2
jq�p˛j jui�ujj � 1

2
.ı�˛jq�pj/jui�ujj � 1

4
ı`:

So

jNij � .M˛/ijj D j.M˛/ijj � ˛4f0
ı`
:

• If i; j 2 V with ij 62 E and i ¤ j, then .M˛/ij D 0 D Nij.
• For the diagonal, (1) gives that

jNii � .M˛/iij �
X

j2N.i/

jNij � .M˛/ijj
juT

j uij
uT

i ui
� ˛ˇ4f0

ı`
:

This proves (6). ut
Corollary 14 Let c be a cell with Wc ¤ ; and q 2 c. Then for every matrix
M 2 Wu�q there is a matrix M0 2 Wu�q \Wc that differs from M only on entries
corresponding to edges in Eu�q and on the diagonal entries.
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Proof By Lemma 10 we can write M D M.u�q; f ; g/with some positive circulation
f on Au�q and negative function g on Eu�q. By Lemma 13, there is a negative
function g0 on Eu�q such that M.u � q; 0; g0/ 2 Wc. There are points pk 2 c
and matrices Mk 2 Wu�pk such that Mk ! M.u � q; 0; g0/ as k ! 1. Then
MkCM.u�pk; f ; 0/ belongs to Wu�pk and MkCM.u�pk; f ; 0/! M.u�q; 0; g0/C
M.u�q; f ; 0/ D M.u�q; f ; g0/ as k!1, showing that M0 D M.u�q; f ; g0/ belongs
to Wc. Furthermore, M � M0 D M.u � q; 0; g � g0/ is nonzero on entries in Eu�q

and on the diagonal entries only. ut
Corollary 15 If c and d are incident cells, then Wc [Wd is connected.

Proof We may assume that d � c n c, and that both Wc and Wd are nonempty
(otherwise the assertion follows from the connectivity of Wc and Wd).

Choose q 2 d. Since Wd ¤ ;, Corollary 14 implies that Wd and Wc intersect,
and by the connectivity of Wc and Wd, this implies that Wc [Wd is connected. ut

Call a segment � in the plane separating, if � connects points ua and ub for some
a; b 2 V , with the property that V n fa; bg can be partitioned into two nonempty sets
X and Y such that no edge of G connects X and Y and such that the sets fui j i 2 Xg
and fui j i 2 Yg are on distinct sides of the line through � . Note that this implies
that � is a 1-cell.

Lemma 16 Let G be a connected graph, and let � be a separating segment
connecting ui and uj, with incident 2-cells R and Q. If W� [ WR ¤ ;, then AQ

contains a directed circuit traversing ij.

Proof We may assume that � connects u1 and u2, and that edge 12 of G is oriented
from 1 to 2 in AQ. Let ` be the line through � , and let H and H0 be the open halfplanes
with boundary ` containing Q and R, respectively.

Choose p 2 � [ R with Wu�p ¤ ;. Note that AQ and Au�p differ only for edge
12. Any edge ij ¤ 12 has the same orientation in AQ as in Au�p.

Since H contains points ui, since G is connected, and since ` crosses no uiuj with
ij 2 E, G has an edge 1k or 2k with uk 2 H. By symmetry, we can assume that 2k
is an edge. Then in Au�p, edge 2k is oriented from 2 to k. As Wu�p ¤ ;, Au�p has
a positive circulation. So Au�p contains a directed circuit D containing 2k. The edge
preceding 2k, say j2, must have uj 2 H0, as p belongs to � [ R. Therefore, since
f1; 2g separates nodes k and j, D traverses node 1. So the directed path in D from 2

to 1 together with the edge 12 forms the required directed circuit C in Au�q. ut
Corollary 17 Let G be a connected graph, let � be a separating segment, and let R
be a 2-cell incident with � . Then W� ¤ ; if and only if WR ¤ ;.

Proof Let � connect u1 and u2. If W� ¤ ;, then A� has a positive circulation f 0.
By Lemma 16, AR contains a directed circuit C traversing 12. Let f be the incidence
vector of C. Then f 0 C f is a positive circulation on AR. So WR ¤ ;.

Conversely, if WR 6D ;, then AR has a positive circulation f . By Lemma 16, AR

contains a directed cycle through the arc 21, which gives a directed path P from
1 to 2 not using 12. It follows that by rerouting f12 over P, we obtain a positive
circulation on A� , showing that W� ¤ ;. ut
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4.3 Outerplanar Nullspace Embeddings

Let G D .V;E/ be a graph. A mapping u W V ! R
2 is called outerplanar if its

extension to the edges gives an embedding of G in the plane, and each ui is incident
with the unbounded face of this embedding.

Theorem 18 Let G be a 2-connected graph with 
.G/ D 2. Then the normalized
nullspace representation defined by any well-signed G-matrix with one negative
eigenvalue and with corank 2 is an outerplanar embedding of G.

Proof Let u be such a normalized nullspace representation (this exists by Corol-
lary 7). Let K be the convex hull of u.V/. Since all ui have unit length, each ui

is a vertex of K. We define a diagonal edge as the line segment connecting points
ui 6D uj, where ij 2 E. We don’t know at this point that the points ui are different and
that diagonal edges do not cross; so the same diagonal edge may represent several
edges of G, and may consist of several 1-cells.

Let P denote the set of points p 2 R
2 n u.V/ with W1

u�p ¤ ;. Clearly, the origin
belongs to P. Lemma 2(b) implies that

Claim 1 P is contained in the interior of K.
(It will follow below that P is equal to the interior of K.)

Consider again the cell complex into which the diagonal edges cut K. By the
connectivity of the sets Wc and by Lemma 3, P is a union of cells.

Claim 2 P cannot contain a point ui D uj for two distinct nodes i and j.
Indeed, since ui D uj is a vertex of the convex hull of u.V/, we can choose p 2 P

close enough to ui so that it is not in the convex hull of u.V/ n fuig. This, however,
contradicts Lemma 4.

Claim 3 No point p 2 P n u.V/ is contained in two different diagonal edges.
Indeed, consider any cell c � P with p 2 c. Since Wc ¤ ;, Lemma 13

implies that there is a negative function g on Eu�p such that M.u � p; 0; g/ 2 Wc.
As all matrices in Wc have exactly one negative eigenvalue, M.u � p; 0; g/ has
at most one negative eigenvalue. Lemma 12 implies that .V;Eu�p/ has at most
one nondegenerate component. But every diagonal containing p is contained in
a nondegenerate component of .V;Eu�p/, and these components are different for
different diagonals, so p can be contained in at most one diagonal. This proves
Claim 3.

It is easy to complete the proof now. Clearly, P is bounded by one or more
polygons. Let p be a vertex of P, and assume that p … u.V/. Then p belongs to two
diagonals (defining the edges of P incident with p), contradicting Claim 3. Thus all
vertices of P are contained in u.V/. This implies that P is a convex polygon spanned
by an appropriate subset of u.V/.

To show that P D K, assume that the boundary of P has an edge � contained
in the interior of K and let R � P be a 2-cell incident with � , and let Q be the
2-cell incident with � on the other side. Clearly, WR ¤ ;, and by Corollary 17,
W� ¤ ; and by the same Corollary, WQ ¤ ;. The sets W� [WR and W� [WQ
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are connected by Corollary 15, and hence so is W� [WR [WQ. We also know that
W1 \WR ¤ ;. Since W1 is open and closed in W (Lemma 3, note that in this case
W1 DW1 \WD as 
.G/ D 2), we conclude that W1 \WQ ¤ ;, i.e., Q � P. But
this contradicts the definition of � .

Thus P is equal to the interior of K. Claim 2 implies that the points ui are all
different, and Claim 3 implies that the diagonals do not cross. �

4.4 Algorithm

The considerations in this section give rise to a polynomial algorithm achieving the
following.

Algorithm 6
Input: A 2-connected graph G D .V;E/.
Output: Either an outerplanar embedding u W V ! R

2 of G, or a well-signed
G-matrix with one negative eigenvalue and corank at least 3.

The algorithm progresses along the same lines as the algorithm in Sect. 3.2. We
describe the main steps, omitting some details. It will be useful to remember that
by Lemma 2(a), no well-signed G-matrix with two zero eigenvalues is positive
semidefinite.

Step 1. We call Algorithm 5, which returns a well-signed G-matrix M with one
negative and at least two zero eigenvalues (since the graph is not a path). If it has
three zero eigenvalues, we are done, so suppose that this is not the case. We compute
its nullspace representation u. We compute a positive circulation f on .G; u/ and a
negative function g on Eu such that M D M.u; f ; g/, following the simple formulas
in the proof of Lemma 10.

If M.u; f ; 0/ has two negative eigenvalues, then the Interpolation Algorithms,
applied with the matrix family M.s/ D .1 � t/M C tM.u; f ; 0/, returns a number
0 � s < 1 for which M.s/ a well-signed G-matrix with one negative eigenvalue and
corank at least 3. So suppose that M.u; f ; 0/ has one negative eigenvalue.

Step 2. If there is an i with ui D 0, then Algorithm 3 gives a matrix M00 2 Wu

with one negative and at least three zero eigenvalues. So we may assume that ui 6D 0
for every i. We scale M so that juij D 1. (All we are going to use of this condition
is that every ui is a vertex of the convex hull K of the vectors ui.) Lemma 2 implies
that 0 2 int.K/; let c be the cell containing 0 (this may be a point, and edge, or a
polygon).

If u is an outerplanar embedding, we are done. Otherwise, we have either two
nodes i; j 2 V with ui D uj, or two (diagonal) edges that intersect. Let z 2 K be a
point that is either the intersection point of two diagonal edges, or z D ui D uj for
two nodes i and j. Choose z so that the number of diagonal edges separating z from
0 is minimal.

Step 3. If z D 0 (equivalently, c is 0-dimensional), then the origin is the
intersection point of two diagonal edges, and hence M.u; 0;�1/ has at least two
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negative eigenvalues. So we can apply Algorithm 1 with the matrix family tM C
.1 � t/M.u; 0;�1/ (keeping u fixed).

Step 4. Suppose that we find two matrices M 2 W1
u�p and M0 2 W2

u�q where
p; q 2 c. Since p and q belong to the same cell, the matrix M.u � q; f ; g/ is well
defined and M.u � q; f ; g/ 2 Wu�q. If M.u � q; f ; g/ has one negative eigenvalue,
then we invoke Algorithm 1 with the family .1 � t/M0 C tM.u � q; f ; g/ (keeping
u � q fixed). If M.u � q; f ; g/ has at least two negative eigenvalues, then similarly
invoke Algorithm 1 with the family M.u� tp� .1� t/q; f ; g/ and .u� tp� .1� t/q/
for 0 � t � 1.

Step 5. Suppose that no diagonal edge separates z from the origin, and z is the
intersection point of at least two diagonal edges. Choose a number ˛ such that

0 < ˛ < min
n
1;
ı

jzj ;
ı`n

4ˇf0

o
;

where the numbers ˇ; f0; ı; ` are defined as in the proof of Lemma 13 and are easily
computed. As in the proof of Lemma 13, we construct a negative function g on Eu�z

and a matrix M˛ 2Wu�.1�˛/z such that the matrix N D M.u�.1�˛/z; 0; g/ satisfies
kM˛ � Nk1 < 4˛ˇf0=.ı`/. The matrix N has at least two negative eigenvalues.
Then elementary linear algebra gives that the matrix M˛ has at least two negative
eigenvalues. We conclude by Step 4.

Step 6. Suppose that every vertex of c is in u.V/, and c has a vertex z D ui D uj.
Let q be a point in the interior of c but not in conv.u.V/ n fzg. Then by Lemma 4,
the matrix M.u� q; f ; g/ has either corank at least 3 or two negative eigenvalues. In
the first case, we are done; in the second, we invoke Step 4. So we may assume that
z is not a vertex of c.

Step 7. If c D Œui; uj� is a diagonal (intersecting no other diagonal), then let " > 0
be small enough so that "z belongs to a region R bounded by c. By the construction
in the proof of Lemma 17, we find a directed cycle C in G that passes every edge
in the positive direction when viewed from R. Let h denote the unit flow around C,
and let M0 D M.u � "z; f C "2h; 0/ 2W"z.

If M0 has one negative eigenvalue, then we can replace M by M0 and u by u�"z, to
get an instance where the segment Œ"z; z� intersects fewer diagonal edges than Œ0; z�.
If M0 2 W2

u�"z, then we apply the interpolation argument to the family M.t/ D
M.u � tz; f C t2h; 0/, using that M.0/ has one negative eigenvalue (as it is the limit
of M.u; f ; ˇg/ as ˇ ! 0) and M.1/ D M0. (The coefficient of h is t2 to make sure
that M.t/ depends continuously on t at t D 0.)

Step 8. So we may assume that c is a 2-dimensional polygon, 0 is an internal point
of it, every vertex of c is the position of exactly one node, and so every edge of c is
a full diagonal edge. Let q be the intersection point of Œ0; z� with the boundary of c.
Let ij 2 Au be the edge for which q 2 Œui; uj�, and let Q be the region on the other
side of e, let C be a cycle through e in AQ whose edges are counterclockwise when
viewed from Q (constructed as in Lemma 17). Let h denote the unit flow around
C, and let M0 D M.u � q; f C fijh;�1/. Then M0 2 Wu�q. If it has one negative
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eigenvalue, then we can replace M by M0 and u by u � q. If M0 2 W2
u�q, then we

apply the Interpolation Algorithm 1 to the matrix family M.t/ D M.tq; f C tfijh; 0/.
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Abstract Let F be a family of subsets of f1; : : : ; ng and let

YF D
[

F2F
f.x1; : : : ; xn/ 2 R

n W xi 2 Z for all i 2 Fg:

Let XF D R
n n YF . For a vector of positive integers k D .k1; : : : ; kn/ let EP.XF /

kC1
0

denote the space of monotone paths from 0 D .0; : : : ; 0/ to k C 1 D .k1 C
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1 Introduction

Concurrency theory in computer systems deals with properties of systems in which
several computations are executing simultaneously and potentially interacting with
each other. Among the many models suggested for the study of concurrency
are the Higher Dimensional Automata (HDA) introduced by Pratt [10]. Those
arise as cubical complexes in which individual cubes (of varying dimension) with
directed paths on each of them, are glued together consistently. Compared to other
concurrency models, HDA have the highest expressive power based on their ability
to represent causal dependence [15]. On the other hand, only little is known in
general about the topology of the space of directed paths of a general HDA [12].

A specific simple case of linear HDA’s consists of the PV-model suggested by
Dijkstra [4] back in the 1960s. In this model there are m resources (e.g. shared
memory sites) a1; : : : ; am with positive integer capacities 
.a1/; : : : ; 
.am/ where

.ai/ indicates the maximal number of processes that ai can serve at any given time,
and n linear processes T1; : : : ;Tn (without branchings or loops) that require access
to these resources. Given a resource a and a process T, denote by Pa and Va the
locking and respectively unlocking of a by T. A process Ti is specified by a sequence
of locking and unlocking operations on the various resources in a certain order.
Modeling each process Ti as an ordered sequence of integer points on the interval
.0; ki�, one can view a legal execution of T D .T1; : : : ;Tn/ as a coordinate-wise non-
decreasing continuous path from 0 D .0; : : : ; 0/ to k C 1 D .k1 C 1; : : : ; kn C 1/
that avoids a forbidden region determined by the processes and by the capacities
of the resources. If two such paths are homotopic via a homotopy respecting the
monotonicity condition then corresponding concurrent computations along the two
paths have always the same result [5, 6].

Let XT;
 denote the complement of the forbidden region in
Qn

iD1Œ0; ki C 1�.

The trace space
�!
P .XT;
/

kC1
0 associated with the pair .T; 
/ consists of all paths as

above endowed with the compact-open topology. For example, for the two processes
sharing two resources depicted in Fig. 1, the forbidden region is the “Swiss Flag”
and the trace space is homotopy equivalent to the two point space S0. For an analysis

of the PV spaces XT;
 and their associated trace spaces
�!
P .XT;
/

kC1
0 , we refer to

[5, 6, 11, 18].
In this paper we consider a special class of PV models in which the access and

release of every resource happen without time delay. In this case, the forbidden
region is a union of sets of the form B\.K1
� � �
Kn/, where B is a fixed aligned box
and each Ki is either Z or R. Our main result (see Theorem 1.3 below) is a formula
for the Poincaré series of the trace spaces associated to such special PV models. We
proceed with some formal definitions leading to the statement of Theorem 1.3.

Let X be a subspace of Rn. A continuous path p D . p1; : : : ; pn/ W I D Œ0; 1� !
X � R

n is called directed if all components pi W I ! R are non-decreasing. For two
points y0 and y1 in the closure of X, let EP.X/y1y0 be the space of all directed paths in
NX (endowed with the compact-open topology) starting at y0 and ending at y1 whose
interior is contained in X.
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(0, 0)

Pa Pb Vb Va

Pb

Pa

Va

Vb

(5, 5)

T1 = Pa.Pb.Vb.Va

T2 = Pb.Pa.Va.Vb

κ(a) = κ(b) = 1

Fig. 1 The Swiss flag example – two processes sharing two resources

Let N denote the non-negative integers and let NC denote the positive integers.
Let k D .k1; : : : ; kn/ 2 N

nC be a fixed vector, and let 0 D .0; : : : ; 0/, 1 D .1; : : : ; 1/,
kC 1 D .k1 C 1; : : : ; kn C 1/. In this paper we study the topology of EP.X/kC1

0 for
spaces X that are associated with the special PV programs described above. Let F
be a family of subsets of Œn� D f1; : : : ; ng and let

YF D
[

F2F
f.x1; : : : ; xn/ 2 R

n W xi 2 Z for all i 2 Fg: (1)

The Euclidean Pattern Space associated with F is defined by XF D R
n n YF , with

a corresponding Path Space EP.XF /
kC1
0 .

Example If F consists of the single set Œn� then XF D R
n n Zn. Raussen and

Ziemiański [13] investigated the path space EP.Rn n Zn/kC1
0 and determined its

homology groups and its cohomology ring. Their result concerning homology is
the following:

Theorem 1.1 (Raussen and Ziemiański [13]) For n � 3

QH`.EP.Rn n Zn/kC1
0 / D

(
Z

Qn
iD1 .

ki
m/ ` D .n� 2/m; m > 0

0 otherwise.
(2)

The Betti number
Qn

iD1
�ki

m

�
in (2) corresponds to the number of strictly increasing

integer sequences of length m strictly between 0 and kC 1.
In this paper we consider EP.XF /

kC1
0 for general F . Without loss of generality we

may assume that F is upward closed, i.e. if F 2 F and F � F0 � Œn� then F0 2 F .
It will also be assumed that jFj � 2 for all F 2 F (otherwise EP.XF /

kC1
0 is empty).

We first introduce some terminology.
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Definition 1.2

(i) A subset G � F is a matching if G \ G0 D ; for all G ¤ G0 2 G. Let M.F/
denote the family of all nonempty matchings of F , with partial order � given
by G � G0 if for every G 2 G there exists a G0 2 G0 such that G � G0. For
K � Œn� let

M.F/�K D fG 2 M.F/ W G � K for all G 2 Gg

and let M.F/�K D M.F/�.K/ n ffKgg. The order complex of M.F/�K is
denoted by�.M.F/�K/.

(ii) For a function m W F ! N let TF .m/ be the (simple undirected) graph on the
vertex set[F2FfFg
Œm.F/�, where two vertices .F; i/ ¤ .F0; i0/ are connected
by an edge if F \ F0 ¤ ;.

(iii) An orientation of a simple undirected graph G D .V;E/ will be determined
by a function ˛ W E ! V2 that maps an edge fu; vg 2 E to either .u; v/
or .v; u/. An orientation is acyclic if the resulting directed graph does not
contain directed cycles. Let A.G/ denote the set of acyclic orientations of G
and let a.G/ D jA.G/j. By a result of Stanley [14], a.G/ can be computed by
evaluating the chromatic polynomial of G at �1.

For m W F ! N let

bF ;k.m/ D a.TF .m//
Q

F2F m.F/Š

nY

iD1

 
ki

P
F3i m.F/

!

;

cF .m/ D
X

F2F
m.F/.jFj � 2/C 1:

(3)

The reduced Poincaré series of a space Y over a field K is defined by

fK.Y; t/ D
X

i�0
dim QHi�1.YIK/ti: (4)

Our main result is the following

Theorem 1.3

(i) If H�.�.M.F/�F/IZ/ is free for all F 2 F then H�.EP.XF /
kC1
0 I

Z/ is free.
(ii) For any field K

fK
�EP.XF /

kC1
0 ; t

	
D

X

0¤m2NF
bF ;k.m/tcF .m/

Y

F2F
fK
�
�.M.F/�F/; t

�1�m.F/
:

(5)
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The paper is organized as follows: In Sect. 2 we describe a subspace arrangement
DF that is homotopy equivalent to EP.XF /

kC1
0 . In Sect. 3 we state Theorem 3.1

that describes the homotopy type of the Alexander dual of DF and then use it to
prove Theorem 1.3. The proof of Theorem 3.1 is given in Sect. 4 which constitutes
the main technical part of the paper. In Sect. 5 we discuss several applications
arising from particular cases of Theorem 1.3. The easy conclusions about (higher)
connectivity of path spaces in Sect. 5.4 are probably the most notable ones for
applications in concurrency theory. Some open problems are mentioned in Sect. 6.

2 Directed Paths via Subspace Arrangements

Spaces of directed paths in a PV-model have been shown to be homotopy equivalent
to certain finite prod-simplicial complexes that make homology computations
possible – at least in principle [6, 11]. Unfortunately, these complexes grow very
fast in dimension and size. Here we give an alternative description as complement of
a subspace arrangement. Remark that directedness has the consequence that such
an arrangement has to be considered as a subset of a product of simplices and not
of Euclidean space; this is the reason why classical results are not immediately
applicable.

Let F be an upward closed hypergraph on Œn� and let k D .k1; : : : ; kn/ 2 N
nC. In

this section we describe a model for EP.XF /
kC1
0 up to homotopy equivalence.

Definition 2.1

(i) For k � 1 let V�k denote the open k-simplex

V�k D f.x1; : : : ; xk/ 2 R
k W 0 < x1 < � � � < xk < 1g:

For k D 0 let V�0 denote the one point space f�g.
For k D .k1; : : : ; kn/ 2 N

nC let

N D
nX

iD1
ki; Œk� D

nY

iD1
Œki�; and V�k D

nY

iD1
V�ki � R

N : (6)

(ii) For F � Œn� let ŒkF� D Q
i2FŒki�. For j D . j.i//i2F 2 ŒkF � and F0 � F, the

restriction . j/jF0 2 ŒkF0 � of j to F0 is given by . j/jF0.i/ D j.i/ for all i 2 F0. A
partial sequence is a pair .F; j/ where F � Œn� and j D . j.i//i2F 2 ŒkF�. Let
SF be the family of all partial sequences .F; j/ where F 2 F and j 2 ŒkF�.

(iii) For a partial sequence .F; j/ let

G.F;j/ D f.xi1; : : : ; xiki/
n
iD1 2

nY

iD1
V�ki W xij.i/ D xi0j.i0/ for all i; i0 2 Fg:
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Let

EF D
[

.F;j/2SF

G.F;j/ ; DF D V�k � EF :

(iv) The one-point compactification of V�k is given by

bV�k D V�k [ f1g D �k=@�k Š SN :

For .F; j/ 2 SF , the compactification of G.F;j/ in
bV�k is given by 	.F;j/ D

G.F;j/ [ f1g. The compactification of EF in
bV�k is

cEF D EF [ f1g:

Let EP<.XF /
kC1
0 � EP.XF /

kC1
0 denote the space of increasing directed paths p D

. p1; : : : ; pn/ W I ! XF � Rn characterized by t < t0 ) pi.t/ < pi.t0/ (instead of �)
for all i. Remark that every component pi is a homeomorphism of the unit interval.

A correspondence between the space DF from Definition 2.1(iii) and this path
space EP<.XF /

kC1
0 and may be established as follows: For every k 2 NC and x D

.x1; : : : ; xk/ 2 V�k let px W I ! Œ0; k C 1� denote the (directed) path with px.0/ D 0,
px.1/ D k C 1, px.xi/ D i; 1 � i � k; and connected by line segments inbetween.

For every 0 < k 2 N
nC and every x D .x1; : : : xn/ 2 V�k (cf. 6), let p.x/.t/ D

. px1.t/; : : : ; pxn.t//. This recipe defines a continuous map P W V�k ! EP<.Rn/kC1
0

that restricts to a map P<F W DF ! EP<.XF /
kC1
0 : For x D .x1; : : : ; xn/ 2 V�k and

xi D .xi1; : : : ; xiki/ 2 V�ki ; .F; j/ 2 SF and 0 < t < 1 assume that pxi.t/ D j.i/ 2
Z; i 2 F. Then t D xij.i/ D xi0j.i0/ for i; i0 2 F and hence x 2 EF .

The composition of P<F with the inclusion map i W EP<.XF /
kC1
0 ,! EP.XF /

kC1
0

will be denoted by EPF W DF ! EP.XF /
kC1
0 .

Proposition 2.2 The map EPF W DF ! EP.XF /
kC1
0 is a homotopy equivalence.

We prove Proposition 2.2 via the following two lemmas:

Lemma 2.3 The map P<F W DF ! EP<.XF /
kC1
0 is a homotopy equivalence.

Proof Define a reverse continuous map Q W EP<.Rn/kC1
0 ! V�k as follows:

For p D . p1; : : : ; pn/ 2 EP<.Rn/kC1
0 such that pj.xiji/ D ji let Q.p/ D

.x11; : : : ; x1k1 I : : : I xn1; : : : ; xnkn/. Remark that Q is well-defined and continuous
since every pi is a homeomorphism; and that Q cannot be extended to the space
EP.Rn/kC1

0 of non-decreasing directed paths. Remark moreover that Q restricts to a

map QF W EP<.XF /
kC1
0 ! DF .
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It is obvious from the definitions that Q ı P is the identity map on V�k and hence
that QF ıPF is the identity map on DF . The map PıQ W EP<.Rn/kC1

0 ! EP<.Rn/kC1
0

has the property: ..PıQ/.p//i. p�1i . j// D j D pi. p�1i . j// and ..PıQ/.p//i.t/ 62 Z
for p 2 EP<.Rn/kC1

0 and t 62 Qi.p/[f0; 1g. That same property holds for all directed

paths in the linear homotopy on EP<.Rn/kC1
0 given by s 7! .1�s/pCs.PıQ/.p/; 0 �

s � 1. Hence P ı Q restricts to a map PF ı QF W EP<.XF /
kC1
0 ! EP<.XF /

kC1
0 that is

homotopic to the identity map on EP<.XF /
kC1
0 . ut

Lemma 2.4 The inclusion map i W EP<.XF /
kC1
0 ,! EP.XF /

kC1
0 is a homotopy

equivalence for every positive integer vector k.

Proof Let ık 2 EP<.Rn/kC1
0 denote the linear path given by ık.t/ D t.kC 1/. Then,

for every p 2 EP.Rn/kC1
0 and 0 < s � 1, the convex combination ps WD .1 �

s/pC sık is strictly increasing and hence contained in EP<.Rn/kC1
0 . For a given p 2

EP<.XF /
kC1
0 , we want to choose s > 0 small enough to ensure that ps avoids YF

(see (1)) and hence so that ps is contained in EP<.XF /
kC1
0 ; and this in a way that

makes the parameter s depend continuously on the path p.
Fix a norm and the associated metric d on Rn, e.g., the box norm. For every path

p 2 EP<.XF /
kC1
0 , the spaces p.I/ and YF \ Œ0;kC 1� are disjoint closed and hence

compact subspaces of Œ0;kC1� with a positive distance d.p/ WD maxt2I.d.p.t/;YF /
depending continuously on p. Let K WD maxn

1 ki and let s.p/ D d.p/
K . Then, for every

p 2 EP<.XF /
kC1
0 one obtains: d.p;ps/ D s.p/ k p � ık k< d.p/ and in particular

d.ps;YF / > 0.
Let i W EP<.XF /

kC1
0 ! EP.XF /

kC1
0 denote the inclusion map, and let r W

EP.XF /
kC1
0 ! EP<.XF /

kC1
0 denote the continuous map given by r.p/ D .1 �

s.p//p C s.p/ık. The continuous map R W EP.XF /
kC1
0 
 I ! EP.XF /

kC1
0 given by

R.p; t/ D .1 � ts.p//p C ts.p/ık is a homotopy between the identity and i ı r; its
restriction to EP<.XF /

kC1
0 is a homotopy between the identity and r ı i. ut

Remark A variant of the proof above shows that spaces of increasing and of non-
decreasing directed paths (as they arise in models for concurrency theory) are
homotopy equivalent in a more general context.

3 The Homology of DF

In this section we state Theorem 3.1 that describes the homotopy type of the

Alexander dual of DF in the one-point compactification of V�k – a sphere of
dimension N D Pn

iD1 ki. This result is then used to prove Theorem 1.3. Our
main observation is the following homotopy decomposition of cEF (see (3) and
Definitions 1.2(i) and 2.1(iii)).
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Theorem 3.1

cEF '
_

0¤m2NF

bF ;k.m/_
SN�cF .m/ � �

F2F
�.M.F/�F/

�m.F/: (7)

The proof of Theorem 3.1 is deferred to Sect. 4.

Proof of Theorem 1.3 (i) If the integral homology QH� .�.M.F/�F/IZ/ is free for

all F 2 F , then (7) implies that QH�.cEF IZ/ is free. Recalling that
bV�k Š SN , it

follows by Alexander duality that for all `

QH`.DF IZ/ D QH`. V�k � EF IZ/

D QH`.
bV�k � cEF IZ/ Š QHN�`�1.cEF IZ/:

Therefore QH`.DF IZ/ is free.
(ii) Recall that the behavior of the reduced Poincaré series fK.�/ (cf. (4)); as a
consequence, with respect to the wedge and join operations is given by

fK.Y1 _ Y2; t/ D fK.Y1; t/C fK.Y2; t/ ;

fK.Y1 � Y2; t/ D fK.Y1; t/fK.Y2; t/:
(8)

Furthermore, if Y is a subcomplex of SN then by Alexander duality

fK.S
N � Y; t/ D tNC1fK.Y; t�1/: (9)

Theorem 3.1 together with (8) imply that for any field K

fK.cEF ; t/ D
X

0¤m2NF
bF ;k.m/tN�cF .m/C1 Y

F2F
fK.�.M.F/�F/; t/

m.F/: (10)

Combining Proposition 2.2 with (9) and (10) it follows that

fK
�EP.XF /

kC1
0 ; t

	
D fK .DF ; t/ D tNC1fK

�
cEF ; t

�1	

D
X

0¤m2NF
bF ;k.m/tcF .m/

Y

F2F
fK
�
�.M.F/�F/; t

�1�m.F/
:

ut
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4 Homotopy Decomposition of bEF

In this Section we prove Theorem 3.1. Our basic approach is to apply the Wedge
Lemma of Ziegler and Živaljević [17] to the cover f	.F;j/ W .F; j/ 2 SFg of cEF . The
actual proof depends on a number of preliminary results. For notations, we refer the
reader to Definition 2.1.

Definition 4.1 Let R � SF .

(i) Let

GR D
\

.F;j/2R

G.F;j/ ; 	R D
\

.F;j/2R

	.F;j/ D GR [ f1g:

(ii) R is separated if j.i/ ¤ j0.i/ for any .F; j/ ¤ .F0; j0/ 2 R and i 2 F \ F0.

For separated families R � SF it is sometimes useful to represent GR by a
diagram with n rows such that the i-th row contains the coordinates xi1 < � � � < xiki

of V�ki , and such that xij; xi0j0 are connected by a dashed line iff xij D xi0j0 for all
x 2 GR, i.e. iff there exists an .F; j/ 2 R such that i; i0 2 F and j.i/ D j and
j.i0/ D j0.

Example 4.2 Let k1 D k2 D k3 D 2 and let R D f.Fi; ji/g3iD1 where F1 D f1; 2g,
F2 D f2; 3g, F3 D f1; 3g and . j1.1/; j1.2// D .1; 1/, . j2.2/; j2.3// D .2; 1/,
. j3.1/; j3.3// D .2; 2/. The diagram of GR is depicted in Fig. 2.

Definition 4.3 For R � SF let KR be the directed graph on the vertex set R with
edges .F; j/ ! .F0; j0/, where .F; j/ and .F0; j0/ are distinct elements of R that
satisfy F \ F0 ¤ ; and j.i/ < j0.i/ for all i 2 F \ F0. The family R � SF is acyclic
if R is separated and if KR does not contain directed cycles. Let AF denote the set of
all acyclic subfamilies of SF .
The next two Propositions describe some properties of 	R for separated families R.

Proposition 4.4 Let R � SF be a separated family. Then:

(i) If R 62 AF then 	R D f1g.
(ii) If R 2 AF then there is a homeomorphism

	R Š SN�P.F;j/2R.jFj�1/: (11)

Fig. 2 Diagram of GR (cf.
Example 4.2)

x11

x21 x22

x31

x12

x32
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Proof (i) Let

.F1; j1/! � � � ! .Fr; jr/! .F1; j1/

be a directed cycle in KR. Then there exist

i1 2 F1 \ F2; i2 2 F2 \ F3; : : : ; ir 2 Fr \ F1

such that

j1.i1/ < j2.i1/ ; j2.i2/ < j3.i2/ ; � � � ; jr.ir/ < j1.ir/: (12)

We will show that GR D ; and hence 	R D f1g. Indeed, suppose that
..xi;1; : : : ; xi;ki //

n
iD1 is contained in GR. We conclude from (12) – since ij; ijC1 2

FjC1; j < r, and i1; ir 2 F1:

xi1;j1.i1/ < xi1;j2.i1/ D xi2;j2.i2/ < xi2;j3.i2/ D xi3;j3.i3/ <

� � � < xir�1;jr.ir�1/ D xir;jr.ir/ < xir ;j1.ir/ D xi1;j1.i1/;

a contradiction.

Example 4.5 Let k1 D k2 D k3 D 2 and let R D f.Fi; ji/g3iD1 where F1 D f1; 2g,
F2 D f2; 3g, F3 D f1; 3g and . j1.1/; j1.2// D .2; 1/, . j2.2/; j2.3// D .2; 1/,
. j3.1/; j3.3// D .1; 2/. Then .F1; j1/! .F2; j2/! .F3; j3/! .F1; j1/ is a cycle in
KR and thus GR D ;, as is also clear from the diagram of GR in Fig. 3.
(ii) For .F; j/ 2 SF define

V.F;j/ D f.xi1; : : : ; xiki/
n
iD1 2

nY

iD1
R

ki W xij.i/ D xi0j.i0/ for all i; i0 2 Fg:

For R � SF , let VR D T
.F;j/2R V.F;j/ � R

N . If the family R is separated, then VR is
a linear subspace of codimension

P
.F;j/2R.jFj � 1/. If R is acyclic, one can easily

find an element x 2 VR \ V�k.

x11 x12

x21 x22

x31 x32

Fig. 3 If KR has directed cycles then GR D ; (cf. Example 4.5)
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For such a chosen solution x and for v 2 S.VR/ D fu 2 VR W kuk D 1g �
D.VR/ D fu 2 VR W kuk � 1g let ˛.v/ D minft > 0j x C tv 2 @�kg; hence, for
w 2 @�k, one has that ˛. w�x

kw�xk / D kw � xk. This recipe defines a continuous map
˛ from S.VR/ to the positive reals since ˛.v/ is locally obtained as the minimum
among the solutions to a number of linear equations.

We define a (scaling) map

ˆR W 	R D VR \�k=VR\@�k ! D.VR/=S.VR/ Š SN�P.F;j/2R.jFj�1/

by

ˆR.w/ D
8
<

:

1
˛. w�x

kw�xk
/
.w � x/ w ¤ x;

0 w D x:

The map ˆR is indeed a homeomorphism with inverse ‰R W D.VR/=S.VR/ ! 	R

given by

‰R.v/ D
(

xC ˛. v
kvk /v v ¤ 0;

x v D 0:

ut
Proposition 4.6 Let R;R0 2 AF . Then the following two conditions are equiva-
lent:

(a) 	R � 	R0 .
(b) For any .F0; j0/ 2 R0 there exists an .F; j/ 2 R such that F0 � F and j0 D . j/jF0 .

Proof Clearly (b) implies (a). To show the other direction, assume that 	R � 	R0

and let .F0; j0/ 2 R0. Let R1 D R [ f.F0; j0/g, then

	R D 	R \ 	R0 � 	R1 � 	R;

hence 	R1 D 	R ¤ f1g. It follows that if R1 is separated then it must be acyclic.
But this would imply, using Proposition 4.4(ii), that

dim	R1 D dim	R � .jF0j � 1/ < dim	R;

in contradiction with 	R1 D 	R. Hence R1 is not separated and therefore

S D f.F; j/ 2 R W F \ F0 ¤ ; & . j/jF\F0 D . j0/jF\F0g ¤ ;:

We claim that jSj D 1. Otherwise there exist .F1; j1/ ¤ .F2; j2/ 2 R and i1 2
F1 \ F0, i2 2 F2 \ F0 such that j1.i1/ D j0.i1/ and j2.i2/ D j0.i2/. It follows that if
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x D .xi1; : : : ; xiki/
n
iD1 2 GR1 then for all i01 2 F1, i02 2 F2

xi01j1.i01/
D xi1j1.i1/ D xi1j0.i1/

D xi2j0.i2/ D xi2j2.i2/ D xi02j2.i02/
:

(13)

Since R is separated, (13) implies that F1 \ F2 D ;. Let F3 D F1 [ F2 and let
j3 2 ŒkF3 � be given by

j3.i/ D



j1.i/ i 2 F1;
j2.i/ i 2 F2:

Writing

R2 D R n f.F1; j1/; .F2; j2/g [ f.F3; j3/g;
it follows from (13) that 	R D 	R1 � 	R2 � 	R. Therefore 	R2 D 	R ¤ f1g. As
R2 is separated, it follows that R2 2 AF and hence by Proposition 4.4(ii):

dim	R2 D dim	R C .jF1j � 1/C .jF2j � 1/� .jF1 [ F2j � 1/ D dim	R � 1;
in contradiction with 	R2 D 	R. Therefore jSj D 1.

Write S D f.F1; j1/g and let i1 2 F1 \ F0. Then j1.i1/ D j0.i1/. It follows that if
x D .xi1; : : : ; xiki/

n
iD1 2 GR1 then for all i01 2 F1, i0 2 F0

xi01j1.i01/
D xi1j1.i1/ D xi1j0.i1/ D xi0j0.i0/: (14)

Let F4 D F1 [ F0 and let j4 2 ŒkF4 � be given by

j4.i/ D



j1.i/ i 2 F1;
j0.i/ i 2 F0:

Note that j4 is well defined by (14). Writing

R3 D R n f.F1; j1/g [ f.F4; j4/g;

it follows from (14) that

	R D 	R1 � 	R3 � 	R;

hence 	R3 D 	R ¤ f1g. Furthermore, jSj D 1 implies that R3 is separated.
Therefore by Proposition 4.4(ii):

dim	R3 D dim	R C .jF1j � 1/� .jF4j � 1/:

It follows that jF1j D jF4j D jF1 [ F0j. Hence F0 � F1 and j0 D . j1/jF0 . ut
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Let Q be the intersection poset of the cover f	.F;j/ W .F; j/ 2 SFg of cEF ordered
by reverse inclusion: An element q of Q corresponds to an intersection Uq of sets
in the cover, i.e. Uq D 	R for R � SF , and q0 � q in Q iff Uq � Uq0 . Q has a
maximal elementb1 that corresponds to Ub1 D f1g. Fix ab1 ¤ q 2 Q and let R � SF
be a family of minimal cardinality such that Uq D 	R. The assumption that F is
upward closed implies that R is a separated family. Indeed, suppose u0 D .F0; j0/ ¤
u00 D .F00; j00/ 2 R and there exists some i0 2 F0 \ F00 such that j0.i0/ D j00.i0/. Let
1 ¤ x D .xi1; : : : ; xiki/

n
iD1 2 	R. Then for any i 2 F0 \ F00

xij0.i/ D xi0j0.i0/ D xi0j00.i0/ D xij00.i/;

hence j0.i/ D j00.i/. Let u D .F; j/ 2 SF where F D F0 [ F00 and

j.i/ D



j0.i/ i 2 F0;
j00.i/ i 2 F00:

Then 	R D 	R�fu0;u00g[fug, contradicting the minimality of R. Thus R is separated.
By Proposition 4.4(i), the assumption q ¤b1 implies that R 2 AF ; cf. Definition 4.3.
We next study the topology of the order complex�.Q<q/.

Proposition 4.7 Fixb1 ¤ q 2 Q and write Uq D 	R where R D f.F`; j`/gr`D1 2 AF .
Then there is a homeomorphism

�.Q<q/ Š �.M.F/�F1 / � � � � ��.M.F/�Fr/ � Sr�2: (15)

Proof Let M.F/��F`
denote the poset obtained by appending to M.F/�F` a minimal

element 0`. Denote

Cq D M.F/��F1

 � � � 
M.F/��Fr

n f.01; : : : ; 0r/g:

Define a mapping � W Cq ! AF as follows. Let ˛ D .˛1; : : : ; ˛r/ 2 Cq and let

L.˛/ D f1 � ` � r W ˛` ¤ 0`g:

Note that L.˛/ ¤ ;. For ` 2 L.˛/ write ˛` D G` 2 M.F/ and let

�.˛/ D
[

`2L.˛/

f.F; . j`/jF/ W F 2 G`g:

Define an order preserving map � W Cq ! Q�q as follows: For ˛ 2 Cq let �.˛/ be
the element of Q that satisfies U�.˛/ D 	�.˛/.
Lemma 4.8 � is a poset isomorphism.
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Proof To show surjectivity, let q0 � q with Uq0 D 	R0 for some R0 2 AF . Then
	R D Uq � Uq0 D 	R0 and hence, by Proposition 4.6, there exists an ˛ 2 Cq such
that �.˛/ D R0. Therefore U�.˛/ D 	�.˛/ D 	R0 D Uq0 and so �.˛/ D q0. To show
injectivity, assume that �.˛/ D �.˛0/ for some ˛; ˛0 2 Cq. Then 	�.˛/ D U�.˛/ D
U�.˛0/ D 	�.˛0/ and therefore �.˛/ D �.˛0/ by Proposition 4.6. As � is clearly
injective, it follows that ˛ D ˛0. ut
Recall the following result of Walker (Theorem 5.1(d) in [16]).

Theorem 4.9 (Walker [16]) For 1 � i � r let Ti be a finite poset with minimal
element 0i and maximal element 1i. Let T D T1 
 � � � 
 Tr and 0 D .01; : : : ; 0r/,
1 D .11; : : : ; 1r/ 2 T. Let bTi D Ti � f.0i; 1i/g andbT D T � f0; 1g. Then there is a
homeomorphism

�.bT/ Š �.bT1/ � � � � ��.bTr/ � Sr�2:

For 1 � i � r let Ti D M.F/��Fi
. Then bTi D M.F/�Fi and bT D Cq �

f.fF1g; : : : ; fFrg/g. Lemma 4.8 thus implies that bT Š Q<q. Therefore by Theo-
rem 4.9:

�.Q<q/ Š �.bT/ Š �.bT1/ � � � � ��.bTr/ � Sr�2

D �.M.F/�F1/ � � � � ��.M.F/�Fr/ � Sr�2:

ut
Definition 4.10 For a function 0 ¤ m 2 N

F , let AF .m/ denote the set of all
R 2 AF such that jfj 2 ŒkF �j .F; j/ 2 Rgj D m.F/ for all F 2 F .
The final ingredient needed for the proof of Theorem 3.1 is the following computa-
tion (see (3) and Definition 1.2(i)).

Proposition 4.11 Let 0 ¤ m 2 N
F . Then:

jAF .m/j D bF ;k.m/ D a.TF .m//
Q

F2F m.F/Š

nY

jD1

 
kj

P
F3j m.F/

!

: (16)

Proof Let QA.TF .m// denote the set of all acyclic orientations of TF .m/ such that
.F; i/! .F; i0/ for all F 2 F and 1 � i < i0 � m.F/. Then

j QA.TF .m//j D a.TF .m//
Q

F2F m.F/Š
:

Define a mapping

� W AF .m/! QA.TF .m// 

nY

iD1

 
Œki�

P
F3i m.F/

!



Homology of Spaces of Directed Paths in Euclidean Pattern Spaces 607

as follows. Let R 2 AF .m/. For 1 � i � n let

Bi D fj.i/ W .F; j/ 2 R and i 2 Fg 2
 

Œki�
P

F3i m.F/

!

:

Write

R D
[

fF2F Wm.F/>0g
f.F; jF;`/ W 1 � ` � m.F/g

where jF;` 2 kF for all 1 � ` � m.F/ and

jF;1.i/ < � � � < jF;m.F/.i/

for all i 2 F. Define an orientation ˛ 2 QA.TF .m// as follows. Let e D
f.F; s/; .F0; s0/g be an edge of TF .m/. Define ˛.e/ D ..F; s/; .F0; s0// if either
F D F0 and s < s0, or if F ¤ F0 and jF;s.i/ < jF0;s0.i/ for some (and therefore
all) i 2 F \ F0. Now let

�.R/ D .˛;B1; : : : ;Bn/:

It is straightforward to check that � is bijective. This proves Proposition 4.11. �

Example 4.12 To illustrate the bijection � from the proof of Claim 4.11 consider
the family F D fF � Œ4� W jFj � 2g and let n D 4, .k1; k2; k3; k4/ D .4; 5; 4; 2/. Let
F1 D f1; 2g, F2 D f2; 3g and F3 D f1; 3; 4g and for F 2 F let

m.F/ D
8
<

:

2 F D F1 or F D F2;
1 F D F3;
0 otherwise.

Let R 2 AF .m/ satisfy �.R/ D .˛;B1;B2;B3;B4/ where

.B1;B2;B3;B4/ D .f2; 3; 4g; f1; 2; 4; 5g; f1; 3; 4g; f2g/

and the orientation ˛ on the (complete) graph TF .m/ is given by the total order

.F2; 1/! .F1; 1/! .F1; 2/! .F3; 1/! .F2; 2/:

The reconstruction of R from �.R/ is depicted in Fig. 4.
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x21

x11 x12 x13 x14

x31

x22 x23 x24 x25

x32 x33 x34

x41 x42

Fig. 4 Reconstruction of R from �.R/ (cf. Example 4.12)

Proof of Theorem 3.1 Consider the cover f	.F;j/ W .F; j/ 2 SFg of cEF , and its
associated intersection poset Q as above. By Proposition 4.4(ii), if b1 ¤ q 2 Q
then Uq is a sphere pointed at 1. Furthermore, if q < p 2 Q then the injection
Up ! Uq is a pointed embedding of a sphere (or the point 1 if p D b1) into
a higher dimensional sphere and is thus homotopic to the constant map Up !
1 2 Uq. Therefore by the Wedge Lemma (Lemma 1.8 in [17]) there is a homotopy
equivalence

cEF '
_

q2Q

�.Q<q/ � Uq: (17)

We next determine the contribution of each q 2 Q to (17). If q Db1 then�.Q<q/�Uq

is contractible to the point1 and hence does not contribute to (17). Suppose q <b1
and let Uq D 	R where R D f.F`; j`/gr`D1 2 AF . Combining Proposition 4.4(ii)
and (15) it follows that

�.Q<q/ � Uq Š �.M.F/�F1 / � � � � ��.M.F/�Fr/ � Sr�2 � SN�P.F;j/2R.jFj�1/

Š SN�Pr
iD1.jFij�2/�1 � r�

iD1
�.M.F/�Fi/:

Therefore, if R 2 AF .m/ and Uq D 	R then (cf. (3))

�.Q<q/ � Uq Š SN�cF .m/ � �
F2F

�.M.F/�F/
�m.F/: (18)

Theorem 3.1 now follows from (17), (18) and Proposition 4.11. ut
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5 Applications

In this section we use Theorem 1.3 to study several specific Euclidean pattern
spaces.

5.1 The Homology of EP.Rn n Z
n/kC1

0

As noted earlier, Rn n Zn D XF where F consists of the single set Œn�. Since
�.M.F/�Œn�/ is the empty complex f;g it follows that fK.�.M.F/�Œn�/; t/ D 1. If
m.Œn�/ D m > 0 then bF ;k.m/ DQn

iD1
�ki

m

�
and cF .m/ D m.n�2/C1. Theorem 1.3

implies that

fK.EP.Rn n Zn/kC1
0 ; t/ D

X

m�1

nY

iD1

 
ki

m

!

tm.n�2/C1:

Since QH�.�.M.F/�Œn�// D QH�1.f;g/ D Z is free, it follows that QH`.EP.RnnZn/kC1
0 /

is free of rank
Qn

iD1
�ki

m

�
if ` D .n � 2/m > 0, and is zero otherwise. This recovers

the above mentioned Theorem 1.1 of Raussen and Ziemiański [13].

5.2 Binary Path Spaces

The binary path space associated with an upward closed F � 2Œn� is EP.XF /
2
0 where

2 D .2; : : : ; 2/. Note that EP.XF /
2
0 is homotopy equivalent to the diagonal subspace

arrangement

R
n �

[

FDfi1;:::;i`g2F
fx D .x1; : : : ; xn/ 2 R

n W xi1 D � � � D xi`g:

The general formula (5) for the Poincaré series of EP.XF /
kC1
0 simplifies in this case

as follows. Let k D 1 and let 0 ¤ m 2 N
F . Then bF ;1.m/ D 1 if both m.F/ � 1

for all F 2 F , and fF W m.F/ D 1g 2 M.F/. Otherwise bF ;1.m/ D 0. Hence, by (5)

fK
�EP.XF /

2
0; t
	
D

X

G2M.F/
t
P

F2G.jFj�2/C1
Y

F2G
fK
�
�.M.F/�F/; t

�1� : (19)

Equation (19) can also be obtained from the general Goresky–MacPherson formula
for the homology of subspace arrangements [7].
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5.3 The .s; k/-Equal Path Space

Let 1 � s � n and k D .k1; : : : ; kn/ 2 N
nC. The .s;k/-equal path space is defined as

EP.XFn;s/
kC1
0 where Fn;s D fF � Œn� W jFj � sg. This path space occurs when every

process Ti calls upon a single resource a of capacity s � 1 a number ki of times.
We use Formula (5) to obtain some information on the homology of this space.

For m � s, let …m;s denote the poset of nontrivial partitions of Œm� such that every
non-singleton block has cardinality at least s. The homology of the order complex
�.…m;s/ had been determined by Björner and Welker [3] and was further studied in
[2, 9]. We will need the following result:

Theorem 5.1 (Theorem 4.5 in [3], Corollary 6.2 in [2]) �.…m;s/ has the homo-
topy type of a wedge of spheres. The d-th Betti number of �.…m;s/ is nonzero iff
d D m � 3 � `.s� 2/ for some 1 � ` � b n

s c, and

Q̌
m�3�`.s�2/.�.…m;s// D

X

j1C			Cj`Dm
ji�s

 
m � 1

j1 � 1; j2; : : : ; j`

!
`�1Y

iD0

 
ji � 1
s � 1

!

: (20)

Note that �.M..Fn;s/�F// Š �.…jFj;s/ for any F 2 Fn;s. Theorem 1.3(i) implies

that H�.EP.XFn;s/
kC1
0 / is free. Moreover, by Theorem 1.3(ii)

fK
�EP.XFn;s/

kC1
0 ; t

	

D
X

0¤m2NFn;s

bF ;k.m/tcFn;s .m/
Y

F2Fn;s

fK
�
�.M..Fn;s/�F//; t

�1�m.F/

D
X

0¤m2NFn;s

bF ;k.m/t
P

F2Fn;s m.F/.jFj�2/C1�.m; t/

(21)

where

�.m; t/ D
Y

F2Fn;s

0

B
@

�
jFj

s

˘

X

`D1
Q̌jFj�3�`.s�2/.�.…jFj;s//t�jFjC2C`.s�2/

1

C
A

m.F/

:

It follows that t˛ appears in fK
�EP.XFn;s/

kC1
0 ; t

	
with nonzero coefficient only if ˛ 	

1.mod.s � 2//.
Corollary 5.2 QH`.EP.XFn;s/

kC1
0 IZ/ D 0 unless ` D m.s� 2/ for some m > 0.
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5.4 The Connectivity of Path Spaces

The following result determines the homological connectivity of
�!
P .XF /

kC1
0 .

Proposition 5.3 Let s.F/ D minF2F jFj. Then

minfi W QHi.
�!
P .XF /

kC1
0 IZ/ ¤ 0g D s.F/ � 2:

Proof Choose an F 2 F such that jFj D s.F/. Then �.M.F/�F/ is the empty
complex f;g and therefore fK.�.M.F/�F/; t�1/ D 1. Letting m.F0/ D 1 if
F D F0 and zero otherwise, it follows from Theorem 1.3(ii) that tcF .m/ D
tjFj�1 D ts.F/�1 appears in fK.

�!
P .XF /

kC1
0 ; t/ with a positive coefficient, and

therefore QHs.F/�2.
�!
P .XF /

kC1
0 IK/ ¤ 0.

For the other direction, first note that for any F 2 F

dim�.M.F/�F/ � jFj � s.F/ � 1:

Therefore for any F1; : : : ;Fr 2 F

dim
r�

iD1
�.M.F/�Fi/ �

rX

iD1
.jFij � s.F/ � 1/C r � 1

D
rX

iD1
jFij � rs.F/ � 1

<

rX

iD1
.jFij � 2/� s.F/C 2:

Thus

QHj.SN�Pr
iD1.jFij�2/�1 � r�

iD1
�.M.F/�Fi/ D 0

for all

j � .N �
rX

iD1
.jFij � 2/� 1/C .

rX

iD1
.jFij � 2/� s.F/C 2/C 1

D N � s.F/C 2:

As cEF is a wedge of spaces of the form

SN�Pr
iD1.jFij�2/�1 � r�

iD1
�.M.F/�Fi/
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where F1; : : : ;Fr 2 F , it follows that QHj.cEF IZ/ D 0 for all j � N �
s.F/ C 2. Finally, Alexander duality QHi.

�!
P .XF /

kC1
0 IZ/ Š QHN�i�1.cEF / implies

that QHi.
�!
P .XF /

kC1
0 IZ/ D 0 for all i � s.F/ � 3. ut

In fact, we establish the following stronger result:

Proposition 5.4 Let p denote any directed path in EP.XF /
kC1
0 . Then �i.EP.XF /

kC1
0 I

p/ D 0 for all i � s.F/� 3.

Proof According to Proposition 2.2, we may replace EP.XF /
kC1
0 with the homotopy

equivalent space DF � V�k. Proposition 5.3 tells us that DF is connected; hence
we can choose any base point p 2 DF in the following. Connectedness can also be
concluded from the subsequent argument in the case i D 0.

Let F W Si ! DF denote any continuous map. Its image F.Si/ is compact and
has thus positive distance from the compact set EF � �k. F admits a smooth

approximation QF W Si ! V�k homotopic to F and so close to F that the image of
the homotopy does not intersect EF . Extend QF to a smooth map G W DiC1 ! V�k

by defining G.0/ D p and by convex combination with QF on the boundary Si. The
image G.DiC1/ may intersect EF .

By multiple application of the transversality theorem (see e.g. [8, Theorem
III.2.1], [1, Ch. I.2]), one can find a smooth approximation H to G that is transversal
to all strata in EF . Moreover, since the compact sets G.DiC1/ and @�k have a

positive distance, we may assume that H.DiC1/ is contained in V�k, as well. Each of
the subspaces GF;;j in the definition of EF has codimension jFj � 1 in RN , and
intersections have higher codimensions. In particular, if i C 1 < jFj � 1, then
H.DiC1/\GF;;j D ; by transversality. If iC1 < s.F/�1, then H.DiC1/\EF D ;
and H establishes that QF and hence F are nul-homotopic in DF . ut

6 Concluding Remarks

We conclude with a few remarks about possible extensions of the results of this
paper that we hope to deal with in future work. One obvious challenge concerns
finding maps from spheres, and more generally products of spheres, into path
space such that the images of the fundamental classes may serve as generators
for homology in the appropriate dimensions, aiming at a generalization of [13,
Corollary 3.10] in the paper of Raussen and Ziemiański. This is work in progress.

On the other hand, the situation we analysed is perhaps characterized by more
regularity than what is needed for the method to work. The paper of Raussen and
Ziemiański [13] calculates the homology of the path space EP.X/kC1

0 with X D R
nnY

with Y a subset of Zn. It seems likely that it is possible to extend our results to the
following more general situation (with F an upward closed hypergraph on Œn� as
previously):
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For F 2 F and ˛ W F ! Z a function, let Y˛ WD f.x1; : : : ; xn/j xi D ˛.i/; i 2 Fg.
For any non-empty subset ˇ.F/ � Z

F let Yˇ.F/ WD S˛2ˇ.F/ Y˛. In the present paper,
we only considered ˇ.F/ D Z

F .
Now we assume that for every F 2 F such a subset ˇ.F/ has been chosen.

Coherence suggests either to make a choice only for minimal elements of the family
or to ask that ˇ.F2/ consists of all extensions of functions in ˇ.F1/ to F2 in case
F1 � F2. The set to be excluded is then the union of hyperplanes Y D S

F2F Yˇ.F/.

It seems likely that one can determine the homology of EP.X/kC1
0 with X D R

n n Y,
as well.

It is less obvious how to analyse topological properties of path spaces associated
to general PV spaces (cf. Sect. 1) via arrangements – those would no longer be given
by restrictions of linear subspaces. Instead, one has to remove thickened subspace
arrangements within products of simplices leading to pattern spaces that are more
difficult to analyse. For such thickened arrangements, our method – that makes
essential use of the Wedge Lemma – is in general no longer applicable.

Since Ziemiański has shown [18] that every finite simplicial complex can arise
as a connected component of the path space for some PV-space, one cannot expect a
simple algorithmic determination of the homology of such a path space in general.
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Abstract We discuss coloring and partitioning questions related to Sperner’s
Lemma, originally motivated by an application in hardness of approximation.
Informally, we call a partitioning of the .k� 1/-dimensional simplex into k parts, or
a labeling of a lattice inside the simplex by k colors, “Sperner-admissible” if color
i avoids the face opposite to vertex i. The questions we study are of the following
flavor: What is the Sperner-admissible labeling/partitioning that makes the total area
of the boundary between different colors/parts as small as possible?

First, for a natural arrangement of “cells” in the simplex, we prove an optimal
lower bound on the number of cells that must be non-monochromatic in any
Sperner-admissible labeling. This lower bound is matched by a simple labeling
where each vertex receives the minimum admissible color.

Second, we show for this arrangement that in contrast to Sperner’s Lemma, there
is a Sperner-admissible labeling such that every cell contains at most 4 colors.

Finally, we prove a geometric variant of the first result: For any Sperner-
admissible partition of the regular simplex, the total surface area of the boundary
shared by at least two different parts is minimized by the Voronoi partition
.A�1 ; : : : ;A�k / where A�i contains all the points whose closest vertex is ei. We also
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1 Introduction

Sperner’s Lemma is a gem in combinatorics which was originally discovered by
Emmanuel Sperner [12] as a tool to derive a simple proof of Brouwer’s Fixed Point
Theorem. Since then, Sperner’s Lemma has seen numerous applications, notably
in the proof of existence of mixed Nash equilibria [11], in fair division [13], and
recently it played an important role in the study of computational complexity of
finding a Nash equilibrium [2, 3]. At a high level, Sperner’s Lemma states that for
any coloring of a simplicial subdivision of a simplex satisfying certain boundary
conditions, there must be a “rainbow cell” that receives all possible colors. We
review Sperner’s Lemma in Sect. 3.

The starting point of this work was a question that arises in the study of
approximation algorithms for a certain hypergraph labeling problem [6, 9, 1, 5, 4].
The question posed by [4], while in some ways reminiscent of Sperner’s Lemma, is
different in the following sense: Instead of asking whether there exists a rainbow cell
for any admissible coloring, the question is what is the minimum possible number
of cells that must be non-monochromatic. (Also, the question arises for a particular
regular lattice inside the simplex rather than an arbitrary subdivision.) In this paper,
we resolve this question and investigate some related problems.

Before we state our results, let us note the following connection. As the granu-
larity of the subdivision tends to zero, Sperner’s Lemma becomes a statement about
certain geometric partitions of the simplex: for any Sperner-admissible partition,
where part i avoids the face opposite to vertex i, there must be a point where
all parts meet. This result is known as the Knaster–Kuratowski–Mazurkiewicz
Lemma [7]. In contrast, the questions we are studying are concerned with the
measure of the boundary where at least two different parts meet: This can be
viewed as a multi-colored isoperimetric inequality, where we try to partition the
simplex in a certain way, so that the surface area of the union of all pairwise
boundaries (what we call a separating set) is minimized. The way we measure the
separating set also affects the problem; the discrete version of the question that is
of primary interest to us is mandated by the application in [4]. In the geometric
setting, a natural notion of surface area is the Minkowski content of the separating
set (which coincides with other notions of volume for well-behaved sets). We give
an optimal answer to this question for a regular simplex and discuss other related
questions.

To state our results formally, we need some notation that we introduce in Sect. 2.
We postpone our contributions to Sects. 4, 5, and 6, after a discussion of Sperner’s
Lemma in Sect. 3.
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2 Preliminaries

We denote vectors in boldface, such as v 2 R
k. The coordinates of v are written

in italics, such as v D .v1; : : : ; vk/. By ei, we denote the canonical basis vectors
.0; : : : ; 1; : : : ; 0/. By conv.v1; : : : ; vk/, we denote the convex hull of the respective
vectors.

2.1 Simplicial Subdivisions of the Simplex

Consider the .k � 1/-dimensional simplex defined by

�k D conv.e1; : : : ; ek/ D
(

x D .x1; x2; : : : ; xk/ 2 R
k W x � 0;

kX

iD1
xi D 1

)

:

Simplicial subdivision A simplicial subdivision of �k is a collection of simplices
(“cells”) † such that

• The union of the cells in † is the simplex �k.
• For any two cells �1; �2 2 †, their intersection is either empty or a full face of

a certain dimension shared by �1; �2.

The Simplex-Lattice Hypergraph Next, we describe a specific configuration of
cells in a simplex; this configuration is actually not a full subdivision since its cells
do not cover the full volume of the simplex. It can be completed to a subdivision if
desired.1

Let q � 1 be an integer and define

�k;q D
(

x D .x1; x2; : : : ; xk/ 2 R
k W x � 0;

kX

iD1
xi D q

)

:

We consider a vertex set of all the points in �k;q with integer coordinates:

Vk;q D
(

a D .a1; a2; : : : ; ak/ 2 Z
k W a � 0;

kX

iD1
ai D q

)

:

1This specific configuration arises in [4] as an integrality gap example for a certain hypergraph
labeling problem; see also [10] for more details.
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Fig. 1 The Simplex Lattice
Hypergraph for k D 3 and
q D 5, with hyperedges
shaded in gray. The gray
triangles together with the
white triangles form a
simplicial subdivision. The
lists of admissible colors are
given on the boundary; for
internal vertices the lists are
all f1; 2; 3g

{1}

{2} {3}

{1, 2}

{1, 2}

{1, 2}

{1, 2}

{1, 3}

{1, 3}

{1, 3}

{1, 3}

{2, 3} {2, 3} {2, 3} {2, 3}

The Simplex-Lattice Hypergraph is a k-uniform hypergraph Hk;q D .Vk;q;Ek;q/

whose hyperedges (which we also call cells due to their geometric interpretation)
are indexed by b 2 Z

kC such that
Pk

iD1 bi D q � 1 (Fig. 1): we have

Ek;q D
(

e.b/ W b 2 Z
k;b � 0;

kX

iD1
bi D q � 1

)

where e.b/ D fb C e1;b C e2; : : : ;b C ekg D f.b1 C 1; b2; : : : ; bk/; .b1; b2 C 1;
: : : ; bk/; : : : ; .b1; b2; : : : ; bk C 1/g: For each vertex a 2 Vk;q, we have a list of
admissible colors L.a/, which is

L.a/ D fi 2 Œk� W ai > 0g:

3 Sperner’s Lemma

First, let us recall the statement of Sperner’s Lemma [12]. We consider labelings
` W Vk;q ! Œk�. We call a labeling ` Sperner-admissible if `.a/ 2 L.a/ for each
a 2 V; i.e. , if `.a/ D j then aj > 0.

Lemma 1 (Sperner’s Lemma) For every Sperner-admissible labeling of the ver-
tices of a simplicial subdivision of �k, there is a cell whose vertices receive all k
colors.

We remark that this does not say anything about the Simplex-Lattice Hypergraph:
Even if the subdivision uses the point set Vk;q, the rainbow cell given by Sperner’s
Lemma might not be a member of Ek;q since Ek;q consists only of scaled copies of
�k;q without rotation; it is not a full subdivision of the simplex. (See Fig. 2.)
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Fig. 2 A Sperner-admissible
labeling for k D 3 and q D 5.
At least one cell in the
triangulation (not necessarily
in Ek;q) must be k-colored
(rainbow)

1

2 3

1

1

1

2

1

3

3

3

2 2 2 3

1

1 3

2 2 3

4 The Simplex-Lattice Coloring Lemma

Instead of rainbow cells, the statement proposed (and proved for k D 3) in [4]
involves non-monochromatic cells.

Proposition 1 (Simplex-Lattice Coloring Lemma) For any Sperner-admissible
labeling ` W Vk;q ! Œk�, there are at least

�qCk�3
k�2

�
hyperedges e 2 Ek;q that are

non-monochromatic under `.

The first-choice labeling In particular, Proposition 1 is that a Sperner-admissible
labeling minimizing the number of non-monochromatic cells is a “first-choice one”
which labels each vertex a by the smallest coordinate i such that ai > 0. Under this
labeling, all the hyperedges e.b/ such that b1 > 0 are labeled monochromatically by
1. The only hyperedges that receive more than 1 color are those where b1 D 0, and
the number of such hyperedges is exactly

�qCk�3
k�2

�
(see [4]). Here we give a proof of

Proposition 1 (Fig. 3).

Proof Consider the set of hyperedges Ek;q: observe that it can be written naturally as

Ek;q D fe.b/ W b 2 Vk;q�1g:

I.e., the hyperedges can be identified one-to-one with the vertices in Vk;q�1. Recall
that e.b/ D fbC e1;bC e2; : : : ;bC ekg. Two hyperedges e.b/; e.b0/ share a vertex
if and only if b0 C ej D bC ei for some pair i; j 2 Œk�; or in other words if b;b0 are
nearest neighbors in Vk;q�1 (differ by˙1 in exactly two coordinates).

Consider a labeling ` W Vk;q ! Œk�. For each i 2 Œk�, let Ci denote the set of points
in Vk;q�1 representing the monochromatic hyperedges in color i,

Ci D fb 2 Vk;q�1 W 8v 2 e.b/I `.v/ D ig:
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Fig. 3 The first-choice
labeling

1
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1

1

1

1

1

1

1

1

2 2 2 2

1

1 1

1 1 1

Fig. 4 The mappings
�i W Ci! Vk;q�2. The
hyperedges are represented
by the empty circles; Ci is the
subset of them
monochromatic in color i.
The black squares represent
Vk;q�2; note that each point in
Vk;q�2 is the image of at most
one monochromatic
hyperedge

1

2 3

1

1

2

2

1

3

3

3

2 2 3 3

1

2 3

2 2 3

Define an injective mapping �i W Ci ! Vk;q�2 as follows:

�i.b/ D b � ei:

The image is indeed in Vk;q�2: if b 2 Ci, we have bi > 0, or else e.b/ would contain
a vertex a such that ai D 0 and hence e.b/ could not be monochromatic in color i.
Therefore, b�ei 2 Z

kC and .b�ei/ �1 D q�2 which means b�ei 2 Vk;q�2 (Fig. 4).
(Here, 1 denotes the all-1’s vector.)

Further, we claim that �iŒCi� \ �jŒCj� D ; for every i ¤ j. If not, there would
be b 2 Ci and b0 2 Cj such that b � ei D b0 � ej. Then, the point a D b C ej D
b0 C ei would be an element of both the hyperedge e.b/ and the hyperedge e.b0/.
This contradicts the assumption that e.b/ is monochromatic in color i and e.b0/ is
monochromatic in color j. So the sets �iŒCi� are pairwise disjoint subsets of Vk;q�2.
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By the definition of �i, we clearly have j�iŒCi�j D jCij. We conclude that the total
number of monochromatic hyperedges is

kX

iD1
jCij D

kX

iD1
j�iŒCi�j � jVk;q�2j:

The total number of hyperedges is jEk;qj D jVk;q�1j. Considering that jVk;qj D�qCk�1
k�1

�
(the number of partitions of q into a sum of k nonnegative integers), we

obtain that the number of non-monochromatic hyperedges is

jEk;qj �Pk
iD1 jCij � jVk;q�1j � jVk;q�2j D

�qCk�2
k�1

� � �qCk�3
k�1

� D �qCk�3
k�2

�
:

ut

5 A Labeling of Hk;q with at Most 4 Colors on Each
Hyperedge

We recall that Sperner’s lemma states that any Sperner-admissible labeling of a
subdivision of the simplex must contain a simplex with all k colors. The hypergraph
Hk;q defined in Sect. 2.1 is not a subdivision since it covers only a subset of the
large simplex. It is easy to see that the conclusion of Sperner’s lemma does not
hold for Hk;q – for example for k D 3, we can label a 2-dimensional triangulation
so that exactly one triangle has 3 different colors, and this triangle is not in E3;q.
(See Fig. 2.) Hence, each triangle in E3;q has at most 2 colors. By an extension of
this argument, we can label Hk;q so that each hyperedge in Ek;q contains at most k�1
colors. The question we ask in this section is, what is the minimum c such that there
is a Sperner-admissible labeling with at most c different colors on each hyperedge
in Ek;q? We prove the following result.

Proposition 2 For any k � 4 and q � k2, there is a Sperner-admissible labeling
of Hk;q D .Vk;q;Ek;q/ such that every hyperedge in Ek;q contains at most 4 different
colors.

We note that this statement is not true for q D 1 and k > 4 (since Ek;1 consists
of a single simplex which has k different colors). We have not identified the optimal
lower bound on q that allows our statement to hold. Also, the statement could
possibly hold with 2 or 3 colors instead of 4; the number 4 is just an artifact of
our proof and we have no reason to believe that it is tight.

The intuition behind our construction is as follows: We want to label the vertices
so that the number of different colors on each hyperedge is small. A natural choice
is to label each vertex v by its maximum-value coordinate. However, this does
not work since a hyperedge in the center of the simplex may receive all k colors.
The problem is that this labeling is possibly very sensitive to small changes in v.
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A more “robust” labeling is one where we select a subset of “top coordinates” and
choose one among them according to another rule. This rule should be such that
incrementing the coordinates one at a time does not change the label too many
times. One such rule that works well is described below.

Proof We define a labeling ` W Vk;q ! Œk� as follows:

• Given a 2 Vk;q, let � W Œk� ! Œk� be a permutation such that a�.1/ � a�.2/ �
: : : � a�.k/ (and if a�.i/ D a�.iC1/, we order � so that �.i/ < �.iC 1/).

• Define t.a/ to be the maximum t 2 Œk� such that 81 � j � t, a�. j/ � k � j C 1.
We define the “Top coordinates” of a to be Top.a/ D .�.1/; : : : ; �.t.a/// (an
ordered set).

• We define the label of a to be `.a/ D �.t.a//, the index of the “last Top
coordinate”.

First, we verify that this is a well-defined Sperner-admissible labeling. SincePk
iD1 ai D q � k2, we have a�.1/ D max ai � k and hence 1 � t.a/ � k. For

each a 2 Vk;q, we have: a`.a/ D a�.t.a// � k � t.a/ C 1 > 0, since t.a/ � k.
Therefore, ` is Sperner-admissible.

Now, consider a hyperedge e.b/ D .b C e1;b C e2; : : : ;b C ek/ where b � 0;Pk
iD1 bi D q � 1. We claim that `.b C ei/ attains at most 4 different values for

i D 1; : : : ; k. Without loss of generality, assume that b1 � b2 � : : : � bk. Define `�
to be the label assigned to b by our construction (note that b is not a vertex in Vk;q

but we can still apply our definition): `� is the maximum value in Œk� such that for
all 1 � j � `�, bj � k � jC 1. Hence, we have Top.b/ D f1; 2; : : : ; `�g.

Let i 2 Œk�, a D b C ei, and let � be the permutation such that a�.1/ � : : : �
a�.k/ as above. (Recall that for b, we assumed that the respective permutation is the
identity.) We consider the following cases:

• If 1 � i < `�, then we claim that `.a/ D `.bC ei/ D `.b/ D `�. In the rule for
selecting t.a/, one of the first `��1 coordinates has been incremented compared
to b, which possibly pushes i forward in the ordering of the Top coordinates.
However, the other coordinates remain unchanged, the condition a�. j/ � k� jC1
is still satisfied for 1 � j � `�, and Top.a/ D Top.b/. In particular `� is still the
last coordinate included in Top.a/ and hence `.a/ D `�.

• If i D `�, then `.a/ D `.bCe`�/ is still one of the coordinates in Top.b/, possibly
different from `� (due to a change in order, although we still have Top.a/ D
Top.b/) – let us call this label `�2 .

• If `� < i � k, then it is possible that in a D b C ei, we obtain additional
Top coordinates (Top.a/ � Top.b/). It could be ai D bi C 1 itself which is
now included among the Top coordinates, and possibly additional coordinates
that already satisfied the condition bj � k � j C 1 but were not selected due
to the condition being false for b`�C1. If this does not happen and we have
Top.a/ D Top.b/, the label of a is still `.a/ D `� (because the ordering of
the Top coordinates remains the same).
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Assume now that Top.a/ has additional coordinates beyond Top.b/. By the
definition of `�, we have b`� � k � `� C 1, and for each j > `�, we
have bj < k � `�; otherwise j would have been still chosen in Top.b/. For
Top.a/ D Top.b C ei/ to grow beyond Top.b/, ai must become the .`� C 1/-
largest coordinate and satisfy ai � k � `�. The only way this can happen is that
bi D k� `� � 1 and hence ai D biC 1 D k� `�. In this case, ai is the maximum
coordinate among faj W j > `�g, and still smaller than a`� . Therefore, i will
be included in Top.a/. Now, Top.a/ may grow further. However, note that the
construction of Top.a/ will proceed in the same way for every a D b C ei such
that bi D k � `� � 1. This is because all the coordinates equal to k � `� � 1 will
be certainly included in Top.a/, and coordinates smaller than k � `� � 1 remain
the same in each of these cases (equal to the coordinates of b). Therefore, the set
Top.a/ will be the same in all these cases; let us call this set TopC.

The label assigned to a D bC ei is the index of the last coordinate included in
TopC D Top.a/. Since TopC is the same whenever Top.a/ ¤ Top.b/, the label of
a will be the coordinate j� minimizing bj (and maximizing j to break ties) among
all j 2 TopC, unless j� D i in which case the last included coordinate might be
another one. This gives potentially two additional colors, let us call them `�3 ; `�4 ,
that are assigned to a D b C ei for all i > `� where bi D k � `� � 1. For other
choices of i > `�, we have Top.bC ei/ D Top.b/ and the label assigned to bC ei

is `.bC ei/ D `�.
To summarize, all the colors that appear in the labeling of e.b/ are included in
f`�; `�2 ; `�3 ; `�4 g. ut

6 Boundary-Minimizing Partitioning of the Simplex

Let us turn now to a geometric variant of Proposition 1. We recall that Sperner’s
Lemma has a geometric variant known as the Knaster–Kuratowski–Mazurkiewicz
Lemma [7]:
Consider a covering of the simplex�k by closed sets A1; : : : ;Ak such that each point
x 2 �k is contained in some set Ai such that xi > 0. Then

Tk
iD1 Ai ¤ ;.

Here we consider a similar setup, but instead of the intersection of all sets, we are
interested in the measure of the boundaries between pairs of adjacent sets. To avoid
technicalities, let us assume that the Ai’s are closed, disjoint except on the boundary,
and each Ai is disjoint from the face fx 2 �k W xi D 0g.
Definition 1 A Sperner-admissible partition of �k is a k-tuple of closed sets
.A1; : : : ;Ak/ such that

•
Sk

iD1 Ai D �k,
• A1; : : : ;Ak are disjoint except on their boundary,
• xi > 0 for every x 2 Ai.

We call the union of pairwise boundaries
S

i¤j.Ai \ Aj/ the separating set.
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Fig. 5 The Voronoi partition
of a simplex

e1 e2

e3

e4

The question we ask here is, in analogy with Proposition 1, what is the Sperner-
admissible partition with the separating set of minimum measure? A candidate
partition is depicted in Fig. 5, where Ai is the set of all points in �k for whom ei

is the closest vertex. We call this the Voronoi partition.
We prove that for the regular simplex �k this is indeed the optimal partition

(along with other, similar configurations). In the following, we denote by �k the
usual Lebesgue measure on R

k, and by �` (` < k) the `-dimensional Minkowski
content.

Definition 2 For A � R
k, the `-dimensional Minkowski content is (if the limit

exists)

�`.A/ D lim
�!0C

�k.A�/

˛k�`�k�`

where A� D fy 2 R
k W 9x 2 A; kx � yk � �g is the �-neighborhood of A and ˛k�`

is the volume of a unit ball in R
k�`. We also define �C` .A/ to be the upper limit and

��̀.A/ the lower limit of the expression above.
We remark that for `-rectifiable sets (polyhedral faces, smooth surfaces, etc.)

the notion of Minkowski content coincides with that of Hausdorff measure (under
suitable normalization).

Theorem 1 For every Sperner-admissible partition .A1; : : : ;Ak/ of �k,

��k�2

0

@
[

i¤j

.Ai \ Aj/

1

A � k � 1p
2
�k�1.�k/

and the Voronoi partition achieves this with equality.
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First, let us analyze the Voronoi partition and more generally the following kind
of partition.

Lemma 2 For any z in the interior of �k, the partition .Az
1; : : : ;A

z
k/ where

Az
i D fx 2 �k W xi � zi D max

1�j�k
.xj � zj/g

satisfies

�k�2

0

@
[

i¤j

.Az
i \ Az

j /

1

A D k � 1p
2
�k�1.�k/ D 1

.k � 2/Š

r
k

2
:

We call this kind of partition “Voronoi-type”.2 We note that for z D . 1k ; 1k ; : : : ; 1k /
we obtain the Voronoi partition in Fig. 5. Other choices of z correspond to similar
configurations where all the colors meet at the point z. Note that z is the “rainbow
point” guaranteed by the Knaster-Kuratowski-Mazurkiewicz Lemma.

Proof First let us compute some basic quantities that we will need. The sides of our
simplex �k have length

p
2. Denote by hk the height of �k, that is the distance of

any vertex from the opposite facet. We have

hk D
�
�
�
�.1; 0; : : : ; 0/ �



0;
1

k � 1 ; : : : ;
1

k � 1
��
�
�
� D

s

1C .k � 1/ � 1

.k � 1/2 D
r

k

k � 1 :

The volume of the simplex can be computed inductively as follows; we have
�1.�2/ D

p
2, and �k.�kC1/ D 1

k hkC1 � �k�1.�k/: This implies

�k�1.�k/ D
p

k

.k � 1/Š :

Now let us compute the measure of the separating set for the partition .Az
1; : : : ;A

z
k/

defined above, by induction. The separating set can be described explicitly as

[

i¤j

.Az
i \ Az

j / D fx 2 �k W 9i ¤ j; xi � zi D xj � zj D max
1�`�k

x` � z`g:

For k D 2, Az
1 \ Az

2 is just a single point, and �0.Az
1 \ Az

2/ D 1. For k � 3, denote
by S the separating set for .Az

1; : : : ;A
z
k/ and define Si D S \ conv.fej W j ¤ ig/,

the separating set restricted to the facet opposite vertex ei. Since Si is a Voronoi-

type separating set for �k�1, by induction we assume that �k�3.Si/ D 1
.k�3/Š

q
k�1
2

.

2We note that these partitions are also known as “power diagrams”.
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The separating set S can be written as S D Sk
iD1 conv.Si [ fzg/, see Fig. 5. Denote

by h0

i the distance of z from the facet containing Si. By the pyramid formula in
dimension k � 2,

�k�2.conv.Si [ fzg// D 1

k � 2h0

i�k�3.Si/ D h0

i

.k � 2/Š

r
k � 1
2

:

By a simple calculation,
Pk

iD1 h0

i D hk D
q

k
k�1

. The sets conv.Si [ fzg/ are disjoint
except for lower-dimensional intersections. Hence,

�k�2.S/ D
kX

iD1

�k�2.conv.Si [ fzg// D
kX

iD1

h0

i

.k � 2/Š

r
k � 1
2
D 1

.k � 2/Š

r
k

2
:

ut
Thus the proof of Theorem 1 will be complete if we prove the following bound.

Lemma 3 For every Sperner-admissible partition .A1; : : : ;Ak/ of �k,

��k�2

0

@
[

i¤j

.Ai \ Aj/

1

A � k � 1p
2
�k�1.�k/ D 1

.k � 2/Š

r
k

2
:

Proof We pursue an approach similar to the proof of Proposition 1, with some
additional technicalities. The high-level approach is to shrink the sets Ai somewhat,
by excluding a small neighborhood of the separating set. This creates a buffer zone
between the shrunk sets A0i (yellow in Fig. 6) whose measure corresponds to the
measure of the separating set. Since we have this extra space, we are able to push the
sets A0i closer together and obtain sets A00i that fit inside a slightly smaller simplex.
The difference between the volume of this simplex and the original one gives a
bound on the measure of the separating set.

First, let �0 D infi2Œk�;x2Ai xi. Recall that xi > 0 for each x 2 Ai, and moreover
each Ai is closed. Hence �0 > 0.

Define S D S
i¤j.Ai \ Aj/, the separating set whose measure we are trying to

lower-bound. Fix � 2 .0; 1
2
�0/ (eventually we will let � ! 0) and define S� as the

�-neighborhood of S,

S� D fx 2 �k W 9y 2 S; kx � yk � �g :

We define subsets A0i � Ai as follows:

A0i D Ai n S�:

Thus we have
Sk

iD1 A0i D �k n S� . Also, the sets A0i are clearly disjoint (see Fig. 6).
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e1 e2

e3

A′
1 A′

2

A′
3

Sε

e1 e2

e3

A′′
1 A′′

2

A′′
3

Fig. 6 The construction of A0

i and A00

i

Next, we set �0 D �p2 and define

A00i D A0i � �0ei D fx � �0ei W x 2 A0ig:

Thus A00i is a shifted copy of A0i, where we push A0i slightly away from vertex ei. The
sets A00i live in the hyperplane

Pk
iD1 xi D 1 � �0 rather than

Pk
iD1 xi D 1. We claim

that the sets A00i are still disjoint: Suppose that A00i \A00j D .A0i��0ei/\.A0j��0ej/ ¤ ;.
This would mean that there are points x 2 A0i; y 2 A0j such that x � �0ei D y � �0ej.

In other words, kx � yk D �0kei � ejk D �0
p
2 D 2�. Take the midpoint 1

2
.xC y/:

this point is in the simplex �k (by convexity), and hence it is in some set A`, where
either ` ¤ i or ` ¤ j (possibly both). Assume without loss of generality that ` ¤ i.
Then by the closedness of Ai and A`, between x and 1

2
.x C y/ there exists a point

x0 2 Ai \ A`. We get a contradiction, because kx0 � xk � � and so x would not be
included in A0i.

We also observe that A00i � .1 � �0/ � �k D fx � 0 W Pk
iD1 xi D 1 � �0g. This is

because for every x 2 A00i , we have y 2 A00i such that x D y � �0ei. By assumption,
yi � �0 > �0, and y 2 �k. Therefore xi D yi � �0 > 0 and

Pk
iD1 xi D 1 � �0. We

conclude that A001 ; : : : ;A00k are disjoint subsets of .1��0/ ��k, obtained by an isometry
from A01; : : : ;A0k and therefore

kX

iD1
�k�1.A0i/ D

kX

iD1
�k�1.A00i / � .1 � �0/k�1�k�1.�k/:

Recall that A01; : : : ;A0k are also disjoint and
Sk

iD1 A0i D �k n S� . Therefore,

�k�1.S�/ D �k�1.�k/�
kX

iD1
�k�1.A0i/ �

�
1 � .1� �0/k�1��k�1.�k/:
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By the definition of Minkowski content, we have

��k�2 .S/ D lim inf
�!0C

�k�1.S�/
2�

� lim inf
�!0C

1 � .1 � �0/k�1
2�

�k�1.�k/

D lim
�!0C

1 � .1 � �p2/k�1
2�

�k�1.�k/ D k � 1p
2
�k�1.�k/:

ut
Alternative proof of optimality Here we give an alternative proof that the Voronoi
partition has a separating set of minimum Minkowski content, avoiding an explicit
computation of its volume.

Proof of Lemma 2 Let us consider the Voronoi partition .A�1 ; : : : ;A�k / (the proof for
a general z is similar). We argue that the proof of Lemma 3 is tight for this partition.
As in the proof of Lemma 3, we define S� D Si¤j.A

�
i \ A�j /, S�� D fx 2 �k W 9y 2

S; kx � yk � �g, A0i D A�i n S�� and A00i D A0i � �0ei, �0 D �
p
2. In the case of the

Voronoi partition, these sets are explicitly described as follows:

• A�i D fx 2 �k W xi D max`2Œk� x`g,
• S� D fx 2 �k W 9i ¤ j; xi D xj D max`2Œk� x`g,
• A0i D fx 2 �k W xi > �

0 Cmax`¤i x`g,
• A00i D fx � �0ei W x 2 �k; xi > �

0 Cmax`¤i x`g.
The description of A0i is valid because for x 2 A�i , it is possible to find a point in S�
within distance � of x if and only if the maximum coordinate xi is within �0 D �p2
of the second largest coordinate – then we can replace the two largest coordinates by
their average and obtain a point in S�. The description of A00i follows by definition.

Consider now the scaled-down simplex .1 � �0/ ��k. By the proof of Lemma 3,
the sets A00i are disjoint subsets of .1 � �0/ � �k. We show that in this case, we
actually have

Pk
iD1 �k�1.A00i / D �k�1..1 � �0/�k/. This is because for any point

x0 2 .1 � �0/ ��k, if the maximum coordinate x0i of x0 is unique then x D x0 C �0ei

is a point in �k such that xi > �
0 Cmax`¤i x`. Therefore, x 2 A0i which implies that

x0 2 A00i . The points x0 2 .1 � �0/ � �k whose maximum coordinate is not unique
form a set of .k � 1/-dimensional measure zero. Therefore, .1 � �0/�k is covered
by
Sk

iD1 A00i up to a set of measure zero, and
Pk

iD1 �k�1.A0i/ D
Pk

iD1 �k�1.A00i / D
�k�1..1� �0/�k/ D .1� �

p
2/k�1�k�1.�k/. We also have S�� D �k nSk

iD1 A0i. This
shows that all the inequalities in the proof of Lemma 3 are tight and the Minkowski
content of the separating set S� is exactly

�k�2.S�/ D lim
�!0C

�k�1.S�� /
2�

D lim
�!0C

1 � .1 � �p2/k�1
2�

�k�1.�k/ D k � 1p
2
�k�1.�k/:

ut
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7 Discussion and Open Questions

Sperner’s Lemma extends to general polytopes in the following sense [8]:
For any coloring of a triangulation of a d-dimensional polytope with n vertices by
n colors, such that each point on a face F D conv.fvi W i 2 Ag/ must be colored with
a color in A, there are at least n � d full-dimensional simplices with d C 1 distinct
colors.

It is natural ask whether our results also extend to general polytopes.

Possible extensions to polytopes Consider the example of P being a square
(Fig. 7). The Voronoi partition .A1;A2;A3;A4/ is not optimal with respect to the total
length of the separating set. The separating set of the Voronoi partition has total
length 2, whereas total length arbitrarily close to

p
2 is achieved by the partition

.B1;B2;B3;B4/.
In general, we do not know what the partition minimizing �.

S
i¤j.Ai \ Aj//

looks like, even in the case of a non-regular simplex. We believe that the separating
set should still be polyhedral (piecewise linear) for an optimal Sperner-admissible
partition of any polytope.

We remark that depending on the coloring conditions on the surface of the
polyhedron, the optimal separating set may be non-linear: For a tetrahedron, the
optimal partition that separates the pair of faces conv.e1; e2; e3/ [ conv.e2; e3; e4/
from conv.e1; e2; e4/[conv.e1; e3; e4/, is the minimal surface whose boundary is the
non-planar 4-gon e1-e2-e4-e3. This is a saddle-shaped quadratic surface (see Fig. 8).

Other open questions We have proved several results about colorings of the
simplex. Our first result (Proposition 1) can be viewed as being at the opposite end
of the spectrum from Sperner’s Lemma: Instead of the existence of a rainbow cell,
we proved a lower bound on the number of non-monochromatic cells. Due to the
motivating application of [4], we considered a special hypergraph embedded in the
simplex rather than a full subdivision. A natural question is whether an analogous
statement holds for simplicial subdivisions.

A1 A2

A3A4

B1

B2

B3

B4

Fig. 7 Two partitions of a square
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Fig. 8 An optimal partition
between two pairs of faces of
the tetrahedron

e1 e2

e3

e4

More generally, we might “interpolate” between Sperner’s Lemma and our result,
and ask: How many cells must contain at least j colors? It is clear that these questions
depend on the structure of the subdivision, and some assumption of regularity would
be needed to obtain a general result. Similarly, we may ask, for Sperner-admissible
geometric partitions of the simplex, what is the minimum possible volume of the
set where at least j colors meet? Furthermore, as we discussed above, are there
generalizations of these statements to other polytopes?

Another question is, what is the Sperner-admissible labeling of the Simplex-
Lattice Hypergraph Hk;q (defined in Sect. 2) minimizing the maximum number of
colors on a hyperedge? We have proved that 4 colors suffice but it is possible that
2 colors are enough (see Proposition 2). Is there a Sperner-admissible labeling of
the hypergraph Hk;q, for sufficiently large q, such that each hyperedge uses at most
2 colors?

Finally, we remark that Proposition 2 does not have a continuous counterpart for
geometric partitions: As we discussed earlier, for any Sperner-admissible partition
of a simplex there is a point where all the parts meet, by the Knaster–Kuratowski–
Mazurkiewicz Lemma [7].

Acknowledgements The second author is indebted in many ways to Jirka Matoušek, who
introduced him to Sperner’s Lemma in an undergradute course at Charles University a long time
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Teaching and Compressing for Low
VC-Dimension

Shay Moran, Amir Shpilka, Avi Wigderson, and Amir Yehudayoff

Abstract In this work we study the quantitative relation between VC-dimension
and two other basic parameters related to learning and teaching. Namely, the
quality of sample compression schemes and of teaching sets for classes of low VC-
dimension. Let C be a binary concept class of size m and VC-dimension d. Prior to
this work, the best known upper bounds for both parameters were log.m/, while the
best lower bounds are linear in d. We present significantly better upper bounds on
both as follows. Set k D O.d2d log log jCj/.

We show that there always exists a concept c in C with a teaching set (i.e. a list of
c-labeled examples uniquely identifying c in C) of size k. This problem was studied
by Kuhlmann (On teaching and learning intersection-closed concept classes. In:
EuroCOLT, pp 168–182, 1999). Our construction implies that the recursive teaching
(RT) dimension of C is at most k as well. The RT-dimension was suggested by Zilles
et al. (J Mach Learn Res 12:349–384, 2011) and Doliwa et al. (Recursive teaching
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dimension, learning complexity, and maximum classes. In: ALT, pp 209–223, 2010).
The same notion (under the name partial-ID width) was independently studied
by Wigderson and Yehudayoff (Population recovery and partial identification. In:
FOCS, pp 390–399, 2012). An upper bound on this parameter that depends only on
d is known just for the very simple case d D 1, and is open even for d D 2. We also
make small progress towards this seemingly modest goal.

We further construct sample compression schemes of size k for C, with additional
information of k log.k/ bits. Roughly speaking, given any list of C-labelled exam-
ples of arbitrary length, we can retain only k labeled examples in a way that allows
to recover the labels of all others examples in the list, using additional k log.k/
information bits. This problem was first suggested by Littlestone and Warmuth
(Relating data compression and learnability. Unpublished, 1986).

1 Introduction

The study of mathematical foundations of learning and teaching has been very fruit-
ful, revealing fundamental connections to various other areas of mathematics, such
as geometry, topology, and combinatorics. Many key ideas and notions emerged
from this study: Vapnik and Chervonenkis’s VC-dimension [44], Valiant’s seminal
definition of PAC learning [43], Littlestone and Warmuth’s sample compression
schemes (Littlestone and Warmuth, Relating data compression and learnability.
Unpublished, 1986), Goldman and Kearns’s teaching dimension [19], recursive
teaching dimension (RT-dimension, for short)[12, 39, 47] and more.

While it is known that some of these measures are tightly linked, the exact
relationship between them is still not well understood. In particular, it is a long
standing question whether the VC-dimension can be used to give a universal bound
on the size of sample compression schemes, or on the RT-dimension.

In this work, we make progress on these two questions. First, we prove that
the RT-dimension of a boolean concept class C having VC-dimension d is upper
bounded by1 O.d2d log log jCj/. Secondly, we give a sample compression scheme
of size O.d2d log log jCj/ that uses additional information. Both results were
subsequently improved to bounds that are independent of the size of the concept
class C [9, 34].

Our proofs are based on a similar technique of recursively applying Haussler’s
Packing Lemma on the dual class. This similarity provides another example of the
informal connection between sample compression schemes and RT-dimension. This
connection also appears in other works that study their relationship with the VC-
dimension [9, 12, 34].

1In this text O. f / means at most ˛f C ˇ for ˛; ˇ > 0 constants.



Teaching and Compressing for Low VC-Dimension 635

1.1 VC-Dimension

VC-dimension and size A concept class over the universe X is a set C � f0; 1gX.
When X is finite, we denote jXj by n.C/. The VC-dimension of C, denoted VC.C/,
is the maximum size of a shattered subset of X, where a set Y � X is shattered if
for every Z � Y there is c 2 C so that c.x/ D 1 for all x 2 Z and c.x/ D 0 for all
x 2 Y � Z.

The most basic result concerning VC-dimension is the Sauer–Shelah–Perles
Lemma, that upper bounds jCj in terms of n.C/ and VC.C/. It has been indepen-
dently proved several times, e.g. in [41].

Theorem 1.1 (Sauer–Shelah–Perles) Let C be a boolean concept class with VC-
dimension d. Then,

jCj �
dX

kD0

 
n.C/

k

!

:

In particular, if d � 2 then jCj � n.C/d

VC-dimension and PAC learning The VC-dimension is one of the most basic
complexity measures for concept classes. It is perhaps mostly known in the context
of the PAC learning model. PAC learning was introduced in Valiant’s seminal work
[43] as a theoretical model for learning from random examples drawn from an
unknown distribution (see the book [28] for more details).

A fundamental and well-known result of Blumer, Ehrenfeucht, Haussler, and
Warmuth [8], which is based on an earlier work of Vapnik and Chervonenkis [44],
states that PAC learning sample complexity is equivalent to VC-dimension. The
proof of this theorem uses Theorem 1.1 and an argument commonly known as
double sampling (see section “Appendix: Double Sampling” in the appendix for
a short and self contained description of this well known argument).

Theorem 1.2 ([8, 44]) Let X be a set and C � f0; 1gX be a concept class of VC-
dimension d. Let � be a distribution over X. Let �; ı > 0 and m an integer satisfying
2.2m C 1/d.1 � �=4/m < ı. Let c 2 C and Y D .x1; : : : ; xm/ be a multiset of
m independent samples from �. Then, the probability that there is c0 2 C so that
cjY D c0jY but �.fx W c.x/ ¤ c0.x/g/ > � is at most ı.

VC-dimension and the metric structure Another fundamental result in this area
is Haussler’s [23] description of the metric structure of concept classes with low
VC-dimension (see also the work of Dudley [14]). Roughly, it says that a concept
class C of VC-dimension d, when thought of as an L1 metric space, behaves like a
d dimensional space in the sense that the size of an �-separated set in C is at most
.1=�/d. More formally, every probability distribution � on X induces the (pseudo)
metric

dist�.c; c0/ D �.fx W c.x/ ¤ c0.x/g/
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on C. A set S � C is called �-separated with respect to � if for every two concepts
c ¤ c0 in S we have dist�.c; c0/ > �. A set A D A�.C; �/ � C is called an
�-approximating set2 for C with respect to � if it is a maximal �-separated set with
respect to �. The maximality of A implies that for every c 2 C there is some
rounding r D r.c; �;C; �/ in A so that r is a good approximation to c, that is,
dist�.c; r/ � �. We call r a rounding of c in A.

An approximating set can be thought of as a metric approximation of the possibly
complicated concept class C, and for many practical purposes it is a good enough
substitute for C. Haussler proved that there are always small approximating sets.

Theorem 1.3 (Haussler) Let C � f0; 1gX be a concept class with VC-dimension
d. Let � be a distribution on X. Let � 2 .0; 1�. If S is �-separated with respect to �
then

jSj � e.dC 1/

2e

�

�d

�

4e2

�

�d

:

A proof of a weaker statement For m D 2 log.jSj/=�, let x1; : : : ; xm be independent
samples from �. For every c ¤ c0 in S,

Pr
�m

�8i 2 Œm� c.xi/ D c0.xi/
�
< .1 � �/m � e�m� � 1=jSj2:

The union bound implies that there is a choice of Y � X of size jYj � m so that
jSjYj D jSj. Theorem 1.1 implies jSj � .jYj C 1/d. Thus, jSj < .30d log.2d=�/=�/d.

ut

1.2 Teaching

Imagine a teacher that helps a student to learn a concept c by picking insightful
examples. The concept c is known only to the teacher, but c belongs to a class of
concepts C known to both the teacher and the student. The teacher carefully chooses
a set of examples that is tailored for c, and then provides these examples to the
student. Now, the student should be able to recover c from these examples.

A central issue that is addressed in the design of mathematical teaching models is
“collusions.” Roughly speaking, a collusion occurs when the teacher and the student
agree in advance on some unnatural encoding of information about c using the bit
description of the chosen examples, instead of using attributes that separate c from
other concepts. Many mathematical models for teaching were suggested: Shinohara
and Miyano [42], Jackson and Tomkins [27], Goldman, Rivest and Schapire [21],

2In metric spaces such a set is called an �-net, however in learning theory and combinatorial
geometry the term �-net has a different meaning, so we use �-approximating instead.
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Goldman and Kearns [19], Goldman and Mathias [20] Angluin and Krikis [2],
Balbach [5], and Kobayashi and Shinohara [29]. We now discuss some of these
models in more detail.

Teaching sets The first mathematical models for teaching [3, 19, 42] handle
collusions in a fairly restrictive way, by requiring that the teacher provides a set
of examples Y that uniquely identifies c. Formally, this is captured by the notion of
a teaching set, which was independently introduced by Goldman and Kearns [19],
Shinohara and Miyano [42] and Anthony et al. [3]. A set Y � X is a teaching set
for c in C if for all c0 ¤ c in C, we have c0jY ¤ cjY . The teaching complexity
in these models is captured by the hardest concept to teach, i.e., maxc2C minfjYj W
Y is a teaching set for c in Cg.

Teaching sets also appear in other areas of learning theory: Hanneke [22] used it
in his study of the label complexity in active learning, and the authors of [46] used
variants of it to design efficient algorithms for learning distributions using imperfect
data.

Defining the teaching complexity using the hardest concept is often too restric-
tive. Consider for example the concept class consisting of all singletons and the
empty set over a domain X of size n. Its teaching complexity in these models is n,
since the only teaching set for the empty set is X. This is a fairly simple concept
class that has the maximum possible complexity.

Recursive teaching dimension Goldman and Mathias [20] and Angluin and
Krikis [2] therefore suggested less restrictive teaching models, and more efficient
teaching schemes were indeed discovered in these models. One approach, studied
by Zilles et al. [47], Doliwa et al. [12], and Samei et al. [39], uses a natural hierarchy
on the concept class C which is defined as follows. The first layer in the hierarchy
consists of all concepts whose teaching set has minimal size. Then, these concepts
are removed and the second layer consists of all concepts whose teaching set
with respect to the remaining concepts has minimal size. Then, these concepts are
removed and so on, until all concepts are removed. The maximum size of a set that
is chosen in this process is called the recursive teaching (RT) dimension. One way
of thinking about this model is that the teaching process satisfies an Occam’s razor-
type rule of preferring simpler concepts. For example, the concept class consisting
of singletons and the empty set, which was considered earlier, has recursive teaching
dimension 1: The first layer in the hierarchy consists of all singletons, which have
teaching sets of size 1. Once all singletons are removed, we are left with a concept
class of size 1, the concept class f;g, and in it the empty set has a teaching set of
size 0.

A similar notion to RT-dimension was independently suggested in [46] under the
terminology of partial IDs. There the focus was on getting a simultaneous upper
bound on the size of the sets, as well as the number of layers in the recursion, and it
was shown that for any concept class C both can be made at most log jCj. Motivation
for this study comes from the population recovery learning problem defined in [15].
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Previous results Doliwa et al. [12] and Zilles et al. [47] asked whether small VC-
dimension implies small recursive teaching dimension. An equivalent question was
asked 10 years earlier by Kuhlmann [30]. Since the VC-dimension does not increase
when concepts are removed from the class, this question is equivalent to asking
whether every class with small VC-dimension has some concept in it with a small
teaching set. Given the semantics of the recursive teaching dimension and the VC-
dimension, an interpretation of this question is whether exact teaching is not much
harder than approximate learning (i.e., PAC learning).

For infinite classes the answer to this question is negative. There is an infinite
concept class with VC-dimension 1 so that every concept in it does not have a finite
teaching set. An example for such a class is C � f0; 1gQ defined as C D fcq W q 2
Qg where cq is the indicator function of all rational numbers that are smaller than q.
The VC-dimension of C is 1, but every teaching set for some cq 2 C must contain a
sequence of rationals that converges to q.

For finite classes this question is open. However, in some special cases it is known
that the answer is affirmative. In [30] it is shown that if C has VC-dimension 1, then
its recursive teaching dimension is also 1. It is known that if C is a maximum3 class
then its recursive teaching dimension is equal to its VC-dimension [12, 38]. Other
families of concept classes for which the recursive teaching dimension is at most the
VC-dimension are discussed in [12]. In the other direction, [30] provided examples
of concept classes with VC-dimension d and recursive teaching dimension at least
3
2
d.

The only bound on the recursive teaching dimension for general classes was
observed by both [12, 46]. It states that the recursive teaching dimension of C is
at most log jCj. This bound follows from a simple halving argument which shows
that for all C there exists some c 2 C with a teaching set of size log jCj.
Our contribution Our first main result is the following general bound, which
exponentially improves over the log jCj bound when the VC-dimension is small
(the proof is given in Sect. 3).

Theorem 1.4 (RT-dimension) Let C be a concept class of VC-dimension d. Then
there exists c 2 C with a teaching set of size at most

d2dC3.log.4e2/C log log jCj/:

It follows that the recursive teaching dimension of concept classes of VC-
dimension d is at most d2dC3.log.4e2/C log log jCj/ as well.

Subsequent to this paper, Chen, Cheng, and Tang [9] proved that the RT-
dimension is at most exp.d/. Their proof is based on ideas from this work, in
particular they follow and improve the argument from the proof of Lemma 1.7.

3That is, C satisfies Sauer–Shelah–Perles Lemma with equality.
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1.3 Sample Compression Schemes

A fundamental and well known statement in learning theory says that if the VC-
dimension of a concept class C is small, then any consistent4 algorithm successfully
PAC learns concepts from C after seeing just a few labelled examples [7, 44]. In
practice, however, a major challenge one has to face when designing a learning
algorithm is the construction of an hypothesis that is consistent with the examples
seen. Many learning algorithms share the property that the output hypothesis is
constructed using a small subset of the examples. For example, in support vector
machines, only the set of support vectors is needed to construct the separating
hyperplane [11]. Sample compression schemes provide a formal meaning for this
algorithmic property.

Before giving the formal definition of compression schemes, let us consider a
simple illustrative example. Assume we are interested in learning the concept class
of intervals on the real line. We get a collection of 100 samples of the form .x; cI.x//
where x 2 R and cI.x/ 2 f0; 1g indicates5 if x is in the interval I � R. Can we
remember just a few of the samples in a way that allows to recover all the 100
samples? In this case, the answer is affirmative and in fact it is easy to do so. Just
remember two locations, those of the left most 1 and of the right most 1 (if there are
no 1s, just remember one of the 0s). From this data, we can reconstruct the value of
cI on all the other 100 samples.

The formal definition Littlestone and Warmuth (Relating data compression and
learnability. Unpublished, 1986) formally defined sample compression schemes as
follows. Let C � f0; 1gX with jXj D n. Let

LC.k1; k2/ D f.Y; y/ W Y � X; k1 � jYj � k2; y 2 CjYg;

the set of labelled samples from C, of sizes between k1 and k2. A k-sample
compression scheme for C with information Q, consists of two maps 
;  for which
the following hold:

(
) The compression map


 W LC.1; n/! LC.0; k/ 
 Q

takes .Y; y/ to ..Z; z/; q/ with Z � Y and yjZ D z.
() The reconstruction map

 W LC.0; k/ 
 Q! f0; 1gX

4An algorithm that outputs an hypothesis in C that is consistent with the input examples.
5That is cI.x/ D 1 iff x 2 I.
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is so that for all .Y; y/ in LC.1; n/,

.
.Y; y//jY D y:

The size of the scheme is kC log jQj.
Intuitively, the compression map takes a long list of samples .Y; y/ and encodes
it as a short sub-list of samples .Z; z/ together with some small amount of side
information q 2 Q, which helps in the reconstruction phase. The reconstruction
takes a short list of samples .Z; z/ and decodes it using the side information q,
without any knowledge of .Y; y/, to an hypothesis in a way that essentially inverts
the compression. Specifically, the following property must always hold: if the
compression of .Y; cjY/ is the same as that of .Y 0; c0jY0/ then cjY\Y0 D c0jY\Y0 .

A different perspective of the side information is as a list decoding in which the
small set of labelled examples .Z; z/ is mapped to the set of hypothesis f..Z; z/; q/ W
q 2 Qg, one of which is correct.

We note that it is not necessarily the case that the reconstructed hypothesis
belongs to the original class C. All it has to satisfy is that for any .Y; y/ 2 LC.1; n/
such that h D .
.Y; y// we have that hjY D y. Thus, h has to be consistent only on
the sampled coordinates that were compressed and not elsewhere.

Let us consider a simple example of a sample compression scheme, to help digest
the definition. Let C be a concept class and let r be the rank over, say, R of the matrix
whose rows correspond to the concepts in C. We claim that there is an r-sample
compression scheme for C with no side information. Indeed, for any Y � X, let
ZY be a set of at most r columns that span the columns of the matrix CjY . Given
a sample .Y; y/ compress it to 
.Y; y/ D .ZY ; z/ for z D yjZY . The reconstruction
maps  takes .Z; z/ to any concept h 2 C so that hjZ D z. This sample compression
scheme works since if .Z; z/ D 
.Y; y/ then every two different rows in CjY must
disagree on Z.

Connections to learning Sample compression schemes are known to yield practi-
cal learning algorithms (see e.g. [33]), and allow learning for multi labelled concept
classes [40].

They can also be interpreted as a formal manifestation of Occam’s razor. Occam’s
razor is a philosophical principle attributed to William of Ockham from the late
middle ages. It says that in the quest for an explanation or an hypothesis, one should
prefer the simplest one which is consistent with the data. There are many works
on the role of Occam’s razor in learning theory, a partial list includes (Littlestone
and Warmuth, Relating data compression and learnability. Unpublished, 1986)
[7, 13, 16, 17, 26, 36]. In the context of sample compression schemes, simplicity
is captured by the size of the compression scheme. Interestingly, this manifestation
of Occam’s razor is provably useful (Littlestone and Warmuth, Relating data
compression and learnability. Unpublished, 1986): Sample compression schemes
imply PAC learnability.
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Theorem 1.5 (Littlestone–Warmuth) Let C � f0; 1gX, and c 2 C. Let � be
a distribution on X, and x1; : : : ; xm be m independent samples from �. Let Y D
.x1; : : : ; xm/ and y D cjY . Let 
;  be a k-sample compression scheme for C with
additional information Q. Let h D .
.Y; y//. Then,

Pr
�m
.dist�.h; c/ > �/ < jQj

kX

jD0

 
m

j

!

.1� �/m�j:

Proof sketch There are
Pk

jD0
�m

j

�
subsets T of Œm� of size at most k. There are jQj

choices for q 2 Q. Each choice of T; q yields a function hT;q D ..T; yT/; q/ that is
measurable with respect to xT D .xt W t 2 T/. The function h is one of the functions
in fhT;q W jTj � k; q 2 Qg. For each hT;q, the coordinates in Œm��T are independent,
and so if dist�.hT;q; c/ > � then the probability that all these m� jTj samples agree
with c is less than .1 � �/m�jTj . The union bound completes the proof. ut

The sample complexity of PAC learning is essentially the VC-dimension. Thus,
from Theorem 1.5 we expect the VC-dimension to bound from below the size of
sample compression schemes. Indeed, [17] proved that there are concept classes of
VC-dimension d for which any sample compression scheme has size at least d.

This is part of the motivation for the following basic question that was asked by
Littlestone and Warmuth (Relating data compression and learnability. Unpublished,
1986) nearly 30 years ago: Does a concept class of VC-dimension d have a sample
compression scheme of size depending only on d (and not on the universe size)?

In fact, unlike the VC-dimension, the definition of sample compression schemes
as well as the fact that they imply PAC learnability naturally generalizes to multi-
class classification problems [40]. Thus, Littlestone and Warmuth’s question above
can be seen as the boolean instance of a much broader question: Is it true that the size
of an optimal sample compression scheme for a given concept class (not necessarily
binary-labeled) is the sample complexity of PAC learning of this class?

Previous constructions Floyd [16] and Floyd and Warmuth [17] constructed
sample compression schemes of size log jCj. The construction in [17] uses a
transformation that converts certain online learning algorithms to compression
schemes. Helmbold and Warmuth [26] and Freund [18] showed how to compress
a sample of size m to a sample of size O.log.m// using some side information for
classes of constant VC-dimension (the implicit constant in the O.�/ depends on the
VC-dimension).

In a long line of works, several interesting compression schemes for special cases
were constructed. A partial list includes Helmbold et al. [25], Floyd and Warmuth
[17], Ben-David and Litman [6], Chernikov and Simon [10], Kuzmin and Warmuth
[31], Rubinstein et al. [37], Rubinstein and Rubinstein [38], Livni and Simon [32]
and more. These works provided connections between compression schemes and
geometry, topology and model theory.
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Our contribution Here we make the first quantitive progress on this question,
since the work of Floyd [16]. The following theorem shows that low VC-dimension
implies the existence of relatively efficient compression schemes. The constructive
proof is provided in Sect. 4.

Theorem 1.6 (Sample compression scheme) If C has VC-dimension d then it
has a k-sample compression scheme with additional information Q where k D
O.d2d log log jCj/ and log jQj � O.k log.k//.

Subsequent to this paper, the first and the last authors improved this bound [34],
showing that any concept class of VC-dimension d has a sample compression
scheme of size at most exp.d/. The techniques used in [34] differ from the
techniques we use in this paper. In particular, our scheme relies on Haussler’s
Packing Lemma (Theorem 1.3) and recursion, while the scheme in [34] relies on
von Neumann’s minimax theorem [35] and the �-approximation theorem [24, 44],
which follow from the double-sampling argument of [44]. Thus, despite the fact that
our scheme is weaker than the one in [34], it provides a different angle on sample
compression, which may be useful in further improving the exponential dependence
on the VC-dimension to an optimal linear dependence, as conjectured by Floyd and
Warmuth [17, 45].

1.4 Discussion and Open Problems

This work provides relatively efficient constructions of teaching sets and sample
compression schemes. However, the exact relationship between VC-dimension,
sample compression scheme size, and the RT-dimension remains unknown. Is there
always a concept with a teaching set of size depending only on the VC-dimension?
(The interesting case is finite concept classes, as mentioned above.) Are there
always sample compression schemes of size linear (or even polynomial) in the VC-
dimension?

The simplest case that is still open is VC-dimension 2. One can refine this case
even further. VC-dimension 2 means that on any three coordinates x; y; z 2 X, the
projection Cjfx;y;zg has at most 7 patterns. A more restricted family of classes is .3; 6/
concept classes, for which on any three coordinates there are at most 6 patterns. We
can show that the recursive teaching dimension of .3; 6/ classes is at most 3.

Lemma 1.7 Let C be a finite .3; 6/ concept class. Then there exists some c 2 C
with a teaching set of size at most 3.

Proof Assume that C � f0; 1gX with X D Œn�. If C has VC-dimension 1 then there
exists c 2 C with a teaching set of size 1 (see [1, 30]). Therefore, assume that the
VC-dimension of C is 2. Every shattered pair fx; x0g � X partitions C to 4 nonempty
sets:

Cx;x0

b;b0 D fc 2 C W c.x/ D b; c.x0/ D b0g;
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for b; b0 2 f0; 1g. Pick a shattered pair fx�; x0�g and b�; b0� for which the size of

C
x�;x0

�

b�;b
0

�

is minimal. Without loss of generality assume that fx�; x0�g D f1; 2g and that

b� D b0� D 0. To simplify notation, we denote C1;2
b;b0 simply by Cb;b0 .

We prove below that C0;0 has VC-dimension 1. This completes the proof since
then there is some c 2 C0;0 and some x 2 Œn� n f1; 2g such that fxg is a teaching set
for c in C0;0. Therefore, f1; 2; xg is a teaching set for c in C.

First, a crucial observation is that since C is a .3; 6/ class, no pair fx; x0g �
Œn� n f1; 2g is shattered by both C0;0 and C n C0;0. Indeed, if C n C0;0 shatters fx; x0g
then either C1;0[C1;1 or C0;1[C1;1 has at least 3 patterns on fx; x0g. If in addition C0;0
shatters fx; x0g then C has at least 7 patterns on f1; x; x0g or f2; x; x0g, contradicting
the assumption that C is a .3; 6/ class.

Now, assume towards contradiction that C0;0 shatters fx; x0g. Thus, fx; x0g is not
shattered by C n C0;0 which means that there is some pattern p 2 f0; 1gfx;x0g so
that p 62 .C n C0;0/jfx;x0g. This implies that Cx;x0

p.x/;p.x0/ is a proper subset of C0;0,
contradicting the minimality of C0;0. ut

2 The Dual Class

We shall repeatedly use the dual concept class to C and its properties. The dual
concept class C� � f0; 1gC of C is defined by C� D fcx W x 2 Xg, where cx W C !
f0; 1g is the map so that cx.c/ D 1 iff c.x/ D 1. If we think of C as a binary matrix
whose rows are the concepts in C, then C� corresponds to the distinct rows of the
transposed matrix (so it may be that jC�j < jn.C/j).

We use the following well known property (see [4]).

Claim 2.1 (Assouad) If the VC-dimension of C is d then the VC-dimension of C�
is at most 2dC1.

Proof sketch If the VC-dimension of C� is 2dC1 then in the matrix representing C
there are 2dC1 rows that are shattered, and in these rows there are d C 1 columns
that are shattered. ut

We also define the dual approximating set (recall the definition of A�.C; �/ from
Sect. 1.1). Denote by A�.C; �/ the set AU.C�; �/, where U is the uniform distribution
on C�.

3 Teaching Sets

In this section we prove Theorem 1.4. The high level idea is to use Theorem 1.3
and Claim 2.1 to identify two distinct x; x0 in X so that the set of c 2 C so that
c.x/ ¤ c.x0/ is much smaller than jCj, add x; x0 to the teaching set, and continue
inductively.
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Proof of Theorem 1.4 For classes with VC-dimension 1 there is c 2 C with a
teaching set of size 1, see e.g. [12]. We may therefore assume that d � 2.

We show that if jCj > .4e2/d	2dC2
, then there exist x ¤ x0 in X such that

0 < jfc 2 C W c.x/ D 0 and c.x0/ D 1gj � jCj1� 1

d2dC2 : (1)

From this the theorem follows, since if we iteratively add such x; x0 to the teaching
set and restrict ourselves to fc 2 C W c.x/ D 0 and c.x0/ D 1g, then after at
most d2dC2 log log jCj iterations, the size of the remaining class is reduced to less
than .4e2/d	2dC2

. At this point we can identify a unique concept by adding at most
log..4e2/d	2dC2

/ additional indices to the teaching set, using the halving argument of
[12, 46]. This gives a teaching set of size at most 2d2dC2 log log jCjCd2dC2 log.4e2/
for some c 2 C, as required.

In order to prove (1), it is enough to show that there exist cx ¤ cy in C� such

that the normalized hamming distance between cx; cy is at most � WD jCj� 1

d2dC2 .
Assume towards contradiction that the distance between every two concepts in C�
is more than �, and assume without loss of generality that n.C/ D jC�j (that is, all
the columns in C are distinct). By Claim 2.1, the VC-dimension of C� is at most
2dC1. Theorem 1.3 thus implies that

n.C/ D jC�j �

4e2

�

�2dC1

<


1

�

�2dC2

; (2)

where the last inequality follows from the definition of � and the assumption on the
size of C. Therefore, we arrive at the following contradiction:

jCj � .n.C//d (by Theorem 1.1, since VC.C/ � 2)

<


1

�

�d	2dC2

(by Equation 2 above)

D jCj: (by definition of �)

ut

4 Sample Compression Schemes

In this section we prove Theorem 1.6. The theorem statement and the definition of
sample compression schemes appear in Sect. 1.3.

While the details are somewhat involved, due to the complexity of the definitions,
the high level idea may be (somewhat simplistically) summarized as follows.
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For an appropriate choice of �, we pick an �-approximating set A� of the dual
class C�. It is helpful to think of A� as a subset of the domain X. Now, either A�
faithfully represents the sample .Y; y/ or it does not (we do not formally define
“faithfully represents” here). We identify the following win-win situation: In both
cases, we can reduce the compression task to that in a much smaller set of concepts
of size at most �jCj � jCj1�2�d

, similarly to as for teaching sets in Sect. 3. This
yields the same double-logarithmic behavior.

In the case that A� faithfully represents .Y; y/, Case 2 below, we recursively
compress in the small class CjA� . In the unfaithful case, Case 1 below, we recursively
compress in a (small) set of concepts for which disagreement occurs on some point
of Y, just as in Sect. 3. In both cases, we have to extend the recursive solution,
and the cost is adding one sample point to the compressed sample (and some
small amount of additional information by which we encode whether Case 1 or 2
occurred).

The compression we describe is inductively defined, and has the following
additional structure. Let ..Z; z/; q/ be in the image of 
. The information q is of
the form q D . f ;T/, where T � 0 is an integer so that jZj � T C O.d � 2d/, and
f W f0; 1; : : : ;Tg ! Z is a partial one-to-one function.6

The rest of this section is organized as follows. In Sect. 4.1 we define the
compression map 
. In Sect. 4.2 we give the reconstruction map . The proof of
correctness is given in Sect. 4.3 and the upper bound on the size of the compression
is calculated in Sect. 4.4.

4.1 Compression Map: Defining �

Let C be a concept class. The compression map is defined by induction on n D n.C/.
For simplicity of notation, let d D VC.C/C 2.

In what follows we shall routinely use A�.C; �/. There are several
�-approximating sets and so we would like to fix one of them, say, the one obtained
by greedily adding columns to A�.C; �/ starting from the first7 column (recall that
we can think of C as a matrix whose rows correspond to concepts in C and whose
columns are concepts in the dual class C�). To keep notation simple, we shall use
A�.C; �/ to denote both the approximating set in C� and the subset of X composed
of columns that give rise to A�.C; �/. This is a slight abuse of notation but the
relevant meaning will always be clear from the context.

Induction base The base of the induction applies to all concept classes C so that
jCj � .4e2/d	2dC1. In this case, we use the compression scheme of Floyd and
Warmuth [16, 17] which has size log.jCj/ D O.d �2d/. This compression scheme has

6That is, it is defined over a subset of f0; 1; : : : ; Tg and it is injective on its domain.
7We shall assume w.l.o.g. that there is some well known order on X.
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no additional information. Therefore, to maintain the structure of our compression
scheme we append to it redundant additional information by setting T D 0 and f to
be empty.

Induction step Let C be so that jCj > .4e2/d	2dC1. Let 0 < � < 1 be so that

�jCj D

1

�

�d	2d

: (3)

This choice balances the recursive size. By Claim 2.1, the VC-dimension of C� is
at most 2d�1 (recall that d D VC.C/C 2). Theorem 1.3 thus implies that

jA�.C; �/j �

4e2

�

�2d�1

<


1

�

�2d

< n.C/: (4)

(Where the second inequality follows from the definition of � and the assumption
on the size of C and the last inequality follows from the definition of � and
Theorem 1.1.)

Let .Y; y/ 2 LC.1; n/. Every x 2 X has a rounding8 r.x/ in A�.C; �/. We
distinguish between two cases:

Case 1: There exist x 2 Y and c 2 C such that cjY D y and c.r.x// ¤ c.x/.
This is the unfaithful case in which we recurse as in Sect. 3. Let

C0 D fc0jX�fx;r.x/g W c0 2 C; c0.x/ D c.x/; c0.r.x// D c.r.x//g;
Y 0 D Y � fx; r.x/g;
y0 D yjY0 :

Apply recursively 
 on C0 and the sample .Y 0; y0/ 2 LC0.1; n.C0//. Let
..Z0; z0/; . f 0;T 0// be the result of this compression. Output ..Z; z/; . f ;T//
defined as9

Z D Z0 [ fxg;
zjZ0 D z0; z.x/ D y.x/;

T D T 0 C 1;
f jf0;:::;T�1g D f 0jf0;:::;T�1g;
f .T/ D x (f is defined on T, marking that Case 1 occurred)

8The choice of r.x/ also depends on C; �, but to simplify the notation we do not explicitly mention
it.
9Remember that f is a partial function.
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Case 2: For all x 2 Y and c 2 C such that cjY D y, we have c.x/ D c.r.x//.
This is the faithful case, in which we compress by restricting C to A�.
Consider r.Y/ D fr.y0/ W y0 2 Yg � A�.C; �/. For each x0 2 r.Y/, pick10

s.x0/ 2 Y to be an element such that r.s.x0// D x0. Let

C0 D CjA�.C;�/;

Y 0 D r.Y/;

y0.x0/ D y.s.x0// 8x0 2 Y 0:

By (4), we know jA�.C; �/j < n.C/. Therefore, we can recursively apply

 on C0 and .Y 0; y0/ 2 LC0.1; n.C0// and get ..Z0; z0/; . f 0;T 0//. Output
..Z; z/; . f ;T// defined as

Z D fs.x0/ W x0 2 Z0g;
z.x/ D z0.r.x// 8x 2 Z; (r.x/ 2 Z0)

T D T 0 C 1;
f D f 0: (f is not defined on T, marking that Case 2 occurred)

The following lemma summarizes two key properties of the compression scheme.
The correctness of this lemma follows directly from the definitions of Cases 1 and 2
above.

Lemma 4.1 Let .Y; y/ 2 LC.1; n.C// and ..Z; z/; .T; f // be the compression of
.Y; y/ described above, where T � 1. The following properties hold:

1. f is defined on T and f .T/ D x iff x 2 Y and there exists c 2 C such that cjY D y
and c.r.x// ¤ c.x/.

2. f is not defined on T iff for all x 2 Y and c 2 C such that cjY D y, it holds that
c.x/ D c.r.x//.

4.2 Reconstruction Map: Defining �

The reconstruction map is similarly defined by induction on n.C/. Let C be a
concept class and let ..Z; z/; . f ;T// be in the image11 of 
 with respect to C. Let
� D �.C/ be as in (3).

10The function s can be thought of as the inverse of r. Since r is not necessarily invertible we use
a different notation than r�1.
11For ..Z; z/; . f ; T// not in the image of 
 we set ..Z; z/; . f ; T// to be some arbitrary concept.
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Induction base The induction base here applies to the same classes like the
induction base of the compression map. This is the only case where T D 0, and
we apply the reconstruction map of Floyd and Warmuth [16, 17]

Induction step Distinguish between two cases:

Case 1: f is defined on T.
Let x D f .T/. Denote

X0 D X � fx; r.x/g;
C0 D fc0jX0 W c0 2 C; c0.x/ D z.x/; c0.r.x// D 1 � z.x/g;
Z0 D Z � fx; r.x/g;
z0 D zjZ0 ;

T 0 D T � 1;
f 0 D f jf0;:::;T0g:

Apply recursively  on C0; ..Z0; z0/; . f 0;T 0//. Let h0 2 f0; 1gX0

be the
result. Output h where

hjX0 D h0;

h.x/ D z.x/;

h.r.x// D 1 � z.x/:

Case 2: f is not defined on T.
Consider r.Z/ D fr.x/ W x 2 Zg � A�.C; �/. For each x0 2 r.Z/, pick
s.x0/ 2 Z to be an element such that r.s.x0// D x0. Let

X0 D A�.C; �/;

C0 D CjX0;

Z0 D r.Z/;

z0.x0/ D z.s.x0// 8x0 2 Z0;

T 0 D T � 1;
f 0 D f jf0;:::;T0g:

Apply recursively  on C0; ..Z0; z0/; . f 0;T 0// and let h0 2 f0; 1gX0

be the
result. Output h satisfying

h.x/ D h0.r.x// 8x 2 X:
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4.3 Correctness

The following lemma yields the correctness of the compression scheme.

Lemma 4.2 Let C be a concept class, .Y; y/ 2 LC.1; n/, 
.Y; y/ D ..Z; z/; . f ;T//
and h D .
.Y; y//. Then,

1. Z � Y and zjZ D yjZ, and
2. hjY D yjY .

Proof We proceed by induction on n.C/. In the base case, jCj � .4e2/d	2dC1 and
the lemma follows from the correctness of Floyd and Warmuth’s compression
scheme (this is the only case in which T D 0). In the induction step, assume
jCj > .4e2/d	2dC1. We distinguish between two cases:

Case 1: f is defined on T.
Let x D f .T/. This case corresponds to Case 1 in the definitions of 

and Case 1 in the definition of . By Item 1 of Lemma 4.1, x 2 Y and
there exists c 2 C and x 2 Y such that cjY D y and c.r.x// ¤ c.x/.
Let C0; .Y 0; y0/ be the class defined in Case 1 in the definition of 
. Since
n.C0/ < n.C/, we know that 
;  on C0 satisfy the induction hypothesis.
Let

..Z0; z0/; . f 0;T 0// D 
.C0; .Y 0; y0//;
h0 D .C0; ..Z0; z0/; . f 0;T 0///;

be the resulting compression and reconstruction. Since we are in Case 1
in the definitions of 
 and Case 1 in the definition of , ..Z; z/; . f ;T//
and h have the following form:

Z D Z0 [ fxg;
zjZ0 D z0; z.x/ D y.x/;

T D T 0 C 1;
f jf0;:::;T�1g D f 0jf0;:::;T�1g;
f .T/ D x;

and

hjX�fx;r.x/g D h0;

h.x/ D z.x/ D y.x/ D c.x/;

h.r.x// D 1 � z.x/ D 1 � y.x/ D 1 � c.x/ D c.r.x//:
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Consider item 1 in the conclusion of the lemma. By the definition of Y 0
and x,

Y 0 [ fxg � Y; (by the definition of Y 0)

Z0 � Y 0: (by the induction hypothesis)

Therefore, Z D Z0 [ fxg � Y.
Consider item 2 in the conclusion of the lemma. By construction and
induction,

hjY\fx;r.x/g D cjY\fx;r.x/g D yjY\fx;r.x/g and hjY0 D h0jY0 D y0:

Thus, hjY D y.
Case 2: f is not defined on T.

This corresponds to Case 2 in the definitions of 
 and Case 2 in the
definition of . Let C0; .Y 0; y0/ be the result of Case 2 in the definition
of 
. Since n.C0/ < n.C/, we know that 
;  on C0 satisfy the induction
hypothesis. Let

..Z0; z0/; . f 0;T 0// D 
.C0; .Y 0; y0//;
h0 D .C0; ..Z0; z0/; . f 0;T 0///;

s W Y 0 ! Y;

as defined in Case 2 in the definitions of 
 and Case 2 in the definition
of . By construction, ..Z; z/; . f ;T// and h have the following form:

Z D fs.x0/ W x0 2 Z0g;
z.x/ D z0.r.x// 8x 2 Z;

T D T 0 C 1;
f D f 0;

and

h.x/ D h0.r.x// 8x 2 X:

Consider item 1 in the conclusion of the lemma. Let x 2 Z. By the induction
hypothesis, Z0 � Y 0. Thus, x D s.x0/ for some x0 2 Z0 � Y 0. Since the range of s
is Y, it follows that x 2 Y. This shows that Z � Y.
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Consider item 2 in the conclusion of the lemma. For x 2 Y,

h.x/ D h0.r.x// (by the definition of h)

D y0.r.x// (by the induction hypothesis)

D y.s.r.x/// (by the definition of y0 in Case 2 of 
)

D y.x/;

where the last equality holds due to item 2 of Lemma 4.1: Indeed, let c 2 C be so
that cjY D y. Since f is not defined on T, for all x 2 Y we have c.x/ D c.r.x//.
In addition, for all x 2 Y it holds that r.s.r.x/// D r.x/ and s.r.x// 2 Y. Hence,
if y.s.r.x/// ¤ y.x/ then one of them is different than c.r.x//, contradicting the
assumption that we are in Case 2 of 
. ut

4.4 The Compression Size

Consider a concept class C which is not part of the induction base (i.e. jCj >
.4e2/d	2dC1). Let � D �.C/ be as in (3). We show the effect of each case in the
definition of 
 on either jCj or n.C/:

1. Case 1 in the definition of 
: Here the size of C0 becomes smaller

jC0j � �jCj:

Indeed, this holds as in the dual set system C�, the normalized hamming distance
between cx and cr.x/ is at most � and therefore the number of c 2 C such that
c.x/ ¤ c.r.x// is at most �jCj.

2. Case 2 in the definition of 
: here n.C0/ becomes smaller as

n.C0/ D jA�.C; �/j �

1

�

�2d

:

We now show that in either cases, jC0j � jCj1� 1

d	2d
C1 , which implies that after

O..d � 2d C 1/ log log jCj/

iterations, we reach the induction base.
In Case 1:

jC0j � �jCj D jCj1� 1

d	2d
C1 : (by the definition of �)
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In Case 2:

jC0j � .n.C0//d (by Theorem 1.1, since VC.C0/ � d � 2)

�

1

�

�d	2d

(by Theorem 1.3, since n.C0/ D jA�.C; �/j)

D jCj1� 1

d	2d
C1 : (by definition of �)

Remark Note the similarity between the analysis of the cases above, and the
analysis of the size of a teaching set in Sect. 3. Case 1 corresponds to the rate of
the progress performed in each iteration of the construction of a teaching set. Case 2
corresponds to the calculation showing that in each iteration significant progress can
be made.

Thus, the compression map 
 performs at most

O..d � 2d C 1/ log log jCj/

iterations. In every step of the recursion the sizes of Z and T increase by at most 1.
In the base of the recursion, T is 0 and the size of Z is at most O.d � 2d/. Hence, the
total size of the compression satisfies

jZj � k D O.2dd log log jCj/;
log.jQj/ � O.k log.k//:

This completes the proof of Theorem 1.6.

Acknowledgements We thank Noga Alon and Gillat Kol for helpful discussions in various stages
of this work.

Appendix: Double Sampling

Here we provide our version of the double sampling argument from [8] that
upper bounds the sample complexity of PAC learning for classes of constant VC-
dimension. We use the following simple general lemma.

Lemma A.1 Let .�;F ; �/ and .�0;F 0; �0/ be countable12 probability spaces. Let

F1;F2;F3; : : : 2 F ; F01;F02;F03; : : : 2 F 0

12A similar statement holds in general.
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be so that �0.F0i/ � 1=2 for all i. Then

� 
 �0
 
[

i

Fi 
 F0i

!

� 1

2
�

 
[

i

Fi

!

;

where � 
 �0 is the product measure.

Proof Let F D S
i Fi. For every ! 2 F, let F0.!/ D S

iW!2Fi
F0i . As there exists i

such that ! 2 Fi it holds that F0i � F0.!/ and hence �0.F0.!// � 1=2. Thus,

� 
 �0
 
[

i

Fi 
 F0i

!

D
X

!2F

�.f!g/ � �0.F0.!// �
X

!2F

�.f!g/=2 D �.F/=2:

ut
We now give a proof of Theorem 1.2. To ease the reading we repeat the statement

of the theorem.

Theorem Let X be a set and C � f0; 1gX be a concept class of VC-dimension d.
Let � be a distribution over X. Let �; ı > 0 and m an integer satisfying 2.2m C
1/d.1 � �=4/m < ı. Let c 2 C and Y D .x1; : : : ; xm/ be a multiset of m independent
samples from �. Then, the probability that there is c0 2 C so that cjY D c0jY but
�.fx W c.x/ ¤ c0.x/g/ > � is at most ı.

Proof of Theorem 1.2 Let Y 0 D .x01; : : : ; x0m/ be another m independent samples
from �, chosen independently of Y. Let

H D fh 2 C W dist�.h; c/ > �g:

For h 2 C, define the event

Fh D fY W cjY D hjYg;

and let F D S
h2H Fh. Our goal is thus to upper bound Pr.F/. For that, we also

define the independent event

F0h D fY 0 W distY0.h; c/ > �=2g:

We first claim that Pr.F0h/ � 1=2 for all h 2 H. This follows from Chernoff’s
bound, but even Chebyshev’s inequality suffices: For every i 2 Œm�, let Vi be the
indicator variables of the event h.x0i/ ¤ c.x0i/ (i.e., Vi D 1 if and only if h.x0i/ ¤
c.x0i/). The event F0h is equivalent to V D P

i Vi=m > �=2. Since h 2 H, we have
p WD EŒV� > �. Since elements of Y 0 are chosen independently, it follows that
Var.V/ D p.1� p/=m. Thus, the probability of the complement of F0h satisfies

Pr..F0h/c/ � Pr.jV � pj � p � �=2/ � p.1� p/

.p � �=2/2m <
4

�m
� 1=2:
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We now give an upper bound on Pr.F/. We note that

Pr.F/ � 2 Pr

 
[

h2H

Fh 
 F0h

!

: (Lemma A.1)

Let S D Y [ Y 0, where the union is as multisets. Conditioned on the value of S, the
multiset Y is a uniform subset of half of the elements of S. Thus,

2 Pr

 
[

h2H

Fh 
 F0h

!

D 2E
S

�
E

�
1f9h2HWhjYDcjY ; distY0 .h;c/>�=2g

ˇ
ˇS
��

D 2E
S

�
E

�
1f9h02HjSWh0jYDcjY ; distY0 .h0;c/>�=2g

ˇ
ˇS
��

� 2E
S

2

4
X

h02HjS
E

�
1fh0jYDcjY ; distY0 .h0;c/>�=2g

ˇ
ˇS
�
3

5 :

(by the union bound)

Notice that if distY0 .h0; c/ > �=2 then distS.h0; c/ > �=4, hence the probability that
we choose Y such that h0jY D cjY is at most .1 � �=4/m. Using Theorem 1.1 we get

Pr.F/ � 2E
S

2

4
X

h02HjS
.1 � �=4/m

3

5 � 2.2mC 1/d.1 � �=4/m:

ut
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Abstract Suppose that m; n 2 N and that A W Rm ! R
n is a linear operator. It

is shown here that if k; r 2 N satisfy k < r 6 rank.A/ then there exists a subset
� � f1; : : : ;mg with j� j D k such that the restriction of A to R

� � R
m is invertible,

and moreover the operator norm of the inverse A�1 W A.R� / ! R
m is at most a

constant multiple of the quantity
p

mr=..r � k/
Pm

iDr si.A/2/, where s1.A/ > : : : >
sm.A/ are the singular values of A. This improves over a series of works, starting
from the seminal Bourgain–Tzafriri Restricted Invertibility Principle, through the
works of Vershynin, Spielman–Srivastava and Marcus–Spielman–Srivastava. In
particular, this directly implies an improved restricted invertibility principle in terms
of Schatten–von Neumann norms.

1 Introduction

Given m; n 2 N, the rank of a linear operator A W Rm ! R
n equals the largest

possible dimension of a linear subspace V � R
m on which A is injective, i.e.,

the inverse A�1 W A.V/ ! V exists. The restricted invertibility problem asks for
conditions on A that ensure a strengthening of this basic fact from linear algebra
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in two ways, corresponding to additional structural information on the subspace
V � R

m on which A is injective, as well as quantitative information on the behavior
of the inverse A�1 W A.V/ ! V . Firstly, the goal is to find a large dimensional
coordinate subspace on which A is invertible, i.e., we wish to find a large subset
� � f1; : : : ;mg such that A is injective on R

� � R
m. Secondly, rather than being

satisfied with mere invertibility we ask for A to be quantitatively invertible on R
� in

the sense that the operator norm of the inverse A�1 W A.R� / ! R
� is not too large.

Obviously, additional assumptions on A are required for such conclusions to hold
true.

The following theorem, which is known as the Bourgain–Tzafriri Restricted
Invertibility Principle [5, 6, 8], is a seminal result that addressed the above question
and had major influence on subsequent research, with a variety of interesting
applications to several areas. Throughout what follows, for m 2 N the standard
coordinate basis of Rm will be denoted by e1; : : : ; em 2 R

m.

Theorem 1 (Bourgain–Tzafriri) There exist two universal constants c;C 2
.0;1/ with the following property. Suppose that m 2 N and that A W Rm ! R

m

is a linear operator such that the Euclidean norm of the vector Aej 2 R
m equals 1

for every j 2 f1; : : : ;mg. Letting kAk denote the operator norm of A, there exists a
subset � � f1; : : : ;mg with j� j > cm=kAk2 such that A is injective on R

� and the
operator norm of the inverse A�1 W A.R�/! R

� is at most C.
In what follows, for p 2 Œ1;1� and m 2 N the `p norm of a vector x 2 R

m will be
denoted as usual by kxkp. Thus kxk2 is the Euclidean norm of x. We shall also denote
(as usual) by `m

p the normed space R
m equipped with the `p norm. The standard

scalar product on R
m will be denoted h�; �i. For k;m; n 2 N and a k-dimensional

subspace V � R
m, the Schatten–von Neumann p norm of a linear operator A W V !

R
n will be denoted below by kAkSp . Thus

kAkSp

defD
�

Tr.A�A/
p
2

	 1
p D

 kX

jD1
sj.A/

p

� 1
p

;

where s1.A/ > s2.A/ > : : : > sk.A/ denote the singular values of A, i.e., they
are the (decreasing rearrangement of the) eigenvalues of the positive semidefinite
operator

p
A�A W V ! V�. Thus kAkS1

D s1.A/ is the operator norm of A.
Also, kAkS2 is the Hilbert–Schmidt norm of A, i.e., for every orthonormal basis
u1; : : : ; uk of V we have kAk2S2 D

Pk
iD1

Pn
jD1hAui; eji2 D Pk

iD1 kAeik22. Below
it will sometimes be convenient to denote the smallest singular value of A by
smin.A/ D sk.A/. Thus A is injective if and only if smin.A/ > 0, in which case
kA�1kS1

D 1=smin.A/.
Given m 2 N and � � f1; : : : ;mg it will be convenient to denote the formal

identity from R
� to R

m by J� W R� ! R
m, i.e., J� ..aj/j2� / D P

j2� ajej for every
.aj/j2� 2 R

� . With this notation, given an operator A W Rm ! R
n that is injective on

R
� we can consider the operator .AJ� /�1 W A.R�/! R

� . We shall sometimes drop
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the need to mention explicitly that A is injective on R
� by adhering to the convention

that if A is not injective on R
� then k.AJ� /�1kS1

D 1.
Using the above notation, Theorem 1 asserts that if A W R

m ! R
m is a

linear operator that satisfies kAejk2 D 1 for all j 2 f1; : : : ;mg then there exists
� � f1; : : : ;mg with j� j & m=kAkS1

such that k.AJ� /�1kS1
. 1, or equivalently

smin.AJ�/ & 1. Here, and in what follows, we use the following standard asymptotic
notation. Given two quantities K;L 2 R the notation K . L (respectively K & L)
means that there exists a universal constant c 2 .0;1/ such that K 6 cL
(respectively K > cL). The notation K � L means that both K . L and K & L
hold true.

The following theorem is a useful strengthening of the Bourgain–Tzafriri
Restricted Invertibility Principle that was discovered by Vershynin in [33].

Theorem 2 (Vershynin) There exists a universal constant c 2 .0;1/ with the
following property. Fix k;m; n 2 N. Let A W Rm ! R

n be a linear operator
with kAejk2 D 1 for all j 2 f1; : : : ;mg. Also, let � W R

n ! R
n be a

positive definite diagonal operator, i.e., there exist d1; : : : ; dn 2 .0;1/ such that
�x D .d1x1; : : : ; dnxn/ for every x D .x1; : : : ; xn/ 2 R

n. Suppose that k <

kA�k2S2=kA�k2S1

and write k D .1 � "/kA�k2S2=kA�k2S1

where " 2 .0; 1/ (thus
" D 1 � kkA�k2S1

=kA�k2S2). Then there exists a subset � � f1; : : : ;mg with

j� j D k such that k.AJ� /�1kS1
6 "�c log.1="/.

For a linear operator T W Rm ! R
n, the quantity kTk2S2=kTk2S1

is often called
the stable rank of T, though this terminology sometimes also refers to the quantity
kTkS1=kTkS1

. In both cases, the use of the term ‘stable’ in this context expresses
the fact that the quantity in question is a robust replacement for the rank of T in the
sense that the rank of T could be large due to the fact that T has many positive but
nevertheless very small singular values, while if the stable rank of T is large then
its singular values are large on average. Below we shall use the terminology ‘stable
rank’ exclusively for the quantity kTk2S2=kTk2S1

, which we denote by srank.T/ D
kTk2S2=kTk2S1

.

Theorem 1 coincides with the special case " D 1
2

and � D In of Theorem 2,
where In is the identity operator on R

n. However, Theorem 2 improves over
Theorem 1 in three ways that are important for geometric applications. Firstly,
Theorem 2 treats rectangular matrices while Theorem 1 treats only the case m D n.
Secondly, even in the special case � D In of Theorem 2 the size of the subset
� � f1; : : : ;mg is allowed to be arbitrarily close to srank.A/, while in Theorem 1 it
can only be taken to be a constant multiple of srank.A/. Lastly, Theorem 2 actually
allows for the size of the subset � � f1; : : : ;mg to be arbitrarily close to the
supremum of srank.A�/ over all positive definite diagonal operators � W Rm !
R

m, a quantity that could be much larger than srank.A/.

Remark 3 Theorem 2 is often stated in the literature as a subset selection principle
for John decompositions of the identity. Namely, suppose that k;m; n 2 N and
x1; : : : ; xm 2 R

n X f0g satisfy
Pm

jD1hxj; yi2 D kyk22 for all y 2 R
n. Equivalently, we

have
Pm

jD1 xj˝ xj D In, where for x; y 2 R
n the rank-one operator x˝ y W Rn ! R

n
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is defined as usual by setting .x ˝ y/.z/ D hx; ziy for every z 2 R
n. Suppose

that T W Rn ! R
n is a linear operator satisfying Tx1; : : : ;Txm ¤ 0, and that

k D .1 � "/srank.T/ for some " 2 .0; 1/. Then there exists � � f1; : : : ;mg with
j� j D k such that

8 fajgj2� � R;

�
�
�
�

X

j2�

aj

kTxjk2 Txj

�
�
�
�
2

> "c log.1="/

X

j2�
a2j

� 1
2

:

The above formulation is equivalent to Theorem 2 as stated in terms of rectangular
matrices by considering the operator A W R

m ! R
n that is given by Aej D

Txj=kTxjk2 for every j 2 f1; : : : ;mg.
A recent breakthrough of Spielman–Srivastava [26], that relies nontrivially on a

remarkable method for sparsifying quadratic forms that was developed by Batson–
Spielman–Srivastava [2] (see also the survey [20]), yielded the following improved
restricted invertibility principle, via techniques that are entirely different from those
used by Bourgain–Tzafriri and Vershynin.

Theorem 4 (Spielman–Srivastava) Suppose that k;m; n 2 N and let A W Rm !
R

n be a linear operator such that k < srank.A/. Write k D .1 � "/srank.A/ where
" 2 .0; 1/. Then there exists a subset � � f1; : : : ;mg with j� j D k such that

k.AJ� /
�1kS1

6 1

1 �p1 � " �
p

m

kAkS2
6 2
p

m

"kAkS2
:

In the setting of Theorem 4, since kAkS2 D
p

m when the columns of A have unit
Euclidean norm, Theorem 1 is a special case of Theorem 4. As in the case � D In

of Theorem 2, the statement of Theorem 4 has the additional feature that the subset
� � f1; : : : ;mg can have size arbitrarily close to srank.A/. Moreover, in Theorem 4
the columns of A need not have unit Euclidean norm, and the upper bound on
k.AJ� /�1kS1

in terms of " is much better in Theorem 4 than the corresponding
bound in the case � D In of Theorem 2; in fact this bound is asymptotically
sharp [3] as " ! 0. An additional feature of Theorem 4 is that its proof in [26]
yields a deterministic polynomial time algorithm for finding the subset � , while
previous to [26] only a randomized polynomial time algorithm was available [32].
Theorem 2 does have a feature that Theorem 4 does not, namely the size of the
subset � � f1; : : : ;mg can be taken to be arbitrarily close to the supremum of
srank.A�/ over all positive definite diagonal operators � W Rm ! R

m, albeit
with worse dependence on ". However, in [34] it was shown how to combine the
features of Theorems 2 and 4 so as to yield this stronger guarantee with the better
dependence on " that is asserted in Theorem 4. This improvement is important
for certain geometric applications [34]. The new results that are presented below
have this stronger “weighted” feature, but for the sake of simplicity of the initial
discussion in the Introduction we shall first present all the ensuing statements in
their “unweighted” form that corresponds to the way Theorem 4 is stated above.



Restricted Invertibility Revisited 661

A different proof of Theorem 4 in the special case AA� D In was found by
Marcus, Spielman and Srivastava in [16], using their powerful method of interlacing
polynomials [17, 18]. In fact, their forthcoming work [19] obtains Theorem 5 below,
which yields for the first time a restricted invertibility principle for subsets that can
be asymptotically larger than the stable rank, with their size depending on the ratio
of the Hilbert–Schmidt norm and the Schatten–von Neumann 4 norm. This result
was announced by Srivastava in his talk at the conference Banach Spaces: Geometry
and Analysis (Hebrew University, May 2013), and it is actually a precursor to
the outstanding subsequent work [18]. Its proof will appear for the first time in
the forthcoming preprint [19], but we confirmed with the authors that they obtain
Theorem 5 as stated below.

Theorem 5 (Marcus–Spielman–Srivastava) Suppose that k;m; n 2 N and let A W
R

m ! R
n be a linear operator such that k < 1

4
.kAkS2=kAkS4/4. Define " 2 .3=4; 1/

by k D .1�"/kAk4S2=kAk4S4 . Then there exists a subset � � f1; : : : ;mg with j� j D k
such that

k.AJ� /
�1kS1

6 1
p
1 � 2p1 � "

�
p

m

kAkS2
: (1)

Theorem 5 can be much better than the previously known restricted invertibility
principles at detecting large well-invertible sub-matrices. To state a concrete
example, suppose that the singular values of A are s1.A/ � 4

p
m and s2.A/ �

s3.A/ � : : : � sm.A/ D 1. Then Theorem 4 yields a subset � � f1; : : : ;mg of
size of order

p
m for which the operator norm of the inverse of AJ� is O.1/, while

Theorem 5 yields such a subset whose size is at least a constant multiple of m.
The restriction k < 1

4
.kAkS2=kAkS4 /4 in Theorem 5 ensures that " > 3=4, so

that the quantity appearing under the square root in (1) is positive. Thus, in the
statement of Theorem 5, k cannot be arbitrarily close to the “modified stable rank”
kAk4S2=kAk4S4 , but this will be remedied below.

It is important to note that the quantity kAk4S2=kAk4S4 is always at least srank.A/.
More generally, given p 2 .2;1�, if we define the p-stable rank of A to be the
quantity

srankp.A/
defD
 
kAkS2
kAkSp

! 2p
p�2

; (2)

then in particular srank4.A/ D kAk4S2=kAk4S4 and srank1.A/ D srank.A/. We
claim that

p > q > 2 H) srankp.A/ 6 srankq.A/; (3)
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Indeed, by direct application of Hölder’s inequality we have

kAkSq 6 kAk
2.p�q/
q.p�2/

S2
� kAk

p.q�2/
q.p�2/

Sp
;

which simplifies to give (3). The limit as p ! 2C of srankp.A/ can be computed
explicitly, yielding the quantity below, denoted Entrank.A/, which we naturally
call the entropic stable rank of A.

Entrank.A/
defD lim

p!2C

srankp.A/ D exp


log
mX

jD1

sj.A/
2 � 2

Pm
jD1 sj.A/2 log sj.A/
Pm

jD1 sj.A/2

�

D exp


Tr.A�A/ log Tr.A�A/ � Tr.A�A log.A�A//

Tr.A�A/

�

D kAk2S2
mY

jD1

sj.A/
�

2sj.A/
2

kAk
2
S2 :

As we shall explain in the next section, here we obtain an improved restricted
invertibility theorem that in particular yields a strengthening of Theorem 5 that
allows one to make use of the p-stable rank of A for every p > 2, thus producing
well-invertible sub-matrices of A of size that can be any integer that is less than the
entropic stable rank of A.

1.1 Restricted Invertibility in Terms of Rank

Our main new result is the following theorem.

Theorem 6 Suppose that k;m; n 2 N. Let A W Rm ! R
n be a linear operator with

rank.A/ > k. Then there exists a subset � � f1; : : : ;mg with j� j D k such that

k.AJ� /
�1kS1

. min
r2fkC1;:::;rank.A/g

r
mr

.r � k/
Pm

iDr si.A/2
: (4)

Example 7 To illustrate the relation between Theorems 4, 5 and 6, consider a
linear operator A W Rm ! R

n with sj.A/ � 1=
p

j for every j 2 f1; : : : ;mg.
Thus rank.A/ D m, srank.A/ � log m and srank4.m/ � .log m/2. Sincep

m=kAkS2 �
p

m= log m, Theorem 4 yields � � f1; : : : ;mg with j� j � log m and
k.AJ� /�1kS1

.
p

m= log m, Theorem 5 yields such a subset with j� j � .log m/2,
and Theorem 6 yields such a subset with j� j & pm. In fact, for every " 2 .0; 1/,
Theorem 6 yields � � f1; : : : ;mg with j� j & m1�" such that k.AJ� /�1kS1

.
1p
"

p
m= log m.

Theorem 6 has the feature that it asserts the existence of a coordinate subspace of
dimension arbitrarily close to the rank of the given operator on which it is invertible,
with quantitative control on the operator norm of the inverse. The rank is not a
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stable quantity, but it is simple to deduce stable consequences of Theorem 6 that are
stronger than Theorem 5. Indeed, continuing with the notations of Theorem 6, for
every p 2 .2;1/ we can apply Hölder’s inequality to deduce that

kAk2S2 D
r�1X

iD1
si.A/

2 C
mX

iDr

si.A/
2

6 .r � 1/1� 2p
 r�1X

iD1
si.A/

p

� 2
p

C
mX

iDr

si.A/
2 6 .r � 1/1� 2p kAk2Sp

C
mX

iDr

si.A/
2:

Hence,

mX

iDr

si.A/
2 > kAk2S2�.r�1/1�

2
p kAk2Sp

(2)D kAk2S2
 

1 �


r � 1
srankp.A/

�1� 2p
!

: (5)

A substitution of (5) into (4) yields the following estimate.

smin.AJ� /
2 & max

r2fkC1;:::;srankp.A/g



1 � k

r

� 

1�


r � 1
srankp.A/

�1� 2p
!

� kAk
2
S2

m
: (6)

The estimate (6) is nontrivial only when k < srankp.A/, so write k D .1 �
"/srankp.A/ for some " 2 .0; 1/. One checks that the following choice of r 2
fk C 1; : : : ; srankp.A/g attains the maximum in the right hand side of (6), up to
universal constant factors. If " is bounded away from 1, say " 2 .0; 1=2�, choose
r � .1 � "=2/srankp.A/. If 1=2 < " 6 1 � e�p=.p�2/ then choose r � log.1=.1 �
"// � srankp.A/. If 1�e�p=.p�2/ < " < 1 then choose r � e�p=.p�2/srankp.A/. Thus,

0 < " 6 1

2
H) k.AJ�/

�1kS1
.
r

p

p � 2 �
p

m

"kAkS2
;

1

2
< " 6 1 � e�

p
p�2 H) k.AJ�/

�1kS1
.
r

p

p � 2 �
p

m

log .1=.1� "// kAkS2
;

1 � e�
p

p�2 < " < 1 H) k.AJ�/
�1kS1

.
p

m

kAkS2
:

A more concise way to write these estimates is as follows.

k.AJ� /
�1kS1

.


1C p

.p � 2/ˇˇ log .1 � "2/ ˇˇ
� 1

2
p

m

kAkS2
:

For ease of future reference, we record the above corollary of Theorem 6 as
Theorem 8 below.
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Theorem 8 (Restricted invertibility in terms of Schatten–von Neumann norms)
Suppose that k;m; n 2 N, " 2 .0; 1/ and p 2 .2;1/. Let A W Rm ! R

n be a
linear operator that satisfies k 6 .1 � "/srankp.A/. Then there exists a subset
� � f1; : : : ;mg with j� j D k such that

k.AJ� /
�1kS1

.


1C p

.p � 2/ˇˇ log .1 � "2/ ˇˇ
� 1

2
p

m

kAkS2
:

Equivalently, if k < Entrank.A/ then there exists � � f1; : : : ;mg with j� j D k such
that

k.AJ� /
�1kS1

. inf
p>2
 p



1 � k

srankp.A/

� p
m

kAkS2
;

where p W R! Œ0;1� is defined by p."/ D1 if " 6 0, p.x/ D .
p

p=.p� 2//="
if 0 < " < 1=2,  p."/ D .

p
p=.p� 2//= log.1=.1� "// if 1=2 < " 6 1 � e�p=.p�2/

and  p."/ D 1 if " > 1 � e�p=.p�2/.
The case p D 4 of Theorem 8 implies (up to constant factors) the conclusion of

Theorem 5, though now treating any " 2 .0; 1/, i.e., k arbitrarily close to srank4.A/,
while Theorem 5 applies only when " > 3=4. Theorem 8 can detect the well-
invertibility of A on coordinate subspaces that are much larger than those detected
by Theorem 5. For example suppose that the singular values of A are s1.A/ � 3

p
m

and s2.A/ � s3.A/ � : : : � sm.A/ � 1. Then Theorem 5 yields a subset
� � f1; : : : ;mg of size of order m2=3 for which the operator norm of the inverse
of AJ� is O.1/, while (the case p D 3 of) Theorem 8 yields such a subset whose size
is proportional to m.

We shall prove Theorem 6 through an application of Theorem 9 below, which
is a restricted invertibility statement of independent interest, in combination with a
volumetric argument that leads to Lemma 10 below. Throughout what follows, given
n 2 N and a linear subspace F � R

n, we shall denote the orthogonal projection from
R

n onto F by ProjF W Rn ! F.

Theorem 9 Fix k;m; n 2 N and a linear operator A W R
m ! R

n satisfying
rank.A/ > k. Let ! � f1; : : : ;mg be any subset with j!j D rank.A/ such that
the vectors fAeigi2! � R

n are linearly independent. For every j 2 ! let Fj � R
n be

the orthogonal complement of the span of fAeigi2!Xfjg � R
n, i.e.,

Fj
defD �

span fAeigi2!Xfjg
�?
: (7)

Then there exists a subset � � ! with j� j D k such that

k.AJ� /
�1kS1

.
p

rank.A/
p

rank.A/� k
�max

j2!
1

kProjFj
Aejk2 : (8)
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The link between Theorems 9 and 6 is furnished through the following lemma.

Lemma 10 Fix r;m; n 2 N. Let A W Rm ! R
n be a linear operator with rank.A/ >

r. For every � � f1; : : : ;mg let E� � R
n be the orthogonal complement of the span

of fAejgj2� � R
n, i.e.,1

E�
defD
�

span
˚
Aej
�

j2�
	?
: (9)

Then there exists a subset � � f1; : : : ;mg with j� j D r such that

8 j 2 �; �
�ProjE�Xfjg

Aej

�
�
2

> 1p
m

 mX

iDr

si.A/
2

� 1
2

: (10)

The deduction of Theorem 6 from Theorem 9 and Lemma 10 is simple. Indeed,
in the setting of Theorem 6, take r 2 fk C 1; : : : ; rank.A/g and apply Lemma 10
to obtain a subset � � f1; : : : ;mg with j� j D r that satisfies (10). This implies in
particular that fAejgj2� are linearly independent, hence the operator AJ� W R� ! R

n

has rank r. By Theorem 9 applied with A replaced by AJ� , m D r D rank.A/ and
! D � , we obtain a further subset � � � with j� j D k such that

k.AJ� /
�1kS1

(8)^(10)
.

r
mr

.r � k/
Pm

iDr si.A/2
:

This is precisely the assertion of Theorem 6.
In Sect. 5 we shall prove the following variant of Theorem 9.

Theorem 11 Fix k;m; n 2 N and a linear operator A W Rm ! R
n satisfying

rank.A/ > k. Then there exists a subset � � f1; : : : ;mg with j� j D k such that

k.AJ� /
�1kS1

6
p

m
p

rank.A/�pk


1

rank.A/

rank.A/X

iD1

1

si.A/2

� 1
2

: (11)

To explain how Theorem 11 relates to Theorem 6, note that in the setting of
Theorem 6 we have

X

j2!

1

kProjFj
Aejk22

D
rank.A/X

iD1

1

si.AJ!/2
: (12)

The simple linear-algebraic justification of (12) appears in Sect. 2.1 below. For
simplicity suppose that ! D f1; : : : ;mg, so rank.A/ D m, and write k D .1 � "/m

1Comparing (7) and (9) we see that Fj D E!Xfjg for every j 2 !.
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for some " 2 .0; 1/. Then Theorem 6 yields a subset � � f1; : : : ;mg with j� j D k
such that

k.AJ� /
�1kS1

. 1p
"
� max

j2f1;:::;mg
1

kProjFj
Aejk2 ; (13)

while, due to (12), Theorem 11 yields a subset � � f1; : : : ;mg with j� j D k such
that

k.AJ� /
�1kS1

6 1

1 �p1 � "

1

m

mX

jD1

1

kProjFj
Aejk22

� 1
2

� 1

"


1

m

mX

jD1

1

kProjFj
Aejk22

� 1
2

:

(14)

The estimates (13) and (14) are incomparable since (13) yields a dependence on "
that is better than that of (14) as " ! 0, while the bound in (14) is in terms of the

average of the quantities
n
1=kProjFj

Aejk22
om

jD1 rather than their maximum. It remains

an interesting open question whether one could obtain a restricted invertibility
theorem that combines the best terms in (13) and (14).

Remark 12 Theorem 9 is best possible, up to constant factors. Indeed, fix k;m 2 N

with k < m and let B be the m by m matrix all of whose diagonal entries equal m
and all of whose off-diagonal entries equal�1. Then B is positive definite (diagonal-
dominant) and we choose A D pB. We are thus in the setting of Theorem 9 with
m D n D rank.A/ and ! D f1; : : : ;mg. The quantity 1=kProjFj

Aejk22 is equal

to the j’th diagonal entry of .A�A/�1 D B�1; see equation (16) in Sect. 2.1 below
for a simple justification of this fact. The matrix B is an invertible circulant matrix,
and as such B�1 is also a circulant matrix whose diagonal entries equal 2=.mC 1/;
see [9, 15] for more on the explicit evaluation of basic quantities related to circulant
matrices, including their inverses and eigenvalues, which we use here. Therefore
1=kProjFj

Aejk2 D
p
2=.mC 1/ for every j 2 f1; : : : ;mg, so that the right hand side

of (8) equals
p
2m=..mC 1/.m � k// � 1=

p
m � k. At the same time, take any

� � f1; : : : ;mg with j� j D k. Then .AJ�/�.AJ� / D J��BJ� corresponds to a k by
k matrix whose diagonal entries equal m and whose off-diagonal entries equal �1.
This is again a circulant matrix whose eigenvalues equal to mC 1 with multiplicity
k�1 and mC1�k with multiplicity 1. Thus s1.AJ� / D : : : D sk�1.AJ�/ D

p
mC 1

and sk.AJ�/ D smin.AJ�/ D 1=k.AJ�/�1kS1
D pmC 1 � k. This shows that

k.AJ� /�1kS1
� 1=pm � k, so that (8) is sharp up to constant factors.

1.2 Remarks on the Proofs

The original proof of Bourgain and Tzafriri of Theorem 1 consists of a beautiful
combination of probabilistic, combinatorial and analytic arguments. It proceeds
roughly along three steps. Firstly, using random selectors one finds a large collection
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of columns of A that is “well separated.” In the second step one uses the Sauer–
Shelah lemma [24, 25] to find a further subset of the columns such that the inverse
of the restriction of A to this subset, when viewed as an operator from `2 to `1, has
small norm; the Sauer–Shelah lemma is discussed in Sect. 2.4 below, since it plays
an important role here as well. The third step of the Bourgain–Tzafriri proof uses
tools from functional analysis, specifically the Little Grothendieck’s Inequality [14]
and the Pietsch Domination Theorem [22], to control the desired Hilbertian operator
norm; these analytic tools are used here as well, and are explained in detail in
Sects. 2.2 and 2.3 below.

Vershynin’s proof of Theorem 2 uses the Bourgain–Tzafriri restricted invertibil-
ity theorem as a “black box,” alongside with (unpublished) work of Kashin and
Tzafriri (see Theorem 2.5 in [33]). A key contribution of Verhynin was the idea to
work with the Hilbert–Schmidt norm so as to allow for an iterative argument. As we
stated earlier, the proof of Spielman and Srivastava of Theorem 4 is entirely different
from the previously used methods in this context, relying on the ‘sparsification
method’ of Batson–Spielman–Srivastava [2]. This refreshing approach led to many
important developments, and it was subsequently augmented by the powerful
‘method of interlacing polynomials’ of Marcus–Spielman–Srivastava, which they
used to prove Theorem 5, showing that one could use higher Schatten–von Neumann
norms to address the restricted invertibility problem.

Our starting point here was the realization that one could use ideas and techniques
that predate the works of Vershynin, Spielman–Srivastava and Marcus–Spielman–
Srivastava to obtain asymptotically sharp results such as Theorem 4, and even to
strengthen the statement in terms of higher Schatten–von Neumann norms that
is contained in Theorem 5. These later results were based on the discovery of
powerful new techniques, leading to many additional applications (crowned by the
solution of the Kadison–Singer problem [18]) that are not covered here, but the
present work shows how to apply classical methods to improve over the best known
bounds on the restricted invertibility problem. Specifically, we rely on the beautiful
work of Giannopoulos [13], which treats a seemingly unrelated geometric question
(see also [12]), though it is partially inspired by the work of Bourgain–Tzafriri [5]
itself, as well as the works of Bourgain–Szarek [7] and Szarek–Talagrand [30] (see
also [29]). The key step is to use Giannopoulos’ clever iterative application of the
Sauer–Shelah lemma (Bourgain–Tzafriri used the Sauer–Shelah lemma only once in
their original argument) in the proof of Theorem 9. In fact, one could use a geometric
statement of Giannopoulos [13] as a “black box” so as to obtain a shorter proof of
Theorem 9; this is carried out in Sect. 4.1 below, but only after we present a self-
contained argument in Sect. 4.

Theorem 11 is of a different nature, since its proof uses the Marcus–Spielman–
Srivastava method of interlacing polynomials. We do not see how to prove it using
the classical analytic techniques that are utilized elsewhere in this article, and in fact
we do not need it for the applications that are obtained here (as we explained earlier,
Theorem 11 is incomparable to Theorem 9, being weaker in terms of the dependence
on certain parameters and stronger in other respects). Nevertheless, Theorem 11
certainly belongs to the family of restricted invertibility results that we study here.
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Among the interesting questions that arise naturally from the present work, we
ask whether Theorems 6, 8, 9 and 11 can be made to be algorithmic. Our current
proofs do not yield a polynomial time algorithm that finds the desired coordinate
subspace, due to various reasons, including (but not limited to) the use of the Sauer–
Shelah lemma (in Theorems 6, 8 and 9) and the use of the method of interlacing
polynomials (in Theorem 11).

1.3 Roadmap

While this article is primarily devoted to new results, it also has an expository
component due to the fact that we are using tools and ideas from diverse fields, with
which some readers may not be familiar. Being very much inspired by Matoušek’s
exceptionally clear style of mathematical exposition, we also made an effort for the
ensuing arguments to be self-contained by including quick explanations of classical
results that are being used. It seems impossible to fully achieve a Matoušek-style
exposition, but hopefully his influence helped us to make an important area of
mathematics and a collection of powerful and versatile tools accessible to a wider
audience.

Section 2 describes auxiliary statements that will be used in the subsequent
proofs. These include classical results of major importance to several fields, and we
include brief deductions of what we need so as to make this article self-contained.
Section 3 contains the proof of Lemma 10. A self-contained proof of Theorem 6,
using a clever iterative procedure of Giannopoulus [13], appears in Sect. 4. This is
followed by Sect. 4.1, where it is shown that Theorem 6 is equivalent to a geometric
theorem of Giannopulos [13], thus yielding a shorter (but not self-contained) proof
of Theorem 6. Section 5 contains the proof of Theorem 11.

2 Preliminaries

In this section we shall describe several tools that will be used in the ensuing
arguments, and derive certain corollaries of them in forms that will be easy to quote
as the need arises later.

2.1 A Bit of Linear Algebra

We shall start with elementary linear algebraic reasoning that clarifies the meaning
of some of the quantities that were discussed in the Introduction. In particular, we
shall see why the identity (12) holds true.
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We work here in the setting of Theorem 9, namely we are given k;m; n 2 N and
a linear operator A W Rm ! R

n satisfying rank.A/ > k. We are also fixing any
subset ! � f1; : : : ;mg with j!j D rank.A/ such that the vectors fAeigi2! � R

n

are linearly independent. For j 2 ! we consider the linear subspace Fj � R
n that is

defined in (7), namely Fj is the orthogonal complement of the span of fAeigi2!Xfjg �
R

n. For every j 2 ! define a vector vj 2 R
n as follows.

vj
defD ProjFj

Aej

kProjFj
Aejk22

2 R
n: (15)

For every j 2 !, since In � ProjFj
is the orthogonal projection onto

span.fAeigi2!Xfjg/ � R
n, we know that In � ProjFj

Aej 2 span.fAeigi2!Xfjg/.
So, fProjFj

Aejgj2! � span.fAeigi2!/, and therefore fvjgj2! � span.fAeigi2!/. For

j 2 ! we have hProjFj
Aej;Aeji D kProjFj

Aejk22, so hvj;Aeji D 1. Also, because
ProjFj

Aej is orthogonal to fAeigi2!Xfjg, we have hvj;Aeii D 0 for every i 2 ! X fjg.
Since fAeigi2! is a basis of span.fAeigi2!/ and fvjgj2! � span.fAeigi2!/, this
means that fvjgj2! is the unique dual basis of fAeigi2! in span.fAeigi2!/.

The operator .AJ!/�.AJ!/ W R! ! R
! has rank j!j D rank.A/, hence it is

invertible. For every j 2 ! we may therefore consider the vector

wj
defD .AJ!/

�
.AJ!/

�.AJ!/
��1

ej 2 span.fAeigi2!/:

Observe that for every i; j 2 ! we have

hwj;Aeii D
D
.AJ!/

�
.AJ!/

�.AJ!/
��1

ej; .AJ!/ei

E

D
D
.AJ!/

�.AJ!/
�
.AJ!/

�.AJ!/
��1

ej; ei

E
D hej; eii:

By the uniqueness of the dual basis of fAeigi2! in span.fAeigi2!/, we conclude that
vj D wj for every j 2 !. This implies in particular that for every j 2 ! we have

1

kProjFj
Aejk22

D kvjk22 D hwj;wji D
D
.AJ!/

�
.AJ!/

�.AJ!/
�

�1
ej; .AJ!/

�
.AJ!/

�.AJ!/
�

�1
ej

E

D
D�
.AJ!/

�.AJ!/
�

�1
ej; .AJ!/

�.AJ!/
�
.AJ!/

�.AJ!/
�

�1
ej

E
D
D�
.AJ!/

�.AJ!/
�

�1
ej; ej

E
:

(16)

Consequently,

X

j2!

1

kProjFj
Aejk22

DX

j2!

D�
.AJ!/

�.AJ!/
�

�1
ej; ej

E
D Tr

��
.AJ!/

�.AJ!/
�

�1
	
D

rank.A/X

iD1

1

si.AJ!/2
:
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This is precisely the identity (12). The above discussion, and in particular the
auxiliary vectors (15) and their properties that were derived above, will play a role
in later arguments as well.

2.2 Grothendieck

We shall use later the following important theorem of Grothendieck [14].

Theorem 13 (Little Grothendieck Inequality) Fix k;m; n 2 N. Suppose that T W
R

m ! R
n is a linear operator. Then for every x1; : : : ; xk 2 R

m there exists i 2
f1; : : : ;mg such that

kX

rD1
kTxrk22 6 �

2
kTk2`m

1!`n
2

kX

rD1
x2ri: (17)

Here kTk`m
1!`n

2

defD maxx2Œ�1;1�m kTxk2 is the operator norm of T when it is viewed
as an operator from `m1 to `n

2, and xri D hxr; eii is the i’th coordinate of xr 2 R
m.

To see the significance of Theorem 13, note that the definition of the operator
norm of T when it is viewed as an operator from `m1 to `n

2 is nothing more than the
smallest C > 0 such that for every x 2 R

m there exists i 2 f1; : : : ;mg for which
kTxk22 6 C2x2i . So, the case k D 1 of (17) without the factor �=2 in the right hand
side is a tautology. Theorem (13) asserts that the case k D 1 of (17) automatically
“upgrades” to (17) for general k 2 N at the cost of a loss of the constant factor �=2.

The literature contains clear expositions of Theorem 13 and its various useful
generalizations and equivalent formulations; see e.g. [10, 23]. Nevertheless, for the
sake of completeness we shall now quickly explain why Theorem 13 holds true,
following (a specialization of) the standard proofs of this fact [10, 23]. We note that
the factor �=2 in (17) is sharp; see e.g. the remark immediately following the proof
of Theorem 5.4 in [23].

To prove Theorem 13, by rescaling both T and .x1; : : : ; xk/ we may assume
without loss of generality that kTk`m

1!`n
2
D 1 and

Pk
rD1 kTxrk22 D 1. With this

normalization, we claim that

mX

jD1

 kX

rD1
.T�Txr/

2
j

� 1
2

6
r
�

2
: (18)
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Once proven, (18) implies the desired estimate (17) via the following application of
Cauchy–Schwarz.

1 D
kX

rD1

kTxrk22 D
kX

rD1

hxr; T
�Txri D

mX

jD1

kX

rD1

xrj.T
�Txr/j 6

mX

jD1

 kX

rD1

x2rj

� 1
2
 kX

rD1

.T�Txr/
2
j

� 1
2

6 max
i2f1;:::;mg

 kX

rD1

x2ri

� 1
2

mX

jD1

 kX

rD1

.T�Txr/
2
j

� 1
2 (18)
6
r
�

2
	 max

i2f1;:::;mg

 kX

rD1

x2ri

� 1
2

:

To prove (18), let fgrgkrD1 be i.i.d. standard Gaussian random variables. For every
j 2 f1; : : : ;mg the random variable

Pk
rD1 gr.T�Txr/j is Gaussian with mean 0 and

variance
Pk

rD1.T�Txr/
2
j . So,

E

� mX

jD1

ˇ
ˇ
ˇ
�

T�

kX

rD1

grTxr

	

j

ˇ
ˇ
ˇ

�

D E

� mX

jD1

ˇ
ˇ
ˇ

kX

rD1

gr.T
�Txr/j

ˇ
ˇ
ˇ

�

D
mX

jD1

E

�ˇ
ˇ
ˇ

kX

rD1

gr.T
�Txr/j

ˇ
ˇ
ˇ

�

D E
�jg1j

� mX

jD1

 kX

rD1

.T�Txr/
2
j

� 1
2

D
r
2

�

mX

jD1

 kX

rD1

.T�Txr/
2
j

� 1
2

: (19)

Let z 2 f�1; 1gm be the random vector given by zj
defD sign

��
T�
Pk

rD1 grTxr
�

j

	
.

Then

mX

jD1

ˇ
ˇ
ˇ
�

T�
kX

rD1
grTxr

	

j

ˇ
ˇ
ˇ D

�

z;T�
kX

rD1
grTxr

�

D
�

Tz;
kX

rD1
grTxr

�

6 kTzk2�
�
�
�

kX

rD1
grTxr

�
�
�
2

6 kTk`m
1!`n

2
�kzk1 �

�
�
�

kX

rD1
grTxr

�
�
�
2
D
�
�
�

kX

rD1
grTxr

�
�
�
2
:

(20)

By taking expectations in (20) we see that

r
2

�

mX

jD1

 kX

rD1
.T�Txr/

2
j

� 1
2 (19)D E

� mX

jD1

ˇ
ˇ
ˇ
�

T�
kX

rD1
grTxr

	

j

ˇ
ˇ
ˇ

�

(20)
6 E

��
�
�

kX

rD1
grTxr

�
�
�
2

�

6


E

��
�
�

kX

rD1
grTxr

�
�
�
2

2

�� 1
2

D
kX

rD1
kTxrk22 D 1;

This is precisely the desired estimate (18), thus completing the proof of Theorem 13.
ut
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2.3 Pietsch

Another classical tool that will be used later (together with the Little Grothendieck
Inequality) is the Pietsch Domination Theorem [22].

Theorem 14 (Pietsch Domination) Fix m; n 2 N and M 2 .0;1/. Suppose that
T W Rm ! R

n is a linear operator such that for every k 2 N and x1; : : : ; xk 2
R

m there exists i 2 f1; : : : ;mg with
Pk

rD1 kTxrk22 6 M2
Pk

rD1 x2ri. Then there exist
�1; : : : ; �m 2 Œ0; 1� with

Pm
iD1 �i D 1 such that

8w D .w1; : : : ;wm/ 2 R
m; kTwk22 6 M2

mX

iD1
�iw

2
i :

Observe in passing that the conclusion of Theorem 14 immediately implies
its assumption. Indeed, by applying this conclusion with w D xr for each r 2
f1; : : : ; kg, and then summing the resulting inequalities over r 2 f1; : : : ; kg, we get
that

Pk
rD1 kTxrk22 6

Pm
iD1 �i.M2

Pk
rD1 x2ri/, so the existence of the desired index

i 2 f1; : : : ;mg follows from the fact that .�1; : : : ; �m/ is a probability measure. The
main point here is therefore the reverse implication, as stated in Theorem 14.

In Banach space theoretic terminology, the assumption on the operator T in
Theorem 14 says that T has 2-summing norm at most M when it is viewed as an
operator from `m1 to `n

2. We refer to the monographs [10, 31] for much more on
this topic, as well as proofs of (more general versions of) the Pietsch Domination
Theorem. As before, for the sake of completeness we shall now explain why
Theorem 14 holds true, following (a specialization of) the standard proofs [10, 31]
of this fact, which amount to an application of the separation theorem (equivalently,
Hahn–Banach or duality of linear programming) to appropriately chosen convex
sets.

Let K � R
m be the set of all those vectors y 2 R

m for which there exists k 2 N

and x1; : : : ; xk 2 R
m such that yi D Pk

rD1 kTxrk22 � M2
Pk

rD1 x2ri for every i 2
f1; : : : ;mg. It is immediate to check that K is convex, and the assumption on T can
be restated as saying that K \ .0;1/m D ;. By the separation theorem there exists
� D .�1; : : : ; �m/ 2 R

m such that
Pm

iD1 �iyi <
Pm

iD1 �izi for every y 2 K and
z 2 .0;1/m. In particular, � ¤ 0 and infz2.0;1/mhz; �i > �1, so necessarily
�i > 0 for all i 2 f1; : : : ;mg. We may rescale so that

Pm
iD1 �i D 1. If w 2 R

m then
.kTwk22�M2w2i /

m
iD1 2 K, so kTwk22 �M2

Pm
iD1 �iw2i D

Pm
iD1 �i.kTwk22 �M2w2i / 6

infz2.0;1/m
Pm

iD1 �izi D 0. ut
The following lemma is a combination of the Little Grothendieck Inequality and

the Pietsch Domination Theorem; this is how Theorems 13 and 14 will be used in
what follows.

Lemma 15 Fix m; n 2 N and " 2 .0; 1/. Let T W Rn ! R
m be a linear operator.

Then there exists a subset � � f1; : : : ;mg with j� j > .1 � "/m such that

kProj
R�TkS1

6
r

�

2"m
� kTk`n

2!`m
1
: (21)
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Proof Since we have kT�k`m
1!`n

2
D kTk`n

2!`m
1
, an application of Theorem 13 to

T� W Rm ! R
n shows that the assumption of Theorem 14 holds true with T replaced

by T� and M D p
�=2 � kTk`n

2!`m
1
. Hence, Theorem 14 shows that there exists

� 2 Œ0; 1�m with
Pm

iD1 �i D 1 such that

8 y 2 R
m; kT�yk22 6 �

2
kTk2`n

2!`m
1

mX

iD1
�iy

2
i : (22)

Define

�
defD



i 2 f1; : : : ;mg W �i 6 1

m"

�

: (23)

Since � is a probability measure on f1; : : : ;mg, by Markov’s inequality we have
j� j > .1 � "/m.

Take x 2 R
n and choose y 2 R

m such that kyk2 D 1 and kProj
R�Txk2 D

hy;Proj
R�Txi. Then,

kProjR� Txk22 D hy;ProjR� Txi2 D hT�ProjR� y; xi2 6 kT�ProjR� yk22 � kxk22
(22)
6 �

2
kTk2`n

2!`m
1
� kxk22

X

i2�

�iy
2
i

(23)
6 �

2m"
kTk2`n

2!`m
1
� kxk22 � kyk22 D

�

2m"
kTk2`n

2!`m
1
� kxk22:

(24)

Since (24) holds true for every x 2 R
n, this completes the proof of the desired

estimate (21). �

2.4 Sauer–Shelah

The Sauer–Shelah lemma [24, 25] is a fundamental combinatorial principle of wide
applicability that will be used crucially later.

Lemma 16 (Sauer–Shelah) Fix m; n 2 N. Suppose that � � f�1; 1gn satisfies
j�j > Pm�1

kD0
�n

k

�
: Then there exists a subset � � f1; : : : ; ng with j� j > m such that

Proj
R�� D f�1; 1g� , i.e., for every " 2 f�1; 1g� there exists ı 2 � such that ıj D "j

for every j 2 � . In particular, if j�j > 2n�1 then such a subset � � f1; : : : ; ng exists
with j� j > d.nC 1/=2e > n=2.

It is simple to prove Lemma 16 by induction on n when one strengthens the

inductive hypothesis as follows. Denoting sh.�/ D
n
� � f1; : : : ; ng W Proj

R�� D
f�1; 1g�

o
, we claim that jsh.�/j > j�j; this would imply Lemma 16 since the

number of subsets of f1; : : : ; ng of size at most m�1 equals
Pm�1

kD0
�n

k

�
. This stronger
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statement is due to Pajor [21], and the resulting very short inductive proof which we
shall now sketch for completeness appears as Theorem 1.1 in [1].

The case n D 1 holds trivially (here we use the convention that f�1; 1g; D ;
and Proj

R;� D ;). Assuming the validity of the above statement for n, take � �
f�1; 1gnC1 D f�1; 1gn 
 f�1; 1g and denote �1 D fx 2 f�1; 1gn W .x; 1/ 2 �g
and ��1 D fx 2 f�1; 1gn W .x;�1/ 2 �g. Then j�1j C j��1j D j�j and by
the inductive hypothesis we have jsh.�1/j > j�1j and jsh.��1/j > j��1j. By
our definitions we have sh.�/  .sh.�1/ [ sh.��1// �[ f� [ fn C 1g W � 2
sh.�1/ \ sh.��1/g, so jsh.�/j > jsh.�1/ [ sh.��1/j C jsh.�1/ \ sh.��1/j D
jsh.�1/j C jsh.��1/j > j�1j C j��1j D j�j. ut

2.5 Fan and Hilbert–Schmidt

We record for ease of future use the following lemma that controls the influence
of multiplication by an orthogonal projection on the Hilbert–Schmidt norm of a
linear operator. Its proof is a simple consequence of the classical Fan Maximum
Principle [11], but we couldn’t locate a reference where it is stated explicitly in the
form that we will use later.

Lemma 17 Fix m; n 2 N and r 2 f1; : : : ; ng. Let A W Rm ! R
n be a linear operator

and let P W Rn ! R
n be an orthogonal projection of rank r. Then

kPAkS2 >
 mX

iDn�rC1
si.A/

2

� 1
2

:

Proof Since In �P is an orthogonal projection of rank n� r, by a classical result of
Fan [11],

Tr.AA�.In � P// 6
n�rX

iD1
si.AA�/ D

n�rX

iD1
si.A/

2: (25)

The proof of (25) is simple; see e.g. [28, Lemma 8.1.8] for a short proof and [4,
Chapter III] for more general variational principles along these lines. Now, since P
is an orthogonal projection,

kPAk2S2 D Tr..PA/�.PA// D Tr.A�PA/ D Tr.AA�P/ D Tr.AA�/ � Tr.AA�.In � P//

D
mX

iD1

si.A/2 � Tr.AA�.In � P//
(25)
>

mX

iD1

si.A/2 �
n�rX

iD1

si.A/2 D
mX

iDn�rC1

si.A/2:

ut
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3 Proof of Lemma 10

In this section, we shall prove Lemma 10 in a more general weighted form that
corresponds to the renormalization step in Vershynin’s Theorem, i.e., Theorem 2.
Using this weighted version of Lemma 10, one can directly deduce weighted
versions of Theorems 6 and 8 as well, by combining Lemma 18 below with
Theorem 9, exactly as we did in the Introduction.

Lemma 18 (weighted version of Lemma 10) Fix r;m; n 2 N. Let A W Rm ! R
n

be a linear operator with rank.A/ > r. For every � � f1; : : : ;mg let E� � R
n be

defined as in (9), i.e., it is the orthogonal complement of the span of fAejgj2� � R
n.

Then for every d1; : : : ; dm 2 .0;1/ there exists a subset � � f1; : : : ;mgwith j� j D r
such that

8 j 2 �; �
�ProjE�Xfjg

Aej

�
�
2

> dj
qPm

iD1 d2i

 mX

iDr

si.A/
2

� 1
2

: (26)

Proof For every � � f1; : : : ;mg let K� � R
n be the convex hull of the vectors

f˙Aej=djgj2� , i.e.,

K�
defD conv



1

dj
Aej W j 2 �

�

[



� 1
dj

Aej W j 2 �
��

: (27)

The desired subset � � f1; : : : ;mg will be chosen so as to maximize the r-
dimensional volume of the convex hull of K� over all those subsets � of f1; : : : ;mg
of size r. Namely, we shall fix from now on a subset � � f1; : : : ;mg with j� j D r
such that

volr.K� / D max
��f1;:::;mg
j� jDr

volr.K� /: (28)

Take any ˇ � f1; : : : ;mg with jˇj D r � 1 and fix i 2 f1; : : : ;mg X ˇ. Then
by the definition (27) we have Kˇ[fig D conv.f˙Aei=dig [ Kˇ/, i.e., Kˇ[fig is the
union of the two cones with base Kˇ and apexes at˙Aei=di. Recalling (9), note that
Kˇ � span.Kˇ/ D E?̌. Hence, the height of these two cones equals the Euclidean
length of the orthogonal projection of Aei=di onto Eˇ . Therefore,

volr
�
Kˇ[fig

� D 2
�
�ProjEˇAei

�
�
2
volr�1.Kˇ/

rdi
: (29)
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Returning to the subset � that was chosen in (28), we see that if j 2 � and
i 2 f1; : : : ;mg then

2
�
�ProjE�Xfjg

Aej

�
�
2
volr�1

�
K�Xfjg

�

rdj

(29)D volr.K� /

(28)
> volr

�
K.�Xfjg/[fig

� (29)D
2
�
�ProjE�Xfjg

Aei

�
�
2
volr�1

�
K�Xfjg

�

rdi
: (30)

Since we are assuming that r 6 rank.A/, we know that volr.K� / > 0. It therefore
follows from (30) that also volr�1

�
K�Xfjg

�
> 0, so me may cancel the quantity

2volr�1
�
K�Xfjg

�
=r from both sides of (30). Since the resulting estimate holds true

for every i 2 f1; : : : ;mg, we conclude that

8 j 2 �;
�
�ProjE�Xfjg

Aej

�
�
2

dj
D max

i2f1;:::;mg

�
�ProjE�Xfjg

Aei

�
�
2

di
: (31)

Consequently, for every j 2 � we have

�
�ProjE�Xfjg

Aej

�
�2
2

d2j

 mX

iD1
d2i

�
(31)
>

mX

iD1

�
�ProjE�Xfjg

Aei

�
�2
2
D ��ProjE�Xfjg

A
�
�2
S2
:

Equivalently,

8 j 2 �; �
�ProjE�Xfjg

Aej

�
�
2

> dj
qPm

iD1 d2i

�
�ProjE�Xfjg

A
�
�
S2
: (32)

Recalling (9), since j� j D r we know that dim.E�Xfjg/ D n� .r� 1/ for every j 2 � .
Consequently, ProjE�Xfjg

W Rn ! R
n is an orthogonal projection of rank n� .r� 1/,

so that the desired inequality (26) follows from (32) and Lemma 17. �

4 Giannopoulos

In this section we shall prove Theorem 9, following the lines of a clever iterative
procedure that was devised by Giannopoulos in [13]. Throughout the ensuing
discussion, we may assume in the setting of Theorem 9 that ! D f1; : : : ;mg,
in which case rank.A/ D m. Indeed, there is no loss of generality by doing so
because for general ! � f1; : : : ;mg we could then consider the restricted operator
AJ! W R! ! R

n in order to obtain Theorem 9 as stated in the Introduction.
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Proof overview The overall strategy of the ensuing proof can be explained in broad
strokes given the tools that were already presented in Sect. 2. The ultimate goal of
Theorem 9 is to obtain an upper bound on the operator norm k � kS1

of a certain
m by n matrix (the inverse of an appropriate coordinate restriction of the given
n by m matrix A), while we have already seen in Lemma 15 that if one does not
mind composing with a further coordinate projection then such a bound follows
automatically from a weaker upper estimate on the operator norm k � k`n

2!`m
1
. The

latter quantity can be controlled using the Sauer–Shelah lemma due to the following
reasoning.

Let fvjgmjD1 be the dual basis of fAejgmjD1 that is given in (15). Consider the subset
� of the hypercube f�1; 1gm consisting of all those sign vectors " D ."1; : : : ; "m/ for
which the Euclidean norm kPm

jD1 "jvjk2 is not too large, with the precise meaning
of “not too large” here to be specified in the proof of Lemma 19 below; see (37). The
parallelogram identity says that if " 2 f�1; 1gm is chosen uniformly at random then
the expectation of kPm

jD1 "jvjk22 equals
Pm

jD1 kvjk22. So, by Markov’s inequality,
an appropriate setting of the parameters would yield that the cardinality of � is
greater than 2m�1 D jf�1; 1gmj=2. The Sauer–Shelah lemma would then furnish a
coordinate subset ˇ � f1; : : : ;mg with the property that every sign pattern ."j/j2ˇ 2
f�1; 1gˇ can be completed to a full dimensional sign vector " 2 f�1; 1gm such thatPm

jD1 "jvj is “short” in the Euclidean norm.
The above conclusion implies an upper bound on the operator norm of the inverse

of the restriction of A to R
ˇ , when it is viewed as an operator from `

ˇ
2 to `m

1 . Indeed,
given an arbitrary vector .aj/j2ˇ 2 R

ˇ, the goal is to bound
P

j2ˇ jajj in terms of
kPj2ˇ ajAejk2. The sign pattern to be considered is then the signs of the coefficients

.aj/j2ˇ 2 R
ˇ , i.e., set "j D sign.aj/ for every j 2 ˇ. The (Sauer–Shelah) subset

ˇ � f1; : : : ;mg was constructed so that this sign vector can be completed to a
full dimensional sign vector " 2 f�1; 1gm with control on the Euclidean length ofPm

jD1 "jvj. But fvjgmjD1 is a dual basis of fAejgmjD1, so by the definition of ."j/j2ˇ
the quantity

P
j2ˇ jajj is equal to the scalar product of

P
j2ˇ ajAej with the “short”

vector
Pm

jD1 "jvj. By Cauchy–Schwarz this scalar product is bounded from above
by the Euclidean length of

P
j2ˇ ajAej times the Euclidean length of

Pm
jD1 "jvj, with

the latter quantity being bounded above by design.
By Lemma 15 we can now pass to a further subset of ˇ and compose the resulting

inverse matrix with the coordinate projection onto that subset so as to “upgrade”
this control on the operator norm from `

ˇ
2 to `m

1 to a better upper bound on k � kS1
.

Complications arise when one examines the above strategy from the quantitative
perspective. The Sauer–Shelah lemma can at best produce a coordinate subset of
size m=2, while we desire to obtain restricted invertibility on a potentially larger
subset. Moreover, in the above procedure the Sauer–Shelah subset is further reduced
in size due to the subsequent use of Lemma 15. Since we desire to extract larger
coordinate subsets, one can attempt to apply this reasoning iteratively, i.e., start
by using the Sauer–Shelah lemma to obtain a coordinate subset, followed by an
application of Lemma 15 to pass to a further subset ˇ0 � f1; : : : ;mg. Now apply the
same double selection procedure to f1; : : : ;mg X ˇ0, thus obtaining a subset ˇ00 �
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f1; : : : ;mgXˇ0, and iterate this procedure by now considering f1; : : : ;mgX.ˇ0[ˇ00/
and so forth. To make this strategy work, one needs to formulate a stronger inductive
hypothesis so as to allow one to “glue” the local information on the subsets that
are extracted in each step of the iteration into global information on their union,
while ensuring that the end result is a sufficiently large coordinate subset. This is
the reason why the assumptions of Lemma 19 below are more complicated. The
technical details that implement the above strategy are explained in the remainder
of this section.

Lemma 19 Fix n 2 N and m 2 f1; : : : ; ng. Let A W Rm ! R
n be a linear operator

such that the vectors fAejgmjD1 � R
n are linearly independent. Suppose that k 2

N[f0g and � � f1; : : : ;mg. For j 2 f1; : : : ;mg recall the definition of the subspace
Fj � R

n in (7) (with ! D f1; : : : ;mg), i.e,

Fj D
�
span fAeigi2f1;:::;mgXfjg

�?
:

Then there exists � � � with j� j > .1� 2�k/j� j such that for every # � f1; : : : ;mg
that satisfies #  � and every a D .a1; : : : ; am/ 2 R

m there exists an index j 2
f1; : : : ;mg for which

X

i2�
jaij 6

pj� jPk
rD1 2

r
2

kProjFj
Aejk2

�
�
�
�

X

i2#
aiAei

�
�
�
�
2

C .2k � 1/
X

i2#\.�X�/
jaij: (33)

Proof It will be convenient to introduce the following notation.

M
defD max

j2f1;:::;mg
1

kProjFj
Aejk2 and ˛k

defD
kX

rD1
2

r
2 : (34)

Throughout we adhere to the convention that an empty sum vanishes, thus in
particular ˛0 D 0.

Under the notation (34), our goal becomes to show that there exists � � � with
j� j > .1�2�k/j� j such that for every # � f1; : : : ;mg that satisfies #  � and every
a 2 R

m we have

X

i2�
jaij 6 ˛kM

p
j� j
�
�
�
�

X

i2#
aiAei

�
�
�
�
2

C .2k � 1/
X

i2#\.�X�/
jaij: (35)

We shall prove this statement by induction on k. The case k D 0 holds vacuously
by taking � D ;. Assuming the validity of this statement for k, we shall proceed to
deduce its validity for kC 1.

We are given � � � with j� j > .1 � 2�k/j� j such that for every # � f1; : : : ;mg
that satisfies #  � we know that (35) holds true for every a 2 R

m. Observe that
if � D � then � itself would satisfy the required statement for k C 1, so we may
assume from now on that � X � ¤ ;.
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For every j 2 f1; : : : ;mg let vj be given as in (15), i.e.,

vj
defD ProjFj

Aej

kProjFj
Aejk22

2 R
n: (36)

Observe that the denominator in (36) (and also in (33) and (34)) does not vanish
since we are assuming in Lemma 19 that fAejgmjD1 are linearly independent. Define
� � f�1; 1g�X� as follows.

�
defD



" 2 f�1; 1g�X� W
�
�
�
�

X

i2�X�
"ivi

�
�
�
�
2

6 M
p
2j� X � j

�

: (37)

By the parallelogram identity we have

M2j� X � j (34)
>

X

i2�X�

1

kProjFi
Aeik22

(36)D
X

i2�X�
kvik22 D

1

2j�X� j
X

"2f�1;1g�X�

�
�
�
�

X

i2�X�
"ivi

�
�
�
�

2

2

(37)
>

1

2j�X� j
X

"2f�1;1g�X�

"…�

2M2j� X � j D 2M2j� X � j


1 � j�j
2j�X� j

�

: (38)

Since j� X � j > 0, it follows from (38) that j�j > 2j�X� j�1.
We can now apply the Sauer–Shelah lemma, i.e., Lemma 16, thus deducing that

there exists a subset ˇ � � X� with jˇj > j� X� j=2 such that Proj
Rˇ� D f�1; 1gˇ.

Defining �� D � [ ˇ we shall now proceed to show that �� satisfies the inductive
hypothesis with k replaced by kC 1.

Since ˇ \ � D ;, � � � and jˇj > j� X � j=2 we have

j��j D j� j C jˇj > j� j C j� j � j� j
2

D j� j C j� j
2

> .1 � 2�k/j� j C j� j
2

D .1 � 2�k�1/j� j:
(39)

Next, suppose that # � f1; : : : ;mg satisfies #  ��. If a 2 R
m then because

Proj
Rˇ� D f�1; 1gˇ there exists " 2 � such that for every j 2 ˇ we have "j D

sign.aj/. The fact that " 2 � means that

�
�
�
�

X

i2�X�
"ivi

�
�
�
�
2

6 M
p
2j� X � j 6 M

p
2j� j

2k=2
; (40)

where in the last step of (40) we used the fact that j� j > .1 � 2�k/j� j.
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The definition (36) of fvjgmjD1 implies that hvi;Aeji D ıij for every i; j 2
f1; : : : ;mg. Hence,

X

i2ˇ

jaij D
�X

i2ˇ

aiAei;
X

i2�X�

"ivi

�

D
�X

i2#

aiAei;
X

i2�X�

"ivi

�

� X

i2.#Xˇ/\.�X�/

"iai

6
�
�
�
�

X

i2#

aiAei

�
�
�
�
2

�
�
�
�

X

i2�X�

"ivi

�
�
�
�
2

C X

i2#\.�X��/

jaij
(40)
6 M

p
2j� j

2k=2

�
�
�
�

X

i2#

aiAei

�
�
�
�
2

C X

i2#\.�X��/

jaij:

(41)

The penultimate step of (41) uses the Cauchy–Schwarz inequality and the fact that,
by the definition of ��, we have .# X ˇ/ \ .� X �/ D # \ .� X ��/. Now,

X

i2��

jaij D
X

i2�

jaijC
X

i2ˇ

jaij
(35)
6 ˛kM

pj� j
�
�
�
�

X

i2#

aiAei

�
�
�
�
2

C .2k � 1/
X

i2#\.�X�/

jaij C
X

i2ˇ

jaij

D ˛kM
pj� j

�
�
�
�

X

i2#

aiAei

�
�
�
�
2

C .2k � 1/ X

i2#\.�X��/

jaij C 2k
X

i2ˇ

jaij; (42)

where for the last step of (42) recall that # \ .� X �/ D .# \ .� X ��// �[ ˇ. It
remains to combine (41) and (42) to deduce that

X

i2��

jaij 6
�
˛k C 2 kC1

2

	
M
p
j� j
�
�
�
�

X

i2#
aiAei

�
�
�
�
2

C .2kC1 � 1/
X

i2#\.�X��/

jaij: (43)

Recalling the definition of ˛k in (34), we have ˛kC1 D ˛k C 2.kC1/=2, so the validity
of (39) and (43) completes the proof that �� satisfies the inductive hypothesis with
k replaced by kC 1. �

Lemma 20 Fix m; n; t 2 N and ˇ � f1; : : : ;mg. Let A W Rm ! R
n be a linear

operator such that the vectors fAejgmjD1 � R
n are linearly independent. Then there

exist two subsets �; � � ˇ satisfying � � � , j� j > .1� 2�t/jˇj and j� X � j 6 jˇj=4
such that if we denote # D � [ .f1; : : : ;mg X ˇ/ then

�
�Proj

R� .AJ#/
�1��

S1

. max
j2f1;:::;mg

2
t
2

kProjFj
Aejk2 ;

where we recall that the definition of the subspace Fj � R
n is given in (7).

Proof An application of Lemma 19 with � D ˇ and k D t produces � � ˇ with
j� j > .1 � 2�t/jˇj such that if we choose # D � [ .f1; : : : ;mg X ˇ/ in (33) and
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continue with the notation in (34) then

8 a 2 R
m;

X

i2�
jaij . 2

t
2 M
p
jˇj
�
�
�
�

X

i2#
aiAei

�
�
�
�
2

: (44)

Note that the above choice of # makes the second term in the right hand side of (33)
vanish, and this is the only way by which (33) will be used here. However, the
more complicated form of (33) was needed in Lemma 19 to allow for the inductive
construction to go through.

A different way to state (44) is the following operator norm bound.

�
�Proj

R� .AJ#/
�1��

`#2!`�1 . 2
t
2 M
p
jˇj:

Since j� j > .1 � 2�t/jˇj > jˇj=2, if we set "
defD jˇj=.4j� j/ then " 2 .0; 1=2/.

We are therefore in position to use Lemma 15, thus producing a subset � � � with
j� X � j 6 "j� j D jˇj=4 such that

�
�Proj

R� .AJ#/
�1��

S1

D ��Proj
R�ProjR� .AJ#/

�1��
S1

. 2
t
2 M
pjˇj

p
"j� j � 2

t
2 M:

ut
Proof of Theorem 9 Recall that, in the setting of Theorem 9, we are currently
assuming without loss of generality that ! D f1; : : : ;mg. Choose r 2 N [ f0g
such that

1

22rC1 6 1� k

m
6 1

22r�1 : (45)

Denote �0
defD f1; : : : ;mg and �0

defD ;. We shall construct by induction on u 2
f0; : : : ; rC 1g two subsets �u; �u � f1; : : : ;mg such that if we denote

ˇu
defD �uX�u and 8 u 2 f1; : : : ; rC1g; #u

defD �u[.f1; : : : ;mg X ˇu�1/ ;
(46)

then the following properties hold true for every u 2 f1; : : : ; rC 1g.
(a) �u � �u � ˇu�1.
(b) j�uj > .1 � 2�2rCu�4/jˇu�1j and jˇuj 6 1

4
jˇu�1j.

(c)
�
�Proj

R�u .AJ#u/
�1��

S1

. 2r� u
2 M, where M is defined in (34).

Indeed, assuming inductively that �u�1; �u�1 have been constructed, the existence
of sets �u; �u with the desired properties follows from an application of Lemma 20
with ˇ D ˇu�1 and t D 2r � uC 4.
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Recalling (46), by (a) we have ˇu�1 D ˇu �[ �u �[ .ˇu�1 X �u/ for every u 2
f1; : : : ; rC 1g. Hence,

j�uj D jˇu�1j � jˇuj � jˇu�1 X �uj > jˇu�1j � jˇuj � jˇu�1j
22r�uC4

> jˇu�1j � jˇuj � m

22rCuC2 ; (47)

where the penultimate inequality in (47) uses the first assertion in (b) and the final
inequality in (47) uses the fact that, by induction, the second assertion in (b) implies
that jˇu�1j 6 m=4u�1, since ˇ0 D f1; : : : ;mg. Observe that the sets f�ugrC1uD1 are
pairwise disjoint, so if we denote

�
defD

rC1[
�

uD1
�u; (48)

then

j� j D
rC1X

uD1
j�uj

(47)
> jˇ0j � jˇrC1j � m

22rC2
1X

uD1

1

2u
> m� m

4rC1 �
m

22rC2 D m� m

22rC1
(45)
> k:

(49)
Next, recalling the definition of #u in (46), observe that

� �
rC1\

uD1
#u: (50)

Indeed, in order to verify the validity of (50) note that due to (a) we have
�u; �uC1; : : : ; �rC1 � �u and �1; : : : ; �u�1 � f1; : : : ;mg X ˇu�1 for every u 2
f1; : : : ; rC 1g. It follows from (50) that if a 2 R

� then for every u 2 f1; : : : ; rC 1g
we have J�a 2 J#uR

#u � R
m. Consequently,

Proj
R�u .AJ#u/

�1.AJ� /a D Proj
R�u J�a: (51)

We therefore have the following estimate.

kJ�ak22 (48)D
�
�
�
�

rC1X

uD1

Proj
R�u J�a

�
�
�
�

2

2

D
rC1X

uD1

�
�Proj

R�u J�a
�
�2
2

(51)D
rC1X

uD1

�
�Proj

R�u .AJ#u /
�1.AJ� /a

�
�2
2

.c/

.
rC1X

uD1

22r�uM2 k.AJ� /ak22  22rM2 k.AJ� /ak22
(45) mM2

m� k
k.AJ� /ak22 : (52)

Recalling the definition of M in (34), since (52) holds true for every a 2 R
� we

conclude that

�
�.AJ� /

�1��
S1

.
p

mp
m � k

� max
j2f1;:::;mg

1

kProjFj
Aejk2 :
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This is the desired estimate (8), which, together with (49), concludes the proof of
Theorem 9. �

4.1 Geometric Interpretation of Theorem 9

Theorem 21 below is a result of Giannopoulos [13]. It can be viewed as a geometric
analogue of the Sauer–Shelah lemma for ellipsoids. The (rough) analogy between
the two results is that they both assert that certain “large” subsets of Rn must admit
a large rank coordinate projection that contains a certain “canonical shape” (a full
hypercube in the Sauer–Shelah case and a large Euclidean ball in Giannopoulos’
case). A different geometric analogue of the Sauer–Shelah lemma was proved by
Szarek and Talagrand in [30].

Theorem 21 (Giannopoulos) There exists a universal constant c 2 .0;1/ with
the following property. Suppose that m; n 2 N and " 2 .0; 1/. Let y1; : : : ; ym 2 R

n

be vectors that satisfy kyik2 6 1 for every i 2 f1; : : : ;mg. Denote

E defD



a D .a1; : : : ; am/ 2 R
mI
�
�
�
�

mX

jD1
ajyj

�
�
�
�
2

6 1

�

: (53)

Then there exists a subset � � f1; : : : ;mgwith j� j > .1�"/m such thatProj
R� .E/ 

c
p
"B�2 , where B�2 D fx 2 R

� W kxk2 6 1g denotes the unit Euclidean ball in R
� .

In this section we shall show that Theorem 21 is equivalent to Theorem 9, thus in
particular describing a shorter proof of Theorem 9 that relies on Theorem 21.

Let us first prove that Theorem 9 implies Theorem 21. Suppose that we are
in the setting that is described in the statement of Theorem 21. It was observed
in [13] that Theorem 21 with the additional assumption that y1; : : : ; ym are linearly
independent formally implies Theorem 21 in the above stated generality. Indeed,
this follows by applying (the linear independent case of) Theorem 21 to the linearly
independent vectors y1C enC1; y2C enC2; : : : ; ymC enCm 2 R

nCm. So, suppose that
y1; : : : ; ym 2 R

n are linearly independent and let x1; : : : ; xm 2 spanfy1; : : : ; ymg be
the corresponding dual basis, i.e.,

8 i; j 2 f1; : : : ;mg; hxi; yji D ıij: (54)

Define a linear operator A W Rm ! R
n by setting Aei D xi for every i 2 f1; : : : ;mg.

Continuing with the notation for the subspace Fj � R
n that is given in (7) (with

! D f1; : : : ;mg), we know by (54) that yj 2 Fj, so hProjFj
xj; yji D hxj; yji D 1.

Since we are assuming in the setting of Theorem 21 that kyjk2 6 1, this implies that
1 D hProjFj

xj; yji 6 kyjk2 � kProjFj
xjk2 6 kProjFj

xjk2.
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An application of Theorem 9 now shows that there exists � � f1; : : : ;mg with
j� j > b.1� "/mc and a universal constant c 2 .0;1/ such that

8 b 2 R
� ;

�
�
�
�

X

j2�
bjxj

�
�
�
�
2

> c
p
"

X

j2�
b2j

� 1
2

: (55)

We claim that (55) implies that Proj
R� .E/  c

p
"B�2 , where E is given in (53).

Indeed, suppose that a DPj2� ajej 2 R
� satisfies

a 2 c
p
"B�2 ”

X

j2�
a2j

� 1
2

6 c
p
": (56)

Since the vectors fxjgj2� [ fyjgj2f1;:::;mgX� form a basis of spanfy1; : : : ; ymg, there
exists a vector b D .b1; : : : ; bm/ 2 R

m such that

X

j2�
ajyj D

X

j2�
bjxj C

X

j2f1;:::;mgX�
bjyj: (57)

Denote

a� D .a�1 ; : : : ; a�m/ defD
X

j2�
ajej �

X

j2f1;:::;mgX�
bjej 2 R

m: (58)

Then Proj
R� a� D a and

�
�
�
�

mX

jD1

a�

j yj

�
�
�
�

2

2

D
� mX

jD1

a�

j yj;

mX

jD1

a�

j yj

�
(57)^(58)D

� mX

jD1

a�

j yj;
X

j2�

bjxj

�
(54)^(58)D X

j2�

ajbj

6
X

j2�

a2j

� 1
2
X

j2�

b2j

� 1
2 (56)
6 c
p
"

X

j2�

b2j

� 1
2 (55)
6
�
�
�
�

X

j2�

bjxj

�
�
�
�
2

(57)^(58)D
�
�
�
�

mX

jD1

a�

j yj

�
�
�
�
2

:

(59)

By cancelling
�
�Pm

jD1 a�j yj

�
�
2

from both sides of (59) and recalling (53), we conclude
that a� 2 E . Thus a D Proj

R� a� 2 Proj
R� .E/, as required.

Next, we shall prove the converse implication, i.e., that Theorem 21 implies
Theorem 9. Suppose that we are in the setting of Theorem 9. As we explained
in the beginning of Sect. 4, we may assume without loss of generality that ! D
f1; : : : ;mg, hence rank.A/ D m. Let M 2 .0;1/ be defined as in (34), i.e.,
M D maxj2f1;:::;mg kProjFj

Aejk�12 . Set

8 i 2 f1; : : : ;mg; yi
defD ProjFi

Aei

kProjFi
Aeik2 2 R

n:
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Then by definition kyik2 D 1 for every j 2 f1; : : : ;mg, and, by the same reasoning
as in the beginning of Sect. 2.1, we know that hyj;Aeji > 1=M and hyi;Aeji D 0 for
every distinct i; j 2 f1; : : : ;mg. By Theorem 21 applied with " D 1�k=m there exists
� � f1; : : : ;mg of size j� j > .1� "/m D k such that Proj

R� .E/  c
p
"B�2 , where E

is defined in (53). Suppose that a 2 R
� Xf0g. Then c

p
"a=kak2 2 Proj

R� .E/, which
means that there exists b 2 R

m such that bj D c
p
"aj=kak2 for every j 2 � and (by

the definition of E) we have
�
�
Pm

iD1 biyik2 6 1. So,

�
�
�
�

X

j2�
ajAej

�
�
�
�
2

>
�
�
�
�

X

j2�
ajAej

�
�
�
�
2

�
�
�
�
�

mX

jD1
bjyj

�
�
�
�
2

>
�X

j2�
ajAej;

mX

jD1
bjyj

�

D
X

j2�
ajbjhAej; yji D

X

j2�

c
p
"a2j
kak2 hAej; yji > c

p
"

Mkak2
X

j2�
a2j D

c
p

m � k

M
p

m
kak2:

This is precisely the desired conclusion in Theorem 9. ut

5 Marcus–Spielman–Srivastava

Our goal here is to prove Theorem 11. This section differs from the previous sections
in that we shall use the method of interlacing polynomials of Marcus–Spielman–
Srivastava without sketching the proofs of the tools that we quote. The reason
for this is that the ideas of Marcus–Spielman–Srivastava are remarkable and deep,
but nevertheless elementary and accessible, and their presentation in [17, 18] and
especially in the beautiful survey [16] (which is the main reference in the present
section) is already a perfect exposition for a wide mathematical audience.

Suppose that A W Rm ! R
n is a linear operator. Let j1; : : : ; jk be i.i.d. random

variables that are distributed uniformly over f1; : : : ;mg. For every t 2 f1; : : : ; kg
consider the random vector

wt
defD pmAejt : (60)

Then,

E
�
wt ˝ wt

� D
mX

iD1
.Aei/˝ .Aei/ D AA�: (61)

Denote

”
defD

rank.A/
�p

rank.A/�pk
	2

Prank.A/
iD1

1
si.A/2

: (62)
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With this notation, we shall prove below that

Pr

�

sk

 kX

tD1
wt ˝ wt

�

> ”

�

> 0: (63)

Recalling (60), we see that (62) and (63) imply that there exist j1; : : : ; jk 2
f1; : : : ;mg such that

sk

 kX

tD1
.Aejt/˝ .Aejt /

�

> ”

m
D

rank.A/
�p

rank.A/�pk
	2

m
Prank.A/

iD1 1
si.A/2

: (64)

The rank of the operator B
defD Pk

tD1.Aejt / ˝ .Aejt / is at most the cardinality of

�
defD fj1; : : : ; jkg. At the same time, by (64) we know that sk.B/ > 0, because

we are assuming that k < rank.A/. Thus B has rank at least k, implying that the
indices j1; : : : ; jk are necessarily distinct, or equivalently that j� j D k. Consequently
B D .AJ� /.AJ�/� and sk.B/ D smin.B/ D smin.AJ�/2 D 1=k.AJ�/�1k2S1

.
Therefore (64) is the same as the desired restricted invertibility statement (11) of
Theorem 11.

It remains to establish the validity of (63). Denote Q
defD AA� W Rn ! R

n and let
q W R! R be the polynomial that is defined as follows.

8 x 2 R; q.x/
defD .I � @y/

kdet.xIn C yQ/
ˇ
ˇ
yD0 ;

where I denotes the identity operator on the space of polynomials and @y is the
differentiation operator with respect to the variable y (and, as before, In is the n
by n identity matrix). By Theorem 4.1 in [16], the degree n polynomial q is the
expectation of the characteristic polynomial of the random matrix

Pk
tD1wt ˝ wt.

By Theorem 4.5 in [16], all the roots of q are real, and we denote their decreasing
rearrangement by 1 > 2 > : : : > n. Thus, k is the k’th largest root of q. A
combination of Theorem 1.7 in [16] and Theorem 4.1 in [16] shows that

Pr

�

sk

 kX

tD1
wt ˝ wt

�

> k

�

> 0: (65)

Consequently, in order to prove (63) it suffices to prove that k > ”, where ” is
defined in (62).

Write Q D U�U�1, where U W Rn ! R
n is an orthogonal matrix and� W Rn !

R
n is a diagonal matrix whose diagonal equals .s1.A/2; : : : ; sn.A/2/ 2 R

n. Then for
every x; y 2 R we have

det.xInC yQ/ D det
�
U.xIn C y�/U�1

� D
nY

iD1

�
xC ysi.A/

2
� D xn�rank.A/

rank.A/Y

iD1

�
xC ysi.A/

2
�
;
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where we used the fact that si.A/ D 0 when i > rank.A/. Consequently,

q.x/ D xn�rank.A/.I � @y/
k

rank.A/Y

iD1

�
xC ysi.A/

2
� ˇˇ
ˇ
yD0: (66)

We claim that if we denote by D the differentiation operator on the space of
polynomials then

q.x/ D xn�k
rank.A/Y

iD1

�
I � si.A/

2D
�

xk: (67)

The identity (67) is proven in the special case s1.A/ D : : : D srank.A/.A/ D 1

in [16]. The validity of (67) in full generality follows from checking that the
coefficients of the polynomials that appear in the right hand sides of (66) and (67)
are equal to each other. Indeed, starting with (66),

xn�rank.A/.I � @y/
k

rank.A/Y

iD1

�
xC ysi.A/

2
� ˇˇ
ˇ
yD0

D xn�rank.A/
kX

uD0

 
k

u

!

.�1/u@u
y

X

��f1;:::;rank.A/g

xrank.A/�j�jyj�j

Y

i2�

si.A/
2
ˇ
ˇ
ˇ
yD0

D X

��f1;:::;rank.A/g
j�j6k

.�1/j�jxn�j�jkŠ

.k� j�j/Š
Y

i2�

si.A/
2; (68)

since @u
yyj�jjyD0 D j�jŠ � 1fj�jDug for every .u; �/ 2 f0; : : : ; kg 
 f1; : : : ; rank.A/g.

At the same time,

xn�k
rank.A/Y

iD1

�
I � si.A/

2D
�

xk D xn�k
X

��f1;:::;rank.A/g
.�1/j�j

Y

i2�
si.A/

2

�

Dj�jxk:

(69)

Since for every for every .u; �/ 2 f0; : : : ; kg
f1; : : : ; rank.A/gwe haveDj�jxk D 0
if j�j > k and Dj�jxk D xk�j�jkŠ=.k � j�j/Š if j�j 6 k, the validity of (67) follows
by comparing (68) and (69).

Having established the identity (67), we shall proceed to prove the desired
estimate k > ” by applying the barrier method of [2], reasoning along the lines
of the argument that is presented in [16]. Following [2, 27], given a polynomial
f W R ! R and � 2 .0;1/ we consider the corresponding “soft spectral edge”
smin�.f / 2 R, which is defined as follows

smin�.f /
defD inf

˚
b 2 R W f 0.b/ D ��f .b/

�
: (70)
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As explained in [16, Section 3.2], it is simple to check that for every � 2 .0;1/ the
smallest real root of f is at least the quantity smin�.f /. Hence, if we define

g.x/
defD

rank.A/Y

iD1

�
I � si.A/

2D
�

xk; (71)

then it follows from the above discussion and the identity (67) that it suffices to
prove that

sup
�2.0;1/

smin�.g/ > ”: (72)

Indeed, by (67) the n real roots of q consist of 0 with multiplicity n� k and also the
k roots of g (which are therefore necessarily real). Since g has degree k, the validity
of (72) would imply that the smallest root of g is at least ” > 0, so the k’th largest
root of q would be at least ” as well.

To prove (72), recall that Lemma 3.8 of [16] asserts that for every polynomial
f W R! R all of whose roots are real, and for every � 2 .0;1/, we have

smin�
�
.I � D/f

�
> smin�.f /C 1

1C � : (73)

For s 2 .0;1/ define fs W R! R by setting fs.x/
defD f .sx/ for every x 2 R. Observe

that

8 s 2 .0;1/; .I � sD/f D ..I � D/fs/1=s and smin�.fs/
(70)D smin�=s.f /

s
:

(74)

Consequently, for every real-rooted polynomial f and every s; � 2 .0;1/ we have

smin�
�
.I � sD/f

� (74)D smin�
�
..I �D/fs/1=s

� (74)D s � smins�
�
.I �D/fs

�

(73)
> s



smins�.fs/C 1

1C s�

�
(74)D smin�.f /C 1

1
s C �

: (75)

By iterating (75) we see that

smin�.g/ > smin�.xk/C
rank.A/X

iD1

1
1

si.A/2
C �

(70)D � k

�
C

rank.A/X

iD1

1
1

si.A/2
C � > � k

�
C rank.A/

� C 1
rank.A/

Prank.A/
iD1

1
si.A/2

; (76)
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where the last step of (76) holds true due to the convexity of the function x 7!
1=.� C x/ on .0;1/. One can check that the value of � that maximizes the right
hand side of (76) is

�max
defD

p
k

p
rank.A/�pk


1

rank.A/

rank.A/X

iD1

1

si.A/2

�

:

The right hand side of (76) equals ” when � D �max, so k > smin�max.g/ > ”, as
required. ut
Remark 22 The above argument actually yields a subset � � f1; : : : ;mgwith j� j D
k such that

smin.AJ� /
2 D sk.AJ� /

2 > 1

m
sup




� k

�
C

rank.A/X

iD1

si.A/2

1C �si.A/2
W � 2 .0;1/

�

:

(77)
Indeed, continuing with the above notation, we explained why k > sup�2.0;1/
smin�.g/, so (77) follows from (65) and the penultimate step in (76).

The estimate (77) is more complicated than the assertion of Theorem 11, but it is
sometimes significantly stronger. One such instance is the matrix A of Example 7. In
that case, a somewhat tedious but straightforward computation allows one to obtain
sharp estimates on the right hand side of (77), yielding bounds that coincide (up
to constant factors) with those that are stated in Example 7 as a consequence of
Theorem 6, while Theorem 11 yields much weaker bounds. There are also situations
in which (77) yields worse bounds than those that follow from Theorem 9, e.g. when
s1.A/ � : : : � sm.A/ � 1 and k D .1 � "/m the bound on k.AJ� /�1kS1

that
follows from (77) is O.1="/while in the same situation Theorem 9 yields the bound
k.AJ� /�1kS1

. 1=
p
".

5.1 Added in Proof

It turns out that the following statement is a formal consequence of Theorem 9. Fix
k;m; n 2 N with k < m and write k D .1�"/m for some " 2 .0; 1/. Let A W Rm ! R

n

be a linear operator of rank m. Then there exists a subset � � f1; : : : ;mg with
j� j D k such that

�
�.AJ�/

�1��
S1

.

s

log
�
2
"

�

"


1

m

mX

jD1

1

kProjFj
Aejk22

� 1
2

;

where Fj D .fAeigi2f1;:::;ngnf jg/?. This follows by grouping the vectors fejgmjD1
according to the consecutive powers of 2 between which each of the numbers
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n
kProjFj

Aejk22
om

jD1 lies, and applying Theorem 9 to each of these groups; the full

details of the (short) derivation of this statement are omitted and will appear
elsewhere, where further applications will be explored. Note that this almost
answers the question that we posed in the paragraph that immediately follows (14),
up to the term

p
log.2="/. This also improves over (14) and shows that the method

of interlacing polynomials is not needed for any of the restricted invertibility
theorems that are stated here (and, in fact, the method of interlacing polynomials
yields inferior results).
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Rational Polygons: Odd Compression Ratio
and Odd Plane Coverings

Rom Pinchasi and Yuri Rabinovich

Abstract Let P be a polygon with rational vertices in the plane. We show that for
any finite odd-sized collection of translates of P, the area of the set of points lying in
an odd number of these translates is bounded away from 0 by a constant depending
on P alone.

The key ingredient of the proof is a construction of an odd cover of the plane by
translates of P. That is, we establish a family F of translates of P covering (almost)
every point in the plane a uniformly bounded odd number of times.

1 Introduction

The starting point of this research is the following isoperimetric-type problem about
translates of compact sets in R

d:
Let X � R

d be a compact set, and let Z � R
d be a finite set of odd cardinality.

Consider the finite odd-sized collection F D fX C zgz2Z of translates of X. Let
U � R be the set of all points that belong to an odd number of the members of F .
How small can be the Lebesgue measure of U in terms of the Euclidean measure
of X?

Denoting the infimum of this value by Volodd.X/, called the odd volume of X, we
define the odd compression ratio of X as ˛ı.X/ D Volodd.X/ =Vol.X/, where Vol.X/
is the Euclidean volume of X. Observe that ˛ı.X/ � 1, as F may consist of a single
element X. Clearly, ˛ı.X/ is an affine invariant.

It was observed by the second author about a decade ago that ˛ı of a unit d-cube
Qd is 1. Indeed, informally, consider Rd under the action (i.e., translation) of Zd.
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The unit cube (with parts of its boundary removed) is a fundamental domain of
R

d=Zd. The quotient map � W Rd ! Qd maps any translate of Qd onto Qd in a
one-to-one manner. Moreover, the quotient map satisfies

�

 
M

T 2F
T

!

D
M

T 2F
�.T/ ;

where
L

denotes the set-theoretic union modulo 2, i.e., the set of all points covered
by an odd number of the members of F . Since the quotient map is locally volume
preserving, it is globally volume-nondecreasing, and so one concludes that the
volume of

L
T 2F T is at least that of �.

L
T 2F T/ D L

T 2F �.T/ DL
T 2F Qd D Qd .
A similar argument shows that ˛ı of a centrally symmetric planar hexagon is

1 as well. But what about other sets, i.e., a triangle? The second author vividly
remembers discussing this question with Jirka Matoušek in a pleasant cafe at Malá
Strana, laughing that they are too old for Olympiad-type problems. . . 1

The value of ˛0 of the triangle (recall that any two triangles are affinely
equivalent) was determined by the first author in [1]; it is 1

2
.

Next significant progress on the problem was obtained in [2]. It was shown there
that for a union of two disjoint intervals of length 1 on a line with a certain irrational
distance between them, the odd compression ratio is 0. The proof uses some algebra
of polynomials, and Diophantine approximation. The construction easily extends
to higher dimensions. In addition, [2] introduced a technique for obtaining lower
bounds on ˛ı.X/, and used it to show that for X’s that are unions of finitely many
cells of the 2-dimensional grid, ˛ı.X/ > 0.

In the present paper we further develop the technique of [2], and use it to prove
that for any planar rational polygon P, the odd compression ratio ˛ı.P/ is bounded
away from 0 by some positive constant explicitly defined in terms of P. In fact, the
statement applies to any compact planar figure with piecewise linear boundary, and
(finitely many) rational vertices. In view of the above mentioned result from [2], the
assumption of rationality cannot in general be dropped.

Perhaps more importantly, the value of ˛ı.X/ is related here to the value of some
other natural geometric invariant of X. The other invariant is �ı.X/, the smallest
possible average density in an odd cover of R2 by a family F of translates of X. By
odd cover we mean that every point p 2 R

2, with a possible exception of a measure 0
set, is covered by the members of F an odd and uniformly bounded number of times.

While [2] does not directly consider odd covers ofR2, it still implies that ˛ı.X/ �
�ı.X/�1. We include here two complete proofs of this useful inequality.

The existence of odd covers of R2 by translates of a rational polygon is by no
means obvious. Most of the present paper is dedicated to constructing such covers.
We are aware of no related results in the literature.

1A discrete version of the problem about the translates of a square in R
2 had indeed found its way

into a mathematical olympiad [3].
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While many of the results and constructions presented here can be easily
extended to higher dimensions, some essential parts resist simple generalization,
and more work is required in order to understand the situation there.

To conclude the Introduction, we hope that the present paper will somewhat
elucidate the meaning of the odd compression ratio ˛ı.X/, and that the odd covers
introduced here will prove worthy of further study.

2 Preliminaries

2.1 Two Basic Operators

In what follows, we shall extensively use the following two operators on subsets of
R
2: ˚ and +̊ . Let us briefly discuss them here.
The first operator ˚ is the set-theoretic union modulo 2. Given a family F of

subsets of R
2 so that any p 2 R

2 is covered at most finitely many times by F ,L
X2F X is the set of all points of R2 covered by an odd number of members in F .

Observe that˚ is commutative and associative.
The second operator, +̊ , is less standard. It is the Minkowski sum modulo 2:

X +̊ Z D
M

x2X; z2Z

xC z D
M

z2Z

.X C z/ ;

where XC z denotes the translate of X by z. I.e., a 2 X +̊ Z if and only if the number
of representations of a of the form a D xC z is an odd natural number. Unlike the
Minkowski sum, X +̊ Z is well defined only when every a 2 R

2 has at most finitely
many representations of the form x C z as above. This requirement is met, e.g.,
when Z is finite, or when Z is a discrete set of points at distance � � > 0 from each
other, and X is bounded. Since the Minkowski sum extends to any finite number
of sets, and it is commutative and associative, the same holds for +̊ (provided, as
before, that every a has finitely many representations).

Moreover, the following distributive law holds. Let G be a family of sets in R
2,

and let S � R
2. Assume that the family of sets fY C sgY2G; s2S covers any point of

R
2 at most finitely many times. Then:

 
M

Y2G
Y

!

+̊ S D
M

Y2G
.Y +̊ S/ : (1)
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Indeed, the equality is trivial when S consists of a single element. Thus, by definition
of +̊ ,

 
M

Y2G
Y

!

+̊ S D
M

s2S

  
M

Y2G
Y

!

C s

!

D
M

s2S

M

Y2G
.Y C s/

�D
M

Y2G

M

s2S

.Y C s/

D
M

Y2G
.Y +̊ S/ :

It remains to validate the change of order of summation in the starred equality.
For a 2 R

2 consider the set f.Y; s/ j a 2 Y C sg � G 
 S. By our assumptions,
this set is always finite. Therefore, for any a, 1a

�L
s2S

L
Y2G.Y C s/

� DL
s2S

L
Y2G 1a.Y C s/ has only finitely many nonzero terms. Hence, the order of

summation in the double sum
L

s2S

L
Y2G.Y C s/ is interchangeable.

Finally, notice that similarly to Minkowski sum, X +̊; D ;, while X ˚ ; D X.

2.2 Covers and Their Densities

It is important to stress that throughout this paper whenever we speak on covers or
odd covers of the plane it always means covering up to a set of measure 0, even
if it is not explicitly said so. This convention helps to avoid discussing unnecessary
technicalities related to the boundaries of the sets in the cover.

For every compact measurable set X � R
2, we denote by A.X/ the Euclidean

area of X. Let Z � R
2 be a discrete set. The family F D fXC zgz2Z has a uniformly

bounded degree if there exists a constant dF such that every a 2 R
2 belongs to at

most dF members of F . Further, such F is called a cover of R2 if XCZ D R
2. I.e.,

the cover degree of any a 2 R
2 by the members of a cover F is uniformly bounded,

and, up to a set of measure 0, it is strictly positive.
The (lower) density of F with a uniformly bounded degree, .F/, is defined by

.F/ D lim inf
n!1

P
z2Z A.Qn \ .X C z//

n2
;

where Qn is the n 
 n square centered at the origin. Clearly, .F/ � 1 when F is a
cover or R2.

Since
P

z2Z A.Qn \ X C z/=n2 is precisely the average of the cover degrees
dF .a/ where a ranges over Qn, the density .F/ can be viewed as a kind of an
average degree of the cover of R2 by F .

Claim 2.1 Fixing Z and varying the (measurable) X, the density of the family F D
fXC zgz2Z is proportional to A.X/. I.e., .F/ D cZ � A.X/, where cZ is a constant
depending solely on Z. (In particular, when Z is a lattice, cZ is the reciprocal of the
area of the fundamental domain of Z.)
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Proof (Sketch) Assume w.l.o.g., that X contains the origin, and let ı D Diam.X/.
Consider�n D

ˇ
ˇP

z2Z A.Qn \ X C z/ � jZ \ Qnj � A.X/
ˇ
ˇ. How big can it be? On

the one hand,

jZ \Qn�2ıj � A.X/ �
X

z2Z

A.Qn \ X C z/ � jZ \ QnC2ıj � A.X/ ;

and therefore

�n � jZ \ QnC2ıj � A.X/� jZ \Qn�2ıj � A.X/ D jZ \ .QnC2ı n Qn�2ı/j � A.X/ :

On the other hand, since Z \ .QnC2ı n Qn�2ı/ C X is contained in QnC4ı n Qn�4ı ,
covering no point there more than dF times, it follows that jZ \ .QnC2ı nQn�2ı/j �
A.X/ is at most O.n/ � ı � dF . Hence, �n D O.n/ � ı � dF , and so �n=n2 ! 0. The
conclusion follows:

.F/ D lim inf
n!1

P
z2Z A.Qn \ X C z/

n2
D lim inf

n!1
jZ \Qnj � A.X/˙�n

n2
D

lim inf
n!1

jZ \Qnj
n2

� A.X/ D cZ � A.X/ :

The fact that for a lattice Z, limn!1 jZ \ Qnj=n2 is the inverse of the the area of the
fundamental domain of Z, is well known (see, e.g., [4]). ut

The covering density of X, �.X/ � 1, is defined as the infimum of .F/ over all
covers of the form F D fX C zgz2Z. It is well known (see, e.g., [4]) that �.X/ is an
affine invariant.

2.3 Odd Covers

Let X � R
2 be a compact set of a positive area A.X/ > 0. The familyF D fXCzgz2Z

for Z � R
2 is called an odd cover of R2 if X +̊ Z is well defined, and equals to R

2

up to a set of measure 0. Notice that if F is an odd cover of R2, then in particular it
is a cover of R2. As before, we shall further require that the maximal degree of the
cover of R2 by F is uniformly bounded.

The odd covering density of a compact X, �ı.X/ � 1 is defined as the infimum
of .F/ over all odd covers F as above. If no such F exists, set �ı.X/ D 1.
Notice that �ı.X/ � �.X/. Similarly to the usual covering density �.X/, the odd
covering density �ı.X/ is an affine invariant. This intuitively plausible statement can
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be proved formally along the same lines as the standard proof of the corresponding
statement for the usual covers (see, e.g., [4]).2

2.4 Odd Compression Ratio: The Definition

Let X � R
2 be a compact set of area 0 < A.X/ < 1. Define Aodd.X/, the odd

area of X, to be the maximum number such that for any finite and odd-sized
collectionF of translates of X, the set of all points in R

2 belonging to an odd number
of members of F has area � Aodd.X/. I.e., Aodd.X/ is the infimum of A.X +̊ K/ over
all finite odd-sized sets K � R

2 (see [1, 2]).
Define ˛ı.X/, the odd compression ratio of X, as Aodd.X/=A.X/. Clearly, 0 �

˛ı.X/ � 1, and it is an affine invariant.

3 The Odd Cover Lemma

The following lemma, a variant, and in fact a special case, of Lemma 1 from [2],
is a useful tool for obtaining lower bounds on the odd compression ratio of X. For
completeness, we provide two different proofs for it. The first is shorter and simpler
due to the preparation done in Sect. 2.2. It is a streamlined variant of the proof used
in [2]. The second proof follows a somewhat different logic, and can be viewed as a
generalization of the factor-space argument mentioned in the Introduction.

Lemma 3.1 For any compact set X of a positive measure in R
2, the odd compres-

sion ratio of X is at least the reciprocal of its odd covering density. That is,

˛ı.X/ � �ı.X/�1 :

Proof (A) Let F D fXCzgz2Z be an odd cover of R2 of density .F/, and maximal
cover degree dF <1. (If no such F exists, the lemma is trivially true.) Let K � R

2

be any finite set of odd cardinality. Set Y D X +̊ K.
Consider the set .X +̊ Z/ +̊ K. On the one hand, it is equal to R

2, up to a set of
measure 0. This is because .X +̊ Z/ D R

2, again up to a set of measure 0, and the
cardinality of K is odd.

2The requirement that F has a uniformly bounded degree does not appear in the standard definition
of �.X/, despite the fact that it is used in the proof of the affine invariance of �.X/ and elsewhere.
The reason is that for any � > 0, a cover F can be easily modified into a periodic cover F 0 with
.F 0/ � .F/C �, i.e., the corresponding Z0 is of the form ƒC K, where ƒ is a lattice, and K is
finite (see, e.g., [4]). Thus, w.l.o.g., one may restrict the discussion of �.X/ to periodic covers, and
those are always uniformly bounded for a compact X. In contrast, the odd covers apparently do not
allow such a modification, and so the assumption about the uniformly bounded degree seems to be
essential for them. This said, all odd covers occurring in this paper are periodic.
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On the other hand, using the commutativity of +̊ , one concludes that
.X +̊ Z/ +̊ K D .X +̊ K/ +̊ Z D Y +̊ Z. In other words, the family G D fY C zgz2Z is
an odd cover of R2 of a maximal covering degree at most dF � jKj.

By Claim 2.1, there is a constant cZ depending only on Z, such that for every
measurable set W � R

2 such that fW C zgz2Z is a cover of R2, it holds that .fW C
zgz2Z/ D cZ � A.W/. Therefore,

1 � .G/ D cZ � A.Y/ D .F/ � A.Y/

A.X/
H) .F/�1 � A.Y/

A.X/
:

Taking the infimum over all odd-sized K’s to minimize A.Y/=A.X/, and the infimum
over all legal Z’s to minimize .F/, one concludes that �ı.X/�1 � ˛ı.X/. ut
Proof (B) Let F D fXC zgz2Z be an odd cover of R2 as before, and let S � R

2 be
compact. Consider the following mapping � of the compact sets S to the compact
subsets of X:

�.S/ D
M

z2Z

.S � z/\ X D .S +̊ .�Z// \ X :

Claim 3.1

1. �.�X C a/ D X;

2. �
�Lk

iD1 Si

	
D Lk

iD1 �.Si/;

3. A.�.S// � A.S/ � QdF .S/, where QdF .S/ is the average degree of a cover of S by
F , i.e., the average of the cover degrees dF .a/, where a ranges over S.

Proof Indeed, for (1), keeping in mind that X +̊ Z D R
2, and that a � R

2 D R
2,

one gets

�.�X C a/ D
M

z2Z

.�X C a � z/ \ X D X \
M

z2Z

aC .�X � z/

D X \ a � .X +̊ Z/ D X \ R
2 D X:

For (2),

�

 
kM

iD1
Si

!

D
M

z2Z

  
kM

iD1
Si � z

!

\ X

!

D
M

z2Z

kM

iD1
.Si � z/\ X

D
kM

iD1

M

z2Z

.Si � z/ \ X D
kM

iD1
�.Si/ :



700 R. Pinchasi and Y. Rabinovich

For (3), observing that .S � z/\ X D S \ .X C z/� z, one concludes that
A.�.S// D A

�L
z2ZŒS \ .X C z/� z�

� � P
z2Z A.S\ .XC z// D A.S/ � QdF.S/.

ut
Instead of proving a lower bound on ˛ı.X/, we shall prove one for ˛ı.�X C a/,
with a suitably chosen a. Since ˛ı.X/ is invariant under affine transformations of
R
2, ˛ı.�X C a/ D ˛ı.X/. For typographical reasons, set Xa D �X C a.
Consider, as before, any finite set K � R

2 of odd cardinality, and let Ya D Xa +̊ K.
On the one hand, by Claim 3.1(3), A.�.Ya// � QdF .Ya/ � A.Ya/. On the other
hand, by Claim 3.1(2)&(1), �.Ya/ D �.

L
k2K.Xa C k// D L

k2K �.Xa C
k/ D L

k2K X D X : Thus,

QdF .Ya/ � A.Ya/ � A.�.Ya// D A.X/ H) A.Ya/

A.Xa/
� QdF .Ya/

�1 :

It remains to choose the translation vector a as to minimize QdF .Ya/. Getting back
to the discussion of Sect. 2.2, a simple averaging argument shows that for a random
uniform a 2 Qn, the expected value of QdF .Ya/ gets arbitrarily close to QdF .Qn/ as
n tends to infinity. Keeping in mind the definition of F , this implies in turn that
there is a sequence of a’s such that QdF .Ya/ approaches F . Minimizing over all
legal odd covers F , one concludes that the infimum of QdF .Ya/ over a 2 R

2 is at
most �ı.X/. ut

To demonstrate the usefulness of Lemma 3.1, assume that there is a tiling of
R
2 by translates of X. Then, �ı.X/ D 1, implying ˛ı.X/ D 1. This yields the

aforementioned result about the non-compressibility of the square and the centrally
symmetric hexagon.

Further, assume that X is a triangle .a; b; c/. Let ƒ be the lattice spanned by
f 1
2
.b � a/; 1

2
.c � a/g. Then, F D fX C zgz2ƒ is an odd cover of R2 covering each

point in the plane either 1 or 3 times, with .F/ D 2. This implies ˛ı.X/ � 1
2
,

matching the optimal bound of [1].

4 Odd Covers by Stripe Patterns

A stripe pattern is a (non-singular) affine image of the set f.x; y/ 2 R
2 j

byc is eveng. I.e., it is an infinite set of parallel stripes of equal width w, such that
the distance between any two adjacent stripes is w as well (see Fig. 1). The direction
of a stripe pattern is, expectedly, the direction of a boundary line of any stripe in it.
The width of the stripe pattern is the w as above.

We start with the following simple but useful observation about stripe patterns.
The easy verification is left to the reader.
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Fig. 1 A stripes pattern

Observation 4.1 Let S be a stripe pattern, and let ` and r be the two lines
delimiting one of the stripes in S. Then, for every a 2 `, b 2 r, and v D b � a,
it holds that:

1. S +̊ f0; vg D S˚ .SC v/ D R
2.

2. S +̊ f0; 1
2
vg D S˚.SC 1

2
v/ is a stripe pattern with the same direction as S, whose

width is equal to half of the width of S.

The main result of this section is:

Lemma 4.1 Let S1; : : : ; Sk be stripe patterns with pairwise distinct directions, and
let T D S1 ˚ � � � ˚ Sk. Then, there exists a finite (and efficiently computable) set of
vectors U � R

2, jUj � 2k�1, such that T +̊ U DL
ui2U .T C ui/ D R

2, up to a set
of measure 0.
It will be technically more convenient to prove the following more general
statement:

Lemma 4.2 Let S1; : : : ; Sk be stripe patterns with pairwise distinct directions, and
let fZigkiD1 be a family of finite nonempty subsets of R2, with Z1 D f0g. Let T D
Lk

iD1.Si +̊ Zi/. Then, as before, there exists a finite (and efficiently computable) set
of vectors U � R

2, jUj � 2k�1, such that T +̊ U DL
ui2U .T C ui/ D R

2, up to a
set of measure 0.
Lemma 4.1 follows from Lemma 4.2 by setting Zi D f0g for all i � 2.

Notice the special role of S1 in the statement of Lemma 4.2. In fact, the condition
Z1 D f0g is essential even for k D 1. It is easy to verify that, using the notation
of Observation 4.1, no finite set of translates of the set T D S1 +̊ f0; 2

3
vg can oddly

cover the plane.3

Proof (of Lemma 4.2) For every i D 1; 2; : : : ; k, let `i and ri denote the two parallel
lines delimiting some stripe in Si. By the assumptions of the Lemma, for different
i’s these have different directions, and therefore intersect.

The proof proceeds by induction on k.
For k D 1, the statement follows from Observation 4.1(1).
For k D 2, let a and b be the intersection points of `1 and r1 with `2, respectively.

Setting v2 D b � a, we have S1 +̊ f0; v2g D R
2, by Observation 4.1(1). Moreover,

3Perhaps expectedly, the same T has also the complementary extremal property:
T +̊

˚
0; 1

3
v; 2

3
v
� D ;.
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since v2 has the same direction as of S2, we have S2 +̊ f0; v2g D ;. Keeping this in
mind we have:

T +̊ f0; v2g D
�
S1 ˚ .S2 +̊ Z2/

�
+̊ f0; v2g D

�
S1 +̊ f0; v2g

�˚�S2 +̊ Z2 +̊ f0; v2g
� D

D R
2 ˚ �S2 +̊ f0; v2g +̊ Z2

� D R
2 ˚ .; +̊ Z2/ D R

2 ˚ ; D R
2 :

For k > 2, we proceed as follows. Let vk be the (well-defined) vector such that, on
the one hand, `kCvk D rk, and on the other hand, `1C2vk D r1. Observation 4.1(1)
implies that Sk +̊ f0; vkg D R

2, and hence .Sk +̊ Zk/ +̊ f0; vkg equals R2 +̊ Zk, which
is either ; or R2, depending on the parity of Zk. Observation 4.1(2) implies that
S1 +̊ f0; vkg is a stripe pattern with the same direction as S1, and half its width.
Consequently,

�
S1 +̊ f0; vkg

�˚ �.Sk +̊ Zk/ +̊ f0; vkg
�

is a stripe pattern with the same
direction as S1 and half its width as well.

Consider now the set T 0 D T +̊ f0; vkg D T ˚ .T C vk/. Using the properties of
the operators˚ and +̊ , one gets:

T 0 D T +̊ f0; vkg D
 

kM

iD1
.Si +̊ Zi/

!

+̊ f0; vkg D
kM

iD1
. Si +̊ Zi +̊ f0; vkg / (2)

As we have just seen, the ˚ of the first and the k’th terms of the latter sum is a
stripe pattern S01 with the same direction as S1. Thus, setting Z

0

i D Zi +̊ f0; vkg, one
arrives at

T 0 D S01 ˚
k�1M

iD2
.Si +̊ Z0i / (3)

By the induction hypothesis applied to T 0, there exists a finite set U0 � R
2 such

that T 0 +̊ U0 D R
2 up to a set of measure 0. However,

T 0 +̊ U0 D T +̊ f0; vkg +̊ U0 D T +̊ .U0 +̊ f0; vkg/ (4)

Therefore, setting U D U0 +̊ f0; vkg, one concludes that T +̊ U D T 0 +̊ U0 D R
2.

This completes the construction of the desired set U.
It remains to estimate the size of U. The recursive definition U D U0 +̊ f0; vkg

for k > 2, combined with the base cases jUj D 2k�1 for k D 1; 2, implies the desired
bound: jUj � 2k�1. ut
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5 Odd Covers by Rational Polygons: A Special Case

In this section we prove our main theorem for the special case of rational polygons
with no two parallel edges.

Given a rational polygon P, let PINT be the integer polygon with minimal area
affinely equivalent to P, and let AINT.P/ D A.PINT/ be its area.

Theorem 5.1 Let P be a rational polygon with k vertices, and no parallel edges.
Then, there exists a bounded degree odd cover F of R2 by translates of P with
density .F/ � AINT.P/ � 2k�1. Consequently, ˛ı.P/ � AINT.P/�1 � 2�.k�1/.
Before starting with the proof, we need one more observation about the structure
of ˚-sums of stripe patterns. For i D 1; : : : r, let Li be an affine image of the
family of parallel lines f.x; y/ 2 R

2 j y 2 Zg. Respectively, let Si be a stripe pattern
whose boundary is Li. (Notice that there are exactly two such stripe patterns: Si

and its complement Si D R
2 n Si.) Assume that S1; : : : ; Sr have pairwise distinct

directions. The union of all these lines
Sr

iD1 Li partitions R2 into pairwise disjoint
open cells, each cell being a convex polygon. Call two cells adjacent if they share a
1-dimensional edge.

It is a folklore to show that the cells of R2 nSr
iD1 Li can be 2-colored in such a

way that any two adjacent cells have different colors.

Claim 5.1 Let T be the union of all cells of R2 nSr
iD1 Li in one color class. Then,

(up to the 0-measure boundary of T, i.e.,
Sr

iD1 Li) either T D S1 ˚ � � � ˚ Sr, or
T D R

2 n .S1 ˚ � � � ˚ Sr/ D S1 ˚ S2 ˚ � � � ˚ Sr.
The claim is rather obvious, and can be formally verified, e.g., by induction on r.

The full details are left to the reader (see Fig. 2 for an illustration).

S1 S2 S3

S1 ⊕ S2 ⊕ S3

Fig. 2 ˚-sum of three stripes patterns
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Proof (of Theorem 5.1) Keeping in mind that both �ı.P/ and ˛ı.P/ are affine
invariants, one may assume without loss of generality that P D PINT, and that
the origin O D .0; 0/ is a vertex of P. Then, all the vertices of P belong to Z

2.
Observe also that some of the edges of P must contain an even number of integer
lattice points. Otherwise, the coordinates of the vertices of P would all have the
same parity, i.e., they would all be even. Scaling such an all-even P by a factor of 1

2

would have yielded a smaller integer polygon affinely equivalent to P, contrary to
the definition of PINT.

We claim that P +̊Z
2 is equal to S1˚ : : :˚Sr , where S1; : : : ; S1 are stripe patterns

with pairwise distinct directions, and r is at most the number of vertices (Dedges)
of P. Once this claim is established, the rest easily follows.

Indeed, assuming that the claim holds, by Lemma 4.1 there exists U � R
2 with

jUj � 2r�1 such that .P +̊Z
2/ +̊ U D R

2. Equivalently, the (multi-) family of
sets F D fPC zC ug z2Z2; u2U is an odd cover of the plane. To employ the Odd
Cover Lemma 3.1, one needs to estimate the density of this cover. Observe that
fPC zg z2Z2 has a bounded maximal degree (being the maximal number of integer
lattice points in any translate of P), while its average density is A.P/, as mentioned
in Claim 2.1. Therefore, the maximal degree of F is at most jUj times the maximal
degree of the cover fPC zg z2Z2 , while .F/, the average degree of F , is precisely
A.P/ � jUj � A.P/ �2k�1. Hence, �ı.P/ � .F/ � A.P/ �2k�1 : Applying the Odd
Cover Lemma 3.1 one gets ˛ı.P/ � �ı.P/�1 � A.P/�1 � 2�.k�1/, as needed.

Thus, it is sufficient to show that P +̊Z
2 is equal to S1˚ : : :˚ Sr as above. In the

remainder of this section, we shall focus on proving this claim. The argument goes
as follows.

Let E.P/ denote the set of all edges of P. For e 2 E.P/, let Le be the set of all
lines parallel to e that contain points of Z2. Clearly, Le is a discrete set of lines as in
Claim 5.1. Consider a point x 2 R

2. It belongs to P +̊Z
2 exactly when jP\ .x�Z2/j

is odd. Unless x 2 Se2E.P/ Le, every point x0 in a sufficiently small neighborhood
of x will satisfy jP \ .x � Z

2/j D jP \ .x0 � Z
2/j. Therefore, P +̊Z

2 is a union of
cells of R2 nSe2E.P/ Le.

Call an edge e of P active if it contains an even number of integer lattice points,
and passive otherwise. Respectively, if e is active, all the lines in Le are called
active, and if it is passive, the lines in Le are called passive.

Let C1 and C2 be two adjacent cells in R
2 nSe2E.P/ Le separated by a line ` 2 Le

for some edge e of P. We claim that if e is active, then exactly one of C1 and C2 is
contained in P +̊Z

2, and if e is passive, then either both are contained in P +̊Z
2, or

none of them is.
Indeed, let I � ` denote the common 1-dimensional edge of C1 and C2. Observe

that the only members in the family F D fP C zgz2Z that distinguish between C1
and C2, that is, contain exactly one of the two, are those that contain I in their
boundary. To get a clearer picture of this subfamily, let J D Œ p; q� � ` be the
smallest interval with integer endpoints containing I. Notice that I has no integer
points in its interior. Let us view e as a 1-dimensional interval Œse; te/ � R

2, parallel
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to, and having the same orientation as, J. Then, P C z contains I if and only if
p 2 eC z. Or, equivalently, p � z 2 e.

This means that when e is active (i.e., it contains an even number of points in
Z
2), I is covered by an odd number of .PC z/’s, and when e is passive, it is covered

by an even number of .P C z/’s. Consequently, in the former case the degrees of
cover of the cells C1 and C2 by F have a different parity, whereas in the latter case
the parities are equal. Thus, when e is active, P +̊Z

2 distinguishes between C1 and
C2, and when it is passive, it does not. As claimed.

Let AE.P/ be the (nonempty!) set of active edges of P. The conclusion is
that P +̊Z

2 is a union of cells of R2 n Se2AE.P/ Le, satisfying the assumptions of
Claim 5.1. Hence, P +̊Z

2 is a ˚-sum of stripe patterns, as desired. This completes
the proof of Theorem 5.1. ut

The assumption that P has no parallel edges was needed to justify the (tacit)
assumption that for every line ` 2Se2E.P/ Le, there is a unique edge e such that any
translate of P may have contained in `. When there are parallel edges, most of the
argument still applies, however, it may fail at one fine point. The contributions of
parallel edges may cancel out, leaving no active lines, and resulting in P +̊Z

2 D ;.
Unfortunately, this situation indeed does occur for some rational polygons P, for
example, for the centrally symmetric ones. To overcome this problem, a more
refined family of translates will be constructed.

6 A Theorem About Z2-Valued Functions on Integer Lattices

We shall need the following result of an independent interest. It will be proven here
for any dimension d, but used in Sect. 7 only with d D 2.

Let A be a family of finite subsets of Zd. A function, or, rather, a weighting,
F W Zd ! Z2, will be called stable with respect to A, if for any A 2 A, all
integer translates of A have the same F-weight. That is, the value of F.A C p/ DL

x2ACp F.x/, does not depend on the choice of p 2 Z
d, but solely on A.4 Further,

call F 0-stable with respect to A, if it is stable, and moreover, for every A 2 A,
F.A/ D 0. For example, if the function F is everywhere 0, then it is 0-stable with
respect to any family A. If it is everywhere 1, it is stable with respect to any family
A, and 0-stable if A consists only of sets of even cardinality.

Theorem 6.1 Let A be a (possibly infinite) family of non-empty finite subsets of Zd,
and A ¤ ;. There exists a function F W Zd ! Z2 that is stable, but not 0-stable,
with respect to A.

4In this section, the operator ˚ that was originally defined on sets, will be sometimes applied to
points. For consistency, regard points as single-element sets.
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Proof We start with the 1-dimensional case, introducing the key construction to be
used in all dimensions.

Case d D 1
We define a family ffkg1kD0 of functions from Z to Z2 in the following recursive

manner. We will show that one of this functions is the desired function F:

f0 is identically 1;
For k > 0, fk.0/ D 1, and fk.t/ D fk.t � 1/˚ fk�1.t � 1/. 5

For example, f1.t/ is 1 if t is even, and 0 otherwise. The next one, f2.t/, is 1 if
t 	 0; 3 .mod 4/ , and 0 otherwise. Observe that the repeated application of the
recursive formula yields for any c 2 N,

fk.tC c/ D fk.t/ ˚
c�1M

iD0
fk�1.tC i/ : (5)

Claim 6.1 If fk�1 is 0-stable with respect to a finite A � Z, then fk is stable with
respect to A.
Indeed, it suffices to show that for any p 2 Z, fk.A C p C 1/ D fk.A C p/. By
definition of fk,

fk.AC pC 1/ D
M

t2ACpC1
fk.t/ D

M

t2ACpC1
fk.t � 1/ ˚

M

t2ACpC1
fk�1.t � 1/

D fk.AC p/ ˚ fk�1.AC p/ :

Since fk�1.A C p/ D 0 by assumptions of the claim, one concludes that
fk.AC pC 1/ D fk.AC p/.

Claim 6.2 For any k � 1, fk.t/ D 0 for 1 � t � k.
Indeed, apply induction on k. For k D 1, f1.1/ D f1.0/˚ f0.0/ D 1˚ 1 D 0. For
k > 1, using (5), one concludes that for any t in the range,

fk.t/ D fk.0/˚ fk�1.0/˚ fk�1.1/˚ : : :˚ fk�1.t� 1/ D 1˚ 1˚ 0˚ : : :˚ 0 D 0:

We proceed to show that one of fk’s satisfies the requirements of the theorem.
Observe that f0 is stable with respect to A. By Claim 6.1, either there exists k � 0
such that fk is stable, but not 0-stable (precisely as desired), or all fk’s are 0-stable.
However, the latter situation does not occur. Consider any nonempty A 2 A, and let
a D min.A/, b D max.A/, r D b � a. Then, by Claim 6.2, fr.A � a/ D 1, and thus
fr is not 0-stable. This completes the case d D 1.

General Case
Let L be a linear function (without a constant term) from Z

d to Z that satisfies
two requirements. The first requirement is that the coefficient of x1 in L is 1. The

5 Observe that this recursive formula defines fk.t/ for both positive and negative values of t. More
explicitly, for t < 0 it becomes fk.t/ D fk.tC1/˚ fk�1.t/, reducing either k or jtj just as for t > 0.
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second requirement is that for some A 2 A, L attains a minimum on A at a unique
point. Such L’s exist. E.g., assuming that A can be translated to a subset of a of the
cube Œ0; r � 1�d, the function

Pd
iD1 ri�1xi is one-to-one on A by the uniqueness of

the base-r representation, and so its minimum on A is attained exactly once.
For k � 0 and a 2 Z

d, define Fk.a/ D fk.L.a//. Respectively, for a finite subset
A � Z

d , define Fk.A/ D L
a2A Fk.a/ .

The proof proceeds along the same lines as in the 1-dimensional case.

Claim 6.3 If Fk�1 is 0-stable with respect to a finite A � Z
d, then Fk is stable with

respect to it.
It suffices to show that for any p 2 Z

d, and any unit vector e 2 Z
d, Fk.AC pC e/ D

Fk.A C p/. Let L.e/ D c. If c D 0, the statement is trivial. If c < 0 the statement
reduces to the case c > 0 by considering �e instead of e. Thus, without loss of
generality, c > 0. By (5), the linearity of L, and the first requirement on it,

Fk.AC pC e/ D
M

t2ACpCe

fk.L.t// D
M

t2ACp

fk.L.t/C c/

D
M

t2ACp

fk.L.t// ˚
c�1M

iD0

M

t2ACp

fk�1.L.t/C i/ D

D Fk.AC p/ ˚
c�1M

iD0

M

t2ACpCi	e1
fk�1.L.t//

D Fk.AC p/ ˚
c�1M

iD0
Fk�1.AC pC i � e1/ :

Since Fk�1 is 0-stable with respect to A, the second summand is 0, and thus Fk.AC
pC e/ D Fk.AC p/. This concludes the proof of Claim 6.3.

To conclude the proof of the theorem, observe that F0 is stable with respect to
A, and thus, by Claim 6.3, either there exists k � 0 such that Fk is stable, but not
0-stable, precisely as desired, or all Fk’s are 0-stable.

As before, the second possibility does not occur. Indeed, by the second require-
ment on L, there exists A 2 A on which L attains a unique minimum. Let
p 2 A be the point on which the minimum is attained, and let a 2 Z denote its
value. Then, L.A � a � e1/ D L.A/ � a is a subset of Œ0; k� for some k 2 N,
and 0 has a unique pre-image p0 D p � a � e1. By Claim 6.2, Fk.A � a �
e1/ D fk.0/ ˚ L

t2Anp0 fk.L.t// D 1˚ 0 D 1. ut
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7 The Main Theorem

We can now prove the main theorem in full generality, making no assumption about
parallel edges.

Theorem 7.1 Let P be a rational polygon with k distinct classes of parallel edges.
Then, there exists a bounded degree odd cover F of R2 by translates of P with
density .F/ � AINT.P/ � 2k�1. Consequently, ˛ı.P/ � AINT.P/�1 � 2�.k�1/.
Proof While the family of translates will in general be different from the one used
in the proof of Theorem 5.1, the logical structure of the proof will be essentially
identical. Let us re-examine this structure.

Assuming that P D PINT , the first and main goal is to construct a family F D
fPC zgz2Z , Z � Z

2, such that P +̊ Z is a ˚-sum of at most k stripe patterns. (In the
former proof, Z was just Z2.) A close reading of the proof of Theorem 5.1 reveals
that in order to prove this fact about F , it is sufficient to show that F has a certain
property. To formulate it we need some definitions.

Let D.P/ be the set of all the classes of parallel edges of P, or simply the
directions of P. For every d 2 D.P/, let Ld be the set of all lines in R

2 in the
direction of d that contain integer lattice points. As before, each Ld is a discrete set
of parallel lines with equal distances between any two consecutive ones.

Consider the arrangement of lines
S

d Ld. Observe that since Z � Z
2, for

any .P C z/ 2 F , and any open cell C of R
2 n Sd Ld, either C � .P C z/, or

C \ .PC z/ D ;.

Property 7.1 Let P;D.P/;Z;F ;
S

d Ld be as above. Further, let I denote an
edge of the arrangement

S
d Ld (i.e., a common 1-dimensional boundary of two

adjacent cells) that lies on a line ` 2 Ld, d 2 D.P/. The family F has the desired
property if:

1. For any edge I of the arrangement
S

d Ld as above, the parity of the number
of sets in F whose boundary contains I depends solely on the corresponding
direction d.

2. Moreover, there exists d 2 D.P/ such that this parity is odd. We call such a
direction active, and denote the set of all active directions by AD.P/.

Once Property 7.1 is established for F D fP C zgz2Z , the argument from
the proof of Theorem 5.1 implies that P +̊ Z is a (nonempty) union of cells of
R
2 n Sd2AD.P/ Ld that satisfy the assumptions of Claim 5.1. Applying Claim 5.1,

one concludes that P +̊ Z is equal to S1˚ : : :˚Sr for some stripe patterns S1; : : : ; Sr,
and r D jAD.P/j, the number of active directions, is at most jD.P/j D k.

Once the main goal is achieved, the rest is easy. Lemma 4.1 is used to conclude
that there exists a finite set U � R

2 with jUj � 2r�1, such that .P +̊ Z/ +̊ U D R
2.

Equivalently, the (multi-) family of sets F D fP C z C ug z2Z; u2U is an
odd cover of the plane. Since Z is a subset of Z

2, the density of this odd
cover is at most AINT.P/ � jUj � AINT.P/ � 2k�1. (For the appearance of AINT,
consult Claim 2.1.) Finally, by the Odd Cover Lemma 3.1, one concludes that
˛ı.P/ � AINT.P/�1 � 2�.k�1/, establishing the theorem.
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Fig. 3 The points of Ad are
the filled discs in the picture

vd

In view of the above, in order to prove Theorem 7.1, it suffices to construct Z �
Z
2 such that F D fPC zgz2Z has Property 7.1. The remaining part of this section is

dedicated to constructing such Z, and proving that F has the required property.
The set of translates Z is constructed as follows. Assume that P D PINT . In

particular, the vertices of P are in Z
2. For every direction d 2 D.P/, define the vector

vd 2 Z
2 as the difference between (any) pair of two consecutive integer lattice points

on (any) line in Ld, the set of all lines in direction d through an integer lattice point.
Let Ad be the set of all integer lattice points z on the boundary of P such that both

z and zCvd lie on an edge of P in the direction d (see Fig. 3). Let A D f�Adgd2D.P/.
By Theorem 6.1, there exists a Z2-weighting F of Z2 that is stable, but not 0-stable,
with respect to A. Define Z as the support of F, i.e., Z D fz j F.z/ D 1g. Finally,
define F D fP C zgz2Z. Our goal is to show that the family F D fP C zgz2Z has
Property 7.1.

Call a direction d of an edge of P active if F.�Ad/ D 1, and passive if
F.�Ai/ D 0.

We claim that a point p 2 Z
2 belongs to an odd number of sets in fAd C zgz2Z if

d is active, and to an even number of those sets if d is passive. Indeed, the number
of solutions of the equation aC z D p, where a 2 Ad; z 2 Z, is precisely the size
of .�Ad C p/\ Z, and hence its parity is F.�Ad C p/ D F.�Ad/, as desired.

Let I � ` 2 Ld, for some d, be an edge in the arrangement of lines
S

d2D.P/.
Notice that I cannot contain integer lattice points in its (relative) interior. There
exists two consecutive integer lattice points p and q on ` such that I is contained
in the line segment J D Œp; q� � `. Observe that q � p is either vd or �vd; assume
w.l.o.g., that q � p D vd.

We claim that the parity of the number of sets from F D fP C zgz2Z whose
boundary contains J is odd if d is active, and even if it is passive. Indeed, J is
contained in the boundary of .PC z/, z 2 Z, if and only if .Ad C z/ contains p. As
we have already seen, the parity of the number of such sets is odd if and only if d is
active. In particular, it depends only on d, and not on I, as desired. Moreover, by
Theorem 6.1, there exists at least one active direction d.
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This concludes the verification of Property 7.1 for the constructed family
F D fPC zgz2Z , which in turn concludes the proof of Theorem 7.1. ut

Notice that the above proof makes no use of the connectivity of P nor of
the connectivity of its boundary. Thus, as it has been already mentioned in the
Introduction, Theorem 7.1 applies equally well to any compact figure in R

2 with
non-empty interior, piecewise linear boundary, and finite number of vertices, all of
which are rational.
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First Order Probabilities for Galton–Watson
Trees

Moumanti Podder and Joel Spencer

Abstract In the regime of Galton–Watson trees, first order logic statements are
roughly equivalent to examining the presence of specific finite subtrees. We consider
the space of all trees with Poisson offspring distribution and show that such finite
subtrees will be almost surely present when the tree is infinite. Introducing the
notion of universal trees, we show that all first order sentences of quantifier depth
k depend only on local neighbourhoods of the root of sufficiently large radius
depending on k. We compute the probabilities of these neighbourhoods conditioned
on the tree being infinite. We give an almost sure theory for infinite trees.

2010 Mathematics Subject Classification. Primary05C20; Secondary60F20

1 Introduction and Main Results

For � > 0 we let T� denote the standard Galton–Watson tree, in which each node
independently has Poisson offspring with mean �. We shall set

p D p.�/ D PrŒT� is infinite�: (1)

As is well known, when � � 1, p.�/ D 0 while when � > 1, p is the unique positive
solution to the equation

1 � p D e�p�: (2)
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We let T�� denote T� conditioned on T� being infinite. (When using T�� we tacitly
assume � > 1.) For any property A of rooted trees we let PrŒA�;Pr�ŒA� denote the
probability (as a function of �) of A in T�;T�� respectively.

The first order logic for rooted trees consists of equality (x D y), parent (�.x; y/,
meaning x is the parent of y), the constant symbol R (the root), the usual Boolean
connectives and existential and universal quantification over vertices. A first order
property is a property that can be written with a sentence A in this language. The
quantifier depth of any first order sentence is the number of nested quantifiers
involved in expressing the sentence. We illustrate with a few examples what a typical
first order sentence looks like.

Example 1.1 Consider the property that there exists a node in the tree that has
precisely two children. This can be expressed in first order language as follows:

9 u Œ9 v1 Œ9 v2 Œ�.u; v1/ ^ �.u; v2/ ^ Œ8 v f�.u; v/ H) f.v D v1/ _ .v D v2/gg���� :

In this particular example, the quantifier depth is 4.

Example 1.2 Consider the property that the root of the tree has precisely one child
and precisely one grandchild. Observe that the root of the tree being a designated
symbol, this property is written in first order language as follows:

9 u
�9 v ��.R; u/^ �.u; v/ ^ �8 u0

˚
�.R; u0/ H) �

u0 D u
���

^ �8 v0 ˚�.u; v0/ H) �
v0 D v����� :

The quantifier depth is 3.
We refer the reader to [2] for further discussion on first order logic. Detailed

discussions on random graphs, the general probabilistic methods, and various tools,
such as the Azuma’s inequalities, can be found in Alon and Spencer [1].

Our main results (Theorem 4.7 and Corollary 4.8) will be a characterization of
the possible Pr�ŒA�, as functions of �, where A is a first order property. However, it
can be shown that the property of T being infinite is not first order.

Notations 1.3 Let v 2 T, T a rooted tree. T.v/ denotes the subtree of T that is
rooted at v. w is an i-descendant of v if there is a sequence v D x0; x1; : : : ; xi D w
so that xj is the parent of xjC1 for 0 � j < i. (We say v is a 0-descendant of itself.)
(In the Ulam–Harris notation for trees, this can be expressed as w D .x0; x1; : : : ; xi/

where x0 D v and xi D w.) w is a .� i/-descendant of v if it is a j-descendant for
some 0 � j � i. (E.g., 3-descendants are great-grandchildren.) We define d.T/ to
be the depth of the tree, which may be infinite. For n � 1, Tjn denotes the first n
generations of T, along with the root. That is, if d.T/ > n, then we sever all nodes
after the n-th generation (where root is the 0-th generation) and call the truncated
tree Tjn. If, of course, d.T/ � n, then Tjn D T. Let T0 be a finite tree. We say T
contains T0 as a subtree if for some v 2 T, T.v/ Š T0. We note that this is a first
order property. Letting T0 have s nodes, the first order sentence is that there exist
distinct v1; : : : ; vs having all the desired parent relations and with v1; : : : ; vs having
no additional children.
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We use a fictitious continuation to analyze T�. Let X1;X2; : : : be a countable
sequence of mutually independent and identically distributed Poisson.�/ random
variables. Let Xi be the number of children of the i-th node, when the tree is explored
using Breadth First Search. (The root is considered the first node so that X1 is its
number of children.) If and when the tree terminates (this occurs when

Pn
iD1 Xi D

n�1 for the first time) the remaining (fictitious) Xj are not used. We refer the reader
to van der Hofstad [4] for an elaborate discussion on trees and branching processes,
especially regarding the survival probability of the process.

Theorem 1.4 Fix an arbitrary finite tree T0. Consider the following statement A:

A WD feither T contains T0 as a subtree or T is finiteg: (3)

Then PrŒA� D 1.
This is one of the main results of this paper. Note that, in particular, Theorem 1.4

immediately implies that for any arbitrary but fixed finite T0,

�
PrŒ9 v W T.v/ Š T0� D 1: (4)

This gives us a good structural description of the infinite random Galton–Watson
tree, in the sense that every local neighbourhood is almost surely present somewhere
inside the tree.

1.1 Rapidly Determined Properties

We say (employing a useful notion of Donald Knuth) that an event is quite surely
determined in a certain parameter s if the probability of the complement of that
event is exponentially small in s.

Definition 1.5 Consider the fictitious continuation process T�. We say that an
event B is rapidly determined if quite surely B is tautologically determined by
X1;X2; : : : ;Xs. Here, tautologically determined means that for every point ! in
the sample space, the realization .X1.!/;X2.!/; : : : ;Xs.!// completely determines
whether the event B occurs or not. This means that for every sufficiently large s 2 N,

PrŒB is not determined by X1;X2; : : : ;Xs� � e�ˇs (5)

where ˇ > 0 is independent of s.

Theorem 1.6 The event A described in (3) is a rapidly determined property.
We shall now prove Theorem 1.4 subject to Theorem 1.6. Fix an arbitrary finite

T0. Assume Theorem 1.4 is false so that PrŒA� < 1, where A is as in (3). For each
s 2 N, with probability at least 1 � PrŒA� the values X1; : : : ;Xs do not terminate the
tree, nor do they force a copy of T0. Then A would not be tautologically determined.
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So A would not be rapidly determined and Theorem 1.6 would be false. Taking
the contrapositive, Theorem 1.6 implies Theorem 1.4. We prove Theorem 1.6 in
Sect. 2.1.

Remark 1.7 The conclusion of Theorem 1.4 is really that, fixing any finite tree T0,
T�� contains T0 as a subtree with probability one. We can say a bit more. Let T0 have
root v. For L � 1 define T0ŒL� by adding L new points v0; : : : ; vL�1 and making vi a
child of vi�1, 1 � i � L�1 and v a child of vL�1. T�� contains T0ŒL� with probability
one. But then it contains a T0 where the root of T0 is at least distance L from the root
of T. We thus deduce that for any finite T0 and any L there will, with probability one
in T�� , be a v at distance at least L from the root such that T.v/ Š T0.

1.2 Ehrenfeucht Games

We use a very standard and well-known tool to analyze first order properties on
rooted trees, namely the Ehrenfeucht games. The Ehrenfeucht games are what
bridges the gap between mathematical logic and a complete structural description
of logical statements on graphs. Fix a positive integer k. The standard k-move
Ehrenfeucht game used to analyze first order properties partitions the space of all
rooted trees into finitely many equivalence classes. Any two trees belonging to the
same equivalence class if and only if they have the same truth value for every first
order property of quantifier depth � k. That is, given a first order sentence A of
quantifier depth at most k, if A holds true for one of the trees in an equivalence
class, then it holds true for all others in that class as well. This notion is made more
precise in the following exposition.

We begin with describing the standard game, and later move on to a more
specialized variant of the game that is suited to our analysis. Fix k � 1 and
two trees T1 rooted at R1 and T2 rooted at R2 (these are known to both players).
The Ehrenfeucht game EHRŒT1;T2I k� is a k-round game between two players, the
Spoiler and the Duplicator. In each round Spoiler picks a vertex from either T1 or T2
and then Duplicator picks a vertex from the other tree. Letting x1; : : : ; xk; y1; : : : ; yk

be the vertices selected (in that order) from T1;T2 respectively, Duplicator wins if
all of the following hold:

(i) xi D R1 iff yi D R2;
(ii) �.xi; xj/ iff �. yi; yj/, i.e. xi is the parent of xj if and only if yi is the parent of

yj;
(iii) �.R1; xi/ iff �.R2; yi/, i.e., if xi is a child of the root R1, then yi is a child of R2,

and vice versa;
(iv) xi D xj iff yi D yj.

We write T1 	k T2 if and only if Duplicator wins EHRŒT1;T2I k�. This equivalence
relation partitions all rooted trees into finitely many equivalence classes. It can be
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shown that two rooted trees T1;T2 (with roots R1;R2) have the same k-Ehrenfeucht
value iff they satisfy precisely the same first order properties of quantifier depth at
most k.

We shall now describe the promised modified version of the game. Let T be a
rooted tree, v 2 T, and r > 0. Let T� be the (undirected) tree on the same vertex set
with x; y adjacent iff one of them is the parent of the other. Let BT.vI r/ denote the
ball of radius r around v. That is,

BT.vI r/ D fu 2 T W d.u; v/ < r in T�g (6)

Here d.�; �/ gives the usual graph distance. (For example, cousins are at distance
four.) Let k (the number of rounds) and M (an upper bound on the maximal distance)
be fixed. Let T1;T2 be trees with designated nodes v1 2 T1; v2 2 T2. Set

Bi D BTi.viI bM=2c/; i D 1; 2:

The k-move M-distance preserving Ehrenfeucht game, denoted by EHRMŒB1;B2I k�,
is played on these balls. We add a round zero in which the moves v1; v2 must
be played. (Essentially these are designated vertices.) As before, each round
(1 through k) Spoiler picks a vertex from either T1 or T2 and then Duplicator picks
a vertex from the other tree. Letting x0; : : : ; xk; y0; : : : ; yk be the vertices selected
from T1;T2 respectively, Duplicator wins if

• For 0 � i; j � k, d.xi; xj/ D d. yi; yj/. Equivalently, for all 1 � s � M and all
0 � i; j � k, d.xi; xj/ D s if and only if d. yi; yj/ D s.

• For 0 � i; j � k, �.xi; xj/ iff �. yi; yj/.
• For 0 � i; j � k, xi D xj iff yi D yj.

Two balls B1;B2 (as described above) are said to have the same .MI k/-
Ehrenfeucht value if Duplicator wins EHRMŒB1;B2I k�. We denote this by

B1 	MIk B2 (7)

This being an equivalence relation, the space of all such balls with designated
centers, is partitioned into .MI k/-equivalence classes. We let †MIk denote the set
of all .MI k/-equivalence classes.

We create a first order language consisting of D; �.x; y/ and d.x; y/ D s
for 1 � s � M (note that s is not a variable here). There are only finitely
many binary predicates (relations involving two variables). (In general adding the
distance function would add an unbounded number of binary predicates. In our case,
however, the diameter is bounded by M and so we are only adding the M predicates
d.x; y/ D s; 1 � s � M.) Hence the number of equivalence classes corresponding
to this game will also be finite. That is, †MIk is a finite set.
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1.3 Universal Trees

A universal tree, as defined below, shall have the property that once T contains it, all
first order statements up to quantifier depth k depend only on the local neighborhood
of the root.

Definition 1.8 Fix a positive integer k. Let

M0 D 2 � 3kC1: (8)

A finite tree T0 will be called universal if the following phenomenon happens: Take
any two trees T1;T2 with roots R1;R2 such that:

(i) the 3kC1 neighbourhoods around the root have the same .M0I k/ value, i.e.

BT1 .R1I 3kC1/ 	M0Ik BT2 .R2I 3kC1/: (9)

(ii) For some u1 2 T1; u2 2 T2 such that

d.R1; u1/ > 3
kC2; d.R2; u2/ > 3

kC2; (10)

we have

T1.u1/ Š T2.u2/ Š T0: (11)

Then T1 	k T2. Equivalently, Duplicator wins the standard k-move Ehrenfeucht
game played on T1;T2.

Remark 1.9 Technically, we should call such a T0 as described in Definition 1.8
k-universal. However, in the sequel, we simply refer to this as universal for the
convenience of notation, and since the dependence on k will be clear in each context.

We prove in Theorem 3.3 that such a universal tree indeed exists, by imposing
sufficient structural conditions on it.

Remark 1.10 Fix a certain universal tree UNIVk, given k 2 N. Using Theorem 1.4,
we conclude that T�� will almost surely contain UNIVk. From Remark 1.7, we say
further that there will almost surely exist a node v at distance > 3kC2 from the root
such that

T.v/ Š UNIVk:

From the definition of universal trees, then the standard Ehrenfeucht value of T��
will be determined by the .M0I k/-Ehrenfeucht value of BT�

�
.RI 3kC1/, the 3kC1-

neighbourhood of the root R, where M0 is as in (8).
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1.4 An Almost Sure Theory

Let Bi; 1 � i � N for some positive integer N, denote the finitely many .M0I k/-
equivalence classes. Note that these are defined on balls of radius 3kC1 centered at a
designated vertex which is a node in some tree. Then for every realization T of T�� ,

BT.RI 3kC1/ 2 Bi for precisely one i; 1 � i � N: (12)

Almost surely for two realizations T1;T2 of T�� which have the same local
neighbourhoods of the roots, i.e.

BT1 .R1I 3kC1/ 2 Bi; BT2 .R2I 3kC1/ 2 Bi for the same i;

we have T1 	k T2. As the Bi are equivalence classes over the space of rooted trees
they may be considered properties of rooted trees and so have probabilities Pr�ŒBi�

in T�� . As they finitely partition the space of all rooted trees

NX

iD1

�
PrŒBi� D 1: (13)

Let AS denote the almost sure theory for T�� . That is, AS consists of all first
order sentences B such that Pr�ŒB� D 1. We now give an axiomatization of AS . Let
T be defined by the following schema:

A ŒT0� WD f9 v W T.v/ Š T0g ; for all T0 finite trees: (14)

Theorem 1.11 Under the probability Pr�,

T D AS (15)

That is, the first order statements B with Pr�ŒB� D 1 are precisely those statements
derivable from the axiom schema T .

As T does not depend on � we also have:

Corollary 1.12 The almost sure theory AS is the same for all � > 1.
That T � AS is already clear from Theorem 1.4. To show the reverse inclusion,

consider for every 1 � i � N, T C Bi. In this theory every finite T0 is contained
as a subtree and the 3kC1-neighbourhood of the root belongs to the equivalence
class Bi. As discussed above in Remark 1.10, this set of information completely
determines the standard Ehrenfeucht value of the infinite tree. That is, for any first
order sentence A of quantifier depth k

either T C Bi ˆ A or T C Bi ˆ :A: (16)
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The standard notation T ˆ A for a tree T and a property A means that the property
A holds true for tree T. Set

JA D f1 � i � N W T C Bi ˆ Ag: (17)

Under T�� , A holds if and only if Bi holds for some i 2 JA. Thus we can express

�
PrŒA� D

X

i2JA

�
PrŒBi�: (18)

In Sect. 4 we shall use this to express all Pr�ŒA� in reasonably succinct form.
Now suppose, under T�� , that Pr�ŒA� D 1. As the Bi partition the neighbourhoods

around the roots of trees, this implies that JA D f1; 2; : : :Ng. That is, T C Bi ˆ A
for all 1 � i � N and

WN
iD1 Bi is a tautology. Hence A is derivable from T . Thus

AS � T .
In Sect. 4 below, we turn to the computation of the possible Pr�ŒA�. As seen

above, in the space of T�� , the neighbourhoods around the root of sufficiently large
radius are instrumental in determining the standard Ehrenfeucht value of the tree.
It only makes sense, therefore, to compute the probabilities of having specific
neighbourhoods around the root conditioned on the tree being infinite. We shall
do this in a recursive fashion, using induction on the number of generations below
the root that we are considering.

2 Containing All Finite Trees

2.1 A Rapidly Determined Property

We prove here Theorem 1.6. We fix an arbitrary finite tree T0 with depth d.T0/ D d0,
following the notation given in Notations 1.3. We alter the fictitious continuation
process T� described previously. If for some finite, first n 2 N, we have

Pn
iD1 Xi D

n � 1, then the actual tree has vertices 1; : : : ; n. If this phenomenon does not
happen for any finite n, then we have one infinite tree described by our fictitious
continuation. If the tree does abort after n vertices, we begin a new tree with vertex
nC 1 as the root, and generate it from XnC1;XnC2; : : :. Again, if this tree terminates
at some n1 we begin a new tree with vertex n1 C 1. Continuing, we generate an
infinite forest, with vertices the positive integers. We call this the forest process and
label it Tfor

� .
Then we define, for every s 2 N, the event (in T�/

good.s/ D fA is completely determined by X1; : : :Xsg; (19)
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where A is as in (3). Set bad.s/ D good.s/c. For every node i 2 N, define in Tfor
�

Ii D 1T.i/ŠT0 : (20)

That is, Ii is the indicator function of the event that in the random forest T.i/ Š T0.
Set

Y D
b�d0 scX

iD1
Ii; (21)

where, with foresight, we require

0 < � <
1

�C 1: (22)

(Our � is chosen sufficiently small so that quite surely in s, in Tfor
� , all of the .� d0/-

descendants j of all i � s� have j � s.) We create a martingale, setting, for 1 � i � s,

Yi D EŒYjX1;X2; : : :Xi�; Y0 D EŒY�: (23)

In Tfor
� , for x 2 R

C; i 2 N, set

Si.x/ D findices of all i-descendants of nodes 1; 2; : : : bxcg (24)

with S0.x/ D f1; 2; : : : bxcg, where an i-descendant is as described in Notations 1.3.
Define, for i 2 N,

gi.x/ D highest index recorded in
i[

jD0
Sj.x/: (25)

Lemma 2.1 For any x 2 R
C; d 2 N,

gd.x/ D gd
1.x/: (26)

Here gd
1 denotes the d-times composition of g1.

Proof We prove this using induction on d. For d D 1 this is true by definition
of g1. For d D 2, the highest possible index of all the children and grandchil-
dren of 1; 2; : : : bxc is equal to the highest index of the children of the nodes
1; 2; : : : g1.bxc/ D g1.x/, which is g1.g1.x//. Now suppose we have proved the
claim for some d 2 N; d � 2. Once again, a similar argument comes into play. The
highest index among all the .dC 1/-descendants of nodes 1; 2; : : : bxc, is also equal
to the highest index among all the d-descendants of the nodes 1; 2; : : : g1.x/, which
by induction hypothesis will be gd

1.g1.x// D gdC1
1 .x/. ut
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When gd0.b�d0sc/ � s, the descendents j of 1; : : : ; b�d0sc down to generation d0
will all have j � s. Thus Y will be completely determined by X1; : : : ;Xs. That is,

gd0
1 .b�d0sc/ � s ) Ys D Y: (27)

A few observations about the function g1.�/ are important. First,

g1.x/ � bxc for all x 2 R
C: (28)

In Tfor
� every time the tree terminates, we start a new tree, and that uses up one extra

index for the root of the new tree. But while counting the nodes 1; 2; : : : ; bxc, for
any x 2 R

C, at most bxc many new trees need be started. Therefore

g1.x/ � bxc C
bxcX

iD1
Xi: (29)

Further, by the definition of g1.�/, it is clear that it is monotonically increasing.
We shall use the inequality in (29) to show that, for � as chosen in (22), quite

surely in s, we have Ys D Y, i.e. Y is tautologically determined by X1; : : : ;Xs with
exponentially small failure probability in s. This involves showing that for i this
small, i.e. 1 � i � ��d0s

˘
, T.i/ is quite surely determined by X1; : : : ;Xs.

We employ Chernoff bounds. For x 2 R
C and any ˛ > 0,

PrŒg1.�x/ > x� D PrŒe˛g1.�x/ > e˛x�

� EŒe˛g1.�x/�e�˛x

� EŒe˛.�xC
P

b�xc

iD1 Xi/�e�˛x

D e˛�x
b�xcY

iD1
EŒe˛Xi �e�˛x

D e�.1��/˛x fexp Œ� .e˛ � 1/�gb�xc

� e�.1��/˛x fexp Œ� .e˛ � 1/�g�x
D expf�Œ.1 � �/˛ � �.e˛ � 1/��xg: (30)

It can be checked that for any ˛ 2 �0; log
�
1��
��

��
, the exponent in (30) is negative,

i.e. �Œ.1 � �/˛ � �.e˛ � 1/�� < 0. We set

� D Œ.1 � �/˛ � �.e˛ � 1/�� (31)
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Observe that � is positive. Now we have the upper bound:

PrŒg1.�x/ > x� � e��x: (32)

We make the following claim:

Lemma 2.2 For any d; s 2 N,

PrŒgd
1.�

ds/ > s� �
d�1X

iD0
e��i�s: (33)

Proof We prove this using induction on d. We have already seen that this holds for
d D 1. This initiates the induction hypothesis. Suppose it holds for some d 2 N.
Then

PrŒgdC1
1 .�dC1s/ > s� D PrŒgdC1

1 .�dC1s/ > s; g1.�
dC1s/ > �ds�

C PrŒgdC1
1 .�dC1s/ > s; g1.�

dC1s/ � �ds�

� PrŒg1.�dC1s/ > �ds�C PrŒgd
1.�

ds/ > s�

� e��	�ds C
d�1X

iD0
e��i�s; by induction hypothesis and (32)I

D
dX

iD0
e��i�s:

This completes the proof. ut
From Lemma 2.2, we conclude that

PrŒgd0
1 .b�d0sc/ > s� �

d0�1X

iD0
e��i�s; (34)

From (27), this means

PrŒYs D Y� � 1 �
d0�1X

iD0
e��i�s: (35)

As promised earlier, we therefore have that, quite surely, Ys D Y. In the following
definition, we describe the event Ys D Y as globalgood.s/, emphasizing the depen-
dence on the parameter s. What we can conclude from the above computation is that
globalgood.s/ fails to happen with only exponentially small failure probability in s.

Definition 2.3 globalgood.s/ is the event Ys D Y. globalbad.s/ is the complement
of globalgood.s/.

We now claim that the martingale fYi W 0 � i � sg satisfies a Lipschitz Condition.
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Lemma 2.4 There exists constant C > 0 such that for 1 � i � s,

jYi � Yi�1j � C: (36)

Proof For 1 � i � b�d0sc, fix a sequence Ex D .x1; : : : xi�1/ 2 .N[f0g/i�1; and then
consider

yi D EŒYjX1 D x1; : : :Xi�1 D xi�1;Xi� D
X

1�j�b�d0 sc

EŒIjjX1 D x1; : : :Xi�1 D xi�1;Xi�

and

yi�1 D EŒYjX1 D x1; : : :Xi�1 D xi�1� D
X

1�j�b�d0 sc
EŒIjjX1 D x1; : : :Xi�1 D xi�1�:

Ij will be affected by the extra information about Xi only if either j D i or node j
is an ancestor of node i at distance � d0 from i. If j D i, then it will of course affect
the conditional expectation because Xi gives the number of children of j in that case.
When j > i, this is immediate, because any subtree rooted at j has no involvement
of Xi. When j < i, but not an ancestor of i, i is not a part of the subtree T. j/ rooted
at j. Therefore Xi, the number of children of node i, does not contribute anything to
the probability of the presence of T0 rooted at j. When j is an ancestor of i but at
distance > d0 from i, i won’t be a part of the subtree T. j/jd0 at all.

When j is an ancestor of i and at distance d0 from i, then i is a leaf node of T. j/jd0
and therefore Xi, the number of children of i, will actually play a role, because to
ensure that T. j/ Š T0, the leaf nodes of T. j/jd0 must have no children of their own
in Tfor

� .
That is, we need be concerned with the at most d0 ancestors of node i, plus i itself,

and for each of them, the difference in the conditional expectations of Ij can be at
most 1. Denoting by

P� the sum over j D i and j an ancestor of i at distance � d0
from i, this gives us:

jyi � yi�1j D
ˇ
ˇ
ˇ
ˇ
ˇ

�X
EŒIjjX1 D x1; : : :Xi�1 D xi�1;Xi� � EŒIjjX1 D x1; : : :Xi�1 D xi�1�

ˇ
ˇ
ˇ
ˇ
ˇ

�
�Xˇ
ˇEŒIjjX1 D x1; : : :Xi�1 D xi�1;Xi� � EŒIjjX1 D x1; : : :Xi�1 D xi�1�

ˇ
ˇ

�d0 C 1:

The final inequality follows from the argument above that
P� involves summing

over at most d0 C 1 many terms, and each summand is at most 1, since each
summand is the difference of the expectations of indicator random variables. This
proves Lemma 2.4, with C D d0 C 1.

ut
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Given Lemma 2.4 we apply Azuma’s inequality. Consider the martingale

Y 0i D
EŒY� � Yi

d0 C 1 ; 0 � i � s:

Set, for a typical node v in a random Galton–Watson tree T with Poisson.�/
offspring distribution,

PrŒT.v/ Š T0� D p0; (37)

so that EŒY� D b�d0scp0. Applying Azuma’s inequality to fY 0i ; 0 � i � sg, for any
ˇ > 0,

PrŒY 0s > ˇ
p

s� < e�ˇ2 :

We choose

ˇ D �d0p0
p

s

2.d0 C 1/ :

This gives

Pr

�

Ys <
�d0p0
2
� s� p0

�

< exp




� �2d0p20
4.d0 C 1/2 � s

�

: (38)

Writing

� D �d0p0
2

; ' D �2.d0/p20
4.d0 C 1/2 ;

we can rewrite the above inequality as

PrŒYs < �s � p0� < e�'s: (39)

Putting everything together, we get for all s large enough:

PrŒY D 0� DPrŒY D 0;Ys D Y�C PrŒY D 0;Ys ¤ Y�

�PrŒYs < �s � p0�C PrŒYs ¤ Y�

�e�'s C
d0�2X

iD0
e��i�sI from (35) and (39)I

which is an upper bound exponentially small in s. This gives us the proof of
Theorem 1.6.
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3 Universal Trees Exist!

In this section, we shall establish sufficient conditions that guarantee the existence
of universal trees. Fixing k 2 N, set M0 D 2 � 3kC1 as in (8). Assume T0 is a finite
tree with root R0 with the following properties:

(i) For every � 2 †M0Ik, there are distinct nodes viI� 2 T0; 1 � i � k, with the
following conditions satisifed: for every � 2 †M0Ik and every 1 � i � k, we
have

d.R0; viI� / > 3kC2I (40)

for every �1; �2 2 †M0Ik and 1 � i1; i2 � k, with .�1; i1/ ¤ .�2; i2/, we have

d.vi1I�1 ; vi2I�2/ > 3kC2I (41)

and for all 1 � i � k; � 2 †M0Ik,

B.viI� I 3kC1/ 2 �: (42)

(ii) For every 1 � i � k, every choice of u1; : : : ui�1 2 T0, and every choice of
� 2 †M0Ik, there exists a vertex ui 2 T0 such that

d
�
ui; uj

�
> 3kC2; for all 1 � j � i� 1; (43)

d .R0; ui/ > 3
kC2; (44)

and

B
�
uiI 3kC1� 2 �: (45)

Remark 3.1 Observe that Condition (ii) is stronger than Condition (i) and actually
implies the latter. However, for pedagogical clarity, and since (i) gives a nice
structural description of the Christmas tree that is described in Theorem 3.3, we
retain (i). Furthermore, we state (i) before (ii) since, we feel, it is an easier condition
to visualize.

Lemma 3.2 T0 with properties described above will be a universal tree.

Proof Recall the definition of universal trees. We start with two trees T1;T2 with
roots R1;R2, and which satisfy the following conditions:

(i) The balls B.R1I 3kC1/;B.R2I 3kC1/ satisfy

B.R1I 3kC1/ 	M0Ik B.R2I 3kC1/: (46)
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(ii) For some u1 2 T1; u2 2 T2 such that

d.R1; u1/ > 3
kC2; d.R2; u2/ > 3

kC2; (47)

we have each of T1.u1/ and T2.u2/ isomorphic to T0. If '1 W T0 ! T1.u1/; '2 W
T0 ! T2.u2/ are these isomorphisms, then

'1.viI� / D v.1/iI� ; '2.viI� / D v.2/iI� ;

for all � 2 †M0Ik; 1 � i � k.

Now we give a winning strategy for the Duplicator. This is in a somewhat similar
favour to the arguments given in Spencer and Thoma [3]. We assume that since
R1;R2 are designated vertices, x0 D R1; y0 D R2. Let .xi; yi/ be the pair chosen from
T1 
 T2 in the i-th move, for 1 � i � k. Now, we claim the following:

The Duplicator can play the game such that, for each 0 � i � k,

• he can maintain

B.xiI 3kC1�i/ 	M0Ik B. yiI 3kC1�i/;

(Our proof only needs

B.xiI 3kC1�i/ 	M0Ik�i B. yiI 3kC1�i/;

but the stronger assumption is a bit more convenient);
• for all 0 � j < i such that xj 2 B.xiI 3kC1�i/, the corresponding

yj 2 B. yiI 3kC1�i/, and vice versa, according to the winning strategy of
EHRM0 ŒB.xiI 3kC1�i/;B. yiI 3kC1�i/I k�. Again, this is overkill as one need only
consider the Ehrenfeucht game of k � i moves at this point.

We prove this using induction on the number of moves played so far. For i D 0,
we have chosen x0 D R1; y0 D R2, and we already have imposed the condition

B.R1I 3kC1/ 	M0Ik B.R2I 3kC1/

in (46). So suppose the claim holds for 0 � j � i � 1. Without loss of generality
suppose Spoiler chooses xi 2 T1. There are two possibilities:

(i) Inside move:

xi 2
i�1[

jD0
B.xjI 2 � 3kC1�i/: (48)

So xi 2 B.xlI 2 � 3kC1�i/ for some 0 � l � i� 1. By the induction hypothesis,

B.xlI 3kC1�l/ 	M0Ik B. ylI 3kC1�l/:



726 M. Podder and J. Spencer

Duplicator now follows his winning strategy of EHRM0 ŒB.xlI 3kC1�l/;B. ylI
3kC1�l/I k� and picks yi 2 B. ylI 3kC1�l/. This means that,

d.xi; xl/ < 2 � 3kC1�i ) B.xiI 3kC1�i/ � B.xlI 3kC1�l/;

since l < i. In the same way

B. yiI 3kC1�i/ � B. ylI 3kC1�l/;

and further,

B.xiI 3kC1�i/ 	M0Ik B. yiI 3kC1�i/:

This last relation follows from the fact that yi is chosen corresponding
to xi in the winning strategy of the Duplicator for EHRM0 ŒB.xlI 3kC1�l/;

B. ylI 3kC1�l/I k�. Since M0, as chosen in Eq. (8), is greater than 2 � 3kC1�i,
hence for Duplicator to win EHRM0 ŒB.xlI 3kC1�l/;B. ylI 3kC1�l/I k�, he must
be able to win the game played within the smaller balls B.xiI 3kC1�i/ and
B. yiI 3kC1�i/.

(ii) Outside move:

xi …
i�1[

jD0
B.xjI 2 � 3kC1�i/: (49)

Then we consider B.xiI 3kC1�i/ and we know, from (43), (44) and (45), that
there exists some v 2 T2 such that

d.v; yl/ > 3
kC2; for all 0 � l � i� 1;

and

B.vI 3kC1/ 	M0Ik B.xiI 3kC1/:

We choose yi D v. Note that then we automatically have

B. yiI 3kC1�i/
\

8
<

:

i�1[

jD0
B. yjI 3kC1�i/

9
=

;
D �;

and

B.xiI 3kC1�i/ 	M0Ik B. yiI 3kC1�i/:
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Once again, Duplicator is choosing yi so that B. yiI 3kC1/ 	M0Ik B.xiI 3kC1/, i.e.
he wins

EHRM0

�
B.xiI 3kC1/;B. yiI 3kC1/I k� :

Then he must be able to win the game within the smaller balls B.xiI 3kC1�i/

and B. yiI 3kC1�i/, since his winning involves being able to preserve mutual
distances of pairs of nodes up to M0.

This shows that the Duplicator will win EHRŒT1;T2I k�, which finishes the proof.
ut

Theorem 3.3 For each k 2 N there is a universal tree T.

Proof T will be a Christmas tree which is constructed as follows. For each � 2
†M0Wk select and fix a specific ball B.vI 3kC1/ 2 � . For each such � and each
1 � i � k create disjoint copies Ti;� D B.vi;� I 3kC1/ such that B.viI� I 3kC1/ Š
B.vI 3kC1/, with the isomorphism mapping viI� to v. These B.viI� I 3kC1/ are the
balls decorating the Christmas tree. Let wiI� be the top vertex of B.viI� I 3kC1/. That
is, it is that unique node in the ball with no ancestor in the ball. It can be seen that
this node is actually the ancestor of viI� which is at distance 3kC1 away from viI� , or
in other words, viI� is a 3kC1-descendant of this node. Let R be the root of T. Draw
disjoint paths of length 3kC4 from R to each wiI� . These will be like the strings
attaching the balls to the Christmas tree.

We now explain why this T satisfies Conditions (i) and (ii). Once again, for
pedagogical clarity, we first show a detailed reasoning why T satisfies (i), although
technically, it suffices to verify only (ii). First, observe that the viI� we have defined
in the previous paragraph, for 1 � i � k and � 2 †M0Ik, immediately satisfy (40)
and (41), since

d .R; viI� / D d .R;wiI� /C d .viI� ;wiI� / D 3kC4 C 3kC1 > 3kC2;

for every �1; �2 2 †M0Ik; 1 � i1; i2 � k with .�1; i1/ ¤ .�2; i2/, we indeed have

d .vi1I�1 ; vi2I�2 / D d .vi1I�1 ;R/C d .R; vi2I�2/ > 2 � 3kC4 > 3kC2:

To see that (42) holds, note that by our construction,

B.viI� I 3kC1/ Š B.vI 3kC1/ 2 �;

with viI� mapped to v, for all 1 � i � k, and for all � 2 †M0Wk.
Finally, we verify that (ii) holds. Consider any 1 � j � k. Suppose we have

selected any j � 1 vertices u1; : : : uj�1 from T. For any � 2 †M0Wk and 1 � i � k,
we consider the branch of the tree consisting of the ball B

�
viI� I 3kC1� and the string

joining R to wiI� , and we call that branch free if no ul; 1 � l � j � 1 is picked from
that branch. Since there are k copies of balls for each � , and j � k, hence we shall
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always have at least one free branch from each � 2 †M0Wk. So we simply choose
uj D viI� for some i such that the corresponding branch is free.

Since no ul; 1 � l � j� 1, belongs to that branch, each of them must be at least
as far away from uj as the root is from viI� . That is, we will have

d
�
uj; ul

�
> 3kC4 C 3kC1I d

�
uj;R

� D 3kC4 C 3kC1:

And of course, by our choice, we would have B
�
ujI 3kC1� 2 � .

ut

4 Probabilities Conditioned on Infiniteness of the Tree

As before, with R the root, BT.RI i/ denotes the neighbourhood of R with radius i,
i.e.

BT.RI i/ D fu 2 T W d.u;R/ < ig:

We define

BT.RI i/ D fu 2 T W d.u;R/ � ig:

So, BT.RI i/ captures up to the i-th generation of the tree, R being the 0-th generation.
For each i 2 N we give a set of equivalence classes 	i which will be relatively easy
to handle and which we show in Theorem 4.2 is a refinement of †iWk. We set

C D f0; 1; : : : ; k � 1; !g: (50)

Here ! is a special symbol with the meaning “at least k.” That is, to say that there
are ! copies of something is to say that there are at least k copies. We set

	1 D C D f0; 1; : : : ; k � 1; !g: (51)

A BT.RI 1/ is of type i 2 	1 if the root has i children. Since the game has k rounds,
if the roots has x; y children in the two trees with both x; y � k then Duplicator wins
the modified game. Inductively we now set

	iC1 D fg W 	i ! Cg: (52)

Each child v of the root generates a tree to generation i. This tree belongs to an
equivalence class � 2 	i. A BT.RI iC 1/ has state g 2 	iC1 if for all � 2 	i the root
has g.�/ children v whose subtree T.v/ upto generation i belongs to equivalence
class � , i.e. T.v/ji 2 � .
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Example 4.1 Consider k D 4; i D 2. Then a typical example of BT.RI i/ will be: the
root has two children with no children, at least four children with one child, three
children with two children, no children with three children, and one child with at
least four children. Thus g.0/ D 2; g.1/ D !; g.2/ D 3; g.3/ D 0; g.!/ D 1.

Theorem 4.2 	i is a refinement on †iWk.

Proof Let BT1 .R1I i/;BT2 .R2; i/ lie in the same 	i equivalence class. It suffices to
show that Duplicator wins the k-move modified Ehrenfeucht game on these balls.
We show this using induction on i.

The case i D 1 is immediate. Suppose it holds good for all i0 � i � 1. In
the Ehrenfeucht game let Spoiler select w1 2 T1. Let v1 be the child of the root
such that w1 belongs to the tree generated by v1 up to depth i � 1, i.e. T1.v1/ji�1.
Duplicator allows Spoiler a free move of v1. Let � be the 	i�1 class for T1.v1/ji�1.
In T2 Duplicator finds a child v2 of the root R2 in T2 such that T2.v2/ji�1 2 � .
Duplicator now moves v2 and then, by induction hypothesis, finds the appropriate
response w2 2 T2.v2/ji�1 corresponding to w1. For any further moves by the
Spoiler with the same v1 or v2, Duplicator plays, inductively, on the two subtrees
T1.v1/ji�1;T2.v2/ji�1. And if Spoiler chooses some y1 2 BT1 .R1I i/ � T1.v1/ji�1,
then again we repeat the same procedure as above. There are only k moves, hence
Duplicator can continue in this manner and so wins the Ehrenfeucht game. ut

When � 2 	i we write PrŒ��;Pr�Œ�� for the probabilities, in T�;T�� respectively,
that BT.R; i/ is in equivalence class � . Let 	 D 	s with s D 3kC1.

For any first order A with quantifier depth k let JA be as in (17). Applying
Theorem 4.2 for each i 2 JA the class Bi splits into finitely many classes � 2 	 .
Let KA denote the set of such classes. The Eq. (18) can be rewritten as

�
PrŒA� D

X

�2KA

�
PrŒ� �: (53)

For 0 � i < k set

Pi.x/ D PrŒPo.x/ D i� D e�x xi

iŠ
; (54)

and set

P!.x/ D PrŒPo.x/ � k� D 1 �
k�1X

iD0
Pi.x/: (55)

We now make use of a special property of the Poisson distribution. Let � D
f1; : : : ; ng be some finite state space. Let pi � 0 with

Pn
iD1 pi D 1 be some

distribution over �. Suppose v has Poisson mean � children and each child
independently is in state i with probability pi. The distribution of the number of
children of each type is the same as if for each i 2 � there were Poisson mean
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pi� children of type i and these values were mutually independent. For example,
assumming boys and girls equally probable, having Poisson mean 5 children is the
same as having Poisson mean 2:5 boys and, independently, having Poisson mean
2:5 girls.

The probability, in T�, that the root has u children (including u D !) is then
Pu.�/. Suppose, by induction, that P� .x/ has been defined for all � 2 	i such that
Pr.�/ D P� .�/. Let � 2 	iC1 so that � is a function g W 	i ! C. In T� the root
has Poisson mean � children and, for each � 2 	i, the i-generation tree rooted at
a child is in the class � with probability P� .�/. By the special property above we
equivalently say that the root has Poisson mean �P� .�/ children of type � for each
� 2 	i and that these numbers are mutually independent. The probability P�.�/ is
then the product, over � 2 	i, of the probability that a Poisson mean �P� .�/ has
value g.�/. Setting

P� .x/ D
Y

�

Pg.�/.xP� .x//; (56)

we have

PrŒ�� D P�.�/: (57)

Example 4.3 Continuing Example 4.1, set xi D e���i=iŠ for 0 � i < 4 and x! D
1 �P3

iD0 xi. The root has no child with three children with probability expŒ�x3��.
It has one child with at least four children with probability expŒ�x!��.x!�/. It
has at least four children with one child with probability 1 � expŒ�x1��.1 C
.x1�/ C .x1�/2=2 C .x1�/3=6�. It has two children with no children with proba-
bility expŒ�x0��.x0�/2=2. It has three children with two children with probability
expŒ�x2��.x2�/3=6. The probability of the event is then the product of these five
values.

While Eq. (57) gives a very full description of the possible PrŒ�� the following
less precise description may be more comprehensible.

Definition 4.4 Let F be the minimal family of function f .�/ such that

(i) F contains the identity function f .�/ D � and the constant functions
fq.�/ D q; q 2 Q.

(ii) F is closed under finite addition, subtraction and multiplication.
(iii) F is closed under base e exponentiation. That is, if f .�/ 2 F then ef .�/ 2 F .

We call a function f .�/ nice if it belongs to F .
In Corollary 4.8 we show that the probability of any first order property,

conditioned on the tree being infinite, is actually such a nice function.

Theorem 4.5 Then for all k and all i, if � 2 	i then PrŒ�� is a nice function of �.
This is an immediate consequence of the recursion (56).
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Example 4.6 The statement “the root has no children which have no children which
have no children” is the union of classes � with k D 1, i D 3. It has probability
expŒ�� expŒ�� expŒ�����:

Let Tfin
� denote T� conditioned on T� being finite. For any k; i and any � 2 	i

let PrfinŒ�� be the probability of event � in Tfin. Assume � > 1. Let p D p.�/, the
probability T� is infinite, be given by (1). By duality, Tfin

� has the same distribution
as Tq�, where

q.�/ D 1 � p.�/ D PrŒT� is finite�: (58)

Thus

fin
PrŒ�� D P� .q�/: (59)

For any k; i and � 2 	i

PrŒ�� D
fin
PrŒ��qC �

PrŒ��p (60)

and hence

�
PrŒ�� D p�1ŒPrŒ�� �

fin
PrŒ��q�: (61)

For any first order sentence A of quantifier depth k, letting KA be as in (53),

�
PrŒA� D

X

�2KA

p�1ŒPrŒ�� �
fin
PrŒ��q�: (62)

Combining previous results gives a description of possible Pr�ŒA�.

Theorem 4.7 Let A be a first order sentence of quantifier depth k. Let KA be as
in (53) Let

f .x/ D
X

�2KA

P�.x/: (63)

Then

�
PrŒA� D p�1Œ f .�/ � q f .q�/�: (64)

As before, it is also convenient to give a slightly weaker form.
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Corollary 4.8 For any first order sentence A we may express

�
PrŒA� D p�1Œf .�/ � qf .q�/� (65)

where f is a nice function in the sense of Definition 4.4.

5 Further Results

In this paper, we have so far dealt with Galton–Watson trees with Poisson offspring
distribution. The results of Sects. 2 and 3 extend to some other classes of offspring
distributions. In this section, we outline briefly these extensions. We consider a
general probability distribution D on N0 D f0; 1; 2; : : :g, where pi is the probability
that a typical node in the random tree has exactly i children, i 2 N0. We shall
denote the probabilities under this regime by PrD. We also assume that the moment
generating function of D exists on a non-degenerate interval Œ0; �� on the real line.

Fix an arbitrary finite T0 of depth d0. We assume that PrDŒT0� > 0. In other words,
this means that if T is the random Galton–Watson tree with offspring distribution D,
then PrDŒT Š T0� > 0. Consider the statement

A D f9 v W T.v/ Š T0g _ fT is finiteg : (66)

We can show, similar to our results in Sect. 2, that PrDŒA� D 1, provided (71) holds
for some ˛ 2 .0; �� and 0 < � < 1. Of course, the non-trivial case to consider is
when D has expectation greater than 1, as only then does it make sense to talk about
the infinite Galton–Watson tree.

The proof of this fact follows the exact same steps as shown in Sect. 2. We
consider again a fictitious continuation X1;X2; : : : which are i.i.d. D. For every
node i, we let Ii be the indicator for the event fT.i/ Š T0g. For a suitable � > 0

that we choose later, we let

Y D
b�d0 scX

iD1
Ii; (67)

and we define the martingale Yi D EŒYjX1; : : : ;Xi� for 1 � i � s, with Y0 D EŒY�.
Defining g1 as in Eq. (25), we similarly argue that

g1.x/ � bxc C
bxcX

iD1
Xi: (68)

The only difference is in the estimation of the probability that g1.�x/ exceeds x.
We employ Chernoff bounds again, but we no longer have the succinct form of the
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moment generating function as in the case of Poisson. For any 0 < ˛ � � ,

PrŒg1.�x/ > x� D PrŒe˛g1.�x/ > e˛x�

� EŒe˛g1.�x/�e�˛x

� EŒe˛.�xC
P

b�xc

iD1 Xi/�e�˛x

D e˛�x
b�xcY

iD1
EŒe˛Xi �e�˛x

D '.˛/b�xce�˛.1��/x; (69)

where '.˛/ D EŒe˛X1 �. Since X1 is non-negative valued, '.˛/ > 1 for ˛ > 0, hence
we can bound the expression in (69) above by

'.˛/�xe�˛.1��/x D ˚'.˛/�e�˛.1��/�x
: (70)

If we are able to choose ˛ > 0 such that for some 0 < � < 1, we have

'.˛/�e�˛.1��/ < 1; (71)

then the exact same argument as in Sect. 2 goes through, and we have the desired
result.

In particular, it is easy to see that (71) is indeed satisfied when D is a probability
distribution on a finite state space � N0.

The sufficient conditions for a tree to be universal nowhere uses the offspring
distribution. Once the results of Sect. 2 hold for a given D, it is not too difficult to
see that the conclusion of Remark 1.10 should hold in this regime as well. We hope
to return to this more general setting in our future work.

A further object of future study is a more detailed analysis of T� at the critical
value � D 1. While Pr� is technically not defined at the critical value, there may
well be some approaches via the insipient infinite tree.
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Crossing-Free Perfect Matchings in Wheel
Point Sets

Andres J. Ruiz-Vargas and Emo Welzl

Abstract Consider a planar finite point set P, no three points on a line and exactly
one point not extreme in P. We call this a wheel set and we are interested in pm.P/,
the number of crossing-free perfect matchings on P. (If, contrary to our assumption,
all points in a set S are extreme, i.e. in convex position, then it is well-known that
pm.S/ D Cm, the mth Catalan number, m WD jSj

2
.)

We give exact tight upper and lower bounds on pm.P/ depending on the
cardinality of the wheel set P. Simplified to its asymptotics in terms of Cm, these
yield

9

8
Cm.1C o.1// � pm.P/ � 3

2
Cm.1C o.1// ;m WD jPj

2
:

We characterize the wheel sets (order types) which maximize or minimize pm.P/.
Moreover, among all sets S of a given size not in convex position, pm.S/ is
minimized for some wheel set. Therefore, leaving convex position increases the
number of crossing-free perfect matchings by at least a factor of 9

8
(in the limit as

jSj grows). We can also show that pm.P/ can be computed efficiently.
A connection to origin embracing triangles is briefly discussed.
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1 Introduction

Given finite sets S of points in the plane in general position, i.e. no three points on
a line, we are interested in crossing-free perfect matchings (CFPMs for short) on S,
i.e. perfect matchings on S where in the straight-line geometric embedding on S all
segments are pairwise noncrossing. Clearly, for such a perfect matching to exist, jSj
has to be even, which we assume further on. We denote by pm.S/ the number of
such CFPMs.

In this paper we concentrate on sets in a very special position, namely vertex
sets of convex polygons together with one point inside the polygon. But let us first
briefly summarize the general situation.

Background Only recently an O.2npoly.n// algorithm for computing the number
pm.S/ for a set of n points was discovered by Wettstein, [30], with a further
improvement to subexponential time by Marx and Miltzow [17]. A tight lower
bound of pm.S/ � Cm is known, [12], where m WD jSj=2 and Cm WD 1

mC1
�
2m
m

� D
‚. 1

m3=2
4m/ is the mth Catalan number. The bound is tight, since equality holds

whenever S is in convex position, i.e. S is the vertex set of a convex polygon;
counting of crossing-free perfect matchings in convex position goes back to 1948,
at least, (Motzkin, [18]). In fact, Asinowski [7] proved that equality holds iff S is
in convex position, with the only exception of the set of six points consisting of
the vertices of a regular pentagon together with its center (and clearly everything of
the same order type). Good upper bounds seem elusive, with O.10:05n/, n WD jSj,
the currently best known upper bound (see [24]). Sets with �.3:093n/ CFPMs have
been analyzed, see Asinowski and Rote, [8], for this very recent improvement from
�.3n=poly.n// (obtained for the so-called double-chain configuration, [12]).

There are several other works on crossing-free (sometimes also called plane or
noncrossing) perfect matchings, see e.g. [1, 3–5, 9, 15, 23].

Results We go a small step beyond convex position and investigate the case when
all but one point z are in convex position, and the extra point z lies in the interior
of the convex hull. We call such sets wheel point sets or simply wheel sets and we
reserve the letter “P” for those (to avoid confusion with the general case “S”). For
wheel sets P we can draw a clear picture.

We show that pm.P/, P a wheel set, can be computed efficiently (Corollary 3.3).
This is a by-product of our main results in Sects. 2, 3, and 4, where we give exact
tight upper and lower bounds on pm.P/, P a wheel set, in terms of m WD jPj

2

(summarized in Theorems 7.1 and 7.2). These yield

9

8
Cm



1C‚

1

m2

��

� pm.P/ � 3

2
Cm



1C‚


1

m3=2

��

:

We can give a characterization of the extremal wheel sets.
With some extra effort (Theorem 5.1 in Sect. 5) including a short excursion to

well-formed parentheses strings, we show that wheel sets minimize pm.S/ among
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Fig. 1 Wheel sets in symmetric (left) and barely-in configuration (right)

all sets S not in convex position. In this way we strengthen Asinowski’s result in
[7], in the sense that not being in convex position does not only enforce an increase
in the number of CFPMs (with the one notable exception for 6 points mentioned
above), but the number pm.P/ asymptotically goes up by at least a constant factor
of 9

8
.

Apart from the concrete results on CFPMs, we view this as a contribution to the
understanding of the combinatorics of a set of points “around” a given point, or
equivalently, a set of vectors with the origin as a positive linear combination. In
Sect. 6 we exemplify this by pointing out a connection to origin embracing triangles
which relates to n vertex polytopes in .n � 3/-space.

Since the results get developed (and are scattered) over several sections of the
paper, we conclude with a summary in Sect. 7.

Two special configurations: Symmetric and barely-in In order to give more
insight, we would like to be able to address two very specific wheel sets, see Fig. 1.
The first one has the property that every line through the extra point and an extreme
point is halving, i.e. it is separating the remaining points into two parts of equal size
(for example, the vertices of a regular .2m � 1/-gon together with its center). We
call this a wheel set in symmetric configuration, and it appears like a good candidate
for extremal behavior. In fact, we have mentioned already one instance, namely the
symmetric configuration of six points, which was the only nonconvex position with
minimal number of CFPMs. Beware, as we will show, this is a misleading hint! For
eight points the symmetric configuration maximizes, for ten points it minimizes, for
twelve points it maximizes – but this pattern does not continue. Indeed, 2m points,
m even, in symmetric configuration always maximize, but if m � 7 is odd, these
configurations with 2m points play no extremal role anymore.

The second special type of wheel set is the one we obtain by taking 2m points
in convex position and pushing one of the points, z, inside the convex hull, but
barely so. We call this a wheel set in barely-in configuration. For such a set P,
pm.P/ D Cm C Cm�1 D 5

4
Cm.1 C o.1//, can easily be established: Note that as

we push z inside over the segment e connecting its two neighbors on the convex
hull, there are no extra crossings (among points connecting segments) generated.
However we lose some crossings with this edge e (in the terminology of [20], the
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point set is crossing-dominated by convex position). Hence, all Cm matchings from
the initial convex position are preserved as crossing-free, and it is easily seen that we
gain exactly those which use the edge e (where z was pushed over). The number of
those is exactly Cm�1, since the barely-in set without the endpoints of e is in convex
position.

While this barely-in configuration might be a suspect for minimizing pm.P/
(see experience from counting triangulations below), this is never true. In fact,
for six points barely-in maximizes. That is, the minimizers are something between
symmetric and barely-in, the same for maximizers with 2m points, m � 7 odd.

A relation to counting triangulations It is interesting to compare the situation to
the number of triangulations, tr.S/, of a planar point set S. We have tr.S/ D Cn�2
for S a set of n points in convex position (a classical result that goes back to a
question of Euler). Conveniently, Randall et al. [22] have investigated this for wheel
configurations.

If P is barely-in, then the number of triangulations is smaller than in convex
position, namely Cn�2�Cn�3, and this gives already the minimum possible number
for wheel configurations. For n even, the maximum is attained for the symmetric
configuration [22, Corollary 6]. Their main tool is a continuous motion argument,
by which they can show that as the extra point moves from barely-in deeper into the
point set, the number of triangulations increases.

From what we learn below, it becomes clear that such an argument cannot work
in our setting, since, in fact, pm.P/ fluctuates under such an into-the-set motion
(see Fig. 4 in Sect. 4 for an illustration). Instead we consider the 2m � 1 lines
through the extra point and each of the extreme points, and we note the number
of remaining points on the two sides of each of these lines. This information can
be summarized in a vector that can be used to compute pm.P/. Some basic simple
knowledge from k-set theory turns out to come handy. The counting itself does first
some overcounting and subtracts the excess.

Notation N denotes the set of positive integers, N0 the set of nonnegative integers,
and R the set of real numbers. For a set S � R

d, conv.S/ stands for the convex hull
of S.

Catalan numbers Our results and analysis rely heavily on the use of Catalan
numbers Cm, m 2 N0 (cf. Stanley’s recent book [25]). We list a few properties
in “Appendix: Catalan Facts”.

Order types We will sometimes refer to the notion of order types in this paper,
in order to claim that there is always “basically” a unique wheel set maximizing
(minimizing) pm.P/. We decided not to introduce this notion any further here and
refer to the literature, cf. [2, 13].
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2 A First Identity Via Weighted Diagonals

From now on P is in wheel configuration with n WD 2m WD jPj. We write P as
Q[fzg, with Q the 2m�1 extreme points in P and, hence, z the special nonextreme
point. We use extra point or inner point to address this point z.

An edge connecting two points in Q is either an edge of conv.Q/ or a diagonal.
Such a diagonal e partitions the remaining 2m � 3 points of Q into two sets (on the
sides of the line through e), one of even size, say k, and one of odd size, say `.

We need two notions: The weight of e, denoted by �.e/, is defined to be
Ck=2C.`C1/=2. And the diagonal e is called active if the extra point z lies on the
side with the even number k of points – we call this the even side of e; the other side
of e is called the odd side of e.

Lemma 2.1

pm.P/ D .2m � 1/Cm�1 �
X

e active diagonal

�.e/ :

The identity can easily be explained by giving meaning to the terms involved.
In a perfect matching on P there has to be a unique point y that matches with the

extra point z. We call this edge yz the extra edge in the perfect matching.

Observation 2.2 .2m � 1/Cm�1 is the number of perfect matchings on P that are
crossing-free except for possible crossings involving the extra edge. (We call such
perfect matchings diagonal-crossing-free.)

This is obvious, since we have 2m � 1 ways to choose the companion y of z and
then we have Cm�1 ways to complete the matching among the remaining 2m � 2
points in Q n fyg with no crossing among those.

Next we consider such a diagonal-crossing-free perfect matching M that is not
crossing-free. That is, there are diagonals crossing the extra edge. The first such
diagonal encountered when moving along yz from y to z is called responsible (for
M not being crossing-free). Note that every diagonal-crossing-free perfect matching
is either crossing-free or there is a unique responsible diagonal crossing the extra
edge. Hence, the previous and the following observation establish Lemma 2.1.

Observation 2.3 A diagonal e is responsible for crossings in some diagonal-CFPMs
iff it is active, and if so, it is responsible in exactly �.e/ such perfect matchings.

Proof If e is responsible for a crossing in a diagonal-CFPM, then all points in Q on
the side of e containing the extra point z must be matched to each other. It follows
that there has to be an even number of them, i.e. e is active.

Let us assume that z lies on the even side of e and R is the set of points in Q
that lie on the other, i.e. odd side of e. Now if e is responsible for the crossings in
a diagonal-crossing-free perfect matching M, then by its choice (the first crossing
encountered from y 2 R), the matching M restricted to R[fzg is a CFPM on R[fzg,
a set in convex position. There are C.`C1/=2 CFPMs on R [ fzg, ` WD jRj, and all of
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these can be completed with e and a CFPM on Qn.R[e/ to a diagonal-crossing-free
matching, where e is responsible for crossing the extra edge. The number of such
perfect matchings is Ck=2C.`C1/=2 D �.e/, k WD jQ n .R [ e/j. ut

3 Diagonals Incident to a Given Extreme Point

For handling the sum
P

e active diagonal �.e/, it appears advantageous to consider the
contributions of all the edges incident to a given extreme point q 2 Q. So let us set

�.q/ D �.q;P/ WD
X

q2e active diagonal

�.e/ :

Then we have

X

e active diagonal

�.e/ D 1

2

X

q2Q

�.q/ : (1)

We will see that a simple parameter determines �.q/. For that consider the line
through q and z (the extra point) which splits P n fq; zg into sets of size i > 0 and
j > 0, i C j D 2m � 2. We are interested in the difference between i and j and we
call ji � jj=2 the index, ind.q/, of q. Note that 0 � ind.q/ � m � 2. The maximal
value occurs for i D 1 and j D 2m � 3, while ind.q/ D 0 indicates that the line
through qz halves P n fq; zg. So, for example, if P is the symmetric configuration,
then ind.q/ D 0 for all q 2 Q.

Lemma 3.1

�.q/ D �ind.q/;m WD Cm � 2Cm�1 C �0ind.q/;m

where, for 0 � i � m � 2,

�0i;m WD


0 if m 	 i .mod 2/ and
C.m�1�i/=2C.m�1Ci/=2 if m 6	 i .mod 2/:

Proof See Figs. 2 and 3 for illustration. Let q1; : : : :; q2m�2 be the clockwise order
around q of the points in Q n fqg such that qq1 and qq2m�2 are edges of the convex
hull of P. Let j D ind.q/ C m � 1. Without loss of generality we may assume
that the line passing through the points q and z is not horizontal and has the points
fq1; : : : :; qjg to its left and fqjC1; : : : ; q2m�2g to its right. Split the diagonals incident
to q into the pairs .qq2; qq3/; .qq4; qq5/; : : : :; .qq2m�4; qq2m�3/; in each pair the two
diagonals have the same weight. If m 	 i then exactly one diagonal from each pair
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Fig. 2 Scenarios around an extreme point for jPj D 10, i.e. m D 5 odd; the boxes indicate the
eight edges to the other extreme points, the z the position of the extra point z among them. Active
edges are indicated by underlined boxes. X stands for C1C3 C C2C2 C C3C1 D C5 � 2C4

is active and it follows that

�.q/ D
X

2�`�2m�4; ` even

�.qq`/ D
X

2�`�2m�4; ` even

C.2m�2�`/=2C`=2

D
m�2X

`D1
Cm�1�`C` D Cm � 2Cm�1;

where the last equality follows from Fact A.3 (Segner Recurrence).
On the other hand, if m 6	 i, exactly one diagonal from each pair is active

with the exception of the pair .qqj; qqjC1/ for which both diagonals are active,
therefore to the value calculated in the previous case we must add �.qqj/ D
C.m�1�ind.q//=2C.m�1Cind.q//=2 and the lemma follows. ut
Theorem 3.2 For m WD jPj

2
,

pm.P/ D 3

2
Cm � 1

2

X

q2Q

�0ind.q/;m :
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Fig. 3 Scenarios around an extreme point for jPj D 12, i.e. m D 6 even. Here X WD C1C4 C
C2C3 C C3C2 C C4C1 D C6 � 2C5

Proof According to Lemma 2.1, Equation (1), and Lemma 3.1 we have

pm.P/ D .2m � 1/Cm�1 � 1
2

0

@.2m � 1/.Cm � 2Cm�1/C
X

q2Q

�0ind.q/;m

1

A

D .2m � 1/.2Cm�1 � 1
2

Cm/ � 1
2

X

q2Q

�0ind.q/;m

D 3

2
Cm � 1

2

X

q2Q

�0ind.q/;m (see Fact A.5).

ut
A simple rotational scan around z allows to compute the indices of all points in

Q in linear time. However, beyond this we have to compute the Catalan numbers
and the sum in Theorem 3.2 involving numbers with linear (in n) number of bits.
The recurrence in Fact A.2 is useful for computing the first m Catalan numbers with
O.m/ operations.

Corollary 3.3 If the extreme points in P are given in order sorted along the
boundary of the convex hull of P, then pm.P/ can be computed in linear time plus
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O.n/ arithmetic operations (addition, multiplication, integer division) on O.n/-bit
integers.

Corollary 3.4

(1) If m is even, then the symmetric configuration P gives pm.P/ D 3
2
Cm. This

quantity is the maximum attained for wheel configurations and m even.
(2) If m is odd, then the symmetric configuration P gives pm.P/ D 3

2
Cm �

2m�1
2

C2
.m�1/=2.

Proof From Theorem 3.2 we know pm.P/ D 3
2
Cm � 1

2

P
q2Q �

0
ind.q/;m. The

symmetric configurations have ind.q/ D 0 for all q 2 Q. Now, since

�00;m WD


0 , m even, and
.C.m�1/=2/2 , m odd,

the claimed values readily follow. Moreover, since �0i;m � 0 for all i, the maximality
for m even holds. ut
Frequency vectors While we have resolved already the case of maximizing the
number of crossing-free matchings for m even, the remaining cases require a slightly
more subtle treatment. If we let fi D fi.P/ be the number of extreme points with
index i, then Lemma 3.1 and Theorem 3.2 tell us that (and how) the frequency vector
. f0; f1; : : : fm�2/ determines pm.P/. In preparation of our extremal analysis, we have
to understand which frequency vectors are possible.

Lemma 3.5 . f0; f1; : : : fm�2/ 2 N
m�1
0 is the frequency vector of some wheel set iff

(i)
Pm�2

iD0 fi D 2m � 1,
(ii) fi is even for i > 0, and

(iii) If fi > 0 then fj > 0 for all j < i.

An extra property we get as a consequence of the above requirements is that f0 is
always odd (and thus nonzero).

Proof There is a standard argument for this from k-set theory that goes back to the
early papers, e.g. [11]. One basically lets a line rotate about the extra point z and
observes how this line dissects the points in Q as points in Q are encountered.

First we show that every frequency vector of a wheel set P D Q [ fzg in wheel
configuration with 2m points satisfies (i–iii) in the statement of the lemma. (i) is
obvious.

Note that there is always a point q 2 Q such that the line through zq halves
Q n fqg; this follows by observing a directed line rotating about z while observing
the points left of it. If such a line starts going through zr, r 2 Q, with k points to the
left, then after rotating by � , we have n�2�k to its left. Since the number of points
to the left changes by C1 or �1 in each step, there must be a point q 2 Q where
there are .k C .n � 2 � k//=2 D n=2� 1 points to the left of the line through zq, a
halving line.
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Now start with a halving line h (through zq), directed from z towards q, and rotate
h (a line, not a ray!) clockwise, while enumerating the points in Q as encountered
until q is met again. This gives a sequence .q D q1; q2; : : : q2m�1; q2m D q/ (we
have fq1; q2; : : : q2m�1g D Q). For i D 1; 2; : : : 2m � 1, let hi be the directed line h
when it goes through qi and let hiC1=2 be some line through z between hi and hiC1.
Moreover, let h1=2 be a line just before the line through q1.

We define a function g W f i
2
j i D 1; 2; : : : 4m � 1g ! R, by setting g.x/ as the

number of points left of line hx, where points on hx contribute only 1
2

to the count.
We see that for i 2 f1; 2; : : : 2m � 1g,
(a) g

�
1
2

� D m � 1
2
, g
�
2m � 1

2

� D mC 1
2
,

(b) jg �i� 1
2

� � g
�
iC 1

2

� j D 1,

(c) g.i/ D g.i� 1
2 /Cg.iC 1

2 /
2

2 N,
(d) for i ¤ 1, jg.i/� g.i� 1/j � 1, and
(e) ind.qi/ D jg.i/� mj.
It follows that m appears an odd number of times as value of g.i/, i 2 f1; 2; : : : ;
2m � 1g and any other value appears an even number of times; hence, by (e),
ind.qi/ D 0 for an odd number of points and any value other than 0 appears an
even number of times. This establishes (ii) in the statement of the lemma. (d) and
(e) show (iii).

We still have to show sufficiency of (i–iii). For that let us go back to the proof of
necessity and define a sign sequence "i 2 f�1;C1g, i 2 f1; 2; : : : ; 2m � 1g, where
"i D C1 if line hi is directed from z to qi and "i D �1, otherwise. In our set-up,
"1 D C1. We have, for i integral,

g



iC 1

2

�

D g



i� 1
2

�

C "i D g


1

2

�

C "1 C "2 C � � � "i D m � 1
2
C

iX

jD1
"j ;

g.i/ D m � 1
2
C

i�1X

jD1
"j C "i

2
, and ind.qi/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

i�1X

jD1
"j C "i

2
� 1
2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
:

We see that ind.qi/ D ind.qi�1/ iff "i ¤ "i�1. Given . f0; f1; : : : ; fm�2/ 2 N
m�1
0 with

fk the last nonzero entry, we now build a sequence (where “f0 
 indD0” should be
read as “gives f0 times a point with index 0”, etc.)

C.�C/ f0�1
2

„ ƒ‚ …
f0 � indD0

C.�C/ f1�2
2

„ ƒ‚ …
. f1�1/� indD1

C.�C/ f2�2
2

„ ƒ‚ …
. f2�1/� indD2

� � �C.�C/ fk�2

2

„ ƒ‚ …
. fk�1/� indDk

�k
„ƒ‚…

indDk; .k�1/;::: 1; one each

(2)

Conditions (i–iii) guarantee that this is a well-defined sequence of length 2m�1with
m times “C” and .m � 1/ times “�”. It is easy to obtain a set Q of 2m � 1 points
on a circle, together with z its center, so that we get this sequence of "is; e.g. choose
2m � 1 unit vectors v1; v2; : : : ; v2m�1, as sorted around the origin 0, all positive x-
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coordinate, and then set qi WD 0C "ivi. The balance of Cs and �s guarantees also
that indeed the line through the first point is halving, which was essential in our
argument.

This completes the proof of the lemma as stated. However, as we are at it, let
us see how much choice we had in setting up the sequence (2). Obviously, there is
choice. For example, both

0C 1C 1� 1C 1� 1C 2C 2� 1� and
0C 1C 1� 1C 2C 2� 1� 1C 1�

generate the vector .1; 6; 2; 0/. The reader familiar with order types will agree that
the realizations of these sequences give distinct order types of ten points.

However, there are relevant examples where there is no choice:

.2m � 1; 0; 0; : : : 0/ �! C .�C/m�1 (symmetric configuration)

and

.1; 2; 2; : : : 2
„ ƒ‚ …

`�
; 2k; 0; 0; : : : 0/ �! C`C2 .�C/k�1�`C1

These are exactly the frequency vectors which – as we will see below – occur in
minimizing and maximizing the number of CFPMs, and thus we will get unique
order types realizing those. ut

Again, in different disguises the argument is well-known. We wanted to go
through it again, since we are not aware that the sufficiency was ever addressed
before.

Let us note that the barely-in configuration has .1; 2; 2; : : : 2; 4/ as its frequency
vector, while the symmetric configuration has frequency vector .2m� 1; 0; 0; : : : 0/.
Corollary 3.6 For m � 3 odd, any wheel set P of 2m points satisfies

pm.P/ � 3

2
Cm � 1

2
C2
.m�1/=2 D

3

2
Cm



1C‚


1

m3=2

��

with equality iff P has frequency vector .1; 2.m� 1/; 0; 0; : : : 0/.
Proof Recall pm.P/ D 3

2
Cm � 1

2

P
q2Q �

0
ind.q/;m from Theorem 3.2. We have

P
q2Q �

0
ind.q/;m � �00;m D C2

.m�1/=2 since there is at least one q with ind.q/ D 0.
This lower bound is attained iff all the other points have index 1; any other point of
index 0 or a point of index 2 will increase the sum.

The asymptotic version of the bound follows from Fact A.1. ut
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In particular, for m D 3, barely-in with frequency vector .1; 4/ maximizes with
seven CFPMs – the unique appearance of barely-in as extremal configuration (except
for m D 2 where there is only one order type for a wheel set).

4 Extremal Analysis: Lower Bounds

The following analysis is tedious. As a small “justification” we provide Fig. 4:
It shows that as the extra point moves inwards (among 9 other points in convex
position), the number of CFPMs does not change in a simple way (e.g. monotone).

We have to treat the cases of jPj=2 even or odd separately.

3

11

7

15

19

14

9
4

9

14
0

Fig. 4 Nine points plus the extra point moving in from extremal position (ten points in convex
position) to central position (symmetric configuration). The numbers indicate the excess of the
number of CFPMs beyond C5 D 42
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4.1 m Even

If m D 2, i.e. we are dealing with four points, then there is only one order type of
four points in wheel configuration (which happens to be both of the type symmetric
and barely-in). It has three CFPMs, both minimal and maximal.

We first rewrite Theorem 3.2 in terms of the frequency vector.

Lemma 4.1 Let jPj D 2m, m even, with frequency vector . f0; f1; : : : fm�2/. Then

pm.P/ D 3

2
Cm � 1

2

m�2X

iD0; odd

fi C.m�1�i/=2C.m�1Ci/=2

D 3

2
Cm � 1

2

m=2�2X

jD0
f2jC1 Cm=2�j�1Cm=2Cj

„ ƒ‚ …
�D�evenWD

:

Lemma 4.2 Let jPj D 2m, m � 4 even. Then

pm.P/ � Cm C Cm�1 � 2Cm�2 D 9

8
Cm



1C‚

1

m2

��

:

This bound is tight and attained iff the frequency vector is .1;

m�4
‚ …„ ƒ
2; 2; : : : 2; 6; 0/.

(See Fact A.7 for the asymptotic version of the lower bound.)

Proof pm.P/ is minimized, if � – as defined in Lemma 4.1 – is maximized. We
observe that the terms Cm=2�j�1Cm=2Cj grow as j grows (see Fact A.4). Therefore,
we would like to distribute as much weight as possible to the larger indices of the
frequency vector. However, that has a price, since we have to have an entry of 2
at least up to the last nonzero entry. Every other of these entries comes with a
coefficient of 0, others with positive coefficients that are however smaller than the
last positive. It follows that the only candidates of frequency vectors with extremal
property are

. 1„ƒ‚…
f0

;

2j
‚ …„ ƒ
2; 2; : : : 2; 2.m � 2j� 1/

„ ƒ‚ …
f2jC1

;

m�2j�3
‚ …„ ƒ
0; 0; : : : 0/ for j D 0; 1; : : : .m � 4/=2

where

� D �m
j WD Cm=2�1Cm=2 C Cm=2�2Cm=2C1 C � � � Cm=2�jCm=2Cj�1

C.m � 2j� 1/Cm=2�j�1Cm=2Cj :
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We want to understand how �m
j behaves as j grows. For that we calculate

�m
jC1 ��m

j

D Cm=2�j�1Cm=2Cj C .m � 2j� 3/Cm=2�j�2Cm=2CjC1
�.m � 2j� 1/Cm=2�j�1Cm=2Cj

D .m � 2j� 3/Cm=2�j�2Cm=2CjC1 � .m � 2j� 2/Cm=2�j�1Cm=2Cj

D .2k � 1/Ck�1C` � 2kCkC`�1 .k WD m=2� j� 1; ` WD m=2C jC 1/

This expression is less than 0 (i.e. �m
jC1 < �m

j ) iff

2` � 1 < 3k (employ Fact A.6)

” j < .m=2� 4/=5 :

Hence, the .�m
j /j-sequence initially falls (at least for m large enough), and then it

begins to grow. We are interested in� large and therefore, only the first and the last
element of the sequence qualify. These are (from vector .1; 2.m� 1/; 0; 0; : : : 0/)

�m
0 D .m � 1/Cm=2�1Cm=2

and (from vector .1; 2; 2; : : : 2; 6; 0/)

�m
.m�4/=2 D Cm=2�1Cm=2 C Cm=2�2Cm=2C1 C � � � C2Cm�3 C 3C1Cm�2

D 1

2
Cm � Cm�1 C 2Cm�2

If we can show �m
.m�4/=2 � �m

0 then

3

2
Cm �


1

2
Cm � Cm�1 C 2Cm�2

�

D Cm C Cm�1 � 2Cm�2

establishes the result.
So let us have a look at the sequence .�m

0 ;�
m
.m�4/=2/mD4;6;:::

m 4 6 8 10 12

�m
0 6 50 490 5 292 60 984

�m
.m�4/=2 6 52 550 6 396 78 812

Note that �m
0 D ‚



m
�
2m

m3=2

	2
�

D ‚ � 4m

m2

�
while �m

.m�4/=2 D ‚
�
4m

m3=2

	
. Therefore,

�m
.m�4/=2 � �m

0 is definitely true for large enough m, but we need to argue that this
is true for all m � 4. This fact is established in Lemma 4.3 below; in fact, �m

.m�4/=2
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is strictly larger than �m
0 for m � 6 (and for m D 4 we have�m

.m�4/=2 D �m
0 simply

because .m � 4/=2 D 0).
We still have to establish the uniqueness of the minimizing frequency vector.

Note that this is not obvious since �m
jC1 D �m

j may hold (e.g. �8
0 D �8

1 D 490).
We know from the analysis above that this happens iff j D .m=2� 4/=5, and if – on
top – j D .m � 4/=2 � 1. Then a second minimizing frequency vector would exist.
However,

.m=2� 4/=5 D .m � 4/=2� 1, m D 11

2
:

ut
Lemma 4.3 For m � 6, even,

1

2
Cm � Cm�1 C 2Cm�2 D �m

.m�4/=2 > �m
0 D .m � 1/Cm=2�1Cm=2 :

Proof The claim is true for m D 6; we employ induction. Let us write A.m/ for
�m
.m�4/=2 and B.m/ for �m

0 . Note that we have A.m/ > B.m/ for all even m � 6

provided A.6/ � B.6/ (which is true, 52 > 50) and

A.m/ > 0;B.m/ > 0, and

A.mC2/
A.m/

B.mC2/
B.m/

� 1 � 0 for all even m � 6:

We have1

A.mC2/
A.m/

B.mC2/
B.m/

� 1 D 1

4

.4m3 �m2 � 26m� 66/m
.m2 � 2mC 2/.mC 3/.mC 1/2 :

The denominator is positive for all positive m. For positive m the sign of the
numerator – and thus the whole expression – is determined by s.m/ D 4m3 � m2 �
26m � 66. Note that s.3/ D �45 and s.4/ D 70. That is, s.4/ > 0, and s.x/ (as a
real polynomial) has a positive real root between x D 3 and x D 4. According to
Descartes’ Sign Rule,2 this has to be the only positive root and therefore s.x/ > 0

for all x � 4. ut

1We acknowledge the use of Maple for these straightforward but tedious calculations.
2Descartes’s Sign Rule: The number of positive real roots of a real polynomial is at most the
number of sign changes of the coefficients, as read from largest to smallest power (ignoring zero-
coefficients). In our polynomial, there is only one sign change, from 4x3 to�x2 .
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4.2 m Odd

Lemma 4.4 Let jPj D 2m, m odd, with frequency vector . f0; f1; : : : fm�2/. Then

pm.P/ D 3

2
Cm � 1

2

.m�3/=2X

jD0
f2j C.m�1/=2�jC.m�1/=2Cj

„ ƒ‚ …
�D�oddWD

:

Lemma 4.5 Let jPj D 2m, m � 7 odd. Then

pm.P/ � Cm C Cm�1 � 2Cm�2 D 9

8
Cm



1C‚

1

m2

��

:

This bound is tight and attained iff the frequency vector is .1;

m�4
‚ …„ ƒ
2; 2; : : : 2; 6; 0/.

If jPj D 6 then pm.P/ � 5 and if jPj D 10 then pm.P/ � 45, both times values
attained in the symmetric configuration.

Proof Again we have to analyze for which frequency vectors the value of� – as in
Lemma 4.4 – is maximized. Plausible frequency vectors for this to happen are

.2m � 1; 0; 0; : : : 0/ (the symmetric configuration), (3)

where� D �m
0 WD 2m�1

2
.C.m�1/=2/2, and

. 1„ƒ‚…
f0

;

2j�1
‚ …„ ƒ
2; 2; : : : 2; 2.m � 2j/

„ ƒ‚ …
f2j

;

m�2j�2
‚ …„ ƒ
0; 0; : : : 0/ for j D 1; 2; : : : .m � 3/=2;

where� equals

�m
j WD

1

2
.C.m�1/=2/2 C C.m�1/=2�1C.m�1/=2C1 C � � � C.m�1/=2�jC1C.m�1/=2Cj�1

C.m � 2j/C.m�1/=2�jC.m�1/=2Cj :

Beware that plugging 0 for j in �m
j does not give�m

0 ! For m D 3 we have �m
0 only,

which is therefore the maximum. That is, pm.P/ is minimized in the symmetric
configuration – not too surprising, since we have here C3 CFPMs.
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We first show �m
0 > �

m
1 for odd m � 5:

�m
0 ��m

1D
2m � 1
2

.C.m�1/=2/2 �

1

2
.C.m�1/=2/2 C .m � 2/C.m�1/=2�1C.m�1/=2C1

�

D.m � 1/.C.m�1/=2/2 � .m � 2/.C.m�1/=2/2
mC1
2

m

.m � 2/ mC3
2

(Fact A.2)

D.C.m�1/=2/2


m � 1� m.mC 1/
mC 3

�

D.C.m�1/=2/2 m � 3
mC 3 > 0 for m > 3:

Now, for j � 1, we consider

�m
jC1��m

j D C.m�1/=2�jC.m�1/=2Cj C .m � 2j� 2/C.m�1/=2�j�1C.m�1/=2CjC1
�.m � 2j/C.m�1/=2�jC.m�1/=2Cj

D .m � 2j� 2/C.m�1/=2�j�1C.m�1/=2CjC1
�.m � 2j� 1/C.m�1/=2�jC.m�1/=2Cj

D .2k � 1/Ck�1C` � 2kCkC`�1


k WD m � 1
2
� j; ` WD mC 1

2
C j

�

That is, we have the same setting as before in the proof of Lemma 4.2 and it follows
that .�m

j /j first decreases and then increases; the “switch” happens at 2` � 1 D 3k
iff j D .m� 3/=10. Hence, we have reduced the possible extremal candidates to the
first and last elements�m

0 D 2m�1
2
.C.m�1/=2/2 and, for j D m�3

2
,

�m
.m�3/=2 D

1

2
.C.m�1/=2/2 C C.m�1/=2�1C.m�1/=2C1 C � � � C2Cm�3 C 3C1Cm�2

D 1

2
Cm � Cm�1 C 2Cm�2

for frequency vector .1; 2; 2; : : : 2; 6; 0/.
First entries in the sequence .�m

0 ;�
m
.m�3/=2/mD3;5;::: are

m 3 5 7 9 11

�m
0 2:5 18 162:5 1 666 18 522

�m
.m�3/=2 2:5 17 166:5 1 859 22 321

We see that for m D 5 the symmetric configuration has larger �, thus the smaller
number of CFPMs. Starting from m D 7, the frequency vector .1; 2; 2; : : : 2; 6; 0/



752 A.J. Ruiz-Vargas and E. Welzl

gives the smallest number of CFPMs up to m D 11, and also beyond, as to be shown
in Lemma 4.6 below.

For uniqueness, we observe that there was only one candidate for m D 3 and for
m D 5 we have shown �m

0 > �m
1 . Our last concern is that for m � 7, �m

jC1 D �m
j

(this holds for j D .m � 3/=10) and j D .m � 3/=2� 1. But

.m � 3/=10 D .m � 3/=2� 1, m D 11

2
:

ut
Lemma 4.6 For m � 7, odd,

1

2
Cm � Cm�1 C 2Cm�2 D �m

.m�3/=2 > �
m
0 D

2m � 1
2

.C.m�1/=2/2 :

Proof The claim is true for m D 7; again, we use induction. We write A.m/ for
�m
.m�3/=2 and B.m/ for �m

0 . We have A.7/ D 166:5 > 162:5 D B.7/ and we obtain

A.mC2/
A.m/

B.mC2/
B.m/

� 1 D 1

4

8m5 � 6m4 � 53m3 � 71m2 C 60m � 18
m2.m2 � 2mC 2/.2mC 3/.mC 2/

which we will prove nonnegative for m � 7. The denominator is always positive
for positive m, and thus the sign of the numerator s.m/ D 8m5 � 6m4 � 53m3 �
71m2 C 60m � 18 determines the sign of the whole expression for positive m. Note
that s.3/ D �450 and s.4/ D 2 350. That is, s.x/ has a positive real root between
x D 3 and x D 4. However, now Descartes Rule allows for at most three positive
roots.

We have a look at the derivative s0.x/ D 40m4 � 24m3 � 159m2 � 142m C 60
and observe s0.0/ D 60, s0.1/ D �225 and s0.3/ D 795. Hence, s0.x/ has a positive
root between 0 and 1, and another one between 1 and 3, and there is no further
positive root due to Descartes. But that shows that the derivative of s.x/ is never 0,
thus remains positive, beyond its root between 3 and 4 and therefore, s itself stays
positive after that. ut

5 Wheel Sets Minimize for Nonconvex Position

We show that wheel sets S minimize pm.S/ among all sets which are not in convex
position. (Recall that we assume general position.) In this way we will validate the
claim that the number of CFPMs for nonconvex position goes up by a factor of
at least 9=8 – in the limit as the number of points grows – compared with convex
position.
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Theorem 5.1 For all n WD 2m, 2 � m 2 N, we have

min
S not convex; jSjDn

pm.S/ D min
P wheel set; jPjDn

pm.P/ :

Let us consider S, a set not in convex position, which we write as S D
fz; p1; p2; : : : pn�1g with z one of the nonextreme points in S; w.l.o.g. let z be the
origin 0. We compare pm.S/ with pm.S0/, where S0 WD fz; p01; p02; : : : p0n�1g with
p0i WD 1

kpikpi; hence S0 is a wheel set (note that S0 cannot contain duplicate points
since no three points in S are on a common line). Therefore, the following lemma
establishes the desired extremal property of wheel sets among sets not in convex
position (Theorem 5.1).

Lemma 5.2 For sets S and S0 as above, pm.S/ � pm.S0/.

Proof In fact, we fix the companion, say p1 and p01, resp., of z in the perfect matching
and show that S0 cannot possibly offer more such CFPMs than S.

Let r0 be the ray emanating from z containing p1 (and p01), let M be the CFPMs
of S containing zp1 with no edge crossed by r0, and, similarly, let M0 be the CFPMs
of S0 containing zp01 not crossed by r0 (this is implied by non-crossing for S0). We
plan to prove

jMj � jM0j

which yields the claim from the beginning of the proof, since M0 is exactly the set
of CFPMs of S0 with edge zp01, while M is a subset of the CFPMs of S with edge zp1.

In the next step, for the sake of comparison, we partition M and M0 according
to the following rules.

Let M0 be the set of matchings in M which are not crossed by the opposite ray
�r0; so these matchings avoid the line through z and p1 (other than zp1 contained in
this line). Define M0

0 correspondingly as a subset of M0. Let X and Y, resp., be the
set of points of S on the two sides of the line through z and p1. Then the matchings in
M0 are exactly those composed of a CFPM of X with a CFPM of Y. Since we know
that pm.R/ � CjRj=2 for every set R, we see that

jM0j � CjXj=2CjYj=2 :

(Note here that jXj and jYj may be odd. In order to include that case, we follow the
convention that Cx D 0 for x 62 N0.) In an analogous analysis for S0, we get sets X0
and Y 0 on the two sides of the line through z and p01, where jX0j D jXj and jY 0j D jYj.
And since X0 and Y 0 are in convex position, we have

jM0
0j D CjX0j=2CjY0 j=2 D CjXj=2CjYj=2

and conclude jM0j � jM0
0j.



754 A.J. Ruiz-Vargas and E. Welzl

We proceed to the matchings that are crossed by ray �r0. Consider such a
matching M in M. Starting with r D �r0, rotate r about z in counterclockwise
direction until for the first time no edge in M is crossed, where we consider an
intersection in an endpoint of an edge not as crossing. With this in mind, note that
in its final position, r goes through some point p of S. Proceed in the same fashion
in clockwise direction, yielding a point q; p and q have to lie on opposite sides of
the line through z and p1. We put M into a set Mp;q. In this way we have

M DM0

:[
:[

p;q

Mp;q (disjoint union),

where p goes through all points on one side of the line though z and p1, and q goes
through the points on the other side. Sets M0

p0;q0 can be defined accordingly. Our
final goal is to show jMp;qj � jM0

p0;q0 j for all pairs p; q under consideration.
Let us first determineM0

p0;q0 . It is easy to see that these are exactly the matchings,
where the first edge encountered when moving from z along�r0 is p0q0. In particular,
if p0q0 crosses r0 (and not �r0), then M0

p0;q0 D ;. Otherwise, the rays r0, rp0 (from
z through p0) and rq0 (from z through q0), form three convex cones. We partition
S0nfz; p01g into three sets X0;Y 0, and Z0, where (i) Z0 is the set of points in S0nfz; p01g in
the closed3 cone delimited by rp0 and rq0 , (ii) X0 is the set in the open cone delimited
by r0 and rp0 , and (iii) Y 0 is the set in the open cone delimited by r0 and rq0 . We see
that

jM0
p0;q0 j D pm.X0/pm.Y 0/pm.Z0 n fp0; q0g/ D CjX0j=2CjY0 j=2CjZ0j=2�1 :

As for Mp;q, the case of pq crossing r0 is easy, since this happens iff p0q0 crosses r0;
then M0

p0;q0 D ; and jMp;qj � jM0
p0;q0 j comes for free.

We are ready for the most interesting situation of r0, rp, and rq forming three
convex cones. Let sets X, Y, and Z in these cones be defined in an analogous fashion
as above. Then

jMp;qj D pm.X/pm.Y/cpmz.Z/ � CjXj=2CjYj=2cpmz.Z/ :

where cpmz.Z/, z not in the convex hull of Z, denotes the set of all CFPMs on Z
such that every line through z that intersects the interior of conv.Z/ crosses at least
one edge in the matching. We call such a matching z-covering. Since we will show
below that cpmz.Z/ � CjZj=2�1, this gives us the relation jMp;qj � jM0

p0;q0 j (note
jXj D jX0j, jYj D jY 0j, and jZj D jZ0j), therefore jMj � jM0j and the lemma is
established. ut

We call a perfect matching on a set S covering if the vertical projection of all
edges in the matching on the x-axis is a connected set. Given a set S and a point z

3We choose this cone closed, since we want p0 and q0 in Z0, and later p and q in Z.
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outside conv.S/, an appropriate projective transformation (sending a line containing
z and avoiding the convex hull of S to infinity) transforms z-covering CFPMs exactly
to covering CFPMs.

5.1 Covering Crossing-Free Perfect Matchings

Let cpm.S/ denote the number of covering CFPMs of S. We set out to prove
cpm.S/ � CjSj=2�1 .

If S is in convex position and, moreover, the first and last point (w.r.t.
x-coordinate) form an edge of conv.S/, then we can easily see that cpm.S/ D
CjSj=2�1. This is true, since in this configuration a CFPM is covering iff first and last
point are matched. For S in convex position without the extra condition, covering
CFPMs have a more involved structure and, at first glance, it is not clear what their
number should be. As a by-product of our analysis, cpm.S/ D CjSj=2�1 will follow
also here.

Let us briefly recall that a string w over the alphabet fh; ig is a well-formed
parentheses string, WFP for short, if it contains the same number of h’s and i’s,
and no prefix of w has more i’s than h’s. (1) and (2) below are basic well-known
properties of WFPs, (3) is a trivial consequence.

Proposition 5.3

(1) The number of WFPs of length 2m is Cm.

(2) For every nonempty WFP w exactly one of the following two holds:

(i) w D uv for nonempty WFPs u and v (w is called decomposable).
(ii) w D hui for a WFP u (w is called indecomposable).

(3) The number of indecomposable WFPs of length 2m is Cm�1.

Given a perfect matching M on S, let us label the left endpoints (w.r.t. x-coordinate)
of matching edges by h and the right endpoints by i. Project the points vertically to
the x-axis and read their labels from left to right, which gives a string �M .

Observation 5.4

(1) �M is a WFP.
(2) M is a covering CFPM iff it is a CFPM and �M is indecomposable.

With this in mind, here is the only missing link to the required inequality.

Lemma 5.5 Let S be a set of 2m points in general position, no two points of same
x-coordinate. For every WFP w of length 2m there is a CFPM M on S with �M D w.

Proof Let M0 be a perfect matching – not necessarily crossing-free – on S with
�M0 D w; it is easily seen that such an M0 exists. If M0 has a crossing between edges
ab and cd (where a and c are the left endpoints of the edges) then replace these two
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edges by ad and cb. These two edges do not cross (since every set of four points has
at most one crossing perfect matching), and the projected string of h’s and i’s did
not change. While there are crossings, iterate this step. The process will eventually
stop, since the Euclidean length of the matching decreases in every step (a simple
consequence of the triangle inequality). Hence, we end up with a CFPM M with
�M D �M0 D w.

(Alternatively, we could have chosen M simply as the perfect matching with
�M D w of smallest Euclidean length and argue that it cannot contain crossings). ut
Let us mention, that the proof follows the well-known procedure of untangling
crossings in spanning tours or matchings, see e.g. [27], where it is shown that the
described untangling process terminates in at most O.n3/ steps.

Lemma 5.6 Let S, jSj D 2m, be a set of points in general position, with no two
points of equal x-coordinate. We have

cpm.S/ � Cm�1 and

cpm.S/ D Cm�1 if S is in convex position.

Proof Every WFP w of length 2m has at least one CFPM M on S with �M D w. Since
there are Cm�1 indecomposable WFPs, there must be at least Cm�1 covering CFPMs
on S.

For the second fact, recall that S has Cm CFPMs, the same number as the number
of WFPs of length 2m. Therefore, for every WFP w we have exactly one CFPM Mw

of S with �Mw D w. Precisely the Cm�1 CFPMs Mw with w indecomposable are
covering. ut

The reader may have observed already, that the known inequality pm.S/ � CjSj=2
(from [12]) follows readily as well.

6 Origin Embracing Triangles with Weights

We embed our results in a different context independent of CFPMs. For that, let Q be
a planar point set with 0 2 conv.Q/ and Q[f0g in general position. Let Tembr denote
the set of triples t 2 �Q

3

�
with 0 2 conv.t/, the set of origin embracing triangles.

This set Tembr of origin embracing triangles is of interest, since via the Gale
transform there is a bijection between Tembr and the facets of the convex hull of
some appropriate n WD jQj points in R

n�3, a simplicial polytope with at most n
vertices in R

n�3. (In fact, the natural extension to origin embracing simplices in R
d

has an analogous correspondence to simplicial .n�d�1/-polytopes, cf. [28, 29, 31].)
Other works considering origin embracing triangles or simplices can be found e.g.
in [10, 14, 16, 19].

This correspondence to polytopes shows (via the so-called Upper Bound Theo-
rem for convex polytopes, cf. [31]) the following tight bounds.
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n � 2 � jTembrj �
 
b n
2
C 1c
3

!

C
 
d n
2
C 1e
3

!

(4)

Note that t D fp; q; rg is in Tembr iff none of the vectors p, q and r can be expressed
as a nonnegative linear combination of the others. Therefore, the three open cones
defined by the three rays from 0 to p, q, and r, resp., are convex, and they partition
Q n fp; q; rg into three sets of size at, bt and ct, respectively.

For functions f W N0 ! R we consider the sum
P

t2Tembr
f .at/f .bt/f .ct/ and its

extremal values. The bounds in (4) above deal with the case of the constant function
f .k/ 	 1.

Before we proceed to the choice of f that connects to CFPMs in wheel configu-
rations, we offer the surprising fact that there is a positive function where the sum
depends on jQj only, independent of the configuration.

Observation 6.1

X

t2Tembr

Cat Cbt Cct D CjQj�2

Proof Note that CjQj�2 is the number of triangulations of a convex jQj-gon. Choose
Q0 as the set of points q0 WD 1

kqkq, q 2 Q; this transformation does not change
the embracing triangles, but gives a set in convex position. Every triangulation of
Q0 has a unique triangle (with vertices fp0; q0; r0g 2 �Q0

3

�
) containing 0 and thus

t D fp; q; rg 2 Tembr. t appears in this role for exactly Cat Cbt Cct triangulations. ut
Observation 6.2

X

t2Tembr

Cat=2Cbt=2Cct=2 D pm.Q0 [ f0g/� Cm

with Q0 WD f 1
kqkq j q 2 Qg and m WD jQjC1

2
. (We assume Cx D 0 for x 62 N0.)

Proof P WD Q0[f0g is in wheel configuration with 0 the extra point. Recall that the
sum to the left is the same for Q and Q0.

In every CFPM M of P, 0 has a companion q0 2 Q0. Let us first consider the case
where the line containing q00 crosses some edge of M and let p0r0 be the first edge in
M encountered when moving from 0 in the direction opposite to q0. The unordered
triple fq0; p0; r0g is an embracing triangle in Tembr, and this triple appears in this role
for exactly 3Cat=2Cbt=2Cct=2 CFPMs. The factor 3 stems from the fact, that each of
the three points can represent the companion of 0, while the other two represent the
first edge hit.

Therefore, 3 �Pt2Tembr
Cat=2Cbt=2Cct=2 is the number of CFPMs of P except for

those, where the line through the extra edge q00 crosses no other edge of the
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matching. Let k and ` be the number of points in Q0 on the two sides of the
line through q00 (hence, k C ` D jQ0j � 1 D 2.m � 1/). Then the number of
“forgotten” CFPMs with extra edge q00 is Ck=2C`=2, which we have previously
(Lemma 3.1) defined as �0ind.q0/;m (since ind.q0/ D jk � `j=2; assuming k � `,

check .m � 1 � k�`
2
/=2 D `=2 and .m � 1C k�`

2
/=2 D k=2). We have

X

t2Tembr

Cat=2Cbt=2Cct=2 D
1

3

0

@pm.Q0 [ f0g/�
X

q02Q0

�0ind.q0/;m

1

A

(by Theorem 3.2) D 1

3

0

@

2

43

2
Cm � 1

2

X

q02Q0

�0ind.q0/;m

3

5 �
X

q02Q0

�0ind.q0/;m

1

A

D 1

2
Cm � 1

2

X

q02Q0

�0ind.q0/;m

(by Theorem 3.2) D pm.Q0 [ f0g/� Cm

ut
From the introduction we recall Asinowski’s characterization of sets of 2m points

with Cm CFPMs, [7], and our bounds for wheel sets translate to (1) and (2), resp., in
the corollary below.

Corollary 6.3

(1)
P

t2Tembr
Cat=2Cbt=2Cct=2 D 0 iff jQj is even or jQj D 5 and every line through a

point q 2 Q and 0 halves Q n fqg.
(2) 1

8
Cm.1C o.1// �Pt2Tembr

Cat=2Cbt=2Cct=2 � 1
2
Cm.1C o.1// for m WD jQjC1

2
.

We find this a curious connection, but, admittedly, we cannot supply any motiva-
tion for considering such weighted sums over embracing triangles or simplices.

7 Summary

Starting off from the formula pm.P/ D 3
2
Cm � 1

2

P
q2Q �

0
ind.q/;m (Theorem 3.2)

it was easy to obtain a linear time4 algorithm for computing pm.P/ (assuming
the extreme points sorted). Together with a characterization of possible frequency
vectors (Lemma 3.5), tight upper bounds were established (Corollaries 3.4 and 3.6).

4Assuming constant time for arithmetic operations!
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Theorem 7.1 Let P be a planar point set of even size in wheel configuration with
m WD jPj=2. Then

pm.P/ �
8
<

:

3
2
Cm m even, and

3
2
Cm � 1

2
C2
.m�1/=2 D 3

2
Cm

�
1C‚

�
1

m3=2

		
m odd.

The symmetric configuration is the unique order type maximizing for m even, and
the unique order type with frequency vector .1; 2.m� 1/; 0; 0; : : : 0/ is the only one
maximizing for m odd.

Drawing a complete picture for lower bounds (both for wheel and for not convex
position) was a bit tedious, primarily because of small-number effects (Lemmas 4.2
and 4.5, and Theorem 5.1; for the claim of unique order types see last paragraphs of
proof of Lemma 3.5).

Theorem 7.2 Let P be a wheel set of even size 2m. Then

pm.P/

8
ˆ̂
<

ˆ̂
:

� Cm C Cm�1 � 2Cm�2 D 9
8
Cm
�
1C‚ � 1

m2

��
m ¤ 2; 3; 5;

D 3 m D 2;
� 5 m D 3; and
� 45 m D 5:

The symmetric configurations are the unique order types which minimize for m D
2; 3; 5. The unique order types realizing frequency vectors .1; 2; 2; : : : 2; 6; 0/ are
the only ones minimizing, otherwise.

The lower bounds hold for any point set not in convex position.
We have summarized some numbers for small m in Table 1. Note there is also
another small-number effect for the relation of symmetric vs. barely-in configura-
tions if m is odd, which does not exhibit its “normal” relation before n D 2m D 46.

Relation to counting triangulations, etc An essential step in our proof was the
establishment of the formula in Theorem 3.2 and one might be curious whether
similar identities are possible for other quantities. Indeed, let P D Q [ fzg be in
wheel configuration, z the extra point, n WD jPj, with `.q/ the number of points in Q
to the left of the directed line from q to z and r.q/ the number of points to the right.
Then the number of triangulations of P, tr.P/, can be shown to satisfy

tr.P/ D 1

2
Cn�1 � 1

2

X

q2Q

C`.q/Cr.q/ : (5)

With the monotonicity of Catalan products as in Fact A.4 and Lemma 3.5, this
immediately implies the result in [22]: The symmetric configuration maximizes
and the barely-in configuration minimizes tr.P/, also for n odd. (For n odd, we
choose a regular .n � 1/-gon together with a point close to its center. In this way,
j`.q/� r.q/j D 1, i.e. f`.q/; r.q/g D fb n

2
� 1c; d n

2
� 1eg, for all extreme points q.)
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Table 1 pmsymm.m/ is 3
2
Cm for m even and 3

2
Cm � 2m�1

2
C2
.m�1/=2 for m odd. Values for the

number of CFPMs, symmetric and barely-in configuration, and extremal wheel sets; " and #
indicate maximizers and minimizers, respectively. Note that for odd m, barely-in (with 5

4
Cm.1C

o.1//) majorizes symmetric (with 3
2
Cm.1C o.1//), a small-number effect that is resolved first for

46 points

jPj D n D 2m Symmetric Barely-in Wheel

n m Cm pmsymm.m/ Cm C Cm�1

min
pm.P/

max
pm.P/

4 2 2 3 l D 3 l 3 3

6 3 5 5 # < 7 " 5 7

8 4 14 21 " > 19 15 21

10 5 42 45 # < 56 45 61

12 6 132 198 " > 174 146 198

14 7 429 481 < 561 477 631

16 8 1430 2145 " > 1859 1595 2145

18 9 4862 5627 < 6292 5434 7195

20 10 16; 796 25; 194 " > 21; 658 18; 798 25; 194

22 11 58; 786 69; 657 < 75; 582 65; 858 87; 297
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

44 22 91� 109 137 223 845 460 " > 115 948 830 660 103� 109 137� 109

46 23 343� 109 436 834 060 065
Š
> 434 542 177 290 386� 109 513� 109

Similarly, there is a formula for origin embracing triangles (for the definition of
`.q/ and r.q/ as above set z WD 0).

jTembrj D
 

n

3

!

� 1
2

X

q2Q

  
`.q/

2

!

C
 

r.q/

2

!!

.here n WD jQj/: (6)

Again, this allows to read off extremal properties relatively easily.
Formulas as in (5) and (6) and many more can be shown by continuous motion

arguments as used e.g. in [6, 22, 26]. This is a topic for ongoing investigations [21].
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Appendix: Catalan Facts

Fact A.1 (Definition & Asymptotics) For all m 2 N0,

Cm WD 1

mC 1

 
2m

m

!

D .2m/Š

.mC 1/ŠmŠ D ‚


1

m3=2
4m

�

:

Fact A.2 (Simple Recurrence) For all m 2 N0,

2 � 2m � 1
mC 1 � Cm�1 D Cm D 1

2
� mC 2
2mC 1 � CmC1 :

Fact A.3 (Segner Recurrence) For all m 2 N,

Cm D C0Cm�1 C C1Cm�2 C � � � Cm�1C0 D
m�1X

iD0
CiCm�1�i:

Fact A.4 For k; ` 2 N,

CkC` < Ck�1C`C1 iff k � `
Proof

CkC` D 22k � 1
kC 1 Ck�1 � 1

2

`C 2
2`C 1C`C1 D .2k � 1/.`C 2/

.kC 1/.2`C 1/Ck�1C`C1

and

.2k � 1/.`C 2/

.kC 1/.2`C 1/ < 1

, 3k � 3 < 3`

, k � ` since k and ` are integers.

ut
Fact A.5 For m 2 N,

.2m � 1/


2Cm�1 � 1
2

Cm

�

D 3

2
Cm
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Proof Employ Fact A.2 for expressing Cm�1 in terms of Cm.

.2m � 1/


2Cm�1 � 1
2

Cm

�

D .2m � 1/


2


1

2

mC 1
2m � 1Cm

�

� 1
2

Cm

�

D .2m � 1/

2.mC 1/� .2m � 1/

2.2m� 1/
�

Cm

D 3

2
Cm

ut
Fact A.6 For k; ` 2 N,

2k � 1
2k

Ck�1
Ck

<
C`�1
C`

iff 2` � 1 < 3k

Proof

2k � 1
2k

Ck�1
Ck

<
C`�1
C`

, 2k � 1
2k

kC 1
2.2k � 1/ <

`C 1
2.2`� 1/ due to Fact A.2

, 2` � 1 < 3k

ut
Fact A.7 For all m 2 N, m � 2,

Cm C Cm�1 � 2Cm�2 D 9

8
Cm

�
1C‚.1=m2/

�
:

Proof

Cm C Cm�1 � 2Cm�2 D Cm C 1

2

mC 1
2m � 1Cm � 2.1

2

mC 1
2m � 1 �

1

2

m

2m� 3/Cm

D Cm


9m2 � 18mC 3
8m2 � 16mC 6

�

D 9

8
Cm



1 � 5

3.4m2 � 8mC 3/
�

D 9

8
Cm .1C‚.1=m2//

ut
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Network Essence: PageRank Completion
and Centrality-Conforming Markov Chains

Shang-Hua Teng

Abstract Jiří Matoušek (1963–2015) had many breakthrough contributions in
mathematics and algorithm design. His milestone results are not only profound but
also elegant. By going beyond the original objects—such as Euclidean spaces or lin-
ear programs—Jirka found the essence of the challenging mathematical/algorithmic
problems as well as beautiful solutions that were natural to him, but were surprising
discoveries to the field.

In this short exploration article, I will first share with readers my initial encounter
with Jirka and discuss one of his fundamental geometric results from the early
1990s. In the age of social and information networks, I will then turn the discussion
from geometric structures to network structures, attempting to take a humble step
towards the holy grail of network science, that is to understand the network essence
that underlies the observed sparse-and-multifaceted network data. I will discuss a
simple result which summarizes some basic algebraic properties of personalized
PageRank matrices. Unlike the traditional transitive closure of binary relations,
the personalized PageRank matrices take “accumulated Markovian closure” of
network data. Some of these algebraic properties are known in various contexts.
But I hope featuring them together in a broader context will help to illustrate
the desirable properties of this Markovian completion of networks, and motivate
systematic developments of a network theory for understanding vast and ubiquitous
multifaceted network data.
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1 Geometric Essence: To the Memory of Jiří Matoušek

Like many in theoretical computer science and discrete mathematics, my own
research has benefited from Jirka’s deep insights, especially into computational
geometry [64] and linear programming [65]. In fact, our paths accidentally crossed
in the final year of my Ph.D. program. As a part of my 1991 CMU thesis [88],
I obtained a result on the deterministic computation of a geometric concept, called
centerpoints, which led me to learn about one of Jirka’s groundbreaking results
during this time.

1.1 Centerpoints

The median is a widely-used concept for analyzing one-dimensional data, due to its
statistical robustness and its natural algorithmic applications to divide-and-conquer.
In general, suppose P D f p1; : : : ; png is a set of n real numbers. For ı 2 .0; 1=2�,
we call c 2 R a ı-median of P if max

�jfi W pi < cgj; jf j W pj > cgj/ � .1 � ı� n:
A 1

2
-median of P is known simply as a median. Centerpoints are high-dimensional

generalization of medians:

Definition 1.1 (Centerpoints) Suppose P D fp1; : : : ;png is a point set in R
d. For

ı 2 .0; 1=2�, a point c 2 R
d is a ı-centerpoint of P if for all unit vectors z 2 R

d, the
projection zTc is a ı-median of the projections, zT � P D fzTp1; : : : ; zTpng.

Geometrically, every hyperplane h in R
d divides the space into two open

halfspaces, hC and h�. Let the splitting ratio of h over P, denoted by ıh.P/, be:

ıh.P/ WD max
�jhC \ Pj; jh� \ Pj�

jPj (1)

Definition 1.1 can be restated as: c 2 Rd is a ı-centerpoint of P if the splitting
ratio of every hyperplane h passing through c is at most .1 � ı/. Centerpoints
are fundamental to geometric divide-and-conquer [34]. They are also strongly
connected to the concept of regression depth introduced by Rousseeuw and Hubert
in robust statistics [7, 50].

We all know that every set of real numbers has a median. Likewise—
and remarkably—every point set in d-dimensional Euclidean space has a
1

dC1 -centerpoint [30]. This mathematical result can be established by Helly’s
classical theorem from convex geometry.1 Algorithmically, Vapnik–Chervonenkis’
celebrated sampling theorem [92] (more below) implies an efficient randomized
algorithm—at least in theory—for computing a . 1

dC1��/-centerpoint. This “simple”

1Helly’s Theorem states: Suppose K is a family of at least dC 1 convex sets in Rd , and K is finite
or each member of K is compact. Then, if each dC 1 members of K have a common point, there
must be a point common to all members of K.
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algorithm first takes a “small” random sample, and then obtains its 1
dC1 -centerpoint

via linear programming. The complexity of this LP-based sampling algorithm is:

2O.d/


d

�2
� log

d

�

�d

:

1.2 Derandomization

For my thesis, I needed to compute centerpoints in order to construct geometric
separators [67] for supporting finite-element simulation and parallel scientific
computing [68]. Because linear programming was too slow, I needed a practical
centerpoint algorithm to run large-scale experiments [45]. Because I was a theory
student, I was also aiming for a theoretical algorithm to enrich my thesis. For
the latter, I focused on derandomization, which was then an active research area
in theoretical computer science. For centerpoint approximation without linear
programming, my advisor Gary Miller and I quickly obtained a simple and practical
algorithm2 based on Radon’s classical theorem3 [30]. But for derandomization, it
took me more than a year to finally design a deterministic linear-time algorithm
for computing . 1

dC1 � �/-centerpoints in any fixed dimensions. It happened in the
Spring of 1991, my last semester at CMU. Gary then invited me to accompany
him for a month-long visit, starting at the spring break of 1991, at the International
Computer Science Institute (ICSI), located near the U.C. Berkeley campus. During
the California visit, I ran into Leo Guibas, one of the pioneers of computational
geometry.

After I told Leo about my progress on Radon-Tverberg decomposition [90] and
centerpoint computation, he mentioned to me a paper by Jirka [64], which was
just accepted to the ACM Symposium on Theory of Computing (STOC 1991)—
before my solution—that beautifully solved the sampling problem for a broad class
of computational geometry and statistical learning problems. Jirka’s result—see
Theorem 1.3 below—includes the approximation of centerpoints as a simple special
case. Although our approaches had some ideas in common, I instantly knew that this
mathematician—who I later learned was just a year older than me—was masterful
and brilliant. I shortened that section of my thesis by referring readers to Jirka’s
paper [64], and only included the scheme I had that was in common with his bigger
result (Fig. 1).

2The construction started as a heuristics, but it took a few more brilliant collaborators and years
(after my graduation) to rigorously analyzing its performance [29].
3Radon’s Theorem states: Every point set Q � Rd with jQj � d C 2 can be partitioned into two
subsets .Q1;Q2/ such that the convex hulls of Q1 and Q2 have a common point.
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Fig. 1 Page 66 (Chapter 8) of my thesis

1.3 Matoušek’s Theorem: The Essence of Dimensionality

Mathematically, a range space † is a pair .X;R/, where X is a finite or infinite set,
and R is a finite or infinite family of subsets of X. Each H 2 R can be viewed as a
classifier of X, with elements in X\H as its positive instances. For example, Rd and
its halfspaces form a range space, so do R

d and its Lp-balls, for any p > 0, as well
as V and the set of all cliques in a graph G D .V;E/. Range spaces greatly extend
the concept of linear separators.

An important technique in statistical machine learning and computational geom-
etry is sampling. For range spaces, we can measure the quality of a sample as the
following:

Definition 1.2 (�-samples) Let † D .X;R/ be an n-point range space. A subset
S � X is an �-sample or �-approximation for† if for all H 2 R:

ˇ
ˇ
ˇ
ˇ
jH \ Sj
jSj � jH \ Xj

jXj
ˇ
ˇ
ˇ
ˇ � � (2)
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For each S � X, the set of distinct classifiers that R can define is R.S/ D fH\S W
H 2 Rg. For any m � jXj, let the shatter function for† be:

�R.m/ D sup
S�X;jSjDm

jR.S/j (3)

Theorem 1.3 (Deterministic Sampling—Matoušek) Let † D .X;R/ be an n-
point range space with the shatter function satisfying �R.m/ D O.md/ (d � 1

a constant). Having a subspace oracle for †, and given a parameter r, we can
deterministically compute a .1=r/-approximation of size O.dr2 log r/ for †, in time
O.n.r2 log r/d/.

Matoušek’s sampling theorem goes beyond traditional geometry and completely
derandomizes the theory of Vapnik–Chervonenkis [92].

Theorem 1.4 (Vapnik and Chervonenkis) There exists a constant c such that for
any finite range space † D .X;R/ and �; ı 2 .0; 1/, if S is a set of c � d

�2

�
log d

�ı

�

uniform and independent samples from X, where d D VC.†/, (see below for
definition) then:

PrŒS is an �-sample for †� � 1 � ı
Matoušek’s deterministic algorithm can be applied to geometric classifiers as

well as any classifier—known as a concept space—that arises in statistical learning
theory [91]. The concept of range space has also provided a powerful tool for
capturing geometric structures, and played a profound role—both in theory and in
practice—for data clustering [38] and geometric approximation [3]. The beauty of
Vapnik–Chervonenkis’ theory and Matoušek’s sampling theorem lies in the essence
of dimensionality, which is generalized from geometric spaces to abstract range
spaces. In Euclidean geometry, the dimensionality comes naturally to many of us.
For abstract range spaces, the growth of the shatter functions is more intrinsic! If
�R.m/ D 2m, then there exists a set S � X of m elements that is shattered, i.e., for
any subset T of S � X, there exists H 2 R such that T D H \ S. In other words, we
can use R to build classifiers for all subsets of S. There is a beautiful dichotomy of
polynomial and exponential complexity within the concept of shattering:

• either X has a subset S � X of size m that can be shattered by R,
• or for any U � X, jUj � m, jfH \ U W H 2 Rgj is polynomial in jUj.
The latter case implies that R can only be used to build a polynomial number of
classifiers for U. The celebrated VC-dimension of range space† D .X;R/, denoted
by VC.†/, is defined as:

VC.†/ WD arg maxfm W �R.m/ D 2mg:

This polynomial-exponential dichotomy is established by the following Sauer’s
lemma.4

4This lemma is also known as Perles–Sauer–Shelah’s lemma.
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Lemma 1.5 (Sauer) For any range space † D .X;R/ and 8m > VC.†/,

�R.m/ �PVC.†/
kD0

�m
k

�
.

Sauer’s lemma extends the following well-known fact of Euclidean geometry:
any set of m hyperplanes in R

d divides the space into at most O.md/ convex cells.
By the point-hyperplane duality, any set of m points can be divided into at O.md/

subsets by halfspaces.
Although my construction of �-samples in R

d was good enough for designing
linear-time centerpoint approximation algorithm in fixed dimensions, it did not
immediately generalize to arbitrary range spaces, because it was tailored to the
geometric properties of Euclidean spaces.

By addressing abstract range spaces, Jirka resolved the intrinsic algorithmic
problem at the heart of Vapnik–Chervonenkis’ sampling theory. Like Theorem 1.3,
many of Jirka’s other landmark and breakthrough results are elegant, insightful, and
fundamental. By going beyond the original objects—such as Euclidean spaces or
linear programs [65]—Jirka usually went directly to the essence of the challenging
problems to come up with beautiful solutions that were natural to him but remark-
able to the field.

2 Backgrounds: Understanding Multifaceted Network Data

To analyze the structures of social and information networks in the age of Big
Data, we need to overcome various conceptual and algorithmic challenges both in
understanding network data and in formulating solution concepts. For both, we need
to capture the network essence.

2.1 The Graph Model—A Basic Network Facet

At the most basic level, a network can be modeled as a graph G D .V;E/, which
characterizes the structure of the network in terms of:

• nodes: for example, Webpages, Internet routers, scholarly articles, people,
random variables, or counties

• edges: for example, links, connections, citations, friends, conditional dependen-
cies, or voting similarities

In general, nodes in many real-world networks may not be “homogeneous” [5], as
they may have some additional features, specifying the types or states of the node
elements. Similarly, edges may have additional features, specifying the levels and/or
types of pairwise interactions, associations, or affinities.

Networks with “homogeneous” types of nodes and edges are closest to the
combinatorial structures studied under traditional graph theory, which considers
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both weighted or unweighted graphs. Three basic classes of weighted graphs often
appear in applications. The first class consists of distance networks, where each
edge e 2 E is assigned a number le � 0, representing the length of edge e. The
second class consists of affinity networks, where each edge .u; v/ 2 E is assigned a
weight wu;v � 0, specifying u’s affinity weight towards v. The third class consists
of probabilistic networks, where each (directed) edge .u; v/ 2 E is assigned a
probability pu;v � 0, modeling how a random process connects u to v. It is usually
more natural to view maps or the Internet as distance networks, social networks as
affinity networks, and Markov processes as probabilistic networks. Depending on
applications, a graph may be directed or undirected. Examples of directed networks
include: the Web, Twitter, the citation graphs of scholarly publications, and Markov
processes. Meanwhile, Facebook “friends” or collaboration networks are examples
of undirected graphs.

In this article, we will first focus on affinity networks. An affinity network with
n nodes can be mathematically represented as a weighted graph G D .V;E;W/.
Unless otherwise stated, we assume V D Œn� and W is an n 
 n non-negative matrix
(for example from Œ0; 1�n�n). We will follow the convention that for i ¤ j, wi;j D 0,
if and only if, .i; j/ 62 E. If W is a symmetric matrix, then we say G is undirected. If
wi;j 2 f0; 1g, 8i; j 2 V , then we say G is unweighted.

Although they do not always fit, three popular data models for defining pairwise
affinity weights are the metric model, feature model, and statistical model. The first
assumes that an underlying metric space, M D .V; dist/, impacts the interactions
among nodes in a network. The affinities between nodes may then be determined by
their distances from the underlying metric space: The closer two elements are, the
higher their affinity becomes, and the more interactions they have. A standard way
to define affinity weights for u ¤ v is: wu;v D dist.u; v/�˛ , for some ˛ > 0. The
second assumes that there exists an underlying “feature” space, F D .V;F/, that
impacts the interactions among nodes in a network. This is a widely-used alternative
data model for information networks. In a d-dimensional feature space, F is an n
d
matrix, where fu;i 2 R

C [ f0g denotes u’s quality score with respect the ith feature.
Let fu denote the uth row of F, i.e., the feature vector of node u. The affinity weights
wu;v between two nodes u and v may then be determined by the correlation between
their features: wu;v �

�
fT
u � fv

� D Pd
iD1 fu;i � fv;i: The third assumes that there exists

an underlying statistical space (such as a stochastic block model, Markov process,
or (Gaussian) random field) that impacts the pairwise interactions. The higher the
dependency between two elements is, the higher their strength of tie is.

If one thinks that the meaning of weighted networks is complex, the real-world
network data is far more complex and diverse. We will have more discussions in
Sects. 2.3 and 4.
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2.2 Sparsity and Underlying Models

A basic challenge in network analysis is that real network data that we
observe is only a reflection of underlying network models. Thus, like machine
learning tasks which have to work with samples from an unknown underlying
distribution, network analysis tasks typically work with observed network data,
which is usually different from the underlying network model. As argued in
[11, 48, 56, 89], a real-world social and information network may be viewed
as an observed network, induced by a “complete-information” underlying
preference/affinity/statistical/geometric/feature/economical model. However, these
observed networks are typically sparse with many missing links.

For studying network phenomena, it is crucial to mathematically understand underlying
network models, while algorithmically work efficiently with sparse observed data. Thus,
developing systematic approaches to uncover or capture the underlying network model — or
the network essence — is a central and challenging mathematical task in network analysis.

Implicitly or explicitly, underlying network models are the ultimate guide for
understanding network phenomena, and for inferring missing network data, and
distinguishing missing links from absent links. To study basic network concepts,
we also need to simultaneously understand the observed and underlying networks.
Some network concepts, such as centrality, capture various aspects of “dimension
reduction” of network data. Others characterizations, such as clusterability and
community classification, are more naturally expressed in a space with dimension
higher than that of the observed networks.

Schematically, centrality assigns a numerical score or ranking to each node,
which measures the importance or significance of each node in a network [1, 13–
17, 22, 33, 36, 37, 41, 42, 51, 66, 71, 76, 80]. Mathematically, a numerical centrality
measure is a mapping from a network G D .V;E;W/ to a jVj-dimensional real
vector:

Œ centralityW.v/ �v2V 2 RjVj (4)

For example, a widely used centrality measure is the PageRank centrality.
Suppose G D .V;E;W/ is a weighted directed graph. The PageRank centrality
uses an additional parameter ˛ 2 .0; 1/—known as the restart constant—to define
a finite Markov process whose transition rule—for any node v 2 V—is the
following:

• with probability ˛, restart at a random node in V , and
• with probability .1 � ˛/, move to a neighbor of v, chosen randomly with

probability proportional to edge weights out of v.

Then, the PageRank centrality (with restart constant ˛) of any v 2 V is proportional
to v’s stationary probability in this Markov chain.

In contrast, clusterability assigns a numerical score or ranking to each subset
of nodes, which measures the coherence of each group in a network [62, 71, 89].
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Mathematically, a numerical clusterability measure is a mapping from a network
G D .V;E;W/ to a 2jVj-dimensional real vector:

Œ clusterabilityW.S/ �S�V 2 Œ0; 1�2
jVj

(5)

An example of clusterability measure is conductance [62].5 Similarly, a community-
characterization rule [19] is a mapping from a network G D .V;E;W/ to a 2jVj-
dimensional Boolean vector:

Œ CW.S/ �S�V 2 f0; 1g2
jVj

(6)

indicating whether or not each group S � V is a community in G. Clusterability and
community-identification rules have much higher dimensionality than centrality. To
a certain degree, they can be viewed as a “complete-information” model of the
observed network. Thus again:

Explicitly or implicitly, the formulations of these network concepts are mathematical
processes of uncovering or capturing underlying network models.

2.3 Multifaceted Network Data: Beyond Graph-Based Network
Models

Another basic challenge in network analysis is that real-world network data is much
richer than the graph-theoretical representations. For example, social networks are
more than weighted graphs. Likewise, the Web and Twitter are not just directed
graphs. In general, network interactions and phenomena—such as social influence
[55] or electoral behavior [35]—are more complex than what can be captured by
nodes and edges. The network interactions are often the result of the interplay
between dynamic mathematical processes and static underlying graph structures
[25, 44].

2.3.1 Diverse Network Models

The richness of network data and diversity of network concepts encourage us to
consider network models beyond graphs [89]. For example, each clusterability
measure ŒclusterabilityW.S/�S�V of a weighted graph G D .V;E;W/ explicitly
defines a complete-information, weighted hyper-network:

5The conductance of a group S � V is the ratio of its external connection to its total connection
in G.
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Definition 2.1 (Cooperative Model: Weighted Hypergraphs) A weighted hyper-
graph over V is given by H D .V;E;�/ where E � 2V is a set of hyper-edges and
� W E ! R is a function that assigns weights to hyper-edges. H is a complete-
information cooperative networks if E D 2V .

We refer to weighted hypergraphs as cooperative networks because they are the
central subjects in classical cooperative game theory, but under a different name
[81]. An n-person cooperative game over V D Œn� is specified by a characteristic
function � W 2V ! R, where for any coalition S � V , �.S/ denotes the cooperative
utility of S.

Cooperative networks are generalization of undirected weighted graphs. One can
also generalize directed networks, which specify directed node-node interactions.
The first one below explicitly captures node-group interactions, while the second
one captures group-group interactions.

Definition 2.2 (Incentive Model) An incentive network over V is a pair U D
.V;u/. For each s 2 V , us W 2Vnfsg ! R specifies s’s incentive utility over subsets
of V n fsg. In other words, there are jSj utility values, fus.S n fsggs2S, associated
with each group S � V in the incentive network. For each s 2 S, the value of its
interaction with the rest of the group S n fsg is explicitly defined as us.S n fsg/.
Definition 2.3 (Powerset Model) A powerset network over V is a weighted
directed network on the powersets of V . In other words, a powerset network
P D .V;	/ is specified by a function 	 W 2V 
 2V ! R.

For example—as pointed in [25, 55]—a social-influence instance fundamentally
defines a powerset network. Recall that a social-influence instance I is specified by a
directed graph G D .V;E/ and an influence model D [32, 55, 78], where G defines
the graph structure of the social network and D defines a stochastic process that
characterizes how nodes in each seed set S � V collectively influence other nodes
using the edge structures of G [55]. A popular influence model is independent
cascade (IC)6 [55].

Mathematically, the influence process D and the network structure G together
define a probability distribution PG;D W 2V 
 2V ! Œ0; 1�: For each T 2 2V ,
PG;DŒS;T� specifies the probability that T is the final activated set when S cascades
its influence through the network G. Thus, PI D .V;PG;D/ defines a natural
powerset network, which can be viewed as the underlying network induced by the
interplay between the static network structure G and dynamic influence process D.

6In the classical IC model, each directed edge .u; v/ 2 E has an influence probability pu;v 2 Œ0; 1�.
The probability profile defines a discrete-time influence process when given a seed set S: At time 0,
nodes in S are activated while other nodes are inactive. At time t � 1, for any node u activated at
time t � 1, it has one chance to activate each of its inactive out-neighbor v with an independent
probability of pu;v . When there is no more activation, this stochastic process ends with a random
set of nodes activated during the process.
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An important quality measure of S in this process is S’s influence spread [55]. It
can be defined from the powerset model PI D .V;PG;D/ as following:


 G;D.S/ D
X

T�V

jTj � PG;DŒS;T�:

Thus, .V; 
 G;D/ also defines a natural cooperative network [25].
In many applications and studies, ordinal network models rather than cardinal

network models are used to capture the preferences among nodes. Two classical
applications of preference frameworks are voting [10] and stable marriage/coalition
formation [21, 43, 46, 79]. A modern use of preference models is the Border
Gateway Protocol (BGP) for network routing between autonomous Internet systems
[23, 77].

In a recent axiomatic study of community identification in social networks,
Borgs et al. [11, 19] considered the following abstract social/information network
framework. Below, for a non-empty finite set V , let L.V/ denote the set of all linear
orders on V .

Definition 2.4 (Preference Model) A preference network over V is a pair A D
.V;…/, where… D f�ugu2V 2 L.V/jVj is a preference profile in which �u specifies
u’s individual preference.

2.3.2 Understanding Network Facets and Network Concepts

Each network model enables us to focus on different facets of network data. For
example, the powerset model offers the most natural framework for capturing the
underlying interplay between influence processes and network structures. The coop-
erative model matches the explicit representation of clusterability, group utilities,
and influence spreads. While traditional graph-based network data often consists
solely of pairwise interactions, affinities, or associations, a community is formed
by a group of individuals. Thus, the basic question for community identification
is to understand “how do individual preferences (affinities/associations) result in
group preferences or community coherence?” [19] The preference model highlights
the fundamental aspect of community characterization. The preference model is
also natural for addressing the question of summarizing individual preferences
into one collective preference, which is fundamental in the formulation of network
centrality [89]. Thus, studying network models beyond graphs helps to broaden our
understanding of social/information networks.

Several these network models, as defined above, are highly theoretical models.
Their complete-information profiles have exponential dimensionality in jVj. To use
them as underlying models in network analysis, succinct representations should be
constructed to efficiently capture observed network data. For example, both the
conductance clusterability measure and the social-influence powerset network are
succinctly defined. Characterizing network concepts in these models and effectively
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applying them to understanding real network data are promising and fundamentally
challenging research directions in network science.

3 PageRank Completion

Network analysis is a task to capture the essence of the observed networks. For
example, graph embedding [61, 89] can be viewed as a process to identify the
geometric essence of networks. Similarly, network completion [48, 56, 63], graphon
estimation [4, 20], and community recovering in hidden stochastic block models [2]
can be viewed as processes to distill the statistical essence of networks. All these
approaches build constructive maps from observed sparse graphs to underlying
complete-information models. In this section, we study the following basic question:

Given an observed sparse affinity network G D .V;E;W/, can we construct a complete-
information affinity network that is consistent with G?

This question is simpler than but relevant to matrix and network completion
[48, 56], which aims to infer the missing data from sparse, observed network data.
Like matrix/network completion, this problem is mathematically an inverse prob-
lem. Conceptually, we need to formulate the meaning of “a complete-information
affinity network consistent with G.”

Our study is also partially motivated by the following question asked in [6, 11],
aiming to deriving personalized ranking information from graph-based network
data:

Given a sparse affinity network G D .V;E;W/, how should we construct a complete-
information preference model that best captures the underlying individual preferences from
network data given by G?

We will prove the following basic structural result7: Every connected, undirected,
weighted graph G D .V;E;W/ has an undirected and weighted graph G D
.V;E;W/, such that:

• Complete Information: E forms a complete graph with jVj self-loops.
• Degree and Stationary Preserving: W � 1 D W � 1. Thus, the random-walk

Markov chains on G and on G have the same stationary distribution.
• PageRank Conforming: The transition matrix MW of the random-walk Markov

chain on G is conformal to the PageRank of G, that is, MT
W
� 1 is proportional to

the PageRank centrality of G
• Spectral Approximation: G and G are spectrally similar.

7See Theorem 3.5 for the precise statement.
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In the last condition, the similarity between G and G is measured by the following
notion of spectral similarity [85]:

Definition 3.1 (Spectral Similarity of Networks) Suppose G D .V;E;W/ and
G D .V;E;W/ are two weighted undirected graphs over the same set V of n nodes.
Let LW D DW�W and LW D DW�W be the Laplacian matrices, respectively, of
these two graphs. Then, for � � 1, we say G and G are �-spectrally similar if:

8x 2 R
n;

1

�
� xTLWx � xTLWx � � � xTLWx (7)

Many graph-theoretical measures, such as flows, cuts, conductances, effective
resistances, are approximately preserved by spectral similarity [12, 85]. We refer to
G D .V;E;W/ as the PageRank essence or PageRank completion of G D .V;E;W/.

3.1 The Personalized PageRank Matrix

G D .V;E;W/ stated above is derived from a well-known structure in network
analysis, the personalized PageRank matrix of a network [8, 89].

3.1.1 Personalized PageRanks

Generalizing the Markov process of PageRank, Haveliwala [49] introduced person-
alized PageRanks. Suppose G D .V;E;W/ is a weighted directed graph and ˛ > 0
is a restart parameter. For any distribution s over V , consider the following Markov
process, whose transition rule—for any v 2 V—is the following:

• with probability ˛, restart at a random node in V according to distribution s, and
• with probability .1 � ˛/, move to a neighbor of v, chosen randomly with

probability proportional to edge weights out of v.

Then, the PageRank with respect to the starting vector s, denoted by ps, is the
stationary distribution of this Markov chain.

Let dout
u D P

v2V wu;v denotes the out-degree of u 2 V in G. Then, ps is the
solution to the following equation:

ps D ˛ � sC .1 � ˛/ �WT � �Dout
W

��1 � ps (8)

where Dout
W D diag.Œdout

1 ; : : : ; d
out
n �/ is the diagonal matrix of out degrees. Let 1u

denote the n-dimensional vector whose uth location is 1 and all other entries in 1u

are zeros. Haveliwala [49] referred to pu WD p1u as the personalized PageRank of
u 2 V in G. Personalized PageRank is asymmetric, and hence to emphasize this
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fact, we express pu as:

pu D . pu!1; : : : ; pu!n/
T :

Then fpugu2V—the personalized PageRank profile—defines the following matrix:

Definition 3.2 (Personalized PageRank Matrix) The personalized PageRank
matrix of an n-node weighted graph G D .V;E;W/ and restart constant ˛ > 0 is:

PPRW;˛ D Œp1; : : : ;pn�
T D

2

6
4

p1!1 � � � p1!n
::: � � � :::

pn!1 � � � pn!n

3

7
5 (9)

In this article, we normalize the PageRank centrality so that the sum of the
centrality values over all nodes is equal to n. Let 1 denote the n-dimensional vector
of all 1s. Then, the PageRank centrality of G is the solution to the following Markov
random-walk equation [49, 72]:

PageRankW;˛ D ˛ � 1C .1� ˛/ �WT
�
Dout

W

��1
PageRankW;˛ (10)

Because 1 DPu 1u, we have:

Proposition 3.3 (PageRank Conforming) For any G D .V;E;W/ and ˛ > 0:

PageRankW;˛ D
X

u2V

pu D PPRT
W;˛ � 1 (11)

Because Markov processes preserve the probability mass of the starting vector,
we also have:

Proposition 3.4 (Markovian Conforming) For any G D .V;E;W/ and ˛ > 0,
PPRW;˛ is non-negative and:

PPRW;˛ � 1 D 1 (12)

In summary, the PageRank matrix PPRW;˛ is a special matrix associated with
network G—its row sum is the vector of all 1s and its column sum is the PageRank
centrality of G.

3.2 PageRank Completion of Symmetric Networks

PageRank centrality and personalized PageRank matrix apply to both directed and
undirected weighted graphs. Both Propositions 3.3 and 3.4 also hold generally. In
this subsection, we will focus mainly on undirected weighted networks. In such a
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case, let DW be the diagonal matrix associated with weighted degrees dW D W � 1
and let MW D D�1W W be the standard random-walk transition matrix on G.

To state the theorem below, let’s first review a basic concept of Markov chain.
Recall that a Markov chain over V is defined by an n 
 n transition matrix M
satisfying the stochastic condition: M is non-negative and M � 1 D 1: A probability
vector � is the stationary distribution of this Markov process if:

MT� D � (13)

It is well known that every irreducible and ergodic Markov chain has a stationary
distribution. Markov chain M is detailed-balanced if:

�Œu�MŒu; v� D �Œv�MŒv; u�; 8 u; v 2 V (14)

We will now prove the following structural result:

Theorem 3.5 (PageRank Completion) For any weighted directed graph G D
.V;E;W/ and restart constant ˛ > 0:

A: PPRW;˛ and
�
Dout

W

��1 �W have the same eigenvectors. Thus, both Markov chains
have the same stationary distribution.

B: PPRW;˛ is detailed-balanced if and only if W is symmetric.

Furthermore, when W is symmetric, let G˛ D .V;E˛;W˛/ be the affinity network
such that:

W˛ D DW � PPRW;˛ and E D f.u; v/ WW˛Œu; v� > 0g (15)

Then, G˛ satisfies the following conditions:

1. Symmetry Preserving: WT DW, i.e., G˛ is an undirected affinity network.
2. Complete Information: If G is connected, then E˛ is a complete graph with jVj

self-loops.
3. Degree and Stationary Preserving: W � 1 D W � 1. Thus, DW D DW and the

random-walk Markov chains MW and MW have the same stationary distribution.
4. Markovian and PageRank Conforming:

MW � 1 D 1 and MT
W
� 1 D PageRankW;˛ (16)

5. Simultaneously Diagonalizable: For any symmetric W, recall LW D DW �W

denotes the Laplacian matrix associated with W. Let LW D D
� 12
W LWD

1
2

W D
I � D

� 12
W WD

� 1
2

W be the normalized Laplacian matrix associated with W. Then,
LW and LW are simultaneously diagonalizable.
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6. Spectral Densification and Approximation: For all x 2 R
n:

˛ � LW � xT


1

1� ˛ � LW

�

x � 1

˛
LW (17)

˛ � LW � xT


1

1 � ˛ � LW

�

x � 1

˛
LW (18)

In other words, G and 1
1�˛ � G˛ are 1

˛
-spectrally similar.

Remarks We rescale LW and LW by 1
1�˛ because G˛ has self-loops of magnitude

˛DW. In other words, G˛ only uses .1 � ˛/ fraction of its weighted degrees for
connecting different nodes in V .

Proof Let n D jVj. For any initial distribution s over V , we can explicitly express
ps as:

ps D ˛
1X

kD0
.1 � ˛/k �

�
WT � �Dout

W

��1	k � s (19)

Consequently: we can express PPRW;˛ as:

PPRW;˛ D ˛
1X

kD0
.1 � ˛/k �

��
Dout

W

��1 �W
	k

(20)

Note that ˛
P1

kD0.1 � ˛/k D 1. Thus, PPRW;˛ is a convex combination of (multi-

step) random-walk matrices defined by
�
Dout

W

��1 �W. Statement A follows directly

from the fact that
��

Dout
W

��1 �W
	k

is a stochastic matrix for any integer k � 0.

The following fact is well known (Aldous and Fill, recompiled 2014, Reversible
Markov chains and random walks on graphs, Unfinished monograph. Available at
http://www.stat.berkeley.edu~aldous/RWG/book.html):

Suppose M is a Markov chain with stationary distribution � . Let … be the diagonal matrix
defined by � . Then, MT… is symmetric if and only if the Markov process defined by M is
detailed balanced.

We now assume W DWT . Then, Eq. (20) becomes:

PPRW;˛ D ˛
1X

kD0
.1 � ˛/k � �D�1W �W

�k
(21)

The stationary distribution of D�1W W—and hence of PPRW;˛—is proportional to
d D W � 1. PPRW;˛ is detailed balanced because W D DW � PPRW;˛ is

a symmetric matrix. Because
��

Dout
W

��1 �W
	k

(for all positive integers) have a

http://www.stat.berkeley.edu~aldous/RWG/book.html
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common stationary distribution, PPRW;˛ is not detailed balanced when W is not
symmetric. It is also well known—by Eq. (19)—that for all u; v 2 V , PPRW;˛Œu; v�
is equal to the probability that a run of random walk starting at u passes by v
immediately before it restarts. Thus, when G is connected, PPRW;˛Œu; v� > 0 for all
u; v 2 V . Thus, nnz.W˛/ D n2, and E˛ , the nonzero pattern of W˛ , is a complete
graph with jVj self-loops. We have now established Condition B and Conditions
1–4.

We now prove Conditions 5 and 6.8 Recall that when W D WT , we can express
the personalized PageRank matrix as:

PPRW;˛ D ˛
1X

kD0
.1� ˛/k � �D�1W �W

�k
:

Thus:

W˛ D DW � PPRW;˛ D
 

˛

1X

kD0
.1 � ˛/k � DW �

�
D�1W W

�k

!

:

We compare the Laplacian matrices associated with W and W:

LW D DW �W D D1=2
W

�
I �D�1=2W WD�1=2W

	
D1=2

W D D1=2
W LWD1=2

W :

LW D DW �W D D1=2

W LWD1=2

W

where

LW D I� ˛
1X

kD0
.1 � ˛/k � .D�1=2W WD�1=2W /k:

Let �1 � �2 � : : : � �n be the n eigenvalues of D�1=2W WD�1=2W . Let u1; : : : ;un

denote the unit-length eigenvectors of D�1=2W WD�1=2W associated with eigenvalues
�1; � � � ; �n, respectively. We have j�ij � 1. Let ƒ be the diagonal matrix associated
with .�1; : : : ; �n/ and U D Œu1; : : : ;un�. By the spectral theorem—i.e., the
eigenvalue decomposition for symmetric matrices—we have:

UTD�1=2W WD�1=2W U D ƒ (22)

UUT D UTU D I (23)

8Thanks to Dehua Cheng of USC for assisting this proof.
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Therefore:

LW D D1=2

W UUT
�

I � D�1=2W WD�1=2W

	
UUTD1=2

W

D D1=2

W U
�

I � UTD�1=2W WD�1=2W U
	

UTD1=2

W

D D1=2

W U .I �ƒ/UTD1=2

W :

Similarly:

LW˛
D DW �W˛ D D1=2

W LWD1=2

W

D D1=2

W

 

I � ˛
1X

kD0
.1 � ˛/k � .D�1=2W WD�1=2W /k

!

D1=2

W

D D1=2

W U

 

I� ˛
1X

kD0
.1 � ˛/k � UT.D�1=2W WD�1=2W /kU

!

UTD1=2

W

D D1=2

W U

 

I� ˛
1X

kD0
.1 � ˛/k �ƒk

!

UTD1=2

W

D D1=2

W U


I � ˛

I � .1 � ˛/ƒ
�

UTD1=2

W :

The derivation above has proved Condition (5). To prove Condition (6), consider an
arbitrary x 2 R

n n f0g. With y D UTD1=2

W x, we have:

xT 1
1�˛LWx

xTLWx
D 1

1 � ˛ �
xTD1=2

W U
�

I � ˛
I�.1�˛/ƒ

	
UTD1=2

W x

xTD1=2

W U .I�ƒ/UTD1=2

W x

D 1

1 � ˛ �
yT
�

I � ˛
I�.1�˛/ƒ

	
y

yT .I �ƒ/ y

This ratio is in the interval of:
"

inf
�Wj�j�1

1

1 � .1 � ˛/� ; sup
�Wj�j�1

1

1 � .1 � ˛/�

#

D
�

1

2 � ˛ ;
1

˛

�

:

ut



Network Essence: PageRank Completion and Centrality-Conforming Markov Chains 783

3.3 PageRank Completion, Community Identification,
and Clustering

PageRank completion has an immediate application to the community-identification
approaches developed in [11, 19]. This family of methods first constructs a prefer-
ence network from an input weighted graph G D .V;E;W/. It then applies various
social-choice aggregation functions [10] to define network communities [11, 19].
In fact, Balcan et al. [11] show that the PageRank completion of G provides a
wonderful scheme (see also in Definition 4.10) for constructing preference networks
from affinity networks.

In addition to its classical connection with PageRank centrality, PageRank
completion also has a direct connection with network clustering. To illustrate
this connection, let’s recall a well-known approach in spectral graph theory for
clustering [9, 24, 62, 84, 86]:

Algorithm: Sweep.G; v/
Require: G D .V;E;W) and v 2 R

jVj

1: Let ı be an ordering of V according to v, i.e., 8k 2 Œn� 1�, vŒ�.k/� � vŒ�.kC 1/�
2: Let Sk D f�.1/; : : : ; �.k/g
3: Let k� D argmink conductanceW.Sk/.
4: Return Sk�

Both in theory and in practice, the most popular vectors used in Sweep are:

• Fiedler vector: the eigenvector associated with the second smallest eigenvalue
of the Laplacian matrix LW [39, 40, 84].

• Cheeger vector: D�1=2W v2, where v2 is the eigenvector associated with the second
smallest eigenvalue of the normalized Laplacian matrix LW [24, 28].

The sweep-based clustering method and Fiedler/Cheeger vectors are the main
subject of following beautiful theorem [24] in spectral graph theory:

Theorem 3.6 (Cheeger’s Inequality) For any symmetric weighted graph G D
.V;E;W/, let �2 be the second smallest eigenvalue of the normalized Lapla-
cian matrix LW of G. Let v2 be the eigenvector associated with �2 and S D
Sweep.G;D�1=2W v2/. Then:

�2

2
� conductanceW.S/ �

p
2�2 (24)

By Theorem 3.5, the normalized Laplacian matrices of G and its PageRank com-
pletion are simultaneously diagonalizable. Thus, we can also use the eigenvector
of the PageRank completion of G to identify a cluster of G whose conductance is
guaranteed by the Cheeger’s inequality.
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Then, how is the PageRank completion necessarily a better representation of the information
contained in the original network?
For example, with respect to network clustering, what desirable properties does the
PageRank completion have that the original graph doesn’t?

While we are still looking for a comprehensive answer to these questions, we
will now use the elegant result of Andersen, Chung, and Lang [9] to illustrate that
the PageRank completion indeed contains more direct information about network
clustering than the original data W. Andersen et al. proved that if one applies sweep
to vectors fD�1W � pvgv2V , then one can obtain a cluster whose conductance is nearly
as small as that guaranteed by Cheeger’s inequality. Such a statement does not hold
for the rows in the original network data W, particularly when W is sparse.

In fact, the result of Andersen, Chung, and Lang [9] is much stronger. They
showed that for any cluster S � V , if one selects a random node v 2 S
with probability proportional to the weighted degree dv of the node, then, with
probability at least 1=2, one can identify a cluster S0 of conductance at most
O.
p

conductanceW.S/ log n/ by applying sweep to vector D�1W � pv . In other words,
the row vectors in the PageRank completion—i.e., the personalized PageRank
vectors that represent the individual data associated with nodes—have rich and
direct information about network clustering (measured by conductance). This is a
property that the original network data simply doesn’t have, as one is usually not
able to identify good clusters directly from the individual rows of W.

In summary, Cheeger’s inequality and its algorithmic proof can be viewed
as the mathematical foundation for global spectral partitioning, because the
Fiedler/Cheeger vectors are formulated from the network data as a whole. From
this global perspective, both the original network and its PageRank completion
are equally effective. In contrast, from the local perspective of individual-row
data, Andersen, Chung, and Lang’s result highlights the effectiveness of the
PageRank completion to local clustering [86]: The row data associated with nodes
in the PageRank completion provides effective information for identifying good
clusters. Similarly, from the corresponding column in the PageRank completion,
one can also directly and “locally” obtains each node’s PageRank centrality. In
other words, PageRank completion transforms the input network data W into a
“complete-information” network model W, and in the process, it distilled the
centrality/clusterability information implicitly embedded globally in W into an
ensemble of nodes’ “individual” network data that explicitly encodes the centrality
information and locally capturing the clustering structures.

4 Connecting Multifaceted Network Data

The formulations highlighted in Sect. 2.3, such as the cooperative, incentive,
powerset, and preference models, are just a few examples of network models beyond
the traditional graph-based framework. Other extensions include the popular prob-
abilistic graphical model [58] and game-theoretical graphical model [26, 31, 52].
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These models use relatively homogeneous node and edge types, but nevertheless
represent a great source of expressions for multifaceted and multimodal network
data.

While diverse network models enable us to express multifaceted network data,
we need mathematical and algorithmic tools to connect them. For some applications
such as community identification, one may need to properly use some data facets
as metadata to evaluate or cross validate the network solution(s) identified from the
main network facets [74].

But more broadly, for many real-world network analysis tasks, we need a systematic
approach to network composition whose task is to integrate the multifaceted data into
a single effective network worldview. Towards this goal, a basic theoretical step in
multifaceted network analysis is to establish a unified worldview for capturing multifaceted
network data expressed in various models.

Although fundamental, formulating a unified worldview of network models is
still largely an outstanding research problem. In this section, we sketch our prelimi-
nary studies in using Markov chains to build a “common platform” for the network
models discussed in Sect. 2.3. We hope this study will inspire a general theory
for data integration, network composition, and multifaceted network analysis. We
also hope that it will help to strengthen the connection between various fields,
as diverse as statistical modeling, geometric embedding, social influence, network
dynamics, game theory, and social choice theory, as well as various application
domains (protein-protein interaction, viral marketing, information propagation,
electoral behavior, homeland security, healthcare, etc.), that have provided different
but valuable techniques and motivations to network analysis.

4.1 Centrality-Conforming Stochastic Matrices of Various
Network Models

Markov chain—a basic statistical model—is also a fundamental network concept.
For a weighted network G D .V;E;W/, the standard random-walk transition
�
Dout

W

��1 �W is the most widely-used stochastic matrix associated with G. Impor-
tantly, Sect. 3 illustrates that other Markov chains—such as PageRank Markov
chain PPRW;˛—are also natural with respect to network data W. Traditionally, a
Markov chain is characterized by its stochastic condition, stationary distribution,
mixing time, and detailed-balancedness. Theorem 3.5 highlights another important
feature of Markov chains in the context of network analysis: The PageRank Markov
chain is conforming with respect to PageRank centrality, that is, for any network
G D .V;E;W/ and ˛ > 0, we have:

PPRT
W;˛ � 1 D PageRankW;˛:
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How should we derive stochastic matrices from other network models? Can we construct
Markov chains that are centrality-confirming with respect to natural centrality measures of
these network models?

In this section, we will examine some centrality-confirming Markov chains
that can be derived from network data given by preference/incentive/cooperative/
powerset models.

4.1.1 The Preference Model

For the preference model, there is a family of natural Markov chains, based on
weighted aggregations in social-choice theory [10]. For a fixed n, let w 2 .RC [
f0g/n be a non-negative and monotonically non-increasing vector. For the discussion
below, we will assume that w is normalized such that

Pn
iD1 wŒi� D 1. For example,

while the famous Borda count [93] uses w D Œn; n � 1; : : : ; 1�T , the normalized
Borda count uses w D Œn; n � 1; : : : ; 1�T=�n

2

�
.

Proposition 4.1 (Weighted Preference Markov Chain) Suppose A D .V;…/ is
a preference network over V D Œn� and w is non-negative and monotonically non-
increasing weight vector, with jjwjj1 D 1. Let MA;w be the matrix in which for each
u 2 V, the uth row of MA;w is:

�u ı w D ŒwŒ�u.1/�; : : : ;w.�u.n//�:

Then, MA;w defines a Markov chain, i.e., MA;w1 D 1.

Proof MA;w is a stochastic matrix because each row of MA;w is a permutation of w,
and permutations preserve the L1-norm of the vector. ut

Social-choice aggregation based on w also defines the following natural central-
ity measure, which can be viewed as the collective ranking over V based on the
preference profiles of A D .V;…/:

centrality…;wŒv� D
X

u2V

wŒ�u.v/� (25)

Like PageRank Markov chains, weighted preference Markov chains also enjoy
the centrality-conforming property:

Proposition 4.2 For any preference network A D .V;…/, in which … 2 L.V/jVj:

MT
A;w � 1 D centrality…;w (26)
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4.1.2 The Incentive Model

We now focus on a special family of incentive networks: We assume for U D .V;u/
and s 2 V:

1. us is monotonically non-decreasing, i.e., for all T1 � T2, us.T1/ � us.T2/.
2. us is normalized, i.e., us.V n fsg/ D 1.

Each incentive network defines a natural cooperative network, HU D
.V;�SocialUtility/: For any S � V , let the social utility of S be:

�SocialUtility.S/ D
X

s2S

us.S n fsg/ (27)

The Shapley value [81]—a classical game-theoretical concept—provides a
natural centrality measure for cooperative networks.

Definition 4.1 (Shapley Value) Suppose � is the characteristic function of a
cooperative game over V D Œn�. Recall that L.V/ denotes the set of all permutations
of V . Let S�;v denotes the set of players preceding v in a permutation � 2 L.V/.
Then, the Shapley value �Shapley

� Œv� of a player v 2 V is:

�Shapley
� Œv� D E��L.V/ Œ�ŒS�;v [ fvg�� �ŒS�;v�� (28)

The Shapley value �Shapley
� Œv� of player v 2 V is the expected marginal

contribution of v over the set preceding v in a random permutation of the players.
The Shapley value has many attractive properties, and is widely considered to be the
fairest measure of a player’s power index in a cooperative game.

We can use Shapley values to define both the stochastic matrix and the centrality
of incentive networks U. Let centralityU be the Shapley value of the cooperative
game defined by �SocialUtility. Note that the incentive network U also defines jVj
natural individual cooperative networks: For each s 2 V and T � V , let:

�s.T/ D



us.T n fsg/ if s 2 T
0 if s 62 T

(29)

Proposition 4.4 (The Markov Chain of Monotonic Incentive Model) Suppose
U D .V;u/ is an incentive network over V D Œn�, such that 8s 2 V, us is
monotonically non-decreasing and us.V n fsg/ D 1. Let MU be the matrix in
which for each s 2 V, the sth row of MU is the Shapley value of the cooperative
game with characteristic function �s. Then, MU defines a Markov chain and is
centrality-conforming with respect to centralityU, i.e., (1) MU1 D 1 and (2)
MT

U1 D centralityU.
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Proof This proposition is the direct consequence of two basic properties of Shap-
ley’s beautiful characterization [81]:

1. The Shapley value is efficient:
P

v2V �� Œv� D �.V/.
2. The Shapley value is Linear: For any two characteristic functions � and !,
��C! D �� C �!.

By the assumption us is monotonically non-decreasing, we can show that every entry
of the Shapley value (as given by Eq. (28)) is non-negative. Then, it follows from
the efficiency of Shapley values and the assumption that 8s 2 V; us.V n fsg/ D 1,
that MU is a stochastic matrix, and hence it defines a Markov chain. Furthermore,
we have:

�SocialUtility D
X

s2V

�s (30)

Because centralityU is the Shapley value of the cooperative game with characteristic
function �SocialUtility, the linearity of the Shapley value then implies MT

U1 D
centralityU , i.e., MU is centrality-conforming with respect to centralityU. ut

4.1.3 The Influence Model

Centrality-conforming Markov chain can also be naturally constructed for a family
of powerset networks. Recall from Sect. 2.3 that an influence process D and social
network G D .V;E/ together define a powerset network, PG;D W 2V 
 2V !
Œ0; 1�, where for each T 2 2V , PG;DŒS;T� specifies the probability that T is the
final activated set when S cascades its influence through G. As observed in [25],
the influence model also defines a natural cooperative game, whose characteristic
function is the influence spread function:


 G;D.S/ D
X

T�V

jTj � PG;DŒS;T�; 8S � V:

Chen and Teng [25] proposed to use the Shapley value of this social-influence game
as a centrality measure of the powerset network defined by PG;D . They showed
that this social-influence centrality measure, to be denoted by centralityG;D , can
be uniquely characterized by a set of five natrual axioms [25]. Motivated by the
PageRank Markov chain, they also constructed the following centrality-conforming
Markov chain for social-influence models.

Proposition 4.5 (Social-Influence Markov Chain) Suppose G D .V;E/ is a
social network and D is a social-influence process. Let MG;D be the matrix in which
for each v 2 V, the vth row of MG;D is given by the Shapley value of the cooperative
game with the following characteristic function:


 G;D;v.S/ D
X

T�V

Œv 2 T � PG;DŒS;T� (31)
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where Œv 2 T is the indicator function for event (v 2 T). Then, MG;D defines a
Markov chain and is centrality-conforming with respect to centralityG;D , i.e., (1)
MG;D1 D 1 and (2) MT

G;D1 D centralityG;D .

Proof For all v 2 V , the characteristic function 
 G;D;v satisfies the following two
conditions:

1. 
 G;D;v is monotonically non-decreasing.
2. 
 G;D;v.V/ D 1.

The rest of the proof is essentially the same as the proof of Proposition 4.4. ut

4.2 Networks Associated with Markov Chains

The common feature in the Markovian formulations of Sect. 4.1 suggests the
possibility of a general theory that various network models beyond graphs can be
succinctly analyzed through the worldview of Markov chains. Such analyses are
forms of dimension reduction of network data—the Markov chains derived, such as
from social-influence instances, usually have lower dimensionality than the original
network models. In dimension reduction of data, inevitably some information is
lost. Thus, which Markov chain is formulated from a particular network model may
largely depend on through which mathematical lens we are looking at the network
data. The Markovian formulations of Sect. 4.1 are largely based on centrality
formulations. Developing a more general Markovian formulation theory of various
network models remains the subject of future research.

But once we can reduce the network models specifying various aspects of
network data to a collection of Markov chains representing the corresponding
network facets, we effectively reduce multifaceted network analysis to a potentially
simpler task—the analysis of multilayer networks [57, 60]. Thus, we can apply
various emerging techniques for multilayer network analysis [47, 73, 94] and
network composition [60]. We can further use standard techniques to convert the
Markov chains into weighted graphs to examine these network models through the
popular graph-theoretical worldview.

4.2.1 Random-Walk Connection

Because of the following characterization, the random-walk is traditionally the most
commonly-used connection between Markov chains and weighted networks.

Proposition 4.6 (Markov Chains and Networks: Random-Walk Connection)
For any directed network G D .V;E;W/ in which every node has at least one
out-neighbor, there is a unique transition matrix:

MW D
�
Dout

W

��1
W
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that captures the (unbiased) random-walk Markov process on G. Conversely, given a
transition matrix M, there is an infinite family of weighted networks whose random-
walk Markov chains are consistent with M. This family is given by:

f� M W � is a positive diagonal matrixg:

The most commonly-used diagonal scaling is ˘ , the diagonal matrix of the
stationary distribution. This scaling is partially justified by the fact that ˘ M is an
undirected network if and only if M is a detailed-balanced Markov chain. In fact in
such a case, � M is symmetric if and only if there exists c > 0, � D c � ˘ . Let’s
call ˘ M the canonical Markovian network of transition matrix M. For a general
Markov chain, we have:

1˘ M D �T and ˘ M1 D � (32)

Thus, although canonical Markovian networks are usually directed, their nodes
always have the same in-degree and out-degree. Such graphs are also known as
the weighted Eulerian graphs.

4.2.2 PageRank Connection

Recall that Theorem 3.5 features the derivation of PageRank-conforming Markov
chains from weighted networks. In fact, Theorem 3.5 and its PageRank power series
can be naturally extended to any transition matrix M: For any finite irreducible and
ergodic Markov chain M and restart constant ˛ > 0, the matrix ˛

P1
kD0.1 � ˛/k �

Mk is a stochastic matrix that preserves the detailed-balancedness, the stationary
distribution, and the spectra of M.

Let’s call ˛
P1

kD0.1 � ˛/k � ˘ Mk the canonical PageRank-Markovian network
of transition matrix M.

Proposition 4.7 For any Markov chain M, the random-walk Markov chain of the
canonical PageRank-Markovian network ˛

P1
kD0.1�˛/k �˘ Mk is conforming with

respect to the PageRank of the canonical Markovian network ˘ M.

4.2.3 Symmetrization

Algorithmically, computational/optimization problems on directed graphs are usu-
ally harder than they are on undirected graphs. For example, many recent break-
throughs in scalable graph-algorithm design are for limited to undirected graphs
[9, 27, 53, 54, 59, 75, 83, 85–87]. To express Markov chains as undirect networks, we
can apply the following well-known Markavian symmetrization formulation. Recall
a matrix L is a Laplacian matrix if (1) L is a symmetric matrix with non-positive
off-diagonal entries, and (2) L � 1 D 0.



Network Essence: PageRank Completion and Centrality-Conforming Markov Chains 791

Proposition 4.8 (Canonical Markovian Symmetrization) For any irreducible
and ergodic finite Markov chain M:

˘ � ˘ MCMT ˘

2
(33)

is a Laplacian matrix, where ˘ the diagonal matrix associated with M’s stationary
distribution. Therefore, ˘ MCMT ˘

2
is a symmetric network, whose degrees are

normalized to stationary distribution � D ˘ � 1. When M is detailed balanced,
˘ MCMT˘

2
is the canonical Markovian network of M.

Proof We include a proof here for completeness. Let � be the stationary distribution
of M. Then:

MT� D �

˘ � 1 D �

M � 1 D 1

Therefore:



˘ � ˘ MCMT ˘

2

�

� 1 D


� � ˘ 1CMT�

2

�

D 0 (34)

The Lemma then follows from the fact that 1
2
.˘ MCMT ˘ / is symmetric and non-

negative. ut
Through the PageRank connection, Markov chains also have two extended

Markovian symmetrizations:

Proposition 4.9 (PageRank Markovian Symmetrization) For any irreducible
and ergodic finite Markov chain M and restart constant ˛ > 0, the two matrices
below:

˘ � ˛
1X

kD0
.1 � ˛/k � ˘ Mk C .MT/k˘

2
(35)

˘ � ˛
1X

kD0
.1 � ˛/k˘ �



˘ �1 � ˘ MCMT˘

2

�k

(36)

are both Laplacian matrices. Moreover, the second Laplacian matrix is 1
˛

-spectrally

similar to .1 � ˛/ �
�
˘ � ˘ MCMT˘

2

	
.
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4.2.4 Network Interpretations

We now return to Balcan et al.’s approach [11] for deriving preference networks
from affinity networks. Consider the following natural extension of linear orders to
express rankings with ties: An ordered partition of V is a total order of a partition
of V . Let L.V/ denote the set of all ordered partitions of V: For a � 2 L.V/, for
i; j 2 V , we i is ranked strictly ahead of j if i and j belong to different partitions,
and the partition containing i is ahead of the partition containing j in � . If i and j are
members of the same partition in � , we say � is indifferent of i and j.

Definition 4.10 (PageRank Preferences) Suppose G D .V;E;W/ is a weighted
graph and ˛ > 0 is a restart constant. For each u 2 V , let �u be the ordered partition
according to the descending ranking of V based on the personalized PageRank
vector pu D PPRW;˛Œu; W�. We call …W;˛ D f�ugu2V the PageRank preference
profile of V with respect to G, and AW;˛ D .V;…W;˛/ the PageRank preference
network of G.

As pointed out in [11], other methods for deriving preference networks from
weighted networks exist. For example, one can obtain individual preference rank-
ings by ordering nodes according to shortest path distances, effective resistances, or
maximum-flow/minimum-cut values.

Is the PageRank preference a desirable personalized-preference profile of an affinity
network?

This is a basic question in network analysis. In fact, much work has been done.
I will refer readers to the beautiful axiomatic approach of Altman and Tennenholtz
for characterizing personalized ranking systems [6]. Although they mostly studied
unweighted networks, many of their results can be extended to weighted networks.
Below, I will use Theorem 3.5 to address the following question that I was asked
when first giving a talk about PageRank preferences.

By taking the ranking information from PageRank matrices — which is usually asymmetric
— one may lose valuable network information. For example, when G D .V;E;W/ is a
undirected network, isn’t it desirable to define ranking information according to a symmetric
matrix?

At the time, I was not prepared to answer this question and replied that it was
an excellent point. Theorem 3.5 now provides an answer. Markov chain theory
uses an elegant concept to characterize whether or not a Markov chain M has
an undirected network realization. Although Markov-chain transition matrices are
usually asymmetric, if a Markov chain is detailed-balanced, then its transition matrix
M can be diagonally scaled into a symmetric matrix by its stationary distribution.
Moreover, ˘ M is the “unique” underlying undirected network associated with M.
By Theorem 3.5, PPRW;˛ is a Markov transition matrix with stationary distribution
DW, and thus, W˛ D DW � PPRW;˛ is symmetric if and only if W is symmetric.
Therefore, because the ranking given by pu is the same as the ranking given by
WŒu; W�, the PageRank preference profile is indeed derived from a symmetric matrix
when W is symmetric.
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We can also define clusterability and other network models based on personalized
PageRank matrices. For example:

• PageRank conductance:

PageRank-conductanceW.S/ WD
P

u2S;v 62S WŒu; v�

min
�P

u2S;v2V WŒu; v�;
P

u62S;v2V WŒu; v�
	

(37)

• PageRank utility:

PageRank-utilityW.S/ WD
X

u2S;v2S

PPRW;˛Œu; v� (38)

• PageRank clusterability:

PageRank-clusterabilityW.S/ WD
PageRank-utilityW.S/

jSj (39)

Each of these functions defines a cooperative network based on G D .V;E;W/.
These formulations are connected with the PageRank of G. For example, the
Shapley value of the cooperative network given by � D PageRank-utilityW is the
PageRank of G.

PPRW;˛ can also be used to define incentive and powerset network models. The
former can be defined by us.T/ DPv2T PPRW;˛Œs; v�, for s 2 V;T � V and s 62 T.

The latter can be defined by 	W.S;T/ D
P

u2S;v2T PPRW;˛ Œu;v�
jSj for S;T � V . 	W.S;T/

measures the rate of PageRank contribution from S to T.

4.3 Multifaceted Approaches to Network Analysis: Some Basic
Questions

We will now conclude this section with a few basic questions, aiming to study how
structural concepts in one network model can inspire structural concepts in other
network models. A broad view of network data will enable us to comprehensively
examine different facets of network data, as each network model brings out different
aspects of network data. For examples, the metric model is based on geometry,
the preference model is inspired by social-choice theory [10], the incentive and
cooperative models are based on game-theoretical and economical principles
[69, 70, 82], the powerset model is motivated by social influences [32, 55, 78], while
the graphon [18] is based on graph limits and statistical modeling. We hope that
addressing questions below will help us to gain comprehensive and comparative
understanding of these models and the network structures/aspects that these models
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may reveal. We believe that multifaceted and multimodal approaches to network
analysis will become increasingly more essential for studying major subjects in
network science.

• How should we formulate personalized centrality measures with respect to other
commonly-used network centrality measures [1, 13–17, 33, 36, 37, 41, 42, 51,
66, 71, 76, 80]? Can they be used to define meaningful centrality-conforming
Markov chains?

• How should we define centrality measures and personalized ranking systems
for general incentive or powerset networks? How should we define personalized
Shapley value for cooperative games? How should we define weighted networks
from cooperative/incentive/powerset models?

• What are natural Markov chains associated with the probabilistic graphical mod-
els [58]? How should we define centrality and clusterability for this important
class of network models that are central to statistical machine learning?

• What constitutes a community in a probabilistic graphical model? What consti-
tutes a community in a cooperative, incentive, preference, and powerset network?
How should we capture network similarity in these models? How should we
integrate them if they represents different facets of network data?

• How should we evaluate different clusterability measures and their usefulness to
community identification or clustering? For example, PageRank conductance and
PageRank clusterability are two different subset functions, but the latter applies
to directed networks. How should we define clusterability-conforming centrality
or centrality-forming clusterability?

• What are limitations of Markovian worldview of various network models? What
are other unified worldview models for multifaceted network data?

• What is the fundamental difference between “directed” and “undirected” net-
works in various models?

• How should we model networks with non-homogeneous nodes and edge types?

More broadly, the objective is to build a systematic algorithmic framework
for understanding multifaceted network data, particular given that many natural
network models are highly theoretical in that their complete-information profiles
have exponential dimensionality in jVj. In practice, they must be succinctly defined.
The algorithmic network framework consists of the complex and challenging
tasks of integrating sparse and succinctly-represented multifaceted network data
N D .V;F1; : : : ;Fk/ into an effective worldview .V;W/ based on which, one
can effectively build succinctly-represented underlying models for network facets,
analyzing the interplay between network facets, and identify network solutions that
are consistent with the comprehensive network data/models. What is a general
model for specifying multifaceted network data? How should we formulate the
problem of network composition for multifaceted network data?
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5 To Jirka

The sparsity, richness, and ubiquitousness of multifaceted networks data make them
wonderful subjects for mathematical and algorithmic studies. Network science has
truly become a “universal discipline,” with its multidisciplinary roots and interdis-
ciplinary presence. However, it is a fundamental and conceptually challenging task
to understand network data, due to the vast network phenomena.

The holy grail of network science is to understand the network essence that underlies the
observed sparse-and-multifaceted network data.

We need an analog of the concept of range space, which provides a united
worldview of a family of diverse problems that are fundamental in statistical
machine learning, geometric approximation, and data analysis. I wish that I had
a chance to discuss with you about the mathematics of networks—beyond just the
geometry of graphs—and to learn from your brilliant insights into the essence of
networks. You and your mathematical depth and clarity will be greatly missed, Jirka.
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Anti-concentration Inequalities for Polynomials

Van Vu

In memory of Jirka Matoušek

Abstract In this short survey, we discuss the notion of anti-concentration and
describe various ideas used to obtain anti-concentration inequalities, together with
several open questions.

1 What is Anti-concentration?

Many arguments in probabilistic combinatorics (and probability in general) rely on
bounding the probability of rare events. A frequently used tool for such arguments
is large deviation (or strong concentration) inequalities. Let X be a real random
variable; a typical large deviation inequality asserts that (under certain assumptions)
for any interval I located far from the mean of X, P.X 2 I/ is small. The length of I
is not important, one usually takes I to be a half-line. For many results of this type,
we refer to [10].

Anti-concentration is a phenomenon in the opposite direction. A typical anti-
concentration asserts that if an interval I has small length, then P.X 2 I/ is small,
regardless the location of I. Inequalities of this type have recently found powerful
applications in many branches of probability, most notably the theory of random
matrices (see [19] for an example). It is obvious to extend the notion of anti-
concentration to more abstract spaces.
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In what follows, we use the central limit theorem to illustrate both phenomena.
Let �i; i � 1 be iid random variables with mean 0 and variance 1. Then the CLT
asserts that

X WD �1 C � � � C �np
n

! N.0; 1/:

In other words, for all fixed T,

P.X � T/ D 1p
2�

Z 1

T
e�t2=2dtC o.1/:

For sufficiently large T, 1p
2�

R1
T e�t2=2dt � exp.�T2=2/, so with I WD .T;1/,

we obtain a large deviation bound

P.X 2 I/ � exp.�T2=2/:

On the other hand, if we assume further that Ej�ij3 is bounded, then Berry–Esseen
theorem asserts that for any interval I

jP.X 2 I/ � P.N.0; 1/ 2 I/j D O.n�1=2/:

If I has length �.n�1=2/, then P.N.0; 1/ 2 I/ D O.n�1=2/. In this case, we have
an anti-concentration bound

P.X 2 I/ D O.n�1=2/; (1)

regardless the location of I.
In the rest of this article, we present several anti-concentration inequalities

for functions which can be represented as polynomials in term of iid variables
�1; : : : ; �n. We make an effort to describe the main ideas behind the proofs as we
believe those are of independent interest.

2 Anti-concentration for Linear Forms

Let us consider the linear form L WD a1�1 C � � � C an�n, where ai are real numbers
and �i are iid Rademacher random variables. In 1943, Littlewood and Offord [12]
discovered the first anti-concentration result

Theorem 2.1 There is a constant B such that the following holds for all n. If all
coefficients ai have absolute value at least 1, then for any open interval I of length 1,

P.L 2 I/ � Bn�1=2 log n:
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Notice that in the case ai D 1, this is almost (1), after a proper scaling. However,
for arbitrary ai, we do not even have a CLT for L, let alone the stronger result of
Berry–Esseen.

The term log n was removed later by Erdős, who proved the following sharp form
under the same condition

Theorem 2.2

P.L 2 I/ �
� n
bn=2c

�

2n
D O.n�1=2/:

Assuming that n is even, it is easy to see that for ai D 1 (for all i), P.L D 0/ D
. n

bn=2c/
2n , showing the sharpness of the result. Notice that this theorem implies that if

all ai ¤ 0, then for any number x

P.L D x/ �
� n
bn=2c

�

2n
D O.n�1=2/: (2)

Erdős’ proof uses a lovely combinatorial argument [5]. By symmetry, one can
assume that all ai are positive. For each instance of the variables �i such that L 2 I,
let A be the set of indices i where �i D 1. It is easy to see that the collection
of those sets A form an anti-chain, namely no two A’s are proper subset of each
other. Sperner’s lemma, which asserts that the size of an anti-chain is at most

� n
bn=2c

�

concludes the proof. Theorems 2.1 and 2.2 are the starting points of a massive study
in combinatorics and probability which goes through many decades; see [16] for a
survey.

3 Esseen’s Inequality

In the 1960s, Esseen [6] proved the following general anti-concentration inequality

Lemma 3.1 For any fixed d there exists an absolute positive constant C D C.d/
such that for any random variable X with support in R

d and any unit ball B � R
d

P.X 2 B/ � C
Z

ktk2�1
jE.exp.iht;Xi//j dt: (3)

This lemma leads to a systematic approach to prove new anti-concentration
inequalities; see [7, 16] for many examples. Let us use it to give another proof
of Erdős bound O.n�1=2/ in Theorem 2.2, which is entirely different from the
combinatorial one using Kneser’s lemma. In view of Lemma 3.1, it suffices to show
that

Z

jtj�1
jE.exp.it

nX

jD1
aj�j/j/ dt D O.1=

p
n/:
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By the independence of the �j, we have

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
E.exp.it

nX

jD1
aj�j//

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D

nY

jD1
jE.exp.itaj�j/j D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nY

jD1
cos.taj/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
:

By Hölder’s inequality

Z

jtj�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
E.exp.it

nX

jD1
aj�j//

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

dt �
nY

jD1
.

Z

jtj�1
j cos.taj/jn dt/1=n:

But since each aj has magnitude at least 1, it is easy to check that
R
jtj�1 j cos.taj/jn dt

D O.1=
p

n/, and the claim follows.
The analytic approach via Esseen’s lemma and ideas from Additive Combi-

natorics provide essential tools to the development of Inverse Littlewood–Offord
theory; see [16] for a survey.

4 Anti-concentration for Quadratic Forms

Consider the quadratic form Q WD P
1�i;j�n aij�i�j, where aij are real coefficients.

Anti-concentration for quadratic forms was first studied by Costello et al. [3], as
a step to the solution of Weiss’ conjecture (that a random symmetric ˙1 matrix
typically has full rank). The leading idea in [3] was to reduce to the linear case,
using the following decoupling lemma

Lemma 4.1 (Decoupling lemma) Let Y and Z be independent random variables
and E D E.Y;Z/ be an event depending on Y and Z. Then

P.E.Y;Z// � P.E.Y;Z/ ^ E.Y 0;Z/ ^ E.Y;Z0/ ^ E.Y 0;Z0//1=4

where Y 0 and Z0 are independent copies of Y and Z, respectively. Here we use A^B
to denote the event that A and B both hold.

Let us show how to use this lemma to get a bound on P.Q 2 I/. For simplicity, we
consider the discrete version, namely bounding P.Q D x/ for any value x. Take U1

to be the first half of the indices and U2 to be the second half. Define Y WD .�i/i2U1
and Z WD .�i/i2U2 . We can write Q.x/ D Q.Y;Z/. Let � 0i be an independent copy of
�i and set Y 0 WD .� 0i /i2U1 and Z0 WD .� 0i /i2U2 /. By Lemma 4.1, for any number x

P.Q.Y;Z/ D x/ � P.Q.Y;Z/ D Q.Y;Z0/ D Q.Y 0;Z/ D Q.Y 0;Z0/ D x/1=4:
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On the other hand, if Q.Y;Z/ D Q.Y;Z0/ D Q.Y 0;Z/ D Q.Y 0;Z0/ D x then
regardless the value of x

R WD Q.Y;Z/ � Q.Y 0;Z/ � Q.Y;Z0/C Q.Y 0;Z0/ D 0:
Furthermore, we can write R as

R D
X

i2U1

X

j2U2

aij.�i � � 0i /.�j � � 0j / D
X

i2U1

Riwi;

where wi is the random variable wi WD �i � � 0i , and Ri is the random variableP
j2U2

aijwj.
We now can conclude the proof by applying Theorem 2.2 (or more precisely (2))

twice. First, combining this theorem with a combinatorial argument, one can show
that (with high probability) many Ri are non-zero. Next, one can condition on the
non-zero Ri and apply Theorem 2.2 for the linear form

P
i2U1

Riwi to obtain a bound
on P.R D 0/.

The proof of Lemma 4.1 is worth discussing, as it reveals a surprising connection
to extremal combinatorics. Without loss of generality, we can assume that the
probability space � is discrete, with uniform weight on atoms v1; : : : ; vm, where
m is very large compared to n. We build a bipartite graph G whose color classes
are copies of �, by connecting (a copy of) vi to (a copy) of vj if .vi; vj/ belongs
to the support of E.Y;Z/. Thus, P.E.Y;Z// is exactly the edge density p of G.
A similar consideration shows that P.E.Y;Z/ ^ E.Y 0;Z/ ^ E.Y;Z0/ ^ E.Y 0;Z0//
is the density pC4 of C4 (cycle of length 4). Thus, the claimed bound is equivalent
to the well known fact that pC4 � p4. Bounds of this type are abundant in extremal
combinatorics and perhaps one will find more applications of this type.

5 Anti-concentration for Polynomials: Iteration

The argument in the last section gives bound n�1=8. Later, Costello [2] obtained
the optimal bound n�1=2Co.1/ for quadratic forms. One can use the decoupling idea
repeatedly to obtain bounds for higher degree polynomials. We consider a multi-
linear polynomial P of degree d of the form

P WD
X

S�f1;:::;ngIjSjDd

aS

Y

i2S

�i; (4)

where ai are real coefficients. Costello et al. proved

Theorem 5.1 There is a constant B such that the following holds for all d; n. If
there are mnd�1 coefficients aS with absolute value at least 1, then for any open
interval I of length 1,

P.P.�1; : : : ; �n/ 2 I/ � Bm
� 1

2.d
2

Cd/=2 :
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Notice that in each iteration, the degree goes down by 1, but one loses a 4th root
in the probability bound. Thus, the exponential loss in the final result is expected.
In [17], Razborov and Viola, motivated by an application in complexity theory,
found a more efficient way to apply Lemma 4.1. They first introduced the following
definition.

Definition 5.2 For a degree d multi-linear polynomial of the form (4), the rank
of P, denoted by rank.P/, is the largest integer r such that there exist disjoint sets
S1; : : : ; Sr � Œn� of size d with jaSj j � 1, for j 2 Œr�.

Then they proved

Theorem 5.3 There is a constant B such that the following holds for all d; n. If P
has rank r, then for any open interval I of length 1,

P.P.�1; : : : ; �n/ 2 I/ � Br�
1

d2dC1 :

In the next two sections, we discuss two ideas to improve upon this bound.

6 Anti-concentration for Polynomials: The Switching
Method

The next improvement makes use of Lindeberg’s switching idea. In the 1920s,
Lindeberg [11] found a new method to prove the central limit theorem. Let us
consider

X WD �1 C � � � C �np
n

;

where �i are iid random variables with mean 0 and variance 1 with bounded third
moment.

Let Q�i be iid standard normal variables. In this special case, QX WD Q�1C			CQ�np
n

itself

is standard normal. To conclude the proof, we are going to show that X and QX have
approximately the same distribution. It suffices to show that for any smooth function
G with compact support

EG.X/ D EG. QX/C o.1/:

We write G.X/�G. QX/ DPn
iD1 Fi � QFi; where

Fi D G

 Q�1 C � � � C Q�i�1 C �i C � � � C �np
n

!
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and

QFi D G

 Q�1 C � � � C Q�i�1 C Q�i C �iC1 C � � � C �np
n

!

:

By conditioning, we view Fi WD F.�i/ as a function in �i only and use Taylor
expansion

F.�i/ D F.0/C �iF
0.0/C 1

2
�2i F

00

.0/C 1

6
�3i F000.zi/;

where zi is between 0 and �i.
Do the same with F. Q�i/, it follows that

EF.�i/�EF. Q�i/ D F0.0/E.�i� Q�i/C 1
2

F00.0/E.�2i � Q�2i /C
1

6
E
�
�3i F000.zi/� Q�3i F000.Qzi/

	
:

As �i and Q�i have the same mean and variance, the first two terms cancel and one
can bound the absolute value of RHS by

1

6
E.j�ij3 C jQ�ij3/K;

where K WD supx jF000.x/j. Notice that the lth derivative of F involve a term n�l=2

(coming from the normalization by n�1=2). Asuming that �i has bounded third
moment, then 1

6
E.j�ij3 C jQ�ij3/K D O.n�3=2/. On the other hand, we need to add

only n terms and thus the final bound is O.n�1=2/ D o.1/, concluding the proof.
Lindeberg’s idea is very flexible and can be repeated for high degree polynomials

(and infact, for any smooth functions). Let P be a polynomial of degree d as above.
It is not true that P satisfies the CLT, even when �i are normal gaussian. However,
Carbery and Wright [1] showed

Theorem 6.1 There is a constant C such that for any interval I of length 1,

P.P 2 I/ � Cd.
1p

VarP
/1=d:

Now let us consider �i being iid Rademacher variables. The influence of the i-th
variable on P is defined to be Infi D Infi.P/ DPi2S a2S. Since Var.P/ DPS¤; a2S,
we have

Var.P/ �
nX

iD1
Infi � dVar.P/: (5)
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Define � WD max1�i�n InfiPn
iD1 Infi

: It is clear that 1=n � � � 1. Using Lindeberg’s method,
Mossel et al. proved [14]

Theorem 6.2 Let P be a non-constant polynomial of the form (4). Then for any
interval I of length 1,

P.P.�1; : : : ; �n/ 2 I/ � Cd

.Var.P//1=2d
C Cd�1=.4dC1/:

The role of � in the inequality is to replace the assumption of bounded third
moment in the original argument of Lindeberg. For a detailed argument, we refer to
[14].

7 Anti-concentration for Polynomials: Reducing � by
Conditioning

If � is large, the bound in Theorem 6.2 loses its strength. In [13], we developed
a method to deal with this case, following the proof of [4, Theorem 1.1] and also
[8, 9]. The main idea is to condition on the random variables with large influence.
Doing this properly, we obtain, with high probability, a polynomial which has small
� or is dominated by its constant part (the latter case is easy to deal with by an adhoc
argument). Using this method, Meka et al. [13] improved Theorem 6.2 as follows

Theorem 7.1 There is an absolute constant B such that the following holds for all
d; n. Let P be a polynomial of the form (4) whose rank r � 2. Then for any interval
I of length 1,

P.P.�1; : : : ; �n/ 2 I/ � min


Bd4=3

p
log r

r
1

4dC1

;
exp.Bd2.log log r/2/p

r

�

:

Notice that for the case d D O.1/ and r D ‚.n/, the second term on the RHS
dominates and is of order n�1=2Co.1/. This bound is sharp, up to the o.1/ term. To see
this, consider P D .�1C� � �C�n/

d. In this case, P.P D 0/ D P.�1C� � �C�n D 0/ and
the latter can be as large as �.n�1=2/ (see Theorem 2.2). The first bound is better
in the case d tends to infinity with n. (In particular, this bound was used to settle
the problem of Razborov and Viola in complexity theory, mentioned earlier; see
[13] for details.) There is another proof of Theorem 7.1 (by Kane), which directly
links anti-concentration to the notion of average sensitivity and the Gotsman–Linial
conjecture; see [13].
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8 Remarks and Open Problems

An interesting question is to find an exact bound as in Theorem 2.2. Notice that if n
is even and

P WD
lY

jD0

 
nX

iD1
�i ˙ 2j

!

then P is a polynomial of degree d D 2lC 1 such that

P.P D 0/ D Sd

2n

where Sd is the sum of the largest d binomial coefficients. Could this be a upper
bound for P.P D 0/ for all polynomials P with all monomials having non-zero
coefficients ? It would be already interesting to remove the o.1/ in the exponent of
the bound n�1=2Co.1/ discussed at the end of the last section.

In the linear case, a theory of Inverse Littlewood-Offord inequalities has been
worked out by many researchers (see [16] for a survey). A typical result in this
theory asserts that in Theorem 2.1, we can have a much better bound (say n�100)
unless the coefficients ai satisfy certain strong additive properties. (In fact, one can
more or less give a full characterization of all sets fa1; : : : ; ang such that P.L 2 I/ �
n�100.) Results of this kind proved very useful in the studies of random matrices.
leading to the solutions of various long standing problems (see [16, 18, 19]).

It is desirable to extend this theory for higher degree polynomials. Such extension
will certainly has a large number of applications. Even for quadratic form, the
situation is not absolutely clear; for partial results see [15].
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