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Abstract We consider one-dimensional stochastic differential equations (SDEs)
with irregular coefficients. The goal of this paper is to estimate the Lp.˝/-difference
between two SDEs using a norm associated to the difference of coefficients. In our
setting, the (possibly) discontinuous drift coefficient satisfies a one-sided Lipschitz
condition and the diffusion coefficient is bounded, uniformly elliptic and Hölder
continuous. As an application of this result, we consider the stability problem for
this class of SDEs.
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1 Introduction

Let X D .Xt/0�t�T be a solution of the one-dimensional stochastic differential
equation (SDE)

Xt D x0 C
Z t

0

b.Xs/ds C
Z t

0

�.Xs/dWs; x0 2 R; t 2 Œ0;T�; (1)

where W WD .Wt/0�t�T is a standard one-dimensional Brownian motion on a prob-
ability space .˝;F ;P/ with a filtration .Ft/0�t�T satisfying the usual conditions.
The drift coefficient b and the diffusion coefficient � are Borel-measurable functions
from R into R. The diffusion process X is used in many fields of application, for
example, mathematical finance, optimal control and filtering.

Let X.n/ be a solution of the SDE (1) with drift coefficient bn and diffusion
coefficient �n. We consider the stability problem for .X;X.n// when the pair of
coefficients .bn; �n/ converges to .b; �/. Stroock and Varadhan introduced the
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stability problem in the weak sense in order to consider the martingale problem
with continuous and locally bounded coefficients (see Chap. 11 of [17]). In [11],
Kawabata and Yamada consider the strong convergence of the stability problem
under the condition that the drift coefficients b and bn are Lipschitz continuous
functions, the diffusion coefficients � and �n are Hölder continuous and .bn; �n/

locally uniformly converges to .b; �/ (see [11, Example 1]). Kaneko and Nakao
[10] prove that if the coefficients bn and �n are uniformly bounded, �n is uniformly
elliptic and .bn; �n/ tends to .b; �/ in L1-sense, then .X.n//n2N converges to X in L2-
sense. Moreover they also prove that the solution of the SDE (1) can be constructed
as the limit of the Euler-Maruyama approximation under the condition that the
coefficients b and � are continuous and of linear growth (see [10, Theorem D]).
Recently, under the Nakao-Le Gall condition, Hashimoto and Tsuchiya [8] prove
that .X.n//n2N converges to X in Lp sense for any p � 1 and give the rate
of convergence under the condition that bn ! b and �n ! � in L1 and L2

sense, respectively. Their proof is based on the Yamada-Watanabe approximation
technique which was introduced in [19] and some estimates for the local time.

On a related study, the convergence for the Euler-Maruyama approximation with
non-Lipschitz coefficients has been studied recently. Yan [18] has proven that if the
sets of discontinuous points of b and � are countable, then the Euler-Maruyama
approximation converges weakly to the unique weak solution of the corresponding
SDE. Kohatsu-Higa et al. [12] have studied the weak approximation error for the
one-dimensional SDE with the drift 1.�1;0�.x/� 1.0;C1/.x/ and constant diffusion.
Gyöngy and Rásonyi [7] give the order of the strong rate of convergence for a class
of one-dimensional SDEs whose drift is the sum of a Lipschitz continuous function
and a monotone decreasing Hölder continuous function and its diffusion coefficient
is a Hölder continuous function. The Yamada-Watanabe approximation technique
is a key idea to obtain their results. In [15], Ngo and Taguchi extend the results in
[7] for SDEs with discontinuous drift. They prove that if the drift coefficient b is
bounded and one-sided Lipschitz function, and the diffusion coefficient is bounded,
uniformly elliptic and �-Hölder continuous, then there exists a positive constant C
such that

sup
0�t�T

EŒjXt � X
.n/
t j� �

8̂
<
:̂

C

n��1=2
; if � 2 .1=2; 1�;

C

log n
; if � D 1=2;

where X
.n/

is the Euler-Maruyama approximation for SDE (1). This fact implies
that the strong rate of convergence for the stability problem may also depend on the
Hölder exponent of the diffusion coefficient.

The goal of this paper is to estimate the difference between two SDEs using the
norm of the difference of coefficients. More precisely, let us consider another SDE
given by

OXt D x0 C
Z t

0

Ob. OXs/ds C
Z t

0

O�. OXs/dWs: (2)
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We will prove the following inequality:

sup
0�t�T

EŒjXt � OXtj� �
8<
:

C.jjb � Objj1 _ jj� � O� jj22/.2��1/=.2�/; if � 2 .1=2; 1�;
C

log.1=.jjb � Objj1 _ jj� � O� jj22//
; if � D 1=2;

(3)

where � is the Hölder exponent of the diffusion coefficients, C is a positive constant
and jj � jjp is a Lp-norm which will be defined by (4). We will also estimate
EŒsup0�t�T jXt � OXtjp� for any p � 1. It is worth noting that in the papers [10]
and [11], the authors only prove the strong convergence for the stability problem.
On the other hand, applying our main results, we are able to establish the strong rate
of convergence for the stability problem (see Sect. 4). In order to obtain (3), we use
the Yamada-Watanabe approximation technique and a Gaussian upper bound for the
density of SDE (2) (see [2, 16] and [14]).

Finally, we note that SDEs with discontinuous drift coefficient have many
applications in mathematical finance [1] and [9], optimal control problems [4] and
other domains (see also [5] and [13]).

This paper is organized as follows: Sect. 2 introduces our framework and main
results. All the proofs are shown in Sect. 3. In Sect. 4, we apply the main results to
the stability problem.

2 Main Results

2.1 Notations and Assumptions

We will assume that the drift coefficient b belongs to the class of one-sided Lipschitz
functions which is defined as follows.

Definition 1 A function f W R ! R is called a one-sided Lipschitz function if there
exists a positive constant L such that for any x; y 2 R,

.x � y/. f .x/ � f .y// � Ljx � yj2:

Let L be the class of all one-sided Lipschitz functions.

Remark 1 By the definition of the class L , if f ; g 2 L and ˛ � 0, then f C g,
˛f 2 L . The one-sided Lipschitz property is closely related to the monotonicity
condition. Actually, any monotone decreasing function is one-sided Lipschitz.
Moreover, any Lipschitz continuous function is also a one-sided Lipschitz.

Now we give assumptions for the coefficients b; Ob; � and O� .
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Assumption 1 We assume that the coefficients b; Ob; � and O� satisfy the following
conditions:

A-(i): b 2 L .
A-(ii): b and Ob are measurable and there exists K > 0 such that

sup
x2R

�
jb.x/j _ jOb.x/j

�
� K:

A-(iii): � and O� are � WD .1=2C ˛/-Hölder continuous with some ˛ 2 Œ0; 1=2�,
i.e., there exists K > 0 such that

sup
x;y2R;x¤y

� j�.x/ � �.y/j
jx � yj� _ j O�.x/ � O�.y/j

jx � yj�
�

� K:

A-(iv): a D �2 and Oa D O�2 are bounded and uniformly elliptic, i.e., there exists
� � 1 such that for any x 2 R,

��1 � a.x/ � � and ��1 � Oa.x/ � �:

Remark 2 Assume that A-(ii), A-(iii) and A-(iv) hold. Then the SDE (1) and the
SDE (2) have unique strong solution (see [20]). Note that the one-sided Lipschitz
property is used only in (11) for b, so we don’t need to assume Ob 2 L .

2.2 Gaussian Upper Bound for the Density of SDE

A Gaussian upper bounded for the density of Xt is well-known under suitable
conditions for the coefficients. If coefficients b and � are Hölder continuous and
� is bounded and uniformly elliptic, then a Gaussian type estimate holds for
the fundamental solution of parabolic type partial differential equations (see [6,
Theorem 11, Chap. 1]). Under A-(ii), (iii) and (iv), the density function pt.x0; �/ of
Xt exists for any t 2 .0;T� and there exist positive constants C and c� such that for
any y 2 R and t 2 .0;T�,

pt.x0; y/ � Cpc�
.t; x0; y/;

where pc.t; x; y/ WD e�
.y�x/2

2ctp
2�ct

(see [14, Remark 4.1]).
Using a Gaussian upper bound for the density of Xt, we can prove the following

estimate.
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Lemma 1 Let p � 1. Assume that A-(ii), A-(iii) and A-(iv) hold. Then we have

Z T

0

EŒjb. OXs/ � Ob. OXs/jp�ds � CT jjb � Objjp
p

and

Z T

0

EŒj�. OXs/ � O�. OXs/j2p�ds � CT jj� � O� jj2p
2p;

where CT WD C
q

2T
�c�

and for any bounded measurable function f , jj � jjp is defined

by

jj f jjp WD
�Z

R

j f .x/jpe� jx�x0 j
2

2c�T dx

�1=p

: (4)

Proof We only prove the first estimate. The second one can be obtained by using a
similar argument. From a Gaussian upper bound for the density of OXt, for any x 2 R

and s 2 .0;T�, we have

Ops.x0; x/ � Cpc�
.s; x0; x/ � Cp

2�c�s
e� jx�x0 j

2

2c�T ;

where Ops.x0; �/ is a density function of OXs. Hence we obtain

Z T

0

EŒjb. OXs/ � Ob. OXs/jp�ds D
Z T

0

ds
Z
R

dxjb.x/� Ob.x/jp Ops.x0; x/

�
Z T

0

ds
Cp
2�c�s

Z
R

dxjb.x/� Ob.x/jpe� jx�x0 j
2

2c�T (5)

D CT jjb � Objjp
p:

This concludes the proof.

Remark 3 Our proof of Lemma 1 is based on the fact that we are in the one-
dimensional setting. In multi-dimensional case, the integrand of (5) is not integrable
with respect to s in general. This is the main reason for restricting our discussion to
the one-dimensional SDE case.
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2.3 Rate of Convergence

For any p � 1, we define

"p WD jjb � Objjp
p _ jj� � O� jj2p

2p:

Then we have the following estimate for the difference between two SDEs.

Theorem 1 Suppose that Assumption 1 holds. We assume that "1 < 1 if ˛ 2
.0; 1=2� and 1= log.1="1/ < 1 if ˛ D 0. Then there exists a positive constant C
which depends on C; c�;K;L;T; ˛; � and x0 such that

sup
�2T

EŒjX� � OX� j� �
8<
:

C"2˛=.2˛C1/
1 if ˛ 2 .0; 1=2�;

C

log.1="1/
if ˛ D 0;

where T is the set of all stopping times � � T.

Theorem 2 Suppose that Assumption 1 holds. We assume that "1 < 1 if ˛ 2
.0; 1=2� and 1= log.1="1/ < 1 if ˛ D 0. Then there exists a positive constant C
which depends on C; c�;K;L;T; ˛; � and x0 such that

EŒ sup
0�t�T

jXt � OXtj� �

8̂
<
:̂

C"4˛
2=.2˛C1/

1 if ˛ 2 .0; 1=2�;
Cp

log.1="1/
if ˛ D 0:

Theorem 3 Suppose that Assumption 1 holds and p � 2. We assume that "p < 1 if
˛ 2 .0; 1=2� and 1= log.1="p/ < 1 if ˛ D 0. Then there exists a positive constant C
which depends on C; c�;K;L;T; p; ˛; � and x0 such that

EŒ sup
0�t�T

jXt � OXtjp� �

8̂
<̂
ˆ̂:

C"1=2p if ˛ D 1=2;

C"2˛=.2˛C1/
1 if ˛ 2 .0; 1=2/;

C

log.1="1/
if ˛ D 0:

Using Jensen’s inequality, we can extend Theorem 3 as follows.

Corollary 1 Suppose that Assumption 1 holds and p 2 .1; 2/. We assume that "2p <

1 if ˛ 2 .0; 1=2� and 1= log.1="2p/ < 1 if ˛ D 0. Then there exists a positive
constant C which depends on C; c�;K;L;T; p; ˛; � and x0 such that

EŒ sup
0�t�T

jXt � OXtjp� �

8̂
ˆ̂<
ˆ̂̂:

C"1=22p if ˛ D 1=2;

C"˛=.2˛C1/
1 if ˛ 2 .0; 1=2/;

Cp
log.1="1/

if ˛ D 0:
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Next, we will find a bound for EŒjg.XT/ � g. OXT/jr� where g is a function of
bounded variation and r � 1.

Definition 2 For a function f W R ! R, we define

Tf .x/ WD sup
NX

jD1
j f .xj/ � f .xj�1/j:

Here the supremum is taken over all positive integers N and all partitions �1 <

x0 < x1 < � � � < xN D x < 1: We call f a function of bounded variation, if

V. f / WD lim
x!1 Tf .x/ < 1:

Denote by BV the class of all functions of bounded variation.

Corollary 2 Suppose that Assumption 1 holds. Furthermore assume that "1 < 1 if
˛ 2 .0; 1=2� and 1= log.1="1/ < 1 if ˛ D 0. Then there exists a positive constant C
which depends on C; c�;K;L;T; ˛; � and x0 such that for any g 2 BV and r � 1,

EŒjg.XT/� g. OXT/jr� �

8̂
<
:̂
3rC1V.g/rC"˛=.2˛C1/

1 if ˛ 2 .0; 1=2�;
3rC1V.g/rCp

log.1="1/
if ˛ D 0:

Remark 4 In the proof of all results, we calculate the constant C explicitly. In
Theorems 1–3 and Corollary 1, the constant C does not blow up when T ! 0.
On the other hand, in Corollary 2, the constant C may tend to infinity as T ! 0

because we use a Gaussian upper bound for the density of XT in (17).

3 Proofs

3.1 Yamada-Watanabe Approximation Technique

In this section, we introduce the approximation method of Yamada and Watanabe
(see [19] and [7]) which is the key technique for our proof. We define an
approximation for the function �.x/ D jxj. For each ı 2 .1;1/ and 	 2 .0; 1/,
there exists a continuous function  ı;	 W R ! R

C with supp  ı;	 � Œ	=ı; 	� such
that

Z 	

	=ı

 ı;	 .z/dz D 1 and 0 �  ı;	.z/ � 2

z log ı
; z > 0:
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For example, we can take

 ı;	 .z/ WD 
ı;	 exp

�
� 1

.	 � z/.z � 	=ı/
�
1.	=ı;	/.z/;

where 
�1
ı;	 WD R 	

	=ı exp.� 1
.	�z/.z�	=ı/ /dz. We define a function �ı;	 2 C2.RIR/ by

�ı;	.x/ WD
Z jxj

0

Z y

0

 ı;	.z/dzdy:

It is easy to verify that �ı;	 has the following useful properties:

�0
ı;	 .x/

x
> 0; for any x 2 R n f0g: (6)

0 � j�0
ı;	.x/j � 1; for any x 2 R: (7)

jxj � 	 C �ı;	.x/; for any x 2 R: (8)

�00
ı;	 .˙jxj/ D  ı;	.jxj/ � 2

jxj log ı
1Œ	=ı;	�.jxj/; for any x 2 R n f0g: (9)

The property (8) implies that the function �ı;	 approximates �.

3.2 Proof of Theorem 1

To simplify the discussion, we set

Yt WD Xt � OXt; t 2 Œ0;T�:

Proof (Proof of Theorem 1) Let ı 2 .1;1/ and 	 2 .0; 1/. From Itô’s formula, (7)
and (8), we have

jYtj � 	 C �ı;	.Yt/

D 	 C
Z t

0

�0
ı;	.Ys/.b.Xs/ � Ob. OXs//ds

C 1

2

Z t

0

�00
ı;	.Ys/j�.Xs/� O�. OXs/j2ds C Mı;	

t

D 	 C
Z t

0

�0
ı;	.Ys/.b.Xs/ � b. OXs//ds C

Z t

0

�0
ı;	 .Ys/.b. OXs/� Ob. OXs//ds

C 1

2

Z t

0

�00
ı;	.Ys/j�.Xs/� O�. OXs/j2ds C Mı;	

t
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� 	 C
Z t

0

�0
ı;	 .Ys/.b.Xs/ � b. OXs//ds C

Z T

0

jb. OXs/� Ob. OXs/jds

C 1

2

Z t

0

�00
ı;	.Ys/j�.Xs/� O�. OXs/j2ds C Mı;	

t ; (10)

where

Mı;	
t WD

Z t

0

�0
ı;	.Ys/.�.Xs/ � O�. OXs//dWs:

Note that since � , O� and �0
ı;	 are bounded, .Mı;	

t /0�t�T is a martingale so

EŒMı;	
t � D 0. Since b 2 L , for any x; y 2 R with x ¤ y, we have, from (6)

and (7),

�0
ı;	 .x � y/.b.x/� b.y// D �0

ı;	 .x � y/

x � y
.x � y/.b.x/� b.y//

� L
�0
ı;	 .x � y/

x � y
jx � yj2 (11)

� Ljx � yj:

Therefore we get

Z t

0

�0
ı;	 .Ys/.b.Xs/� b. OXs//ds � L

Z t

0

jYsjds: (12)

Using Lemma 1 with p D 1, we have

Z T

0

EŒjb. OXs/ � Ob. OXs/j�ds � CT jjb � Objj1: (13)

From (9) and .x C y/2 � 2x2 C 2y2 for any x; y � 0, we have

1

2

Z t

0

�00
ı;	 .Ys/j�.Xs/ � O�. OXs/j2ds �

Z t

0

1Œ	=ı;	�.jYsj/
jYsj log ı

j�.Xs/ � O�. OXs/j2ds

� 2

Z t

0

1Œ	=ı;	�.jYsj/
jYsj log ı

j�.Xs/ � �. OXs/j2ds C 2

Z t

0

1Œ	=ı;	�.jYsj/
jYsj log ı

j�. OXs/� O�. OXs/j2ds

� 2

Z t

0

1Œ	=ı;	�.jYsj/
jYsj log ı

j�.Xs/ � �. OXs/j2ds C 2ı

	 log ı

Z T

0

j�. OXs/� O�. OXs/j2ds:

(14)
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Again using Lemma 1 with p D 1, we have

2ı

	 log ı

Z T

0

EŒj�. OXs/� O�. OXs/j2�ds � 2CTı

	 log ı
jj� � O� jj22: (15)

Since � is .1=2C ˛/-Hölder continuous, we have

2

Z T

0

1Œ	=ı;	�.jYsj/
jYsj log ı

j�.Xs/ � �. OXs/j2ds � 2K2

Z T

0

1Œ	=ı;	�.jYsj/
jYsj log ı

jYsj1C2˛ds

� 2TK2	2˛

log ı
: (16)

Let � be a stopping time with � � T and Zt WD jYt^� j. From (10), (12), (13), (15)
and (16), we obtain

EŒZt� � 	 C L
Z t

0

EŒZs�ds C CT jjb � Objj1 C 2CTı

	 log ı
jj� � O� jj22 C 2TK2	2˛

log ı

� 	 C L
Z t

0

EŒZs�ds C CT"1 C 2CTı

	 log ı
"1 C 2TK2	2˛

log ı
:

If ˛ 2 .0; 1=2�, then since "1 < 1, by choosing ı D 2 and 	 D "
1=.2˛C1/
1 , we have

EŒZt� � L
Z t

0

EŒZs�ds C "
1=.2˛C1/
1 C CT"1 C 4CT"

1�1=.2˛C1/
1

log 2
C 2TK2"

2˛=.2˛C1/
1

log 2

� L
Z t

0

EŒZs�ds C C1.˛;T/"
2˛=.2˛C1/
1 ;

where

C1.˛;T/ WD 1C CT C 4CT

log 2
C 2TK2

log 2
:

By Gronwall’s inequality, we get

EŒZt� � C1.˛;T/e
LT"

2˛=.2˛C1/
1 :

Therefore by the dominated convergence theorem, we conclude the statement by
taking t ! T.
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If ˛ D 0, then since 1= log.1="1/ < 1, by choosing ı D "
�1=2
1 and 	 D

1= log.1="1/, we have

EŒZt� � L
Z t

0

EŒZs�ds C 1

log.1="1/
C CT"1 C 4CT"

1=2
1 C 4TK2

log.1="1/

� L
Z t

0

EŒZs�ds C C1.0;T/

log.1="1/
;

where

C1.0;T/ WD 1C 5CT C 4TK2:

By Gronwall’s inequality, we obtain

EŒZt� � C1.0;T/eLT

log.1="1/
:

Therefore by the dominated convergence theorem, we conclude the statement by
taking t ! T.

3.3 Proof of Corollary 2

To prove Corollary 2, we recall the upper bound for EŒjg.X/ � g. OX/jr� where g is a
function of bounded variation, r � 1, X and OX are random variables.

Lemma 2 ([3], Theorem 4.3) Let X and OX be random variables. Assume that X
has a bounded density pX. If g 2 BV and r � 1, then for every q � 1, we have

EŒjg.X/� g. OX/jr� � 3rC1V.g/r
�

sup
x2R

pX.x/

� q
qC1

EŒjX � OXjq�1=.qC1/:

Using the above Lemma, we can prove Corollary 2.

Proof (Proof of Corollary 2) From the Gaussian upper bound for the density
pT.x0; �/ of XT , we have for any y 2 R,

pT.x0; y/ � Cpc�
.T; x0; y/ � Cp

2�c�T
: (17)



108 D. Taguchi

This means that the density pT.x0; �/ of XT is bounded. Hence from Lemma 2 with
q D 1 and Theorem 1 with � D T, for any g 2 BV and r � 1, we have

EŒjg.XT/� g. OXT/jr� � 3rC1V.g/rC1=2

.2�c�T/1=4
EŒjXT � OXT j�1=2

�

8̂
<
:̂
3rC1V.g/rC2.˛;T/"˛=.2˛C1/

1 if ˛ 2 .0; 1=2�;
3rC1V.g/rC2.0;T/p

log.1="1/
if ˛ D 0;

where

C2.˛;T/ WD C
1=2

C1.˛;T/1=2eLT=2

.2�c�T/1=4
; for ˛ 2 Œ0; 1=2�:

This concludes the proof of statement.

3.4 Proof of Theorem 2

Let Vt WD sup0�s�t jYsj. Recall that for each ı 2 .1;1/ and 	 2 .0; 1/,

Mı;	
t D

Z t

0

�0
ı;	 .Ys/.�.Xs/� O�. OXs//dWs:

Hence the quadratic variation of Mı;	
t is given by

hMı;	it D
Z t

0

j�0
ı;	.Ys/j2j�.Xs/� O�. OXs/j2ds:

Before proving Theorem 2, we estimate the expectation of sup0�s�t jMı;	
s j for

any t 2 Œ0;T�, ı 2 .1;1/ and 	 2 .0; 1/.
Lemma 3 Suppose that the assumption of Theorem 2 hold. Then for any t 2 Œ0;T�,
ı 2 .1;1/ and 	 2 .0; 1/, we have

EŒ sup
0�s�t

jMı;	
s j� �

8̂
<
:̂

1

2
EŒVt�C C3.˛;T/"

4˛2=.2˛C1/
1 if ˛ 2 .0; 1=2�;

C3.0;T/p
log.1="1/

if ˛ D 0;
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where

C3.˛;T/ WD
( OC2

1K
2TC1.˛;T/

2˛e2˛LT C p
2 OC1C1=2

T ; if ˛ 2 .0; 1=2�;p
2 OC1KT1=2C1.0;T/

1=2eLT=2 C p
2 OC1C1=2

T ; if ˛ D 0;

and OCp is the constant of Burkholder-Davis-Gundy’s inequality with p > 0.

Proof From Burkholder-Davis-Gundy’s inequality, we have

EŒ sup
0�s�t

jMı;	
s j� � OC1EŒhMı;	i1=2t � � OC1E

"�Z t

0

j�.Xs/ � O�. OXs/j2ds

�1=2#

� p
2 OC1E

"�Z t

0

j�.Xs/ � �. OXs/j2ds

�1=2#

C p
2 OC1E

"�Z T

0

j�. OXs/� O�. OXs/j2ds

�1=2#
:

From Jensen’s inequality and Lemma 1, we have

E

"�Z T

0

j�. OXs/ � O�. OXs/j2ds

�1=2#
�
�Z T

0

E

h
j�. OXs/ � O�. OXs/j2

i
ds

�1=2

� C1=2
T jj� � O� jj2:

Since � is .1=2C ˛/-Hölder continuous, we obtain

EŒ sup
0�s�t

jMı;	
s j� � p

2 OC1KE

"�Z t

0

jYsj1C2˛ds

�1=2#
C p

2 OC1C1=2
T jj� � O� jj2:

(18)

If ˛ 2 .0; 1=2�, then we get

p
2 OC1KE

"�Z t

0

jYsj1C2˛ds

�1=2#
� p

2 OC1KE

"
V1=2

t

�Z t

0

jYsj2˛ds

�1=2#
:
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Using Young’s inequality xy � x2

2
p
2 OC1K C

p
2 OC1Ky2

2
for any x; y � 0 and Jensen’s

inequality, we obtain

p
2 OC1KE

"�Z t

0

jYsj1C2˛ds

�1=2#
� 1

2
EŒVt�C 2 OC2

1K
2

2

Z T

0

EŒjYsj2˛�ds

� 1

2
EŒVt�C OC2

1K
2T1�2˛

�Z T

0

EŒjYsj�ds

�2˛
:

From Theorem 1 with � D s, we have

p
2 OC1KE

"�Z t

0

jYsj1C2˛ds

�1=2#
� 1

2
EŒVt�C OC2

1K
2TC1.˛;T/

2˛e2˛LT"
4˛2=.2˛C1/
1 :

(19)

Since 4˛2=.2˛ C 1/ � ˛ � 1=2, from (18) and (19), we get

EŒ sup
0�s�t

jMı;	
s j� � 1

2
EŒVt�C C3.˛;T/"

4˛2=.2˛C1/
1

which concludes the statement for ˛ 2 .0; 1=2�.
If ˛ D 0, then from Jensen’s inequality and Theorem 1 with � D s, we get

p
2 OC1KE

"�Z t

0

jYsjds

�1=2#
� p

2 OC1K
�Z T

0

EŒjYsj�ds

�1=2

�
p
2 OC1KT1=2C1.0;T/1=2eLT=2p

log.1="1/
:

Therefore we have

EŒ sup
0�s�T

jMı;	
s j� �

p
2 OC1KT1=2C1.0;T/1=2eLT=2p

log.1="1/
C p

2 OC1C1=2
T jj� � O� jj2

� C3.0;T/p
log.1="1/

:

This concludes the statement for ˛ D 0.

Using the above estimate, we can prove Theorem 2.
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Proof (Proof of Theorem 2) From (10), (12), (14) and (16), we have

Vt � 	 C L
Z t

0

Vsds C
Z T

0

jb. OXs/� Ob. OXs/jds

C 2ı

	 log ı

Z T

0

j�. OXs/� O�. OXs/j2ds C 2TK2	2˛

log ı
C sup

0�s�t
jMı;	

s j: (20)

If ˛ 2 .0; 1=2�, then from (20), Lemmas 1 and 3, we have

EŒVt� � 	 C L
Z t

0

EŒVs�ds C CT jjb � Objj1 C 2CTı

	 log ı
jj� � O� jj22 C 2TK2	2˛

log ı

C 1

2
EŒVt�C C3.˛;T/"

4˛2=.2˛C1/
1

� 	 C L
Z t

0

EŒVs�ds C CT"1 C 2CTı

	 log ı
"1 C 2TK2	2˛

log ı

C 1

2
EŒVt�C C3.˛;T/"

4˛2=.2˛C1/
1 :

Hence we get

EŒVt� � 2	 C 2L
Z t

0

EŒVs�ds C 2CT"1 C 4CTı

	 log ı
"1

C 4TK2	2˛

log ı
C 2C3.˛;T/"

4˛2=.2˛C1/
1 :

Note that 0 < 4˛2=.2˛ C 1/ � ˛ � 1=2. Taking ı D 2 and 	 D "
1=2
1 , we have

EŒVt� � 2L
Z t

0

EŒVs�ds C 2

�
1C CT C 4CT

log 2

�
"
1=2
1

C 4TK2

log 2
"˛1 C 2C3.˛;T/"

4˛2=.2˛C1/
1

� 2L
Z t

0

EŒVs�ds C C4.˛;T/"
4˛2=.2˛C1/
1 ;

where

C4.˛;T/ WD 2

�
1C CT C 4CT C 2TK2

log 2
C C3.˛;T/

�
:
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By Gronwall’s inequality, we obtain

EŒVt� � C4.˛;T/e
2LT"

4˛2=.2˛C1/
1 :

If ˛ D 0, then from (20), Lemmas 1 and 3, we have

EŒVt� � 	 C L
Z t

0

EŒVs�ds C CT"1 C 2CTı

	 log ı
"1 C 2TK2

log ı
C C3.0;T/p

log.1="1/
:

Taking ı D "
�1=2
1 and 	 D 1= log.1="1/, we get

EŒVt� � L
Z t

0

EŒVs�ds C C4.0;T/p
log.1="1/

;

where

C4.0;T/ WD 1C 5CT C 4TK2 C C3.0;T/:

By Gronwall’s inequality, we obtain

EŒVt� � C4.0;T/eLTp
log.1="1/

:

Hence we conclude the proof of Theorem 2.

3.5 Proof of Theorem 3

In this section, we also estimate the expectation of sup0�s�t jMı;	
s jp for any p � 2,

t 2 Œ0;T�, ı 2 .1;1/ and 	 2 .0; 1/.
Lemma 4 Let p � 2. Assume that A-(ii), A-(iii) and A-(iv) hold. Then for any
t 2 Œ0;T�, ı 2 .1;1/ and 	 2 .0; 1/, we have

EŒ sup
0�s�t

jMı;	
s jp� � C5.p;T/E

"�Z t

0

jYsj1C2˛ds

�p=2
#

C C6.p;T/jj� � O� jjp
2p;

where C5.p;T/ WD 2p=2CpKp and C6.p;T/ WD 2p=2T
p�1
2 CpC1=2

T . In particular, if
˛ D 1=2, we have

EŒ sup
0�s�t

jMı;	
s jp� � 1

2 � 5p�1EŒV
p
t �C 5p�1C5.p;T/2Tp�1

2

Z t

0

EŒVp
s �ds

C C6.p;T/jj� � O� jjp
2p:
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Proof (Proof of Lemma 4) From Burkholder-Davis-Gundy’s inequality, we have

EŒ sup
0�s�t

jMı;	
s jp� � CpEŒhMı;	 ip=2

t � � CpE

"�Z t

0
j�.Xs/ � O�. OXs/j2ds

�p=2
#

� 2p=2Cp

0
@E

"�Z t

0
j�.Xs/ � �. OXs/j2ds

�p=2
#

C E

2
4
 Z T

0
j�. OXs/� O�. OXs/j2ds

!p=2
3
5
1
A :

From Jensen’s inequality and Lemma 1, we have

E

"�Z T

0

j�. OXs/ � O�. OXs/j2ds

�p=2
#

� T
p�1
2

�Z T

0

EŒj�. OXs/� O�. OXs/j2p�ds

�1=2

� T
p�1
2 C1=2

T jj� � O� jjp
2p:

Since � is .1=2C ˛/-Hölder continuous, we get

EŒ sup
0�s�t

jMı;	
s jp� � C5.p;T/E

"�Z t

0

jYsj1C2˛ds

�p=2
#

C C6.p;T/jj� � O� jjp
2p:

This concludes the first statement.
In particular, if ˛ D 1=2, then we get from definition of Vt,

C5.p;T/E

"�Z t

0

jYsj2ds

�p=2
#

� C5.p;T/E

"
.Vt/

p=2
�Z t

0

jYsjds

�p=2
#
:

Using Young’s inequality xy � x2

2�5p�1C5.p;T/
C 5p�1C5.p;T/y2

2
for any x; y � 0 and

Jensen’s inequality, we obtain

C5.p;T/E

"�Z t

0

jYsj2ds

�p=2
#

� 1

2 � 5p�1EŒV
p
t �C 5p�1C5.p;T/2

2
E

��Z t

0

jYsjds

�p�

� 1

2 � 5p�1EŒV
p
t �C 5p�1C5.p;T/2Tp�1

2

Z t

0

EŒVp
s �ds;

which concludes the second statement.

To prove Theorem 3, we recall the following Gronwall type inequality.

Lemma 5 ([7] Lemma 3.2.-(ii)) Let .At/0�t�T be a nonnegative continuous
stochastic process and set Bt WD sup0�s�t As. Assume that for some r > 0, q � 1,
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� 2 Œ1; q� and C1; � � 0,

EŒBr
t � � C1E

��Z t

0

Bsds

�r�
C C1E

"�Z t

0

A�s ds

�r=q
#

C � < 1

for all t 2 Œ0;T�. If r � q or q C 1 � � < r < q hold, then there exists constant C2
depending on r; q; �;T and C1 such that

EŒBr
T � � C2� C C2

Z T

0

EŒAs�ds:

Now using Lemmas 4 and 5, we can prove Theorem 3.

Proof (Proof of Theorem 3) From (20) and the inequality
�Pm

iD1 ai
	p �

mp�1Pm
iD1 ap

i for any p � 2 ai > 0 and m 2 N, and Jensen’s inequality, we
have

Vp
t � 5p�1

 
	p C

�
L
Z t

0

Vsds

�p

C Tp�1
Z T

0

jb. OXs/ � Ob. OXs/jpds

C 2Tp�1ıp

	p.log ı/p

Z T

0

j�. OXs/� O�. OXs/j2pds C .2TK2/p	2p˛

.log ı/p
C sup

0�s�t
jMı;	

s jp

!
:

From Lemma 1 with p � 2, we have

EŒVp
t � � 5p�1	p C 5p�1Lp

E

��Z t

0

Vsds

�p�
C .5T/p�1CT jjb � Objjp

p

C 2.5T/p�1CTı
p

	p.log ı/p
jj� � O� jj2p

2p C 5p�1.2TK2/p	2p˛

.log ı/p
C 5p�1

EŒ sup
0�s�t

jMı;	
s jp�:

If ˛ D 1=2, using Lemma 4, we have

EŒVp
t � � 5p�1	p C .5T/p�1

�
Lp C C5.p;T/2

2

�Z t

0

EŒVp
s �ds C .5T/p�1CT jjb � Objjp

p

C 2.5T/p�1CTı
p

	p.log ı/p
jj� � O� jj2p

2p C 5p�1.2TK2/p	p

.log ı/p

C 1

2
EŒVp

T �C 5p�1C6.p;T/jj� � O� jjp
2p:
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Hence we get

EŒVp
t � � 2 � 5p�1	p C .5T/p�1 �2Lp C C5.p;T/

2
	 Z t

0

EŒVp
s �ds

C 2.5T/p�1CT jjb � Objjp
p C 4.5T/p�1CTı

p

	p.log ı/p
jj� � O� jj2p

2p

C 2 � 5p�1.2TK2/p	p

.log ı/p
C 2 � 5p�1C6.p;T/jj� � O� jjp

2p

� 2 � 5p�1	p C .5T/p�1 �2Lp C C5.p;T/
2
	 Z t

0

EŒVp
s �ds C 2.5T/p�1CT"p

C 4.5T/p�1CTı
p

	p.log ı/p
"p C 2 � 5p�1.2TK2/p	p

.log ı/p
C 2 � 5p�1C6.p;T/"1=2p :

Taking ı D 2 and 	 D "
1=.2p/
p , we have

EŒVp
t � � .5T/p�1 �2Lp C C5.p;T/

2
	 Z t

0

EŒVp
s �ds C C7.1=2; p;T/"

1=2
p ;

where

C7.1=2; p;T/ WD 2 � 5p�1 C 2.5T/p�1CT C 4 � 2p.5T/p�1 C 2 � 5p�1.2TK2/p

.log 2/p

C 2 � 5p�1C6.p;T/:

By Gronwall’s inequality, we obtain

EŒVp
t � � C7.1=2; p;T/ exp.5p�1Tp

�
2Lp C C5.p;T/

2
	
/"1=2p :

If ˛ 2 Œ0; 1=2/, using Lemma 4, we have

EŒVp
t � � 5p�1	p C 5p�1Lp

E

��Z t

0

Vsds

�p�
C .5T/p�1CT jjb � Objjp

p

C 2.5T/p�1CTı
p

	p.log ı/p
jj� � O� jj2p

2p C 5p�1.2TK2/p	2p˛

.log ı/p

C 5p�1C5.p;T/E
"�Z t

0

jYsj1C2˛ds

�p=2
#

C 5p�1C6.p;T/jj� � O� jjp
2p

� 5p�1Lp
E

��Z t

0

Vsds

�p�
C 5p�1C5.p;T/E

"�Z t

0

jYsj1C2˛ds

�p=2
#
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C 5p�1	p C ..5T/p�1CT C 5p�1C6.p;T//"1=2p

C 2.5T/p�1CTı
p

	p.log ı/p
"p C 5p�1.2TK2/p	2p˛

.log ı/p
:

Now we apply Theorem 1 with � D s and Lemma 5 with r D p, q D 2, � D 1C 2˛

and

� D 5p�1	p C ..5T/p�1CT C 5p�1C6.p;T//"1=2p

C 2.5T/p�1CTı
p

	p.log ı/p
"p C 5p�1.2TK2/p	2p˛

.log ı/p
:

Then there exists C7.˛; p;T/ which depends on p; ˛;T;L and C5.p;T/ such that

EŒVp
T � � C7.˛; p;T/

�
	p C "1=2p C ıp"p

	p.log ı/p
C 	2p˛

.log ı/p

�

C C7.˛; p;T/
Z T

0

EŒjYsj�ds

� C7.˛; p;T/

�
	p C "1=2p C ıp"p

	p.log ı/p
C 	2p˛

.log ı/p

�

C
8<
:

C7.˛; p;T/C1.˛;T/e
LT T"2˛=.2˛C1/

1 if ˛ 2 .0; 1=2/;
C7.0; p;T/C1.0;T/eLTT

log.1="1/
if ˛ D 0:

Taking ı D 2 and 	 D "
1=.2p/
p if ˛ 2 .0; 1=2/ and ı D "

�1=.2p/
p and 	 D 1= log.1="p/

if ˛ D 0, we get

EŒVp
T � �

8<
:

C8.˛; p;T/"
2˛=.2˛C1/
1 if ˛ 2 .0; 1=2/;

C8.˛; p;T/

log.1="1/
if ˛ D 0;

where

C8.˛; p;T/ WD
8<
:

C7.˛; p;T/

�
2C 2p C 1

.log 2/p
C C1.˛;T/e

LTT

�
if ˛ 2 .0; 1=2/;

C7.˛; p;T/
�
2C 2.2p/p C C1.˛;T/e

LT T
	

if ˛ D 0;

Hence we conclude the proof of Theorem 3.
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4 Application to the Stability Problem

In this section, we apply our main results to the stability problem. For any n 2 N,
we consider the one-dimensional stochastic differential equation

X.n/t D x0 C
Z t

0

bn.X
.n/
s /ds C

Z t

0

�n.X
.n/
t /dWs:

Assumption 2 We assume that the coefficients b; � and the sequence of coefficients
.bn/n2N and .�n/n2N satisfy the following conditions:

A0-(i): b 2 L .
A0-(ii): b and bn are bounded measurable i.e., there exists K > 0 such that

sup
n2N;x2R

.jbn.x/j _ jb.x/j/ � K:

A0-(iii): � and �n are � D 1=2 C ˛-Hölder continuous with ˛ 2 Œ0; 1=2�, i.e.,
there exists K > 0 such that

sup
n2N;x;y2R;x¤y

� j�.x/ � �.y/j
jx � yj� _ j�n.x/� �n.y/j

jx � yj�
�

� K:

A0-(iv): a D � and an WD �2n are bounded and uniformly elliptic, i.e., there exists
� � 1 such that for any x 2 R and n 2 N,

��1 � a.x/ � � and ��1 � an.x/ � �:

A0-(p): For given p > 0,

"p;n WD jjb � bnjjp
p _ jj� � �njj2p

2p ! 0

as n ! 1.

For p � 1 and ˛ 2 Œ0; 1=2�, we define N˛;p by

N˛;p WD



minfn 2 N W "p;m < 1;8m � ng; if ˛ 2 .0; 1=2�;
minfn 2 N W "p;m < 1=e;8m � ng; if ˛ D 0:

Then using Theorem 1–3 and Corollary 1, 2, we have the following corollaries.

Corollary 3 Suppose that Assumption 2 holds with p D 1. Then there exists
a positive constant C which depends on C; c�;K;L;T; ˛; � and x0 such that for
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any n � N˛;1,

sup
�2T

EŒjX� � X.n/� j� �
8<
:

C"2˛=.2˛C1/
1;n if ˛ 2 .0; 1=2�;

C

log.1="1;n/
if ˛ D 0

and

EŒ sup
0�t�T

jXt � X.n/t j� �

8̂
<
:̂

C"4˛
2=.2˛C1/

1;n if ˛ 2 .0; 1=2�;
Cp

log.1="1;n/
if ˛ D 0

and for any g 2 BV and r � 1, we have

EŒjg.XT/ � g.X.n/T /jr� �

8̂
<
:̂
3rC1V.g/rC"˛=.2˛C1/

1;n if ˛ 2 .0; 1=2�;
3rC1V.g/rCp

log.1="1;n/
if ˛ D 0:

Corollary 4 Suppose that Assumption 2 holds with p � 2. Then there exists a
positive constant C which depends on C; c�;K;L;T; p; ˛; � and x0 such that for
any n � N˛;p,

EŒ sup
0�t�T

jXt � X.n/t jp� �

8̂
<̂
ˆ̂:

C"1=2p;n if ˛ D 1=2;

C"2˛=.2˛C1/
1;n if ˛ 2 .0; 1=2/;

C

log.1="1;n/
if ˛ D 0:

Corollary 5 Suppose that Assumption 2 holds with 2p for p 2 .1; 2/. Then there
exists a positive constant C which depends on C; c�;K;L;T; p; ˛; � and x0 such that
for any n � N˛;2p,

EŒ sup
0�t�T

jXt � X.n/t jp� �

8̂
ˆ̂<
ˆ̂̂:

C"1=22p;n if ˛ D 1=2;

C"˛=.2˛C1/
1;n if ˛ 2 .0; 1=2/;

Cp
log.1="1;n/

if ˛ D 0:

The next proposition shows that there exist the sequences .bn/n2N and .�n/n2N
satisfying Assumption 2.

Proposition 1

(i) Assume supx2R jb.x/j � K. If the set of discontinuity points of b is a null set with
respect to the Lebesgue measure, then there exists a differentiable and bounded
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sequence .bn/n2N such that for any p � 1,
Z
R

jb.x/� bn.x/jpe� jx�x0j
2

2c�T dx ! 0 (21)

as n ! 1. Moreover, if b is a one-sided Lipschitz function, we can construct
an explicit sequence .bn/n2N which satisfies a one-sided Lipschitz condition.

(ii) If the diffusion coefficient � satisfies A0-(ii) and A0-(iii), then there exists a
differentiable sequence .�n/n2N such that for any n 2 N, �n satisfies A0-(iii),
A0-(iv) and for any p � 1,

Z
R

j�.x/ � �n.x/j2pe� jx�x0 j
2

2c�T dx � K2p
p
2�c�T

n2p�
:

Proof Let �.x/ WD 
e�1=.1�jxj2/1.jxj < 1/ with 
�1 D R
jxj<1 e�1=.1�jxj2/dx and a

sequence .�n/n2N be defined by �n.x/ WD n�.nx/. We set bn.x/ WD R
R

b.y/�n.x�y/dy
and �n.x/ WD R

R
�.y/�n.x � y/dy. Then for any n 2 N and x 2 R, we have jbn.x/j �

K and ��1 � an.x/ WD �2n .x/ � �, bn and �n are differentiable.
Proof of (i). From Jensen’s inequality, we have

Z
R

jb.x/� bn.x/jpe� jx�x0 j
2

2c�T dx �
Z
R

dx

�Z
R

dyjb.x/� b.y/j�n.x � y/

�p

e� jx�x0 j
2

2c�T

D
Z
R

dx

�Z
jzj<1

dzjb.x/� b.x � z=n/j�.z/
�p

e� jx�x0 j
2

2c�T

�
Z

jzj<1
dz
Z
R

dxjb.x/� b.x � z=n/jpe� jx�x0 j
2

2c�T �.z/:

Since b is bounded, we have

Z
R

jb.x/� b.x � z=n/jpe� jx�x0j
2

2c�T dx � .2K/p
Z
R

e� jx�x0j
2

2c�T dx D .2K/p
p
2�c�T:

(22)

On the other hand, since the set of discontinuity points of b is a null set with respect
to the Lebesgue measure, b is continuous almost everywhere. From (22), using the
dominated convergence theorem, we have

Z
R

jb.x/ � b.x � z=n/jpe� jx�x0j
2

2c�T dx ! 0

as n ! 1. From this fact and the dominated convergence theorem, .bn/n2N
satisfies (21).
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Let b be a one-sided Lipschitz function. Then, we have

.x � y/.bn.x/ � bn.y// D
Z
R

.x � y/.b.x � z/� b.y � z//�n.z/dz

D
Z
R

f.x � z/ � .z � y/g.b.x � z/ � b.y � z//�n.z/dz

� Ljx � yj2;

which implies that .bn/n2N satisfies the one-sided Lipschitz condition.
Proof of (ii). In the same way as in the proof of (i), we have from Hölder

continuity of �

Z
R

j�.x/ � �n.x/j2pe� jx�x0 j
2

2c�T dx �
Z

jzj<1
dz
Z
R

dxj�.x/� �.x � z=n/j2pe� jx�x0j
2

2c�T �.z/

� K2p

n2p�

Z
jzj<1

dz
Z
R

dxe� jx�x0 j
2

2c�T �.z/ D K2p
p
2�c�T

n2p�
:

Finally, we show that �n is �-Hölder continuous. For any x; y 2 R,

j�n.x/ � �n.y/j �
Z
R

j�.x � z/ � �.y � z/j�n.z/dz � Kjx � yj�;

which implies that �n is �-Hölder continuous. This concludes that .�n/n2N satis-
fies (ii).

Acknowledgements The author is very grateful to Professor Arturo Kohatsu-Higa for his supports
and fruitful discussions. The author would also like to thank Hideyuki Tanaka and Takahiro
Tsuchiya for their useful advices. The author would like to express my thanks to Professor
Toshio Yamada for his encouragement and comments. The author also thanks the referees for
their comments which helped to improve the paper.

References

1. J. Akahori, Y. Imamura, On a symmetrization of diffusion processes. Quant. Finan. 14(7),
1211–1216 (2014). doi:10.1080/14697688.2013.825923

2. D.G. Aronson, Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math.
Soc. 73, 890–896 (1967)

3. R. Avikainen, On irregular functionals of SDEs and the Euler scheme. Finance Stochast. 13,
381–401 (2009)

4. V.E. Beneš, L.A. Shepp, H.S. Witsenhausen, Some Solvable stochastic control problems.
Stochastics 4, 39–83 (1980)

5. K.S. Chan, O. Stramer, Weak consistency of the Euler method for numerically solving
stochastic differential equations with discontinuous coefficient. Stochast. Process. Appl. 76,
33–44 (1998)



Stability Problem for One-Dimensional Stochastic Differential Equations with. . . 121

6. A. Friedman, Partial Differential Equations of Parabolic Type (Dover, New York, 1964)
7. I. Gyöngy, M. Rásonyi, A note on Euler approximations for SDEs with Hölder continuous

diffusion coefficients. Stochast. Process. Appl. 121, 2189–2200 (2011)
8. H. Hashimoto, T. Tsuchiya, Convergence rate of stability problems of SDEs with (Dis-)

continuous coefficients. Preprint arXiv:1401.4542v1 (2014)
9. Y. Imamura, Y. Ishigaki, T. Kawagoe, T. Okumura, A numerical scheme based on semi-static

hedging strategy. Monte Carlo Methods Appl. 20(4), 223–235 (2014) doi:10.1515/mcma-
2014-0002

10. H. Kaneko, S. Nakao, A note on approximation for stochastic differential equations. Séminaire
de Probabiliteés de Strasbourg 22, 155–162 (1988)

11. S. Kawabata, T. Yamada, On some limit theorems for solutions of stochastic differential
equations, in Seminaire de Probabilities XVI, University of Strasbourg 1980/81. Lecture Notes
in Mathematics, vol. 920 (Springer, New York, 1982), pp. 412–441

12. A. Kohatsu-Higa, A. Lejay, K. Yasuda, Weak approximation errors for stochastic differential
equations with non-regular drift. Preprint (2013)

13. N.V. Krylov, M. Röckner, Strong solutions of stochastic equations with singular time dependent
drift. Probab. Theory Relat. Fields 131, 154–196 (2005)

14. V. Lemaire, S. Menozzi, On some non asymptotic bounds for the Euler scheme. Electron.
J. Probab. 15, 1645–1681 (2010)

15. H.-L. Ngo, D. Taguchi, Strong rate of convergence for the Euler-Maruyama approxima-
tion of stochastic differential equations with irregular coefficients. Math. Comput. 85(300),
1793–1819 (2016)

16. D.W. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form
operators, in Séminaire de Probabilités, XXII (Springer, Berlin, 1988), pp. 316–347

17. D.W. Stroock, R.S. Varadhan, in Multidimensional Diffusion Processes. Die Grundlehren der
Mathematischen Wissenschaften (Springer, Berlin/Heidelberg/New York, 1979)

18. B.L. Yan, The Euler scheme with irregular coefficients. Ann. Probab. 30(3), 1172–1194 (2002)
19. T. Yamada, S. Watanabe, On the uniqueness of solutions of stochastic differential equations.

J. Math. Kyoto Univ. 11, 155–167 (1971)
20. A.K. Zvonkin, A transformation of the phase space of a diffusion process that removes the

drift. Math. USSR Sb. 22, 129–148 (1974)


	Stability Problem for One-Dimensional Stochastic Differential Equations with Discontinuous Drift
	1 Introduction
	2 Main Results
	2.1 Notations and Assumptions
	2.2 Gaussian Upper Bound for the Density of SDE
	2.3 Rate of Convergence

	3 Proofs
	3.1 Yamada-Watanabe Approximation Technique
	3.2 Proof of Theorem 1
	3.3 Proof of Corollary 2
	3.4 Proof of Theorem 2
	3.5 Proof of Theorem 3

	4 Application to the Stability Problem
	References


