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Abstract We revisit Kellerer’s Theorem, that is, we show that for a family of real
probability distributions .�t/t2Œ0;1� which increases in convex order there exists a
Markov martingale .St/t2Œ0;1� s.t. St � �t.

To establish the result, we observe that the set of martingale measures with
given marginals carries a natural compact Polish topology. Based on a particular
property of the martingale coupling associated to Root’s embedding this allows for
a relatively concise proof of Kellerer’s theorem.

We emphasize that many of our arguments are borrowed from Kellerer (Math
Ann 198:99–122, 1972), Lowther (Limits of one dimensional diffusions. ArXiv e-
prints, 2007), Hirsch-Roynette-Profeta-Yor (Peacocks and Associated Martingales,
with Explicit Constructions. Bocconi & Springer Series, vol. 3, Springer, Milan;
Bocconi University Press, Milan, 2011), and Hirsch et al. (Kellerer’s Theorem
Revisited, vol. 361, Prépublication Université dÉvry, Columbus, OH, 2012).
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1 Introduction

1.1 Problem and Basic Concepts

We consider couplings between probabilities .�t/t2T on the real line, where t ranges
over different choices of time sets T. Throughout we assume that all �t have a first
moment. We represent these couplings as probabilities (usually denoted by � or P)
on the canonical space ˝ corresponding to the set of times under consideration.
More precisely ˝ may be R

T or the space D of càdlàg functions if T D Œ0; 1�.
In each case we will write .St/ for the canonical process and F D .Ft/ for the
natural filtration. ˘..�t// denotes the set of probabilities P for which St �P �t.
M..�t// will denote the subset of probabilities (“martingale measures”) for which
S is a martingale wrt F resp. the right-continuous filtration FC D .FC

t /t2Œ0;1� in
the case ˝ D D . To have M..�t// ¤ ; it is necessary that .�t/ increases in convex
order, i.e. �s.'/ � �t.'/ for all convex functions ' and s � t. This is an immediate
consequence of Jensen’s inequality. We denote the convex order by � :

Our interest lies in the fact that this condition is also sufficient, and we shall from
now on assume that .�t/t2T increases in convex order, i.e. that .�t/t2T is a peacock in
the terminology of [5, 6]. The proof that M..�t/t2T/ ¤ ; gets increasingly difficult
as we increase the cardinality of the set of times under consideration.

If T D f1; 2g, this follows from Strassen’s Theorem [18] and we take this result
for granted. The case T D f1; : : : ; ng immediately follows by composition of one-
period martingale measures �k 2 M.�k; �kC1/.

If T is not finite, the fact that M..�t/t2T/ ¤ ; is less immediate and to establish
that M..�t/t2T/ contains a Markov martingale is harder still; these results were first
proved by Kellerer in [11, 12] and now go under the name of Kellerer’s theorem.
We recover these classical results in a framework akin to that of martingale optimal
transport.

1.2 Comparison with Kellerer’s Approach

Kellerer [11, 12] works with peacocks indexed by a general totally ordered index
set T and the corresponding natural filtration F . He establishes compactness
of martingale measures on R

T which correspond to the peacock .�t/t2T . Then
Strassen’s theorem allows him to show the existence of a martingale with given
marginals .�t/t2T for general T.

To show that M..�t/t2T/ also contains a Markov martingale is more involved. On
a technical level, an obstacle is that the property of being a Markovian martingale
measure is not suitably closed. Kellerer circumvents this difficulty based on a
stronger notion of Markov kernel, the concept of Lipschitz or Lipschitz-Markov
kernels on which all known proofs of Kellerer’s Theorem rely. The key step to
showing that M..�t/t2T/ contains a Markov martingale is to establish the existence
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of a two marginal Lipschitz kernel. Kellerer achieves this by showing that there
are Lipschitz-Markov martingale kernels transporting a given distribution � to the
extremal points of the set � � � and subsequently obtaining an appealing Choquet-
type representation for this set.

Our aim is to give a compact, self contained presentation of Kellerer’s result in a
framework that can be useful for questions arising in martingale optimal transport1

for a continuum of marginals. While Kellerer is not interested in continuity
properties of the paths of the corresponding martingales, it is favourable to work
in the more traditional setup of martingales with càdlàg paths to make sense of
typical path-functionals (based on e.g. running maximum, quadratic variation, etc.).

In Theorem 1 we make it a point to show that the space of càdlàg martingales
corresponding to .�t/t2Œ0;1� carries a compact Polish topology. We then note that the
Root solution of the Skorokhod problem yields an explicit Lipschitz-Markov kernel,
establishing the existence of a Markovian martingale with prescribed marginals.

1.3 Further Literature

Lowther [14, 15] is particularly interested in martingales which have a property
even stronger than being Lipschitz Markov: He shows that there exists a unique
almost continuous diffusion martingale whose marginals fit the given peacock.
Under additional conditions on the peacock he is able to show that this martingale
has (a.s.) continuous paths.

Hirsch-Roynette-Profeta-Yor [5, 6] avoid constructing Lipschitz-Markov-kernels
explicitly. Rather they establish the link to the works of Gyöngy [3] and Dupire [2]
on mimicking process/local volatility models, showing that Lipschitz-Markov mar-
tingales exist for sufficiently regular peacocks. This is extended to general peacocks
through approximation arguments. On a technical level, their arguments differ from
Kellerer’s approach in that ultrafilters rather than compactness arguments are used
to pass to accumulation points. We also recommend [6] for a more detailed review
of existing results.

2 The Compact Set of Martingales Associated to a Peacock

It is well known and in fact a simple consequence of Prohorov’s Theorem that
˘.�1; �2/ is compact wrt the weak topology induced by the bounded continuous
functions (see e.g. [19, Sect. 4] for details). It is also straightforward that the
continuous functions f W R2 ! R which are bounded in the sense that j f .x; y/j �

1An early article to study this continuum time version of the martingale optimal transport problem
is the recent article [10] of Kallblad et al.
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'.x/ C  .y/ for some ' 2 L1.�1/;  2 L1.�2/ induce the same topology on
˘.�1; �2/.

A transport plan � 2 ˘.�1; �2/ is a martingale measure iff for all continuous,
compact support functions h,

R
h.x/.y � x/ d� D 0. Hence, M.�1; �2/ is a closed

subset of ˘.�1; �2/ and thus compact. Likewise, M.�1; : : : ; �n/ is compact.

2.1 The Countable Case

We fix a countable set Q 3 1 which is dense in Œ0; 1� and write MQ for the set of all
martingale measures on R

Q. For D � Q we set:

MQ..�t/t2D/ WD fP 2 MQ W St �P �t for t 2 Dg:

We equip R
Q with the product topology and consider MQ with the topology of weak

convergence with respect to continuous bounded functions. Note that this topology
is in fact induced by the functions ! 7! f .St1 .!/; : : : ; Stn.!//, where ti 2 Q and f is
continuous and bounded.

Lemma 1 For every finite D � Q;D 3 1 the set MQ..�t/t2D/ is non-empty and
compact. As a consequence, M..�t/t2Q/ D MQ..�t/t2Q/ is non-empty and compact.

Proof We first show that MQ.�1/ is compact. To this end, we note that for every
" > 0 there exists n such that

R
.jxj � n/C d�1 < ". We then also have

�.R n Œ�.n C 1/; .n C 1/�/ � R
.jxj � n/C d� � R

.jxj � n/C d�1 < "

for every � � �1.
For every r W Q ! RC the set Kr WD fg W Q ! R; jgj � rg is compact by

Tychonoff’s theorem. Also, for given " > 0 there exists r such that for all P on
R

Q with LawP.St/ � �1 for all t 2 Q we have P.Kr/ > 1 � ". Hence Prohoroff’s
Theorem implies that MQ.�1/ is compact.

Next observe that for any finite set D � Q; 1 2 D the set MQ..�t/t2D/ is
non empty by Strassen’s theorem. Clearly MQ..�t/t2D/ is also closed and hence
compact. The family of all such sets MQ..�t/t2D/ has the finite intersection property,
hence by compactness

MQ..�t/t2Q/ D T
D�Q;12D;jDj<1 MQ..�t/t2D/ ¤ ;:

2.2 The Right-Continuous Case

We will now extend this construction to right-continuous families of marginals on
the whole interval Œ0; 1�.
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We first note that it is not necessary to distinguish between the terms right-
continuous and càdlàg in this context: fix a (not necessarily countable) set Q �
Œ0; 1�;Q 3 1, a peacock .�t/t2Q and a strictly convex function ' which grows at
most linearly, e.g. '.x/ D p

1C x2. Then the following is straightforward: the
mapping �� W Q ! P.R/; q 7! �q is càdlàg wrt the weak topology on P.R/ iff
the increasing function q 7! R

' d�q is right-continuous. In this case we say that
.�t/t2Q is a right-continuous peacock.

As we have to deal with right limits we will recall the following:

Lemma 2 Let .Xn/n2�N[f�1g be a martingale wrt .Gn/n2�N[f�1g and write �n D
Law.Xn/. If limn!�1 �n D ��1, then X�1 D lim Xn a.s. and in L1.

Proof Set Y WD limn!�1 Xn which exists (see for instance [16, Theorem II.2. 3]),
has the same law as X�1 and satisfies EŒYjX�1� D X�1 . This clearly implies that
X�1 D Y.

As above, we fix a countable and dense set Q � Œ0; 1� with 1 2 Q and consider

D D fg W Œ0; 1� ! R W g is càdlàg g;
DQ D f f W Q ! R W 9g 2 D s.t. gjQ D f g:

Note that DQ is a Borel subset of RQ. Indeed a useful explicit description of DQ

can be given in terms of upcrossings. For f W Q ! R we write UP. f ; Œa; b�/ for the
number of upcrossings of f through the interval Œa; b�. Then f 2 DQ iff f is càdlàg
and bounded on Q and satisfies UP. f ; Œa; b�/ < 1 for arbitrary a < b (clearly it is
enough to take a; b 2 Q). We also set

NFs WD T
t2Q;t>s Ft (1)

for s 2 Œ0; 1/ and let NF1 D F1.

Proposition 1 Assume that .�t/t2Q is a right-continuous peacock and let P 2
M..�t/t2Q/. Then P.DQ/ D 1. For q 2 Q, NSq WD Sq D limt#q;t2Q;t>q St holds P-a.s.
For s 2 Œ0; 1� n Q, limt#s;t2Q;t>s St exists and we define it to be NSs. The thus defined
process .NSt/t2Œ0;1� is a càdlàg martingale wrt . NFt/t2Œ0;1�.

Proof By Lemma 2, Sq D limt#q;t>q;t2Q St for all q 2 Q. Using standard martingale
folklore (cf. [16, Theorem 2.8]), this implies that .St/t2Q is a martingale under � wrt
. NFt/t2Q as well and the paths of .St/t2Q are almost surely càdlàg. Moreover these are
almost surely bounded by Doob’s maximal inequality and have only finitely many
upcrossings by Doob’s upcrossing inequality. This proves P.DQ/ D 1. As the paths
of .St/t2Q are càdlàg the definition NSs WD limt#s;t2Q;t>s St is well for s 2 Œ0; 1� n Q
and .NSt/t2Œ0;1� is a càdlàg martingale under P wrt . NFt/t2Œ0;1�.

Identifying elements of D and DQ, the right-continuous filtration FC on D
equals the restriction of NF [cf. (1)] to DQ. Since any martingale measure P
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concentrated on DQ corresponds to a martingale measure eP on D Proposition 1
yields:

Proposition 2 Let .�t/t2Œ0;1� be a right-continuous peacock and Q 3 1;Q � Œ0; 1�

a countable dense set. Then the above correspondence

P 7! eP (2)

constitutes a bijection between M..�t/t2Q/ and M..�t/t2Œ0;1�/.

Through the identification P 7! eP, the set M..�t/t2Œ0;1�/ carries a compact
topology TQ. Superficially, this topology seems to depend on the particular choice
of the set Q but this is not the case. To see this, consider another countable dense
set Q0 � Œ0; 1�. The set Q [ Q0 gives rise to a topology TQ[Q0 which is a priori finer
than TQ and TQ0 resp. Recall that whenever two compact Hausdorff topologies on
a fixed space are comparable, they are equal. Since TQ;TQ0 ;TQ[Q0 are compact
Hausdorff topologies, we conclude that TQ D TQ[Q0 D TQ0 . Hence we obtain:

Theorem 1 Let .�t/t2Œ0;1� be a right-continuous peacock and consider the canoni-
cal process .St/t2Œ0;1� on the Skorokhod space D . The set M..�t/t2Œ0;1�/ of martingale
measures with marginals .�t/ is non empty and compact wrt the topology induced
by the functions

! 7! f .St1 .!/; : : : ; Stn.!//;

where t1; : : : ; tn 2 Œ0; 1� and f is continuous and bounded.

2.3 General Peacocks

Kellerer [11] considers the more general case of a peacock .�t/t2T where .T; </
is an abstract total order and s < t implies �s � �t, moreover no continuity
assumptions on t 7! �t are imposed. Notably the existence of a martingale
associated to such a general peacock already follows from the case treated in the
previous section since every peacock can be embedded in a (right-) continuous
peacock indexed by real numbers:

Lemma 3 Let .T; </ be a total order and .�t/t2T a peacock. Then there exist
a peacock .�s/s2RC which is continuous (in the sense that s 7! �s is weakly
continuous) and an increasing function f W T ! RC such that

�t D �f .t/:

If T has a maximal element we may assume that f W T ! Œ0; 1�.
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Proof Assume first that T contains a maximal element t�. Consider again '.x/ Dp
1C x2 and set f .t/ WD R

' d�t for t 2 T. On the image S of f we define .�s/

through �f .t/ WD �t. Then s 7! �s is continuous on I and s� WD f .t�/ is a maximal
element of S.

Using tightness of .�s/s2S we obtain that �s WD limr2S;r!s exists for s 2 S. It
remains to extend .�s/s2S to Œ0; s�. The set Œ0; s� n S is the union of countably many
intervals and on each of these we can define �s by linear interpolation. Finally it is
of course possible to replace Œ0; s� by Œ0; 1� through rescaling.

If T does not have a maximal element, we first pick an increasing sequence
.tn/n�1 in T such that supn

R
' d�tn D supt2T

R
' d�t, then we apply the previous

argument to the initial segments fs 2 T W s � tng.

Above we have seen that M..�t/t2Œ0;1�/ ¤ ; for .�t/t2Œ0;1� right-continuous and
pasting countably many martingales together this extends to the case of a right-
continuous peacock .�s/s2RC

. By Lemma 3 this already implies M..�t/t2T/ ¤ ; for
a peacock wrt to a general total order T.

3 Root to Markov

So far we have constructed martingales which are not necessarily Markov. To obtain
the existence of a Markov-martingale with desired marginals, one might try to adapt
the previous argument by restricting the sets MQ..�t/t2D/ to the set of Markov-
martingales. As noted above, this strategy does not work in a completely straight
forward way as being Markovian is not a closed property wrt weak convergence.

Example 1 The sequence �n D 1
2
.ı.1; 1n ;1/

C ı.�1;� 1
n ;�1// of Markov-measures

weakly converge to the non-Markovian measure � D 1
2
.ı.1;0;1/ C ı.�1;0;�1//.

3.1 Lipschitz-Markov Kernels

A solution � to the two marginal Skorokhod problem B0 � �;B� � � gives rise
to the particular martingale transport plan .B0;B� /. Sometimes these martingale
couplings induced by solutions to the Skorokhod embedding problem exhibit certain
desirable properties. In particular we shall be interested in the Root solution to the
Skorokhod problem.

Theorem 2 (Root [17]) Let � � � be two probability measures on R. There exists
a closed set (“barrier”) R � RC �R (i.e. .s; x/ 2 R; s < t implies that .t; x/ 2 R)
such that for Brownian motion .Bt/t�0 started in B0 � � the hitting time �R of R
embeds � in the sense that B�R � � and .Bt^�R/t is uniformly integrable.
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Before we formally introduce the Lipschitz-Markov property we recall that the
L1- Wasserstein distance between two probabilities ˛; ˇ on R is given by

W.˛; ˇ/ D inf
n R jx � yj d� W � 2 ˘.˛; ˇ/

o
D sup

n R
f d� � R

f d� W f 2 Lip1
o
;

where ˘.˛; ˇ/ denotes the set of all couplings between ˛ and ˇ and Lip1 denotes
the set of all 1-Lipschitz functions R ! R: The equality of the two terms is a
consequence of the Monge-Kantorovich duality in optimal transport, see e.g. [19,
Sect. 5].

A martingale coupling � 2 M.�; �/ is Lipschitz-Markov iff for some (and then
any) disintegration .�x/x of � wrt � and some set X � R, �.X/ D 1 we have for
x; x0 2 X

W.�x; �x0/ D jx � x0j: (3)

We note that the inequality W.�x; �x0/ � jx � x0j is satisfied for arbitrary � 2
M.�; �/: for typical x; x0; x < x0, the mean of �x equals x and the mean of �x0 equals
x0. We thus find for arbitrary � 2 ˘.�x; �x0/

R jy � y0j d�.y; y0/ � ˇ
ˇ R y d�.y; y0/� R

y0 d�.y; y0/
ˇ
ˇ (4)

D ˇ
ˇ R y d�x.y/� R

y0 d�x0.y0/
ˇ
ˇ D jx � x0j;

hence W.�x; �x0/ � jx � x0j.
Note also that W.�x; �x0/ D jx�x0j holds iff the inequality in (4) is an equality for

the minimizing coupling ��. This holds true iff there is a transport plan � which is
isotone in the sense that it transports �x-almost all points y to some y0 � y. This is of
course equivalent to saying that �x precedes �x0 in first order stochastic dominance.

Lemma 4 The Root coupling �R D Law.B0;B�R/ is Lipschitz-Markov.

Proof Write .Bt/t for the canonical process on ˝ D CŒ0;1/, W for Wiener
measure started in � and �R for the Root stopping time s.t. .B0;B�R/ �W �R 2
M.�; �/.

It follows from the geometric properties of the barrier R that for all x < x0 and
! 2 ˝ such that !.0/ D 0

B�R.xC!/.x C !/ � B�R.x0C!/.x0 C !/:

Write �x for the distribution of B�R given B0 D x and W0 for Wiener measure with
start in 0. Then .�x/x defines a disintegration (wrt the first coordinate) of �R and for
x < x0 an isotone coupling � 2 ˘.�x; �x0/ can be explicitly defined by

�.A � B/ WD R
1A�B.B�R.xC!/.x C !/;B�R.x0C!/.x0 C !//W0.d!/:
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Remark 1 We thank David Hobson for pointing out that Lemma 4 remains true if
we replace �R by Hobson’s solution to the Skorokhod problem [7].2

We also note that this property is not common among martingale couplings. It
is not present e.g. in the coupling corresponding to the Rost-embedding nor the
various extremal martingale couplings recently introduced by Hobson–Neuberger
[9], Hobson–Klimmek [8], Juillet (and one of the present authors) [1], and Henry-
Labordere–Touzi [4].

3.2 Compactness of Lipschitz-Markov Martingales

To generalize the Lipschitz-Markov property to multiple time steps we first provide
an equivalent formulation in the two step case. Using the Lipschitz-function
characterization of the Wasserstein distance we find that (3) is tantamount to the
following: for every f 2 Lip1.R/ the mapping

x 7! R
f d�x D EŒ f .S2/jS1 D x� (5)

is 1-Lipschitz (on a set of full �-measure).
Let Q � Œ0; 1� be a set which is at most countable. In accordance with (5) we

call a measure/coupling P on R
Q Lipschitz-Markov if for any s; t 2 Q; s < t and

f 2 Lip1.R/ there exists g 2 Lip1.R/ such that

EPŒ f .St/jFs� D g.Ss/: (6)

2Hobson’s solution [7] can be seen as an extension of the Azema-Yor embedding to the case of a
general starting distribution.
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The Lipschitz-Markov property is closed in the desired sense:

Lemma 5 A martingale measure P on R
Q is Lipschitz-Markov iff

EPŒXf .St/�EPŒY� � EPŒX�EPŒYf .St/� � R
X.!/Y. N!/j!s � N!sj d.P ˝ P/ (7)

for all f 2 Lip1.R/, s < t 2 Q and X;Y non-negative, bounded, andFs-measurable.

Proof If P is Lipschitz-Markov, then for a given 1-Lipschitz function f we can
find by definition of a Lipschitz-Markov measure/coupling a 1-Lipschitz function
g satisfying (6). Moreover, as g 2 Lip1 we have for non-negative, bounded X;Y

.g.!s/� g. N!s//X.!/Y. N!/ � j!s � N!sjX.!/Y. N!/:

Integration with respect to P ˝ P and an application of (6) yields (7).
For the reverse implication, by basic properties of conditional expectation there

is a �..Sq/q2Q\Œ0;s�/-measurable function  such that P-a.s.

 .!/ D EPŒ f .St/jFs�.!/:

Now from (7) we almost surely have  .!/ �  . N!/ � j!s � N!sj which shows that
 only depends on the s coordinate and is in fact 1-Lipschitz.

For D � Q we set

LQ..�t/t2D/ WD fP 2 MQ W P is Lipschitz-Markov, St �P �t for t 2 Dg:

Theorem 3 Let Q � Œ0; 1�;Q 3 1 be countable. For every finite 1 2 D � Q the set
LQ..�t/t2D/ is non-empty and compact. In particular, L..�t/t2Q/ WD LQ..�t/t2Q/ is
non-empty and compact.

Proof For finite D � Q it is plain that LQ..�t/t2D/ is non-empty: this
follows by composing of Lipschitz-Markov-kernels. Hence, LQ..�t/t2Q/ DT

D�Q;jDj<1 LQ..�t/t2D/ ¤ ; by compactness.

A martingale on D is Lipschitz-Markov if (6) holds for s < t 2 Œ0; 1� wrt FC.

Theorem 4 Assume that .�t/t2Œ0;1� is a right-continuous peacock and let Q 3 1 be
countable and dense in Œ0; 1�. If P 2 L..�t/t2Q/, then the corresponding [cf. (2)]
martingale measureeP 2 M..�t/t2Œ0;1�/ is Lipschitz-Markov.

In particular, the set of all Lipschitz-Markov martingales with marginals
.�t/t2Œ0;1� is compact and non-empty.

Proof The arguments in the proof of Lemma 5 work in exactly the same way
to show that QP being Lipschitz-Markov is equivalent to conditions similar to (7)
where X;Y are chosen to be measurable wrt FC

s (or NFs, see the remark before
Proposition 2).
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For arbitrary s; t 2 Œ0; 1�; s < t choose sequences sn # s; tn # t in Q. Note that
X;Y are in fact measurable wrt Fsn and we thus have

EPŒXf .Stn/�EPŒY� � EPŒX�EPŒYf .Stn/� � R
X.!/Y. N!/j!sn � N!sn j d.P ˝ P/.!; N!/

by Lemma 5. Letting n ! 1 concludes the proof.

3.3 Further Comments

It is plain that a Lipschitz-Markov kernel also has the Feller-property and in
particular a Lipschitz-Markov martingales are strong Markov processes wrt FC
(see [13, Remark 1.70]). As in the previous section, the right-continuity of .�t/t2Œ0;1�
is not necessary to establish the existence of a Lipschitz-Markov martingale, this
follows from Lemma 3. We also remark that the arguments of Sect. 2 directly extend
to the case of multidimensional peacocks, where the marginal distributions �t are
probabilities on R

d. However it remains open whether Theorem 4 extends to this
multidimensional setup.
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